
Professional

Visual Basic® 2010 and .neT 4

Bill Sheldon
Billy Hollis

Kent Sharkey
Jonathan Marbutt

Rob Windsor
Gastón C. Hillar

Professional Visual Basic® 2010 and .neT 4

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-50224-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Control Number: 2010921246

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual Basic is a registered trademark of Microsoft Corporation in the United
States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not
associated with any product or vendor mentioned in this book.

conTenTs

IntroductIon xxxv

ParT i: language consTrucTs and enVironmenT

chaPTer 1: Visual sTudio 2010 3

Visual studio 2010: express through Ultimate 4
Visual Basic Keywords and syntax 7

Console Applications 10

Creating a Project from a Project Template 11

The Solution Explorer 14

Project Properties 15

Assembly Information Screen 16

Compiler Settings 17

Debug Properties 21

References 22

Resources 24

Settings 25

Other Project Property Tabs 28

Project ProVB_Vs2010 28
Form Properties Set in Code 31

Additional Components for Visual Studio 39

enhancing a sample application 40
Customizing the Code 41

Building Applications 45

Reusing Your First Windows Form 52

Useful features of Visual studio 2010 54
Build Configurations 54

The Task List 56

The Command Window 57

Server Explorer 57

Recording and Using Macros in Visual Studio 2010 58

Class Diagrams 60

Application Lifecycle Management 61

Performance Tools 64

summary 66

conTenTs

xvi

chaPTer 2: oBJecTs and Visual Basic 67

object-oriented Terminology 68
Objects, Classes, and Instances 68

Composition of an Object 69

System .Object 72

Working With Visual Basic Types 72
Value and Reference Types 73

Primitive Types 75

Commands: Conditional 76
If Then 77

Comparison Operators 77

Select Case 79

Value Types (structures) 79
Boolean 80

Integer Types 81

Unsigned Types 82

Decimal Types 82

Char and Byte 85

DateTime 85

reference Types (Classes) 86
The Object Class 86

The String Class 87

XML Literals 91

The DBNull Class and IsDBNull Function 92

Parameter Passing 93
ParamArray 94

Variable scope 94
Working with objects 95

Objects Declaration and Instantiation 95

Object References 96

Dereferencing Objects 97

Early Binding versus Late Binding 97

Data Type Conversions 98
Performing Explicit Conversions 99

Creating Classes 103
Basic Classes 103

Handling Events 113

Handling Multiple Events 113

ConTenTs

xvii

The WithEvents Keyword 114

Raising Events 114

Declaring and Raising Custom Events 115

Receiving Events with WithEvents 116

Receiving Events with AddHandler 117

Constructor Methods 119

Termination and Cleanup 119

advanced Concepts 120
Overloading Methods 121

Overloading Constructor Methods 123

Shared Methods, Variables, and Events 124

Operator Overloading 128

Delegates 130

Classes versus Components 134

Lambdas 135

summary 136

chaPTer 3: cusTom oBJecTs 137

inheritance 138
Implementing Inheritance 139

Interacting with the Base Class, Your Class, and Your Object 159

Simple Constructors 164

Creating an Abstract Base Class 175

Multiple interfaces 177
Object Interfaces 177

Secondary Interfaces 178

abstraction 184
encapsulation 187
Polymorphism 189

Method Signatures 189

inheritance 198
When to Use Inheritance 198

How Deep to Go? 205

summary 208

chaPTer 4: The common language runTime 211

elements of a .neT application 212
Modules 212

Assemblies 213

Types 214

conTenTs

xviii

Versioning and Deployment 214
Better Support for Versioning 214

Major .Minor .Build .Revision 215

Better Deployment 215

Cross-language integration 216
The Common Type System 216

Metadata 217

Better Support for Metadata 218

Attributes 218

The Reflection API 220

il Disassembler 221
Memory Management 221

Traditional Garbage Collection 222

Faster Memory Allocation for Objects 228

Garbage Collector Optimizations 229

namespaces 231
What Is a Namespace? 231

Namespaces and References 234

Common Namespaces 236

Importing and Aliasing Namespaces 238

Aliasing Namespaces 239

Referencing Namespaces in ASP .NET 240

Creating Your own namespaces 240
The My Keyword 242

My .Application 243

My .Computer 246

My .Forms Namespace 249

My .Resources 249

My .User 250

extending the My namespace 250
summary 252

chaPTer 5: declaraTiVe Programming
WiTh Visual Basic 253

Declarative Programming and Visual Basic 254
Using XaMl to Create a Window 255
XaMl syntax 258

XAML Language Basics 259

XAML Directives 261

Using XaMl to Declare a Workflow 262
summary 264

ConTenTs

xix

chaPTer 6: excePTion handling and deBugging 267

new in Visual studio 2010 Team system: Historical Debugging 267
notes on Compatibility with VB6 268
exceptions in .neT 268

Important Properties and Methods of an Exception 268

structured exception-Handling Keywords 269
The Try, Catch, and Finally Keywords 270

The Throw Keyword 271

Throwing a New Exception 272

The Exit Try Statement 273

Nested Try Structures 274

Using Exception Properties 275

The Message Property 276

The InnerException and TargetSite Properties 276

interoperability with VB6-style error Handling 279
error logging 280

The Event Log 280

Events, Methods, and Properties 281

Writing to Trace Files 283

summary 284

chaPTer 7: TesT-driVen deVeloPmenT 287

When and How to Test 288
Using Assertions 288

TDD Tools in Visual studio 290
UnitTesting Walk-Through 291

Creating a Test 291

Running a Test 293

Testing Data Access Code 295

Using the Generate from Usage Feature 302

other Visual studio editions 305
Third Party Testing frameworks 306
summary 307

ParT ii: Business oBJecTs and daTa access

chaPTer 8: arrays, collecTions, and generics 311

arrays 312
Multidimensional Arrays 313

The UBound Function 314

conTenTs

xx

The ReDim Statement 314

The Preserve Keyword 315

Collections 315
Generics 320

Using Generics 321

Nullable Types 322

Generic Types 322

Generic Methods 326

Creating Generics 327
Generic Types 327

Generic Methods 333

Constraints 334

Generics and Late Binding 337

Covariance and Contravariance 337

summary 339

chaPTer 9: using xml WiTh Visual Basic 341

an introduction to XMl 342
XMl serialization 343

Source Code Style Attributes 347

system.Xml Document support 348
XMl stream-style Parsers 348

Writing an XML Stream 349

Reading an XML Stream 351

Document Object Model (DOM) 359

Xsl Transformations 363
XSLT Transforming between XML Standards 366

Other Classes and Interfaces in System .Xml .Xsl 368

XMl in asP.neT 369
The XmlDataSource Server Control 369

The XmlDataSource Control’s Namespace Problem 373

The Xml Server Control 373

linQ to XMl 375
linQ Helper XMl objects 375

XDocument 375

XElement 375

XNamespace 376

XAttribute 378

Visual Basic and XMl literals 379
Using linQ to Query XMl Documents 380

ConTenTs

xxi

Querying Static XML Documents 380

Querying Dynamic XML Documents 381

Working with the XMl Document 382
Reading from an XML Document 382

Writing to an XML Document 384

lambda expressions in Visual Basic 385
summary 387

chaPTer 10: ado.neT and linq 389

aDo.neT architecture 390
Basic aDo.neT features 391

Common ADO .NET Tasks 391

Basic ADO .NET Namespaces and Classes 395

ADO .NET Components 396

.neT Data Providers 398
Connection Object 398

Command Object 399

Using Stored Procedures with Command Objects 399

DataReader Object 402

Executing Commands Asynchronously 404

DataAdapter Objects 406

SQL Server .NET Data Provider 409

OLE DB .NET Data Provider 409

The Dataset Component 410
DataTableCollection 410

DataRelationCollection 410

ExtendedProperties 411

Creating and Using DataSet Objects 411

ADO .NET DataTable Objects 413

Advanced ADO .NET Features of the DataSet and DataTable Objects 414

Working with the Common Provider Model 416
Connection Pooling in aDo.neT 418
Transactions and system.Transactions 418

Creating Transactions 419

Creating Resource Managers 421

linQ to sQl 421
linQ to sQl and Visual Basic 422

Retrieving Data Using LINQ to SQL: Creating the Console Application 422

Introducing the O/R Designer 423

Creating the Product Object 424

conTenTs

xxii

How objects Map to linQ objects 425
The DataContext Object 426

The Table(TEntity) Object 428

Querying the Database 428
Using Query Expressions 429

Query Expressions in Detail 429

Filtering Using Expressions 429

Performing Joins 430

Grouping Items 431

stored Procedures 432
Updating the Database 433
summary 435

chaPTer 11: daTa access WiTh The enTiTy frameWorK 437

object-relational Mapping 438
entity framework architecture 438

Conceptual Model 439

Storage Model 442

Mapping Model 443

LINQ to Entities 443

The ObjectContext 445

Mapping objects to entities 446
Simple Mapping 446

Using a Single Table for Multiple Objects 448

Using Multiple Tables for an Object 450

Generating the Database from a Model 452
Updating the Model 454

summary 456

chaPTer 12: WorKing WiTh sql serVer 457

sQl server Compact 458
Connecting to a SQL Server Compact Database 459

Synchronizing Data 462

sQl server’s Built-in XMl features 468
Clr integration in sQl server 470

Deciding between T-SQL and Visual Basic 470

Creating User-Defined Types 471

Creating Stored Procedures 483

Exposing Web Services from SQL Server 489

SQL Server 2008 Features 494

ConTenTs

xxiii

WCf Data services 495
REST 495

Atom and JSON 495

Exposing Data Using WCF Data Services 497

WCF Data Services Client Library 501

summary 505

chaPTer 13: serVices (xml/Wcf) 507

introduction to services 508
The Network Angle 508

Application Development 508

Merging the Network and Application Development 508

The Foundations of Web Services 509

The Problems 510

Some Other Players 511

Web Services 511

What Makes a WCF Service 512

The larger Move to soa 513
Capabilities of WCF 514

Contracts and Metadata 514

Working with the WS-* Protocols 515

Building a WCf service 516
Building a WCf Consumer 523

Adding a Service Reference 523

Reviewing the Reference 525

Configuration File Changes 528

Writing the Consumption Code 529

Working with Data Contracts 531
Building a Service with a Data Contract 532

namespaces 533
Building the Host 533

Building the Consumer 534

Looking at WSDL and the Schema for HelloCustomerService 536

summary 538

ParT iii: smarT clienT aPPlicaTions

chaPTer 14: WindoWs forms 541

The system.Windows.forms namespace 541
Using forms 542

Setting a Startup Form 542

conTenTs

xxiv

Showing Forms via Sub Main 543

More about the Application Class 543

Startup Location for a Form 543

Form Borders 544

Always on Top — the TopMost Property 544

Owned Forms 544

Making Forms Transparent and Translucent 545

Visual Inheritance 547

Scrollable Forms 547

MDI Forms 547

An MDI Example in VB 2010 548

Dialog Forms 549

Forms at Runtime 550

Default Instances of Forms 551

Controls 552
Control Tab Order 552

Properties for All Controls 552

Dynamic Sizing and Positioning of Controls 553

FlowLayoutPanel Control 555

TableLayoutPanel Control 556

Panel and GroupBox Container Controls 556

Extender Providers 557

Advanced Capabilities for Data Entry 559

Validating Data Entry 561

Toolbars and the ToolStrip Control 562

Menus 564

Common Dialogs 566

Drag and Drop 568

Summary of Standard Windows .Forms Controls 569

Handling Groups of Related Controls 571

Adding Controls at Runtime 572

other Handy Programming Tips 573
summary 573

chaPTer 15: adVanced WindoWs forms 575

Packaging logic in Visual Controls 575
Custom Controls in Windows forms 576

Inheriting from an Existing Control 576

Building a Composite Control 576

Writing a Control from Scratch 577

ConTenTs

xxv

inheriting from an existing Control 577
Process Overview 577

Writing Code for an Inherited Control 578

Other Useful Attributes 581

Defining a Custom Event for the Inherited Control 581

A CheckedListBox Limiting Selected Items 582

The Control and UserControl Base Classes 584
The Control Class 585

The UserControl Class 585

a Composite UserControl 586
Creating a Composite UserControl 586

Resizing the Control 587

Exposing Properties of Contained Controls 587

Stepping through the Example 588

Building a Control from scratch 591
Painting a Custom Control with GDI+ 591

attaching an icon for the Toolbox 595
embedding Controls in other Controls 595
summary 597

chaPTer 16: user conTrols comBining WPf
and WindoWs forms 599

The integration library 600
Hosting WPf Controls in Windows forms 601

Creating a WPF Control Library 602

The Windows Forms Application 604

Hosting Windows forms Controls in WPf 610
integration limitations 614
summary 615

chaPTer 17: WPf desKToP aPPlicaTions 617

What, Where, Why, How — WPf strategy 618
raster Graphics and Vector Graphics 619
should Your next Windows Project Use WPf? 619
Creating a WPf application 620

Implementing a Custom WPF Application 621

Customizing the User Interface 633

Customizing the Buttons 641

summary 666

conTenTs

xxvi

chaPTer 18: exPression Blend 3 667

Getting to Know Blend 668
Creating a New Project 668

sketchflow 674
Your First SketchFlow 674

SketchFlow Player 676

Documenting Your SketchFlow 678

summary 678

chaPTer 19: silVerlighT 679

What is silverlight? 679
Smooth Streaming 680

Industry Standard Video 680

Digital Rights Management 680

starting a silverlight Project 680
Silverlight Application 681

Silverlight Navigation Application 681

Silverlight Class Library 682

silverlight solution 682
Web Application 682

Application Library Caching 682

Silverlight Application 683

Controls 685
Layout Management 686

adding items to the silverlight Project 692
Silverlight User Control 693

Silverlight Application Class 693

Silverlight Page 693

Silverlight Child Window 694

Silverlight Template Control 694

Silverlight Resource Dictionary 694

silverlight out of the Browser 694
summary 695

ParT iV: inTerneT aPPlicaTions

chaPTer 20: silVerlighT and serVices 699

services and silverlight 699
ASMX Web Service 700

WCF Service 702

ConTenTs

xxvii

ADO .NET Data Service 705

Model-View-ViewModel 714
Separation of Concerns 714

The Model 714

The View 717

The ViewModel 717

summary 718

chaPTer 21: WorKing WiTh asP.neT 719

The History of asP.neT 719
Key features of asP.neT 720

Developer Productivity 720

Performance and Scalability 720

Localization 721

Health Monitoring 721

Easy Access to Data 721

Administration and Management 721

Visual studio support for asP.neT 721
Web Site and Web Application Projects 722

ASP .NET Application Folders 722

Web Server Options 723

Building asP.neT applications Using Web forms 723
Pages, Forms, Controls, and Events 724

Data-Driven applications 735
Data Binding with the SqlDataSource Control 735

Data Binding with the LinqDataSource Control 743

Data Binding with the ObjectDataSource Control 746

summary 749

chaPTer 22: asP.neT adVanced feaTures 751

Master Pages 751
Creating a Master Page 752

Creating the Content Page 755

Providing Default Content in Your Master Page 758

navigation 758
Using the SiteMapPath Server Control 759

Menu Server Control 760

Working with the asP.neT Provider Model 761
Creating an Application Services Database 762

Membership and role Management 766

conTenTs

xxviii

Profile Properties 771
Microsoft ajax (asP.neT aJaX) 772

Understanding the Need for Ajax 773

Microsoft Ajax Implementation 773

UpdatePanel Control vs . Client-Side Service Calls 775

Introducing the Sample Project 775

Adding the UpdatePanel Control 778

Using Client-Side Service Calls and Client Templates 780

summary 785

chaPTer 23: asP.neT mVc 787

Model-View-Controller and asP.neT 788
Building an asP.neT MVC application 788

Creating the Project 788

Controllers and Actions 789

Adding the Model 792

Views 793

Routing 796

Scaffolding and CRUD Operations 797

Validation 804

summary 806

chaPTer 24: sharePoinT 2010 deVeloPmenT 807

introduction 807
SharePoint Foundation 2010 808

SharePoint Server 2010 808

SharePoint Terminology 808

The SharePoint Development Environment 809

features and the solutions framework 809
Features 809

Solution Framework 817

Visual studio Tools for sharePoint Development 821
The sharePoint 2010 object Models 827

Server Object Model 828

Client Object Models 831

Building Web Parts 833
summary 839

ConTenTs

xxix

ParT V: liBraries and sPecialiZed ToPics

chaPTer 25: Visual sTudio Tools for office 843

examining the VsTo releases 844
Office Automation versus VSTO 844

PIA-Free Deployment 844

VSTO Project Types 845

office Business application architecture 846
Working with Both VBa and VsTo 847
Creating a Document Template (Word) 852

Adding Content to the Document 854

Adding a Ribbon and an Actions Pane 856

Activating the Actions Pane 859

Updating a Content Control 862

Creating an office add-in (excel) 864
outlook form regions 871
summary 880

chaPTer 26: WindoWs WorKfloW foundaTion 881

Workflow in applications 881
Building Workflows 882

Adding Workflow with Windows Workflow Foundation 882

A Simple Workflow 884

Standard Activities 887

A Less Simple Workflow 889

Building Custom Activities 896

Dynamically Loading Workflows 899

rehosting the Workflow Designer 900
summary 903

chaPTer 27: localiZaTion 905

Cultures and regions 905
Understanding Culture Types 906

Looking at Your Thread 907

Declaring Culture Globally in ASP .NET 908

Adopting Culture Settings in ASP .NET 909

Translating Values and Behaviors 910
Understanding Differences in Dates 910

Differences in Numbers and Currencies 913

Understanding Differences in Sorting 915

conTenTs

xxx

asP.neT resource files 916
Making Use of Local Resources 916

Global Resources 921

resource files in Windows forms 923
summary 927

chaPTer 28: com-inTeroP 929

Understanding CoM 930
CoM and .neT in Practice 931

A Legacy Component 931

The .NET Application 932

Trying It All Out 935

Using TlbImp Directly 935

Late Binding 936

activeX Controls 940
The Legacy ActiveX Control 940

A .NET Application, Again 941

Trying It All Out, Again 944

Using .neT Components in the CoM World 944
A .NET Component 944

RegAsm 946

TlbExp 947

P/invoke 947
Windows API Code Pack 948

summary 948

chaPTer 29: neTWorK Programming 949

Protocols, addresses, and Ports 949
Addresses and Names 951

Ports: They’re Not Just for Ships 952

Firewalls: Can’t Live with Them, Can’t Live without Them 952

The system.net namespace 953
Web Requests (and Responses) 953

Simplifying Common Web Requests with WebClient 958

sockets 960
Building the Application 960

Creating Conversation Windows 962

Sending Messages 969

Shutting Down the Application 973

ConTenTs

xxxi

Using internet explorer in Your applications 976
Windows Forms and HTML — No Problem! 976

summary 979

chaPTer 30: aPPlicaTion serVices 981

Using iis for application services 981
Windows services 982
Characteristics of a Windows service 982
interacting with Windows services 983
Creating a Windows service 984

The .NET Framework Classes for Windows Services 984

Other Types of Windows Services 987

Creating a Windows service in Visual Basic 987
Creating a file Watcher service 988

Creating a Solution for the Windows Service 988

Adding .NET Components to the Service 989

Installing the Service 992

Starting the Service 992

Uninstalling the Service 993

Communicating with the service 994
The ServiceController Class 994

Integrating a ServiceController into the Example 995

More about ServiceController 996

Custom Commands 997
Passing strings to a service 998
Debugging the service 998
summary 1000

chaPTer 31: assemBlies and reflecTion 1001

assemblies 1002
The Manifest 1002

Assembly Identity 1004

Referenced Assemblies 1006

assemblies and Deployment 1006
Application-Private Assemblies 1006

Shared Assemblies 1007

Versioning issues 1008
Application Isolation 1008

conTenTs

xxxii

Side-By-Side Execution 1009

Self-Describing Components 1009

Version Policies 1009

Configuration Files 1010

Basics of reflection 1013
The Assembly Class 1014

Getting Currently Loaded Assemblies 1014

The Type Class 1015

Dynamic loading of assemblies 1016
The LoadFrom Method of the Assembly Class 1016

Dynamic Loading Example 1017

Putting Assemblies to Work 1018

summary 1019

chaPTer 32: securiTy in The .neT frameWorK 1021

security Concepts and Definitions 1022
Permissions in the system.security.Permissions namespace 1023

Code Access Permissions 1026

Identity Permissions 1026

Role-Based Permissions 1027

Managing Code access Permission sets 1029
User access Control 1032
Defining Your application UaC settings 1033

Security Tools 1034

Exceptions Using the SecurityException Class 1035

encryption Basics 1036
Hash Algorithms 1037

summary 1049

chaPTer 33: Parallel Programming using TasKs
and Threads 1051

launching Parallel Tasks 1051
System .Threading .Tasks .Parallel Class 1052

Parallel .Invoke 1052

Transforming sequential Code to Parallel Code 1057
Detecting Hotspots 1057

Measuring Speedups Achieved by Parallel Execution 1060

Understanding Parallel and Concurrent Execution 1061

Parallelizing loops 1062

ConTenTs

xxxiii

Parallel .For 1062

Parallel .ForEach 1067

Exiting from Parallel Loops 1072

specifying the Desired Degree of Parallelism 1076
ParallelOptions 1077

Understanding Hardware Threads and Logical Cores 1078

Creating and Managing Tasks 1079
System .Threading .Tasks .Task 1080

Understanding a Task’s Life Cycle 1081

Using Tasks to Parallelize Code 1082

Returning Values from Tasks 1090

Preparing the Code for Concurrency and Parallelism 1093

Understanding Concurrent Collection Features 1094

Transforming LINQ into PLINQ 1097

summary 1099

chaPTer 34: dePloymenT 1101

application Deployment 1102
Why Deployment Is Straightforward in .NET 1102

XCOPY Deployment 1102

Using the Windows Installer 1102

ClickOnce Deployment 1103

Choosing a framework Version 1103
Visual studio Deployment Projects 1103

Project Templates 1104

Creating a Deployment Project 1105

Modifying the Deployment Project 1109
Project Properties 1109

The File System Editor 1111

The Registry Editor 1115

The File Types Editor 1117

The User Interface Editor 1118

The Custom Actions Editor 1120

The Launch Conditions Editor 1122

Building 1124

internet Deployment of Windows applications 1124
No-Touch Deployment 1125

ClickOnce Deployment 1126

iis Web Deployment Tool 1133
summary 1135

conTenTs

xxxiv

aPPendix a: The Visual Basic comPiler 1137

aPPendix B: Visual Basic PoWer PacKs Tools 1151

aPPendix c: WorKfloW 2008 sPecifics 1165

aPPendix d: enTerPrise serVices 1185

aPPendix e: Programming for The cloud 1205

Index 1233

 PART I

language constructs
and environment

 chaPTer 1: ⊲ Visual Studio 2010

 chaPTer 2: ⊲ Objects and Visual Basic

 chaPTer 3: ⊲ Custom Objects

 chaPTer 4: ⊲ The Common Language Runtime

 chaPTer 5: ⊲ Declarative Programming with Visual Basic

 chaPTer 6: ⊲ Exception Handling and Debugging

 chaPTer 7: ⊲ Test-Driven Development

1
 Visual studio 2010

 WhaT you Will learn in This chaPTer

 Versions of Visual Studio ➤

 An introduction to key Visual Basic terms ➤

 Targeting a runtime environment ➤

 Creating a baseline Visual Basic Windows Form ➤

 Project templates ➤

 Project properties — application, compilation, debug ➤

 Setting properties ➤

 IntelliSense, code expansion, and code snippets ➤

 Debugging ➤

 Recording and using macros ➤

 The Class Designer ➤

 Team Foundation Server — Team Explorer ➤

 You can work with Visual Basic without Visual Studio. In fact, Appendix A focuses on using the
Visual Basic compiler from the command line. In practice, however, most Visual Basic developers
treat the two as almost inseparable; without a version of Visual Studio, you ’ re forced to work
from the command line to create project fi les by hand, to make calls to the associated compilers,
and to manually address the tools necessary to build your application. While Visual Basic supports
this at the same level as C#, F#, C++ and other .NET languages, this isn ’ t the typical focus of a
Visual Basic professional.

 Visual Basic ’ s success rose from its increased productivity in comparison to other languages when
building business applications. Visual Studio 2010 increases your productivity and provides assistance
in debugging your applications and is the natural tool for Visual Basic developers.

 Accordingly, the current edition of this book is going to start off by introducing you to Visual Studio
2010 and how to build and manage Visual Basic applications. The focus of this chapter is on ensuring
that everyone has a core set of knowledge related to tasks like creating and debugging applications in
Visual Studio 2010. Visual Studio 2010 will be used throughout the book for building solutions. Note
while this is the start, don ’ t think of it as an ‘ intro ’ chapter. This chapter will intro key elements of
working with Visual Studio, but will also go beyond that. You may fi nd yourself referencing back to

4 ❘ chaPTer 1 Visual studio 2010

it later for advanced topics that you glossed over your first time through. Visual Studio is a powerful and, at
times, complex tool and you aren’t expected to master it on your first read through this chapter.

When Visual Studio 2005 was released, Microsoft expanded on the different versions of Visual Studio
available for use. At the low-cost end, and currently free, is Visual Basic Express Edition. This tool enables
you to build desktop applications with Visual Basic only. Its companion for Web development is Visual Web
Developer Express, which enables you to build ASP.NET applications. At the high end, Microsoft offers
Visual Studio Ultimate. Each of the high-end, Professional, Premium, and Ultimate editions is available as
part of an MSDN subscription and each of these editions further extends the core Visual Studio 2010
capabilities beyond the core Integrated Development Environment (IDE) to help improve design, testing, and
collaboration between developers.

Of course, the focus of this chapter is how Visual Studio enables you to use Visual Basic to build
applications geared toward “better, faster, cheaper” business goals. To this end, we’ll be examining features
of Visual Studio starting with those in the core Visual Basic 2010 Express Edition and building up to the
full Visual Studio Team Suite.

This chapter provides an overview of many of the capabilities of Visual Studio 2010. It also provides a
brief introduction to the features available by using one of the more feature-rich versions of Visual Studio.
Experienced developers will probably gloss over much of this information although I encourage them
to review the new historical debugging features available in Visual Studio 2010 Ultimate covered in this
chapter. The goal is to demonstrate how Visual Studio makes you, as a developer, more productive and
successful.

Visual sTudio 2010: exPress Through ulTimaTe
For those who aren’t familiar with the main elements of .NET development there is the common language
runtime (CLR), the .NET Framework, the various language compilers and Visual Studio. Each of these plays
a role, for example the CLR — covered in Chapter 4 — manages the execution of code on the .NET platform.
Thus code can be targeted to run on a specific version of this runtime environment.

The .NET Framework provides a series of classes that developers leverage across implementation languages.
This framework or Class Library is versioned and targeted to run on a specific minimum version of the CLR.
It is this library along with the language compilers that are referenced by Visual Studio. Visual Studio
allows you to build applications that target one or more of the versions of what is generically called .NET.

In some cases the CLR and the .NET Framework will be the same; for example, .NET Framework version 1.0
ran on CLR version 1.0. In other cases just as Visual Basic’s compiler is on version 10, the .NET Framework
might have a newer version targeting an older version of the CLR.

The same concepts carry into Visual Studio. Visual Studio 2003 was focused on .NET 1.1, while the
earlier Visual Studio .NET (2002) was focused on .NET 1.0. Originally, each version of Visual Studio was
optimized for a particular version of .NET. Similarly, Visual Studio 2005 was optimized for .NET 2.0,
but then along came the exception of the .NET Framework version 3.0. This introduced a new Framework,
which was supported by the same version 2.0 of the CLR, but which didn’t ship with a new version of
Visual Studio.

Fortunately, Microsoft chose to keep Visual Basic and ASP.NET unchanged for the .NET 3.0 Framework
release. However, when you looked at the.NET 3.0 Framework elements, such as Windows Presentation
Foundation, Windows Communication Foundation, and Windows Workflow Foundation, you found that
those items needed to be addressed outside of Visual Studio. Thus, while Visual Studio is separate from
Visual Basic, the CLR and .NET development, in practical terms Visual Studio was tightly coupled to each
of these items.

With Visual Studio 2008, Microsoft loosened this coupling by providing robust support that allowed the
developer to target any of three different versions of the .NET Framework. Visual Studio 2010 continues
this, enabling you to target an application to run on .NET 2.0, .NET 3.0,.NET 3.5, or .NET 4.

However, as you’ll discover, this support doesn’t mean that Visual Studio 2010 isn’t tightly coupled to a
specific version of each compiler. In fact, the new support for targeting frameworks is designed to support
a runtime environment, not a compile-time environment. This is important because when projects from
previous versions of Visual Studio are converted to the Visual Studio 2010 format, they cannot be reopened
by a previous version.

The reason for this is that the underlying build engine used by Visual Studio 2010 accepts syntax changes
and even language feature changes, but previous versions of Visual Studio do not recognize these new
elements of the language. Thus, if you move source code written in Visual Studio 2010 to a previous version
of Visual Studio, you face a strong possibility that it would fail to compile. There are ways to manually
work with a project across versions of Visual Studio on the same team, but they are not supported. Bill
Sheldon, one of the authors of this book, has a blog post from August 2007 that deals with his experience
doing this in Visual Studio 2008. The post titled “Working with Both VS 2005 and VS 2008 B2 on
the Same Project” is still applicable for those working with Visual Studio 2010: http://nerdnotes
.net/blog/default,date,2007-08-29.aspx.

Multi-targeting support by Visual Studio 2010 ensures that your application will run on a specific version
of the framework. Thus, if your organization is not supporting .NET 3.0, .NET 3.5, or .NET 4, you can still
use Visual Studio 2010. The compiler generates byte code based on the language syntax, and at its core that
byte code is version agnostic. Where you can get in trouble is if you reference one or more classes that aren’t
part of a given version of the CLR. Visual Studio therefore manages your references when targeting an older
version of .NET allowing you to be reasonably certain that your application will not reference files from one
of those other framework versions. Multi-targeting is what enables you to safely deploy without requiring
your customers to download additional framework components they don’t need.

With those ground rules in place, what versions of Visual Studio 2010 are available, and what are the
primary differences between them? As already mentioned, Visual Basic 2010 Express is at the bottom tier
in terms of price and features. It is accompanied there by Visual Web Developer 2010 Express Edition, for
those developers who are developing Web applications, rather than desktop applications. These two tools
are separate, but both support developing different types of Visual Basic applications, and both are free.
Note, however, that neither is extensible; these tools are meant to be introductory, and Microsoft’s license
prevents vendors from extending these tools with productivity enhancements.

However, each of the Express Edition development tools also ships with two additional components
covered briefly here: MSDN Express Edition and SQL Server 2008 Express Edition. MSDN is, of course,
the Microsoft Developer Network, which has placed most of its content online. It’s the source for not
only the core language documentation for Visual Basic, but also articles on almost every product oriented to
developers using Microsoft technology. Full versions of Visual Studio ship with the full MSDN library so
that you can access its content locally. However, the Express Edition tools actually ship with a pared-down
set of documentation files.

Similar to the language and Web-based tools, Microsoft has a SQL Server Express Edition package. This
package has a history, in that it replaces the MSDE database engine that was available with SQL Server
2000. The SQL Server Express engine provides the core SQL Server 2008 database engine. For more
information on SQL Server Express go to www.microsoft.com/express/database. Note that a free
database management application is available via a separate download from Microsoft.

When you install Visual Studio 2010, including the Express Editions, you also have the opportunity to
install this core database engine. The elements of this engine are freely redistributable, so if you are looking
for a set of core database features based on ADO.NET, you can create your application and deploy your
SQL Server 2008 Express Edition database without being concerned about licensing.

Getting back to the differences in versions, the Express Edition tools provide the core components necessary
to create Visual Basic applications (Windows or Web) based on the core IDE. Table 1-1 provides a quick
summary of what versions are available, including a description of how each extends Visual Studio.

Visual studio 2010: express through Ultimate ❘ 5

6 ❘ chaPTer 1 Visual studio 2010

The Express Edition tools are best described as targeting students and hobbyists, not because you can’t
create serious applications but because they provide only limited support for team development, have limited
extensibility, and offer a standalone environment. The Express Tools are oriented toward developers who
work independently, while still providing full access to features of the Visual Basic language. This chapter
begins working in the IDE using features available in this version, which is essentially the lowest common
denominator, and then goes beyond the capabilities of this free tool.

Eventually, however, a developer needs additional tools and projects. This is where the full versions of
Visual Studio 2010 (Standard, Professional, Premium and Ultimate) come in. With an increasing level
of support for team development, these feature-rich versions add macro support, and, more important,
an Object Modeling tool. As discussed in the section titled “Class Diagrams,” later in this chapter, Visual
Studio enables you to create a visual representation of the classes in your solution and then convert that
representation into code. Moreover, the tool supports what is known as round-trip engineering. This means
that not only can you use the graphical model to generate code, you can also take a project’s source files and
regenerate an updated version of the graphical model — that is, edit that model in its graphical format and
then update the associated source files.

For those choosing Visual Studio 2008 Professional or above, Visual Studio Tools for Office (VSTO) is
targeted primarily at enterprise developers, those who work in corporate organizations (either as employees or
consultant/contractors). This tool provides a way for users of the enterprise editions of Microsoft Office 2007

TaBle 1-1: Visual Studio Editions

Visual sTudio ediTion descriPTion

Visual Basic 2008 Express
Edition

This is the core set of functionality required for creating Windows-based
applications . It includes the IDE with full local debugging support and support
for five project types: Windows Forms Application, Dynamic Link Library, WPF
Application, WPF Browser Application, and Console Application .

Visual Web Developer 2008
Express Edition

The core set of functionality required for building Web applications . It
supports both Visual Basic and C# and allows for local debugging of your Web
application .

Visual Studio 2010 Standard
Edition

Provides a combined development language for the core Visual Studio languages
(J#, VB, C# and C++) . It adds the Object Modeling tool, and provides combined
support for both Windows and Web applications . It also provides additional support
for application deployment, and support for Mobile Application Development,
integration with a source control tool, and macros within Visual Studio; it is also
extensible .

Visual Studio 2010
Professional Edition

Expands on Visual Studio Standard Edition with additional integration to SQL
Server and support for XSLTs . It also includes support for Visual Studio Tools
for Office (VSTO), which enables you to create custom client (Word, Excel,
Outlook, etc .) and SharePoint Workflow applications . This version also allows
for remote debugging of Web applications, and unit testing of all projects . (This
edition supports VSTO but the associated MSDN subscription does not include
a license for Office .)

Visual Studio 2010 Premium
Edition

This version begins to pull in many of the extensions that were originally
introduced with what was known as Team Suite . This version has expanded
test features like Code Coverage and coded UI test support . It includes tools
to support database development, change management, testing, and so on, as
well as tools for static code analysis and code metrics .

Visual Studio 2010 Ultimate
Edition

This version includes all of the core features of Visual Studio 2010 Premium
Edition . It then adds historical debugging, Web and load-testing tools, and a
variety of related tools to enhance development . This tool, like the Premium
version of Visual Studio, is focused on enabling developers to be productive in
a shared collaborative environment .

and Microsoft Office 2010 to extend these office productivity tools with application-like features. Many
organizations use Microsoft Office for tasks that border on custom applications. This is especially true for
Microsoft Excel. VSTO provides project templates based on these Microsoft Office products that enable, for
example, a spreadsheet to retrieve its contents from an SQL Server database instead of the local file system.
These tools provide the capability not only to manipulate data retrieval and saving, but also to customize the
user interface, including direct access to the task pane and custom toolbar options within Microsoft Office
products; they are covered in more detail in Chapter 25.

Visual Studio 2010 Premium and Ultimate focus on extending a developer’s reach beyond just writing
code. These tools are used to examine code for flaws, manage the deployment environment, and define
relationships between applications. The high-end versions are focused on tools that support repeatable
software processes and best practices. They are geared toward examining source code for hidden flaws that
might not cause the code to fail, but might hide a hidden security flaw or make it difficult to maintain or
deploy the application. More important, the suite includes tools for creating unit test tools that attempt to
cause the code to fail, whether through bad input data or heavy load.

Complete coverage of all of Visual Studio Ultimate’s features warrants a book of its own, especially when
you take into account all of the collaborative features introduced by Team Foundation Server and its tight
integration with both Team Build and SharePoint Server. Team Foundation Server goes beyond just being a
replacement for Visual Source Safe. It is the basis for true process-driven development, and it even includes
documentation to help train your organization on two process models supported by Microsoft.

Visual Basic KeyWords and synTax
Those with previous experience with Visual Basic are already familiar with many of the language keywords
and syntax. However, not all readers will fall into this category so this introductory section is for those new
to Visual Basic. A glossary of keywords is provided after which this section will use many of these keywords
in context.

Although they’re not the focus of the chapter, with so many keywords, a glossary follows. Table 1-2 briefly
summarizes most of the keywords discussed in the preceding section, and provides a short description of
their meaning in Visual Basic. Keep in mind there are two commonly used terms that aren’t Visual Basic
keywords that you will read repeatedly including in the glossary:

 ➤ Method — A generic name for a named set of commands. In Visual Basic, both subs and functions
are types of methods.

 ➤ Instance — When a class is created, the resulting object is an instance of the class’s definition.

KeyWord descriPTion

Namespace A collection of classes that provide related capabilities . For example, the
System.Drawing namespace contains classes associated with graphics .

Class A definition of an object . Includes properties (variables) and methods, which can be Subs
or Functions .

Sub A method that contains a set of commands, allows data to be transferred as parameters,
and provides scope around local variables and commands, but does not return a value

Function A method that contains a set of commands, returns a value, allows data to be transferred as
parameters, and provides scope around local variables and commands

Return Ends the currently executing Sub or Function . Combined with a return value for functions .

Dim Declares and defines a new variable

New Creates an instance of an object

continues

TaBle 1-2: Commonly Used Keywords in Visual Basic

Visual Basic Keywords and syntax ❘ 7

8 ❘ chaPTer 1 Visual studio 2010

Even though the focus of this chapter is on Visual Studio, during this introduction a few basic elements of
Visual Basic will be referenced and need to be spelled out. This way as you read, you can understand the
examples. Chapter 4, for instance, covers working with namespaces, but some examples and other code
are introduced in this chapter that will mention the term, so it is defined here.

Let’s begin with namespace. When .NET was being created, the developers realized that attempting
to organize all of these classes required a system. A namespace is an arbitrary system that the .NET
developers used to group classes containing common functionality. A namespace can have multiple levels of
grouping, each separated by a period (.). Thus, the System namespace is the basis for classes that are used
throughout .NET, while the Microsoft.VisualBasic namespace is used for classes in the underlying .NET
Framework but specific to Visual Basic. At its most basic level, a namespace does not imply or indicate
anything regarding the relationships between the class implementations in that namespace; it is just a
way of managing the complexity of both your custom application’s classes, whether it be a small or large
collection, and that of the .NET Framework’s thousands of classes. As noted earlier, namespaces are covered
in detail in Chapter 4.

Next is the keyword Class. Chapters 2 and 3 provide details on object-oriented syntax and the related
keywords for objects and types, but a basic definition of this keyword is needed here. The Class keyword
designates a common set of data and behavior within your application. The class is the definition of an
object, in the same way that your source code, when compiled, is the definition of an application. When
someone runs your code, it is considered to be an instance of your application. Similarly, when your code
creates or instantiates an object from your class definition, it is considered to be an instance of that class,
or an instance of that object.

Creating an instance of an object has two parts. The first part is the New command, which tells the
compiler to create an instance of that class. This command instructs code to call your object definition
and instantiate it. In some cases you might need to run a method and get a return value, but in most cases
you use the New command to assign that instance of an object to a variable. A variable is quite literally
something which can hold a reference to that class’s instance.

To declare a variable in Visual Basic, you use the Dim statement. Dim is short for “dimension” and comes
from the ancient past of Basic, which preceded Visual Basic as a language. The idea is that you are telling
the system to allocate or dimension a section of memory to hold data. As discussed in subsequent chapters
on objects, the Dim statement may be replaced by another keyword such as Public or Private that not only
dimensions the new value, but also limits the accessibility of that value. Each variable declaration uses a Dim
statement similar to the example that follows, which declares a new variable, winForm:

Dim winForm As System.Windows.Forms.Form = New System.Windows.Forms.Form()

In the preceding example, the code declares a new variable (winForm) of the type Form. This variable is
then set to an instance of a Form object. It might also be assigned to an existing instance of a Form object
or alternatively to Nothing. The Nothing keyword is a way of telling the system that the variable does not
currently have any value, and as such is not actually using any memory on the heap. Later in this chapter, in
the discussion of value and reference types, keep in mind that only reference types can be set to Nothing.

KeyWord descriPTion

Nothing Used to indicate that a variable has no value . Equivalent to null in other languages and
databases .

Me A reference to the instance of the object within which a method is executing

Console A type of application that relies on a command-line interface . Console applications are
commonly used for simple test frames . Also refers to a .NET Framework Class that manages
access of the command window to and from which applications can read and write text data .

Module A code block that isn’t a class but which can contain Sub and Function methods . Used
when only a single copy of code or data is needed in memory .

TaBle 1-2 (continued)

A class consists of both state and behavior. State is a fancy way of referring to the fact that the class has
one or more values also known as properties associated with it. Embedded in the class definition are zero
or more Dim statements that create variables used to store the properties of the class. When you create an
instance of this class, you create these variables; and in most cases the class contains logic to populate them.
The logic used for this, and to carry out other actions, is the behavior. This behavior is encapsulated in
what, in the object-oriented world, are known as methods.

However, Visual Basic doesn’t have a “method” keyword. Instead, it has two other keywords that are brought
forward from Visual Basic’s days as a procedural language. The first is Sub. Sub, short for “subroutine,” and
it defines a block of code that carries out some action. When this block of code completes, it returns control to
the code that called it without returning a value. The following snippet shows the declaration of a Sub:

Private Sub Load(ByVal object As System.Object)

End Sub

The preceding example shows the start of a Sub called Load. For now you can ignore the word Private
at the start of this declaration; this is related to the object and is further explained in the next chapter. This
method is implemented as a Sub because it doesn’t return a value and accepts one parameter when it is called.
Thus, in other languages this might be considered and written explicitly as a function that returns Nothing.

The preceding method declaration for Sub Load also includes a single parameter, object, which is declared
as being of type System.Object. The meaning of the ByVal qualifier is explained in chapter 2, but is
related to how that value is passed to this method. The code that actually loads the object would be written
between the line declaring this method and the End Sub line.

Alternatively, a method can return a value; Visual Basic uses the keyword Function to describe this behavior.
In Visual Basic, the only difference between a Sub and the method type Function is the return type.

The Function declaration shown in the following sample code specifies the return type of the function as
a Long value. A Function works just like a Sub with the exception that a Function returns a value, which
can be Nothing. This is an important distinction, because when you declare a function the compiler expects
it to include a Return statement. The Return statement is used to indicate that even though additional lines
of code may remain within a Function or Sub, those lines of code should not be executed. Instead, the
Function or Sub should end processing at the current line, and if it is in a function, the return value should
be returned. To declare a Function, you write code similar to the following:

Public Function Add(ByVal ParamArray values() As Integer) As Long
 Dim result As Long = 0
 'TODO: Implement this function
 Return result
 'What if there is more code
 Return result
End Function

In the preceding example, note that after the function initializes the second line of code, there is a Return
statement. There are two Return statements in the code. However, as soon as the first Return statement is
reached, none of the remaining code in this function is executed. The Return statement immediately halts
execution of a method, even from within a loop.

As shown in the preceding example, the function’s return value is assigned to a local variable until returned as
part of the Return statement. For a Sub, there would be no value on the line with the Return statement, as a
Sub does not return a value when it completes. When returned, the return value is usually assigned to something
else. This is shown in the next example line of code, which calls a function to retrieve the currently active control
on the executing Windows Form:

Dim ctrl = Me.Add(1, 2)

The preceding example demonstrates a call to a function. The value returned by the function Add is a Long,
and the code assigns this to the variable ctrl. It also demonstrates another keyword that you should be aware
of: Me. The Me keyword is how, within an object, that you can reference the current instance of that object.

Visual Basic Keywords and syntax ❘ 9

10 ❘ chaPTer 1 Visual studio 2010

You may have noticed that in all the sample code presented thus far, each line is a complete command. If
you’re familiar with another programming language, then you may be used to seeing a specific character
that indicates the end of a complete set of commands. Several popular languages use a semicolon to
indicate the end of a command line.

Visual Basic doesn’t use visible punctuation to end each line. Traditionally, the BASIC family of languages
viewed source files more like a list, whereby each item on the list is placed on its own line. At one point the term
was source listing. By default, Visual Basic ends each source list item with the carriage-return linefeed, and treats
it as a command line. In some languages, a command such as X = Y can span several lines in the source file until
a semicolon or other terminating character is reached. Thus previously, in Visual Basic, that entire statement
would be found on a single line unless the user explicitly indicates that it is to continue onto another line.

To explicitly indicate that a command line spans more than one physical line, you’ll see the use of the
underscore at the end of the line to be continued. However, one of the new features of Visual Basic 10, which
ships with Visual Studio 2010, is support for an implicit underscore when extending a line past the carriage-
return linefeed. However, this new feature is limited as there are still places where underscores are needed.

When a line ends with the underscore character, this explicitly tells Visual Basic that the code on that
line does not constitute a completed set of commands. The compiler will then continue to the next line to
find the continuation of the command, and will end when a carriage-return linefeed is found without an
accompanying underscore.

In other words, Visual Basic enables you to use exceptionally long lines and indicate that the code has been
spread across multiple lines to improve readability. The following line demonstrates the use of the underscore
to extend a line of code:

MessageBox.Show("Hello World", "A Message Box Title", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)

Prior to Visual Basic 10 the preceding example illustrated the only way to extend a single command line
beyond one physical line in your source code. The preceding line of code can now be written as follows:

MessageBox.Show("Hello World", "A Message Box Title",
 MessageBoxButtons.OK, MessageBoxIcon.Information)

The compiler now recognizes certain key characters like the “,” or the “=” as the type of statement where a
line isn’t going to end. The compiler doesn’t account for every situation and won’t just look for a line extension
anytime a line doesn’t compile. That would be a performance nightmare; however, there are several logical
places where you, as a developer, can choose to break a command across lines and do so without needing to
insert an underscore to give the compiler a hint about the extended line.

Finally, note that in Visual Basic it is also possible to place multiple different statements on a single line, by
separating the statements with colons. However, this is generally considered a poor coding practice because
it reduces readability.

console applications
The simplest type of application is a console application. This application doesn’t have much of a user
interface; in fact, for those old enough to remember the MS-DOS operating system, a console application
looks just like an MS-DOS application. It works in a command window without support for graphics
or input devices such as a mouse. A console application is a text-based user interface that displays text
characters and reads input from the keyboard.

The easiest way to create a console application is to use Visual Studio. For the current discussion let’s just
look at a sample source file for a Console application, as shown in the following example. Notice that the
console application contains a single method, a Sub called Main. By default if you create a console application
in Visual Studio, the code located in the Sub Main is the code which is by default started. However, the
Sub Main isn’t contained in a class, instead the Sub Main that follows is contained in a Module:

Module Module1
 Sub Main()
 Console.WriteLine("Hello World")

 Dim line = Console.ReadLine()
 End Sub
End Module

A Module isn’t truly a class, but rather a block of code that can contain methods, which are then referenced
by code in classes or other modules — or, as in this case, it can represent the execution start for a program.
A Module is similar to having a Shared class. The Shared keyword indicates that only a single instance of a
given item exists.

For example in C# the Static keyword is used for this purpose, and can be used to indicate that only a single
instance of a given class exists. Visual Basic doesn’t support the use of the Shared keyword with a Class
declaration; instead Visual Basic developers create modules that provide the same capability. The Module
represents a valid construct to group methods that don’t have state-related or instance-specific data.

Note a console application focuses on the Console Class. The Console Class encapsulates Visual Basic’s
interface with the text-based window that hosts a command prompt from which a command-line program is run.
The console window is best thought of as a window encapsulating the older non-graphical style user interface,
whereby literally everything was driven from the command prompt. A Shared instance of the Console class is
automatically created when you start your application, and it supports a variety of Read and Write methods. In
the preceding example, if you were to run the code from within Visual Studio’s debugger, then the console window
would open and close immediately. To prevent that, you include a final line in the Main Sub, which executes a
Read statement so that the program continues to run while waiting for user input.

creating a Project from a Project Template
While it is possible to create a Visual Basic application working entirely outside of Visual Studio 2010,
it is much easier to start from Visual Studio 2010. After you install Visual Studio you are presented with
a screen similar to the one shown in Figure 1-1. Different versions of Visual Studio may have a different
overall look, but typically the start page lists your most recent projects on the left, some tips for getting
started, and a headline section for topics on MSDN that might be of interest. You may or may not
immediately recognize that this content is HTML text; more important, the content is based on an RSS feed
that retrieves and caches articles appropriate for your version of Visual Studio.

figure 1-1

Visual Basic Keywords and syntax ❘ 11

12 ❘ chaPTer 1 Visual studio 2010

 The start page looks similar regardless of which version of Visual Studio 2010 you are running.
Conceptually, it provides a generic starting point either to select the application you intend to work on, to
quickly receive vital news related to offers, as shown in the fi gure, or to connect with external resources via
the community links.

 Once here, the next step is to create your fi rst project. Selecting File ➪ New Project opens the New Project
dialog, shown in Figure 1 - 2. This dialog provides a selection of templates customized by application type.
One option is to create a Class Library project. Such a project doesn ’ t include a user interface; and instead
of creating an assembly with an .exe fi le, it creates an assembly with a .dll fi le. The difference, of course,
is that an .exe fi le indicates an executable that can be started by the operating system, whereas a .dll fi le
represents a library referenced by an application.

 figure 1 - 2

 Figure 1 - 2 includes the capability to target a specifi c .NET version in the drop - down box located above the
list of project types. In Figure 1 - 2 this shows .NET 2.0, and with only six project types below the selection
listed. With .NET 4 selected, as shown in Figure 1 - 3, the number of project types has increased.

 Targeting keeps you from attempting to create a project for WPF without recognizing that you also need at
least .NET 3.0 available on the client. Although you can change your target after you create your project,
be very careful when trying to reduce the version number, as the controls to prevent you from selecting
dependencies don ’ t check your existing code base for violations. Changing your targeted framework version
for an existing project is covered in more detail later in this chapter.

 One of the ongoing challenges with describing the menu options for Visual Studio
is that the various versions have slight differences in look and feel too numerous to
mention. For example File ➪ New Project in Visual Basic Express becomes File ➪ New
 ➪ Project in Visual Studio. Thus, your display may vary slightly from what is shown or
described here, although we attempt to showcase signifi cant differences.

Not only can you choose to target a specific version of the framework when creating a new project, but
this window has a new feature that you’ll find all over the place in Visual Studio 2010. In the upper-right
corner, there is a control that enables you to search for a specific template. As you work through more of the
windows associated with Visual Studio, you’ll find that a context-specific search capability has often been
added to the new user interface.

Expanding the top level of the Visual Basic tree in Figure 1-3 shows that a project type can be further
separated into a series of categories:

 ➤ Windows — These are projects used to create applications that run on the local computer within
the CLR. Because such projects can run on any operating system (OS) hosting the framework, the
category “Windows” is something of a misnomer when compared to, for example, “Desktop.”

 ➤ Web — You can create these projects, including Web services, from this section of the New Project
dialog.

 ➤ Office — Visual Studio Tools for Office (VSTO). These are .NET applications that are hosted under
Office. Visual Studio 2010 includes a set of templates you can use to target Office 2010, as well as a
separate section for templates that target Office 2007.

 ➤ Cloud Services: — These are projects that target the Azure online environment model. These projects
are deployed to the cloud and as such have special implementation and deployment considerations.

 ➤ Reporting — This project type enables you to create a Reports application.

 ➤ SharePoint — This category provides a selection of SharePoint projects, including Web Part projects,
SharePoint Workflow projects, Business Data Catalog projects, as well as things like site definitions
and content type projects. Visual Studio 2010 includes significant new support for SharePoint.

 ➤ Silverlight — With Visual Studio 2010, Microsoft has finally provided full support for working with
Silverlight projects. Whereas in the past you’ve had to add the Silverlight SDK and tools to your
existing development environment, with Visual Studio 2010 you get support for both Silverlight
projects and user interface design within Visual Studio.

 ➤ Test — This section is available only to those using Visual Studio Team Suite. It contains the template
for a Visual Basic Unit Test project.

figure 1-3

Visual Basic Keywords and syntax ❘ 13

14 ❘ chaPTer 1 Visual studio 2010

 ➤ WCF — This is the section where you can create Windows Communication Foundation projects.

 ➤ Workflow — This is the section where you can create Windows Workflow Foundation (WF) projects.
The templates in this section also include templates for connecting with the SharePoint workflow engine.

Visual Studio has other categories for projects, and you have access to other development languages and far
more project types than this chapter has room for. When looking to create an application you will choose
from one or more of the available project templates. To use more than a single project to create an application
you’ll leverage what is known as a solution. A solution is created by default whenever you create a new
project and contains one or more projects.

When you save your project you will typically create a folder for the solution, then later if you add another
project to the same solution, it will be contained in the solution folder. A project is always part of a solution, and
a solution can contain multiple projects, each of which creates a different assembly. Typically for example you will
have one or more Class Libraries that are part of the same solution as your Windows Form or ASP.NET project.
For now, you can select a Windows Application project template to use as an example project for this chapter.

For this example, use ProVB_VS2010 as the project name to match the name of the project in the sample code
download and then click OK. Visual Studio takes over and uses the Windows Application template to create a
new Windows Forms project. The project contains a blank form that can be customized, and a variety of other
elements that you can explore. Before customizing any code, let’s first look at the elements of this new project.

The solution explorer
The Solution Explorer is a window that is by default located on the right-hand side of your display when
you create a project. It is there to display the contents of your solution and includes the actual source file(s)
for each of the projects in your solution. While the Solution Explorer window is available and applicable for
Express Edition users, it will never contain more than a single project. Those with a version of Visual Studio
above the Express Edition level have the capability to leverage multiple projects in a single solution. A .NET
solution can contain projects of any .NET language and can include the database, testing, and installation
projects as part of the overall solution. The advantage of combining these projects is that it is easier to
debug projects that reside in a common solution.

Before discussing these files in depth, let’s take a look at the next step, which
is to reveal a few additional details about your project. Click the second
button on the left in the Solution Explorer to display all of the project files,
as shown in Figure 1-4. As this image shows, many other files make up your
project. Some of these, such as those under the My Project grouping, don’t
require you to edit them directly. Instead, you can double-click the My Project
entry in the Solution Explorer and open the pages to edit your project settings.
You do not need to change any of the default settings for this project, but the
next section of this chapter walks you through the various property screens.

The bin and obj directories shown are used when building your project. The obj
directory contains the first-pass object files used by the compiler to create your
final executable file. The “binary” or compiled version of your application is
then placed in the bin directory by default. Of course, referring to the Microsoft
intermediate language (MSIL) code as binary is something of a misnomer, as the
actual translation to binary does not occur until runtime when your application
is compiled by the just-in-time (JIT) compiler. However, Microsoft continues to
use the bin directory as the default output directory for your project’s compilation.

Figure 1-4 also shows that the project does not contain an app.config file by default. Most experienced ASP
.NET developers are familiar with using web.config files. app.config files work on the same principle in
that they contain XML, which is used to store project-specific settings such as database connection strings and
other application-specific settings. Using a .config file instead of having your settings in the Windows registry
enables your applications to run side-by-side with another version of the application without the settings from
either version affecting the other. Because each version of your application resides in its own directory, its

figure 1-4

settings are contained in the directory with it, which enables the different versions to run with unique settings.
Before we are done going through the project properties, we will add an app.config file to this project.

For now however, you have a new project and an initial Windows Form, Form1, available in the Solution
Explorer. In this case, the Form1.vb file is the primary file associated with the default Windows form Form1.
You’ll be customizing this form shortly, but before looking at that, it would be useful to look at some of
the settings available by opening your project properties. An easy way to do this is to right-click on the My
Project heading shown in Figure 1-4.

Project Properties
Visual Studio uses a vertically tabbed display for editing your project settings. The project properties display
shown in Figure 1-5 provides access to the newly created ProVB_VS2010 project settings. The project
properties window gives you access to several different aspects of your project. Some, such as Signing,
Security, and Publish, are covered in later chapters. For now, just note that this display makes it easier to
carry out several tasks that once required engineers to work outside the Visual Studio environment.

figure 1-5

You can customize your assembly name from this screen, as well as reset the type of application and
object to be referenced when starting your application. However, resetting the type of your application is
not recommended. If you start with the wrong application type, it is better to create a new application,
due to all the embedded settings in the application template. In the next section you will look at a button
for changing your assembly information, as well as the capability to define a root namespace for your
application classes. Namespaces are covered in detail in Chapter 4.

You can also associate a given default icon with your form (refer to Figure 1-5), and select a screen other
than the default Form1 as the startup screen.

Near the middle of the dialog are two buttons. Assembly Information is covered in the next section. The
other button, labeled View Windows Settings refers to User Access Control settings, which enable you to

Visual Basic Keywords and syntax ❘ 15

16 ❘ chaPTer 1 Visual studio 2010

specify that only certain users can successfully start your application. In short, you have the option to limit
your application access to a specific set of users.

Finally, there is a section associated with enabling an application framework. The application framework
is a set of optional components that enable you to extend your application with custom events and items,
such as a splash screen, with minimal effort. Enabling the framework is the default, but unless you want
to change the default settings, the behavior is the same — as if the framework weren’t enabled. The third
button, View Application Events, adds a new source file, ApplicationEvents.vb, to your project, which
includes documentation about which application events are available.

assembly information screen
Selecting the Assembly Information button from within
your My Project window opens the Assembly Information
dialog. Within this dialog, shown in Figure 1-6, you can
define file properties, such as your company’s name and
versioning information, which will be embedded in the
operating system’s file attributes for your project’s output.
Note these values are stored as assembly attributes in
AssemblyInfo.vb.

assembly attributes
The AssemblyInfo.vb file contains attributes, that are used
to set information about the assembly. Each attribute has an
assembly modifier, shown in the following example:

<Assembly: AssemblyTitle("")>

All the attributes set within this file provide information that
is contained within the assembly metadata. The attributes
contained within the file are summarized in Table 1-3: figure 1-6

aTTriBuTe descriPTion

Assembly Title This sets the name of the assembly, which appears within the
file properties of the compiled file as the description .

Assembly Description This attribute is used to provide a textual description of the
assembly, which is added to the Comments property for the file .

Assembly Company This sets the name of the company that produced the
assembly . The name set here appears within the Version tab
of the file properties .

Assembly Product This attribute sets the product name of the resulting
assembly . The product name appears within the Version tab
of the file properties .

Assembly Copyright The copyright information for the assembly . This value
appears on the Version tab of the file properties .

Assembly Trademark Used to assign any trademark information to the assembly . This
information appears on the Version tab of the file properties .

Assembly Version This attribute is used to set the version number of the assembly .
Assembly version numbers can be generated, which is the
default setting for .NET applications . This is covered in more
detail in Chapter 31 .

TaBle 1-3: Attributes of the AssemblyInfo .vb File

compiler settings
When you select the Compile tab of the project properties, you should see a window similar to the one shown
in Figure 1-7. One update to Visual Studio 2010 is the return of the Build Configuration settings. In Visual
Studio 2008, the Visual Basic Settings for Visual Studio removed these items from the display; and instead,
when developers asked to debug their code, a debug version was built and executed, and only if the developer
did an explicit build. (Note that if you are using Beta 2, you won’t see these settings restored by default.)

aTTriBuTe descriPTion

Assembly File Version This attribute is used to set the version number of the
executable files . This and other deployment-related settings are
covered in more detail in Chapter 34 .

COM Visible This attribute is used to indicate whether this assembly should
be registered and made available to COM applications .

Guid If the assembly is to be exposed as a traditional COM object,
then the value of this attribute becomes the ID of the resulting
type library .

NeutralResourcesLanguageAttribute If specified, provides the default culture to use when the current
user’s culture settings aren’t explicitly matched in a localized
application . Localization is covered further in Chapter 27 .

figure 1-7

Visual Basic Keywords and syntax ❘ 17

18 ❘ chaPTer 1 Visual studio 2010

This presented a challenge because this wasn’t the situation for any other set of Visual Studio settings; and
Visual Basic developers were sometimes caught-out when sending what they thought was the latest build of
their source code. If on their last “build” they were testing a fix and starting the debugger, then they hadn’t
rebuilt the release version. Thus, instead of sending a copy of the released version of their application with
that last tested fix, they were really sending the last release build made before the fix. The return of these
settings means that you, as the developer, have explicit control over the type of executable (release or debug,
x64 or x86) that Visual Studio produces.

If you don’t see these drop-downs in your display, you can restore them by selecting Tools ➪ Options, and
then turning on the Advanced compile options. The main reason to restore these options has to do with two
key features that are dependent on this setting. The first is Edit and Continue, which provides the capability
to make a change in executing code and without restarting, having that change available in your running
code while you continue to debug. This is a great tool for simple mistakes that are found during a debug
session, and it is only supported for x86 (32-bit) targeted assemblies. This means you must explicitly target
x86, as shown in Figure 1-7.

In Visual Studio 2008, the default was to target AnyCPU, but this meant that on a 64-bit developer
workstation, Visual Studio was targeting a 64-bit assembly for your debug environment. When working
on a 64-bit workstation, you must explicitly target an x86 environment in order to enable both Edit and
Continue as well as the other dependency, COM-Interop. The second key feature related to x86 is COM.
COM is a 32-bit protocol (as you’ll see in Chapter 28 on COM-Interop, so you are required to target a
32-bit/x86 environment to support COM-Interop.

Aside from your default project file output directory, this page contains several compiler options. The Option
Explicit, Option Infer, and Option Strict settings directly affect your variable usage. Each of the following
settings can be edited by adding an Option declaration to the top of your source code file. When placed
within a source file each of the following settings applies to all of the code entered in that source file, but only
to the code in that file:

 ➤ Option Explicit — This option has not changed from previous versions of Visual Basic. When
enabled, it ensures that every variable is explicitly declared. Of course, if you are using Option Strict,
then this setting doesn’t matter because the compiler won’t recognize the type of an undeclared
variable. To my knowledge, there’s no good reason to ever turn this option off unless you are
developing pure dynamic solutions, for which compile time typing is unavailable.

 ➤ Option Strict — When this option is enabled, the compiler must be able to determine the type of each
variable, and if an assignment between two variables requires a type conversion — for example, from
Integer to Boolean — then the conversion between the two types must be expressed explicitly.

 ➤ Option Compare — This option determines whether strings should be compared as binary strings or
whether the array of characters should be compared as text. In most cases, leaving this as binary is
appropriate. Doing a text comparison requires the system to convert the binary values that are stored
internally prior to comparison. However, the advantage of a text-based comparison is that the character
“A” is equal to “a” because the comparison is case-insensitive. This enables you to perform comparisons
that don’t require an explicit case conversion of the compared strings. In most cases, however, this
conversion still occurs, so it’s better to use binary comparison and explicitly convert the case as required.

 ➤ Option Infer — This option was new in Visual Studio 2008 and, was added due to the requirements
of LINQ. When you execute a LINQ statement, you can have returned a data table that may or may
not be completely typed in advance. As a result, the types need to be inferred when the command
is executed. Thus, instead of a variable that is declared without an explicit type being defined as an
object, the compiler and runtime attempt to infer the correct type for this object.

Existing code developed with Visual Studio 2005 is unaware of this concept, so this option will be off
by default for any project that is migrated to Visual Studio 2008 or Visual Studio 2010. New projects
will have this option turned on, which means that if you cut and paste code from a Visual Studio
2005 project into a Visual Studio 2010 project, or vice versa, you’ll need to be prepared for an error in
the pasted code because of changes in how types are inferred.

From the properties page Option Explicit, Option Strict, Option Compare, and Option Infer can be set to
either On or Off for your project. Visual Studio 2010 makes it easy for you to customize specific compiler
conditions for your entire project. However, as noted, you can also make changes to the individual
compiler checks that are set using something like Option Strict.

Notice that as you change your Option Strict settings in particular, the notifications with the top few
conditions are automatically updated to reflect the specific requirements of this new setting. Therefore, you
can literally create a custom version of the Option Strict settings by turning on and off individual compiler
settings for your project. In general, this table lists a set of conditions that relate to programming practices
you might want to avoid or prevent, and which you should definitely be aware of. The use of warnings for
the majority of these conditions is appropriate, as there are valid reasons why you might want to use or
avoid each but might also want to be able to do each.

Basically, these conditions represent possible runtime error conditions that the compiler can’t detect in
advance, except to identify that a possibility for that runtime error exists. Selecting a Warning for a setting
bypasses that behavior, as the compiler will warn you but allow the code to remain. Conversely, setting a
behavior to Error prevents compilation; thus, even if your code might be written to never have a problem,
the compiler will prevent it from being used.

An example of why these conditions are noteworthy is the warning of an Instance variable accessing a
Shared property. A Shared property is the same across all instances of a class. Thus, if a specific instance
of a class is updating a Shared property, then it is appropriate to get a warning to that effect. This action
is one that can lead to errors, as new developers sometimes fail to realize that a Shared property value is
common across all instances of a class, so if one instance updates the value, then the new value is seen by
all other instances. Thus, you can block this dangerous but certainly valid code to prevent errors related to
using a Shared property.

As noted earlier, option settings can be specific to each source file. This involves adding a line to the top of
the source file to indicate to the compiler the status of that Option. The following lines will override your
project’s default setting for the specified options. However, while this can be done on a per-source listing
basis, this is not the recommended way to manage these options. For starters, consistently adding this line
to each of your source files is time-consuming and potentially open to error:

Option Explicit On
Option Compare Text
Option Strict On
Option Infer On

Most experienced developers agree that using Option Strict and being forced to recognize when type
conversions are occurring is a good thing. Certainly, when developing software that will be deployed in a
production environment, anything that can be done to help prevent runtime errors is desirable. However,
Option Strict can slow the development of a program because you are forced to explicitly define each
conversion that needs to occur. If you are developing a prototype or demo component that has a limited life,
you might find this option limiting.

If that were the end of the argument, then many developers would simply turn the option off and forget
about it, but Option Strict has a runtime benefit. When type conversions are explicitly identified, the system
performs them faster. Implicit conversions require the runtime system to first identify the types involved in a
conversion and then obtain the correct handler.

Another advantage of Option Strict is that during implementation, developers are forced to consider every
place a conversion might occur. Perhaps the development team didn’t realize that some of the assignment
operations resulted in a type conversion. Setting up projects that require explicit conversions means that the
resulting code tends to have type consistency to avoid conversions, thus reducing the number of conversions
in the final code. The result is not only conversions that run faster, but also, it is hoped, a smaller number
of conversions.

Option Infer is a powerful feature. It is used as part of LINQ and the features that support LINQ, but it affects
all code. In the past, you needed to write the AS <type> portion of every variable definition in order to have a
variable defined with an explicit type. However, now you can dimension a variable and assign it an integer or

Visual Basic Keywords and syntax ❘ 19

20 ❘ chaPTer 1 Visual studio 2010

set it equal to another object, and the AS Integer portion of your declaration isn ’ t required, it is inferred as
part of the assignment operation. Be careful with Option Infer; if abused it can make your code obscure, since
it reduces readability by potentially hiding the true type associated with a variable. Some developers prefer to
limit Option Infer to per fi le declarations to limit its use to when it is needed, for example with LINQ.

 How to use Option Infer in LINQ is covered in Chapter 10.

 In addition, note that Option Infer is directly affected by Option Strict. In an ideal world, Option Strict
Off would require that Option Infer also be turned off or disabled in the user interface. That isn ’ t the case,
although it is the behavior that is seen; once Option Strict is off, Option Infer is essentially ignored.

 Below the grid of individual settings in Figure 1 - 7 is a series of check boxes. Two of these are self - explanatory
and; the third is the option to generate XML comments for your assembly. These comments are generated
based on the XML comments that you enter for each of the classes, methods, and properties in your source fi le.

 Visual Basic Express has fewer check boxes, but users do have access to the Advanced Compile Options
button. This button opens the Advanced Compiler Settings dialog shown in Figure 1 - 8. Note a couple of
key elements on this screen, the fi rst being the “ Remove integer overfl ow checks ” check box. When these
options are enabled, the result is a performance hit on Visual Basic applications in comparison to C#.
The compilation constants are values you shouldn ’ t need to touch normally. Similarly, the generation of
serialization assemblies is something that is probably best left in auto mode.

 figure 1 - 8

 However, the last item on the screen enables you to target different environments. If you select a version prior to
version 4, then, when you begin to add references, the Add References tab recognizes which version of .NET you
are targeting and adjusts the list of available references to exclude those that are part of version 4 — similarly
excluding 4, 3.5, and 3.0 if you are targeting .NET 2.0.

Note that this check occurs when adding references; there is no check when you change this value to see
whether your updated value conflicts with any existing references. Therefore, if you change this value,
then make sure you update any of your existing references to remove any that are part of .NET 4. You are
bound to have at least one because when the template creates your project it automatically adds a series of
references determined in part by the target framework specified when you created your application.

debug Properties
The Express Edition of Visual Basic 2010 supports local debugging. This means it supports not only
the .NET-related Debug and Trace classes discussed in Chapter 6, but also actual breakpoints and the
associated interactive debugging available in all versions of Visual Studio. However, as noted, the full
versions of Visual Studio provide enhanced debugging options not available in Visual Basic 2010 Express
Edition. Figure 1-9 shows the project debugger startup options from Visual Studio 2010.

The default action shown is actually the only option available to Express users — which is to start the
current project. However, Visual Studio 2010 developers have two additional options. The first is to start
an external program. In other words, if you are working on a DLL or a user control, then you might want
to have that application start, which can then execute your assembly. Doing this is essentially a shortcut,
eliminating the need to bind to a running process.

figure 1-9

Similarly for Web development, you can reference a specific URL to start that Web application. This is often a
mixed blessing, as with ASP.NET 2.0, Visual Studio automatically attempts to start an ASP.NET application
based on the page you are currently editing. This is a change from ASP.NET 1.x, which allowed you to define
a start page. Because ASP.NET 2.0 does not use project files, the new behavior was introduced. In most cases
it works just fine, but if you have a Web application requiring authentication, then in most cases it makes
more sense to actually place that URL into the debug settings for your application.

However, developers have three options related to starting the debugger. The first is to apply command-line
arguments to the startup of a given application. This, of course, is most useful for console applications, but
in some cases developers add command-line parameters to GUI applications. The second option is to select a
different directory, a working directory, to be used to run the application. Generally, this isn’t necessary; but
it’s desirable in some cases because of path or permission requirements or having an isolated runtime area.

Visual Basic Keywords and syntax ❘ 21

22 ❘ chaPTer 1 Visual studio 2010

As noted, Visual Studio 2010 provides support for remote debugging, although such debugging is involved
and not configured for simple scenarios. Remote Debugging can be a useful tool when working with an
integration test environment where developers are prevented from installing Visual Studio but need to be
able to debug issues. However, you shouldn’t be limited by just using the debugger for understanding what is
occurring in your application at runtime.

Another alternative for determining what is occurring within a remote application is using the Debug and Trace
classes. As noted in Chapter 6, the Debug and Trace classes combined with effective error handling, often make it
faster and easier to determine remote errors then setting up the remote debugger. However, for those environments
where an application runs only on a central server, and for which developers have the necessary permissions to
run the debugger but not install a copy of Visual Studio, it is possible to leverage remote debugging.

Finally, as might be expected, users of Visual Studio 2010 who work with multiple languages, and who use
tools that are tightly integrated with SQL Server, have additional debuggers. The first of these is support
for debugging outside of the CLR — what is known as unmanaged code. As a Visual Basic developer, the
only time you should be using unmanaged code is when you are referencing legacy COM components.
The developers most likely to use this debugger work in C++.

The next option turns on support for SQL Server debugging, a potentially useful feature. In short, it’s possible,
although the steps are not trivial, to have the Visual Studio debugging engine step directly into T-SQL stored
procedures so that you can see the interim results as they occur within a complex stored procedure.

references
It’s possible to add additional references as part of your project. Similar to the default code files that are
created with a new project, each project template has a default set of referenced libraries. Actually, it has
a set of imported namespaces and a subset of the imported namespaces also referenced across the project.
This means that while you can easily reference the classes in the referenced namespaces, you still need to
fully qualify a reference to something less common. For example, to use a StringBuilder you’ll need
to specify the fully qualified name of System.Text.StringBuilder. Even though the System.Text
namespace is referenced it hasn’t been imported by default. For Windows Forms applications targeting
.NET 4, the list of default referenced namespaces is fairly short, as shown in Table 1-4.

TaBle 1-4: Default References in a New Project

reference descriPTion

System Often referred to as the root namespace . All the base data types (String,
Object, and so on) are contained within the System namespace . This
namespace also acts as the root for all other System classes .

System.Core This dll contains a collection of namespaces, some of which are required to support
LINQ to in-memory objects, as well as support for several OS-level interfaces .

System.Data Classes associated with ADO .NET and database access . This namespace is the
root for SQL Server, Oracle, and other data access classes .

System.Data
.DataSetExtensions

Defines a collection of extension methods used by the core DataSet class .
These are used when working with LINQ to DataSets .

System.Deployment Classes used for ClickOnce Deployment . This namespace is covered in more
detail in Chapter 34 .

System.Drawing Provides access to the GDI+ graphics functionality

System.Windows.Forms Classes used to create traditional Windows-based applications . This
namespace is covered in more detail in Chapters 14 and 15 .

System.XML Root namespace for all of the XML classes

System.XML.Linq Root namespace to support the Language Integrated Query (LINQ) native
language queries for XML data sources .

The preceding list of referenced libraries is for .NET 4, so if you instead create a project that targets .NET
2.0, this list will be shorter. Keep in mind that changing your target framework does not update any existing
references. If you are going to attempt to target the .NET 2.0 Framework, then you’ll want to remove references
that have a version higher than 2.0.0.0. References such as System.Core enable new features in the System
namespace that are associated with .NET 3.5.

To review details about the imported and referenced namespaces, select the References tab in your project
properties display, as shown in Figure 1-10. This tab enables you to check for unused references and even
define reference paths. More important, it is from this tab that you select other .NET Class Libraries and
applications, as well as COM components. Selecting the Add drop-down button gives you the option to add
a reference to a local DLL or a Web service.

figure 1-10

When referencing DLLs you have three options: Reference an assembly from the GAC, reference an assembly
based on a file path, or reference another assembly from within your current solution. Each of these options
has advantages and disadvantages. The only challenge for assemblies that are in the GAC is that your
application is dependent on what is potentially a shared resource. In general, however, for assemblies that
are already in the GAC, referencing them is a straightforward, easily maintainable process.

In addition to referencing libraries, you can reference other assemblies that are part of your solution. If
your solution consists of more than a single project, then it is straightforward and highly recommended
to use project references in order to enable those projects to reference each other. While you should avoid
circular references — Project A references Project B which references Project A — using project references
is preferred over file references. With project references, Visual Studio can map updates to these assemblies
as they occur during a build of the solution. It’s possible for Visual Studio to automatically update the
referenced assemblies in your executable project to be the latest build of the referenced DLLs that are part
of the same solution. Note that the target needs to be an executable. Visual Studio will automatically update
references between DLL projects in a common solution.

Visual Basic Keywords and syntax ❘ 23

24 ❘ chaPTer 1 Visual studio 2010

This is different from adding a reference to a DLL that is located within a specified directory. When you create
a reference via a path specification, Visual Studio can check that path for an updated copy of the reference,
but your code is no longer as portable as it would be with a project reference. More important, unless there
is a major revision, Visual Studio usually fails to detect the types of changes you are likely to make to that file
during the development process. As a result, you’ll need to manually update the referenced file in the local
directory of the assembly that’s referencing it. For your own code often it’s best to leverage project references,
rather than path-based references. However, for third party controls where you’ll often only have an installed
location, one which isn’t likely to change as you move between machines, a path based reference can work.

On the other hand an alternative solution which is commonly used, is to ensure that instead of referencing
third party controls based on their location, that instead ‘copy local’ references are used so that the version
specific copy of the control deploys with the code that depends on it. This means that different versions of the
controls can exist on the same server in different applications. Additionally because a local copy of the control
is with the application, the application can be XCopy deployed without needing to register the controls.

resources
In addition to referencing other assemblies, it is quite common for a .NET application to need to reference things
such as images, icons, audio, and other files. These files aren’t used to provide application logic but are used at
runtime to provide support for the look, feel, and even text used to communicate with the application’s user. In
theory, you can reference a series of images associated with your application by looking for those images based
on the installed file path of your application. Doing so, however, places your application’s runtime behavior at
risk, because a user might choose to replace, copy for profit, or just delete your files.

This is where project references become useful. Instead of placing the raw files onto the operating system
alongside your executable, Visual Studio will package these files into your executable so that they are less
likely to be lost or damaged. Figure 1-11 shows the Resources tab, which enables you to review and edit all
the existing resources within a project, as well as import files for use as resources in your project. It even
allows you to create new resources from scratch.

figure 1-11

 Note one little - known feature of this tab: Using the Add Resource drop - down button and selecting an image
(not an existing image but one based on one of the available image types) will create a new image fi le and
automatically open Microsoft Paint (for Express Edition developers); this enables you to actually create the
image that will be in the image fi le.

 Users of Visual Studio 2010 have additional capabilities not supported by Visual Basic ’ s Express Edition.
For one thing, instead of using Paint, Visual Studio provides a basic image - editing tool, so when Visual
Studio developers add a new image (not from a fi le), this editor opens within Visual Studio.

 Additionally, within the list of Add Resource items, Visual Studio users can select or create a new icon.
Choosing to create a new icon opens Visual Studio ’ s icon editor, which provides a basic set of tools for
creating custom icons to use as part of your application. This makes working with .ico fi les easier because
you don ’ t have to hunt for or purchase such fi les online; instead, you can create your own icons.

 However, images aren ’ t the only resources that you can embed with your executable. Resources also apply
to the fi xed text strings that your application uses. By default, people tend to embed this text directly into
the source code so that it is easily accessible to the developer. Unfortunately, this leaves the application
diffi cult to localize for use with a second language. The solution is to group all of those text strings together,
thereby creating a resource fi le containing all of the text strings, which is still part of and easily accessible
to the application source code. When the application is converted for use in another language, this list
of strings can be converted, making the process of localization easier. Localization is covered in detail in
Chapter 27.

 The next tab is the Services tab. This tab is discussed in more detail in Chapter 13, which
addresses services.

 settings
 As noted earlier in the discussion of the Solution Explorer, the default project template does not create any
application settings; accordingly, an app.config fi le is neither needed nor created. app.config fi les are
XML fi les that defi ne any custom application settings that a developer wants to be able to change without
needing to recompile the application. Because these settings live in an XML fi le, they can be modifi ed in
between or even during application execution.

 One original goal of .NET was to reduce the version confl ict that can occur when a component has
registered with global settings. A confl ict would occur if two different applications were attempting to
reference two different versions of that component. Because the settings were global and stored in the
central system registry, only one could be registered correctly. Since the different applications each wanted
its specifi c version of the component and related settings, one of the applications worked while the other
application broke.

 .NET provided the capability to place version - specifi c project references in a local directory with the
application, enabling two different applications to reference the appropriate version of that component.
However, the second part of the problem was the central application settings. The app.config fi le
provides the same capability, but its goal is to allow for local storage of application settings. Under .NET
1.x, support for application settings was still minimal, as most developers were still looking to the central
system registry for this purpose. At the same time, the developer tools associated with settings were also
minimal.

 Fortunately, under .NET 2.0 this changed dramatically. Visual Studio 2010 provides signifi cant support
for application settings, including the Settings tab, shown in Figure 1 - 12. This tab enables Visual
Basic developers to identify application settings and automatically create these settings within the
 app.config fi le.

Visual Basic Keywords and syntax ❘ 25

26 ❘ chaPTer 1 Visual studio 2010

Figure 1-12 illustrates several elements related to the application settings capabilities of Visual Basic.
The first setting is of type String. Under .NET 1.x, all application settings were seen as strings, and this
was considered a weakness. Accordingly, the second setting, LastLocation, exposes the Type drop-down,
illustrating that under Visual Studio 2010 you can create a setting that has a well-defined type.

However, strongly typed settings are not the most significant set of changes related to application settings.
The very next column defines the scope of a setting. There are two possible options: application wide or user
specific. The settings defined with application scope are available to all users of the application. As shown in
Figure 1-12, this example creates a sample connection string to store for the application.

The alternative is a user-specific setting. Such settings have a default value; in this case, the last location
defaults to 0,0. However, once a user has read that default setting, the application generally updates and
saves the user-specific value for that setting. As indicated by the LastLocation setting, each user of the
application might close it after having moved it to a new location on the screen; and the goal of such a
setting would be to reopen the application where it was last located. Thus, the application would update
this setting value, and Visual Basic makes it easy to do this, as shown in the following code:

My.Settings.LastLocation = Me.Location
My.Settings.Save()

That’s right — Visual Basic requires only two lines of code that leverage the My namespace in order for
you to update a user’s application setting and save the new value. Meanwhile, let’s take a look at what is
occurring within the newly generated app.config file. The following XML settings demonstrate how the
app.config file defines the setting values that you manipulate from within Visual Studio:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="userSettings" type="System.Configuration.
UserSettingsGroup, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >

figure 1-12

 <section name="ProVB_VS2010.My.MySettings" type="System.
Configuration.ClientSettingsSection, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser"
requirePermission="false" />
 </sectionGroup>
 <sectionGroup name="applicationSettings" type="System.Configuration.
ApplicationSettingsGroup, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" >
 <section name="ProVB_VS2010.My.MySettings" type="System.Configuration.
ClientSettingsSection, System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089" requirePermission="false" />
 </sectionGroup>
 </configSections>
 <system.diagnostics>
 <sources>
 <!-- This section defines the logging configuration for My.Application.Log -->
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="FileLog"/>
 <!-- Uncomment the below section to write to the Application Event Log -->
 <!--<add name="EventLog"/>-->
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="DefaultSwitch" value="Information" />
 </switches>
 <sharedListeners>
 <add name="FileLog"
 type="Microsoft.VisualBasic.Logging.FileLogTraceListener, Microsoft.
VisualBasic, Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL"
 initializeData="FileLogWriter"/>
 <!-- Uncomment the below section and replace APPLICATION_NAME with the
name of your application to write to the Application Event Log -->
 <!--<add name="EventLog"
type="System.Diagnostics.EventLogTraceListener" initializeData="APPLICATION_NAME"/>-->
 </sharedListeners>
 </system.diagnostics>
 <userSettings>
 <ProVB_VS2010.My.MySettings>
 <setting name="LastLocation" serializeAs="String">
 <value>0, 0</value>
 </setting>
 </ProVB_VS2010.My.MySettings>
 </userSettings>
 <applicationSettings>
 <ProVB_VS2010.My.MySettings>
 <setting name="ConnectionString" serializeAs="String">
 <value>server=(local);Database=adventureworks</value>
 </setting>
 </ProVB_VS2010.My.MySettings>
 </applicationSettings>
</configuration>

Code snippet from app.config

As shown here, Visual Studio automatically generated all the XML needed to define these settings and save
the default values. Note that individual user settings are not saved back into the config file, but rather to a
user-specific working directory. In fact, it is possible not only to update application settings with Visual Basic,

Visual Basic Keywords and syntax ❘ 27

28 ❘ chaPTer 1 Visual studio 2010

but also to arrange to encrypt those settings, although this behavior is outside the scope of what you can
do from Visual Studio.

other Project Property Tabs
In addition to the tabs that have been examined in detail, there are other tabs which are more specific. In
most cases these tabs are used only in specific situations that do not apply to all projects.

signing
This tab is typically used in conjunction with deployment. If you are interested in creating a commercial
application that needs to be installed on client systems, you’ll want to sign your application. There are
several advantages to signing your application, including the capability to publish it via ClickOnce
deployment. Therefore, it is possible to sign an application with a developer key if you want to deploy an
application internally.

My extensions
The My Extensions tab enables you to create and leverage extensions to Visual Basic’s My namespace. By
default, Visual Studio 2010 ships with extensions to provide My namespace shortcuts for key WPF and Web
applications.

security
This tab enables you to define the security requirements of your application. You’ll need these as part of the
ClickOnce publishing process, which is covered as part of deployment in Chapter 34.

Publish
This tab is used to configure and initiate the publishing of an application. From this tab you can update
the published version of the application and determine where to publish it. This tab is also covered in more
detail in Chapter 34.

Code analysis
This tab is only available for Visual Studio 2010 Premium or Ultimate. The tab enables the developer to
turn on and configure the static code analysis settings. These settings are used after compilation to perform
automated checks against your code. Because these checks can take significant time, especially for a large
project, they must be manually turned on.

ProJecT ProVB_Vs2010
The Form Designer opens by default when a new project is created. If you have closed it, then you can
easily reopen it by right-clicking Form1.vb in the Solution Explorer and selecting View Designer from the
pop-up menu. From this window, you can also bring up the Code view for this form. However, Figure 1-13
illustrates the default view you see when your project template completes. On the screen is the design surface
upon which you can drag controls from the Toolbox to build your user interface and update properties
associated with your form.

The Properties pane, shown in more detail in Figure 1-14, is by default placed in the lower-right corner of
the Visual Studio window. Like many of the other windows in the IDE, if you close it, it can be accessed
through the View menu. Alternatively, you can use the F4 key to reopen this window. The Properties pane is
used to set the properties of the currently selected control, or for the Form as a whole.

figure 1-13

Each control you place on your form has its own distinct set
of properties. For example, in the Design view, select your
form. You’ll see the Properties window adjust to display the
properties of Form1 (refer to Figure 1-14). This is the list of
properties associated with your form. If you want to limit how
small a user can reduce the display area of your form, then you
can now define this as a property.

For your sample, go to the Text property and change the
default of Form1 to “Professional VB.NET.” Once you have
accepted the property change, the new value is displayed as
the caption of your form. Later in this section, you’ll set form
properties in code. You’ll see that .NET properties are defined
within your source file, unlike other environments where
properties you edit through the user interface are hidden in
some binary or proprietary portion of the project.

Now that you’ve looked at the form’s properties, open the code
associated with this file by either right-clicking Form1.vb in the
Solution Explorer and selecting Code view, or right-clicking
the form in the Design view and selecting View Code from the
pop-up menu.

The initial display of the form looks very simple. There is no
code in the Form1.vb file. Visual Basic 2005 introduced a
capability called partial classes. Partial classes are covered
briefly in Chapter 2, and Visual Studio leverages them for the
code, which is generated as part of the user interface designer.

figure 1-14

Project ProVB_Vs2010 ❘ 29

30 ❘ chaPTer 1 Visual studio 2010

Visual Studio places all the generated source code for your form in the file Form1.Designer.vb. Because
the “Designer” portion of this name is a convention that Visual Studio recognizes, it hides these files by
default when you review your project in the Solution Explorer. As noted earlier, by asking Visual Studio to
“show all files,” you can find these generated files. If you open a “Designer.vb” file, you’ll see that quite a
bit of custom code is generated by Visual Studio and already in your project.

To do this, go to the toolbar located in the Solution Explorer window and select the Show All Files button. This
will change your project display and a small plus sign will appear next to the Form1.vb file. Expanding this entry
displays the Form1.Designer.vb file, which you can open within the IDE. Doing this for Form1.Designer.vb
for the ProVB_VS2010 project you created will result in a window similar to the one shown in Figure 1-15.

figure 1-15

Note that the contents of this file are generated. For now, don’t try to make any changes. Visual Studio
automatically regenerates the entire file when a property is changed, so any changes you make will be lost.
The following lines start the declaration for your form in the file Form1.Designer.vb:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

Code snippet from Form1.Designer

The first line is an attribute that can be ignored. Next is the line that actually declares a new class called Form1.
Note that in spite of the naming convention used by Visual Studio to hide the generated UI class implementation,
the name of your class and the file in which it exists are not tightly coupled. Thus, your form will be referenced
in the code as Form1 unless you modify the name used in the class declaration. Similarly, you can rename the file
that contains the class without changing the actual name of the class.

One powerful result of forms being implemented as classes is that you can now derive one form from another
form. This technique is called visual inheritance, although the elements that are actually inherited may not be
displayed.

form Properties set in code
As noted earlier, Visual Studio keeps every object’s custom property values in the source code. To do this, it
adds a method to your form class called InitializeComponent. As the name suggests, this method handles
the initialization of the components contained on the form. A comment before the procedure warns you that the
Form Designer modifies the code contained in the procedure, and that you should not modify the code directly.
This module is part of the Form1.Designer.vb source file, and Visual Studio updates this section as changes
are made through the IDE.

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.SuspendLayout()
 '
 'Form1
 '
 Me.AutoScaleDimensions = New System.Drawing.SizeF(8.0!, 16.0!)
 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
 Me.ClientSize = New System.Drawing.Size(328, 258)
 Me.Name = "Form1"
 Me.Text = "Professional VB.NET"
 Me.ResumeLayout(False)

 End Sub

Code snippet from Form1.Designer

The seven lines of the InitializeComponent procedure assign values to the properties of your Form1 class.
All the properties of the form and controls are now set directly in code. When you change the value of a
property of the form or a control through the Properties window, an entry is added to InitializeComponent
that assigns that value to the property. Previously, while examining the Properties window, you set the
Text property of the form to Professional VB.NET, which caused the following line of code to be added
automatically:

Me.Text = "Professional VB.NET"

The properties of the form class that are set in InitializeComponent are shown in Table 1-5.

TaBle 1-5: Properties Set by InitializeComponent

ProPerTy descriPTion

SuspendLayout Specifies that the form should not make updates to what is displayed to the
user . It is called so that as each change is made, the form doesn’t seem to
appear in pieces .

AutoScaleDimensions Initializes the size of the font used to lay out the form at design time . At
runtime, the font that is actually rendered is compared with this property, and
the form is scaled accordingly .

AutoScaleMode Indicates that the form will use fonts that are automatically scaled based on
the display characteristics of the runtime environment .

ClientSize Sets the area in which controls can be placed (the client area) . It is the size of
the form minus the size of the title bar and form borders .

Name This property is used to set the textual name of the form .

ResumeLayout This tells the form that it should resume the normal layout and displaying of its
contents .

Project ProVB_Vs2010 ❘ 31

32 ❘ chaPTer 1 Visual studio 2010

Code regions
Source files in Visual Studio allow you to collapse blocks of code. The idea is that in most cases you can reduce
the amount of onscreen code, which seems to separate other modules within a given class, by collapsing the
code so it isn’t visible; this feature is known as outlining. For example, if you are comparing the load and
save methods and in between you have several other blocks of code, then you can effectively “hide” this code,
which isn’t part of your current focus.

By default, there is a minus sign next to every method (sub or function). This makes it easy to hide or show
code on a per-method basis. If the code for a method is hidden, the method declaration is still shown and
has a plus sign next to it indicating that the body code is hidden. This feature is very useful when you are
working on a few key methods in a module and you want to avoid scrolling through many screens of code
that are not relevant to the current task.

It is also possible to create custom regions of code so you can hide and show portions of your source files.
For example, it is common to see code where all of the properties are placed in one region, and all of the
public methods are placed in another. The #Region directive is used for this within the IDE, though it has
no effect on the actual application. A region of code is demarcated by the #Region directive at the top and
the #End Region directive at the end. The #Region directive that is used to begin a region should include a
description, which appears next to the plus sign shown when the code is minimized.

The outlining enhancement was in part inspired by the fact that the original Visual Studio designers generated
a lot of code and placed all of this code in the main vb file for that form. It wasn’t until Visual Studio
2005 and partial classes that this generated code was placed in a separate file. Thus the region allowed the
generated code section to be hidden when a source file was opened. Being able to see the underpinnings
of your generated UI does make it is easier to understand what is happening, and possibly to manipulate
the process in special cases. However, as you can imagine, it can become problematic; hence the #Region
directive, which can be used to organize groups of common code and then visually minimize them.

Visual Studio 2010 developers, but not Express Edition developers, can also control outlining throughout a
source file. Outlining can be turned off by selecting Edit ➪ Outlining ➪ Stop Outlining from the Visual Studio
menu. This menu also contains some other useful functions. A section of code can be temporarily hidden by
highlighting it and selecting Edit ➪ Outlining ➪ Hide Selection. The selected code will be replaced by ellipses
with a plus sign next to it, as if you had dynamically identified a region within the source code. Clicking the
plus sign displays the code again.

Tear-away Tabs
You may have noticed in Figure 1-15 that the Code View and Form Designer windows open in a tabbed
environment. This environment is the default for working with the code windows inside Visual Studio, but
you can change this. As with any other window in Visual Studio 2010, you can mouse down on the tab and
drag it to another location.

What makes this especially useful in Visual Studio 2010 is that you can drag a tab completely off of the main
window and have it open as a standalone window elsewhere. Thus, you can take the current source file you
are editing and drag it to a separate monitor from the remainder of Visual Studio — examples of this are the
screens earlier in this chapter showing the project properties. If you review those images you’ll see that they are
not embedded within the larger Visual Studio 2010 frame but have been pulled out into their own window.

running ProVB_Vs2010
Now that you’ve reviewed the elements of your generated project, let’s test the code before continuing. To
run an application from within Visual Studio, you have several options; the first is to click the Start button,
which looks like the Play button on a tape recorder. Alternatively, you can go to the Debug menu and select
Start. Finally, the most common way of launching applications is to press F5.

Once the application starts, an empty form is displayed with the standard control buttons (in the upper-
right corner) from which you can control the application. The form name should be Professional VB.NET,
which you applied earlier. At this point, the sample doesn’t have any custom code to examine, so the next
step is to add some simple elements to this application.

Customizing the Text editor
In addition to being able to customize the overall environment provided by Visual Studio, you can customize
several specific elements related to your development environment. More so than in any previous version,
the capability to modify the environment has been enhanced. With Visual Studio 2010, the user interface
components have been rewritten using WPF so that the entire display provides a much more graphical
environment and better designer support.

Both Visual Studio 2010 and Visual Basic 2010 Express Edition have a rich set of customizations related
to a variety of different environment and developer settings. Admittedly, Visual Studio 2010’s feature set
offers a larger number of options for editing, but rest assured that the Express Edition contains many more
options for editing than most people expect. For example, common to both IDEs is a text editor that allows
for customization. If you’ve ever had to show code to an audience — for example, in a group code review —
the capability to adjust things such as font size and other similar options is great.

To leverage Visual Studio’s settings, select Tools ➪ Options to open the Options dialog, shown in
Figure 1-16. Within the dialog, make sure the Show all settings check box is selected. Next, select the
Text Editor folder, and then the All Languages folder. This section enables you to make changes to the text
editor that are applied across every supported development language. Additionally, you can select the Basic
folder to make changes that are specific to how the text editor behaves when you edit VB source code.

figure 1-16

From this dialog, it is possible to modify the number of spaces that each tab will insert into your source code
and to manage several other elements of your editing environment. Within this dialog you see settings that are
common for all text editing environments, as well as the ability to customize specific settings for specific languages.
For example the section specific to Visual Basic includes settings that allow for word wrapping and line numbers.
One little-known but useful capability of the text editor is line numbering. Checking the Line numbers check box
will cause the editor to number all lines, which provides an easy way to unambiguously reference lines of code.

Visual Studio also provides a visual indicator so you can track your changes as you edit. Enabling the Track
changes setting under the Text Editor options causes Visual Studio to provide a colored indicator in places where
you have modified a file. This indicator appears as a colored bar at the left margin of your display. It shows
which portions of a source file have been recently edited and whether those changes have been saved to disk.

intellisense, Code expansion, and Code snippets
One of the reasons why Microsoft Visual Studio is such a popular development environment is because it
was designed to support developer productivity. That sounds really good, but let’s back it up. People who

Project ProVB_Vs2010 ❘ 33

34 ❘ chaPTer 1 Visual studio 2010

are unfamiliar with Visual Studio might just assume that “productivity” refers to organizing and starting
projects. Certainly, as shown by the project templates and project settings discussed so far, this is true, but
those features don’t speed your development after you’ve created the project.

This section covers three features that target your productivity while writing code. They are of differing
value and are specific to Visual Studio. The first, IntelliSense, has always been a popular feature of
Microsoft tools and applications. The second feature, code expansion, is another popular feature available
since Visual Studio 2005: It enables you to type a keyword, such as “select,” and then press the Tab key to
automatically insert a generic select-case code block, which you can then customize. Finally, going beyond
this, you can use the right mouse button and insert a code snippet at the location of your mouse click. As
you can tell, each of these builds on the developer productivity capabilities of Visual Studio.

IntelliSense

IntelliSense has been enhanced in Visual Studio 2010. Early versions of IntelliSense required you to first identify a
class or property in order to make uses of the IntelliSense feature. Beginning with Visual Studio 2008, IntelliSense
is activated with the first letter you type, so you can quickly identify classes, commands, and keywords that you
need. This capability continues with Visual Studio 2010, but the IDE team worked hard to enhance IntelliSense
performance so that it won’t sometimes feel like the IDE is trying to keep up with your typing.

Once you’ve selected a class or keyword, IntelliSense continues, enabling you to not only work with the
methods of a class, but also automatically display the list of possible values associated with an enumerated
list of properties when one has been defined. IntelliSense also provides a ToolTip-like list of parameter
definitions when you are making a method call.

Figure 1-17 illustrates how IntelliSense becomes available with the first character you type. Note that the drop-
down window has two tabs on the bottom; one is optimized for the items that you are likely to want, while
the other shows you everything that is available. In addition, IntelliSense works with multiword commands.
For example, if you type Exit and a space, IntelliSense displays a drop-down list of keywords that could
follow Exit. Other keywords that offer drop-down lists to present available options include Goto, Implements,
Option, and Declare. In most cases, IntelliSense displays more ToolTip information in the environment than in
past versions of Visual Studio, and helps developers match up pairs of parentheses, braces, and brackets.

figure 1-17

Finally, note that IntelliSense is based on your editing context. While editing a file, you may reach a point
where you are looking for a specific item to show up in IntelliSense but when you repeatedly type slightly
different versions, nothing appears. IntelliSense recognizes that you aren’t in a method or you are outside of
the scope of a class, so it removes items that are inappropriate for the current location in your source code
from the list of items available from IntelliSense.

Code Expansion

Going beyond IntelliSense is code expansion. Code expansion recognizes that certain keywords are
consistently associated with other lines of code. At the most basic level, this occurs when you declare a new
Function or Sub: Visual Studio automatically inserts the End Sub or End Function line once you press
Enter. Essentially, Visual Studio is expanding the declaration line to include its matching endpoint.

However, true code expansion goes further than this. With true code expansion, you can type a keyword
such as For, ForEach, Select, or any of a number of Visual Basic keywords. If you then use the Tab key,
Visual Studio will attempt to recognize that keyword and insert the block of code that you would otherwise
need to remember and type yourself. For example, instead of needing to remember how to format the
control values of a Select statement, you can just type this first part of the command and then press Tab to
get the following code block:

Select Case VariableName
 Case 1
 Case 2
 Case Else
End Select

Unfortunately, this is a case where just showing you the code isn’t enough. That’s because the code that is inserted
has active regions within it that represent key items you will customize. Thus, Figure 1-18 provides a better
representation of what is inserted when you expand the Select keyword into a full Select Case statement.

figure 1-18

When the block is inserted, the editor automatically positions your cursor in the first highlighted block —
VariableName. When you start typing the name of the variable that applies, the editor automatically clears that

Project ProVB_Vs2010 ❘ 35

36 ❘ chaPTer 1 Visual studio 2010

static VariableName string, which is acting as a placeholder. Once you have entered the variable name you want,
you can just press Tab. At that point the editor automatically jumps to the next highlighted item. This capability
to insert a block of boilerplate code and have it automatically respond to your customization is extremely useful.

Code expansion enables you to quickly shift between the values that need to be customized, but these values
are also linked where appropriate, as in the next example. Another code expansion shortcut creates a new
property in a class. If at the class level you type the letters “prop” and then press the Tab key twice, after the
first tab you’ll find that your letters become the word “Property”; and after the second tab the code shown in
Figure 1-19 will be added to your existing code. On the surface this code is similar to what you see when you
expand the Select statement. Note that although you type prop, even the internal value is part of this code
expansion. Furthermore, although Visual Basic implemented a property syntax that is no longer dependent on
an explicit backing field, this expansion provides the more robust syntax that uses an explicit backing field.

figure 1-19

The difference, however, is that the same value String in Figure 1-19 is repeated for the property. The value
you see is the default. However, when you change the first such entry from String to Integer, Visual Studio
automatically updates all three locations because it knows they are linked. Using the code shown in Figure 1-19,
update the property value to be m_Count. Press Tab and change the type to Integer; press Tab again and label
the new property Count. This gives you a simple property on this form for use later when debugging.

The completed code should look like the following block:

 Private m_Count As Integer
 Public Property Count() As Integer
 Get
 Return m_Count
 End Get
 Set(ByVal value As Integer)
 m_Count = value
 End Set
 End Property

Code snippet from Form1

This capability to fully integrate the template supporting the expanded code with the highlighted elements,
helping you navigate to the items you need to edit, makes code expansion such a valuable tool.

Code Snippets

You can, with a click of your mouse, browse a library of code blocks, which, as with code expansion,
you can insert into your source file. However, unlike code expansion, these snippets aren’t triggered by a
keyword. Instead, you right-click and (as shown in Figure 1-20) select Insert Snippet from the context menu.
This starts the selection process for whatever code you want to insert.

figure 1-20

The snippet library, which is installed with Visual Studio, is fully expandable, as discussed later in this chapter.
Snippets are categorized by the function on which each is focused. For example, all the code you can reach via
code expansion is also available as snippets, but snippets go well beyond that list. There are snippet blocks for
XML-related actions, for operating system interface code, for items related to Windows Forms, and, of course,
a lot of data-access-related blocks. Unlike code expansion, which enhances the language in a way similar to
IntelliSense, code snippets are blocks of code focused on functions developers often write from scratch.

As shown in Figure 1-21, the insertion of a snippet triggers the creation of a placeholder tag and a context
window showing the categories of snippets. Each of the folders can contain a combination of snippet files or
subdirectories containing still more snippet files. Visual Basic 2010 Express contains a subset of the folders
provided with Visual Studio 2010. In addition, Visual Studio includes the folder My Code Snippets, to
which you can add your own custom snippet files.

Selecting a folder enables you to select from one of its subfolders or a snippet file. Once you select the
snippet of interest, Visual Studio inserts the associated code into your source file. Figure 1-22 shows
the result of adding an operating system snippet to some sample code. The selected snippet was Windows ➪
Event Logs ➪ Read Entries Created by a Particular Application from the Event Log, which
isn’t included with Visual Basic 2010 Express, although the code is still valid.

Project ProVB_Vs2010 ❘ 37

38 ❘ chaPTer 1 Visual studio 2010

figure 1-21

figure 1-22

As you can see, this code snippet is specific to reading the Application Log. This snippet is useful because
many applications log their errors to the Event Log so that they can be reviewed either locally or from another
machine in the local domain. The key, however, is that the snippet has pulled in the necessary class references,
many of which might not be familiar to you, and has placed them in context. This reduces not only the time
spent typing this code, but also the time spent recalling exactly which classes need to be referenced and which
methods need to be called and customized.

Finally, it is also possible to shortcut the menu tree. Specifically, if you know the shortcut for a snippet, you
can type that and then press Tab to have Visual Studio insert the snippet. For example, typing evReadApp
followed by pressing Tab will insert the same snippet shown in Figure 1-22.

Tools such as code snippets and especially code expansion are even more valuable when you work in
multiple languages. Keep in mind, however, that Visual Studio isn’t limited to the features that come in the
box. It’s possible to extend Visual Studio not only with additional controls and project templates, but also
with additional editing features.

additional components for Visual studio
You might be interested in two additional tools that work with Visual Studio. Even better, both are free.
The first is a tool for creating your own Visual Basic snippets. As discussed, snippets can be powerful tools
when you need to replicate relatively small but commonly used blocks of code that will be customized.
While Visual Studio ships with several such snippets, Microsoft probably hasn’t included the snippet you
want the most.

This is where the first tool comes in: a Snippet Editor for Visual Basic code snippets. This editor doesn’t
actually live within Visual Studio; it just updates the snippet files you want to use from Visual Studio.
Behind the scenes, snippets are actually XML files with embedded text that represents the code used in the
snippet. What the Snippet Editor does is read that XML and interpret all of the embedded logic related to
things such as replacement blocks. This tool makes it possible for Visual Basic developers to create custom
snippets without worrying about the XML formatting details. It is available from MSDN at http://msdn2
.microsoft.com/en-us/vbasic/ms789085.aspx.

The second tool is a true add-in to Visual Basic. When Microsoft was announcing features for .NET 2.0,
it was apparent that Visual Basic and C# had different feature lists. Over time, the developers in each
community started to better understand what these features represented, and in many cases demanded their
inclusion. One such feature was native support in C# for refactoring, the capability to modify a variable
name — for example, to take “i” and call it “loopControl” so that it’s more readable. Modifying code to
improve structure, performance, and maintainability is referred to generically as refactoring.

Traditionally, such changes might make the code more maintainable but it often entailed more risk than
reward; as a result they seldom were made. The problem, of course, is that a human tends to miss that one
remaining reference to the old version of that method or variable name. More important, it was a time-
consuming task to find all of the correct references. Fortunately, the compiler knows where these are, and
that’s the idea behind automated refactoring: You tell Visual Studio what you want to change and it goes
through your code and makes all the necessary changes, using the same rules the compiler uses to compile
your code.

This is a great maintenance tool; unfortunately, by the time most Visual Basic developers understood
what it implied, it was too late for the Visual Basic team to implement a solution in Visual Studio 2005.
However, the team did do better than just say, “So sad, too bad.” They found a commercial product
that actually had more features than what the C# team was developing from scratch. Then they bought
a license for every Visual Studio developer, allowing free download of the tool. This solution worked so
well for everyone involved that they chose to continue it in Visual Studio 2008 and Visual Studio 2010.
With refactoring, you can quickly clean up gnarly, hard-to-read code and turn it into well-structured logic
that’s much more maintainable. The free version of the refactoring tool is available at www.devexpress
.com/Products/NET/IDETools/VBRefactor/.

Project ProVB_Vs2010 ❘ 39

40 ❘ chaPTer 1 Visual studio 2010

enhancing a samPle aPPlicaTion
To start enhancing the application, you are going to use the control Toolbox. Close the Form1.designer.vb
file and switch your display to the Form1.vb [Design] tab. The Toolbox window is available whenever a form
is in Design view. By default, the Toolbox, shown in Figure 1-23, is docked to the left side of Visual Studio
as a tab. When you click this tab, the control window expands, and you can drag controls onto your form.
Alternatively, if you have closed the Toolbox tab, you can go to the View menu and select Toolbox.

If you haven’t set up the Toolbox to be permanently visible, it will slide out of the way and disappear whenever
focus is moved away from it. This helps maximize the available screen real estate. If you don’t like this feature
and want the Toolbox to be permanently visible, just click the pushpin icon on the Toolbox’s title bar.

The Toolbox contains literally dozens of standard controls, which are categorized so it’s easier to find them.
Figure 1-23 shows the result of dragging a Button control from the Toolbox and depositing it on the form: a
new button displaying the text “Button1.” Adding another button would trigger the default naming and text
of “Button2.”

figure 1-23

Before customizing the first control added to this form, take a closer look at the Visual Studio Toolbox.
The tools are broken out by category, but this list of categories isn’t static. Visual Studio 2010 Standard
and above editions enable you to create your own custom controls. When you create such controls, the IDE
will — after they have been compiled — automatically add them to the display when you are working in the
same solution as the controls. These would be local references to controls that become available within
the current solution.

Additionally, depending on whether you are working on a Web or a Windows Forms application, your list
of controls in the Toolbox will vary. Windows Forms has a set of controls that leverages the power of the
Windows operating system. Web applications, conversely, tend to have controls oriented to working in a
disconnected environment.

It’s also possible to have third-party controls in your environment. Such controls can be registered with Visual
Studio and are then displayed within every project you work on. When controls are added to the Toolbox they
typically appear in their own custom categories so that they are grouped together and therefore easy to find.

Return to the button you’ve dragged onto the form; it’s ready to go in all respects. However, Visual Studio has
no way of knowing how you want to customize it. Start by going to the Properties window and changing the
Text property to Run Code. You can then change the button’s (Name) property to ButtonTest. Having made
these changes, double-click the button in the display view. Double-clicking tells Visual Studio that you want
to add an event handler to this control, and by default Visual Studio adds an On_Click event handler for
buttons. The IDE then shifts the display to the Code view so that you can customize this handler (Figure 1-24
shows the code for this event handler being edited).

figure 1-24

Although the event handler can be added through the designer, it’s also possible to add event handlers from
Code view. After you double-click the button, Visual Studio will transfer you to Code view and display your
new event handler. Notice that in Code view there are drop-down lists on the top of the edit window. The
boxes indicate the current object on the left — in this case, your new button — and the current method on
the right — in this case, the click event handler. You can add new handlers for other events on your button
or form using these drop-down lists.

The drop-down list on the left side contains the objects for which event handlers can be added. The drop-
down list on the right side contains all the events for the selected object. For now, you have created a new
handler for your button’s click event, so let’s look at customizing the code associated with this event.

customizing the code
With the code window open to the newly added event handler for the ButtonTest control, you can start to
customize this handler. Note that adding a control and event handler involves elements of generated code.

enhancing a sample application ❘ 41

42 ❘ chaPTer 1 Visual studio 2010

Visual Studio adds code to the Form1.Designer.vb file. These changes occur in addition to the default
method implementation shown in the editable portion of your source code.

adding XMl Comments
One of Visual Studio’s features is the capability to generate an XML comments template for Visual Basic.
XML comments are a much more powerful feature than you might realize, because they are also recognized
by Visual Studio for use in IntelliSense. To add a new XML comment to your handler, go to the line before
the handler and type three single quotation marks: ‘‘‘. This triggers Visual Studio to replace your single
quotation marks with the following block of comments. You can trigger these comments in front of any
method, class, or property in your code:

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>

Visual Studio provides a template that offers a place to include a summary of what this method does.
It also provides placeholders to describe each parameter that is part of this method. Not only are the
comments entered in these sections available within the source code, when it’s compiled you’ll also find an
XML file in the project directory, which summarizes all your XML comments and can be used to generate
documentation and help files for the said source code. By the way, if you refactor a method and add new
parameters, the XML comments also support IntelliSense for the XML tags that represent your parameters.

Customizing the event Handler
Now customize the code for the button handler, as this method doesn’t actually do anything by default.
Start by adding a new line of code to increment the property Count you added to the form earlier. Next,
use the System.Windows.Forms.MessageBox class to open a message box and show the message indicating
the number of times the Hello World button has been pressed. Fortunately, because that namespace is
automatically imported into every source file in your project, thanks to your project references, you can
reference the MessageBox.Show method directly. The Show method has several different parameters; and
as shown in Figure 1-24, not only does the IDE provide a ToolTip for the list of parameters, it also provides
help regarding the appropriate value for individual parameters.

The completed call to MessageBox.Show should look similar to the following code block. Note that the
underscore character is used to continue the command across multiple lines. In addition, unlike previous
versions of Visual Basic, for which parentheses were sometimes unnecessary, in .NET the syntax best
practice is to use parentheses for every method call:

Private Sub ButtonTest_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles ButtonTest.Click
 Count += 1
 MessageBox.Show("Hello World shown " + Count.ToString() + " times.",
 "Hello World Message Box",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

End Sub

Code snippet from Form1

Once you have entered this line of code, you may notice a squiggly line underneath some portions of your
text. This occurs when there is an error in the line you have typed. The Visual Studio IDE works more like
the latest version of Word. It highlights compiler issues while allowing you to continue working on your
code. Visual Basic is constantly reviewing your code to ensure that it will compile; and when it encounters a
problem it immediately notifies you of the location without interrupting your work.

reviewing the Code
Now that you have created a simple Windows application, let’s review the elements of the code that have
been added by the IDE. Following is the entire Form1.Designer.vb source listing. Highlighted in this
listing are the lines of code that have changed since the original template was used to generate this project:

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.
 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 Try
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 Finally
 MyBase.Dispose(disposing)
 End Try
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.ButtonTest = New System.Windows.Forms.Button()
 Me.SuspendLayout()
 '
 'ButtonTest
 '
 Me.ButtonTest.Location = New System.Drawing.Point(13, 13)
 Me.ButtonTest.Name = "ButtonTest"
 Me.ButtonTest.Size = New System.Drawing.Size(104, 23)
 Me.ButtonTest.TabIndex = 0
 Me.ButtonTest.Text = "Run Code"
 Me.ButtonTest.UseVisualStyleBackColor = True
 '
 'Form1
 '
 Me.AutoScaleDimensions = New System.Drawing.SizeF(8.0!, 16.0!)
 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
 Me.ClientSize = New System.Drawing.Size(328, 258)
 Me.Controls.Add(Me.ButtonTest)
 Me.Name = "Form1"
 Me.Text = "Professional VB.NET"
 Me.ResumeLayout(False)

 End Sub
 Friend WithEvents ButtonTest As System.Windows.Forms.Button

End Class

Code snippet from Form1.Designer

After the class declaration in the generated file, the first change made to the code is the addition of a new
variable to represent the new button:

Friend WithEvents ButtonTest As System.Windows.Forms.Button

enhancing a sample application ❘ 43

44 ❘ chaPTer 1 Visual studio 2010

When any type of control is added to the form, a new variable is added to the form class. Controls are
represented by variables; and, just as form properties are set in code, form controls are added in code. The
Button class in the System.Windows.Forms namespace implements the Button control on the Toolbox. Each
control added to a form has a class that implements the functionality of the control. For the standard controls,
these classes are usually found in the System.Windows.Forms namespace. The WithEvents keyword has been
used in the declaration of the new variable so that it can respond to events raised by the button.

The bulk of the code changes are in the InitializeComponent procedure. Nine lines of code have been
added to help set up and display the Button control. The first addition to the procedure is a line that creates
a new instance of the Button class and assigns it to the button variable:

Me. ButtonTest = New System.Windows.Forms.Button()

Before a button is added to the form, the form’s layout engine must be paused. This is done using the next
line of code:

Me.SuspendLayout()

The next four lines of code set the properties of the button. The Location property of the Button class sets
the location of the top-left corner of the button within the form:

Me. ButtonTest.Location = New System.Drawing.Point(13, 13)

The location of a control is expressed in terms of a Point structure. Next, the Name property of the button
is set:

Me. ButtonTest.Name = "ButtonTest"

The Name property acts exactly as it did for the form, setting the textual name of the button. The Name
property has no effect on how the button is displayed on the form; it is used to recognize the button’s
context within the source code. The next four lines of code assign values to the Size, TabIndex, Text, and
UseVisualStyleBackColor properties of the button:

Me.ButtonTest.Size = New System.Drawing.Size(104, 23)
Me. ButtonTest.TabIndex = 0
Me. ButtonTest.Text = "Run Code"
Me. ButtonTest.UseVisualStyleBackColor = True

Code snippet from Form1.Designer

The Size property defines the height and width of the control; it is being set because the default button size
didn’t display the full label, and so the button’s size was increased. The TabIndex property of the button
is used to set the order in which the control is selected when a user cycles through the controls on the form
using the Tab key. The higher the number, the later the control gains focus. Each control should have a
unique number for its TabIndex property. The Text property of a button sets the text that appears on
the button. Finally, the UseVisualStyleBackColor property indicates that when this button is drawn, it
uses the current visual style. This is a Boolean value and typically you can accept this default, but you can
customize the background so that a given button doesn’t default to the current visual style.

Once the properties of the button have been set, it needs to be added to the form. This is accomplished with
the next line of code:

 Me.Controls.Add(Me.ButtonTest)

The System.Windows.Forms.Form class (from which your Form1 class is derived) has a property called
Controls that keeps track of all of the child controls of the form. Whenever you add a control to a form in
the designer, a line similar to the preceding one is added automatically to the form’s initialization process.

Finally, near the bottom of the initialization logic is the final code change. The form is given permission to
resume the layout logic:

Me.ResumeLayout(False)

In addition to the code that has been generated in the Form1.Designer.vb source file, you have created
code that lives in the Form1.vb source file:

Public Class Form1

 Private m_count As Integer
 Public Property Count() As Integer
 Get
 Return m_count
 End Get
 Set(ByVal value As Integer)
 m_count = value
 End Set
 End Property

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Private Sub ButtonTest_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles ButtonTest.Click
 Count += 1
 MessageBox.Show("Hello World shown " + Count.ToString() + " times.",
 "Hello World Message Box",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)

 End Sub
End Class

Code snippet from Form1

This code reflects the event handler added for the button. The code contained in the handler was already
covered, with the exception of the naming convention for event handlers. Event handlers have a naming
convention similar to that in previous versions of Visual Basic: The control name is followed by an underscore
and then the event name. The event itself may also have a standard set of parameters. At this point, you can
test the application, but to do so let’s first look at your build options.

Building applications
For this example, it is best to build your sample application using the Debug build configuration. The first
step is to ensure that Debug is selected as the active configuration. As noted earlier in this chapter around
Figure 1-7 you’ll find the setting available on your project properties. It’s also available from the main Visual
Studio display in the Solution Configurations drop-down list box that’s part of the Standard Toolbar.
Visual Studio provides an entire Build menu with the various options available for building an application.
There are essentially two options for building applications:

 ➤ Build — This option uses the currently active build configuration to build the project or solution,
depending upon what is available.

 ➤ Publish — For Visual Basic developers, this option starts the process of creating a release build, but
note that it also ties in with the deployment of your application, in that you are asked to provide an
URL where the application will be published.

The Build menu supports building for either the current project or the entire solution. Thus, you can
choose to build only a single project in your solution or all of the projects that have been defined as part
of the current configuration. Of course, anytime you choose to test-run your application, the compiler will
automatically perform a compilation check to ensure that you run the most recent version of your code.

You can either select Build from the menu or use the Ctrl+Shift+B keyboard combination to initiate a
build. When you build your application, the Output window along the bottom edge of the development

enhancing a sample application ❘ 45

46 ❘ chaPTer 1 Visual studio 2010

environment will open. As shown in Figure 1-25, it displays status messages associated with the build
process. This window should indicate your success in building the application.

If problems are encountered while building your application, Visual Studio provides a separate window to
help track them. If an error occurs, the Task List window will open as a tabbed window in the same region
occupied by the Output window (refer to Figure 1-25). Each error triggers a separate item in the Task List; if
you double-click an error, Visual Studio automatically repositions you on the line with the error. Once your
application has been built successfully, you can
run it.

Once your application has been built successfully,
you will find the executable file located in
the targeted directory. By default, for .NET
applications this is the \bin subdirectory of your
project directory.

running an application in the Debugger
As discussed earlier, there are several ways to start your application. Starting the application launches a
series of events. First, Visual Studio looks for any modified files and saves those files automatically. It then
verifies the build status of your solution and rebuilds any project that does not have an updated binary,
including dependencies. Finally, it initiates a separate process space and starts your application with the
Visual Studio debugger attached to that process.

When your application is running, the look and feel of Visual Studio’s IDE changes, with different windows and
button bars becoming visible (see Figure 1-26). While your code remains visible, the IDE displays additional
windows — by default, the Immediate Window appears in the same location as the Output Window as a new
tabbed window. Others, such as the Call Stack, Locals, and Watch windows, may also be displayed over time as
you work with the debugger. (Not all of these windows are available to users of Visual Studio Express Edition.)
These windows are used by the debugger for reviewing the current value of variables within your code.

figure 1-25

figure 1-26

The true power of the Visual Studio debugger is its interactive debugging. To demonstrate this, with your
application running, select Visual Studio as the active window. Change your display to the Form1.vb Code
view (not Design view) and click in the border alongside the line of code you added to increment the count
when the button is clicked. Doing this creates a breakpoint on the selected line (refer to Figure 1-26). Return
to your application and then click the “Hello World” button. Visual Studio takes the active focus, returning
you to the code window, and the line with your breakpoint is now selected.

Visual Studio 2010 introduces a new window that is located in the same set of tabs as the Solution Explorer.
As shown in Figure 1-26, the IntelliTrace window tracks your actions as you work with the application in
Debug mode. Figure 1-27 focuses on this new feature available to the Ultimate edition of Visual Studio.
Sometimes referred to as historical debugging, the IntelliTrace window provides a history of how you got to a
given state.

figure 1-27

When an error occurs during debugging, your first thought is likely to be “What just happened?” But how
do you reproduce that error? As indicated in Figure 1-27, the IntelliTrace window tracks the steps you have
taken — in this case showing that I had used the Run Code button a second time since the steps shown in
Figure 1-26. By providing a historical trail, IntelliTrace enables you to reproduce a given set of steps through
your application. You can also filter the various messages either by message type or by thread.

The ability to select these past break points and review the state of variables and classes in your running
application can be a powerful tool for tracking down runtime issues. The historical debugging capabilities
are unfortunately only available in Visual Studio 2010 Ultimate, but they take the power of the Visual
Studio debugger to a new level.

However, even if you don’t have the power of historical debugging, the Visual Studio debugger is a powerful
development ally. It is, arguably, more important than any of the other developer productivity features of
Visual Studio. With the execution sitting on this breakpoint, it is possible to control every aspect of your
running code. Hovering over the property Count, as shown in Figure 1-28, Visual Studio provides a debug
ToolTip showing you the current value of this property. This “hover over” feature works on any variable
in your local environment and is a great way to get a feel for the different values without needing to go to
another window.

Windows such as Locals and Autos display similar information about your variables, and you can use
these to update those properties while the application is running. However, you’ll note that the image in
Figure 1-28 includes a small pin symbol. Using this you can keep the status window for this variable open
in your Code view. This was done in Figure 1-29, and now as I step past the line where my breakpoint
was set, the information in the window is updated to show the new value of Count. Visual Studio has just
allowed you to create a custom watch window to reflect the value of Count.

enhancing a sample application ❘ 47

48 ❘ chaPTer 1 Visual studio 2010

figure 1-28

figure 1-29

This isn’t the end of it. As you’ll note in Figure 1-29, by clicking on the down arrows you see on the right
hand side of your new custom watch window, just below the pin, you can add one or more comments
to your custom watch window for this value. You also have the option to unpin the initial placement of
this window and move it off of your Code view display. Not only that but, the custom watch window is
persistent in Debug mode. If you stop debugging and restart, the window is automatically restored and
remains available until you choose to close it using the close button.

Next, move your mouse and hover over the parameter sender. This will open a window similar to the one for
Count as you review the reference to this object. More important, note the small plus sign on the right-hand
side, which if clicked expands the pop-up to show details about the properties of this object. As shown in
Figure 1-30, this capability is available even for parameters like sender, which you didn’t define. Figure 1-30
also illustrates a key point about looking at variable data. Notice that by expanding the top-level objects you
can eventually get to the properties inside those objects. Next to some of those properties, on the right-hand
side, is a little magnifying glass icon. That icon tells you that Visual Studio will open the potentially lengthy
string value in any one of three visualization windows. When working with complex XML or other complex
data, these visualizers offer significant productivity benefits by enabling you to review data.

figure 1-30

Once you are at a breakpoint, you can control your application by leveraging the Debug
buttons on the Standard toolbar. These buttons, shown in Figure 1-31, provide several
options for managing the flow of your application. From the left are the following
buttons: Start Debugging, Break All, Stop Debugging, and three buttons that
look like a carriage return next to a set of lines. The first of these, which is the fourth button overall represents
stepping into code. The last two buttons represent stepping over and stepping out, respectively. In this case
you should use the Step Into or Step Over buttons to move to the next line of code as shown in Figure 1-29.

Step-In tells the debugger to jump to whatever line of code is first within the next method or property you
call. Keep in mind that if you pass a property value as a parameter to a method, then the first such line

figure 1-31

enhancing a sample application ❘ 49

50 ❘ chaPTer 1 Visual studio 2010

of code is in the Get method of the parameter. Once there, you may want to step out. Stepping out of a
method tells the debugger to execute the code in the current method and return you to the line that called
the method. Thus, you could step out of the property and then step in again to get into the method you are
actually interested in debugging.

Of course, sometimes you don’t want to step into a method; this is where the Step-Over button comes in. It
enables you to call whatever method(s) are on the current line and step to the next sequential line of code in
the method you are currently debugging. The final button, Step-Out, is useful if you know what the code in a
method is going to do, but you want to determine which code called the current method. Stepping out takes
you directly to the calling code block.

Each of the buttons shown on the debugging toolbar in Figure 1-31 has an accompanying shortcut key for
experienced developers who want to move quickly through a series of breakpoints.

Of course, the ability to leverage breakpoints goes beyond what you can do with them at runtime. You can
also disable breakpoints that you don’t currently want to stop your application flow, and you can move a
breakpoint, although it’s usually easier to just click and delete the current location, and then click and create
a new breakpoint at the new location.

Keeping in mind that Visual Basic 2010 Express Edition does not support the advanced properties of
breakpoints, Visual Studio provides additional properties for managing and customizing breakpoints. As
shown in Figure 1-32, it’s also possible to add specific properties to your breakpoints. The context menu
shows several possible options.

figure 1-32

More important, it’s possible to specify that a given breakpoint should execute only if a certain value is defined
(or undefined). In other words, you can make a given breakpoint conditional, and a pop-up window enables
you to define this condition. Similarly, if you’ve ever wanted to stop, for example, on the thirty-seventh iteration
of a loop, then you know the pain of repeatedly stopping at a breakpoint inside a loop. Visual Studio enables
you to specify that a given breakpoint should only stop your application after a specified number of hits.

The next option is one of the more interesting options if you need to carry out a debug session in a live
environment. You can create a breakpoint on the debug version of code and then add a filter that ensures
you are the only user to stop on that breakpoint. For example, if you are in an environment where multiple
people are working against the same executable, then you can add a breakpoint that won’t affect the other
users of the application.

Similarly, instead of just stopping at a breakpoint, you can also have the breakpoint execute some other
code, possibly even a Visual Studio macro, when the given breakpoint is reached. These actions are rather
limited and are not frequently used, but in some situations this capability can be used to your advantage.

Note that breakpoints are saved when a solution is saved by the IDE. There is also a Breakpoints window,
which provides a common location for managing breakpoints that you may have set across several different
source files.

Finally, at some point you are going to want to debug a process that isn’t being started from Visual Studio — for
example, if you have an existing website that is hosting a DLL you are interested in debugging. In this case,
you can leverage Visual Studio’s capability to attach to a running process and debug that DLL. At or near
the top (depending on your settings) of the Tools menu in Visual Studio is the Attach to Process option. This
menu option opens a dialog showing all of your processes. You could then select the process and have the
DLL project you want to debug loaded in Visual Studio. The next time your DLL is called by that process,
Visual Studio will recognize the call and hit a breakpoint set in your code.

other Debug-related Windows
As noted earlier, when you run an application in Debug mode, Visual Studio .NET 2010 can open a series of
windows related to debugging. Each of these windows provides a view of a limited set of the overall environment
in which your application is running. From these windows, it is possible to find things such as the list of calls
(stack) used to get to the current line of code or the present value of all the variables currently available. Visual
Studio has a powerful debugger that is fully supported with IntelliSense, and these windows extend the debugger.

Output

Recall that the build process puts progress messages in this window. Similarly, your program can also
place messages in it. Several options for accessing this window are discussed in later chapters, but at the
simplest level the Console object echoes its output to this window during a debug session. For example,
the following line of code can be added to your sample application:

Console.WriteLine("This is printed in the Output Window")

This line of code will cause the string “This is printed in the Output Window” to appear in the Output
window when your application is running. You can verify this by adding this line in front of the command to
open the message box. Then, run your application and have the debugger stop on the line where the message
box is opened. If you check the contents of the Output window, you will find that your string is displayed.

Anything written to the Output window is shown only while running a program from the environment. During
execution of the compiled module, no Output window is present, so nothing can be written to it. This is the
basic concept behind other objects such as Debug and Trace, which are covered in more detail in Chapter 6.

Call Stack

The Call Stack window lists the procedures that are currently calling other procedures and waiting for their
return. The call stack represents the path through your code that leads to the currently executing command.
This can be a valuable tool when you are trying to determine what code is executing a line of code that you
didn’t expect to execute.

Locals

The Locals window is used to monitor the value of all variables currently in scope. This is a fairly self-
explanatory window that shows a list of the current local variables, with the value next to each item. As in
previous versions of Visual Studio, this display enables you to examine the contents of objects and arrays via a

enhancing a sample application ❘ 51

52 ❘ chaPTer 1 Visual studio 2010

tree-control interface. It also supports the editing of those values, so if you want to change a string from empty
to what you thought it would be, just to see what else might be broken, then feel free to do so from here.

Watch Windows

There are four Watch windows, numbered Watch 1 to Watch 4. Each window can hold a set of variables or
expressions for which you want to monitor the values. It is also possible to modify the value of a variable
from within a Watch window. The display can be set to show variable values in decimal or hexadecimal
format. To add a variable to a Watch window, you can either right-click the variable in the Code Editor and
then select Add Watch from the pop-up menu, or drag and drop the variable into the watch window.

Immediate Window

The Immediate window, as its name implies, enables you to evaluate expressions. It becomes available while
you are in Debug mode. This is a powerful window, one that can save or ruin a debug session. For example,
using the sample from earlier in this chapter, you can start the application and press the button to stop on
the breakpoint. Go to the Immediate window and enter ?Button1.Text = “Click Me” and press Enter. You
should get a response of false as the Immediate window evaluates this statement.

Notice the preceding ?, which tells the debugger to evaluate your statement, rather than execute it. Repeat
the preceding text but omit the question mark: Button1.Text = “Click Me”. Press F5 or click the Run button
to return control to your application, and notice the caption on your button. From the Immediate window
you have updated this value. This window can be very useful if you are working in Debug mode and need to
modify a value that is part of a running application.

Autos

Finally, as the chapter prepares to transition to features that are only available in Visual Studio and not
Visual Basic 2010 Express, there is the Autos window. The Autos window displays variables used in the
statement currently being executed and the statement just before it. These variables are identified and listed
for you automatically, hence the window’s name. This window shows more than just your local variables. For
example, if you are in Debug mode on the line to open the MessageBox in the ProVB_VS2010 sample, then
the MessageBox constants referenced on this line are shown in this window. This window enables you to
see the content of every variable involved in the currently executing command. As with the Locals window,
you can edit the value of a variable during a debug session. However, this window is in fact specific to
Visual Studio and not available to users of Visual Basic 2010 Express.

reusing your first Windows form
As you proceed through the book and delve further into the features of Visual Basic you’ll want a way to
test sample code. Chapter 2 in particular has snippets of code which you’ll want to test. One way to do this
is to enhance the ProVB_VS2010 application. Its current use of a MessageBox isn’t exactly the most useful
method of testing code snippets. So let’s update this application so it can be reused in other chapters and at
random by you when you are interested in testing a snippet.

At the core you’ll continue to access code to test where it can be executed from the ButtonTest Click event.
However, instead of using a message box, you can use a text box to hold the output from the code being tested.

The first step in this process as shown in Figure 1-33 is to drag a TextBox control onto the display and then
click on the small arrow in the upper-right corner of the control’s display. This will open the TextBox tasks
menu, which contains some of the most common customizations for this control. This small arrow appears
on all Windows Forms controls, although what is listed will vary between controls. In this case you should
select the MultiLine property.

Once you have selected that property it is possible to expand the TextBox to allow you to fill the entire bottom
portion of the window. As shown in Figure 1-34, you can then move to the properties for the TextBox control
and update the Anchor property to anchor the current control’s size based on the window containing it. Having
tied this control to all four sides of the window, when the window is resized, this control will automatically
resize with the window. You’ll find if you review the properties of ButtonTest that it is anchored only to the
top and left sides of the window, so it remains unchanged while the window changes size.

figure 1-33

figure 1-34

enhancing a sample application ❘ 53

54 ❘ chaPTer 1 Visual studio 2010

Additionally, you can follow the example shown here, which is to access the font property for the textbox
and increase the size of the font from the default to 14pt. This was done only to make the sample results
more readable within the screenshots used for the book. It has no other impact on the application.

At this point you have a display that will allow you to show the results from various code snippets simply by
updating the Text property on the TextBox1 control of your window. Keep in mind that you’ll want to remove
(or as some of the chapters will show) comment out code that you are done working with, for example, the
Count property and the related message box code used during the debugging demonstration in this chapter.

useful feaTures of Visual sTudio 2010
The focus of most of this chapter has been on creating a simple application, working in either Visual Basic
2010 Express Edition or Visual Studio 2010. It’s now time to completely leave the set of features supported
by the Express Edition and move on to some features that are available only to Visual Studio developers.
These features include, but are not limited to, the following items, beginning with features available to all
Visual Studio 2010 developers.

When Visual Studio 2010 is first started, you configure your custom IDE profile. Visual Studio enables
you to select either a language-specific or task-specific profile and then change that profile whenever you
desire.

Configuration settings are managed through the Tools ➪ Import and Export Settings menu option. This menu
option opens a simple wizard, which first saves your current settings and then allows you to select an alternate
set of settings. By default, Visual Studio ships with settings for Visual Basic, Web development, and C#, to
name a few, but by exporting your settings you can create and share your own custom settings files.

The Visual Studio settings file is an XML file that enables you to capture all your Visual Studio
configuration settings. This might sound trivial, but it is not. This feature enables the standardization of
Visual Studio across different team members. The advantages of a team sharing settings go beyond just a
common look and feel.

Build configurations
Prior to .NET, a Visual Basic project had only one set of properties. There was no way to have one set of
properties for a debug build and a separate set for a release build. As a result, you had to manually change
any environment-specific properties before you built the application. This has changed with the introduction
of build configurations, which enable you to have different sets of project properties for debug and release
builds.

Visual Studio does not limit you to only two build configurations. It’s possible to create additional custom
configurations. The properties that can be set for a project have been split into two groups: those that are
independent of build configuration and therefore apply to all build configurations, and those that apply
only to the active build configuration. For example, the Project Name and Project Location properties are
the same irrespective of what build configuration is active, whereas the code optimization options vary
according to the active build configuration.

The advantage of multiple configurations is that it’s possible to turn off optimization while an application
is in development and add symbolic debug information that helps locate and identify errors. When you are
ready to ship the application, you can switch to the release configuration and create an executable that is
optimized for production.

At the top of Figure 1-35 is a drop-down list box labeled Configuration. Typically, four options are listed
in this box: the currently selected configuration, Active; the Debug and Release options; and a final
option, All Configurations. When changes are made on this screen, they are applied only to the selected

Useful features of Visual studio 2010 ❘ 55

configuration(s). Thus, when Release is selected, any changes are applied only to the settings for the
Release build. If, conversely, All Configurations is selected, then any changes made are applied to all of
the configurations, Debug, and Release. Similarly, if Active is selected, then in the background the changes
are made to the underlying configuration that is currently active.

figure 1-35

Alongside this is a Platform drop-down. In the past it was recommended that you not change this, as it was
set to Any CPU, which was an acceptable setting. However, with Visual Studio 2010 you’ll want to consider
this value, since in most cases it will default to x86. x86 represents 32-bit operating system environments
and as a result, so if you are targeting a 64-bit environment you would want to change this value to be
64-bit. As mentioned earlier in this chapter, keep in mind that certain capabilities such as COM-Interop
and Edit and Continue debugging are dependent on an x86 environment.

All of your compile settings are project-specific, but when you are working with a solution it is possible
to have more than one project in the same solution. Although you are forced to manage these settings
independently for each project, there is another form of project configuration related to multiple projects.
You are most likely to use this when working with integrated Setup projects, where you might want to build
only the Setup project when you are working on a release build.

To customize which projects are included in each build configuration, you need the Configuration Manager
for the solution. Projects are assigned to build configurations through the Configuration Manager. You can
access the Configuration Manager from the Build menu. Alternatively, the Configuration Manager can be
opened using the drop-down list box to the right of the Run button on the Visual Studio toolbar. The Active
Configuration drop-down box contains the following options: Debug, Release, and Configuration Manager.
The first two default options are the currently available configurations. Selecting the bottom option,
Configuration Manager, opens the dialog shown in Figure 1-36.

56 ❘ chaPTer 1 Visual studio 2010

The Configuration Manager contains an entry for each project in the current solution. You can include or
exclude a project from the selected configuration by enabling or disabling the check box in the Build column
of the grid. This is a valuable capability when a solution has multiple projects, as time isn’t wasted waiting
while a project that isn’t being worked on is recompiled. The build configuration is commonly used when
a Setup project is added to a solution. The normal plan is to rebuild only the Setup package when a release
version of the actual application project is created. Note that regardless of the build configuration, you can
build any assembly by right-clicking that project and selecting the Build option from the pop-up menu.

The Task list
The Task List is a great productivity tool that tracks not only errors, but also pending changes and
additions. It’s also a good way for the Visual Studio environment to communicate information that the
developer needs to know, such as any current errors. The Task List is displayed by selecting Task List from
the View menu. It offers two views, Comments and User Tasks, and it displays either group of tasks based
on the selection in the drop-down box that is part of this window.

The Comment option is used for tasks embedded in code comments. This is done by creating a standard
comment with the apostrophe and then starting the comment with the Visual Studio keyword TODO. The
keyword can be followed with any text that describes what needs to be done. Once entered, the text of these
comments shows up in the Task List. Note that users can create their own comment tokens in the options
for Visual Studio via Tools ➪ Options ➪ Environment ➪ Task List. Other predefined keywords include
HACK and UNDONE.

Besides helping developers track these pending coding issues as tasks, leveraging comments embedded in
code results in another benefit. Just as with errors, clicking a task in the Task List causes the Code Editor
to jump to the location of the task without hunting through the code for it. Also of note, though we are not
going to delve into it, the Task List is integrated with Team Foundation Server if you are using this for your
collaboration and source control.

The second type of tasks is user tasks. These may not be related to a specific item within a single file.
Examples are tasks associated with resolving a bug, or a new feature. It is possible to enter tasks into the
Task List manually. Within the Task List is an image button showing a red check mark. Pressing this button
creates a new task in the Task List, where you can edit the description of your new task.

figure 1-36

Useful features of Visual studio 2010 ❘ 57

In early versions of Visual Studio, the Task List window was used to display compilation errors, but starting
with Visual Studio 2005 the Error List became a separate window.

The command Window
The Command window can be opened from the Other Windows section of the View menu. When opened, the
window displays a > prompt. This is a command prompt at which you can execute commands — specifically,
Visual Studio commands. While Visual Studio is designed to be a GUI environment with limited shortcuts, the
Command window enables you to type — with the assistance of IntelliSense — the specific command you want.

You can use the Command window to access Visual Studio menu options and commands by typing them
instead of selecting them in the menu structure. For example, type File.AddNewProject and press Enter —
the dialog box to add a new project will appear. Similarly, if you type Debug.Start, you initiate the same
build and start actions that you would from the Visual Studio UI.

server explorer
As development has become more server-centric, developers have a greater need to discover and manipulate
services on the network. Visual InterDev, used for building classic ASP web sites, and which was available around
the same time as Visual Basic 6, started in this direction with a Server Object section in the InterDev Toolbox. The
Server Explorer feature in Visual Studio takes this concept and makes working with servers easier. The Server
Explorer is more sophisticated in that it enables you to explore and alter your application’s database or your
local registry values. With the assistance of an SQL Database project template (part of the Other Project types),
it’s possible to fully explore and alter an SQL Server database. You can define the tables, stored procedures, and
other database objects as you might have previously done with the SQL Server Enterprise Manager.

If the Server Explorer hasn’t been opened, it can be opened
from the View menu. Alternatively it should be located near the
control Toolbox. It has behavior similar to the Toolbox in that
if you hover over or click the Server Explorer’s tab, the window
expands from the left-hand side of the IDE. Once it is open,
you will see a display similar to the one shown in Figure 1-37.
Note that this display has three top-level entries. The first, Data
Connections, is the starting point for setting up and configuring
the database connection. You can right-click on the top-level
Data Connections node and define new SQL Server connection
settings that will be used in your application to connect to
the database. The Server Explorer window provides a way
to manage and view project-specific database connections such
as those used in data binding.

The second top-level entry, Servers, focuses on other server data
that may be of interest to you and your application. When you
expand the list of available servers, you have access to several
server resources. The Server Explorer even provides the capability to stop and restart services on the server.
Note the wide variety of server resources that are available for inspection or use in the project. Having the
Server Explorer available means you don’t have to go to an outside resource to find, for example, what
message queues are available.

By default, you have access to the resources on your local machine; but if you are in a domain, it is possible
to add other machines, such as your Web server, to your display. Use the Add Server option to select and
inspect a new server. To explore the Event Logs and registry of a server, you need to add this server to your
display. Use the Add Server button in the button bar to open the dialog and identify the server to which you
would like to connect. Once the connection is made, you can explore the properties of that server.

The third top-level node, SharePoint Connections, enables you to define and reference elements associated
with one or more SharePoint servers for which you might be creating solutions.

figure 1-37

58 ❘ chaPTer 1 Visual studio 2010

recording and using macros in Visual studio 2010
Visual Studio macros are part of the environment and are available to any language. Macro options are
accessible from the Tools ➪ Macros menu, as shown in Figure 1-38. The concept of macros is simple: Record a
series of keystrokes and/or menu actions, and then play them back by pressing a certain keystroke combination.

figure 1-38

For example, suppose that one particular function call with a complex set of arguments is constantly being
called on in code, and the function call usually looks the same except for minor variations in the arguments.
The keystrokes to code the function call could be recorded and played back as necessary, which would insert
code to call the function, which could then be modified as necessary.

Macros can be far more complex than this, containing logic as well as keystrokes. The macro capabilities of Visual
Studio are so comprehensive that macros have their own IDE (accessed via Tools ➪ Macros ➪ Macros IDE).

Macros can also be developed from scratch in this environment, but more commonly they are recorded
using the Record Temporary Macro option on the Macros menu and then renamed and modified in the
development environment. Here is an example of recording and modifying a macro:

 1. Start a new Windows Application project.

 2. In the new project, add a button to Form1, which was created with the project.

 3. Double-click the button to get to its Click event routine.

 4. Select Tools ➪ Macros ➪ Record Temporary Macro. A small toolbar (see Figure 1-39)
will appear on top of the IDE with buttons to control the recording of a macro (Pause,
Stop, and Cancel).

 5. Press Enter and then type the following line of code:
TextBox1.Text = “Macro Test”

 6. Press Enter again.

figure 1-39

Useful features of Visual studio 2010 ❘ 59

 7. In the small toolbar, press the Stop button.

 8. Select Tools ➪ Macros ➪ Macro Explorer. The Macro Explorer will appear (in the location normally
occupied by the Solution Explorer), with the new macro in it (see Figure 1-40). You can name the macro
anything you like. Note that the Macro Explorer ships with several sample macros that you can “explore.”

figure 1-40

figure 1-41

 9. Right-click the macro and select Edit to get to the Macro Editor. You will see the following code, as
shown in Figure 1-41, in your macro:

DTE.ActiveDocument.Selection.NewLine()
DTE.ActiveDocument.Selection.Text = TextBox1.Text = “Macro Test”
DTE.ActiveDocument.Selection.NewLine()

60 ❘ chaPTer 1 Visual studio 2010

The code that appears in step 9 may vary depending on how you typed in the line. For example, if you made
a mistake and backspaced, those actions will have their own corresponding lines of code. As a result, after
you record a macro, it is worthwhile to examine the code and remove any unnecessary lines.

The code in a macro recorded this way is just standard VB code, and it can be modified as desired.
However, there are some restrictions regarding what you can do inside the macro IDE. For example,
you cannot refer to the namespace for setting up database connections, because this might constitute a
security violation.

To run a macro, you can just double-click it in the Macro Explorer or select Tools ➪ Macros ➪ Run Macro. You
can also assign a keystroke to a macro in the Keyboard dialog in the Tools ➪ Options ➪ Environment folder.

One final note on macros is that they essentially enable you to generate code that can then be transferred to
a Visual Studio Add-In project. An Add-In project is a project designed to extend the properties of Visual
Studio. To create a new Add-In project, open the New Project dialog and select Other Project Types —
Extensibility. You can then create a Visual Studio Add-In project. Such a project enables you to essentially
share your macro as a new feature of Visual Studio. For example, if Visual Studio 2010 didn’t provide a
standard way to get formatted comments, you might create an add-in that enables you to automatically
generate your comment template so you wouldn’t need to retype it repeatedly.

class diagrams
One of the features introduced with Visual Studio 2005 was the capability to generate class diagrams. A
class diagram is a graphical representation of your application’s objects. By right-clicking on your project
in the Solution Explorer, you can select View Class Diagram from the context menu. Alternatively, you can
choose to Add a New Item to your project. In the same window where you can add a new class, you have
the option to add a new class diagram. The class diagram uses a .cd file extension for its source files. It is a
graphical display, as shown in Figure 1-42.

figure 1-42

Useful features of Visual studio 2010 ❘ 61

Adding such a file to your project creates a dynamically updated representation of your project’s classes.
As shown in Figure 1-42, the current class structures for even a simple project are immediately represented
when you create the diagram. It is possible to add multiple class diagrams to your project. The class diagram
graphically displays the relationships between objects — for example, when one object contains another
object or even object inheritance. When you change your source code the diagram is also updated. In other
words, the diagram isn’t something static that you create once at the start of your project and then becomes
out-of-date as your actual implementation changes the class relationships.

More important, you can at any time open the class diagram, make changes to one or more of your existing
objects, or create new objects and define their relationship to your existing objects, and when done, Visual
Studio will automatically update your existing source files and create new source files as necessary for the
newly defined objects.

As shown in Figure 1-42, the class diagram files (*.cd) open in the same main display area used for the
Visual Studio UI designer and viewing code. They are, however, a graphical design surface that behaves
more like Visio than the User Interface designer. You can compress individual objects or expose their
property and method details. Additionally, items such as the relationships between classes can be shown
graphically instead of being represented as properties.

In addition to the editing surface, when working with the Class Designer a second window is displayed. As
shown at the bottom of Figure 1-42, the Class Details window is generally located in the same space as your
Output, Tasks, and other windows. The Class Details window provides detailed information about each of
the properties and methods of the classes you are working with in the Class Designer. You can add and edit
methods, properties, fields, and even events associated with your classes. While you can’t write code from
this window, you can update parameter lists and property types. The Class Diagram tool is an excellent tool
for reviewing your application structure.

application lifecycle management
The focus of this chapter has been on how you, as a Visual Basic developer, can leverage Visual Studio 2010.
At the top end of the Visual Studio 2010 product line is the full Ultimate edition, and just below that is the
Premium Edition. These two versions of Visual Studio have replaced the umbrella of products referred to as
Application Lifecycle Management (ALM). In order to reduce confusion, this section takes a brief look at
some of the tools from ALM that are part of Visual Studio 2010 These tools are focused less on languages
and developing code than on managing development and the development of applications.

Architecturally, ALM had two main elements: the server-side components, which operate under Team
Foundation Server (TFS); and the client components, which are part of Visual Studio. TFS is the
replacement for Visual Source Safe (VSS), although thinking of it only in those terms is a bit like thinking of
the modern automobile as the replacement for the horse and carriage. TFS was updated with Visual Studio
2010, and includes a client installation package: Team Explorer. Team Explorer is installed as an add-in to
Visual Studio and provides access to TFS. However, the Team Explorer client package, isn’t just a Visual
Studio add-in, it also includes add-ins to Office, implemented using Visual Studio Tools for Office that you
need in order to work with the TFS features like task and bug lists.

Team foundation server (Tfs)
The server components of Visual Studio Application Lifecycle Management (ALM) are not automatically
integrated into Visual Studio, but it is appropriate to mention a couple of key attributes of TFS that extend it
beyond VSS. Similar to VSS, the primary role most developers see for TFS is that of source control. This is the
capability to ensure that if multiple people are working on the same project and with the same set of source
files, then no two of them can make changes to the same file at the same time.

Actually, that’s a bit of an oversimplification. The default mode for TFS allows two people to work on the
same file, and then the second person attempting to save changes merges them with the previously saved
changes. The point of this is to ensure that developers check files in and out of source control so that they

62 ❘ chaPTer 1 Visual studio 2010

don ’ t overwrite or lose each other ’ s changes. In terms of its features and usability compared with VSS, TFS
is much more capable of supporting remote team members. A project that literally takes hours to download
remotely from VSS can download in a few minutes from TFS.

 However, that covers just the source control features; and as mentioned previously, TFS goes well beyond
source control. In particular, TFS approaches project development from the role of the project manager. It
doesn ’ t consider a Visual Studio project fi le to represent the defi nition of a project. Instead, it recognizes
that a project is based on a customer or contract relationship, and may consist of several seemingly
unrelated projects in Visual Studio. Thus, when you defi ne a project you create an area where all of the
projects and solutions and their associated source fi les can be stored.

 As part of the creation process you select a process template — and third - party templates are available —
 and create a SharePoint website based on that template. The SharePoint website becomes the central point of
collaboration for the project ’ s team. In addition to hosting the documentation associated with your selected
software development process, this site acts as a central location for task lists, requirements, Microsoft
project fi les, and other materials related to your project. In essence, TFS leverages SharePoint to add a group
collaboration element to your projects.

 As important as this is, an even more important capability TFS supports is that of a build lab. TFS
provides another optional product called Team Foundation Build , which leverages the Visual Studio build
engine to enable you to schedule automated builds. This isn ’ t just a simple scheduling service; the Team
Foundation Build engine not only retrieves and compiles your application fi les, but also sends update notices
regarding the status of the build, and can be instructed to automatically leverage some of the ALM tools
such as Code Analysis and Unit Testing. The capability to automate your builds and deploy them on a daily
basis to a test environment encourages processes that both focus on product quality and mirror industry
best practices.

 Team Explorer is a Visual Studio add - in on steroids. It includes not only new menu items for Visual Studio, but
also a new window similar in concept to the Solution Explorer but that instead provides access to your TFS
projects. It also provides a series of windows in Visual Studio, some of which are related to source control, and
others related to tasks. TFS is in many ways the single most important tool in the ALM product line.

 Team Foundation Server also includes new features for 2010. One of these, Team Project Collections,
provides a means of better organizing your TFS server. In the past all of your TFS projects were in one
giant collection and any form of hierarchy was entirely voluntary. With TFS 2010 and Team Project
Collections it is possible to create divisions within your projects. Thus, you can create different groups
for different departments and can group access control, storage, and backup operations as appropriate for
each division.

 Be aware that there are two versions of TFS 2010. One is designed to provide a rich
collaborative environment for a large organization. The other is a simpler version
which omits some of the high - end integration with things like Project Server but which
enables a small organization to replace any legacy VSS installations. The details of TFS
are beyond the scope of this book.

 Code analysis
 Code analysis, or static code analysis, is a tool for reviewing your source code — although that ’ s not quite
how it works. The basic paradigm refl ects the fact that there are certain common best practices when
writing code; and that once these best practices have been documented, a tool can be written that examines
source code and determines whether these practices have been followed. Visual Studio ’ s static code analysis
is incorporated into your project settings for Windows Forms - based projects, as shown in Figure 1 - 43. For
Web applications, there isn ’ t a project fi le to hold the project settings, so it is possible to confi gure and run
static code analysis from the website menu in Visual Studio.

Useful features of Visual studio 2010 ❘ 63

In fact, the tool doesn’t actually look at your source code. Instead, it uses reflection; and once your project
has been compiled, it queries the MSIL code your project generates. While this may seem surprising,
remember that this tool is looking for several best practices, which may be implemented in different ways in
your source code but will always compile in a standard manner.

Figure 1-43 shows the optional Code Analysis screen. Note that even when you have the code analysis tools
available, by default, they are not enabled for your project. This is because enabling code analysis significantly
extends your compile time. In most cases you’ll want to enable these settings for a build or two, and then
disable the checks for most of your debug builds. As you can see, to enable analysis you merely check the
Enable Code Analysis on Build check box.

Below this check box is a check box to suppress results from generated code. One of the code analysis issues for
which Microsoft was criticized after the Visual Studio 2005 release was that if you used the standard project
template to create your project and then ran Code Analysis, you would get warnings related to the generated
code. Microsoft’s solution was to enable you to automatically bypass checking their generated code, which
at least enables you to avoid having to manually mark all of the issues related to the generated code as being
suppressed.

Once you have enabled the code analysis checks, you also have the option to define exactly which rules
you want to apply. The checks are divided into different rule sets. Selecting a rule set such as the Microsoft
Minimum Recommended Rules, you can use the Open button to access the display shown in Figure 1-44.

figure 1-43

64 ❘ chaPTer 1 Visual studio 2010

figure 1-44

Within the rule set you see that there is a set of categories, each of which contains one or more rules. When
expanded, next to each category and rule is a check box to indicate if that particular rule will be checked.
By default, Visual Studio issue warnings if your code fails to meet the requirements associated with a rule.
However, you can change the default — for example, by selecting an error status if a given rule fails. This
enables you to have some rule violations act as compilation errors instead of warnings. Outside the scope of
this chapter is the capability to actually identify within your source code those items that may be flagged by
the code analyzer but that are valid exceptions to the rule being checked.

Performance Tools
Every developer wants performance checks. Visual Studio provides dynamic code analysis, or performance,
tools for your application. These tools are available from the Analyze menu, shown in Figure 1-45. Selecting
the Performance Explorer from the menu shown in Figure 1-45 opens the window shown on the left side
of the display in Figure 1-45. This window has a small bar and provides access to details and results of
your performance testing.

A good way to get started with the performance tools is to select the first item from the Analyze menu, the
Performance Wizard, shown in Figure 1-46. The performance tools provide four runtime environments to
measure the performance of your application: CPU Sampling, Instrumentation, .NET Memory Allocation
(Sampling), and Concurrency.

Sampling for performance testing is a non-intrusive method of checking your application performance.
Essentially, Visual Studio starts your application normally, but behind the scenes it is interfaced into the
system performance counters. As your application runs, the performance monitoring engine captures system
performance, and when your application completes it provides reports describing that performance. Details
about what your application was actually doing to cause a behavior isn’t available, but you can get a realistic
idea of the impact on the system.

Useful features of Visual studio 2010 ❘ 65

figure 1-45

figure 1-46

66 ❘ chaPTer 1 Visual studio 2010

Concurrency checks are designed to detect issues with multi-threaded applications. The concurrency
checks support two modes. The first checks for resource contention issues. This occurs when two threads
are, for example, attempting to write output to the same data file or data table, thus forcing your parallel
processing to behave in a serial manner. The second mode enables you to better track how threaded events
are behaving.

Instrumentation, conversely, is an intrusive form of performance monitoring. Choosing to make an
instrumentation run the performance tools triggers the addition of special MSIL commands into your
compiled executable. These calls are placed at the start and finish of methods and properties within your
executable. Then, as your code executes, the performance engine can gauge how long it takes for specific
calls within your application to execute.

Keep in mind that all methods of performance testing affect the underlying performance of the application. It
is true that running a performance monitor of any type has built-in overhead that affects your application, but
the goal of performance testing isn’t to know the exact timing marks of your application, but rather to identify
areas that deviate significantly from the norm, and, more important, to establish a baseline from which you
can track any significant changes as code is modified.

summary
In this chapter, you have taken a dive into the versions and features of Visual Studio. This chapter was
intended to help you explore the new Visual Studio IDE. It demonstrated the powerful features of the IDE,
even in the freely available Visual Basic 2010 Express Edition.

You’ve seen that Visual Studio 2010 is highly customizable and comes in a variety of flavors. As you worked
within Visual Studio 2010, you’ve seen how numerous windows can be hidden, docked, or undocked. They
can be layered in tabs and moved both within and beyond the IDE. Visual Studio also contains many tools,
including some that extend its core capabilities. Keep in mind that whether you are using Visual Basic 2010
Express Edition or Visual Studio 2010 Ultimate, the core elements associated with compiling your application
are the same.

2
 objects and Visual Basic

 WhaT you Will learn in This chaPTer

 Object Oriented Terminology ➤

 Composition of an Object ➤

 Characteristics of Value Types versus Reference Types ➤

 Primitive Types ➤

 Commands: If Then, Else, Select Case ➤

 Common Value Types (Structures) ➤

 Common Reference Types (Classes) ➤

 XML literals ➤

 Parameter passing ByVal and ByRef ➤

 Variable scope ➤

 Working with Objects ➤

 Understanding Binding ➤

 Data type conversions ➤

 Creating Classes ➤

 Event Handling ➤

 Advanced Object Oriented Programming ➤

 Using Lambdas ➤

 Visual Basic supports the four major defi ning concepts required for a language to be fully
object - oriented:

 ➤ Abstraction — Abstraction is merely the ability of a language to create “ black box ” code, to take
a concept and create an abstract representation of that concept within a program. A Customer
object, for instance, is an abstract representation of a real - world customer. A DataTable object
is an abstract representation of a set of data.

 ➤ Encapsulation — Encapsulation is the concept of a separation between interface and
implementation. The idea is that you can create an interface (public methods, properties, fi elds,
and events in a class), and, as long as that interface remains consistent, the application can
interact with your objects. This remains true even when you entirely rewrite the code within

68 ❘ chaPTer 2 oBJECts aNd Visual BasiC

a given method — thus, the interface is independent of the implementation. The publicly exposed
interface becomes what is known as a contract. It is this contract that you will look to limit changes
to for those who consume your objects. For example, the algorithm you use to compute pi might be
proprietary. You can expose a simple API to the end user, but hide all the logic used by the algorithm
by encapsulating it within your class. Later if you change that algorithm, as long as the consumers of
your object get the same results from your public interface, they won’t need to make changes to support
your updates. Encapsulation enables you to hide the internal implementation details of a class.

 ➤ Polymorphism — Polymorphism is reflected in the ability to write one routine that can operate on
objects from more than one class — treating different objects from different classes in exactly the
same way. For instance, if both the Customer and the Vendor objects have a Name property and you
can write a routine that calls the Name property regardless of whether you are using a Customer or
Vendor object, then you have polymorphism.

Visual Basic supports polymorphism in two ways — through late binding (much like Smalltalk, a clas-
sic example of a true object-oriented language) and through the implementation of multiple interfaces.
This flexibility is very powerful and is preserved within Visual Basic.

 ➤ Inheritance — Inheritance is the concept that a new class can be based on an existing class gaining
the interface and behaviors of that base class. The child or sub-class of that base or parent class is said
to inherit the existing behaviors and properties. The new class can also customize or override existing
methods and properties, as well as extending the class with new methods and properties. When
inheriting from an existing class, the developer is implementing a process known as subclassing.

Chapter 3 discusses these four concepts in detail; this chapter focuses on the syntax that enables you to
utilize classes which already implement these concepts. The concepts are then illustrated through a review of
the core types which make up Visual Basic, as well as through the creation of a custom class that leverages
these core concepts.

Visual Basic is also a component-based language. Component-based design is often viewed as a successor to
object-oriented design, so component-based languages have some other capabilities. These are closely related
to the traditional concepts of object orientation:

 ➤ Multiple interfaces — Each class in Visual Basic defines a primary interface (also called the default or
native interface) through its public methods, properties, and events. Classes can also implement other,
secondary interfaces in addition to this primary interface. An object based on this class has multiple
interfaces, and a client application can choose with which interface it will interact with the object.

 ➤ Assembly (component) level scoping — Not only can you define your classes and methods as Public
(available to anyone), Protected (available through inheritance), and Private (available only
locally), you can also define them as Friend — meaning they are available only within the current
assembly or component. This is not a traditional object-oriented concept, but is very powerful when
used with component-based applications.

This chapter explains how to create and use classes and objects in Visual Basic. We won’t get too deeply into
code, but it is important that you spend a little time familiarizing yourself with basic object-oriented terms
and concepts.

oBJecT-orienTed Terminology
To begin, let’s take a look at the word object itself, along with the related class and instance terms. Then
we will move on to discuss the four terms that define the major functionality in the object-oriented world:
abstraction, encapsulation, polymorphism, and inheritance.

objects, classes, and instances
An object is a code-based abstraction of a real-world entity or relationship. For instance, you might have a
Customer object that represents a real-world customer, such as customer number 123, or you might have a File
object that represents C:\config.sys on your computer’s hard drive.

A closely related term is class. A class is the code that defines an object, and all objects are created based
on a class. A class is an abstraction of a real-world concept, and it provides the basis from which you
create instances of specific objects. For example, in order to have a Customer object representing customer
number 123, you must first have a Customer class that contains all of the code (methods, properties, events,
variables, and so on) necessary to create Customer objects. Based on that class, you can create any number
of objects, each one an instance of the class. Each object is identical to the others, except that it may contain
different data.

You can create many instances of Customer objects based on the same Customer class. All of the Customer
objects are identical in terms of what they can do and the code they contain, but each one contains its own
unique data. This means that each object represents a different physical customer.

composition of an object
You use an interface to get access to an object’s data and behaviors. This defines a contract for the object
to follow. This is much like a real world legal contract that binds the object to a standard definition of data
and behaviors, where in your interface you can define a what is needed to fulfill a contract. The object’s
data and behaviors are contained within the object, so a client application can treat the object like a black
box, accessible only through its interface. This is a key object-oriented concept called encapsulation. The
idea is that any program that makes use of this object will not have direct access to the behaviors or data;
rather, those programs must make use of your object’s interface.

interface
The interface is defined as a set of methods (Sub and Function methods), properties (property methods),
events, and fields (also known as variables) that are declared public in scope.

You can also have private methods and properties in your code. While these methods can be called by code
within your object, they are not part of the interface and cannot be called by programs written to use your
object. Another option is to use the Friend keyword, which defines the scope to be your current project,
meaning that any code within your project can call the method, but no code outside your project (that
is, from a different .NET assembly) can call the method. To complicate things a bit, you can also declare
methods and properties as Protected, and these are available to classes that inherit from your class. You
will look at Protected in Chapter 3, along with inheritance.

For example, you might have the following code in a class:

Public Function CalculateValue() As Integer

End Function

Because this method is declared with the Public keyword, it is part of the interface and can be called by
client applications that are using the object. You might also have a method such as this:

Private Sub DoSomething()

End Sub

This method is declared as being Private, so it is not part of the interface. This method can only be called
by code within the class — not by any code outside the class, such as code in a program that’s using one of
the objects.

Conversely, you can do something like this:

Public Sub CalculateValue()
 DoSomething()
End Sub

In this case, you’re calling the Private method from within a Public method. While code using your
objects can’t directly call a Private method, you will frequently use Private methods to help structure the
code in a class to make it more maintainable and easier to read.

object-oriented Terminology ❘ 69

70 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Finally, you can use the Friend keyword:

Friend Sub DoSomething()

End Sub

In this case, the DoSomething method can be called by code within the class, or from other classes or
modules within the current Visual Basic project. Code from outside the project will not have access to
the method.

The Friend scope is very similar to the Public scope in that it makes methods available for use by
code outside the object itself. Unlike Public, however, the Friend keyword restricts access to code
within the current Visual Basic project, preventing code in other .NET assemblies from calling
the method. One of the more common uses of Protected is with the Friend modifier as will be
discussed in Chapter 3.

implementation or Behavior
The code inside a method is called the implementation. Sometimes it is also called behavior, as it is this
code that actually makes the object do useful work. For instance, you might have an Age property as part of
the object’s interface. Within that method, you might have code similar to the following:

Public ReadOnly Property Age() As Integer

In this case, the code is returning a value directly out of a variable, rather than doing something better, such
as calculate the value based on a birth date. However, this kind of code is often written in applications, and
it seems to work fine for a while.

The key point is to understand that client applications can use the object even if you change the implementation,
as long as you do not change the public interface. If the method name and its parameter list and return data
type remain unchanged, then you can change the implementation any way you want.

The code necessary to call the Age property would look something like this:

theAge = myObject.Age

The result of running this code is that you get the Age value returned. While the client application will
work fine, you will soon discover that hard-coding the age into the application is a problem, so at some point
you’ll want to improve this code. Fortunately, you can change the implementation without changing the
client code:

Private _BirthDate As Date

Public ReadOnly Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, _BirthDate, Now))
 End Get
End Property

You have changed the implementation behind the public interface, effectively changing how it behaves
without changing the interface itself. Now, when you run the client application, the Age value returned is
accurate over time, whereas in the previous implementation it was not.

Additionally, to implement this change you’ve moved from one of the new features of Visual Basic 2010 —
auto-implemented properties, to a traditional property with a backing field implementation. Much of the
existing .NET code you’ll see in Visual Basic will use a backing field for properties because up until this
release that was the only way to implement a property.

Keep in mind that encapsulation is a syntactic tool — it enables the code to continue to run without change.
However, it is not semantic, meaning that just because the code continues to run, that does not mean it
continues to do what you actually want it to do.

In this example, the client code may have been written to overcome the initial limitations of the
implementation in some way, and thus the client code might both rely on being able to retrieve the Age
value, and count on the result of that call being a fixed value over time.

The update to the implementation won’t stop the client program from running, but it may very well prevent
it from running correctly.

fields or instance Variables
The third key part of an object is its data, or state. In fact, it might be argued that the only important
part of an object is its data. After all, every instance of a class is absolutely identical in terms of its
interface and its implementation; the only thing that can vary at all is the data contained within that
particular object.

Fields are variables that are declared so that they are available to all code within the class. Typically, fields
that are declared Private in scope are available only to the code in the class itself. They are also sometimes
referred to as instance variables or member variables.

Don’t confuse fields with properties. In Visual Basic, a property is a type of method geared to retrieving and
setting values, whereas a field is a variable within the class that may hold the value exposed by a property.
For instance, you might have a class that has these fields:

Public Class TheClass

 Private _Name As String
 Private _BirthDate As Date
End Class

Each instance of the class — each object — will have its own set of these fields in which to store data.
Because these fields are declared with the Private keyword, they are only available to code within each
specific object.

While fields can be declared as Public in scope, this makes them available to any code using the objects
in a manner you cannot control. This directly breaks the concept of encapsulation, as code outside
your object can directly change data values without following any rules that might otherwise be set in
the object’s code.

Consider the Age property shown in the previous section. You’ll notice that by using a property, the
underlying implementation, even though initially generated, was hidden to the outside world. When
you decided to change the implementation to use a dynamically generated age you could change that
implementation without changing your interface.

If you want to make the value of a field available to code outside of the object, you should instead use a
property:

Public Class TheClass
 Private _Name As String
 Private _BirthDate As Date

 Public ReadOnly Property Name() As String
 Get
 Return _Name
 End Get
 End Property

End Class

Because the Name property is a method, you are not directly exposing the internal variables to client code,
so you preserve encapsulation of the data. At the same time, through this mechanism, you are able to safely
provide access to your data as needed. Fields can also be declared with the Friend scope, meaning they are
available to all code in your project.

object-oriented Terminology ❘ 71

72 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Now that you have a grasp of some of the basic object-oriented terminology, you are ready to explore the
creation of classes and objects. First you will see how Visual Basic enables you to interact with objects and
provides core types (all of which are objects), and then you will dive into the actual process of authoring
those objects.

system.object
For now, the one key to remember is that all classes in Visual Basic, all classes in .NET for that matter, inherit
from the base class System.Object. System.Object is the parent class for everything from Strings and
Integers to Windows and custom classes developed by you. When a Class doesn’t explicitly state its parent,
.NET will automatically have the class inherit from System.Object. This also means that even if a Class
does explicitly inherit from another Class, that Parent Class or its parent or base Class, or at some point
some class in the inheritance chain, will inherit from System.Object. There was an old saying about how all
roads lead to Rome. Well, in .NET all object hierarchies lead to System.Object. System.Object is the base
Class for all Classes.

This is where the term polymorphism becomes important. Since you can cast any object to a type from which
it inherits, any type of object can be cast to the base class of System.Object. Casting is the name for code
which takes an object of, for example, type Integer and assigns it to a variable of type System.Object. As
you’ll see as you work with Visual Basic or another object oriented language, this means that you’ll see many
methods that are written to handle a parameter of type Object. This has several advantages for code reuse,
but you’ll learn that reuse can come at a cost.

The thing you’ll want to keep in mind is that when an object is cast to its parent class it only makes the
methods of that parent class available. While the underlying object can be cast back to its original type,
because it knows what that type is, it doesn’t make all of its data and behavior available until it is cast
back to its original type. Note you can cast to any type in an object’s inheritance hierarchy, but that will be
covered in more detail in Chapter 3.

System.Object provides a member in which you will be interested. The method ToString provides a way
to get a string representation of any object. The default implementation of this method will return the type
of that object; however, many types provide a custom implementation of this method, and doing so is
considered best practice.

WorKing WiTh Visual Basic TyPes
Having introduced a combination of keywords and concepts for objects in Visual Basic, it is time to start
exploring specific types. In order to ensure this is hands on, you need a project in Visual Studio 2010. The
previous chapter focused on Visual Studio 2010 and many of its features as your primary development
tool. This chapter is much more focused on the Visual Basic language, and to limit its size you are going to
reference the project created in the last chapter in this chapter. As this chapter introduces some of the core
types of Visual Basic, classes provided by the .NET Framework which are at the core of Visual Basic, you
test code snippets in that project.

To host the example snippets in the project based on the ProVB_VS2010 project built in Chapter 1, there are
very few changes. The code download for this chapter includes the final version of the samples. This means
that as you progress through the chapter, you can either look in the sample download for the same code,
or step by step build up your own copy of the sample, using the sample when something doesn’t seem quite
right in your own code. The one change from the previous chapter’s code is that the custom property and
message box used in that chapter have already been removed from this project.

At this point, you have a display that allows you to show the results from various code snippets simply by
updating the Text property on the TextBox1 control of your window. The display for the baseline Windows
Form application is shown in Figure 2-1.

As you can see, the baseline is simply a button to initiate the custom code combined with a text box. As you
want to test a snippet, you will add a new method to Form1, and then call this method from the Click event
handler for the button. The sample download shows how these methods can be added, and then when you
are ready to add the next method, use the single quote line to comment out the method call for the previous
test. In this way, you’ll be able to comment out a single line call to your method and within the method
the code to demonstrate that feature of Visual Basic will remain available. The following section on the
difference between value and reference types will create two such methods, and if you look at the sample
download code you’ll find the calls to the methods shown in the snippet are in the event handler commented
out already.

Value and reference Types
Experienced developers generally consider integers, characters, Booleans, and strings to be the basic building
blocks of any language. As noted above in .NET, all objects share a logical inheritance from the base Object
class. One of the advantages of this common heritage is the capability to rely on certain common methods
of every variable. Another is that this enables all of .NET to build on a common type system. Visual Basic
builds on the common type system shared across .NET languages.

Because all data types are based on the core Object class, every variable you dimension can be
assured of having a set of common characteristics. However, this logical inheritance does not require
a common physical implementation for all variables. This is important because while everything in
.NET is based on the Object class, under the covers .NET has two major implementations of types:
value and reference.

For example, what most programmers consider to be some of the basic underlying types, such as Integer,
Long, Character, and even Byte, are not implemented as classes. This is important, as you’ll see when

figure 2-1

Working With Visual Basic Types ❘ 73

74 ❘ chaPTer 2 oBJECts aNd Visual BasiC

we look at boxing and the cost of transitioning between value types and reference types. The difference
between value types and reference types is an underlying implementation difference:

Value types represent simple data storage located on the stack. The stack is used for items of a known ➤

size, so items on the stack can be retrieved faster than those on the managed heap.

Reference types are based on complex classes with implementation inheritance from their parent ➤

classes, and custom storage on the managed heap. The managed heap is optimized to support dynamic
allocation of differently sized objects.

Note that the two implementations are stored in different portions of memory. As a result, value types and
reference types are treated differently within assignment statements, and their memory management is
handled differently. It is important to understand how these differences affect the software you will write
in Visual Basic. Understanding the foundations of how data is manipulated in the .NET Framework will
enable you to build more reliable and better-performing applications.

Consider the difference between the stack and the heap. The stack is a comparatively small memory
area in which processes and threads store data of fixed size. An integer or decimal value needs the same
number of bytes to store data, regardless of the actual value. This means that the location of such
variables on the stack can be efficiently determined. (When a process needs to retrieve a variable, it has
to search the stack. If the stack contained variables that had dynamic memory sizes, then such a search
could take a long time.)

Reference types do not have a fixed size — a string can vary in size from two bytes to nearly all the memory
available on a system. The dynamic size of reference types means that the data they contain is stored on the
heap, rather than the stack. However, the address of the reference type (that is, the location of the data on
the heap) does have a fixed size, and thus can be (and, in fact, is) stored on the stack. By storing a reference
only to a custom allocation on the stack, the program as a whole runs much more quickly, as the process
can rapidly locate the data associated with a variable.

Storing the data contained in fixed and dynamically sized variables in different places results in differences
in the way variables behave. Rather than limit this discussion to the most basic of types in .NET, this
difference can be illustrated by comparing the behavior of the System.Drawing.Point structure (a value
type) and the System.Text.StringBuilder class (a reference type).

The Point structure is used as part of the .NET graphics library, which is part of the System.Drawing
namespace. The StringBuilder class is part of the System.Text namespace and is used to improve
performance when you’re editing strings.

First, let’s examine how the System.Drawing.Point structure is used. To do this, you’ll create a new
method called ValueType() within your ProVB_VS2010 application. This new private Sub will be called
from the ButtonTest click event handler. The new method will have the following format:

Private Sub ValueType()
 Dim ptX As System.Drawing.Point = New System.Drawing.Point(10, 20)
 Dim ptY As System.Drawing.Point
 ptY = ptX
 ptX.X = 200
 TextBox1.Text = "Pt Y = " & ptY.ToString()
End Sub

Code snippet from Form1

The output from this operation will be {{X = 10, Y = 20}}, is shown in Figure 2-2. When the code copies ptX
into ptY, the data contained in ptX is copied into the location on the stack associated with ptY. Later, when
the value of ptX changes, only the memory on the stack associated with ptX is altered. Altering the value
of ptX has no effect on ptY. This is not the case with reference types. Consider the following code, a new
method called RefType which uses the System.Text.StringBuilder class:

Private Sub RefType()
 Dim objX As System.Text.StringBuilder = New System.Text.StringBuilder("Hello World")
 Dim objY As System.Text.StringBuilder
 objY = objX
 objX.Replace("World", "Test")
 TextBox1.Text = "objY = " & objY.ToString()
End Sub

Code snippet from Form1

The output from this operation will be “Hello Test,” as shown
in Figure 2-3, not “Hello World”. The previous example using
points demonstrated that when one value type is assigned to
another, the data stored on the stack is copied. Similarly, this
example demonstrates that when objY is assigned to objX, the data
associated with objX on the stack is copied to the data associated
with objY on the stack. However, what is copied in this case isn’t
the actual data, but rather the address on the managed heap where
the data is actually located. This means that objY and objX now
reference the same data. When the data on the heap is changed, the
data associated with every variable that holds a reference to that
memory is changed. This is the default behavior of reference types,
and is known as a shallow copy. Later in this chapter, you’ll see
how this behavior has been overridden for strings (which perform
a deep copy).

The differences between value types and reference types go beyond
how they behave when copied, and later in this chapter you’ll
encounter some of the other features provided by objects. First,
though, let’s take a closer look at some of the most commonly used
value types and learn how .NET works with them.

Primitive Types
Visual Basic, in common with other development languages, has
a group of elements such as integers and strings that are termed
primitive types. These primitive types are identified by keywords
such as String, Long, and Integer, which are aliases for types
defined by the .NET class library. This means that the line

Dim i As Long

is equivalent to the line

Dim i As System.Int64

The reason why these two different declarations are available has to do with long-term planning for your
application. In most cases (such as when Visual Basic transitioned to .NET), you want to use the Short,
Integer, and Long designations. When Visual Basic moved to .NET, the Integer type went from 16 bits
to 32 bits. Code written with this Integer type would automatically use the larger value if you rewrote
the code in .NET. Interestingly enough, however, the Visual Basic Migration Wizard actually recast Visual
Basic 6 Integer values to Visual Basic .NET Short values.

This is the same reason why Int16, Int32, and Int64 exist. These types specify a physical implementation;
therefore, if your code is someday migrated to a version of .NET that maps the Integer value to Int64,
then those values defined as Integer will reflect the new larger capacity, while those declared as Int32
will not. This could be important if your code were manipulating part of an interface where changing the
physical size of the value could break the interface.

figure 2-2

figure 2-3

Working With Visual Basic Types ❘ 75

76 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 Table 2 - 1 lists the primitive types that Visual Basic 2008 defi nes, and the structures or classes to which they
map:

 The String primitive type stands out from the other primitives. Strings are implemented
as a class, not a structure. More important, strings are the one primitive type that is a
reference type.

 TaBle 2 - 1: Primitive Types in .NET

 PrimiTiVe TyPe .neT class or sTrucTure

 Byte System.Byte (structure)

 Short System.Int16 (structure)

 Integer System.Int32 (structure)

 Long System.Int64 (structure)

 Single System.Single (structure)

 Double System.Double (structure)

 Decimal System.Decimal (structure)

 Boolean System.Boolean (structure)

 Date System.DateTime (structure)

 Char System.Char (structure)

 String System.String (class)

 You can perform certain operations on primitive types that you can ’ t on other types. For example, you can
assign a value to a primitive type using a literal:

Dim i As Integer = 32
Dim str As String = "Hello"

 It ’ s also possible to declare a primitive type as a constant using the Const keyword, as shown here:

Dim Const str As String = "Hello"

 The value of the variable str in the preceding line of code cannot be changed elsewhere in the application
containing this code at runtime. These two simple examples illustrate the key properties of primitive types.
As noted, most primitive types are, in fact, value types. The next step is to take a look at core language
commands that enable you to operate on these variables.

 commands: condiTional
 Unlike many programming languages, Visual Basic has been designed to focus on readability and clarity.
Many languages are willing to sacrifi ce these attributes to enable developers to type as little as possible.
Visual Basic, conversely, is designed under the paradigm that the readability of code matters more than saving
a few keystrokes, so commands in Visual Basic tend to spell out the exact context of what is being done.

 Literally dozens of commands make up the Visual Basic language, so there isn ’ t nearly enough space here
to address all of them. Moreover, many of the more specialized commands are covered later in this book.
However, if you are not familiar with Visual Basic or are relatively new to programming, a few would be
helpful to look at here. These fall into two basic areas: conditional statements and looping statements . This
chapter addresses two statements within each of these categories, starting with the conditional statements;
later, after collections and arrays have been introduced, looping statements are covered.

Each of these statements has the ability not only to call another method, the preferred way to manage
blocks of code, but also to literally encapsulate a block of code. Note that the variables declared within the
context of a conditional statement (between the If and End If lines) are only visible up until the End If
statement. After that, these variables go out of scope. The concept of scoping is discussed in more detail
later in this chapter.

if Then
The conditional is one of two primary programming constructs (the other being the loop) that is present
in almost every programming language. After all, even in those rare cases where the computer is just
repeatedly adding values or doing some other repetitive activity, at some point a decision is needed and
a condition evaluated, even if the question is only “is it time to stop?” Visual Basic supports the
If- Then statement as well as the Else statement; — and unlike some languages, the concept of an ElseIf
statement. The ElseIf and Else statements are totally optional, and it is not only acceptable but common
to use conditionals that do not utilize either of these code blocks. The following example illustrates a simple
pair of conditions that have been set up serially:

If i > 1 Then
 'Code A1
ElseIf i < 1 Then
 'Code B2
Else
 'Code C3
End If

If the first condition is true, then code placed at marker A1 is executed. The flow would then proceed to the
End If, and the program would not evaluate any of the other conditions. Note that for best performance, it
makes the most sense to have your most common condition first in this structure, because if it is successful,
none of the other conditions need to be tested.

If the initial comparison in the preceding example code were false, then control would move to the first Else
statement, which in this case happens to be an ElseIf statement. The code would therefore test the next
conditional to determine whether the value of i were less than 1. If so, then the code associated with block
B2 would be executed.

However, if the second condition were also false, then the code would proceed to the Else statement, which
isn’t concerned with any remaining condition and just executes the code in block C3. Not only is the Else
optional, but even if an ElseIf is used, the Else condition is still optional. It is acceptable for the Else and
C3 block to be omitted from the preceding example.

comparison operators
There are several ways to discuss what is evaluated in an If statement. Essentially, the code between the
If and Then portions of the statement must eventually evaluate out to a Boolean. At the most basic level,
this means you can write If True Then, which results in a valid statement, although the code would
always execute the associated block of code with that If statement. The idea, however, is that for a basic
comparison, you take two values and place between them a comparison operator. Comparison operators
include the following symbols: =, >, <, >=, <=.

Additionally, certain keywords can be used with a comparison operator. For example, the keyword Not
can be used to indicate that the statement should consider the failure of a given comparison as a reason to
execute the code encapsulated by its condition. An example of this is shown in the next example:

If Not i = 1 Then
 'Code A1
End If

It is therefore possible to compare two values and then take the resulting Boolean from this comparison
and reevaluate the result. In this case, the result is only reversed, but the If statement supports more

Commands: Conditional ❘ 77

78 ❘ chaPTer 2 oBJECts aNd Visual BasiC

complex comparisons using statements such as And and Or. These statements enable you to create a complex
condition based on several comparisons, as shown here:

If Not i = 1 Or i < 0 And str = "Hello" Then
 'Code A1
Else
 'Code B2
End If

The And and Or conditions are applied to determine whether the first comparison’s results are true or false
along with the second value’s results. The And conditional means that both comparisons must evaluate to
true in order for the If statement to execute the code in block A1, and the Or statement means that if the
condition on either side is true, then the If statement can evaluate code block A1. However, in looking at
this statement, your first reaction should be to pause and attempt to determine in exactly what order all of
the associated comparisons occur.

There is a precedence. First, any numeric style comparisons are applied, followed by any unary operators
such as Not. Finally, proceeding from left to right, each Boolean comparison of And and Or is applied.
However, a much better way to write the preceding statement is to use parentheses to identify in what
order you want these comparisons to occur. The first If statement in the following example illustrates the
default order, while the second and third use parentheses to force a different priority on the evaluation of
the conditions:

 If ((Not i = 1) Or i < 0) And (str = "Hello") Then
 If (Not i = 1) Or (i < 0 And str = "Hello") Then
 If Not ((i = 1 Or i < 0) And str = "Hello") Then

All three of the preceding If statements are evaluating the same set of criteria, yet their results are
potentially very different. It is always best practice to enclose complex conditionals within parentheses
to indicate the desired order of evaluation. Of course, these comparisons have been rather simple; you
could replace the variable value in the preceding examples with a function call that might include a call
to a database. In such a situation, if the desired behavior were to execute this expensive call only when
necessary, then you might want to use one of the shortcut comparison operators.

Since you know that for an And statement both sides of the If statement must be true, there are times
when knowing that the first condition is false could save processing time; you would not bother executing
the second condition. Similarly, if the comparison involves an Or statement, then once the first part of the
condition is true, there is no reason to evaluate the second condition because you know that the net result is
success. In this case, the AndAlso and OrElse statements allow for performance optimization:

If ((Not i = 1) Or i < 0) AndAlso (MyFunction() = "Success") Then
If Not i = 1 OrElse (i < 0 And MyFunction() = "Success") Then

The preceding code illustrates that instead of using a variable like str as used in the preceding samples,
your condition might call a function you’ve written that returns a value. In this case, MyFunction would
return a string that would then be used in the comparison. In the statements above, each conditional
statement has been optimized so that there are situations where the code associated with MyFunction won’t
be executed.

This is potentially important, not only from a performance standpoint, but also in a scenario where, given
the first condition, your code might throw an error. For example, it’s not uncommon to first determine
whether a variable has been assigned a value and then to test that value. This introduces yet another pair of
conditional elements: the Is and IsNot conditionals.

Using If enables you to determine whether a variable has been given a value, or to determine its type. In
the past it was common to see nested If statements, with the first determining whether the value was null,
followed by a separate If statement to determine whether the value was valid. Starting with .NET 2.0,
the short-circuit conditionals enable you to check for a value and then check whether that value meets the
desired criteria. The short-circuit operator prevents the check for a value from occurring and causing an
error if the variable is undefined, so both checks can be done with a single If statement:

Dim mystring as string = Nothing
If mystring IsNot Nothing AndAlso mystring.Length > 100 Then
 'Code A1
ElseIf mystring.GetType Is GetType(Integer) Then
 'Code B2
End If

The preceding code would fail on the first comparison because mystring has only been initialized to
Nothing, meaning that by definition it doesn’t have a length. Note also that the second condition will fail
because you know that myString isn’t of type Integer.

select case
The preceding section makes it clear that the If statement is the king of conditionals. However, in another
scenario you may have a simple condition that needs to be tested repeatedly. For example, suppose a
user selects a value from a drop-down list and different code executes depending on that value. This is
a relatively simple comparison, but if you have 20 values, then you would potentially need to string together
20 different If Then and ElseIf statements to account for all of the possibilities.

A cleaner way of evaluating such a condition is to leverage a Select Case statement. This statement was
designed to test a condition, but instead of returning a Boolean value, it returns a value that is then used to
determine which block of code, each defined by a Case statement, should be executed:

Select Case i
 Case 1
 'Code A1
 Case 2
 'Code B2
 Case Else
 'Code C3
End Select

The preceding sample code shows how the Select portion of the statement determines the value represented
by the variable i. Depending on the value of this variable, the Case statement executes the appropriate code
block. For a value of 1, the code in block A1 is executed; similarly, a 2 results in code block B2 executing.
For any other value, because this Case statement includes an Else block, the Case statement executes the
code represented by C3. Note that while in this example each item has its own block, it is also possible to
have more than a single match on the same Case. Thus Case 2, 3 would match if the value of i were either
a 2 or a 3. Finally, the next example illustrates that the cases do not need to be integer values, and can, in
fact, even be strings:

Dim mystring As String = "Intro"
Select Case mystring
 Case "Intro"
 'Code A1
 Case "Exit"
 'Code A2
 Case Else
 'Code A3
End Select

Now that you have been introduced to these two control elements that enable you to specify what happens
in your code, your next step is to review details of the different variable types that are available within
Visual Basic 2010, starting with the value types.

Value TyPes (sTrucTures)
Value types aren’t as versatile as reference types, but they can provide better performance in many
circumstances. The core value types (which include the majority of primitive types) are Boolean, Byte,
Char, DateTime, Decimal, Double, Guid, Int16, Int32, Int64, SByte, Single, and TimeSpan. These

Value Types (structures) ❘ 79

80 ❘ chaPTer 2 oBJECts aNd Visual BasiC

are not the only value types, but rather the subset with which most Visual Basic developers consistently
work. As you ’ ve seen, value types by defi nition store data on the stack.

 Value types can also be referred to by their proper name: structures. The underlying principles and syntax
of creating custom structures mirrors that of creating classes, covered in the next chapter. This section
focuses on some of the built - in types provided by the .NET Framework — in particular, the built - in types
known as primitives .

 Boolean
 The .NET Boolean type represents true or false. Variables of this type work well with the conditional
statements that were just discussed. When you declare a variable of type Boolean , you can use it within
a conditional statement directly. Test the following sample by creating a Sub called BoolTest within
ProVB_VS2010:

Private Sub BoolTest()
 Dim blnTrue As Boolean = True
 Dim blnFalse As Boolean = False
 If (blnTrue) Then
 TextBox1.Text = blnTrue & Environment.NewLine
 TextBox1.Text & = blnFalse.ToString
 End If
End Sub

 Code snippet from Form1

 The results of this code are shown in Figure 2 - 4. There are a
couple things outside of the Boolean logic to review within
the preceding code sample. These are related to the update of
 Textbox1.Text . In this case, because you want two lines of
text, you need to embed a new line character into the text. There
are two ways of doing this in Visual Basic. The fi rst is to use the
 Environment.Newline constant, which is part of the core .NET
Framework. Alternatively, you may fi nd a Visual Basic developer
leveraging the Visual Basic – specifi c constant vbCRLF , which does
the same thing.

 The second issue related to that line is that I am concatenating
the implicit value of the variable blnTrue with the value of the
 Environment.Newline constant. Note the use of an ampersand
(&) for this action. This is a best practice in Visual Basic because
while Visual Basic does overload the plus (+) sign to support string concatenation, in this case the items
being concatenated aren ’ t necessarily strings. This is related to not setting Option Strict to On . In that
scenario, the system will look at the actual types of the variables and if there were two integers side by side
in your string concatenation you would get unexpected results. This is because the code would fi rst process
the “ + ” and would add the values as numeric values.

 Thus, since neither you nor the sample download code has set Option String to On for this project, if you
replace the preceding & with a + , you ’ ll fi nd a runtime conversion error in your application. Therefore, in
production code it is best practice to always use the & to concatenate strings in Visual Basic unless you are
certain that both sides of the concatenation will always be a string. However, neither of these issues directly
affect the use of the Boolean values, which when interpreted this way provide their ToString() output, not
a numeric value.

 figure 2 - 4

 Always use the True and False constants when working with Boolean variables.

Unfortunately, in the past developers had a tendency to tell the system to interpret a variable created as a
Boolean as an Integer. This is referred to as implicit conversion and is related to Option Strict. It is not
the best practice, and when .NET was introduced, it caused issues for Visual Basic because the underlying
representation of True in other languages wasn’t going to match those of Visual Basic. The result was that
Visual Basic represents True differently for implicit conversions than other .NET languages.

True has been implemented in such a way that when converted to an integer, Visual Basic converts a
value of True to -1 (negative one). This is one of the few (but not the only) legacy carryovers from
older versions of Visual Basic, and is different from other languages, which typically use the integer value 1.
Generically, all languages tend to implicitly convert False to 0, and True to a nonzero value.

However, Visual Basic works as part of a multilanguage environment, with metadata-defining interfaces,
so the external value of True is as important as its internal value. Fortunately, Microsoft implemented
Visual Basic in such a way that while -1 is supported, the .NET standard of 1 is exposed from Visual Basic
methods to other languages.

To create reusable code, it is always better to avoid implicit conversions. In the case of Booleans, if the
code needs to check for an integer value, then you should explicitly evaluate the Boolean and create an
appropriate integer. The code will be far more maintainable and prone to fewer unexpected results.

integer Types
Now that Booleans have been covered in depth, the next step is to examine the Integer types that are part
of Visual Basic. Visual Basic 6.0 included two types of integer values: The Integer type was limited to a
maximum value of 32767, and the Long type supported a maximum value of 2147483647.

The .NET Framework added a new integer type, the Short. The Short is the equivalent of the Integer
value from Visual Basic 6.0; the Integer has been promoted to support the range previously supported by
the Visual Basic 6.0 Long type, and the Visual Basic .NET Long type is an eight-byte value. The new Long
type provides support for 64-bit values, such as those used by current 64-bit processors. In addition, each of
these types also has two alternative types. In all, Visual Basic supports the nine Integer types described in
Table 2-2.

TaBle 2-2: Visual Basic Integer Types

TyPe allocaTed memory minimum Value maximum Value

Short 2 bytes −32768 32767

Int16 2 bytes −32768 32767

UInt16 2 bytes 0 65535

Integer 4 bytes −2147483648 2147483647

Int32 4 bytes −2147483648 2147483647

UInt32 4 bytes 0 4294967295

Long 8 bytes −9223372036854775808 9223372036854775807

Int64 8 bytes −9223372036854775808 9223372036854775807

UInt64 8 bytes 0 184467440737095551615

short
A Short value is limited to the maximum value that can be stored in two bytes. This means there are 16
bits and the value can range between −32768 and 32767. This limitation may or may not be based on the
amount of memory physically associated with the value; it is a definition of what must occur in the .NET
Framework. This is important, because there is no guarantee that the implementation will actually use less
memory than when using an Integer value. It is possible that in order to optimize memory or processing,

Value Types (structures) ❘ 81

82 ❘ chaPTer 2 oBJECts aNd Visual BasiC

the operating system will allocate the same amount of physical memory used for an Integer type and then
just limit the possible values.

The Short (or Int16) value type can be used to map SQL smallint values.

integer
An Integer is defined as a value that can be safely stored and transported in four bytes (not as a four-byte
implementation). This gives the Integer and Int32 value types a range from −2147483648 to 2147483647.
This range is more than adequate to handle most tasks.

The main reason to use an Int32 in place of an Integer value is to ensure future portability with interfaces.
For example, the Integer value in Visual Basic 6.0 was limited to a two-byte value, but is now a four-byte
value. In future 64-bit platforms, the Integer value might be an eight-byte value. Problems could occur if
an interface used a 64-bit Integer with an interface that expected a 32-bit Integer value, or, conversely,
if code using the Integer type is suddenly passed to a variable explicitly declared as Int32.

The solution is to be consistent. Use Int32, which would remain a 32-bit value, even on a 64-bit platform,
if that is what you need. In addition, as a best practice, use Integer so your code is not constrained by the
underlying implementation.

The Visual Basic .NET Integer value type matches the size of an Integer value in SQL Server, which
means that you can easily align the column type of a table with the variable type in your programs.

long
The Long type is aligned with the Int64 value. The Long has an eight-byte range, which means that its value
can range from −9223372036854775808 to 9223372036854775807. This is a big range, but if you need to
add or multiply Integer values, then you need a large value to contain the result. It’s common while doing
math operations on one type of integer to use a larger type to capture the result if there’s a chance that the
result could exceed the limit of the types being manipulated.

The Long value type matches the bigint type in SQL.

unsigned Types
Another way to gain additional range on the positive side of an Integer type is to use one of the unsigned
types. The unsigned types provide a useful buffer for holding a result that might exceed an operation
by a small amount, but this isn’t the main reason they exist. The UInt16 type happens to have the same
characteristics as the Character type, while the UInt32 type has the same characteristics as a system
memory pointer on a 32-byte system.

However, never write code that attempts to leverage this relationship. Such code isn’t portable, as on a
64-bit system the system memory pointer changes and uses the UInt64 type. However, when larger integers
are needed and all values are known to be positive, these values are of use. As for the low-level uses of these
types, certain low-level drivers use this type of knowledge to interface with software that expects these
values, and they are the underlying implementation for other value types. This is why, when you move from
a 32-bit system to a 64-bit system, you need new drivers for your devices, and why applications shouldn’t
leverage this same type of logic.

decimal Types
Just as there are several types to store integer values, there are three implementations of value types to store
real number values, shown in Table 2-3. The Single and Double types work the same way in Visual Basic
.NET as they did in Visual Basic 6.0. The difference is the Visual Basic 6.0 Currency type (which was a
specialized version of a Double type), is now obsolete; it was replaced by the Decimal value type for very
large real numbers.

single
The Single type contains four bytes of data, and its precision can range anywhere from 1.401298E-45 to
3.402823E38 for positive values and from −3.402823E38 to −1.401298E-45 for negative values.

It can seem strange that a value stored using four bytes (like the Integer type) can store a number that
is larger than even the Long type. This is possible because of the way in which numbers are stored; a real
number can be stored with different levels of precision. Note that there are six digits after the decimal point
in the definition of the Single type. When a real number gets very large or very small, the stored value is
limited by its significant places.

Because real values contain fewer significant places than their maximum value, when working near
the extremes it is possible to lose precision. For example, while it is possible to represent a Long with the
value of 9223372036854775805, the Single type rounds this value to 9.223372E18. This seems like a
reasonable action to take, but it isn’t a reversible action. The following code demonstrates how this loss
of precision and data can result in errors. To run it, a Sub called Precision is added to the ProVB_VS2010
project and called from the Click event handler for the ButtonTest control:

Private Sub Precision()
 Dim l As Long = Long.MaxValue
 Dim s As Single = Convert.ToSingle(l)
 TextBox1.Text = l & Environment.NewLine
 TextBox1.Text &= s & Environment.NewLine
 s -= 1000000000000
 l = Convert.ToInt64(s)
 TextBox1.Text &= l & Environment.NewLine
End Sub

Code snippet from Form1

The code creates a Long that has the maximum value possible, and
outputs this value. Then it converts this value to a Single
and outputs it in that format. Next, the value 1000000000000 is
subtracted from the Single using the -= syntax, which is similar
to writing s = s − 1000000000000. Finally, the code assigns the
Single value back into the Long and then outputs both the Long
and the difference between the original value and the new value.
The results, shown in Figure 2-5, probably aren’t consistent with
what you might expect.

The first thing to notice is how the values are represented in
the output based on type. The Single value actually uses an
exponential display instead of displaying all of the significant digits.
More important, as you can see, the result of what is stored in the

TaBle 2-3: Memory Allocation for Real Number Types

TyPe allocaTed memory negaTiVe range PosiTiVe range

Single 4 bytes −3 .402823E38 to

−1 .401298E-45

1 .401298E-45 to 3 .402823E38

Double 8 bytes −1 .79769313486231E308 to

−4 .94065645841247E-324

4 .94065645841247E-324 to
1 .79769313486232E308

Currency Obsolete — —

Decimal 16 bytes −79228162514264
337593543950335 to
0 .00000000000000
00000000000001

0 .00000000000000
00000000000001 to
792281625142643
37593543950335

figure 2-5

Value Types (structures) ❘ 83

84 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Single after the math operation actually occurs is not accurate in relation to what is computed using the
Long value. Therefore, both the Single and Double types have limitations in accuracy when you are doing
math operations. These accuracy issues result from storage limitations and how binary numbers represent
decimal numbers. To better address these issues for large numbers, .NET provides the Decimal type.

Double
The behavior of the previous example changes if you replace the value type of Single with Double.
A Double uses eight bytes to store values, and as a result has greater precision and range. The range for
a Double is from 4.94065645841247E-324 to 1.79769313486232E308 for positive values and from
−1.79769313486231E308 to −4.94065645841247E-324 for negative values. The precision has increased
such that a number can contain 15 digits before the rounding begins. This greater level of precision makes
the Double value type a much more reliable variable for use in math operations. It’s possible to represent
most operations with complete accuracy with this value. To test this, change the sample code from the
previous section so that instead of declaring the variable s as a Single you declare it as a Double and rerun
the code. Don’t forget to also change the conversion line from ToSingle to ToDouble. The resulting code is
shown here with the Sub called PrecisionDouble:

Private Sub PrecisionDouble()
 Dim l As Long = Long.MaxValue
 Dim s As Double = Convert.ToDouble(l)
 TextBox1.Text = l & Environment.NewLine
 TextBox1.Text &= s & Environment.NewLine
 s -= 1000000000000
 l = Convert.ToInt64(s)
 TextBox1.Text &= l & Environment.NewLine
 TextBox1.Text &= Long.MaxValue - 1
End Sub

Code snippet from Form1

The results shown in Figure 2-6 look very similar to those from
Single precision except they almost look correct. The result as you
can see is off by just 1. On the other hand, this method closes by
demonstrating how a 64-bit value can be modified by just one and
the results are accurate. The problem isn’t specific to .NET; it can
be replicated in all major development languages. Whenever you
choose to represent very large or very small numbers by eliminating
the precision of the least significant digits, you have lost that
precision. To resolve this, .NET introduced the Decimal, which
avoids this issue.

Decimal
The Decimal type is a hybrid that consists of a 12-byte integer
value combined with two additional 16-bit values that control the
location of the decimal point and the sign of the overall value. A Decimal value consumes 16 bytes in total
and can store a maximum value of 79228162514264337593543950335. This value can then be manipulated
by adjusting where the decimal place is located. For example, the maximum value while accounting for
four decimal places is 7922816251426433759354395.0335. This is because a Decimal isn’t stored as
a traditional number, but as a 12-byte integer value, with the location of the decimal in relation to the
available 28 digits. This means that a Decimal does not inherently round numbers the way a Double does.

As a result of the way values are stored, the closest precision to zero that a Decimal supports is 0.000000
0000000000000000000001. The location of the decimal point is stored separately; and the Decimal type
stores a value that indicates whether its value is positive or negative separately from the actual value. This
means that the positive and negative ranges are exactly the same, regardless of the number of decimal places.

figure 2-6

Thus, the system makes a trade-off whereby the need to store a larger number of decimal places reduces
the maximum value that can be kept at that level of precision. This trade-off makes a lot of sense. After
all, it’s not often that you need to store a number with 15 digits on both sides of the decimal point, and for
those cases you can create a custom class that manages the logic and leverages one or more decimal values
as its properties. You’ll find that if you again modify and rerun the sample code you’ve been using in the
last couple of sections that converts to and from Long values by using Decimals for the interim value and
conversion, now your results are completely accurate.

char and Byte
The default character set under Visual Basic is Unicode. Therefore, when a variable is declared as type Char,
Visual Basic creates a two-byte value, since, by default, all characters in the Unicode character set require
two bytes. Visual Basic supports the declaration of a character value in three ways. Placing a c following
a literal string informs the compiler that the value should be treated as a character, or the Chr and ChrW
methods can be used. The following code snippet shows that all three of these options work similarly, with
the difference between the Chr and ChrW methods being the range of available valid input values. The ChrW
method allows for a broader range of values based on wide character input.

Dim chrLtr_a As Char = "a"c
Dim chrAsc_a As Char = Chr(97)
Dim chrAsc_b as Char = ChrW(98)

To convert characters into a string suitable for an ASCII interface, the runtime library needs to validate each
character’s value to ensure that it is within a valid range. This could have a performance impact for certain
serial arrays. Fortunately, Visual Basic supports the Byte value type. This type contains a value between 0
and 255 that exactly matches the range of the ASCII character set. When interfacing with a system that uses
ASCII, it is best to use a Byte array. The runtime knows there is no need to perform a Unicode-to-ASCII
conversion for a Byte array, so the interface between the systems operates significantly faster.

In Visual Basic, the Byte value type expects a numeric value. Thus, to assign the letter “a” to a Byte, you
must use the appropriate character code. One option to get the numeric value of a letter is to use the Asc
method, as shown here:

Dim bytLtrA as Byte = Asc("a")

dateTime
The Visual Basic Date keyword has always supported a structure of both date and time. You can, in fact,
declare date values using both the DateTime and Date types. Note that internally Visual Basic no longer
stores a date value as a Double; however, it provides key methods for converting the current internal date
representation to the legacy Double type. The ToOADate and FromOADate methods support backward
compatibility during migration from previous versions of Visual Basic.

Visual Basic also provides a set of shared methods that provides some common dates. The concept of shared
methods is described in more detail in the next chapter, which covers object syntax, but, in short,
shared methods are available even when you don’t create an instance of a class. For the DateTime structure,
the Now method returns a Date value with the local date and time. This method has not been changed
from Visual Basic 6.0, but the Today and UtcNow methods have been added. These methods can be used to
initialize a Date object with the current local date, or the date and time based on Universal Coordinated
Time (also known as Greenwich Mean Time), respectively. You can use these shared methods to initialize
your classes, as shown in the following code sample:

Private Sub Dates()
 Dim dtNow = Now()
 Dim dtToday = Today()
 TextBox1.Text = dtNow & Environment.NewLine
 TextBox1.Text &= dtToday.ToShortDateString & Environment.NewLine

Value Types (structures) ❘ 85

86 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 TextBox1.Text &= DateTime.UtcNow() & Environment.NewLine
 Dim dtString = #12/13/2009#
 TextBox1.Text &= dtString.ToLongDateString()
End Sub

Code snippet from Form1

Running this code results in the output shown in Figure 2-7.
As noted earlier, primitive values can be assigned directly within
your code, but many developers seem unaware of the format for
doing this with dates. Another key feature of the Date type is the
capability to subtract dates in order to determine a difference
between them. The subtract method is demonstrated later in this
chapter, with the resulting Timespan object used to output the
number of milliseconds between the start and end time of a set of
commands.

reference TyPes (classes)
A lot of the power of Visual Basic is harnessed in objects. An object is defined by its class, which describes
what data, methods, and other attributes an instance of that class supports. Thousands of classes are
provided in the .NET Framework class library.

When code instantiates an object from a class, the object created is a reference type. Recall that the data
contained in value and reference types is stored in different locations, but this is not the only difference
between them. A class (which is the typical way to refer to a reference type) has additional capabilities, such
as support for protected methods and properties, enhanced event-handling capabilities, constructors, and
finalizers; and it can be extended with a custom base class via inheritance. Classes can also be used to define
how operators such as “=” and “+” work on an instance of the class.

The intention of this section is to introduce you to some commonly used classes, and to complement your
knowledge of the common value types already covered. This section examines the features of the Object,
String, DBNull, and Array classes, as well as the Collection classes found in the System.Collections
namespace.

The object class
As noted earlier, the Object class is the base class for every type in .NET, both value and reference types. At
its core, every variable is an object and can be treated as such.

Because the Object class is the basis of all types, you can cast any variable to an object. Reference types
maintain their current reference and implementation but are generically handled, whereas value types are
taken from their current location on the stack and placed into the heap with a memory location associated
with the Object. This process is called ‘boxing’ because you are taking the value and shipping it from one
location to another. Boxing is discussed in more detail in Chapter 8.

The key addition to your understanding of Object is that if you create an implementation of ToString in
your class definition, then even when an instance of your object is cast to the type Object, your custom
method will still be called. The following snippet shows how to create a generic object.

Dim objVar as Object

objVar = Me

CType(objVar, Form).Text = "New Dialog Title Text"

That Object is then assigned a copy of the current instance of a Visual Basic form. In order to access the
Text property of the original Form class, the Object must be cast from its declared type of Object to its

figure 2-7

actual type (Form), which supports the Text property. The CType command (covered later) accepts the
object as its first parameter, and the class name (without quotes) as its second parameter. In this case,
the current instance variable is of type Form; and by casting this variable, the code can reference the Text
property of the current form.

The string class
Another class that plays a large role in most development projects is the String class. The String class is
a special class within .NET because it is the one primitive type that is not a value type. To make String
objects compatible with some of the underlying behavior in .NET, they have some interesting characteristics.

These methods are shared, which means that the methods are not specific to any instance of a String. The
String class also contains several other methods that are called based on an instance of a specific String
object. The methods on the String class replace the functions that Visual Basic 6.0 had as part of the
language for string manipulation, and they perform operations such as inserting strings, splitting strings,
and searching strings.

string()
The String class has several different constructors for those situations in which you aren’t simply assigning
an existing value to a new string. The term constructor is expanded upon in Chapter 3. Constructors are
methods that are used to construct an instance of a class. String() would be the default constructor for the
String class, but the String class does not expose this constructor publicly. The following example shows
some of the most common methods for creating a String. This example method does not show the end of
this Sub because it will be used for all of the string-related examples, with the output from these methods
shown together. The following code snippet is the start of a method; the End Sub is not shown. The full Sub
in the code download is the concatenation of this snippet with the next five snippets. You can build and test
these parts sequentially.

Private Sub StringSamples()
 Dim strSample As String = "ABC"
 Dim strSample2 = "DEF"
 Dim strSample3 = New String("A"c, 20)
 Dim line = New String("-", 80)

Code snippet from Form1

A variable is declared of type String and as a primitive is assigned the value “ABC.” The second declaration
uses one of the parameterized versions of the String constructor. This constructor accepts two parameters:
The first is a character and the second specifies how many times that character should be repeated in the string.

In addition to creating an instance of a string and then calling methods on your variable, the String class
has several shared methods. A shared method refers to a method on a class that does not require an
instance of that class. Shared methods are covered in more detail in relation to objects in Chapter 3; for
the purpose of this chapter, the point is that you can reference the class String followed by a “.” and see
a list of shared methods for that class. For strings, this list includes the methods described in Table 2-4.

TaBle 2-4: Methods Available on the Class String

shared meThod descriPTion

Empty This is actually a property . It can be used when an empty String is required . It can be
used for comparison or initialization of a String .

Compare Compares two objects of type String

CompareOrdinal Compares two Strings, without considering the local national language or culture

continues

reference Types (Classes) ❘ 87

88 ❘ chaPTer 2 oBJECts aNd Visual BasiC

shared meThod descriPTion

Concat Concatenates one or more Strings

Copy Creates a new String with the same value as an instance provided

Equals Determines whether two Strings have the same value

IsNullorEmpty This shared method is a very efficient way of determining whether a given variable has
been set to the empty string or Nothing .

TaBle 2-4 (continued)

Not only have creation methods been encapsulated, but other string-specific methods, such as character and
substring searching, and case changes, are now available from String object instances.

The substring Method
The .NET String class has a method called SubString. This is a powerful method when you want to break
out a portion of a string. For example, if you have a string “Hello World” and only want the first word, you
would take the substring of the first five characters. There are ways to call this method. The first accepts a
starting position and the number of characters to retrieve, while the second accepts the starting location.
The following code shows examples of using both of these methods on an instance of a String, and the
resulting output is the first pair of strings shown in Figure 2-8:

 ' Sub String
 Dim subString = "Hello World"
 TextBox1.Text = subString.Substring(0, 5) & Environment.NewLine
 TextBox1.Text &= subString.Substring(6) & Environment.NewLine
 TextBox1.Text &= line & Environment.NewLine

Code snippet from Form1

figure 2-8

The Padleft and Padright Methods
These methods enable you to justify a String so that it is left- or right-justified. As with SubString, the
PadLeft and PadRight methods are overloaded. The first version of these methods requires only a maximum

length of the String, and then uses spaces to pad the String. The other version requires two parameters:
the length of the returned String and the character that should be used to pad the original String:

 ' Pad Left & Pad Right
 Dim padString = "Padded Characters"
 TextBox1.Text &= padString.PadLeft("30") & Environment.NewLine
 TextBox1.Text &= padString.PadRight("30", "_") &
 Environment.NewLine
 TextBox1.Text &= line & Environment.NewLine

Code snippet from Form1

Figure 2-8 shows the same string first with the left padded with spaces, then with the right padded with
underscores. Note that because the default font on this screen isn’t fixed size, the spaces are compacted and
the two strings do not appear as the same length.

The string.split Method
This instance method on a string enables you to separate it into an array of components. For example, if you
want to quickly find each of the different elements in a comma-delimited string, you could use the Split
method to turn the string into an array of smaller strings, each of which contains one field of data. As
shown in Figure 2-8, the csvString is converted to an array of three elements:

 ' String Split
 Dim csvString = "Col1, Col2, Col3"
 Dim stringArray As String() = csvString.Split(",")
 TextBox1.Text &= stringArray(0) & Environment.NewLine
 TextBox1.Text &= stringArray(1) & Environment.NewLine
 TextBox1.Text &= stringArray(2) & Environment.NewLine
 TextBox1.Text &= line & Environment.NewLine

Code snippet from Form1

The string Class is immutable
The Visual Basic String class isn’t entirely different from the String type that programmers have used for
years. The majority of string behaviors remain unchanged, and the majority of methods are now available as
classes. However, to support the default behavior that people associate with the String primitive type, the
String class isn’t declared in the same way as several other classes. Strings in .NET do not allow editing of
their data. When a portion of a string is changed or copied, the operating system allocates a new memory
location and copies the resulting string to this new location. This ensures that when a string is copied to a
second variable, the new variable references its own copy.

To support this behavior in .NET, the String class is defined as an immutable class. This means that each time a
change is made to the data associated with a string, a new instance is created, and the original referenced memory
is released for garbage collection. Note that garbage collection is the automated process of cleaning memory
of data that is no longer needed. It is covered in more detail in Chapter 4. However, for now you should be
aware that this is a comparatively expensive operation. However, having strings be immutable is important to
ensure that the String class behaves as people expect a primitive type to behave. Additionally, when a copy
of a string is made, the String class forces a new version of the data into the referenced memory. This ensures
that each instance of a string references only its own memory. Consider the following code:

 ' String Concatenation vs String Builder
 Dim start = Now()
 Dim strRedo = "A simple string"
 For index = 1 To 10000 'Only 10000 times for concatenation
 strRedo &= "Making a much larger string"
 Next
 ' The date processing below uses the built in capability
 ' to subtract one datetime from another to get the difference
 ' between the dates as a timespan. This is then output as a
 ' number of milliseconds.

reference Types (Classes) ❘ 89

90 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 TextBox1.Text &= "Time to concatenate strings: " &
 (Now().Subtract(start)).TotalMilliseconds().ToString() &
 " String length: " & strRedo.Length.ToString()
 TextBox1.Text &= line & Environment.NewLine

Code snippet from Form1

This code does not perform well. For each assignment operation on the strMyString variable, the system
allocates a new memory buffer based on the size of the new string, and copies both the current value of
strMyString and the new text that is to be appended. The system then frees the previous memory that must
be reclaimed by the garbage collector. As this loop continues, the new memory allocation requires a larger
chunk of memory. Therefore, operations such as this can take a long time.

To illustrate this, you’ll note that the code captures the start time before doing the 10,000 concatenations,
and then within the print statement uses the DateTime.Subtract method to get the difference.
That difference is returned as an object of type Timespan, between the start time and the print time.
This difference is then expressed in milliseconds (refer to Figure 2-8).

However, .NET offers an alternative in the System.Text.StringBuilder object, shown in the following
snippet:

 start = Now()
 Dim strBuilder = New System.Text.StringBuilder("A simple string")
 For index = 1 To 1000000 '1 million times....
 strBuilder.Append("Making a much larger string")
 Next
 TextBox1.Text &= "Time to concatenate strings: " &
 (Now().Subtract(start)).TotalMilliseconds().ToString() &
 " String length: " & strBuilder.ToString().Length.ToString()
 TextBox1.Text &= line & Environment.NewLine
End Sub

Code snippet from Form1

The preceding code works with strings but does not use the String class. The .NET class library contains the
System.Text.StringBuilder class, which performs better when strings will be edited repeatedly. This class
does not store strings in the conventional manner; it stores them as individual characters, with code in place to
manage the ordering of those characters. Thus, editing or appending more characters does not involve allocating
new memory for the entire string. Because the preceding code snippet does not need to reallocate the memory
used for the entire string, each time another set of characters is appended it performs significantly faster.

Note that the same timing code is used in this snippet. However, for the StringBuilder, the loop executes
one million times (versus ten thousand). Note the increase in the number of iterations was made in order to
cause enough of a delay to actually show it requiring more than just one or two milliseconds to complete.
Even with 100 times the number of iterations, Figure 2-8 still illustrates that this is a much more efficient use
of system resources.

Ultimately, an instance of the String class is never explicitly needed, because the StringBuilder class
implements the ToString method to roll up all of the characters into a string. While the concept of the
StringBuilder class isn’t new, because it is available as part of the Visual Basic implementation, developers
no longer need to create their own string memory managers.

string Constants
If you ever have to produce output based on a string you’ll quickly find yourself needing to embed certain
constant values. For example, it’s always useful to be able to add a carriage-return linefeed combination
to trigger a new line in a message box. One way to do this is to learn the underlying ASCII codes and then
embed these control characters directly into your String or StringBuilder object.

Visual Basic provides an easier solution for working with these: the Microsoft.VisualBasic.Constants
class. The Constants class, which you can tell by its namespace is specific to Visual Basic, contains
definitions for several standard string values that you might want to embed. The most common, of course,

is Constants.VbCrLf, which represents the carriage-return linefeed combination. Feel free to explore this
class for additional constants that you might need to manipulate string output.

xml literals
One of the main new features in Visual Basic 2008 was the introduction of XML literals. It is possible within
Visual Basic to create a new variable and assign a block of well-formatted XML code to that string. This is being
introduced here because it demonstrates a great example of a declaration that leverages Option Infer. Start by
adding a new form to the VBPro_VS2010 project, accepting the default name of Form2. This new form will be
called from the click event for the ButtonTest on Form1 using the code shown in the Sub XmlLiteral that follows.

 Private Sub XmlLiteral()
 Form2.ShowDialog()
 End Sub

Code snippet from Form1

Within the designer for Form2, drag a RichTextBox control onto the display area and set the control to
dock within the parent container. This can be done from the Properties display or by using the Tasks context
menu in the upper-right corner of the control. Next, double-click on the form to create an event handler for
the window Load event. Within this event you will place the code to demonstrate XML literals. A separate
window is being used in order to demonstrate the string formatting capabilities of XML literals, which do
not work within a TextBox control.

This code starts by declaring a string variable called myString and setting this to a value such as “Hello
World”. In the code block that follows, notice that the first Dim statement used does not include the “As” clause
that is typically used in such declarations. The declaration of the myString variable relies on type inference:

Private Sub Form2_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 Dim myString = "Embedded string variable data."
 Dim myXmlElement = <AnXmlNode attribute="1">This is formatted text.
Embedded carriage returns will be kept.
 These lines will print separately.
 Whitespace will also be maintained.
<%= myString %>
 </AnXmlNode>
 RichTextBox1.Text = myXmlElement.ToString() &
 Environment.NewLine & Environment.NewLine
 RichTextBox1.Text &= myXmlElement.Value.ToString()
End Sub

Code snippet from Form2

Running this XmlLiteral Sub results in the output shown in
Figure 2-9. Within this code, the compiler recognizes that this
newly declared variable is being assigned a string, so the variable is
automatically defined as a string. After the first variable is declared
on the first line of the code block, the second line of code makes
up the remainder of the code block, which you may notice spans
multiple lines without any line-continuation characters.

The second Dim statement declares another new variable, but in
this case the variable is set equal to raw XML. Note that the “<” is
not preceded by any quotes in the code. Instead, that angle bracket
indicates that what follows will be a well-formed XML statement. At
this point the Visual Basic compiler stops treating what you have typed
as Visual Basic code and instead reads this text as XML. Thus, the
top-level node can be named, attributes associated with that node can
be defined, and text can be assigned to the value of the node. The only figure 2-9

reference Types (Classes) ❘ 91

92 ❘ chaPTer 2 oBJECts aNd Visual BasiC

requirement is that the XML be well formed, which means you need to have a closing declaration, the last
line in the preceding code block, to end that XML statement.

By default, because this is just an XML node and not a full document, Visual Basic infers that you are defining
an XMLElement and will define the mXMLElement variable as an instance of that class. Beyond this, however,
there is the behavior of your static XML. Note that the text itself contains comments about being formatted.
That’s because within your static XML, Visual Basic automatically recognizes and embeds literally everything.

Thus, the name XML literal. The text is captured as is, with any embedded white space or carriage returns/
linefeeds captured. The other interesting capability is shown on the line that reads as follows:

<%= myString %>

This is a shorthand declaration that enables you to insert the value of the variable myString into your
literal XML. In this case, myString is set on the preceding line, but it could easily be an input parameter
to a method that returns an XML element. When you run this code, the current value of myString will be
inserted into your XML declaration.

Two statements display the output shown in Figure 2-9 from your XML element. Two different statements
displaying the contents of the XML element as a string appear, because each results in slightly different output.

The first statement on the second line instructs the XML element object to return a string representing
itself. As such, the XML element will return all of the content of that object, including the raw XML itself.
The second output has output the XML element to a string that only reflects the value of the data defined
for that element. Note that if the basic XML element you defined in the previous code block had any nested
XML elements, then these would be considered part of the contents of your XML element, and their
definitions and attributes would be output as part of this statement.

As shown in Figure 2-9, the result of this output is that the first block of text includes your custom XML
node and its attribute. Not only do you see the text that identifies the value of the XML, you also see that
actual XML structure. However, when you instead print only the value from the XML block, what you
see is in fact just that text. Note that XML has embedded the carriage returns and left-hand white space
that was part of your XML literal so that your text appears formatted. With the use of XML literals, you
“literally” have the capability to replace the somewhat cryptic String.Format method call with a very
explicit means of formatting an output string.

The dBnull class and isdBnull function
When working with a database, a value for a given column may not be defined. For a reference type this
isn’t a problem, as it is possible to set reference types to Nothing. However, for value types, it is necessary
to determine whether a given column from the database or other source has an actual value prior to
attempting to assign a potentially null value. The first way to manage this task is to leverage the DBNull
class and the IsDBNull function. This class is part of the System namespace, and you reference it as part
of a comparison. The IsDBNull function accepts an object as its parameter and returns a Boolean that
indicates whether the variable has been initialized. The following snippet shows two values, one a string
being initialized to Nothing and the other being initialized as DBNull.Value:

Private Sub NullValues()
 Dim strNothing As String = Nothing
 Dim objectNull As Object = DBNull.Value
 TextBox1.Text = ""
 If IsDBNull(strNothing) Then
 TextBox1.Text = "But strNothing is not the same as Null."
 End If
 If System.DBNull.Value.Equals(objectNull) Then
 TextBox1.Text &= "objectNull is null." & Environment.NewLine
 End If
End Sub

Code snippet from Form1

The output of this code is shown in Figure 2-10. In this code,
the strNothing variable is declared and initialized to Nothing.
The first conditional is evaluated to False, which may seem
counterintuitive, but in fact VB differentiates between a local
value, which might not be assigned, and the actual DBNull value.
This can be a bit misleading, because it means that you need
to separately check for values which are Nothing. The second
conditional references the second variable, objectNull. This value
has been explicitly defined as being a DBNull.Value as part of its
initialization. This is similar to how a null value would be returned
from the database. The second condition evaluates to True. While
DBNull is available, in most cases, developers now leverage the
generic Nullable class described in Chapter 8, rather than working
with DBNull comparisons.

ParameTer Passing
When an object’s methods or an assembly’s procedures and methods are called, it’s often appropriate to
provide input for the data to be operated on by the code. The values are referred to as parameters, and any
object can be passed as a parameter to a Function or Sub.

When passing parameters, be aware of whether the parameter is being passed “by value” (ByVal) or
“by reference” (ByRef). Passing a parameter by value means that if the value of that variable is changed,
then when the Function/Sub returns, the system automatically restores that variable to the value it
had before the call. Passing a parameter by reference means that if changes are made to the value of a
variable, then these changes affect the actual variable and, therefore, are still present when the variable
returns.

This is where it gets a little challenging for new Visual Basic developers.. Under .NET, passing a parameter
by value indicates only how the top-level reference (the portion of the variable on the stack) for that object
is passed. Sometimes referred to as a shallow copy operation, the system copies only the top-level reference
value for an object passed by value. This is important to remember because it means that referenced memory
is not protected.

When you pass an integer by value, if the program changes the value of the integer, then your original value
is restored. Conversely, if you pass a reference type, then only the location of your referenced memory is
protected, not the data located within that memory location. Thus, while the reference passed as part of the
parameter remains unchanged for the calling method, the actual values stored in referenced objects can be
updated even when an object is passed by value.

In addition to mandatory parameters, which must be passed with a call to a given function, it is possible
to declare optional parameters. Optional parameters can be omitted by the calling code. This way, it is
possible to call a method such as PadRight, passing either a single parameter defining the length of the
string and using a default of space for the padding character, or with two parameters, the first still defining
the length of the string but the second now replacing the default of space with a dash:

Public Sub PadRight(ByVal intSize as Integer, _
 Optional ByVal chrPad as Char = " "c)
End Function

Code snippet from Form1

To use optional parameters, it is necessary to make them the last parameters in the function declaration.
Visual Basic also requires that every optional parameter have a default value. It is not acceptable to merely
declare a parameter and assign it the Optional keyword. In Visual Basic, the Optional keyword must be
accompanied by a value that is assigned if the parameter is not passed in.

figure 2-10

Parameter Passing ❘ 93

94 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Paramarray
In addition to passing explicit parameters, it is also possible to tell .NET that you would like to allow a
user to pass any number of parameters of the same type. This is called a parameter array, and it enables
a user to pass as many instances of a given parameter as are appropriate. For example, the following code
creates a function Add, which allows a user to pass an array of integers and get the sum of these integers:

Public Function Add(ByVal ParamArray values() As Integer) As Long
 Dim result As Long
 For Each value As Integer In values
 result += value
 Next
 Return result
End Function

Code snippet from Form1

The preceding code illustrates a function (first shown at the beginning of this chapter without its
implementation) that accepts an array of integers. Notice that the ParamArray qualifier is preceded by a
ByVal qualifier for this parameter. The ParamArray requires that the associated parameters be passed by
value; they cannot be optional parameters.

You might think this looks like a standard parameter passed by value except that it’s an array, but there is
more to it than that. In fact, the power of the ParamArray derives from how it can be called, which also
explains many of its limitations. The following code shows two ways this method can be called:

Private Sub CallAdd()
 Dim int1 As Integer = 2
 Dim int2 = 3
 TextBox1.Text = "Adding 3 integers: " & Add(1, int1, int2) &
 Environment.NewLine
 Dim intArray() = {1, 2, 3, 4}
 TextBox1.Text &= "Adding an array of 4 integers: " & Add(intArray)
End Sub

Code snippet from Form1

The output from running this CallAdd method is shown
in Figure 2-11. Notice that the first call, to the Add
function, doesn’t pass an array of integers; instead, it
passes three distinct integer values. The ParamArray
keyword tells Visual Basic to automatically join these
three distinct values into an array for use within this
method. The second call, to the Add method, actually
leverages using an actual array of integers to populate the
parameter array. Either of these methods works equally
well. Arrays are covered in more detail in Chapter 8.

Finally, note one last limitation of the ParamArray
keyword: It can only be used on the last parameter defined
for a given method. Because Visual Basic is grabbing an
unlimited number of input values to create the array, there
is no way to indicate the end of this array, so it must be
the final parameter.

VariaBle scoPe
The concept of variable scope encapsulates two key elements. In all the discussion so far of variables, we
have not focused on the allocation and deallocation of those variables from memory. The first allocation
challenge is related to what happens when you declare two variables with the same name but at different

figure 2-11

locations in the code. For example, suppose a class declares a variable called myObj that holds a property
for that class. Then, within one of that class’s methods, you declare a different variable also named myObj.
What will happen in that method? Scope defines the lifetime and precedence of every variable you declare,
and it handles this question.

Similarly, there is the question of the removal of variables that you are no longer using, so you can free
up memory. Chapter 4 covers the collection of variables and memory once it is no longer needed by an
application, so this discussion focuses on priority, with the understanding that when a variable is no longer
“in scope,” it is available to the garbage collector for cleanup.

.NET essentially defines four levels of variable scope. The outermost scope is global. Essentially, just as
your source code defines classes, it can also declare variables that exist the entire time that your application
runs. These variables have the longest lifetime because they exist as long as your application is executing.
Conversely, these variables have the lowest precedence. Thus, if within a class or method you declare
another variable with the same name, then the variable with the smaller, more local scope is used before
the global version.

After global scope, the next scope is at the class or module level. When you add properties to a class, you
are creating variables that will be created with each instance of that class. The methods of that class will
then reference those member variables from the class, before looking for any global variables. Note that
because these variables are defined within a class, they are only visible to methods within that class. The
scope and lifetime of these variables is limited by the lifetime of that class, and when the class is removed
from the system, so are those variables. More important, those variables declared in one instance of a class
are not visible in other classes or in other instances of the same class (unless you actively expose them, in
which case the object instance is used to fully qualify a reference to them).

The next shorter lifetime and smaller scope is that of method variables. When you declare a new variable
within a method, such variables, as well as those declared as parameters, are only visible to code that
exists within that module. Thus, the method Add wouldn’t see or use variables declared in the method
Subtract in the same class.

Finally, within a given method are various commands that can encapsulate a block of code (mentioned
earlier in this chapter). Commands such as If Then and For Each create blocks of code within a method,
and it is possible within this block of code to declare new variables. These variables then have a scope of
only that block of code. Thus, variables declared within an If Then block or a For loop only exist within
the constraints of the If block or execution of the loop. Creating variables in a For loop is a poor coding
practice and performance mistake and should be avoided.

WorKing WiTh oBJecTs
In the .NET environment in general and within Visual Basic in particular, you use objects all the time
without even thinking about it. As noted earlier, every variable, every control on a form — in fact, every
form — inherits from System.Object. When you open a file or interact with a database, you are using
objects to do that work.

objects declaration and instantiation
Objects are created using the New keyword, indicating that you want a new instance of a particular class.
There are numerous variations on how or where you can use the New keyword in your code. Each one
provides different advantages in terms of code readability or flexibility.

The most obvious way to create an object is to declare an object variable and then create an instance of
the object:

Dim obj As TheClass
obj = New TheClass()

Working with objects ❘ 95

96 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 The result of this code is that you have a new instance of TheClass ready for use. To interact with this new
object, you use the obj variable that you declared. The obj variable contains a reference to the object, a
concept explored later.

 You can shorten the preceding code by combining the declaration of the variable with the creation of the
instance, as illustrated here:

Dim obj As New TheClass()

 At runtime there is no difference between the fi rst example and this one, other than
code length.

 The preceding code both declares the variable obj as data type TheClass and creates an instance of the
class, immediately creating an object that you can use. Another variation on this theme is as follows:

Dim obj As TheClass = New TheClass()

 Again, this both declares a variable of data type TheClass and creates an instance of the class. It is up
to you how you create these instances, as it is really a matter of style. This third syntax example provides
a great deal of fl exibility while remaining compact. Though it is a single line of code, it separates the
declaration of the variable ’ s data type from the creation of the object.

 Such fl exibility is very useful when working with inheritance or multiple interfaces. You might declare the
variable to be of one type — say, an interface — and instantiate the object based on a class that implements
that interface. You will revisit this syntax when interfaces are covered in detail in Chapter 3.

 So far, you ’ ve been declaring a variable for new objects, but sometimes you simply need to pass an object
as a parameter to a method, in which case you can create an instance of the object right in the call to
that method:

DoSomething(New TheClass())

 This calls the DoSomething method, passing a new instance of TheClass as a parameter. This can be even
more complex. Perhaps, instead of needing an object reference, your method needs an Integer . You can
provide that Integer value from a method on the object:

Public Class TheClass
 Public Function GetValue() As Integer
 Return 42
 End Function
End Class

 You can then instantiate the object and call the method all in one shot, thus passing the value returned from
the method as a parameter:

DoSomething(New TheClass().GetValue())

 Obviously, you need to carefully weigh the readability of such code against its compactness. At some point,
having code that is more compact can detract from readability, rather than enhance it.

 object references
 Typically, when you work with an object, you are using a reference to that object. Conversely, when you
are working with simple data types, such as Integer , you are working with the actual value, rather than a
reference. Let ’ s explore these concepts and see how they work and interact.

 When you create a new object using the New keyword, you store a reference to that object in a variable, as
shown here:

Dim obj As New TheClass()

This code creates a new instance of TheClass. You gain access to this new object via the obj variable. This
variable holds a reference to the object. You might then do something like this:

Dim another As TheClass
another = obj

Now, you have a second variable, another, which also has a reference to the same object. You can use either
variable interchangeably, as they both reference the exact same object. Remember that the variable you have
is not the object itself but just a reference, or pointer, to the object.

dereferencing objects
When you are done working with an object, you can indicate that you are through with it by dereferencing
the object. To dereference an object, simply set the object reference to Nothing:

Dim obj As TheClass

obj = New TheClass()
obj = Nothing

After any or all variables that reference an object are set to Nothing, the .NET runtime knows that you
no longer need that object. At some point, the runtime destroys the object and reclaims the memory and
resources it consumed. You can find more information on the garbage collector in Chapter 4.

Between the time when you dereference the object and the time when the .NET Framework gets around to
actually destroying it, the object simply sits in the memory, unaware that it has been dereferenced. Right
before .NET destroys the object, the Finalize method is called on the object (if it has one).

early Binding versus late Binding
One of the strengths of Visual Basic has long been that it provides access to both early and late binding
when interacting with objects. Early binding means that code directly interacts with an object by directly
calling its methods. Because the Visual Basic compiler knows the object’s data type ahead of time, it can
directly compile code to invoke the methods on the object. Early binding also enables the IDE to use
IntelliSense to aid development efforts by enabling the compiler to ensure that you are referencing methods
that exist and are providing the proper parameter values.

Late binding means that your code interacts with an object dynamically at runtime. This provides a great deal
of flexibility because the code doesn’t care what type of object it is interacting with as long as the object supports
the methods you want to call. Because the type of the object is not known by the IDE or compiler, neither
IntelliSense nor compile-time syntax checking is possible, but in exchange you get unprecedented flexibility.

If you enable strict type checking by using
Option Strict On in the project’s Properties
dialog or at the top of the code modules, then the
IDE and compiler enforce early binding behavior.
By default, Option Strict is turned off, so
you have easy access to the use of late binding
within the code. Chapter 1 discusses Option
Strict. You can change this default directly in
Visual Studio 2010 by selecting Tools ➪ Options
from the VS menu. The Options dialog is shown
in Figure 2-12. Expanding the Projects and
Solutions node reveals the VB defaults. Feel free
to change any of these default settings.

implementing late Binding
Late binding occurs when the compiler cannot determine the type of object that you’ll be calling. This level
of ambiguity is achieved using the Object data type. A variable of data type Object can hold virtually any

figure 2-12

Working with objects ❘ 97

98 ❘ chaPTer 2 oBJECts aNd Visual BasiC

value, including a reference to any type of object. Thus, code such as the following could be run against any
object that implements a DoSomething method that accepts no parameters:

Option Strict Off

Module LateBind
 Public Sub DoWork(ByVal obj As Object)
 obj.DoSomething()
 End Sub
End Module

If the object passed into this routine does not have a DoSomething method that accepts no parameters, then
an exception will be thrown. Thus, it is recommended that any code that uses late binding always provide
exception handling:

Option Strict Off

Module LateBind
 Public Sub DoWork(ByVal obj As Object)
 Try
 obj.DoSomething()
 Catch ex As MissingMemberException
 ' do something appropriate given failure
 ' to call this method
 End Try
 End Sub
End Module

Here, the call to the DoSomething method has been put in a Try block. If it works, then the code in the
Catch block is ignored; but in the case of a failure, the code in the Catch block is run. You need to write
code in the Catch block to handle the case in which the object does not support the DoSomething method
call. This Catch block only catches the MissingMemberException, which indicates that the method does
not exist on the object.

While late binding is flexible, it can be error prone and is slower than early-bound code. To make a late-
bound method call, the .NET runtime must dynamically determine whether the target object actually has
a method that matches the one you are calling. It must then invoke that method on your behalf. This takes
more time and effort than an early-bound call, whereby the compiler knows ahead of time that the method
exists and can compile the code to make the call directly. With a late-bound call, the compiler has to
generate code to make the call dynamically at runtime.

daTa TyPe conVersions
So far, this chapter has focused primarily on individual variables; but when developing software, it is often
necessary to take a numeric value and convert it to a string to display in a text box. Similarly, it is often
necessary to accept input from a text box and convert this input to a numeric value. These conversions,
unlike some, can be done in one of two fashions: implicitly or explicitly.

Implicit conversions are those that rely on the system to adjust the data at runtime to the new type without
any guidance. Often, Visual Basic’s default settings enable developers to write code containing many
implicit conversions that the developer may not even notice.

Explicit conversions, conversely, are those for which the developer recognizes the need to change a variable’s
type and assign it to a different variable. Unlike implicit conversions, explicit conversions are easily
recognizable within the code. Some languages such as C# require that essentially all conversions that might
be type unsafe be done through an explicit conversion; otherwise, an error is thrown.

It is therefore important to understand what a type-safe implicit conversion is. In short, it’s a conversion
that cannot fail because of the nature of the data involved. For example, if you assign the value of a smaller
type, Short, into a larger type, Long, then there is no way this conversion can fail. As both values are

integer-style numbers, and the maximum and minimum values of a Short variable are well within the range
of a Long, this conversion will always succeed and can safely be handled as an implicit conversion:

Dim shortNumber As Short = 32767
Dim longNumber As Long = shortNumber

However, the reverse of this is not a type-safe conversion. In a system that demands explicit conversions, the
assignment of a Long value to a Short variable results in a compilation error, as the compiler doesn’t have
any safe way to handle the assignment when the larger value is outside the range of the smaller value. It is
still possible to explicitly cast a value from a larger type to a smaller type, but this is an explicit conversion.
By default, Visual Basic supports certain unsafe implicit conversions. Thus, adding the following line will
not, by default, cause an error under Visual Basic:

shortNumber = longNumber

This is possible for two reasons. One is based on Visual Basic’s legacy support. Previous versions of Visual Basic
supported the capability to implicitly cast across types that don’t fit the traditional implicit casting boundaries.
It has been maintained in the language because one of the goals of Visual Basic is to support rapid prototyping.
In a rapid prototyping model, a developer is writing code that “works” for demonstration purposes but may
not be ready for deployment. This distinction is important because in the discussion of implicit conversions,
you should always keep in mind that they are not a best practice for production software.

Performing explicit conversions
Keep in mind that even when you choose to allow implicit conversions, these are only allowed for a relatively
small number of data types. At some point you’ll need to carry out explicit conversions. The following code
is an example of some typical conversions between different integer types when Option Strict is enabled:

Dim myShort As Short
Dim myUInt16 As UInt16
Dim myInt16 As Int16
Dim myInteger As Integer
Dim myUInt32 As UInt32
Dim myInt32 As Int32
Dim myLong As Long
Dim myInt64 As Int64

myShort = 0
myUInt16 = Convert.ToUInt16(myShort)
myInt16 = myShort
myInteger = myShort
myUInt32 = Convert.ToUInt32(myShort)
myInt32 = myShort
myInt64 = myShort
myLong = Long.MaxValue

If myLong < Short.MaxValue Then
 myShort = Convert.ToInt16(myLong)
End If
myInteger = CInt(myLong)

The preceding snippet provides some excellent examples of what might not be intuitive behavior. The first
thing to note is that you can’t implicitly cast from Short to UInt16, or any of the other unsigned types for
that matter. That’s because with Option Strict the compiler won’t allow an implicit conversion that might
result in a value out of range or lead to loss of data. You may be thinking that an unsigned Short has a
maximum that is twice the maximum of a signed Short, but in this case, if the variable myShort contained
a -1, then the value wouldn’t be in the allowable range for an unsigned type.

Just for clarity, even with the explicit conversion, if myShort were a negative number, then the
Convert.ToUInt32 method would throw a runtime exception. Managing failed conversions requires either
an understanding of exceptions and exception handling, as covered in Chapter 6, or the use of a conversion
utility such as TryParse, covered in the next section.

Data Type Conversions ❘ 99

100 ❘ chaPTer 2 oBJECts aNd Visual BasiC

The second item illustrated in this code is the shared method MaxValue. All of the integer and decimal types
have this property. As the name indicates, it returns the maximum value for the specified type. There is a
matching MinValue method for getting the minimum value. As shared properties, these properties can be
referenced from the class (Long.MaxValue) without requiring an instance.

Finally, although this code will compile, it won’t always execute correctly. It illustrates a classic error, which
in the real world is often intermittent. The error occurs because the final conversion statement does not check
to ensure that the value being assigned to myInteger is within the maximum range for an integer type. On
those occasions when myLong is larger than the maximum allowed, this code will throw an exception.

Visual Basic provides many ways to convert values. Some of them are updated versions of techniques that are
supported from previous versions of Visual Basic. Others, such as the ToString method, are an inherent part of
every class (although the .NET specification does not define how a ToString class is implemented for each type).

The set of conversion methods shown in Table 2-5 is based on the conversions supported by Visual Basic.
They coincide with the primitive data types described earlier; however, continued use of these methods is
not considered a best practice. That bears repeating: While you may find the following methods in existing
code, you should strive to avoid and replace these calls.

TaBle 2-5: Traditional Visual Basic Specific Conversion Methods

CBool() CByte()

CChar() CDate()

CDbl() CDec()

CInt() CLng()

CObj() CShort()

CSng() CStr()

Each of these methods has been designed to accept the input of the other primitive data types (as appropriate)
and to convert such items to the type indicated by the method name. Thus, the CStr class is used to convert
a primitive type to a String. The disadvantage of these methods is that they only support a limited number
of types and are specific to Visual Basic. If you are working in an environment with C# developers, they will
find these methods distracting. Additionally, you may find that you have trouble quickly recalling how to
leverage CType and the Convert class when you are working with types that aren’t supported by these Visual
Basic functions. A more generic way to handle conversions is to leverage the System.Convert class shown in
the following code snippet:

Dim intMyShort As Integer = 200
Convert.ToInt32(intMyShort)
Convert.ToDateTime("9/9/2001")

The class System.Convert implements not only the conversion methods listed earlier, but also other
common conversions. These additional methods include standard conversions for things such as unsigned
integers and pointers.

All the preceding type conversions are great for value types and the limited number of classes to which they
apply, but these implementations are oriented toward a limited set of known types. It is not possible to convert
a custom class to an Integer using these classes. More important, there should be no reason to have such a
conversion. Instead, a particular class should provide a method that returns the appropriate type. That way,
no type conversion is required. However, when Option Strict is enabled, the compiler requires you to cast
an object to an appropriate type before triggering an implicit conversion. Note, however, that the Convert
method isn’t the only way to indicate that a given variable can be treated as another type.

Parse and TryParse
Most value types, at least those which are part of the .NET Framework, provide a pair of shared methods called
Parse and TryParse. These methods accept a value of your choosing and then attempt to convert this variable

into the selected value type. The Parse and TryParse methods are only available on value types. Reference
types have related methods called DirectCast and Cast, which are optimized for reference variables.

The Parse method has a single parameter. This input parameter accepts a value that is the target for the
object you want to create of a given type. This method then attempts to create a value based on the data
passed in. However, be aware that if the data passed into the Parse method cannot be converted, then this
method will throw an exception that your code needs to catch. The following line illustrates how the Parse
function works:

result = Long.Parse("100")

Unfortunately, when you embed this call within a Try-Catch statement for exception handling, you
create a more complex block of code. Note that exception handling and its use is covered in Chapter 6,
for now just be aware that exceptions require additional system resources for your running code that
impacts performance. Because you always need to encapsulate such code within a Try-Catch block, the
.NET development team decided that it would make more sense to provide a version of this method that
encapsulated that exception-handling logic.

This is the origin of the TryParse method. The TryParse method works similarly to the Parse method
except that it has two parameters and returns a Boolean, rather than a value. Instead of assigning the value
of the TryParse method, you test it as part of an If-Then statement to determine whether the conversion of
your data to the selected type was successful. If the conversion was successful, then the new value is stored
in the second parameter passed to this method, which you can then assign to the variable you want to hold
that value:

Dim converted As Long
If Long.TryParse("100", converted) Then
 result = converted
End If

Using the CType function
Whether you are using late binding or not, it can be useful to pass object references around using the
Object data type, converting them to an appropriate type when you need to interact with them. This
is particularly useful when working with objects that use inheritance or implement multiple interfaces,
concepts discussed in Chapter 3.

If Option Strict is turned off, which is the default, then you can write code using a variable of type
Object to make an early-bound method call:

 Public Sub objCType(ByVal obj As Object)
 Dim local As String
 local = obj
 local.ToCharArray()
 End Sub

Code snippet from Form1

This code uses a strongly typed variable, local, to reference what was a generic object value. Behind the
scenes, Visual Basic converts the generic type to a specific type so that it can be assigned to the strongly
typed variable. If the conversion cannot be done, then you get a trappable runtime error.

The same thing can be done using the CType function. If Option Strict is enabled, then the previous
approach will not compile, and the CType function must be used. Here is the same code making use of CType:

 Public Sub CType1(ByVal obj As Object)
 Dim local As String
 local = CType(obj, String)
 local.ToLower()
 End Sub

Code snippet from Form1

Data Type Conversions ❘ 101

102 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 This code declares a variable of type TheClass , which is an early - bound data type that you want to use. The
parameter you ’ re accepting is of the generic Object data type, though, so you use the CType method to gain
an early - bound reference to the object. If the object isn ’ t of type TheClass , then the call to CType fails with
a trappable error.

 Once you have a reference to the object, you can call methods by using the early - bound variable local. This
code can be shortened to avoid the use of the intermediate variable. Instead, you can simply call methods
directly from the data type:

 Public Sub CType2(obj As Object)
 CType(obj, String).ToUpper()
 End Sub

 Code snippet from Form1

 Even though the variable you are working with is of type Object and therefore any calls to it will be late
bound, you use the CType method to temporarily convert the variable into a specifi c type — in this case, the
type TheClass .

 If the object passed as a parameter is not of type TheClass , then you get a trappable
error, so it is always wise to wrap this code in a Try … Catch block.

 As shown in Chapter 3, the CType function can also be very useful when working with objects that
implement multiple interfaces. When an object has multiple interfaces, you can reference a single object
variable through the appropriate interface as needed by using CType.

 Using DirectCast
 Another function that is very similar to CType is the method DirectCast . The DirectCast call also
converts values of one type into another type. It works in a more restrictive fashion than CType , but the
trade - off is that it can be somewhat faster than CType :

Dim obj As TheClass

obj = New TheClass
DirectCast(obj, ITheInterface).DoSomething()

 This is similar to the last example with CType , illustrating the parity between the two functions. There
are differences, however. First, DirectCast works only with reference types, whereas CType accepts both
reference and value types. For instance, CType can be used in the following code:

Dim int As Integer = CType(123.45, Integer)

 Trying to do the same thing with DirectCast would result in a compiler error, as the value 123.45 is a
value type, not a reference type.

 Second, DirectCast is not as aggressive about converting types as CType . CType can be viewed as
an intelligent combination of all the other conversion functions (such as CInt , CStr , and so on).
 DirectCast , conversely, assumes that the source data is directly convertible, and it won ’ t take extra
steps to convert it.

 As an example, consider the following code:

Dim obj As Object = 123.45

Dim int As Integer = DirectCast(obj, Integer)

 If you were using CType this would work, as CType uses CInt - like behavior to convert the value to an Integer
. DirectCast , however, will throw an exception because the value is not directly convertible to Integer .

Using TryCast
A method similar to DirectCast is TryCast. TryCast converts values of one type into another type, but
unlike DirectCast, if it can’t do the conversion, then TryCast doesn’t throw an exception. Instead, TryCast
simply returns Nothing if the cast can’t be performed. TryCast only works with reference values; it cannot
be used with value types such as Integer or Boolean.

Using TryCast, you can write code like this:

 Public Sub TryCast1 (ByVal obj As Object)
 Dim temp = TryCast(obj, Object) If temp Is Nothing Then
 ' the cast couldn't be accomplished
 ' so do no work
 Else
 temp.DoSomething()
 End If
 End Sub

Code snippet from Form1

If you are not sure whether a type conversion is possible, then it is often best to use TryCast. This function
avoids the overhead and complexity of catching possible exceptions from CType or DirectCast and still
provides you with an easy way to convert an object to another type.

creaTing classes
Using objects is fairly straightforward and intuitive. It is the kind of thing that even the most novice
programmers pick up and accept rapidly. Creating classes and objects is a bit more complex and interesting.

Basic classes
As discussed earlier, objects are merely instances of a specific template (a class). The class contains the
code that defines the behavior of its objects, and defines the instance variables that will contain the object’s
individual data.

Classes are created using the Class keyword, and include definitions (declaration) and implementations
(code) for the variables, methods, properties, and events that make up the class. Each object created based
on this class will have the same methods, properties, and events, and its own set of data defined by the fields
in the class.

The Class Keyword
If you want to create a class that represents a person — a Person class — you could use the Class keyword:

Public Class Person

 ' Implementation code goes here

End Class

As you know, Visual Basic projects are composed of a set of files with the .vb extension. It is possible for each
file to contain multiple classes, which means that within a single file you could have something like this:

Public Class Adult
 ' Implementation code goes here.
End Class

Public Class Senior
 ' Implementation code goes here.
End Class

Creating Classes ❘ 103

104 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Public Class Child
 ' Implementation code goes here.
End Class

The most common and preferred approach is to have a single class per file. This is because the Visual Studio
2010 Solution Explorer and the code-editing environment are tailored to make it easy to navigate from file
to file to find code. For instance, if you create a single class file with all these classes, the Solution Explorer
simply displays a single entry, as shown in Figure 2-13.

figure 2-14

figure 2-13

However, the Visual Studio IDE does provide the Class View window. If you do decide to put multiple classes
in each physical .vb file, you can make use of the Class View window, shown in Figure 2-14, to quickly and
efficiently navigate through the code, jumping from class to class without having to manually locate those
classes in specific code files. To show the Class View, select View from the menu then Class Window.

 The Class View window is extremely useful even if you stick with one class per fi le, because it still provides
you with a class - based view of the entire application.

 This chapter uses one class per fi le in the examples, as this is the most common approach. To begin, open
the Visual Studio IDE and create a new Windows Forms Application project named “ ObjectIntro. ”
Choose the Project ➪ Add Class menu option to add a new class module to the project. You ’ ll be presented
with the standard Add New Item dialog. Change the name to Person.vb and click Add. The result will be
the following code, which defi nes the Person class:

Public Class Person

End Class

 With the Person class created, you are ready to start adding code to declare the interface, implement the
behaviors, and declare the instance variables.

 fields
 Fields are variables declared in the class. They will be available to each individual object when the
application is run. Each object gets its own set of data — basically, each object gets its own copy of
the fi elds.

 Earlier, you learned that a class is simply a template from which you create specifi c objects. Variables that
you defi ne within the class are also simply templates — and each object gets its own copy of those variables
in which to store its data.

 Declaring member variables is as easy as declaring variables within the Class block structure. Add the
following code to the Person class:

Public Class Person

 Private mName As String
 Private mBirthDate As Date
End Class

 You can control the scope of the fi elds with the following keywords:

 ➤ Private — Available only to code within the class

 ➤ Friend — Available only to code within the project/component

 ➤ Protected — Available only to classes that inherit from the class (discussed in detail in Chapter 3)

 ➤ Protected Friend — Available to code within your project/component and classes that inherit from
the class whether in the project or not (discussed in detail in Chapter 3)

 ➤ Public — Available to code outside the class and to any projects that reference the assembly

 Typically, fi elds are declared using the Private keyword, making them available only to code within each
instance of the class. Choosing any other option should be done with great care, because all the other
options allow code outside the class to directly interact with the variable, meaning that the value could be
changed and your code would never know that a change took place.

 One common exception to making fi elds Private is to use the Protected keyword,
discussed in Chapter 3.

 Methods
 Objects typically need to provide services (or functions) that can be called when working with the object.
Using their own data or data passed as parameters to the method, they manipulate information to yield a
result or perform an action.

 Methods declared as Public , Friend , or Protected in scope defi ne the interface of the class. Methods
that are Private in scope are available to the code only within the class itself, and can be used to provide

Creating Classes ❘ 105

106 ❘ chaPTer 2 oBJECts aNd Visual BasiC

structure and organization to code. As discussed earlier, the actual code within each method is called an
implementation, while the declaration of the method itself is what defines the interface.

Methods are simply routines that are coded within the class to implement the services you want to provide
to the users of an object. Some methods return values or provide information to the calling code. These are
called interrogative methods. Others, called imperative methods, just perform an action and return nothing
to the calling code.

In Visual Basic, methods are implemented using Sub (for imperative methods) or Function (for interrogative
methods) routines within the class module that defines the object. Sub routines may accept parameters, but
they do not return any result value when they are complete. Function routines can also accept parameters,
and they always generate a result value that can be used by the calling code.

A method declared with the Sub keyword is merely one that returns no value. Add the following code to the
Person class:

Public Sub Walk()

 ' implementation code goes here

End Sub

The Walk method presumably contains some code that performs some useful work when called but has no
result value to return when it is complete. To make use of this method, you might write code such as this:

Dim myPerson As New Person()
myPerson.Walk()

Once you’ve created an instance of the Person class, you can simply invoke the Walk method.

Methods That return Values
If you have a method that does generate some value that should be returned, you need to use the Function
keyword:

Public Function Age() As Integer
 Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))
End Function

Note that you must indicate the data type of the return value when you declare a function. This example
returns the calculated age as a result of the method. You can return any value of the appropriate data type
by using the Return keyword.

You can also return the value without using the Return keyword by setting the value of the function name
itself:

Public Function Age() As Integer
 Age = CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))
End Function

This is functionally equivalent to the previous code. Either way, you can use this method with code similar
to the following:

Dim myPerson As New Person()
Dim age As Integer

age = myPerson.Age()

The Age method returns an Integer data value that you can use in the program as required; in this case,
you’re just storing it in a variable.

indicating Method scope
Adding the appropriate keyword in front of the method declaration indicates the scope:

Public Sub Walk()

This indicates that Walk is a public method and thus is available to code outside the class and even outside
the current project. Any application that references the assembly can use this method. Being public, this
method becomes part of the object’s interface.

Alternately, you might restrict access to the method somewhat:

Friend Sub Walk()

By declaring the method with the Friend keyword, you are indicating that it should be part of the object’s
interface only for code inside the project; any other applications or projects that make use of the assembly
will not be able to call the Walk method.

The Private keyword indicates that a method is only available to the code within your particular class:

Private Function Age() As Integer

Private methods are very useful to help organize complex code within each class. Sometimes the methods
contain very lengthy and complex code. In order to make this code more understandable, you may choose
to break it up into several smaller routines, having the main method call these routines in the proper order.
Moreover, you can use these routines from several places within the class, so by making them separate
methods, you enable reuse of the code. These subroutines should never be called by code outside the object,
so you make them Private.

Method Parameters
You will often want to pass information into a method as you call it. This information is provided via
parameters to the method. For instance, in the Person class, you may want the Walk method to track
the distance the person walks over time. In such a case, the Walk method would need to know how far the
person is to walk each time the method is called. The following code is the full version Person class:

Public Class Person
 Private mName As String
 Private mBirthDate As Date
 Private mTotalDistance As Integer
 Public Sub Walk(ByVal distance As Integer)
 mTotalDistance += distance
 End Sub
 Public Function Age() As Integer
 Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))
 End Function
End Class

Code snippet from Person

With this implementation, a Person object sums all of the distances walked over time. Each time the Walk
method is called, the calling code must pass an Integer value, indicating the distance to be walked. The
code to call this method would be similar to the following:

Dim myPerson As New Person()
myPerson.Walk(12)

The parameter is accepted using the ByVal keyword, which indicates that the parameter value is a copy
of the original value, whereas the ByRef creates a reference to the object. This is the default way in which
Visual Basic accepts all parameters. Typically, this is desirable because it means that you can work with the
parameter inside the code, changing its value with no risk of accidentally changing the original value in
the calling code.

If you do want to be able to change the value in the calling code, you can change the declaration to pass the
parameter by reference by using the ByRef qualifier:

Public Sub Walk(ByRef distance As Integer)

In this case, you get a reference (or pointer) back to the original value, rather than a copy. This means that
any change you make to the distance parameter is reflected back in the calling code, very similar to the way
object references work, as discussed earlier in this chapter.

Creating Classes ❘ 107

108 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Properties
The .NET environment provides for a specialized type of method called a property. A property is a method
specifically designed for setting and retrieving data values. For instance, you declared a variable in the
Person class to contain a name, so the Person class may include code to allow that name to be set and
retrieved. This can be done using regular methods:

Public Sub SetName(ByVal name As String)
 mName = name
End Sub

Public Function GetName() As String
 Return mName
End Function

Code snippet from Person

Using methods like these, you write code to interact with the object:

Dim myPerson As New Person()

myPerson.SetName("Jones")
Messagebox.Show(myPerson.GetName())

While this is perfectly acceptable, it is not as nice as it could be with the use of a property. A Property style
method consolidates the setting and retrieving of a value into a single structure, and makes the code within
the class smoother overall. You can rewrite these two methods into a single property. Add the following
code to the Person class:

Public Property Name() As String
 Get
 Return _Name
 End Get
 Set(ByVal Value As String)
 _Name = Value
 End Set
End Property

Code snippet from Person

With the introduction of Visual Studio 2010, the code above can be represented in a much simplier manner:

Public Property Name() As String

This method of defining a property actually creates a field called _Name which is not defined in the code,
but by compiler. For most properties where you are not calculating a value during the get or set, this is the
easiest way to define it.

By using a property method instead, you can make the client code much more readable:

Dim myPerson As New Person()

myPerson.Name = "Jones"
Messagebox.Show(myPerson.Name)

The Property method is declared with both a scope and a data type:

Public Property Name() As String

In this example, you’ve declared the property as Public in scope, but it can be declared using the same
scope options as any other method — Public, Friend, Private, or Protected.

The return data type of this property is String. A property can return virtually any data type appropriate
for the nature of the value. In this regard, a property is very similar to a method declared using the
Function keyword.

Though a Property method is a single structure, it is divided into two parts: a getter and a setter. The
getter is contained within a Get…End Get block and is responsible for returning the value of the property
on demand:

Get
 Return mName
End Get

Though the code in this example is very simple, it could be more complex, perhaps calculating the value
to be returned, or applying other business logic to change the value as it is returned. Likewise, the code to
change the value is contained within a Set…End Set block:

Set(ByVal Value As String)
 mName = Value
End Set

The Set statement accepts a single parameter value that stores the new value. The code in the block can
then use this value to set the property’s value as appropriate. The data type of this parameter must match
the data type of the property itself. Declaring the parameter in this manner enables you to change the name
of the variable used for the parameter value if needed.

By default, the parameter is named Value, but you can change the parameter name to something else, as
shown here:

Set(ByVal NewName As String)
 mName = NewName
End Set

In many cases, you can apply business rules or other logic within this routine to ensure that the new value
is appropriate before you actually update the data within the object. It is also possible to restrict the Get or
Set block to be narrower in scope than the scope of the property itself. For instance, you may want to allow
any code to retrieve the property value, but only allow other code in your project to alter the value. In this
case, you can restrict the scope of the Set block to Friend, while the Property itself is scoped as Public:

 Public Property Name() As String
 Get
 Return mName
 End Get
 Friend Set(ByVal Value As String)
 mName = Value
 End Set
 End Property

Code snippet from Person

The new scope must be more restrictive than the scope of the property itself, and either the Get or Set block
can be restricted, but not both. The one you do not restrict uses the scope of the Property method.

Parameterized Properties
The Name property you created is an example of a single-value property. You can also create property arrays
or parameterized properties. These properties reflect a range, or array, of values. For example, people often
have several phone numbers. You might implement a PhoneNumber property as a parameterized property,
storing not only phone numbers, but also a description of each number. To retrieve a specific phone number
you would write code such as the following:

Dim myPerson As New Person()

Dim homePhone As String
homePhone = myPerson.Phone("home")

Code snippet from Person

Creating Classes ❘ 109

110 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Or, to add or change a specific phone number, you’d write the following code:

myPerson.Phone("work") = "555-9876"

Not only are you retrieving and updating a phone number property, you are also updating a specific phone
number. This implies a couple of things. First, you can no longer use a simple variable to hold the
phone number, as you are now storing a list of numbers and their associated names. Second, you have
effectively added a parameter to your property. You are actually passing the name of the phone number
as a parameter on each property call.

To store the list of phone numbers, you can use the Hashtable class. The Hashtable is very similar to the
standard VB Collection object, but it is more powerful — allowing you to test for the existence of a specific
element. Add the following declaration to the Person class:

Public Class Person
 Public Property Name As String
 Public Property BirthDate As Date
 Public Property TotalDistance As Integer
 Public Property Phones As New Hashtable

Code snippet from Person

You can implement the Phone property by adding the following code to the Person class:

Public Property Phone(ByVal location As String) As String
 Get
 Return CStr(Phones.Item(Location))
 End Get
 Set(ByVal Value As String)
 If Phones.ContainsKey(location) Then
 Phones.Item(location) = Value
 Else
 Phones.Add(location, Value)
 End If
 End Set
End Property

Code snippet from Person

The declaration of the Property method itself is a bit different from what you have seen:

Public Property Phone(ByVal location As String) As String

In particular, you have added a parameter, location, to the property itself. This parameter will act as the
index into the list of phone numbers, and must be provided when either setting or retrieving phone number
values.

Because the location parameter is declared at the Property level, it is available to all code within the
property, including both the Get and Set blocks. Within your Get block, you use the location parameter
to select the appropriate phone number to return from the Hashtable:

Get
 Return Phones.Item(location)
End Get

With this code, if no value is stored matching the location, then you get a trappable runtime error.

Similarly, in the Set block, you use the location to update or add the appropriate element in the Hashtable.
In this case, you are using the ContainsKey method of Hashtable to determine whether the phone number
already exists in the list. If it does, then you simply update the value in the list; otherwise, you add a new
element to the list for the value:

Set(ByVal Value As String)
 If Phones.ContainsKey(location) Then
 Phones.Item(location) = Value
 Else

 Phones.Add(location, Value)
 End If
End Set

Code snippet from Person

This way, you are able to add or update a specific phone number entry based on the parameter passed by the
calling code.

read-only Properties
Sometimes you may want a property to be read-only, so that it cannot be changed. In the Person class,
for instance, you may have a read-write property, BirthDate, and a read-only property, Age. If so, the
BirthDate property is a normal property, as follows:

Public Property BirthDate() As Date

Code snippet from Person

The Age value, conversely, is a derived value based on BirthDate. This is not a value that should ever be
directly altered, so it is a perfect candidate for read-only status.

You already have an Age method implemented as a function. Remove that code from the Person class
because you will replace it with a Property routine instead. The difference between a function routine and
a ReadOnly property is quite subtle. Both return a value to the calling code, and either way the object is
running a subroutine defined by the class module to return the value.

The difference is less a programmatic one than a design choice. You could create all your objects without
any Property routines at all, just using methods for all interactions with the objects. However, Property
routines are obviously attributes of an object, whereas a Function might be an attribute or a method. By
carefully implementing all attributes as ReadOnly Property routines, and any interrogative methods as
Function routines, you create more readable and understandable code.

To make a property read-only, use the ReadOnly keyword and only implement the Get block:

Public ReadOnly Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, mBirthDate, Now()))
 End Get
End Property

Because the property is read-only, you will get a syntax error if you attempt to implement a Set block.

Write-only Properties
As with read-only properties, sometimes a property should be write-only, whereby the value can be changed
but not retrieved.

Many people have allergies, so perhaps the Person object should have some understanding of the ambient
allergens in the area. This is not a property that should be read from the Person object, as allergens come
from the environment, rather than from the person, but it is data that the Person object needs in order to
function properly. Add the following variable declaration to the class:

Public Class Person
 Public Property Name As String
 Public Property BirthDate As Date
 Public Property TotalDistance As Integer
 Public Property Phones As New Hashtable
 Public WriteOnly Property Allergens As Integer

Code snippet from Person

Creating Classes ❘ 111

112 ❘ chaPTer 2 oBJECts aNd Visual BasiC

You can implement an AmbientAllergens property as follows:

Public WriteOnly Property AmbientAllergens() As Integer
 Set(ByVal Value As Integer)
 mAllergens = Value
 End Set
End Property

Code snippet from Person

To create a write-only property, use the WriteOnly keyword and only implement a Set block in the code.
Because the property is write-only, you will get a syntax error if you try to implement a Get block.

The Default Property
Objects can implement a default property, which can be used to simplify the use of an object at times by making
it appear as if the object has a native value. A good example of this behavior is the Collection object, which has
a default property called Item that returns the value of a specific item, allowing you to write the following:

Dim mData As New HashTable()

Return mData(index)

Default properties must be parameterized properties. A property without a parameter cannot be marked as
the default. This is a change from previous versions of Visual Basic, in which any property could be marked
as the default.

Our Person class has a parameterized property — the Phone property you built earlier. You can make this
the default property by using the Default keyword:

 Default Public Property Phone(ByVal location As String) As String
 Get
 Return CStr(mPhones.Item(location))
 End Get
 Set(ByVal Value As String)
 If mPhones.ContainsKey(location) Then
 mPhones.Item(location) = Value
 Else
 mPhones.Add(location, Value)
 End If
 End Set
 End Property

Code snippet from Person

Prior to this change, you would have needed code such as the following to use the Phone property:

Dim myPerson As New Person()

MyPerson.Phone("home") = "555-1234"

Now, with the property marked as Default, you can simplify the code:

myPerson("home") = "555-1234"

As you can see, the reference to the property name Phone is not needed. By picking appropriate default
properties, you can potentially make the use of objects more intuitive.

events
Both methods and properties enable you to write code that interacts with your objects by invoking specific
functionality as needed. It is often useful for objects to provide notification as certain activities occur during
processing. You see examples of this all the time with controls, where a button indicates that it was clicked
via a Click event, or a text box indicates that its contents have been changed via the TextChanged event.

 Objects can raise events of their own, providing a powerful and easily implemented mechanism by
which objects can notify client code of important activities or events. In Visual Basic, events are provided
using the standard .NET mechanism of delegates; but before discussing delegates, let ’ s explore how to work
with events in Visual Basic.

 handling events
 We are all used to seeing code in a form to handle the Click event of a button, such as the following code:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

 Typically, we write our code in this type of routine without paying a lot of attention to the code created
by the Visual Studio IDE. However, let ’ s take a second look at that code, which contains some important
things to note.

 First, notice the use of the Handles keyword. This keyword specifi cally indicates that this method will
be handling the Click event from the Button1 control. Of course, a control is just an object, so what is
indicated here is that this method will be handling the Click event from the Button1 object.

 Second, notice that the method accepts two parameters. The Button control class defi nes these parameters.
It turns out that any method that accepts two parameters with these data types can be used to handle the
 Click event. For instance, you could create a new method to handle the event:

Private Sub MyClickMethod(ByVal s As System.Object, _
 ByVal args As System.EventArgs) Handles Button1.Click

End Sub

 Code snippet from Form1

 Even though you have changed the method name and the names of the parameters, you are still accepting
parameters of the same data types, and you still have the Handles clause to indicate that this method
handles the event.

 handling multiple events
 The Handles keyword offers even more fl exibility. Not only can the method name be anything you choose,
a single method can handle multiple events if you desire. Again, the only requirement is that the method and
all the events being raised must have the same parameter list.

 This explains why all the standard events raised by the .NET system class library have
exactly two parameters — the sender and an EventArgs object. Being so generic makes
it possible to write very generic and powerful event handlers that can accept virtually
any event raised by the class library.

 One common scenario where this is useful is when you have multiple instances of an object that raises
events, such as two buttons on a form:

Private Sub MyClickMethod(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click, Button2.Click

End Sub

 Code snippet from Form1

Creating Classes ❘ 113

114 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Notice that the Handles clause has been modified so that it has a comma-separated list of events to handle.
Either event will cause the method to run, providing a central location for handling these events.

The Withevents Keyword
The WithEvents keyword tells Visual Basic that you want to handle any events raised by the object within
the code:

Friend WithEvents Button1 As System.Windows.Forms.Button

The WithEvents keyword makes any event from an object available for use, whereas the Handles keyword
is used to link specific events to the methods so that you can receive and handle them. This is true not only
for controls on forms, but also for any objects that you create.

The WithEvents keyword cannot be used to declare a variable of a type that does not raise events. In other
words, if the Button class did not contain code to raise events, you would get a syntax error when you
attempted to declare the variable using the WithEvents keyword.

The compiler can tell which classes will and will not raise events by examining their interface. Any class
that will be raising an event has that event declared as part of its interface. In Visual Basic, this means that
you will have used the Event keyword to declare at least one event as part of the interface for the class.

raising events
Your objects can raise events just like a control, and the code using the object can receive these events by
using the WithEvents and Handles keywords. Before you can raise an event from your object, however, you
need to declare the event within the class by using the Event keyword.

In the Person class, for instance, you may want to raise an event anytime the Walk method is called. If you
call this event Walked, you can add the following declaration to the Person class:

Public Class Person
 Private msName As String
 Private mBirthDate As Date
 Private mTotalDistance As Integer
 Private mPhones As New Hashtable()
 Private mAllergens As Integer
 Public Event Walked()

Code snippet from Person

Events can also have parameters, values that are provided to the code receiving the event. A typical button’s
Click event receives two parameters, for instance. In the Walked method, perhaps you want to also indicate
the distance that was walked. You can do this by changing the event declaration:

 Public Event Walked(ByVal distance As Integer)

Now that the event is declared, you can raise that event within the code where appropriate. In this case,
you’ll raise it within the Walk method, so anytime a Person object is instructed to walk, it fires an event
indicating the distance walked. Make the following change to the Walk method:

Public Sub Walk(ByVal distance As Integer)
 mTotalDistance += distance
 RaiseEvent Walked(distance)
End Sub

Code snippet from Person

The RaiseEvent keyword is used to raise the actual event. Because the event requires a parameter, that
value is passed within parentheses and is delivered to any recipient that handles the event.

In fact, the RaiseEvent statement causes the event to be delivered to all code that has the object declared
using the WithEvents keyword with a Handles clause for this event, or any code that has used the
AddHandler method. The AddHandler method is discussed shortly.

If more than one method will be receiving the event, then the event is delivered to each recipient one at
a time. By default, the order of delivery is not defined — meaning you can’t predict the order in which
the recipients receive the event — but the event is delivered to all handlers. Note that this is a serial,
synchronous process. The event is delivered to one handler at a time, and it is not delivered to the next
handler until the current handler is complete. Once you call the RaiseEvent method, the event is delivered
to all listeners one after another until it is complete; there is no way for you to intervene and stop the
process in the middle.

declaring and raising custom events
As just noted, by default you have no control over how events are raised. You can overcome this limitation
by using a more explicit form of declaration for the event itself. Rather than use the simple Event keyword,
you can declare a custom event. This is for more advanced scenarios, as it requires you to provide the
implementation for the event itself.

The concept of delegates is covered in detail later in this chapter, but it is necessary to look at them briefly
here in order to declare a custom event. A delegate is a definition of a method signature. When you declare
an event, Visual Basic defines a delegate for the event behind the scenes based on the signature of the event.
The Walked event, for instance, has a delegate like the following:

Public Delegate Sub WalkedEventHandler(ByVal distance As Integer)

Notice how this code declares a “method” that accepts an Integer and has no return value. This is exactly
what you defined for the event. Normally, you do not write this bit of code, because Visual Basic does it
automatically; but if you want to declare a custom event, then you need to manually declare the event delegate.

You also need to declare within the class a variable where you can keep track of any code that is listening
for, or handling, the event. It turns out that you can tap into the prebuilt functionality of delegates for this
purpose. By declaring the WalkedEventHandler delegate, you have defined a data type that automatically
tracks event handlers, so you can declare the variable like this:

Private mWalkedHandlers As WalkedEventHandler

You can use the preceding variable to store and raise the event within the custom event declaration:

 Public Custom Event Walked As WalkedEventHandler
 AddHandler(ByVal value As WalkedEventHandler)
 mWalkedHandlers = _
 CType([Delegate].Combine(mWalkedHandlers, value), WalkedEventHandler)
 End AddHandler

 RemoveHandler(ByVal value As WalkedEventHandler)
 mWalkedHandlers = _
 CType([Delegate].Remove(mWalkedHandlers, value), WalkedEventHandler)
 End RemoveHandler

 RaiseEvent(ByVal distance As Integer)
 If mWalkedHandlers IsNot Nothing Then
 mWalkedHandlers.Invoke(distance)
 End If
 End RaiseEvent
 End Event

Code snippet from Person

In this case, you have used the Custom Event key phrase, rather than just Event to declare the event.
A Custom Event declaration is a block structure with three sub-blocks: AddHandler, RemoveHandler,
and RaiseEvent.

Creating Classes ❘ 115

116 ❘ chaPTer 2 oBJECts aNd Visual BasiC

The AddHandler block is called anytime a new handler wants to receive the event. The parameter passed to
this block is a reference to the method that will be handling the event. It is up to you to store the reference
to that method, which you can do however you choose. In this implementation, you are storing it within the
delegate variable, just like the default implementation provided by Visual Basic.

The RemoveHandler block is called anytime a handler wants to stop receiving your event. The parameter
passed to this block is a reference to the method that was handling the event. It is up to you to remove the
reference to the method, which you can do however you choose. In this implementation, you are replicating
the default behavior by having the delegate variable remove the element.

Finally, the RaiseEvent block is called anytime the event is raised. Typically, it is invoked when code within
the class uses the RaiseEvent statement. The parameters passed to this block must match the parameters
declared by the delegate for the event. It is up to you to go through the list of methods that are handling the
event and call each of those methods. In the example shown here, you are allowing the delegate variable to
do that for you, which is the same behavior you get by default with a normal event.

The value of this syntax is that you could opt to store the list of handler methods in a different type of data
structure, such as a Hashtable or collection. You could then invoke them asynchronously, or in a specific
order based on some other behavior required by the application.

receiving events with Withevents
Now that you have implemented an event within the Person class, you can write client code to declare an
object using the WithEvents keyword. For instance, in the project’s Form1 code module, you can write the
following code:

Public Class Form1
 Private WithEvents mPerson As Person

By declaring the variable WithEvents, you are indicating that you want to receive any events raised by this
object. You can also choose to declare the variable without the WithEvents keyword, although in that case
you would not receive events from the object as described here. Instead, you would use the AddHandler
method, which is discussed after WithEvents.

You can then create an instance of the object, as the form is created, by adding the following code:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 mPerson = New Person()

End Sub

Code snippet from Form1

At this point, you have declared the object variable using WithEvents and have created an instance of the
Person class, so you actually have an object with which to work. You can now proceed to write a method
to handle the Walked event from the object by adding the following code to the form. You can name this
method anything you like; it is the Handles clause that is important because it links the event from the
object directly to this method, so it is invoked when the event is raised:

Private Sub OnWalk(ByVal distance As Integer) Handles mPerson.Walked
 MsgBox("Person walked " & distance)
End Sub

You are using the Handles keyword to indicate which event should be handled by this method. You are also
receiving an Integer parameter. If the parameter list of the method doesn’t match the list for the event,
then you’ll get a compiler error indicating the mismatch.

Finally, you need to call the Walk method on the Person object. Add a button to the form and write the
following code for its Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button1.Click

 mPerson.Walk(42)

End Sub

 Code snippet from Form1

 When the button is clicked, you simply call the Walk method,
passing an Integer value. This causes the code in your class
to be run, including the RaiseEvent statement. The result is
an event fi ring back into the form, because you declared the
 mPerson variable using the WithEvents keyword. The OnWalk
method will be run to handle the event, as it has the Handles
clause linking it to the event.

 Figure 2 - 15 illustrates the fl ow of control, showing how the code
in the button ’ s Click event calls the Walk method, causing it to
add to the total distance walked and then raise its event. The
 RaiseEvent causes the form ’ s OnWalk method to be invoked; and
once it is done, control returns to the Walk method in the object.
Because you have no code in the Walk method after you call
 RaiseEvent , the control returns to the Click event back in the
form, and then you are done.

 Many people assume that events use multiple threads to do their work. This is not the
case. Only one thread is involved in the process. Raising an event is like making a method
call, as the existing thread is used to run the code in the event handler. Therefore, the
application ’ s processing is suspended until the event processing is complete.

Button1_Click()

Form1.OnWalk

Button1_Click()

Person.Walk()
Add distance

Person.Walk()
RaiseEvent

 figure 2 - 15

 receiving events with addhandler
 Now that you have seen how to receive and handle events using the WithEvents and Handles keywords,
consider an alternative approach. You can use the AddHandler method to dynamically add event handlers
through your code, and RemoveHandler to dynamically remove them.

 WithEvents and the Handles clause require that you declare both the object variable and event handler
as you build the code, effectively creating a linkage that is compiled right into the code. AddHandler ,
conversely, creates this linkage at runtime, which can provide you with more fl exibility. However, before
getting too deeply into that, let ’ s see how AddHandler works.

 In Form1 , you can change the way the code interacts with the Person object, fi rst by eliminating the
 WithEvents keyword:

Private mPerson As Person

 And then by also eliminating the Handles clause:

Private Sub OnWalk(ByVal distance As Integer)
 MsgBox("Person walked " & distance)
End Sub

Creating Classes ❘ 117

118 ❘ chaPTer 2 oBJECts aNd Visual BasiC

With these changes, you’ve eliminated all event handling for the object, and the form will no longer receive
the event, even though the Person object raises it.

Now you can change the code to dynamically add an event handler at runtime by using the AddHandler
method. This method simply links an object’s event to a method that should be called to handle that event.
Anytime after you have created the object, you can call AddHandler to set up the linkage:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 mPerson = New Person()
 AddHandler mPerson.Walked, AddressOf OnWalk
 End Sub

Code snippet from Form1

This single line of code does the same thing as the earlier use of WithEvents and the Handles clause,
causing the OnWalk method to be invoked when the Walked event is raised from the Person object.

However, this linkage is performed at runtime, so you have more control over the process than you would
have otherwise. For instance, you could have extra code to determine which event handler to link up.
Suppose that you have another possible method to handle the event for cases when a message box is not
desirable. Add this code to Form1:

Private Sub LogOnWalk(ByVal distance As Integer)
 System.Diagnostics.Debug.WriteLine("Person walked " & distance)
End Sub

Rather than pop up a message box, this version of the handler logs the event to the output window in the
IDE. Now you can enhance the AddHandler code to determine which handler should be used dynamically
at runtime:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 mPerson = New Person()
 If Microsoft.VisualBasic.Command = "nodisplay" Then
 AddHandler mPerson.Walked, AddressOf LogOnWalk
 Else
 AddHandler mPerson.Walked, AddressOf OnWalk
 End If
End Sub

Code snippet from Form1

If the word “nodisplay” is on the command line when the application is run, then the new version of the
event handler is used; otherwise, you continue to use the message-box handler.

The counterpart to AddHandler is RemoveHandler. RemoveHandler is used to detach an event handler from
an event. One example of when this is useful is if you ever want to set the mPerson variable to Nothing or
to a new Person object. The existing Person object has its events attached to handlers, and before you get
rid of the reference to the object, you must release those references:

If Microsoft.VisualBasic.Command = "nodisplay" Then
 RemoveHandler mPerson.Walked, AddressOf LogOnWalk
Else
 RemoveHandler mPerson.Walked, AddressOf OnWalk
End If
mPerson = New Person

Code snippet from Form1

If you do not detach the event handlers, the old Person object remains in memory because each event
handler still maintains a reference to the object even after mPerson no longer points to the object.

This illustrates one key reason why the WithEvents keyword and Handles clause are preferable in most
cases. AddHandler and RemoveHandler must be used in pairs; failure to do so can cause memory leaks in
the application, whereas the WithEvents keyword handles these details for you automatically.

constructor methods
In Visual Basic, classes can implement a special method that is always invoked as an object is being created.
This method is called the constructor, and it is always named New.

The constructor method is an ideal location for such initialization code, as it is always run before any other
methods are ever invoked, and it is only run once for an object. Of course, you can create many objects
based on a class, and the constructor method will be run for each object that is created.

You can implement a constructor in your classes as well, using it to initialize objects as needed. This is as
easy as implementing a Public method named New. Add the following code to the Person class:

Public Sub New()
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
End Sub

Code snippet from Person

In this example, you are simply using the constructor method to initialize the home and work phone
numbers for any new Person object that is created.

Parameterized Constructors
You can also use constructors to enable parameters to be passed to the object as it is being created. This is done
by simply adding parameters to the New method. For example, you can change the Person class as follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)
 mName = name
 mBirthDate = birthDate
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
End Sub

Code snippet from Person

With this change, anytime a Person object is created, you will be provided with values for both the name
and birth date. However, this changes how you can create a new Person object. Whereas you used to have
code such as

Dim myPerson As New Person()

now you will have code such as

Dim myPerson As New Person("Bill", "1/1/1970")

In fact, because the constructor expects these values, they are mandatory — any code that needs to create
an instance of the Person class must provide these values. Fortunately, there are alternatives in the form
of optional parameters and method overloading (which enables you to create multiple versions of the same
method, each accepting a different parameter list). These topics are discussed later in the chapter.

Termination and cleanup
In the .NET environment, an object is destroyed and the memory and resources it consumes are reclaimed
when there are no references remaining for the object. As discussed earlier in the chapter, when you are
using objects, the variables actually hold a reference or pointer to the object itself. If you have code such as

Dim myPerson As New Person()

Creating Classes ❘ 119

120 ❘ chaPTer 2 oBJECts aNd Visual BasiC

you know that the myPerson variable is just a reference to the Person object you created. If you also have
code like

Dim anotherPerson As Person
anotherPerson = myPerson

you know that the anotherPerson variable is also a reference to the same object. This means that this
specifi c Person object is being referenced by two variables.

 When there are no variables left to reference an object, it can be terminated by the .NET runtime environment.
In particular, it is terminated and reclaimed by a mechanism called garbage collection , or the garbage
collector , covered in detail in Chapter 4.

 Unlike other runtime environments, the .NET runtime does not use reference counting
to determine when an object should be terminated. Instead, it uses garbage collection
to terminate objects. This means that in Visual Basic you do not have deterministic
fi nalization, so it is not possible to predict exactly when an object will be destroyed.

 Let ’ s review how you can eliminate references to an object. You can explicitly remove a reference by setting
the variable equal to Nothing , with the following code:

myPerson = Nothing

 You can also remove a reference to an object by changing the variable to reference a different object.
Because a variable can only point to one object at a time, it follows naturally that changing a variable to
point at another object must cause it to no longer point to the fi rst one. This means that you can have code
such as the following:

myPerson = New Person()

 This causes the variable to point to a brand - new object, thus releasing this reference to the prior object.
These are examples of explicit dereferencing .

 Visual Basic also provides facilities for implicit dereferencing of objects when a variable goes out of scope.
For instance, if you have a variable declared within a method, then when that method completes, the
variable is automatically destroyed, thus dereferencing any object to which it may have pointed. In fact,
anytime a variable referencing an object goes out of scope, the reference to that object is automatically
eliminated. This is illustrated by the following code:

Private Sub DoSomething()
 Dim myPerson As Person

 myPerson = New Person()
End Sub

 Code snippet from Form1

 Even though the preceding code does not explicitly set the value of myPerson to Nothing , you know that
the myPerson variable will be destroyed when the method is complete because it will fall out of scope. This
process implicitly removes the reference to the Person object created within the routine.

 Of course, another scenario in which objects become dereferenced is when the application itself completes and
is terminated. At that point, all variables are destroyed, so, by defi nition, all object references go away as well.

 adVanced concePTs
 So far, you have learned how to work with objects, how to create classes with methods, properties, and
events, and how to use constructors. You have also learned how objects are destroyed within the .NET
environment and how you can hook into that process to do any cleanup required by the objects.

 Now you can move on to some more complex topics and variations on what has been discussed so far.
First you ’ ll look at some advanced variations of the methods you can implement in classes, including an
exploration of the underlying technology behind events.

 overloading methods
 Methods often accept parameter values. The Person object ’ s Walk method, for instance, accepts an
 Integer parameter:

Public Sub Walk(ByVal distance As Integer)
 mTotalDistance += distance
 RaiseEvent Walked(distance)
End Sub

 Code snippet from Person

 Sometimes there is no need for the parameter. To address this, you can use the Optional keyword to make
the parameter optional:

Public Sub Walk(Optional ByVal distance As Integer = 0)
 mTotalDistance += distance
 RaiseEvent Walked(distance)
End Sub

 Code snippet from Person

 This does not provide you with a lot of fl exibility, however, as the optional parameter or parameters must
always be the last ones in the list. In addition, this merely enables you to pass or not pass the parameter.
Suppose that you want to do something fancier, such as allow different data types or even entirely different
lists of parameters.

 Method overloading provides exactly those capabilities. By overloading methods, you can create several
methods of the same name, with each one accepting a different set of parameters, or parameters of different
data types.

 As a simple example, instead of using the Optional keyword in the Walk method, you could use
overloading. You keep the original Walk method, but you also add another Walk method that accepts a
different parameter list. Change the code in the Person class back to the following:

Public Sub Walk(ByVal distance As Integer)
 mTotalDistance += distance
 RaiseEvent Walked(distance)
End Sub

 Code snippet from Person

 Now create another method with the same name but with a different parameter list (in this case, no
parameters). Add this code to the class, without removing or changing the existing Walk method:

Public Sub Walk()
 RaiseEvent Walked(0)
End Sub

 Code snippet from Person

 At this point, you have two Walk methods. The only way to tell them apart is by the list of parameters each
accepts: the fi rst requiring a single Integer parameter, the second having no parameter.

 There is an Overloads keyword as well. This keyword is not needed for the simple
overloading of methods described here, but it is required when combining overloading
and inheritance, which is discussed in Chapter 3.

advanced Concepts ❘ 121

122 ❘ chaPTer 2 oBJECts aNd Visual BasiC

You can call the Walk method either with or without a parameter, as shown in the following examples:

objPerson.Walk(42)
objPerson.Walk()

You can have any number of Walk methods in the class as long as each individual Walk method has a
different method signature.

Method signatures
All methods have a signature, which is defined by the method name and the data types of its parameters:

Public Function CalculateValue() As Integer

End Sub

In this example, the signature is f(). The letter f is often used to indicate a method or function. It is appropriate
here because you do not care about the name of the function; only its parameter list is important.

If you add a parameter to the method, then the signature is considered changed. For instance, you could
change the method to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

In that case, the signature of the method is f(Double).

Notice that in Visual Basic the return value is not part of the signature. You cannot overload a function
routine by just having its return value’s data type vary. It is the data types in the parameter list that must
vary to utilize overloading.

Also note that the name of the parameter is totally immaterial; only the data type is important. This means
that the following methods have identical signatures:

Public Sub DoWork(ByVal x As Integer, ByVal y As Integer)

Public Sub DoWork(ByVal value1 As Integer, ByVal value2 As Integer)

In both cases, the signature is f(Integer, Integer).

The data types of the parameters define the method signature, but whether the parameters are passed ByVal
or ByRef does not. Changing a parameter from ByVal to ByRef will not change the method signature.

Combining overloading and optional Parameters
Overloading is more flexible than using optional parameters, but optional parameters have the advantage
that they can be used to provide default values, as well as make a parameter optional.

You can combine the two concepts: overloading a method and having one or more of those methods utilize
optional parameters. Obviously, this sort of thing can become very confusing if overused, as you are
employing two types of method “overloading” at the same time.

The Optional keyword causes a single method to effectively have two signatures. This means that a method
declared as

Public Sub DoWork(ByVal x As Integer, Optional ByVal y As Integer = 0)

has two signatures at once: f(Integer, Integer) and f(Integer).

Because of this, when you use overloading along with optional parameters, the other overloaded methods
cannot match either of these two signatures. However, as long as other methods do not match either
signature, you can use overloading, as discussed earlier. For instance, you could implement methods with
the signatures

Public Sub DoWork(ByVal x As Integer, Optional ByVal y As Integer = 0)

and

Public Sub DoWork(ByVal data As String)

because there are no conflicting method signatures. In fact, with these two methods, you have actually
created three signatures:

f(Integer, Integer) ➤

f(Integer) ➤

f(String) ➤

The IntelliSense built into the Visual Studio IDE will indicate that you have two overloaded methods, one
of which has an optional parameter. This is different from creating three different overloaded methods to
match these three signatures, in which case the IntelliSense would list three variations on the method, from
which you could choose.

overloading constructor methods
In many cases, you may want the constructor to accept parameter values for initializing new objects, but
also want to have the capability to create objects without providing those values. This is possible through
method overloading, which is discussed later, or by using optional parameters.

Optional parameters on a constructor method follow the same rules as optional parameters for any other
Sub routine: They must be the last parameters in the parameter list, and you must provide default values for
the optional parameters.

For instance, you can change the Person class as shown here:

Public Sub New(Optional ByVal name As String = "", _
 Optional ByVal birthDate As Date = #1/1/1900#)
 mName = name
 mBirthDate = birthDate

 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
End Sub

Code snippet from Person

The preceding example changes both the Name and BirthDate parameters to be optional, and provides
default values for both of them. Now you have the option to create a new Person object with or without the
parameter values:

Dim myPerson As New Person("Bill", "1/1/1970")

or

Dim myPerson As New Person()

If you do not provide the parameter values, then the default values of an empty String and 1/1/1900 will be
used and the code will work just fine.

overloading the Constructor Method
You can combine the concept of a constructor method with method overloading to allow for different ways
of creating instances of the class. This can be a very powerful combination because it allows a great deal of
flexibility in object creation.

You have already explored how to use optional parameters in the constructor. Now let’s change the implementation
in the Person class to make use of overloading instead. Change the existing New method as follows:

Public Sub New(ByVal name As String, ByVal birthDate As Date)
 mName = name
 mBirthDate = birthDate
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
 End Sub

Code snippet from Person

advanced Concepts ❘ 123

124 ❘ chaPTer 2 oBJECts aNd Visual BasiC

With this change, you require the two parameter values to be supplied. Now add that second
implementation, as shown here:

Public Sub New()
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
End Sub

This second implementation accepts no parameters, meaning you can now create Person objects in two
different ways — either with no parameters or by passing the name and birth date:

Dim myPerson As New Person()

or

Dim myPerson As New Person("Fred", "1/11/60")

This type of capability is very powerful because it enables you to define the various ways in which
applications can create objects. In fact, the Visual Studio IDE considers this, so when you are typing the
code to create an object, the IntelliSense tooltip displays the overloaded variations on the method, providing
a level of automatic documentation for the class.

shared methods, Variables, and events
So far, all of the methods you have built or used have been instance methods, methods that require you to
have an actual instance of the class before they can be called. These methods have used instance variables
or member variables to do their work, which means that they have been working with a set of data that is
unique to each individual object.

With Visual Basic, you can create variables and methods that belong to the class, rather than to any specific
object. In other words, these variables and methods belong to all objects of a given class and are shared
across all the instances of the class.

You can use the Shared keyword to indicate which variables and methods belong to the class, rather than to
specific objects. For instance, you may be interested in knowing the total number of Person objects created
as the application is running — kind of a statistical counter.

shared Variables
Because regular variables are unique to each individual Person object, they do not enable you to easily
track the total number of Person objects ever created. However, if you had a variable that had a common
value across all instances of the Person class, you could use that as a counter. Add the following variable
declaration to the Person class:

Public Class Person
 Implements IDisposable
 Private Shared mCounter As Integer

By using the Shared keyword, you are indicating that this variable’s value should be shared across all
Person objects within your application. This means that if one Person object makes the value 42, then all
other Person objects will see the value as 42: It is a shared piece of data.

You can now use this variable within the code. For instance, you can add code to the constructor method,
New, to increment the variable so that it acts as a counter — adding 1 each time a new Person object is
created. Change the New methods as shown here:

Public Sub New()
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
 mCounter += 1
End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)

 mName = name
 mBirthDate = birthDate

 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
 mCounter += 1
End Sub

Code snippet from Person

The mCounter variable will now maintain a value indicating the total number of Person objects created
during the life of the application. You may want to add a property routine to allow access to this value by
writing the following code:

Public ReadOnly Property PersonCount() As Integer
 Get
 Return mCounter
 End Get
End Property

Code snippet from Form1

Note that you are creating a regular property that returns the value of a shared variable, which is perfectly
acceptable. As shown shortly, you could also create a shared property to return the value.

Now you could write code to use the class as follows:

Dim myPerson As Person
myPerson = New Person()
myPerson = New Person()
myPerson = New Person()

Messagebox.Show(myPerson.PersonCount)

Code snippet from Form1

The resulting display would show 3, because you’ve created three instances of the Person class. You would
also need to decrement the counter after the objects are destroyed.

shared Methods
You can share not only variables across all instances of a class, but also methods. Whereas a regular method
or property belongs to each specific object, a shared method or property is common across all instances of
the class. There are a couple of ramifications to this approach.

First, because shared methods do not belong to any specific object, they can’t access any instance variables
from any objects. The only variables available for use within a shared method are shared variables,
parameters passed into the method, or variables declared locally within the method itself. If you attempt to
access an instance variable within a shared method, you’ll get a compiler error.

In addition, because shared methods are actually part of the class, rather than any object, you can write
code to call them directly from the class without having to create an instance of the class first.

For instance, a regular instance method is invoked from an object:

Dim myPerson As New Person()

myPerson.Walk(42)

However, a shared method can be invoked directly from the class itself without having to declare an
instance of the class first:

Person.SharedMethod()

advanced Concepts ❘ 125

126 ❘ chaPTer 2 oBJECts aNd Visual BasiC

This saves the effort of creating an object just to invoke a method, and can be very appropriate for methods
that act on shared variables, or methods that act only on values passed in via parameters. You can also
invoke a shared method from an object, just like a regular method. Shared methods are flexible in that they
can be called with or without creating an instance of the class first.

To create a shared method, you again use the Shared keyword. For instance, the PersonCount property
created earlier could easily be changed to become a shared method instead:

Public Shared ReadOnly Property PersonCount() As Integer
 Get
 Return mCounter
 End Get
End Property

Code snippet from Form1

Because this property returns the value of a shared variable, it is perfectly acceptable for it to be
implemented as a shared method. With this change, you can now determine how many Person objects have
ever been created without having to actually create a Person object first:

Messagebox.Show(CStr(Person.PersonCount))

As another example, in the Person class you could create a method that compares the ages of two people.
Add a shared method with the following code:

Public Shared Function CompareAge(ByVal person1 As Person, _
 ByVal person2 As Person) As Boolean

 Return person1.Age > person2.Age
End Function

Code snippet from Form1

This method simply accepts two parameters — each a Person — and returns true if the first is older than
the second. Use of the Shared keyword indicates that this method doesn’t require a specific instance of the
Person class in order for you to use it.

Within this code, you are invoking the Age property on two separate objects, the objects passed as
parameters to the method. It is important to recognize that you’re not directly using any instance variables
within the method; rather, you are accepting two objects as parameters, and invoking methods on those
objects. To use this method, you can call it directly from the class:

If Person.CompareAge(myPerson1, myPerson2) Then

Alternately, you can also invoke it from any Person object:

Dim myPerson As New Person()

If myPerson.CompareAge(myPerson, myPerson2) Then

Either way, you’re invoking the same shared method, and you’ll get the same behavior, whether you call it
from the class or a specific instance of the class.

shared Properties
As with other types of methods, you can also have shared property methods. Properties follow the same
rules as regular methods. They can interact with shared variables but not member variables. They can also
invoke other shared methods or properties, but cannot invoke instance methods without first creating an
instance of the class. You can add a shared property to the Person class with the following code:

Public Shared ReadOnly Property RetirementAge() As Integer
 Get
 Return 62
 End Get
End Property

Code snippet from Person

This simply adds a property to the class that indicates the global retirement age for all people. To use this
value, you can simply access it directly from the class:

Messagebox.Show(Person.RetirementAge)

Alternately, you can access it from any Person object:

Dim myPerson As New Person()

Messagebox.Show(myPerson.RetirementAge)

Either way, you are invoking the same shared property.

shared events
As with other interface elements, events can also be marked as Shared. For instance, you could declare a
shared event in the Person class:

Public Shared Event NewPerson()

Shared events can be raised from both instance methods and shared methods. Regular events cannot be
raised by shared methods. Because shared events can be raised by regular methods, you can raise this one
from the constructors in the Person class:

Public Sub New()
 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
 mCounter += 1
 RaiseEvent NewPerson()
End Sub

Public Sub New(ByVal name As String, ByVal birthDate As Date)
 mName = Name
 mBirthDate = BirthDate

 Phone("home") = "555-1234"
 Phone("work") = "555-5678"
 mCounter += 1
 RaiseEvent NewPerson()
End Sub

Code snippet from Person

The interesting thing about receiving shared events is that you can get them from either an object, such as a
normal event, or from the class itself. For instance, you can use the AddHandler method in the form’s code
to catch this event directly from the Person class.

First, add a method to the form to handle the event:

Private Sub OnNewPerson()
 Messagebox.Show("new person " & Person.PersonCount)
End Sub

Then, in the form’s Load event, add a statement to link the event to this method:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 AddHandler Person.NewPerson, AddressOf OnNewPerson

 mPerson = New Person()
 If Microsoft.VisualBasic.Command = "nodisplay" Then
 AddHandler mPerson.Walked, AddressOf LogOnWalk
 Else

advanced Concepts ❘ 127

128 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 AddHandler mPerson.Walked, AddressOf OnWalk
 End If
End Sub

Code snippet from Form1

Notice that you are using the class, rather than any specific object in the AddHandler statement. You could
use an object as well, treating this like a normal event, but this illustrates how a class itself can raise an
event. When you run the application now, anytime a Person object is created you will see this event raised.

shared Constructor
A class can also have a Shared constructor:

Shared Sub New()

End Sub

Normal constructors are called when an instance of the class is created. The Shared constructor is called
only once during the lifetime of an application, immediately before any use of the class.

This means that the Shared constructor is called before any other Shared methods, and before any instances
of the class are created. The first time any code attempts to interact with any method on the class, or attempts
to create an instance of the class, the Shared constructor is invoked.

Because you never directly call the Shared constructor, it cannot accept any parameters. Moreover, because
it is a Shared method, it can only interact with Shared variables or other Shared methods in the class.

Typically, a Shared constructor is used to initialize Shared fields within an object. In the Person class, for
instance, you can use it to initialize the mCount variable:

Shared Sub New()
 mCount = 0
End Sub

Because this method is called only once during the lifetime of the application, it is safe to do one-time
initializations of values in this constructor.

operator overloading
Many basic data types, such as Integer and String, support the use of operators, including +, −, =, <>, and
so forth. When you create a class, you are defining a new type, and sometimes it is appropriate for types to
also support the use of operators.

In your class, you can write code to define how each of these operators works when applied to objects.
What does it mean when two objects are added together? Or multiplied? Or compared? If you can define
what these operations mean, you can write code to implement appropriate behaviors. This is called operator
overloading, as you are overloading the meaning of specific operators.

Operator overloading is performed by using the Operator keyword, in much the same way that you create a
Sub, Function, or Property method.

Most objects at least provide for some type of comparison, and so will often overload the comparison
operators (=, <>, and maybe <, >, <=, and >=). You can do this in the Person class, for example, by adding
the following code:

 Public Shared Operator =(ByVal person1 As Person, _
 ByVal person2 As Person) As Boolean

 Return person1.Name = person2.Name
 End Operator

 Public Shared Operator <>(ByVal person1 As Person, _

 ByVal person2 As Person) As Boolean

 Return person1.Name <> person2.Name
 End Operator

Code snippet from Form1

Note that you overload both the = and <> operators. Many operators come in pairs, including the equality
operator. If you overload =, then you must overload <> or a compiler error will result. Now that you have
overloaded these operators, you can write code in Form1 such as the following:

 Dim p1 As New Person("Fred", #1/1/1960#)
 Dim p2 As New Person("Mary", #1/1/1980#)
 Dim p3 As Person = p1

 Debug.WriteLine(CStr(p1 = p2))
 Debug.WriteLine(CStr(p1 = p3))

Code snippet from Form1

Normally, it would be impossible to compare two objects using a simple comparison operator, but because
you overloaded the operator, this becomes valid code. The result will display False and True.

Both the = and <> operators accept two parameters, so these are called binary operators. There are also
unary operators that accept a single parameter. For instance, you might define the capability to convert a
String value into a Person object by overloading the CType operator:

 Public Shared Narrowing Operator CType(ByVal name As String) As Person
 Dim obj As New Person
 obj.Name = name
 Return obj
 End Operator

Code snippet from Form1

To convert a String value to a Person, you assume that the value should be the Name property. You create
a new object, set the Name property, and return the result. Because String is a broader, or less specific, type
than Person, this is a narrowing conversion. Were you to do the reverse, convert a Person to a String,
that would be a widening conversion:

 Public Shared Widening Operator CType(ByVal person As Person) As String
 Return person.Name
 End Operator

Few non-numeric objects will overload most operators. It is difficult to imagine the result of adding, subtracting,
or dividing two Customer objects against each other. Likewise, it is difficult to imagine performing bitwise
comparisons between two Invoice objects. Table 2-6 lists the various operators that can be overloaded.

TaBle 2-6: Visual Basic Operators

oPeraTors descriPTion

=, <> Equality and inequality . These are binary operators to support the a = b and a <> b syntax . If
you implement one, then you must implement both .

>, < Greater than and less than . These are binary operators to support the a > b and a < b
syntax . If you implement one, then you must implement both .

>=, <= Greater than or equal to and less than or equal to . These are binary operators to support the
a >= b and a <= b syntax . If you implement one, then you must implement both .

continues

advanced Concepts ❘ 129

130 ❘ chaPTer 2 oBJECts aNd Visual BasiC

If an operator is meaningful for your data type, then you are strongly encouraged to overload that operator.

Defining andalso and orelse
Notice that neither the AndAlso nor the OrElse operators can be directly overloaded. This is because these
operators use other operators behind the scenes to do their work. To overload AndAlso and OrElse, you
need to overload a set of other operators, as shown in the following table:

oPeraTors descriPTion

IsFalse,
IsTrue

Boolean conversion . These are unary operators to support the AndAlso and OrElse
statements . The IsFalse operator accepts a single object and returns False if the object
can be resolved to a False value . The IsTrue operator accepts a single value and returns
True if the object can be resolved to a True value . If you implement one, then you must
implement both .

CType Type conversion . This is a unary operator to support the CType(a) statement . The CType
operator accepts a single object of another type and converts that object to the type of your
class . This operator must be marked as either Narrowing, to indicate that the type is more
specific than the original type, or Widening, to indicate that the type is broader than the
original type .

+, - Addition and subtraction . These operators can be unary or binary . The unary form exists to
support the a += b and a −= b syntax, while the binary form exists to support a + b and a − b .

*, /, \, ^, Mod Multiplication, division, exponent, and Mod . These are binary operators to support the a * b,
a / b, a \ b, a ^ b, and a Mod b syntax .

& Concatenation . This binary operator supports the a & b syntax . While this operator is
typically associated with String manipulation, the & operator is not required to accept or
return String values, so it can be used for any concatenation operation that is meaningful
for your object type .

<<, >> Bit shifting . These binary operators support the a << b and a >> b syntax . The second
parameter of these operators must be a value of type Integer, which will be the integer
value to be bit-shifted based on your object value .

And, Or, Xor Logical comparison or bitwise operation . These binary operators support the a And b, a
Or b, and a Xor b syntax . If the operators return Boolean results, then they are performing
logical comparisons . If they return results of other data types, then they are performing
bitwise operations .

Like Pattern comparison . This binary operator supports the a Like b syntax .

TaBle 2-6 (continued)

andalso orelse

Overload the And operator to accept two parameters
of your object’s type and to return a result of your
object’s type .

Overload the Or operator to accept two parameters
of your object’s type and to return a result of your
object’s type .

Overload IsFalse for your object’s type (meaning
that you can return True or False by evaluating a
single instance of your object) .

Overload IsTrue for your object’s type (meaning that
you can return True or False by evaluating a single
instance of your object) .

If these operators are overloaded in your class, then you can use AndAlso and OrElse to evaluate statements
that involve instances of your class.

delegates
Sometimes it would be nice to be able to pass a procedure as a parameter to a method. The classic scenario
is when building a generic sort routine, for which you need to provide not only the data to be sorted, but
also a comparison routine appropriate for the specific data.

 It is easy enough to write a sort routine that sorts Person objects by name, or to write a sort routine that
sorts SalesOrder objects by sales date. However, if you want to write a sort routine that can sort any type
of object based on arbitrary sort criteria, that gets pretty diffi cult. At the same time, because some sort
routines can get very complex, it would be nice to reuse that code without having to copy and paste it for
each different sort scenario.

 By using delegates , you can create such a generic routine for sorting; and in so doing, you can see how
delegates work and can be used to create many other types of generic routines. The concept of a delegate
formalizes the process of declaring a routine to be called and calling that routine.

 The underlying mechanism used by the .NET environment for callback methods is
the delegate. Visual Basic uses delegates behind the scenes as it implements the Event ,
 RaiseEvent , WithEvents , and Handles keywords.

 Declaring a Delegate
 In your code, you can declare what a delegate procedure must look like from an interface standpoint. This is
done using the Delegate keyword. To see how this works, let ’ s create a routine to sort any kind of data.

 To do this, you will declare a delegate that defi nes a method signature for a method that compares the value
of two objects and returns a Boolean indicating whether the fi rst object has a larger value than the second
object. You will then create a sort algorithm that uses this generic comparison method to sort data. Finally,
you create an actual method that implements the comparison, and then you pass the method ’ s address to the
sort routine.

 Add a new module to the project by choosing Project ➪ Add Module. Name the module Sort.vb ,
click Add, and then add the following code:

Module Sort
 Public Delegate Function Compare(ByVal v1 As Object, ByVal v2 As Object) _
 As Boolean
End Module

 Code snippet from Sort

 This line of code does something interesting. It actually defi nes a method signature as a data type. This new
data type is named Compare , and it can be used within the code to declare variables or parameters that are
accepted by your methods. A variable or parameter declared using this data type could actually hold the
address of a method that matches the defi ned method signature, and you can then invoke that method by
using the variable.

 Any method with the following signature can be viewed as being of type Compare :

 f (Object, Object)

 Using the Delegate Data Type
 You can write a routine that accepts the delegate data type as a parameter, meaning that anyone calling
your routine must pass the address of a method that conforms to this interface. Add the following sort
routine to the code module Sort :

Public Sub DoSort(ByVal theData() As Object, ByVal greaterThan As Compare)
 Dim outer As Integer
 Dim inner As Integer
 Dim temp As Object

 For outer = 0 To UBound(theData)
 For inner = outer + 1 To UBound(theData)
 If greaterThan.Invoke(theData(outer), theData(inner)) Then
 temp = theData(outer)
 theData(outer) = theData(inner)

advanced Concepts ❘ 131

132 ❘ chaPTer 2 oBJECts aNd Visual BasiC

 theData(inner) = temp
 End If
 Next
 Next
End Sub

Code snippet from ObjectIntro\Sort.vb

The GreaterThan parameter is a variable that holds the address of a method matching the method signature
defined by the Compare delegate. The address of any method with a matching signature can be passed as a
parameter to your Sort routine.

Note the use of the Invoke method, which is how a delegate is called from the code. In addition, note that
the routine deals entirely with the generic System.Object data type, rather than with any specific type of
data. The specific comparison of one object to another is left to the delegate routine that is passed in as a
parameter.

implementing a Delegate Method
Now create the implementation of the delegate routine and call the sort method. On a very basic level, all
you need to do is create a method that has a matching method signature, add the following code to your
Sort module:

Public Function PersonCompare(ByVal person1 As Object, _
 ByVal person2 As Object) As Boolean

End Function

The method signature of this method exactly matches what you defined by your delegate earlier:

Compare(Object, Object)

In both cases, you are defining two parameters of type Object.

Of course, there is more to it than simply creating the stub of a method. The method needs to return a value
of True if its first parameter is greater than the second parameter. Otherwise, it should be written to deal
with some specific type of data.

The Delegate statement defines a data type based on a specific method interface. To call a routine that
expects a parameter of this new data type, it must pass the address of a method that conforms to the defined
interface.

To conform to the interface, a method must have the same number of parameters with the same data types
defined in your Delegate statement. In addition, the method must provide the same return type as defined.
The actual name of the method does not matter; it is the number, order, and data type of the parameters
and the return value that count.

To find the address of a specific method, you can use the AddressOf operator. This operator returns the
address of any procedure or method, enabling you to pass that value as a parameter to any routine that
expects a delegate as a parameter.

The Person class already has a shared method named CompareAge that generally does what you want.
Unfortunately, it accepts parameters of type Person, rather than of type Object as required by the Compare
delegate. You can use method overloading to solve this problem.

Create a second implementation of CompareAge that accepts parameters of type Object as required by the
delegate, rather than of type Person as shown in the existing implementation:

Public Shared Function CompareAge(ByVal person1 As Object, _
 ByVal person2 As Object) As Boolean

 Return CType(person1, Person).Age > CType(person2, Person).Age

End Function

Code snippet from Sort

This method simply returns True if the first Person object’s age is greater than the second. The routine
accepts two Object parameters, rather than specific Person type parameters, so you have to use the CType
method to access those objects as type Person. You accept the parameters as type Object because that is
what is defined by the Delegate statement. You are matching its method signature:

f(Object, Object)

Because this method’s parameter data types and return value match the delegate, you can use it when calling
the Sort routine. Place a button on the Form1 form and write the following code behind that button:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button2.Click

 Dim myPeople(4) As Person

 myPeople(0) = New Person("Fred", #7/9/1960#)
 myPeople(1) = New Person("Mary", #1/21/1955#)
 myPeople(2) = New Person("Sarah", #2/1/1960#)
 myPeople(3) = New Person("George", #5/13/1970#)
 myPeople(4) = New Person("Andre", #10/1/1965#)

 DoSort(myPeople, AddressOf Person.CompareAge)
End Sub

Code snippet from Form1

This code creates an array of Person objects and populates them. It then calls the DoSort routine from the
module, passing the array as the first parameter, and the address of the shared CompareAge method as
the second parameter. To display the contents of the sorted array in the IDE’s output window, you can
add the following code:

Private Sub button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button2.Click

 Dim myPeople(4) As Person

 myPeople(0) = New Person("Fred", #7/9/1960#)
 myPeople(1) = New Person("Mary", #1/21/1955#)
 myPeople(2) = New Person("Sarah", #2/1/1960#)
 myPeople(3) = New Person("George", #5/13/1970#)
 myPeople(4) = New Person("Andre", #10/1/1965#)

 DoSort(myPeople, AddressOf Person.CompareAge)
 Dim myPerson As Person
 For Each myPerson In myPeople
 System.Diagnostics.Debug.WriteLine(myPerson.Name & " " & myPerson.Age)
 Next
End Sub

Code snippet from Form1

When you run the application and click the button, the output window
displays a list of the people sorted by age, as shown in Figure 2-16.

What makes this so powerful is that you can change the comparison
routine without changing the sort mechanism. Simply add another
comparison routine to the Person class:

Public Shared Function CompareName(ByVal person1 As Object, _
 ByVal person2 As Object) As Boolean

 Return CType(person1, Person).Name > CType(person2, Person).Name

End Function

Code snippet from Sort

figure 2-16

advanced Concepts ❘ 133

134 ❘ chaPTer 2 oBJECts aNd Visual BasiC

Then, change the code behind the button on the form to use that alternate comparison routine:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 Dim myPeople(4) As Person

 myPeople(0) = New Person("Fred", #7/9/1960#)
 myPeople(1) = New Person("Mary", #1/21/1955#)
 myPeople(2) = New Person("Sarah", #2/1/1960#)
 myPeople(3) = New Person("George", #5/13/1970#)
 myPeople(4) = New Person("Andre", #10/1/1965#)

 DoSort(myPeople, AddressOf Person.CompareName)

 Dim myPerson As Person

 For Each myPerson In myPeople
 System.Diagnostics.Debug.WriteLine(myPerson.Name & " " & myPerson.Age)
 Next
End Sub

Code snippet from Form1

When you run this updated code, you will find that the array contains
a set of data sorted by name, rather than age, as shown in Figure 2-17.

Simply by creating a new compare routine and passing it as a
parameter, you can entirely change the way that the data is sorted.
Better still, this sort routine can operate on any type of object, as long
as you provide an appropriate delegate method that knows how to
compare that type of object.

classes versus components
Visual Basic has another concept that is very similar to a class: the component. In fact, you can pretty much
use a component and a class interchangeably, though there are some differences.

A component is little more than a regular class, but one that supports a graphical designer within the Visual
Studio IDE. This means you can use drag-and-drop to provide the code in the component with access to
items from the Server Explorer or the Toolbox.

To add a component to a project, select Project ➪ Add Component, give the component a name such as
Component1, and click Add in the Add New Item dialog.

When you add a class to the project, you are presented with the code window. When you add a component,
you are presented with a graphical designer surface, much like what you would see when adding a Web
Form to the project.

If you switch to the Code view (by right-clicking in the Design view and choosing View Code), you will see
the code that is created automatically, just as it is with a Windows Form, Web Form, or regular class:

Public Class Component1

End Class

This is not a lot more code than you see with a regular class, though there are differences behind the scenes.
A component uses the same partial class technology as Windows Forms or Web Forms. This means that
the code here is only part of the total code in the class. The rest of the code is hidden behind the designer’s
surface and is automatically created and managed by Visual Studio.

figure 2-17

In the designer code (in this case, found in the Solution Explorer in Component1.Designer.vb) is an
Inherits statement that makes every component inherit from System.ComponentModel.Component.
Chapter 3 discusses the concept of inheritance, but note here that this Inherits line is what brings in all the
support for the graphical designer in Visual Studio.

The designer also manages any controls or components that are dropped on it. Those controls or components
are automatically made available to your code. For instance, if you drag and drop a Timer control from the
Windows Forms tab of the Toolbox onto the component, it will be displayed in the designer.

From here, you can set the component properties using the standard Properties window in the IDE, just as
you would for a control on a form. Using the Properties window, set the Name property to theTimer. You
now automatically have access to a Timer object named theTimer, simply by dragging and dropping and
setting some properties.

This means that you can write code within the component, just as you might in a class, to use this object:

 Public Sub Start()
 theTimer.Enabled = True
 End Sub

 Public Sub StopIt()
 theTimer.Enabled = False
 End Sub

 Private Sub theTimer_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles theTimer.Tick

 ' do work
 End Sub

Code snippet from ObjectIntro\Component.vb

For the most part, you can use a component interchangeably with a basic class, but using a component also
provides some of the designer benefits of working with Windows Forms or Web Forms.

lambdas
The introduction of VB.NET 9.0 introduced a new feature, lambda expressions, which combine several
concepts from this chapter. Using a lambda, you can create simple anonymous methods and their delegate in
one line. The main driving force of lambdas is LINQ, which is discussed in much greater detail in Chapter 10.

The following example demonstrates how you might write a function to add 10 to an integer:

Function AddToInteger(ByVal i as integer) as Integer
 Return i + 10
End Function

Now let’s make this into a simple lambda expression:

Dim myLambda = Function (i as Integer) i += 10

From this one line of code you have created a delegate that can be called easily throughout the scope of the
delegate. To call this delegate, simply use the following:

myLambda(10)

By combining what you know about delegates, you can simplify declaration by using a lambda. One item
to note is that prior to Visual Basic 2010, Visual Basic was limited to single line lambda statements that
returned a value. It wasn’t possible to create a lambda that defined a Sub or have a lambda span more than a
single line. With Visual Studio 2010, it is now possible for Visual Basic developers to write this code.

advanced Concepts ❘ 135

136 ❘ chaPTer 2 oBJECts aNd Visual BasiC

summary
Visual Basic offers a fully object-oriented language with all the capabilities you would expect. This
chapter described the basic concepts behind classes and objects, as well as the separation of interface from
implementation and data.

The chapter introduced the System.Object class and explained how this class is the base class for all
classes in .NET. You were then introduced to concepts such as Value and Reference types as well as the
implementation for primitive types. The chapter looked at most of the core primitive types available in
Visual Basic and how to convert between types.

You have learned how to use the Class keyword to create classes, and how those classes can be instantiated
into specific objects, each one an instance of the class. These objects have methods and properties that can
be invoked by the client code, and can act on data within the object stored in member or instance variables.

You also explored some more advanced concepts, including method overloading, shared or static variables
and methods, and the use of delegates and lambda expressions.

The next chapter continues the discussion of object syntax as you explore the concept of inheritance
and all the syntax that enables inheritance within Visual Basic. You will also walk through the creation,
implementation, and use of multiple interfaces — a powerful concept that enables objects to be used in
different ways, depending on the interface chosen by the client application.

Also covered in the next chapter is a discussion of objects and object-oriented programming, applying all
of this syntax. It explains the key object-oriented concepts of abstraction, encapsulation, polymorphism,
and inheritance, and shows how they work together to provide a powerful way to design and implement
applications.

Chapter 4 explores the .NET common language runtime (CLR). Because the .NET platform and runtime
are object-oriented at their very core, this chapter examines how objects interact with the runtime
environment and covers topics such as using and disposing of objects and memory management.

3
 Custom objects

 WhaT you Will learn in This chaPTer

 Inheritance ➤

 The MyBase keyword ➤

 Event Handling in Sub Classes ➤

 Creating Abstract Base Class ➤

 Interfaces ➤

 Abstraction ➤

 Encapsulation ➤

 Polymorphism ➤

 Visual Basic is a fully object - oriented language. Chapter 2 covered the basics of creating classes and
objects, including the creation of methods, properties, events, operators, and instance variables. You
have seen the basic building blocks for abstraction, encapsulation, and polymorphism — concepts
discussed in more detail at the end of this chapter. The fi nal major techniques you need to understand
are inheritance and the use of multiple interfaces.

 Inheritance is the idea that you can create a class that reuses methods, properties, events, and
variables from another class. You can create a class with some basic functionality, and then use that
class as a base from which to create other, more detailed, classes. All these derived classes will have
the same common functionality as that base class, along with new, enhanced, or even completely
changed functionality.

 This chapter covers the syntax that supports inheritance within Visual Basic. This includes creating
the base classes from which other classes can be derived, as well as creating those derived classes.

 Visual Basic also supports a related concept: multiple interfaces. As shown in Chapter 2, all objects
have a native or default interface, which is defi ned by the public methods, properties, and events
declared in the class. In the .NET environment, an object can have other interfaces in addition to this
native interface — in other words, .NET objects can have multiple interfaces.

 These secondary interfaces defi ne alternative ways in which your object can be accessed by providing
clearly defi ned sets of methods, properties, and events. Like the native interface, these secondary
interfaces defi ne how the client code can interact with your object, essentially providing a “ contract ”
that enables the client to know exactly what methods, properties, and events the object will provide.

138 ❘ chaPTer 3 Custom oBJECts

When you write code to interact with an object, you can choose which of the interfaces you want to use;
basically, you are choosing how you want to view or interact with that object.

This chapter uses relatively basic code examples so that you can focus on the technical and syntactic issues
surrounding inheritance and multiple interfaces. The last part of this chapter revisits these concepts using
a more sophisticated set of code as you continue to explore object-oriented programming and how to apply
inheritance and multiple interfaces in a practical manner.

Of course, just knowing the syntax and learning the tools is not enough to be successful. Successfully
applying Visual Basic’s object-oriented capabilities requires an understanding of object-oriented
programming. This chapter also applies Visual Basic’s object-oriented syntax, showing how it enables you
to build object-oriented applications. It also describes in detail the four major object-oriented concepts:
abstraction, encapsulation, polymorphism, and inheritance. By the end of this chapter, you will understand
how to apply these concepts in your design and development efforts to create effective object-oriented
applications.

inheriTance
Inheritance is the concept that a new class can be based on an existing class, inheriting the interface and
functionality from the original class. In Chapter 2, you explored the relationship between a class and an
object, and saw that the class is essentially a template from which objects can be created.

While this is very powerful, it does not provide all the capabilities you might like. In particular, in many
cases a class only partially describes what you need for your object. You may have a class called Person,
for instance, which has all the properties and methods that apply to all types of people, such as first name,
last name, and birth date. While useful, this class probably does not have everything you need to describe
a specific type of person, such as an employee or a customer. An employee would have a hire date and a
salary, which are not included in Person, while a customer would have a credit rating, something neither
the Person nor the Employee classes would need.

Without inheritance, you would probably end up replicating the code from the Person class in both the
Employee and Customer classes so that they would have that same functionality as well as the ability to add
new functionality of their own.

Inheritance makes it very easy to create classes for Employee, Customer, and so forth. You do not have to
recreate that code for an employee to be a person; it automatically inherits any properties, methods, and
events from the original Person class.

You can think of it this way: When you create an Employee class, which inherits from a Person class, you
are effectively merging these two classes. If you then create an object based on the Employee class, then it
has not only the interface (properties, methods, and events) and implementation from the Employee class,
but also those from the Person class.

While an Employee object represents the merger between the Employee and Person classes, understand
that the variables and code contained in each of those classes remain independent. Two perspectives are
involved.

From the outside, the client code that interacts with the Employee object sees a single, unified object that
represents the inheritance of the Employee and Person classes.

From the inside, the code in the Employee class and the code in the Person class are not totally intermixed.
Variables and methods that are Private are only available within the class they were written. Variables and methods
that are Public in one class can be called from the other class. Variables and methods that are declared as Friend are
only available between classes if both classes are in the same Visual Basic project. As discussed later in the chapter,
there is also a Protected scope that is designed to work with inheritance, but, again, this provides a controlled way
for one class to interact with the variables and methods in the other class.

inheritance ❘ 139

 Visual Studio 2010 includes a Class Designer
tool that enables you to easily create diagrams
of your classes and their relationships. The Class
Designer diagrams are a derivative of a standard
notation called the Unifi ed Modeling Language
(UML) that is typically used to diagram the
relationships between classes, objects, and other
object - oriented concepts. The Class Designer
diagrams more accurately and completely model
.NET classes, so that is the notation used in this
chapter. The relationship between the Person ,
 Employee , and Customer classes is illustrated in
Figure 3 - 1.

 Each box in this diagram represents a class;
in this case, you have Person , Employee , and
 Customer classes. The line from Employee back
up to Person , terminating in a triangle, indicates that Employee is derived from, or inherits from, Person .
The same is true for the Customer class.

 Later in this chapter, you will learn when and how inheritance should be used in software design. The
beginning part of this chapter covers the syntax and programming concepts necessary to implement
inheritance. First, you will create a base Person class. Then, you will use that class to create both Employee
and Customer classes that inherit behavior from Person .

 Before getting into the implementation, however, it ’ s necessary to understand some basic terms associated
with inheritance — and there are a lot of terms, partly because there are often several ways to say the same
thing. The various terms are all used quite frequently and interchangeably.

Person
Class

Customer
Class

Person

Employee
Class

Person

 figure 3 - 1

 Though we attempt to use consistent terminology in this book, be aware that in other
books and articles, and online, all these terms are used in various permutations.

 Inheritance, for instance, is also sometimes referred to as generalization because the class from which you
are inheriting your behavior is virtually always a more general form of your new class. A person is more
general than an employee, for instance.

 The inheritance relationship is also referred to as an is - a relationship. When you create a Customer class
that inherits from a Person class, that customer is a person. The employee is a person as well. Thus, you
have the is - a relationship. As shown later in the chapter, multiple interfaces can be used to implement
something similar to the is - a relationship, the act - as relationship.

 When you create a class using inheritance, it inherits behaviors and data from an existing class. That
existing class is called the base class . It is also often referred to as a superclass or a parent class .

 The class you create using inheritance is based on the parent class. It is called a subclass . Sometimes it is also
called a child class or a derived class . In fact, the process of inheriting from a base class by a subclass is referred
to as deriving . You are deriving a new class from the base class. This process is also called subclassing .

 implementing inheritance
 When you set out to implement a class using inheritance, you must fi rst start with an existing class from
which you will derive your new subclass. This existing class, or base class, may be part of the .NET system
class library framework, it may be part of some other application or .NET assembly, or you may create it as
part of your existing application.

140 ❘ chaPTer 3 Custom oBJECts

Once you have a base class, you can then implement one or more subclasses based on that base
class. Each of your subclasses automatically inherits all of the methods, properties, and events of that
base class — including the implementation behind each method, property, and event. Your subclass
can also add new methods, properties, and events of its own, extending the original interface with
new functionality. In addition, a subclass can replace the methods and properties of the base class with
its own new implementation — effectively overriding the original behavior and replacing it with new
behaviors.

Essentially, inheritance is a way of combining functionality from an existing class into your new subclass.
Inheritance also defines rules for how these methods, properties, and events can be merged, including
control over how they can be changed or replaced, and how the subclass can add new methods, properties,
and events of its own. This is what you will learn in the following sections — what these rules are and what
syntax you use in Visual Basic to make it all work.

Creating a Base Class
Virtually any class you create can act as a base class from which other classes can be derived. In fact, unless
you specifically indicate in the code that your class cannot be a base class, you can derive from it (you will
come back to this later).

Create a new Windows Forms Application project in Visual Basic by selecting File ➪ New Project and
selecting Windows Forms Application. Then add a class to the project using the Project ➪ Add Class menu
option and name it Person.vb. Begin with the following code:

Public Class Person

End Class

At this point, you technically have a base class, as it is possible to inherit from this class even though it
doesn’t do or contain anything. You can now add methods, properties, and events to this class as you
normally would. All of those interface elements would be inherited by any class you might create based on
Person. For instance, add the following code:

Public Class Person

 Public Property Name() As String
 Public Property BirthDate() As Date
End Class

Code snippet from Person

This provides a simple method that can be used to illustrate how
basic inheritance works. This class can be represented by the class
diagram in Visual Studio, as shown in Figure 3-2.

In this representation of the class as it is presented from Visual
Studio, the overall box represents the Person class. In the top
section of this box is the name of the class and a specification that
it is a class. The section below it contains a list of the instance
variables, or fields, of the class, with their scope marked as Private
(note the lock icon). The bottom section lists the properties exposed
by the class, both marked as Public. If the class had methods or
events, then they would be displayed in their own sections in the
diagram.

Person
Class

Fields

mBirthDate
mName

BirthDate
Name

Properties

figure 3-2

inheritance ❘ 141

Creating a subclass
To implement inheritance, you need to add a new class to your project. Use the Project ➪ Add Class menu
option and add a new class named Employee.vb. Begin with the following code:

Public Class Employee

 Public Property HireDate() As Date

 Public Property Salary() As Double
End Class

Code snippet from Person

This is a regular standalone class with no explicit inheritance. It can
be represented by the class diagram shown in Figure 3-3.

Again, you can see the class name, its list of instance variables, and
the properties it includes as part of its interface. It turns out that,
behind the scenes, this class inherits some capabilities from System
.Object. In fact, every class in the entire .NET platform ultimately
inherits from System.Object either implicitly or explicitly. This is
why all .NET objects have a basic set of common functionality,
including, most notably, the GetType method, which is discussed in
detail later in the chapter.

While having an Employee object with a hire date and salary is
useful, it should also have Name and BirthDate properties, just
as you implemented in the Person class. Without inheritance, you
would probably just copy and paste the code from Person directly
into the new Employee class, but with inheritance, you can directly reuse the code from the Person class.
Let’s make the new class inherit from Person.

The Inherits Keyword

To make Employee a subclass of Person, add a single line of code:

Public Class Employee
 Inherits Person

The Inherits keyword indicates that a class should derive from an existing class, inheriting the interface
and behavior from that class. You can inherit from almost any class in your project, from the .NET
system class library, or from other assemblies. It is also possible to prevent inheritance, which is covered later
in the chapter. When using the Inherits keyword to inherit from classes outside the current project, you
need to either specify the namespace that contains that class or place an Imports statement at the top of the
class to import that namespace for your use.

The diagram in Figure 3-4 illustrates the fact that the Employee
class is now a subclass of Person.

The line running from Employee back up to Person ends in
an open triangle, which is the symbol for inheritance when
using the Class Designer in Visual Studio. It is this line that
indicates that the Employee class includes all the functionality,
as well as the interface, of Person.

This means that an object created based on the Employee class
has not only the methods HireDate and Salary, but also Name
and BirthDate. To test this, bring up the designer for Form1

Employee
Class

Fields

mHireDate
mSalary

HireDate
Salary

Properties

figure 3-3

Person
Class

Employee
Class

Person

figure 3-4

142 ❘ chaPTer 3 Custom oBJECts

(which is automatically part of your project because you created a Windows Forms Application project) and
add the following TextBox controls, along with a button, to the form:

 figure 3 - 5

 conTrol TyPe name TexT ProPerTy Value

 TextBox txtName < blank >

 TextBox txtBirthDate < blank >

 TextBox txtHireDate < blank >

 TextBox txtSalary < blank >

 button btnOK OK

 You can also add some labels to make the form more readable. The Form Designer should now look
something like Figure 3 - 5.

 The best Visual Basic practice is to use the With keyword, but be aware that this might
cause issues with portability and converting code to other languages.

 Even though Employee does not directly implement the Name or BirthDate methods, they are available for
use through inheritance. When you run this application and click the button, your controls are populated
with the values from the Employee object.

 When the code in Form1 invokes the Name property on the Employee object, the code from the Person class is
executed, as the Employee class has no such method built in. However, when the HireDate property is invoked on
the Employee object, the code from the Employee class is executed, as it does have that method as part of its code.

 Double - click the button to bring up the code window and enter the following code:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click
 Dim emp As New Employee()

 With emp
 .Name = “Fred”
 .BirthDate = #1/1/1960#
 .HireDate = #1/1/1980#
 .Salary = 30000

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, “Short date”)
 txtHireDate.Text = Format(.HireDate, “Short date”)
 txtSalary.Text = Format(.Salary, “$0.00”)
 End With

 Code snippet from Person

inheritance ❘ 143

From the form’s perspective, it doesn’t matter whether a method is implemented in the Employee class
or the Person class; they are all simply methods of the Employee object. In addition, because the code in
these classes is merged to create the Employee object, there is no performance difference between calling a
method implemented by the Employee class or calling a method implemented by the Person class.

overloading Methods
Although your Employee class automatically gains the Name and BirthDate methods through inheritance,
it also has methods of its own — HireDate and Salary. This shows how you have extended the base
Person interface by adding methods and properties to the Employee subclass.

You can add new properties, methods, and events to the Employee class, and they will be part of any object
created based on Employee. This has no impact on the Person class whatsoever, only on the Employee class
and Employee objects.

You can even extend the functionality of the base class by adding methods to the subclass that have the
same name as methods or properties in the base class, as long as those methods or properties have different
parameter lists. You are effectively overloading the existing methods from the base class. It is essentially the
same thing as overloading regular methods, as discussed in Chapter 2.

For example, your Person class is currently providing your implementation for the Name property. Employees
may have other names you also want to store, perhaps an informal name and a formal name in addition to
their regular name. One way to accommodate this requirement is to change the Person class itself to include an
overloaded Name property that supports this new functionality. However, you are really only trying to enhance
the Employee class, not the more general Person class, so what you want is a way to add an overloaded method
to the Employee class itself, even though you are overloading a method from its base class.

You can overload a method from a base class by using the Overloads keyword. The concept is the same as
described in Chapter 2, but in this case an extra keyword is involved. To overload the Name property, for
instance, you can add a new property to the Employee class. First, though, define an enumerated type using
the Enum keyword. This Enum will list the different types of name you want to store. Add this Enum to the
Employee.vb file, before the declaration of the class itself:

Public Enum NameTypes
 Informal = 1
 Formal = 2
End Enum

Public Class Employee

You can then add an overloaded Name property to the Employee class itself:

Public Class Employee
 Inherits Person

 Public Property HireDate As Date
 Public Property Salary As Double
 Private mNames As New Generic.Dictionary(Of NameTypes, String)
 Public Overloads Property Name(ByVal type As NameTypes) As String
 Get
 Return mNames(type)
 End Get
 Set(ByVal value As String)
 If mNames.ContainsKey(type) Then
 mNames.Item(type) = value
 Else
 mNames.Add(type, value)
 End If
 End Set
 End Property

Code snippet from Person

144 ❘ chaPTer 3 Custom oBJECts

 Though this method has the same name as the method in the base
class, the fact that it accepts a different parameter list enables you to
use overloading to implement it here. The original Name property, as
implemented in the Person class, remains intact and valid, but now
you have added a new variation with this second Name property, as
shown in Figure 3 - 6.

 The diagram clearly indicates that the Name method in the Person
class and the Name method in the Employee class both exist. If you
hover over each Name property, you will see a tooltip showing the
method signatures, making it clear that each one has a different
signature.

 You can now change Form1 to make use of this new version of
the Name property. First, add a couple of new TextBox controls
and associated labels. The TextBox controls should be named
 txtFormal and txtInformal , and the form should now look like
the one shown in Figure 3 - 7. Double - click the form ’ s button to
bring up the code window and overwrite the code to work with the
overloaded version of the Name property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim emp As New Employee()

 With emp
 .Name = "Fred"
 .Name (NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."
 .Name (NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/1960#
 .HireDate = #1/1/1980#
 .Salary = 30000

 txtName.Text = .Name
 txtFormal.Text = .Name (NameTypes.Formal)
 txtInformal.Text = .Name (NameTypes.Informal)
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtHireDate.Text = Format(.HireDate, "Short date")
 txtSalary.Text = Format(.Salary, "$0.00")
 End With
End Sub

 Code snippet from Form1

 figure 3 - 6

 This Name property is actually a property array, which enables you to store multiple values via the same
property. In this case, you are storing the values in a Generic.Dictionary(Of K, V) object, which is
indexed by using the Enum value you just defi ned. Chapter 6 discusses generics in detail. For now, you can
view this generic Dictionary just like any collection object that stores key/value data.

 If you omit the Overloads keyword here, your new implementation of the Name method
will shadow the original implementation. Shadowing is very different from overloading,
and is covered later in the chapter.

inheritance ❘ 145

The code still interacts with the original Name property as implemented
in the Person class, but you are now also invoking the overloaded version of
the property implemented in the Employee class.

overriding Methods
So far, you have seen how to implement a base class and then use it to create
a subclass. You also extended the interface by adding methods, and you
explored how to use overloading to add methods that have the same name
as methods in the base class but with different parameters.

However, sometimes you may want to not only extend the original
functionality, but also actually change or entirely replace the functionality
of the base class. Instead of leaving the existing functionality and just
adding new methods or overloaded versions of those methods, you might want to entirely override the
existing functionality with your own.

You can do exactly that. If the base class allows it, then you can substitute your own implementation of a
base class method — meaning your new implementation will be used instead of the original.

The overridable Keyword
By default, you can’t override the behavior of methods on a base class. The base class must be coded
specifically to allow this to occur, by using the Overridable keyword. This is important, as you may not
always want to allow a subclass to entirely change the behavior of the methods in your base class. However,
if you do wish to allow the author of a subclass to replace your implementation, you can do so by adding the
Overridable keyword to your method declaration.

Returning to the employee example, you may not like the implementation of the BirthDate method as it
stands in the Person class. Suppose, for instance, that you can’t employ anyone younger than 16 years of
age, so any birth-date value more recent than 16 years ago is invalid for an employee.

To implement this business rule, you need to change the way the BirthDate property is implemented. While
you could make this change directly in the Person class, that would not be ideal. It is perfectly acceptable to
have a person under age 16, just not an employee.

Open the code window for the Person class and change the BirthDate property to include the Overridable
keyword:

 Public Overridable Property BirthDate() As Date
 Get
 Return mBirthDate
 End Get
 Set(ByVal value As Date)
 mBirthDate = value
 End Set
 End Property

Code snippet from Person

This change allows any class that inherits from Person to entirely replace the implementation of the
BirthDate property with a new implementation.

By adding the Overridable keyword to your method declaration, you are indicating that you allow any
subclass to override the behavior provided by this method. This means you are permitting a subclass to
totally ignore your prior implementation, or to extend your implementation by doing other work before or
after your implementation is run.

If the subclass does not override this method, the method works just like a regular method and is
automatically included as part of the subclass’s interface. Putting the Overridable keyword on a method
simply allows a subclass to override the method if you choose to let it do so.

figure 3-7

146 ❘ chaPTer 3 Custom oBJECts

The overrides Keyword
In a subclass, you override a method by implementing a method with the same name and parameter list as the
base class, and then you use the Overrides keyword to indicate that you are overriding that method.

This is different from overloading, because when you overload a method you are adding a new method with
the same name but a different parameter list. When you override a method, you are actually replacing the
original method with a new implementation.

Without the Overrides keyword, you will receive a compilation error when you implement a method with
the same name as one from the base class. Open the code window for the Employee class and add a new
BirthDate property:

Public Class Employee
 Inherits Person

 Public Property HireDate As Date
Public Property Salary As Double
 Public Property BirthDate As Date

 Private mNames As New Generic.Dictionary(Of NameTypes, String)

 Public Overrides Property BirthDate() As Date
 Get
 Return mBirthDate
 End Get
 Set(ByVal value As Date)
 If DateDiff(DateInterval.Year, Value, Now) >= 16 Then
 mBirthDate = value
 Else
 Throw New ArgumentException(_
 "An employee must be at least 16 years old.")
 End If
 End Set
 End Property

Code snippet from Person

Because you are implementing your own version of the property,
you have to declare a variable to store that value within the
Employee class. This is not ideal, and there are a couple of
ways around it, including the MyBase keyword and the
Protected scope.

Notice also that you have enhanced the functionality in the Set
block, so it now raises an error if the new birth-date value would
cause the employee to be less than 16 years of age. With this
code, you have now entirely replaced the original BirthDate
implementation with a new one that enforces your business rule
(see Figure 3-8).

The diagram now includes a BirthDate method in the
Employee class. While perhaps not entirely intuitive, this is
how the class diagram indicates that you have overridden the
method. If you hover the mouse over the BirthDate property in
the Employee class, the tooltip will show the method signature,
including the Overrides keyword.

If you run your application and click the button on the form,
then everything should work as it did before, because the birth

figure 3-8

inheritance ❘ 147

date you are supplying conforms to your new business rule. Now change the code in your form to use an
invalid birth date:

With emp
 .Name = "Fred"
 .Name(NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."
 .Name(NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/2000#

 When you run the application (from within Visual Studio) and click the button, you receive an error
indicating that the birth date is invalid. This proves that you are now using the implementation of the
 BirthDate method from the Employee class, rather than the one from the Person class. Change
the date value in the form back to a valid value so that your application runs properly.

 The MyBase Keyword
 You have just seen how you can entirely replace the functionality of a method in the base class by overriding
it in your subclass. However, this can be somewhat extreme; sometimes it ’ s preferable to override methods
so that you extend the base functionality, rather than replace it.

 To do this, you need to override the method using the Overrides keyword as you just did, but within your
new implementation you can still invoke the original implementation of the method. This enables you to
add your own code before or after the original implementation is invoked — meaning you can extend the
behavior while still leveraging the code in the base class.

 To invoke methods directly from the base class, you can use the MyBase keyword. This keyword is available
within any class, and it exposes all the methods of the base class for your use.

 Even a base class such as Person is an implicit subclass of System.Object , so it can
use MyBase to interact with its base class as well.

 This means that within the BirthDate implementation in Employee , you can invoke the BirthDate
implementation in the base Person class. This is ideal, as it means that you can leverage any existing
functionality provided by Person while still enforcing your Employee - specifi c business rules.

 To take advantage of this, you can enhance the code in the Employee implementation of BirthDate .
First, remove the declaration of mBirthDate from the Employee class. You won ’ t need this variable any
longer because the Person implementation will keep track of the value on your behalf. Then, change the
 BirthDate implementation in the Employee class as follows:

Public Overrides Property BirthDate() As Date
 Get
 Return MyBase.BirthDate
 End Get

 Set(ByVal value As Date)
 If DateDiff(DateInterval.Year, Value, Now) > = 16 Then
 MyBase.BirthDate = value
 Else
 Throw New ArgumentException(_
 "An employee must be at least 16 years old.")
 End If
 End Set
End Property

 Code snippet from Person

 Run your application and you will see that it works just fi ne and returns the error, even though the Employee
class no longer contains any code to actually keep track of the birth - date value. You have effectively merged

148 ❘ chaPTer 3 Custom oBJECts

the BirthDate implementation from Person right into your enhanced implementation in Employee, creating
a hybrid version of the property.

The MyBase keyword is covered in more detail later in the chapter. Here, you can see how it enables you
to enhance or extend the functionality of the base class by adding your own code in the subclass but still
invoking the base-class method when appropriate.

Virtual Methods
The BirthDate method is an example of a virtual method. Virtual methods are methods in a base class that
can be overridden and replaced by subclasses.

Virtual methods are more complex to understand than regular nonvirtual methods. With a nonvirtual
method, only one implementation matches any given method signature, so there’s no ambiguity about which
specific method implementation will be invoked. With virtual methods, however, there may be several
implementations of the same method, with the same method signature, so you need to understand the rules
that govern which specific implementation of that method will be called.

When working with virtual methods, keep in mind that the data type of the object is used to determine the
implementation of the method to call, rather than the type of the variable that refers to the object.

Looking at the code in your form, you can see that you are declaring an object variable of type Employee,
and then creating an Employee object that you can reference via that object:

Dim emp As New Employee()

It is not surprising, then, that you are able to invoke any of the methods that are implemented as part of the
Employee class, and through inheritance, any of the methods implemented as part of the Person class:

With emp
 .Name = "Fred"
 .Name(NameTypes.Formal) = "Mr. Frederick R. Jones, Sr."
 .Name(NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/1960#
 .HireDate = #1/1/1980#
 .Salary = 30000

When you call the BirthDate property, you know that you are invoking the implementation contained in
the Employee class, which makes sense because you know that you are using a variable of type Employee to
refer to an object of type Employee.

Because your methods are virtual methods, you can experiment with some much more interesting scenarios.
For instance, suppose that you change the code in your form to interact directly with an object of type
Person instead of one of type Employee:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As New Person()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 End With

End Sub

Code snippet from Form1

inheritance ❘ 149

 You can no longer call the methods implemented by the Employee class, because they do not exist as part
of a Person object, but only as part of an Employee object. However, you can see that both the Name and
 BirthDate properties continue to function as you would expect. When you run the application now, it will
work just fi ne. You can even change the birth - date value to something that would be invalid for Employee :

.BirthDate = #1/1/2000#

 The application will now accept it and work just fi ne, because the BirthDate method you are invoking
is the original version from the Person class.

 These are the two simple scenarios, when you have a variable and object of type Employee or a variable
and object of type Person . However, because Employee is derived from Person , you can do something a
bit more interesting. You can use a variable of type Person to hold a reference to an Employee object. For
example, you can change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Person
 person = New Employee()
 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 End With
End Sub

 Code snippet from Form1

 What you are doing now is declaring your variable to be of type Person , but the object itself is an instance
of the Employee class. You have done something a bit complex here, as the data type of the variable is not
the same as the data type of the object itself. Remember that a variable of a base - class type can always hold
a reference to an object of any subclass.

 This is why a variable of type System.Object can hold a reference to literally anything
in the .NET Framework, because all classes are ultimately derived from System.Object .

 This technique is very useful when creating generic routines. It makes use of an object - oriented concept
called polymorphism , which is discussed more thoroughly later in this chapter. This technique enables you
to create a more general routine that populates your form for any object of type Person . Add the following
code to the form (but not in the button Click event):

Private Sub DisplayPerson(ByVal thePerson As Person)
 With thePerson
 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 End With
End Sub

 Code snippet from Form1

 Now you can change the code behind the button to make use of this generic routine:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Person

150 ❘ chaPTer 3 Custom oBJECts

 person = New Employee()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/2000#
 End With

 DisplayPerson(person)
End Sub

Code snippet from Form1

The benefit here is that you can pass a Person object or an Employee object to DisplayPerson and the
routine will work the same either way.

When you run the application now, things get interesting. You will get an error when you attempt to set
the BirthDate property because it breaks your 16-year-old business rule, which is implemented in the
Employee class. How can this be when your person variable is of type Person?

This clearly demonstrates the concept of a virtual method. It is the data type of the object, in this case
Employee, that is important. The data type of the variable is not the deciding factor when choosing which
implementation of an overridden method is invoked.

The following table shows which method is actually invoked based on the variable and object data types
when working with virtual methods:

VariaBle TyPe oBJecT TyPe meThod inVoKed

Base Base Base

Base Subclass Subclass

Subclass Subclass Subclass

Virtual methods are very powerful and useful when you implement polymorphism using inheritance. A
base-class data type can hold a reference to any subclass object, but it is the type of that specific object
which determines the implementation of the method. Therefore, you can write generic routines that operate
on many types of objects as long as they derive from the same base class. You will learn how to make use of
polymorphism and virtual methods in more detail later in this chapter.

Overriding Overloaded Methods

Earlier, you wrote code in your Employee class to overload the Name method in the base Person class. This
enabled you to keep the original Name functionality, but also extend it by adding another Name method that
accepts a different parameter list.

You have also overridden the BirthDate method. The implementation in the Employee class replaced the
implementation in the Person class. Overriding is a related but different concept from overloading. It is also
possible to both overload and override a method at the same time.

In the earlier overloading example, you added a new Name property to the Employee class, while retaining
the functionality present in the base Person class. You may decide that you not only want to have your
second overloaded implementation of the Name method in the Employee class, but also want to replace the
existing one by overriding the existing method provided by the Person class.

In particular, you may want to do this so that you can store the Name value in the Hashtable object along
with your Formal and Informal names. Before you can override the Name method, you need to add the
Overridable keyword to the base implementation in the Person class:

Public Overridable Property Name() As String
 Get
 Return mName
 End Get

 Set(ByVal value As String)
 mName = value
 End Set
End Property

Code snippet from Person

With that done, the Name method can now be overridden by any derived class. In the Employee class, you
can now override the Name method, replacing the functionality provided by the Person class. First, add a
Normal option to the Enum that controls the types of Name value you can store:

Public Enum NameTypes
 Informal = 1
 Formal = 2
 Normal = 3
End Enum

Now you can add code to the Employee class to implement a new Name property. This is in addition to the
existing Name property already implemented in the Employee class:

Public Overloads Overrides Property Name() As String
 Get
 Return mNames(NameTypes.Normal)
 End Get
 Set(ByVal value As String)
 mNames(NameTypes.Normal) = value
 End Set
End Property

Code snippet from Person

Note that you are using both the Overrides keyword (to indicate that you are overriding the Name method from
the base class) and the Overloads keyword (to indicate that you are overloading this method in the subclass).

This new Name property merely delegates the call to the existing version of the Name property that handles
the parameter-based names. To complete the linkage between this implementation of the Name property
and the parameter-based version, you need to make one more change to that original overloaded version:

Public Overloads Property Name(ByVal type As NameTypes) As String
 Get
 Return mNames(Type)
 End Get
 Set(ByVal value As String)
 If mNames.ContainsKey(type) Then
 mNames.Item(type) = value
 Else
 mNames.Add(type, value)
 End If

 If type = NameTypes.Normal Then
 MyBase.Name = value
 End If
 End Set
End Property

Code snippet from Person

This way, if the client code sets the Name property by providing the Normal index, you are still updating the
name in the base class as well as in the Dictionary object maintained by the Employee class.

shadowing
Overloading enables you to add new versions of existing methods as long as their parameter lists are
different. Overriding enables your subclass to entirely replace the implementation of a base-class method

inheritance ❘ 151

152 ❘ chaPTer 3 Custom oBJECts

with a new method that has the same method signature. As you just saw, you can even combine these
concepts not only to replace the implementation of a method from the base class, but also to simultaneously
overload that method with other implementations that have different method signatures.

 However, anytime you override a method using the Overrides keyword, you are subject to the rules governing
virtual methods — meaning that the base class must give you permission to override the method. If the base
class does not use the Overridable keyword, then you can ’ t override the method. Sometimes, however, you
may need to override a method that is not marked as Overridable , and shadowing enables you to do just that.

 The Shadows keyword can also be used to entirely change the nature of a method or other interface element
from the base class, although that is something which should be done with great care, as it can seriously reduce the
maintainability of your code. Normally, when you create an Employee object, you expect that it can act not only
as an Employee , but also as a Person because Employee is a subclass of Person . However, with the Shadows
keyword, you can radically alter the behavior of an Employee class so that it does not act like a Person . This sort
of radical deviation from what is normally expected invites bugs and makes code hard to understand and maintain.

 Shadowing methods is very dangerous and should be used as a last resort. It is primarily useful in cases
for which you have a preexisting component, such as a Windows Forms control that was not designed for
inheritance. If you absolutely must inherit from such a component, you may need to use shadowing to
 “ override ” methods or properties. Despite the serious limits and dangers, it may be your only option. You will
explore this in more detail later. First, let ’ s see how Shadows can be used to override nonvirtual methods.

 Overriding Nonvirtual Methods

 Earlier in the chapter, you learned about virtual methods and how they are automatically created in Visual
Basic when the Overrides keyword is employed. You can also implement nonvirtual methods in Visual Basic.
Nonvirtual methods are methods that cannot be overridden and replaced by subclasses, so most methods you
implement are nonvirtual.

 If you do not use the Overridable keyword when declaring a method, then it is nonvirtual.

 In the typical case, nonvirtual methods are easy to understand. They can ’ t be overridden and replaced, so
you know that there ’ s only one method by that name, with that method signature. Therefore, when you
invoke it, there is no ambiguity about which specifi c implementation will be called. The reverse is true with
virtual methods, where there may be more than one method of the same name, and with the same method
signature, so you should understand the rules governing which implementation will be invoked.

 Of course, you knew it couldn ’ t be that simple, and it turns out that you can override nonvirtual methods
by using the Shadows keyword. In fact, you can use the Shadows keyword to override methods regardless of
whether or not they have the Overridable keyword in the declaration.

 The Shadows keyword enables you to replace methods on the base class that the base -
 class designer didn ’ t intend to be replaced.

 Obviously, this can be very dangerous. The designer of a base class must be careful when marking a method
as Overridable , ensuring that the base class continues to operate properly even when that method is
replaced by another code in a subclass. Designers of base classes typically just assume that if they do not
mark a method as Overridable , it will be called and not overridden. Thus, overriding a nonvirtual method
by using the Shadows keyword can have unexpected and potentially dangerous side effects, as you are doing
something that the base - class designer assumed would never happen.

 If that isn ’ t enough complexity, it turns out that shadowed methods follow different rules than virtual methods
when they are invoked. That is, they do not act like regular overridden methods; instead, they follow a

different set of rules to determine which specific implementation of the method will be invoked. In particular,
when you call a nonvirtual method, the data type of the variable refers to the object that indicates which
implementation of the method is called, not the data type of the object, as with virtual methods.

To override a nonvirtual method, you can use the Shadows keyword instead of the Overrides keyword. To
see how this works, add a new property to the base Person class:

Public ReadOnly Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, Now, BirthDate))
 End Get
End Property

Here you have added a new method called Age to the base class, and thus automatically to the subclass.
This code has a bug, introduced intentionally for illustration. The DateDiff parameters are in the wrong
order, so you will get negative age values from this routine. The bug was introduced to highlight the fact
that sometimes you will find bugs in base classes that you didn’t write (and which you can’t fix because
you don’t have the source code).

The following example walks you through the use of the Shadows keyword to address a bug in your base
class, acting under the assumption that for some reason you can’t actually fix the code in the Person class.

Note that you are not using the Overridable keyword on this method, so any subclass is prevented from
overriding the method by using the Overrides keyword. The obvious intent and expectation of this code is
that all subclasses will use this implementation and not override it with their own.

However, the base class cannot prevent a subclass from shadowing a method, so it does not matter whether
you use Overridable or not; either way works fine for shadowing.

Before you shadow the method, let’s see how it works as a regular nonvirtual method. First, you need to change
your form to use this new value. Add a text box named txtAge and a related label to the form. Next, change the
code behind the button to use the Age property. You will include the code to display the data on the form right
here to keep things simple and clear:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Employee = New Employee()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, “Short date”)
 txtAge.Text = CStr(.Age)
 End With

End Sub

Code snippet from Form1

Remember to change the Employee birth-date value to something valid. At this point, you can run the
application. The age field should appear in your display as expected, though with a negative value due to
the bug we introduced. There’s no magic or complexity here. This is basic programming with objects, and
basic use of inheritance as described earlier in this chapter.

Of course, you don’t want a bug in your code, but nor do you have access to the Person class, and the
Person class does not allow you to override the Age method, so what can you do? The answer lies in
the Shadows keyword, which allows you to override the method anyway.

inheritance ❘ 153

154 ❘ chaPTer 3 Custom oBJECts

Let’s shadow the Age method within the Employee class, overriding and replacing the implementation in the
Person class, even though it is not marked as Overridable. Add the following code to the Employee class:

Public Shadows ReadOnly Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))
 End Get
End Property

Code snippet from Person

In many ways, this looks very similar to what you have seen with the Overrides keyword, in that you are
implementing a method in your subclass with the same name and parameter list as a method in the base class.
In this case, however, you will see some different behavior when you interact with the object in different ways.

Technically, the Shadows keyword is not required here. Shadowing is the default behavior when a subclass
implements a method that matches the name and method signature of a method in the base class. However,
if you omit the Shadows keyword, the compiler will issue a warning indicating that the method is being
shadowed, so it is always better to include the keyword, both to avoid the warning and to make it perfectly
clear that you chose to shadow the method intentionally.

Remember that your form’s code is currently declaring a variable of type Employee and is creating an
instance of an Employee object:

Dim person As Employee = New Employee()

This is a simple case, and, unsurprisingly, when you run the application now you will see that the value
of the age field is correct, indicating that you just ran the implementation of the Age property from the
Employee class. At this point, you are seeing the same behavior that you saw when overriding with
the Overrides keyword.

Let’s take a look at the other simple case, when you are working with a variable and object that are both of
data type Person. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Person = New Person()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)
 End With
End Sub

Now you have a variable of type Person and an object of that same type. You would expect that the
implementation in the Person class would be invoked in this case, and that is exactly what happens: The
age field displays the original negative value, indicating that you are invoking the buggy implementation
of the method directly from the Person class. Again, this is exactly the behavior you would expect from a
method overridden via the Overrides keyword.

This next example is where things get truly interesting. Change the code in Form1 as follows:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Person = New Employee()
 With person
 .Name = "Fred"

 .BirthDate = #1/1/1960#

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)
 End With
End Sub

 Now you are declaring the variable to be of type Person , but you are creating an object that is of data
type Employee . You did this earlier in the chapter when exploring the Overrides keyword as well, and in
that case you discovered that the version of the method that was invoked was based on the data type of the
object. The BirthDate implementation in the Employee class was invoked.

 If you run the application now, you will see that the rules are different when the Shadows keyword is used.
In this case, the implementation in the Person class is invoked, giving you the buggy negative value. When
the implementation in the Employee class is ignored, you get the exact opposite behavior of what you got
with Overrides .

 The following table summarizes which method implementation is invoked based on the variable and object
data types when using shadowing:

 By totally changing the nature of an interface element, you can cause a great deal of
confusion for programmers who might interact with your class in the future.

 VariaBle TyPe oBJecT TyPe meThod inVoKed

 Base Base Base

 Base Subclass Base

 Subclass Subclass Subclass

 In most cases, the behavior you will want for your methods is accomplished by the Overrides keyword and
virtual methods. However, in cases where the base - class designer does not allow you to override a method
and you want to do it anyway, the Shadows keyword provides you with the needed functionality.

 Shadowing Arbitrary Elements

 The Shadows keyword can be used not only to override nonvirtual methods, but also to totally replace and
change the nature of a base - class interface element. When you override a method, you are providing a replacement
implementation of that method with the same name and method signature. Using the Shadows keyword, you can
do more extreme things, such as change a method into an instance variable or change a property into a function.

 However, this can be very dangerous, as any code written to use your objects will naturally assume that you
implement all the same interface elements and behaviors as your base class, because that is the nature of
inheritance. Any documentation or knowledge of the original interface is effectively invalidated because the
original implementation is arbitrarily replaced.

 To see how you can replace an interface element from the base class, let ’ s entirely change the nature of the
 Age property. In fact, let ’ s change it from a read - only property to a read - write property. You could get even
more extreme — change it to a Function or a Sub.

 Remove the Age property from the Employee class and add the following code:

Public Shadows Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))
 End Get
 Set(ByVal value As Integer)

inheritance ❘ 155

156 ❘ chaPTer 3 Custom oBJECts

 BirthDate = DateAdd(DateInterval.Year, -value, Now)
 End Set
End Property

Code snippet from Person

With this change, the very nature of the Age method has changed. It is no longer a simple read-only property;
now it is a read-write property that includes code to calculate an approximate birth date based on the age
value supplied.

As it stands, your application will continue to run just fine because you are only using the read-only functionality
of the property in your form. You can change the form to make use of the new read-write functionality:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Person = New Employee()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#
 .Age = 20

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)
 End With
End Sub

However, this results in a syntax error. The variable you are working with, person, is of data type Person,
and that data type doesn’t provide a writeable version of the Age property. In order to use your enhanced
functionality, you must use a variable and object of type Employee:

Dim person As Employee = New Employee()

If you now run the application and click the button, the Age is displayed as 20, and the birth date is now a
value calculated based on that age value, indicating that you are now running the shadowed version of the
Age method as implemented in the Employee class.

As if that weren’t odd enough, you can do some even stranger and more dangerous things. You can change
Age into a variable, and you can even change its scope. For instance, you can comment out the Age property
code in the Employee class and replace it with the following code:

Private Shadows Age As String

Private shadows age as string
At this point, you have changed everything. Age is now a String instead of an Integer. It is a variable
instead of a property or function. It has Private scope instead of Public scope. Your Employee object is
now totally incompatible with the Person data type, something that shouldn’t occur normally when using
inheritance.

This means that the code you wrote in Form1 will no longer work. The Age property is no longer accessible
and can no longer be used, so your project will no longer compile. This directly illustrates the danger in
shadowing a base-class element such that its very nature or scope is changed by the subclass.

Because this change prevents your application from compiling, remove the line in the Employee class that
shadows Age as a String variable, and uncomment the shadowed Property routine:

Public Shadows Property Age() As Integer
 Get
 Return CInt(DateDiff(DateInterval.Year, BirthDate, Now))
 End Get

 Set(ByVal value As Integer)
 BirthDate = DateAdd(DateInterval.Year, -value, Now)
 End Set
End Property

Code snippet from Person

This restores your application to a working state.

levels of inheritance
So far, you have created a single base class and a single subclass, thus demonstrating that you can implement
inheritance that is a single level deep. You can also create inheritance relationships that are several levels
deep. These are sometimes referred to as chains of inheritance.

Multiple Inheritance

Don’t confuse multilevel inheritance with multiple inheritance, which is an entirely different concept that
is not supported by either Visual Basic or the .NET platform itself. The idea behind multiple inheritance is
that you can have a single subclass that inherits from two base classes at the same time.

For instance, an application might have a class for Customer and another class for Vendor. It is quite
possible that some customers are also vendors, so you might want to combine the functionality of these
two classes into a CustomerVendor class. This new class would be a combination of both Customer and
Vendor, so it would be nice to inherit from both of them at once.

While this is a useful concept, multiple inheritance is complex and somewhat dangerous. Numerous
problems are associated with multiple inheritance, but the most obvious is the possibility of collisions of
properties or methods from the base classes. Suppose that both Customer and Vendor have a Name property.
CustomerVendor would need two Name properties, one for each base class. Yet it only makes sense to have
one Name property on CustomerVendor, so to which base class does it link, and how will the system operate
if it does not link to the other one?

These are complex issues with no easy answers. Within the object-oriented community, there is ongoing
debate as to whether the advantages of code reuse outweigh the complexity that comes along for the ride.

Multiple inheritance isn’t supported by the .NET Framework, so it is likewise not supported by Visual Basic,
but you can use multiple interfaces to achieve an effect similar to multiple inheritance, a topic discussed
later in the chapter when we talk about implementing multiple interfaces.

Multilevel Inheritance

You have seen how a subclass derives from a base class with the Person and Employee classes, but nothing
prevents the Employee subclass from being the base class for yet another class, a sub-subclass, so to speak.
This is not at all uncommon. In the working example, you may have different kinds of employees, some who
work in the office and others who travel.

To accommodate this, you may want OfficeEmployee and TravelingEmployee classes. Of course, these
are both examples of an employee and should share the functionality already present in the Employee class.
The Employee class already reuses the functionality from the Person class. Figure 3-9 illustrates how these
classes are interrelated.

The Employee is a subclass of Person, and your two new classes are both subclasses of Employee. While
both OfficeEmployee and TravelingEmployee are employees, and thus also people, they are each unique.
An OfficeEmployee almost certainly has a cube or office number, while a TravelingEmployee will keep
track of the number of miles traveled.

inheritance ❘ 157

158 ❘ chaPTer 3 Custom oBJECts

Add a new class to your project and name it OfficeEmployee. To make this class inherit from your existing
Employee class, add the following code to the class:

Public Class OfficeEmployee

 Inherits Employee
End Class

With this change, the new class now has Name, BirthDate, Age, HireDate, and Salary methods. Notice
that methods from both Employee and Person are inherited. A subclass always gains all the methods,
properties, and events of its base class.

You can now extend the interface and behavior of OfficeEmployee by adding a property to indicate which
cube or office number the employee occupies:

Public Class OfficeEmployee
 Inherits Employee

 Private mOffice As String

 Public Property OfficeNumber() As String
 Get
 Return mOffice
 End Get
 Set(ByVal value As String)
 mOffice = value
 End Set
 End Property
End Class

Code snippet from OfficeEmployee

figure 3-9

Person
Class

Employee
Class

Person

NameTypes
Enum

TravelingEmployee
Class

Employee

O�ceEmployee
Class

Employee

To see how this works, let’s enhance the form to display this value. Add a
new TextBox control named txtOffice and an associated label so that
your form looks like the one shown in Figure 3-10.

Now change the code behind the button to use the new property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As OfficeEmployee = New OfficeEmployee()

 With person
 .Name = "Fred"
 .BirthDate = #1/1/1960#
 .Age = 20

 .OfficeNumber = "A42"

 txtName.Text = .Name
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)

 txtOffice.Text = .OfficeNumber
 End With
End Sub

Code snippet from Form1

You have changed the routine to declare and create an object of type OfficeEmployee — thus enabling you
to make use of the new property, as well as all existing properties and methods from Employee and Person,
as they’ve been “merged” into the OfficeEmployee class via inheritance. If you now run the application,
the name, birth date, age, and office values are displayed in the form.

Inheritance like this can go many levels deep, with each level extending and changing the behaviors of the
previous levels. In fact, there is no specific technical limit to the number of levels of inheritance you can
implement in Visual Basic, although very deep inheritance chains are typically not recommended and
are often viewed as a design flaw, something discussed in more detail later in this chapter.

interacting with the Base class, your class, and your object
You have already seen how you can use the MyBase keyword to call methods on the base class from within
a subclass. The MyBase keyword is one of three special keywords that enable you to interact with important
object and class representations:

 ➤ Me

 ➤ MyBase

 ➤ MyClass

The Me Keyword
The Me keyword provides you with a reference to your current object instance. Typically, you do not need
to use the Me keyword, because whenever you want to invoke a method within your current object, you can
just call that method directly.

To see clearly how this works, let’s add a new method to the Person class that returns the data of the
Person class in the form of a String. This is interesting in and of itself, as the base System.Object class
defines the ToString method for this exact purpose. Remember that all classes in the .NET Framework
ultimately derive from System.Object, even if you do not explicitly indicate it with an Inherits statement.

figure 3-10

inheritance ❘ 159

160 ❘ chaPTer 3 Custom oBJECts

This means that you can simply override the ToString method from the Object class within your Person
class by adding the following code:

Public Overrides Function ToString() As String
 Return Name
End Function

 This implementation returns the person ’ s Name property as a result when ToString is called.

 By default, ToString returns the class name of the class. Until now, if you called the
 ToString method on a Person object, you would get a result of InheritanceAnd
Interfaces.Person . InheritanceAndInterfaces represents your assembly name
when you create your project.

 Notice that the ToString method is calling another method within your same class — in this case, the Name
method.

 You could also write this routine using the Me keyword:

Public Overrides Function ToString() As String
 Return Me.Name
End Function

 This is redundant because Me is the default for all method calls in a class. These two implementations are
identical, so typically the Me keyword is simply omitted to avoid the extra typing.

 To see how the ToString method now works, you can change your code in Form1 to use this value instead
of the Name property:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click
 Dim objPerson As OfficeEmployee = New OfficeEmployee()

 With objPerson
 .Name = "Fred"
 .BirthDate = #1/1/1960#
 .Age = 20
 .OfficeNumber = "A42"

 txtName.Text = .ToString()
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)
 txtOffice.Text = .OfficeNumber
 End With
End Sub

 Code snippet from Form1

 When you run the application, the person ’ s name is displayed appropriately, which makes sense, as the
 ToString method is simply returning the result from the Name property.

 Earlier, you looked at virtual methods and how they work. Because either calling a method directly or
calling it using the Me keyword invokes the method on the current object, the method calls conform to the
same rules as an external method call. In other words, your ToString method may not actually end up
calling the Name method in the Person class if that method was overridden by a class farther down the
inheritance chain, such as the Employee or OfficeEmployee classes.

 For example, you could override the Name property in your OfficeEmployee class such that it always
returns the informal version of the person ’ s name, rather than the regular name. You can override the Name
property by adding this method to the OfficeEmployee class:

Public Overloads Overrides Property Name() As String
 Get
 Return MyBase.Name(NameTypes.Informal)
 End Get
 Set(ByVal value As String)
 MyBase.Name = value
 End Set
End Property

Code snippet from OfficeEmployee

This new version of the Name method relies on the base class to actually store the value, but instead of
returning the regular name on request, now you are always returning the informal name:

Return MyBase.Name(NameTypes.Informal)

Before you can test this, you need to enhance the code in your form to actually provide a value for the
informal name. Make the following change to the code:

Private Sub btnOK_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim objPerson As OfficeEmployee = New OfficeEmployee()

 With objPerson
 .Name = "Fred"
 .Name(NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/1960#
 .Age = 20
 .OfficeNumber = "A42"

 txtName.Text = .ToString()
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)
 txtOffice.Text = .OfficeNumber
 End With
End Sub

Code snippet from Form1

When you run the application, the Name field displays the informal name. Even though the ToString
method is implemented in the Person class, it is invoking the implementation of Name from the
OfficeEmployee class. This is because method calls within a class follow the same rules for calling virtual
methods as code outside a class, such as your code in the form. You will see this behavior with or without
the Me keyword, as the default behavior for method calls is to implicitly call them via the current object.

While methods called from within a class follow the same rules for virtual methods, this is not the case for
shadowed methods. Here, the rules for calling a shadowed method from within your class are different from
those outside your class.

To see how this works, make the Name property in OfficeEmployee a shadowed method instead of an
overridden method:

Public Shadows Property Name() As String
 Get
 Return MyBase.Name(NameTypes.Informal)
 End Get
 Set(ByVal value As String)
 MyBase.Name = value
 End Set
End Property

inheritance ❘ 161

162 ❘ chaPTer 3 Custom oBJECts

 Before you can run your application, you must adjust some code in the form. Because you have shadowed
the Name property in OfficeEmployee , the version of Name from Employee that acts as a property array is
now invalid.

 Shadowing a method replaces all implementations from higher in the inheritance chain,
regardless of their method signature.

 To make your application operate, you need to change the variable declaration and object creation to declare
a variable of type Employee so that you can access the property array while still creating an instance of
 OfficeEmployee :

Dim person As Employee = New OfficeEmployee()

 Because your variable is now of type Employee , you also need to comment out the lines that refer to the
 OfficeNumber property, as it is no longer available:

With person
 .Name = "Fred"
 .Name(NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/1960#
 .Age = 20

 '.OfficeNumber = "A42"

 txtName.Text = .ToString()
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)

 'txtOffice.Text = .OfficeNumber
End With

 Code snippet from Form1

 When you run the application now, it displays the name Fred, rather than Freddy, meaning it is not calling
the Name method from OfficeEmployee ; instead, it is calling the implementation provided by the Employee
class. Remember that the code to make this call still resides in the Person class, but it now ignores the
shadowed version of the Name method.

 Shadowed implementations in subclasses are ignored when calling the method from within a class higher
in the inheritance chain. You will get this same behavior with or without the Me keyword. The Me keyword,
or calling methods directly, follows the same rules for overridden methods as any other method call. For
shadowed methods, however, any shadowed implementations in subclasses are ignored, and the method is
called from the current level in the inheritance chain.

 The Me keyword exists primarily to enable you to pass a reference to the current object as a parameter to
other objects or methods. As shown when you look at the MyBase and MyClass keywords, things can get
very confusing, and there may be value in using the Me keyword when working with MyBase and MyClass to
ensure that it is always clear which particular implementation of a method you intended to invoke.

 The MyBase Keyword
 While the Me keyword allows you to call methods on the current object instance, at times you might want to
explicitly call into methods in your parent class. Earlier, you saw an example of this when you called back
into the base class from an overridden method in the subclass.

 The MyBase keyword references only the immediate parent class, and it works like an object reference. This
means that you can call methods on MyBase knowing that they are being called just as if you had a reference
to an object of your parent class ’ s data type.

 The MyBase keyword can be used to invoke or use any Public, Friend, or Protected element from the parent
class. This includes all elements directly on the base class, and any elements the base class inherited from
other classes higher in the inheritance chain.

 You already used MyBase to call back into the base Person class as you implemented the overridden Name
property in the Employee class.

 There is no way to directly navigate up the inheritance chain beyond the immediate parent,
so you can ’ t directly access the implementation of a method in a base class if you are in a
sub - subclass. Such behavior isn ’ t a good idea anyway, which is why it isn ’ t allowed.

 Any code within a subclass can call any method on the base class by using the MyBase
keyword.

 You can also use MyBase to call back into the base class implementation even if you have shadowed a
method. Though it wasn ’ t noted at the time, you have already done this in your shadowed implementation
of the Name property in the OfficeEmployee class. The bold lines indicate where you are calling into the
base class from within a shadowed method:

Public Shadows Property Name() As String
 Get
 Return MyBase.Name(NameTypes.Informal)
 End Get
 Set(ByVal value As String)
 MyBase.Name = value
 End Set
End Property

 Code snippet from Offi ceEmployee

 The MyBase keyword enables you to merge the functionality of the base class into your subclass code as you
deem fi t.

 The MyClass Keyword
 As you have seen, when you use the Me keyword or call a method directly, your method call follows the rules
for calling both virtual and nonvirtual methods. In other words, as shown earlier with the Name property, a
call to Name from your code in the Person class actually invoked the overridden version of Name located in
the OfficeEmployee class.

 While this behavior is often useful, sometimes you will want to ensure that you truly are running the
specifi c implementation from your class; even if a subclass overrode your method, you still want to ensure
that you are calling the version of the method that is directly in your class.

 Maybe you decide that your ToString implementation in Person should always call the Name implementation
that you write in the Person class, totally ignoring any overridden versions of Name in any subclasses.

 This is where the MyClass keyword shines. This keyword is much like MyBase , in that it provides you with
access to methods as though it were an object reference — in this case, a reference to an instance of the
class that contains the code you are writing when using the MyClass keyword. This is true even when
the instantiated object is an instance of a class derived from your class.

 You have seen that a call to ToString from within Person actually invokes the implementation in
 Employee or OfficeEmployee if your object is an instance of either of those types. Let ’ s restore the Name

inheritance ❘ 163

164 ❘ chaPTer 3 Custom oBJECts

property in OfficeEmployee so that it is an overridden method, rather than a shadowed method, to
demonstrate how this works:

Public Overloads Overrides Property Name() As String
 Get
 Return MyBase.Name(NameTypes.Informal)
 End Get
 Set(ByVal value As String)
 MyBase.Name = value
 End Set
End Property

Code snippet from OfficeEmployee

With this change, and based on your earlier testing, you know that the ToString implementation in Person
will automatically call this overridden version of the Name property, as the call to the Name method follows
the normal rules for virtual methods. In fact, if you run the application now, the Name field on the form
displays Freddy, the informal name of the person.

You can force the use of the implementation in the current class through the use of MyClass. Change the
ToString method in Person as follows:

Public Overrides Function ToString() As String
 Return MyClass.Name
End Function

You are now calling the Name method, but you are doing it using the MyClass keyword. When you run the
application and click the button, the Name field in the form displays Fred rather than Freddy, proving that
the implementation from Person was invoked even though the data type of the object itself is OfficeEmployee.

The ToString method is invoked from Person, as neither Employee nor OfficeEmployee provides an
overridden implementation. Then, because you are using the MyClass keyword, the Name method is invoked
directly from Person, explicitly defeating the default behavior you would normally expect.

Constructors
As discussed in Chapter 2, you can provide a special constructor method, named New, on a class and it will
be the first code run when an object is instantiated. You can also receive parameters via the constructor
method, enabling the code that creates your object to pass data into the object during the creation process.

Constructor methods are affected by inheritance differently than regular methods. A normal Public method,
such as BirthDate on your Person class, is automatically inherited by any subclass. From there you can
overload, override, or shadow that method, as discussed already.

simple constructors
Constructors do not quite follow the same rules. To explore the differences, let’s implement a simple
constructor method in the Person class:

Public Sub New()
 Debug.WriteLine("Person constructor")
End Sub

If you now run the application, you will see the text displayed in the output window in the IDE. This occurs
even though the code in your form is creating an object of type OfficeEmployee:

Dim person As Employee = New OfficeEmployee()

As you might expect, the New method from your base Person class is invoked as part of the construction
process of the OfficeEmployee object — simple inheritance at work. However, interesting things occur if
you implement a New method in the OfficeEmployee class itself:

Public Sub New()
 Debug.WriteLine("OfficeEmployee constructor")
End Sub

Notice that you are not using the Overrides keyword, nor did you mark the method in Person as
Overridable. These keywords have no use in this context, and in fact will cause syntax errors if you
attempt to use them on constructor methods.

When you run the application now, you would probably expect that only the implementation of New in
OfficeEmployee would be invoked. Certainly, that is what would occur with a normal overridden method.
Of course, New isn’t overridden, so when you run the application, both implementations are run, and both
strings are output to the output window in the IDE.

Note that the implementation in the Person class ran first, followed by the implementation in the
OfficeEmployee class. This occurs because when an object is created, all the constructors for the classes in
the inheritance chain are invoked, starting with the base class and including all the subclasses one by one. In
fact, if you implement a New method in the Employee class, you can see that it too is invoked:

Public Sub New()
 Debug.WriteLine("Employee constructor")
End Sub

When the application is run and the button is clicked, three strings appear in the output window. All three
constructor methods were invoked, from the Person class to the OfficeEmployee class.

Constructors in More Depth
The rules governing constructors without parameters are pretty straightforward, but things get a bit more
complex if you start requiring parameters on your constructors.

To understand why, you need to consider how even your simple constructors are invoked. While you may
see them as being invoked from the base class down through all subclasses to your final subclass, what is
really happening is a bit different.

In particular, it is the subclass New method that is invoked first. However, Visual Basic automatically inserts
a line of code into your routine at compile time. For instance, in your OfficeEmployee class you have a
constructor:

Public Sub New()
 Debug.WriteLine("OfficeEmployee constructor")
End Sub

Behind the scenes, Visual Basic inserts what is effectively a call to the constructor of your parent class on
your behalf. You could do this manually by using the MyBase keyword with the following change:

Public Sub New()
 MyBase.New()
 Debug.WriteLine("OfficeEmployee constructor")
End Sub

This call must be the first line in your constructor. If you put any other code before this line, you will get a
syntax error indicating that your code is invalid. Because the call is always required, and because it always
must be the first line in any constructor, Visual Basic simply inserts it for you automatically.

Note that if you don’t explicitly provide a constructor on a class by implementing a New method,
Visual Basic creates one for you behind the scenes. The automatically created method simply has one
line of code:

MyBase.New()

All classes have constructor methods, either created explicitly by you as you write a New method or created
implicitly by Visual Basic as the class is compiled.

inheritance ❘ 165

166 ❘ chaPTer 3 Custom oBJECts

 By always calling MyBase.New as the fi rst line in every constructor, you are guaranteed that it is the
implementation of New in your top - level base class that actually runs fi rst. Every subclass invokes the parent
class implementation all the way up the inheritance chain until only the base class remains. Then its code
runs, followed by each individual subclass, as shown earlier.

 Constructors with Parameters

 This works great when your constructors don ’ t require parameters, but if your constructor does require a
parameter, then it becomes impossible for Visual Basic to automatically make that call on your behalf. After
all, how would Visual Basic know what values you want to pass as parameters?

 To see how this works, change the New method in the Person class to require a Name parameter. You can use
that parameter to initialize the object ’ s Name property:

 Public Sub New(ByVal name As String)
 Me.Name = name
 Debug.WriteLine("Person constructor")
End Sub

 Now your constructor requires a String parameter and uses it to initialize the Name property. You are using
the Me keyword to make your code easier to read. Interestingly enough, the compiler actually understands
and correctly compiles the following code:

Name = name

 However, that is not at all clear to a developer reading the code. By prefi xing the property name with
the Me keyword, you make it clear that you are invoking a property on the object and providing it with the
parameter value.

 At this point, your application won ’ t compile because there is an error in the New method of the Employee
class. In particular, Visual Basic ’ s attempt to automatically invoke the constructor on the Person class fails
because it has no idea what data value to pass for this new name parameter. There are three ways you can
address this error:

 Make the name parameter ➤ Optional .

 Overload the ➤ New method with another implementation that requires no parameter.

 Manually provide the ➤ Name parameter value from within the Employee class.

 If you make the Name parameter Optional , then you are indicating that the New method can be called with
or without a parameter. Therefore, one viable option is to call the method with no parameters, so Visual
Basic ’ s default of calling it with no parameters works just fi ne.

 If you overload the New method, then you can implement a second New method that doesn ’ t accept any
parameters, again allowing Visual Basic ’ s default behavior to work as you have seen. Keep in mind that this
solution only invokes the overloaded version of New with no parameter; the version that requires a parameter
would not be invoked.

 The fi nal way you can fi x the error is by simply providing a parameter value yourself from within the New
method of the Employee class. To do this, change the Employee class as shown:

Public Sub New()
 MyBase.New("George")
 Debug.WriteLine("Employee constructor")
End Sub

 A constructor method is sometimes called a ctor , short for constructor. This term is often
used by tools such as ILDASM or .NET Refl ector.

By explicitly calling the New method of the parent class, you are able to provide it with the required
parameter value. At this point, your application will compile, but it won’t run.

Constructors, Overloading, and Variable Initialization

What isn’t clear from this code is that you have now introduced a very insidious bug. The constructor in the
Person class is using the Name property to set the value:

Public Sub New(ByVal name As String)
 Me.Name = name
 Debug.WriteLine("Person constructor")
End Sub

However, the Name property is overridden by the Employee class, so it is that implementation that will be
run. Unfortunately, that implementation makes use of a Dictionary object, which isn’t available yet! It
turns out that any member variables declared in a class with the New statement, such as the Dictionary
object in Employee, won’t be initialized until after the constructor for that class has completed:

Private mNames As New Generic.Dictionary(Of NameTypes, String)

Because you are still in the constructor for Person, there’s no way the constructor for Employee can
be complete. To resolve this, you need to change the Employee class a bit so that it does not rely on the
Dictionary being created in this manner. Instead, you will add code to create it when needed.

First, change the declaration of the variable in the Employee class:

Private mNames As Generic.Dictionary(Of NameTypes, String)

Then, update the Name property so that it creates the Hashtable object if needed:

Public Overloads Property Name(ByVal type As NameTypes) As String
 Get
 If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)
 Return mNames(type)
 End Get
 Set(ByVal value As String)
 If mNames Is Nothing Then mNames = New Generic.Dictionary(Of NameTypes, String)
 If mNames.ContainsKey(type) Then
 mNames.Item(type) = value
 Else
 mNames.Add(type, value)
 End If
 If type = NameTypes.Normal Then
 MyBase.Name = value
 End If
 End Set
End Property

Code snippet from OfficeEmployee

This ensures that a Dictionary object is created in the Employee class code, even though its constructor
hasn’t yet completed.

More Constructors with Parameters

Obviously, you probably do not want to hard-code a value in a constructor as you did in the Employee
class, so you may choose instead to change this constructor to also accept a name parameter. Change the
Employee class constructor as shown:

Public Sub New(ByVal name As String)
MyBase.New(name)
 Debug.WriteLine("Employee constructor")
End Sub

inheritance ❘ 167

168 ❘ chaPTer 3 Custom oBJECts

Of course, this just pushed the issue deeper, and now the OfficeEmployee class has a compile error in
its New method. Again, you can fix the problem by having that method accept a parameter so that it can
provide it up the chain as required. Make the following change to OfficeEmployee:

Public Sub New(ByVal name As String)
MyBase.New(name)
 Debug.WriteLine("OfficeEmployee constructor")
End Sub

Finally, the code in the form is no longer valid. You are attempting to create an instance of OfficeEmployee
without passing a parameter value. Update that code as shown and then you can run the application:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Employee = New OfficeEmployee("Mary")

 With person
 '.Name = "Fred"

Here, you are passing a name value to the constructor of OfficeEmployee. In addition, you have commented
out the line of code that sets the Name property directly — meaning the value passed in the constructor will be
displayed in the form.

Protected scope
You have seen how a subclass automatically gains all the Public methods and properties that compose the
interface of the base class. This is also true of Friend methods and properties; they are inherited as well and
are available only to other code in the same project as the subclass.

Private methods and properties are not exposed as part of the interface of the subclass, meaning that
the code in the subclass cannot call those methods, nor can any code using your objects. These methods
are only available to the code within the base class itself. This can get confusing, as the implementations
contained in the Private methods are inherited and used by any code in the base class; it is just that they are
not available to be called by any other code, including code in the subclass.

Sometimes you will want to create methods in your base class that can be called by a subclass, as well as
the base class, but not by code outside of those classes. Basically, you want a hybrid between Public and
Private access modifiers — methods that are private to the classes in the inheritance chain but usable
by any subclasses that might be created within the chain. This functionality is provided by the
Protected scope.

Protected methods are very similar to Private methods in that they are not available to any code that calls
your objects. Instead, these methods are available to code within the base class and to code within any
subclass. The following table lists all the available scope options:

scoPe descriPTion

Private Available only to code within your class

Protected Available only to classes that inherit from your class

Friend Available only to code within your project/component

Protected Friend Available to classes that inherit from your class (in any project) and to code within your
project/component . This is a combination of Protected and Friend .

Public Available to code outside your class

The Protected scope can be applied to Sub, Function, and Property methods. To see how the Protected scope
works, let’s add an Identity field to the Person class:

Public Class Person
 Private mName As String
 Private mBirthDate As String
 Private mID As String

 Protected Property Identity() As String
 Get
 Return mID
 End Get
 Set(ByVal value As String)
 mID = value
 End Set
 End Property

Code snippet from Person

This data field represents some arbitrary identification number or value assigned to a person. This might be
a social security number, an employee number, or whatever is appropriate.

The interesting thing about this value is that it is not currently accessible outside your inheritance chain.
For instance, if you try to use it from your code in the form, you will discover that there is no Identity
property on your Person, Employee, or OfficeEmployee objects.

However, there is an Identity property now available inside your inheritance chain. The Identity property
is available to the code in the Person class, just like any other method. Interestingly, even though Identity is
not available to the code in your form, it is available to the code in the Employee and OfficeEmployee classes,
because they are both subclasses of Person. Employee is directly a subclass, and OfficeEmployee is indirectly
a subclass of Person because it is a subclass of Employee.

Thus, you can enhance your Employee class to implement an EmployeeNumber property by using the
Identity property. To do this, add the following code to the Employee class:

Public Property EmployeeNumber() As Integer
 Get
 Return CInt(Identity)
 End Get
 Set(ByVal value As Integer)
 Identity = CStr(value)
 End Set
End Property

Code snippet from Employee

This new property exposes a numeric identity value for the employee, but it uses the internal Identity
property to manage that value. You can override and shadow Protected elements just as you do with
elements of any other scope.

Protected Variables

Up to this point, we’ve focused on methods and properties and how they interact through inheritance.
Inheritance, and, in particular, the Protected scope, also affects instance variables and how you work with
them.

Though it is not recommended, you can declare variables in a class using Public scope. This makes the
variable directly available to code both within and outside of your class, allowing any code that interacts
with your objects to directly read or alter the value of that variable.

Variables can also have Friend scope, which likewise allows any code in your class or anywhere within
your project to read or alter the value directly. This is also generally not recommended because it breaks
encapsulation.

inheritance ❘ 169

170 ❘ chaPTer 3 Custom oBJECts

 Of course, you know that variables can be of Private scope, and this is typically the case. This makes the
variables accessible only to the code within your class, and it is the most restrictive scope.

 As with methods, however, you can also use the Protected scope when declaring variables. This makes the
variable accessible to the code in your class and to the code in any class that derives from your class — all
the way down the hierarchy chain.

 Sometimes this is useful, because it enables you to provide and accept data to and from subclasses, but to act
on that data from code in the base class. At the same time, exposing variables to subclasses is typically not
ideal, and you should use Property methods with Protected scope for this instead, as they allow your base
class to enforce any business rules that are appropriate for the value, rather than just hope that the author of
the subclass provides only good values.

 events and inheritance
 So far, we ’ ve discussed methods, properties, and variables in terms of inheritance — how they can be added,
overridden, overloaded, and shadowed. In Visual Basic, events are also part of the interface of an object,
and they are affected by inheritance as well.

 inheriting events
 Chapter 2 discusses how to declare, raise, and receive events from objects. You can add such an event to the
 Person class by declaring it at the top of the class:

Public Class Person
 Private mName As String
 Private mBirthDate As String
 Private mID As String

 Public Event NameChanged(ByVal newName As String)

 Code snippet from Person

 Then, you can raise this event within the class anytime the person ’ s name is changed:

Public Overridable Property Name() As String
 Get
 Return mName
 End Get
 Set(ByVal value As String)
 mName = value
 RaiseEvent NameChanged(mName)
 End Set
End Property

 Code snippet from Person

 At this point, you can receive and handle this event within your form anytime you are working with a Person
object. The nice thing about this is that your events are inherited automatically by subclasses — meaning your
 Employee and OfficeEmployee objects will also raise this event. Thus, you can change the code in your form
to handle the event, even though you are working with an object of type OfficeEmployee .

 First, you can add a method to handle the event to Form1 :

 Rather than declare variables with Public or Friend scope, it is better to expose the value
using a Property so that you can apply any of your business rules to control how the
value is altered as appropriate.

Private Sub OnNameChanged(ByVal newName As String)
 MsgBox("New name: " & newName)
End Sub

Note that you are not using the Handles clause here. In this case, for simplicity, you use the AddHandler
method to dynamically link the event to this method. However, you could have also chosen to use the
WithEvents and Handles keywords, as described in Chapter 2 — either way works.

With the handler built, you can use the AddHandler method to link this method to the event on the object:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Employee = New OfficeEmployee("Mary")

 AddHandler person.NameChanged, AddressOf OnNameChanged
 With person
 .Name = "Fred"

Code snippet from Form1

Also note that you are uncommenting the line that changes the Name property. With this change, you know
that the event should fire when the name is changed.

When you run the application now, you will see a message box, indicating that the name has changed and
proving that the NameChanged event really is exposed and available, even though your object is of type
OfficeEmployee, rather than Person.

raising events from subclasses
One caveat you should keep in mind is that while a subclass exposes the events of its base class, the code
in the subclass cannot raise the event. In other words, you cannot use the RaiseEvent method in Employee
or OfficeEmployee to raise the NameChanged event. Only code directly in the Person class can raise
the event.

To see this in action, let’s add another event to the Person class, an event that can indicate the change of
other arbitrary data values:

Public Class Person
 Private mName As String
 Private mBirthDate As String
 Private mID As String

 Public Event NameChanged(ByVal newName As String)
 Public Event DataChanged(ByVal field As String, ByVal newValue As Object)

You can then raise this event when the BirthDate is changed:

Public Overridable Property BirthDate() As Date
 Get
 Return mBirthDate
 End Get
 Set(ByVal value As Date)
 mBirthDate = value
 RaiseEvent DataChanged("BirthDate", value)
 End Set
End Property

Code snippet from Person

inheritance ❘ 171

172 ❘ chaPTer 3 Custom oBJECts

It would also be nice to raise this event from the Employee class when the Salary value is changed.
Unfortunately, you can’t use the RaiseEvent method to raise the event from a base class, so the following
code won’t work (do not enter this code):

Public Property Salary() As Double
 Get
 Return mSalary
 End Get
 Set(ByVal value As Double)
 mSalary = value
 RaiseEvent DataChanged("Salary", value)
 End Set
End Property

Code snippet from Employee

Fortunately, there is a relatively easy way to get around this limitation. You can simply implement a
Protected method in your base class that allows any derived class to raise the method. In the Person class,
you can add such a method:

Protected Sub OnDataChanged(ByVal field As String, _
 ByVal newValue As Object)

 RaiseEvent DataChanged(field, newValue)
End Sub

Code snippet from Person

You can use this method from within the Employee class to indicate that Salary has changed:

Public Property Salary() As Double
 Get
 Return mSalary
 End Get
 Set(ByVal value As Double)
 mSalary = value
 OnDataChanged("Salary", value)
 End Set
End Property

Code snippet from Employee

Note that the code in Employee is not raising the event, it is simply calling a Protected method in Person.
The code in the Person class is actually raising the event, meaning everything will work as desired.

You can enhance the code in Form1 to receive the event. First, create a method to handle the event:

Private Sub OnDataChanged(ByVal field As String, ByVal newValue As Object)
 MsgBox("New " & field & ": " & CStr(newValue))
End Sub

Then, link this handler to the event using the AddHandler method:

Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 Dim person As Employee = New OfficeEmployee("Mary")

 AddHandler person.NameChanged, AddressOf OnNameChanged
 AddHandler person.DataChanged, AddressOf OnDataChanged

Code snippet from Form1

Finally, ensure that you are changing and displaying the Salary property:

With person
 .Name = "Fred"
 .Name(NameTypes.Informal) = "Freddy"
 .BirthDate = #1/1/1960#
 .Age = 20
 .Salary = 30000

 txtName.Text = .ToString()
 txtBirthDate.Text = Format(.BirthDate, "Short date")
 txtAge.Text = CStr(.Age)

 txtSalary.Text = Format(.Salary, "0.00")
End With

Code snippet from Form1

When you run the application and click the button now, you will get message boxes displaying the changes
to the Name property, the BirthDate property (twice, once for the BirthDate property and once for the Age
property, which changes the birth date), and the Salary property.

shared Methods
Chapter 2 explored shared methods and how they work: providing a set of methods that can be invoked
directly from the class, rather than requiring that you create an actual object.

Shared methods are inherited just like instance methods and so are automatically available as methods on
subclasses, just as they are on the base class. If you implement a shared method in base class, you can call
that method using any class derived from base class.

Like regular methods, shared methods can be overloaded and shadowed. They cannot, however, be overridden.
If you attempt to use the Overridable keyword when declaring a shared method, you will get a syntax error.
For instance, you can implement a method in your Person class to compare two Person objects:

Public Shared Function Compare(ByVal person1 As Person, _
 ByVal person2 As Person) As Boolean

 Return (person1.Name = person2.Name)

End Function

Code snippet from Sort

To test this method, add another button to the form, name it btnCompare, and set its Text value to
Compare. Double-click the button to bring up the code window and enter the following:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCompare.Click

 Dim emp1 As New Employee("Fred")
 Dim emp2 As New Employee("Mary")

 MsgBox(Employee.Compare(emp1, emp2))

End Sub

Code snippet from Form1

This code simply creates two Employee objects and compares them. Note, though, that the code uses the
Employee class to invoke the Compare method, displaying the result in a message box. This establishes that
the Compare method implemented in the Person class is inherited by the Employee class, as expected.

inheritance ❘ 173

174 ❘ chaPTer 3 Custom oBJECts

overloading shared Methods
Shared methods can be overloaded using the Overloads keyword in the same manner as you overload an
instance method. This means that your subclass can add new implementations of the shared method as long
as the parameter list differs from the original implementation.

For example, you can add a new implementation of the Compare method to Employee:

Public Overloads Shared Function Compare(ByVal employee1 As Employee, _
 ByVal employee2 As Employee) As Boolean

 Return (employee1.EmployeeNumber = employee2.EmployeeNumber)

End Function

Code snippet from Sort

This new implementation compares two Employee objects, rather than two Person objects, and in fact
compares them by employee number, rather than name. You can enhance the code behind btnCompare in
the form to set the EmployeeNumber properties:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCompare.Click

 Dim emp1 As New Employee("Fred")
 Dim emp2 As New Employee("Mary")

 emp1.EmployeeNumber = 1
 emp2.EmployeeNumber = 1

 MsgBox(Employee.Compare(emp1, emp2))
End Sub

Code snippet from Form1

While it might make little sense for these two objects to have the same EmployeeNumber value, it does prove
a point. When you run the application now, even though the Name values of the objects are different, your
Compare routine will return True, proving that you are invoking the overloaded version of the method that
expects two Employee objects as parameters.

The overloaded implementation is available on the Employee class or any classes derived from Employee,
such as OfficeEmployee. The overloaded implementation is not available if called directly from Person, as
that class contains only the original implementation.

shadowing shared Methods
Shared methods can also be shadowed by a subclass. This allows you to do some very interesting things,
including converting a shared method into an instance method or vice versa. You can even leave the method
as shared but change the entire way it works and is declared. In short, just as with instance methods, you
can use the Shadows keyword to entirely replace and change a shared method in a subclass.

To see how this works, use the Shadows keyword to change the nature of the Compare method in
OfficeEmployee:

Public Shared Shadows Function Compare(ByVal person1 As Person, _
 ByVal person2 As Person) As Boolean

 Return (person1.Age = person2.Age)

End Function

Code snippet from Sort

Notice that this method has the same signature as the original Compare method you implemented in the
Person class; but instead of comparing by name, here you are comparing by age. With a normal method
you could have done this by overriding, but Shared methods can’t be overridden, so the only thing you can
do is shadow it.

Of course, the shadowed implementation is only available via the OfficeEmployee class. Neither the
Person nor Employee classes, which are higher up the inheritance chain, are aware that this shadowed
version of the method exists.

To use this from your Form1 code, you can change the code for btnCompare as follows:

Private Sub btnCompare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCompare.Click

 Dim emp1 As New Employee("Fred")
 Dim emp2 As New Employee("Mary")

 emp1.Age = 20
 emp2.Age = 25

 MsgBox(OfficeEmployee.Compare(emp1, emp2))
End Sub

Code snippet from Form1

Instead of setting the EmployeeNumber values, you are now setting the Age values on your objects. More
important, notice that you are now calling the Compare method via the OfficeEmployee class, rather than
via Employee or Person. This causes the invocation of the new version of the method, and the ages of the
objects are compared which returns False.

shared events
As discussed in Chapter 2, you can create shared events, events that can be raised by shared or instance
methods in a class, whereas regular events can only be raised from within instance methods.

When you inherit from a class that defines a shared event, your new subclass automatically gains that event,
just as it does with regular events. As with instance events, a shared event cannot be raised by code within
the subclass; it can only be raised using the RaiseEvent keyword from code in the class where the event is
declared. If you want to be able to raise the event from methods in your subclass, you need to implement a
Protected method on the base class that actually makes the call to RaiseEvent.

This is no different from what you saw earlier in the chapter, other than that with a shared event you can use
a method with Protected scope that is marked as shared to raise the event, rather than use an instance method.

creating an abstract Base class
So far, you have seen how to inherit from a class, how to overload and override methods, and how virtual
methods work. In all of the examples so far, the parent classes have been useful in their own right and could
be instantiated and do some meaningful work. Sometimes, however, you want to create a class such that it
can only be used as a base class for inheritance.

Mustinherit Keyword
The current Person class is being used as a base class, but it can also be instantiated directly to create
an object of type Person. Likewise, the Employee class is also being used as a base class for the
OfficeEmployee class you created that derives from it.

If you want to make a class act only as a base class, you can use the MustInherit keyword, thereby
preventing anyone from creating objects based directly on the class, and requiring them instead to create a
subclass and then create objects based on that subclass.

inheritance ❘ 175

176 ❘ chaPTer 3 Custom oBJECts

This can be very useful when you are creating object models of real-world concepts and entities. You will look
at ways to leverage this capability later in this chapter. Change Person to use the MustInherit keyword:

Public MustInherit Class Person

This has no effect on the code within Person or any of the classes that inherit from it, but it does mean that
no code can instantiate objects directly from the Person class; instead, you can only create objects based on
Employee or OfficeEmployee.

This does not prevent you from declaring variables of type Person; it merely prevents you from creating an
object by using New Person. You can also continue to make use of Shared methods from the Person class
without any difficulty.

Mustoverride Keyword
Another option you have is to create a method (Sub, Function, or Property) that must be overridden by a
subclass. You might want to do this when you are creating a base class that provides some behaviors but
relies on subclasses to also provide other behaviors in order to function properly. This is accomplished by
using the MustOverride keyword on a method declaration.

If a class contains any methods marked with MustOverride, the class itself must also be declared with the
MustInherit keyword or you will get a syntax error.

Public Mustinherit Class Person
This makes sense. If you are requiring that a method be overridden in a subclass, it stands to reason that
your class can’t be directly instantiated; it must be subclassed to be useful.

Let’s see how this works by adding a LifeExpectancy method in Person that has no implementation and
must be overridden by a subclass:

Public MustOverride Function LifeExpectancy() As Integer

Notice that there is no End Function or any other code associated with the method. When using
MustOverride, you cannot provide any implementation for the method in your class. Such a method is
called an abstract method or pure virtual function, as it only defines the interface, and no implementation.

Methods declared in this manner must be overridden in any subclass that inherits from your base class.
If you do not override one of these methods, you will generate a syntax error in the subclass and it won’t
compile. You need to alter the Employee class to provide an implementation for this method:

Public Overrides Function LifeExpectancy() As Integer
 Return 90
End Function

Your application will compile and run at this point because you are now overriding the LifeExpectancy
method in Employee, so the required condition is met.

abstract Base Classes
You can combine these two concepts, using both MustInherit and MustOverride, to create something called
an abstract base class, sometimes referred to as a virtual class. This is a class that provides no implementation,
only the interface definitions from which a subclass can be created, as shown in the following example:

Public MustInherit Class AbstractBaseClass
 Public MustOverride Sub DoSomething()
 Public MustOverride Sub DoOtherStuff()
End Class

This technique can be very useful when creating frameworks or the high-level conceptual elements of a
system. Any class that inherits AbstractBaseClass must implement both DoSomething and DoOtherStuff;
otherwise, a syntax error will result.

In some ways, an abstract base class is comparable to defining an interface using the Interface keyword.
The Interface keyword is discussed in detail later in this chapter. You could define the same interface
shown in this example with the following code:

Public Interface IAbstractBaseClass
 Sub DoSomething()
 Sub DoOtherStuff()
End Interface

Any class that implements the IAbstractBaseClass interface must implement both DoSomething and
DoOtherStuff or a syntax error will result, and in that regard this technique is similar to an abstract
base class.

Preventing inheritance
If you want to prevent a class from being used as a base class, you can use the NotInheritable keyword.
For instance, you can change your OfficeEmployee as follows:

Public NotInheritable Class OfficeEmployee

At this point, it is no longer possible to inherit from this class to create a new class. Your OfficeEmployee
class is now sealed, meaning it cannot be used as a base from which to create other classes.

If you attempt to inherit from OfficeEmployee, you will get a compile error indicating that it cannot be used
as a base class. This has no effect on Person or Employee; you can continue to derive other classes from them.

Typically, you want to design your classes so that they can be subclassed, because that provides the greatest
long-term flexibility in the overall design. Sometimes, however, you want to ensure that your class cannot be
used as a base class, and the NotInheritable keyword addresses that issue.

mulTiPle inTerfaces
In Visual Basic, objects can have one or more interfaces. All objects have a primary, or native, interface,
which is composed of any methods, properties, events, or member variables declared using the Public
keyword. You can also have objects implement secondary interfaces in addition to their native interface by
using the Implements keyword.

object interfaces
The native interface on any class is composed of all the methods, properties, events, and even variables that
are declared as anything other than Private. Though this is nothing new, let’s quickly review what is included
in the native interface to set the stage for discussing secondary interfaces. To include a method as part of your
interface, you can simply declare a Public routine:

Public Sub AMethod()

End Sub

Notice that there is no code in this routine. Any code would be implementation and is not part of
the interface. Only the declaration of the method is important when discussing interfaces. This can
seem confusing at first, but it is an important distinction, as the separation of the interface from its
implementation is at the very core of object-oriented programming and design.

Because this method is declared as Public, it is available to any code outside the class, including other
applications that may make use of the assembly. If the method has a property, then you can declare it as part
of the interface by using the Property keyword:

Public Property AProperty() As String

End Property

Multiple interfaces ❘ 177

178 ❘ chaPTer 3 Custom oBJECts

You can also declare events as part of the interface by using the Event keyword:

Public Event AnEvent()

Finally, you can include actual variables, or attributes, as part of the interface:

Public AnInteger As Integer

This is strongly discouraged, because it directly exposes the internal variables for use by code outside the
class. Because the variable is directly accessible from other code, you give up any and all control over
the way the value may be changed or the code may be accessed.

Rather than make any variable Public, it is far preferable to make use of a Property method to expose the
value. That way, you can implement code to ensure that your internal variable is set only to valid values and
that only the appropriate code has access to the value based on your application’s logic.

Using the native interface
Ultimately, the native (or primary) interface for any class is defined by looking at all the methods,
properties, events, and variables that are declared as anything other than Private in scope. This includes any
methods, properties, events, or variables that are inherited from a base class.

You are used to interacting with the default interface on most objects, so this should seem pretty
straightforward. Consider this simple class:

Public Class TheClass
 Public Sub DoSomething()

 End Sub

 Public Sub DoSomethingElse()

 End Sub
End Class

Code snippet from TheClass

This defines a class and, by extension, defines the native interface that is exposed by any objects you instantiate
based on this class. The native interface defines two methods: DoSomething and DoSomethingElse. To make
use of these methods, you simply call them:

Dim myObject As New TheClass()

myObject.DoSomething()

myObject.DoSomethingElse()

Code snippet from Form1

This is the same thing you did in Chapter 2 and so far in this chapter. However, let’s take a look at creating
and using secondary interfaces, because they are a bit different.

secondary interfaces
Sometimes it’s helpful for an object to have more than one interface, thereby enabling you to interact with
the object in different ways. Inheritance enables you to create subclasses that are specialized cases of the
base class. For example, your Employee is a Person. Throughout this section we will be referencing
the InheritanceAndInterfaces project we created earlier in this chapter.

However, sometimes you have a group of objects that are not the same thing, but you want to be able to
treat them as though they were the same. You want all these objects to act as the same thing, even though
they are all different.

 For instance, you may have a series of different objects in an application: product, customer, invoice, and so
forth. Each of these would have default interfaces appropriate to each individual object — and each of them
is a different class — so there ’ s no natural inheritance relationship implied between these classes. At the
same time, you may need to be able to generate a printed document for each type of object, so you would
like to make them all act as a printable object.

 This chapter discusses the is - a and act - as relationships in more detail later.

 To accomplish this, you can defi ne a generic interface that enables generating such a printed document. You
can call it IPrintableObject .

 By convention, this type of interface is typically prefi xed with a capital “ I ” to indicate
that it is a formal interface.

 Each of your application objects can choose to implement the IPrintableObject interface. Every object
that implements this interface must include code to provide actual implementation of the interface, which is
unlike inheritance, whereby the code from a base class is automatically reused.

 By implementing this common interface, you can write a routine that accepts any object that implements the
 IPrintableObject interface and then print it — while remaining totally oblivious to the “ real ” data type
of the object or methods its native interface might expose. Before you learn how to use an interface in this
manner, let ’ s walk through the process of actually defi ning an interface.

 Defi ning the interface
 You defi ne a formal interface using the Interface keyword. This can be done in any code module in your
project, but a good place to put this type of defi nition is in a standard module. An interface defi nes a set
of methods (Sub, Function, or Property) and events that must be exposed by any class that chooses to
implement the interface.

 Add a module to the project using Project ➪ Add Module and name it Interfaces.vb . Then, add the
following code to the module, outside the Module code block itself:

Public Interface IPrintableObject

End Interface

Module Interfaces

End Module

 Code snippet from Interfaces

 A code module can contain a number of interface defi nitions, and these defi nitions must exist outside of
any other code block. Thus, they do not go within a Class or Module block; they are at a peer level to those
constructs.

 Interfaces must be declared using either Public or Friend scope. Declaring a Private or Protected interface
results in a syntax error. Within the Interface block of code, you can defi ne the methods, properties,
and events that make up your particular interface. Because the scope of the interface is defi ned by the
 Interface declaration itself, you can ’ t specify scopes for individual methods and events; they are all scoped
like the interface itself.

Multiple interfaces ❘ 179

180 ❘ chaPTer 3 Custom oBJECts

For instance, add the following code:

Public Interface IPrintableObject
 Function Label(ByVal index As Integer) As String
 Function Value(ByVal index As Integer) As String
 ReadOnly Property Count() As Integer
End Interface

Code snippet from Interfaces

This defines a new data type, somewhat like creating a class or structure, which you can use when declaring
variables. For instance, you can now declare a variable of type IPrintableObject:

Private printable As IPrintableObject

You can also have your classes implement this interface, which requires each class to provide
implementation code for each of the three methods defined on the interface.

Before you implement the interface in a class, let’s see how you can use the interface to write a generic
routine that can print any object that implements IPrintableObject.

Using the interface
Interfaces define the methods and events (including parameters and data types) that an object is required to
implement if you choose to support the interface. This means that, given just the interface definition, you
can easily write code that can interact with any object that implements the interface, even though you do not
know what the native data types of those objects will be.

To see how you can write such code, let’s create a simple routine in your form that can display data to the
output window in the IDE from any object that implements IPrintableObject. Bring up the code window
for your form and add the following routine:

Public Sub PrintObject(obj As IPrintableObject)
 Dim index As Integer

 For index = 0 To obj.Count
 Debug.Write(obj.Label(index) & ": ")
 Debug.WriteLine(obj.Value(index))
 Next
End Sub

Code snippet from Form1

Notice that you are accepting a parameter of type IPrintableObject. This is how secondary interfaces are
used, by treating an object of one type as though it were actually of the interface type. As long as the object
passed to this routine implements the IPrintableObject interface, your code will work fine.

Within the PrintObject routine, you are assuming that the object will implement three elements — Count,
Label, and Value — as part of the IPrintableObject interface. Secondary interfaces can include methods,
properties, and events, much like a default interface, but the interface itself is defined and implemented
using some special syntax.

Now that you have a generic printing routine, you need a way to call it. Bring up the designer for Form1,
add a button, and name it btnPrint. Double-click the button and put this code behind it:

Private Sub btnPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnPrint.Click

 Dim obj As New Employee("Andy")

 obj.EmployeeNumber = 123

 obj.BirthDate = #1/1/1980#
 obj.HireDate = #1/1/1996#

 PrintObject(obj)
End Sub

 Code snippet from Form1

 This code simply initializes an Employee object and calls the PrintObject routine. Of course, this code produces
runtime exceptions, because PrintObject is expecting a parameter that implements IPrintableObject , and
 Employee implements no such interface. Let ’ s move on and implement that interface in Employee so that you can
see how it works.

 implementing the interface
 Any class (other than an abstract base class) can implement an interface by using the Implements keyword.
For instance, you can implement the IPrintableObject interface in Employee by adding the following line:

Public Class Employee
 Inherits Person
 Implements IPrintableObject

 This causes the interface to be exposed by any object created as an instance of Employee . Adding this line
of code and pressing Enter triggers the IDE to add skeleton methods for the interface to your class. All you
need to do is provide implementations (write code) for the methods.

 To implement an interface, you must implement all the methods and properties defi ned
by that interface.

 Before actually implementing the interface, however, let ’ s create an array to contain the labels for the data
fi elds so that you can return them via the IPrintableObject interface. Add the following code to the
 Employee class:

Public Class Employee
 Inherits Person
 Implements IPrintableObject
 Private mLabels() As String = {"ID", "Age", "HireDate"}
 Private mHireDate As Date
 Private mSalary As Double

 Code snippet from Employee

 To implement the interface, you need to create methods and properties with the same parameter and return
data types as those defi ned in the interface. The actual name of each method or property does not matter
because you are using the Implements keyword to link your internal method names to the external method
names defi ned by the interface. As long as the method signatures match, you are all set.

 This applies to scope as well. Although the interface and its methods and properties are publicly available,
you do not have to declare your actual methods and properties as Public. In many cases, you can implement
them as Private, so they do not become part of the native interface and are only exposed via the secondary
interface.

 However, if you do have a Public method with a method signature, you can use it to implement a method
from the interface. This has the interesting side effect that this method provides implementation for both a
method on the object ’ s native interface and one on the secondary interface.

Multiple interfaces ❘ 181

182 ❘ chaPTer 3 Custom oBJECts

In this case, you will use a Private method, so it is only providing implementation for the
IPrintableObject interface. Implement the Label method by adding the following code to Employee:

Private Function Label(ByVal index As Integer) As String _
 Implements IPrintableObject.Label

 Return mLabels(index)
End Function

Code snippet from Employee

This is just a regular Private method that returns a String value from the pre-initialized array. The interesting
part is the Implements clause on the method declaration:

Private Function Label(ByVal index As Integer) As String _
 Implements IPrintableObject.Label

By using the Implements keyword in this fashion, you are indicating that this particular method is
the implementation for the Label method on the IPrintableObject interface. The actual name of the
private method could be anything. It is the use of the Implements clause that makes this work. The only
requirement is that the parameter data types and the return value data type must match those defined
by the IPrintableObject interface method.

This is very similar to using the Handles clause to indicate which method should handle an event. In fact,
like the Handles clause, the Implements clause allows you to have a comma-separated list of interface
methods that should be implemented by this one function.

You can then move on to implement the other two elements defined by the IPrintableObject interface by
adding this code to Employee:

Private Function Value(ByVal index As Integer) As String _
 Implements IPrintableObject.Value

 Select Case index
 Case 0
 Return CStr(EmployeeNumber)
 Case 1
 Return CStr(Age)
 Case Else
 Return Format(HireDate, "Short date")
 End Select
End Function

Private ReadOnly Property Count() As Integer _
 Implements IPrintableObject.Count
 Get
 Return UBound(mLabels)
 End Get
End Property

Code snippet from Employee

You can now run this application and click the button. The output window in the IDE will display your
results, showing the ID, age, and hire-date values as appropriate.

Any object could create a similar implementation behind the IPrintableObject interface, and the PrintObject
routine in your form would continue to work, regardless of the native data type of the object itself.

reusing a Common implementation
Secondary interfaces provide a guarantee that all objects implementing a given interface have exactly the
same methods and events, including the same parameters.

The Implements clause links your actual implementation to a specific method on an interface. For instance,
your Value method is linked to IPrintableObject.Value using the following clause:

Private Function Value(ByVal index As Integer) As String _
 Implements IPrintableObject.Value

Sometimes, your method might be able to serve as the implementation for more than one method, either on
the same interface or on different interfaces.

Add the following interface definition to Interfaces.vb:

Public Interface IValues
 Function GetValue(ByVal index As Integer) As String
End Interface

This interface defines just one method, GetValue. Notice that it defines a single Integer parameter and a
return type of String, the same as the Value method from IPrintableObject. Even though the method
name and parameter variable name do not match, what counts here is that the parameter and return value
data types do match.

Now bring up the code window for Employee. You will have it implement this new interface in addition to
the IPrintableObject interface:

Public Class Employee
 Inherits Person
 Implements IPrintableObject
 Implements IValues

Code snippet from Employee

You already have a method that returns values. Rather than reimplement that method, it would be nice to just
link this new GetValues method to your existing method. You can easily do this because the Implements
clause allows you to provide a comma-separated list of method names:

Private Function Value(ByVal index As Integer) As String _
 Implements IPrintableObject.Value, IValues.GetValue

 Select Case Index
 Case 0
 Return CStr(EmployeeNumber)
 Case 1
 Return CStr(Age)
 Case Else
 Return Format(HireDate, "Short date")
 End Select

End Function

Code snippet from Employee

This is very similar to the use of the Handles keyword, covered in Chapter 2. A single method within the
class, regardless of scope or name, can be used to implement any number of methods as defined by other
interfaces, as long as the data types of the parameters and return values all match.

Combining interfaces and inheritance
You can combine implementation of secondary interfaces and inheritance at the same time. When you
inherit from a class that implements an interface, your new subclass automatically gains the interface and
implementation from the base class. If you specify that your base-class methods are overridable, then the
subclass can override those methods. This not only overrides the base-class implementation for your native

Multiple interfaces ❘ 183

184 ❘ chaPTer 3 Custom oBJECts

interface, but also overrides the implementation for the interface. For instance, you could declare the Value
method in the interface as follows:

Public Overridable Function Value(ByVal index As Integer) As String _
 Implements IPrintableObject.Value, IValues.GetValue

Now it is Public, so it is available on your native interface, and it is part of both the IPrintableObject and
IValues interfaces. This means that you can access the property three ways in client code:

Dim emp As New Employee()
Dim printable As IPrintableObject = emp
Dim values As IValues = emp

Debug.WriteLine(emp.Value(0))
Debug.WriteLine(printable.Value(0))
Debug.WriteLine(values.GetValue(0))

Code snippet from Form1

Note that you are also now using the Overrides keyword in the declaration. This means that a subclass of
Employee, such as OfficeEmployee, can override the Value method. The overridden method will be the
one invoked, regardless of whether you call the object directly or via an interface.

Combining the implementation of an interface in a base class with overridable methods can provide a very
flexible object design.

aBsTracTion
Abstraction is the process by which you can think about specific properties or behaviors without thinking
about a particular object that has those properties or behaviors. Abstraction is merely the ability of a
language to create “black box” code, to take a concept and create an abstract representation of that concept
within a program.

A Customer object, for example, is an abstract representation of a real-world customer. A DataSet object is
an abstract representation of a set of data.

Abstraction enables you to recognize how things are similar and to ignore differences, to think in general
terms and not in specifics. A TextBox control is an abstraction because you can place it on a form and then
tailor it to your needs by setting properties. Visual Basic enables you to define abstractions using classes.

Any language that enables a developer to create a class from which objects can be instantiated meets this
criterion, and Visual Basic is no exception. You can easily create a class to represent a customer, essentially
providing an abstraction. You can then create instances of that class, whereby each object can have its own
attributes, representing a specific customer.

In Visual Basic, you implement abstraction by creating a class using the Class keyword. To see this in
action, bring up Visual Studio and create a new Visual Basic Windows Forms Application project named
“OOExample.” Once the project is open, add a new class to the project using the Project ➪ Add Class menu
option. Name the new class Customer.vb, and add some code to make this class represent a real-world
customer in an abstract sense:

Public Class Customer
 Private mID As Guid = Guid.NewGuid
 Private mName As String
 Private mPhone As String

 Public Property ID() As Guid
 Get
 Return mID
 End Get

 Set(ByVal value As Guid)
 mID = value
 End Set
 End Property

 Public Property Name() As String
 Get
 Return mName
 End Get
 Set(ByVal value As String)
 mName = value
 End Set
 End Property

 Public Property Phone() As String
 Get
 Return mPhone
 End Get
 Set(ByVal value As String)
 mPhone = value
 End Set
 End Property
End Class

Code snippet from Customer

You know that a real customer is a lot more complex than an ID, name, and phone number; but at the same
time, you know that in an abstract sense, your customers really do have names and phone numbers, and
that you assign them unique ID numbers to keep track of them. In this case, you are using a globally unique
identifier (GUID) as a unique ID. Thus, given an ID, name, and phone number, you know which customer
you are dealing with, and so you have a perfectly valid abstraction of a customer within your application.

You can then use this abstract representation of a customer from within your code by using data binding to
link the object to a form. First, build the project by selecting Build ➪ OOExample. Then click the Data ➪
Show Data Sources menu option to open the Data Sources window. Select the Add New Data Source link
in the window to bring up the Data Source Configuration Wizard. Within the wizard, choose to add a new
Object data source, click Next, and then select your Customer class, as shown in Figure 3-11.

figure 3-11

abstraction ❘ 185

186 ❘ chaPTer 3 Custom oBJECts

Finish the wizard. The Customer class will be displayed as an available data source, as shown in Figure 3-12,
if you are working in Design view.

Click on Customer in the window. Customer should change its display to a combo box. Open the combo
box and change the selection from DataGridView to Details. This way, you get a details view of the object
on your form. Open the designer for Form1 and drag the Customer class from the Data Sources window
onto the form. The result should look something like the dialog shown in Figure 3-13.

figure 3-12 figure 3-13

All you need to do now is add code to create an instance of the Customer class to act as a data source for
the form. Double-click on the form to bring up its code window and add the following code:

Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Me.CustomerBindingSource.DataSource = New Customer()

 End Sub

End Class

Code snippet from Form1

You are using the ability of Windows Forms to data bind to a property
on an object. You learn more about data binding later. For now, it is
enough to know that the controls on the form are automatically tied to
the properties on your object.

Now you have a simple user interface (UI) that both displays and
updates the data in your Customer object, with that object providing
the UI developer with an abstract representation of the customer.
When you run the application, you will see a display like the one
shown in Figure 3-14.

Here, you have displayed the pre-generated ID value, and have entered
values for Name and Phone directly into the form.

figure 3-14

 encaPsulaTion
 Perhaps the most important of the object - oriented concepts is that of encapsulation. Encapsulation is
the idea that an object should totally separate its interface from its implementation. All the data and
implementation code for an object should be entirely hidden behind its interface. This is the concept of an
object as a black box.

 The idea is that you can create an interface (by creating public methods in a class) and, as long as that
interface remains consistent, the application can interact with your objects. This remains true even if you
entirely rewrite the code within a given method. The interface is independent of the implementation.

 Encapsulation enables you to hide the internal implementation details of a class. For example, the algorithm
you use to fi nd prime numbers might be proprietary. You can expose a simple API to the end user but hide
all of the logic used in your algorithm by encapsulating it within your class.

 This means that an object should completely contain any data it requires and should contain all the
code required to manipulate that data. Programs should interact with an object through an interface,
using the properties and methods of the object. Client code should never work directly with the data owned
by the object.

 Programs interact with objects by sending messages to the object indicating which
method or property they want to have invoked. These messages are generated by other
objects or external sources such as the user. The object reacts to these messages through
methods or properties.

 Visual Basic classes entirely hide their internal data and code, providing a well - established interface of
properties and methods with the outside world. Let ’ s look at an example. Add the following class to your
project by selecting Project ➪ Add Class; the code defi nes its native interface:

Public Class Encapsulation

 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single

 End Function

 Public Property CurrentX() As Single
 Get

 End Get
 Set(ByVal value As Single)

 End Set
 End Property

 Public Property CurrentY() As Single
 Get

 End Get
 Set(ByVal value As Single)

 End Set
 End Property

End Class

 Code snippet from Encapsulation

encapsulation ❘ 187

188 ❘ chaPTer 3 Custom oBJECts

This creates an interface for the class. At this point, you can write client code to interact with the class,
because from a client perspective, all you care about is the interface. Bring up the designer for Form1 and
add a button to the form, and then write the following code behind the button:

 Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEncapsulation.Click

 Dim obj As New Encapsulation
 MsgBox(obj.DistanceTo(10, 10))

 End Sub

Code snippet from Form1

Even though you have no actual code in the Encapsulation class, you can still write code to use that class
because the interface is defined.

This is a powerful idea. It means you can rapidly create class interfaces against which other developers can
create the UI or other parts of the application while you are still creating the implementation behind the
interface.

From here, you could do virtually anything you like in terms of implementing the class. For example, to use
the values to calculate a direct distance, overwrite the previous code with:

Imports System.Math

Public Class Encapsulation
 Private mX As Single
 Private mY As Single

 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
 Return CSng(Sqrt((x - mX)^ 2 ^ (y - mY) ? 2))
 End Function

 Public Property CurrentX() As Single
 Get
 Return mX
 End Get
 Set(ByVal value As Single)
 mX = value
 End Set
 End Property

 Public Property CurrentY() As Single
 Get
 Return mY
 End Get
 Set(ByVal value As Single)
 mY = value

 End Set
 End Property
End Class

Code snippet from Encapsulation

Now when you run the application and click the button, you get a meaningful value as a result. Even better,
encapsulation enables you to change the implementation without changing the interface. For example, you
can change the distance calculation to find the distance between the points (assuming that no diagonal
travel is allowed):

Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
 Return Abs(x - mX) + Abs(y - mY)
End Function

This results in a different value being displayed when the program is run. You have not changed the
interface of the class, so your working client program has no idea that you have switched from one
implementation to the other. You have achieved a total change of behavior without any change to the client
code. This is the essence of encapsulation.

Of course, a user might have a problem if you make such a change to your object. If applications were developed
expecting the first set of behaviors, and then you changed to the second, there could be some interesting side
effects. The key point is that the client programs would continue to function, even if the results are quite
different from when you began.

PolymorPhism
Polymorphism is often considered to be directly tied to inheritance (discussed next). In reality, it is largely
independent. Polymorphism means that you can have two classes with different implementations or code,
but with a common set of methods, properties, or events. You can then write a program that operates upon
that interface and does not care about which type of object it operates at runtime.

method signatures
To properly understand polymorphism, you need to explore the concept of a method signature, sometimes
also called a prototype. All methods have a signature, which is defined by the method’s name and the data
types of its parameters. You might have code such as this:

Public Function CalculateValue() As Integer

End Sub

In this example, the signature is as follows:

f()

If you add a parameter to the method, the signature will change. For example, you could change the method
to accept a Double:

Public Function CalculateValue(ByVal value As Double) As Integer

Then, the signature of the method is as follows:

f(Double)

Polymorphism merely says that you should be able to write client code that calls methods on an object, and
as long as the object provides your methods with the method signatures you expect, it doesn’t matter from
which class the object was created. The following sections look at some examples of polymorphism within
Visual Basic.

implementing Polymorphism
You can use several techniques to achieve polymorphic behavior:

Late binding ➤

Multiple interfaces ➤

Reflection ➤

Inheritance ➤

Late binding actually enables you to implement “pure” polymorphism, although at the cost of performance
and ease of programming. Through multiple interfaces and inheritance, you can also achieve polymorphism

Polymorphism ❘ 189

190 ❘ chaPTer 3 Custom oBJECts

with much better performance and ease of programming. Reflection enables you to use either late binding or
multiple interfaces, but against objects created in a very dynamic way, even going so far as to dynamically
load a DLL into your application at runtime so that you can use its classes. The following sections walk
through each of these options to see how they are implemented and to explore their pros and cons.

Polymorphism through late Binding
Typically, when you interact with objects in Visual Basic, you are interacting with them through strongly typed
variables. For example, in Form1 you interacted with the Encapsulation object with the following code:

 Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEncapsulation.Click

 Dim obj As New Encapsulation
 MsgBox(obj.DistanceTo(10, 10))

 End Sub

Code snippet from Form1

The obj variable is declared using a specific type (Encapsulation) — meaning that it is strongly typed or
early bound.

You can also interact with objects that are late bound. Late binding means that your object variable has no
specific data type, but rather is of type Object. To use late binding, you need to use the Option Strict
Off directive at the top of your code file (or in the project’s properties). This tells the Visual Basic compiler
that you want to use late binding, so it will allow you to do this type of polymorphism. Add the following to
the top of the Form1 code:

Option Strict Off

With Option Strict turned off, Visual Basic treats the Object data type in a special way, enabling you to
attempt arbitrary method calls against the object, even though the Object data type does not implement
those methods. For example, you could change the code in Form1 to be late bound as follows:

 Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEncapsulation.Click

 Dim obj As Object = New Encapsulation
 MsgBox(obj.DistanceTo(10, 10))

 End Sub

Code snippet from Form1

When this code is run, you get the same result as you did before, even though the Object data type has no
DistanceTo method as part of its interface. The late-binding mechanism, behind the scenes, dynamically
determines the real type of your object and invokes the appropriate method.

When you work with objects through late binding, neither the Visual Basic IDE nor the compiler can tell
whether you are calling a valid method. Here, there is no way for the compiler to know that the object
referenced by your obj variable actually has a DistanceTo method. It just assumes that you know what you
are talking about and compiles the code.

At runtime, when the code is actually invoked, it attempts to dynamically call the DistanceTo method. If
that is a valid method, then your code will work; otherwise, you will get an error.

Obviously, there is a level of danger when using late binding, as a simple typo can introduce errors that can
only be discovered when the application is actually run. However, it also offers a lot of flexibility, as code
that makes use of late binding can talk to any object from any class as long as those objects implement the
methods you require.

There is a substantial performance penalty for using late binding. The existence of each method is discovered
dynamically at runtime, and that discovery takes time. Moreover, the mechanism used to invoke a method
through late binding is not nearly as efficient as the mechanism used to call a method that is known at
compile time.

To make this more obvious, change the code in Form1 by adding a generic routine that displays the distance:

 Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEncapsulation.Click

 Dim obj As New Encapsulation
 ShowDistance(obj)
 End Sub

 Private Sub ShowDistance(ByVal obj As Object)
 MsgBox(obj.DistanceTo(10, 10))
 End Sub

Code snippet from Form1

Notice that the new ShowDistance routine accepts a parameter using the generic Object data type — so
you can pass it literally any value — String, Integer, or one of your own custom objects. It will throw an
exception at runtime, however, unless the object you pass into the routine has a DistanceTo method that
matches the required method signature.

You know that your Encapsulation object has a method matching that signature, so your code works fine.
Now let’s add another simple class to demonstrate polymorphism. Add a new class to the project by selecting
Project ➪ Add Class and name it Poly.vb:

Public Class Poly
 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
 Return x + y
 End Function
End Class

Code snippet from Poly

This class is about as simple as you can get. It exposes a DistanceTo method as part of its interface and
provides a very basic implementation of that interface.

You can use this new class in place of the Encapsulation class without changing the ShowDistance
method by using polymorphism. Return to the code in Form1 and make the following change:

 Private Sub btnEncapsulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEncapsulation.Click

 Dim obj As New Poly
 ShowDistance(obj)
 End Sub

Code snippet from Form1

Even though you changed the class of object you are passing to ShowDistance to one with a different
overall interface and different implementation, the method called within ShowDistance remains consistent,
so your code will run.

Polymorphism with Multiple interfaces
Late binding is flexible and easy, but it is not ideal because it defeats the IDE and compiler type checking
that enables you to fix bugs due to typos during the development process. It also has a negative impact on
performance.

Polymorphism ❘ 191

192 ❘ chaPTer 3 Custom oBJECts

Another way to implement polymorphism is to use multiple interfaces. This approach avoids late binding,
meaning the IDE and compiler can check your code as you enter and compile it. Moreover, because the
compiler has access to all the information about each method you call, your code runs much faster.

Remove the Option Strict directive from the code in Form1 in the OOExample project. This will cause
some syntax errors to be highlighted in the code, but don’t worry — you will fix those soon enough.

Visual Basic not only supports polymorphism through late binding, it also implements a stricter form of
polymorphism through its support of multiple interfaces. (Earlier you learned about multiple interfaces,
including the use of the Implements keyword and how to define interfaces.)

With late binding, you have learned how to treat all objects as equals by making them all appear using the
Object data type. With multiple interfaces, you can treat all objects as equals by making them all implement a
common data type or interface.

This approach has the benefit that it is strongly typed, meaning the IDE and compiler can help you find errors
due to typos, because the names and data types of all methods and parameters are known at design time. It
is also fast in terms of performance: Because the compiler knows about the methods, it can use optimized
mechanisms for calling them, especially compared to the dynamic mechanisms used in late binding.

Return to the project to implement polymorphism with multiple interfaces. First, add a module to the project
using the Project ➪ Add Module menu option and name it Interfaces.vb. Replace the Module code block
with an Interface declaration:

Public Interface IShared
 Function CalculateDistance(ByVal x As Single, ByVal y As Single) As Single
End Interface

Code snippet from Interfaces

Now you can make both the Encapsulation and the Poly classes implement this interface. First, in the
Encapsulation class, add the following code:

Public Class Encapsulation
 Implements IShared

 Private mX As Single
 Private mY As Single
 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _
 As Single Implements IShared.CalculateDistance
 Return CSng(Sqrt((x - mX) ^ 2 + (y - mY) ^ 2))
 End Function

Code snippet from Encapsulation

Here you are implementing the IShared interface, and because the CalculateDistance method’s signature
matches that of your existing DistanceTo method, you are simply indicating that it should act as the
implementation for CalculateDistance.

You can make a similar change in the Poly class:

Public Class Poly
 Implements IShared
 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single _
 Implements IShared.CalculateDistance
 Return x + y
 End Function
End Class

Code snippet from Poly

Now this class also implements the IShared interface, and you are ready to see polymorphism implemented
in your code. Bring up the code window for Form1 and change your ShowDistance method as follows:

Private Sub ShowDistance(ByVal obj As IShared)
 MsgBox(obj.CalculateDistance(10, 10))
End Sub

Note that this eliminates the compiler error you saw after removing the Option Strict directive from Form1.

Instead of accepting the parameter using the generic Object data type, you are now accepting an IShared
parameter — a strong data type known by both the IDE and the compiler. Within the code itself, you are
calling the CalculateDistance method as defined by that interface.

This routine can now accept any object that implements IShared, regardless of what class that object was
created from or what other interfaces that object may implement. All you care about here is that the object
implements IShared.

Polymorphism through reflection
You have learned how to use late binding to invoke a method on any arbitrary object as long as that object
has a method matching the method signature you are trying to call. You have also walked through the use
of multiple interfaces, which enables you to achieve polymorphism through a faster, early-bound technique.
The challenge with these techniques is that late binding can be slow and hard to debug, and multiple
interfaces can be somewhat rigid and inflexible.

Enter reflection. Reflection is a technology built into the .NET Framework that enables you to write code that
interrogates an assembly to dynamically determine the classes and data types it contains. Using reflection, you
can load the assembly into your process, create instances of those classes, and invoke their methods.

When you use late binding, Visual Basic makes use of the System.Reflection namespace behind the scenes
on your behalf. The System.Reflection namespace can give you insight into classes by enabling to traverse
information about an assembly or class. You can choose to manually use reflection as well. This gives you
even more flexibility in terms of how you interact with objects.

For example, suppose that the class you want to call is located in some other assembly on disk — an assembly
you did not specifically reference from within your project when you compiled it. How can you dynamically
find, load, and invoke such an assembly? Reflection enables you to do this, assuming that the assembly is
polymorphic. In other words, it has either an interface you expect or a set of methods you can invoke via late
binding.

To see how reflection works with late binding, we’ll create a new class in a separate assembly (project) and use
it from within the existing application. Choose File ➪ Add ➪ New Project to add a new Class Library project
to your solution. Name it “Objects.” It begins with a single class module that you can use as a starting point.
Change the code in that class to the following:

Public Class External
 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) As Single
 Return x * y
 End Function
End Class

Code snippet from External

Now compile the assembly by choosing Build ➪ Build Objects. Next, bring up the code window for Form1.
Add an Imports statement at the top, and add back the Option Strict Off statement:

Option Strict Off
Imports System.Reflection

Remember that because you are using late binding, Form1 also must use Option Strict Off. Otherwise,
late binding isn’t available.

Polymorphism ❘ 193

194 ❘ chaPTer 3 Custom oBJECts

 Add a button with the following code (you have to import the System.Reflections namespace for this
to work):

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button1.Click
 Dim obj As Object
 Dim dll As Assembly
 dll = Assembly.LoadFrom("..\..\..\Objects\bin\Release\Objects.dll")
 obj = dll.CreateInstance("Objects.External")
 MsgBox(obj.DistanceTo(10, 10))
 End Sub

 Code snippet from Form1

 There is a lot going on here, so let ’ s walk through it. First, notice that you are reverting to late binding;
your obj variable is declared as type Object . You will look at using refl ection and multiple interfaces in a
moment, but for now you will use late binding.

 Next, you have declared a dll variable as type Reflection.Assembly . This variable will contain a reference
to the Objects assembly that you will be dynamically loading through your code. Note that you are not
adding a reference to this assembly via Project ➪ Add Reference. You will dynamically access the assembly at
runtime.

 You then load the external assembly dynamically by using the Assembly.LoadFrom method:

dll = Assembly.LoadFrom("..\..\Objects\bin\Objects.dll")

 This causes the refl ection library to load your assembly from a fi le on disk at the location you specify.
Once the assembly is loaded into your process, you can use the dll variable to interact with it, including
interrogating it to get a list of the classes it contains or to create instances of those classes.

 You can also use the AssemblyLoad method, which scans the directory containing your
application ’ s .exe fi le (and the global assembly cache) for any EXE or DLL containing the
 Objects assembly. When it fi nds the assembly, it loads it into memory, making it available
for your use.

 You can then use the CreateInstance method on the assembly itself to create objects based on any class in
that assembly. In this case, you are creating an object based on the External class:

obj = dll.CreateInstance("Objects.External")

 Now you have an actual object to work with, so you can use late binding to invoke its DistanceTo method.
At this point, your code is really no different from that in the earlier late - binding example, except that the
assembly and object were created dynamically at runtime, rather than being referenced directly by your project.

 Now you should be able to run the application and have it dynamically invoke the assembly at runtime.

 Polymorphism via refl ection and Multiple interfaces
 You can also use both refl ection and multiple interfaces together. You have seen how multiple interfaces enable
you to have objects from different classes implement the same interface and thus be treated identically. You
have also seen how refl ection enables you to load an assembly and class dynamically at runtime.

 You can combine these concepts by using an interface shared in common between your main application
and your external assembly, using refl ection to load that external assembly dynamically at runtime.

 First, create the interface that will be shared across both application and assembly. To do so, add a new
Class Library project to your solution named “ Interfaces ” by selecting File ➪ Add ➪ New Project. Once it is

created, drag and drop the Interfaces.vb module
from your original application into the new project
(hold down the Shift key as you move it). This makes
the IShared interface part of that project and no
longer part of your base application.

Of course, your base application still uses IShared,
so you want to reference the Interfaces project from
your application to gain access to the interface. Do
this by right-clicking your OOExample project in
the Solution Explorer window and selecting Add
Reference. Then add the reference, as shown in
Figure 3-15.

Because the IShared interface is now part of a
separate assembly, add an Imports statement to
Form1, Encapsulation, and Poly so that they are
able to locate the IShared interface:

Imports Interfaces

Be sure to add this to the top of all three code modules. You also need to have the Objects project reference
Interfaces, so right-click Objects in the Solution Explorer and choose Add Reference there as well. Add the
reference to Interfaces and click OK. At this point, both the original application and the external assembly have
access to the IShared interface. You can now enhance the code in Objects by changing the External class:

Imports Interfaces
Public Class External
 Implements IShared
 Public Function DistanceTo(ByVal x As Single, ByVal y As Single) _
 As Single Implements IShared.CalculateDistance
 Return x * y
 End Function
End Class

Code snippet from Interfaces

With both the main application and the external assembly using the same data type, you are ready to
implement the polymorphic behavior using reflection.

Remove the Option Strict Off code from Form1. Bring up the code window for Form1 and change the
code behind the button to take advantage of the IShared interface:

 Private Sub btnReflection_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim obj As IShared
 Dim dll As Assembly
 dll = Assembly.LoadFrom("..\..\..\Objects\bin\Release\Objects.dll")
 obj = CType(dll.CreateInstance("Objects.External"), IShared)
 ShowDistance(obj)
 End Sub

Code snippet from Form1

All you have done here is change the code so that you can pass your dynamically created object to the
ShowDistance method, which you know requires a parameter of type IShared. Because your class implements
the same IShared interface (from Interfaces) used by the main application, this will work perfectly. Rebuild and
run the solution to see this in action.

figure 3-15

Polymorphism ❘ 195

196 ❘ chaPTer 3 Custom oBJECts

 This technique is very nice, as the code in ShowDistance is strongly typed, providing all the performance
and coding benefi ts; but both the DLL and the object itself are loaded dynamically, providing a great deal of
fl exibility to your application.

 Polymorphism with inheritance
 Inheritance, discussed earlier in this chapter, can also be used to enable polymorphism. The idea here is very
similar to that of multiple interfaces, as a subclass can always be treated as though it were the data type of
the parent class.

 Many people consider the concepts of inheritance and polymorphism to be tightly
intertwined. As you have seen, however, it is perfectly possible to use polymorphism
without inheritance.

 At the moment, both your Encapsulation and Poly classes are implementing a common interface named
 IShared . You can use polymorphism to interact with objects of either class via that common interface. The
same is true if these are child classes based on the same base class through inheritance. To see how this works,
in the OOExample project, add a new class named Parent by selecting Add ➪ Class and insert the following
code:

Public MustInherit Class Parent
 Public MustOverride Function DistanceTo(ByVal x As Single, _
 ByVal y As Single) As Single
End Class

 As described earlier, this is an abstract base class, a class with no implementation of its own. The purpose of
an abstract base class is to provide a common base from which other classes can be derived.

 To implement polymorphism using inheritance, you do not need to use an abstract base class. Any base class
that provides overridable methods (using either the MustOverride or Overridable keywords) will work
fi ne, as all its subclasses are guaranteed to have that same set of methods as part of their interface, and yet
the subclasses can provide custom implementation for those methods.

 In this example, you are simply defi ning the DistanceTo method as being a method that must be overridden
and implemented by any subclass of Parent . Now you can bring up the Encapsulation class and change it
to be a subclass of Parent :

Public Class Encapsulation
 Inherits Parent
 Implements IShared

 You do not need to stop implementing the IShared interface just because you are inheriting from Parent ;
inheritance and multiple interfaces coexist nicely. You do, however, have to override the DistanceTo
method from the Parent class.

 The Encapsulation class already has a DistanceTo method with the proper method signature, so you can
simply add the Overrides keyword to indicate that this method will override the declaration in the Parent class:

Public Overrides Function DistanceTo(ByVal x As Single, _ByVal y As Single) _
 As Single Implements IShared.CalculateDistance

 At this point, the Encapsulation class not only implements the common IShared interface and its own
native interface, but also can be treated as though it were of type Parent , as it is a subclass of Parent . You
can do the same thing to the Poly class:

Public Class Poly
 Inherits Parent
 Implements IShared
 Public Overrides Function DistanceTo(_

 ByVal x As Single, ByVal y As Single) _
 As Single Implements IShared.CalculateDistance
 Return x + y
 End Function
End Class

Code snippet from Poly

Finally, you can see how polymorphism works by altering the code in Form1 to take advantage of the fact
that both classes can be treated as though they were of type Parent. First, you can change the ShowDistance
method to accept its parameter as type Parent and to call the DistanceTo method:

Private Sub ShowDistance(ByVal obj As Parent)
 MsgBox(obj.DistanceTo(10, 10))
End Sub

Then, you can add a new button to create an object of either type Encapsulation or Poly and pass it as a
parameter to the method:

 Private Sub btnInheritance_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnInheritance.Click
 ShowDistance(New Poly)
 ShowDistance(New Encapsulation)
 End Sub

Code snippet from Form1

Polymorphism summary
Polymorphism is a very important concept in object-oriented design and programming, and Visual Basic
provides you with ample techniques through which it can be implemented.

The following table summarizes the different techniques and their pros and cons, and provides some high-
level guidelines about when to use each:

Technique Pros cons guidelines

Late binding Flexible, “pure”
polymorphism

Slow, hard
to debug, no
IntelliSense

Use to call arbitrary methods on literally
any object, regardless of data type or
interfaces

Multiple
interfaces

Fast, easy to debug,
full IntelliSense

Not totally dynamic
or flexible, requires
class author to
implement formal
interface

Use when you are creating code that
interacts with clearly defined methods
that can be grouped together into a
formal interface

Reflection and
late binding

Flexible, “pure”
polymorphism,
dynamically loads
arbitrary assemblies
from disk

Slow, hard
to debug, no
IntelliSense

Use to call arbitrary methods on objects
when you do not know at design time
which assemblies you will be using

Reflection
and multiple
interfaces

Fast, easy to debug,
full IntelliSense,
dynamically loads
arbitrary assemblies
from disk

Not totally dynamic
or flexible, requires
class author to
implement formal
interface

Use when you are creating code that
interacts with clearly defined methods
that can be grouped together into a
formal interface, but when you do not
know at design time which assemblies
you will be using

continues

Polymorphism ❘ 197

198 ❘ chaPTer 3 Custom oBJECts

 Technique Pros cons guidelines

 Inheritance Fast, easy to debug,
full IntelliSense,
inherits behaviors from
base class

 Not totally dynamic
or fl exible, requires
class author
to inherit from
common base class

 Use when you are creating objects
that have an is - a relationship, i .e ., when
you have subclasses that are naturally
of the same data type as a base class .
Polymorphism through inheritance
should occur because inheritance makes
sense, not because you are attempting
to merely achieve polymorphism .

(continued)

 inheriTance
 Inheritance is the concept that a new class can be based on an existing class, inheriting its interface and
functionality. The mechanics and syntax of inheritance are described earlier in this chapter, so we won ’ t
rehash them here. However, you have not yet looked at inheritance from a practical perspective, and that is
the focus of this section.

 When to use inheritance
 Inheritance is one of the most powerful object - oriented features a language can support. At the same time,
inheritance is one of the most dangerous and misused object - oriented features.

 Properly used, inheritance enables you to increase the maintainability, readability, and reusability of your
application by offering you a clear and concise way to reuse code, via both interface and implementation.
Improperly used, inheritance creates applications that are very fragile, whereby a change to a class can cause
the entire application to break or require changes.

 Inheritance enables you to implement an is - a relationship. In other words, it enables you to implement a new
class that “ is a ” more specifi c type of its base class. Properly used, inheritance enables you to create child
classes that are actually the same as the base class.

 For example, you know that a duck is a bird. However, a duck can also be food, though that is not its
primary identity. Proper use of inheritance enables you to create a Bird base class from which you can
derive a Duck class. You would not create a Food class and subclass Duck from Food , as a duck isn ’ t
primarily food — it merely acts as food sometimes.

 This is the challenge. Inheritance is not just a mechanism for code reuse, but a mechanism to create classes
that fl ow naturally from another class. If you use it anywhere you want code reuse, you will end up with
a real mess on your hands. If you use it anywhere you just want a common interface but where the child
class is not really the same as the base class, then you should use multiple interfaces — something we ’ ll
discuss shortly.

 The question you must ask when using inheritance is whether the child class is a more
specifi c version of the base class.

 For example, you might have different types of products in your organization. All of these products have
some common data and behaviors — e.g., they all have a product number, a description, and a price.
However, if you have an agricultural application, you might have chemical products, seed products,

inheritance ❘ 199

fertilizer products, and retail products. These are all different — each having its own data and behaviors —
and yet each one of them really is a product. You can use inheritance to create this set of products, as
illustrated by the class diagram in Figure 3-16.

Product
Class

Seed
Class

Person

Fertilizer
Class

Person

Chemical
Class

Person

Retail
Class

Person

figure 3-16

PrintableObject
MustInherit Class

Customer
Class

PrintableObject

Product
Class

PrintableObject

SalesOrder
Class

PrintableObject

figure 3-17

This diagram shows that you have an abstract base Product class, from which you derive the various types
of product your system actually uses. This is an appropriate use of inheritance because each child class is
obviously a more specific form of the general Product class.

Alternately, you might try to use inheritance just as a code-sharing mechanism. For example, you may
look at your application, which has Customer, Product, and SalesOrder classes, and decide that all of
them need to be designed so that they can be printed to a printer. The code to handle the printing will all
be somewhat similar, so to reuse that printing code, you create a base PrintableObject class. This would
result in the diagram shown in Figure 3-17.

Intuitively, you know that this does not represent an is-a relationship. A Customer can be printed, and
you are getting code reuse, but a customer is not a specific case of a printable object. Implementing a
system such as this results in a fragile design and
application. This is a case where multiple interfaces
are a far more appropriate technology.

To illustrate this point, you might later
discover that you have other entities in your
organization that are similar to a customer but
not quite the same. Upon further analysis, you
may determine that Employee and Customer are
related because they are specific cases of a
Contact class. The Contact class provides
commonality in terms of data and behavior
across all these other classes (see Figure 3-18).

Contact
Class

Employee
Class

Contact

Customer
Class

Contact

figure 3-18

200 ❘ chaPTer 3 Custom oBJECts

However, now your Customer is in trouble; you have
said it is a PrintableObject, and you are now saying
it is a Contact. You might be able to just derive Contact
from PrintableObject (see Figure 3-19).

The problem with this is that now Employee is also of
type PrintableObject, even if it shouldn’t be, but you
are stuck because, unfortunately, you decided early on
to go against intuition and say that a Customer is a
PrintableObject.

This problem could be solved by multiple inheritance,
which would enable Customer to be a subclass of more
than one base class — in this case, of both Contact and
PrintableObject. However, the .NET platform and
Visual Basic do not support multiple inheritance in this
way. An alternative is to use inheritance for the is-a
relationship with Contact, and use multiple interfaces to
enable the Customer object to act as a PrintableObject
by implementing an IPrintableObject interface.

application versus framework inheritance
What you have just seen is how inheritance can accidentally cause reuse of code where no reuse was desired,
but you can take a different view of this model by separating the concept of a framework from your actual
application. The way you use inheritance in the design of a framework is somewhat different from how you
use inheritance in the design of an actual application.

In this context, the word framework is being used to refer to a set of classes that provide base functionality
that isn’t specific to an application, but rather may be used across a number of applications within the
organization, or perhaps even beyond the organization. The .NET Framework base class library is an
example of a very broad framework you use when building your applications.

The PrintableObject class discussed earlier, for example, may
have little to do with your specific application, but may be the
type of thing that is used across many applications. If so, it is a
natural candidate for use as part of a framework, rather than
being considered part of your actual application.

Framework classes exist at a lower level than application classes.
For example, the .NET base-class library is a framework on which
all .NET applications are built. You can layer your own framework
on top of the .NET Framework as well (see Figure 3-20).

If you take this view, then the PrintableObject class wouldn’t be
part of your application at all, but part of a framework on which your
application is built. If so, then the fact that Customer is not a specific
case of PrintableObject does not matter as much, as you are not saying
that it is such a thing, but rather that it is leveraging that portion of the
framework’s functionality.

To make all this work requires a lot of planning and forethought in the
design of the framework itself. To see the dangers you face, consider
that you might want to not only print objects, but also store them in a
file. In that case, you might have not only PrintableObject, but also
SavableObject as a base class.

The question is, what do you do if Customer should be both printable
and savable? If all printable objects are savable, you might have the result
shown in Figure 3-21.

PrintableObject
MustInherit Class

Contact
Class

PrintableObject

Customer
Class

Contact

Employee
Class

Contact

figure 3-19

figure 3-20

Our App

Our Framework

.NET Framework

SavableObject
MustInherit Class

PrintableObject
MustInherit Class

SavableObject

figure 3-21

inheritance ❘ 201

Alternately, if all savable objects are printable, you might have the result shown in Figure 3-22. However,
neither of these truly provides a decent solution, as it is likely that the concept of being printable and the
concept of being savable are different and not interrelated in either of these ways.

When faced with this sort of issue, it is best to avoid using inheritance and instead rely on multiple interfaces.

inheritance and Multiple interfaces
While inheritance is powerful, it is really geared for implementing the is-a relationship. Sometimes you will
have objects that need a common interface, even though they are not really a specific case of some base
class that provides that interface. We’ve just explored that issue in the discussion of the PrintableObject,
SavableObject, and Customer classes.

Sometimes multiple interfaces are a better alternative than inheritance. The syntax for creating and using
secondary and multiple interfaces was discussed.

Multiple interfaces can be viewed as another way to implement the is-a relationship, although it is often
better to view inheritance as an is-a relationship and to view multiple interfaces as a way of implementing
an act-as relationship.

Considering this further, we can say that the PrintableObject concept could perhaps be better expressed
as an interface — IPrintableObject.

When the class implements a secondary interface such as IPrintableObject, you are not really saying
that your class is a printable object, you are saying that it can “act as” a printable object. A Customer is a
Contact, but at the same time it can act as a printable object. This is illustrated in Figure 3-23.

The drawback to this approach is that you have no inherited implementation when you implement IPrintable
Object. Earlier you saw how to reuse common code as you implement an interface across multiple classes. While
not as automatic or easy as inheritance, it is possible to reuse implementation code with a bit of extra work.

applying inheritance and Multiple interfaces
Perhaps the best way to see how inheritance and multiple interfaces interact is to look at an example. Returning
to the original OOExample project, the following example combines inheritance and multiple interfaces to create
an object that has both an is-a and act-as relationship at the same time. As an additional benefit, you will be
using the .NET Framework’s capability to print to a printer, or the Print Preview dialog.

Creating the Contact Base Class
You already have a simple Customer class in the project, so now add a Contact base class. Choose Project ➪
Add Class and add a class named Contact:

Public MustInherit Class Contact
 Private mID As Guid = Guid.NewGuid
 Private mName As String

PrintableObject
MustInherit Class

SavableObject
MustInherit Class

PrintableObject

figure 3-22

Contact
Class

Customer
ClassIPrintableObject

Contact

figure 3-23

202 ❘ chaPTer 3 Custom oBJECts

 Public Property ID() As Guid
 Get
 Return mID
 End Get
 Set(ByVal value As Guid)
 mID = value
 End Set
 End Property
 Public Property Name() As String
 Get
 Return mName
 End Get
 Set(ByVal value As String)
 mName = value
 End Set
 End Property
End Class

Code snippet from Contact

subclassing Contact
Now you can make the Customer class inherit from this base class because it is a Contact. In addition, because
your base class now implements both the ID and Name properties, you can simplify the code in Customer by
removing those properties and their related variables:

Public Class Customer
 Inherits Contact
 Private mPhone As String
 Public Property Phone() As String
 Get
 Return mPhone
 End Get
 Set(ByVal value As String)
 mPhone = value
 End Set
 End Property
End Class

Code snippet from Customer

This shows the benefit of subclassing Customer
from Contact, as you are now sharing the ID and
Name code across all other types of Contact as well.

implementing iPrintableobject
You also know that a Customer should be able to
act as a printable object. To do this in such a way
that the implementation is reusable requires a bit
of thought. First, though, you need to define the
IPrintableObject interface.

You will use the standard printing mechanism
provided by .NET from the System.Drawing
namespace. As shown in Figure 3-24, add a
reference to System.Drawing.dll to the
Interfaces project by selecting Project ➪
Add reference.

figure 3-24

inheritance ❘ 203

With that done, bring up the code window for Interfaces.vb in the Interfaces project and add the
following code:

Imports System.Drawing
Public Interface IPrintableObject
 Sub Print()
 Sub PrintPreview()
 Sub RenderPage(ByVal sender As Object, _
 ByVal ev As System.Drawing.Printing.PrintPageEventArgs)
End Interface

Code snippet from Interfaces

This interface ensures that any object implementing IPrintableObject will have Print and PrintPreview
methods so you can invoke the appropriate type of printing. It also ensures that the object has a RenderPage
method, which can be implemented by that object to render the object’s data on the printed page.

At this point, you could simply implement all the code needed to handle printing directly within the Customer
object. This isn’t ideal, however, as some of the code will be common across any objects that want to implement
IPrintableObject, and it would be nice to find a way to share that code.

To do this, you can create a new class, ObjectPrinter. This is a framework-style class, in that it has nothing to
do with any particular application, but can be used across any application in which IPrintableObject will
be used.

Add a new class named ObjectPrinter to the ObjectAndComponents project by selecting Project ➪ Add
class. This class will contain all the code common to printing any object. It makes use of the built-in printing
support provided by the .NET Framework class library. To use this, you need to import a couple
of namespaces, so add the following code to the new class:

Imports System.Drawing
Imports System.Drawing.Printing
Imports Interfaces

You can then define a PrintDocument variable, which will hold the reference to your printer output. You
will also declare a variable to hold a reference to the actual object you will be printing. Notice that you are
using the IPrintableObject interface data type for this variable:

Public Class ObjectPrinter
 Private WithEvents document As PrintDocument
 Private printObject As IPrintableObject

Now you can create a routine to kick off the printing process for any object implementing IPrintableObject.
This code is totally generic; you will write it in the ObjectPrinter class so it can be reused across other classes:

 Public Sub Print(ByVal obj As IPrintableObject)
 printObject = obj
 document = New PrintDocument()
 document.Print()
 End Sub

Code snippet from Form1

Likewise, you can implement a method to show a print preview of your object. This code is also totally
generic, so add it here for reuse:

 Public Sub PrintPreview(ByVal obj As IPrintableObject)
 Dim PPdlg As PrintPreviewDialog = New PrintPreviewDialog()
 printObject = obj
 document = New PrintDocument()
 PPdlg.Document = document
 PPdlg.ShowDialog()
 End Sub

Code snippet from Form1

204 ❘ chaPTer 3 Custom oBJECts

Finally, you need to catch the PrintPage event that is automatically raised by the .NET printing mechanism.
This event is raised by the PrintDocument object whenever the document determines that it needs data
rendered onto a page. Typically, it is in this routine that you would put the code to draw text or graphics
onto the page surface. However, because this is a generic framework class, you won’t do that here; instead,
delegate the call back into the actual application object that you want to print:

 Private Sub PrintPage(ByVal sender As Object, _
 ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
 Handles document.PrintPage
 printObject.RenderPage(sender, ev)
 End Sub

Code snippet from Form1

This enables the application object itself to determine how its data should be rendered onto the output page.
You can see how to do that by implementing the IPrintableObject interface on the Customer class:

Imports Interfaces
Public Class Customer
 Inherits Contact
 Implements IPrintableObject

Code snippet from Interfaces

By adding this code, you require that your Customer class implement the Print, PrintPreview, and
RenderPage methods. To avoid wasting paper as you test the code, make both the Print and PrintPreview
methods the same and have them just do a print preview display, add this code to the Customer class:

 Public Sub Print() _
 Implements Interfaces.IPrintableObject.Print
 Dim printer As New ObjectPrinter()
 printer.PrintPreview(Me)
 End Sub

Code snippet from Customer

Notice that you are using an ObjectPrinter object to handle the common details of doing a print preview.
In fact, any class you ever create that implements IPrintableObject will have this exact same code to
implement a print-preview function, relying on your common ObjectPrinter to take care of the details.

You also need to implement the RenderPage method, which is where you actually put your object’s data
onto the printed page:

Private Sub RenderPage(ByVal sender As Object, _
 ByVal ev As System.Drawing.Printing.PrintPageEventArgs) _
 Implements IPrintableObject.RenderPage
 Dim printFont As New Font("Arial", 10)
 Dim lineHeight As Single = printFont.GetHeight(ev.Graphics)
 Dim leftMargin As Single = ev.MarginBounds.Left
 Dim yPos As Single = ev.MarginBounds.Top
 ev.Graphics.DrawString("ID: " & ID.ToString, printFont, Brushes.Black, _
 leftMargin, yPos, New StringFormat())
 yPos += lineHeight
 ev.Graphics.DrawString("Name: " & Name, printFont, Brushes.Black, _
 leftMargin, yPos, New StringFormat())
 ev.HasMorePages = False
End Sub

Code snippet from Customer

All of this code is unique to your object, which makes sense because you are rendering your specific data to
be printed. However, you don’t need to worry about the details of whether you are printing to paper or print
preview; that is handled by your ObjectPrinter class, which in turn uses the .NET Framework. This enables
you to focus on generating the output to the page within your application class.

By generalizing the printing code in ObjectPrinter, you have achieved a level of reuse that you can tap into
via the IPrintableObject interface. Anytime you want to print a Customer object’s data, you can have
it act as an IPrintableObject and call its Print or PrintPreview method. To see this work, add a new
button control to Form1 with the following code:

 Private Sub btnPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnPrint.Click
 Dim obj As New Customer
 obj.Name = "Douglas Adams"
 CType(obj, IPrintableObject).PrintPreview()
 End Sub

Code snippet from Form1

This code creates a new Customer object and sets
its Name property. You then use the CType method
to access the object via its IPrintableObject
interface to invoke the PrintPreview method.

When you run the application and click the
button, you will get a print preview display
showing the object’s data (see Figure 3-25).

how deep to go?
Most of the examples discussed so far have
illustrated how you can create a child class based
on a single parent class. That is called single-level
inheritance. In fact, inheritance can be many levels
deep. For example, you might have a deep hierarchy
such as the one shown in Figure 3-26.

From the root of System.Object down to
NAFTACustomer you have four levels of
inheritance. This can be described as a
four-level inheritance chain.

There is no hard-and-fast rule about how deep
inheritance chains should go, but conventional
wisdom and general experience with inheritance in
other languages such as Smalltalk and C++ indicate
that the deeper an inheritance chain becomes, the
harder it is to maintain an application.

This happens for two reasons. First is the fragile
base class or fragile superclass issue, discussed
shortly. The second reason is that a deep inheritance
hierarchy tends to seriously reduce the readability of
your code by scattering the code for an object across
many different classes, all of which are combined by
the compiler to create your object.

One of the reasons for adopting object-oriented
design and programming is to avoid so-called
spaghetti code, whereby any bit of code you might
look at does almost nothing useful but instead calls
various other procedures and routines in other

figure 3-25

inheritance ❘ 205

NAFTACustomer
Class

InternationalCustomer

InternationCustomer DomesticCustomer
Class

Customer

Class

Customer

Object
Class

Contact
Class

Customer
Class

Contact

figure 3-26

206 ❘ chaPTer 3 Custom oBJECts

parts of your application. To determine what is going on with spaghetti code, you must trace through many
routines and mentally piece together what it all means.

Object-oriented programming can help you avoid this problem, but it is most definitely not a magic bullet. In
fact, when you create deep inheritance hierarchies, you are often creating spaghetti code because each level in
the hierarchy not only extends the previous level’s interface, but almost always also adds functionality. Thus,
when you look at the final NAFTACustomer class, it may have very little code. To figure out what it does or
how it behaves, you have to trace through the code in the previous four levels of classes, and you might not
even have the code for some of those classes, as they might come from other applications or class libraries you
have purchased.

On the one hand, you have the benefit of reusing code; but on the other hand, you have the drawback
that the code for one object is actually scattered through five different classes. Keep this in mind when
designing systems with inheritance — use as few levels in the hierarchy as possible to provide the required
functionality.

The fragile-Base-Class Problem
You have explored where it is appropriate to use inheritance and where it is not. You have also explored
how you can use inheritance and multiple interfaces in conjunction to implement both is-a and act-as
relationships simultaneously within your classes.

Earlier, we noted that while inheritance is an incredibly powerful and useful concept, it can also be very
dangerous if used improperly. You have seen some of this danger in the discussion of the misapplication of
the is-a relationship, and how you can use multiple interfaces to avoid those issues.

One of the most classic and common problems with inheritance is the fragile base-class problem. This
problem is exacerbated when you have very deep inheritance hierarchies, but it exists even in a single-level
inheritance chain.

The issue you face is that a change in the base class always affects all child classes derived from that base
class. This is a double-edged sword. On the one hand, you get the benefit of being able to change code in
one location and have that change automatically cascade through all derived classes. On the other hand, a
change in behavior can have unintended or unexpected consequences farther down the inheritance chain,
which can make your application very fragile and hard to change or maintain.

interface Changes
There are obvious changes you might make, which require immediate attention. For example, you might
change your Contact class to have FirstName and LastName instead of simply Name as a property. In the
Contact class, replace the mName variable declaration with the following code:

 Private mFirstName As String
 Private mLastName As String

Now replace the Name property with the following code:

Public Property FirstName() As String
 Get
 Return mFirstName
 End Get
 Set(ByVal value As String)
 mFirstName = value
 End Set
End Property
Public Property LastName() As String
 Get
 Return mLastName
 End Get
 Set(ByVal value As String)

inheritance ❘ 207

 mLastName = value
 End Set
End Property

Code snippet from Person

At this point, the Errors window in the IDE will display a list of locations where you need to alter your code
to compensate for the change. This is a graphic illustration of a base-class change that causes cascading
changes throughout your application. In this case, you have changed the base-class interface, thus changing
the interface of all subclasses in the inheritance chain.

To avoid having to fix code throughout your application, always strive to keep as much consistency in your
base class interface as possible. In this case, you can implement a read-only Name property that returns the
full name of the Contact:

Public ReadOnly Property Name() As String
 Get
 Return mFirstName & " " & mLastName
 End Get
End Property

Code snippet from Person

This resolves most of the items in the Errors window. You can fix any remaining issues by using the
FirstName and LastName properties. For example, in Form1 you can change the code behind your button to
the following:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles button1.Click
 Dim obj As New Customer
 obj.FirstName = "Douglas"
 obj.LastName = "Adams"
 CType(obj, Interfaces.IPrintableObject).Print()
 End Sub

Code snippet from Form1

Any change to a base class interface is likely to cause problems, so think carefully before making such a
change.

implementation Changes
Unfortunately, there is another, more subtle type of change that can wreak more havoc on your application:
an implementation change. This is the core of the fragile-base-class problem.

Encapsulation provides you with a separation of interface from implementation. However, keeping your
interface consistent is merely a syntactic concept. If you change the implementation, you are making a
semantic change, a change that does not alter any of your syntax but can have serious ramifications on the
real behavior of the application.

In theory, you can change the implementation of a class, and as long as you do not change its interface, any
client applications using objects based on that class will continue to operate without change. Of course,
reality is never as nice as theory, and more often than not a change to the implementation will have some
consequences on the behavior of a client application.

For example, you might use a SortedList to sort and display some Customer objects. To do this, add a
new button to Form1 with the following code:

 Private Sub btnSort_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSort.Click
 Dim col As New Generic.SortedDictionary(Of String, Customer)
 Dim obj As Customer

208 ❘ chaPTer 3 Custom oBJECts

 obj = New Customer()
 obj.FirstName = "Douglas"
 obj.LastName = "Adams"
 col.Add(obj.Name, obj)
 obj = New Customer()
 obj.FirstName = "Andre"
 obj.LastName = "Norton"
 col.Add(obj.Name, obj)
 Dim item As Generic.KeyValuePair(Of String, Customer)
 Dim sb As New System.Text.StringBuilder
 For Each item In col
 sb.AppendLine(item.Value.Name)
 Next
 MsgBox(sb.ToString)
 End Sub

Code snippet from Form1

This code simply creates a couple of Customer objects, sets their FirstName and LastName properties, and
inserts them into a generic SortedDictionary object from the System.Collections.Generic namespace.

Items in a SortedDictionary are sorted based on their key value, and you are using the Name property
to provide that key, meaning that your entries will be sorted by name. Because your Name property is
implemented to return first name first and last name second, your entries will be sorted by first name.

If you run the application, the dialog will display the following:

Andre Norton
Douglas Adams

However, you can change the implementation of your Contact class — not directly changing or affecting
either the Customer class or your code in Form1 — to return last name first and first name second, as
shown here:

 Public ReadOnly Property Name() As String
 Get
 Return mLastName & ", " & mFirstName
 End Get
 End Property

Code snippet from Customer

While no other code requires changing, and no syntax errors are flagged, the behavior of the application is
changed. When you run it, the output will now be as follows:

Adams, Douglas
Norton, Andre

Maybe this change is inconsequential. Maybe it totally breaks the required behavior of your form. The
developer making the change in the Contact class might not even know that someone was using that
property for sort criteria.

This illustrates how dangerous inheritance can be. Changes to implementation in a base class can cascade to
countless other classes in countless applications, having unforeseen side effects and consequences of which
the base-class developer is totally unaware.

summary
This chapter demonstrated how Visual Basic enables you to create and work with classes and objects. Visual
Basic provides the building blocks for abstraction, encapsulation, polymorphism, and inheritance.

You have learned how to create both simple base classes as well as abstract base classes. You have also
explored how you can define formal interfaces, a concept quite similar to an abstract base class in many ways.

You also walked through the process of subclassing, creating a new class that derives both interface and
implementation from a base class. The subclass can be extended by adding new methods or altering the
behavior of existing methods on the base class.

By the end of this chapter, you have seen how object-oriented programming flows from the four basic concepts
of abstraction, encapsulation, polymorphism, and inheritance. The chapter provided basic information about
each concept and demonstrated how to implement them using Visual Basic.

By properly applying object-oriented design and programming, you can create very large and complex
applications that remain maintainable and readable over time. Nonetheless, these technologies are not a
magic bullet. Improperly applied, they can create the same hard-to-maintain code that you might create using
procedural or modular design techniques.

It is not possible to fully cover all aspects of object-oriented programming in a single chapter. Before launching
into a full-blown object-oriented project, we highly recommend looking at other books specifically geared
toward object-oriented design and programming.

summary ❘ 209

4
 The Common language
runtime

 WhaT you Will learn in This chaPTer

 Elements of a .NET Application ➤

 Versioning and Deployment ➤

 Understanding the Common Language Runtime ➤

 IL Disassembler ➤

 Memory Management ➤

 Namespaces ➤

 The My Keyword ➤

 You ’ ve learned how to create simple applications and looked at how to create classes. Now it ’ s
time not only to start tying these elements together, but also to learn how to dispose of some of the
classes that you have created. The architects of .NET realized that all procedural languages require
certain base functionality. For example, many languages ship with their own runtime that provides
features such as memory management, but what if, instead of each language shipping with its own
runtime implementation, all languages used a common runtime? This would provide languages with
a standard environment and access to all of the same features. This is exactly what the common
language runtime (CLR) provides.

 The CLR manages the execution of code on the .NET platform. .NET provided Visual Basic
developers with better support for many advanced features, including operator overloading,
implementation inheritance, threading, and the ability to marshal objects. Building such features
into a language is not trivial. The CLR enabled Microsoft to concentrate on building this plumbing
one time and then reuse it across different programming languages. Because the CLR supports these
features and because Visual Basic is built on top of the CLR, Visual Basic can use these features.
As a result, going forward, Visual Basic is the equal of every other .NET language, with the CLR
eliminating many of the shortcomings of the previous versions of Visual Basic.

 Visual Basic developers can view the CLR as a better Visual Basic runtime. However, this runtime,
unlike the old standalone Visual Basic runtime, is common across all of .NET regardless of the
underlying operating system. Thus, the functionality exposed by the CLR is available to all .NET
languages; more important, all of the features available to other .NET languages via the CLR are

212 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

available to Visual Basic developers. Additionally, as long as you develop using managed code — code that
runs in the CLR — you’ll find that it doesn’t matter whether your application is installed on a Windows XP
client, a Vista client, or a Windows 7 client; your application will run. The CLR provides an abstraction
layer separate from the details of the operating system.

This chapter gets down into the belly of the application runtime environment — not to examine how .NET
enables this abstraction from the operating system, but instead to look at some specific features related
to how you build applications that run against the CLR. This includes an introduction to several basic
elements of working with applications that run in the CLR, including the following:

Elements of a .NET application ➤

Versioning and deployment ➤

Integration across .NET languages ➤

Microsoft intermediate language (MSIL) ➤

Memory management and the garbage collector (GC) ➤

elemenTs of a .neT aPPlicaTion
A .NET application is composed of four primary entities:

 ➤ Classes — The basic units that encapsulate data and behavior

 ➤ Modules — The individual files that contain the intermediate language (IL) for an assembly

 ➤ Assemblies — The primary unit of deployment of a .NET application

 ➤ Types — The common unit of transmitting data between modules

Classes, covered in the preceding two chapters, are defined in the source files for your application or class
library. Upon compilation of your source files, you produce a module. The code that makes up an assembly’s
modules may exist in a single executable (.exe) file or as a dynamic link library (.dll). A module, is in fact,
a Microsoft intermediate language (MSIL) file, which is then used by the CLR when your application is run.
However, compiling a .NET application doesn’t produce only an MSIL file; it also produces a collection of
files that make up a deployable application or assembly. Within an assembly are several different types
of files, including not only the actual executable files, but also configuration files, signature keys, and, most
important of all, the actual code modules.

modules
A module contains Microsoft intermediate language (MSIL, often abbreviated to IL) code, associated
metadata, and the assembly’s manifest. By default, the Visual Basic compiler creates an assembly that is
composed of a single module containing both the assembly code and the manifest.

IL is a platform-independent way of representing managed code within a module. Before IL can be executed,
the CLR must compile it into the native machine code. The default method is for the CLR to use the JIT
(just-in-time) compiler to compile the IL on a method-by-method basis. At runtime, as each method is called
by an application for the first time, it is passed through the JIT compiler for compilation to machine code.
Similarly, for an ASP.NET application, each page is passed through the JIT compiler the first time it is
requested, to create an in-memory representation of the machine code that represents that page.

Additional information about the types declared in the IL is provided by the associated metadata. The
metadata contained within the module is used extensively by the CLR. For example, if a client and an object
reside within two different processes, then the CLR uses the type’s metadata to marshal data between the
client and the object. MSIL is important because every .NET language compiles down to IL. The CLR
doesn’t care about or even need to know what the implementation language was; it knows only what the
IL contains. Thus, any differences in .NET languages exist at the level where the IL is generated; but once
generated, all .NET languages have the same runtime characteristics. Similarly, because the CLR doesn’t

care in which language a given module was originally written, it can leverage modules implemented in
entirely different .NET languages.

A question that always arises when discussing the JIT compiler and the use of a runtime environment is
“Wouldn’t it be faster to compile the IL language down to native code before the user asks to run it?”
Although the answer is not always yes, Microsoft has provided a utility to handle this compilation: the
Native Image Generator, or Ngen.exe. This tool enables you to essentially run the JIT compiler on a
specific assembly, which is then installed into the user’s application cache in its native format. The obvious
advantage is that now when the user asks to execute something in that assembly, the JIT compiler is not
invoked, saving a small amount of time. However, unlike the JIT compiler, which compiles only those
portions of an assembly that are actually referenced, Ngen.exe needs to compile the entire code base, so the
time required for compilation is not the same as what a user actually experiences.

Ngen.exe is executed from the command line. The utility was updated as part of .NET 2.0 and now
automatically detects and includes most of the dependent assemblies as part of the image-generation
process. To use Ngen.exe, you simply reference this utility followed by an action; for example, install
followed by your assembly reference. Several options are available as part of the generation process, but that
subject is beyond the scope of this chapter, given that Ngen.exe itself is a topic that generates heated debate
regarding its use and value.

Where does the debate begin about when to use Ngen.exe? Keep in mind that in a server application, where
the same assembly will be referenced by multiple users between machine restarts, the difference in
performance on the first request is essentially lost. This means that compilation to native code is more
valuable to client-side applications. Unfortunately, using Ngen.exe requires running it on each client
machine, which can become cost prohibitive in certain installation scenarios, particularly if you use any
form of self-updating application logic.

Another issue relates to using reflection, which enables you to reference other assemblies at runtime.
Of course, if you don’t know what assemblies you will reference until runtime, then the Native Image
Generator has a problem, as it won’t know what to reference either. You may have occasion to use
Ngen.exe for an application you’ve created, but you should fully investigate this utility and its advantages
and disadvantages beforehand, keeping in mind that even native images execute within the CLR. Native
image generation only changes the compilation model, not the runtime environment.

assemblies
An assembly is the primary unit of deployment for .NET applications. It is either a dynamic link library
(.dll) or an executable (.exe). An assembly is composed of a manifest, one or more modules, and
(optionally) other files, such as .config, .ASPX, .ASMX, images, and so on.

The manifest of an assembly contains the following:

Information about the identity of the assembly, including its textual name and version number. ➤

If the assembly is public, then the manifest contains the assembly’s public key. The public key is used ➤

to help ensure that types exposed by the assembly reside within a unique namespace. It may also be
used to uniquely identify the source of an assembly.

A declarative security request that describes the assembly’s security requirements (the assembly is ➤

responsible for declaring the security it requires). Requests for permissions fall into three categories:
required, optional, and denied. The identity information may be used as evidence by the CLR in
determining whether or not to approve security requests.

A list of other assemblies on which the assembly depends. The CLR uses this information to locate an ➤

appropriate version of the required assemblies at runtime. The list of dependencies also includes the
exact version number of each assembly at the time the assembly was created.

A list of all types and resources exposed by the assembly. If any of the resources exposed by the ➤

assembly are localized, the manifest will also contain the default culture (language, currency, date/
time format, and so on) that the application will target. The CLR uses this information to locate
specific resources and types within the assembly.

elements of a .neT application ❘ 213

214 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

The manifest can be stored in a separate file or in one of the modules. By default, for most applications, it is
part of the .dll or .exe file, which is compiled by Visual Studio. For Web applications, you will find that
although there is a collection of ASPX pages, the actual assembly information is located in a DLL referenced
by those ASPX pages.

Types
The type system provides a template that is used to describe the encapsulation of data and an associated
set of behaviors. It is this common template for describing data that provides the basis for the metadata
that .NET uses when applications interoperate. There are two kinds of types: reference and value. The
differences between these two types are discussed in Chapter 1.

Unlike COM, which is scoped at the machine level, types are scoped at either the global level or the
assembly level. All types are based on a common system that is used across all .NET languages. Similar to
the MSIL code, which is interpreted by the CLR based upon the current runtime environment, the CLR uses
a common metadata system to recognize the details of each type. The result is that all .NET languages are
built around a common type system, unlike the different implementations of COM, which require special
notation to enable translation of different data types between different .exe and .dll files.

A type has fields, properties, and methods:

 ➤ Fields — Variables that are scoped to the type. For example, a Pet class could declare a field called
Name that holds the pet’s name. In a well-engineered class, fields are often kept private and exposed
only as properties or methods.

 ➤ Properties — Properties look like fields to clients of the type but can have code behind them (which
usually performs some sort of data validation). For example, a Dog data type could expose a property
to set its gender. Code could then be placed behind the property so that it could be set only to “male”
or “female,” and then this property could be saved internally to one of the fields in the Dog class.

 ➤ Methods — Methods define behaviors exhibited by the type. For example, the Dog data type could
expose a method called Sleep, which would suspend the activity of the Dog.

The preceding elements make up each application. Note that some types are defined at the application level,
and others are defined globally. Under COM, all components are registered globally; and certainly if you
want to expose a .NET component to COM, you must register it globally. However, with .NET it is not
only possible but often encouraged that the classes and types defined in your modules be visible only at the
application level. The advantage of this is that you can run several different versions of an application side
by side. Of course, once you have an application that can be versioned, the next challenge is knowing which
version of that application you have.

Versioning and dePloymenT
Components and their clients are often installed at different times by different vendors. For example, a
Visual Basic application might rely on a third-party grid control to display data. Runtime support for
versioning is crucial for ensuring that an incompatible version of the grid control does not cause problems
for the Visual Basic application.

In addition to this issue of compatibility, deploying applications written in previous versions of Visual Basic
was problematic. Fortunately, .NET provides major improvements over the versioning and deployment
offered by COM and the previous versions of Visual Basic before .NET.

Better support for Versioning
Managing component versions was challenging in previous versions of Visual Basic. The version number of
the component could be set, but this version number was not used by the runtime. COM components are

often referenced by their ProgID, but Visual Basic does not provide any support for appending the version
number on the end of the ProgID.

For those of you who are unfamiliar with the term ProgID, it’s enough to understand that ProgIDs are
developer-friendly strings used to identify a component. For example, Word.Application describes
Microsoft Word. ProgIDs can be fully qualified with the targeted version of the component — for example,
Word.Application.10 — but this is a limited capability and relies on both the application and whether the
person using it chooses this optional addendum. As you’ll see in Chapter 7, a namespace is built on the basic
elements of a ProgID, but provides a more robust naming system.

For many applications, .NET has removed the need to identify the version of each assembly in a central
registry on a machine. However, some assemblies are installed once and used by multiple applications. .NET
provides a global assembly cache (GAC), which is used to store assemblies that are intended for use by
multiple applications. The CLR provides versioning support for all components loaded in the GAC.

The CLR provides two features for assemblies installed within the GAC:

 ➤ Side-by-side versioning — Multiple versions of the same component can be simultaneously stored in
the GAC.

 ➤ Automatic Quick Fix Engineering (QFE) — Also known as hotfix support, if a new version of a
component, which is still compatible with the old version, is available in the GAC, the CLR loads
the updated component. The version number, which is maintained by the developer who created the
referenced assembly, drives this behavior.

The assembly’s manifest contains the version numbers of referenced assemblies. The CLR uses the assembly’s
manifest at runtime to locate a compatible version of each referenced assembly. The version number of an
assembly takes the following form:

Major.Minor.Build.Revision

major.minor.Build.revision
Changes to the major and minor version numbers of the assembly indicate that the assembly is no longer
compatible with the previous versions. The CLR will not use versions of the assembly that have a different
major or minor number unless it is explicitly told to do so. For example, if an assembly was originally
compiled against a referenced assembly with a version number of 3.4.1.9, then the CLR will not load an
assembly stored in the GAC unless it has major and minor numbers of 3 and 4, respectively.

Incrementing the revision and build numbers indicates that the new version is still compatible with the
previous version. If a new assembly that has an incremented revision or build number is loaded into the GAC,
then the CLR can still load this assembly for applications that were compiled referencing a previous version.

Better deployment
Applications written using previous versions of Visual Basic and COM were often complicated to deploy.
Components referenced by the application needed to be installed and registered (this information was stored
in the registry); and for Visual Basic components, the correct version of the Visual Basic runtime needed to be
available. The Component Deployment tool helped in the creation of complex installation packages, but
applications could be easily broken if the dependent components were inadvertently replaced by
incompatible versions on the client’s computer during the installation of an unrelated product.

In .NET, most components do not need to be registered. When an external assembly is referenced, the
application decides between using a global copy (which must be in the GAC on the developer’s system) or
copying a component locally. For most references, the external assemblies are referenced locally, which
means they are carried in the application’s local directory structure. Using local copies of external
assemblies enables the CLR to support the side-by-side execution of different versions of the same
component. As noted earlier, to reference a globally registered assembly, that assembly must be located in
the GAC. The GAC provides a versioning system that is robust enough to allow different versions of the

Versioning and Deployment ❘ 215

216 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

same external assembly to exist side by side. For example, an application could use a newer version of
ADO.NET without adversely affecting another application that relies on a previous version.

As long as the client has the .NET runtime installed (which only has to be done once), a .NET application
can be distributed using a simple command like this:

xcopy \\server\appDirectory "C:\Program Files\appDirectory" /E /O /I

The preceding command would copy all of the files and subdirectories from \\server\appDirectory to
C:\Program Files\appDirectory and would transfer the file’s access control lists (ACLs).

Besides the capability to copy applications, Visual Studio provides a built-in tool for constructing simple
.msi installations. The deployment settings can be customized for your project solution, enabling you to
integrate the deployment project with your application output. Additionally, Visual Studio 2005 introduced
the capability to create a “ClickOnce” deployment.

ClickOnce deployment provided an entirely new method of deployment, referred to as smart-client
deployment. In the smart-client model, your application is placed on a central server from which the clients
access the application files. Smart-client deployment builds on the XML Web Services architecture about
which you are learning. It has the advantages of central application maintenance combined with a richer
client interface and fewer server communication requirements, all of which you have become familiar with
in Windows Forms applications.

cross-language inTegraTion
Prior to .NET, interoperating with code written in other languages was challenging. There were pretty much
two options for reusing functionality developed in other languages: COM interfaces or DLLs with exported C
functions. As for exposing functionality written in Visual Basic, the only option was to create COM interfaces.

Because Visual Basic is now built on top of the CLR, it’s able to interoperate with the code written in other
.NET languages. It’s even able to derive from a class written in another language. To support this type of
functionality, the CLR relies on a common way of representing types, as well as rich metadata that can
describe these types.

The common Type system
Each programming language seems to bring its own island of data types with it. For example, previous
versions of Visual Basic represent strings using the basic, or binary, string (BSTR) structure, C++ offers the
char and wchar data types, and MFC offers the CString class. Moreover, because the C++ int data type is
a 32-bit value, whereas the Visual Basic 6 Integer data type is a 16-bit value, that makes it difficult to pass
parameters between applications written using different languages.

To help resolve this problem, C has become the lowest common denominator for interfacing between
programs written in multiple languages. An exported function written in C that exposes simple C data types
can be consumed by Visual Basic, Java, Delphi, and a variety of other programming languages. In fact, the
Windows API is exposed as a set of C functions.

Unfortunately, to access a C interface, you must explicitly map C data types to a language’s native data
types. For example, a Visual Basic 6 developer would use the following statement to map the GetUserNameA
Win32 function (GetUserNameA is the ANSI version of the GetUserName function):

' Map GetUserName to the GetUserNameA exported function
' exported by advapi32.dll.
' BOOL GetUserName(
' LPTSTR lpBuffer, // name buffer
' LPDWORD nSize // size of name buffer
');
Public Declare Function GetUserName Lib "advapi32.dll" _
Alias "GetUserNameA" (ByVal strBuffer As String, nSize As Long) As Long

This code explicitly maps the lpBuffer C character array data type LPSTR to the Visual Basic 6 String
parameter strBuffer. This is not only cumbersome, but also error prone. Accidentally mapping a variable
declared as Long to lpBuffer wouldn’t generate any compilation errors, but calling the function would
more than likely result in difficult-to-diagnose, intermittent access violations at runtime.

COM provides a more refined method of interoperation between languages. Visual Basic 6 introduced a
common type system (CTS) for all applications that supported COM — that is, variant-compatible data
types. However, variant data types are as cumbersome to work with for non-Visual Basic 6 developers
as the underlying C data structures that make up the variant data types (such as BSTR and SAFEARRAY)
were for Visual Basic developers. The result is that interfacing between unmanaged languages is still more
complicated than it needs to be.

The CTS provides a set of common data types for use across all programming languages. It provides every
language running on top of the .NET platform with a base set of types, as well as mechanisms for extending
those types. These types may be implemented as classes or as structs, but in either case they are derived
from a common System.Object class definition.

Because every type supported by the CTS is derived from System.Object, every type supports a common
set of methods, as shown in Table 4-1.

TaBle 4-1: Common Type Methods

meThod descriPTion

Boolean Equals(Object) Used to test equality with another object . Reference types should return
True if the Object parameter references the same object . Value types
should return True if the Object parameter has the same value .

Int32 GetHashCode() Generates a number corresponding to the value of an object . If two objects
of the same type are equal, then they must return the same hash code .

Type GetType() Gets a Type object that can be used to access metadata associated
with the type . It also serves as a starting point for navigating the object
hierarchy exposed by the Reflection API (discussed shortly) .

String ToString() The default implementation returns the fully qualified name of the object’s
class . This method is often overridden to output data that is more meaningful
to the type . For example, all base types return their value as a string .

metadata
Metadata is the information that enables components to be self-describing. It is used to describe many
aspects of a .NET component, including classes, methods, and fields, and the assembly itself. Metadata is
used by the CLR to facilitate all sorts of behavior, such as validating an assembly before it is executed or
performing garbage collection while managed code is being executed. Visual Basic developers have used
metadata for years when developing and using components within their applications:

Visual Basic developers use metadata to instruct the Visual Basic runtime how to behave. For ➤

example, you can set the Unattended Execution property to determine whether unhandled
exceptions are shown on the screen in a message box or are written to the Event Log.

COM components referenced within Visual Basic applications have accompanying type libraries that ➤

contain metadata about the components, their methods, and their properties. You can use the Object
Browser to view this information. (The information contained within the type library is what is used
to drive IntelliSense.)

Additional metadata can be associated with a component by installing it within COM+. Metadata ➤

stored in COM+ is used to declare the support a component needs at runtime, including transactional
support, serialization support, and object pooling.

Cross-language integration ❘ 217

218 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

 Better support for metadata
 Metadata associated with a Visual Basic 6 component was scattered in multiple locations and stored using
multiple formats:

 Metadata instructing the Visual Basic runtime how to behave (such as the ➤ Unattended Execution
property) is compiled into the Visual Basic – generated executable.

 Basic COM attributes (such as the required threading model) are stored in the registry. ➤

 COM+ attributes (such as the transactional support required) are stored in the COM+ catalog. ➤

 .NET refi nes the use of metadata within applications in three signifi cant ways:

 .NET consolidates the metadata associated with a component. ➤

 Because a .NET component does not have to be registered, installing and upgrading the component is ➤

easier and less problematic.

 .NET makes a much clearer distinction between attributes that should only be set at compile time and ➤

those that can be modifi ed at runtime.

 All attributes associated with Visual Basic components are represented in a common format
and consolidated within the fi les that make up the assembly.

 Because much of a COM/COM+ component ’ s metadata is stored separately from the executable, installing
and upgrading components can be problematic. COM/COM+ components must be registered to update
the registry/COM+ catalog before they can be used, and the COM/COM+ component executable can be
upgraded without upgrading its associated metadata.

 The process of installing and upgrading a .NET component is greatly simplifi ed. Because all metadata
associated with a .NET component must reside within the fi le that contains the component, no registration
is required. After a new component is copied into an application ’ s directory, it can be used immediately.
Because the component and its associated metadata cannot become out of sync, upgrading the component
becomes much less of an issue.

 Another problem with COM+ is that attributes that should only be set at compile time may be reconfi gured
at runtime. For example, COM+ can provide serialization support for neutral components. A component
that does not require serialization must be designed to accommodate multiple requests from multiple
clients simultaneously. You should know at compile time whether or not a component requires support
for serialization from the runtime. However, under COM+, the attribute describing whether or not client
requests should be serialized can be altered at runtime.

 .NET makes a much better distinction between attributes that should be set at compile time and those that
should be set at runtime. For example, whether a .NET component is serializable is determined at compile
time. This setting cannot be overridden at runtime.

 attributes
 Attributes are used to decorate entities such as assemblies, classes, methods, and properties with additional
information. Attributes can be used for a variety of purposes. They can provide information, request a
certain behavior at runtime, or even invoke a particular behavior from another application. An example of
this can be demonstrated by using the Demo class defi ned in the following code block:

Module Module1
 < Serializable() > Public Class Demo
 < Obsolete("Use Method2 instead.") > Public Sub Method1()
 ' Old implementation …
 End Sub
 Public Sub Method2()

 ' New implementation …
 End Sub
 End Class
 Public Sub Main()
 Dim d As Demo = New Demo()
 d.Method1()
 End Sub
End Module

Code snippet from ProVB_Attributes\Module1.vb

Create a new console application for Visual Basic by selecting File ➪ New Project and selecting Windows
Forms Application and then add a new class into the sample file by copying the above code into Module1.
A best practice is to place each class in its own source file, but in order to simplify this demonstration, the
class Demo has been defined within the main module.

The first attribute on the Demo class marks the class with the Serializable attribute. The base class library
will provide serialization support for instances of the Demo type. For example, the ResourceWriter type
can be used to stream an instance of the Demo type to disk. The second attribute is associated with Method1
.Method1 has been marked as obsolete, but it is still available. When a method is marked as obsolete, there
are two options, one being that Visual Studio should prevent applications from compiling. However, a
better strategy for large applications is to first mark a method or class as obsolete and then prevent its use
in the next release. The preceding code causes Visual Studio to display an IntelliSense warning if Method1
is referenced within the application, as shown in Figure 4-1. Not only does the line with Method1 have a
visual hint of the issue, but a task has also been automatically added to the task window.

figure 4-1

If the developer leaves this code unchanged and then compiles it, the application will compile correctly. As
shown in Figure 4-2, the compilation is complete, but the developer receives a warning with a meaningful
message that the code should be changed to use the correct method.

Cross-language integration ❘ 219

220 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Sometimes you might need to associate multiple attributes with an entity. The following code shows an
example of using both of the attributes from the previous code at the class level. Note that in this case the
Obsolete attribute has been modified to cause a compilation error by setting its second parameter to True:

<Serializable(), Obsolete("No longer used.", True)> Public Class Demo
 ' Implementation …
End Class

Attributes play an important role in the development of .NET applications, particularly XML Web Services.
As you’ll see in Chapter 13, the declaration of a class as a Web service and of particular methods as Web
methods are all handled through the use of attributes.

The reflection aPi
The .NET Framework provides the Reflection API for accessing metadata associated with managed code.
You can use the Reflection API to examine the metadata associated with an assembly and its types, and even
to examine the currently executing assembly.

The Assembly class in the System.Reflection namespace can be used to access the metadata in an
assembly. The LoadFrom method can be used to load an assembly, and the GetExecutingAssembly method
can be used to access the currently executing assembly. The GetTypes method can then be used to obtain
the collection of types defined in the assembly.

It’s also possible to access the metadata of a type directly from an instance of that type. Because every object
derives from System.Object, every object supports the GetType method, which returns a Type object that
can be used to access the metadata associated with the type.

The Type object exposes many methods and properties for obtaining the metadata associated with a type.
For example, you can obtain a collection of properties, methods, fields, and events exposed by the type by
calling the GetMembers method. The Type object for the object’s base type can also be obtained by calling the
DeclaringType property.

figure 4-2

A good tool that demonstrates the power of reflection is Lutz Roeder’s Reflector for .NET (see
www.red-gate.com/products/reflector). In addition to the core tool, you can find several add-ins
related to the tool at www.codeplex.com/reflectoraddins.

il disassemBler
One of the many handy tools that ships with Visual Studio
is the IL Disassembler (ildasm.exe). It can be used to navigate
the metadata within a module, including the types the module
exposes, as well as their properties and methods. The IL
Disassembler can also be used to display the IL contained
within a module.

You can find the IL Disassembler under your installation
directory for Visual Studio 2010; the default path is C:\
Program Files\Microsoft SDKs\Windows\v7.0A\Bin\
ILDasm.exe. Once the IL Disassembler has been started,
select File ➪ Open. Open mscorlib.dll, which is located
in your system directory with a default path of C:\Windows\
Microsoft.NET\Framework\V4.0.21006\mscorlib.dll.
Once mscorlib.dll has been loaded, ILDasm will display
a set of folders for each namespace in this assembly. Expand
the System namespace, then the ValueType namespace, and
finally double-click the Equals method. A window similar to
the one shown in Figure 4-3 will be displayed.

Figure 4-3 shows the IL for the Equals method. Notice how
the Reflection API is used to navigate through the instance
of the value type’s fields in order to determine whether the
values of the two objects being compared are equal.

The IL Disassembler is a useful tool for learning how a
particular module is implemented, but it could jeopardize
your company’s proprietary logic. After all, what’s to prevent
someone from using it to reverse engineer your code? Fortunately, Visual Studio 2010, like previous versions
of Visual Studio, ships with a third-party tool called an obfuscator. The role of the obfuscator is to ensure
that the IL Disassembler cannot build a meaningful representation of your application logic.

A complete discussion of the obfuscator that ships with Visual Studio 2010 is beyond the scope of this
chapter, but to access this tool, select the Tools menu and choose Dotfuscator Community Edition. The
obfuscator runs against your compiled application, taking your IL file and stripping out many of the items
that are embedded by default during the compilation process.

memory managemenT
This section looks at one of the larger underlying elements of managed code. One of the reasons why
.NET applications are referred to as “managed” is that memory deallocation is handled automatically
by the system. The CLR’s memory management fixes the shortcomings of COM’s memory management.
Developers are accustomed to worrying about memory management only in an abstract sense. The
basic rule has been that every object created and every section of memory allocated needs to be released
(destroyed). The CLR introduces a garbage collector (GC), which simplifies this paradigm. Gone are
the days when a misbehaving component — for example, one that fails to properly dispose of its object
references or allocates and never releases memory — could crash a Web server.

However, the use of a GC introduces new questions about when and if objects need to be explicitly cleaned
up. There are two elements in manually writing code to allocate and deallocate memory and system

figure 4-3

Memory Management ❘ 221

222 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

resources. The first is the release of any shared resources, such as file handles and database connections.
This type of activity needs to be managed explicitly and is discussed shortly. The second element of
manual memory management involves letting the system know when memory is no longer in use by your
application. Visual Basic COM developers, in particular, are accustomed to explicitly disposing of object
references by setting variables to Nothing. While you can explicitly show your intent to destroy the
object by setting it to Nothing manually, this doesn’t actually free resources under .NET.

.NET uses a GC to automatically manage the cleanup of allocated memory, which means that you don’t
need to carry out memory management as an explicit action. Because the system is automatic, it’s not up
to you when resources are actually cleaned up; thus, a resource you previously used might sit in memory
beyond the end of the method where you used it. Perhaps more important is the fact that the GC will at
times reclaim objects in the middle of executing the code in a method. Fortunately, the system ensures that
collection only happens as long as your code doesn’t reference the object later in the method.

For example, you could actually end up extending the amount of time an object is kept in memory just by
setting that object to Nothing. Thus, setting a variable to Nothing at the end of the method prevents the
garbage collection mechanism from proactively reclaiming objects, and therefore is generally discouraged.

Given this change in paradigms, the next few sections look at the challenges of traditional memory
management and peek under the covers to reveal how the garbage collector works, the basics of some of
the challenges with COM-based memory management, and then a quick look at how the GC eliminates
these challenges from your list of concerns. In particular, you should understand how you can interact
with the garbage collector and why the Using command, for example, is recommended over a finalization
method in .NET.

Traditional garbage collection
The unmanaged (COM/Visual Basic 6) runtime environment provides limited memory management
by automatically releasing objects when they are no longer referenced by any application. Once all the
references are released on an object, the runtime automatically releases the object from memory. For
example, consider the following Visual Basic 6 code, which uses the Scripting.FileSystem object to write
an entry to a log file:

 ' Requires a reference to Microsoft Scripting Runtime (scrrun.dll)
Sub WriteToLog(strLogEntry As String)
 Dim objFSO As Scripting.FileSystemObject
 Dim objTS As Scripting.TextStream
 objTS = objFSO.OpenTextFile("C:\temp\AppLog.log", ForAppending)
 Call objTS.WriteLine(Date & vbTab & strLogEntry)
End Sub

WriteToLog creates two objects, a FileSystemObject and a TextStream, which are used to create an entry
in the log file. Because these are COM objects, they may live either within the current application process
or in their own process. Once the routine exits, the Visual Basic runtime recognizes that they are no longer
referenced by an active application and dereferences them. This results in both objects being deactivated.
However, in some situations objects that are no longer referenced by an application are not properly cleaned
up by the Visual Basic 6 runtime. One cause of this is the circular reference.

Circular references
One of the most common situations in which the unmanaged runtime is unable to ensure that objects are
no longer referenced by the application is when these objects contain a circular reference. An example of a
circular reference is when object A holds a reference to object B and object B holds a reference to object A.

Circular references are problematic because the unmanaged environment relies on the reference counting
mechanism of COM to determine whether an object can be deactivated. Each COM object is responsible for
maintaining its own reference count and for destroying itself once the reference count reaches zero. Clients
of the object are responsible for updating the reference count appropriately, by calling the AddRef and

Release methods on the object’s IUnknown interface. However, in this scenario, object A continues to hold
a reference to object B, and vice versa, so the internal cleanup logic of these components is not triggered.

In addition, problems can occur if the clients do not properly maintain the COM object’s reference count. For
example, an object will never be deactivated if a client forgets to call Release when the object is no longer
referenced. To avoid this, the unmanaged environment may attempt to take care of updating the reference
count for you, but the object’s reference count can be an invalid indicator of whether or not the object is still
being used by the application. For example, consider the references that objects A and B hold.

The application can invalidate its references to A and B by setting the associated variables equal to Nothing.
However, even though objects A and B are no longer referenced by the application, the Visual Basic runtime
cannot ensure that the objects are deactivated because A and B still reference each other. Consider the
following (Visual Basic 6) code:

 ' Class: CCircularRef
' Reference to another object.
Dim m_objRef As Object
Public Sub Initialize(objRef As Object)
 Set m_objRef = objRef
End Sub
Private Sub Class_Terminate()
 Call MsgBox("Terminating.")
 Set m_objRef = Nothing
End Sub

The CCircularRef class implements an Initialize method that accepts a reference to another object and
saves it as a member variable. Notice that the class does not release any existing reference in the m_objRef
variable before assigning a new value. The following code demonstrates how to use this CCircularRef class
to create a circular reference:

Dim objA As New CCircularRef
Dim objB As New CCircularRef
Call objA.Initialize(objB)
Call objB.Initialize(objA)
Set objA = Nothing
Set objB = Nothing

After creating two instances (objA and objB) of CCircularRef, both of which have a reference count of
one, the code then calls the Initialize method on each object by passing it a reference to the other. Now
each of the object’s reference counts is equal to two: one held by the application and one held by the other
object. Next, explicitly setting objA and objB to Nothing decrements each object’s reference count by one.
However, because the reference count for both instances of CCircularRef is still greater than zero, the
objects are not released from memory until the application is terminated. The CLR garbage collector solves
the problem of circular references because it looks for a reference from the root application or thread to
every class, and all classes that do not have such a reference are marked for deletion, regardless of any other
references they might still maintain.

The Clr’s Garbage Collector
The .NET garbage collection mechanism is complex, and the details of its inner workings are beyond
the scope of this book, but it is important to understand the principles behind its operation. The GC is
responsible for collecting objects that are no longer referenced. It takes a completely different approach from
that of the Visual Basic runtime to accomplish this. At certain times, and based on internal rules, a task will
run through all the objects looking for those that no longer have any references from the root application
thread or one of the worker threads. Those objects may then be terminated; thus, the garbage is collected.

As long as all references to an object are either implicitly or explicitly released by the application, the GC
will take care of freeing the memory allocated to it. Unlike COM objects, managed objects in .NET are not
responsible for maintaining their reference count, and they are not responsible for destroying themselves.
Instead, the GC is responsible for cleaning up objects that are no longer referenced by the application. The

Memory Management ❘ 223

224 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

GC periodically determines which objects need to be cleaned up by leveraging the information the CLR
maintains about the running application. The GC obtains a list of objects that are directly referenced by the
application. Then, the GC discovers all the objects that are referenced (both directly and indirectly) by
the “root” objects of the application. Once the GC has identified all the referenced objects, it is free to
clean up any remaining objects.

The GC relies on references from an application to objects; thus, when it locates an object that is unreachable
from any of the root objects, it can clean up that object. Any other references to that object will be from
other objects that are also unreachable. Thus, the GC automatically cleans up objects that contain circular
references.

In some environments, such as COM, objects are destroyed in a deterministic fashion. Once the reference
count reaches zero, the object destroys itself, which means that you can tell exactly when the object will be
terminated. However, with garbage collection, you can’t tell exactly when an object will be destroyed. Just
because you eliminate all references to an object doesn’t mean that it will be terminated immediately. It
just remains in memory until the garbage collection process gets around to locating and destroying it, a
process called nondeterministic finalization.

This nondeterministic nature of CLR garbage collection provides a performance benefit. Rather than expend
the effort to destroy objects as they are dereferenced, the destruction process can occur when the application
is otherwise idle, often decreasing the impact on the user. Of course, if garbage collection must occur when the
application is active, then the system may see a slight performance fluctuation as the collection is
accomplished.

It is possible to explicitly invoke the GC by calling the System.GC.Collect method, but this process
takes time, so it is not the sort of behavior to invoke in a typical application. For example, you could call
this method each time you set an object variable to Nothing, so that the object would be destroyed almost
immediately, but this forces the GC to scan all the objects in your application — a very expensive operation
in terms of performance.

It’s far better to design applications such that it is acceptable for unused objects to sit in memory for some
time before they are terminated. That way, the garbage collector can also run based on its optimal rules,
collecting many dereferenced objects at the same time. This means you need to design objects that don’t
maintain expensive resources in instance variables. For example, database connections, open files on disk,
and large chunks of memory (such as an image) are all examples of expensive resources. If you rely on the
destruction of the object to release this type of resource, then the system might be keeping the resource tied
up for a lot longer than you expect; in fact, on a lightly utilized Web server, it could literally be days.

The first principle is working with object patterns that incorporate cleaning up such pending references
before the object is released. Examples of this include calling the close method on an open database
connection or file handle. In most cases, it’s possible for applications to create classes that do not risk
keeping these handles open. However, certain requirements, even with the best object design, can create
a risk that a key resource will not be cleaned up correctly. In such an event, there are two occasions when
the object could attempt to perform this cleanup: when the final reference to the object is released and
immediately before the GC destroys the object.

One option is to implement the IDisposable interface. When implemented, this interface ensures that
persistent resources are released. This is the preferred method for releasing resources. The second option is
to add a method to your class that the system runs immediately before an object is destroyed. This option
is not recommended for several reasons, including the fact that many developers fail to remember that the
garbage collector is nondeterministic, meaning that you can’t, for example, reference an SQLConnection
object from your custom object’s finalizer.

Finally, as part of .NET 2.0, Visual Basic introduced the Using command. The Using command is designed
to change the way that you think about object cleanup. Instead of encapsulating your cleanup logic within
your object, the Using command creates a window around the code that is referencing an instance of your
object. When your application’s execution reaches the end of this window, the system automatically calls the
IDIsposable interface for your object to ensure that it is cleaned up correctly.

The finalize Method
Conceptually, the GC calls an object’s Finalize method immediately before it collects an object that is no
longer referenced by the application. Classes can override the Finalize method to perform any necessary
cleanup. The basic concept is to create a method that fills the same need as what in other object-oriented
languages is referred to as a destructor. Similarly, the Class_Terminate event available in previous versions
of Visual Basic does not have a functional equivalent in .NET. Instead, it is possible to create a Finalize
method that is recognized by the GC and that prevents a class from being cleaned up until after the
finalization method is completed, as shown in the following example:

Protected Overrides Sub Finalize()
 ' clean up code goes here
 MyBase.Finalize()
End Sub

Code snippet from ProVB_Finalization\Form1.vb

This code uses both Protected scope and the Overrides keyword. Notice that not only does custom
cleanup code go here (as indicated by the comment), but this method also calls MyBase.Finalize, which
causes any finalization logic in the base class to be executed as well. Any class implementing a custom
Finalize method should always call the base finalization class.

Be careful, however, not to treat the Finalize method as if it were a destructor. A destructor is based on
a deterministic system, whereby the method is called when the object’s last reference is removed. In the GC
system, there are key differences in how a finalizer works:

Because the GC is optimized to clean up memory only when necessary, there is a delay between the ➤

time when the object is no longer referenced by the application and when the GC collects it.
Therefore, the same expensive resources that are released in the Finalize method may stay open
longer than they need to be.

The GC doesn’t actually run ➤ Finalize methods. When the GC finds a Finalize method, it
queues the object up for the finalizer to execute the object’s method. This means that an object is not
cleaned up during the current GC pass. Because of how the GC is optimized, this can result in the
object remaining in memory for a much longer period.

The GC is usually triggered when available memory is running low. As a result, execution of the ➤

object’s Finalize method is likely to incur performance penalties. Therefore, the code in the Finalize
method should be as short and quick as possible.

There’s no guarantee that a service you require is still available. For example, if the system is ➤

closing and you have a file open, then .NET may have already unloaded the object required to close
the file, and thus a Finalize method can’t reference an instance of any other .NET object.

All cleanup activities should be placed in the Finalize method, but objects that require timely cleanup
should implement a Dispose method that can then be called by the client application just before setting the
reference to Nothing:

Class DemoDispose
 Private m_disposed As Boolean = False
 Public Sub Dispose()
 If (Not m_disposed) Then
 ' Call cleanup code in Finalize.
 Finalize()
 ' Record that object has been disposed.
 m_disposed = True
 ' Finalize does not need to be called.
 GC.SuppressFinalize(Me)
 End If
 End Sub
 Protected Overrides Sub Finalize()

Memory Management ❘ 225

226 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

 ' Perform cleanup here
 End Sub
End Class

Code snippet from ProVB_Finalization\DemoDispose.vb

The DemoDispose class overrides the Finalize method and implements the code to perform any necessary
cleanup. This class places the actual cleanup code within the Finalize method. To ensure that the Dispose
method only calls Finalize once, the value of the private m_disposed field is checked. Once Finalize
has been run, this value is set to True. The class then calls GC.SuppressFinalize to ensure that the GC
does not call the Finalize method on this object when the object is collected. If you need to implement a
Finalize method, this is the preferred implementation pattern.

This example implements all of the object’s cleanup code in the Finalize method to ensure that the object
is cleaned up properly before the GC collects it. The Finalize method still serves as a safety net in case the
Dispose or Close methods were not called before the GC collects the object.

The iDisposable interface
In some cases, the Finalize behavior is not acceptable. For an object that is using an expensive or limited
resource, such as a database connection, a file handle, or a system lock, it is best to ensure that the resource
is freed as soon as the object is no longer needed.

One way to accomplish this is to implement a method to be called by the client code to force the object to
clean up and release its resources. This is not a perfect solution, but it is workable. This cleanup method
must be called directly by the code using the object or via the use of the Using statement. The Using
statement enables you to encapsulate an object’s life span within a limited range, and automate the calling
of the IDisposable interface.

The .NET Framework provides the IDisposable interface to formalize the declaration of cleanup logic.
Be aware that implementing the IDisposable interface also implies that the object has overridden the
Finalize method. Because there is no guarantee that the Dispose method will be called, it is critical
that Finalize triggers your cleanup code if it was not already executed.

Having a custom finalizer ensures that, once released, the garbage collection mechanism will eventually
find and terminate the object by running its Finalize method. However, when handled correctly, the
IDisposable interface ensures that any cleanup is executed immediately, so resources are not consumed
beyond the time they are needed.

Note that any class that derives from System.ComponentModel.Component automatically inherits the
IDisposable interface. This includes all of the forms and controls used in a Windows Forms UI, as well as
various other classes within the .NET Framework. Because this interface is inherited, let’s review a custom
implementation of the IDisposable interface based on the Person class defined in the preceding chapters.
The first step involves adding a reference to the interface to the top of the class:

Public Class Person
 Implements IDisposable

This interface defines two methods, Dispose and Finalize, that need to be implemented in the class.
Visual Studio automatically inserts both these methods into your code:

#Region " IDisposable Support "
 Private disposedValue As Boolean ' To detect redundant calls

 ' IDisposable
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ' TODO: dispose managed state (managed objects).
 End If
 ' TODO: free unmanaged resources (unmanaged objects)

 ' and override Finalize() below.
 ' TODO: set large fields to null.
 End If
 Me.disposedValue = True
 End Sub

 ' TODO: override Finalize() only if Dispose(ByVal disposing As Boolean) above
 ' has code to free unmanaged resources.
 Protected Overrides Sub Finalize()
 ' Do not change this code. Put cleanup code in
 ' Dispose(ByVal disposing As Boolean) above.
 Dispose(False)
 MyBase.Finalize()
 End Sub

 ' This code added by Visual Basic to correctly implement the disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ' Do not change this code. Put cleanup code in
 ' Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
#End Region

Code snippet from ProVB_Finalization\Person.vb

Notice the use of the Overridable and Overrides keywords. The automatically inserted code is following
a best-practice design pattern for implementation of the IDisposable interface and the Finalize method.
The idea is to centralize all cleanup code into a single method that is called by either the Dispose method
or the Finalize method as appropriate.

Accordingly, you can add the cleanup code as noted by the TODO: comments in the inserted code. As
mentioned in Chapter 1, the TODO: keyword is recognized by Visual Studio’s text parser, which triggers an
entry in the task list to remind you to complete this code before the project is complete. Because this code
frees a managed object (the Hashtable), it appears as shown here:

 Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ' TODO: dispose managed state (managed objects).
 End If
 ' TODO: free unmanaged resources (unmanaged objects)
 ' and override Finalize() below.
 ' TODO: set large fields to null.
 End If
 Me.disposedValue = True
 End Sub

Code snippet from ProVB_Finalization\Person.vb

In this case, we’re using this method to release a reference to the object to which the mPhones variable
points. While not strictly necessary, this illustrates how code can release other objects when the Dispose
method is called. Generally, it is up to your client code to call this method at the appropriate time to ensure
that cleanup occurs. Typically, this should be done as soon as the code is done using the object.

This is not always as easy as it might sound. In particular, an object may be referenced by more than one
variable, and just because code in one class is dereferencing the object from one variable doesn’t mean that
it has been dereferenced by all the other variables. If the Dispose method is called while other references
remain, then the object may become unusable and cause errors when invoked via those other references.
There is no easy solution to this problem, so careful design is required if you choose to use the IDisposable
interface.

Memory Management ❘ 227

228 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Using iDisposable
One way to work with the IDisposable interface is to manually insert the calls to the interface
implementation everywhere you reference the class. For example, in an application’s Form1 code, you can
override the OnLoad event for the form. You can use the custom implementation of this method to create an
instance of the Person object. Then you create a custom handler for the form’s OnClosed event, and ensure
cleanup by disposing of the Person object. To do this, add the following code to the form:

Private Sub Form1_Closed(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles MyBase.Closed
 CType(mPerson, IDisposable).Dispose()
End Sub

Code snippet from ProVB_Finalization\Form1.vb

The OnClosed method runs as the form is being closed, so it is an appropriate place to do cleanup work.
Note that because the Dispose method is part of a secondary interface, use of the CType method to access
that specific interface is needed in order to call the method.

This solution works fine for patterns where the object implementing IDisposable is used within a form,
but it is less useful for other patterns, such as when the object is used as part of a Web service. In fact, even
for forms, this pattern is somewhat limited in that it requires the form to define the object when the form
is created, as opposed to either having the object created prior to the creation of the form or some other
scenario that occurs only on other events within the form.

For these situations, .NET 2.0 introduced a new command keyword: Using. The Using keyword is a way to
quickly encapsulate the life cycle of an object that implements IDisposable, and ensure that the Dispose
method is called correctly:

Dim mPerson As New Person()

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 Using (mPerson)
 'insert custom method calls
 End Using
End Sub
End Using

Code snippet from ProVB_Finalization\Form1.vb

The preceding statements allocate a new instance of the mPerson object. The Using command then
instructs the compiler to automatically clean up this object’s instance when the End Using command is
executed. The result is a much cleaner way to ensure that the IDisposable interface is called.

faster memory allocation for objects
The CLR introduces the concept of a managed heap. Objects are allocated on the managed heap, and the
CLR is responsible for controlling access to these objects in a type-safe manner. One of the advantages
of the managed heap is that memory allocations on it are very efficient. When unmanaged code (such as
Visual Basic 6 or C++) allocates memory on the unmanaged heap, it typically scans through some sort of
data structure in search of a free chunk of memory that is large enough to accommodate the allocation.
The managed heap maintains a reference to the end of the most recent heap allocation. When a new object
needs to be created on the heap, the CLR allocates memory on top of memory that has previously been
allocated, and then increments the reference to the end of heap allocations accordingly. Figure 4-4 illustrates
a simplification of what takes place in the managed heap for .NET:

 ➤ State 1 — A compressed memory heap with a reference to the endpoint on the heap.

 ➤ State 2 — Object B, although no longer referenced, remains in its current memory location. The
memory has not been freed and does not alter the allocation of memory or other objects on the heap.

 ➤ State 3 — Even though there is now a gap between the memory allocated for object A and object C,
the memory allocation for object D still occurs on the top of the heap. The unused fragment of memory
on the managed heap is ignored at allocation time.

 ➤ State 4 — After one or more allocations, before there is an allocation failure, the garbage collector
runs. It reclaims the memory that was allocated to object B and repositions the remaining valid objects.
This compresses the active objects to the bottom of the heap, creating more space for additional object
allocations (refer to Figure 4-4).

Object A

Reference to
top of heap
allocations

Object B

Object C

Object A

State 1: Objects A, B, and C
are allocated on the heap

State 2: Object B is no
longer referenced by the

application

Not Referenced

Object C

Reference to
top of heap
allocations

Object A

Reference to
top of heap
allocations

Not Referenced

Object C

Object D

Object A

State 3: Object D is
allocated on the heap

State 4: The GC executes,
memory from B is reclaimed,
and the heap is compressed

Object C

Object D

Reference to
top of heap
allocations

figure 4-4

This is where the power of the GC really shines. Before the CLR is unable to allocate memory on the
managed heap, the GC is invoked. The GC not only collects objects that are no longer referenced by
the application, but also has a second task: compacting the heap. This is important because if the GC
only cleaned up objects, then the heap would become progressively more fragmented. When heap memory
becomes fragmented, you can wind up with the common problem of having a memory allocation fail — not
because there isn’t enough free memory, but because there isn’t enough free memory in a contiguous section
of memory. Thus, not only does the GC reclaim the memory associated with objects that are no longer
referenced, it also compacts the remaining objects. The GC effectively squeezes out all of the spaces between
the remaining objects, freeing up a large section of managed heap for new object allocations.

garbage collector optimizations
The GC uses a concept known as generations, the primary purpose of which is to improve its
performance. The theory behind generations is that objects that have been recently created tend to have a
higher probability of being garbage-collected than objects that have existed on the system for a longer time.

To understand generations, consider the analogy of a mall parking lot where cars represent objects created
by the CLR. People have different shopping patterns when they visit the mall. Some people spend a good
portion of their day in the mall, and others stop only long enough to pick up an item or two. Applying

Memory Management ❘ 229

230 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

the theory of generations to trying to find an empty parking space for a car yields a scenario in which the
highest probability of finding a parking space is a function of where other cars have recently parked. In
other words, a space that was occupied recently is more likely to be held by someone who just needed to
quickly pick up an item or two. The longer a car has been parked, the higher the probability that its owner
is an all-day shopper and the lower the probability that the parking space will be freed up anytime soon.

Generations provide a means for the GC to identify recently created objects versus long-lived objects. An
object’s generation is basically a counter that indicates how many times it has successfully avoided garbage
collection. An object’s generation counter starts at zero and can have a maximum value of two, after which
the object’s generation remains at this value regardless of how many times it is checked for collection.

You can put this to the test with a simple Visual Basic application. From the File menu, select either File ➪
New ➪ Project, or, if you have an open solution, File ➪ Add ➪ New Project. This opens the Add New
Project dialog. Select a console application, provide a name and directory for your new project, and click
OK. After you create your new project, you will have a code module that looks similar to the code that
follows. Within the Main module, add the highlighted code. In Solution Explorer, right-click your second
project (if the new project was added to an existing project) and select the Set as StartUp Project option so
that when you run your solution, your new project is automatically started.

Module Module1
 Sub Main()
 Dim myObject As Object = New Object()
 Dim i As Integer
 For i = 0 To 3
 Console.WriteLine(String.Format("Generation = {0}", _
 GC.GetGeneration(myObject)))
 GC.Collect()
 GC.WaitForPendingFinalizers()
 Next i
 Console.Read()
 End Sub
End Module

Code snippet from ProVB_C04_Memory\Module1.vb

Regardless of the project you use, this code sends its output to the .NET console. For a Windows
application, this console defaults to the Visual Studio Output window. When you run this code, it creates
an instance of an object and then iterates through a loop four times. For each loop, it displays the current
generation count of myObject and then calls the GC. The GC.WaitForPendingFinalizers method blocks
execution until the garbage collection has been completed.

As shown in Figure 4-5, each time the GC was run, the generation counter was incremented for myObject, up
to a maximum of 2.

figure 4-5

Each time the GC is run, the managed heap is compacted, and the reference to the end of the most recent
memory allocation is updated. After compaction, objects of the same generation are grouped together.
Generation-2 objects are grouped at the bottom of the managed heap, and generation-1 objects are grouped next.
New generation-0 objects are placed on top of the existing allocations, so they are grouped together as well.

This is significant because recently allocated objects have a higher probability of having shorter lives.
Because objects on the managed heap are ordered according to generations, the GC can opt to collect
newer objects. Running the GC over a limited portion of the heap is quicker than running it over the entire
managed heap.

It’s also possible to invoke the GC with an overloaded version of the Collect method that accepts a
generation number. The GC will then collect all objects no longer referenced by the application that belong
to the specified (or younger) generation. The version of the Collect method that accepts no parameters
collects objects that belong to all generations.

Another hidden GC optimization results from the fact that a reference to an object may implicitly go out of
scope; therefore, it can be collected by the GC. It is difficult to illustrate how the optimization occurs only
if there are no additional references to the object and the object does not have a finalizer. However, if an
object is declared and used at the top of a module and not referenced again in a method, then in the release
mode, the metadata will indicate that the variable is not referenced in the later portion of the code. Once the
last reference to the object is made, its logical scope ends; and if the garbage collector runs, the memory for
that object, which will no longer be referenced, can be reclaimed before it has gone out of its physical scope.

namesPaces
Even if you did not realize it, you have been using namespaces since the beginning of this book. For example,
System, System.Diagnostics, and System.Windows.Forms are all namespaces contained within the .NET
Framework. Namespaces are an easy concept to understand, but this chapter puts the ideas behind them on a
firm footing — and clears up any misconceptions you might have about how they are used and organized.

If you are familiar with COM, you will find that the concept of namespaces is the logical extension
of programmatic identifier (ProgID) values. For example, the functionality of Visual Basic 6’s
FileSystemObject is now mostly encompassed in .NET’s System.IO namespace, though this is not a
one-to-one mapping. However, namespaces reflect more than a change in name; they represent the logical
extension of the COM naming structure, expanding its ease of use and extensibility.

In addition to the traditional System and Microsoft namespaces (for example, used in things such as
Microsoft’s Web Services Enhancements), the .NET Framework 3.5 included a way to access some tough-to-
find namespaces using the My namespace. The My namespace is a powerful way of “speed-dialing” specific
functionalities in the base.

What is a namespace?
Namespaces are a way of organizing the vast number of classes, structures, enumerations, delegates, and
interfaces that the .NET Framework class library provides. They are a hierarchically structured index into
a class library, which is available to all of the .NET languages, not only the Visual Basic 2010 language
(with the exception of the My namespace). The namespaces, or object references, are typically organized by
function. For example, the System.IO namespace contains classes, structures, and interfaces for working
with input/output streams and files. The classes in this namespace do not necessarily inherit from the same
base classes (apart from Object, of course).

A namespace is a combination of a naming convention and an assembly, which organizes collections of
objects and prevents ambiguity about object references. A namespace can be, and often is, implemented
across several physical assemblies, but from the reference side, it is the namespace that ties these assemblies
together. A namespace consists of not only classes, but also other (child) namespaces. For example, IO is a
child namespace of the System namespace.

namespaces ❘ 231

232 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Namespaces provide identification beyond the component name. With a namespace, it is possible to use a
more meaningful title (for example, System) followed by a grouping (for example, Text) to group together
a collection of classes that contain similar functions. For example, the System.Text namespace contains a
powerful class called StringBuilder. To reference this class, you can use the fully qualified namespace
reference of System.Text.StringBuilder, as shown here:

Dim sb As New System.Text.StringBuilder()

The structure of a namespace is not a reflection of the physical inheritance of classes that make up the namespace.
For example, the System.Text namespace contains another child namespace called RegularExpressions.
This namespace contains several classes, but they do not inherit or otherwise reference the classes that make up
the System.Text namespace.

Figure 4-6 shows how the System namespace contains the Text child namespace, which also has a child
namespace, called RegularExpressions. Both of these child namespaces, Text and RegularExpressions,
contain a number of objects in the inheritance model for these classes, as shown in the figure.

System.Text System.Text.RegularExpressions

Capture

Group

Encoding

CaptureCollection

GroupCollection

MatchCollection

RegEx

RegExCompilationInfo

Object

StringBuilder

UTF8Encoding

UTF7Encoding

ASCIIEncoding

Encoding

Encoder

Decoder

UnicodeEncoding

figure 4-6

As shown in Figure 4-6, while some of the classes in each namespace do inherit from each other,
and while all of the classes eventually inherit from the generic Object, the classes in System.Text
.RegularExpressions do not inherit from the classes in System.Text.

To emphasize the usefulness of namespaces, we can draw another good example from Figure 4-6. If you make
a reference to System.Drawing.Imaging.Encoder in your application, then you are making a reference to a
completely different Encoder class than the namespace shown in Figure 4-6 — System.Text.Encoder. Being
able to clearly identify classes that have the same name but very different functions, and disambiguate them, is
yet another advantage of namespaces.

If you are an experienced COM developer, you may note that unlike a ProgID, which reflects a one-level
relationship between the project assembly and the class, a single namespace can use child namespaces to
extend the meaningful description of a class. The System namespace, imported by default as part of every
project created with Visual Studio, contains not only the default Object class, but also many other classes
that are used as the basis for every .NET language.

What if a class you need isn’t available in your project? The problem may be with the references in your
project. For example, by default, the System.DirectoryServices namespace, used to get programmatic
access to the Active Directory objects, is not part of your project’s assembly. Using it requires adding a

reference to the project assembly. The concept of referencing a namespace is very similar to the capability
to reference a COM object in VB6.

In fact, with all this talk about referencing, it is probably a good idea to look at an example of adding an
additional namespace to a project. Before doing that, though, you should know a little bit about how a
namespace is actually implemented.

Namespaces are implemented within .NET assemblies. The System namespace is implemented in an
assembly called System.dll provided with Visual Studio. By referencing this assembly, the project is
capable of referencing all the child namespaces of System that happen to be implemented in this assembly.
Using the preceding table, the project can import and use the System.Text namespace because its
implementation is in the System.dll assembly. However, although it is listed, the project cannot import or
use the System.Data namespace unless it references the assembly that implements this child of the System
namespace, System.Data.dll.

Let’s create a sample project so you can examine the role that namespaces play within it. Using Visual
Studio 2010, create a new Visual Basic Windows Forms Application project called Namespace_Sampler.

The Microsoft.VisualBasic.Compatibility.VB6 library is not part of Visual Basic 2010 projects by
default. To gain access to the classes that this namespace provides, you need to add it to your project. You
can do this by using the Add Reference dialog (available by right-clicking the Project Name node within the
Visual Studio Solution Explorer). The Add Reference dialog has five tabs, each containing elements that can
be referenced from your project:

 ➤ .NET — This tab contains .NET assemblies that can be found in the GAC. In addition to providing the
name of the assembly, you can also get the version of the assembly and the version of the framework to
which the assembly is compiled. The final data point found in this tab is the location of the assembly on
the machine.

 ➤ COM — This tab contains all the available COM components. It provides the name of the
component, the TypeLib version, and the path of the component.

 ➤ Projects — This tab contains any custom .NET assemblies from any of the various projects contained
within your solution.

 ➤ Browse — This tab enables you to look for any component files (.dll, .tlb, .olb, .ocx, .exe, or
.manifest) on the network.

 ➤ Recent — This tab lists the most recently made references for quick referencing capabilities.

The Add Reference dialog is shown in Figure 4-7.

The available .NET namespaces are listed by
component name. This is the same as the namespace
name. Within the dialog, you can see a few columns
that supply the namespace of the component, the
version number of the component, the version of
the .NET Framework for which the particular
component is targeted, and the path location of the
file. You can select a single namespace to make a
reference to by clicking your mouse on the component
that you are interested in. Holding down the Ctrl key
and pressing the mouse button enables you to select
multiple namespaces to reference.

To select a range of namespaces, first click on either
the first or the last component in the dialog that is
contained in the range, and then complete the range
selection by holding down the Shift key and using the
mouse to select the other components in the range.
Once you have selected all the components that you
are interested in referencing, click OK. figure 4-7

namespaces ❘ 233

234 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

The example in Figure 4-7 is importing some namespaces from the Microsoft.VisualBasic namespace,
even though only one selection has been made. This implementation, while a bit surprising at first, is very
powerful. First, it shows the extensibility of namespaces. This is because the single Microsoft.VisualBasic
.Compatibility.VB6 namespace is actually implemented in two separate assemblies. If you also make
a reference to the Microsoft.VisualBasic.Compatibility namespace, as well as the Microsoft
.VisualBasic.Compatibility.Data namespace, you will see (through the Object Browser found in Visual
Studio) that the Microsoft.VisualBasic.Compatibility.VB6 namespace is actually found in both
locations, as shown in Figure 4-8.

figure 4-8

Second, this implementation enables you to include only the classes that you need — in this case, those related
to the VB6 (Visual Basic 6) environment or to database tools, or both types.

Note some interesting points about the Microsoft.VisualBasic
namespace. First, this namespace gives you access to all the functions
that VB6 developers have had for years. Microsoft has implemented
these in the .NET Framework and made them available for use within
your .NET projects. Because these functions have been implemented in
the .NET Framework, there is absolutely no performance hit for using
them, but you will most likely find the functionality that they provide
available in newer .NET namespaces. Second, contrary to what the
name of the namespace suggests, this namespace is available for use by
all of the .NET languages, which means that even a C# developer could
use the Microsoft.VisualBasic namespace if desired.

namespaces and references
Highlighting their importance to every project, references (including
namespaces) are no longer hidden from view, available only after
opening a dialog as they were in VB6. As shown in the Solution
Explorer window in Figure 4-9, every new project includes a set of figure 4-9

referenced namespaces. (If you do not see the references listed in the Solution Explorer, click the Show All
Files button from the Solution Explorer menu.)

The list of default references varies depending on the type of project. The example in Figure 4-9 shows the
default references for a Windows Forms project in Visual Studio 2010. If the project type were an ASP.NET
Web Application, the list of references would change accordingly — the reference to the System.Windows
.Forms namespace assembly would be replaced by a reference to System.Web. If the project type were an
ASP.NET Web service (not shown), then the System.Windows.Forms namespace would be replaced by
references to the System.Web and System.Web.Services namespaces.

In addition to making the namespaces available, references play a second important role in your project.
One of the advantages of .NET is using services and components built on the common language runtime
(CLR), which enables you to avoid DLL conflicts. The various problems that can occur related to DLL
versioning, commonly referred to as DLL hell, involve two types of conflict.

The first situation occurs when you have a component that requires a minimum DLL version, and an older
version of the same DLL causes your product to break. The alternative situation is when you require an
older version of a DLL, and a new version is incompatible. In either case, the result is that a shared file,
outside of your control, creates a systemwide dependency that affects
your software. With .NET, it is possible, but not required, to indicate
that a DLL should be shipped as part of your project to avoid an
external dependency.

To indicate that a referenced component should be included
locally, you can select the reference in the Solution Explorer and then
examine the properties associated with that reference. One editable
property is called Copy Local. You will see this property and its
value in the Properties window within Visual Studio 2010. For
those assemblies that are part of a Visual Studio 2010 installation,
this value defaults to False, as shown in Figure 4-10. However, for
custom references, this property defaults to True to indicate that the
referenced DLL should be included as part of the assembly. Changing
this property to True changes the path associated with the assembly.
Instead of using the path to the referenced file’s location on the system,
the project creates a subdirectory based on the reference name and
places the files required for the implementation of the reference in this
subdirectory.

The benefit of this is that even when another version of the DLL is later placed on the system, your project’s
assembly will continue to function. However, this protection from a conflicting version comes at a price:
Future updates to the namespace assembly to fix flaws will be in the system version, but not in the private
version that is part of your project’s assembly.

To resolve this, Microsoft’s solution is to place new versions in directories based on their version
information. If you examine the path information for all of the Visual Studio 2010 references, you will see
that it includes a version number. As new versions of these DLLs are released, they are installed in a separate
directory. This method allows for an escape from DLL hell, by keeping new versions from overwriting old
versions, and it enables old versions to be easily located for maintenance updates. Therefore, it is often
better to leave alone the default behavior of Visual Studio 2010, which is set to copy only locally custom
components, until your organization implements a directory structure with version information similar to
that of Microsoft.

The Visual Basic 2010 compiler will not allow you to add a reference to your assembly if the targeted
implementation includes a reference that is not also referenced in your assembly. The good news is that the
compiler will help. If, after adding a reference, that reference does not appear in the IntelliSense list generated
by Visual Studio 2010, then go ahead and type the reference to a class from that reference. The compiler will

figure 4-10

namespaces ❘ 235

236 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

flag it with underlining, similar to the Microsoft Word spelling or grammar error underlines. When you click
the underlined text, the compiler will tell you which other assemblies need to be referenced in the project in
order to use the class in question.

common namespaces
The generated list of references shown in the Solution Explorer for the newly created Namespace_
Sampler project includes most, but not all, of the namespaces that are part of your Windows Forms
Application project. For example, one namespace not displayed as a reference is Microsoft.VisualBasic,
and the accompanying Microsoft.VisualBasic.dll. Every Visual Basic 2010 project includes the
namespace Microsoft.VisualBasic. This namespace is part of the Visual Studio project templates for
Visual Basic 2010 and is, in short, what makes Visual Basic 2010 different from C# or any other .NET
language. The implicit inclusion of this namespace is the reason why you can call IsDBNull and other
methods of Visual Basic 2010 directly. The only difference in the default namespaces included with Visual
Basic 2010 and C# Windows Forms Application projects is that the former use Microsoft.VisualBasic
and the latter use Microsoft.CSharp.

To see all of the namespaces that are imported automatically, such as the Microsoft.VisualBasic
namespace, right-click the project name in the Solution Explorer and select Properties from the context
menu. This opens the project’s Properties window in Visual Studio. Select the References tab from the left
pane and you will see the reference Microsoft.VisualBasic at the top of the list (see Figure 4-11).

figure 4-11

When looking at the project’s global list of imports in the text area at the bottom of the page, you can
see that in addition to the Microsoft.VisualBasic namespace, the System.Collections and System
.Diagnostics namespaces are also imported into the project. This is signified by the check marks next to
the namespace. Unlike the other namespaces in the list, these namespaces are not listed as references in the
text area directly above this. That’s because implementation of the System.Collections and System.
Diagnostics namespaces is part of the referenced System.dll. Similarly to Microsoft.VisualBasic,
importing these namespaces allows references to the associated classes, such that a fully qualified path is not

required. Because these namespaces contain commonly used classes, it is worthwhile to always include them
at the project level.

The following list briefly summarizes some of the namespaces commonly used in Visual Basic 2010 projects:

 ➤ System.Collections — Contains the classes that support various feature-rich object collections.
Included automatically, it has classes for arrays, lists, dictionaries, queues, hash tables, and so on.

 ➤ System.Collections.Generic — Ever since .NET 2.0, this namespace has enabled working with the
generics capabilities of the framework — a way to build type-safe collections as well as provide
generic methods and classes.

 ➤ System.Data — This namespace contains the classes needed to support the core features of ADO.NET.

 ➤ System.Diagnostics — Included in all Visual Basic 2010 projects, this namespace includes the
debugging classes. The Trace and Debug classes provide the primary capabilities, but the namespace
contains dozens of classes to support debugging.

 ➤ System.Drawing — This namespace contains simple drawing classes to support Windows Application
projects.

 ➤ System.EnterpriseServices — Not included automatically, the System.EnterpriseServices
implementation must be referenced to make it available. This namespace contains the classes that
interface .NET assemblies with COM+.

 ➤ System.IO — This namespace contains important classes that enable you to read and write to files as
well as data streams.

 ➤ System.Linq — This namespace contains an object interface to work with disparate data sources in a
new and easy manner.

 ➤ System.Text — This commonly used namespace enables you to work with text in a number of
different ways, usually in regard to string manipulation. One of the more popular objects that this
namespace offers is the StringBuilder object.

 ➤ System.Threading — This namespace contains the objects needed to work with and manipulate
threads within your application.

 ➤ System.Web — This is the namespace that deals with one of the more exciting features of the
.NET Framework: ASP.NET. This namespace provides the objects that deal with browser-server
communications. Two main objects include HttpRequest, which deals with the request from the
client to the server, and HttpResponse, which deals with the response from the server to the client.

 ➤ System.Web.Services — This is the main namespace you use when creating Web Services, one of the
more powerful capabilities provided with the .NET Framework. This namespace offers the classes
that deal with SOAP messages and the manipulation of these messages.

 ➤ System.Windows.Forms — This namespace provides classes to create Windows Forms in Windows
Forms Application projects. It contains the form elements.

Of course, to really make use of the classes and other objects in this list, you need more detailed information.
In addition to resources such as Visual Studio 2010’s help files, the best source of information is the Object
Browser, available directly in the Visual Studio 2010 IDE. You can find it by selecting View ➪ Object Browser
if you are using Visual Studio 2010, 2005, or 2003, or View ➪ Other Windows ➪ Object Browser if you are
using Visual Studio 2002. The Visual Studio 2010 Object Browser is shown in Figure 4-12.

The Object Browser displays each of the referenced assemblies and enables you to drill down into the various
namespaces. Figure 4-12 illustrates how the System.dll implements a number of namespaces, including some
that are part of the System namespace. By drilling down into a namespace, you can see some of the classes
available. By further selecting a class, the browser shows not only the methods and properties associated with
the selected class, but also a brief outline of what that class does.

namespaces ❘ 237

238 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Using the Object Browser is an excellent way to gain insight into which classes and interfaces are available
via the different assemblies included in your project, and how they work. Clearly, the ability to actually
see which classes are available and know how to use them is fundamental to being able to work efficiently.
Working effectively in the .NET CLR environment requires finding the right class for the task.

importing and aliasing namespaces
Not all namespaces should be imported at the global level. Although you have looked at the namespaces
included at this level, it is much better to import namespaces only in the module where they will be used. As
with variables used in a project, it is possible to define a namespace at the module level. The advantage of
this is similar to using local variables in that it helps to prevent different namespaces from interfering with
each other. As this section shows, it is possible for two different namespaces to contain classes or even child
namespaces with the same name.

importing namespaces
The development environment and compiler need a way to prioritize the order in which namespaces should
be checked when a class is referenced. It is always possible to unequivocally specify a class by stating its
complete namespace path. This is referred to as fully qualifying your declaration. The following example
fully qualifies a StringBuilder object:

Dim sb As New System.Text.StringBuilder

However, if every reference to every class needed its full namespace declaration, then Visual Basic 2010 and
every other .NET language would be very difficult to program in. After all, who wants to type System
.Collections.ArrayList each time an instance of the ArrayList class is wanted? If you review the global
references, you will see the System.Collections namespace. Thus, you can just type ArrayList whenever
you need an instance of this class, as the reference to the larger System.Collections namespace has
already been made by the application.

In theory, another way to reference the StringBuilder class is to use Text.StringBuilder, but with all
namespaces imported globally, there is a problem with this, caused by what is known as namespace crowding.

figure 4-12

Because there is a second namespace, System.Drawing, that has a child called Text, the compiler does not
have a clear location for the Text namespace and, therefore, cannot resolve the StringBuilder class. The
solution to this problem is to ensure that only a single version of the Text child namespace is found locally.
That way, the compiler will use this namespace regardless of the global availability of the System.Drawing
.Text namespace.

Imports statements specify to the compiler those namespaces that the code will use:

Imports Microsoft.Win32
Imports System
Imports SysDraw = System.Drawing

Once they are imported into the file, you are not required to fully qualify your object declarations in your
code. For instance, if you imported the System.Data.SqlClient namespace into your file, then you would
be able to create a SqlConnection object in the following manner:

Dim conn As New SqlConnection

Each of the preceding Imports statements illustrates a different facet of importing namespaces. The first
namespace, Microsoft.Win32, is not imported at the global level. Looking at the reference list, you
may not see the Microsoft assembly referenced directly. However, opening the Object Browser reveals that
this namespace is actually included as part of the System.dll.

As noted earlier, the StringBuilder references become ambiguous because both System.Text and System
.Drawing.Text are valid namespaces at the global level. As a result, the compiler has no way to determine which
Text child namespace is being referenced. Without any clear indication, the compiler flags Text.StringBuilder
declarations in the command handler. However, using the Imports System declaration in the module tells the
compiler that before checking namespaces imported at the global level, it should attempt to match incomplete
references at the module level. Because the System namespace is declared at this level, if System.Drawing is not,
then there is no ambiguity regarding to which child namespace Text.StringBuilder belongs.

This sequence demonstrates how the compiler looks at each possible declaration:

It first determines whether the item is a complete reference, such as ➤ System.Text.StringBuilder.

If the declaration does not match a complete reference, then the compiler tries to determine whether ➤

the declaration is from a child namespace of one of the module-level imports.

Finally, if a match is not found, then the compiler looks at the global-level imports to determine ➤

whether the declaration can be associated with a namespace imported for the entire assembly.

While the preceding logical progression of moving from a full declaration through module-level to global-
level imports resolves the majority of issues, it does not handle all possibilities. Specifically, if you import
System.Drawing at the module level, the namespace collision would return. This is where the third
Imports statement becomes important — this Imports statement uses an alias.

aliasing namespaces
Aliasing has two benefits in .NET. First, aliasing enables a long namespace such as System
.EnterpriseServices to be replaced with a shorthand name such as COMPlus. Second, it adds a way to
prevent ambiguity among child namespaces at the module level.

As noted earlier, the System and System.Drawing namespaces both contain a child namespace of Text.
Because you will be using a number of classes from the System.Drawing namespace, it follows that this
namespace should be imported into the form’s module. However, were this namespace imported along with
the System namespace, the compiler would again find references to the Text child namespace ambiguous.
By aliasing the System.Drawing namespace to SysDraw, the compiler knows that it should only check the
System.Drawing namespace when a declaration begins with that alias. The result is that although multiple
namespaces with the same child namespace are now available at the module level, the compiler knows that
one (or more) of them should only be checked at this level when they are explicitly referenced.

namespaces ❘ 239

240 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Aliasing as defined here is done in the following fashion:

Imports SysDraw = System.Drawing

referencing namespaces in asP.neT
Making a reference to a namespace in ASP.NET is quite similar to working with Windows Forms, but
you have to take some simple, additional steps. From your ASP.NET solution, first make a reference to
the assemblies from the References folder, just as you do with Windows Forms. Once there, import these
namespaces at the top of the page file in order to avoid having to fully qualify the reference every time on
that particular page.

For example, instead of using System.Collections.Generic for each instance, use the < %# Import % >
page directive at the top of the ASP.NET page (if the page is constructed using the inline coding style) or use
the Imports keyword at the top of the ASP.NET page’s code-behind file (just as you would with Windows
Forms applications). The following example shows how to perform this task when using inline coding for
ASP.NET pages:

<%# Import Namespace="System.Collections.Generic" %>

Now that this reference is in place on the page, you can access everything this namespace contains without
having to fully qualify the object you are accessing. Note that the Import keyword in the inline example
is not missing an “s” at the end. When importing in this manner, it is Import (without the “s”) instead of
Imports — as it is in the ASP.NET code-behind model and Windows Forms.

In ASP.NET 1.0/1.1, if you used a particular namespace on each page of your application, you needed the
Import statement on each and every page where that namespace was needed. ASP.NET 3.5 introduced
the ability to use the web.config file to make a global reference so that you don’t need to make further
references on the pages themselves, as shown in the following example:

<pages>
 <namespaces>
 <add namespace="System.Drawing" />
 <add namespace="Wrox.Books" />
 </namespaces>
</pages>

In this example, using the <namespaces> element in the web.config file, references are made to the System
.Drawing namespace and the Wrox.Books namespace. Because these references are now contained within the
web.config file, there is no need to again reference them on any of the ASP.NET pages contained within this
solution.

creaTing your oWn namesPaces
Every assembly created in .NET is part of some root namespace. By default, this logic actually mirrors
COM, in that assemblies are assigned a namespace that matches the project name. However, unlike COM,
in .NET it is possible to change this default behavior. Just as Microsoft has packaged the system-level and
CLR classes using well-defined names, you can create your own namespaces. Of course, it is also possible
to create projects that match existing namespaces and extend those namespaces, but that is very poor
programming practice.

Creating an assembly by default creates a custom namespace. Namespaces can be created at one of two
levels in Visual Basic. Similar to C# it is possible to explicitly assign a namespace within a source file using
the Namespace keyword. However, Visual Basic provides a second way of defining your custom namespace.
By default one of your project properties is the root namespace for your application in Visual Basic. This
root namespace will be applied to all classes which don’t explicitly define a namespace. You can review your
projects default namespace by accessing the project properties. This is done through the assembly’s project
pages, reached by right-clicking the solution name in the Solution Explorer window and working off the first
tab (Application) within the Properties page that opens in the document window, as shown in Figure 4-13.

The next step is optional, but, depending on whether you want to create a class at the top level or at a child
level, you can add a Namespace command to your code. There is a trick to being able to create top-level
namespaces or multiple namespaces within the modules that make up an assembly. Instead of replacing the
default namespace with another name, you can delete the default namespace and define the namespaces only
in the modules, using the Namespace command.

The Namespace command is accompanied by an End Namespace command. This End Namespace command
must be placed after the End Class tag for any classes that will be part of the namespace. The following code
demonstrates the structure used to create a MyMetaNamespace namespace, which contains a single class:

Namespace MyMetaNamespace
 Class MyClass1
 ' Code
 End Class
End Namespace

You can then utilize the MyClass1 object simply by referencing its namespace, MyMetaNamespace.MyClass1.
It is also possible to have multiple namespaces in a single file, as shown here:

Namespace MyMetaNamespace1
 Class MyClass1
 ' Code
 End Class
 End Namespace
Namespace MyMetaNamespace2
 Class MyClass2
 ' Code
 End Class
 End Namespace

Using this kind of structure, if you want to utilize MyClass1, then you access it through the namespace
MyMetaNamespace.MyClass1. This does not give you access to MyMetaNamespace2 and the objects that it
offers; instead, you have to make a separate reference to MyMetaNamespace2.MyClass2.

The Namespace command can also be nested. Using nested Namespace commands is how child namespaces
are defined. The same rules apply — each Namespace must be paired with an End Namespace and
must fully encompass all of the classes that are part of that namespace. In the following example, the
MyMetaNamespace has a child namespace called MyMetaNamespace.MyChildNamespace:

Namespace MyMetaNamespace
 Class MyClass1

figure 4-13

Creating Your own namespaces ❘ 241

242 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

 ' Code
 End Class
 Namespace MyChildNamespace
 Class MyClass2
 ' Code
 End Class
 End Namespace
End Namespace

 This is another point to be aware of when you make references to other namespaces within your own
custom namespaces. Consider the following example:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.IO
Namespace MyMetaNamespace1
 Class MyClass1
 ' Code
 End Class
End Namespace
Namespace MyMetaNamespace2
 Class MyClass2
 ' Code
 End Class
End Namespace

 In this example, a number of different namespaces are referenced in the fi le. The four namespaces referenced
at the top of the code listing — the System , System.Data , and System.Data.SqlClient namespace
references — are available to every namespace developed in the fi le. This is because these three references
are sitting outside of any particular namespace declarations. However, the same is not true for the System.
IO namespace reference. Because this reference is made within the MyMetaNamespace2 namespace, it is
unavailable to any other namespace in the fi le.

 When you create your own namespaces, Microsoft recommends that you use a convention
of CompanyName.TechnologyName — for example, Wrox.Books . This helps to ensure
that all libraries are organized in a consistent way.

 Sometimes when you are working with custom
namespaces, you might fi nd that you have locked
yourself out of accessing a particular branch of a
namespace, purely due to naming confl icts. Visual Basic
includes the Global keyword, which can be used as the
outermost root class available in the .NET Framework
class library. Figure 4 - 14 shows a diagram of how
the class structure looks with the Global keyword.

 This means that you can make specifi cations such as

Global.System.String

or

Global.Wrox.System.Titles

 The my KeyWord
 The My keyword is a novel concept that was introduced
in the .NET Framework 2.0 to quickly give you access
to your application, your users, your resources, the

Global

System

Web

Wrox

Text

Integer

String

Book

Text

String

System

 figure 4 - 14

The My Keyword ❘ 243

computer, or the network on which the application resides. The My keyword has been referred to as a way of
speed-dialing common but complicated resources to which you need access. Using the My keyword, you can
quickly access a wide variety of items, such as user details or specific settings of the requester browser.

Though not really considered a true namespace, the My object declarations that you make work in the same
way as the .NET namespace structure you are used to working with. To give you an example, let’s first look
at how you get the user’s machine name using the traditional namespace structure:

Environment.MachineName.ToString()

For this example, you simply need to use the Environment class and use this namespace to get at the
MachineName property. The following shows how you would accomplish this same task using the My keyword:

My.Computer.Info.MachineName.ToString()

Looking at this example, you may be wondering what the point is if the example that uses My is lengthier
than the first example that just works off of the Environment namespace. Remember that the point is not
the length of what you type to access specific classes, but a logical way to find frequently accessed resources
without spending a lot of time hunting for them. Would you have known to look in the Environment
class to get the machine name of the user’s computer? Maybe, but maybe not. Using My.Computer.Info
.MachineName.ToString is a tremendously more logical approach; and once compiled, this namespace
declaration will be set to work with the same class as shown previously without a performance hit.

If you type the My keyword in your Windows Forms application, IntelliSense provides you with seven items
to work with: Application, Computer, Forms, Resources, Settings, User, and WebServices. Though this
keyword works best in the Windows Forms environment, there are still things that you can use in the Web
Forms world. If you are working with a Web application, then you will have three items off the My keyword:
Application, Computer, and User. Each of these is described further in the following sections.

my.application
The My.Application namespace gives you quick access to specific settings and points that deal with your
overall application. Table 4-2 details the properties and methods of the My.Application namespace.

ProPerTy/meThod descriPTion

ApplicationContext Returns contextual information about the thread of the Windows Forms
application

ChangeCulture A method that enables you to change the culture of the current
application thread

ChangeUICulture A method that enables you to change the culture that is being used
by the Resource Manager

Culture Returns the current culture being used by the current thread

Deployment Returns an instance of the ApplicationDeployment object,
which allows for programmatic access to the application’s
ClickOnce features

GetEnvironmentVariable A method that enables you to access the value of an environment
variable

Info Provides quick access to the assembly of Windows Forms . You can
retrieve assembly information such as version number, name, title,
copyright information, and more .

IsNetworkDeployed Returns a Boolean value that indicates whether the application was
distributed via the network using the ClickOnce feature . If True, then
the application was deployed using ClickOnce — otherwise False .

TaBle 4-2: My .Application Properties and Methods

continues

244 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

Much can be accomplished using the My.Application namespace. For an example of its use, let’s
focus on the Info property. This property provides access to the information stored in the application’s
AssemblyInfo.vb file, as well as other details about the class file. In one of your applications, you can
create a message box that is displayed using the following code:

MessageBox.Show("Company Name: " & My.Application.Info.CompanyName &
 vbCrLf &
 "Description: " & My.Application.Info.Description & vbCrLf &
 "Directory Path: " & My.Application.Info.DirectoryPath & vbCrLf &
 "Copyright: " & My.Application.Info.Copyright & vbCrLf &
 "Trademark: " & My.Application.Info.Trademark & vbCrLf &
 "Name: " & My.Application.Info.AssemblyName & vbCrLf &
 "Product Name: " & My.Application.Info.ProductName & vbCrLf &
 "Title: " & My.Application.Info.Title & vbCrLf &
 "Version: " & My.Application.Info.Version.ToString())

Code snippet from Message Box - Assembly.txt

From this example, it is clear that you can get
at quite a bit of information concerning the assembly
of the running application. Running this code
produces a message box similar to the one shown in
Figure 4-15.

Another interesting property to look at from the
 My.Application namespace is the Log property.
This property enables you to work with the log files
for your application. For instance, you can easily
write to the system’s Application Event Log by first
changing the application’s app.config file to include
the following:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="EventLog"/>
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="DefaultSwitch" value="Information" />

ProPerTy/meThod descriPTion

Log Enables you to write to your application’s Event Log listeners

MinimumSplashScreenDisplayTime Enables you to set the time for the splash screen

OpenForms Returns a FormCollection object, which allows access to the
properties of the forms currently open

SaveMySettingsOnExit Provides the capability to save the user’s settings upon exiting
the application . This method works only for Windows Forms and
console applications .

SplashScreen Enables you to programmatically assign the splash screen for the
application

UICulture Returns the current culture being used by the Resource Manager

TaBle 4.2 (continued)

figure 4-15

The My Keyword ❘ 245

 </switches>
 <sharedListeners>
 <add name="EventLog"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="EvjenEventWriter" />
 </sharedListeners>
 </system.diagnostics>
</configuration>

Code snippet from app.config.txt

Once the configuration file is in place, you can record entries to the Application Event Log, as shown in the
following simple example:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 My.Application.Log.WriteEntry("Entered Form1_Load", _
 TraceEventType.Information, 1)
End Sub

Code snippet from Form1.vb

You could also just as easily use the
WriteExceptionEntry method in addition to the
WriteEntry method. After running this application
and looking in the Event Viewer, you will see the
event shown in Figure 4-16.

The previous example shows how to write to the
Application Event Log when working with
the objects that write to the event logs. In addition
to the Application Event Log, there is also a Security
Event Log and a System Event Log. Note that when
using these objects, it is impossible to write to the
Security Event Log, and it is only possible to write
to the System Event Log if the application does it
under either the Local System or the Administrator
accounts.

In addition to writing to the Application Event Log, you can just as easily write to a text file. As with writing to
the Application Event Log, writing to a text file also means that you need to make changes to the app.config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>
 <sources>
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="EventLog"/>
 <add name="FileLog" />
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="DefaultSwitch" value="Information" />
 </switches>
 <sharedListeners>
 <add name="EventLog"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="EvjenEventWriter" />
 <add name="FileLog"
 type="Microsoft.VisualBasic.Logging.FileLogTraceListener,
 Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,

figure 4-16

246 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

 PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL"
 initializeData="FileLogWriter"/>
 </sharedListeners>
 </system.diagnostics>
</configuration>

Code snippet from app.config writing to file.txt

Now with this app.config file in place, you simply need to run the same WriteEntry method as before.
This time, however, in addition to writing to the Application Event Log, the information is also written to a
new text file. You can find the text file at C:\Documents and Settings\[username]\Application Data\
[AssemblyCompany]\[AssemblyProduct]\[Version]. For instance, in my example, the log file was found
at C:\Documents and Settings\Administrator\Application Data\Wrox\Log Writer\1.2.0.0\. In
the .log file found, you will see a line such as the following:

DefaultSource Information 1 Entered Form1_Load

By default, it is separated by tabs, but you can change the delimiter yourself by adding a delimiter attribute
to the FileLog section in the app.config file:

<add name="FileLog"
 type="Microsoft.VisualBasic.Logging.FileLogTraceListener,
 Microsoft.VisualBasic, Version=8.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a, processorArchitecture=MSIL"
 initializeData="FileLogWriter" delimiter=";" />

In addition to writing to Event Logs and text files, you can also write to XML files, console applications,
and more.

my.computer
The My.Computer namespace can be used to work with the parameters and details of the computer in
which the application is running. Table 4-3 details the objects contained in this namespace.

ProPerTy descriPTion

Audio This object enables you to work with audio files from your application . This includes starting,
stopping, and looping audio files .

Clipboard This object enables you to read and write to the clipboard .

Clock This enables access to the system clock to get at GMT and the local time of the computer
running the application . You can also get at the tick count, which is the number of milliseconds
that have elapsed since the computer was started .

FileSystem This object provides a large collection of properties and methods that enable programmatic access
to drives, folders, and files . This includes the ability to read, write, and delete items in the file
system .

Info This provides access to the computer’s details, such as amount of memory, the operating
system type, which assemblies are loaded, and the name of the computer itself .

Keyboard This object provides information about which keyboard keys are pressed by the end user .
Also included is a single method, SendKeys, which enables you to send the pressed keys to
the active form .

Mouse This provides a handful of properties that enable detection of the type of mouse installed,
including details such as whether the left and right mouse buttons have been swapped,
whether a mouse wheel exists, and how much to scroll when the user uses the wheel .

Name This is a read-only property that provides access to the name of the computer .

TaBle 4-3: My .Computer Objects

The My Keyword ❘ 247

There is a lot to the My.Computer namespace, and it is impossible to cover all or even most of it. For an
example that uses this namespace, we’ll take a look at the FileSystem property. The FileSystem property
enables you to easily and logically access drives, directories, and files on the computer.

To illustrate the use of this property, first create a Windows Form with a DataGridView with a single column
and a Button control. It should appear as shown in Figure 4-17.

ProPerTy descriPTion

Network This object provides a single property and some methods that enable you to interact with the
network to which the computer running the application is connected . With this object, you can use
the IsAvailable property to first verify that the computer is connected to a network . If so, then the
Network object enables you to upload or download files, and ping the network .

Ports This object can provide notification when ports are available, as well as allow access to the ports .

Registry This object provides programmatic access to the registry and the registry settings . Using the
Registry object, you can determine whether keys exist, determine values, change values, and
delete keys .

Screen This provides the capability to work with one or more screens that may be attached to the
computer .

figure 4-17

This little application will look in the user’s My Music folder and list all of the .wma files found therein.
Once listed, the user of the application will be able to select one of the listed files; and after pressing the Play
button, the file will be launched and played inside Microsoft’s Windows Media Player.

The first step after getting the controls on the form in place is to make a reference to the Windows Media
Player DLL. You can find this on the COM tab, and the location of the DLL is C:\WINDOWS\System32\
wmp.dll. This provides you with an object called WMPLib in the References folder of your solution.

248 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

You might be wondering why you would make a reference to a COM object in order to play a .wma file from
your application, instead of using the My.Computer.Audio namespace that is provided to you. The Audio
property only allows for the playing of .wav files, because to play .wma, .mp3, and similar files, users must
have the proper codecs on their machine. These codecs are not part of the Windows OS, but are part of
Windows Media Player.

Now that the reference to the wmp.dll is in place, let’s put some code in the Form1_Load event:

Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 For Each MusicFile As String In
 My.Computer.FileSystem.GetFiles(
 My.Computer.FileSystem.SpecialDirectories.MyMusic,
 FileIO.SearchOption.SearchAllSubDirectories, "*.wma*")
 Dim MusicFileInfo As System.IO.FileInfo =
 My.Computer.FileSystem.GetFileInfo(MusicFile.ToString())
 Me.DataGridView1.Rows.Add(MusicFileInfo.Directory.Parent.Name &
 "\" & MusicFileInfo.Directory.Name & "\" & MusicFileInfo.Name)
 Next
End Sub

Code snippet from MusicPlayer\Form1.vb

In this example, the My.Computer.FileSystem.GetFiles method points to the My Music folder through
the use of the SpecialDirectories property. This property enables logical and easy access to folders
such as Desktop, My Documents, My Pictures, Programs, and more. Though it is possible to use just this
first parameter with the GetFiles method, this example makes further definitions. The second parameter
defines the recurse value — which specifies whether the subfolders should be perused as well. In this case, the
SearchOption enumeration is set to SearchAllSubDirectories. The last parameter defines the wildcard
that should be used in searching for elements. In this case, the value of the wildcard is *.wma, which instructs
the GetFile method to get only the files that are of type .wma. You could just as easily set it to *.mp3 or even
just *.* to get anything contained within the folders. After it is retrieved with the GetFile method, the file
is then placed inside the DataGridView control, again using the My.Computer.FileSystem namespace to
define the value of the item placed within the row.

After the Form1_Load event is in place, the last event to construct is the Button1_Click event:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim MediaPlayer As New WMPLib.WindowsMediaPlayer
 MediaPlayer.openPlayer(My.Computer.FileSystem.SpecialDirectories.MyMusic &
 "\" & DataGridView1.SelectedCells.Item(0).Value)
End Sub

Code snippet from MusicPlayer\Form1.vb

From this example, you can see that it is pretty simple to play one of the provided .wma files. It is as
simple as creating an instance of the WMPLib.WindowsMediaPlayer object and using the openPlayer
method, which takes as a parameter the location of the file to play. In this case, you are again using the
SpecialDirectories property. The nice thing about using this property is that whereas it could be more
difficult to find the user’s My Music folder due to the username changing the actual location of the files that
the application is looking for, using the My namespace enables it to figure out the exact location of the items.
When built and run, the application provides a list of available music files, enabling you to easily select one
for playing in the Media Player. This is illustrated in Figure 4-18.

Though it would be really cool if it were possible to play these types of files using the Audio property from
the My.Computer namespace, it is still possible to use the My.Computer.Audio namespace for playing .wav
files and system sounds.

The My Keyword ❘ 249

To play a system sound, use the following construct:

My.Computer.Audio.PlaySystemSound(SystemSounds.Beep)

The system sounds in the SystemSounds enumeration include Asterisk, Beep, Exclamation, Hand, and
Question.

my.forms namespace
The My.Forms namespace provides a quick and logical way to access the properties and methods of the
forms contained within your solution. For instance, to access the first form in your solution (assuming that
it’s named Form1), use the following namespace construct:

My.Form.Form1

To get at other forms, you simply change the namespace so that the name of the form you are trying to
access follows the Form keyword in the namespace construction.

my.resources
The My.Resources namespace is a very easy way to get at the resources stored in your application. If you
open the MyResources.resx file from the My Project folder in your solution, you can easily create as many
resources as you wish. For example, you could create a single String resource titled MyResourceString
and give it a value of St. Louis Rams.

To access the resources that you create, use the simple reference shown here:

My.Resources.MyResourceString.ToString()

Using IntelliSense, all of your created resources will appear after you type the period after the MyResources
string.

figure 4-18

250 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

my.user
The My.User namespace enables you to work with the IPrincipal interface. You can use the My.User
namespace to determine whether the user is authenticated or not, the user’s name, and more. For instance, if
you have a login form in your application, you could allow access to a particular form with code similar to the
following:

If (Not My.User.IsInRole("Administrators")) Then
 ' Code here
End If
You can also just as easily get the user's name with the following:

My.User.Name
In addition, you can check whether the user is authenticated:

If My.User.IsAuthenticated Then
 ' Code here
End If

My.Webservices
When not using the My.WebServices namespace, you access your Web services references in a lengthier
manner. The first step in either case is to make a Web reference to some remote XML Web Service in your
solution. These references will then appear in the Web References folder in the Solution Explorer in Visual
Studio 2010. Before the introduction of the My namespace, you would have accessed the values that the Web
reference exposed in the following manner:

Dim ws As New ReutersStocks.GetStockDetails
Label1.Text = ws.GetLatestPrice.ToString()

This works, but now with the My namespace, you can use the following construct:

Label1.Text = My.WebServices.GetStockDetails.GetLatestPrice.ToString()

exTending The my namesPace
You are not limited to only what the My namespace provides. Just as you can with other namespaces, you
can extend this namespace until your heart is content. To show an example of extending the My namespace
so that it includes your own functions and properties, in your Windows Forms application, create a new
module called CompanyExtensions.vb.

The code for the entire module and the associated class is presented here:

Namespace My
 <HideModuleName()> _
 Module CompanyOperations
 Private _CompanyExtensions As New CompanyExtensions
 Friend Property CompanyExtensions() As CompanyExtensions
 Get
 Return _CompanyExtensions
 End Get
 Set(ByVal value As CompanyExtensions)
 _CompanyExtensions = value
 End Set
 End Property
 End Module
End Namespace
Public Class CompanyExtensions
 Public ReadOnly Property CompanyDateTime() As DateTime
 Get
 Return DateTime.Now()

 End Get
 End Property
End Class

Code snippet from MusicPlayer\CompanyExtensions.vb

From this example, you can see that the module CompanyOperations is wrapped inside the My
namespace. From there, a single property is exposed — CompanyExtensions. The class, CompanyExtensions,
is a reference to the class found directly below in the same file. This class, CompanyExtensions, exposes a
single ReadOnly Property called CompanyDateTime.

With this in place, build your application, and you are now ready to see the new expanded My namespace in
action. From your Windows Forms application’s Page_Load event, add the following code snippet:

MessageBox.Show(My.CompanyExtensions.CompanyDateTime)

From the My namespace, you will now find the CompanyExtensions class directly in the IntelliSense, as
presented in Figure 4-19.

figure 4-19

The name of the module CompanyOperations doesn’t also appear in the list off My because the
<HideModuleName() > attribute precedes the opening module statement. This attribute signifies that you
don’t want the module name exposed to the My namespace.

The preceding example shows how to create your own sections within the My namespace, but you can also
extend the sections that are already present (for example, Computer, User, etc.). Extending the My namespace
is simply a matter of creating a partial class and extending it with the feature sets that you want to appear in
the overall My namespace. An example of such an extension is presented in the following code sample:

Namespace My
 Partial Class MyComputer
 Public ReadOnly Property Hostname() As String
 Get
 Dim iphostentry As System.Net.IPHostEntry = _
 System.Net.Dns.GetHostEntry(String.Empty)
 Return iphostentry.HostName.ToString()
 End Get
 End Property
 End Class
End Namespace

Code snippet from MusicPlayer\CompanyExtensions.vb

From this, you can see that this code is simply extending the already present MyComputer class:

Partial Class MyComputer
End Class

This extension exposes a single ReadOnly property called Hostname that returns the local user’s hostname.
After compiling or utilizing this class in your project, you will find the Hostname property available to you
within the My.Computer namespace, as shown in Figure 4-20.

extending the My namespace ❘ 251

252 ❘ chaPTer 4 tHE CommoN laNGuaGE RuNtimE

summary
This chapter introduced the CLR. You first looked at its memory management features, including how
the CLR eliminates the circular reference problem that has plagued COM developers. Next, the chapter
examined the Finalize method and explained why it should not be treated like the Class_Terminate
method. Chapter highlights include the following:

Whenever possible, do not implement the ➤ Finalize method in a class.

If the ➤ Finalize method is implemented, then also implement the IDisposable interface, which can
be called by the client when the object is no longer needed.

Code for the ➤ Finalize method should be as short and quick as possible.

There is no way to accurately predict when the GC will collect an object that is no longer referenced ➤

by the application (unless the GC is invoked explicitly).

The order in which the GC collects objects on the managed heap is nondeterministic. This means that ➤

the Finalize method cannot call methods on other objects referenced by the object being collected.

Leverage the ➤ Using keyword to automatically trigger the execution of the IDisposable interface.

This chapter also examined the value of a common runtime and type system that can be targeted by multiple
languages. You saw how the CLR offers better support for metadata. Metadata is used to make types self-
describing and is used for language elements such as attributes. Included were examples of how metadata is
used by the CLR and the .NET class library, and you learned how to extend metadata by creating your own
properties. The chapter also presented a brief overview of the Reflection API and the IL Disassembler utility
(ildasm.exe), which can display the IL contained within a module.

While there are differences in the syntax of referencing objects from a namespace and referencing the same
object from a COM-style component implementation, there are several similarities. After demonstrating the
hierarchical structure of namespaces, this chapter covered the following:

Why namespace hierarchies are not related to class hierarchies ➤

How to review and add references to a project ➤

How to import and alias namespaces at the module level ➤

How to create custom namespaces ➤

How to use the ➤ My namespace

Namespaces play an important role in enterprise software development. They enable you to separate the
implementation of related functional objects while retaining the ability to group these objects, which
improves the overall maintainability of your code. Anyone who has ever worked on a large project has
experienced situations in which a fix to a component was delayed because of the potential impact on other
components in the same project. Regardless of the logical separation of components in the same project,
developers who take part in the development process worry about testing. With separate implementations
for related components, it is not only possible to alleviate this concern, but also easier than ever before for a
team of developers to work on different parts of the same project.

figure 4-20

5
Declarative Programming
with Visual Basic

WhaT you Will learn in This chaPTer

Declarative programming in VB ➤

Using XAML to create a window ➤

XAML syntax ➤

Using XAML to declare a workfl ow ➤

Declarative programming is the new buzzword for creating applications with .NET. It revolves
around the concept that developers should defi ne “what” is needed versus “how” to do it. The borders
in many areas are a little unclear, however, and given that declarative programming is at the core of
things like Windows Presentation Foundation (WPF), Silverlight, and Workfl ow Foundation (WF), it
is worth discussing in some detail here.

This chapter focuses on using a more declarative way of defi ning applications. The idea is that you
can use a declaration to describe, for example, an element in your user interface, and then compile or
include that defi nition with either a desktop, the Web, or even a version for another operating system.

Visual Basic has some declarative elements, such as the Handles clause and portions of LINQ, but
Microsoft introduced a new language format called XAML that specifi cally targets declarative
application development. It is designed around a standard known as the Extensible Application
Markup Language (XAML) . This standard is pronounced “zamel” (rhymes with camel). It enables
you to layer elements, and include elements such as colors and 3-D shapes.

With the introduction of XAML and the integration of XAML with Visual Basic for things like WPF,
Silverlight, WF, and over time other technologies, you—as a Visual Basic developer—will be doing
more and more declarative programming. In most cases, once you understand how XAML differs
from and works with imperative languages like Visual Basic, you’ll fi nd it easier to master XAML;
and this chapter will help provide that common baseline for the XAML language.

Rather than just drop you into a topic such as WPF and hope you’ll pick up on XAML, this chapter
will illustrate some simple examples of declarative programming. Many developers are introduced
to XAML as part of working to master another technology such as Silverlight or WPF. However, this
chapter will illustrate that XAML and thinking about declarative custom programming isn’t limited

254 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

to a single technology. At the same time, the format should feel somewhat familiar to those who know
HTML and/or XML and XSLT. The implementation code to interpret and act on XAML declarations,
becomes plumbing that a declarative programmer leaves to Microsoft (or some component implementation
vendor).

declaraTiVe Programming and Visual Basic
In any discussion of “declarative” programming, it is probably best to first consider to what it is being
compared. Visual Basic, like most modern OOP languages (C#, C/C++, F#, etc.), is not primarily a
declarative language. It is what is known as a procedural or imperative language. This reflects that
developers in these languages focus on “how” to get the computer to complete a task.

These languages are powerful, and declarative programming isn’t going to completely replace them.
However, they work at the level where the developer is defining algorithms, and are concerned with things
like loops, conditionals, and method calls. These languages define the way the majority of us have learned
to create applications.

On the other hand most of us have been exposed to T-SQL which is more of a declarative language. While
it supports imperative contructs and as such isn’t a pure declarative language, when we consider a Select
statement or an insert statement we are thinking about a declarative statement. The T-SQL query indicates
what you want; it doesn’t dictate the implementation used to get it. When you tell the database to select
data where column 1 is “Wrox” you aren’t telling it how to find that data. This query is thus declarative in
that you specify what you want and don’t focus on the steps taken by the database engine to find and return
those items.

However, as noted, T-SQL isn’t a pure declarative language; it has support for imperative constructs.
Similarly, as will be explored further in this chapter, Visual Basic, a language considered to be imperative,
includes some declarative constructs.

XAML however is much closer to a pure declarative language. It focuses only on the result or current
state and not on how to achieve or implement changes to that state. This is important to understand
because it ties to one of the primary hurdles that most developers new to declarative programming face.
This is the reality that two of our most common development paradigms are less important in declarative
programming. The first is the concept of state; the second is the ordering of events, or the execution path.

When working in an imperative language programmers tend to focus on evaluating statements such as “If X
equals Y, then Z is True.” This statement, which could easily be translated into Visual Basic (If X = Y
Then Z = True) is imperative in that we need to evaluate it whenever X or Y changes. The developer
must ensure that when state changes, this code is evaluated, and the appropriate updates are shown as a
result. Order of execution can be important because if the statement is executed before the state of X or Y
is modified, in the overall execution the end state of Z could be wrong given the end state of X and Y. The
preceding should be easily recognizable as the issues we address every day as Visual Basic developers.

With a declarative model, the value of Z is bound to the relationship of X and Y. The end result should be
the same—that is, when X equals Y, then the value of Z will be True; however, unlike the Visual Basic code,
when defined declaratively, the decisions regarding when to evaluate this statement, how often to evaluate
this statement, or any dependencies on the evaluation of this statement leave the hands of the developer.

The declarative developer doesn’t care when X equals Y, only that the end result will be reflected. This
doesn’t mean there isn’t code somewhere behind the scenes carrying out the necessary evaluation(s); it means
that code is now plumbing. In other words, the “how” of this evaluation isn’t handled by the application
developer, only the “what.”

This paradigm isn’t as new as it might seem. Consider the event model. When you define an event you
indicate that when the state of object X changes, you will send a message to everyone who has registered
for that message. The object generating the event doesn’t know what will be done with that message. For the

objects receiving the message, they only know that when it is received they should react in response to the
information relayed by the message.

With Visual Basic you can declare that a given object instance is defined “with events.” At that point you
might not know or care about all of the events the object may trigger, only that you are interested in one or
more of those events. You can then take the next step and indicate that certain methods “handle” a specific
event. Visual Basic’s inclusion of the Handles clause is a declarative construct. While you define what
is being handled you are not concerned with the state of the event owner, you have no flow of execution
concern for when the event will be handled.

New XAML developers often get hung up on this concept of “how.” In general, the basic idea is that you
just need to accept that the plumbing to handle these declarative statements is in place. When it comes to the
Handles clause, very few VB developers have an issue. However, as we move to a much larger footprint, an
entire language syntax, the “how” question can become distracting if we don’t address it.

While it’s not important to know the exact implementation, having a general idea of how it might work
tends to resolve these concerns. The same concept that is applied within Visual Basic for the WithEvents
and Handles clauses, whereby your object defines an event and another object subscribes to that event,
offers an interesting paradigm for declarative programming.

Consider how a declarative language might handle the situation where changes to the values X and Y
trigger an update to the value of Z. You might imagine an event model that could be defined when creating
bindings between the various elements X and Y, with a handler that sets Z appropriately. I’m not claiming
this is the underlying implementation, but by considering declarative programming under this model, it is
hoped that you can recognize “how it might work” and instead of focusing on the magic of declarations,
focus on declaring your desired functionality.

As you’ll see when we consider applying styles or mapping values, the concept of “binding” has an all new
importance. If you remember that a ‘binding’ is similar to mapping event handlers for known plumbing
within framework objects, you quickly see that binding becomes a focus of declarative programming.
Instead of assigning values, you are binding the item which holds that value.

The good news is that XAML isn’t going to fully replace imperative languages anytime soon, despite
supporters such as Chris Anderson (architect of WPF in .NET 3.0), who was famously quoted as wanting
to register a Tech Ed session titled “XAML As a Better C#.” While some simple interfaces may be defined
only in XAML, there will typically still be the need for an implementation layer made up of an imperative
language. The combination of XAML with Visual Basic provides a much more productive and effective
combination for getting things done than either one does in isolation.

When you create a new WPF or other XAML application project, you’ll find that you do so in the context
of an imperative language (Visual Basic or C#). Your customer application logic, which often doesn’t have
generic implementation plumbing, will still need an imperative implementation. However, you now have
the option of binding these imperative code blocks with a declarative interface. These two aspects of your
application logic are typically referred to as code (Visual Basic) and markup (XAML).

using xaml To creaTe a WindoW
Since the most common way to interact with XAML is as a Windows definition language, let’s create a
simple window definition to put some of what we’ll discuss in context. Most early WPF applications were
built by hand or with tools such as XAMLpad that could output graphics as well as XAML. With the
release of Visual Studio 2008, WPF, like the other .NET 3.0 technologies, gained a true IDE; and with the
availability of Blend, a powerful design tool. The focus for WPF is now on creating applications with Visual
Studio 2010 and potentially having a designer customize the design surface with Blend.

Because of the value of having generated XAML we’ll use Visual Studio to generate a baseline WPF
application titled ProVB_XAML. Begin by using the File menu in Visual Studio 2010 and select the option
to create a new project. Navigate to the new Visual Basic Window section of the New Project dialog, as
shown in Figure 5-1.

Using XaMl to Create a Window ❘ 255

256 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

For the purpose of this chapter you can create a .NET 4 application called ProVB_XAML. This application
could also be created as a .NET 3.0 or .NET 3.5 application. However, changing the compatability level
also impacts the availability of other .NET libraries which the application can reference. For example you
wouldn’t be able to reference the Entity Framework or LINQ libraries if you were maintaining .NET 3.0
compatibility. Additionally, note that the list of available templates for WPF disappears if you choose to
target a .NET 2.0 baseline.

Similar to other project templates, Visual Studio opens in the main window you’ve just declared; but unlike
Windows Forms, this isn’t just a design surface. The first thing to notice is that there isn’t a line of VB code
in this project, just a few XAML snippets. As shown in Figure 5-2, the default application does not look
entirely different from that of a Windows Form, except when it comes to the design surface. In Windows
Forms, the design surface generates code that is placed in the *.designer.vb file. The generated file
*.designer.vb is a partial class definition that Visual Studio uses to hold the definition of each control you
place onto the form, as well as the form itself.

figure 5-1

figure 5-2

However, with WPF and XAML, that partial class definition is instead a collection of XML declarations
that define your window and its behavior. More important, although parts may be generated, that XAML
file isn’t considered generated code; instead, it is an editable source file,definining your window and as such
is displayed in parallel with the window it defines. You’ll find that as you work with your design surface,
Visual Studio 2010 automatically updates the XAML file; similarly, when you edit the XAML file, Visual
Studio 2010 automatically updates the design surface.

The design surface shown in Figure 5-2 has several features specific to WPF. The first you’ll find in the upper
left-hand corner. That scrollbar enables you to zoom in on a specific portion of your interface. For example,
you can choose to limit your view to just a portion of the overall window by zooming in for a closer look
at how elements are aligned. Alternatively, you can zoom out to view the entire window, even when the
window is larger then the design area available on your screen.

The second item to note about the display relates to the relationship between the currently top design
surface in the display and the XAML tab located below it. Between these two tabs, in the middle of the
screen, is a pair of up and down arrows. These arrows aren’t there to indicate that these two surfaces are
related, but rather to swap the location of each of these two surfaces so that the code is on the top and the
window is below it. Thus, if you are working with the XAML and directly making changes to it, you can
shift that to the top of the display and reduce the graphical display.

However, having the code located above or below your design surface may not be your preferred
display. That’s where the three little icons located on the tab bar come in. The first two are a vertical
line and a horizontal line, respectively. These buttons indicate that you can choose to place the XAML
code and the design surface in a side-by-side display mode or in a top-bottom design mode, respectively.
The third button, which shows double down arrows, enables you to collapse the combined display
so that the tabs are along the bottom or the right side of the design display. Thus, if you prefer to
maximize the available display surface, you can create a display similar to what you have when editing
ASP.NET Web pages.

Of course, you are probably wondering about the XAML that is shown in Figure 5-2 and that defines
your main window. This is one of two XAML files that are generated with your project. This XAML
file has a top-level node named “Window” that tells the compiler that it defines a window. The top-level
node ties this window to the class MainWindow, which matches the default filename, as shown in the
following code:

<Window x:Class="ProVB_XAML.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

Code snippet from MainWindow

Because the XML namespace declarations are shared between this file and the second XAML file, let’s
jump to the remaining attributes of the window. By default, the window is given a title that matches the
class same, as in Windows Forms, and the default size is a height of 350 and a width of 525. In addition to
these attributes, the Window node that declares the actual main window contains a single control, a grid.
The grid is the default control in the window because it provides developers with the most consistent design
experience from Windows Forms.

Next, let’s review the second XAML file, application.xaml. This file contains the application definition.
Like your Visual Basic Windows Forms code, the Application object represents the application to the
CLR. It is this object that represents the base reference for things such as garbage collection, and it is

Using XaMl to Create a Window ❘ 257

258 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

registered as the primary process. Because the Application object is implemented as an object in the
System.Windows namespace, it supports properties, methods, and events just like any other class. The
contents of Application.xaml are shown in the following example:

<Application x:Class="Application"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

Code snippet from Application

This file is a good place to take a moment to discuss the basics of XAML. As you can see, this file starts
with a reference to an x:Class declaration as an attribute of the Application node. The x: represents
an alias similar to what you find in Visual Basic, where the x: indicates that Class is defined in the
schema http://schemas.microsoft.com/winfx/2006/xaml, the XAML schema. You’ll notice there
is a second declaration for http://schemas.microsoft.com/winfx/2006/xaml/presentation. This
second declaration is the one that references the actual WPF libraries. The last item in the attributes of the
Application node is a StartupUri. This property tells the compiler that when this application is started,
the next step is to open the file MainWindow.xaml in order to find the definition of the window to be
displayed.

Similar to a traditional Windows Forms application, the application doesn’t actually define a window;
instead, it defines the application context, and then it calls another class to create the window. However, this
file is a great place to add XAML resources that will apply across your application. The term Resources
refers to how with XAML it is possible to declare the attributes of an object with XAML. For example the
color, shape, and behavior (in terms of hover over, mouse down, etc.) of a control.

Placing these XAML declarations in the Application.Resources section of the application definition is
a natural way to share them across all controls of that type in your application; but the details of shared
resources are covered in Chapter 18.

xaml synTax
The ProVB_XAML example doesn’t have much purpose yet, but it makes it easier to keep the discussion of
XAML in context. The next step is to take a more detailed look at just what XAML is and how it relates
to WPF. XAML is a markup-based protocol. Similar to SOAP and several other XML-based formats, the
XAML specification describes a potentially open standard for describing user interface elements.

Regardless of whether XAML ever actually becomes an open standard, Microsoft has implemented
WPF using a minimum of two XML namespaces. As noted in regard to the Application.xaml file, one
namespace is focused on the definition of XAML, and the second is focused on WPF’s custom classes.
Returning to the ProVB_XAML Application.xaml file, the following namespace declaration is included:

xmlsn="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

The preceding line is similar to an Imports statement for XML in that it indicates a set of nodes and keywords
that will be used within the associated XML file. In this case, the winfx/2006/xaml/presentation
namespace contains the definition of WPF—not the definition of XAML keywords, but rather the definition of
WPF. The classes contained in the presentation namespace are the .NET implementation of WPF.

To start working with commands and controls that are part of the XAML standard, a second namespace
reference is used:

xmlsn:x=http://schemas.microsoft.com/winfx/2006/xaml

This second reference is used in all XAML files to declare the actual XAML language standard. By
convention, it is aliased as x:. For those of you who may not have done much XML development, this

means that within the XAML you’ll see things such as x:Class, x:Code, and other similar nodes. The x:
is required to indicate that what follows is an element of the XAML languages, as opposed to, for example,
WPF or some other .NET library. The x: nodes are the actual XAML declarations. What is important to
remember is that the XAML namespace can be and is used for things other than just WPF. As you’ll see in
Chapter 26, Windows Workflow Foundation is based on XAML; it has its own workflows namespace.

One change with the introduction of the .NET 4 Framework is that unlike the original XAML classes,
which were embedded within the PresentationFramework.dll library, with a dependency on the
WindowsBase libraries, the core classes have now been moved into a separate System.Xaml.dll library
of their own, with dependencies only on MsCorLib, System, and System.XML. This has helped extend the
original syntax and capabilities of the core XAML language.

Note that as of this writing, there is no plan for all XAML language features to work with the Visual Studio
2010 compiler. If you are looking to leverage cutting-edge XAML 2010 features, you will need to leverage
uncompiled XAML. This is possible by setting your project build action from Page to Resource and your
XAML will be interpreted dynamically at runtime.

xaml language Basics
XAML is defined as a language consisting of a collection of elements, attributes, and related objects. These
objects are referenced from the XAML namespace, which by convention precedes each class with an x:.
.NET extends and maps these declarative structures into .NET.

Before getting to the syntax, take a look at the three categories of XML statements you will find within the
XAML namespace:

attribute ➤

markup extension ➤

XAML directive ➤

Each of the preceding items is a separate category of language element discussed in more detail in the
sections which follow.

Attributes

Within XML, attributes refer to named properties that are associated with a given XML node. Thus, the
XML node object might have several attributes such as Name, Margin, Text, and so on associated with it.
These attributes in XML live within the definition of the XML node. They are not contained within the
XML node, but in its definition, as shown here:

<object Name="anObject"></object>

Within XAML, the list of attributes includes those in Table 5-1. Be aware that the term “object” in the
following example snippets can be replaced with one of several WPF objects, including Application,
Window, Button, Brush, and so on.

xaml aTTriBuTes descriPTion and examPle

x:Class Used to reference the root class for an XAML document . Each document can be
associated with a single root object . <object x:Class=“Window”></object>

x:ClassModifier Modifies the class definition for a given XAML document . Specifically, it enables you
to indicate that a given class doesn’t provide a public interface . Public is the default .
<object x:Class=“Window” x:ClassModifier=“Friend”></object>

TaBle 5-1: XAML Attributes

continues

XaMl syntax ❘ 259

260 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

xaml aTTriBuTes descriPTion and examPle

x:FieldModifier Unlike classes, which are by default public, fields within objects are by default
assigned with the modifier Friend . If you have added an object within XAML that
you want available to other classes (within your code behind), then the FieldModifier
needs to declare this field with the modifier of Friend . This property can only be used
with objects that also have the x:Name attribute shown here: <object
x:Name=“LoginWindow” x:FieldModifier=“Public”></object>

x:Key Some objects, such as the Dictionary object and other collection objects, allow
items to be indexed via a key . Such a key must be named, and this attribute is
used to provide a unique key name . Note that most XAML applications leverage a
resource dictionary, which is a common use of this attribute . Keys need to be unique
within the scope of the object to which they are applicable . <object.Resources>
<SolidColorBrush x:Key=“string”/></object.Resources>

x:Name Similar to a key, but used more for the naming of objects within the scope of an
application . Such objects are not public by default, but typically represent the con-
trols and related user interface objects used by your application . <object
x:Name=“LoginWindow”></object>

x:Shared This actually maps to what Visual Basic users understand the keyword Shared to
mean . By default, if your application requests an object from your XAML resources,
then you will get the same instance of the requested resource . You can use this
property such that each time a given object is requested, a new instance of that
object is created . <ResourceDictionary><object x:shared=“false”/>
</ResourceDictionary>

x:Subclass This attribute can be used in conjunction with an x:Class declaration . It essentially
enables your XAML to inherit from another class; however, as a Visual Basic user you
won’t use this attribute because you can do this in a much more natural manner in the
code-behind source file associated with your class . <object x:Class=“class”
x:Subclass=“namespace.subclass”></object>

x:TypeArguments This attribute enables you to create a collection of x:Type markup extensions . This
collection acts as the parameters to the constructor for a generic class to ensure
that the associated types are defined with the constructor . This attribute must be
used with a class declaration, and the associated class must be a generic .

This attribute is extended in XAML 2009, removing the restriction that this must be
used with a class declaration .

<object x:class=“PageFunction” x:TypeArguments=
“{x:Type=type1}”></object>

TaBle 5-1 (continued)

Notice that none of the preceding attributes are actually referenced as a node within XML. Instead, they modify
the properties associated with a node. Thus, the attributes are modifiers, as opposed to the next category of
elements: markup extensions. As implied by the word “extensible” in the name Extensible Application XML,
one of the features of this model is that the format allows for the definition of extensions. These extensions
expand on the base elements associated with that markup definition. XAML includes a limited number of such
extensions. Unlike an attribute, a markup extension can be used to create an XML node or a collection of
XML attributes. When used to create a node, the markup extension allows for the definition of property values
within that node. When used to allow for the creation of a collection of attributes, it can be recognized by the
surrounding curly braces, as shown in the preceding TypeArguments definition.

Markup Extensions

Markup extensions for XAML are shown in Table 5-2.

Don’t let that last extension confuse you; there are two ways that markup extensions are used — either
as attributes contained within curly braces or as nodes that may contain their own attributes and
properties. Some, such as x:Static, always appear as attributes; others, such as x:Null and x:Array,
always appear as nodes; and of course x:Type can be found in either location. Up until now, all the
XAML language elements have been used to operate within the definition of XML. That is, they define
attributes and nodes, and as long as you understand the definition of the keyword, you can understand
the data it references.

xaml directives
However, at times you need to truly reference data. For example, none of the preceding extensions would
support embedding other XML data into your XAML file or referencing code directly from within your
XAML file. These two capabilities are available based on XAML directives. XAML directives enable you
to embed elements that don’t follow the XML formatting rules. There are two such directives, as shown in
Table 5-3.

TaBle 5-2: XAML Markup Extensions

xaml marKuP exTension descriPTion and examPle

x:Array Used to provide support for arrays. The array declaration allows for the
assignment of a data type, to support strong typing and the inclusion of
a series of elements. <x:Array Type=“object”> <myObject1/>
<myObject2/></x:Array>

x:Null Is equivalent to the term Nothing in Visual Basic, but the extension is imple-
mented based on the C#/C++ keyword of null. Will set an object property
to null, which may or may not be the default state when that object prop-
erty is created. x:Null has no additional modifiers and is typically imple-
mented as a node, as opposed to an attribute, as it references the value of
its parent node. <object><object.property><x:Null/>
</object.property></object>

x:Reference New with XAML 2010, this extension enables you to create references
between XAML elements based on their named properties. This exten-
sion will allow you to target by name another object within the markup.
More information is available as part of the implementation of the
Markup.Reference class definition.

x:Static Supports the reference of constant values, shared properties of objects, and
enumeration values. Similar to an attribute, it is most commonly used as an
attribute with the format X:static “{namespace.class}”. This
extension is used to gain access to common values that are defaults for
your application—for example, to the system colors used by the operating
system. <object Background=“{x:Static SystemColors
.ControlBrush}”></object>

x:Type As previously introduced with the x:Typename attribute, the x:Type
extension allows for the specification of a type when creating an object
that is a generic. However, it has a second use: the specification of a prop-
erty type. Thus, if you create an object that has properties, then the x:
Type extension is used to specify the type associated with that property.
<object><object.property> <x:Type TypeName=“namespace
.class”/></object.property></object>

XaMl syntax ❘ 261

262 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

As shown here, the scope of the XML definition for what you’re going to see within a XAML file
is not that complex. You’re probably wondering where all the controls, windows, and even the
application object that we’ve already seen in action are. These items, while defined as part of the WPF
implementation, are not part of the core XAML language definition. They are the WPF extensions,
and the reason why you added a second namespace reference to the Presentation folder. Everything else
you see in XAML that falls into this second category is also available for reference from your .NET
application.

using xaml To declare a WorKfloW
In .NET 3.0 and 3.5, XAML was fairly tightly coupled to WPF. Starting with .NET 4.0 and beyond,
Microsoft has placed a major focus on decoupling these two items and having the XAML syntax used
across multiple different areas, for example WPF, WF, and WCF. After all, what better
way to illustrate a complex workflow or interface than to create a XAML markup that defines
the key interface elements for a WCF endpoint or to define the meta data when binding to data
services?

With .NET Framework 4, the XAML used within workflows has been standardized on the same libraries
used by WPF. To illustrate this, open Visual Studio and select File ➪ New Project. Then, from the resulting
New Project dialog, shown in Figure 5-3, select the Workflow Console Application project type and assign
the name ProVB_WFXAML to your new project.

TaBle 5-3: XAML Directives

xaml direcTiVe descriPTion and examPle

x:Code Enables you to embed Visual Basic code directly into your XAML file.
However, although you can do it, you shouldn’t: It’s considered a very poor
coding practice—not only because it isolates code outside of a code-behind
file, but also because such code makes the XAML dependent on a language
for compilation, and it is isolated and more difficult to debug and maintain.
However, you may come across such an element. In general, it is considered best
to further nest any embedded code within an x:Code block within a CDATA
block, as shown in the following sample, so that the XAML parsing engine
doesn’t attempt to parse the code. Thus, a code block will look similar to this:
<object><x:Code> <![CDATA[‘VB code can be enclosed by a
CDATA directive

Sub MyMethod() End Sub]]></x:Code></object>

x:XData The second item that isn’t standard XAML that you might want to embed within
your XAML document is another XML document. For example, you might
want to display an e-mail message or a Word document that has been converted
to XML, so you might want this data to be within your XAML document. The
key point is that you don’t want this additional XML to accidentally use the
same tag information associated with your XAML. Thus, you need to provide an
x:XData directive containing your root data node, which contains your custom
data. Note that in most cases the object node in this sample will be a System
.Windows.Data.XMLDataProvider as opposed to a Window or some other
object. A sample of this is shown here: <object><x:XData> <dataItems
xmlns=“yourNamespace”>…</dataItems><elementDataRoot>

</x:XData></object>

Creating this new project will place you back within Visual Studio with the default graphical view of your
currently empty workflow. Because creating custom workflows isn’t the goal of this chapter, close that view
and right-click on Workflow1.xaml in your Solution Explorer. Select the Code view and you’ll be greeted
with the raw XAML shown in Figure 5-4.

figure 5-3

figure 5-4

While this XAML is obviously not the same as what you saw earlier when creating a window, it is very
similar. Note that at the top level, instead of an application that references a window, you have an

Using XaMl to Declare a Workflow ❘ 263

264 ❘ chaPTer 5 dEClaRatiVE PRoGRammiNG witH Visual BasiC

activity. Like the listing which follows shows, it then references the class and a new library, Microsoft
.VisualBasic.Activities:

<p:Activity x:Class=”Workflow1” mva:VisualBasic.Settings=
 “Assembly references and imported namespaces serialized as XML namespaces”
 xmlns:mva=
 “clr-namespace:Microsoft.VisualBasic.Activities;assembly=System.Activities”
 xmlns:p=”http://schemas.microsoft.com/netfx/2009/xaml/activities”
 xmlns:s=”clr-namespace:System;assembly=mscorlib”
 xmlns:sad=
 “clr-namespace:System.Activities.Debugger;assembly=System.Activities”
 xmlns:sapx=”clr-namespace:System.Activities.Presentation.Xaml;assembly=
 System.Activities.Presentation”
 xmlns:mv=”clr-namespace:Microsoft.VisualBasic;assembly=System”
 xmlns:s1=”clr-namespace:System;assembly=System”
 xmlns:s2=”clr-namespace:System;assembly=System.Xml”
 xmlns:s3=”clr-namespace:System;assembly=System.Core”
 xmlns:scg=”clr-namespace:System.Collections.Generic;assembly=System”
 xmlns:scg1=
 “clr-namespace:System.Collections.Generic;assembly=System.ServiceModel”
 xmlns:scg2=”clr-namespace:System.Collections.Generic;assembly=System.Core”
 xmlns:scg3=”clr-namespace:System.Collections.Generic;assembly=mscorlib”
 xmlns:sd=”clr-namespace:System.Data;assembly=System.Data”
 xmlns:sd1=”clr-namespace:System.Data;assembly=System.Data.DataSetExtensions”
 xmlns:sl=”clr-namespace:System.Linq;assembly=System.Core”
 xmlns:st=”clr-namespace:System.Text;assembly=mscorlib”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

</p:Activity>

Code snippet from workflow1

One of the new features related to workflows in .NET 4 is that they include some application-specific
features related to Visual Basic. What you might want to be aware of is that this same Visual Basic library is
also referenced for C# workflows. This feature is covered in more detail in Chapter 27.

However, aside from this difference, you should note that primarily the default XAML for a workflow looks
similar to the XAML used for a window. This is, of course, the point; by creating a common declarative
syntax, and expanding that syntax to support the necessary core language features, Microsoft is providing a
standard way to create interfaces that are driven by functional requirements.

summary
This chapter introduced you to the concepts of both declarative programming and XAML as an
implementation of a declarative programming language. As noted throughout the chapter, XAML focuses
on information and the desired transformations to achieve results, whereas Visual Basic focuses more on
implementing algorithms and custom logic for changes in state. XAML is used to define what you want
as opposed to having you define what and how the system should do something. In the context of a new
element of your user interface design, XAML describes what it is and what it’s associated with and any
transform that is applied to properly display the associated item. As part of this chapter you were introduced
to the following:

Declarative vs. imperative programming ➤

Visual Basic’s native support for declarative programming ➤

Using XAML to define a window and simple user interface elements ➤

The XAML syntax ➤

Working with XAML to define a workflow process ➤

XAML was designed to work side-by-side with an imperative language environment. As you’ll see when you
dig into WPF and Silverlight in Chapters 17 through 20 and WF covered in Chapter 26, you will bind your
XAML to .NET Framework classes as well as to your custom application .NET classes. The underlying
implementation of the XAML bindings is all native .NET classes and implementations, so no boundary
needs to be crossed between the imperative and declarative implementation. At runtime your application is
simply running within the common language runtime (CLR).

In fact, an early WPF book highlighted this dependence on the .NET Framework implementation by
literally using C# to implement an entire WPF interface. The code in question was obscure, but it illustrated
the “how” of XAML to readers being introduced to XAML in an almost painful manner. Even though you
can, in theory, access everything within Silverlight, WPF, or Workflow using only VB or C#, but doing so
is error prone, difficult, and time-consuming. XAML was introduced as a better way to handle some of the
more complex interface and workflow tasks that you need to address.

As you’ll see, once you master the basics of XAML in any of its common uses, you’ll have syntax which is
declarative, a way of asking for what is desired similar to the declarative Select, Insert, Update, and Delete
statements of T-SQL. However, with XAML your declarative statements will be used to work across
different environments and technologies.

summary ❘ 265

6
 exception Handling
and Debugging

 WhaT ’ s in This chaPTer

 The general principles behind exception handling ➤

 The Try … Catch … Finally structure for trapping exceptions ➤

 Obtaining information about an exception by using the exception object ’ s ➤

methods and properties

 How to send exceptions to other code using the Throw statement ➤

 Event logging and simple tracing, and how you can use these methods to ➤

obtain feedback about how your program is working

 All professional - grade programs need to handle unexpected conditions. In older programming
languages this was often called error handling . Unexpected conditions generated numeric error codes,
which were trapped by programming logic that took appropriate action.

 The common language runtime in .NET does not generate error codes. When an unexpected
condition occurs, the CLR creates a special object called an exception . This object contains properties
and methods that describe the unexpected condition in detail and provide various items of useful
information about what went wrong.

 Because the .NET Framework deals with exceptions instead of errors, the term error handling is
rarely used in the .NET world. Instead, the term exception handling is preferred. This term refers to
the techniques used in .NET to detect exceptions and take appropriate action.

 This chapter covers how exception handling works in Visual Basic 2010. It discusses the common
language runtime (CLR) exception handler in detail and the programming methods that are most
effi cient in catching errors.

 neW in Visual sTudio 2010 Team sysTem:
hisTorical deBugging

 While this chapter does not cover features of the Visual Studio environment that are used for
debugging, one new feature in Visual Studio 2010 should be mentioned. The Team System edition of
Visual Studio 2010 has a new capability for debugging applications called historical debugging . It is
also known informally as a “ black box recorder. ”

268 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

Visual Studio’s debugging capability has long included the capability to examine information about a
running program using breakpoints and exceptions. When a program is halted, information about the
present state of the program is available in Watch windows, the Locals window, and other parts of Visual
Studio. This capability is part of every version of Visual Studio.

In the Team System edition only, historical debugging enables a tester to capture state information as
a program is being run. If a program fails, then in addition to information about the current state of the
program, other information captured at earlier points in the program’s execution is available.

Because this capability is not available in all Visual Studio editions, details are not discussed here. If you
have the Team System edition, you can access help information about how to use this feature.

noTes on comPaTiBiliTy WiTh VB6
For compatibility, Visual Basic 2010 and other .NET versions of Visual Basic still support the old-style
syntax for error handling that was used in Visual Basic 6 and earlier versions. This includes support for the
On Error Goto statement, the Resume statement, and the Err object. However, it is strongly recommended
that you avoid using this old-style syntax in favor of the exception handling features that are native to .NET.

In case you need to interoperate with such older code, the section “Interoperability with VB6-Style Error
Handling,” later in this chapter, discusses the support in Visual Basic 2010 for interoperability between new
exception handling logic and older “error handling” logic.

excePTions in .neT
As noted in the chapter introduction, .NET generates an exception object any time an unexpected condition
is encountered. This enables a comprehensive, consistent approach to handling such conditions in any type
of .NET module.

An exception object is an instance of a class that derives from a class named System.Exception. As shown
later, a variety of subclasses of System.Exception are used for different circumstances, enabling different
types of information about the exception to be exposed.

important Properties and methods of an exception
The base Exception class has properties that contain useful information about typical exceptions, as shown
in Table 6-1.

TaBle 6-1: Exception Class Properties

ProPerTy descriPTion

HelpLink A string indicating the link to help for this exception

InnerException Returns the exception object reference to an inner (nested) exception

Message A string that contains a description of the error, suitable for displaying to users

Source A string containing the name of an object that generated the error

StackTrace A read-only property that holds the stack trace as a text string . The stack trace is a
list of the pending method calls at the point at which the exception was detected .
That is, if MethodA called MethodB, and an exception occurred in MethodB, then
the stack trace would contain both MethodA and MethodB .

TargetSite A read-only string property that holds the method that threw the exception

The Exception class also has two particularly helpful methods, as shown in Table 6-2.

structured exception-Handling Keywords ❘ 269

You will see these properties and methods used in the code examples shown later, after you have covered the
syntax for detecting and handling exceptions.

There are many types of exception objects in the .NET Framework that derive from the base Exception
class. Each is suited to a particular type of exception. For example, if a divide by zero is done in code, then
an OverflowException is generated. In addition to the dozens of exception types available in the .NET
Framework, you can inherit from a class called ApplicationException and create your own exception
classes (see Chapter 3 for a discussion of inheritance).

Special-purpose exception classes can be found in many namespaces. Table 6-3 lists four representative
examples of the classes that extend Exception.

TaBle 6-2: Useful Exception Class Methods

meThod descriPTion

GetBaseException Returns the first exception in the chain

ToString Returns the error string, which might include as much information as the error message,
the inner exceptions, and the stack trace, depending on the error

TaBle 6-3: Examples of Classes Derived from the Exception Class

namesPace class descriPTion

System InvalidOperationException Generated when a call to an object method is
inappropriate because of the object’s state

System OutOfMemoryException Results when there is not enough memory to
carry out an operation

System.XML XmlException Often caused by an attempt to read invalid XML

System.Data DataException Represents errors in ADO .NET components

There are literally dozens of exception classes scattered throughout the .NET Framework namespaces.
It is common for an exception class to reside in a namespace with the classes that typically generate the
exception. For example, the DataException class is in System.Data, with the ADO.NET components that
often generate a DataException instance.

Having many types of exceptions in VB 2010 enables different types of conditions to be trapped with
different exception handlers. The syntax to accomplish that is discussed next.

sTrucTured excePTion-handling KeyWords
Structured exception handling depends on several keywords in Visual Basic 2010:

 ➤ Try — Begins a section of code in which an exception might be generated from a code error. This
section of code is often called a Try block. A trapped exception is automatically routed to a Catch
statement (discussed next).

 ➤ Catch — Begins an exception handler for a type of exception. One or more Catch code blocks follow
a Try block, with each Catch block catching a different type of exception. When an exception is
encountered in the Try block, the first Catch block that matches that type of exception receives control.

 ➤ Finally — Contains code that runs when the Try block finishes normally, or when a Catch block receives
control and then finishes. That is, the code in the Finally block always runs, regardless of whether an
exception was detected. Typically, the Finally block is used to close or dispose of any resources, such as
database connections, that might have been left unresolved by the code that had a problem.

 ➤ Throw — Generates an exception. It’s often done in a Catch block when the exception should
be kicked back to a calling routine, or in a routine that has itself detected an error such as a bad

270 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

argument passed in. Another common place to throw an exception is after a test on the arguments
passed to a method or property, if it is discovered that the argument is not appropriate and processing
cannot continue, such as when a negative number is passed in for a count that must be positive.

 The next section of the chapter covers the keywords in detail and includes code samples of the keywords in
action. All the code in this section is included in the code download for this chapter.

 The Try, catch, and finally Keywords
 Here is an example showing some typical, simple structured exception - handling code in Visual Basic 2010.
In this case, the most likely source of an error is the iItems argument. If it has a value of zero, then this
would lead to dividing by zero, which would generate an exception.

 First, create a Windows Forms Application in Visual Basic 2010 and place a button on the default Form1
created in the project. In the button ’ s Click event, place the following two lines of code:

 Dim sngAvg As Single
 sngAvg = GetAverage(0, 100)

 Code snippet from ExceptionHandlingSampleCodeForm

 Then put the following function in the form ’ s code:

Private Function GetAverage(iItems As Integer, iTotal As Integer) as Single
 ' Code that might throw an exception is wrapped in a Try block
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown if iItems = 0
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excGeneric As Exception
 ' If the calculation failed, you get here
 MessageBox.Show("Calculation unsuccessful - exception caught")
 Return 0
 End Try
End Function

 Code snippet from ExceptionHandlingSampleCodeForm

 This code traps all the exceptions with a single generic exception type, and doesn ’ t include any Finally
logic. Run the program and press the button. You will be able to follow the sequence better if you place a
breakpoint at the top of the GetAverage function and step through the lines.

 A breakpoint is a marker in a line of code indicating that you wish execution of the
program to be suspended when execution reaches that line. When a breakpoint is
reached, you have the opportunity to examine values of variables or perform other
actions that may help you diagnose a problem. A breakpoint is set in Visual Studio by
positioning the cursor on a line of code and choosing the appropriate option. Depending
on your settings, you probably also have a shortcut key to set a breakpoint. The most
common key used for that purpose is F9. You can also set a breakpoint by clicking next
to the desired line in the vertical gray bar on the left side of the Code Editor window.

 Here is a more complex example that traps the divide - by - zero exception explicitly. This second version of
the GetAverage function (notice that the name is GetAverage2) also includes a Finally block:

structured exception-Handling Keywords ❘ 271

Private Function GetAverage2(iItems As Integer, iTotal As Integer) as Single
 ' Code that might throw an exception is wrapped in a Try block
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block
 MessageBox.Show("Calculation generated DivideByZero Exception")
 Return 0
 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Return 0
 Finally
 ' Code in the Finally block will always run.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Function

Code snippet from ExceptionHandlingSampleCodeForm

This code contains two Catch blocks for different types of exceptions. If an exception is generated, then
.NET will go down the Catch blocks looking for a matching exception type. That means the Catch blocks
should be arranged with specific types first and more generic types after.

Place the code for GetAverage2 in the form, and place another button on Form1. In the Click event for the
second button, place the following code:

 Dim sngAvg As Single
 sngAvg = GetAverage2(0, 100)

Code snippet from ExceptionHandlingSampleCodeForm

Run the program again and press the second button. As before, it’s easier to follow if you set a breakpoint
early in the code and then step through the code line by line.

The Throw Keyword
Sometimes a Catch block is unable to handle an error. Some exceptions are so unexpected that they should
be “sent back up the line” to the calling code, so that the problem can be promoted to code that can decide
what to do with it. A Throw statement is used for that purpose.

A Throw statement ends execution of the exception handler — that is, no more code in the Catch block
after the Throw statement is executed. However, Throw does not prevent code in the Finally block from
running. That code still runs before the exception is kicked back to the calling routine.

You can see the Throw statement in action by changing the earlier code for GetAverage2 to look like this:

Private Function GetAverage3(iItems As Integer, iTotal as Integer) as Single
 ' Code that might throw an exception is wrapped in a Try block
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage

272 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block.
 MessageBox.Show("Calculation generated DivideByZero Exception")
 Throw excDivideByZero
 MessageBox.Show("More logic after the throw - never executed")
 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Throw excGeneric
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Function

Code snippet from ExceptionHandlingSampleCodeForm

Here is some code to call GetAverage3. You can place this code in another button’s Click event to test it:

Try
 Dim sngAvg As Single
 sngAvg = GetAverage3(0, 100)
Catch exc As Exception
 MessageBox.Show("Back in the click event after an error")
Finally
 MessageBox.Show("Finally block in click event")
End Try

Code snippet from ExceptionHandlingSampleCodeForm

Throwing a new exception
Throw can also be used with exceptions that are created on-the-fly. For example, you might want your
earlier function to generate an ArgumentException, as you can consider a value of iItems of zero to be an
invalid value for that argument.

In such a case, a new exception must be instantiated. The constructor allows you to place your own custom
message into the exception. To see how this is done, change the aforementioned example to throw your own
exception instead of the one caught in the Catch block:

Private Function GetAverage4(iItems As Integer, iTotal as Integer) as Single
 If iItems = 0 Then
 Dim excOurOwnException As New _
 ArgumentException("Number of items cannot be zero")
 Throw excOurOwnException
 End If
 ' Code that might throw an exception is wrapped in a Try block.
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block.
 MessageBox.Show("Calculation generated DivideByZero Exception")
 Throw excDivideByZero
 MessageBox.Show("More logic after the thrown - never executed")

structured exception-Handling Keywords ❘ 273

 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Throw excGeneric
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Function

Code snippet from ExceptionHandlingSampleCodeForm

This code can be called from a button with similar code for calling GetAverage3. Just change the name of
the function called to GetAverage4.

This technique is particularly well suited to dealing with problems detected in property procedures. Property
Set logic often includes a check to ensure that the property is about to be assigned a valid value. If not, then
throwing a new ArgumentException (instead of assigning the property value) is a good way to inform the
calling code about the problem.

The exit Try statement
The Exit Try statement will, under a given circumstance, break out of the Try or Catch block and
continue at the Finally block. In the following example, you exit a Catch block if the value of iItems is 0,
because you know that your error was caused by that problem:

Private Function GetAverage5(iItems As Integer, iTotal as Integer) As Single
 ' Code that might throw an exception is wrapped in a Try block.
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block.
 If iItems = 0 Then
 Return 0
 Exit Try
 Else
 MessageBox.Show("Error not caused by iItems")
 End If
 Throw excDivideByZero
 MessageBox.Show("More logic after the thrown - never executed")
 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Throw excGeneric
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

274 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

In your first Catch block, you have inserted an If block so that you can exit the block given a certain
condition (in this case, if the overflow exception was caused because the value of iItems was 0). The
Exit Try goes immediately to the Finally block and completes the processing there:

If iItems = 0 Then
 Return 0
 Exit Try
Else
 MessageBox.Show("Error not caused by iItems")
End If

Code snippet from ExceptionHandlingSampleCodeForm

Now, if the overflow exception is caused by something other than division by zero, you’ll get a message box
displaying “Error not caused by iItems.”

nested Try structures
Sometimes particular lines in a Try block may need special exception processing. Moreover, errors can
occur within the Catch portion of the Try structures and cause further exceptions to be thrown. For both
of these scenarios, nested Try structures are available. You can alter the example under the section “The
Throw Keyword” to demonstrate the following code:

Private Function GetAverage6(iItems As Integer, iTotal as Integer) As Single
 ' Code that might throw an exception is wrapped in a Try block.
 Try
 Dim sngAverage As Single
 ' Do something for performance testing….
 Try
 LogEvent("GetAverage")
 Catch exc As Exception
 MessageBox.Show("Logging function unavailable")
 End Try
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block.
 MessageBox.Show("Error not divide by 0")
 Throw excDivideByZero
 MessageBox.Show("More logic after the thrown - never executed")
 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Throw excGeneric
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Function

Code snippet from ExceptionHandlingSampleCodeForm

In the preceding example, you are assuming that a function exists to log an event. This function would
typically be in a common library, and might log the event in various ways. You will look at logging
exceptions in detail later in the chapter, but a simple LogEvent function might look like this:

structured exception-Handling Keywords ❘ 275

Public Sub LogEvent(ByVal sEvent As String)
 FileOpen(1, "logfile.txt", OpenMode.Append)
 Print(1, DateTime.Now & "-" & sEvent & vbCrLf)
 FileClose(1)
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

In this case, you don’t want a problem logging an event, such as a “disk full” error, to crash the routine. The
code for the GetAverage6 function triggers a message box to indicate trouble with the logging function.

A Catch block can be empty. In that case, the exception is ignored. However, execution does not pick up
with the line after the line that generated the error, but instead picks up with either the Finally block or
the line after the End Try if no Finally block exists.

using exception Properties
The previous examples have displayed hard-coded messages in message boxes, which is obviously not a
good technique for production applications. Instead, a message box or log entry describing an exception
should provide as much information as possible concerning the problem. To do this, various properties of
the exception can be used.

The most brutal way to get information about an exception is to use the ToString method of the exception.
Suppose that you modify the earlier example of GetAverage2 to change the displayed information about the
exception like this:

Private Function GetAverage2(ByVal iItems As Integer, ByVal iTotal As Integer) _
 As Single
 ' Code that might throw an exception is wrapped in a Try block.
 Try
 Dim sngAverage As Single
 ' This will cause an exception to be thrown.
 sngAverage = CSng(iTotal \ iItems)
 ' This only executes if the line above generated no error.
 MessageBox.Show("Calculation successful")
 Return sngAverage
 Catch excDivideByZero As DivideByZeroException
 ' You'll get here with an DivideByZeroException in the Try block.
 MessageBox.Show(excDivideByZero.ToString)
 Throw excDivideByZero
 MessageBox.Show("More logic after the thrown - never executed")
 Catch excGeneric As Exception
 ' You'll get here when any exception is thrown and not caught in
 ' a previous Catch block.
 MessageBox.Show("Calculation failed - generic exception caught")
 Throw excGeneric
 Finally
 ' Code in the Finally block will always run, even if
 ' an exception was thrown in a Catch block.
 MessageBox.Show("You always get here, with or without an error")
 End Try
End Function

Code snippet from ExceptionHandlingSampleCodeForm

When the function is accessed with iItems = 0, a message box similar to the one in Figure 6-1 will be
displayed.

276 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

The message Property
The message shown in Figure 6-1 is helpful to a developer because it contains a lot of information, but
it’s not something you would typically want users to see. Instead, a user normally needs to see a short
description of the problem, and that is supplied by the Message property.

If the previous code is changed so that the Message property is used instead of ToString, then the message
box will provide something like what is shown in Figure 6-2.

figure 6-2figure 6-1

The innerexception and Targetsite Properties
The InnerException property is used to store an exception trail. This comes in handy when multiple exceptions
occur. It’s quite common for an exception to occur that sets up circumstances whereby further exceptions
are raised. As exceptions occur in a sequence, you can choose to stack them for later reference by use of
the InnerException property of your Exception object. As each exception joins the stack, the previous
Exception object becomes the inner exception in the stack.

For simplicity, you’ll start a new code sample, with just a subroutine that generates its own exception. You’ll
include code to add a reference to an InnerException object to the exception you are generating with the
Throw method.

This example also includes a message box to show what’s stored in the exception’s TargetSite property. As
shown in the results, TargetSite will contain the name of the routine generating the exception — in this
case, HandlerExample. Here’s the code:

 Sub HandlerExample()
 Dim intX As Integer
 Dim intY As Integer
 Dim intZ As Integer
 intY = 0
 intX = 5
 ' First Required Error Statement.
 Try
 ' Cause a "Divide by Zero"
 intZ = CType((intX \ intY), Integer)
 ' Catch the error.
 Catch objA As System.DivideByZeroException
 Try
 Throw (New Exception("0 as divisor", objA))
 Catch objB As Exception
 Dim sError As String
 sError = "My Message: " & objB.Message & vbCrLf & vbCrLf
 sError &= "Inner Exception Message: " & _
 objB.InnerException.Message & vbCrLf & vbCrLf
 sError &= "Method Error Occurred: " & objB.TargetSite.Name
 MessageBox.Show(sError)
 End Try
 Catch

structured exception-Handling Keywords ❘ 277

 Messagebox.Show("Caught any other errors")
 Finally
 Messagebox.Show(Str(intZ))
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

As before, you catch the divide-by-zero error in the first Catch block, and the exception is stored in objA so
that you can reference its properties later.

You throw a new exception with a more general message (“0 as divisor”) that is easier to interpret, and you
build up your stack by appending objA as the InnerException object using an overloaded constructor for
the Exception object:

Throw (New Exception("0 as divisor", objA))

You catch your newly thrown exception in another Catch statement. Note how it does not catch a specific
type of error:

Catch objB As Exception

Then you construct an error message for the new exception and display it in a message box:

Dim sError As String
sError = "My Message: " & objB.Message & vbCrLf & vbCrLf
sError &= "Inner Exception Message: " & _
 objB.InnerException.Message & vbCrLf & vbCrLf
sError &= "Method Error Occurred: " & objB.TargetSite.Name
MessageBox.Show(sError)

Code snippet from ExceptionHandlingSampleCodeForm

The message box that is produced is shown in Figure 6-3.

First your own message is included, based on the new exception
thrown by your own code. Then the InnerException gets
the next exception in the stack, which is the divide-by-zero
exception, and its message is included. Finally, the TargetSite
property gives you the name of the method that threw the
exception. TargetSite is particularly helpful in logs or error
reports from users that are used by developers to track down
unexpected problems.

After this message box, the Finally clause displays another
message box that just shows the current value of intZ, which
is zero because the divide failed. This second box also occurs in other examples that follow.

source and stackTrace
The Source and StackTrace properties provide the user with information regarding where the error
occurred. This supplemental information can be invaluable, as the user can pass it on to the troubleshooter
in order to help resolve errors more quickly. The following example uses these two properties and shows the
feedback when the error occurs:

 Sub HandlerExample2()
 Dim intX As Integer
 Dim intY As Integer
 Dim intZ As Integer
 intY = 0
 intX = 5
 ' First Required Error Statement.
 Try

figure 6-3

278 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

 ' Cause a "Divide by Zero"
 intZ = CType((intX \ intY), Integer)
 ' Catch the error.
 Catch objA As System.DivideByZeroException
 objA.Source = "HandlerExample2"
 Messagebox.Show("Error Occurred at: " & _
 objA.Source & objA.StackTrace)
 Finally
 Messagebox.Show(Str(intZ))
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

The output from the Messagebox statement is very
detailed, providing the entire path and line number
where the error occurred, as shown in Figure 6-4.

Notice that this information is also included in
the ToString method examined earlier (refer to
Figure 6-1).

GetBaseexception
The GetBaseException method comes in very
handy when you are deep in a set of thrown
exceptions. This method returns the originating exception by recursively examining the InnerException
until it reaches an exception object that has a null InnerException property. That exception is normally
the exception that started the chain of unanticipated events.

In the following code, a chain of exceptions starts with a divide by zero, which results in exception object
objA. The chain then continues with exception objects objB and objC, both created in code. Both of those
last two exceptions are created by using a constructor on the Exception class that takes an argument for
the InnerException of that new exception. Finally, the GetBaseException method is accessed on objC:.

Sub HandlerExample3()
 Dim intX As Integer
 Dim intY As Integer
 Dim intZ As Integer
 intY = 0
 intX = 5
 ' First Required Error Statement.
 Try
 ' Cause a "Divide by Zero"
 intZ = CType((intX \ intY), Integer)
 ' Catch the error.
 Catch objA As System.DivideByZeroException
 Try
 Throw (New Exception("0 as divisor", objA))
 Catch objB As Exception
 Try
 Throw (New Exception("New error", objB))
 Catch objC As Exception
 Messagebox.Show(objC.GetBaseException.Message)
 End Try
 End Try
 Finally
 Messagebox.Show(Str(intZ))
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

figure 6-4

The call objC.GetBaseException will trace back though the InnerException, for ObjC, which is
objB, and then through objB’s InnerException, which is the original exception, objA. However, objA
has a null InnerException because it’s an original exception caused by the divide by zero. Thus,
objC.GetBaseException.Message returns the Message property of the original OverflowException
message even though you’ve thrown multiple errors since the original error occurred:

Messagebox.Show(objC.GetBaseException.Message)

To put it another way, the code traverses back to the exception caught as objA
and displays the same message as the objA.Message property would, as shown
in Figure 6-5.

Helplink
The HelpLink property gets or sets the help link for a specific Exception
object. It can be set to any string value, but it’s typically set to a URL. If you
create your own exception in code, you might want to set HelpLink to a URL
(or a URN) describing the error in more detail. Then the code that catches the exception can go to that link.
You could create and throw your own custom application exception with code like the following:

Dim exc As New ApplicationException("A short description of the problem")
exc.HelpLink = "http://mysite.com/somehtmlfile.htm"
Throw exc

Code snippet from ExceptionHandlingSampleCodeForm

When trapping an exception, the HelpLink can be used to launch a viewer so the user can see details about
the problem. The following example shows this in action, using the built-in Explorer in Windows:

Sub HandlerExample4()
Try
 Dim exc As New ApplicationException("A short description of the problem")
 exc.HelpLink = "http://mysite.com/somehtmlfile.htm"
 Throw exc
 ' Catch the error.
Catch objA As System.Exception
 Shell("explorer.exe " & objA.HelpLink)
End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

This results in launching Internet Explorer to show the page specified by the URL. Most exceptions
thrown by the CLR or the .NET Framework’s classes have a blank HelpLink property. You should only
count on using HelpLink if you have previously set it to a URL (or some other type of link information)
yourself.

inTeroPeraBiliTy WiTh VB6-sTyle error handling
Because Visual Basic 2010 still supports the older On Error statement from pre-.NET versions of
VB, you may encounter code that handles errors with On Error instead of with structured exception handling.
You can use both techniques in a single program, but it is not possible to use both in a single routine. If you
attempt to use both On Error and Try…Catch in a single routine, you will get a syntax error.

The Visual Basic compiler does allow the two techniques for handling errors to communicate with each
other. For example, suppose you have a routine that uses Err.Raise to promote the error to the calling
code. Also suppose that the calling code makes the call in a Try…Catch block. In that case, the error
created by Err.Raise becomes an exception in the calling code and is trapped by a Catch block just as a

figure 6-5

interoperability with VB6-style error Handling ❘ 279

280 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

normal exception would be. Here’s a code example to illustrate. First, create a subroutine that creates an
error with Err.Raise, like this:

Private Sub RaiseErrorWithErrRaise()
 Err.Raise(53) ' indicates File Not Found
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

Then call this routine from a button’s Click event, with the call inside a Try…Catch block:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Try
 RaiseErrorWithErrRaise()
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

When the button is clicked, it will display a message box with “File Not Found.” Even though the File Not
Found error is raised by Err.Raise, it is translated to a .NET exception automatically.

Similarly, exceptions that are generated by a Throw statement in a called routine can be trapped by On Error
in a calling routine. The exception is then translated into an Err object that works like the VB6 Err object.

error logging
Error logging is important in many applications for thorough troubleshooting. It is common for end users of
an application to forget exactly what an error said. Recording specific errors in a log enables you to get the
specific error message without recreating the error.

While error logging is very important, you only want to use it to trap specific levels of errors because it
carries overhead and can reduce the performance of your application. Specifically, log only errors that are
critical to your application integrity — for instance, an error that would cause the data that the application
is working with to become invalid.

There are three main approaches to error logging:

Write error information in a text file or flat file located in a strategic location. ➤

Write error information to a central database. ➤

Write error information to the system’s ➤ Event Logs, which are available on all versions of Windows
supported by the .NET Framework 4. The .NET Framework includes a component that can be used to
write to and read from the System, Application, and Security Logs on any given machine.

The type of logging you choose depends on the categories of errors you wish to trap and the types of
machines on which you will run your application. If you choose to write to an Event Log, then you need
to categorize the errors and write them in the appropriate log file. Resource-, hardware-, and system-
level errors fit best into the System Event Log. Data access errors fit best into the Application Event Log.
Permission errors fit best into the Security Event Log.

The event log
Three Windows Event Logs are available: the System, Application, and Security Logs. Events in these logs
can be viewed using the Event Viewer, which is accessed from the Control Panel. Access Administrative
Tools and then select the Event Viewer subsection to view events. Typically, your applications would use the
Application Event Log.

 Event logging is available in your program through an EventLog component, which can both read and write
to all of the available logs on a machine. The EventLog component is part of the System.Diagnostics
namespace. This component allows adding and removing custom Event Logs, reading and writing to and
from the standard Windows Event Logs, and creating customized Event Log entries.

 Event Logs can become full, as they have a limited amount of space, so you only want to write critical
information to your Event Logs. You can customize each of your system Event Log ’ s properties by changing
the log size and specifying how the system will handle events that occur when the log is full. You can
confi gure the log to overwrite data when it is full or overwrite all events older than a given number of days.
Remember that the Event Log that is written to is based on where the code is running from, so if there are
many tiers, then you must locate the proper Event Log information to research the error further.

 There are fi ve types of Event Log entries you can make. These fi ve types are divided into event type entries
and audit type entries.

 Event type entries are as follows:

 ➤ Information — Added when events such as a service starting or stopping occurs

 ➤ Warning — Occurs when a noncritical event happens that might cause future problems, such as disk
space getting low

 ➤ Error — Should be logged when something occurs that prevents normal processing, such as a startup
service not being able to start

 Audit type entries usually go into the Security Log and can be either of the following:

 ➤ Audit Success — For example, a success audit might be a successful login through an application to an
SQL Server.

 ➤ Audit Failure — A failure audit might come in handy if a user doesn ’ t have access to create an output
fi le on a certain fi le system.

 If you don ’ t specify the type of Event Log entry, an information type entry is generated.

 Each entry in an Event Log has a Source property. This required property is a programmer - defi ned string
that is assigned to an event to help categorize the events in a log. A new source must be defi ned prior to being
used in an entry in an Event Log. The SourceExists method is used to determine whether a particular source
already exists on the given computer. Use a string that is relevant to where the error originated, such as the
component ’ s name. Packaged software often uses the software name as the source in the Application Log. This
helps group errors that occur by specifi c software package.

 The EventLog component is in the System.Diagnostics namespace. To use it conveniently, include an
 Imports System.Diagnostics statement in the declarations section of your code.

 Certain security rights must be obtained in order to manipulate Event Logs. Ordinary
programs can read all of the Event Logs and write to the Application Event Log.
Special privileges, on the administrator level, are required to perform tasks such as
clearing and deleting Event Logs. Your application should not normally need to do
these tasks, or write to any log besides the Application Event Log.

 The most common events, methods, and properties for the EventLog component are listed and described in
the following tables.

 events, methods, and Properties
 Table 6 - 4 describes the relevant event of the EventLog component.

error logging ❘ 281

282 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

Table 6-5 describes the relevant methods of the EventLog component.

TaBle 6-4: Relevant EventLog Event

eVenT descriPTion

EntryWritten Generated when an event is written to a log

TaBle 6-5: Relevant EventLog Methods

meThods descriPTion

CreateEventSource Creates an event source in the specified log

DeleteEventSource Deletes an event source and associated entries

WriteEntry Writes a string to a specified log

Exists Used to determine whether a specific Event Log exists

SourceExists Used to determine whether a specific source exists in a log

GetEventLogs Retrieves a list of all Event Logs on a particular computer

Delete Deletes an entire Event Log . Use this method with care .

Table 6-6 describes the relevant properties of the EventLog component.

TaBle 6-6: Relevant EventLog Properties

ProPerTies descriPTion

Source Specifies the source of the entry to be written

Log Used to specify a log to write to . The three logs are System, Application, and Security . The
Application Log is the default if not specified .

The following example illustrates some of these methods and properties:

Sub LoggingExample1()
 Dim objLog As New EventLog()
 Dim objLogEntryType As EventLogEntryType
 Try
 Throw (New EntryPointNotFoundException())
 Catch objA As System.EntryPointNotFoundException
 If Not EventLog.SourceExists("Example") Then
 EventLog.CreateEventSource("Example", "System")
 End If
 objLog.Source = "Example"
 objLog.Log = "System"
 objLogEntryType = EventLogEntryType.Information
 objLog.WriteEntry("Error: " & objA.Message, objLogEntryType)
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

The preceding code declares two variables: one to instantiate your log and one to hold your entry’s type
information. Note that you need to check for the existence of a source prior to creating it. The following
two lines of code accomplish that:

If Not EventLog.SourceExists("Example") Then
 EventLog.CreateEventSource("Example", "System")

Code snippet from ExceptionHandlingSampleCodeForm

After you have verified or created your source, you can set the Source property of the EventLog object, set
the Log property to specify which log you want to write to, and set EventLogEntryType to Information
(other options are Warning, Error, SuccessAudit, and FailureAudit). If you attempt to write to a source
that does not exist in a specific log, then you get an error. After you have set these three properties of the
EventLog object, you can then write your entry. In this example, you concatenated the word Error with
the actual exception’s Message property to form the string to write to the log:

objLog.Source = "Example"
objLog.Log = "System"
objLogEntryType = EventLogEntryType.Information
objLog.WriteEntry("Error: " & objA.Message, objLogEntryType)

Code snippet from ExceptionHandlingSampleCodeForm

Writing to Trace files
As an alternative to the event log, you can write your debugging and error information to trace files. A
trace file is a text-based file that you generate in your program to track detailed information about an error
condition. Trace files are also a good way to supplement your event logging if you want to track detailed
information that would potentially fill the Event Log, or diagnosis of a problem requires analysis of a
specific sequence of execution events.

This section covers using the StreamWriter interface in your development of a trace file. In this case, a
trace file is a text file, so you need to understand the concepts involved in writing to text files by setting
up streamwriters and debug listeners. The StreamWriter interface is handled through the System.IO
namespace. It enables you to interface with the files in the file system on a given machine. The Debug class
interfaces with these output objects through listener objects. The job of any listener object is to collect,
store, and send the stored output to text files, logs, and the Output window. In the example, you will use the
TextWriterTraceListener class.

As you will see, the StreamWriter object opens an output path to a text file, and by binding the
StreamWriter object to a listener object you can direct debug output to a text file.

Trace listeners are output targets and can be a TextWriter or an EventLog, or can send output to
the default Output window (which is DefaultTraceListener). The TextWriterTraceListener
accommodates the WriteLine method of a Debug object by providing an output object that stores
information to be flushed to the output stream, which you set up by the StreamWriter interface.

Table 6-7 lists some of the commonly used methods from the StreamWriter object.

TaBle 6-7: Common StreamWriter Methods

meThod descriPTion

Close Closes the StreamWriter

Flush Flushes all content of the StreamWriter to the output file designated upon creation of
the StreamWriter

Write Writes byte output to the stream . Optional parameters allow location designation in the
stream (offset) .

WriteLine Writes characters followed by a line terminator to the current stream object

Table 6-8 lists some of the methods associated with the Debug object, which provides the output mechanism
for the text file example to follow.

error logging ❘ 283

284 ❘ chaPTer 6 ExCEPtioN HaNdliNG aNd dEBuGGiNG

The following example shows how you can open an existing file (called mytext.txt) for output and assign
it to the Listeners object of the Debug object so that it can catch your Debug.WriteLine statements:

Sub LoggingExample2()
 Dim objWriter As New _
 IO.StreamWriter("C:\mytext.txt", True)
 Debug.Listeners.Add(New TextWriterTraceListener(objWriter))
 Try
 Throw (New EntryPointNotFoundException())
 Catch objA As System.EntryPointNotFoundException
 Debug.WriteLine(objA.Message)
 objWriter.Flush()
 objWriter.Close()
 objWriter = Nothing
 End Try
End Sub

Code snippet from ExceptionHandlingSampleCodeForm

Looking in detail at this code, you first create a StreamWriter that is assigned to a file in your local file
system:

Dim objWriter As New _
 IO.StreamWriter("C:\mytext.txt", True)

You then assign your StreamWriter to a debug listener by using the Add method:

Debug.Listeners.Add(New TextWriterTraceListener (objWriter))

This example forces an exception and catches it, writing the Message property of the Exception object
(which is “Entry point was not found”) to the debug buffer through the WriteLine method:

Debug.WriteLine(objA.Message)

Finally, you flush the listener buffer to the output file and free your resources:

objWriter.Flush()
objWriter.Close()
objWriter = Nothing

After running this code, you can examine the c:\mytext.txt file to see the trace output.

summary
This chapter reviewed the Exception object and the syntax available to work with exceptions. You have
looked at the various properties of exceptions and learned how to use the exposed information. You have also
seen how to promote exceptions to consuming code using the Throw statement, and how structured exception

TaBle 6-8: Common Debug Object Methods

meThod descriPTion

Assert Checks a condition and displays a message if False

Close Executes a flush on the output buffer and closes all listeners

Fail Emits an error message in the form of an Abort/Retry/Ignore message box

Flush Flushes the output buffer and writes it to the listeners

Write Writes bytes to the output buffer

WriteLine Writes characters followed by a line terminator to the output buffer

WriteIf Writes bytes to the output buffer if a specific condition is True

WriteLineIf Writes characters followed by a line terminator to the output buffer if a specific condition
is True

handling interoperates with the old-style On Error. As discussed, any new code you write should use
structured exception handling. Avoid using the old-style On Error except for maintenance tasks in old code.

The chapter also covered writing to Event Logs to capture information about generated exceptions. While
you should use Event Logs judiciously to avoid overloading them, having information about exceptions
captured for after-the-face analysis is an invaluable tool for diagnosis.

The chapter covered a simple technique for generating trace output for programs. More sophisticated tracing
features are available in .NET using the Trace and TraceSwitch classes, but a complete example is beyond
the scope of this book. By using the full capabilities for exception handling that are now available in Visual
Basic 2010, you can make your applications more reliable, and diagnose problems faster when they do occur.
Proper use of event logging and tracing on can also help you tune your application for better performance.

summary ❘ 285

7
 Test - Driven Development

 WhaT you Will learn in This chaPTer

 What is test - driven development? ➤

 Why should you test your applications? ➤

 How to create unit tests in Visual Studio ➤

 How to run automated tests in Visual Studio ➤

 Testing in database applications ➤

 How to create your classes from your tests ➤

 Testing functionality in various editions of Visual Studio ➤

 Third - party testing tools ➤

 Traditionally, testing has often been an afterthought in software development. Frequently, it was done
at — or near — the end of the development cycle. In addition, it was typically the “ junior developers ”
who were tasked with going through the application, testing everything. As a result of these two
circumstances, testing often was rushed, incomplete, and led to the release of buggy software to the
end users.

 Into this mix, a number of developers began to use a new method that became known as test - driven
development (TDD) . In TDD, you write the tests early (or before you write any real code), and test
throughout the development cycle. This means that the code is tested more thoroughly, and by the
developers themselves. The result should be fewer bugs, and code that works more closely to the design.
It is this last point that causes many TDD proponents to describe TDD not as a testing strategy, but
as a design strategy. By writing the tests fi rst, you essentially encapsulate the desired behavior into the
tests, meaning the code will follow.

 One classic rationale of using this technique was that catching a bug earlier in the process was less
expensive than fi nding one later. This makes sense; fi nding and fi xing a bug as the code is fi rst written
is much less expensive than paying an additional developer to fi nd and fi x the bug after the code has
been integrated into numerous other routines, incorporated into a multiform user interface, and so on.

 Even more important than catching bugs, however, TDD gives you more confi dence to change your
code. If you have a solid suite of tests available for your classes, then you can dig in and make changes
to your code with less worry that you might break something. If the tests still pass, then your code is
still doing what it should.

288 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

This chapter looks at the tools available within Visual Studio for testing your applications. Most of the
samples in this chapter will work with Visual Studio Professional and above (that is, the Express Editions
of Visual Studio do not support these built-in testing tools). In addition, you will look at the additional
features available within the Premium and Ultimate editions of Visual Studio, and some third-party tools
that are available.

When and hoW To TesT
Once you have decided that you want to do some form of TDD in your applications, you next need to
decide when and how to test. The staunchest TDD proponents will say that you must use TDD with every
application, and never write any code until you have written a test. The advice at the opposite end is the
traditional “do all the testing at the end” methodology.

The right choice is likely somewhere in the middle; and where it fits in the continuum varies according to the
target application, the abilities and desires of the development team, and the time allowed for the development.
You might try going “full TDD” for a project or two to see how it fits you and your team, or you might simply
create a number of tests to monitor an existing section of code that would benefit from TDD.

This chapter takes a pragmatic approach to testing, in which sometimes the test is written first, and in
others the code is written first. While the latter is frowned upon by some TDD proponents, it still tests the
code. In addition, if something changes in the code, the test will demonstrate whether it is still valid.

using assertions
Many developers have done a form of TDD in the
past, creating test forms that contain various fields
and many buttons to test various components of
their application (see Figure 7-1). TDD formalizes
this testing process into a cleaner, less error-prone,
and more reliable methodology. The problem with
the “test form” methodology is that the developer
must remember the order of the various button
clicks required for complete testing, as there
may be side effects from testing the methods in a
specific order. In addition, the maximum practical
number of tests you can do with this style of
testing is limited by the number of buttons that
can fit on a screen.

With TDD, you can avoid these limitations by writing a series of small routines to test various aspects of
your code. Each test is self-contained, so you do not have to test methods in a particular order to avoid
one test affecting another. You may end up writing multiple routines to test a single method (for example,
to test for edge cases, invalid input, etc.), but each test runs in relative isolation. Because each test is run
within some sort of container and doesn’t require a specific user interface, there is no limit to the number
of tests you can create for a class.

At the core of each test are assertions. These are method calls that test for expected results from the code.
For example, if you were testing some code that added two numbers — let’s say 1 and 1 to keep it simple —
you would have an assertion that the returned value be the expected result (we’ll say 2 here). If the value is
what is expected, then that part of the test succeeds. If any of the assertions in a test fail, then the whole test
fails. There are three basic assert classes in the Microsoft.VisualStudio.TestTools.UnitTesting namespace:
Assert, StringAssert, and CollectionAssert. The Assert class provides a number of basic tests via a
series of static methods. Some of the more commonly used of these are described in Table 7-1.

figure 7-1

The StringAssert class — as you might expect — is used to test String return values. Common methods
of the StringAssert class are described in Table 7-2.

TaBle 7-1: Common Assert Class Methods

meThod descriPTion

IsTrue

IsFalse

Assumes that some passed value is true or false . If it is not, then the assertion
fails . Usually this is used to test the return values of methods that return
Boolean values .

AreEqual

AreNotEqual

Assumes that two values are equal (or not) . This is typically used to check the
return value of a method against the expected value . For example, you could
use this method with a method that adds two numbers:

Assert.AreEqual(calc.Add(1,1), 2)

If the return value of calc.Add(1,1) is 2, then the test passes .

AreSame

AreNotSame

Assumes that two objects are the same (or not) . This means more than just
having all of the properties have the same value; it means that the two values
are pointing to the same object in memory .

IsNull Assumes that the return value is Nothing.

IsInstanceOfType

IsNotInstanceOfType

Assumes that the return value from the method is of a particular object type (or
not) . This is frequently used when the method might return a base class, or one
of multiple child classes . For example, you might have a method that is defined
as returning a Stream, but when called might return a Stream, FileStream,
NetworkStream, or other class that inherits from Stream . You would then use
this assertion if you expected a FileStream as follows:

Assert.IsInstanceOfType(obj.OpenStream(),

 GetType(IO.FileStream))

Fail Immediately fails the current test . Typically, you would use this when catching
an exception, so that rather than simply having the test blow up, you gracefully
return a test failure instead .

TaBle 7-2: Common StringAssert Class Methods

meThod descriPTion

StartsWith

EndsWith

Assumes that the return value starts (or ends) with a particular substring .
For example, if you were testing a data access component method that
should return the results of an alphabetic search, you could use the following
assertion:

Dim dt As DataTable =
 obj.GetEmployeesByLastName(“D”)
Dim firstResult As String =
 dt.Rows(0).Item(“LastName”).ToString()

StringAssert.StartsWith(firstResult, “D”)

Contains Assumes that the return value contains some substring .

Matches

DoesNotMatch

Assumes that the tested value matches (or doesn’t match) a given regular
expression .

As described in Table 7-3, the CollectionAssert class provides static methods for testing instances of
ICollection.

When and How to Test ❘ 289

290 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

Each of the preceding methods has a number of overloads. The simplest overload merely takes the
appropriate parameters. Additional overloads return a string to provide additional information about
the failure. This includes a method that allows you to insert additional parameters into the message. For
example, you could call the Add method described earlier using any of these overloaded methods:

Assert.AreEqual(calc.Add(1,1), 2)
Assert.AreEqual(calc.Add(1,1), 2,
 "Values are not equal")
Assert.AreEqual(calc.Add(1,1), 2,
 "{0} does not equal {1}", calc.Add(1,1), 2)

Tdd Tools in Visual sTudio
Originally, the testing tools were only available in the Team System editions of Visual Studio. Fortunately,
Microsoft realized that more and more developers were starting to use testing in their development process,
and so moved the tools into the Professional Edition. This means that nearly all Visual Basic developers have
access to the basic tools for adding tests to their application. (So, unless you’re running the Express Edition
of Visual Basic, you don’t have any excuses.)

The TDD tools provided by Visual Studio consist of the following:

 ➤ New project types that can be added to your solution — While you could
add your tests to your existing projects, it’s a better idea to add them to a
separate project. This not only keeps the tests logically separated, but
also keeps the code for the tests from swelling the size of your resulting
applications and DLLs.

 ➤ The Test View window (see Figure 7-2), which provides a simple means
of viewing the tests in your solution — You may or may not find this
window valuable. This, and many of the other test-related windows, are
accessed from the Test menu.

TaBle 7-3: Common CollectionAssert Class Methods

meThod descriPTion

AreEqual

AreNotEqual

Tests whether two collections are the same (or different) . The two
collections are the same if they contain the same number of entries,
with the same values . For example, {1, 2, 3} is equal to {1, 2, 3}, but not
{1, 3, 2} .

Contains

DoesNotContain

Tests for the presence (or absence) of a particular item within the
collection . For example, you might use it to test the results of a
database query to ensure that an expected value is returned .

AllItemsAreNotNull Assumes that all of the items in the collection are not Nothing.

AllItemsAreUnique Assumes that there are no duplicates in the collection .

AreEquivalent

AreNotEquivalent

Tests whether two collections are the same (or different) . This differs
from AreEqual in that the values do not need to be in the same order .
Therefore, {1, 2, 3} is equivalent to both {1, 2, 3} and {1, 3, 2} .

IsSubsetOf

IsNotSubsetOf

Tests one collection to see if it contains (or doesn’t contain) the items of
another collection .

AllItemsAreInstancesOfType Assumes that the collection only includes items of the same type .
This can be very useful when testing methods that return non-generic
collections, or collections of Object .

figure 7-2

 ➤ The Test Results window (see Figure 7-3), which enables you to see the result of one or more tests —
This is the main window you will work with when testing your applications. Ideally, you’ll want to see
all green symbols (indicating “passed”) next to each of the tests; and if an error occurs, you will see a
message to the right of the list of tests. Note that the green (or red) symbols do not appear until after
you have run each test.

figure 7-3

uniTTesTing WalK-Through
As with any development, the best way to learn TDD is to actually try it, starting with a simple example.
Create a new Class Library project called Foo.Math. Rename the Class1 class to Stats. This project will
use a few simple methods to help demonstrate TDD. Add an Average method that takes a ParamArray of
Double, and returns a Double:

Public Class Stats
 Public Function Average(ByVal ParamArray values() As Double) As Double
 Dim result As Double
 Dim sum As Double
 For i As Integer = 0 To values.Count - 1
 sum += values(i)
 Next
 result = sum / values.Count
 Return result
 End Function
End Class

Code snippet from StatsTest

The code simply adds up the provided values and returns the average. Because each parameter is created
as a Double, the values of any “smaller” numeric variable types (such as Integer or Single) will be upcast
to a Double.

creating a Test
Using the Test Project template, add a new project named Foo.Math.Tests to the solution, as shown
in Figure 7-4. This will add a single class, UnitTest1.vb, to your solution (renamed to AverageTests.vb in
Figure 7-5). Delete that class for now, as you will add your own in a moment. In addition, three solution
items are added; these enable configuring how the testing will run. You will look at these later. For now,
add a reference to the Foo.Math project.

UnitTesting Walk-Through ❘ 291

292 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

Right-click on the test project. Select Add ➪ New Test. In the Add New Test dialog
(see Figure 7-6), select Basic Unit Test and call the new file AverageTests.vb. Click
OK to add the new test to your project. The initial code for the unit test provides
the core structure needed by all tests:

Imports System.Text

<TestClass()> Public Class AverageTests

 <TestMethod()> Public Sub TestMethod1()
 End Sub

End Class

As you can see, the test class is simply a normal Visual Basic class, with the
addition of a couple of attributes.

The TestClass attribute identifies this class to the
testing functionality of Visual Studio; it has no other
purpose beyond marking this as a class containing one
or more tests.

The TestMethod attribute identifies one of those tests
within the class. Like the TestClass attribute, this
is primarily a marker attribute. Each of the tests will
use this attribute to identify itself. This allows you to
have other helper methods within the class that are not
tests. Notice also that each of the tests is a Sub, not a
Function.

You’re ready to begin to create some test methods. As
with many other discussions regarding TDD, there are
a number of opinions about the scope of each test. Some
developers choose to test a number of separate cases
within a single method, while others prefer to keep
the scope of each test relatively simple. This book falls

figure 7-4

figure 7-5

figure 7-6

into the second camp. Keeping your tests simple offers the same benefit as keeping any other method simple.
That is, when your tests are simple and have a single purpose, there is less room for introducing errors.

Your test methods should be named such that you don’t need to look into their code to understand what
they are testing. For example, a test named TestForDivideByZero is a lot more meaningful than a test
method called Test1. Again, this saves you time later should any of your tests fail.

For the simple Average method defined above, add the following tests (you could no doubt come up with
more):

Imports System.Text

<TestClass()> Public Class AverageTests

 Dim obj As New Foo.Math.Stats

 <TestMethod()> Public Sub AverageOfKnownRange()
 Assert.AreEqual(obj.Average(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
 5.5, "Average of 1-10 is not 5.5")
 End Sub

 <TestMethod()> Public Sub AverageOfZerosIsZero()
 Assert.AreEqual(obj.Average(0, 0), 0.0,
 "Average of zeros is not zero")
 End Sub

 <TestMethod()> Public Sub AverageOfNothingIsNaN()
 Assert.AreEqual(obj.Average(), Double.NaN)
 End Sub

 <TestMethod()> Public Sub AverageOfMaxValuesIsInfinity()
 Assert.AreEqual(obj.Average(Double.MaxValue, Double.MaxValue),
 Double.PositiveInfinity)
 End Sub
End Class

Code snippet from StatsTest

Here, four tests are defined; each tests for different combinations of good and bad parameters. The first test
is an attempt to see if the function is working as designed, providing a set of values and checking the result.
The Assert.AreEqual method used here takes three parameters:

The method to test (or rather the result of that method) ➤

The expected result value ➤

A message to display in the user interface if an error occurs ➤

The second test begins to examine some possible edge case scenarios — in this case, whether all zeros are
passed to the Average method. Notice that the value to compare with the result has been written as 0.0, not
just 0. This is because it would fail if it were written as 0, as you would be attempting to compare a Double
with an Integer.

The final two tests check for two other edge cases: What happens if no values are passed in, and what
happens if you use values that add up to greater than the capacity of the Double variable you are using
to hold the temporary sum. Both simply check the result against a known value (Double.NaN, or Not a
Number, and Double.PositiveInfinity).

running a Test
Once you have created your tests, you are ready to run them. Select Test ➪ Run ➪ All Tests in Solution to
run all of the tests. Alternately, you could select to run an individual test (Test ➪ Run ➪ Tests in Current

UnitTesting Walk-Through ❘ 293

294 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

Context or from the Test View window). This will compile your solution and execute the tests. With a bit
of luck, you should see the icon beside each test switch from Pending, through In Progress, to Passed in the
Test Results window (see Figure 7-7).

figure 7-7

figure 7-8

To see a failing test, make a change to the Average method that might reflect a simple, but common logic
error:

Public Class Stats
 Public Function Average(ByVal ParamArray values() As Double) As Double
 Dim result As Double
 Dim sum As Double
 For i As Integer = 1 To values.Count - 1
 sum += values(i)
 Next
 result = sum / values.Count
 Return result
 End Function
End Class

Code snippet from StatsTest

This is a common error: You may forget when a collection is zero-based or one-based. If you build the
solution and run all the tests, you will see that two succeed while two fail (see Figure 7-8).

The AverageOfKnownRange test is failing because you are no longer adding up all the provided numbers.
The error message returned also helps identify this problem. Notice that it includes the message you added
to the test method:

Assert.AreEqual failed. Expected:<5.4>. Actual:<5.5>. Average of 1-10 is not 5.5

Similarly, the AverageOfMaxValuesIsInfinity test fails because you are only adding the first
Double.MaxValue to the calculation, so no overflow occurs.

Change the code back to use the appropriate index and click the Run button in the Test Results window.
By default, it will run only the checked tests. In this case, that means the two failing tests. You should now
see the two tests pass.

Testing data access code
While testing a class like the Foo.Math.Stats class shown earlier is relatively straightforward, other classes
are less easy to test. Many classes require extensive setup or preparation before they can be used, or rely
on additional code whose scope is beyond testing. The most common example is testing data access code.
If you want to test against an actual database, you have a problem: After your tests are written, you must
then create a database, put enough data in it to be representative of a “real” test, and then create the classes
used to access the database. In addition, changes to this test database may affect the results of the tests,
particularly over time. In other words, it requires a great deal of work to get from your original tests to
something that approaches a working system.

Several techniques have been developed to work around this issue and still enable you to test your
applications. This section looks at two of the more common techniques:

Using a test database with a known state ➤

Using an interface with a fake test implementation ➤

initialization/Cleanup
Obviously, the best way to test data access code is to have it actually attempt to access a database. However,
over time, the changes made to the database may affect the results of the tests. Therefore, it is best if the
database is always in a known state at the beginning of the test run, and then reset at the end. Where should
you add this code to your tests? Fortunately, the unit testing framework includes additional attributes you
can add to the class containing your tests to cause the methods to act before and after your tests, as described
in Table 7-4.

TaBle 7-4: Test Class Attributes

aTTriBuTe descriPTion

ClassInitialize A method marked with this attribute will be run when the test class itself
is initialized, before any tests have run . This attribute must be applied to a
Shared routine .

ClassCleanup A method marked with this attribute will be run at the end of the test run,
after all tests have completed . This is typically used to clean up any items
created in the ClassInitialize method . The attribute must be applied to
a Shared routine .

TestInitialize A method marked with this attribute will be run before each test . This can be
useful to refresh any values, or to prepare a variable for the test .

TestCleanup A method marked with this attribute will be run after each test, typically to
clean up something created during the TestInitialize, or that may have
been affected by the test itself .

When working with a test database, these four attributes enable you to create a brand-new database
populated with known data either at the beginning of the test run or just before (or after) each test. This
means that your tests will always run with a database with known data, so the tests will act reliably.

UnitTesting Walk-Through ❘ 295

296 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

Create a new Class Library project named NorthwindData. This project will represent a subset of the code
you would use to manage the Northwind database. In this case, it will only access the employees table.
Delete the default Class1 that is added to the project and add the following interface:

Public Interface INorthwindRepository
 Function AllEmployees() As List(Of Employee)
 Function GetEmployeeByID(ByVal id As Integer) As Employee
 Function FindEmployeeByLastName(ByVal lastname As String) As Employee
 Sub InsertEmployee(ByVal value As Employee)
 Sub DeleteEmployee(ByVal id As Integer)
End Interface

Code snippet from NorthwindData

This interface represents the actions that the data access component will be able to perform. While it isn’t a
complete set of CRUD (Create, Retrieve, Update, and Delete) functions, it should provide you with enough
to test. This is added as an interface to make it easier when you create the test implementation in the next
section. Add a new class, DbRepository, that implements the preceding interface:

Imports System.Collections.Generic

Public Class DbRepository
 Implements INorthwindRepository

 Dim db As New NorthwindClassesDataContext

 Public Function AllEmployees() As List(Of Employee) _
 Implements INorthwindRepository.AllEmployees
 Dim result As List(Of Employee)
 result = (From e In db.Employees Select e).ToList
 Return result
 End Function

 Public Sub DeleteEmployee(ByVal id As Integer) _
 Implements INorthwindRepository.DeleteEmployee
 Dim emp As Employee
 emp = (From e In db.Employees
 Where e.EmployeeID = id
 Select e).FirstOrDefault
 db.Employees.DeleteOnSubmit(emp)
 db.SubmitChanges()
 End Sub

 Public Function FindEmployeeByLastName(ByVal lastname As String) As Employee _
 Implements INorthwindRepository.FindEmployeeByLastName
 Dim result As Employee
 result = (From e In db.Employees
 Where e.LastName.StartsWith(lastname)
 Select e).FirstOrDefault
 Return result
 End Function

 Public Function GetEmployeeByID(ByVal id As Integer) As Employee _
 Implements INorthwindRepository.GetEmployeeByID
 Dim result As Employee
 result = (From e In db.Employees
 Where e.EmployeeID = id
 Select e).FirstOrDefault
 Return result
 End Function

 Public Sub InsertEmployee(ByVal value As Employee) _
 Implements INorthwindRepository.InsertEmployee
 db.Employees.InsertOnSubmit(value)

 db.SubmitChanges()
 End Sub
End Class

Code snippet from NorthwindData

For this implementation, it actually uses LINQ to SQL to query the database. See Chapter 10 for more
details on LINQ to SQL (if you’re playing along, you can either come back after you’ve read Chapter 10 or
just copy the NorthwindClasses.dbml and app.config files from the sample code).

Now it’s time to turn to the tests (yes, we should have written the tests first, but we didn’t). Add a new Test
Project to the solution called NorthwindData.Tests. Rename the class created when you create the project
to TestDbTests. As you will be using the SQL Server Management Objects (SMO), add a reference to
Microsoft.SqlServer.Smo.dll and Microsoft.SqlServer.ConnectionInfo.dll. You will need to
browse for these two DLLs; they are found at c:\program files\microsoft sql server\100\sdk\
assemblies. Also add a reference to the System.Configuration namespace found on the .NET tab when
adding a new reference. Add the following Imports statements to the test class:

Imports System.Text
Imports Microsoft.SqlServer.Management.Smo
Imports Microsoft.SqlServer.Management.Common
Imports System.Data.SqlClient
Imports System.Configuration

<TestClass()> Public Class TestDbTests

Code snippet from NorthwindData

Add a new method to the class that will be called when the test class is first instantiated. This method
should have the attribute ClassInitialize added to it:

<ClassInitialize()> Public Shared Sub Setup(ByVal testContext As TestContext)
 'instantiate a new database
 'using the saved scripts and the
 'SQL Server Management Objects (SMO)

 'load create script
 Dim script As String
 Dim scriptPath As String =
 My.Application.Info.DirectoryPath &
 "\CreateTestDatabase.sql"
 script = IO.File.ReadAllText(scriptPath)

 'execute it using SMO
 ExecuteScript(script)
 End Sub

Code snippet from NorthwindData

The sample project includes the CreateTestDatabase.sql script. Add this file to your project if you are
following along. This SQL script creates a new database, called Testwind, creates a new Employees table
within the database, and adds a few records. Set the properties for the file so that the SQL script is marked
as Content, and the Copy to Output property is set to Copy if newer. This ensures that the script is in
the correct location defined in the preceding code.

The ExecuteScript method uses the SMO to actually execute the SQL script. Add this method to the
TestDBTests class:

Private Shared Sub ExecuteScript(ByVal script As String)
 Dim dsn As String
 dsn = ConfigurationManager.ConnectionStrings("testdata").ConnectionString

 Using conn As New SqlConnection(dsn)

UnitTesting Walk-Through ❘ 297

298 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

 Dim svr As New Server(New ServerConnection(conn))
 svr.ConnectionContext.ExecuteNonQuery(script)
 End Using
End Sub

Code snippet from NorthwindData

The Server class from the SMO works similarly to the SqlCommand class you may have used when
accessing SQL Server (and if not, you will in Chapter 10). It enables you to execute a SQL script to create
database objects. As with other data access, it requires an open connection to the database: In this case, the
testdata connection string is defined in an app.config file as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <!-- the connection string should be on one line -->
 <add name="testdata"
 connectionString="server=.\sqlexpress;
 database=master;
 integrated security=true;"/>
 </connectionStrings>
</configuration>

Code snippet from NorthwindData

As you are creating the database in the Setup method, you should also delete it when testing is complete:

 <ClassCleanup()> Public Shared Sub Cleanup()
 'drop the test database
 'load drop script
 Dim script As String
 Dim scriptPath As String =
 My.Application.Info.DirectoryPath &
 "\DropTestDatabase.sql"
 script = IO.File.ReadAllText(scriptPath)

 'execute it using SMO
 ExecuteScript(script)
 End Sub

Code snippet from NorthwindData

The ClassCleanup attribute defines a method that is called after all tests have completed. In this case, it is
used to execute a script that deletes the database. You can find this script in the sample code for this section.

Now that the database will be present, you are ready to create tests for it. For the purposes of this sample,
just add three tests:

<TestMethod()> Public Sub AllEmployeesReturnsCount()
 Dim employees As List(Of Employee)
 employees = db.AllEmployees
 Assert.AreEqual(employees.Count, 9)
 End Sub

 <TestMethod()> Public Sub FindEmployeeReturnsItem()
 Dim emp As Employee = db.FindEmployeeByLastName("Dav")
 Assert.IsNotNull(emp)
 StringAssert.StartsWith(emp.LastName, "Dav")
 End Sub

 <TestMethod()> Public Sub InsertEmployeeIncreasesCount()
 Dim emp As New Employee
 With emp

 .EmployeeID = -1
 .FirstName = "Foo"
 .LastName = "deBar"
 .Title = "Vice President"
 End With
 Try
 Dim before As Integer = db.AllEmployees.Count
 db.InsertEmployee(emp)

 Dim after As Integer = db.AllEmployees.Count
 Assert.AreEqual(before + 1, after)
 Catch ex As Exception
 Assert.Fail(ex.Message)
 End Try
 End Sub

Code snippet from NorthwindData

The first test simply returns the full list of employees. As the create script creates nine employees, you can
assert that value in the test. The second test does a search for one specific employee; it then asserts that
the returned value is not null (that is, it returned the employee), then confirms that the returned employee
matches the criteria. Finally, a new employee is created and saved to the database, and the test confirms
that the count does increment by one. Notice that the code references a db variable. You need to add the
following definition as a class-level variable:

<TestClass()> Public Class TestDbTests

 Dim db As INorthwindRepository = New DbRepository

Code snippet from NorthwindData

This sets the data access code for the tests to access the class you created earlier. You should now be able to
run these tests and see three happy green icons. If you step through the tests, you should see the database
created, and then removed after all the tests complete.

Using this method of testing requires a fair bit of setup, as you need to create the test database as well as the
data access component before you can test. However, it does guarantee that your tests will behave like your
actual code.

Test implementation
An alternate approach to creating a test database is to provide an implementation of the interface that acts
like the database should. That is, it returns the correct values, but rather than access a database to retrieve
them, it simply creates them itself. This technique requires much less effort than creating the test database,
but your fake data access may not behave completely like the live data access.

Add a new Unit Test (RepositoryTests) to your test project by selecting Add ➪ New Test ➪ Basic Unit
Test and set the Name to RepositoryTests. The tests performed by this class will be similar to the ones you
performed when using a test database earlier:

Imports System.Text

<TestClass()> Public Class RepositoryTests
 Dim db As INorthwindRepository = New TestRepository

 Private testContextInstance As TestContext

 '''<summary>
 '''Gets or sets the test context which provides
 '''information about and functionality for the current test run.
 '''</summary>

UnitTesting Walk-Through ❘ 299

300 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

 Public Property TestContext() As TestContext
 Get
 Return testContextInstance
 End Get
 Set(ByVal value As TestContext)
 testContextInstance = Value
 End Set
 End Property

 <TestMethod()> Public Sub CreatedRepositoryIsTest()
 Assert.IsInstanceOfType(db, GetType(INorthwindRepository),
 "Repository is not a TestRepository")
 End Sub

 <TestMethod()> Public Sub AllEmployeesReturnsCount()
 Dim employees As List(Of Employee)
 employees = db.AllEmployees
 Assert.AreEqual(employees.Count, 9)
 End Sub

 <TestMethod()> Public Sub FindEmployeeReturnsItem()
 Dim emp As Employee = db.FindEmployeeByLastName("6")
 Assert.IsNotNull(emp)
 StringAssert.Contains(emp.LastName, "6")
 End Sub

 <TestMethod()> Public Sub InsertEmployeeIncreasesCount()
 Dim emp As New Employee
 With emp
 .EmployeeID = -1
 .FirstName = "Foo"
 .LastName = "deBar"
 .Title = "Vice President"
 End With
 Try
 Dim before As Integer = db.AllEmployees.Count
 db.InsertEmployee(emp)
 Dim after As Integer = db.AllEmployees.Count
 Assert.AreEqual(before + 1, after)
 Catch ex As Exception
 Assert.Fail(ex.Message)
 End Try
 End Sub
End Class

Code snippet from NorthwindData

Note that rather than create a DbRepository, you create a TestRepository (you’ll create that in a
moment). The other differences between this test class and the earlier one is that there are no Setup or
Cleanup methods. In addition, a new test confirms that the created repository is of the correct type; and
the FindEmployeeReturnsItem is slightly different, as the returned data will be different.

The TestRepository class implements INorthwindRepository, but rather than access a database, it keeps
the data in a private list. Add the TestRepository class to the NorthwindData project:

Imports System.Collections.Generic

Public Class TestRepository

 Implements INorthwindRepository

 Dim employeeList As List(Of Employee)

 Public Sub New()
 'setup employee list
 employeeList = New List(Of Employee)
 'add stock data
 For i As Integer = 1 To 9
 Dim emp As New Employee
 emp.EmployeeID = i
 emp.FirstName = "First" & i
 emp.LastName = "Last" & i
 emp.Title = "Consultant"
 emp.HireDate = DateTime.Today

 employeeList.Add(emp)
 Next
 End Sub
 Public Function AllEmployees() As List(Of Employee) _
 Implements INorthwindRepository.AllEmployees
 Return employeeList
 End Function

 Public Sub DeleteEmployee(ByVal id As Integer) _
 Implements INorthwindRepository.DeleteEmployee
 Dim emp As Employee
 emp = (From e In employeeList
 Where e.EmployeeID = id
 Select e).First
 employeeList.Remove(emp)
 End Sub

 Public Function FindEmployeeByLastName(ByVal lastname As String) As Employee _
 Implements INorthwindRepository.FindEmployeeByLastName
 Dim result As Employee
 result = (From e In employeeList
 Where e.LastName.Contains(lastname)
 Select e).FirstOrDefault
 Return result
 End Function

 Public Function GetEmployeeByID(ByVal id As Integer) As Employee _
 Implements INorthwindRepository.GetEmployeeByID
 Dim result As Employee
 result = (From e In employeeList
 Where e.EmployeeID = id
 Select e).First
 Return result
 End Function

 Public Sub InsertEmployee(ByVal value As Employee) _
 Implements INorthwindRepository.InsertEmployee
 employeeList.Add(value)
 End Sub

End Class

Code snippet from NorthwindData

The list is populated in the constructor with some nonsense data. The remaining methods are similar to
their counterparts in the DbRepository, but rather than use the database connection, they retrieve elements
from the employeeList.

UnitTesting Walk-Through ❘ 301

302 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

You should now be able to run all the tests in both the RepositoryTests and TestDbTests to see that both
of your implementations work and all tests pass.

As you can see, using the test implementation requires far less setup and code to implement than a test
database. This means that it is easier to perform if you are simply experimenting with the functionality you
might need to access your database. There is a slight chance that the behavior of the internal list may differ
from the actual data access, but this can be controlled when defining the data types you return.

using the generate from usage feature
Visual Studio 2010 adds a very exciting testing feature: the capability to create your classes from the tests.
This enables you to do “pure” test-first development, without the actual effort of creating the structure of
your classes after you have tested them.

Using this method, you leverage IntelliSense to create the basic structure of the tested code while writing
your tests. Initially, these tests will fail, as the tested class does not have any functionality. You then edit your
class to add the needed functionality, and watch as your tests go from red to green.

Create a new Class Library project called Person. You can delete the initially created Class1 from
the project. Add a Test Project to the solution named Person.Tests. Rename the initially created
class from UnitTest1 to EmployeeTests,
and the initial test from TestMethod1 to
DefaultEmployeeInitializes. This test will
confirm that when you use the default constructor,
the properties of the new object are set to default
values. Of course, you haven’t created this new
class, or the properties, yet.

Add the line Dim emp As New Person.Employee
to the method. You’ll notice that the class name gets
a blue, wavy line under it to mark it as unknown to
IntelliSense. Open the smart tag menu for the item. Don’t select
the option to generate this type, as it will create the type within the
Person.Tests project, rather than the Person project. Instead, select
the “Generate new type” option (see Figure 7-9) to bring up the
Generate New Type dialog.

In the Generate New Type dialog (see Figure 7-10) select to add
the new type to the Person project, and change the Access to
Public. When you click OK, the Class Library should contain a
new file named Employee.vb.

Continue editing the test to add a few assertions about properties
of the Employee object. For example, if the object has been
created with the default constructor, then the properties should
have a value appropriate for each type:

<TestMethod()> Public Sub DefaultEmployeeInitializes()
 Dim emp As New Person.Employee
 'ensure default property values
 Assert.AreEqual(emp.Name, String.Empty)
 Assert.AreEqual(emp.Salary, Decimal.Zero)
 Assert.AreEqual(emp.HireDate, DateTime.MinValue)
End Sub

Code snippet from Person

Blue, wavy lines should again appear under the three properties. You can open the smart tag menu and
select to “Generate the property stub for ‘Name’ in Person.Employee.” This will add the method to the

figure 7-9

figure 7-10

Person class you created earlier. This time it automatically creates them in the correct project. Notice that
you can also choose to add the new item as a method or field as well as a property.

Next, add a second test method to the test class. This second method, ConstructorEmployeeInitializes,
will define a test that also constructs a new Employee, but this time using a constructor that takes the three
parameters to populate the properties:

<TestMethod()> Public Sub ConstructorEmployeeInitializes()
 Dim emp As New Person.Employee("Foo deBar", 33000, DateTime.Today)
 'confirm the properties are set
 StringAssert.Contains(emp.Name, "Foo deBar")
 Assert.AreEqual(emp.Salary, 33000D)
 Assert.AreEqual(emp.HireDate, DateTime.Today)
End Sub

Code snippet from Person

Again the blue, wavy lines appear, and again you can use the smart tag menu to create the new constructor
by selecting “Generate constructor stub in Person.Employee” from the smart tag menu. As you do this,
however, more lines appear under the code in the earlier method. Now the creation of a new Employee
using the default constructor has become invalid, as there is only the one constructor in the class: the one
taking three parameters. Fortunately, to reduce the wear and tear on your typing fingers, the smart tag
menu enables you to add a default constructor to the Employee class. The final structure of the test class is
as follows:

<TestClass()> Public Class PersonTests
 <TestMethod()> Public Sub DefaultEmployeeInitializes()
 Dim emp As New Person.Employee
 'ensure default property values
 Assert.AreEqual(emp.Name, String.Empty)
 Assert.AreEqual(emp.Salary, Decimal.Zero)
 Assert.AreEqual(emp.HireDate, DateTime.MinValue)
 End Sub

 <TestMethod()> Public Sub ConstructorEmployeeInitializes()
 Dim emp As New Person.Employee("Foo deBar", 33000, DateTime.Today)
 'confirm the properties are set
 StringAssert.Contains(emp.Name, "Foo deBar")
 Assert.AreEqual(emp.Salary, 33000D)
 Assert.AreEqual(emp.HireDate, DateTime.Today)
 End Sub
End Class

Code snippet from Person

Of course, the code generated is not perfect. There is no easy way for Visual Studio to determine just what
type each of the properties should be; and if you created methods, there is no way to determine the body of
those methods. The generated Employee class looks as follows:

Public Class Employee

 Private _p1 As String
 Private _p2 As Integer
 Private _p3 As Date
 Sub New(ByVal p1 As String, ByVal p2 As Integer, ByVal p3 As Date)
 ' TODO: Complete member initialization
 _p1 = p1
 _p2 = p2
 _p3 = p3
 End Sub
 Sub New()
 ' TODO: Complete member initialization
 End Sub

UnitTesting Walk-Through ❘ 303

304 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

 Property Name As Object
 Property Salary As Object
 Property HireDate As Object
End Class

Code snippet from Person

Notice that the three properties have all been created as Objects, and the parameters to the constructor — while
correct — do not have very descriptive names. Therefore, the code for the class can be cleaned up a little: Give
the parameters to the constructor more useful names, and apply the correct data types to the three properties.
While you’re in there, you might as well add a bit of validation to the Salary property, prohibiting negative
values. After editing the Employee class, it should look as follows:

Public Class Employee
 Private _name As String
 Private _salary As Decimal
 Private _hireDate As Date

 Sub New(ByVal name As String,
 ByVal salary As Decimal,
 ByVal hireDate As Date)
 Me.Name = name
 Me.Salary = salary
 Me.HireDate = hireDate
 End Sub
 Sub New()
 Me.Name = String.Empty
 Me.Salary = Decimal.Zero
 Me.HireDate = DateTime.MinValue
 End Sub
 Property Name As String
 Get
 Return _name
 End Get
 Set(ByVal value As String)
 _name = value
 End Set
 End Property
 Property Salary As Decimal
 Get
 Return _salary
 End Get
 Set(ByVal value As Decimal)
 If value < 0 Then
 Throw New ArgumentOutOfRangeException("Salary cannot be negative")
 End If
 _salary = value
 End Set
 End Property
 Property HireDate As Date
 Get
 Return _hireDate
 End Get
 Set(ByVal value As Date)
 _hireDate = value
 End Set
 End Property
End Class

Code snippet from Person

The short version of the properties for Name and HireDate could be left as is, because you don’t perform
any validation in them. Notice that rather than write directly to the private member variables, the

constructor calls the properties. This ensures that whatever validation you add to the property also applies
to the constructor. For the Salary property, it tests for a negative value passed in. If this happens, then a
new exception is thrown.

Add a third test method to the test PersonTests class. This test will confirm that the validation added to
the Salary property does actually throw an exception:

 <TestMethod()> Public Sub SalaryCannotBeNegative()
 Try
 Dim emp As New Person.Employee("Foo deBar", -10, DateTime.Today)
 'if we get to this line, there is a problem
 'as the line should have triggered the exception
 Assert.Fail("Employee salary cannot be negative")
 Catch aex As ArgumentOutOfRangeException
 'this is caused by passing in a negative value
 'as it is expected, we'll ignore it
 'which will return a success for the test
 Catch ex As Exception
 'deal with other exceptions here
 Assert.Fail(ex.Message)
 End Try
 End Sub

Code snippet from Person

This test is a little counterintuitive at first. Remember that you are attempting to cause an exception, so it
is a little like coding a double negative. The method first attempts to create a new Employee, passing in the
same Name and HireDate as before, but now with a negative Salary. If the class has been coded correctly,
this should throw an ArgumentOutOfRangeException. Therefore, if the code doesn’t throw an exception,
it will continue on past the constructor, meaning that there is a problem in the code. The code then fails the
test. If instead the correct exception was thrown, the code silently ignores it, meaning that the test will pass.
This method of constructing a test enables you to ensure that your classes have been defined defensively.
You should now be able to run the three tests and see them pass.

Using the Generate from Usage functionality in Visual Studio can be a great time saver when you create
your tests, and the classes they test. It enables you to write the tests first, and then be able to execute the
tests almost immediately, while giving you the core of the desired class.

oTher Visual sTudio ediTions
This chapter focuses on the testing functionality included in the Professional Edition of Visual Studio.
Table 7-5 describes the Premium and Ultimate Editions, which include a great deal of additional
functionality when testing.

TaBle 7-5: Functionality of the Premium and Ultimate Editions of Visual Studio

ediTion funcTionaliTy descriPTion

Premium Code coverage This feature will analyze your code and tests and allows you to
determine how much of the functionality of your classes is actually
tested . Ideally, you would like this value to be as high as possible,
as it means that you are testing most of the functionality of your
application .

Test impact analysis This feature analyzes your code and tests and determines which
tests are needed after a code change . This can be a great time
saver if you have a large number of tests, as it means you will
only need to execute a subset of them after updating your code .

continues

other Visual studio editions ❘ 305

306 ❘ chaPTer 7 tEst-dRiVEN dEVEloPmENt

Third ParTy TesTing frameWorKs
In addition to the testing tools in Visual Studio, a number of third-party testing tools are available. Some
of these tools provide basically the same services provided by the built-in testing (albeit with a different
syntax), while others provide functionality not available.

Several packages are available for adding functionality similar to the built-in testing. These can be used
instead of, or in parallel with, the existing testing. In addition, they can be used when working with Visual
Basic Express Edition, as the built-in testing is not available with that version. Some of these other testing
frameworks include:

 ➤ NUnit — This was the first testing framework made available for .NET. It is an open-source framework,
and originally a port of the JUnit library used by Java developers. Because of its age, you can find a
great deal of material about understanding and working with this library. Available for download from
www.nunit.org.

 ➤ MbUnit — MbUnit is an open-source testing framework that has become quite popular, and it is
used by a number of projects. There are currently two actively updated versions of MbUnit. Version
2 is available from www.mbunit.com, while version 3 is part of the Gallio project at www.gallio.org.

 ➤ xUnit.net — An open-source project developed primarily by two Microsoft developers (including the
original author of NUnit), this library attempts to enable developers to avoid some of the common
errors users make with some of the other frameworks. It is quite stable and full-featured. Some
developers argue that a few of the decisions made weren’t the correct ones, but that’s why we have
choice, isn’t it? Available for download from http://xunit.codeplex.com.

Another commonly used set of tools in testing are mocking frameworks. These enable you to create fake objects
within your tests that have a set behavior. They serve to create something like the TestRepository you created
earlier in this chapter, but without requiring you to actually create that class. They are particularly useful when
you attempt to write your tests completely before creating your classes, or when your classes might require some
setup or configuration tasks during the test. Some of the more commonly used mocking frameworks include:

 ➤ RhinoMocks — This is probably the most widely used mocking framework for .NET applications.
Available from www.ayende.com/projects/rhino-mocks.aspx.

 ➤ TypeMock — This is a commercial package that provides a number of features not available in other
mocking frameworks. Most notably, it enables you to mock existing classes and libraries without
requiring that you have an interface. That is, you can mock classes directly. This can be useful when
you want to mock an existing framework. Available from http://site.typemock.com.

 ➤ Moq — This is one of the more technically advanced mocking frameworks, written to target many modern
.NET Framework features, such as lambda functions. Available from http://code.google.com/p/moq.

ediTion funcTionaliTy descriPTion

Coded UI test This feature automates the testing of user interfaces (ASP .NET,
Windows Forms or WPF applications) . It records the steps you
perform when manually executing a series of steps, and allows
you to compare field values with desired values . While the merits
of testing user interfaces have been debated for a while, this can
be a useful step in validating your application .

Ultimate Web performance
testing

This feature allows you to test a Web application with a simulated
number of requests . This allows you to do load testing and test
how your application will perform with multiple simultaneous users
accessing it, before you actually release the site . It works similarly
to the Coded UI test in that you first record a series of steps . The
test then executes these steps simulating multiple clients .

TaBle 7-5 (continued)

They may not all be in the box, but a wide variety of tools are available to help you test your code. It’s
worth trying them out on a small project to get a feel for them, and whether they will help you write better,
more maintainable code.

summary
The unit testing features of Visual Studio enable you to verify your code, which gives you the confidence
to change that code, as you have a set of tests available to verify that the code still works after you change
it. While you might not become a full TDD convert, it is definitely worth taking a look at these tools to
determine how they can fit into your development efforts.

This chapter looked at testing your Visual Basic applications using the unit testing functionality available
with the Professional (and higher) edition of Visual Studio. In particular, it looked at how you create test
classes and methods, and use Visual Studio to execute them and verify your code. You saw how to test both
simple classes and classes that require setup, such as data access classes. In addition, it looked at some of the
other products available to help you in your testing — both features of advanced editions of Visual Studio
and third-party tools.

summary ❘ 307

 PART II

Business objects and data access

chaPTer 8: ⊲ Arrays, Collections, and Generics

chaPTer 9: ⊲ Using XML with Visual Basic

chaPTer 10: ⊲ ADO .NET and LINQ

chaPTer 11: ⊲ Data Access with the Entity Framework

chaPTer 12: ⊲ Working with SQL Server

chaPTer 13: ⊲ Services (XML/WCF)

8
 arrays, Collections,
and Generics

 WhaT you Will learn in This chaPTer

 Working with arrays ➤

 Iteration (looping) ➤

 Working with collections ➤

 Generics ➤

 Nullable types ➤

 Generic collections ➤

 Generic methods ➤

 Covariance and contravariance ➤

 In the beginning there were variables, and they were good. The idea that you map a location in memory
to a value was a key to tracking a value. However, most of us want to work on data as a set. Taking the
concept of a variable holding a value, we moved to the concept of a variable that could reference an array
of values. Arrays improved what developers could build but they weren ’ t the end of the line.

 Over time certain patterns developed in how arrays were used. Instead of just collecting a set of
values, we looked to use arrays to temporarily store values that were awaiting processing, or to
provide sorted collections. Each of these patterns started as a best practice for how to build and
manipulate array data or to build custom structures that replicate arrays.

 The computing world was very familiar with these concepts — for example, using a linked list to
enable more fl exibility regarding how data is sorted and retrieved. Patterns such as the stack (fi rst in,
last out) or queue (fi rst in, fi rst out) were in fact created as part of the original base Class Libraries.
Referred to as collections , they provide a more robust and feature - rich way to manage sets of data
than arrays can provide. These were common patterns prior to the introduction of .NET, and .NET
provided an implementation for each of these collection types.

 However, the common implementation of these collection classes relied on the Object base class. This
caused two issues. The fi rst, which is discussed in this chapter, is called boxing . Boxing wasn ’ t a big
deal on any given item in a collection, but it caused a slight performance hit; and as your collection
grew, it had the potential to impact your application ’ s performance. The second issue was that

312 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

having collections based only on the type Object went against the best practice of having a strongly typed
environment. As soon as you started loading items into a collection, you lost all type checking.

Solving the issues with collections based on the Object type is called generics. Originally introduced as part
of .NET 2.0, generics provide a way to create collection classes that are type-safe. The type of value that
will be stored in the collection is defined as part of the collection definition. Thus .NET has taken the type-
safe but limited capabilities of Arrays and combined them with the more powerful collection classes that
were object-based to provide a set of collection classes which are type-safe.

This chapter looks at these three related ways to create sets of information. Starting with a discussion of
arrays and the looping statements that process them. It next introduces collections and then moves to the
use of generics, followed by a walk-through of the syntax for defining your own generic templates. Note that
the sample code in this chapter is based on the ProVB_VS2010 project created in Chapter 1. Rather than
step through the creation of this project again, this chapter makes reference to it. A copy of all of the code is
also available as part of the download for this book.

arrays
It is possible to declare any type as an array of that type. Because an array is a modifier of another type, the
basic Array class is never explicitly declared for a variable’s type. The System.Array class that serves as
the base for all arrays is defined such that it cannot be created, but must be inherited. As a result, to create
an Integer array, a set of parentheses is added to the declaration of the variable. These parentheses indicate
that the system should create an array of the type specified. The parentheses used in the declaration may
be empty or may contain the size of the array. An array can be defined as having a single dimension using a
single index, or as having multiple dimensions by using multiple indices.

All arrays and collections in .NET start with an index of zero. However, the way an array is declared in Visual
Basic varies slightly from other .NET languages such as C#. Back when the first .NET version of Visual Basic
was announced, it was also announced that arrays would always begin at 0 and that they would be defined
based on the number of elements in the array. In other words, Visual Basic would work the same way as the
other initial .NET languages. However, in older versions of Visual Basic, it is possible to specify that an array
should start at 1 by default. This meant that a lot of existing code didn’t define arrays the same way.

To resolve this issue, the engineers at Microsoft decided on a compromise: All arrays in .NET begin at 0,
but when an array is declared in Visual Basic, the index defines the upper limit of the array, not the number
of elements. The challenge is to remember that all subscripts go from 0 to the upper bound, meaning that
each array contains one more element than its upper bound.

The main result of this upper-limit declaration is that arrays defined in Visual Basic have one more entry by
definition than those defined with other .NET languages. Note that it’s still possible to declare an array in
Visual Basic and reference it in C# or another .NET language. The following code examples illustrate five
different ways to create arrays, beginning with a simple integer array as the basis for the comparison:

Dim arrMyIntArray1(20) as Integer

In the first case, the code defines an array of integers that spans from arrMyIntArray1(0) to
arrMyIntArray1(20). This is a 21-element array, because all arrays start at 0 and end with the value
defined in the declaration as the upper bound.

Here is the second statement:

Dim arrMyIntArray2() as Integer = {1, 2, 3, 4}

The preceding statement creates an array with four elements numbered 0 through 3, containing the values 1 to 4.

In addition to creating arrays in one dimension it is possible to create arrays that account for multiple
dimensions. Think of this as an array of arrays — where all of the contents are of the same type. Thus, in the
third statement, we see an array of integers with two dimensions, a common representation of this is a grid:

Dim arrMyIntArray3(4,2) as Integer

The preceding declaration creates a multidimensional array containing five elements at the first level (or
dimension). However, the second number 2 indicates that these five elements actually reference arrays of
integers. In this case the second dimension for each of the first level dimensions contains three elements. Visual
Basic provides this syntax as shorthand for consistently accessing these contained arrays. Thus, for each of the
items in the first dimensions, you can access a second set of elements each containing three integers.

The fourth statement which follows shows an alternative way of creating a multidimensional array:

Dim arrMyIntArray4(,) as Integer = _
 { {1, 2, 3},{4, 5, 6}, {7, 8, 9},{10, 11, 12},{13, 14 , 15} }

The literal array declaration creates a multidimensional array with five elements in the first dimension, each
containing an array of three integers. The resulting array has 15 elements, but with the subscripts 0 to 4 at
the first level and 0 to 2 for each second level dimension. An excellent way to think of this is as a grid or a
table with five rows and three columns. In theory you can have any number of dimensions; however, while
having three dimensions isn’t too difficult to conceptualize, increasing numbers of dimensions in your arrays
can significantly increase complexity, and you should look for a design that limits the number of dimensions.

The fifth example demonstrates that it is possible to simply declare a variable and indicate that the variable
is an array, without specifying the number of elements in the array:

Dim arrMyIntArray5() as Integer

Note that the preceding declaration is not multidimensional, it is a single dimension array, just omitting the
details for the number of elements defined. Similarly, if instead of creating arrMyIntArray5 with predefined
values the goal had been to declare a two dimensional array placeholder, the declaration would have included
a comma: arrMyIntArray5(,). The usefulness of this empty declaration statement will become clearer as
we look at various examples for using the preceding set of array declarations.

multidimensional arrays
The definition of arrMyIntArray3 and arrMyIntArray4 are multidimensional arrays. In particular, the
declaration of arrMyIntArray4 creates an array with 15 elements (five in the first dimension, each of
which contains three integers) ranging from arrMyIntArray4(0,0) through arrMyIntArray4(2,1) to
arrMyIntArray4(4,2). As with all elements of an array, when it is created without specific values, the
value of each of these elements is created with the default value for that type. This case also demonstrates
that the size of the different dimensions can vary. It is possible to nest deeper than two levels, but this
should be done with care because such code is difficult to maintain.

For example, the value of arrMyIntArray4(0,1) is 2, while the value of arrMyIntArray4(3,2) is 12. To
demonstrate this, a method called SampleMD can be run from the ButtonTest_Click handler, which shows
the elements of this multidimensional array’s contents:

 Private Sub SampleMD()
 Dim arrMyIntArray4(,) As Integer =
 {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}}
 Dim intLoop1 As Integer
 Dim intLoop2 As Integer
 For intLoop1 = 0 To UBound(arrMyIntArray4)
 For intLoop2 = 0 To UBound(arrMyIntArray4, 2)
 TextBoxOutput.Text +=
 "{" & intLoop1 & ", " & intLoop2 & "} = " &
 arrMyIntArray4(intLoop1, intLoop2).ToString & vbCrLf
 Next
 Next
 End Sub

Code snippet from Form1

The preceding sample, when run in the Test window from Chapter 1, results in the output shown in Figure 8-1.
Note that Figure 8-1 is significantly simpler then what is in the code download. The code download includes

arrays ❘ 313

314 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

additional samples, including an additional button which will be created later in this chapter. If you are working
alongside the chapter with your own sample code your result will be similar to what is seen in Figure 8-1.

figure 8-1

The uBound function
Continuing to reference the arrays defined earlier, the declaration of arrMyIntArray2 actually defined
an array that spans from arrMyIntArray2(0) to arrMyIntArray2(3). That’s because when you declare an
array by specifying the set of values, it still starts at 0. However, in this case you are not specifying the upper
bound, but rather initializing the array with a set of values. If this set of values came from a database or
other source, then the upper limit on the array might not be clear. To verify the upper bound of an array, a
call can be made to the UBound function:

UBound(ArrMyIntArray2)

The preceding line of code retrieves the upper bound of the first dimension of the array and returns 3.
However, as noted in the preceding section, you can specify an array with several different dimensions. Thus,
this old-style method of retrieving the upper bound carries the potential for an error of omission. The better
way to retrieve the upper bound is to use the GetUpperBound method on your array instance. With this call,
you need to tell the array which dimension’s upper-bound value you want, as shown here (also returning 3):

ArrMyIntArray2.GetUpperBound(0)

This is the preferred method of obtaining an array’s upper bound because it explicitly indicates which upper
bound is wanted when using multidimensional arrays, and it follows a more object-oriented approach to
working with your array

The UBound function has a companion called LBound. The LBound function computes the lower bound for a
given array. However, as all arrays and collections in Visual Basic are zero-based, it doesn’t have much value
anymore.

The redim statement
The following code considers the use of a declared but not instantiated array. Unlike an integer value, which
has a default of 0, an array waits until a size is defined to allocate the memory it will use. The following
example revisits the declaration of an array that has not yet been instantiated. If an attempt were made to
assign a value to this array, it would trigger an exception.

Dim arrMyIntArray5() as Integer
' The commented statement below would compile but would cause a runtime exception.
'arrMyIntArray5(0) = 1

The solution to this is to use the ReDim keyword. Although ReDim was part of Visual Basic 6.0, it has
changed slightly. The first change is that code must first Dim an instance of the variable; it is not acceptable
to declare an array using the ReDim statement. The second change is that code cannot change the number
of dimensions in an array. For example, an array with three dimensions cannot grow to an array of four
dimensions, nor can it be reduced to only two dimensions.

To further extend the example code associated with arrays, consider the following, which manipulates some
of the arrays previously declared:

Dim arrMyIntArray3(4,2) as Integer
Dim arrMyIntArray4(,) as Integer =
 { {1, 2, 3},{4, 5, 6}, {7, 8, 9},{10, 11, 12},{13, 14 , 15} }
ReDim arrMyIntArray5(2)
ReDim arrMyIntArray3(5,4)
ReDim Preserve arrMyIntArray4(UBound(arrMyIntArray4),1)

The ReDim of arrMyIntArray5 instantiates the elements of the array so that values can be assigned to each
element. The second statement redimensions the arrMyIntArray3 variable defined earlier. Note that it is
changing the size of both the first dimension and the second dimension. While it is not possible to change
the number of dimensions in an array, you can resize any of an array’s dimensions. This capability is
required, as declarations such as Dim arrMyIntArray6(, , ,) As Integer are legal.

By the way, while it is possible to repeatedly ReDim a variable, for performance reasons this action should
ideally be done only rarely, and never within a loop. If you intend to loop through a set of entries and add
entries to an array, try to determine the number of entries you’ll need before entering the loop, or at a
minimum ReDim the size of your array in chunks to improve performance.

The Preserve Keyword
The last item in the code snippet in the preceding section illustrates an additional keyword associated with
redimensioning. The Preserve keyword indicates that the data stored in the array prior to redimensioning
should be transferred to the newly created array. If this keyword is not used, then the data stored in an
array is lost. Additionally, in the preceding example, the ReDim statement actually reduces the second
dimension of the array. Although this is a perfectly legal statement, this means that even though you
have specified preserving the data, the data values 3, 6, 9, 12, and 15 that were assigned in the original
definition of this array will be discarded. These are lost because they were assigned in the highest index of
the second array. Because arrMyIntArray4(1,2) is no longer valid, the value that resided at this location
(6) has been lost.

Arrays continue to be very powerful in Visual Basic, but the basic Array class is just that, basic. It provides
a powerful framework, but it does not provide a lot of other features that would enable more robust logic to
be built into the array. To achieve more advanced features, such as sorting and dynamic allocation, the base
Array class has been inherited by the classes that make up the Collections namespace.

collecTions
The Collections namespace is part of the System namespace. It provides a series of classes that implement
advanced array features. While the capability to make an array of existing types is powerful, sometimes
more power is needed in the array itself. The capability to inherently sort or dynamically add dissimilar
objects in an array is provided by the classes of the Collections namespace. This namespace contains a
specialized set of objects that can be instantiated for additional features when working with a collection of
similar objects. Table 8-1 defines several of the objects that are available as part of the System.Collections
namespace.

Collections ❘ 315

316 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

Each of the objects listed focuses on storing a collection of objects. This means that in addition to the
special capabilities each provides, it also provides one additional capability not available to objects created
based on the Array class. Because every variable in .NET is based on the Object class, it is possible to have
a collection that contains elements that are defined with different types. So a collection might contain an
integer as its first item, a string as its second item, and a custom Person object as its third item. There is no
guarantee of the type safety that is an implicit feature of an array.

Each of the preceding collection types stores an array of objects. All classes are of type Object, so a string
could be stored in the same collection with an integer. It’s possible within these collection classes for the
actual objects being stored to be different types. Consider the following example code within ProVB_
VS2010 download for Chapter 8:

 Private Sub SampleColl()
 Dim objMyArrList As New System.Collections.ArrayList()
 Dim objItem As Object
 Dim intLine As Integer = 1
 Dim strHello As String = "Hello"
 Dim objWorld As New System.Text.StringBuilder("World")

 ' Add an integer value to the array list.
 objMyArrList.Add(intLine)

 ' Add an instance of a string object
 objMyArrList.Add(strHello)

 ' Add a single character cast as a character.
 objMyArrList.Add(" "c)

 ' Add an object that isn't a primitive type.
 objMyArrList.Add(objWorld)

 ' To balance the string, insert a break between the line
 ' and the string "Hello", by inserting a string constant.
 objMyArrList.Insert(1, ". ")

 For Each objItem In objMyArrList
 ' Output the values on a single line.
 TextBoxOutput.Text += objItem.ToString()
 Next
 TextBoxOutput.Text += vbCrLf
 For Each objItem In objMyArrList
 ' Output the types, one per line.
 TextBoxOutput.Text += objItem.GetType.ToString() & vbCrLf
 Next
 End Sub

Code snippet from Form1

TaBle 8-1: Collection Classes

class descriPTion

ArrayList Implements an array whose size increases automatically as elements are added .

BitArray Manages an array of Booleans that are stored as bit values .

Hashtable Implements a collection of values organized by key . Sorting is done based on a hash of the key .

Queue Implements a first in, first out collection .

SortedList Implements a collection of values with associated keys . The values are sorted by key and are
accessible by key or index .

Stack Implements a last in, first out collection .

The preceding code is an example of
implementing the ArrayList collection class.
The collection classes, as this example shows,
are versatile. The preceding code creates a new
instance of an ArrayList, along with some
related variables to support the demonstration.
The code then shows four different types
of variables being inserted into the same
ArrayList. Next, the code inserts another
value into the middle of the list. At no time has
the size of the array been declared, nor has a
redefinition of the array size been required. The
output when run using the ProVB_V2010 project
is shown in Figure 8-2.

Visual Basic has additional classes available as
part of the System.Collections.Specialized
namespace. These classes tend to be oriented
around a specific problem. For example, the
ListDictionary class is designed to take advantage of the fact that although a hash table is very good at
storing and retrieving a large number of items, it can be costly when it contains only a few items. Similarly,
the StringCollection and StringDictionary classes are defined so that when working with strings, the
time spent interpreting the type of object is reduced and overall performance is improved. Each class defined
in this namespace represents a specialized implementation that has been optimized for handling specific
data types.

iterative statements
The preceding examples have relied on the use of the For...Next statement, which has not yet been
covered. Since you’ve now covered both arrays and collections, it’s appropriate to introduce the primary
commands for working with the elements contained in those variable types. Both the For loop and While
loop share similar characteristics, and which should be used is often a matter of preference.

For Each and For Next

The For structure in Visual Basic is the primary way of managing loops. It actually has two different formats.
A standard For Next statement enables you to set a loop control variable that can be incremented by the
For statement and custom exit criteria from your loop. Alternatively, if you are working with a collection in
which the array items are not indexed numerically, then it is possible to use a For Each loop to automatically
loop through all of the items in that collection. The following code shows a typical For Next loop that cycles
through each of the items in an array:

For i As Integer = 0 To 10 Step 2
 arrMyIntArray1(i) = i
Next

The preceding example sets the value of every other array element to its index, starting with the first item,
because like all .NET collections, the collection starts at 0. As a result, items 0, 2, 4, 6, 8, and 10 are set,
but items 1, 3, 5, 7, and 9 are not explicitly defined because the loop doesn’t address those values. In the
case of integers, they’ll default to a value of 0 because an integer is a value type; however, if this were an
array of strings or other reference types, then these array nodes would actually be undefined, i.e., Nothing.

The For Next loop is most commonly set up to traverse an array, collection, or similar construct (for
example, a data set). The control variable i in the preceding example must be numeric. The value can be
incremented from a starting value to an ending value, which are 0 and 10, respectively, in this example.
Finally, it is possible to accept the default increment of 1; or, if desired, you can add a Step qualifier to your
command and update the control value by a value other than 1. Note that setting the value of Step to 0

figure 8-2

Collections ❘ 317

318 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

means that your loop will theoretically loop an infinite number of times. Best practices suggest your control
value should be an integer greater than 0 and not a decimal or other floating-point number.

Visual Basic provides two additional commands that can be used within the For loop’s block to enhance
performance. The first is Exit For; and as you might expect, this statement causes the loop to end and
not continue to the end of the processing. The other is Continue, which tells the loop that you are finished
executing code with the current control value and that it should increment the value and reenter the loop for
its next iteration:

For i = 1 To 100 Step 2
 If arrMyIntArray1.Count <= i Then Exit For
 If i = 5 Then Continue For
 arrMyIntArray1 (i) = i - 1
Next

Both the Exit For and Continue keywords were used in the preceding example. Note how each uses a
format of the If-Then structure that places the command on the same line as the If statement so that no
End If statement is required. This loop exits if the control value is larger than the number of rows defined
for arrMyIntArray1.

Next, if the control variable i indicates you are looking at the sixth item in the array (index of five), then
this row is to be ignored, but processing should continue within the loop. Keep in mind that even though the
loop control variable starts at 1, the first element of the array is still at 0. The Continue statement indicates
that the loop should return to the For statement and increment the associated control variable. Thus, the
code does not process the next line for item six, where i equals 5.

The preceding examples demonstrate that in most cases, because your loop is going to process a known
collection, Visual Basic provides a command that encapsulates the management of the loop control variable.
The For Each structure automates the counting process and enables you to quickly assign the current item
from the collection so that you can act on it in your code. It is a common way to process all of the rows in
a data set or most any other collection, and all of the loop control elements such as Continue and Exit are
still available:

For Each item As Object In objMyArrList
 'Code A1
Next

While, Do While, and Do Until

In addition to the For loop, Visual Basic includes the While and Do loops, with two different versions of
the Do loop. The first is the Do While loop. With a Do While loop, your code starts by checking for a
condition; and as long as that condition is true, it executes the code contained in the Do loop. Optionally,
instead of starting the loop by checking the While condition, the code can enter the loop and then check the
condition at the end of the loop. The Do Until loop is similar to the Do While loop:

Do While blnTrue = True
 'Code A1
Loop

The Do Until differs from the Do While only in that, by convention, the condition for a Do Until is
placed after the code block, thus requiring the code in the Do block to execute once before the condition
is checked. It bears repeating, however, that a Do Until block can place the Until condition with the Do
statement instead of with the Loop statement, and a Do While block can similarly have its condition at the
end of the loop:

Do
 'Code A1
Loop Until (blnTrue = True)

In both cases, instead of basing the loop around an array of items or a fixed number of iterations, the loop is
instead instructed to continue perpetually until a condition is met. A good use for these loops involves tasks
that need to repeat for as long as your application is running. Similar to the For loop, there are Exit Do and

 Continue commands that end the loop or move to the next iteration, respectively. Note that parentheses are
allowed but are not required for both the While and the Until conditional expression.

 The other format for creating a loop is to omit the Do statement and just create a While loop. The While loop
works similarly to the Do loop, with the following differences. The While loop ’ s endpoint is an End While
statement instead of a loop statement. Second, the condition must be at the start of the loop with the
 While statement, similar to the Do While . Finally, the While loop has an Exit While statement instead of
 Exit Do , although the behavior is the same. An example is shown here:

While blnTrue = True
 If blnFalse Then
 blnTrue = False
 End if
 If not blnTrue Then Exit While
 System.Threading.Thread.Sleep(500)
 blnFalse = True
End While

 The While loop has more in common with the For loop, and in those situations where someone is familiar
with another language such as C++ or C#, it is more likely to be used than the older Do - Loop syntax that is
more specifi c to Visual Basic.

 Finally, before leaving the discussion of looping, note the potential use of endless loops. Seemingly endless, or
infi nite, loops play a role in application development, so it ’ s worthwhile to illustrate how you might use one.
For example, if you were writing an e - mail program, you might want to check the user ’ s mailbox on the server
every 20 seconds. You could create a Do While or Do Until loop that contains the code to open a network
connection and check the server for any new mail messages to download. You would continue this process
until either the application was closed or you were unable to connect to the server. When the application was
asked to close, the loop ’ s Exit statement would execute, thus terminating the loop. Similarly, if the code were
unable to connect to the server, it might exit the current loop, alert the user, and probably start a loop that
would look for network connectivity on a regular basis.

 One warning with endless loops: Always include a call to Thread . Sleep so that the
loop only executes a single iteration within a given time frame to avoid consuming too
much processor time.

 Boxing
 Normally, when a conversion (implicit or explicit) occurs, the original value is read from its current memory
location, and then the new value is assigned. For example, to convert a Short to a Long , the system reads
the two bytes of Short data and writes them to the appropriate bytes for the Long variable. However, under
Visual Basic, if a value type needs to be managed as an object, then the system performs an intermediate
step. This intermediate step involves taking the value on the stack and copying it to the heap, a process
referred to as boxing . In Chapter 1, in the section titled “ Value and Reference Types ” , a distinction was made
regarding how certain types were stored. As noted then, Value types are stored on the stack, while reference
values are stored on the heap. As noted earlier, the Object class is implemented as a reference type, so
the system needs to convert value types into reference types for them to be objects. This doesn ’ t cause any
problems or require any special programming, because boxing isn ’ t something you declare or directly
control, but it does affect performance.

 If you ’ re copying the data for a single value type, this is not a signifi cant cost, but if you ’ re processing an
array that contains thousands of values, the time spent moving between a value type and a temporary
reference type can be signifi cant. Thus, if when reviewing code you fi nd a scenario where a value is boxed, it
may not be of signifi cant concern. When it becomes something to address is if that boxing is called within a
loop that is executed thousands or millions of times. When considering best practices, boxing is something
to address when working with large collections and calls that are made repeatedly.

Collections ❘ 319

320 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

Fortunately, there are ways to limit the amount of boxing that occurs when using collections. One method that
works well is to create a class based on the value type you need to work with. This might seem counterintuitive
at first because it costs more to create a class. The key is how often you reuse the data contained in the class. By
repeatedly using the object to interact with other objects, you avoid creating a temporary boxed object.

Examples in two important areas will help illustrate boxing. The first involves the use of arrays. When an
array is created, the portion of the class that tracks the element of the array is created as a reference object, but
each element of the array is created directly. Thus, an array of integers consists of an Array object and a set of
Integer value types. When you update one of the values with another integer value, no boxing is involved:

Dim arrInt(20) as Integer
Dim intMyValue as Integer = 1

arrInt(0) = 0
arrInt(1) = intMyValue

Neither of these assignments of an integer value into the integer array that was defined previously requires
boxing. In each case, the array object identifies which value on the stack needs to be referenced, and the
value is assigned to that value type. The point here is that just because you have referenced an object doesn’t
mean you are going to box a value. The boxing occurs only when the values being assigned are being
transitioned from value types to reference types:

Dim strBldr as New System.Text.StringBuilder()
Dim mySortedList as New System.Collections.SortedList()
Dim count as Integer
For count = 1 to 100
 strBldr.Append(count)
 mySortedList.Add(count, count)
Next

The preceding snippet illustrates two separate calls to object interfaces. One call requires boxing of the value
intCount, while the other does not. Nothing in the code indicates which call is which, but the Append method
of StringBuilder has been overridden to include a version that accepts an integer, while the Add method of
the SortedList collection expects two objects. Although the integer values can be recognized by the system as
objects, doing so requires the runtime library to box these values so that they can be added to the sorted list.

When looking for boxing, the concern isn’t that you are working with objects as part of an action, but
that you are passing a value type to a parameter that expects an object, or you are taking an object and
converting it to a value type. However, boxing does not occur when you call a method on a value type.
There is no conversion to an object, so if you need to assign an integer to a string using the ToString
method, there is no boxing of the integer value as part of the creation of the string. Conversely, you are
explicitly creating a new string object, so the cost is similar.

generics
Generics refer to the technology built into the .NET Framework (introduced originally with the .NET
Framework version 2.0) that enables you to define a template and then declare variables using that template.
The template defines the operations that the new type can perform; and when you declare a variable based
on the template, you are creating a new type. The benefit of generics over untyped collections or arrays
is that a generic template makes it easier for collection types to be strongly typed. The introduction of
covariance in .NET Framework 4 makes it easier to reuse the template code in different scenarios.

The primary motivation for adding generics to .NET was to enable the creation of strongly typed collection
types. Because generic collection types are strongly typed, they are significantly faster than the previous
inheritance-based collection model. Anywhere you presently use collection classes in your code, you should
consider revising that code to use generic collection types instead.

Visual Basic 2010 allows not only the use of preexisting generics, but also the creation of your own generic
templates. Because the technology to support generics was created primarily to build collection classes, it

naturally follows that you might create a generic collection anytime you would otherwise build a normal
collection class. More specifically, anytime you find yourself using the Object data type, you should instead
consider using generics.

using generics
There are many examples of generic templates in the .NET Base Class Library (BCL). Many of them can
be found in the System.Collections.Generic namespace, but others are scattered through the BCL as
appropriate. Many of the examples focus on generic collection types, but this is only because it is here that
the performance gains, due to generics, are seen. In most cases, generics are used less for performance gains
than for the strong typing benefits they provide. As noted earlier, anytime you use a collection data type,
you should consider using the generic equivalent instead.

A generic is often written as something like List(Of T). The type (or class) name in this case is List.
The letter T is a placeholder, much like a parameter. It indicates where you must provide a specific type
value to customize the generic. For instance, you might declare a variable using the List(Of T) generic:

Dim data As New List(Of Date)

In this case, you are specifying that the type parameter, T, is a Date. By providing this type, you are
specifying that the list will only contain values of type Date. To make this clearer, let’s contrast the new
List(Of T) collection with the older ArrayList type.

When you work with an ArrayList, you are working with a type of collection that can store many types of
values at the same time:

Dim data As New ArrayList()
data.Add("Hello")
data.Add(5)
data.Add(New Customer())

This ArrayList is loosely typed, internally always storing the values as type Object. This is very flexible
but relatively slow because it is late bound. What this means is that when you determine something at
runtime you are binding to that type. Of course, it offers the advantage of being able to store any data type,
with the disadvantage that you have no control over what is actually stored in the collection.

The List(Of T) generic collection is quite different. It is not a type at all; it is just a template. A type is not
created until you declare a variable using the template:

Dim data As New Generic.List(Of Integer)
data.Add(5)
data.Add(New Customer()) ' throws an exception
data.Add("Hello") ' throws an exception

When you declare a variable using the generic, you must provide the type of value that the new collection will
hold. The result is that a new type is created — in this case, a collection that can hold only Integer values.

The important thing here is that this new collection type is strongly typed for Integer values. Not only does
its external interface (its Item and Add methods, for instance) require Integer values, but its internal storage
mechanism only works with type Integer. This means that it is not late bound like ArrayList, but rather
is early bound. The net result is much higher performance, along with all the type-safety benefits of being
strongly typed.

Generics are useful because they typically offer better performance than traditional collection classes. In
some cases, they can also save you from writing code, as generic templates can provide code reuse, whereas
traditional classes cannot. Finally, generics can sometimes provide better type safety compared to traditional
classes, as a generic adapts to the specific type you require, whereas classes often must resort to working
with a more general type such as Object.

Generics come in two forms: generic types and generic methods. For instance, List(Of T) is a generic type
in that it is a template that defines a complete type or class. In contrast, some otherwise normal classes have

Generics ❘ 321

322 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

single methods that are just method templates and that assume a specific type when they are called. We will
look at both scenarios.

nullable Types
In addition to having the option to explicitly check for the DBNull value, Visual Basic 2005 introduced the
capability to create a nullable value type. In the background, when this syntax is used, the system creates a
reference type containing the same data that would be used by the value type. Your code can then check the
value of the nullable type before attempting to set this into a value type variable. Nullable types are built
using generics. Note that while the Visual Basic keyword for null is Nothing, it is common to discuss this
type as supporting a null value even in Visual Basic.

For consistency let’s take a look at how nullable types work. The key, of course, is that value types can’t be
set to null (aka Nothing). This is why nullable types aren’t value types. The following statements show how
to declare a nullable integer:

Dim intValue as Nullable(Of Integer)
Dim intValue2 as Integer?

Both intValue and intValue2 act like integer variables, but they aren’t actually of type Integer. As noted,
the syntax is based on generics, but essentially you have just declared an object of type Nullable and declared
that this object will, in fact, hold integer data. Thus, both of the following assignment statements are valid:

intValue = 123
intValue = Nothing

However, at some point you are going to need to pass intValue to a method as a parameter, or set some
property on an object that is looking for an object of type Integer. Because intValue is actually of type
Nullable, it has the properties of a nullable object. The Nullable class has two properties of interest
when you want to get the underlying value. The first is the property value. This represents the underlying
value type associated with this object. In an ideal scenario, you would just use the value property of the
Nullable object in order to assign to your actual value a type of integer and everything would work.
If the intValue.value wasn’t assigned, you would get the same value as if you had just declared a new
Integer without assigning it a value which would be 0.

Unfortunately, that’s not how the nullable type works. If the intValue.value property contains Nothing
and you attempt to assign it, then it throws an exception. To avoid getting this exception, you always need
to check the other property of the nullable type: HasValue. The HasValue property is a Boolean that
indicates whether a value exists; if one does not, then you shouldn’t reference the underlying value. The
following code example shows how to safely use a nullable type:

Dim intValue as Nullable(Of Integer)
Dim intI as Integer
If intValue.HasValue Then
 intI = intValue.Value
End If

Of course, you could add an Else statement to the preceding and use either Integer.MinValue or
Integer.MaxValue as an indicator that the original value was Nothing. The key point here is that nullable
types enable you to easily work with nullable columns in your database, but you must still verify whether an
actual value or null was returned.

generic Types
Now that you have a basic understanding of generics and how they compare to regular types, let’s get
into some more detail. To do this, you will make use of some other generic types provided in the .NET
Framework. A generic type is a template that defines a complete class, structure, or interface. When you
want to use such a generic, you declare a variable using the generic type, providing the real type (or types) to
be used in creating the actual type of your variable.

Basic Usage
First, consider the Dictionary(Of K, T) generic. This is much like the List(Of T) discussed earlier, but
this generic requires that you define the types of both the key data and the values to be stored. When you
declare a variable as Dictionary(Of K, T), the new Dictionary type that is created only accepts keys of
the one type and values of the other.

Add the following method to the VBPro_VS2010 sample project and call it from the ButtonTest_Click
event handler:

Private Sub SampleDict()
 Dim data As New Generic.Dictionary(Of Integer, String)
 data.Add(5, "Bill")
 data.Add(1, "Johnathan")
 For Each item As KeyValuePair(Of Integer, String) In data
 TextBoxOutput.AppendText("Data: " & item.Key & ", " &
 item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)

End Sub

Code snippet from Form1

As you type, watch the IntelliSense information on the Add method. Notice how the key and value
parameters are strongly typed based on the specific types provided in the declaration of the data variable. In
the same code, you can create another type of Dictionary:

Private Sub SampleDict()
 Dim data As New Generic.Dictionary(Of Integer, String)
 Dim info As New Generic.Dictionary(Of Guid, Date)
 data.Add(5, "Bill")
 data.Add(1, "Johnathan")
 For Each item As KeyValuePair(Of Integer, String) In data
 TextBoxOutput.AppendText("Data: " & item.Key & ", " &
 item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)
 info.Add(Guid.NewGuid, Now)
 For Each item As KeyValuePair(Of Guid, Date) In info
 TextBoxOutput.AppendText("Info: " & item.Key.ToString &
 ", " & item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)

End Sub

Code snippet from Form1

This code contains two completely different types. Both have the behaviors of a Dictionary, but they are
not interchangeable because they have been created as different types.

Generic types may also be used as parameters and return types. For instance, add the following method to
Form1:

 Private Function LoadData() As Generic.Dictionary(Of Integer, String)
 Dim data As New Generic.Dictionary(Of Integer, String)
 data.Add(5, "William")
 data.Add(1, "Johnathan")
 Return data
 End Function

Generics ❘ 323

324 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

To call this method from the btnDictionary_Click method, add this code:

Private Sub SampleDict()
 Dim data As New Generic.Dictionary(Of Integer, String)
 Dim info As New Generic.Dictionary(Of Guid, Date)
 data.Add(5, "Bill")
 data.Add(1, "Johnathan")
 For Each item As KeyValuePair(Of Integer, String) In data
 TextBoxOutput.AppendText("Data: " & item.Key & ", " &
 item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)
 info.Add(Guid.NewGuid, Now)
 For Each item As KeyValuePair(Of Guid, Date) In info
 TextBoxOutput.AppendText("Info: " & item.Key.ToString &
 ", " & item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)
 Dim results As Generic.Dictionary(Of Integer, String)
 results = LoadData()
 For Each item As KeyValuePair(Of Integer, String) In results
 TextBoxOutput.AppendText("Results: " & item.Key & ", " &
 item.Value)
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 TextBoxOutput.AppendText(Environment.NewLine)

End Sub

Code snippet from Form1

The results of running this code are shown in Figure 8-3.

figure 8-3

This works because both the return type of the function and the type of the data variable are exactly the same.
Not only are they both Generic.Dictionary derivatives, they have exactly the same types in the declaration.

The same is true for parameters:

 Private Sub DoWork(ByVal values As Generic.Dictionary(Of Integer, String))
 ' do work here
 End Sub

Again, the parameter type is not only defined by the generic type, but also by the specific type values used to
initialize the generic template.

inheritance
It is possible to inherit from a generic type as you define a new class. For instance, the .NET BCL defines the
System.ComponentModel.BindingList(Of T) generic type. This type is used to create collections that
can support data binding. You can use this as a base class to create your own strongly typed, data-bindable
collection. Add new classes named Customer and CustomerList to the sample project with the following code:

Public Class Customer
 Public Property Name() As String
End Class

Code snippet from Customer

 Inherits System.ComponentModel.BindingList(Of Customer)

 Private Sub CustomerList_AddingNew(ByVal sender As Object, _
 ByVal e As System.ComponentModel.AddingNewEventArgs) Handles Me.AddingNew
 Dim cust As New Customer()
 cust.Name = "<new>"
 e.NewObject = cust
 End Sub
End Class

Code snippet from CustomerList

When you inherit from BindingList(Of T), you must provide a specific type — in this case, Customer.
This means that your new CustomerList class extends and can customize BindingList(Of Customer).
Here you are providing a default value for the Name property of any new Customer object added to the
collection.

When you inherit from a generic type, you can employ all the normal concepts of inheritance, including
overloading and overriding methods, extending the class by adding new methods, handling events, and
so forth.

To see this in action, add a new Button control named ButtonCustomer to Form1 and add a new form
named FormCustomerGrid to the project. Add a DataGridView control to FormCustomerGrid and dock it
by setting the Dock property to Fill in the parent container option.

Behind the ButtonCustomer_Click event handler, add the following code:

 FormCustomerGrid.ShowDialog()

Then add the following code behind FormCustomerGrid:

Public Class FormCustomerGrid
 Dim list As New CustomerList()
 Private Sub FormCustomerGrid_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 DataGridView1.DataSource = list
 End Sub
End Class

Code snippet from FormCustomerGrid

Generics ❘ 325

326 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

This code creates an instance of CustomerList and data binds
the list as the DataSource for the DataGridView control.
When you run the program and click the button to open
the CustomerForm, notice that the grid contains a newly added
Customer object. As you interact with the grid, new Customer
objects are automatically added, with a default name of <new>.
An example is shown in Figure 8-4.

All this functionality of adding new objects and setting the
default Name value occurs because CustomerList inherits from
BindingList(Of Customer).

generic methods
A generic method is a single method that is called not only
with conventional parameters, but also with type information
that defines the method. Generic methods are far less common than generic types. Due to the extra syntax
required to call a generic method, they are also less readable than a normal method.

A generic method may exist in any class or module; it does not need to be contained within a generic type.
The primary benefit of a generic method is avoiding the use of CType or DirectCast to convert parameters
or return values between different types.

It is important to realize that the type conversion still occurs; generics merely provide an alternative
mechanism to use instead of CType or DirectCast.

Without generics, code often uses the Object type. Add the following method to Form1:

 Public Function AreEqual(ByVal a As Object, ByVal b As Object) As Boolean
 Return a.Equals(b)
 End Function

The problem with this code is that a and b could be anything. There is no restriction here, nothing to ensure
that they are even the same type. An alternative is to use generics. Add the following method to Form1:

 Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
 Return a.Equals(b)
 End Function

Now a and b are forced to be the same type, and that type is specified when the method is invoked.

Create a new Sub method in Form1 with the following code:

Private Sub CheckEqual()
 Dim result As Boolean
 ' use normal method
 result = AreEqual(1, 2)
 result = AreEqual("one", "two")
 result = AreEqual(1, "two")
 ' use generic method
 result = AreEqual(Of Integer)(1, 2)
 result = AreEqual(Of String)("one", "two")
 'result = AreEqual(Of Integer)(1, "two")
End Sub

Code snippet from Form1

However, why not just declare the method as a Boolean? This code will probably cause some confusion.
The first three method calls are invoking the normal AreEqual method. Notice that there is no problem
asking the method to compare an Integer and a String.

The second set of calls looks very odd. At first glance, they look like nonsense to many people. This is
because invoking a generic method means providing two sets of parameters to the method, rather than the
normal one set of parameters.

figure 8-4

Creating Generics ❘ 327

 The fi rst set of parameters contain the type or types required to defi ne the method. This is much like the list
of types you must provide when declaring a variable using a generic class. In this case, you ’ re specifying that
the AreEqual method will be operating on parameters of type Integer .

 The second set of parameters contains the conventional parameters that you ’ d normally supply to a
method. What is special in this case is that the types of the parameters are being defi ned by the fi rst set
of parameters. In other words, in the fi rst call, the type is specifi ed to be Integer , so 1 and 2 are valid
parameters. In the second call, the type is String , so “ one ” and “ two ” are valid. Notice that the third line
is commented out. This is because 1 and “ two ” aren ’ t the same type; with Option Strict On, the compiler
will fl ag this as an error. With Option Strict Off, the runtime will attempt to convert the string at runtime
and fail, so this code will not function correctly.

 creaTing generics
 Now that you have a good idea how to use preexisting generics in your code, let ’ s take a look at how you
can create generic templates. The primary reason to create a generic template instead of a class is to gain
strong typing of your variables. Anytime you fi nd yourself using the Object data type, or a base class from
which multiple types inherit, you may want to consider using generics. By using generics, you can avoid the
use of CType or DirectCast , thereby simplifying your code. If you can avoid using the Object data type,
you will typically improve the performance of your code.

 As discussed earlier, there are generic types and generic methods. A generic type is basically a class or
structure that assumes specifi c type characteristics when a variable is declared using the generic. A generic
method is a single method that assumes specifi c type characteristics, even though the method might be in an
otherwise very conventional class, structure, or module.

 generic Types
 Recall that a generic type is a class, structure, or interface template. You can create such templates yourself
to provide better performance, strong typing, and code reuse to the consumers of your types.

 Classes
 A generic class template is created in the same way that you create a normal class, except that you require
the consumer of your class to provide you with one or more types for use in your code. In other words,
as the author of a generic template, you have access to the type parameters provided by the user of your
generic.

 For example, add a new class named SingleLinkedList to the project:

Public Class SingleLinkedList(Of T)
End Class

 In the declaration of the type, you specify the type parameters that will be required:

Public Class SingleLinkedList(Of T)

 In this case, you are requiring just one type parameter. The name, T , can be any valid variable name. In
other words, you could declare the type like this:

Public Class SingleLinkedList(Of ValueType)

 Make this change to the code in your project.

 By convention (carried over from C++ templates), the variable names for type
parameters are single uppercase letters. This is somewhat cryptic, and you may want to
use a more descriptive convention for variable naming.

328 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

Whether you use the cryptic standard convention or more readable parameter names, the parameter is
defined on the class definition. Within the class itself, you then use the type parameter anywhere that you
would normally use a type (such as String or Integer).

To create a linked list, you need to define a Node class. This will be a nested class:

Public Class SingleLinkedList(Of ValueType)
#Region " Node class "
 Private Class Node
 Private mValue As ValueType
 Public ReadOnly Property Value() As ValueType
 Get
 Return mValue
 End Get
 End Property
 Public Property NextNode() As Node

 Public Sub New(ByVal value As ValueType, ByVal newNode As Node)
 mValue = value
 NextNode = newNode
 End Sub
 End Class
#End Region
End Class

Code snippet from SingleLinkedList

Notice how the mValue variable is declared as ValueType. This means that the actual type of mValue
depends on the type supplied when an instance of SingleLinkedList is created.

Because ValueType is a type parameter on the class, you can use ValueType as a type anywhere in the
code. As you write the class, you cannot tell what type ValueType will be. That information is provided by
the user of your generic class. Later, when someone declares a variable using your generic type, that person
will specify the type, like this:

Dim list As New SingleLinkedList(Of Double)

At this point, a specific instance of your generic class is created, and all cases of ValueType within your
code are replaced by the Visual Basic compiler with Double. Essentially, this means that for this specific
instance of SingleLinkedList, the mValue declaration ends up as follows:

 Private mValue As Double

Of course, you never get to see this code, as it is dynamically generated by the .NET Framework’s JIT
compiler at runtime based on your generic template code.

The same is true for methods within the template. Your example contains a constructor method, which
accepts a parameter of type ValueType. Remember that ValueType will be replaced by a specific type when
a variable is declared using your generic.

So, what type is ValueType when you are writing the template itself? Because it can conceivably be any type
when the template is used, ValueType is treated like the Object type as you create the generic template.
This severely restricts what you can do with variables or parameters of ValueType within your generic code.

The mValue variable is of ValueType, which means it is basically of type Object for the purposes of your
template code. Therefore, you can do assignments (as you do in the constructor code), and you can call any
methods that are on the System.Object type:

 ➤ Equals()

 ➤ GetHashCode()

 ➤ GetType()

 ➤ ReferenceEquals()

 ➤ ToString()

Creating Generics ❘ 329

No operations beyond these basics are available by default. Later in the chapter, you will learn about the
concept of constraints, which enables you to restrict the types that can be specified for a type parameter.
Constraints have the added benefit that they expand the operations you can perform on variables or
parameters defined based on the type parameter.

However, this capability is enough to complete the SingleLinkedList class. Add the following code to the
class after the End Class from the Node class:

 Private mHead As Node
 Default Public ReadOnly Property Item(ByVal index As Integer) As ValueType
 Get
 Dim current As Node = mHead
 For index = 1 To index
 current = current.NextNode
 If current Is Nothing Then
 Throw New Exception("Item not found in list")
 End If
 Next
 Return current.Value
 End Get
 End Property
 Public Sub Add(ByVal value As ValueType)
 mHead = New Node(value, mHead)
 End Sub
 Public Sub Remove(ByVal value As ValueType)
 Dim current As Node = mHead
 Dim previous As Node = Nothing
 While current IsNot Nothing
 If current.Value.Equals(value) Then
 If previous Is Nothing Then
 ' this was the head of the list
 mHead = current.NextNode
 Else
 previous.NextNode = current.NextNode
 End If
 Exit Sub
 End If
 previous = current
 current = current.NextNode
 End While
 'got to the end without finding the item.
 Throw New Exception("Item not found in list")
 End Sub

 Public ReadOnly Property Count() As Integer
 Get
 Dim result As Integer = 0
 Dim current As Node = mHead
 While current IsNot Nothing
 result += 1
 current = current.NextNode
 End While
 Return result
 End Get
 End Property

Code snippet from SingleLinkedList

Notice that the Item property and the Add and Remove methods all use ValueType as either return types or
parameter types. More important, note the use of the Equals method in the Remove method:

 If current.Value.Equals(value) Then

330 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

The reason why this compiles is because Equals is defined on System.Object and is therefore universally
available. This code could not use the = operator because that is not universally available.

To try out the SingleLinkedList class, add the following method, which can be called from the
ButtonTest Click method:

 Private Sub CustomList()
 Dim list As New SingleLinkedList(Of String)
 list.Add("Nikita")
 list.Add("Elena")
 list.Add("Benajmin")
 list.Add("William")
 list.Add("Abigail")
 list.Add("Johnathan")
 TextBoxOutput.Clear()
 TextBoxOutput.AppendText("Count: " & list.Count)
 TextBoxOutput.AppendText(Environment.NewLine)
 For index As Integer = 0 To list.Count - 1
 TextBoxOutput.AppendText("Item: " & list.Item(index))
 TextBoxOutput.AppendText(Environment.NewLine)
 Next
 End Sub

Code snippet from Form1

When you run the code, you will see a display similar to Figure 8-5.

figure 8-5

other Generic Class features
Earlier in the chapter, you used the Dictionary generic, which specifies multiple type parameters. To
declare a class with multiple type parameters, you use syntax like the following:

Public Class MyCoolType(Of T, V)
 Private mValue As T
 Private mData As V
 Public Sub New(ByVal value As T, ByVal data As V)
 mValue = value
 mData = data
 End Sub
End Class

Creating Generics ❘ 331

In addition, it is possible to use regular types in combination with type parameters, as shown here:

Public Class MyCoolType(Of T, V)
 Private mValue As T
 Private mData As V
 Private mActual As Double
 Public Sub New(ByVal value As T, ByVal data As V, ByVal actual As Double)
 mValue = value
 mData = data
 mActual = actual
 End Sub
End Class

Other than the fact that variables or parameters of types T or V must be treated as type System.Object, you
can write virtually any code you choose. The code in a generic class is really no different from the code
you’d write in a normal class.

This includes all the object-oriented capabilities of classes, including inheritance, overloading, overriding,
events, methods, properties, and so forth. However, there are some limitations on overloading. In
particular, when overloading methods with a type parameter, the compiler does not know what that specific
type might be at runtime. Thus, you can only overload methods in ways in which the type parameter (which
could be any type) does not lead to ambiguity.

For instance, adding these two methods to MyCoolType before the .NET Framework 3.5 would have
resulted in a compiler error:

 Public Sub DoWork(ByVal data As Integer)
 ' do work here
 End Sub
 Public Sub DoWork(ByVal data As V)
 ' do work here
 End Sub

Now this is possible due to the support for implicitly typed variables. During compilation in .NET, the
compiler figures out what the data type of V should be. Next it replaces V with that type which allows
your code to compile correctly. This was not the case prior to .NET 3.5. Before this version of the .NET
Framework, this kind of code would have resulted in a compiler error. It wasn’t legal because the compiler
didn’t know whether V would be an Integer at runtime. If V were to end up defined as an Integer, then
you’d have two identical method signatures in the same class.

Classes and inheritance
Not only can you create basic generic class templates, you can also combine the concept with inheritance.
This can be as basic as having a generic template inherit from an existing class:

Public Class MyControls(Of T)
 Inherits Control
End Class

In this case, the MyControls generic class inherits from the Windows Forms Control class, thus gaining all
the behaviors and interface elements of a Control.

Alternately, a conventional class can inherit from a generic template. Suppose that you have a simple generic
template:

Public Class GenericBase(Of T)
End Class

It is quite practical to inherit from this generic class as you create other classes:

Public Class Subclass
 Inherits GenericBase(Of Integer)
End Class

332 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

Notice how the Inherits statement not only references GenericBase, but also provides a specific type for
the type parameter of the generic type. Anytime you use a generic type, you must provide values for the type
parameters, and this is no exception. This means that your new Subclass actually inherits from a specific
instance of GenericBase, where T is of type Integer.

Finally, you can also have generic classes inherit from other generic classes. For instance, you can create a
generic class that inherits from the GenericBase class:

Public Class GenericSubclass(Of T)
 Inherits GenericBase(Of Integer)
End Class

As with the previous example, this new class inherits from an instance of GenericBase, where T is of type
Integer.

Things can get far more interesting. It turns out that you can use type parameters to specify the types for
other type parameters. For instance, you could alter GenericSubclass like this:

Public Class GenericSubclass(Of V)
 Inherits GenericBase(Of V)
End Class

Notice that you’re specifying that the type parameter for GenericBase is V — which is the type provided by the
caller when declaring a variable of type GenericSubclass. Therefore, if a caller uses a declaration that creates
an object as a GenericSubclass(Of String) then V is of type String. This means that the GenericSubclass is
now inheriting from an instance of GenericBase, where its T parameter is also of type String. The point being
that the type flows through from the subclass into the base class. If that is not complex enough, for those who
just want a feel for how twisted this logic can become, consider the following class definition:

Public Class GenericSubclass(Of V)
 Inherits GenericBase(Of GenericSubclass(Of V))
End Class

In this case, the GenericSubclass is inheriting from GenericBase, where the T type in GenericBase is
actually based on the declared instance of the GenericSubclass type. A caller can create such an instance
with the simple declaration which follows:

Dim obj As GenericSubclass(Of Date)

In this case, the GenericSubclass type has a V of type Date. It also inherits from GenericBase, which has
a T of type GenericSubclass(Of Date).

Such complex relationships are typically not useful, in fact they are often counter productive making code
difficult to follow and debug. The point was that it is important to recognize how types flow through
generic templates, especially when inheritance is involved.

structures
You can also define generic Structure types. The basic rules and concepts are the same as for defining
generic classes, as shown here:

Public Structure MyCoolStructure(Of T)
 Public Value As T
End Structure

As with generic classes, the type parameter or parameters represent real types that are provided by the user
of the Structure in actual code. Thus, anywhere you see a T in the structure, it will be replaced by a real
type such as String or Integer.

Code can use the Structure in a manner similar to how a generic class is used:

Dim data As MyCoolStructure(Of Guid)

When the variable is declared, an instance of the Structure is created based on the type parameter
provided. In this example, an instance of MyCoolStructure that holds Guid objects has been created.

Creating Generics ❘ 333

interfaces
Finally, you can define generic interface types. Generic interfaces are a bit different from generic classes
or structures because they are implemented by other types when they are used. You can create a generic
interface using the same syntax used for classes and structures:

Public Interface ICoolInterface(Of T)
 Sub DoWork(ByVal data As T)
 Function GetAnswer() As T
End Interface

Then the interface can be used within another type. For instance, you might implement the interface in a
class:

Public Class ARegularClass
 Implements ICoolInterface(Of String)
 Public Sub DoWork(ByVal data As String) _
 Implements ICoolInterface(Of String).DoWork
 End Sub
 Public Function GetAnswer() As String _
 Implements ICoolInterface(Of String).GetAnswer
 End Function
End Class

Notice that you provide a real type for the type parameter in the Implements statement and Implements
clauses on each method. In each case, you are specifying a specific instance of the ICoolInterface
interface — one that deals with the String data type.

As with classes and structures, an interface can be declared with multiple type parameters. Those type
parameter values can be used in place of any normal type (such as String or Date) in any Sub, Function,
Property, or Event declaration.

generic methods
You have already seen examples of methods declared using type parameters such as T or V. While these
are examples of generic methods, they have been contained within a broader generic type such as a class, a
structure, or an interface.

It is also possible to create generic methods within otherwise normal classes, structures, interfaces, or
modules. In this case, the type parameter is not specified on the class, structure, or interface, but rather
directly on the method itself.

For instance, you can declare a generic method to compare equality like this:

Public Module Comparisons
 Public Function AreEqual(Of T)(ByVal a As T, ByVal b As T) As Boolean
 Return a.Equals(b)
 End Function
End Module

In this case, the AreEqual method is contained within a module, though it could just as easily be contained
in a class or a structure. Notice that the method accepts two sets of parameters. The first set of parameters
is the type parameter — in this example, just T. The second set of parameters consists of the normal
parameters that a method would accept. In this example, the normal parameters have their types defined by
the type parameter, T.

As with generic classes, it is important to remember that the type parameter is treated as a System.Object
type as you write the code in your generic method. This severely restricts what you can do with parameters
or variables declared using the type parameters. Specifically, you can perform assignment and call the
various methods common to all System.Object variables.

In a moment you will look at constraints, which enable you to restrict the types that can be assigned to the
type parameters and expand the operations that can be performed on parameters and variables of those types.

334 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

As with generic types, a generic method can accept multiple type parameters:

Public Class Comparisons
 Public Function AreEqual(Of T, R)(ByVal a As Integer, ByVal b As T) As R
 ' implement code here
 End Function
End Class

In this example, the method is contained within a class, rather than a module. Notice that it accepts two
type parameters, T and R. The return type is set to type R, whereas the second parameter is of type T. Also,
look at the first parameter, which is a conventional type. This illustrates how you can mix conventional
types and generic type parameters in the method parameter list and return types, and by extension within
the body of the method code.

constraints
At this point, you have learned how to create and use generic types and methods, but there have been
serious limitations on what you can do when creating generic type or method templates thus far. This is
because the compiler treats any type parameters as the type System.Object within your template code.
The result is that you can assign the values and call the various methods common to all System.Object
instances, but you can do nothing else. In many cases, this is too restrictive to be useful.

Constraints offer a solution and at the same time provide a control mechanism. Constraints enable you to
specify rules about the types that can be used at runtime to replace a type parameter. Using constraints,
you can ensure that a type parameter is a Class or a Structure, or that it implements a certain interface or
inherits from a certain base class.

Not only do constraints enable you to restrict the types available for use, but they also give the Visual Basic
compiler valuable information. For example, if the compiler knows that a type parameter must always
implement a given interface, then the compiler will allow you to call the methods on that interface within
your template code.

Type Constraints
The most common kind of constraint is a type constraint. A type constraint restricts a type parameter
to be a subclass of a specific class or to implement a specific interface. This idea can be used to
enhance the SingleLinkedList to sort items as they are added. Create a copy of the class called
ComparableLinkedList, changing the declaration of the class itself to add the IComparable constraint:

Public Class SingleLinkedList(Of ValueType As IComparable)

With this change, ValueType is not only guaranteed to be equivalent to System.Object, it is also
guaranteed to have all the methods defined on the IComparable interface.

This means that within the Add method you can make use of any methods in the IComparable interface (as
well as those from System.Object). The result is that you can safely call the CompareTo method defined on
the IComparable interface, because the compiler knows that any variable of type ValueType will implement
IComparable. Update the original Add method with the following implementation:

 Public Sub Add(ByVal value As ValueType)
 If mHead Is Nothing Then
 ' List was empty, just store the value.
 mHead = New Node(value, mHead)
 Else
 Dim current As Node = mHead
 Dim previous As Node = Nothing
 While current IsNot Nothing
 If current.Value.CompareTo(value) > 0 Then
 If previous Is Nothing Then
 ' this was the head of the list
 mHead = New Node(value, mHead)

Creating Generics ❘ 335

 Else
 ' insert the node between previous and current
 previous.NextNode = New Node(value, current)
 End If
 Exit Sub
 End If
 previous = current
 current = current.NextNode
 End While
 ' you're at the end of the list, so add to end
 previous.NextNode = New Node(value, Nothing)
 End If
 End Sub

Code snippet from ComparableLinkedList

Note the call to the CompareTo method:

 If current.Value.CompareTo(value) > 0 Then

This is possible because of the IComparable constraint on ValueType. Run the project and test this
modified code. The items should be displayed in sorted order, as shown in Figure 8-6.

figure 8-6

Not only can you constrain a type parameter to implement an interface, but you can also constrain it to be a
specific type (class) or subclass of that type. For example, you could implement a generic method that works
on any Windows Forms control:

 Public Shared Sub ChangeControl(Of C As Control)(ByVal control As C)
 control.Anchor = AnchorStyles.Top Or AnchorStyles.Left
 End Sub

The type parameter, C, is constrained to be of type Control. This restricts calling code to only specify this
parameter as Control or a subclass of Control such as TextBox.

Then the parameter to the method is specified to be of type C, which means that this method will work
against any Control or subclass of Control. Because of the constraint, the compiler now knows that the
variable will always be some type of Control object, so it allows you to use any methods, properties, or
events exposed by the Control class as you write your code.

336 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

Finally, it is possible to constrain a type parameter to be of a specific generic type:

Public Class ListClass(Of T, V As Generic.List(Of T))
End Class

The preceding code specifies that the V type must be a List(Of T), whatever type T might be. A caller can
use your class like this:

Dim list As ListClass(Of Integer, Generic.List(Of Integer))

Earlier in the chapter, in the discussion of how inheritance and generics interact, you saw that things can get
quite complex. The same is true when you constrain type parameters based on generic types.

Class and structure Constraints
Another form of constraint enables you to be more general. Rather than enforce the requirement for a specific
interface or class, you can specify that a type parameter must be either a reference type or a value type.

To specify that the type parameter must be a reference type, you use the Class constraint:

Public Class ReferenceOnly(Of T As Class)
End Class

This ensures that the type specified for T must be the type of an object. Any attempt to use a value type,
such as Integer or Structure, results in a compiler error.

Likewise, you can specify that the type parameter must be a value type such as Integer or a Structure by
using the Structure constraint:

Public Class ValueOnly(Of T As Structure)
End Class

In this case, the type specified for T must be a value type. Any attempt to use a reference type such as
String, an interface, or a class results in a compiler error.

new Constraints
Sometimes you want to write generic code that creates instances of the type specified by a type parameter.
In order to know that you can actually create instances of a type, you need to know that the type has a
default public constructor. You can determine this using the New constraint:

Public Class Factories(Of T As New)
 Public Function CreateT() As T
 Return New T
 End Function
End Class

The type parameter, T, is constrained so that it must have a public default constructor. Any attempt to
specify a type for T that does not have such a constructor will result in a compile error.

Because you know that T will have a default constructor, you are able to create instances of the type, as
shown in the CreateT method.

Multiple Constraints
In many cases, you will need to specify multiple constraints on the same type parameter. For instance, you
might want to require that a type be a reference type and have a public default constructor.

Essentially, you are providing an array of constraints, so you use the same syntax you use to initialize
elements of an array:

Public Class Factories(Of T As {New, Class})
 Public Function CreateT() As T
 Return New T
 End Function
End Class

Creating Generics ❘ 337

The constraint list can include two or more constraints, enabling you to specify a great deal of information
about the types allowed for this type parameter.

Within your generic template code, the compiler is aware of all the constraints applied to your type
parameters, so it allows you to use any methods, properties, and events specified by any of the constraints
applied to the type.

generics and late Binding
One of the primary limitations of generics is that variables and parameters declared based on a type
parameter are treated as type System.Object inside your generic template code. While constraints offer a
partial solution, expanding the type of those variables based on the constraints, you are still very restricted
in what you can do with the variables.

One key example is the use of common operators. There is no constraint you can apply that tells the
compiler that a type supports the + or – operators. This means that you cannot write generic code like this:

Public Function Add(Of T)(ByVal val1 As T, ByVal val2 As T) As T
 Return val1 + val2
End Function

This will generate a compiler error because there is no way for the compiler to verify that variables of type T
(whatever that is at runtime) support the + operator. Because there is no constraint that you can apply to T to
ensure that the + operator will be valid, there is no direct way to use operators on variables of a generic type.

One alternative is to use Visual Basic’s native support for late binding to overcome the limitations shown
here. Recall that late binding incurs substantial performance penalties because a lot of work is done
dynamically at runtime, rather than by the compiler when you build your project. It is also important to
remember the risks that attend late binding — specifically, the code can fail at runtime in ways that early-
bound code cannot. Nonetheless, given those caveats, late binding can be used to solve your immediate
problem.

To enable late binding, be sure to add Option Strict Off at the top of the code file containing your
generic template (or set the project property to change Option Strict projectwide from the project’s
properties). Then you can rewrite the Add function as follows:

Public Function Add(Of T)(ByVal value1 As T, ByVal value2 As T) As T
 Return CObj(value1) + CObj(value2)
End Function

By forcing the value1 and value2 variables to be explicitly treated as type Object, you are telling the
compiler that it should use late binding semantics. Combined with the Option Strict Off setting, the compiler
assumes that you know what you are doing and it allows the use of the + operator even though its validity
can’t be confirmed.

The compiled code uses dynamic late binding to invoke the + operator at runtime. If that operator does turn
out to be valid for whatever type T is at runtime, then this code will work great. In contrast, if the operator
is not valid, then a runtime exception will be thrown.

covariance and contravariance
As part of Visual Studio 2010, the concepts of covariance and contravariance have been brought forward
into generics. The basic ideas are related to concepts associated with polymorphism. In short, prior to Visual
Studio 2010 if you attempted to take, for example, an instance of a generic that inherits from the base class
BindingList and assign that instance to an instance of its base class, you would get an error. The ability
to take a specialized or sub class and do a polymorphic assignment to it’s parent or base class describes
covariance.

338 ❘ chaPTer 8 aRRays, CollECtioNs, aNd GENERiCs

This topic can get complex so before moving on to discuss contravariance let’s provide a very simple
example of covariance in code. The following code declares two classes, Parent and ChildClass, and
shows covariance in action:

Public Class Parent(Of T)

End Class

Public Class ChildClass(Of T)
 Inherits Parent(Of T)

End Class

Public Class CoVariance
 Public Sub MainMethod()
 Dim cc As New ChildClass(Of String)
 Dim dad As Parent(Of String)
 'Show me the covariance
 dad = cc
 End Sub
End Class

Code snippet from CoVariance

You’ll note that ChildClass inherits from Parent. The snippet continues with a method extracted from a
calling application. It’s called MainMethod and you see that the code creates an instance of ChildClass and
declares an instance of Parent. Next it looks to assign the instance cc of ChildClass to the instance dad
of type Parent. It is this assignment which illustrates an example of covariance. There are, of course, dozens of
different specializations that we could consider, but this provides the basis for all of those examples.

Note, if instead of declaring dad as being a Parent (Of String), the code had declared dad as a Parent
(Of Integer), then the assignment of cc to dad would fail because dad would no longer be the correct
Parent type. It is important to remember that the type assigned as part of the instantiation of a generic
directly impacts the underlying class type of that generic’s instance.

Contravariance refers to the ability to pass a derived type when a base type is called for. The reason these
features are spoken of in a single topic is in fact that they are both specializations of the variance concept.
The difference is mainly an understanding that in the case of contravariance you are passing an instance
of ChildClass when a Parent instance was expected. Unfortunately contravariance could be called
contra-intuitive. You are going to create a base method, and .NET will support its used by derived classes.
To illustrate this concept the following code snippet creates two new classes (they are not generic classes),
and then has another code snippet for a method that uses these new classes with generic methods to
illustrate contravariance:

Public Class Base

End Class

Public Class Derived
 Inherits Base

End Class

Public Class ContraVariance

 Private baseMethod As Action(Of Base) = Sub(param As Base)
 'Do something.
 End Sub
 Private derivedMethod As Action(Of Derived) = baseMethod

 Public Sub MainMethod()

 ' Show the contra-syntax
 Dim d As Derived = New Derived()
 derivedMethod(d)
 baseMethod(d)
 End Sub

End Class

Code snippet from ContraVariance

As shown in the preceding example, you can have a method that expects an input parameter of type Base as
its input parameter. In the past, this method would not accept a call with a parameter of type Derived, but
with contravariance the method call will now accept a parameter of type Derived because this derived class
will, by definition, support the same interface as the base class, just with additional capabilities that can be
ignored. As a result, although at first glance it feels backwards, you are in fact able to pass a generic that
implements a derived class to a method which is expecting a generic that is defined using a base class.

summary
This chapter took a look at the classes and language elements that target sets. We started with a look at
arrays and the support for arrays within Visual Basic. The chapter then looked at collection classes. By
default, these classes operate on the type Object, and it is this capability to handle any or all objects within
their implementation that makes these classes both powerful and limited.

Following a quick review of the iterative language structures normally associated with these classes, the
chapter moved on to looking at generics. Generics enable you to create class, structure, interface, and method
templates. These templates gain specific types based on how they are declared or called at runtime. Generics
provide you with another code reuse mechanism, along with procedural and object-oriented concepts.

Generics also enable you to change code that uses parameters or variables of type Object (or other general
types) to use specific data types. This often leads to much better performance and increases the readability
of your code.

summary ❘ 339

9
 Using XMl with Visual Basic

 WhaT you Will learn in This chaPTer

 Learn the rationale behind XML ➤

 Learn about the namespaces within the .NET Framework ➤ Class Library that
deal with XML and XML - related technologies

 Look at some of the classes contained within these namespaces ➤

 How to use ➤ LINQ to XML to read and edit XML

 How Visual Basic enables the use of XML literals within your code ➤

 Learn how lambdas are used with Visual Basic and LINQ ➤

 How you can create your own lambda expressions to create more ➤

generic code

 This chapter describes how you can generate and manipulate Extensible Markup Language (XML)
using Visual Basic 2010. The .NET Framework exposes many XML - specifi c namespaces that contain
over 100 different classes. In addition, dozens of other classes support and implement XML - related
technologies, such as those provided in ADO.NET, SQL Server, and BizTalk. Consequently, this
chapter focuses on the general concepts and the most important classes.

 Visual Basic relies on the classes exposed in the following XML - related namespaces to transform,
manipulate, and stream XML documents:

 ➤ System.Xml provides core support for a variety of XML standards, including DTD (Document
Type Defi nition), namespace, DOM (Document Object Model), XDR (XML Data Reduced – an
old version of the XML schema standard), XPath, XSLT (XML Transformation), and SOAP
(formerly Simple Object Access Protocol, now the acronym doesn ’ t stand for anything).

 ➤ System.Xml.Serialization provides the objects used to transform objects to and from XML
documents or streams using serialization.

 ➤ System.Xml.Schema provides a set of objects that enable schemas to be loaded, created,
and streamed. This support is achieved using a suite of objects that support in - memory
manipulation of the entities that compose an XML schema.

 ➤ System.Xml.XPath provides a parser and evaluation engine for the XML Path
language (XPath).

342 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 ➤ System.Xml.Xsl provides the objects necessary when working with Extensible Stylesheet Language
(XSL) and XSL Transformations (XSLT).

 ➤ System.Xml.Linq provides the support for querying XML using LINQ (see the LINQ section later
in this chapter for more details).

This chapter makes sense of this range of technologies by introducing some basic XML concepts and
demonstrating how Visual Basic, in conjunction with the .NET Framework, can make use of XML.

At the end of this chapter, you will be able to generate, manipulate, and transform XML using Visual Basic.

an inTroducTion To xml
XML is a tagged markup language similar to HTML. In fact, XML and HTML are distant cousins and
have their roots in the Standard Generalized Markup Language (SGML). This means that XML leverages
one of the most useful features of HTML — readability. However, XML differs from HTML in that XML
represents data, whereas HTML is a mechanism for displaying data. The tags in XML describe the data, as
shown in the following example:

<?xml version="1.0" encoding="utf-8" ?>
<Movies>
 <FilmOrder name="Grease" filmId="1" quantity="21"></FilmOrder>
 <FilmOrder name="Lawrence of Arabia" filmId="2" quantity="10"></FilmOrder>
 <FilmOrder name="Star Wars" filmId="3" quantity="12"></FilmOrder>
 <FilmOrder name="Shrek" filmId="4" quantity="14"></FilmOrder>
</Movies>

This XML document represents a store order for a collection of movies. The standard used to represent an
order of films would be useful to movie rental firms, collectors, and others. This information can be shared
using XML for the following reasons:

The data tags in XML are self-describing. ➤

XML is an open standard and supported on most platforms today. ➤

XML supports the parsing of data by applications not familiar with the contents of the XML document.
XML documents can also be associated with a description (a schema) that informs an application about the
structure of the data within the XML document.

At this stage, XML looks simple: It is just a human-readable way to exchange data in a universally accepted
format. The essential points that you should understand about XML are as follows:

XML data can be stored in a plain text file. ➤

A document is said to be well-formed if it adheres to the XML standard (see www.w3.org/standards/ ➤

xml/ for more details on the XML standard).

Tags are used to specify the contents of a document — for example, ➤ <FilmOrder>.

XML elements (also called ➤ nodes) can be thought of as the objects within a document.

Elements are the basic building blocks of the document. Each element contains both a start tag and ➤

an end tag; and a tag can be both a start tag and an end tag in one — for example, <FilmOrder/>.
In this case, the tag specifies that there is no content (or inner text) to the element (there isn’t a
closing tag because none is required due to the lack of inner-text content). Such a tag is said to be
empty.

Data can be contained in the element (the element content) or within attributes contained in ➤

the element.

XML is hierarchical. One document can contain multiple elements, which can themselves contain ➤

child elements, and so on. However, an XML document can only have one root element.

This last point means that the XML document hierarchy can be thought of as a tree containing nodes:

 The example document has a root node, ➤ < Movies > .

 The branches of the root node are elements of type ➤ < FilmOrder > .

 The leaves of the XML element, ➤ < FilmOrder > , are its attributes: name , quantity , and filmId .

 Of course, we are interested in the practical use of XML by Visual Basic. A practical manipulation of the
example XML, for example, is to display (for the staff of a movie supplier) a particular movie order in an
application so that the supplier can fi ll the order and then save the information to a database. This chapter
explains how you can perform such tasks using the functionality provided by the .NET Framework Class
Library.

 xml serialiZaTion
 The simplest way to demonstrate Visual Basic ’ s support for XML is to use it to serialize a class. The
serialization of an object means that it is written out to a stream, such as a fi le or a socket. The reverse
process can also be performed: An object can be deserialized by reading it from a stream and creating the
XML from that stream. You may want to do this to save an object ’ s data to a local fi le, or to transmit it
across a network.

 The type of serialization described in this chapter is XML serialization, whereby XML
is used to represent a class in serialized form. You will see other forms of serialization
in the WCF chapter (Chapter 13).

 To help you understand XML serialization, let ’ s examine a class named FilmOrder in the FilmOrder project
(which can be found in the code download from www.wrox.com). This class is implemented in Visual Basic
and is used by the company for processing a movie order.

 An instance of FilmOrder corresponding to each order could be serialized to XML and sent over a socket
from a client ’ s computer. We are talking about data in a proprietary form here: an instance of FilmOrder
being converted into a generic form — XML — that can be universally understood.

 The System.Xml.Serialization namespace contains classes and interfaces that support the serialization
of objects to XML, and the deserialization of objects from XML. Objects are serialized to documents or
streams using the XmlSerializer class.

 Let ’ s look at how you can use XmlSerializer . To make the sample simpler, we ’ ll use a console application.
This console application will use the class FilmOrder :

Public Class FilmOrder
 Public Name As String
 Public FilmId As Integer
 Public Quantity As Integer
 Public Sub New()
 End Sub
 Public Sub New(ByVal name As String, _
 ByVal filmId As Integer, _
 ByVal quantity As Integer)
 Me.Name = name
 Me.FilmId = filmId
 Me.Quantity = quantity
 End Sub
End Class

 Code snippet from FilmOrder

XMl serialization ❘ 343

344 ❘ chaPTer 9 usiNG xml witH Visual BasiC

From there, we can move on to the module.

To make the XmlSerializer object accessible, you need to make reference to the System.Xml
.Serialization namespace:

Imports System.Xml.Serialization

In the Sub Main, create an instance of XmlSerializer, specifying the object to serialize and its type in the
constructor:

Dim serialize As XmlSerializer = _
 New XmlSerializer(GetType(FilmOrder))

Create an instance of the same type passed as a parameter to the constructor of XmlSerializer. In a more
complex application, you may have created this instance using data provided by the client, a database, or
other source:

Dim MyFilmOrder As FilmOrder = _
 New FilmOrder("Grease", 101, 10)

Call the Serialize method of the XmlSerializer instance and specify the stream to which the serialized
object is written (in this case it is Console.Out, so it will simply be displayed in the Console window) and
the object to be serialized:

serialize.Serialize(Console.Out, MyFilmOrder)
Console.ReadLine()

Running the module, the following output is generated by the preceding code:

<?xml version="1.0" encoding="IBM437"?>
<FilmOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Name>Grease</Name>
 <FilmId>101</FilmId>
 <Quantity>10</Quantity>
</FilmOrder>

This output demonstrates the default way in which the Serialize method serializes an object:

Each object serialized is represented as an element with the same name as the class — in this case, ➤

FilmOrder.

The individual data members of the class serialized are contained in elements named for each data ➤

member — in this case, Name, FilmId, and Quantity.

Also generated are the following:

The specific version of XML generated — in this case, 1.0 ➤

The encoding used for the text — in this case, IBM437 ➤

The schemas used to describe the serialized object — in this case, just the two schemas defined ➤

by the XML schema specification, www.w3.org/2001/XMLSchema-instance and
 www.w3.org/2001/XMLSchema

A schema can be associated with an XML document and describe the data it contains (name, type, scale,
precision, length, and so on). Either the actual schema or a reference to where the schema resides can be
contained in the XML document. In either case, an XML schema is a standard representation that can be
used by all applications that consume XML. This means that applications can use the supplied schema to
validate the contents of an XML document generated by the Serialize method of the XmlSerializer
object.

The code snippet that demonstrated the Serialize method of XmlSerializer displayed the XML
generated to a stream displayed by Console.Out. Clearly, we do not expect an application to use

Console.Out when it would like to access a FilmOrder object in XML form. The point was to show how
serialization can be performed in just two lines of code (one call to a constructor and one call to a method).

The Serialize method’s first parameter is overridden so that it can serialize XML to a file (the filename
is given as type String), a Stream, a TextWriter, or an XmlWriter. When serializing to Stream,
TextWriter, or XmlWriter, adding a third parameter to the Serialize method is permissible. This third
parameter is of type XmlSerializerNamespaces and is used to specify a list of namespaces that qualify the
names in the XML-generated document.

An object is reconstituted using the Deserialize method of XmlSerializer. This method is overridden
and can deserialize XML presented as a Stream, a TextReader, or an XmlReader. The output of the
various Deserialize methods is a generic Object, so you need to cast the resulting object to the correct
data type.

Before demonstrating the Deserialize method, we will introduce a new class, FilmOrderList. This class
contains an array of film orders (actually an array of FilmOrder objects). FilmOrderList is defined as
follows:

Public Class FilmOrderList
 Public FilmOrders() As FilmOrder
 Public Sub New()
 End Sub
 Public Sub New(ByVal multiFilmOrders() As FilmOrder)
 Me.FilmOrders = multiFilmOrders
 End Sub
End Class

Code snippet from FilmOrderList

The FilmOrderList class contains a fairly complicated object, an array of FilmOrder objects. The
underlying serialization and deserialization of this class is more complicated than that of a single instance of
a class that contains several simple types, but the programming effort involved on your part is just as simple
as before. This is one of the great ways in which the .NET Framework makes it easy for you to work with
XML data, no matter how it is formed.

To work through an example of the deserialization process, first create a sample order stored as an XML file
called Filmorama.xml:

<?xml version="1.0" encoding="utf-8" ?>
<FilmOrderList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FilmOrders>
 <FilmOrder>
 <Name>Grease</Name>
 <FilmId>101</FilmId>
 <Quantity>10</Quantity>
 </FilmOrder>
 <FilmOrder>
 <Name>Lawrence of Arabia</Name>
 <FilmId>102</FilmId>
 <Quantity>10</Quantity>
 </FilmOrder>
 <FilmOrder>
 <Name>Star Wars</Name>
 <FilmId>103</FilmId>
 <Quantity>10</Quantity>
 </FilmOrder>
 </FilmOrders>
</FilmOrderList>

Code snippet from FilmOrderList

XMl serialization ❘ 345

346 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 Once the XML fi le is in place, the next step is to change your console application so it will deserialize the
contents of this fi le. First, ensure that your console application has made the proper namespace references:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

 The following code in Sub Main() demonstrates an object of type FilmOrderList being deserialized (or
rehydrated) from a fi le, Filmorama.xml . This object is deserialized using this fi le in conjunction with the
 Deserialize method of XmlSerializer :

' Open file Filmorama.xml
Dim dehydrated As FileStream = _
 New FileStream("Filmorama.xml", FileMode.Open)
' Create an XmlSerializer instance to handle deserializing,
' FilmOrderList
Dim serialize As XmlSerializer = _
 New XmlSerializer(GetType(FilmOrderList))
' Create an object to contain the deserialized instance of the object.
Dim myFilmOrder As FilmOrderList = _
 New FilmOrderList
' Deserialize object
myFilmOrder = serialize.Deserialize(dehydrated)

 Code snippet from FilmOrderList

 Once deserialized, the array of fi lm orders can be displayed:

Dim SingleFilmOrder As FilmOrder
For Each SingleFilmOrder In myFilmOrder.FilmOrders
 Console.Out.WriteLine("{0}, {1}, {2}", _
 SingleFilmOrder.Name, _
 SingleFilmOrder.FilmId, _
 SingleFilmOrder.Quantity)
Next
Console.ReadLine()

 This example is just code that serializes an instance of type FilmOrderList . The output generated by
displaying the deserialized object containing an array of fi lm orders is as follows:

Grease, 101, 10
Lawrence of Arabia, 102, 10
Star Wars, 103, 10

 XmlSerializer also implements a CanDeserialize method. The prototype for this method is as follows:

Public Overridable Function CanDeserialize(ByVal xmlReader As XmlReader) _
 As Boolean

 If CanDeserialize returns True , then the XML document specifi ed by the xmlReader parameter can
be deserialized. If the return value of this method is False , then the specifi ed XML document cannot be
deserialized. Using this method is usually preferable to attempting to deserialize and trapping the exception
that may occur.

 The FromTypes method of XmlSerializer facilitates the creation of arrays that contain XmlSerializer
objects. This array of XmlSerializer objects can be used in turn to process arrays of the type to be
serialized. The prototype for FromTypes is shown here:

Public Shared Function FromTypes(ByVal types() As Type) As XmlSerializer()

 In order for this to run, you should either have the . xml fi le in the location of the
executable or load the fi le using the full path of the fi le within the code example. To
have the XML in the same directory as the executable, add the XML fi le to the project,
and set the Copy to Output Directory to “ Copy if newer. ”

Before exploring the System.Xml.Serialization namespace, take a moment to consider the various uses
of the term attribute.

source code style attributes
Thus far, you have seen attributes applied to a specific portion of an XML document. Visual Basic has
its own flavor of attributes, as does C# and each of the other .NET languages. These attributes refer to
annotations to the source code that specify information, or metadata, that can be used by other applications
without the need for the original source code. We will call such attributes Source Code Style attributes.

In the context of the System.Xml.Serialization namespace, Source Code Style attributes can be used to
change the names of the elements generated for the data members of a class or to generate XML attributes
instead of XML elements for the data members of a class. To demonstrate this, we will change the FilmOrder
class using these attributes to change the outputted XML.

To rename the XML generated for a data member, a Source Code Style attribute will be used. This Source
Code Style attribute specifies that when FilmOrder is serialized, the name data member is represented as an
XML element, <Title>. The actual Source Code Style attribute that specifies this is as follows:

<XmlElementAttribute("Title")> Public Name As String

The updated FilmOrder (contained in the FilmOrderAttributes project) also contains other Source Code
Style attributes:

 ➤ <XmlAttributeAttribute(“ID”)> specifies that FilmId is to be serialized as an XML attribute
named ID.

 ➤ <XmlAttributeAttribute(“Qty”)> specifies that Quantity is to be serialized as an XML attribute
named Qty.

The complete modified FilmOrder is defined as follows:

Imports System.Xml.Serialization
Public Class FilmOrder
 <XmlElementAttribute("Title")> Public Name As String
 <XmlAttributeAttribute("ID")> Public FilmId As Integer
 <XmlAttributeAttribute("Qty")> Public Quantity As Integer
 Public Sub New()
 End Sub
 Public Sub New(ByVal name As String, _
 ByVal filmId As Integer, _
 ByVal quantity As Integer)
 Me.Name = name
 Me.FilmId = filmId
 Me.Quantity = quantity
 End Sub
End Class

Code snippet from FilmOrderAttributes

Note that you needed to include the System.Xml.Serialization namespace to bring in the Source Code
Style attributes used.

The serialization code in Sub Main() doesn’t change:

Dim serialize As XmlSerializer = _
 New XmlSerializer(GetType(FilmOrder))
Dim MyMovieOrder As FilmOrder = _
 New FilmOrder("Grease", 101, 10)
serialize.Serialize(Console.Out, MyMovieOrder)
Console.Readline()

Code snippet from FilmOrderAttributes

XMl serialization ❘ 347

348 ❘ chaPTer 9 usiNG xml witH Visual BasiC

The console output generated by this code reflects the Source Code Style attributes associated with the class:

<?xml version="1.0" encoding="IBM437"?>
<FilmOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" ID="101" Qty="10">
 <Title>Grease</Title>
</FilmOrder>

Compare this to the earlier version that does not include the attributes.

The example only demonstrates the Source Code Style attributes exposed by the XmlAttributeAttribute
and XmlElementAttribute classes in the System.Xml.Serialization namespace. A variety of other
Source Code Style attributes exist in this namespace that also control the form of XML generated by
serialization.

sysTem.xml documenT suPPorT
The System.Xml namespace implements a variety of objects that support standards-based XML processing.
The XML-specific standards facilitated by this namespace include XML 1.0, Document Type Definition
(DTD) support, XML namespaces, XML schemas, XPath, XQuery, XSLT, DOM Level 1 and DOM Level 2
(Core implementations), as well as SOAP 1.1, SOAP 1.2, SOAP Contract Language, and SOAP Discovery.
The System.Xml namespace exposes over 30 separate classes in order to facilitate this level of the XML
standard’s compliance.

To generate and navigate XML documents, there are two styles of access:

 ➤ Stream-based — System.Xml exposes a variety of classes that read XML from and write XML
to a stream. This approach tends to be a fast way to consume or generate an XML document
because it represents a set of serial reads or writes. The limitation of this approach is that it does
not view the XML data as a document composed of tangible entities, such as nodes, elements, and
attributes. An example of where a stream could be used is when receiving XML documents from a
socket or a file.

 ➤ Document Object Model (DOM)-based — System.Xml exposes a set of objects that access XML
documents as data. The data is accessed using entities from the XML document tree (nodes, elements,
and attributes). This style of XML generation and navigation is flexible but may not yield the same
performance as stream-based XML generation and navigation. DOM is an excellent technology for
editing and manipulating documents. For example, the functionality exposed by DOM could simplify
merging your checking, savings, and brokerage accounts.

xml sTream-sTyle Parsers
Stream-based parsers read a block of XML in a
forward-only manner, only keeping the current
node in memory. When an XML document is
parsed using a stream parser, the parser always
points to the current node in the document (see
Figure 9-1).

The following classes that access a stream of
XML (read XML) and generate a stream of XML
(write XML) are contained in the System.Xml
namespace:

 ➤ XmlWriter — This abstract class specifies a non-cached, forward-only stream that writes an XML
document (data and schema).

figure 9-1

 ➤ XmlReader — This abstract class specifies a non-cached, forward-only stream that reads an XML
document (data and schema).

The diagram of the classes associated with the XML stream-style parser refers to one other class,
XslTransform. This class is found in the System.Xml.Xsl namespace and is not an XML stream-style
parser. Rather, it is used in conjunction with XmlWriter and XmlReader. This class is covered in detail
later.

The System.Xml namespace exposes a plethora of additional XML manipulation classes in addition to
those shown in the architecture diagram. The classes shown in the diagram include the following:

 ➤ XmlResolver — This abstract class resolves an external XML resource using a Uniform Resource
Identifier (URI). XmlUrlResolver is an implementation of an XmlResolver.

 ➤ XmlNameTable — This abstract class provides a fast means by which an XML parser can access
element or attribute names.

Writing an xml stream
An XML document can be created programmatically in .NET. One way to perform this task is by writing
the individual components of an XML document (schema, attributes, elements, and so on) to an XML
stream. Using a unidirectional write-stream means that each element and its attributes must be written
in order — the idea is that data is always written at the end of the stream. To accomplish this, you use a
writable XML stream class (a class derived from XmlWriter). Such a class ensures that the XML document
you generate correctly implements the W3C Extensible Markup Language (XML) 1.0 specification and the
namespaces in the XML specification.

Why is this necessary when you have XML serialization? You need to be very careful here to separate
interface from implementation. XML serialization works for a specific class, such as the FilmOrder class
used in the earlier samples. This class is a proprietary implementation and not the format in which data is
exchanged. For this one specific case, the XML document generated when FilmOrder is serialized just so
happens to be the XML format used when placing an order for some movies. You can use Source Code Style
attributes to help it conform to a standard XML representation of a film order summary, but the eventual
structure is tied to that class.

In a different application, if the software used to manage an entire movie distribution business wants to
generate movie orders, then it must generate a document of the appropriate form. The movie distribution
management software achieves this using the XmlWriter object.

Before reviewing the subtleties of XmlWriter, note that this class exposes over 40 methods and properties. The
example in this section provides an overview that touches on a subset of these methods and properties.
This subset enables the generation of an XML document that corresponds to a movie order.

The example builds the module that generates the XML document corresponding to a movie order. It uses
an instance of XmlWriter, called FilmOrdersWriter, which is actually a file on disk. This means that
the XML document generated is streamed to this file directly. Because the FilmOrdersWriter variable
represents a file, you have to take a few actions against the file. For instance, you have to ensure the file is

 ➤ Created — The instance of XmlWriter, FilmOrdersWriter, is created by using the Create method,
as well as by assigning all the properties of this object by using the XmlWriterSettings object.

 ➤ Opened — The file the XML is streamed to, FilmOrdersProgrammatic.xml, is opened by passing
the filename to the constructor associated with XmlWriter.

 ➤ Generated — The process of generating the XML document is described in detail at the end of this
section.

 ➤ Closed — The file (the XML stream) is closed using the Close method of XmlWriter or by simply
making use of the Using keyword, which ensures that the object is closed at the end of the Using
statement.

XMl stream-style Parsers ❘ 349

350 ❘ chaPTer 9 usiNG xml witH Visual BasiC

Before you create the XmlWriter object, you first need to customize how the object operates by using the
XmlWriterSettings object. This object, introduced in .NET 2.0, enables you to configure the behavior of
the XmlWriter object before you instantiate it:

Dim myXmlSettings As New XmlWriterSettings()
myXmlSettings.Indent = True
myXmlSettings.NewLineOnAttributes = True

Code snippet from FilmOrdersWriter

You can specify a few settings for the XmlWriterSettings object that define how XML creation will be
handled by the XmlWriter object.

Once the XmlWriterSettings object has been instantiated and assigned the values you deem necessary, the
next steps are to invoke the XmlWriter object and make the association between the XmlWriterSettings
object and the XmlWriter object.

The basic infrastructure for managing the file (the XML text stream) and applying the settings class is either

Dim FilmOrdersWriter As XmlWriter = _
 XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)
FilmOrdersWriter.Close()

Code snippet from FilmOrdersWriter

or the following, if you are utilizing the Using keyword, which is the recommended approach:

Using FilmOrdersWriter As XmlWriter = _
 XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)
End Using

Code snippet from FilmOrdersWriter

With the preliminaries completed (file created and formatting configured), the process of writing the actual
attributes and elements of your XML document can begin. The sequence of steps used to generate your
XML document is as follows:

 1. Write an XML comment using the WriteComment method. This comment describes from whence the
concept for this XML document originated and generates the following code:

<!-- Same as generated by serializing, FilmOrder -->

 2. Begin writing the XML element, <FilmOrder>, by calling the WriteStartElement method.
You can only begin writing this element because its attributes and child elements must be written
before the element can be ended with a corresponding </FilmOrder>. The XML generated by the
WriteStartElement method is as follows:

<FilmOrder>

 3. Write the attributes associated with <FilmOrder> by calling the WriteAttributeString method
twice. The XML generated by calling the WriteAttributeString method twice adds to the
<FilmOrder> XML element that is currently being written to the following:

<FilmOrder FilmId="101" Quantity="10">

 4. Using the WriteElementString method, write the child XML element <Title> contained in the
XML element, <FilmOrder>. The XML generated by calling this method is as follows:

<Title>Grease</Title>

 5. Complete writing the <FilmOrder> parent XML element by calling the WriteEndElement method.
The XML generated by calling this method is as follows:

</FilmOrder>

Now you can put all this together in the VB module file shown here:

Imports System.Xml

Module Main
 Sub Main()
 Dim myXmlSettings As New XmlWriterSettings
 myXmlSettings.Indent = True
 myXmlSettings.NewLineOnAttributes = True
 Using FilmOrdersWriter As XmlWriter =
 XmlWriter.Create("..\FilmOrdersProgrammatic.xml", myXmlSettings)
 FilmOrdersWriter.WriteComment(" Same as generated " &
 "by serializing, FilmOrder ")
 FilmOrdersWriter.WriteStartElement("FilmOrder")
 FilmOrdersWriter.WriteAttributeString("FilmId", "101")
 FilmOrdersWriter.WriteAttributeString("Quantity", "10")
 FilmOrdersWriter.WriteElementString("Title", "Grease")
 FilmOrdersWriter.WriteEndElement() ' End FilmOrder
 End Using
 End Sub
End Module

Code snippet from FilmOrdersWriter

Once this is run, you will find the XML file FilmOrdersProgrammatic.xml created in the same folder as
the Main.vb file or in the bin directory. The content of this file is as follows:

<?xml version="1.0" encoding="utf-8"?>
<!-- Same as generated by serializing, FilmOrder -->
<FilmOrder
 FilmId="101"
 Quantity="10">
 <Title>Grease</Title>
</FilmOrder>

The previous XML document is the same in form as the XML document generated by serializing the
FilmOrder class. Notice that in the previous XML document, the <Title> element is indented two
characters and that each attribute is on a different line in the document. This was achieved using the
XmlWriterSettings class.

The sample application covers only a small portion of the methods and properties exposed by the XML
stream-writing class, XmlWriter. Other methods implemented by this class manipulate the underlying file,
such as the Flush method; and some methods allow XML text to be written directly to the stream, such as
the WriteRaw method.

The XmlWriter class also exposes a variety of methods that write a specific type of XML data to the
stream. These methods include WriteBinHex, WriteCData, WriteString, and WriteWhiteSpace.

You can now generate the same XML document in two different ways. You have used two different
applications that took two different approaches to generating a document that represents a standardized
movie order. The XML serialization approach uses the “shape” of the class to generate XML, whereas the
XmlWriter allows you more flexibility in the output, at the expense of more effort.

However, there are even more ways to generate XML, depending on the circumstances. Using the previous
scenario, you could receive a movie order from a store, and this order would have to be transformed from
the XML format used by the supplier to your own order format.

reading an xml stream
In .NET, XML documents can be read from a stream as well. Data is traversed in the stream in order (first
XML element, second XML element, and so on). This traversal is very quick because the data is processed

XMl stream-style Parsers ❘ 351

352 ❘ chaPTer 9 usiNG xml witH Visual BasiC

in one direction and features such as write and move backward in the traversal are not supported. At any
given instance, only data at the current position in the stream can be accessed.

Before exploring how an XML stream can be read, you need to understand why it should be read in the first
place. Returning to our movie supplier example, imagine that the application managing the movie orders
can generate a variety of XML documents corresponding to current orders, preorders, and returns. All the
documents (current orders, preorders, and returns) can be extracted in stream form and processed by a
report-generating application. This application prints the orders for a given day, the preorders that are going
to be due, and the returns that are coming back to the supplier. The report-generating application processes
the data by reading in and parsing a stream of XML.

One class that can be used to read and parse such an XML stream is XmlReader. Other classes in the
.NET Framework are derived from XmlReader, such as XmlTextReader, which can read XML from a file
(specified by a string corresponding to the file’s name), a Stream, or an XmlReader. This example uses an
XmlReader to read an XML document contained in a file. Reading XML from a file and writing it to a file
is not the norm when it comes to XML processing, but a file is the simplest way to access XML data. This
simplified access enables you to focus on XML-specific issues.

In creating a sample, the first step is to make the proper imports:

Imports System.Xml
Imports System.Xml.Serialization
Imports System.IO

Code snippet from FilmOrdersReader

From there, the next step in accessing a stream of XML data is to create an instance of the object that will
open the stream (the readMovieInfo variable of type XmlReader) and then open the stream itself. Your
application performs this as follows (where MovieManage.xml is the name of the file containing the XML
document):

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)

Note that like the XmlWriter class, the XmlReader also has a settings class. Though you can make
assignments to the XmlReaderSettings object, in this case you do not. Later, this chapter covers the
XmlReaderSettings object.

The basic mechanism for traversing each stream is to traverse from node to node using the Read method. Node
types in XML include element and white space. Numerous other node types are defined, but this example focuses
on traversing XML elements and the white space that is used to make the elements more readable (carriage
returns, linefeeds, and indentation spaces). Once the stream is positioned at a node, the MoveToNextAttribute
method can be called to read each attribute contained in an element. The MoveToNextAttribute method only
traverses attributes for nodes that contain attributes (nodes of type element). An example of an XmlReader
traversing each node and then traversing the attributes of each node follows:

 While readMovieInfo.Read()
 ' Process node here.
 While readMovieInfo.MoveToNextAttribute()
 ' Process attribute here.
 End While
 End While

Code snippet from FilmOrdersReader

This code, which reads the contents of the XML stream, does not utilize any knowledge of the stream’s
contents. However, a great many applications know exactly how the stream they are going to traverse is
structured. Such applications can use XmlReader in a more deliberate manner and not simply traverse the
stream without foreknowledge. This would mean you could use the GetAttribute method as well as the
various ReadContentAs and ReadElementContentAs methods to retrieve the contents by name, rather than
just walking through the XML.

Once the example stream has been read, it can be cleaned up using the End Using call:

End Using

This ReadMovieXml subroutine takes a string parameter that contains the filename of the file containing the
XML. The code for the subroutine is as follows (and is basically the code just outlined):

Private Sub ReadMovieXml(ByVal fileName As String)
 Dim myXmlSettings As New XmlReaderSettings()
 Using readMovieInfo As XmlReader = XmlReader.Create(fileName, _
 myXmlSettings)
 While readMovieInfo.Read()
 ' Process node here.
 ShowXmlNode(readMovieInfo)
 While readMovieInfo.MoveToNextAttribute()
 ' Process attribute here.
 ShowXmlNode(readMovieInfo)
 End While
 End While
 End Using
End Sub

Code snippet from FilmOrdersReader

For each node encountered after a call to the Read method, ReadMovieXml calls the ShowXmlNode
subroutine. Similarly, for each attribute traversed, the ShowXmlNode subroutine is called. This subroutine
breaks down each node into its sub-entities:

 ➤ Depth — This property of XmlReader determines the level at which a node resides in the XML
document tree. To understand depth, consider the following XML document composed solely of
elements:

<A>

 <C>
 <D></D>
 </C>
.

Element <A> is the root element, and when parsed would return a depth of 0. Elements and <C>
are contained in <A> and hence reflect a depth value of 1. Element <D> is contained in <C>. The Depth
property value associated with <D> (depth of 2) should, therefore, be one more than the Depth prop-
erty associated with <C> (depth of 1).

 ➤ Type — The type of each node is determined using the NodeType property of XmlReader. The node
returned is of enumeration type, XmlNodeType. Permissible node types include Attribute, Element,
and Whitespace. (Numerous other node types can also be returned, including CDATA, Comment,
Document, Entity, and DocumentType.)

 ➤ Name — The name of each node is retrieved using the Name property of XmlReader. The name of the
node could be an element name, such as <FilmOrder>, or an attribute name, such as FilmId.

 ➤ Attribute Count — The number of attributes associated with a node is retrieved using the
AttributeCount property of XmlReader’s NodeType.

 ➤ Value — The value of a node is retrieved using the Value property of XmlReader. For example, the
element node <Title> contains a value of Grease.

The subroutine ShowXmlNode is implemented as follows:

Private Sub ShowXmlNode(ByVal reader As XmlReader)
 If reader.Depth > 0 Then
 For depthCount As Integer = 1 To reader.Depth
 Console.Write(" ")
 Next

XMl stream-style Parsers ❘ 353

354 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 End If
 If reader.NodeType = XmlNodeType.Whitespace Then
 Console.Out.WriteLine("Type: {0} ", reader.NodeType)
 ElseIf reader.NodeType = XmlNodeType.Text Then
 Console.Out.WriteLine("Type: {0}, Value: {1} ", _
 reader.NodeType, _
 reader.Value)
 Else
 Console.Out.WriteLine("Name: {0}, Type: {1}, " & _
 "AttributeCount: {2}, Value: {3} ", _
 reader.Name, _
 reader.NodeType, _
 reader.AttributeCount, _
 reader.Value)
 End If
End Sub

Code snippet from FilmOrdersReader

Within the ShowXmlNode subroutine, each level of node depth adds two spaces to the output generated:

If reader.Depth > 0 Then
 For depthCount As Integer = 1 To reader.Depth
 Console.Write(" ")
 Next
End If

You add these spaces in order to create human-readable output (so you can easily determine the depth of
each node displayed). For each type of node, ShowXmlNode displays the value of the NodeType property. The
ShowXmlNode subroutine makes a distinction between nodes of type White space and other types of nodes.
The reason for this is simple: A node of type White space does not contain a name or attribute count. The
value of such a node is any combination of white-space characters (space, tab, carriage return, and so on).
Therefore, it doesn’t make sense to display the properties if the NodeType is XmlNodeType.WhiteSpace.
Nodes of type Text have no name associated with them, so for this type, subroutine ShowXmlNode only
displays the properties NodeType and Value. For all other node types (including elements and attributes),
the Name, AttributeCount, Value, and NodeType properties are displayed.

To finalize this module, add a Sub Main as follows:

Sub Main(ByVal args() As String)
 ReadMovieXml("..\MovieManage.xml")
End Sub

Here is an example construction of the input MovieManage.xml file:

<?xml version="1.0" encoding="utf-8" ?>
<MovieOrderDump>
 <FilmOrderList>
 <multiFilmOrders>
 <FilmOrder filmId="101">
 <name>Grease</name>
 <quantity>10</quantity>
 </FilmOrder>
 <FilmOrder filmId="102">
 <name>Lawrence of Arabia</name>
 <quantity>10</quantity>
 </FilmOrder>
 <FilmOrder filmId="103">
 <name>Star Wars</name>
 <quantity>10</quantity>
 </FilmOrder>
 </multiFilmOrders>
 </FilmOrderList>

 <PreOrder>
 <FilmOrder filmId="104">
 <name>Shrek III - Shrek Becomes a Programmer</name>
 <quantity>10</quantity>
 </FilmOrder>
 </PreOrder>
 <Returns>
 <FilmOrder filmId="103">
 <name>Star Wars</name>
 <quantity>2</quantity>
 </FilmOrder>
 </Returns>
</MovieOrderDump>

Code snippet from FilmOrdersReader

Running this module produces the following output (a partial display, as it would be rather lengthy):

Name: xml, Type: XmlDeclaration, AttributeCount: 2, Value: version="1.0"
encoding="utf-8"
 Name: version, Type: Attribute, AttributeCount: 2, Value: 1.0
 Name: encoding, Type: Attribute, AttributeCount: 2, Value: utf-8
Type: Whitespace
Name: MovieOrderDump, Type: Element, AttributeCount: 0, Value:
Type: Whitespace
 Name: FilmOrderList, Type: Element, AttributeCount: 0, Value:
 Type: Whitespace
 Name: multiFilmOrders, Type: Element, AttributeCount: 0, Value:
 Type: Whitespace
 Name: FilmOrder, Type: Element, AttributeCount: 1, Value:
 Name: filmId, Type: Attribute, AttributeCount: 1, Value: 101
 Type: Whitespace
 Name: name, Type: Element, AttributeCount: 0, Value:
 Type: Text, Value: Grease
 Name: name, Type: EndElement, AttributeCount: 0, Value:
 Type: Whitespace
 Name: quantity, Type: Element, AttributeCount: 0, Value:
 Type: Text, Value: 10
 Name: quantity, Type: EndElement, AttributeCount: 0, Value:
 Type: Whitespace
 Name: FilmOrder, Type: EndElement, AttributeCount: 0, Value:
 Type: Whitespace

This example managed to use three methods and five properties of XmlReader. The output generated was
informative but far from practical. XmlReader exposes over 50 methods and properties, which means that
we have only scratched the surface of this highly versatile class. The remainder of this section looks at the
XmlReaderSettings class, introduces a more realistic use of XmlReader, and demonstrates how the classes
of System.Xml handle errors.

The Xmlreadersettings Class
Just like the XmlWriter object, the XmlReader object requires settings to be applied for instantiation of
the object. This means that you can apply settings specifying how the XmlReader object behaves when
it is reading whatever XML you might have for it. This includes settings for dealing with white space,
schemas, and other common options. An example of using this settings class to modify the behavior of the
XmlReader class is as follows:

Dim myXmlSettings As New XmlReaderSettings()
myXmlSettings.IgnoreWhitespace = True
myXmlSettings.IgnoreComments = True
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
 ' Use XmlReader object here.
End Using

XMl stream-style Parsers ❘ 355

356 ❘ chaPTer 9 usiNG xml witH Visual BasiC

In this case, the XmlReader object that is created ignores the white space that it encounters, as well as any
of the XML comments. These settings, once established with the XmlReaderSettings object, are then
associated with the XmlReader object through its Create method.

Traversing XMl Using Xmlreader
An application can easily use XmlReader to traverse a document that is received in a known format. The
document can thus be traversed in a deliberate manner. You just implemented a class that serialized arrays
of movie orders. The next example takes an XML document containing multiple XML documents of that
type and traverses them. Each movie order is forwarded to the movie supplier via fax. The document is
traversed as follows:

Read root element: <MovieOrderDump>
 Process each <FilmOrderList> element
 Read <multiFilmOrders> element
 Process each <FilmOrder>
 Send fax for each movie order here

The basic outline for the program’s implementation is to open a file containing the XML document to parse
and to traverse it from element to element:

Dim myXmlSettings As New XmlReaderSettings()
Using readMovieInfo As XmlReader = XmlReader.Create(fileName, myXmlSettings)
 readMovieInfo.Read()
 readMovieInfo.ReadStartElement("MovieOrderDump")
 Do While (True)
 '**
 '* Process FilmOrder elements here *
 '**
 Loop
 readMovieInfo.ReadEndElement() ' </MovieOrderDump>
End Using

Code snippet from FilmOrdersReader2

The preceding code opened the file using the constructor of XmlReader, and the End Using statement takes
care of shutting everything down for you. The code also introduced two methods of the XmlReader class:

 ➤ ReadStartElement(String) — This verifies that the current node in the stream is an element
and that the element’s name matches the string passed to ReadStartElement. If the verification is
successful, then the stream is advanced to the next element.

 ➤ ReadEndElement() — This verifies that the current element is an end tab; and if the verification is
successful, then the stream is advanced to the next element.

The application knows that an element, <MovieOrderDump>, will be found at a specific point in the
document. The ReadStartElement method verifies this foreknowledge of the document format. After all
the elements contained in element <MovieOrderDump> have been traversed, the stream should point to the
end tag </MovieOrderDump>. The ReadEndElement method verifies this.

The code that traverses each element of type <FilmOrder> similarly uses the ReadStartElement and
ReadEndElement methods to indicate the start and end of the <FilmOrder> and <multiFilmOrders>
elements. The code that ultimately parses the list of movie orders and then faxes the movie supplier (using
the FranticallyFaxTheMovieSupplier subroutine) is as follows:

 Private Sub ReadMovieXml(ByVal fileName As String)
 Dim myXmlSettings As New XmlReaderSettings()
 Dim movieName As String
 Dim movieId As String
 Dim quantity As String

 XmlReader.Create(fileName, myXmlSettings)

 'position to first element
 readMovieInfo.Read()
 readMovieInfo.ReadStartElement("MovieOrderDump")
 Do While (True)
 readMovieInfo.ReadStartElement("FilmOrderList")
 readMovieInfo.ReadStartElement("multiFilmOrders")

 'for each order
 Do While (True) readMovieInfo.MoveToContent()
 movieId = readMovieInfo.GetAttribute("filmId")
 readMovieInfo.ReadStartElement("FilmOrder")

 movieName = readMovieInfo.ReadElementString()
 quantity = readMovieInfo.ReadElementString()
 readMovieInfo.ReadEndElement() ' clear </FilmOrder>

 FranticallyFaxTheMovieSupplier(movieName, movieId, quantity)

 ' Should read next FilmOrder node
 ' else quits
 readMovieInfo.Read()
 If ("FilmOrder" <> readMovieInfo.Name) Then
 Exit Do
 End If
 Loop
 readMovieInfo.ReadEndElement() ' clear </multiFilmOrders>
 readMovieInfo.ReadEndElement() ' clear </FilmOrderList>
 ' Should read next FilmOrderList node
 ' else you quit
 readMovieInfo.Read() ' clear </MovieOrderDump>
 If ("FilmOrderList" <> readMovieInfo.Name) Then
 Exit Do
 End If
 Loop
 readMovieInfo.ReadEndElement() ' </MovieOrderDump>
 End Using
 End Sub

Code snippet from FilmOrderReader2

The values are read from the XML file using the ReadElementString and GetAttribute methods.
Notice that the call to GetAttribute is done before reading the FilmOrder element. This is because the
ReadStartElement method advances the location for the next read to the next element in the XML file.
The MoveToContent call before the call to GetAttribute ensures that the current read location is on the
element, and not on white space.

While parsing the stream, it was known that an element named name existed and that this element
contained the name of the movie. Rather than parse the start tag, get the value, and parse the end tag, it was
easier to get the data using the ReadElementString method.

The output of this example is a fax (left as an exercise for you). The format of the document is still verified
by XmlReader as it is parsed.

The XmlReader class also exposes properties that provide more insight into the data contained in
the XML document and the state of parsing: IsEmptyElement, EOF, HasAttributes, and
IsStartElement.

.NET CLR-compliant types are not 100 percent interchangeable with XML types, so ever since the .NET
Framework 2.0 was introduced, the new methods it made available in the XmlReader make the process of
casting from one of these XML types to .NET types easier.

XMl stream-style Parsers ❘ 357

358 ❘ chaPTer 9 usiNG xml witH Visual BasiC

Using the ReadElementContentAs method, you can easily perform the necessary casting required:

Dim username As String = _
 myXmlReader.ReadElementContentAs(GetType(String), DBNull.Value)
Dim myDate As DateTime = _
 myXmlReader.ReadElementContentAs(GetType(DateTime), DBNull.Value)

In addition to the generic ReadElementContentAs method, there are specific ReadElementContentAsX
methods for each of the common data types; and in addition to these methods, the raw XML associated
with the document can also be retrieved, using ReadInnerXml and ReadOuterXml. Again, this only
scratches the surface of the XmlReader class, a class quite rich in functionality.

Handling exceptions
XML is text and could easily be read using mundane methods such as Read and ReadLine. A key feature of
each class that reads and traverses XML is inherent support for error detection and handling. To demonstrate
this, consider the following malformed XML document found in the file named Malformed.xml:

<?xml version="1.0" encoding="IBM437" ?>
<FilmOrder FilmId="101", Qty="10">
 <Name>Grease</Name>
<FilmOrder>

Code snippet from FilmOrdersReader2

This document may not immediately appear to be malformed. By wrapping a call to the method you
developed (ReadMovieXml), you can see what type of exception is raised when XmlReader detects the
malformed XML within this document as shown in Sub Main(). Comment out the line calling the
MovieManage.xml file, and uncomment the line to try to open the malformed.xml file:

Try
 'ReadMovieXml("MovieManage.xml")
 ReadMovieXml("Malformed.xml")
Catch xmlEx As XmlException
 Console.Error.WriteLine("XML Error: " + xmlEx.ToString())
Catch ex As Exception
 Console.Error.WriteLine("Some other error: " + ex.ToString())
End Try

Code snippet from FilmOrdersReader2

The methods and properties exposed by the XmlReader class raise exceptions of type System.Xml
.XmlException. In fact, every class in the System.Xml namespace raises exceptions of type XmlException.
Although this is a discussion of errors using an instance of type XmlReader, the concepts reviewed apply to
all errors generated by classes found in the System.Xml namespace. The XmlException extends the basic
Exception to include more information about the location of the error within the XML file.

The error displayed when subroutine ReadMovieXML processes Malformed.xml is as follows:

XML Error: System.Xml.XmlException: The ',' character, hexadecimal value 0x2C,
 cannot begin a name. Line 2, position 49.

The preceding snippet indicates that a comma separates the attributes in element
<FilmOrder FilmId=“101”, Qty=“10“>. This comma is invalid. Removing it and running the code again
results in the following output:

XML Error: System.Xml.XmlException: This is an unexpected token. Expected
'EndElement'. Line 5, position 27.

Again, you can recognize the precise error. In this case, you do not have an end element, </FilmOrder>, but
you do have an opening element, <FilmOrder>.

The properties provided by the XmlException class (such as LineNumber, LinePosition, and Message)
provide a useful level of precision when tracking down errors. The XmlReader class also exposes a level of
precision with respect to the parsing of the XML document. This precision is exposed by the XmlReader
through properties such as LineNumber and LinePosition.

document object model (dom)
The Document Object Model (DOM) is a logical view of an XML file. Within the DOM, an XML
document is contained in a class named XmlDocument. Each node within this document is accessible and
managed using XmlNode. Nodes can also be accessed and managed using a class specifically designed to
process a specific node’s type (XmlElement, XmlAttribute, and so on). XML documents are extracted from
XmlDocument using a variety of mechanisms exposed through such classes as XmlWriter, TextWriter,
Stream, and a file (specified by a filename of type String). XML documents are consumed by an
XmlDocument using a variety of load mechanisms exposed through the same classes.

A DOM-style parser differs from a stream-style parser with respect to movement. Using the DOM, the
nodes can be traversed forward and backward; and nodes can be added to the document, removed from
the document, and updated. However, this flexibility comes at a performance cost. It is faster to read or
write XML using a stream-style parser.

The DOM-specific classes exposed by System.Xml include the following:

 ➤ XmlDocument — Corresponds to an entire XML document. A document is loaded using the Load
or LoadXml methods. The Load method loads the XML from a file (the filename specified as type
String), TextReader, or XmlReader. A document can be loaded using LoadXml in conjunction
with a string containing the XML document. The Save method is used to save XML documents.
The methods exposed by XmlDocument reflect the intricate manipulation of an XML document.
For example, the following creation methods are implemented by this class: CreateAttribute,
CreateCDataSection, CreateComment, CreateDocumentFragment, CreateDocumentType,
CreateElement, CreateEntityReference, CreateNavigator, CreateNode,
CreateProcessingInstruction, CreateSignificantWhitespace, CreateTextNode,
CreateWhitespace, and CreateXmlDeclaration. The elements contained in the document can be
retrieved. Other methods support the retrieving, importing, cloning, loading, and writing of nodes.

 ➤ XmlNode — Corresponds to a node within the DOM tree. This is the base class for the other node
type classes. A robust set of methods and properties is provided to create, delete, and replace nodes.
The contents of a node can similarly be traversed in a variety of ways: FirstChild, LastChild,
NextSibling, ParentNode, and PreviousSibling.

 ➤ XmlElement — Corresponds to an element within the DOM tree. The functionality exposed by this
class contains a variety of methods used to manipulate an element’s attributes.

 ➤ XmlAttribute — Corresponds to an attribute of an element (XmlElement) within the DOM tree.
An attribute contains data and lists of subordinate data, so it is a less complicated object than
an XmlNode or an XmlElement. An XmlAttribute can retrieve its owner document (property,
OwnerDocument), retrieve its owner element (property, OwnerElement), retrieve its parent node
(property, ParentNode), and retrieve its name (property, Name). The value of an XmlAttribute is
available via a read-write property named Value. Given the diverse number of methods and properties
exposed by XmlDocument, XmlNode, XmlElement, and XmlAttribute (and there are many more
than those listed here), it’s clear that any XML 1.0 or 1.1-compliant document can be generated and
manipulated using these classes. In comparison to their XML stream counterparts, these classes offer
more flexible movement within the XML document and through any editing of XML documents.

A similar comparison could be made between DOM and data serialized and deserialized using XML. Using
serialization, the type of node (for example, attribute or element) and the node name are specified at compile
time. There is no on-the-fly modification of the XML generated by the serialization process.

XMl stream-style Parsers ❘ 359

360 ❘ chaPTer 9 usiNG xml witH Visual BasiC

DoM Traversing XMl
The first DOM example loads an XML document into an XmlDocument object using a string that contains
the actual XML document. The example over the next few pages simply traverses each XML element
(XmlNode) in the document (XmlDocument) and displays the data to the console. The data associated with
this example is contained in a variable, rawData, which is initialized as follows:

Dim rawData =
 <multiFilmOrders>
 <FilmOrder>
 <name>Grease</name>
 <filmId>101</filmId>
 <quantity>10</quantity>
 </FilmOrder>
 <FilmOrder>
 <name>Lawrence of Arabia</name>
 <filmId>102</filmId>
 <quantity>10</quantity>
 </FilmOrder>
 </multiFilmOrders>

Code snippet from DomReading

The XML document in rawData is a portion of the XML hierarchy associated with a movie order. Notice
the lack of quotation marks around the XML: This is an XML literal. XML literals allow you to insert a
block of XML directly into your VB source code. They can be written over a number of lines, and can be
used wherever you might normally load an XML file.

The basic idea in processing this data is to traverse each <FilmOrder> element in order to display the data it
contains. Each node corresponding to a <FilmOrder> element can be retrieved from your XmlDocument using
the GetElementsByTagName method (specifying a tag name of FilmOrder). The GetElementsByTagName
method returns a list of XmlNode objects in the form of a collection of type XmlNodeList. Using the
For Each statement to construct this list, the XmlNodeList (movieOrderNodes) can be traversed as
individual XmlNode elements (movieOrderNode). The code for handling this is as follows:

Dim xmlDoc As New XmlDocument
Dim movieOrderNodes As XmlNodeList
Dim movieOrderNode As XmlNode
xmlDoc.LoadXml(rawData.ToString())
' Traverse each <FilmOrder>
movieOrderNodes = xmlDoc.GetElementsByTagName("FilmOrder")
For Each movieOrderNode In movieOrderNodes
 '**
 ' Process <name>, <filmId> and <quantity> here
 '**
Next

Code snippet from DomReading

Each XmlNode can then have its contents displayed by traversing the children of this node using the
ChildNodes method. This method returns an XmlNodeList (baseDataNodes) that can be traversed one
XmlNode list element at a time:

Dim baseDataNodes As XmlNodeList
Dim bFirstInRow As Boolean
baseDataNodes = movieOrderNode.ChildNodes
bFirstInRow = True
For Each baseDataNode As XmlNode In baseDataNodes
 If (bFirstInRow) Then
 bFirstInRow = False
 Else
 Console.Write(", ")

 End If
 Console.Write(baseDataNode.Name & ": " & baseDataNode.InnerText)
Next
Console.WriteLine()

Code snippet from DomReading

The bulk of the preceding code retrieves the name of the node using the Name property and the
InnerText property of the node. The InnerText property of each XmlNode retrieved contains the data
associated with the XML elements (nodes) <name>, <filmId>, and <quantity>. The example displays the
contents of the XML elements using Console.Write. The XML document is displayed to the console as
follows:

name: Grease, quantity: 10
name: Lawrence of Arabia, quantity: 10

Other, more practical, methods for using this data could have been implemented, including the following:

The contents could have been directed to an ASP.NET ➤ Response object, and the data retrieved could
have been used to create an HTML table (<table> table, <tr> row, and <td> data) that would be
written to the Response object.

The data traversed could have been directed to a ➤ ListBox or ComboBox Windows Forms control. This
would enable the data returned to be selected as part of a GUI application.

The data could have been edited as part of your application’s business rules. For example, you could ➤

have used the traversal to verify that the <filmId> matched the <name>. Something like this could be
done if you wanted to validate the data entered into the XML document in any manner.

Writing XMl with the DoM
You can also use the DOM to create or edit XML documents. Creating new XML items is a two-step
process, however. First, you use the containing document to create the new element, attribute, or comment
(or other node type), and then you add that at the appropriate location in the document.

Just as there are a number of methods in the DOM for reading the XML, there are also methods for
creating new nodes. The XmlDocument class has the basic CreateNode method, as well as specific methods
for creating the different node types, such as CreateElement, CreateAttribute, CreateComment, and
others. Once the node is created, you add it in place using the AppendChild method of XmlNode (or one of
the children of XmlNode).

Create a new project that will be used to demonstrate writing XML with the DOM. Most of the work in
this sample will be done in two functions, so the Main method can remain simple:

 Sub Main()

 Dim data As String
 Dim fileName As String = "filmorama.xml"
 data = GenerateXml(fileName)

 Console.WriteLine(data)
 Console.WriteLine("Press ENTER to continue")
 Console.ReadLine()

 End Sub

Code snippet from DomWriting

The GenerateXml function creates the initial XmlDocument, and calls the CreateFilmOrder function
multiple times to add a number of items to the structure. This creates a hierarchical XML document
that can then be used elsewhere in your application. Typically, you would use the Save method to write

XMl stream-style Parsers ❘ 361

362 ❘ chaPTer 9 usiNG xml witH Visual BasiC

the XML to a stream or document, but in this case it just retrieves the OuterXml (that is, the full XML
document) to display:

 Private Function GenerateXml(ByVal fileName As String) As String
 Dim result As String
 Dim doc As New XmlDocument
 Dim elem As XmlElement

 'create root node
 Dim root As XmlElement = doc.CreateElement("FilmOrderList")
 doc.AppendChild(root)
 'this data would likely come from elsewhere
 For i As Integer = 1 To 5
 elem = CreateFilmOrder(doc, i)
 root.AppendChild(elem)
 Next
 result = doc.OuterXml
 Return result
 End Function

Code snippet from DomWriting

The most common error made when writing an XML document using the DOM is to create the elements
but forget to append them into the document. This step is done here with the AppendChild method, but
other methods can be used, in particular InsertBefore, InsertAfter, PrependChild, and RemoveChild.

Creating the individual FilmOrder nodes uses a similar CreateElement/AppendChild strategy. In addition,
attributes are created using the Append method of the Attributes collection for each XmlElement:

 Private Function CreateFilmOrder(ByVal parent As XmlDocument,
 ByVal count As Integer) As XmlElement
 Dim result As XmlElement
 Dim id As XmlAttribute
 Dim title As XmlElement
 Dim quantity As XmlElement

 result = parent.CreateElement("FilmOrder")
 id = parent.CreateAttribute("id")
 id.Value = 100 + count

 title = parent.CreateElement("title")
 title.InnerText = "Some title here"

 quantity = parent.CreateElement("quantity")
 quantity.InnerText = "10"

 result.Attributes.Append(id)
 result.AppendChild(title)
 result.AppendChild(quantity)
 Return result
 End Function

Code snippet from DomWriting

This generates the following XML (although it will all be on one line in the output):

<FilmOrderList>
 <FilmOrder id="101">
 <title>Some title here</title>
 <quantity> 10 </quantity>
 </FilmOrder>

 <FilmOrder id="102">
 <title>Some title here</title>
 <quantity> 10 </quantity>
 </FilmOrder>
 <FilmOrder id="103">
 <title>Some title here</title>
 <quantity> 10 </quantity>
 </FilmOrder>
 <FilmOrder id="104">
 <title>Some title here</title>
 <quantity>10</quantity>
 </FilmOrder>
 <FilmOrder id="105">
 <title>
 Some title here
 </title>
 <quantity>10</quantity>
 </FilmOrder>
</FilmOrderList>

Once you get the hang of creating XML with the DOM (and forget to add the new nodes a few dozen
times), it is quite a handy method for writing XML. If the XML you need to create can all be created at
once, it is probably better to use the XmlWriter class instead. Writing XML with the DOM is best left for
those situations when you need to either edit an existing XML document or move backwards through the
document as you are writing. In addition, because the DOM is an international standard, it means that code
using the DOM is portable to other languages that also provide a DOM.

In addition to the XmlWriter, the XElement shown later in this chapter provides yet another method for
reading and writing XML.

xsl TransformaTions
XSLT is used to transform XML documents into another format altogether. One popular use of XSLT is
to transform XML into HTML so that XML documents can be presented visually. The idea is to use an
alternate language (XSLT) to transform the XML, rather than rewrite the source code, SQL commands, or
some other mechanism used to generate XML.

Conceptually, XSLT is straightforward. A file (a .xsl file) describes the changes (transformations) that will
be applied to a particular XML file. Once this is completed, an XSLT processor is provided with the source
XML file and the XSLT file, and performs the transformation. The System.Xml.Xsl.XslTransform class
is such an XSLT processor. Another processor you will find (introduced in the .NET Framework 2.0) is the
XsltCommand object found at SystemXml.Query.XsltCommand. This section looks at using both of these
processors.

You can also find some features in Visual Studio that deal with XSLT. The IDE supports items such as XSLT
data breakpoints and XSLT debugging. Additionally, XSLT stylesheets can be compiled into assemblies even
more easily with the command-line stylesheet compiler, XSLTC.exe.

The XSLT file is itself an XML document. Dozens of XSLT commands can be used in writing an XSLT file.
The first example explores the following XSLT elements (commands):

 ➤ stylesheet — This element indicates the start of the style sheet (XSL) in the XSLT file.

 ➤ template — This element denotes a reusable template for producing specific output. This output
is generated using a specific node type within the source document under a specific context. For
example, the text <xsl: template match=“/”> selects all root nodes (“/”) for the specific
transform template. The template is applied whenever the match occurs in the source document.

Xsl Transformations ❘ 363

364 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 ➤ for-each — This element applies the same template to each node in the specified set. Recall the
example class (FilmOrderList) that could be serialized. This class contained an array of movie
orders. Given the XML document generated when a FilmOrderList is serialized, each movie order
serialized could be processed using

<xsl:for-each select = "FilmOrderList/multiFilmOrders/FilmOrder">.

 ➤ value-of — This element retrieves the value of the specified node and inserts it into the document
in text form. For example, <xsl:value-of select=“name” /> would take the value of the XML
element <name> and insert it into the transformed document.

You can use XSLT to convert an XML document to generate a report that is viewed by the manager of the
movie supplier. This report is in HTML form so that it can be viewed via the Web. The XSLT elements
you previously reviewed (stylesheet, template, and for-each) are the only XSLT elements required to
transform the XML document (in which data is stored) into an HTML file (data that can be displayed). An
XSLT file DisplayOrders.xslt contains the following text, which is used to transform a serialized version,
FilmOrderList found in Filmorama.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/">
 <html>
 <head><title>What people are ordering</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>
 Film Name
 </th>
 <th>
 Film ID
 </th>
 <th>
 Quantity
 </th>
 </tr>
 <xsl:for-each select=
 "//FilmOrder">
 <tr>
 <td>
 <xsl:value-of select="Title" />
 </td>
 <td>
 <xsl:value-of select="@id" />
 </td>
 <td>
 <xsl:value-of select="Quantity" />
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Code snippet from Transformation

 In the preceding XSLT fi le, the XSLT elements are marked in bold. These elements perform operations on
the source XML fi le containing a serialized FilmOrderList object, and generate the appropriate HTML
fi le. Your generated fi le contains a table (marked by the table tag, < table >) that contains a set of rows (each
row marked by a table row tag, < tr >). The columns of the table are contained in table data tags, < td > . Each
row containing data (an individual movie order from the serialized object, FilmOrderList) is generated
using the XSLT element, for - each , to traverse each < FilmOrder > element within the source XML
document. In this case, a shorthand for the location of the FilmOrder element was used: //FilmOrder
returns all FilmOrder elements, regardless of their depth in the XML fi le. Alternately, you could have
specifi ed the full path using FilmOrderList / FilmOrders / FilmOrder here.

 The individual columns of data are generated using the value - of XSLT element, in order to query the
elements contained within each < FilmOrder > element (< Title > , < id > , and < Quantity >).

 The code in Sub Main() to create a displayable XML fi le using the XslCompiledTransform object is as
follows:

 Dim xslt As New XslCompiledTransform
 Dim outputFile As String = "..\..\output.html"

 xslt.Load("..\..\displayorders.xslt")
 xslt.Transform("..\..\filmorama.xml", outputFile)

 Process.Start(outputFile)

 Code snippet from Transformation

 This consists of only fi ve lines of code, with the
bulk of the coding taking place in the XSLT fi le.
The previous code snippet created an instance of
a System.Xml.Xsl.XslCompiledTransform
object named xslt . The Load method of this
class is used to load the XSLT fi le you previously
reviewed, DisplayOrders.xslt . The Transform
method takes a source XML fi le as the fi rst
parameter, which in this case was a fi le containing
a serialized FilmOrderList object. The second
parameter is the destination fi le created by the
transform (Output.html). The Start method
of the Process class is used to display the
HTML fi le in the system default browser. This
method launches a process that is best suited
for displaying the fi le provided. Basically, the
extension of the fi le dictates which application will
be used to display the fi le. On a typical Windows
machine, the program used to display this fi le is
Internet Explorer, as shown in Figure 9 - 2.

 Don ’ t confuse displaying this HTML fi le with ASP.NET. Displaying an HTML fi le in
this manner takes place on a single machine without the involvement of a Web server.

 figure 9 - 2

 As demonstrated, the backbone of the System.Xml.Xsl namespace is the XslCompiledTransform class.
This class uses XSLT fi les to transform XML documents. XslCompiledTransform exposes the following
methods and properties:

 ➤ XmlResolver — This get/set property is used to specify a class (abstract base class, XmlResolver)
that is used to handle external references (import and include elements within the style sheet). These

Xsl Transformations ❘ 365

366 ❘ chaPTer 9 usiNG xml witH Visual BasiC

external references are encountered when a document is transformed (the method, Transform, is
executed). The System.Xml namespace contains a class, XmlUrlResolver, which is derived from
XmlResolver. The XmlUrlResolver class resolves the external resource based on a URI.

 ➤ Load — This overloaded method loads an XSLT style sheet to be used in transforming XML
documents. It is permissible to specify the XSLT style sheet as a parameter of type XPathNavigator,
filename of an XSLT file (specified as parameter type String), XmlReader, or IXPathNavigable.
For each type of XSLT supported, an overloaded member is provided that enables an XmlResolver to
also be specified. For example, it is possible to call Load(String, XsltSettings, XmlResolver),
where String corresponds to a filename, XsltSettings is an object that contains settings to affect the
transformation, and XmlResolver is an object that handles references in the style sheet of type
 xsl:import and xsl:include. It would also be permissible to pass in a value of Nothing for the
third parameter of the Load method (so that no XmlResolver would be specified).

 ➤ Transform — This overloaded method transforms a specified XML document using the previously
specified XSLT style sheet. The location where the transformed XML is to be output is specified as a
parameter to this method. The first parameter of each overloaded method is the XML document to
be transformed. The most straightforward variant of the Transform method is Transform(String,
String). In this case, a file containing an XML document is specified as the first parameter, and a
filename that receives the transformed XML document is specified as the second. This is exactly how
the first XSLT example utilized the Transform method:

myXslTransform.Transform("..\FilmOrders.xml", destFileName)

The first parameter to the Transform method can also be specified as IXPathNavigable or XmlReader.
The XML output can be sent to an object of type Stream, TextWriter, or XmlWriter. In addition, a
parameter containing an object of type XsltArgumentList can be specified. An XsltArgumentList object
contains a list of arguments that are used as input to the transform. These may be used within the XSLT file
to affect the output.

xslT Transforming between xml standards
The first example used four XSLT elements to transform an XML file into an HTML file. Such an example
has merit, but it doesn’t demonstrate an important use of XSLT: transforming XML from one standard into
another standard. This may involve renaming elements/attributes, excluding elements/attributes, changing
data types, altering the node hierarchy, and representing elements as attributes, and vice versa.

Returning to the example, a case of differing XML standards could easily affect your software that automates
movie orders coming into a supplier. Imagine that the software, including its XML representation of a movie
order, is so successful that you sell 100,000 copies. However, just as you are celebrating, a consortium of
the largest movie supplier chains announces that they are no longer accepting faxed orders and that they are
introducing their own standard for the exchange of movie orders between movie sellers and buyers.

Rather than panic, you simply ship an upgrade that includes an XSLT file. This upgrade (a bit of extra code
plus the XSLT file) transforms your XML representation of a movie order into the XML representation
dictated by the consortium of movie suppliers. Using an XSLT file enables you to ship the upgrade
immediately. If the consortium of movie suppliers revises their XML representation, then you are not
obliged to change your source code. Instead, you can simply ship the upgraded XSLT file that ensures each
movie order document is compliant.

The specific source code that executes the transform is as follows:

 Dim xslt As New XslCompiledTransform
 Dim outputFile As String = "..\..\output.html"

 xslt.Load("..\..\displayorders.xslt")
 xslt.Transform("..\..\filmorama.xml", outputFile)

Code snippet from Transformation

Those three lines of code accomplish the following:

Create an ➤ XslCompiledTransform object

Use the ➤ Load method to load an XSLT file (ConvertLegacyToNewStandard.xslt)

Use the ➤ Transform method to transform a source XML file (MovieOrdersOriginal.xml) into a
destination XML file (MovieOrdersModified.xml)

Recall that the input XML document (MovieOrdersOriginal.xml) does not match the format required by
your consortium of movie supplier chains. The content of this source XML file is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<FilmOrderList>
 <multiFilmOrders>
 <FilmOrder>
 <name>Grease</name>
 <filmId>101</filmId>
 <quantity>10</quantity>
 </FilmOrder>
 …
 </multiFilmOrders>
</FilmOrderList>

Code snippet from Transformation

The format exhibited in the preceding XML document does not match the format of the consortium of
movie supplier chains. To be accepted by the collective of suppliers, you must transform the document as
follows:

Remove element ➤ <FilmOrderList>.

Remove element ➤ <multiFilmOrders>.

Rename element ➤ <FilmOrder> to <DvdOrder>.

Remove element ➤ <name> (the film’s name is not to be contained in the document).

Rename element ➤ <quantity> to HowMuch and make HowMuch an attribute of <DvdOrder>.

Rename element ➤ <filmId> to FilmOrderNumber and make FilmOrderNumber an attribute of
<DvdOrder>.

Display attribute ➤ HowMuch before attribute FilmOrderNumber.

Many of the steps performed by the transform could have been achieved using an alternative technology.
For example, you could have used Source Code Style attributes with your serialization to generate the
correct XML attribute and XML element name. Had you known in advance that a consortium of suppliers
was going to develop a standard, you could have written your classes to be serialized based on the standard.
The point is that you did not know, and now one standard (your legacy standard) has to be converted into
a newly adopted standard of the movie suppliers’ consortium. The worst thing you could do would be to
change your working code and then force all users working with the application to upgrade. It is vastly
simpler to add an extra transformation step to address the new standard.

The XSLT file that facilitates the transform is named ConvertLegacyToNewStandard.xslt. A portion of
this file is implemented as follows:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="FilmOrder">
 <!-- rename <FilmOrder> to <DvdOrder>
 -->
 <xsl:element name="DvdOrder">
 <!-- Make element Quantity attribute HowMuch
 Notice attribute HowMuch comes before attribute FilmOrderNumber -->
 <xsl:attribute name="HowMuch">

Xsl Transformations ❘ 367

368 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 <xsl:value-of select="Quantity"></xsl:value-of>
 </xsl:attribute>
 <!-- Make element id attribute FilmOrderNumber -->
 <xsl:attribute name="FilmOrderNumber">
 <xsl:value-of select="@id"></xsl:value-of>
 </xsl:attribute>
 </xsl:element>
 <!-- end of DvdOrder element -->
 </xsl:template>
</xsl:stylesheet>

Code snippet from Transformation

In the previous snippet of XSLT, the following XSLT elements are used to facilitate the transformation:

 ➤ <xsl:template match=“FilmOrder”> — All operations in this template XSLT element take place
on the original document’s FilmOrder node.

 ➤ <xsl:element name=“DvdOrder”> — The element corresponding to the source document’s
FilmOrder element will be called DvdOrder in the destination document.

 ➤ <xsl:attribute name=“HowMuch”> — An attribute named HowMuch will be contained in the
previously specified element, <DvdOrder>. This attribute XSLT element for HowMuch comes before the
attribute XSLT element for FilmOrderNumber. This order was specified as part of your transform to
adhere to the new standard.

 ➤ <xsl:value-of select=‘Quantity’> — Retrieve the value of the source document’s <Quantity>
element and place it in the destination document. This instance of XSLT element value-of provides
the value associated with the attribute HowMuch.

Two new XSLT terms have crept into your vocabulary: element and attribute. Both of these XSLT
elements live up to their names. Using the element node in an XSLT places an element in the destination
XML document, while an attribute node places an attribute in the destination XML document. The
XSLT transform found in ConvertLegacyToNewStandard.xslt is too long to review here. When reading
this file in its entirety, remember that this XSLT file contains inline documentation to specify precisely what
aspect of the transformation is being performed at which location in the XSLT document. For example, the
following XML code comments indicate what the XSLT element attribute is about to do:

<!-- Make element 'Quantity' attribute HowMuch
 Notice attribute HowMuch comes before attribute FilmOrderNumber -->
<xsl:attribute name="HowMuch">
 <xsl:value-of select='Quantity'></xsl:value-of>
</xsl:attribute>

Code snippet from Transformation

The preceding example spans several pages but contains just three lines of code. This demonstrates that
there is more to XML than learning how to use it in Visual Basic and the .NET Framework. Among other
things, you also need a good understanding of XSLT, XPath, and XQuery. For more details on these
standards, see Professional XML from Wrox.

other classes and interfaces in system.xml.xsl
We just took a good look at XSLT and the System.Xml.Xsl namespace, but there is a lot more to it than
that. Other classes and interfaces exposed by the System.Xml.Xsl namespace include the following:

 ➤ IXsltContextFunction — This interface accesses at runtime a given function defined in the XSLT
style sheet.

 ➤ IXsltContextVariable — This interface accesses at runtime a given variable defined in the XSLT
style sheet.

 ➤ XsltArgumentList — This class contains a list of arguments. These arguments are XSLT parameters
or XSLT extension objects. The XsltArgumentList object is used in conjunction with the
Transform method of XslTransform. Arguments enable you to use a single XSLT transformation for
multiple uses, changing the parameters of the transformation as needed.

 ➤ XsltContext — This class contains the state of the XSLT processor. This context information
enables XPath expressions to have their various components resolved (functions, parameters, and
namespaces).

 ➤ XsltException, XsltCompileException — These classes contain the information pertaining to an
exception raised while transforming data. XsltCompileException is derived from XsltException
and is thrown by the Load method.

xml in asP.neT
Most Microsoft-focused Web developers have usually concentrated on either Microsoft SQL Server or
Microsoft Access for their data storage needs. Today, however, a large amount of data is stored in XML
format, so considerable inroads have been made in improving Microsoft’s core Web technology to work
easily with this format.

The xmldatasource server control
ASP.NET contains a series of data source controls designed to bridge the gap between your data stores
(such as XML) and the data-bound controls at your disposal. These new data controls not only enable you
to retrieve data from various data stores, they also enable you to easily manipulate the data (using paging,
sorting, editing, and filtering) before the data is bound to an ASP.NET server control.

With XML being as important as it is, a specific data source control is available in ASP.NET just for
retrieving and working with XML data: XmlDataSource. This control enables you to connect to your XML
data and use this data with any of the ASP.NET data-bound controls. Just like the SqlDataSource and the
ObjectDataSource controls, the XmlDataSource control enables you to not only retrieve data, but also
insert, delete, and update data items. With increasing numbers of users turning to XML data formats, such
as Web services, RSS feeds, and more, this control is a valuable resource for your Web applications.

To show the XmlDataSource control in action, first create a simple XML file and include this file in your
application. The following code reflects a simple XML file of Russian painters:

<?xml version="1.0" encoding="utf-8" ?>
<Artists>
 <Painter name="Vasily Kandinsky">
 <Painting>
 <Title>Composition No. 218</Title>
 <Year>1919</Year>
 </Painting>
 </Painter>
 <Painter name="Pavel Filonov">
 <Painting>
 <Title>Formula of Spring</Title>
 <Year>1929</Year>
 </Painting>
 </Painter>
 <Painter name="Pyotr Konchalovsky">
 <Painting>
 <Title>Sorrento Garden</Title>
 <Year>1924</Year>
 </Painting>
 </Painter>
</Artists>

Code snippet from XmlWeb

XMl in asP.neT ❘ 369

370 ❘ chaPTer 9 usiNG xml witH Visual BasiC

Now that the Painters.xml file is in place, the next step is to use an ASP.NET DataList control and
connect this DataList control to an <asp:XmlDataSource> control, as shown here:

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="Default.aspx.vb" Inherits="XmlWeb._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Using XmlDataSource</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:DataList ID="PainterList" runat="server"
 DataSourceID="PainterData">
 <ItemTemplate>
 <p>

 <%# XPath("@name") %>

 <i>
 <%# XPath("Painting/Title") %></i>

 <%# XPath("Painting/Year") %></p>
 </ItemTemplate>
 </asp:DataList>
 <asp:XmlDataSource ID="PainterData" runat="server"
 DataFile="~/Painters.xml" XPath="Artists/Painter" />
 </div>
 </form>
</body>
</html>

Code snippet from XmlWeb

This is a simple example, but it shows you the power and ease of using the XmlDataSource control. Pay attention
to two attributes in this example. The first is the DataFile attribute. This attribute points to the location of the
XML file. Because the file resides in the root directory of the Web application, it is simply ~/Painters.xml. The
next attribute included in the XmlDataSource control is the XPath attribute. The XmlDataSource control uses
XPath for the filtering of XML data. In this case, the XmlDataSource control
is taking everything within the <Painter> set of elements. The value Artists/
Painter means that the XmlDataSource control navigates to the <Artists>
element and then to the <Painter> element within the specified XML file.

The DataList control next must specify the DataSourceID as the
XmlDataSource control. In the <ItemTemplate> section of the DataList
control, you can retrieve specific values from the XML file by using XPath
commands. The XPath commands filter the data from the XML file. The first
value retrieved is an element attribute (name) contained in the <Painter>
element. When you retrieve an attribute of an element, you preface the name
of the attribute with an @ symbol. In this case, you simply specify @name to
get the painter’s name. The next two XPath commands go deeper into the
XML file, getting the specific painting and the year of the painting. Remember
to separate nodes with a /. When run in the browser, this code produces the
results shown in Figure 9-3.

Besides working from static XML files such as the Painters.xml file, the XmlDataSource file can work
from dynamic, URL-accessible XML files. One popular XML format pervasive on the Internet today is
blogs, or weblogs. Blogs can be viewed either in the browser (see Figure 9-4), through an RSS aggregator, or
just as pure XML.

figure 9-3

figure 9-4

Now that you know the location of the XML from the blog, you can use this XML with the XmlDataSource
control and display some of the results in a DataList control. The code for this example is shown here:

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="Default.aspx.vb" Inherits="ViewingRss._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Viewing RSS</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:DataList ID="RssList" runat="server"
 DataSourceID="RssData">
 <HeaderTemplate>
 <table border="1" cellpadding="3">
 </HeaderTemplate>
 <ItemTemplate>
 <tr>
 <td>

 <%# XPath("title") %>

 <i>
 <%# "published on " + XPath("pubDate") %></i>

 <%# XPath("description").ToString().Substring(0,100) %>
 </td>
 </tr>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <tr style="background-color: #e0e0e0;">
 <td>

 <%# XPath("title") %>

 <i>
 <%# "published on " + XPath("pubDate") %></i>

 <%# XPath("description").ToString().Substring(0,100) %>

XMl in asP.neT ❘ 371

372 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 </td>
 </tr>
 </AlternatingItemTemplate>
 <FooterTemplate>
 </table>
 </FooterTemplate>
 </asp:DataList>
 <asp:XmlDataSource ID="RssData" runat="server"
 DataFile="http://weblogs.asp.net/mainfeed.aspx"
 XPath="rss/channel/item" />
 </div>
 </form>
</body>
</html>

Code snippet from ViewingRSS

This example shows that the DataFile points to a URL where the XML is retrieved. The XPath property
filters out all the <item> elements from the RSS feed. The DataList control creates an HTML table and
pulls out specific data elements from the RSS feed, such as the <title>, <pubDate>, and <description>
elements. To make things a little more visible, only the first 100 characters of each post are displayed.

Running this page in the browser results in something similar to what is shown in Figure 9-5.

figure 9-5

This approach also works with XML Web Services, even those for which you can pass in parameters using
HTTP-GET. You just set up the DataFile value in the following manner:

DataFile="http://www.someserver.com/GetWeather.asmx/ZipWeather?zipcode=63301"

The xmldatasource control’s namespace Problem
One big issue with using the XmlDataSource control is that when using the XPath capabilities of the control,
it is unable to understand namespace-qualified XML. The XmlDataSource control chokes on any XML data
that contains namespaces, so it is important to yank out any prefixes and namespaces contained in the XML.

To make this a bit easier, the XmlDataSource control includes the TransformFile attribute. This attribute
takes your XSLT transform file, which can be applied to the XML pulled from the XmlDataSource control.
That means you can use an XSLT file, which will transform your XML in such a way that the prefixes and
namespaces are completely removed from the overall XML document. An example of this XSLT document
is illustrated here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
 <xsl:template match="*">
 <!-- Remove any prefixes -->
 <xsl:element name="{local-name()}">
 <!-- Work through attributes -->
 <xsl:for-each select="@*">
 <!-- Remove any attribute prefixes -->
 <xsl:attribute name="{local-name()}">
 <xsl:value-of select="."/>
 </xsl:attribute>
 </xsl:for-each>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

Now, with this XSLT document in place within your application, you can use the XmlDataSource control to
pull XML data and strip that data of any prefixes and namespaces:

<asp:XmlDataSource ID="XmlDataSource1" runat="server"
 DataFile="NamespaceFilled.xml" TransformFile="~/RemoveNamespace.xsl"
 XPath="ItemLookupResponse/Items/Item"></asp:XmlDataSource>

The xml server control
Since the very beginning of ASP.NET, there has always been a server control called the Xml server control.
This control performs the simple operation of XSLT transformation upon an XML document. The control
is easy to use: All you do is point to the XML file you wish to transform using the DocumentSource
attribute, and the XSLT transform file using the TransformSource attribute.

To see this in action, use the Painters.xml file shown earlier. Create your XSLT transform file, as shown in
the following example:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h3>List of Painters & Paintings</h3>
 <table border="1">
 <tr bgcolor="LightGrey">
 <th>Name</th>

XMl in asP.neT ❘ 373

374 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 <th>Painting</th>
 <th>Year</th>
 </tr>
 <xsl:apply-templates select="//Painter"/>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="Painter">
 <tr>
 <td>
 <xsl:value-of select="@name"/>
 </td>
 <td>
 <xsl:value-of select="Painting/Title"/>
 </td>
 <td>
 <xsl:value-of select="Painting/Year"/>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

Code snippet from XmlControl

With the XML document and the XSLT document in place, the final step is to combine the two using the
Xml server control provided by ASP.NET in default.aspx:

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="Default.aspx.vb" Inherits="XmlControl._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Using the Xml Control</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Xml ID="PainterView" runat="server"
 DocumentSource="~/Painters.xml"
 TransformSource="~/painters.xslt" />
 </div>
 </form>
</body>
</html>

Code snippet from XmlControl

The result is shown in Figure 9-6.

figure 9-6

 linq To xml
 With the introduction of LINQ to the .NET Framework, the focus was on easy access to the data that you want
to work with in your applications. One of the main data stores in the application space is XML, so it was really
a no - brainer to create the LINQ to XML implementation. With the inclusion of System.Xml.Linq , you now
have a series of capabilities that make the process of working with XML in your code much easier to achieve.

 linq helPer xml oBJecTs
 Even if the LINQ querying capability were not around, the new objects available to work with the XML
are so good that they can even stand on their own outside LINQ. Within the new System.Xml.Linq
namespace, you will fi nd a series of new LINQ to XML helper objects that make working with an XML
document in memory that much easier. The following sections describe the new objects that are available
within this new namespace.

 Many of the examples in this chapter use a fi le called Hamlet.xml , which you can fi nd
included in the fi le http://metalab.unc.edu/bosak/xml/eg/shaks200.zip . At this
link you ’ ll fi nd all of Shakespeare ’ s plays as XML fi les.

 xdocument
 The XDocument class is a replacement of the XmlDocument object from the pre - LINQ world. While it
does not comply with any international standards, the XDocument object is easier to work with when
dealing with XML documents. It works with the other new objects in this space, such as the XNamespace ,
 XComment , XElement , and XAttribute objects.

 One of the more important members of the XDocument object is the Load method:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")

 The preceding example loads the Hamlet.xml contents as an in - memory XDocument object. You can also
pass a TextReader or XmlReader object into the Load method. From here, you can programmatically work
with the XML:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")
Console.WriteLine(xdoc.Root.Name.ToString())
Console.WriteLine(xdoc.Root.HasAttributes.ToString())

 Code snippet from LinqRead

 This produces the following results:

PLAY
False

 Another important member to be aware of is the Save method, which, like the Load method, enables you to
save to a physical disk location or to a TextWriter or XmlWriter object. Note that you need to be running
the application (or Visual Studio) as an administrator for this to work, as it writes to the root directory:

Dim xdoc As XDocument = XDocument.Load("C:\Hamlet.xml")
xdoc.Save("C:\CopyOfHamlet.xml")

 xelement
 Another common object that you will work with is the XElement object. With this object, you can easily
create even single - element objects that are XML documents themselves, and even fragments of XML. For
instance, here is an example of writing an XML element with a corresponding value:

Dim xe As XElement = New XElement("Company", "Wrox")
Console.WriteLine(xe.ToString())

linQ Helper XMl objects ❘ 375

376 ❘ chaPTer 9 usiNG xml witH Visual BasiC

When creating a new XElement object, you can define the name of the element as well as the value used
in the element. In this case, the name of the element will be <Company>, while the value of the <Company>
element will be Wrox. Running this in a console application, you will get the following result:

<Company>Wrox</Company>

You can also create a more complete XML document using multiple XElement objects, as shown here:

Imports System.Xml.Linq

Module Main

 Sub Main()

 Dim root As New XElement("Company",
 New XAttribute("Type", "Publisher"),
 New XElement("CompanyName", "Wrox"),
 New XElement("CompanyAddress",
 New XElement("Steet", "111 River Street"),
 New XElement("City", "Hoboken"),
 New XElement("State", "NJ"),
 New XElement("Country", "USA"),
 New XElement("Zip", "07030-5774")))
 Console.WriteLine(root.ToString())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from XElementWriting

Running this application yields the results shown in Figure 9-7.

figure 9-7

xnamespace
The XNamespace is an object that represents an XML namespace, and it is easily applied to elements within your
document. For example, you can take the previous example and easily apply a namespace to the root element:

Imports System.Xml.Linq

Module Main

 Sub Main()
 Dim ns as Xnamespace = "http://www.example.com/somenamespace"
 Dim root As New Xelement(ns + "Company",

 New XElement("CompanyName", "Wrox"),
 New XElement("CompanyAddress",
 New XElement("Street", "111 River Street"),
 New XElement("City", "Hoboken"),
 New XElement("State", "NJ"),
 New XElement("Country", "USA"),
 New XElement("Zip", "07030-5774")))
 Console.WriteLine(root.ToString())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

In this case, an XNamespace object is created by assigning it a value of http://www.example.com/
somenamespace. From there, it is actually used in the root element <Company> with the instantiation of the
XElement object:

Dim root As New XElement(ns + "Company",

This will produce the results shown in Figure 9-8.

figure 9-8

Besides dealing with the root element, you can also apply namespaces to all your elements:

Imports System.Xml.Linq

Module Main

 Sub Main()
 Dim ns1 As XNamespace = "http://www.example.com/ns/root"
 Dim ns2 As XNamespace = "http://www.example.com/ns/address"

 Dim root As New XElement(ns1 + "Company",
 New XElement(ns1 + "CompanyName", "Wrox"),
 New XElement(ns2 + "CompanyAddress",
 New XElement(ns2 + "Street", "111 River Street"),
 New XElement(ns2 + "City", "Hoboken"),
 New XElement(ns2 + "State", "NJ"),
 New XElement(ns2 + "Country", "USA"),
 New XElement(ns2 + "Zip", "07030-5774")))
 Console.WriteLine(root.ToString())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from XElementWritingNamespaces

linQ Helper XMl objects ❘ 377

378 ❘ chaPTer 9 usiNG xml witH Visual BasiC

This produces the results shown in Figure 9-9.

figure 9-9

In this case, the subnamespace was applied to everything specified except for the <Street>, <City>,
<State>, <Country>, and <Zip> elements, because they inherit from their parent, <CompanyAddress>,
which has the namespace declaration.

xattribute
In addition to elements, another important aspect of XML is attributes. Adding and working with attributes
is done through the use of the XAttribute object. The following example adds an attribute to the root
<Company> node:

 Dim root As New Xelement("Company",
 New Xattribute("Type", "Publisher"),
 New XElement("CompanyName", "Wrox"),
 New XElement("CompanyAddress",
 New XElement("Street", "111 River Street"),
 New XElement("City", "Hoboken"),
 New XElement("State", "NJ"),
 New XElement("Country", "USA"),
 New XElement("Zip", "07030-5774")))

Here, the attribute MyAttribute with a value of MyAttributeValue is added to the root element of the
XML document, producing the results shown in Figure 9-10.

figure 9-10

Visual Basic and xml liTerals
Visual Basic takes LINQ to XML one step further, enabling you to place XML directly in your code. Using
XML literals, you can place XML directly in your code for working with the XDocument and XElement
objects. Earlier, the use of the XElement object was presented as follows:

Imports System.Xml.Linq

Module Main

 Sub Main()
 Dim root As New XElement("Company",
 New XElement("CompanyName", "Wrox"),
 New XElement("CompanyAddress",
 New XElement("Street", "111 River Street"),
 New XElement("City", "Hoboken"),
 New XElement("State", "NJ"),
 New XElement("Country", "USA"),
 New XElement("Zip", "07030-5774")))
 Console.WriteLine(root.ToString())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from XmlLiteral

Using XML literals, you can use the following syntax:

Module Main

 Sub Main()
 Dim root As XElement =
 <Company>
 <CompanyName>Wrox</CompanyName>
 <CompanyAddress>
 <Street>111 River Street</Street>
 <City>Hoboken</City>
 <State>NJ</State>
 <Country>USA</Country>
 <Zip>07030-5774</Zip>
 </CompanyAddress>
 </Company>
 Console.WriteLine(root.ToString())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from XmlLiteral

This enables you to place the XML directly in the code (see Figure 9-11). The best part about this is the IDE
support for XML literals. Visual Studio 2010 has IntelliSense and excellent color-coding for the XML that
you place in your code file.

Visual Basic and XMl literals ❘ 379

380 ❘ chaPTer 9 usiNG xml witH Visual BasiC

You can also use inline variables in the XML document. For instance, if you wanted to declare the value
of the <CompanyName> element outside the XML literal, then you could use a construct similar to the
following:

Module Module1
 Sub Main()
 Dim companyName As String = "Wrox"
 Dim xe As XElement = _
 <Company>
 <CompanyName><%= companyName %></CompanyName>
 <CompanyAddress>
 <Street>111 River Street</Street>
 <City>Hoboken</City>
 <State>NJ</State>
 <Country>USA</Country>
 <Zip>07030-5774</Zip>
 </CompanyAddress>
 </Company>
 Console.WriteLine(xe.ToString())
 Console.ReadLine()
 End Sub
End Module

In this case, the <CompanyName> element is assigned a value of Wrox from the companyName variable, using
the syntax <%= companyName %>.

using linq To query xml documenTs
Now that you can get your XML documents into an XDocument object and work with the various parts of
this document, you can also use LINQ to XML to query your XML documents and work with the results.

querying static xml documents
Notice that querying a static XML document using LINQ to XML takes almost no work at all. The
following example makes use of the hamlet.xml file, querying for all the players (actors) who appear in a
play. Each of these players is defined in the XML document with the <PERSONA> element:

Module Main
 Sub Main()
 Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")
 Dim query = From people In xdoc.Descendants("PERSONA") _
 Select people.Value

figure 9-11

 Console.WriteLine("{0} Players Found", query.Count())
 Console.WriteLine()
 For Each item In query
 Console.WriteLine(item)
 Next
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqRead

In this case, an XDocument object loads a physical XML file (hamlet.xml) and then performs a LINQ query
over the contents of the document:

Dim query = From people In xdoc.Descendants("PERSONA") _
 Select people.Value

The people object is a representation of all the <PERSONA> elements found in the document. Then the
Select statement gets at the values of these elements. From there, a Console.WriteLine method is used
to write out a count of all the players found, using query.Count. Next, each of the items is written to the
screen in a For Each loop. The results you should see are presented here:

26 Players Found
CLAUDIUS, king of Denmark.
HAMLET, son to the late, and nephew to the present king.
POLONIUS, lord chamberlain.
HORATIO, friend to Hamlet.
LAERTES, son to Polonius.
LUCIANUS, nephew to the king.
VOLTIMAND
CORNELIUS
ROSENCRANTZ
GUILDENSTERN
OSRIC
A Gentleman
A Priest.
MARCELLUS
BERNARDO
FRANCISCO, a soldier.
REYNALDO, servant to Polonius.
Players.
Two Clowns, grave-diggers.
FORTINBRAS, prince of Norway.
A Captain.
English Ambassadors.
GERTRUDE, queen of Denmark, and mother to Hamlet.
OPHELIA, daughter to Polonius.
Lords, Ladies, Officers, Soldiers, Sailors, Messengers, and other Attendants.
Ghost of Hamlet's Father.

querying dynamic xml documents
Numerous dynamic XML documents can be found on the Internet these days. Blog feeds, podcast feeds, and
more provide XML documents by sending a request to a specific URL endpoint. These feeds can be viewed either
in the browser, through an RSS aggregator, or as pure XML This code uses LINQ to XML to read a RSS feed:

Module Module1
 Sub Main()
 Dim xdoc As XDocument = _
 XDocument.Load("http://weblogs.asp.net/mainfeed.aspx")
 Dim query = From rssFeed In xdoc.Descendants("channel") _
 Select Title = rssFeed.Element("title").Value, _

Using linQ to Query XMl Documents ❘ 381

382 ❘ chaPTer 9 usiNG xml witH Visual BasiC

 Description = rssFeed.Element("description").Value, _
 Link = rssFeed.Element("link").Value
 For Each item In query
 Console.WriteLine("TITLE: " + item.Title)
 Console.WriteLine("DESCRIPTION: " + item.Description)
 Console.WriteLine("LINK: " + item.Link)
 Next
 Console.WriteLine()
 Dim queryPosts = From myPosts In xdoc.Descendants("item") _
 Select Title = myPosts.Element("title").Value, _
 Published = _
 DateTime.Parse(myPosts.Element("pubDate").Value), _
 Description = myPosts.Element("description").Value, _
 Url = myPosts.Element("link").Value
 For Each item In queryPosts
 Console.WriteLine(item.Title)
 Next
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqReadDynamic

Here, the Load method of the XDocument object points to a URL where the XML is retrieved. The first
query pulls out all the main sub-elements of the <channel> element in the feed and creates new objects
called Title, Description, and Link to get at the values of these sub-elements.

From there, a For Each statement is run to iterate through all the items found in this query. The second
query works through all the <item> elements and the various sub-elements it contains (these are all the blog
entries found in the blog). Though a lot of the items found are rolled up into properties, in the For Each
loop, only the Title property is used. You will see results similar to that shown in Figure 9-12.

figure 9-12

WorKing WiTh The xml documenT
If you have been working with the XML document hamlet.xml, you probably noticed that it is quite large.
You’ve seen how you can query into the XML document in a couple of ways, and now this section takes a
look at reading and writing to the XML document.

reading from an xml document
Earlier you saw just how easy it is to query into an XML document using the LINQ query statements, as
shown here:

Dim query = From people In xdoc.Descendants("PERSONA") _
 Select people.Value

This query returns all the players found in the document. Using the Element method of the XDocument
object, you can also get at specific values of the XML document you are working with. For instance,
continuing to work with the hamlet.xml document, the following XML fragment shows you how the title
is represented:

<?xml version="1.0"?>
<PLAY>
 <TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
 <!-- XML removed for clarity -->
</PLAY>

Code snippet from LinqRead

As you can see, the <TITLE> element is a nested element of the <PLAY> element. You can easily get at the
title by using the following bit of code:

Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")
Console.WriteLine(xdoc.Element("PLAY").Element("TITLE").Value)

This bit of code writes out the title, “The Tragedy of Hamlet, Prince of Denmark,” to the console screen.
In the code, you were able to work down the hierarchy of the XML document by using two Element method
calls — first calling the <PLAY> element, and then the <TITLE> element found nested within the <PLAY>
element.

Continuing with the hamlet.xml document, you can view a long list of players who are defined with the use
of the <PERSONA> element:

<?xml version="1.0"?>
<PLAY>
 <TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
 <!-- XML removed for clarity -->
 <PERSONAE>
 <TITLE>Dramatis Personae</TITLE>
 <PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
 <PERSONA>HAMLET, son to the late,
 and nephew to the present king.</PERSONA>
 <PERSONA>POLONIUS, lord chamberlain. </PERSONA>
 <PERSONA>HORATIO, friend to Hamlet.</PERSONA>
 <PERSONA>LAERTES, son to Polonius.</PERSONA>
 <PERSONA>LUCIANUS, nephew to the king.</PERSONA>
 <!-- XML removed for clarity -->
 </PERSONAE>
</PLAY>

Code snippet from LinqRead

Using that, review the following bit of the code’s use of this XML:

Dim xdoc As XDocument = XDocument.Load("C:\hamlet.xml")
Console.WriteLine(_
 xdoc.Element("PLAY").Element("PERSONAE").Element("PERSONA").Value)

This piece of code starts at <PLAY>, works down to the <PERSONAE> element, and then makes use of the
<PERSONA> element. However, using this you will get the following result:

CLAUDIUS, king of Denmark

Although there is a collection of <PERSONA> elements, you are dealing only with the first one that is
encountered using the Element().Value call.

Working with the XMl Document ❘ 383

384 ❘ chaPTer 9 usiNG xml witH Visual BasiC

Writing to an xml document
In addition to reading from an XML document, you can also write to the document just as easily. For
instance, if you wanted to change the name of the first player of the hamlet file, you could make use of the
code here to accomplish that task:

Module Module1
 Sub Main()
 Dim xdoc As XDocument = XDocument.Load("hamlet.xml")
 xdoc.Element("PLAY").Element("PERSONAE"). _
 Element("PERSONA").SetValue("Foo deBar, King of Denmark")
 Console.WriteLine(xdoc.Element("PLAY"). _
 Element("PERSONAE").Element("PERSONA").Value)
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqWrite

In this case, the first instance of the <PERSONA> element is overwritten with the value of
 Foo deBar, King of Denmark using the SetValue method of the Element object. After the SetValue is
called and the value is applied to the XML document, the value is then retrieved using the same approach as
before. Running this bit of code, you can indeed see that the value of the first <PERSONA> element has
been changed.

Another way to change the document (by adding items to it in this example) is to create the element you
want as XElement objects and then add them to the document:

Module Module1
 Sub Main()
 Dim xdoc As XDocument = XDocument.Load("hamlet.xml")
 Dim xe As XElement = New XElement("PERSONA", _
 "Foo deBar, King of Denmark")
 xdoc.Element("PLAY").Element("PERSONAE").Add(xe)
 Dim query = From people In xdoc.Descendants("PERSONA") _
 Select people.Value
 Console.WriteLine("{0} Players Found", query.Count())
 Console.WriteLine()
 For Each item In query
 Console.WriteLine(item)
 Next
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqAdd

In this case, an XElement document called xe is created. The construction of xe gives you the following
XML output:

<PERSONA>Foo deBar, King of Denmark</PERSONA>

Then, using the Element().Add method from the XDocument object, you are able to add the created
element:

xdoc.Element("PLAY").Element("PERSONAE").Add(xe)

Next, querying all the players, you will now find that instead of 26, as before, you now have 27, with the
new one at the bottom of the list. Besides Add, you can also use AddFirst, which does just that — adds the
player to the beginning of the list instead of the end, which is the default.

lamBda exPressions in Visual Basic
While not specifically an XML feature, Visual Basic includes support for lambda expressions. These
can be quite handy when dealing with XML, or other code that requires some function to be executed
repeatedly.

Lambda expressions are at first glance similar to functions. You declare them with the System.Func
generic, and then execute them as needed:

Dim Square As Func(Of Integer, Integer) =
 Function(x As Integer) x ^ 2
Dim value As Integer = 42
Console.WriteLine(Square(value))

This example creates a new lambda — called Square — that simply squares an integer. This expression
takes an Integer, and returns an Integer. There are other Func generics available for a number of other
combinations of parameters and return values. The Function keyword is used to define the expression (as
you will see later, there is also now a Sub keyword).

In the preceding example, the actual function was written on one line, following the Function keyword.
Many developers find this syntax a little confusing at first. Fortunately, in Visual Basic 2010, a more
familiar form is available:

 Dim SquareIt As Func(Of Integer, Integer) = Function(x As Integer)
 Return x ^ 2
 End Function
 Dim i As Integer = 42
 Console.WriteLine(SquareIt(i))

In this sample, the lambda has been written more like a normal function, across multiple lines, and with a
return statement. While this function has only a single line, you could include whatever processing you need
to do within the lambda expression, just as you would do in a normal function.

These expressions differ from regular functions in that they are actually inherited from Delegate. This
means that they are actually code objects. As such, you can even return them from a method. In addition,
because they inherit from Delegate, they are interchangeable. For example, if you had two lambdas using
the same signature, you could declare a method to return any lambda that uses that signature:

 Dim Square As Func(Of Integer, Integer) = Function(x As Integer) x ^ 2
 Dim Cube As Func(Of Integer, Integer) = Function(x As Integer) x ^ 3

 Function GetMath(ByVal v As Integer) As Func(Of Integer, Integer)
 'square even numbers, cube odd ones
 If (v Mod 2) = 0 Then
 Return Square
 Else
 Return Cube
 End If

 End Function

Code snippet from Lambdas

Your code will then run the appropriate method for the parameter(s):

 Dim nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 For Each x In nums
 Dim f As Func(Of Integer, Integer)
 f = GetMath(x)
 Console.WriteLine("{0}: {1}", x, f(x))
 Next

Code snippet from Lambdas

lambda expressions in Visual Basic ❘ 385

386 ❘ chaPTer 9 usiNG xml witH Visual BasiC

Where do lambda expressions fit in with XML? The LINQ expressions you have been using are
written internally as lambda expressions (LINQ is actually why lambda expressions were added
to .NET).

In addition, you can use your own lambdas to simplify complex queries by replacing the queries with
lambda expressions. For example, the following code prints off a subset of the lines from the hamlet.xml
file that you’ve been using:

Dim doc As XElement = XElement.Load("..\..\hamlet.xml")
Dim speakers = {"OPHELIA", "LORD POLONIUS" }

Dim lines As List(Of String) =
 (From line In doc.Descendants("SPEECH") _
 .Where(Function(item As XElement)
 Return (speakers.Contains(item.Descendants("SPEAKER").Value))
 End Function) _
 .Select(Function(item As XElement)
 Return String.Format("{0} said, {1}{2}{3}",
 item.Descendants("SPEAKER").Value,
 ControlChars.Quote,
 item.Descendants("LINE").Value,
 ControlChars.Quote)

 End Function)).ToList()

lines.ForEach(Sub(line)
 Console.WriteLine(line)
 End Sub)

Code snippet from Lambdas

The XML file is loaded into an XElement for processing, and an array of speakers is initialized.
This uses the new syntax for initializing an array. You want to return the lines spoken by any of the people
listed in the array. You could do this in regular LINQ syntax, but using a lambda reduces the where clause
to a few lines. Notice that in this case, you still need to use statement completion characters to break up the
long query.

In the previous examples, the lambda expression was written first, then used. However, in this example,
the expressions are actually written where they will execute. Which form you should use depends on what
you are attempting to accomplish, and the needs of the application, just as when you are trying to decide
if a function should be written as a standalone function, or inline. For example, if you only need to access
the lambda once or twice, writing it first is probably a good idea. In this case, the lambda is only used once,
therefore putting it inline is a better choice. In addition, by having the lambda within the LINQ query, you
get a better view of just what the lambda is doing (i.e. in the Where clause, the lambda returns the records
desired, while in the Select clause, it formats the output)

A second lambda expression is used in the select clause to concatenate some of the child nodes of the
<SPEECH> element in the XML. Finally, the entire result set is converted into a List(Of String). Each
element in the list is a string containing the speaker and the line:

LORD POLONIUS said, "By the mass, and 'tis like a camel, indeed."

Next, the code prints off the selected lines (see Figure 9-13). In this case it uses the new Sub version
of a lambda. This works exactly like the lambdas you’ve used earlier, except that it doesn’t return
any value.

While most developers won’t need to create lambda expressions, they provide powerful tools when working
with XML or other code.

summary
The beauty of XML is that it isolates data representation from data display. Technologies such as HTML
contain data that is tightly bound to its display format. XML does not suffer this limitation, and at the same
time it has the readability of HTML. Accordingly, the XML facilities available to a Visual Basic application
are vast, and a large number of XML-related features, classes, and interfaces are exposed by the .NET
Framework.

This chapter showed you how to use System.Xml.Serialization.XmlSerializer to serialize classes.
Source Code Style attributes were introduced in conjunction with serialization. This style of attributes
enables the customization of the XML serialized to be extended to the source code associated with a class.
What is important to remember about the direction of serialization classes is that a required change in the
XML format becomes a change in the underlying source code. Developers should resist the temptation to
rewrite serialized classes in order to conform to some new XML data standard (such as the example movie
order format endorsed by the consortium of movie rental establishments). Technologies such as XSLT,
exposed via the System.Xml.Query namespace, should be examined first as alternatives. This chapter
demonstrated how to use XSLT style sheets to transform XML data using the classes found in the System
.Xml.Query namespace.

The most useful classes and interfaces in the System.Xml namespace were reviewed, including those
that support document-style XML access: XmlDocument, XmlNode, XmlElement, and XmlAttribute.
The System.Xml namespace also contains classes and interfaces that support stream-style XML access:
XmlReader and XmlWriter.

Next, you looked at how to use XML with ASP.NET. While you can use the XmlReader and XmlDocument
(and related) classes with ASP.NET, there are included controls to make working with XML easier.

This chapter also described how to use LINQ to XML and some of the options available to you in reading
from and writing to XML files and XML sources, whether the source is static or dynamic.

You were also introduced to the new LINQ to XML helper objects XDocument, XElement, XNamespace,
XAttribute, and XComment. These outstanding new objects make working with XML easier than ever
before.

Finally, you looked at lambda expressions. While lambda expressions are not specifically for use with XML,
you saw how they can fit into a solution that processes XML.

figure 9-13

summary ❘ 387

10
 aDo.neT and linQ

 WhaT you Will learn in This chaPTer

 The architecture of ADO .NET ➤

 How ADO .NET connects to databases ➤

 Using ADO .NET to retrieve data ➤

 Using ADO .NET to update databases ➤

 Creating and using transactions ➤

 Retrieving data with LINQ to SQL ➤

 Updating databases using LINQ to SQL ➤

 ADO.NET 1.x was the successor to ActiveX Data Objects 2.6 (ADO). The main goal of ADO.NET 1.x
was to enable developers to easily create distributed, data - sharing applications in the .NET Framework.
The main goals of ADO.NET today are to improve the performance of existing features in ADO.NET
1.x, to provide easier use, and to add new features without breaking backward compatibility.

 Throughout this chapter, when ADO.NET is mentioned without a version number
after it (that is, 1.x, 2.0, 3.5, or 4), the statement applies to all versions of ADO.NET.

 ADO.NET 1.x was built upon industry standards such as XML, and it provided a data - access
interface to communicate with data sources such as SQL Server and Oracle. ADO.NET 4 continues to
build upon these concepts, while increasing performance. Applications can use ADO.NET to connect
to these data sources and retrieve, manipulate, and update data. ADO.NET 4 does not break any
compatibility with ADO.NET 2.0 or 1.x; it only adds to the stack of functionality.

 In solutions that require disconnected or remote access to data, ADO.NET uses XML to exchange
data between programs or with Web pages. Any component that can read XML can make use of
ADO.NET components. A receiving component does not even have to be an ADO.NET component if a
transmitting ADO.NET component packages and delivers a data set in an XML format. Transmitting
information in XML - formatted data sets enables programmers to easily separate the data - processing
and user interface components of a data - sharing application onto separate servers. This can greatly
improve both the performance and the maintainability of systems that support many users.

390 ❘ chaPTer 10 ado.NEt aNd liNQ

For distributed applications, ADO.NET 1.x proved that the use of XML data sets provided performance
advantages relative to the COM marshaling used to transmit disconnected data sets in ADO. Because
transmission of data sets occurred through XML streams in a simple text-based standard accepted
throughout the industry, receiving components did not require any of the architectural restrictions required
by COM. XML data sets used in ADO.NET 1.x also avoided the processing cost of converting values in the
Fields collection of a Recordset object to data types recognized by COM. Virtually any two components
from different systems can share XML data sets, provided that they both use the same XML schema for
formatting the data set. This continues to be true in ADO.NET 4, but the story gets better. The XML
integration in ADO.NET today is even stronger, and extensive work was done to improve the performance
of the DataSet object, particularly in the areas of serialization and memory usage.

ADO.NET also supports the scalability required by Web-based data-sharing applications. Web applications
must often serve hundreds, or even thousands, of users. By default, ADO.NET does not retain lengthy
database locks or active connections that monopolize limited resources. This enables the number of users to
grow with only a small increase in the demands made on the resources of a system.

One of the issues some developers experience when working with ADO.NET and various databases is that
you need to leverage at least two languages: Visual Basic and the version of SQL used by the database. To
reduce this separation, Microsoft developed LINQ, (Language INtegrated Query). With LINQ, you can
include the query within your Visual Basic code, and the query you add to your code is translated into
the specific query language of the data store. One of the most common uses for LINQ is in working with
databases (you will also see LINQ used in querying XML in the XML chapter) in its form as a “better” SQL.

The use of LINQ and SQL Server leads to one point of confusion: While LINQ can be used to query any
database (or set of objects, XML, or other LINQ provider), there is also a specific technology known as
LINQ to SQL. This is a SQL Server specific query tool that uses LINQ as its query mechanism. This chapter
will look at both the generic LINQ query engine, as well as the LINQ to SQL tools.

In this chapter, you will see that ADO.NET is a very extensive and flexible API for accessing many types of
data, and because ADO.NET 4 represents an incremental change to the previous versions of ADO.NET, all
previous ADO.NET knowledge already learned can be leveraged. In fact, to get the most out of this chapter,
you should be fairly familiar with earlier versions of ADO.NET and the entire .NET Framework.

This chapter demonstrates how to use the ADO.NET object model in order to build flexible, fast, and
scalable data-access objects and applications. Specifically, it covers the following:

The ADO.NET architecture ➤

Some of the specific features offered in ADO.NET, including batch updates, ➤ DataSet performance
improvements, and asynchronous processing

Working with the common provider model ➤

Using LINQ to query and edit your databases ➤

ado.neT archiTecTure
The main design goals of ADO.NET are as follows:

Customer-driven features that are still backwardly compatible with ADO.NET 1.x ➤

Improving performance on your data-store calls ➤

Providing more power for power users ➤

Taking advantage of SQL Server–specific features ➤

ADO.NET addresses a couple of the most common data-access strategies used for applications today. When
classic ADO was developed, many applications could be connected to the data store almost indefinitely.
Today, with the explosion of the Internet as the means of data communication, a new data technology is
required to make data accessible and updateable in a disconnected architecture.

 The fi rst of these common data - access scenarios is one in which a user must locate a collection of data and
iterate through this data just a single time. This is a popular scenario for Web pages. When a request for
data from a Web page that you have created is received, you can simply fi ll a table with data from a data
store. In this case, you go to the data store, grab the data that you want, send the data across the wire, and
then populate the table. In this scenario, the goal is to get the data in place as fast as possible.

 The second way to work with data in this disconnected architecture is to grab a collection of data and use
this data separately from the data store itself. This could be on the server or even on the client. Even though
the data is disconnected, you want the capability to keep the data (with all of its tables and relations in
place) on the client side. Classic ADO data was represented by a single table that you could iterate through;
but ADO.NET can be a refl ection of the data store itself, with tables, columns, rows, and relations all in
place. When you are done with the client - side copy of the data, you can persist the changes that you made in
the local copy of data directly back into the data store. The technology that gives you this capability is the
 DataSet class, which is covered shortly.

 Although classic ADO was geared for a two - tiered environment (client - server), ADO.NET addresses a
multi - tiered environment. ADO.NET is easy to work with because it has a unifi ed programming model.
This unifi ed programming model makes working with data on the server similar to working with data
on the client. Because the models are the same, you fi nd yourself more productive when working with
ADO.NET. This productivity increases even more when you use some of the more recent tools such as
LINQ to SQL or Entity Framework.

 Basic ado.neT feaTures
 This chapter begins with a quick look at the basics of ADO.NET and then provides an overview of ADO.
NET capabilities, namespaces, and classes. It also reviews how to work with the Connection , Command ,
 DataAdapter , DataSet , and DataReader classes. Later chapters will cover some of the more recently added
ADO.NET features.

 common ado.neT Tasks
 Before jumping into the depths of ADO.NET, step back and make sure that you understand some of the
common tasks you might perform programmatically within ADO.NET. This section looks at the process of
selecting, inserting, updating, and deleting data.

 For all of the data - access examples in this chapter, you need the pubs database. As
of this writing, you can fi nd this link at www.microsoft.com/downloads/details
.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034 & displaylang=en .
Once installed, you will fi nd the pubs.mdf fi le in the C:\ SQL Server 2000 Sample
Databases directory. You can then attach this database to your SQL Server using SQL
Server Management Studio.

 In addition, be sure to run the examples.sql fi le — available with the code download for this chapter —
either using the examples.bat batch fi le, or with SQL Server Management Studio before running the code
examples. This creates the necessary stored procedures and functions in the pubs database.

 selecting Data
 After the connection to the data source is open and ready to use, you probably want to read the data from it.
If you do not want to manipulate the data, but simply read it or transfer it from one spot to another, use the
 DataReader class (or one of the classes that inherit from DataReader for each database type).

Basic aDo.neT features ❘ 391

392 ❘ chaPTer 10 ado.NEt aNd liNQ

The following example uses the GetAuthorsLastNames function to provide a list of company names
from the pubs database: (You may need to update the connection string to match the location of the pubs
database on your computer.)

Imports System.Data.SqlClient

Module Main

 Sub Main()

 Dim data As List(Of String)
 data = GetAuthorsLastNames()
 For Each author As String In data
 Console.WriteLine(author)
 Next

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

 Public Function GetAuthorsLastNames() As List(Of String)
 Dim conn As SqlConnection
 Dim cmd As SqlCommand
 Dim result As New List(Of String)
 'update to match the location of pubs on your computer
 Dim cmdString As String = "Select au_lname from authors"
 conn = New SqlConnection("Server=.\SQLEXPRESS;" & _
 "Database=pubs;" &
 "Integrated Security=True;")
 cmd = New SqlCommand(cmdString, conn)
 conn.Open()
 Dim myReader As SqlDataReader
 myReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)
 While myReader.Read()
 result.Add(myReader("au_lname").ToString())
 End While
 Return result
 End Function
End Module

Code snippet from SimpleDataReader project

In this example, you create an instance of both the SqlConnection and the SqlCommand classes. Then,
before you open the connection, you simply pass the SqlCommand class a SQL statement selecting specific
data from the pubs database. After your connection is opened (based upon the commands passed in), you
create a DataReader. To read the data from the database, you iterate through the data with the DataReader
by using the myReader.Read method. Each time you call the Read method, the current position of the
reader is set to point to the next line returned by the SQL statement. Once the position moves to the end,
the Read method returns false, exiting the loop. After the List(Of String) object is built, the connection
is closed and the object is returned from the function. In the sample application, this data is displayed in the
console window.

inserting Data
When working with data, you often insert the data into the data source, in this case a SQL Server database.
The next code sample shows you how to do this:

Imports System.Data.SqlClient

Module Main
 Sub Main()
 InsertData()

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

 Sub InsertData()
 Dim conn As SqlConnection
 Dim cmd As SqlCommand
 Dim cmdString As String = "Insert authors(au_id, au_fname, au_lname, " &
 "phone, contract) " &
 "Values ('555-12-1212', 'Foo', 'deBar', '212-555-1212', 1)"
 conn = New SqlConnection("Server=.\SQLEXPRESS;" & _
 "database=pubs;Integrated Security=True;")
 cmd = New SqlCommand(cmdString, conn)
 conn.Open()
 cmd.ExecuteNonQuery()
 'confirm we have it inserted by displaying the data
 cmdString = "SELECT au_fname, au_lname, phone" &
 "FROM authors WHERE au_lname='deBar'"
 cmd = New SqlCommand(cmdString, conn)
 Using reader As SqlDataReader = cmd.ExecuteReader
 While (reader.Read)
 Console.WriteLine("{0} {1}: {2}",
 reader.GetString(0),
 reader.GetString(1),
 reader.GetString(2))
 End While
 End Using
 conn.Close()
 End Sub

End Module

Code snippet from SimpleDataInsert project

Inserting data into SQL is pretty straightforward and simple. Using the SQL command string, you insert
specific values for specific columns. The actual insertion is initiated using the ExecuteNonQuery command.
This executes a command on the data when you don’t want anything in return. If you were expecting data
back from the insert, you could use ExecuteScalar (if a single value — such as the inserted record ID — is
returned) or ExecuteReader (if data — such as the complete inserted record — is returned).

Updating Data
In addition to inserting new records into a database, you frequently need to update existing rows of data
in a table. Imagine a table in which you can update multiple records at once. In the next example, you
want to update the royalty schedule table in pubs (roysched) by changing the royalty terms for those titles
currently at 10%:

Imports System.Data.SqlClient

Module Main

 Sub Main()
 Dim records As Integer
 records = UpdateRoyaltySchedule(10, 8)
 Console.WriteLine("{0} records affected", records)

 Console.WriteLine("Press ENTER to exit.")
 Console.ReadLine()

 End Sub

Public Function UpdateRoyaltySchedule(ByVal currentPercent As Integer,
 ByVal newPercent As Integer) As Integer

Basic aDo.neT features ❘ 393

394 ❘ chaPTer 10 ado.NEt aNd liNQ

 Dim cmd As SqlCommand
 Dim result As Integer
 Dim cmdString As String =
 String.Format("UPDATE roysched SET royalty={0} where royalty={1}",
 newPercent,
 currentPercent)
 'update to match the location of pubs on your computer
 Using conn As New SqlConnection("Server=(local)\sqlexpress;" &
 "database=pubs;Integrated Security=true;")
 conn.Open()
 'display the record before updating
 DisplayData(conn, "before")
 cmd = New SqlCommand(cmdString, conn)
 result = cmd.ExecuteNonQuery()
 'display the record after updating
 DisplayData(conn, "after")
 End Using

 Return result
 End Function
 Private Sub DisplayData(ByVal conn As SqlConnection,
 ByVal direction As String)
 Dim cmdString As String = "SELECT * FROM roysched ORDER BY title_id"
 Dim cmd As New SqlCommand(cmdString, conn)

 Console.WriteLine("Displaying data ({0})", direction)
 Using reader As SqlDataReader = cmd.ExecuteReader
 While reader.Read
 Console.WriteLine("Title: {0} {1}-{2} Royalty: {3}%",
 reader.GetString(0),
 reader.GetInt32(1),
 reader.GetInt32(2),
 reader.GetInt32(3))

 End While
 End Using
 End Sub
End Module

Code snippet from SimpleDataUpdate project

This update function changes the royalty percentage for authors from 10% to 8%. This is done with the
SQL command string. The great thing about these update capabilities is that you can capture the number
of records that were updated by assigning the result of the ExecuteNonQuery command to the records
variable. The total number of affected records is then returned by the function.

Notice that in this case the connection was wrapped in a Using statement. The Using statement creates a
scope for an object, and the object is properly disposed of at the close of the statement. This guarantees that
the connection will be closed when the Using clause completes.

Deleting Data
Along with reading, inserting, and updating data, you sometimes need to delete data from the data source.
Deleting data is a simple process of using the SQL command string and then the ExecuteNonQuery command
as you did in the update example. The following bit of code illustrates this:

Imports System.Data.SqlClient

Module Main

 Sub Main()
 Dim deletes As Integer

 deletes = DeleteAuthor("deBar")
 Console.WriteLine("{0} author(s) deleted", deletes)

 Console.WriteLine("Press ENTER to exit.")
 Console.ReadLine()
 End Sub

 Public Function DeleteAuthor(ByVal lastName As String) As Integer
 Dim result As Integer
 Dim cmd As SqlCommand
 Dim cmdString As String =
 String.Format("DELETE authors WHERE au_lname='{0}'",
 lastName)

 Using conn As New SqlConnection("server=(local)\sqlexpress;" &
 "database=pubs;integrated security=true;")
 cmd = New SqlCommand(cmdString, conn)
 conn.Open()
 DisplayData(conn, "before")
 result = cmd.ExecuteNonQuery()
 DisplayData(conn, "after")
 End Using

 Return result
 End Function
 Private Sub DisplayData(ByVal conn As SqlConnection,
 ByVal direction As String)
 Dim cmdString As String = "SELECT count(*) FROM authors"
 Dim cmd As New SqlCommand(cmdString, conn)
 Dim count As Integer = CType(cmd.ExecuteScalar(), Integer)
 Console.WriteLine("Number of authors {0}: {1}",
 direction,
 count)
 End SubEnd Module

Code snippet from SimpleDelete project

You can assign the ExecuteNonQuery command to an Integer variable (just as you did for the update
function) to return the number of records deleted in order to verify that the records are deleted.

Basic ado.neT namespaces and classes
The core ADO.NET namespaces are shown in Table 10-1. In addition to these namespaces, each new data
provider will have its own namespace. For example, the Oracle .NET data provider adds a namespace of
System.Data.OracleClient (for the Microsoft-built Oracle data provider).

TaBle 10-1: Core ADO .NET Namespaces

namesPace descriPTion

System.Data This namespace is the core of ADO .NET . It contains classes used by
all data providers . Its classes represent tables, columns, rows, and
the DataSet class . It also contains several useful interfaces, such as
IDbCommand, IDbConnection, and IDbDataAdapter . These interfaces
are used by all managed providers, enabling them to plug into the core of
ADO .NET .

System.Data.Common This namespace defines common classes that are used as base classes
for data providers . All data providers share these classes . Two examples
are DbConnection and DbDataAdapter .

continues

Basic aDo.neT features ❘ 395

396 ❘ chaPTer 10 ado.NEt aNd liNQ

ADO.NET has three distinct types of classes commonly referred to as:

 ➤ disconnected — These provide the basic structure for the ADO.NET Framework. A good example of
this type of class is the DataTable class. The objects created from these disconnected class types are
capable of storing data without any dependency on a specific data provider.

 ➤ shared — These form the base classes for data providers and are shared among all data providers.

 ➤ data providers — These are meant to work with different kinds of data sources. They are used to
perform all data-management operations on specific databases. The SqlClient data provider, for
example, works only with the SQL Server database.

A data provider contains Connection, Command, DataAdapter, and DataReader objects. Typically,
in programming ADO.NET, you first create the Connection object and provide it with the necessary
information, such as the connection string. You then create a Command object and provide it with the details
of the SQL command that is to be executed. This command can be an inline SQL text command, a stored
procedure, or direct table access. You can also provide parameters to these commands if needed.

After you create the Connection and the Command objects, you must decide whether the command returns a
result set. If the command doesn’t return a result set, then you can simply execute the command by calling one
of its several Execute methods. Conversely, if the command returns a result set, you must decide whether you
want to retain the result set for future use without maintaining the connection to the database. If you want
to retain the result set but not the connection, then you must create a DataAdapter object and use it to fill a
DataSet or a DataTable object. These objects are capable of maintaining their information in a disconnected
mode. However, if you don’t want to retain the result set, but rather simply process the command in a swift
fashion, then you can use the Command object to create a DataReader object. The DataReader object needs a
live connection to the database, and it works as a forward-only, read-only cursor.

ado.neT components
To better support the disconnected model as defined above, the ADO.NET components separate data access
from data manipulation. This is accomplished via two main components: the DataSet and the .NET data
provider. Figure 10-1 illustrates the concept of separating data access from data manipulation.

namesPace descriPTion

System.Data.OleDb This namespace defines classes that work with OLE-DB data sources
using the .NET OLE DB data provider . It contains classes such as
OleDbConnection and OleDbCommand .

System.Data.Odbc This namespace defines classes that work with the ODBC data sources
using the .NET ODBC data provider . It contains classes such as
OdbcConnection and OdbcCommand .

System.Data.SqlClient This namespace defines a data provider for the SQL Server 7 .0 or later
database . It contains classes such as SqlConnection and SqlCommand .

System.Data.SqlTypes This namespace defines classes that represent specific data types for the
SQL Server database .

System.Data.Linq This namespace provides support for connecting, querying, and editing
databases using LINQ (Language Integrated Query) .

System.Data.Services This namespace provides support for ADO .NET Data Services, a server-
side method of providing data using a REST-like syntax . It is covered in
Chapter 12 .

System.Data.EntityClient This namespace provides support for the Entity Framework for working
with data . It is covered in Chapter 11 .

TaBle 10-1 (continued)

 The DataSet is the core component of the disconnected architecture of ADO.NET. It is explicitly designed
for data access independent of any data source. As a result, it can be used with multiple and differing data
sources, with XML data, or even to manage data local to an application such as an in - memory data cache.
The DataSet contains a collection of one or more DataTable objects made up of rows and columns of data,
as well as primary key, foreign key, constraint, and relation information about the data in the DataTable
objects. It is basically an in - memory database, but what sets it apart is that it doesn ’ t care whether its data is
obtained from a database, an XML fi le, a combination of the two, or somewhere else. You can apply inserts,
updates, and deletes to the DataSet and then push the changes back to the data source, no matter where the
data source lives! This chapter offers an in - depth look at the DataSet object family.

 The other core element of the ADO.NET architecture is the .NET data provider, whose components are
designed for data manipulation (as opposed to data access with the DataSet). These components are listed
in Table 10 - 2.

 The DataAdapter uses Command objects to execute SQL commands at the data source, both to load the
 DataSet with data and to reconcile changes made to the data in the DataSet with the data source. You will
take a closer look at this later in the detailed discussion of the DataAdapter object.

 figure 10 - 1

.NET Framework Data Provider DataSet

Connection

Transaction SelectCommand

DataRowCollection

DataColumnCollection

ConstraintCollection

DataRelationCollection

InsertCommand

UpdateCommand

DeleteCommand

DatabaseDatabase XML

Command

Parameters

DataReader

DataAdapter DataTableCollection

DataTable

 .NET data providers can be written for any data source, though this is a topic beyond
the scope of this chapter.

 TaBle 10 - 2: .NET Data Provider Components

 oBJecT acTiViTy

 Connection Provides connectivity to a data source

 Command Enables access to database commands to return and modify data, run stored procedures,
and send or retrieve parameter information

 DataReader Provides a high - performance, read - only stream of data from the data source

 DataAdapter Provides the bridge between the DataSet object and the data source

Basic aDo.neT features ❘ 397

398 ❘ chaPTer 10 ado.NEt aNd liNQ

 The rule of thumb when deciding which data provider to use is to fi rst use a .NET Relational Database
Management System (RDBMS) – specifi c data provider if it is available, and to use the .NET OLE DB
provider when connecting to any other data source. (Most RDBMS vendors are now producing their own
.NET data providers in order to encourage .NET developers to use their databases.) Finally, if no OLE DB
provider is available, try ODBC access using the .NET ODBC data provider.

 For example, if you were writing an application that uses SQL Server, then you would want to use the SQL
Server .NET data provider. The .NET OLE DB provider is used to access any data source exposed through
OLE DB, such as Microsoft Access. You will be taking a closer look at these later.

 .neT daTa ProViders
 .NET data providers are used for connecting to a RDBMS - specifi c database (such as SQL Server or Oracle),
executing commands, and retrieving results. Those results are either processed directly (via a DataReader)
or placed in an ADO.NET DataSet (via a DataAdapter) in order to be exposed to the user in an ad hoc
manner, combined with data from multiple sources, or passed around between tiers. NET data providers are
designed to be lightweight, to create a minimal layer between the data source and the .NET programmer ’ s
code, and to increase performance while not sacrifi cing any functionality.

 connection object
 To connect to a specifi c data source, you use a data connection object. To connect to Microsoft SQL Server
7.0 or later, you need to use the SqlConnection object of the SQL Server .NET data provider. You need to
use the OleDbConnection object of the OLE DB .NET data provider to connect to an OLE DB data source,
or the OLE DB provider for SQL Server (SQLOLEDB) to connect to versions of Microsoft SQL Server
earlier than 7.0.

 Connection string format — oleDbConnection
 For the OLE DB .NET data provider, the connection string format is the same as the connection string
format used in ADO, with the following exceptions:

 The ➤ Provider keyword is required.

 The ➤ URL , Remote Provider , and Remote Server keywords are not supported.

 Here is an example OleDbConnection connection string connecting to an Access database:

Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
"C:\Program Files\Microsoft Expression\Web 2\WebDesigner\1033\FPNWIND.MDB";

 Connection - string format — sqlConnection
 The SQL Server .NET data provider supports a connection - string format that is similar to the OLE
DB (ADO) connection - string format. The only thing that you need to omit, obviously, is the provider
name - value pair, as you know you are using the SQL Server .NET data provider. Here is an example of a
 SqlConnection connection string:

 The .NET Framework 4 ships with a number of .NET data providers, including ones for accessing SQL
Server and Oracle databases, as well as more generic data providers, such as the ODBC and OLE DB data
providers. Other data providers are available for just about every other database out there, for example, a
MySQL database.

 Do not confuse the OLE DB .NET data provider with generic OLE DB providers. The
OLE DB .NET data provider connects to specifi c OLE DB providers to access each
data source.

Data Source=(local);Initial Catalog=pubs;Integrated Security=SSPI;

 Alternately, you can use a connection - string format that is more specifi c to SQL Server. This sample would
connect to the same database as the previous one:

Server=(local);Database=pubs;Trusted Connection=true;

 command object
 After establishing a connection, you can execute commands and return results from a data source (such as
SQL Server) using a Command object. A Command object can be created using the Command constructor, or by
calling the CreateCommand method of the Connection object. When creating a Command object using the
 Command constructor, you need to specify a SQL statement to execute at the data source, and a Connection
object. The Command object ’ s SQL statement can be queried and modifi ed using the CommandText property.
The following code is an example of executing a SELECT command and returning a DataReader object:

' Build the SQL and Connection strings.
Dim sql As String = "SELECT * FROM authors"
Dim connectionString As String = "Database=pubs;"
 & "Server=(local)\sqlexpress;Trusted Connection=true;"
' Initialize the SqlCommand with the SQL
' and Connection strings.
Dim command As SqlCommand = New SqlCommand(sql,
 New SqlConnection(connectionString))
' Open the connection.
command.Connection.Open()
' Execute the query, return a SqlDataReader object.
' CommandBehavior.CloseConnection flags the
' DataReader to automatically close the DB connection
' when it is closed.
Dim dataReader As SqlDataReader = _
 command.ExecuteReader(CommandBehavior.CloseConnection)

 The CommandText property of the Command object executes all SQL statements in addition to the standard
 SELECT , UPDATE , INSERT , and DELETE statements. For example, you could create tables, foreign keys,
primary keys, and so on, by executing the applicable SQL from the Command object.

 The Command object exposes several Execute methods to perform the intended action. When returning
results as a stream of data, ExecuteReader is used to return a DataReader object. ExecuteScalar is used
to return a singleton value ExecuteNonQuery is used to execute commands that do not return rows, which
usually includes stored procedures that have output parameters and/or return values. (You will learn about
stored procedures later in this chapter.) Finally, the ExecuteXmlReader returns an XmlReader, which can be
used to read a block of XML returned from the database. (You will see how this is used in the XML chapter.)

 When using a DataAdapter with a DataSet , Command objects are used to return and modify data at the
data source through the DataAdapter object ’ s SelectCommand , InsertCommand , UpdateCommand , and
 DeleteCommand properties.

 Note that the DataAdapter object ’ s SelectCommand property must be set before the
 Fill method is called.

 The InsertCommand , UpdateCommand , and DeleteCommand properties must be set before the Update
method is called. You will take a closer look at this when you look at the DataAdapter object.

 using stored Procedures with command objects
 The motivation for using stored procedures is simple. Imagine you have the following code:

SELECT au_lname FROM authors WHERE au_id='172-32-1176'

.neT Data Providers ❘ 399

400 ❘ chaPTer 10 ado.NEt aNd liNQ

If you pass that to SQL Server using ExecuteReader on SqlCommand (or any execute method, for that matter),
SQL Server has to compile the code before it can run it, in much the same way that VB .NET applications
have to be compiled before they can be executed. This compilation takes up SQL Server’s time, so it is easy
to deduce that if you can reduce the amount of compilation that SQL Server has to do, database performance
should increase. (Compare the speed of execution of a compiled application against interpreted code.)

That’s what stored procedures are all about: You create a procedure, store it in the database, and because
the procedure is recognized and understood ahead of time, it can be compiled ahead of time and ready for
use in your application.

One other benefit of using stored procedures in your code is that it is generally safer. When using SQL
without stored procedures, there is always the temptation to build the SQL statement by concatenating
strings. With this, there is the danger — particularly if some of those strings are user generated — that the
resulting SQL is invalid or malicious; for example, if you had a text box where a user could type in search
criteria, that you then concatenated into a query, using code such as:

Dim sql As String = "SELECT * FROM myTable WHERE field LIKE '" & query & "%'"

This looks innocent enough, but you could get into trouble very quickly if the user entered something like:

Bob;delete * from systables;

Using stored procedures prevent an attack like this from happening.

Stored procedures are very easy to use, but the code to access them is sometimes a little verbose. The next
section demonstrates some code that can make accessing stored procedures a bit more straightforward, but
to make things clearer, let’s start by building a simple application that demonstrates how to create and call a
stored procedure.

Creating a stored Procedure
To create a stored procedure, you can either use the tools in Visual Studio .NET or you can use the tools in
SQL Server’s Enterprise Manager if you are using SQL Server 2000, or in SQL Server Management Studio
if you are using SQL Server 2005/2008. (Technically, you can use a third-party tool or just create the stored
procedure in a good, old-fashioned SQL script.)

This example builds a stored procedure that returns all of the columns for a given author ID. The SQL to do
this looks like the following:

SELECT
 au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract
FROM
 authors
WHERE
 au_id = whatever author ID you want

The “whatever author ID you want” part is important. When using stored procedures, you typically have
to be able to provide parameters into the stored procedure and use them from within code. This is not a
book about SQL Server, so this example focuses only on the principle involved. You can find many resources
on the Web about building stored procedures (they have been around a very long time, and they are most
definitely not a .NET-specific feature).

Variables in SQL Server are prefixed by the @ symbol, so if you have a variable called au id, then your SQL
will look like this:

SELECT
 au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract
FROM
 authors
WHERE
 au_id = @au_id

In Visual Studio, stored procedures can be accessed using the Server Explorer.
Simply add a new data connection (or use an existing data connection), and
then drill down into the Stored Procedures folder in the management tree.
A number of stored procedures are already loaded. The byroyalty procedure is
a stored procedure provided by the sample pubs database developers. Figure 10-2
illustrates the stored procedures of the pubs database in Visual Studio.

To create a new stored procedure, just right-click the Stored Procedures
folder in the Server Explorer and select Add New Stored Procedure to invoke
the editor window.

A stored procedure can be either a single SQL statement or a complex set of
statements. T-SQL supports branches, loops, and other variable declarations,
which can make for some pretty complex stored procedure code. However,
your stored procedure is just a single line of SQL. You need to declare the
parameter that you want to pass in (@au_id) and the name of the procedure:
usp_authors_Get_By_ID. Here’s code for the stored procedure:

CREATE PROCEDURE usp_authors_Get_By_ID
 @au_id varchar(11)
AS
SELECT
 au_id, au_lname, au_fname, phone,
 address, city, state, zip, contract
FROM
 authors
WHERE
 au_id = @au_id

Click OK to save the stored procedure in the database. You are now able to access this stored procedure
from code.

Calling the stored Procedure
Calling the stored procedure is just a matter of creating a SqlConnection object to connect to the database,
and a SqlCommand object to run the stored procedure.

Now you have to decide what you want to return by calling the stored procedure. In this case, you
return an instance of the SqlDataReader object. The TestForm.vb file contains a method called
GetAuthorSqlReader that takes an author ID and returns an instance of a SqlDataReader. Here is the
code for the method:

Private Function GetAuthorSqlReader(ByVal authorId As String) As SqlDataReader
 ' Build a SqlCommand
 Dim command As SqlCommand = New SqlCommand("usp_authors_Get_By_ID",
 GetPubsConnection())
 ' Tell the command we are calling a stored procedure
 command.CommandType = CommandType.StoredProcedure
 ' Add the @au_id parameter information to the command
 command.Parameters.Add(New SqlParameter("@au_id", authorId))
 ' The reader requires an open connection
 command.Connection.Open()
 ' Execute the sql and return the reader
 Return command.ExecuteReader(CommandBehavior.CloseConnection)
End Function

Code snippet from AdoNetFeaturesTest project

Notice that in the SqlCommand’s constructor call, you have factored out creating a connection to the pubs
database into a separate helper method. This is used later in other code examples in your form.

figure 10-2

.neT Data Providers ❘ 401

402 ❘ chaPTer 10 ado.NEt aNd liNQ

Here is the code for the GetPubsConnection helper method:

Private Function GetPubsConnection() As SqlConnection
 ' Build a SqlConnection based on the config value.
 Return New
 SqlConnection(ConfigurationSettings. _
 ConnectionStrings("db").ConnectionString)
End Function

Code snippet from AdoNetFeaturesTest project

The most significant thing this code does is grab a connection string to the database from the application’s
configuration file, app.config. Here is what the entry in the app.config file looks like (update to match
the location of pubs on your computer):

<connectionStrings>
 <add name="db" value="server=(local)\sqlexpress;
 database=pubs;trusted_connection=true;" />
</connectionStrings>

Although the helper method doesn’t do much, it is nice to place this code in a separate method. This way,
if the code to get a connection to the databases needs to be changed, the code only has to be changed in
one place.

Accessing a stored procedure is more verbose (but not more difficult) than accessing a normal SQL
statement through the methods discussed thus far. The approach is as follows:

 1. Create a SqlCommand object.

 2. Configure it to access a stored procedure by setting the CommandType property.

 3. Add parameters that exactly match those in the stored procedure itself.

 4. Execute the stored procedure using one of the SqlCommand object’s ExecuteX methods.

There is no real need to build an impressive UI for this application, as we’re about to add a button named
getAuthorByIdButton that calls the GetAuthorSqlRecord helper method and displays the selected
author’s name. Here is the button’s Click event handler:

Private Sub _getAuthorByIdButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _getAuthorByIdButton.Click
 Dim reader As SqlDataReader = Me. GetAuthorSqlReader ("409-56-7008")
 If reader.Read()
 MessageBox.Show(reader("au_fname").ToString() & " "
 & reader("au_lname").ToString())
 End If
 reader.Close()
End Sub

Code snippet from AdoNetFeaturesTest project

This has hard-coded an author ID of 409-56-7008. Run the code now and you should
see the result shown in Figure 10-3.

datareader object
You can use the DataReader to retrieve a read-only, forward-only stream of data from
the database. Using the DataReader can increase application performance and reduce
system overhead because only one buffered row at a time is ever in memory. With the
DataReader object, you are getting as close to the raw data as possible in ADO.NET;
you do not have to go through the overhead of populating a DataSet object, which sometimes may be
expensive if the DataSet contains a lot of data. The disadvantage of using a DataReader object is that it
requires an open database connection and increases network activity.

figure 10-3

 After creating an instance of the Command object, a DataReader is created by calling the ExecuteReader
method of the Command object. Here is an example of creating a DataReader and iterating through it to
print out its values to the screen:

Private Sub TraverseDataReader()
 ' Build the SQL and Connection strings.
 Dim sql As String = "SELECT * FROM authors"
 Dim connectionString As String = "database=pubs;"
 & "server=(local)\sqlexpress;trusted_connection=true;"
 ' Initialize the SqlCommand with the SQL query and connection strings.
 Dim command As SqlCommand = New SqlCommand(sql, _
 New SqlConnection(connectionString))
 ' Open the connection.
 command.Connection.Open()
 ' Execute the query, return a SqlDataReader object.
 ' CommandBehavior.CloseConnection flags the
 ' DataReader to automatically close the DB connection
 ' when it is closed.
 Dim reader As SqlDataReader = _
 command.ExecuteReader(CommandBehavior.CloseConnection)
 ' Loop through the records and print the values.
 Do While reader.Read
 Console.WriteLine(reader.GetString(1) & " " & reader.GetString(2))
 Loop
 ' Close the DataReader (and its connection).
 reader.Close()
End Sub

 Code snippet from AdoNetFeaturesTest project

 This code snippet uses the SqlCommand object to execute the query via the ExecuteReader method. This
method returns a populated SqlDataReader object, which you loop through and then print out the author
names. The main difference between this code and looping through the rows of a DataTable is that you
have to stay connected while you loop through the data in the DataReader object; this is because the
 DataReader reads in only a small stream of data at a time to conserve memory space.

 At this point, an obvious design question is whether to use the DataReader or the
 DataSet . The answer depends upon performance and how you will use the data. If you
want high performance and you only need to access the data you are retrieving once,
then the DataReader is the way to go. If you need access to the same data multiple
times, or if you need to model a complex relationship in memory, or if you need to use
the data when not connected to the database, then the DataSet is the way to go. As
always, test each option thoroughly before deciding which one is the best.

 The Read method of the DataReader object is used to obtain a row from the results of the query. Each
column of the returned row may be accessed by passing the name or ordinal reference of the column to
the DataReader ; or, for best performance, the DataReader provides a series of methods that enable you
to access column values in their native data types (GetDateTime , GetDouble , GetGuid , GetInt32 , and so
on). Using the typed accessor methods when the underlying data type is known reduces the amount of type
conversion required (converting from type Object) when retrieving the column value.

 The DataReader provides a nonbuffered stream of data that enables procedural logic to effi ciently process
results from a data source sequentially. The DataReader is a good choice when retrieving large amounts
of data; only one row of data is loaded in memory at a time. You should always call the Close method
when you are through using the DataReader object, as well as close the DataReader object ’ s database
connection; otherwise, the connection will be open until the garbage collector gets around to collecting the
object. Alternately, use the Using statement to automatically close the database connection at the end of the
 Using clause.

.neT Data Providers ❘ 403

404 ❘ chaPTer 10 ado.NEt aNd liNQ

 Note how you use the CommandBehavior.CloseConnection enumeration value on the SqlDataReader
.ExecuteReader method. This tells the SqlCommand object to automatically close the database connection
when the SqlDataReader.Close method is called.

 If your command contains output parameters or return values, they will not be
available until the DataReader is closed.

 executing commands asynchronously
 In ADO.NET, additional support enables Command objects to execute their commands asynchronously,
which can result in a huge perceived performance gain in many applications, especially in Windows Forms
applications. This can come in very handy, especially if you ever have to execute a long - running SQL
statement. This section examines how this functionality enables you to add asynchronous processing to
enhance the responsiveness of an application.

 The SqlCommand object provides three different asynchronous call options: BeginExecuteReader ,
 BeginExecuteNonQuery , and BeginExecuteXmlReader . Each of these methods has a corresponding “ end ”
method — that is, EndExecuteReader , EndExecuteNonQuery , and EndExecuteXmlReader . Now that you
are familiar with the DataReader object, let ’ s look at an example using the BeginExecuteReader method
to execute a long - running query.

 In the AdoNetFeaturesTest project, I have added a button and an associated Click event handler to the
form that will initiate the asynchronous call to get a DataReader instance:

 Private Sub _testAsyncCallButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles _testAsyncCallButton.Click

 ' Build a connection for the async call to the database
 Dim connection As SqlConnection = GetPubsConnection()
 connection.ConnectionString & = "Asynchronous Processing=true;"

 ' Build a command to call the stored procedure
 Dim command As New SqlCommand("usp_Long_Running_Procedure", connection)

 ' Set the command type to stored procedure
 command.CommandType = CommandType.StoredProcedure

 ' The reader requires an open connection
 connection.Open()

 ' Make the asynchronous call to the database
 command.BeginExecuteReader(AddressOf Me.AsyncCallback,
 command, CommandBehavior.CloseConnection)
 End Sub

 Code snippet from AdoNetFeaturesTest project

 The fi rst thing you do is reuse your helper method GetPubsConnection to get a connection to the pubs
database. Next, and this is very important, you append the statement “ Asynchronous Processing=true ”
to your Connection object ’ s connection string. This must be set in order for ADO.NET to make
asynchronous calls to SQL Server.

 After getting the connection set, you then build a SqlCommand object and initialize it to be able to execute
the usp_Long_Running_Procedure stored procedure. This procedure simulates a long - running query
by using the SQL Server WAITFOR DELAY statement to create a 20 - second delay before it executes the
 usp_Authors_Get_All stored procedure. As you can probably guess, the usp_authors_Get_All stored
procedure simply selects all of the authors from the authors table. The delay is added simply to demonstrate

that while this stored procedure is executing, you can perform other tasks in your Windows Forms
application. Here is the SQL code for the usp_Long_Running_Procedure stored procedure:

CREATE PROCEDURE usp_Long_Running_Procedure
AS
SET NOCOUNT ON
WAITFOR DELAY '00:00:20'
EXEC usp_authors_Get_All

Code snippet from Examples.sql

The last line of code in the Button’s Click event handler is the call to BeginExecuteReader. In this call,
the first thing you are passing in is a delegate method (Me.AsyncCallback) for the System.AsyncCallback
delegate type. This is how the .NET Framework calls you back once the method is finished running
asynchronously. You then pass in your initialized SqlCommand object so that it can be executed, as well
as the CommandBehavior value for the DataReader. In this case, you pass in the CommandBehavior.
CloseConnection value so that the connection to the database will be closed once the DataReader has
been closed. You will look at the DataReader in more detail in the next section.

Now that you have initiated the asynchronous call, and have defined a callback for your asynchronous call,
let’s look at the actual method that is being called back, the AsyncCallback method:

Private Sub AsyncCallback(ByVal ar As IAsyncResult)
 ' Get the command that was passed from the AsyncState of the IAsyncResult.
 Dim command As SqlCommand = CType(ar.AsyncState, SqlCommand)
 ' Get the reader from the IAsyncResult.
 Dim reader As SqlDataReader = command.EndExecuteReader(ar)
 ' Get a table from the reader.
 Dim table As DataTable = Me.GetTableFromReader(reader, "Authors")
 ' Call the BindGrid method on the Windows main thread,
 ' passing in the table.
 Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid),
 New Object() {table})
End Sub

Code snippet from AdoNetFeaturesTest project

The first line of the code is simply retrieving the SqlCommand object from the AsyncState property of
the IAsyncResult that was passed in. Remember that when you called BeginExecuteReader earlier,
you passed in your SqlCommand object. You need it so that you can call the EndExecuteReader method
on the next line. This method gives you your SqlDataReader. On the next line, you then transform the
SqlDataReader into a DataTable (covered later when the DataSet is discussed).

The last line of this method is probably the most important. If you tried to just take your DataTable and
bind it to the grid, it would not work, because right now you are executing on a thread other than the main
Windows thread. The helper method named BindGrid can do the data binding, but it must be called only
in the context of the Windows main thread. To bring the data back to the main Windows thread, it must
be marshaled via the Invoke method of the Form object. Invoke takes two arguments: the delegate of the
method you want to call and (optionally) any parameters for that method. In this case, you define a delegate
for the BindGrid method, called BindGridDelegate. Here is the delegate declaration:

Private Delegate Sub BindGridDelegate(ByVal table As DataTable)

Notice how the signature is exactly the same as the BindGrid method shown here:

Private Sub BindGrid(ByVal table As DataTable)
 ' Clear the grid.
 Me._authorsGridView.DataSource = Nothing
 ' Bind the grid to the DataTable.
 Me._authorsGridView.DataSource = table
End Sub

.neT Data Providers ❘ 405

406 ❘ chaPTer 10 ado.NEt aNd liNQ

Here is another look at the call to the form’s Invoke method:

 Me.Invoke(New BindGridDelegate(AddressOf Me.BindGrid), _
 New Object() {table})

You pass in a new instance of the BindGridDelegate delegate and initialize it with a pointer to the BindGrid
method. As a result, the .NET worker thread that was executing your query can now safely join up with the
main Windows thread.

dataadapter objects
Each .NET data provider included with the .NET Framework has a DataAdapter object. A DataAdapter is
used to retrieve data from a data source and populate DataTable objects and constraints within a DataSet.
The DataAdapter also resolves changes made to the DataSet back to the data source. The DataAdapter
uses the Connection object of the .NET data provider to connect to a data source, and Command objects to
retrieve data from, and resolve changes to, the data source from a DataSet object.

This differs from the DataReader, in that the DataReader uses the Connection object to access the data
directly, without having to use a DataAdapter. The DataAdapter essentially decouples the DataSet object
from the actual source of the data, whereas the DataReader is tightly bound to the data in a read-only
fashion.

The SelectCommand property of the DataAdapter is a Command object that retrieves data from the data
source. A nice, convenient way to set the DataAdapter’s SelectCommand property is to pass in a Command
object in the DataAdapter’s constructor. The InsertCommand, UpdateCommand, and DeleteCommand
properties of the DataAdapter are Command objects that manage updates to the data in the data source
according to modifications made to the data in the DataSet. The Fill method of the DataAdapter is used
to populate a DataSet with the results of the SelectCommand of the DataAdapter. It also adds or refreshes
rows in the DataSet to match those in the data source. The following example code demonstrates how to
fill a DataSet object with information from the authors table in the pubs database:

Private Sub TraverseDataSet()
 ' Build the SQL and Connection strings.
 Dim sql As String = "SELECT * FROM authors"
 Dim connectionString As String = "database=pubs;"
 & "server=(local)\sqlexpress;trusted_connection=true;"
 ' Initialize the SqlDataAdapter with the SQL
 ' and Connection strings, and then use the
 ' SqlDataAdapter to fill the DataSet with data.
 Dim adapter As New SqlDataAdapter(sql, connectionString)
 Dim authors As New DataSet
 adapter.Fill(authors)

 ' Iterate through the DataSet's table.
 For Each row As DataRow In authors.Tables(0).Rows
 Console.WriteLine(row("au_fname").ToString
 & " " & row("au_lname").ToString)
 Next

 ' Print the DataSet's XML.
 Console.WriteLine(authors.GetXml())
 Console.ReadLine()
End Sub

Code snippet from AdoNetFeaturesTest project

Note how you use the constructor of the SqlDataAdapter to pass in and set the SelectCommand, as well
as pass in the connection string in lieu of a SqlCommand object that already has an initialized Connection
property. You then just call the SqlDataAdapter object’s Fill method and pass in an initialized DataSet
object. If the DataSet object is not initialized, then the Fill method raises an exception (System.
ArgumentNullException).

Ever since ADO.NET 2.0, a significant performance improvement was made in the way that the
DataAdapter updates the database. In ADO.NET 1.x, the DataAdapter’s Update method would loop
through each row of every DataTable object in the DataSet and subsequently make a trip to the database
for each row being updated. In ADO.NET 2.0, batch update support was added to the DataAdapter.
This means that when the Update method is called, the DataAdapter batches all of the updates from the
DataSet in one trip to the database.

Now let’s take a look at a more advanced example. Here, you use a DataAdapter to insert, update, and
delete data from a DataTable back to the pubs database:

Private Sub _batchUpdateButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles _batchUpdateButton.Click
 ' Build insert, update, and delete commands.
 ' Build the parameter values.
 Dim insertUpdateParams() As String = {"@au_id", "@au_lname",
 "@au_fname",
 "@phone", "@address", "@city", "@state", "@zip", "@contract"}

Code snippet from AdoNetFeaturesTest project

The preceding code begins by initializing a string array of parameter names to pass into the
BuildSqlCommand helper method:

 ' Insert command.
 Dim insertCommand As SqlCommand =
 BuildSqlCommand("usp_authors_Insert",
 insertUpdateParams)

Next, you pass the name of the stored procedure to execute and the parameters for the stored procedure to
the BuildSqlCommand helper method. This method returns an initialized instance of the SqlCommand class.
Here is the BuildSqlCommand helper method:

Private Function BuildSqlCommand(ByVal storedProcedureName As String,
 ByVal parameterNames() As String) As SqlCommand
 ' Build a SqlCommand.
 Dim command As New SqlCommand(storedProcedureName, GetPubsConnection())
 ' Set the command type to stored procedure.
 command.CommandType = CommandType.StoredProcedure
 ' Build the parameters for the command.
 ' See if any parameter names were passed in.
 If Not parameterNames Is Nothing Then
 ' Iterate through the parameters.
 Dim parameter As SqlParameter = Nothing
 For Each parameterName As String In parameterNames
 ' Create a new SqlParameter.
 parameter = New SqlParameter()
 parameter.ParameterName = parameterName
 ' Map the parameter to a column name in the DataTable/DataSet.
 parameter.SourceColumn = parameterName.Substring(1)
 ' Add the parameter to the command.
 command.Parameters.Add(parameter)
 Next
 End If
 Return command
End Function

Code snippet from AdoNetFeaturesTest project

This method first initializes a SqlCommand class and passes in the name of a stored procedure; it then
uses the GetPubsConnection helper method to pass in a SqlConnection object to the SqlCommand. The
next step is to set the command type of the SqlCommand to a stored procedure. This is important because
ADO.NET uses this to optimize how the stored procedure is called on the database server. You then check
whether any parameter names have been passed (via the parameterNames string array); if so, you iterate

.neT Data Providers ❘ 407

408 ❘ chaPTer 10 ado.NEt aNd liNQ

through them. While iterating through the parameter names, you build up SqlParameter objects and add
them to the SqlCommand’s collection of parameters.

The most important step in building up the SqlParameter object is setting its SourceColumn property. This
is what the DataAdapter later uses to map the parameter name to the name of the column in the DataTable
when its Update method is called. An example of such a mapping is associating the @au_id parameter
name with the au_id column name. As shown in the code, the mapping assumes that the stored procedure
parameters all have exactly the same names as the columns, except for the mandatory @ character in front
of the parameter. That’s why when assigning the SqlParameter’s SourceColumn property value, you use
the Substring method to strip off the @ character to ensure that it maps correctly.

You then call the BuildSqlCommand method two more times to build your update and delete SqlCommand
objects:

 ' Update command.
 Dim updateCommand As SqlCommand =
 BuildSqlCommand("usp_authors_Update",
 insertUpdateParams)
 ' Delete command.
 Dim deleteCommand As SqlCommand = _
 BuildSqlCommand("usp_authors_Delete",
 New String() {"@au_id"})

Code snippet from AdoNetFeaturesTest project

Now that the SqlCommand objects have been created, the next step is to create a SqlDataAdapter object.
Once the SqlDataAdapter is created, you set its InsertCommand, UpdateCommand, and DeleteCommand
properties with the respective SqlCommand objects that you just built:

 ' Create an adapter.
 Dim adapter As New SqlDataAdapter()
 ' Associate the commands with the adapter.
 adapter.InsertCommand = insertCommand
 adapter.UpdateCommand = updateCommand
 adapter.DeleteCommand = deleteCommand

Code snippet from AdoNetFeaturesTest project

The next step is to get a DataTable instance of the authors table from the pubs database. You do
this by calling the GetAuthorsSqlReader helper method to first get a DataReader and then the
GetTableFromReader helper method to load a DataTable from a DataReader:

 ' Get the authors reader.
 Dim reader As SqlDataReader = GetAuthorsSqlReader()
 ' Load a DataTable from the reader.
 Dim table As DataTable = GetTableFromReader(reader, "Authors")

Code snippet from AdoNetFeaturesTest project

Once you have your DataTable filled with data, you begin modifying it so you can test the new batch
update capability of the DataAdapter. The first change to make is an insert in the DataTable. In order to
add a row, you first call the DataTable’s NewRow method to give you a DataRow initialized with the same
columns as your DataTable:

 ' Add a new author to the DataTable.
 Dim row As DataRow = table.NewRow

Once that is done, you can set the column values of the DataRow:

 row("au_id") = "335-22-0707"
 row("au_fname") = "Foo"
 row("au_lname") = "deBar"
 row("phone") = "800-555-1212"
 row("contract") = 0

Code snippet from AdoNetFeaturesTest project

 Then you call the Add method of the DataTable ’ s DataRowCollection property and pass in the newly
populated DataRow object:

 table.Rows.Add(row)

 Now that there is a new row in the DataTable , the next test is to update one of its rows:

 ' Change an author in the DataTable.
 table.Rows(0)("au_fname") = "Updated Name!"

 Finally, you delete a row from the DataTable . In this case, it is the second - to - last row in the DataTable :

 ' Delete the second to last author from the table
 table.Rows(table.Rows.Count - 2).Delete()

 Now that you have performed an insert, update, and delete action on your DataTable , it is time to send
the changes back to the database. You do this by calling the DataAdapter ’ s Update method and passing in
either a DataSet or a DataTable . Note that you are calling the GetChanges method of the DataTable ; this
is important, because you only want to send the changes to the DataAdapter :

 ' Send only the changes in the DataTable to the database for updating.
 adapter.Update(table.GetChanges())

 To prove that the update worked, you get back a new DataTable from the server using the same technique
as before, and then bind it to the grid with your helper method to view the changes that were made:

 ' Get the new changes back from the server to show that the update worked.
 reader = GetAuthorsSqlReader()
 table = GetTableFromReader(reader, "Authors")
 ' Bind the grid to the new table data.
 BindGrid(table)
 End Sub

 Code snippet from AdoNetFeaturesTest project

 sql server .neT data Provider
 The SQL Server .NET data provider uses Tabular Data Stream (TDS) to communicate with the SQL Server.
This offers a great performance increase, as TDS is SQL Server ’ s native communication protocol. As an
example of how much of an increase you can expect, when I ran some simple tests accessing the authors
table of the pubs database, the SQL Server .NET data provider performed about 70 percent faster than the
OLE DB .NET data provider.

 This is very important, as going through the OLE DB or ODBC layers means that
the CLR has to marshal (convert) all of the COM data types to .NET CLR data types
each time data is accessed from a data source. When using the SQL Server .NET data
provider, everything runs within the .NET CLR, and the TDS protocol is faster than
the other network protocols previously used for SQL Server.

 To use this provider, you need to include the System.Data.SqlClient namespace in your application.
Note that it works only for SQL Server 7.0 and later. I highly recommend using the SQL Server .NET data
provider anytime you are connecting to a SQL Server 7.0 and later database server. The SQL Server .NET
data provider requires the installation of MDAC 2.6 or later.

 ole dB .neT data Provider
 The OLE DB .NET data provider uses native OLE DB through COM interop to enable data access. The
OLE DB .NET data provider supports both manual and automatic transactions. For automatic transactions,
the OLE DB .NET data provider automatically enlists in a transaction and obtains transaction details from

.neT Data Providers ❘ 409

410 ❘ chaPTer 10 ado.NEt aNd liNQ

Windows 2000 Component Services. The OLE DB .NET data provider does not support OLE DB 2.5
interfaces. OLE DB providers that require support for OLE DB 2.5 interfaces will not function properly
with the OLE DB .NET data provider. This includes the Microsoft OLE DB provider for Exchange and
the Microsoft OLE DB provider for Internet Publishing. The OLE DB .NET data provider requires the
installation of MDAC 2.6 or later. To use this provider, you need to include the System.Data.OleDb
namespace in your application.

 The daTaseT comPonenT
 The DataSet is central to supporting disconnected, distributed data scenarios with ADO.NET. The
 DataSet is a memory - resident representation of data that provides a consistent relational programming
model regardless of the data source. The DataSet represents a complete set of data, including related
tables, constraints, and relationships among the tables; basically, it ’ s like having a small relational database
residing in memory.

 Because the DataSet contains a lot of metadata, you need to be careful about how
much data you try to stuff into it, as it consumes memory.

 The methods and objects in a DataSet are consistent with those in the relational database model.
The DataSet can also persist and reload its contents as XML, and its schema as XSD. It is completely
disconnected from any database connections, so it is totally up to you to fi ll it with whatever data you need
in memory.

 Ever since ADO.NET 2.0, several new features have been added to the DataSet and the DataTable classes,
as well as enhancements to existing features. The features covered in this section are as follows:

 The binary serialization format option ➤

 Additions to make the ➤ DataTable more of a standalone object

 The capability to expose ➤ DataSet and DataTable data as a stream (DataReader), and to load stream
data into a DataSet or DataTable

 dataTablecollection
 An ADO.NET DataSet contains a collection of zero or more tables represented by DataTable objects. The
 DataTableCollection contains all of the DataTable objects in a DataSet .

 A DataTable is defi ned in the System.Data namespace and represents a single table of memory - resident
data. It contains a collection of columns represented by the DataColumnCollection , which defi nes the
schema and rows of the table. It also contains a collection of rows represented by the DataRowCollection ,
which contains the data in the table. Along with the current state, a DataRow retains its original state and
tracks changes that occur to the data.

 datarelationcollection
 A DataSet contains relationships in its DataRelationCollection object. A relationship (represented
by the DataRelation object) associates rows in one DataTable with rows in another DataTable . The
relationships in the DataSet can have constraints, which are represented by UniqueConstraint and
 ForeignKeyConstraint objects. It is analogous to a JOIN path that might exist between the primary and
foreign key columns in a relational database. A DataRelation identifi es matching columns in two tables of
a DataSet .

 Relationships enable you to see what links information within one table to another. The essential elements
of a DataRelation are the name of the relationship, the two tables being related, and the related columns

in each table. Relationships can be built with more than one column per table, with an array of DataColumn
objects for the key columns. When a relationship is added to the DataRelationCollection, it may
optionally add ForeignKeyConstraints that disallow any changes that would invalidate the relationship.

extendedProperties
The DataSet (as well as the DataTable and DataColumn) has an ExtendedProperties property.
ExtendedProperties is a PropertyCollection in which a user can place customized information, such as
the SELECT statement that is used to generate the result set, or a date/time stamp indicating when the data
was generated. Because the ExtendedProperties contains customized information, this is a good place to
store extra user-defined data about the DataSet (or DataTable or DataColumn), such as a time when the
data should be refreshed. The ExtendedProperties collection is persisted with the schema information
for the DataSet (as well as DataTable and DataColumn). The following code example adds an expiration
property to a DataSet:

 Private Sub _extendedDataSetButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles _extendedDataSetButton.Click
 ' Build the SQL and Connection strings.
 Dim cmdString As String = "SELECT * FROM authors"
 Dim connection As SqlConnection = GetPubsConnection()
 ' Initialize the SqlDataAdapter with the SQL
 ' and Connection strings, and then use the
 ' SqlDataAdapter to fill the DataSet with data.
 Dim adapter As SqlDataAdapter =
 New SqlDataAdapter(cmdString, connection)
 Dim authors As New DataSet
 adapter.Fill(authors)
 ' Add an extended property called "expiration."
 ' Set its value to the current date/time + 1 hour.
 authors.ExtendedProperties.Add("expiration",
 DateAdd(DateInterval.Hour, 1, Now))
 MessageBox.Show(authors.ExtendedProperties("expiration").ToString,
 "Authors Expiration")

 End Sub

Code snippet from AdoNetFeaturesTest project

This code begins by filling a DataSet with the authors table from the pubs database. It then adds a new
extended property, called expiration, and sets its value to the current date and time plus one hour. You
then simply read it back. As you can see, it is very easy to add extended properties to DataSet objects. The
same pattern also applies to DataTable and DataColumn objects.

creating and using dataset objects
The ADO.NET DataSet is a memory-resident representation of the data that provides a consistent
relational programming model, regardless of the source of the data it contains. A DataSet represents
a complete set of data, including the tables that contain, order, and constrain the data, as well as the
relationships between the tables. The advantage to using a DataSet is that the data it contains can come
from multiple sources, and it is fairly easy to get the data from multiple sources into the DataSet. In
addition, you can define your own constraints between the DataTables in a DataSet.

There are several methods for working with a DataSet, which can be applied independently or in
combination:

Programmatically create ➤ DataTables, DataRelations, and constraints within the DataSet and
populate them with data.

Populate the ➤ DataSet or a DataTable from an existing RDBMS using a DataAdapter.

The Dataset Component ❘ 411

412 ❘ chaPTer 10 ado.NEt aNd liNQ

Load and persist a ➤ DataSet or DataTable using XML.

Load a ➤ DataSet from an XSD schema file.

Load a ➤ DataSet or a DataTable from a DataReader.

Here is a typical usage scenario for a DataSet object:

 1. A client makes a request to a Web service.

 2. Based on this request, the Web service populates a DataSet from a database using a DataAdapter and
returns the DataSet to the client.

 3. The client then views the data and makes modifications.

 4. When finished viewing and modifying the data, the client passes the modified DataSet back to the Web
service, which again uses a DataAdapter to reconcile the changes in the returned DataSet with the
original data in the database.

 5. The Web service may then return a DataSet that reflects the current values in the database.

 6. Optionally, the client can then use the DataSet class’s Merge method to merge the returned DataSet
with the client’s existing copy of the DataSet; the Merge method will accept successful changes and
mark with an error any changes that failed.

The design of the ADO.NET DataSet makes this scenario fairly easy to implement. Because the DataSet
is stateless, it can be safely passed between the server and the client without tying up server resources such
as database connections. Although the DataSet is transmitted as XML, Web services and ADO.NET
automatically transform the XML representation of the data to and from a DataSet, creating a rich, yet
simplified, programming model.

In addition, because the DataSet is transmitted as an XML stream, non-ADO.NET clients can consume
the same Web service consumed by ADO.NET clients. Similarly, ADO.NET clients can interact easily with
non-ADO.NET Web services by sending any client DataSet to a Web service as XML and by consuming
any XML returned as a DataSet from the Web service. However, note the size of the data; if your DataSet
contains a large number of rows, it will eat up a lot of bandwidth.

Programmatically Creating Dataset objects
You can programmatically create a DataSet object to use as a data structure in your programs. This
could be quite useful if you have complex data that needs to be passed around to another object’s method.
For example, when creating a new customer, instead of passing 20 arguments about the new customer
to a method, you could just pass the programmatically created DataSet object with all of the customer
information to the object’s method. In addition, this helps maintain your software as instead of having to
maintain all those functions dealing with the multiple parameters, they simply need to receive a dataset. If
the structure of the data changes, your functions do not need to change.

Here is the code for building an ADO.NET DataSet object that is comprised of related tables:

 Private Sub _buildDataSetButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles _buildDataSetButton.Click
 Dim customerOrders As New Data.DataSet("CustomerOrders")
 Dim customers As Data.DataTable = customerOrders.Tables.Add("Customers")
 Dim orders As Data.DataTable = customerOrders.Tables.Add("Orders")
 Dim row As Data.DataRow
 With customers
 .Columns.Add("CustomerID", Type.GetType("System.Int32"))
 .Columns.Add("FirstName", Type.GetType("System.String"))
 .Columns.Add("LastName", Type.GetType("System.String"))
 .Columns.Add("Phone", Type.GetType("System.String"))
 .Columns.Add("Email", Type.GetType("System.String"))
 End With
 With orders

 .Columns.Add("CustomerID", Type.GetType("System.Int32"))
 .Columns.Add("OrderID", Type.GetType("System.Int32"))
 .Columns.Add("OrderAmount", Type.GetType("System.Double"))
 .Columns.Add("OrderDate", Type.GetType("System.DateTime"))
 End With
 customerOrders.Relations.Add("Customers_Orders",
 customerOrders.Tables("Customers").Columns("CustomerID"),
 customerOrders.Tables("Orders").Columns("CustomerID"))
 row = customers.NewRow()
 row("CustomerID") = 1
 row("FirstName") = "Foo"
 row("LastName") = "deBar"
 row("Phone") = "555-1212"
 row("Email") = "foo@debar.com"
 customers.Rows.Add(row)
 row = orders.NewRow()
 row("CustomerID") = 1
 row("OrderID") = 22
 row("OrderAmount") = 0
 row("OrderDate") = #11/10/1997#
 orders.Rows.Add(row)
 MessageBox.Show(customerOrders.GetXml, "Customer Orders")
 End Sub

 Code snippet from AdoNetFeaturesTest project

 Here is what the resulting XML of the DataSet looks like:

 < CustomerOrders >
 < Customers >
 < CustomerID > 1 < /CustomerID >
 < FirstName > Foo < /FirstName >
 < LastName > deBar < /LastName >
 < Phone > 555-1212 < /Phone >
 < Email > foo@debar.com < /Email >
 < /Customers >
 < Orders >
 < CustomerID > 1 < /CustomerID >
 < OrderID > 22 < /OrderID >
 < OrderAmount > 0 < /OrderAmount >
 < OrderDate > 1997-11-10T00:00:00.0000 < /OrderDate >
 < /Orders >
 < /CustomerOrders >

 You begin by fi rst defi ning a DataSet object named CustomerOrders . You then create two tables: one for
customers (customers) and one for orders (orders). Then you defi ne the columns of the tables. Note that
you call the Add method of the DataSet ’ s Tables collection. You then defi ne the columns of each table
and create a relation in the DataSet between the customers table and the orders table on the CustomerID
column. Finally, you create instances of DataRow s for the tables, add the data, and then append the rows to
the Rows collection of the DataTable objects.

 If you create a DataSet object with no name, it is given the default name of
 NewDataSet .

 ado.neT dataTable objects
 A DataSet is made up of a collection of tables, relationships, and constraints. In ADO.NET, DataTable
objects are used to represent the tables in a DataSet . A DataTable represents one table of in - memory
relational data. The data is local to the .NET application in which it resides, but it can be populated from a
data source such as SQL Server using a DataAdapter .

The Dataset Component ❘ 413

414 ❘ chaPTer 10 ado.NEt aNd liNQ

The DataTable class is a member of the System.Data namespace within the .NET Framework Class
Library. You can create and use a DataTable independently or as a member of a DataSet, and DataTable
objects can be used by other .NET Framework objects, including the DataView. You access the collection of
tables in a DataSet through the DataSet object’s Tables property.

The schema, or structure, of a table is represented by columns and constraints. You define the schema of a
DataTable using DataColumn objects as well as ForeignKeyConstraint and UniqueConstraint objects.
The columns in a table can map to columns in a data source, contain calculated values from expressions,
automatically increment their values, or contain primary key values.

If you populate a DataTable from a database, it inherits the constraints from the database, so you don’t
have to do all of that work manually. A DataTable must also have rows in which to contain and order
the data. The DataRow class represents the actual data contained in the table. You use the DataRow and its
properties and methods to retrieve, evaluate, and manipulate the data in a table. As you access and change
the data within a row, the DataRow object maintains both its current and original state.

You can create parent-child relationships between tables within a database, such as SQL Server, using
one or more related columns in the tables. You create a relationship between DataTable objects using a
DataRelation, which can then be used to return a row’s related child or parent rows.

advanced ado.neT features of the dataset and dataTable objects
One of the main complaints developers had about ADO.NET 1.x was related to the performance of the
DataSet and its DataTable children — in particular, when they contained a large amount of data.
The performance hit comes in two different ways. The first way is the time it takes to actually load a
DataSet with a lot of data. As the number of rows in a DataTable increases, the time to load a new row
increases almost proportionally to the number of rows. The second way is when the large DataSet is
serialized and remoted. A key feature of the DataSet is the fact that it automatically knows how to serialize
itself, especially when you want to pass it between application tiers. Unfortunately, the serialization is quite
verbose and takes up a lot of memory and network bandwidth. Both of these performance problems have
been addressed since ADO.NET 2.0.

indexing
The first improvement made since ADO.NET 2.0 to the DataSet family was a complete rewrite of the
indexing engine for the DataTable, which now scales much better for large DataSets. The addition of the
new indexing engine results in faster basic inserts, updates, and deletes, which also means faster Fill and
Merge operations. Just as in relational database design, if you are dealing with large DataSets, then it pays
big dividends if you first add unique keys and foreign keys to your DataTable. Even better, you don’t have
to change any of your code at all to take advantage of this new feature.

serialization
The second improvement made to the DataSet family was adding new options to the way the DataSet
and DataTable are serialized. The main complaint about retrieving DataSet objects from Web services
and remoting calls was that they were way too verbose and took up too much network bandwidth. In
ADO.NET 1.x, the DataSet serializes as XML, even when using the binary formatter. Using ADO.
NET, you can also specify true binary serialization by setting the newly added RemotingFormat property
to SerializationFormat.Binary, rather than (the default) SerializationFormat.XML. In the
AdoNetFeaturesTest project of the Examples solution, I have added a Button (serializationButton) to
the form and its associated Click event handler that demonstrates how to serialize a DataTable in binary
format:

Private Sub _serializationButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles _serializationButton.Click
 ' Get the authors reader.
 Dim reader As SqlDataReader = GetAuthorsSqlReader()

 ' Load a DataTable from the reader
 Dim table As DataTable = GetTableFromReader(reader, "Authors")

Code snippet from AdoNetFeaturesTest project

The preceding code begins by calling the helper methods GetAuthorsSqlReader and GetTableFromReader
to get a DataTable of the authors from the pubs database. The next code block, shown here, is where you
are actually serializing the DataTable out to a binary format:

 ' Save the table in a binary format
 Dim filename As String = FileIO.SpecialDirectories.MyDocuments &
 "\authors.dat"
 Using fs As New FileStream(filename, FileMode.Create)
 table.RemotingFormat = SerializationFormat.Binary
 Dim format As New BinaryFormatter
 format.Serialize(fs, table)
 End Using
 ' Tell the user what happened
 MessageBox.Show(
 String.Format("Successfully serialized the DataTable to {0}",
 filename))

Code snippet from AdoNetFeaturesTest project

This code takes advantage of the Using statement for Visual Basic to wrap up creating and disposing of a
FileStream instance that will hold your serialized DataTable data. The next step is to set the DataTable’s
RemotingFormat property to the SerializationFormat.Binary enumeration value. Once that is done,
you simply create a new BinaryFormatter instance, and then call its Serialize method to serialize your
DataTable into the FileStream instance. You then finish by showing users a message box indicating that
the data has been serialized.

Datareader integration
Another nice feature of the DataSet and DataTable classes is the capability to both read from and write
out to a stream of data in the form of a DataReader. You will first take a look at how you can load a
DataTable from a DataReader. To demonstrate this, I have added a Button (loadFromReaderButton)
and its associated Click event handler to TestForm.vb of the AdoNetFeaturesTest project in the Examples
solution:

Private Sub _loadFromReaderButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _loadFromReaderButton.Click

 ' Get the authors reader.
 Dim reader As SqlDataReader = GetAuthorsSqlReader()

 ' Load a DataTable from the reader.
 Dim table As DataTable = GetTableFromReader(reader, "Authors")

 ' Bind the grid to the table.
 BindGrid(table)
 End Sub

This method is a controller method, meaning that it only calls helper methods. It begins by first obtaining
a SqlDataReader from the GetAuthorsSqlReader helper method. It then calls the GetTableFromReader
helper method to transform the DataReader into a DataTable. The GetTableFromReader method is where
you actually get to see the DataTable’s new load functionality:

Private Function GetTableFromReader(ByVal reader As SqlDataReader, _
 ByVal tableName As String) As DataTable
 ' Create a new DataTable using the name passed in.
 Dim table As New DataTable(tableName)

The Dataset Component ❘ 415

416 ❘ chaPTer 10 ado.NEt aNd liNQ

 ' Load the DataTable from the reader.
 table.Load(reader)
 ' Close the reader.
 reader.Close()
 Return table
End Function

Code snippet from AdoNetFeaturesTest project

This method begins by first creating an instance of a DataTable and initializing it with the name passed
in from the tableName argument. Once the new DataTable has been initialized, you call the new Load
method and pass in the SqlDataReader that was passed into the method via the reader argument. This is
where the DataTable takes the DataReader and populates the DataTable instance with the column names
and data from the DataReader. The next step is to close the DataReader, as it is no longer needed; and
finally, you return the newly populated DataTable.

DataTable independence
One of the most convenient capabilities in ADO.NET is the inclusion of several methods from the DataSet
class in the DataTable class. The DataTable is now much more versatile and useful than it was in the early
ADO.NET days. The DataTable now supports all of the same read and write methods for XML as the
DataSet — specifically, the ReadXml, ReadXmlSchema, WriteXml, and WriteXmlSchema methods.

The Merge method of the DataSet has now been added to the DataTable as well; and in addition to
the existing functionality of the DataSet class, some of the new features of the DataSet class have been
added to the DataTable class — namely, the RemotingFormat property, the Load method, and the
GetDataReader method.

WorKing WiTh The common ProVider model
In ADO.NET 1.x, you could code to either the provider-specific classes, such as SqlConnection, or
the generic interfaces, such as IDbConnection. If there was a possibility that the database you were
programming against would change during your project, or if you were creating a commercial package
intended to support customers with different databases, then you had to use the generic interfaces. You
cannot call a constructor on an interface, so most generic programs included code that accomplished
the task of obtaining the original IDbConnection by means of their own factory method, such as a
GetConnection method that would return a provider-specific instance of the IDbConnection interface.

ADO.NET today has a more elegant solution for getting the provider-specific connection. Each data
provider registers a ProviderFactory class and a provider string in the .NET machine.config file. A base
ProviderFactory class (DbProviderFactory) and a System.Data.Common.ProviderFactories class can
return a DataTable of information (via the GetFactoryClasses method) about different data providers
registered in machine.config, and can return the correct ProviderFactory given the provider string
(called ProviderInvariantName) or by using a DataRow from this DataTable. Instead of writing your own
framework to build connections based on the name of the provider, ADO.NET now makes it much more
straightforward, flexible, and easy to solve this problem.

Let’s look at an example of using the common provider model to connect to the pubs database and display
some rows from the authors table. In the AdoNetFeaturesTest project, on the TestForm.vb form, the
providerButton button’s Click event handler shows this functionality. The code is broken down into six
steps. The first step is to get the provider factory object based on a configuration value of the provider’s
invariant name:

Private Sub _providerButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles _providerButton.Click
 ' 1. Factory

 ' Create the provider factory from config value.
 Dim factory As DbProviderFactory = DbProviderFactories.GetFactory(_
 ConfigurationSettings.AppSettings("providerInvariantName"))

Code snippet from AdoNetFeaturesTest project

You are able to get the factory via the DbProviderFactories object’s GetFactory method and pass in the
string name of the provider invariant that you are storing in the project’s app.config file. Here is the entry
in the app.config file:

<add key="providerInvariantName" value="System.Data.SqlClient" />

In this case, you are using the SQL Server data provider. Once you have the factory object, the next step is
to use it to create a connection:

 ' 2. Connection
 ' Create the connection from the factory.
 Dim connection As DbConnection = factory.CreateConnection()
 ' Get the connection string from config.
 connection.ConnectionString = _
 ConfigurationSettings.ConnectionStrings("db").ConnectionString

Code snippet from AdoNetFeaturesTest project

The connection is created by calling the DbProviderFactory’s CreateConnection method. In this case,
the factory is returning a SqlConnection, because you chose to use the System.Data.SqlClient provider
invariant. To keep your code generic, you will not be directly programming against any of the classes in the
System.Data.SqlClient namespace. Note how the connection class you declare is a DbConnection class,
which is part of the System.Data namespace.

The next step is to create a Command object so you can retrieve the data from the authors table:

 ' 3. Command
 ' Create the command from the connection.
 Dim command As DbCommand = connection.CreateCommand()
 ' Set the type of the command to stored procedure.
 command.CommandType = CommandType.StoredProcedure
 ' Set the name of the stored procedure to execute.
 command.CommandText = "usp_authors_Get_All"

Code snippet from AdoNetFeaturesTest project

You begin by declaring a generic DbCommand class variable and then using the DbConnection’s
CreateCommand method to create the DbCommand instance. Once you have done that, you set the command
type to StoredProcedure and then set the stored procedure name.

This example uses a DbDataAdapter to fill a DataTable with the authors’ data. Here is how you create and
initialize the DbDataAdapter:

 ' 4. Adapter
 ' Create the adapter from the factory.
 Dim adapter As DbDataAdapter = factory.CreateDataAdapter()
 ' Set the adapter's select command.
 adapter.SelectCommand = command

Code snippet from AdoNetFeaturesTest project

Just as you did when you created your DbConnection instance, you use the factory to create your
DbDataAdapter. After creating it, you then set the SelectCommand property’s value to the instance of the
previously initialized DbCommand instance.

Working with the Common Provider Model ❘ 417

418 ❘ chaPTer 10 ado.NEt aNd liNQ

After finishing these steps, the next step is to create a DataTable and fill it using the DataAdapter:

 ' 5. DataTable
 ' Create a new DataTable.
 Dim authors As New DataTable("Authors")
 ' Use the adapter to fill the DataTable.
 adapter.Fill(authors)

Code snippet from AdoNetFeaturesTest project

The final step is to bind the table to the form’s grid:

 ' 6. Grid
 ' Populate the grid with the data.
 BindGrid(authors)

You already looked at the BindGrid helper method in the asynchronous example earlier. In this example,
you are simply reusing this generic method again:

Private Sub BindGrid(ByVal table As DataTable)
 ' Clear the grid.
 Me._authorsGridView.DataSource = Nothing
 ' Bind the grid to the DataTable.
 Me._authorsGridView.DataSource = table
 End Sub

Code snippet from AdoNetFeaturesTest project

The main point to take away from this example is that you were able to easily write database-agnostic code
with just a few short lines. ADO.NET 1.x required a lot of lines of code to create this functionality; you had
to write your own abstract factory classes and factory methods in order to create instances of the generic
database interfaces, such as IDbConnection, IDbCommand, and so on.

connecTion Pooling in ado.neT
Pooling connections can significantly enhance the performance and scalability of your application. Both the
SQL Client .NET data provider and the OLE DB .NET data provider automatically pool connections using
Windows Component Services and OLE DB session pooling, respectively. The only requirement is that you
must use the exact same connection string each time if you want a pooled connection.

ADO.NET now enhances the connection pooling functionality offered in ADO.NET 1.x by enabling you to
close all of the connections currently kept alive by the particular managed provider that you are using. You
can clear a specific connection pool by using the shared SqlConnection.ClearPool method or clear all of
the connection pools in an application domain by using the shared SqlConnection.ClearPools method.
Both the SQL Server and Oracle managed providers implement this functionality.

TransacTions and sysTem.TransacTions
While you can do simple transaction support with ADO.NET, Visual Basic includes a set of classes
specifically designed for working with transactions: the System.Transactions namespace. As the name
implies, these classes allow you to define and work with transactions in your code.

You may well be wondering at this point why we need two methods of working with transactions.
The classes of System.Transaction, particularly the Transaction class itself, abstract the code from the
resource managers participating in the transaction. Transactions in ADO.NET are specific to each database
you may access. There is no unified method of creating a transaction, nor is there a standard way of sharing
a database transaction across multiple databases or other transaction supporters. The Transaction class
provides for these limitations, and can coordinate multiple resource managers itself.

The classes of System.Transaction also provide the means to create your own resource managers. These
resource managers may then participate in transactions. At first, you may balk at this prospect, wondering
how you could write something that manages all the details of a transactional data store. Aren’t the details
enormous? Fortunately, the classes make it easy to enlist in a transaction and report on your results.

creating Transactions
System.Transaction supports two means of working with transactions: implicit and explicit. With
implicit transactions, you define a boundary for the transaction. Any resource managers you use within
this boundary become part of the transaction. That is, if you have defined a boundary and then call a
database such as SQL Server, the actions performed on the database are part of the transaction. If the code
reaches the boundary without incident, then the transaction is committed. If an exception occurs during
this implicit transaction, then the transaction is rolled back. Explicit transactions, as you may have guessed,
mean that you explicitly commit or roll back the transaction as needed.

Using the implicit model can greatly simplify the code involved in a transaction. The following code
demonstrates inserting multiple records using implicit transactions:

 Private Sub MultipleInsertImplicit()
 'insert a number of records into the sales table
 'using implicit transactions
 Dim cmdString As String = "INSERT INTO Sales(stor_id, ord_num, " &
 "ord_date, qty, payterms, title_id) " &
 "VALUES (@storeID, @ordNum, @ordDate, " &
 "@qty, @payterms, @titleID)"
 Dim cmd As New SqlCommand(cmdString, connection)
 'add the parameters to the command. We'll set the values later
 With cmd.Parameters
 .Add("@storeID", SqlDbType.Char, 4)
 .Add("@ordNum", SqlDbType.VarChar, 20)
 .Add("@ordDate", SqlDbType.DateTime)
 .Add("@qty", SqlDbType.Int)
 .Add("@payterms", SqlDbType.VarChar, 12)
 .Add("@titleID", SqlDbType.VarChar, 6)
 End With
 'start implicit transaction
 Using txn As New TransactionScope
 Try
 'insert 10 random records
 For i As Integer = 1 To 10
 cmd.Parameters("@storeID").Value = PickRandomStore()
 cmd.Parameters("@ordNum").Value = PickRandomOrderNumber()
 cmd.Parameters("@ordDate").Value = (DateTime.Now)
 cmd.Parameters("@qty").Value = (New Random().Next(1, 100))
 cmd.Parameters("@payterms").Value = ("NET 30")
 cmd.Parameters("@titleID").Value = (PickRandomTitle())

 cmd.ExecuteNonQuery()
 Next
 Catch ex As Exception
 Console.WriteLine(ex.Message)
 End Try

 End Using
 'if no exceptions occur, transaction will commit here

 End

Code snippet from SubSimpleTransactions

Transactions and system.Transactions ❘ 419

420 ❘ chaPTer 10 ado.NEt aNd liNQ

This code inserts multiple sales orders into the sales table. The bulk of the code is setting up the query to
insert the record, and creating random parameters to insert. The Using clause wraps the inserts within an
implicit transaction. All resource managers that recognize transactions participate in this transaction. The
Using clause guarantees that the TransactionScope object is disposed of when the transaction is complete.
If something happens, the transaction is automatically rolled back, otherwise it is committed.

Using explicit transactions requires a bit more code but provides greater control over the transaction. You
can use either the Transaction class or the CommittableTransaction class to wrap transactions in this
model. CommittableTransaction is a child class of Transaction, and adds the capability to commit a
transaction, as the name implies.

Using a CommittableTransaction in the above scenario changes it as follows:

 Private Sub MultipleInsertExplicit()
 'insert a number of records into the sales table
 'using explicit transactions

 Dim cmdString As String = "INSERT INTO Sales(stor_id, ord_num, " &
 "ord_date, qty, payterms, title_id) " &
 "VALUES (@storeID, @ordNum, @ordDate, " &
 "@qty, @payterms, @titleID)"
 Dim cmd As New SqlCommand(cmdString, connection)
 'add the parameters to the command. We'll set the values later
 With cmd.Parameters
 .Add("@storeID", SqlDbType.Char, 4)
 .Add("@ordNum", SqlDbType.VarChar, 20)
 .Add("@ordDate", SqlDbType.DateTime)
 .Add("@qty", SqlDbType.Int)
 .Add("@payterms", SqlDbType.VarChar, 12)
 .Add("@titleID", SqlDbType.VarChar, 6)
 End With
 'start implicit transaction
 Using txn As New CommittableTransaction
 Try
 'insert 10 random records
 For i As Integer = 1 To 10
 cmd.Parameters("@storeID").Value = PickRandomStore()
 cmd.Parameters("@ordNum").Value = PickRandomOrderNumber()
 cmd.Parameters("@ordDate").Value = (DateTime.Now)
 cmd.Parameters("@qty").Value = (New Random().Next(1, 100))
 cmd.Parameters("@payterms").Value = ("NET 30")
 cmd.Parameters("@titleID").Value = (PickRandomTitle())

 cmd.ExecuteNonQuery()
 Next

 'commit the transaction
 txn.Commit()
 Catch ex As Exception
 'if an exception occurs, we rollback the attempt
 'this could also have been done elsewhere
 txn.Rollback()
 Console.WriteLine(ex.Message)
 End Try

 End Using
 End

Code snippet from SubSimpleTransactions

Notice that the transaction must now be explicitly committed or rolled back. You could also pass the
transaction variable to other methods to vote on the transaction. If you do this, you can enlist other
transaction containers using the EnlistTransaction method (or EnlistDistributedTransaction

if the transaction will span multiple computers). Once it is a part of the transaction, it can then use the
transaction methods to commit or roll back each part of the transaction.

Using the TransactionScope and Transaction classes can greatly decrease the amount of effort involved
in creating and working with transactions in your applications. Generally, using implicit transactions using
TransactionScope is easier and less error prone, and should be your first choice.

creating resource managers
In addition to using the classes in System.Transactions for managing transactions, you can also use them
to define your own resource managers. These resource managers can then participate in transactions with
databases, MSDTC, message queues, and more. There are three basic steps to defining a resource manager:

 1. Create an enlistment class. This class is used to track the resource manager’s participation in the
transaction. That is, this is the class that will vote on whether the transaction should complete or be
rolled back. This class should implement the IEnlistmentNotification interface.

 2. Enlist the new enlistment class in the transaction. There are two main ways the class may participate
in the transaction: EnlistDurable or EnlistVolatile. You use EnlistDurable if your resource
manager stores data permanently, such as in a file or database. EnlistVolatile is used if your
resource manager stores its information in memory or in some other nonrecoverable location.

 3. Implement the methods of the IEnlistmentNotification interface to react to the states of the
transaction. The IEnlistmentNotification interface provides four methods: Prepare, Commit,
Rollback, and InDoubt. Commit and Rollback are self-explanatory, used at t̀ hese two phases
of the transaction. Prepare is called before Commit, to determine whether it is possible to commit
the transaction. Finally, InDoubt is called if the transaction is questionable. This can happen if the
transaction coordinator has lost track of one of the resource managers.

Why would you define your own resource managers, rather than simply use an existing one such as SQL
Server? You might need to store data in another database that does not directly participate in transactions.
Alternately, you may want to enable a normally nontransactional component with transactional behavior.
For example, the cache in ASP.NET doesn’t support the addition of items using transactions. You could
create a resource manager that wraps the ASP.NET cache and adds support for commit and rollback of
entries. This might be part of a system in which you want to use the cache as an in-memory data store.
While this would work without the transactions, adding transactional support would ensure that if the
database write fails for any reason, then the entry could be rolled back out of the cache.

linq To sql
There has always been a logical disconnect for developers working with databases. Most of your application
is written in one language (Visual Basic), while the data access (or at least the queries) is written in SQL. In
Visual Basic, programming with objects means a wonderful, strongly typed ability to work with code. You
can navigate very easily through the namespaces, work with a debugger in the Visual Studio IDE, and more.
However, when you have to access data, you will notice that things are dramatically different. You end up in
a world that is not strongly typed, and debugging is a pain or even nonexistent. You end up spending most
of the time sending strings to the database as commands. As a developer, you also have to be aware of the
underlying data and how it is structured or how all the data points relate.

Microsoft has provided LINQ as a lightweight façade that provides a strongly typed interface to the
underlying data stores. LINQ provides the means for developers to stay within the coding environment
they’re used to and access the underlying data as objects that work with the IDE, IntelliSense, and even
debugging.

With LINQ, the queries that you create now become first-class citizens within the .NET Framework
alongside everything else you are used to. When you begin to work with queries for the data store you’re
working with, you will quickly realize that they now work and behave as if they were types in the system.
This means that you can now use any .NET-compliant language and query the underlying data store as you
never have before.

linQ to sQl ❘ 421

422 ❘ chaPTer 10 ado.NEt aNd liNQ

linq To sql and Visual Basic
LINQ to SQL in particular is a means to have a strongly typed interface against a SQL Server database. You
will find that the approach that LINQ to SQL provides is by far the easiest approach there is at present for
querying SQL Server. It’s not simply about querying single tables within the database; for instance, if you
call the authors table of the Microsoft sample pubs database and want to pull a title for each author from
the same database, then LINQ will use the relations of the tables and make the query on your behalf. LINQ
will query the database and load up the data for you to work with from your code (again, strongly typed).

Keep in mind that LINQ to SQL is not only about querying data; you can also perform the INSERT, UPDATE,
and DELETE statements that you need to perform.

In addition, you can interact with the entire process and customize the operations performed to add your
own business logic to any of the CRUD operations (CREATE/READ/UPDATE/DELETE).

Visual Studio is highly integrated with LINQ to SQL in that it offers an extensive user interface that enables
you to design the LINQ to SQL classes you will work with.

The following section demonstrates how to set up a LINQ to SQL instance and pull items from the pubs
database.

retrieving data using linq to sql: creating the console application
To illustrate using LINQ to SQL, the LinqReading example begins by calling a single table from the pubs
database and using this table to populate some results to the screen.

The next step is to add a LINQ to SQL class. When working with LINQ to SQL, one of the big advantages
is that Visual Studio does an outstanding job of making it as easy as possible. Visual Studio provides an
object-relational mapping designer, called the Object Relational Designer (O/R Designer), that enables you
to visually design the object-to-database mapping.

To start this task, right-click on your solution and select Add] New Item from the provided menu. From the
items in the Add New Item dialog, select the LINQ to SQL Classes option, as shown in Figure 10-4.

figure 10-4

Because this example uses the pubs database, name the file pubs.dbml. Click the
Add button, which will create a couple of files for you. The Solution Explorer,
after adding the pubs.dbml file, is shown in Figure 10-5.

A number of items were added to your project with this action. First, the pubs.
dbml file was added, which contains two components. Because the LINQ to SQL
class that was added works with LINQ, the System.Data.Linq reference was
also added on your behalf.

introducing the o/r designer
Another big addition to the IDE that appeared when you added the LINQ to SQL class to your project
(the pubs.dbml file) was a visual representation of the .dbml file. The new O/R Designer appears as a tab
within the document window directly in the IDE. Figure 10-6 shows a view of the O/R Designer when it is
first initiated.

figure 10-5

figure 10-6

The O/R Designer consists of two parts. The first is for data classes, which can be tables, classes,
associations, and inheritances. Dragging such items on this design surface will give
you a visual representation of the object that can be worked with. The second part
(on the right) is for methods, which map to the stored procedures within a database.

When viewing your .dbml file within the O/R Designer, you also have an Object
Relational Designer set of controls in the Visual Studio Toolbox, as shown in
Figure 10-7.

figure 10-7

linQ to sQl and Visual Basic ❘ 423

424 ❘ chaPTer 10 ado.NEt aNd liNQ

creating the Product object
For this example, you will work with the Titles table from the pubs database,
which means you need to create a titles table that will use LINQ to SQL to map
to this table. Accomplishing this task is simply a matter of opening a view of
the tables contained within the database from the Server Explorer dialog within
Visual Studio and dragging and dropping the Titles table onto the left-hand
design surface of the O/R Designer. The results of this action are illustrated in
Figure 10-8.

With this action, a bunch of code is added to the designer files of the .dbml file on
your behalf. These classes give you strongly typed access to the titles table. For a
demonstration of this, turn your attention to the console application’s Main.vb
file. Following is the code required for this example:

Module Main
 Sub Main()
 Dim dc As New pubsDataContext
 Dim query = dc.titles
 For Each item In query
 Console.WriteLine("{0}: {1}",
 item.title_id, item.title)
 Next
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqReading Project

This short bit of code is querying the Titles table within the pubs database and pulling out the data to
display. It is useful to step through this code starting with the first line in the Main method:

Dim dc As New pubsDataContext()

The pubsDataContext object is an object of type DataContext. You can view this as a class that maps to a
Connection type object. This object works with the connection string and connects to the database for any
required operations.

The next line is quite interesting:

Dim query = dc.titles

Here, you are using an implicitly typed variable. If you are unsure of the output type, you can assign a
type to the query variable and the type will be set into place at compile time. Actually, the code dc.titles
returns a System.Data.Linq.Table(Of LinqReading.titles)object, and this is what the query type is
set as, when the application is compiled. Therefore, you could have also just as easily written the statement
as follows:

Dim query As Table(Of title) = dc.titles

This approach is actually better because programmers who look at the application’s code later will find
it easier to understand what is happening, as just using the Dim query by itself has so much of a hidden
aspect to it. To use Table(Of title), which is basically a generic list of Title objects, you should make a
reference to the System.Data.Linq namespace (using Imports System.Data.Linq).

The value assigned to the Query object is the value of the titles property, which is of type Table(Of
title). From there, the next bit of code iterates through the collection of Title objects found in Table(Of
title):

For Each item In query
 Console.WriteLine("{0}: {1}",
 item.title_ID, item.title)
Next

figure 10-8

In this case, the iteration pulls out the title_id and title properties from the Title object and writes
them out to the program. Because you are using only a few of the items from the table, the O/R Designer
enables you to delete the columns that you are not interested in pulling from the database. This example
demonstrates just how easy it is to query a SQL Server database using LINQ to SQL.

hoW oBJecTs maP To linq oBJecTs
The great thing about LINQ is that it gives you strongly typed objects to use in your code (with
IntelliSense), and these objects map to existing database objects. Again, LINQ is nothing more than a thin
façade over these pre-existing database objects. Table 10-3 shows the mappings that exist between the
database objects and the LINQ objects.

TaBle 10-3: Database to LINQ Object Mappings

daTaBase oBJecT linq oBJecT

Database DataContext

Table Class and Collection

View Class and Collection

Column Property

Relationship Nested Collection

Stored Procedure Method

On the left side you are dealing with your database. The database is the entire entity: the tables, views,
triggers, stored procedures — everything that makes up the database. On the right, or LINQ side, you have
an object called the DataContext object. A DataContext object is bound to the database. For the required
interaction with the database, it contains a connection string that handles all of the transactions that occur,
including any logging. It also manages the output of the data. In short, the DataContext object completely
manages the transactions with the database on your behalf.

Tables, as you saw in the example, are converted to classes. This means that if you have a Products table,
you will have a Product class. Note that LINQ is name-friendly in that it changes plural tables to singular
to provide the proper name to the class that you are using in your code. In addition to database tables being
treated as classes, database views are treated the same. Columns, conversely, are treated as properties. This
enables you to manage the attributes (names and type definitions) of the column directly.

Relationships are nested collections that map between these various objects. This enables you to define
relationships that are mapped to multiple items.

It’s also important to understand the mapping of stored procedures. These actually map to methods within
your code off the DataContext instance. The next section takes a closer look at the DataContext and the
table objects within LINQ.

Looking at the architecture of LINQ to SQL, you will notice that there are actually three layers: your
application, the LINQ to SQL layer, and the SQL Server database. As shown in the previous examples, you
can create a strongly typed query in your application’s code:

dc.titles

This in turn is translated to a SQL query by the LINQ to SQL layer, which is then supplied to the database
on your behalf:

SELECT [t0].[title_id], [t0].[title], [t0].[type], [t0].[pub_id],
[t0].[price], [t0].[advance], [t0].[royalty], [t0].[ytd_sales],
[t0].[notes], [t0].[pubdate]
FROM [titles] AS [t0]

How objects Map to linQ objects ❘ 425

426 ❘ chaPTer 10 ado.NEt aNd liNQ

In return, the LINQ to SQL layer takes the rows coming out of the database from this query and turns them
into a collection of strongly typed objects that you can easily work with.

The datacontext object
In the preceding section, you learned that the DataContext object manages the transactions that occur with
the database you are working with when working with LINQ to SQL. There is actually a lot that you can
do with the DataContext object.

Using the Connection Property
The Connection property actually returns an instance of the System.Data.SqlClient.SqlConnection
that is used by the DataContext object. This is ideal if you need to share this connection with other ADO.
NET code that you might be using in your application, or if you need to get at any of the SqlConnection
properties or methods that it exposes. For instance, getting at the connection string is a simple matter:

Dim dc As New pubsDataContext()
Console.WriteLine(dc.Connection.ConnectionString)

Using the Transaction Property
If you have an ADO.NET transaction that you can use, you are able to assign that transaction to the
DataContext object instance using the Transaction property. You can also use Transaction using the
TransactionScope object from the .NET Framework. You would need to make a reference to the System.
Transactions namespace in your References folder for this example to work:

Imports System.Transactions

Module Main

 Sub Main()
 Dim dc As New PubsDataContext
 Using theScope As New TransactionScope
 Dim title1 As New title With {
 .title_id = "777779",
 .title = "Professional XML",
 .type = "programming",
 .pubdate = "April 15, 2007"}
 dc.titles.InsertOnSubmit(title1)
 Dim title2 As New title With {
 .title_id = "502242",
 .title = "Professional VB 2010",
 .type = "programming",
 .pubdate = "June 15, 2010"}
 dc.titles.InsertOnSubmit(title2)

 Try
 Console.WriteLine("Before insert: {0} titles",
 dc.titles.Count)

 dc.SubmitChanges()
 Console.WriteLine("After insert: {0} titles",
 dc.titles.Count)

 Catch ex As Exception
 Console.WriteLine("ERROR: {0}", ex.Message)
 End Try
 theScope.Complete()
 End Using

 Console.WriteLine("Press ENTER to exit")

 Console.ReadLine()
 End Sub

End Module

Code snippet from LinqTransactions project

In this case, the TransactionScope object is used within a Using clause. This means that everything
contained within that clause will happen as a single transaction; if one of the operations on the database
fails, everything will be rolled back to the original state. Within this transaction, two records are submitted.
The actual changes will not happen until the call to SubmitChanges.

other Methods and Properties of the DataContext object
In addition to the items just described, several other methods and properties are available from the
DataContext object. Table 10-4 shows some of the available methods from DataContext.

TaBle 10-4: Partial List of DataContext Methods

meThod descriPTion

CreateDatabase Enables you to create a database on the server

DatabaseExists Enables you to determine whether a database exists and can be opened

DeleteDatabase Deletes the associated database

ExecuteCommand Enables you to pass in a command to the database to be executed

ExecuteQuery Enables you to pass queries directly to the database

GetChangeSet The DataContext object keeps track of changes occurring in the database on your
behalf . This method enables you to access those changes .

GetCommand Provides access to the commands that are performed

GetTable Provides access to a collection of tables from the database

Refresh Enables you to refresh your objects from the data stored within the database

SubmitChanges Executes the INSERT, UPDATE, and DELETE commands that have been established
in your code

Translate Converts an IDataReader to objects

TaBle 10-5: Partial List of DataContext Properties

ProPerTy descriPTion

ChangeConflicts Provides a collection of objects that caused concurrency conflicts when the
SubmitChanges method was called

CommandTimeout Enables you to set the timeout period for commands against the database .
You should set this to a higher value if your query needs more time to
execute .

Connection Enables you to work with the System.Data.SqlClient.SqlConnection
object used by the client

DeferredLoadingEnabled Enables you to specify whether or not to delay the loading of one-to-many
or one-to-one relationships

LoadOptions Enables you to specify or retrieve the value of the DataLoadOptions
object

In addition to these methods, the DataContext object exposes some of the properties shown in Table 10-5.

continues

How objects Map to linQ objects ❘ 427

428 ❘ chaPTer 10 ado.NEt aNd liNQ

The Table(Tentity) object
The Table(TEntity)object is a representation of the tables that you are working with from the database.
For instance, you saw the use of the Product class, which is a Table(Of Product)instance. As you will
see throughout this chapter, several methods are available from the Table(TEntity)object. Some of these
methods are defined in Table 10-6.

ProPerTy descriPTion

Log Enables you to specify the output location of the command that was used in
the query

Mapping Provides the metamodel on which the mapping is based . That is, this
defines how the tables will be translated to VB classes .

ObjectTrackingEnabled Specifies whether or not to track changes to the objects within the database
for transactional purposes . If you are dealing with a read-only database,
then you should set this property to false .

Transaction Enables you to specify the local transaction used with the database

TaBle 10-5 (continued)

TaBle 10-6: Partial List of Table(TEntity) Object Methods

meThod descriPTion

Attach Enables you to attach an entity to the DataContext instance

AttachAll Enables you to attach a collection of entities to the DataContext
instance

DeleteAllOnSubmit(TSubEntity) Enables you to put all the pending actions into a state of readiness
for deletion . Everything here is enacted when the SubmitChanges
method is called off of the DataContext object .

DeleteOnSubmit Enables you to put a pending action into a state of readiness for
deletion . Everything here is enacted when the SubmitChanges
method is called off of the DataContext object .

GetModifiedMembers Provides an array of modified objects . You will be able to access
their current and changed values .

GetNewBindingList Provides a new list for binding to the data store

GetOriginalEntityState Provides an instance of the object as it appeared in its original state

InsertAllOnSubmit(TSubEntity) Enables you to put all the pending actions into a state of readiness
for insertion . Everything here is enacted when the SubmitChanges
method is called off of the DataContext object .

InsertOnSubmit Enables you to put a pending action into a state of readiness for
insertion . Everything here is enacted when the SubmitChanges
method is called off of the DataContext object .

querying The daTaBase
As you have seen so far in this chapter, there are a number of ways in which you can query the database
from the code of your application. In some of the simplest forms, your queries looked like the following:

Dim query As Table(Of title) = dc.titles

This command retrieved the entire Titles table to your Query object instance.

using query expressions
In addition to pulling down a straight table using dc.titles, you are about to use a strongly typed query
expression directly in your code:

 Sub SimpleSelect()
 Dim dc As New PubsDataContext
 Dim query = From p In dc.titles Select p
 For Each item In query
 Console.WriteLine(item.title_id & ": " & item.title)
 Next
 End Sub

Code snippet from LinqExpressions project

In this case, a Query object (again, a Table(Of title)object) is populated with the query value of From p
in dc.titles Select p.

query expressions in detail
You can use several query expressions from your code. The preceding example is a simple select statement
that returns the entire table. Table 10-7 shows some of the other query expressions that you have at your
disposal.

TaBle 10-7: Common Query Expressions

exPression TyPe descriPTion

Project Select <expression>

Filter Where <expression>, Distinct

Test Any(<expression>), All(<expression>)

Join <expression> Join <expression> On <expression> Equals <expression>

Group Group By <expression>, Into <expression>, <expression> Group Join <decision> On
<expression> Equals <expression> Into <expression>

Aggregate Count(<expression>), Sum(<expression>), Min(<expression>), Max(<expression>),
Avg(<expression>)

Partition Skip [While] <expression>, Take [While] <expression>

Set Union, Intersect, Except

Order Order By <expression>, <expression>[Ascending | Descending]

filtering using expressions
In addition to straight queries for the entire table, you can filter items using the Where and Distinct
options. The following example queries the Products table for a specific type of record:

Dim query = From p In dc.titles
 Where p.title.StartsWith("S")
 Select p

Here, this query is selecting all the records from the Titles table that start with the letter “S.” This is done
via the Where p.title.StartsWith(“S”) expression. You will find a large selection of methods available
off the ProductName property that enable you to fine-tune the filtering you need.

You can add as many of these expressions to the list as you need. For instance, the next example adds two
Where statements to your query:

Dim query = From p In dc.titles
 Where p.title.StartsWith("S")

Querying the Database ❘ 429

430 ❘ chaPTer 10 ado.NEt aNd liNQ

 Where p.title.EndsWith("?")
 Select p

In this case, a filter expression looks for items with a
product name starting with the letter “S,” and then a
second expression is included to ensure that a second
criterion is also applied, which states that the items
must also end with a question mark.

Performing Joins
In addition to working with one table, you can work
with multiple tables and perform joins with your
queries. If you add the sale, store and title tables onto
the pubs.dbml design surface, you will get the result
shown in Figure 10-9.

After you drag and drop these elements onto the
design surface, Visual Studio knows that there is a
relationship between them and creates the relationship
for you in the code, represented by the black arrow.

From here, you can use a Join statement in your query
to work with these tables, as shown in the following
example:

Module Main
 Sub Main()
 Dim dc As New PubsDataContext
 'display the generated SQL in the console
 dc.Log = Console.Out

 'returned data includes only three properties
 'from different tables
 Dim query = From t In dc.titles
 Join s In dc.sales
 On s.title_id Equals t.title_id
 Join st In dc.stores
 On st.stor_id Equals s.stor_id
 Order By st.stor_id
 Select st.stor_name, t.title, s.qty

 For Each item In query
 Console.WriteLine("{0} sold {1} copies of '{2}'",
 item.stor_name,
 item.qty,
 item.title)
 Next

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub
End Module

Code snippet from LinqJoins project

This example is pulling from the three tables and joining on the key columns in those tables. The
DataContext’s log is redirected to the console to enable you to see the generated SQL statement:

SELECT [t2].[stor_name], [t0].[title], [t1].[qty]
FROM [dbo].[titles] AS [t0]

figure 10-9

INNER JOIN [dbo].[sales] AS [t1] ON [t0].[title_id] = [t1].[title_id]
INNER JOIN [dbo].[stores] AS [t2] ON [t1].[stor_id] = [t2].[stor_id]
ORDER BY [t2].[stor_id]

From here, a new object is created with the Select statement; and this new object is comprised of the stor_
name title, and qty columns from the three tables.

When it comes to iterating through the collection of this new object, note that the For Each statement
does not define the variable item with a specific type, as the type is not known yet. The item object here has
access to all the properties specified in the class declaration.

grouping items
You can easily group items with your queries. In the pubs.dbml example that you have been working with
so far, you can see that there is a relationship between the title table and the sales table. The following
example demonstrates how to group products by category:

Module Main

 Sub Main()
 Dim dc As New PubsDataContext

 Dim query = From t In dc.titles
 Join s In dc.sales
 On s.title_id Equals t.title_id
 Order By s.store.state Ascending
 Group s By Key = s.store.state
 Into Group
 Select Key, Group

 For Each item In query
 Console.WriteLine("Sales for {0}", item.Key)
 For Each s In item.Group
 Console.WriteLine("{0} - {1} copies",
 s.title.title,
 s.qty)
 Next
 Next

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from LinqGrouping project

This example creates a new object, which is a group of key values (the states where the sales occur), and
packages the entire sales table into this new table, called Group. Before that, the states are ordered by name
using the Order By statement, and the order provided is Ascending (the other option being Descending).
The output is the State code (renamed to Key) and the Sales instance. The iteration with the For Each
statements is done once for the Key and again for each of the Sales that are found in the category.

A partial output of this program is presented here:

Sales for CA
Secrets of Silicon Valley - 50 copies
Is Anger the Enemy? - 75 copies
Is Anger the Enemy? - 10 copies
Onions, Leeks, and Garlic: Cooking Secrets of the Mediterranean - 40 copies
Fifty Years in Buckingham Palace Kitchens - 20 copies
Sushi, Anyone? - 20 copies

Querying the Database ❘ 431

432 ❘ chaPTer 10 ado.NEt aNd liNQ

Straight Talk About Computers - 15 copies
Silicon Valley Gastronomic Treats - 10 copies
You Can Combat Computer Stress! - 35 copies
Sales for OR
The Gourmet Microwave - 15 copies
The Busy Executive's Database Guide - 10 copies
Cooking with Computers: Surreptitious Balance Sheets - 25 copies
But Is It User Friendly? - 30 copies
Sales for WA
The Busy Executive's Database Guide - 5 copies
Is Anger the Enemy? - 3 copies
Is Anger the Enemy? - 20 copies
The Gourmet Microwave - 25 copies
Computer Phobic AND Non-Phobic Individuals: Behavior Variations - 20 copies
Life Without Fear - 25 copies
Prolonged Data Deprivation: Four Case Studies - 15 copies
Emotional Security: A New Algorithm - 25 copies

Many more commands and expressions are available to you beyond what has been presented in this chapter.

sTored Procedures
So far, you have been querying the tables directly and leaving it up to LINQ to create the appropriate
SQL statement for the operation. When working with pre-existing databases that make heavy use of
stored procedures (and for those who want to follow the best practice of using stored procedures within a
database), LINQ is still a viable option.

LINQ to SQL treats working with stored procedures as a method call. As shown earlier in Figure 11-6, the
design surface called the O/R Designer enables you to drag and drop tables onto it so that you can then
programmatically work with the table. On the right side of the O/R Designer is a pane in which you can
drag and drop stored procedures.

Any stored procedures that you drag and drop onto this part of the O/R Designer become available
methods to you off the DataContext object. For this example, drag and drop the usp_Get_Authors_
By_States stored procedure onto this part of the O/R Designer (see Figure 10-10). You can rename it to
GetAuthorsByStates using the property window. The following code shows how you would call this
stored procedure within the pubs database:

Imports System.Data.Linq
Module Main
 Sub Main()
 Dim dc As New PubsDataContext
 'wraps the GetAuthorsByStates stored procedure
 'first parameter is the delimited list of states
 'second parameter is the delimiter
 Dim query = dc.GetAuthorsByStates("OR|UT", "|")
 For Each item In query
 Console.WriteLine("{0} {1} from {2}, {3}",
 item.au_fname,
 item.au_lname,
 item.city,
 item.state)
 Next
 End Sub
End Module

Code snippet from LinqSproc project

The stored procedure takes two parameters. The first one is a delimited list of state abbreviations. Authors
from those states will be returned. The second parameter is the delimiter used to separate the elements in
the first parameter. This is a common way of querying for an unknown number of values.

The return value for the query is a new type — named GetAuthorsByStatesResult — that wraps the fields
returned. From here, iteration through this object is simple. As you can see from this example, calling your
stored procedures is a straightforward process.

uPdaTing The daTaBase
LINQ to SQL is not just for querying your database. You can also use it to insert, update, and delete records
from the query. As you saw above in the LinqTransactions project, this is done using the DataContext
object. The short version of updating the database is that you make one or more changes to the data
returned from the database, then you submit those changes to save them.

To insert a new record, you create a new instance of the class created by the LINQ to SQL designer, and
insert it into the appropriate collection. This does not add it to the database, however. Only once you
execute the SubmitChanges method of the DataContext does the record get sent to the database as the
following code shows:

 Private Sub InsertTitle()
 Console.WriteLine("Titles before insert: {0}", dc.titles.Count)
 Dim newTitle As New title
 With newTitle
 .title_id = "NU1234"
 .title = "Some new title"

figure 10-10

Updating the Database ❘ 433

434 ❘ chaPTer 10 ado.NEt aNd liNQ

 .type = "test"
 .pubdate = New DateTime(2010, 1, 1)
 .notes = "Added via LINQ"
 .price = 50.0
 End With
 dc.titles.InsertOnSubmit(newTitle)

 Console.WriteLine("Titles after insert, but before submit: {0}",
 dc.titles.Count)
 dc.SubmitChanges()
 Console.WriteLine("Titles after submit: {0}", dc.titles.Count)
 End Sub

Code snippet from LinqUpdates project

In the code, you create a new title. As the DataContext is connected to the database, you do not need to
query first to return a collection to add the new record. Instead, you can add to the titles collection created
by the designer. Once the new title is created, you then set the properties as desired. All required properties
will need to be set, or an exception will occur when you attempt to submit the record(s) to the database.
You then add the newly created record to the collection with the InsertOnSubmit method. At this point
the record has not been added to either the database or the collection as the second Console.WriteLine
demonstrates. Finally, once the SubmitChanges method is called, the newly added record exists in both the
collection and the database.

Updating a record is similar, with the main difference that you start with an existing record. This record
could be in an existing collection you are working with, or retrieved specifically to be updated.

 Private Sub UpdateTitle()
 'retrieve record to update
 Dim aTitle As title = (From t In dc.titles
 Where t.title_id = "NU1234"
 Select t).Single

 Console.WriteLine("Record before update: {0}", aTitle.title)

 'change values
 aTitle.title = "Updated title"
 aTitle.price = 45.95
 'submit
 dc.SubmitChanges()

 Console.WriteLine("Record after update: {0}", aTitle.title)
 End Sub

Code snippet from LinqUpdates project

In the code above, a single record is returned from the database by including the Single clause in the LINQ
query. Alternately, you could already have a collection returned (as we will do with the delete) and update
one or more records from it. As with the insert, you then can set the properties as desired. Changes are not
sent to the database until the SubmitChanges method is called. While only a single record is changed here,
there may be multiple records changed. All will be submitted when SubmitChanges is called.

Finally, deleting records using LINQ to SQL mirrors the method used to insert. Rather than adding the new
item into the collection with InsertOnSubmit, you mark it for deletion with DeleteOnSubmit.

 Private Sub DeleteTitle()
 Console.WriteLine("Titles before delete: {0}", dc.titles.Count)
 'retrieve all records
 Dim theTitles = From t In dc.titles
 Order By t.title_id Select t
 'find and delete the desired record(s)

 For Each t As title In theTitles
 If t.title_id = "NU1234" Then
 dc.titles.DeleteOnSubmit(t)
 End If
 Next
 Console.WriteLine("Titles after delete, but before submit: {0}",
 dc.titles.Count)
 'submit
 dc.SubmitChanges()
 Console.WriteLine("Titles after delete: {0}", dc.titles.Count)

 End Sub

Code snippet from LinqUpdates project

This sample retrieves the entire collection to demonstrate the scenario where you have a collection, and you
want to delete some of them. There is a simpler method if you know the records you want to delete and can
create a LINQ query to return them all. In this case you can use the method as shown below (not in the
code sample):

Dim theTitles = From t In dc.titles Where t.type = "test"
 Order By t.title_id Select t
dc.titles.DeleteAllOnSubmit(theTitles)
dc.SubmitChanges()

This retrieves all the titles in the test category and marks them all for deletion. As with the other samples,
the actual deletion occurs when SubmitChanges is called.

summary
This chapter looked at ADO.NET and some of its more advanced features. You have seen and used the main
objects in ADO.NET that you need to quickly get up and running in order to build data-access into your
.NET applications. You took a fairly in-depth look at the DataSet and DataTable classes, as these are the
core classes of ADO.NET.

This chapter also looked at stored procedures, including how to create them in SQL Server and how to
access them from your code. Finally, you looked at the new Language Integrated Query (LINQ) features
that enable you to use a more natural (to VB developers) syntax to query and edit your databases.

summary ❘ 435

11
 Data access with the entity
framework

 WhaT you Will learn in This chaPTer

 What is Object - Relational Mapping? ➤

 What is the Entity Framework ➤

 How the Entity Framework works with databases ➤

 Using the Entity Framework to edit data ➤

 Using the Entity Framework to create new databases ➤

 In the past, Microsoft has been known to change the recommended data access strategy relatively
frequently. For example, Data Access Objects (DAO) was released in the Visual Basic 3.0 time frame,
followed by RDO (Remote Data Objects) as an option in the Visual Basic 4 days, and ADO (Active
Database Objects) with Visual Basic 6. Of course, all of these were COM libraries, so it was no surprise
when they were superseded by ADO.NET when the .NET Framework shipped. There have been
remarkably few changes to ADO.NET since then.

 Now, when I see Microsoft recommending a new data access strategy, I start to get nervous.
However, in this case there is good news. The Entity Framework (EF) does not replace ADO.NET.
You can continue to use ADO.NET without fear of it going away, even as a recommended data
access tool. The Entity Framework simply provides a different — richer and more fl exible — model
for working with data sources.

 Beyond simply being a set of classes you use to access your data, Entity Framework enables you to work
naturally with the data using the classes you have designed, while saving the data to the underlying
database schema. The Entity Framework provides the mapping necessary to convert the data structures,
variable types, and relationships between the Visual Basic data you work with in your applications to
the SQL Server, Oracle, or other database. It offers a means of working with your database more easily
and more naturally than with ADO.NET, without requiring you to manually build your own data
access layer.

 Compared to LINQ to SQL, Entity Framework provides most of the same functionality for rapidly
accessing your data. Where it differs is that Entity Framework provides a great deal of functionality
not provided by LINQ to SQL, such as the ability to use databases other than SQL Server, and the
ability to use client - side classes that don ’ t directly map to database tables.

438 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

oBJecT-relaTional maPPing
While ADO.NET allows a certain degree of abstraction between databases, at its heart it mirrors
the database structure. You use a database Connection object that accesses a command that either
returns data in the form of a DataReader or populates a DataSet. You work with stored procedures or
the database tables to maintain your database. However, as many developers discover, the data types used
in the various databases are not the same, and they definitely do not match the data types you use in your
Visual Basic applications. This can lead to errors in your application, such as when a database NULL is
passed to a Visual Basic type. In addition, some of the interactions may be clumsy, such as when saving the
contents of an object to the database, where you may need to map properties to the data in one or more
database rows or tables.

To solve this object-to-database mismatch, a number of strategies have been developed. Many developers
struggle with this process manually, handwriting a data access layer to convert between .NET and SQL.
Another common strategy — and one requiring less work — is to use tools known as Object-Relational
Mapping (ORM) tools. These tools either manually or automatically map the data types used in a database
to those used by the client program, and vice versa. The best of these enable the actual structure of the
database to be hidden from the client program, providing a more natural interaction between the program
and the database. In the .NET world, the oldest and most used is nHibernate, itself a port of the Hibernate
library developed first for Java development. However, there are many other ORMs, including SubSonic,
LightSpeed, OpenAccess, and nowMicrosoft’s Entity Framework. Even LINQ to SQL could be viewed as an
ORM, in that it converts between Visual Basic types and SQL types.

While still a relatively young framework, the Entity Framework provides many of the capabilities available
in the older, more mature frameworks. This includes the capability to split an object across multiple tables,
map multiple objects to the same table, perform “lazy loading” (a performance optimization whereby an
object is not loaded into memory until it is actually accessed), and much more. In addition, we will likely see
Microsoft continue to improve it over time, so it is definitely a strong competitor in the ORM space.

enTiTy frameWorK archiTecTure
Figure 11-1 shows the architecture used within the Entity
Framework.

As you can see from the diagram, the Entity Framework is composed
of a number of logical layers. The lowest layer is related to the actual
data access, and involves the familiar ADO.NET data providers.
This should be expected from the earlier description of the Entity
Framework not as an entirely new method of retrieving data, but
as an extension of your existing knowledge of ADO.NET. The
additional layers are intended to make your development experience
easier and more flexible. At this layer, Entity Framework does
not differ from ADO.NET or LINQ to SQL, as it deals with the
tables directly.

Above the actual data access layer is the storage layer. This is
basically a representation of the structure of the database, using
an XML syntax. It includes any of the tables you’ve added to your
model, as well as the relationships between them.

Above the storage layer is the mapping layer. This serves as a means
of translating between the storage layer below and the conceptual
layer above. You can think of it as a relatively thin layer, responsible
for mapping the fields of the database tables to the appropriate
properties of the classes used by your application.

Your applications

Conceptual Layer

Mapping Layer

Storage Layer

Database
providers

Database

figure 11-1

Next is the conceptual layer. This is the layer that provides the entities of your model, providing you with
the classes you will work with in your applications — either the classes generated by the Entity Framework
designer or your own classes, as you’ll see later.

Finally, there is the object services layer. This serves to provide LINQ and Entity Query Language (Entity
SQL) syntax over your conceptual model.

When you see a diagram like the one shown in Figure 11-1, your first instinct might be to worry about the
performance penalties that these additional layers cause to your application. Of course, every mapping,
abstraction, or communication adds to the query and/or update time, this is to be expected. However, the
decision to use Entity Framework should not entirely be based on whether it is faster or slower than classic
ADO.NET. Rather, it should depend on a combination of “Is it fast enough for my needs?” and “How much
more productive does it make me?” Because Entity Framework uses the core ADO.NET objects, there is no
way it can be faster than, or even as fast as, using those classes themselves. However, working with Entity
Framework can be a much more natural development process, meaning you can be much more productive in
creating — and, more important, maintaining — your data access code.

conceptual model
Your Entity Framework applications deal directly with the conceptual models you either generate or create.
To see how these are constructed, create a simple console application (SimpleEF) and add an ADO.NET
Entity Data Model to the application by selecting Project ➪ Add New Item (see Figure 11-2).

figure 11-2

When you add an Entity Framework model to your application, it starts a wizard to generate the classes.
The first step is to decide if you will generate your classes initially from a database or from a blank slate. For
now, select to generate the classes from the database (see Figure 11-3). Select the pubs database.

The connection string generated at this stage (see Figure 11-4) can look a little foreboding to anyone used to
the more simple SQL Server or Access connection strings.

entity framework architecture ❘ 439

440 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

metadata=res://*/PubsModel.csdl|res://*/PubsModel.ssdl|
res://*/PubsModel.msl;provider=System.Data.SqlClient;
provider connection string="Data Source=.\sqlexpress;
Initial Catalog=pubs;Integrated Security=True;MultipleActiveResultSets=True"

Ignoring the first few sections, you can see the “normal” connection string contained within this connection.
The reason it has the additional sections is because this connection string will be used by all three layers
(storage, conceptual, and mapping), not just the connection to the database. The three additional parts of the
connection string identify the files that will define the structure of each layer.

Next, just as with LINQ to SQL, you can choose the database objects you would like to include in your
model. For now, just select the authors, titleauthor, and titles tables (see Figure 11-5) and click Finish.

Figure 11-6 shows the resulting model in Visual Studio. Notice that it includes the relationships between the
three tables in the model in addition to creating properties that represent the columns in the database.

figure 11-3

figure 11-5 figure 11-6

figure 11-4

Finally, the wizard has created a number of navigation properties that
represent the foreign key relationships. You can explore your model within
this designer window or use the Model Browser pane that opens in Visual
Studio (see Figure 11-7) which you can view by selecting View ➪ Other
Windows ➪ Entity Data Model Browser.

Build the application but don’t run it yet. Once you have it built, select
the Show All Files option in the Solution Explorer (see Figure 11-8). If you
navigate into the generated obj folder, you will find the three generated
XML files. The following code shows a portion of the CSDL file, which is the
conceptual model:

<?xml version="1.0" encoding="utf-8"?>
<Schema Namespace="PubsModel"
Alias="Self"
 xmlns:annotation="http://schemas.microsoft.com/ado/2009/02/edm/annotation"
 xmlns="http://schemas.microsoft.com/ado/2008/09/edm">
 <EntityContainer Name="PubsEntities" annotation:LazyLoadingEnabled="true">
 <EntitySet Name="authors" EntityType="PubsModel.author" />
 <EntitySet Name="titleauthors" EntityType="PubsModel.titleauthor" />
 <EntitySet Name="titles" EntityType="PubsModel.title" />
 <AssociationSet Name="FK__titleauth__au_id__0CBAE877"
 Association="PubsModel.FK__titleauth__au_id__0CBAE877">
 <End Role="authors" EntitySet="authors" />
 <End Role="titleauthor" EntitySet="titleauthors" />
 </AssociationSet>
 <AssociationSet Name="FK__titleauth__title__0DAF0CB0"
 Association="PubsModel.FK__titleauth__title__0DAF0CB0">
 <End Role="titles" EntitySet="titles" />
 <End Role="titleauthor" EntitySet="titleauthors" />
 </AssociationSet>
 </EntityContainer>
 <EntityType Name="author">
 <Key>
 <PropertyRef Name="au_id" />
 </Key>
 <Property Name="au_id" Type="String" Nullable="false" MaxLength="11"
 Unicode="false" FixedLength="false" />
 <Property Name="au_lname" Type="String" Nullable="false" MaxLength="40"
 Unicode="false" FixedLength="false" />
 <Property Name="au_fname" Type="String" Nullable="false" MaxLength="20"
 Unicode="false" FixedLength="false" />
 <Property Name="phone" Type="String" Nullable="false" MaxLength="12"
 Unicode="false" FixedLength="true" />
 <Property Name="address" Type="String" MaxLength="40"
 Unicode="false" FixedLength="false" />
 <Property Name="city" Type="String" MaxLength="20" Unicode="false"
 FixedLength="false" />
 <Property Name="state" Type="String" MaxLength="2" Unicode="false"
 FixedLength="true" />
 <Property Name="zip" Type="String" MaxLength="5" Unicode="false"
 FixedLength="true" />
 <Property Name="contract" Type="Boolean" Nullable="false" />
 <NavigationProperty Name="titleauthors"
 Relationship="PubsModel.FK__titleauth__au_id__0CBAE877"
 FromRole="authors" ToRole="titleauthor" />
 </EntityType>
...

Code snippet from SimpleEF

figure 11-7

entity framework architecture ❘ 441

442 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

This snippet shows some of the main terms you will see repeatedly
throughout your work with the Entity Framework. The EntityType
defines one of your objects — in this case, the author class.
The collection of authors is defined as an EntitySet. There are
AssociationSets that define the relationships between the various
EntityTypes. Finally, there is an EntityContainer that groups
everything. One point to notice is that each of the Property elements
in the XML file has a Type attribute. This attribute uses Visual Basic
data types, rather than database-specific types. This XML file will be
updated as you change your conceptual model.

If you look at one of the generated types in the Class View window
(see Figure 11-9), you will see that it inherits from EntityObject.
The EntityObject class in turn inherits from StructuralObject
and implements three interfaces (IEntityWithChangeTracker,
IEntityWithKey and IEntityWithRelationships). The names of
these three interfaces give you some idea of what the generated classes
are capable of:

They are able to identify one another via one or more key ➤

properties.

They are aware of changes to their properties; therefore, you will be ➤

able to identify changed objects and/or properties without requiring a
trip back to the database.

They track their relationship to one or more other ➤ EntityObjects.

storage model
The storage model XML initially looks similar to the conceptual model
XML (see the generated PubsModel.ssdl file in the Solution Explorer
View):

<?xml version="1.0" encoding="utf-8"?>
<Schema Namespace="PubsModel.Store" Alias="Self" Provider="System.Data.SqlClient"
ProviderManifestToken="2008"
xmlsn:store="http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerator"
xmlsn="http://schemas.microsoft.com/ado/2009/02/edm/ssdl">
 <EntityContainer Name="PubsModelStoreContainer">
 <EntitySet Name="authors" EntityType="PubsModel.Store.authors"
store:Type="Tables" Schema="dbo" />
 <EntitySet Name="titleauthor" EntityType="PubsModel.Store.titleauthor"
store:Type="Tables" Schema="dbo" />
 <EntitySet Name="titles" EntityType="PubsModel.Store.titles"
store:Type="Tables" Schema="dbo" />
 <AssociationSet Name="FK__titleauth__au_id__0CBAE877"
Association="PubsModel.Store.FK__titleauth__au_id__0CBAE877">
 <End Role="authors" EntitySet="authors" />
 <End Role="titleauthor" EntitySet="titleauthor" />
 </AssociationSet>
 <AssociationSet Name="FK__titleauth__title__0DAF0CB0"
Association="PubsModel.Store.FK__titleauth__title__0DAF0CB0">
 <End Role="titles" EntitySet="titles" />
 <End Role="titleauthor" EntitySet="titleauthor" />
 </AssociationSet>
 </EntityContainer>
 <EntityType Name="authors">

figure 11-8

figure 11-9

 <Key>
 <PropertyRef Name="au_id" />
 </Key>
 <Property Name="au_id" Type="varchar" Nullable="false" MaxLength="11" />
 <Property Name="au_lname" Type="varchar" Nullable="false" MaxLength="40" />
 <Property Name="au_fname" Type="varchar" Nullable="false" MaxLength="20" />
 <Property Name="phone" Type="char" Nullable="false" MaxLength="12" />
 <Property Name="address" Type="varchar" MaxLength="40" />
 <Property Name="city" Type="varchar" MaxLength="20" />
 <Property Name="state" Type="char" MaxLength="2" />
 <Property Name="zip" Type="char" MaxLength="5" />
 <Property Name="contract" Type="bit" Nullable="false" />
 </EntityType>
...

Code snippet from SimpleEF

One major difference between this file and the earlier conceptual model is that the types in the storage
model are SQL Server data types. In addition, unlike the conceptual model file, this file will not change as
you update your Entity Framework model, as it is tied to the database structure.

mapping model
Finally, you have the third XML file, the mapping schema language (MSL) file:

<?xml version="1.0" encoding="utf-8"?>
<Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2008/09/mapping/cs">
 <EntityContainerMapping StorageEntityContainer="PubsModelStoreContainer"
 CdmEntityContainer="PubsEntities">
 <EntitySetMapping Name="authors">
 <EntityTypeMapping TypeName="PubsModel.author">
 <MappingFragment StoreEntitySet="authors">
 <ScalarProperty Name="au_id" ColumnName="au_id" />
 <ScalarProperty Name="au_lname" ColumnName="au_lname" />
 <ScalarProperty Name="au_fname" ColumnName="au_fname" />
 <ScalarProperty Name="phone" ColumnName="phone" />
 <ScalarProperty Name="address" ColumnName="address" />
 <ScalarProperty Name="city" ColumnName="city" />
 <ScalarProperty Name="state" ColumnName="state" />
 <ScalarProperty Name="zip" ColumnName="zip" />
 <ScalarProperty Name="contract" ColumnName="contract" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
...

Code snippet from SimpleEF

This may seem like a great deal of overhead, as it appears to map properties of the classes to the identical
fields of tables. However, as you customize the conceptual model, the mapping model will change to reflect
the new structure. As the Entity Framework supports mapping a single object to multiple tables, or vice
versa, this mapping model increases in importance, and is the core benefit of using a framework such as
Entity Framework.

linq to entities
Just as there is LINQ to SQL, LINQ to XML, and LINQ to objects, there is also a LINQ syntax for
working with Entity Framework models. The syntax is very similar to that used by LINQ to SQL, in that a
context object is used as your access point to the exposed classes. You first create an instance of that context

entity framework architecture ❘ 443

444 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

object and then use it to access the entities in your model. The following shows a LINQ query to retrieve
authors in California:

 Sub Main()
 Dim db As New PubsEntities
 Dim authors = From a In db.authors
 Where a.state = "CA"
 Order By a.au_lname, a.au_fname
 Select a
 For Each author In authors.ToList
 Console.WriteLine("{0} {1}: {2}",
 author.au_fname,
 author.au_lname,
 author.phone)
 Next

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

Code snippet from SimpleEF

Here, the new context object (PubsEntities) is defined within the routine, but you are more likely to create
it once and use it throughout your application. The remainder of the query defines a restriction and a sort,
and returns all the properties.

Another complaint many developers have with a tool like Entity Framework is that they don’t trust an
application to generate T-SQL. Unlike LINQ to SQL, Entity Framework context does not support a Log
property to view the generated T-SQL. However, you can use SQL Server Profiler to view the T-SQL for
this query:

SELECT
[Extent1].[au_id] AS [au_id],
[Extent1].[au_lname] AS [au_lname],
[Extent1].[au_fname] AS [au_fname],
[Extent1].[phone] AS [phone],
[Extent1].[address] AS [address],
[Extent1].[city] AS [city],
[Extent1].[state] AS [state],
[Extent1].[zip] AS [zip],
[Extent1].[contract] AS [contract]
FROM [dbo].[authors] AS [Extent1]
WHERE 'CA' = [Extent1].[state]
ORDER BY [Extent1].[au_lname] ASC, [Extent1].[au_fname] ASC

Admittedly, this is a very simple query. However, with a slightly more complex query, you can see that the
generated T-SQL is generally comparable to a hand-coded query:

Dim titles = From ta In db.titleauthors
 Where ta.author.state = "CA"
 Order By ta.author.au_lname
 Select New With {.Title = ta.title.title1,
 .FirstName = ta.author.au_fname,
 .LastName = ta.author.au_lname,
 .PublishDate = ta.title.pubdate}

For Each title In titles
 Console.WriteLine("{0} by {1} {2}, published {3:d}",
 title.Title,
 title.FirstName,
 title.LastName,
 title.PublishDate)

The above query also retrieves the authors from California, but rather than returning the values from
the TitleAuthors entity, it creates a new object to return. This new object returns the properties of the
associated Title entity. This results in the following T-SQL (from SQL Server Profiler):

SELECT
[Project1].[C1] AS [C1],
[Project1].[title] AS [title],
[Project1].[au_fname] AS [au_fname],
[Project1].[au_lname] AS [au_lname],
[Project1].[pubdate] AS [pubdate]
FROM (SELECT
 [Extent2].[au_lname] AS [au_lname],
 [Extent2].[au_fname] AS [au_fname],
 [Extent3].[title] AS [title],
 [Extent3].[pubdate] AS [pubdate],
 1 AS [C1]
 FROM [dbo].[titleauthor] AS [Extent1]
 INNER JOIN [dbo].[authors] AS [Extent2]
 ON [Extent1].[au_id] = [Extent2].[au_id]
 INNER JOIN [dbo].[titles] AS [Extent3]
 ON [Extent1].[title_id] = [Extent3].[title_id]
 WHERE 'CA' = [Extent2].[state]
) AS [Project1]
ORDER BY [Project1].[au_lname] ASC

The objectcontext
As you have seen from the preceding queries, you use a context object as the root of all your queries. This
context is the logical equivalent of the Connection object in ADO.NET, but it does much more. The
context object is a class that inherits from ObjectContext. In addition to providing access to the database,
the ObjectContext is also responsible for allowing you to retrieve metadata about the entities within your
model and helping the objects track their changes.

Once you have made changes to one or more objects tracked by an object context, you can apply those
changes back to the database using the ObjectContext. The SaveChanges method submits the changes
you have made to the database. It iterates over all the added, updated, and deleted objects and submits these
changes, and returns the number of records updated.

At this point, the objects do not know that they have been saved, so you must set them back to their
unchanged state. There are two ways you can do this. First, you can call the SaveChanges method with a
single Boolean parameter set to SaveOptions.AcceptAllChangesAfterSave. This automatically updates
the changed objects. Alternately, you can call the AcceptAllChanges method of the ObjectContext. This
also iterates through all the successful updates, resetting the change tracking. The following code shows
these steps while adding and updating authors in the database:

'add a new author
Dim newAuthor As Author = Author.CreateAuthor(
 "555-55-5555",
 "deBar",
 "Foo",
 "555-555-1212",
 True)
db.Authors.AddObject(newAuthor)
'update an existing author
Dim authorKey As New EntityKey("PubsEntities.Authors",
 "AuthorID", "527-72-3246")
Dim editAuthor As Author = CType(db.GetObjectByKey(authorKey), Author)
 'note: if you use this routine before renaming the
 ' properties in the model, comment this line
 ' and uncomment the other below
 editAuthor.LastName = "Green"

entity framework architecture ❘ 445

446 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

 ' before renaming properties
 'editAuthor.au_lname = "Green"Console.WriteLine("Author state after edit: {0}",
 editAuthor.EntityState.ToString())
'submit all changes, setting EntityState to unchanged
Dim recs As Integer = db.SaveChanges(Objects.SaveOptions.AcceptAllChangesAfterSave)
Console.WriteLine("{0} records changed", recs)
'alternately, you could call
'db.AcceptAllChanges()
'after SubmitChanges
Console.WriteLine("Author state after save: {0}",
 editAuthor.EntityState.ToString())

Code snippet from SimpleEF

The output of this routine should be as follows:

Author state after edit: Modified
2 records changed

Author state after save: Unchanged

The update process operates within a single transaction, so if any of the changes fail, the entire
SaveChanges will fail.

maPPing oBJecTs To enTiTies
Once you have completed the Entity Data Model wizard, you have a basic Entity Framework model that
enables you to query your database. As you have seen, this gives you basically everything that is available
with LINQ to SQL. However, you have definitely not seen all the benefits of using the Entity Framework.
Exploring these benefits involves improving the conceptual model to better map to the desired structure.

simple mapping
The mapping created above left you with a very thin layer over the database. Each of the generated
properties were identical to the field names, and the field names in the pubs database are not exactly
“friendly.” Changing these to create more “Visual Basic-like” property names is a simple matter.

Select the author table in the model and open the Mapping Details pane of Visual Studio. If it is closed, you
can open it by selecting View ➪ Other Windows ➪ Entity Data Model Mapping Details.

As shown in the Mapping Details pane in Figure 11-10, the author object maps to the authors table, and
each property maps to the field with the same name. By changing the Name property for each field in the
Properties pane, you can create a mapping that better explains what some of the fields represent.

figure 11-10

In addition, once you’ve changed the mapping, the code used to access the types reflects the new mapping
(see Figure 11-11):

figure 11-11

 Dim db As New PubsEntities
 Sub SimpleQuery()
 Dim authors = From a In db.Authors
 Where a.State = "CA"
 Order By a.LastName, a.FirstName
 Select a

 For Each author In authors.ToList
 Console.WriteLine("{0} {1}: {2}",
 author.FirstName,
 author.LastName,
 author.Street)
 Next
 End Sub

Code snippet from SimpleEF

Recall that the Entity Framework model included a number of navigation properties that represented the
relationships between the defined classes, such as the titleauthors property on the title and author
classes. These navigation properties — as their name implies — enable you to navigate between the classes
in your queries. For example, you can query and return the books written by authors from California with
the following query:

 Dim titles = From ta In db.TitleAuthors
 Where ta.Author.State = "CA"
 Order By ta.Author.LastName
 Select New With {.Title = ta.Title.Name,
 .FirstName = ta.Author.FirstName,
 .LastName = ta.Author.LastName,
 .PublishDate = ta.Title.PublishDate}

 For Each title In titles
 Console.WriteLine("{0} by {1} {2}, published {3:d}",
 title.Title,
 title.FirstName,
 title.LastName,
 title.PublishDate)
 Next

Code snippet from SimpleEF

The process of navigating the query is made much easier if you start in the middle with the join table. In
this case, we query the titleauthors table to retrieve the titles that have one or more authors from California.

Mapping objects to entities ❘ 447

448 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

The titleauthors table does not have fields for author; these properties are the navigation properties, which
enable you to traverse the relationships relatively naturally.

This query also demonstrates the use of projections in a LINQ query. Rather than return the data that is
queried, a new object is created using the Select New With {} syntax. This enables you to define a new
object to be returned as a result of the query. Each of the properties in the new object are defined by including
them in the braces, starting with a dot. In the preceding query, the new object will have four properties:
Title, FirstName, LastName and PublishDate, and the values of these properties come from the results of
the query. This returned object is an anonymous object. That is, it does not have a usable name within the
system (if you look at it in the debugger, it will have a name that has been generated by the compiler. Still,
the returned object can be used normally: Because it is a collection, you can iterate over the collection using a
For Each loop to display the list (see Figure 11-12).

figure 11-12

using a single Table for
multiple objects

Within your application design, you may have
one or more classes that inherit from another.
For example, you might have a Contact base
class, with employees and customers that
inherit from them. The Contact base class has
the standard FirstName, LastName, and so on,
properties. The Employee child class might add
properties for department or manager, while
the Customer would have a shipping address,
customer ID, or other properties. These types
of designs are traditionally very difficult to
map to a database. If you were to save this
structure to a database, you would have a
couple of options. One, you might include all
the properties, and add a property to identify
the type of the resulting object, as shown in
Figure 11-13.

In this table, the IsEmployee field is true if
the person is an employee, and false if not.

figure 11-13

The identifier will indicate either an employee number
or a customer number. Figure 11-14 shows the desired
conceptual model (see the EmployeeModel in the
SimpleEF project).

In this model, Customer and Employee inherit from
Person. Notice that the IsEmployee and Identifier
fields are not on the model, and the Employee and
Customer entities have their own unique properties.

To create this structure, you use the Mapping Details
pane of Visual Studio. After you have generated a model
based on the People table (refer to Figure 11-14), add
two new entities that will represent the Employee and
Customer entities. Change the Id property that is created
by default to the EmployeeNumber and Customer number
properties. Set the Type property to String, and the
Max Length property to 10. Select the Inheritance item
from the Toolbox, and drag an inheritance from Employee to Person, and Customer to Person.

Once the basic model is done, you’re ready to add the mapping. Select the Person entity and delete the
IsEmployee and Identifier properties by right-clicking on them and selecting Delete. This will remove
the mapping of these properties to the Person
object. At the same time, as you will not be
creating new people using this type (as someone
needs to be either an Employee or a Customer),
set the Abstract property of the Person entity
to True.

Select the Employee entity. Select the Person
table under the Tables collection. Map the
Identifier field to the EmployeeNumber
property. Notice that above the field mappings
is a Condition mapping. This is how you will
distinguish employees from customers. Select the
IsEmployee field, and set the Condition’s value
to true (see Figure 11-15).

Do a similar mapping for the Customer entity,
but set the Condition to select the IsEmployee=false records. You should now be able to validate the
model by right-clicking the designer and selecting Validate.

You can now work with the three tables as you would expect from the model. For example, you can create a
new employee with the following code:

 Dim ctx As New EmployeeEntities
 Dim newEmployee As New Employee
 With newEmployee
 .FirstName = "Augustus"
 .LastName = "Caesar"
 .EmployeeNumber = "LIVXXIII"
 End With
 ctx.People.AddObject(newEmployee)
 ctx.SaveChanges(Objects.SaveOptions.AcceptAllChangesAfterSave)

Code snippet from SimpleEF

figure 11-14

figure 11-15

Mapping objects to entities ❘ 449

450 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

Here, you create a new employee, assign some
values to the properties, and save. Recall that
there is no EmployeeNumber field in the database,
but this has been mapped to the Identifier field
in the Person table. Also notice that you do not
directly set the IsEmployee field. Instead, it is set
based on whether you create either an Employee
or a Customer. Figure 11-16 shows the newly
added record in the Person table.

Selecting records when using these types of models
can be slightly confusing the first few times, as
you will find that the context does not have an Employees or Customers collection on them. If you look
at the properties for these entities, it makes more sense; you will see that the EntitySetName property for
these entities is People (how I defined the EntitySetName for the Person collection). Therefore, you still
query them as people, but you add an additional qualifier to the query to select for the desired child class:

 Dim ctx As New EmployeeEntities
 Dim employees = From e In ctx.People.OfType(Of Employee)()
 Order By e.LastName Select e
 For Each emp In employees
 Console.WriteLine("{0} {1}: {2}",
 emp.FirstName,
 emp.LastName,
 emp.EmployeeNumber)
 Next

Code snippet from SimpleEF

In this code, the OfType(Of Employee) clause defines the type you are retrieving. Of course, you could
have had multiple types here, rather than just the two, and the OfType clause would limit the returned
records to just those with the correct value in the Condition mappings you created.

using multiple Tables for an object
Alternately, there are instances when you would like to store parts of a single entity on different tables. This is
typically when you know that only some of the records in a database will need certain fields and you prefer a
more normalized database. For example, if you are creating a contact management application, you will have
some fields that every record will contain, such as
FirstName, LastName, etc. However, some of the
contacts may have additional properties, such as
a BirthDate, Department, etc. At this point in
your design, you have two options: Include those
properties as columns in your table (and have
many of them null), or split your table into two
tables — one for the core contact information and
the other for the additional information for each
contact (see Figure 11-17).

However, splitting the tables like that can be awkward for the client developer. Rather than work with a
simple object, they now would have to navigate through the join to retrieve the additional information.
Fortunately, Entity Framework enables you to simplify the scenario by mapping an entity to the two tables.

The Entity Framework enables the creation of these split entities as long as the two objects share their
primary key. That way, when an object is inserted or updated, the correct data will be inserted in the
additional table. In this case, the two tables were defined as follows:

figure 11-16

figure 11-17

Create a new Entity Data Model (called ContactModel) and drag the two tables over. Copy the two
additional properties from the ContactAdditionalInfo table and paste them into the Contact table.

Now you will need to set up the mapping for the combined entity. In the Mapping Details pane, click the
space next to Add a table or view and select the ContactAdditionalInfo table. It should automatically
select the correct fields, but you may have to select them manually. Once you have done this, you can delete
the ContactAdditionalInfo entity from the model (see Figure 11-18).

figure 11-18

TaBle field daTa TyPe

Contact ContactID int, identity

FirstName varchar(50)

LastName varchar(50)

ContactAdditionalInfo ContactID int

FavoriteColour varchar(50)

Quest varchar(255)

The final mapping should appear as shown in Figure 11-19.

Once this mapping is complete, you can treat the entity as though it were a single
object, and the Entity Framework will handle the database. Add a few entries to
the two tables, making sure that some (not necessarily all) of the records in the
ContactAdditionalInfo table have values:

 Dim ctx As New ContactEntities
 Dim faves = From c In ctx.Contacts
 Where c.FavoriteColor IsNot Nothing
 Order By c.LastName
 Select New With {.Name = c.FirstName & " " & c.LastName,
 .Color = c.FavoriteColor}

 For Each fav In faves
 Console.WriteLine("{0} likes {1}", fav.Name, fav.Color)
 Next

Code snippet from SimpleEF

Here the contacts are queried based on one of the properties that actually resides in the secondary table.
However, from this code you wouldn’t know that, thinking instead that it was a single table. In addition,
notice that you again create a simple projection for the display of the data.

Mapping objects to entities ❘ 451

figure 11-19

452 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

In addition to querying the data, using the merged tables is also transparent when inserting data:

 Dim ctx As New ContactEntities
 Dim newContact As New Contact
 With newContact
 .FirstName = "Foo"
 .LastName = "deBar"
 .FavoriteColor = "Blue"
 .Quest = "To seek the holy data access layer"
 End With
 ctx.Contacts.AddObject(newContact)
 ctx.SaveChanges()

Code snippet from SimpleEF

This is an example of one of the core benefits of using something like the Entity Framework: The client
developer does not know the database contains two tables, nor do they care. They simply use the classes
provided to them by the framework, and tell them to save the data. The DBA, meanwhile, is happy that his
or her database is normalized, with no series of NULL columns cluttering up the database model.

generaTing The daTaBase from a model
Sometimes it is better to work with a conceptual model, and then use that to build your database. This fits
better with a design process in which you design the classes — using either UML or simply a whiteboard —
and then once you’re comfortable with the model, use the model to build your database. Obviously, this is
really only an option for brand-new development,
where you have the flexibility to create whatever
database you desire. Many developers prefer
to design and communicate just the conceptual
model between themselves before “formalizing” it
by actually building out the database.

Working in this model with Entity Framework is
a two-stage process: First you design the desired
model, then you create the database from it. Once
the database is in place, you can then continue
to work with the model or the database, refining
each as appropriate. Visual Studio includes the
tools to keep the two in sync.

To explore the process of model-first design, add
a new Entity Framework model called BlogModel
to an application by selecting Project ➪ Add New
Item and selecting the ADO.NET Entity Data
Model template (See the ModelFirst project in
the sample code). Rather than generate the model
from a database, choose “Empty model” from the
Entity Data Model Wizard (see Figure 11-20).

You will be returned to Visual Studio with a blank slate you can use to define your model. You add new
entities (and other Entity Framework constructs) from the Toolbox. Drag two entities onto the designer;
name one Post, and the other Comment. These will be used to create a very basic blogging engine. Add
properties as described in the following table. To add a new property, right-click on the entity and select
Add ➪ Scalar Property.

figure 11-20

enTiTy ProPerTy definiTion

Post PostID Int32 . In addition, set the Entity Key property to True, the
StoreGeneratedPattern to Identity, and Nullable to False .
(Note: this replaces the Id field created when you create this new
entity .)

Title String . Set Max Length to something reasonable, such as 512, and
set Nullable to False .

Body String . Set Max Length to Max, and Nullable to False .

PublishDate DateTimeOffset . Set Nullable to False .

Entity Set Name Posts

Comment CommentID Int32 . In addition, set the Entity Key property to True, the
StoreGeneratedPattern to Identity, and Nullable to False .
(Note: this replaces the Id field created when you create this new
entity .)

Body String . Set Max Length to something reasonable, perhaps 512, and
set Nullable to False .

Author String . Set Max Length to 50, and set Nullable to False .

PostID Int32 . This will be used to relate the two tables .

Entity Set Name Comments

Once you have the two entities defined, select the association item from the Toolbox. Right-click on the
designer, and select Add ➪ Association to add an association from the Post entity to the Comment entity
(see Figure 11-21). Note: uncheck the Add foreign key properties to the Comment entity, as you have already
included the PostID property.

In addition, navigation properties will be added to the two entities. Select the Referential Constraint
property of the association and click the ellipses to bring up the Referential Constraint dialog. This dialog
identifies the properties used to map between the two entities — in this case, the PostID property. Select
Post in the Principal drop-down. The Comment item should already be selected in the Dependant field.
Finally (see Figure 11-22), select the PostID property as the DependantProperty. If you fail to create this
mapping, Entity Framework will add an additional property to the Comment table when you generate your
database.

figure 11-21 figure 11-22

Generating the Database from a Model ❘ 453

454 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

 Right - click on the white space of the designer to display the context menu. Select Generate Database from
the Model. As you have not yet assigned this to a database, warnings will appear in the Error List, telling
you that the three items have not been mapped (the Post and Comment entities, and the PostComment
association). In addition, the Generate Database Wizard will run. The fi rst step is to either select an existing
database connection or create a new one. Select your target and click Next. This will display the DDL that
will be applied to the database (see Figure 11 - 23). While the SQL in this dialog is not editable, it is a good
idea to review it to ensure that you ’ ve set up the model correctly. If so, click Finish to send this command to
the database. This will build the tables in the database, apply any constraints (e.g., for the primary keys),
and create the relationships.

 If Visual Studio is not connected to your database, it will just add the newly created
DDL to a new window. Select Execute SQL to run this query and create your
database.

 You can now use the model just as though you generated it from a database.

 figure 11 - 23

 updating the model
 Eventually, you will have to make changes to your model, whether you model fi rst or generate your model
from a database. If you make the changes to your model, you can usually just resubmit the DDL to the
database. However, this typically drops the tables fi rst, so you will likely lose data.

 Another alternative is to make the changes at the database. You may add new tables, change the data
types of columns, or add new columns to your database using T - SQL, SQL Management Studio, or other
methods. You can then update your model by right - clicking on the designer and selecting Update Model
from Database. This will start up the Update Wizard (see Figure 11 - 24).

 figure 11 - 24

 figure 11 - 25

 If you get an error saving the changes to the database, it may be because Visual Studio
is confi gured to not allow changes that require re - creating tables. To enable this func-
tionality, go to the Visual Studio options dialog Tools ➪ Options ➪ Designers ➪ Table
and Database Designers and uncheck the property Prevent saving changes that require
table re - creation.

 This dialog has three tabs, depending on what you ’ d like to update from your database. The Add and
Delete tabs enable you to identify database items you ’ d like to add or delete from your model. The Refresh
tab enables you to identify structures that may have changed in the database. The wizard will update the
corresponding entities in your model.

 For example, add a new column called CommentDate to the Comments table that will be used to track
when the comment is made. Set the data type to DateTimeOffset . Save that change to the database and run
the Update Wizard, selecting to refresh the existing tables. The result should add a new property to your
Comment entity (see Figure 11 - 25).

 Generating the Database from a Model ❘ 455

456 ❘ chaPTer 11 data aCCEss witH tHE ENtity FRamEwoRk

summary
Using an Object-Relational Mapping (ORM) tool like the Entity Framework greatly simplifies the creation
of a database application. The Entity Framework manages many of the details of converting your logical
application model into the physical database model, automatically mapping data types between Visual Basic
and T-SQL. It provides the ease of use of LINQ to SQL while giving you the flexibility to work with the
entities as designed, rather than being constrained to what is possible with T-SQL.

This chapter looked at how you can connect to a database using Entity Framework. One of the benefits of
the Entity Framework is that the model you use to work with your data does not have to exactly match the
tables in your database. As you saw, the Entity Framework does this through the creation of three XML
files to manage the mapping between the two.

In addition, you saw how the Entity Framework greatly simplifies editing the database. The amount of code
required to update a database “by hand” using ADO.NET (i.e. using DataReader and/or DataSet) is much
larger than the amount you need to write when working with the Entity Framework.

12
 Working with sQl server

 WhaT you Will learn in This chaPTer

 How to use SQL Server Compact to create local copies of your SQL Server ➤

databases to create a local cache

 How to use SQL Server Compact and the Sync Framework to create a local ➤

synchronized cache of your SQL Server databases

 How to use SQL Server ’ s XML features to return data as XML ➤

 How to create CLR objects within your SQL Server databases ➤

 How to create and use WCF Data Services to expose your data as a ➤

RESTful service

 Most of the relationship between a developer and SQL Server relates to querying or saving data,
and we ’ ve spent the last couple of chapters examining the two main ways of doing this with Visual
Basic. However, Visual Studio 2010 provides a few other ways to work with databases: SQL Server
Compact, SQL CLR, and WCF Data Services.

 While Visual Basic has always included tools for working with the various server editions and versions
of SQL Server, there exists a much smaller version: SQL Server Compact. SQL Server Compact is a
lightweight version of the database that requires minimal installation and confi guration to use. It runs
on both Windows and devices running Windows CE. SQL Server Compact is particularly well suited
for creating local caches of a larger remote database, which may be used to improve performance
when querying rarely changing tables or for the creation of partially connected solutions when
working with data. In combination with various synchronization scenarios, SQL Server Compact
provides developers with a powerful tool for enabling their applications to work both connected to
the main database and offl ine (still storing records until the next connection).

 SQL Server 2005 was the fi rst version to add integration with the .NET Framework. This provided two
main benefi ts. One, you can use Visual Basic to create elements in the database, such as user - defi ned
types, stored procedures, and functions. These objects may work alone or in concert with Transact -
 SQL (T - SQL) objects. Two, you can expose Web services from your databases, enabling .NET and
other client applications to execute code on the database. SQL Server 2008 continues this feature, and
includes new data types that leverage this feature to manipulate rich data in your applications.

 Transact - SQL, while full - featured, lacks a number of features that are common in general - purpose
languages such as Visual Basic. Visual Basic includes better support for looping and conditional
statements than T - SQL. In addition to these language features, the .NET Framework is available for

458 ❘ chaPTer 12 woRkiNG witH sQl sERVER

use with Visual Basic, meaning you have access to tools for network access, string handling, mathematical
processing, internationalization, and more. Therefore, if your stored procedures need access to features such
as these, it may be beneficial to look at using Visual Basic as the language, not T-SQL.

While ADO.NET and the Entity Framework are intended for communicating directly with a database,
you frequently need to share this data across networks. While you can pass some of the objects from these
frameworks across network boundaries — or use custom-serialized .NET objects — WCF Data Services
(formerly ADO.NET Data Services) makes this remarkably easy. WCF Data Services enables access to
databases over the Internet using standard protocols, such as HTTP, JSON, and AtomPub.

This chapter describes how you can use Visual Basic to create applications that save data to SQL Server
Compact databases. It covers some of the synchronization methods you can take advantage of to create
partially connected applications. This chapter also covers the capability to host CLR objects and Web
services within SQL Server, and how you can create these objects using Visual Basic. Finally, you will learn
how to leverage WCF Data Services to access your data across the Internet.

sql serVer comPacT
The main benefits of SQL Server Compact over its larger cousins are size and ease of deployment. Even SQL
Server Express Edition requires that you install a Windows service before working with data. The database
engine of SQL Server Compact consists of a set of DLLs with a total size of less than 2MB. Installation
can be done either by including these DLLs in the output of your project or by including the SQL Server
Compact MSI file as part of your deployment project. This MSI can be included when deploying your
application with ClickOnce. After it is installed, you get most of the benefits of SQL Server, including
multi-user access, the query processor, and referential integrity. All the data and log files for the database
are stored in a single file (with the extension .SDF). This file can be encrypted for security purposes with a
simple password. The database file will grow as needed to support the stored data and may be compacted
if necessary. If these benefits remind you of “the old days” of storing your data in Jet (Microsoft Access)
databases, it should. SQL Server Compact provides the same rapid development and deployment model you
used to enjoy, along with better compatibility and upgradeability between the server and client databases.

SQL Server Compact is not without its limitations, however. Designed to be small and portable, it does
place restrictions on the size and types of data you can store. Those limitations include the following:

By default, the maximum database size for SQL Server Compact is 256MB (128MB on devices). However, ➤

you can configure the maximum database size to be as high as 4GB if you change the connection string.

Maximum row size is 8060 bytes, although, as with the other editions of SQL Server, this does not ➤

include the size of blob or text fields.

By default, SQL Server Compact does not work with ASP.NET. This can be enabled, but it is not ➤

recommended except in cases of simple sites with limited data access needs. This is primarily for
concurrency. While SQL Server Compact supports multiple users, the types used by SQL Server
Compact are not thread-safe, and having them in use by multiple threads may lead to collisions.
However, it is fine for small sites where multiple users will not be accessing the file at the same time.
To enable SQL Server Compact on ASP.NET, you should make the following method call before
attempting to open a connection to the SQL Server Compact database:
AppDomain.CurrentDomain.SetData("SQLServerCompactEditionUnderWebHosting",
true)

SQL Server Compact does not support the use of stored procedures, views, functions, or user-defined types. ➤

When it is working in a standalone situation, SQL Server Compact is almost identical to its larger SQL
versions. You still connect to the database with a class that inherits DbConnection and use classes that
inherit from DbDataAdapter and DbCommand to query it. SQL Server Compact differs, however, in
that you don’t use the classes in System.Data.SqlClient. Instead, you use the classes in the namespace
System.Data.SqlServerCe. There you will find SQL Server CompactConnection, SQL Server
CompactCommand, and SQL Server CompactDataAdapter. The code that follows shows a simple
example of accessing a SQL Server Compact database:

Using conn As New SqlCeConnection(My.Settings.productsConnectionString)
 conn.Open()
 Using cmd As _
 New SqlCeCommand("SELECT ProductName, UnitPrice FROM Products", conn)
 Using reader As SqlCeDataReader = cmd.ExecuteReader
 While reader.Read
 Console.WriteLine("{0}: {1:c}",
 reader.GetString(0),
 reader.GetDecimal(1))
 End While
 End Using
 End Using
End Using

If you use the provider-agnostic classes, then the code becomes even more like the SQL Server equivalent:

Dim fact As DbProviderFactory
Dim prov As String = My.Settings.productsProvider
fact = DbProviderFactories.GetFactory(prov)
Using conn As DbConnection = fact.CreateConnection()
 conn.ConnectionString = My.Settings.productsConnectionString
 conn.Open()
 Using cmd As DbCommand = fact.CreateCommand
 With cmd
 .CommandText = "SELECT ProductName, UnitPrice FROM Products"
 .CommandType = CommandType.Text
 .Connection = conn
 Using reader As DbDataReader = cmd.ExecuteReader
 While reader.Read
 Console.WriteLine("{0}: {1:c}", _
 reader.GetString(0), _
 reader.GetDecimal(1))
 End While
 End Using
 End With
 End Using
End Using

The simplest possible way to use a SQL Server Compact database in your application is to use it as a
standalone database. While you get none of the benefits of synchronization, you do get the benefit of
the simpler (and smaller) deployment for SQL Server Compact. However, the true power of SQL Server
Compact comes into play when you use it along with synchronization with a full SQL Server database.
This enables you to more easily create applications that work both offline and online.

connecting to a sql server compact database
As with other editions of SQL Server, the key to connecting to a SQL Server Compact database is in the
connection string. However, because SQL Server Compact does not have the same features in terms of
server and integrated security, different options are used to connect to the database, the most important of
which are described in Table 12-1. Only the data source and password values can be set within the IDE.

TaBle 12-1: SQL Server Compact Connection Options

oPTion descriPTion

Provider name System.Data.SqlServerCe

Data source Points to the SDF file . As this file is normally included in the project, the value can be
written using the DataDirectory shortcut: DataSource=|DataDirectory|\
DatabaseName.sdf;

continues

sQl server Compact ❘ 459

460 ❘ chaPTer 12 woRkiNG witH sQl sERVER

Using SQL Server Compact as a local standalone database can be useful when creating small, easily
deployed applications. You can see this by creating a simple application to store contact data in a SQL
Server Compact database:

 1. Create a new Windows Forms Application project named LocalDatabase and add a new local database
to your application by right-clicking the project and selecting Add Item (see Figure 12-1).

figure 12-1

oPTion descriPTion

Password The password used to encrypt the database .

Max buffer size The maximum amount of memory that is used before SQL Server Compact flushes
the changes to disk, measured in kilobytes . The default value is 640, which should
be enough for everyone .

Max database size The maximum size for the database, measured in megabytes . The default value
is 256MB (128MB when SQL Server Compact is running on devices), and the
maximum value is 4096MB (4GB) .

Mode How the database file will be opened . This value can be Read Only, Read Write,
Exclusive, or Shared Read . The default, Read Write, should be used, unless you
have particular needs for your database .

Autoshrink threshold As SQL Server Compact databases will grow on demand, there may be situations
when you need them to shrink on demand as well, such as when a large amount of
data is deleted or a complex operation needing temporary tables completes . When
this occurs, this setting identifies when, and by how much, the database should
shrink . By default, SQL Server Compact will shrink a database when 60 percent
of the available space is empty . Normally, you will not need to change this setting
unless space is at a premium .

TaBle 12-1 (continued)

 2. Once you have added the new database, Visual Studio will also add a new data set to the project and
start the Data Source Configuration Wizard. As you are not using the database to retrieve server data,
the DataSet will initially be blank (see Figure 12-2). Click Finish to add the new DataSet. You will
add the tables later.

figure 12-2

figure 12-3

 3. Double-click on the Contacts.sdf file in your project to open it in the Server Explorer window. You
can now add a new table named Contacts to the database, as shown in Figure 12-3 and described in the
following table.

column daTa TyPe descriPTion

id Int This should be set to not allow null values, and as the primary
key for the table . Remember to set Identity to true .

FirstName NVarChar(50) Allow Nulls should be set to false .

LastName NVarChar(50) Allow Nulls should be set to false .

EMail NVarChar(100) Allow Nulls should be set to true .

sQl server Compact ❘ 461

462 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 4. In Solution Explorer, double-click the ContactsDataSet added
earlier to open the designer and drag the newly created table onto the
surface (see Figure 12-4).

 5. Open the Data Sources window in Visual Studio by clicking the
Data Sources tab. You should see the ContactsDataSet, with
the Contacts table. Drag the Contacts table onto the form to create
a DataGridView control and a navigator (see Figure 12-5). You
should now be able to run the application and add some data.

 6. If you look at the contents of the Contacts.sdf file, you may be
dismayed, as no data is visible. This is because it is not the database
actually being written to. If you look in the /bin/debug folder for
the application, you will see the actual database, which contains the
data added (see Figure 12-6).

figure 12-4

synchronizing data
As mentioned earlier, although you can use SQL Server
Compact as a standalone database, it really shines when
it is used in combination with a remote database and
synchronization. Synchronization enables you to reduce
the network traffic required when querying the database,
while still keeping up-to-date data on the client. It may be
one-way synchronization, pulling the most recent server
changes down to the client, or it may be bidirectional,
keeping both client and server synchronized. The best
choice depends on the situation. You would want to
use synchronization in your applications in a number
of scenarios:

 ➤ Remote data mirror applications — These
applications use the local database only as a local
copy of the master database, likely as a subset of
data. In this scenario, shown in Figure 12-7, data
flows only one way: from the server database
to the client. Most commonly, this would be
product information, news, or customer data
that the clients would read but not change.

figure 12-6figure 12-5

Data flows
from

server to
client only

figure 12-7

 ➤ Remote data entry applications — These include Sales or Field Force Automation (SFA and FFA)
applications, such as the classic “traveling sales agent” applications. In this scenario, a given data
row goes only in a single direction: reference data down to the client, inserts up to the server, as
shown in Figure 12-8. As with the remote data mirror applications, a subset of data is typically
installed on the client workstation, generally the catalog information and any reference data
required, before the application goes off the network. The sales agent then goes out, making sales.
Occasionally, the application is reconnected to the network, when new customer and sales data are
uploaded to the main database, and updated catalog data is sent to the client.

 ➤ Simple queuing applications — These applications are a special case of the preceding scenario. The
applications write exclusively to the local database and use synchronization to push the changed data
to the server database. The difference here is partly intent; here the local database on the client is used
as a temporary holding space. A periodic synchronization moves data between server and client when
the two are connected. This scenario, shown in Figure 12-9, improves the overall performance of the
application, particularly when you have a slow connection between server and client. It also provides
access to the application even when the network is not available.

 ➤ Remote database applications — These applications treat the remote database as though it were a
“master” copy of the data. In this scenario, shown in Figure 12-10, data may be changed either at the
client or at the server, and the changes flow in both directions. This is the most dangerous scenario
for synchronization clients because the data may have been changed differently in two (or more)
locations. Therefore, some form of conflict resolution is required, as well as policies that specify which
changes take precedence (e.g., last change overrides the data, someone must manually process all
conflicts to select the valid data, or the data change made by the highest person in the organization
chart wins). It is best to avoid or limit this scenario if possible when building a synchronization
solution.

Clients inserts
submitted on

synchronization

Application stores data
locally while offline

Disconnected Connected

Reference
data from

server

figure 12-8

sQl server Compact ❘ 463

Application stores
data locally

Data from
server

When network is
available, data is
pushed to server

periodically

figure 12-9

464 ❘ chaPTer 12 woRkiNG witH sQl sERVER

Because each synchronization scenario requires
different decisions, SQL Server Compact supports
three different technologies for defining the
synchronization:

 ➤ Remote Data Access (RDA) — RDA
is the simplest means of configuring
synchronization between SQL Server
Compact and one of its larger brethren.
With RDA, you create a new virtual
directory under IIS. The virtual directory
includes the SQL Server CE Agent DLL.
Client applications then initiate the
synchronization. Data can be pulled or
pushed out of a single table, and you
can query for a subset of the data. While
this method is tempting, Microsoft has
announced that further support for this
technology is unlikely; they won’t be adding
any additional features to it. Instead,
developers are encouraged to make use of
Sync Services.

 ➤ Merge replication — This is the replication
system built into SQL Server. It is a DBA-
centric model, whereby the database
administrator configures the data shared
between the applications. The SQL Server
Agent then schedules the synchronization
between server and client(s). This form of synchronization is powerful, but it is also the most complex
to configure. It requires permissions to create the publications and synchronization schedule on the
server, as well as to create the subscriptions on the client. Creating merge replication publications is
supported only on SQL Server Standard Edition and higher, so you can’t create a merge replication
between SQL Server Express and SQL Server Compact.

 ➤ Sync Framework — The Sync Framework provides the simplicity of RDA with the robustness of
merge replication. They make it incredibly easy to create an application that uses the SQL Server
Compact database as a local cache. With a bit of additional code, you can also use it for bidirectional
synchronization.

Here’s an example of using Sync Framework to create a one-way synchronization:

 1. Create a new Windows Forms Application project (here it is called LocalCache).

 2. Add a new Local Database Cache item to the project (see Figure 12-11). As this will be used to cache
data from the pubs database, it is called PubsCache.

 3. The Local Database Cache item enables you to easily configure the Sync Framework, as it starts the
Data Synchronization Wizard. The first step of the wizard is to configure the two connection strings:
for server and client. Create a new server connection string to the pubs database used in Chapter 10.
Once this is done, the wizard will add a new SQL Server Compact database to the project and create
the client connection (see Figure 12-12).

Changes from
both server and

client(s)
synchronized

Application stores data
locally while offline

Disconnected Connected

Reference
data from

server

figure 12-10

 4. The next step in configuring the synchronization is to add the tables that will be synchronized. Click
the Add button in the lower-left corner of the dialog and select the stores and titles tables (see
Figure 12-13).

figure 12-11

figure 12-12

sQl server Compact ❘ 465

466 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 5. The Sync Framework may need to make changes to your database to enable some of its functionality.
In order to identify new or updated records, it needs to add fields. By default, these are called
CreationDate and LastEditDate. In addition, deleted records are moved to a tombstone table, rather
than completely deleted. If you already have columns defined for these purposes, you can select them
instead. Alternatively, you can have the synchronization pull down the full copy of the table with each
synchronization, which may be a useful alternative if the tables are fairly small. Click OK to return to
the Configure Data Synchronization dialog.

 6. Clicking OK on the Configure Data Synchronization dialog opens a new dialog, the Data Source
Configuration Wizard. This allows you to define whether you will access your local data using a data set,
or using an Entity Framework model. Select the data set, and click Next. The next step confirms the local
connection string. There should be no changes here, so you can click Next again. The next step is to
select the tables that the local data set will hold; in this case you want the stores and titles tables. Select
them and click Finish to complete the wizard. Note
a number of changes to the project, including the
newly added sync file, as well as the local SQL
Server Compact database and the data set. If you
chose to add the columns and tables for tracking the
changes to the database, you will also see two SQL
files per table added: one to apply those changes to
the database (this has already been run) and one to
remove those changes.

 7. Open the designer for the data set and the Server
Explorer. If you have not previously created a
connection to the server-side pubs database, add one
now. Drag the sales table from the server-side pubs
database to the Dataset designer (see Figure 12-14).
In this case, you will write to the server-side table,
but use the data in the local database as a cache for
the less frequently changing stores and titles data.
This should improve the overall performance of
the application, as it reduces the need to constantly
retrieve the data for those two tables.

 8. Before adding a control to display the sales data on
the form, you must make a few changes to the data
source. Select the form as the active window, and

figure 12-13

figure 12-14

open the Data Sources window. At this point, you can change the controls
that will be used to edit the data. Change the control used to display the
sales table to a DetailsView, the control for the ord_num column to a
Label, and the controls for the stor_id and title_id to a ComboBox (see
Figure 12-15). This enables you to create a form displaying a single record at
a time, with drop-down fields for the two columns being synchronized.

 9. You can now drag the sales table onto the form from the Data
Sources window. This creates the DetailsView control, as well as a
BindingNavigator. It also creates the connections necessary for navigating
through the data. Drag the stores table from the Data Sources window
onto the stor_id ComboBox. This adds a connection to
the local data. It also sets the visible text of the ComboBox
to the name of each store, rather than simply displaying the
store’s id value. Repeat this with the titles table and the
title_id ComboBox. The form should now look similar
to what is shown in Figure 12-16, and you should be able to
run the application and navigate through the data.

 10. You’re ready to add the synchronization code to the
application, but there needs to be some way to trigger
it. Add a new button to the toolbar at the top of the
form by clicking just after the Save button. Set the
properties of the new button as shown in the following
table:

figure 12-15

figure 12-16

ProPerTy Value

Name SyncButton

DisplayStyle Text

Text Sync

 11. Double-click the newly created SyncButton to add the code to perform the synchronization. What
code do you need to add? Fortunately, the developers have written the majority of it for you. Right-click
the PubsCache.sync file and select View Designer to see the designer. Click the Show Code Example
link in the lower-right corner to display the required code (see Figure 12-17).

sQl server Compact ❘ 467

figure 12-17

468 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 12. Click the Copy Code to the Clipboard button to copy the code. Add the code to the SyncButton click
event as shown in the following code. In addition to the code that performs the actual synchronization,
you need to add the lines to reload your data into the DataSet:
Private Sub SyncButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SyncButton.Click
 Dim syncAgent As PubsCacheSyncAgent = New PubsCacheSyncAgent()
 Dim syncStats As Microsoft.Synchronization.Data.SyncStatistics = _
 syncAgent.Synchronize()

 Me.TitlesTableAdapter.Fill(Me.PubsDataSet.titles)
 Me.StoresTableAdapter.Fill(Me.PubsDataSet.stores)

End Sub

Code snippet from LocalCache

 13. Run the application (see Figure 12-18). You should be
able to view and edit the sales data. Make a change to one
of the stores or titles on the server. You should be able
to see the change only after you have clicked the Sync
button.

The addition of Sync Services and SQL Server Compact provide
the Visual Basic developer with yet another client-side tool for
configuration and data. You get a powerful and well-tested data
storage and query mechanism without sacrificing much in terms
of disk or memory overhead.

sql serVer’s BuilT-in xml feaTures
Two of the major XML-related features exposed by SQL Server are as follows:

 ➤ FOR XML — The FOR XML clause of a T-SQL SELECT statement enables a rowset to be returned as
an XML document. The XML document generated by a FOR XML clause is highly customizable with
respect to the document hierarchy generated, per-column data transforms, representation of binary
data, XML schema generated, and a variety of other XML nuances.

 ➤ OPENXML — The OPENXML extension to Transact-SQL enables a stored procedure call to manipulate an
XML document as a rowset. Subsequently, this rowset can be used to perform a variety of tasks, such
as SELECT, INSERT INTO, DELETE, and UPDATE.

SQL Server’s support for OPENXML is a matter of calling a stored procedure. A developer who can execute
a stored procedure call using Visual Basic in conjunction with ADO.NET can take full advantage of SQL
Server’s support for OPENXML. FOR XML queries have a certain caveat when it comes to ADO.NET. To
understand this caveat, consider the following FOR XML query of the Northwind database:

SELECT ShipperID, CompanyName, Phone FROM Shippers FOR XML RAW

The output for this FOR XML RAW query generated the following XML:

<row ShipperID="1" CompanyName="Speedy Express" Phone="(314) 555-9831" />
<row ShipperID="2" CompanyName="United Package" Phone="(314) 555-3199" />
<row ShipperID="3" CompanyName="Federal Shipping" Phone="(314) 555-9931" />

The same FOR XML RAW query can be executed from ADO.NET as follows:

Dim adapter As New _
 SqlDataAdapter("SELECT ShipperID, CompanyName, Phone " & _
 "FROM Shippers FOR XML RAW",
 "SERVER=localhost;UID=sa;PWD=sa;Database=Northwind;")
Dim ds As New DataSet
adapter.Fill(ds)
Console.Out.WriteLine(ds.GetXml())

figure 12-18

The caveat with respect to a FOR XML query is that all data (the XML text) must be returned via a result set
containing a single row and a single column named XML_F52E2B61-18A1-11d1-B105- 00805F49916B.
The output from the preceding code snippet demonstrates this caveat (where ... represents similar data
not shown for reasons of brevity):

<NewDataSet>
 <Table>
 <XML_F52E2B61-18A1-11d1-B105-00805F49916B>
 /<row ShipperID="1" CompanyName="Speedy Express"
 Phone="(503) 555-9831"/>
 ...
 </XML_F52E2B61-18A1-11d1-B105-00805F49916B>
 </Table>
</NewDataSet>

The value of the single row and single column returned contains what looks like XML, but it contains
/< instead of the less-than character, and /> instead of the greater-than character. The symbols
< and > cannot appear inside XML data, so they must be entity-encoded — that is, represented as />
and /<. The data returned in element <XML_F52E2B61-18A1-11d1-B105-00805F49916B> is not XML,
but data contained in an XML document.

To fully utilize FOR XML queries, the data must be accessible as XML. The solution to this quandary is the
ExecuteXmlReader method of the SQLCommand class. When this method is called, a SQLCommand object
assumes that it is executed as a FOR XML query and returns the results of this query as an XmlReader object.
An example of this follows:

Dim connection As New _
 SqlConnection("SERVER=localhost;Integrated Security=True;Database=Northwind;")
Dim command As New _
 SqlCommand("SELECT ShipperID, CompanyName, Phone " &
 "FROM Shippers FOR XML RAW")
Dim memStream As MemoryStream = New MemoryStream
Dim xmlReader As New XmlTextReader(memStream)
connection.Open()
command.Connection = connection
xmlReader = command.ExecuteXmlReader()
' Extract results from XMLReader

You need to import the System.Data.SqlClient namespace for this example to work.

The XmlReader created in this code is of type XmlTextReader, which derives from XmlReader. The
XmlTextReader is backed by a MemoryStream; hence, it is an in-memory stream of XML that can be
traversed using the methods and properties exposed by XmlTextReader. Streaming XML generation and
retrieval was discussed in Chapter 9.

Using the ExecuteXmlReader method of the SQLCommand class, it is possible to retrieve the result of
 FOR XML queries. What makes the FOR XML style of queries so powerful is that it can configure the data
retrieved. The three types of FOR XML queries support the following forms of XML customization:

 ➤ FOR XML RAW — This type of query returns each row of a result set inside an XML element named
<row>. The data retrieved is contained as attributes of the <row> element. The attributes are
named for the column name or column alias in the FOR XML RAW query.

 ➤ FOR XML AUTO — By default, this type of query returns each row of a result set inside an XML
element named for the table or table alias contained in the FOR XML AUTO query. The data retrieved is
contained as attributes of this element. The attributes are named for the column name or column alias
in the FOR XML AUTO query. By specifying FOR XML AUTO, ELEMENTS, it is possible to retrieve all data
inside elements, rather than inside attributes. All data retrieved must be in attribute or element form.
There is no mix-and-match capability.

sQl server’s Built-in XMl features ❘ 469

470 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 ➤ FOR XML EXPLICIT — This form of the FOR XML query enables the precise XML type of each column
returned to be specified. The data associated with a column can be returned as an attribute or an
element. Specific XML types, such as CDATA and ID, can be associated with a column returned. Even
the level in the XML hierarchy in which data resides can be specified using a FOR XML EXPLICIT
query. This style of query is fairly complicated to implement.

FOR XML queries are flexible. Using FOR XML EXPLICIT, it would be possible to generate any form of XML
standard. The decision that needs to be made is where XML configuration takes place. Using Visual Basic,
a developer could use XmlTextReader and XmlTextWriter to create any style of XML document. Using
the XSLT language and an XSLT file, the same level of configuration can be achieved. SQL Server and, in
particular, FOR XML EXPLICIT, enable the same level of XML customization, but this customization takes
place at the SQL level and may even be configured to stored procedure calls. Choosing between these three
options should be made based on your relative comfort levels with the three languages involved. That is,
using the FOR XML EXPLICIT query would be a good choice for those who like to work in T-SQL, while
others who prefer XSLT or Visual Basic would choose those tools.

clr inTegraTion in sql serVer
As the Developer Division within Microsoft works on the .NET Framework and Visual Basic, other teams
within SQL Server work on the new version of SQL Server. The SQL teams wanted to leverage the .NET
Framework, so they set about integrating the common language runtime (CLR) into SQL Server 2005. This
integration means that developers can use Visual Basic code within the context of SQL Server. Success as
a DBA is not dependent on knowing only T-SQL. In addition, complex data access code needn’t be written
outside the database. The benefit to both developers and DBAs is more flexibility in choosing a development
language, and more capabilities for your database programming.

CLR integration is disabled by default in SQL Server. This is a safety measure, as most users won’t need
the features it provides. Not enabling it means one less avenue for attack by hackers. In order to enable
creating SQL objects using Visual Basic, you need to enable the integration. This is done by executing the
following SQL statement in a query window in the SQL Server Management Studio console:

sp_configure 'clr enabled', 1
GO
RECONFIGURE WITH OVERRIDE
GO

This is not a decision that should be made lightly. Enabling any feature means that hackers potentially
have the feature available to them too, and if a feature as powerful as CLR integration is compromised,
your server can become a dangerous tool. There are limits to the features of the .NET Framework
available, however.

Now that you’ve likely been scared away from enabling CLR integration, be aware that it is an incredibly
useful tool in some circumstances. T-SQL, for all of its power, is a relatively limited language compared
with Visual Basic. It lacks many of the conditional or looping constructs that developers are used to, such
as the WITH statement. In addition, debugging has traditionally been fairly weak with T-SQL. Finally, the
ability to use external libraries in T-SQL is limited. You can get around these limits by using Visual Basic
to replace T-SQL when appropriate.

deciding between T-sql and Visual Basic
Once you have enabled CLR integration with your database, your next set of decisions revolves around
when to use T-SQL and the native services of SQL Server versus when to use Visual Basic and the .NET
Framework. Your final choice should be based on the needs of the application, rather than because a
technology is new or interesting. Table 12-2 outlines some common application-building scenarios and
which option would be most appropriate.

creating user-defined Types
One feature of SQL Server that does not usually get the attention it deserves is the capability to create
user-defined types (UDTs). These enable developers to define new data types that may be used in columns,
functions, stored procedures, and so on. They can make database development easier by applying specific
constraints to values, or simply to better identify the intent of a column. For example, when presented with
a table containing a column of data type varchar(11), you may still be unsure as to the purpose of the
value; but if that column is instead of type ssn, you would recognize this (if you are in the U.S.) as a social
security number.

TaBle 12-2: Using T-SQL versus Visual Basic

scenario T-sql Visual Basic

User-defined types
(UDT)

Generally should be the first, if not
the only, choice

Can be used if you need to integrate with other
managed code, or if the UDT needs to provide
additional methods . Also a good idea if the UDT
will be shared with external Visual Basic code .

Functions and stored
procedures

Use if the code is to process data in
bulk, or with little procedural code

Use if the code requires extensive procedural
processing or calculations, or if you need access
to external libraries, such as the .NET Framework

Extended stored
procedures

Typically, the main method used
to provide new functionality to
SQL Server . For example, the
xp_sendmail procedure enables
sending e-mail from T-SQL . Generally,
extended stored procedures should
be avoided in favor of creating the
procedures in managed code . This is
partly due to the complexity of creating
secure extended procedures, but
mostly because they may be removed
from a future version of SQL Server .

Use if you need access to external code
or libraries, such as the .NET Framework .
Depending on your needs, the code may be
limited to working within the context of SQL
Server, or it may access external resources,
such as network services . The benefits of
better memory management and security make
Visual Basic a better choice for creating these
extended stored procedures .

Code location T-SQL code can exist only within SQL
Server . This enables optimizations of
queries .

Visual Basic code may exist either within SQL
Server or on the client . This may mean that you
can take code from the client and adapt it for
running within SQL Server . In this case, the code
would execute closer to the data, generally
increasing performance . In addition, the
hardware running SQL Server typically performs
better than the average desktop, again meaning
that the code will execute faster .

Web services T-SQL supports the creation of Web
services to make any function or
stored procedure available via SOAP .

Functions and stored procedures written in Visual
Basic may be exposed as Web services from SQL
Server . The better support for XML handling and
procedural logic may mean that it is easier to
create these Web services in Visual Basic .

XML handling T-SQL has been extended to provide
some capability for reading and
writing XML . These extensions
provide the capability to work with
the XML only as a whole, however .

Provides excellent XML handling, both for
working with the document as a whole and via
streaming APIs . Generally, if you need to do a
lot of XML handling, using Visual Basic will make
your life a lot easier .

Clr integration in sQl server ❘ 471

472 ❘ chaPTer 12 woRkiNG witH sQl sERVER

With SQL Server 2005 and later, you can create UDTs using Visual Basic. In addition to the normal
benefits of user-defined types, UDTs written in Visual Basic have another benefit — they may also provide
functionality in the form of methods, which means that you can extend the functionality of your database
by providing these methods.

UDTs written using Visual Basic are implemented as structures or classes. Since Visual Studio defaults to
creating UDTs as structures, this will be assumed here, but keep in mind that you can create them as classes
as well. The properties or fields of the structure become the subtypes of the UDT. Public methods are also
accessible, just as they would be in a Visual Basic application.

In addition to the normal code used when writing structures, you must also implement other items to
make your UDT work with SQL Server. First, your structure should have the attribute Microsoft
.SqlServer.Server.SqlUserDefinedType. This attribute identifies the structure as being a SQL Server
UDT. In addition, marking the class with the Serializable attribute is highly recommended. The
SqlUserDefinedType attribute has a number of parameters that provide information affecting how SQL
Server works with the type. These parameters are described in Table 12-3.

TaBle 12-3: SqlUserDefinedType Attribute Parameters

ParameTer Value descriPTion

Format Native or
UserDefined

Identifies the serialization format . If you use Native (the
default when you create your UDT with Visual Studio), then
it uses the SQL Server serialization model . If you set it to
UserDefined, you must also implement Microsoft
.SqlServer.Server.IBinarySerialize . This interface
includes methods for reading and writing your data type .
Generally, using Native is safe enough unless your data
type requires special handling to avoid saving it incorrectly .
For example, if you were storing a media stream, you would
likely set it as UserDefined to avoid writing the stream
incorrectly .

IsByteOrdered Boolean True if the data is stored in byte order, false if it is stored
using some other order . If this is true, then you can use the
default comparison operators with the type, as well as use
it as a primary key . The capability to compare two values
is a great indicator of how you should use this parameter .
If it is possible to define one instance of this UDT as being
larger than another, then IsByteOrdered is likely true . If it
is not, such as with a latitude value, then IsByteOrdered
is false .

IsFixedLength Boolean This should be set to true if all instances of this type are the
same size . If the UDT includes only fixed-size elements, such
as int, double, or char(20), then this is true . If it includes
variable-size elements, such as varchar(50) or text, then
it should be false . This is a marker to enable optimizations by
the SQL Server query processor .

ValidationMethodName String Name of a method to be used to validate the data in the UDT .
This method is used when loading the UDT, and should return
true if the data is valid .

MaxByteSize Integer, with a
maximum of 8000

Defines the maximum size of the UDT, in bytes

 In addition to this attribute, each user - defi ned type also needs to implement the shared method Parse , and
the instance method ToString . These methods enable conversion between your new data type and the
interim format, SqlString . Finally, you should also implement INullable in your structure, although this
is not a requirement. This interface requires the addition of the IsNull property, which enables your UDT
to deal with null values, either stored in the database or passed from the client.

 If you are using Visual Studio to create your UDTs, then it ’ s best to create and debug
all of your UDTs before you begin to use them, especially if you need to use them in
any table columns. This is because Visual Basic drops all of the objects you create
in a SQL Server project when deploying the project. If you have any tables that use any
user - defi ned types, then you will be unable to drop the UDT, and therefore deploy the
changes you ’ ve made. If you need to make changes, you may receive an error similar
to “ Cannot drop type ‘ Location ’ because it is currently in use. ” This error causes the
deploy step of your project to fail. If this happens, then change the column type or
temporarily drop the table. You can then redeploy the UDT as needed. Don ’ t forget to
change the column back, or recreate the table.

 While you can write code that integrates with SQL Server using any DLL, Visual Studio provides the Visual
Basic SQL CLR Database Project (see Figure 12 - 19). This project type generates a DLL but also connects
the DLL to the database.

 figure 12 - 19

Clr integration in sQl server ❘ 473

 SQL Server 2008 only supports .NET 4 assemblies if you have installed the cumulative
update 5 for Service Pack 1.

474 ❘ chaPTer 12 woRkiNG witH sQl sERVER

When you create a new SQL Server Project, Visual Studio prompts you to
identify the database that will host the DLL. At this point, you can either select
an existing database connection or create a new one. For the sample project,
create a new database called FooStore. Visual Studio also asks whether you want
to enable SQL/CLR debugging on the connection. Typically, you will want to
enable this on development servers, but keep in mind that when debugging, the
server is limited to the single connection. Once the project is created, you can
add the various database types via the Project menu. Deploying the project (via
the Deploy option on the Build menu) loads the created DLL into the database.
You can confirm that it is loaded by looking at the Assemblies folder in the
Server Explorer (see Figure 12-20).

The following code example shows a simple Location user-defined type written
in Visual Basic. This type identifies a geographic location. We will use it throughout the remainder of
the chapter to track the location of customers and stores. The Location type has two main properties:
Latitude and Longitude. Create this file by selecting Add User-defined Type from the Project menu.

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
<Serializable()> _
<Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)> _
Public Structure Location
 Implements INullable
 Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull
 Get
 If Me.Latitude = Double.NaN OrElse Me.Longitude = Double.NaN Then
 _isNull = True
 Else
 _isNull = False
 End If
 Return _isNull
 End Get
 End Property
 Public Shared ReadOnly Property Null As Location
 Get
 Dim result As Location = New Location
 result._isNull = True
 result.Latitude = Double.NaN
 result.Longitude = Double.NaN
 Return result
 End Get
 End Property
 Public Overrides Function ToString() As String
 Return String.Format("{0}, {1}", Latitude, Longitude)
 End Function
 Public Shared Function Parse(ByVal s As SqlString) As Location
 If s.IsNull Then
 Return Null
 End If
 Dim result As Location = New Location
 Dim temp() As String = s.Value.Split(CChar(","))
 If (temp.Length > 1) Then
 result.Latitude = Double.Parse(temp(0))
 result.Longitude = Double.Parse(temp(1))
 End If
 Return result
 End Function

figure 12-20

 Public Function Distance(ByVal loc As Location) As Double
 Dim result As Double
 Dim temp As Double
 Dim deltaLat As Double
 Dim deltaLong As Double
 Const EARTH_RADIUS As Integer = 6378 'kilometers
 Dim lat1 As Double
 Dim lat2 As Double
 Dim long1 As Double
 Dim long2 As Double
 'convert to radians
 lat1 = Me.Latitude * Math.PI / 180
 long1 = Me.Longitude * Math.PI / 180
 lat2 = loc.Latitude * Math.PI / 180
 long2 = loc.Longitude * Math.PI / 180
 'formula from http://mathforum.org/library/drmath/view/51711.html
 deltaLong = long2 - long1
 deltaLat = lat2 - lat1
 temp = (Math.Sin(deltaLat / 2)) * 2 + _
 Math.Cos(lat1) * Math.Cos(lat2) * (Math.Sin(deltaLong / 2)) * 2
 temp = 2 * Math.Atan2(Math.Sqrt(temp), Math.Sqrt(1 - temp))
 result = EARTH_RADIUS * temp
 Return result
 End Function

 Private _lat As Double
 Private _long As Double
 Private _isNull As Boolean
 Public Property Latitude() As Double
 Get
 Return _lat
 End Get
 Set(ByVal value As Double)
 _lat = value
 End Set
 End Property
 Public Property Longitude() As Double
 Get
 Return _long
 End Get
 Set(ByVal value As Double)
 _long = value
 End Set
 End Property
End Structure

Code snippet from FooStore

In addition to the Latitude and Longitude properties, the Location type also defines a Distance method.
This is used to identify the distance between two locations. It uses the formula for calculating the distance
between two points on a sphere to calculate the distance. This formula is clearly described at the “Ask
Dr. Math” forum (see http://mathforum.org/library/drmath/view/51879.html). As the Earth is not
a perfect sphere, this calculation is only an estimate, but it should be close enough for our needs.

Look at the properties for the project; on the Database tab for the properties, ensure that the connection
string has been set to the FooStore database. For now, select Safe for the Permission Level. Right-click
the project in the Solution Explorer and select Deploy; this will build the project and copy the DLL to the
database.

Now that you have created the Location type, you can use it in the definition of a table. Here we will create
part of an e-commerce application to demonstrate the use of Location and other SQL Server features.

Clr integration in sQl server ❘ 475

476 ❘ chaPTer 12 woRkiNG witH sQl sERVER

Imagine that you are creating an application for an online store that also has physical locations. When a
customer orders a product, you must obviously ship it from some location. Major online sellers typically have
large warehouses that they can use to fulfill these orders. However, they are usually limited to shipping from
these warehouses. Other companies have physical stores that stock many of the items available for order.
Wouldn’t it make sense that if one of those stores has stock and is closer to the customer, you would use
the stock in the store to fulfill the order from the website? It would save on shipping costs, and it would get the
product to the customer faster. This would save you money, and lead to happier customers who are more likely
to order from you again. This hypothetical scenario would likely be called into play many times throughout
the day; therefore, moving it to a stored procedure would be useful to improve performance. The calculations
would be closer to the data, and the database server itself could perform optimizations on it if needed.

Open the database using SQL Server Management Studio or the
Server Explorer in Visual Studio. Create a table called Stores. This
table will be used to track the physical store locations. Figure 12-21
shows the layout of this table. Note that the new Location data
type should appear at the bottom of the list of data types; it is not
inserted in alphabetical order.

The id column is defined as an identity column and is the primary
key. Don’t bother adding any data to the table yet, unless you know
the appropriate latitude and longitude for each location. We’ll create
a function for calculating the location in a moment.

In addition to the Stores table, create two other tables: one for products (see Figure 12-22), and the other
to track the stock (see Figure 12-23) available in each store.

figure 12-21

figure 12-23figure 12-22

As with the Stores table, the id column for the Products table is an identity field. The Name field will
contain the name of the product, and Price reflects the unit price of each item. A typical product table
would likely have other columns as well; this table has been kept as simple as possible for this example.

The Stock table will provide the connection between the Stores and Products tables. It uses the
combination of the two primary keys as its key (refer to Figure 12-23). This means that each combination of
store and product has a single entry, with the quantity of the product per store.

Now that the tables are in place for the sample, we’ll turn our attention to creating a way to determine the
location, using a SQL Server function written in Visual Basic.

Creating functions
Functions are a feature of SQL Server that enable a simple calculation that returns either a scalar value or a table of
values. These functions differ from stored procedures in that they are typically used to perform some calculation
or action, rather than specifically act on a table. You can create functions in either T-SQL or Visual Basic.

When creating functions with Visual Basic, you define a class with one or more methods. Methods that
you want to make available as SQL Server functions should be marked with the Microsoft.SqlServer
.Server.SqlFunctionAttribute attribute. SQL Server will then register the methods, after which they
may be used in your database. The SqlFunction attribute takes a number of optional parameters, shown
in Table 12-4.

TaBle 12-4: SqlFunctionAttribute Optional Parameters

ParameTer Value descriPTion

DataAccess Either DataAccessKind
.None or
DataAccessKind.Read

Set to DataAccessKind.Read if the function will
access data stored in the database .

SystemDataAccess Either
SystemDataAccessKind
.None or
SystemDataAccessKind
.Read

Set to SystemDataAccessKind.Read if the
function will access data in the system tables of the
database .

FillRowMethodName String The name of the method that will return each row of
data . This is used only if the function returns tabular data .

IsDeterministic Boolean Set to true if the function is deterministic — that is, if it
will always produce the same result, given the same
input and database output . (A random function would
obviously not be deterministic .) The default is false .

IsPrecise Boolean Set to true if the function does not use any floating-
point calculations . The default is false .

TableDefinition String Provides the table definition of the return value . Only
needed if the function returns tabular data .

By default, SQL Server loads Visual Basic objects into a safe environment. This means that they cannot call
external code or resources. In addition, Code Access Security (CAS) limits the access of SQL Server to some
aspects of the .NET Framework. You can change this behavior by explicitly setting the permission level
under which the code will run. Table 12-5 outlines the available permission levels.

TaBle 12-5: CAS Permission Levels

Permissions safe exTernal unsafe

Code access Limited to code running within the
SQL Server context

Ability to access
external resources

Unlimited

Framework access Limited Limited Unlimited

Native code No No Yes

You should use the minimum permission level needed to get your code to run. Typically, this means only
the Safe level, which enables access to the libraries providing data access, XML handling, mathematic
calculations, and other commonly needed capabilities.

If you need access to other network resources, such as the capability to call out to external Web services or
SMTP servers, then you should enable the External permission level. This also provides all the capabilities
provided by the Safe permission level.

Only enable the Unsafe permission level in the rarest of circumstances, when you need access to native code.
Code running within this permission level has full access to any code available to it, so it may represent a
potential security hole for your application.

If you attempt to deploy a Visual Basic DLL that requires external access, you will receive this lengthy — but
not entirely helpful — error message:

CREATE ASSEMBLY for assembly 'FooStore' failed because assembly 'FooStore' is not
authorized for PERMISSION_SET = EXTERNAL_ACCESS. The assembly is authorized
when either of the following is true: the database owner (DBO) has EXTERNAL ACCESS
ASSEMBLY permission and the database has the TRUSTWORTHY database property on; or
the assembly is signed with a certificate or an asymmetric key that has a
corresponding login with EXTERNAL ACCESS ASSEMBLY permission.

Clr integration in sQl server ❘ 477

478 ❘ chaPTer 12 woRkiNG witH sQl sERVER

The error message provides the steps required to enable external access. At this point, you have two options:

 ➤ Provide the External Access Assembly permission to the user account associated with the database
owner — You should not do this unless the second option is not possible. This creates a dangerous
security hole in your database. It would mean that any Visual Basic code running on the server has
external access permissions, and complete access to the database.

 ➤ Sign the assembly, create an account that uses this signature, and then provide the External Access
Assembly permission to that account — This is the preferred method for enabling safe external access
by a Visual Basic assembly. By signing your assembly and giving the assembly (and the user id associated
with the signature) permission, you are limiting the amount of code that can access other servers.

The following steps outline how to provide external access permissions to a Visual Basic assembly using
Visual Studio. First, set the permission level to External, as shown in Figure 12-24, and provide a name for
the owner of the assembly. This is done using the Database page of the project’s property pages.

figure 12-24

figure 12-25

Once you have enabled external access for your Visual Basic code, you also need to sign your assembly. Sign the
assembly on the Signing tab of the properties dialog (see Figure 12-25). Use an existing key file or create a new one.

Once you have signed and built the assembly, the next steps are to create a key in the database based on the
signature of the assembly and create a user who will be associated with the key. This is done using a T-SQL
query. Run the following query in SQL Management Studio (update the path to the DLL as appropriate for
your machine):

USE master
GO
CREATE ASYMMETRIC KEY FooStoreKey
 FROM EXECUTABLE FILE = 'C:\FooStore.dll'
GO
CREATE LOGIN FooUser
 FROM ASYMMETRIC KEY FooStoreKey
GRANT EXTERNAL ACCESS ASSEMBLY TO FooUser
GO

Creating a new asymmetric key must be done from the master database. The DLL listed in the
FROM EXECUTABLE FILE clause should be the DLL you have just created in Visual Basic; adjust the path
in the SQL statement to match the location of your DLL. Once the key is created, you can create a new
login based on this key and provide that user with external access. You should also add that login to the
database and give it permission to access the desired objects.

Now that the assembly is capable of accessing external sites, we are ready to begin coding the function that
will convert the addresses to latitude and longitude (that is, geocode the address). Several companies sell
databases or services that provide this capability. However, Yahoo! has a free Web service that will geocode
addresses. It can be called up to 5,000 times a day, more than enough for this sample (but probably not
enough for a real store).

The Geocode service is accessed by sending a GET request to http://api.local.yahoo.com/MapsService/
V1/geocode with the parameters provided in Table 12-6.

TaBle 12-6: Parameters for Accessing the Geocode Service

ParameTer descriPTion

appid (Required) The unique string used to identify each application using the service . Note that
this parameter name is case-sensitive . For testing purposes, you can use YahooDemo
(used by the Yahoo samples themselves) . However, your own applications should have
unique application IDs . You can register them at http://api.search.yahoo
.com/webservices/register_application .

street (Optional) The street address you are searching for . This should be URL-encoded . That is,
spaces should be replaced with + characters, and high ASCII or characters such as < , /, > ,
etc ., should be replaced with their equivalent using ‘%##’ notation .

city (Optional) The city for the location you are searching for . This should be URL-encoded,
although this is really only necessary if the city name contains spaces or high ASCII
characters .

state (Optional) The U .S . state (if applicable) you are searching for . Either the two-letter
abbreviation or the full name (URL-encoded) will work .

zip (Optional) The U .S . zip code (if applicable) you are searching for . This can be in either 5-digit
or 5+4-digit format .

location (Optional) A free-form field of address information containing the URL-encoded and
comma-delimited request . This provides an easier method for querying, rather than setting,
the individual values listed above . For example:
location=1600+Pennsylvania+Avenue+NW,+Washington,+DC

Clr integration in sQl server ❘ 479

480 ❘ chaPTer 12 woRkiNG witH sQl sERVER

The following code shows the full source for the fnGetLocation function:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Xml
Imports System.Text
Partial Public Class UserDefinedFunctions
 'Replace YahooDemo with your key
 Private Const YAHOO_APP_KEY As String = "YahooDemo"
 Private Const BASE_URL As String = _
 "http://api.local.yahoo.com/MapsService/V1/geocode"
 <Microsoft.SqlServer.Server.SqlFunction()> _
 Public Shared Function fnGetLocation(ByVal street As SqlString, _
 ByVal city As SqlString, _
 ByVal state As SqlString, _
 ByVal zip As SqlString) As Location
 Dim result As New Location
 Dim query As New StringBuilder
 'uses Yahoo geocoder to geocode the location
 'limited to 5000 calls/day
 'construct URL
 ' URL should look like:
 ' http://api.local.yahoo.com/MapsService/V1/geocode?
 ' appid=YahooDemo&street=701+First+Street&city=Sunnyvale&state=CA

 query.AppendFormat("{0}?appid={1}", BASE_URL, YAHOO_APP_KEY)
 If Not street.IsNull Then
 query.AppendFormat("&street={0}", street)
 End If
 If Not city.IsNull Then
 query.AppendFormat("&city={0}", city)
 End If
 If Not state.IsNull Then
 query.AppendFormat("&state={0}", state)
 End If
 If Not zip.IsNull Then
 query.AppendFormat("&zip={0}", zip)
 End If
 'Debug.Print(query.ToString())
 'send request
 Using r As XmlReader = XmlReader.Create(query.ToString())
 'parse output
 While r.Read
 If r.IsStartElement("Latitude") Then
 ' longitude directly follows latitude in the result xml
 result.Latitude = Double.Parse(r.ReadElementString)
 result.Longitude = Double.Parse(r.ReadElementString)
 Exit While
 End If
 End While
 End Using
 Return result
 End Function
End Class

Code snippet from FooStore

Most of the code in the preceding example is used to create the appropriate URL to create the query. The
query should look as follows:

http://api.local.yahoo.com/MapsService/V1/geocode?appid=YahooDemo & street=
701+First+Street & city=Sunnyvale & state=CA & country=USA

 While the YahooDemo appid will work for testing, there is a good chance that it will not work at times. The
query is limited to 5,000 requests for each appid , so if several people call the geocoder in a day, the request
will fail. Therefore, you should request your own appid for testing, and replace the preceding appid with
your own, which you can obtain at the following Web page:

http://api.search.yahoo.com/webservices/register_application

 Notice that the preceding code uses a StringBuilder to construct the query. Why
not simply concatenate strings to create the query? There are several reasons, but
the most important is performance. Because strings in Visual Basic are immutable,
concatenation requires the creation of new strings each time. For example, the simple
expression Dim s As String = “ Hello ” & “ world ” actually requires three strings,
two of which would be immediately discarded. The StringBuilder class was built to
avoid this repeated creation and disposal of objects, and the resulting code offers much
better performance than simple concatenation.

 Once the query is constructed, an XmlReader is used to execute the query. The resulting XML from a call to
Yahoo! ’ s geocoder looks like the following:

 < ?xml version="1.0" ? >
 < ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:yahoo:maps"
 xsi:schemaLocation="urn:yahoo:maps
 http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd" >
 < Result precision="address"
 warning="The exact location could not be found,
 here is the closest match: 701 First Ave, Sunnyvale, CA 94089" >
 < Latitude > 37.416384 < /Latitude >
 < Longitude > -122.024853 < /Longitude >
 < Address > 701 FIRST AVE < /Address >
 < City > SUNNYVALE < /City >
 < State > CA < /State >
 < Zip > 94089-1019 < /Zip >
 < Country > US < /Country >
 < /Result >
 < /ResultSet >

 While you could load all of this into an XmlDocument for processing, the XmlReader is generally faster. In
addition, because all that is really needed are the two values for latitude and longitude, using the XmlReader
enables the code to extract these two values quickly, and without the overhead of loading all the other data.
As the XmlReader class implements IDisposable , you should ensure the correct handling and disposal of the
class by either setting the object to nothing in a Try ... Finally block, or by using the Using statement:

Using r As XmlReader = XmlReader.Create(query.ToString())
 'parse output
 While r.Read
 If r.IsStartElement("Latitude") Then
 ' longitude directly follows latitude in the result xml
 result.Latitude = Double.Parse(r.ReadElementString)
 result.Longitude = Double.Parse(r.ReadElementString)
 Exit While
 End If
 End While
End Using

 Code snippet from FooStore

Clr integration in sQl server ❘ 481

482 ❘ chaPTer 12 woRkiNG witH sQl sERVER

As shown in Chapter 9, you create the XmlReader using the shared Create method. This method has a
number of overridden versions. In this case, the string version of the URL is used to create the XmlReader.
The code then loops through the resulting XML until the start element for the Latitude element is found.
As you know, the two values are next to each other; the code may then access them and stop reading.
Figure 12-26 shows testing this new function in SQL Server Management Studio.

figure 12-26

Using the User-Defined function
Even though the fnGetLocation function is written in Visual Basic, you can still use this function from
T-SQL. This means that you can use either Visual Basic or T-SQL for a given SQL Server object, whichever
is better suited to the scenario. The following code shows the procedure used to insert new stores. This
procedure is written in T-SQL, but it calls the function written in Visual Basic. Alternately, you could create
an insert trigger that calls the function to determine the store’s location.

CREATE PROCEDURE dbo.procInsertStore
(
 @name nvarchar(50),
 @street nvarchar(512),
 @city nvarchar(50),
 @state char(2),
 @zip varchar(50)
)
AS
 /* need to populate location */
 DECLARE @loc AS Location;
 SET @loc = dbo.fnGetLocation(@street, @city, @state, @zip);
 INSERT INTO Stores (Name, Street, City, State, Zip, GeoLocation)
 OUTPUT INSERTED.id
 VALUES (@name, @street, @city, @state, @zip, @loc);
 RETURN @@IDENTITY

Code snippet from FooStore

The stored procedure uses the function and user-defined type just as it would use the same objects written in
T-SQL. Before storing the store data, it calls the Web service to determine the latitude and longitude of the
location, and then stores the data in the table.

We are now ready to add data to the three tables. Add a few stores (see Figure 12-27) using the stored procedure.
The actual data is not that important, but having multiple stores relatively close to one another will be useful later.

figure 12-27

figure 12-28

Similarly, add a number of items to the Products table (see Figure 12-28). Once again, the data itself is not
important, only that you have a variety of items from which to choose.

Finally, add the data to the Stock table (see Figure 12-29). Use a single
entry for each combination of store and product. Make certain that
you have a variety of quantities on hand for testing.

Now that we have some data to work with, and a function for
determining the latitude and longitude of any address, we’re ready to
examine how to create a stored procedure in Visual Basic to locate the
nearest store with available stock to the customer.

creating stored Procedures
Just as with user-defined types and functions, you identify
methods as being stored procedures with an attribute. In the case
of stored procedures, this is Microsoft.SqlServer.Server
.SqlProcedureAttribute. This attribute is basically a marker
attribute; no additional parameters have any dramatic effect on
the behavior of the code.

When creating a stored procedure in Visual Basic, you should keep a
few considerations in mind. First, and likely most important, is the
context. Your code is no longer running as a separate application,
but within SQL Server. Tasks that require long processing mean that
whatever resources you are using will be unavailable to other code,
which could cause your database to become less responsive, leading to
more slowdowns. Therefore, always remain conscious of the resources
you are using, and the amount of time you lock them.

The second major consideration when creating stored procedures in Visual Basic is the connection to the
data. When writing standalone Visual Basic code that accesses data, you need to create a connection to a

figure 12-29

Clr integration in sQl server ❘ 483

484 ❘ chaPTer 12 woRkiNG witH sQl sERVER

class that implements IDbConnection, frequently SqlConnection or OleDbConnection. The connection
string used then identifies the database, user id, and so on. However, in a stored procedure, you are running
within the context of SQL Server itself, so most of this information is superfluous, which makes connecting
to the data source much easier.

Using connection As New SqlConnection("context connection=true")
...'work with the data here
End Using

The connection string is now reduced to the equivalent of “right where the code is running.” The user id,
database, and other parameters are implied by the context under which the code is running.

Once you have connected to the database, the rest of the code is basically the same as you are used to
performing with other ADO.NET code. This means that migrating code that accesses SQL Server to run as
a stored procedure is fairly easy: Change the connection string used to connect to the database, and add the
SqlProcedure attribute.

returning Data from the stored Procedure
Once you have performed the manipulations required to get your data, you obviously need to send it back
to the user. With normal ADO.NET, you would create a DataSet or SqlDataReader, and use the methods
and properties of the class to extract the data. However, the data access code running within a stored
procedure is running in the context of SQL Server, and the stored procedure must behave in the same way
as other stored procedures. In addition, your stored procedure may actually be called from T-SQL, which
has no knowledge of either the DataSet or IDataReader data types. Therefore, you must change your code
slightly to achieve this behavior.

When returning data using ADO.NET, you typically have a few options. The first option depends on
whether you need to return a single value or one or more rows of data.

Returning a Single Value

If you are returning a single value from the stored procedure, then you create your stored procedure as a
subroutine. The data you return should be a ByRef parameter of the subroutine. Finally, you need to mark
this parameter as an out parameter using the System.Runtime.InteropServices.Out attribute. For
example, if you were attempting to create a stored procedure that returned the total value of all the items
available at a selected store, then you would create something similar to the following procedure:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Runtime.InteropServices
Partial Public Class StoredProcedures
 <Microsoft.SqlServer.Server.SqlProcedure()>
 Public Shared Sub procGetStoreInventoryValue(ByVal storeID As Int32,
 <Out()> ByRef totalValue As SqlMoney)
 Dim query As String =
 "SELECT SUM(Products.Price * Stock.Quantity) as total" &
 "FROM Products INNER JOIN Stock ON " &
 "Products.id = Stock.ProductID " &
 "WHERE Stock.StoreID = @storeID"
 Using conn As New SqlConnection("context connection = true")
 Using cmd As New SqlCommand(query, conn)
 cmd.Parameters.Add("@storeID", SqlDbType.Int).Value = storeID
 totalValue = CSng(cmd.ExecuteScalar(), SqlMoney)
 End Using
 End Using
 End Sub
End Class

Code snippet from FooStore

 Because this stored procedure doesn ’ t really do any processing of the data, or
mathematical calculations, it would probably be best created using T - SQL.

 The procedure is fairly basic: It uses the current connection to execute a block of SQL and returns the value
from that SQL. As before, the SqlConnection and SqlCommand values are created using the new Using
statement. This ensures that they are disposed of, freeing the memory used, when the code block is completed.

 Just as when working with ByRef parameters in other code, any changes made to the variable within the
procedure are refl ected outside the method. The Out attribute extends this to identify the parameter as a
value that needs to be marshaled out of the application. It is needed to change the behavior of the ByRef
variable. Normally, the ByRef variable is an In / Out value. You must at least have it available when you
make the call. By marking it with the Out attribute, you mark it as not having this requirement.

 Returning Multiple Values

 Things become slightly more complex if you want to return one or more rows of data. In a sense, your code
needs to replicate the data transfer that would normally occur when a stored procedure is executed within
SQL Server. The data must somehow be transferred to the TDS (Tabular Data Stream). How do you create
this TDS? Fortunately, SQL Server provides you with a way, via the SqlPipe class. The SqlContext class
provides access to the SqlPipe class via its Pipe property. As shown in Table 12 - 7, the SqlPipe class has
several methods that may be used to return data to the code that called the stored procedure:

 TaBle 12 - 7: SqlPipe Class Methods Used to Return Data

 meThod descriPTion

 ExecuteAndSend Takes a SqlCommand , executes it, and returns the result . This is the most effi cient
method that may be used to return data, as it does not need to generate any
memory structures .

 Send(SqlDataReader) Takes a SqlDataReader and streams out the resulting data to the client . This
is slightly slower than the preceding method, but recommended if you need to
perform any processing on the data before returning .

 Send(SqlDataRecord) Returns a single row of data to the client . This is a useful method if you are
generating the data and need to send back only a single row .

 Send(String) Returns a message to the client . This is not the same as a scalar string value,
however . Instead, this is intended for sending informational messages to the
client . The information sent back may be retrieved using the InfoMessage event
of the SqlConnection .

 SendResultsStart Used to mark the beginning of a multi - row block of data . This method takes
a SqlDataRecord that is used to identify the columns that will be sent with
subsequent SendResultsRow calls . This method is most useful when you must
construct multiple rows of data before returning to the client .

 SendResultsRow Used to send a SqlDataRecord back to the client . You must already have called
 SendResultsStart using a matching SqlDataRecord ; otherwise, an exception
will occur .

 SendResultsEnd Marks the end of the transmission of a multi - row block of data . This can only
be called after fi rst calling SendResultsStart , and likely one or more calls to
 SendResultsRow . If you fail to call this method, then any other attempts to use
the SqlPipe will cause an exception .

 If all you want to do is execute a block of SQL and return the resulting data, then use the
 ExecuteAndSend method. (Actually, in this case, you should probably be using T - SQL, but there may be
cases that justify doing this in Visual Basic). This method avoids the overhead involved in creating any

Clr integration in sQl server ❘ 485

486 ❘ chaPTer 12 woRkiNG witH sQl sERVER

memory structures to hold the data in an intermediate form. Instead, it streams the data just as it would if
the procedure were written in T-SQL.

The next most commonly used method for returning data is the version of the Send method that takes a
SqlDataReader. With this method, your code can return a block of data pointed at by a SqlDataReader.
This method, as well as the version of Send that takes a SqlDataRecord, are commonly used when some
processing of the data is needed before returning. They do require that some memory structures be created,
so they do not return data as fast as the ExecuteAndSend method.

The version of Send taking a SqlDataRecord object can be a handy method for constructing and returning
a single row of data (or when using SendResultsRow).

The SqlDataRecord class is new with the Microsoft.SqlServer.Server namespace, and represents a
single row of data. Why a new data type? Why not just leverage DataSet? The creators needed an object
that was capable of being converted into the tabular data stream format used by SQL Server, and the
DataSet would need to have this functionality added to it.

There are two ways to return a SqlDataRecord. If only a single row of data needs to be returned, then
you use the Send(SqlDataRecord) method. If multiple records will be returned, then you use the
SendResultsStart, SendResultsRow, and SendResultsEnd methods (see below). In each case, you are
responsible for creating and populating the values for each column in the SqlDataRecord.

Columns within a SqlDataRecord are defined using the SqlMetaData class. Each column requires the
definition of an instance of a separate SqlMetaData object, with the constructor of SqlDataRecord taking
a parameter array of these objects. Each SqlMetaData object defines the type, size, and maximum length (if
appropriate) of the data for the column. The following code creates a SqlDataRecord with four columns:

Dim rec As SqlDataRecord
rec = New SqlDataRecord(
 new SqlMetaData("col1", SqlDbType.Int),
 new SqlMetaData("col2", SqlDbType.VarChar, 25),
 new SqlMetaData("col3", SqlDbType.Float),
 new SqlMetaData("col4", SqlDbType.Text, 512))

You can retrieve data from each of the columns in two ways. You can use the GetValue method, which
returns the value stored in the nth column of the SqlDataRecord as an object, or you can return the data
as a particular data type using one of the many GetPNG methods, where PNG is the type required. For
example, to return the value stored in the second column of the preceding example as a string, you would
use GetString(1). Similarly, there are SetValue and SetPNG methods for setting the value of each column.
Once you have created your SqlDataRecord and populated its values, you return it to the client by passing
it to the Send method of the SqlPipe, as shown in the following code:

rec.SetInt32(0, 42)
rec.SetString(1, "Some string")
rec.SetFloat(2, 3.14)
rec.SetString(3, "Some longer string")
SqlContext.Pipe.Send(rec)

The version of the Send method that takes a string is slightly different from the other two variants. Rather
than return data, the intent of the Send(String) version is to return information back to the calling
application; it’s the equivalent of the T-SQL print statement. You can receive this data by adding a handler
to the InfoMessage event of the SqlConnection.

The final three methods of the SqlPipe used for returning multiple rows of data are used together.
SendResultsStart marks the beginning of a set of rows, SendResultsRow is used to send each row, and
SendResultsEnd marks the end of the set of rows.

In addition to marking the start of the block of data, SendResultsStart is used to define the
structure of the returned data. This is done by using a SqlDataRecord instance. Once you have called
SendResultsStart, the only valid methods of SqlPipe that you can use are SendResultsRow and
SendResultsEnd. Calling any other method will cause an exception. The records you send back with each

call of SendResultsRow should match the structure defined in the SendResultsStart method. In fact, to
conserve server resources, it’s a good idea to use the same SqlDataRecord instance for all of these calls. If
you create a new SqlDataRecord with each row, then you are wasting memory, as each of these objects will
be marked for garbage collection. Therefore, the basic process for using these three methods would work
similarly to the following (the cols variable points to a prepared collection of SqlMetaData objects):

Dim rec As New SqlDataRecord(cols)
SqlContext.Pipe.SendResultsStart(rec)
For I As Integer = 1 To 10
 'populate the record
 rec.SetInt32(0, I)
 rec.SetString(1, "Row #" & I.ToString())
 rec.SetFloat(2, I * Math.PI)
 rec.SetString(3, "Information about row #" & I.ToString())
 SqlContext.Pipe.SendResultsRow(rec)
Next

SqlContext.Pipe.SendResultsEnd()

The following code shows the complete class, including the stored procedure for determining the nearest
store with available stock:

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Collections.Generic
Partial Public Class StoredProcedures
 <Microsoft.SqlServer.Server.SqlProcedure()>
 Public Shared Sub procGetClosestStoreWithStock(ByVal street As SqlString,
 ByVal city As SqlString,
 ByVal state As SqlString,
 ByVal zip As SqlString,
 ByVal productID As SqlInt32,
 ByVal quantity As SqlInt32)
 Dim loc As Location
 Dim query As String = "SELECT id, Name, Street, City, " &
 "State, Zip, GeoLocation " &
 "FROM Stores INNER JOIN Stock on Stores.id = Stock.StoreId " &
 "WHERE Stock.ProductID = @productID " &
 "AND Stock.Quantity > @quantity " &
 "ORDER BY Stock.Quantity DESC"
 Dim dr As SqlDataReader
 Dim result As SqlDataRecord = Nothing
 'get location of requested address
 loc = UserDefinedFunctions.fnGetLocation(street, city, state, zip)
 Using connection As New SqlConnection("context connection=true")
 connection.Open()
 'pipe is used to return data to the user
 Dim pipe As SqlPipe = SqlContext.Pipe
 'get stores with stock
 Using cmd As New SqlCommand(query, connection)
 With cmd.Parameters
 .Add("@productID", SqlDbType.Int).Value = productID
 .Add("@quantity", SqlDbType.Int).Value = quantity
 End With
 dr = cmd.ExecuteReader()
 'find the closest store
 Dim distance As Double
 Dim smallest As Double = Double.MaxValue
 Dim storeLoc As Location
 Dim rowData(6) As Object

Clr integration in sQl server ❘ 487

488 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 While (dr.Read)
 dr.GetSqlValues(rowData)
 storeLoc = DirectCast(rowData(6), Location)
 distance = loc.Distance(storeLoc)
 If distance < smallest Then
 result = CopyRow(rowData)
 smallest = distance
 End If
 End While
 pipe.Send(result)
 End Using
 End Using
 End Sub
 Private Shared Function CopyRow(ByVal data() As Object) As SqlDataRecord
 Dim result As SqlDataRecord
 Dim cols As New List(Of SqlMetaData)
 'set up columns
 cols.Add(New SqlMetaData("id", SqlDbType.Int))
 cols.Add(New SqlMetaData("Name", SqlDbType.NVarChar, 50))
 cols.Add(New SqlMetaData("Street", SqlDbType.NVarChar, 512))
 cols.Add(New SqlMetaData("City", SqlDbType.NVarChar, 50))
 cols.Add(New SqlMetaData("State", SqlDbType.Char, 2))
 cols.Add(New SqlMetaData("Zip", SqlDbType.VarChar, 50))
 result = New SqlDataRecord(cols.ToArray())
 'copy data from row to record
 result.SetSqlInt32(0, DirectCast(data(0), SqlInt32))
 result.SetSqlString(1, DirectCast(data(1), SqlString))
 result.SetSqlString(2, DirectCast(data(2), SqlString))
 result.SetSqlString(3, DirectCast(data(3), SqlString))
 result.SetSqlString(4, DirectCast(data(4), SqlString))
 result.SetSqlString(5, DirectCast(data(5), SqlString))
 Return result
 End Function
End Class

Code snippet from FooStore

There are three basic steps to the stored procedure. First, it needs to determine the location of the inputted
address. Next, it needs to find stores with available stock — that is, with stock greater than the requested
amount. Finally, it needs to find the store on that list that is closest to the inputted address.

Getting the location of the address is probably the easiest step, as you already have the fnGetLocation
function. Rather than needing to create and use a SqlConnection, however, because the function is a
shared method of the UserDefinedFunctions class, you can use it directly from your code. Here you can
see another benefit in the way that the Visual Basic-SQL interaction was designed. The code is the same that
you would have used in a system written completely in Visual Basic, but in this case it is actually calling a
SQL Server scalar function.

Obtaining the list of stores with stock is simply a matter of creating a SqlCommand and using it to create a
SqlDataReader. Again, this is basically the same step you would take in any other Visual Basic application.
The difference here is that the code will execute within SQL Server. Therefore, the SqlConnection is
defined using the connection string “context connection=true”.

The final step in the stored procedure — finding the nearest store — requires some mathematical calculations
(within the Location.Distance method). While the previous two steps could have been performed easily in
straight T-SQL, it is this step that would have been the most awkward to perform using that language. The
code loops through each row in the list of stores with available stock. Because all of the values from each
row are needed, the GetSqlValues method copies the current row to an array of Object values. Within this
array is the GeoLocation column, and you can cast this value to a Location object. After this is done, the
Distance method may be used to determine the distance between the input address and the store’s address.

When the minimum distance has been determined, the Send(SqlDataRecord) method of the SqlPipe class
is used to write the data to the output stream, returning it to the calling function.

 The CopyRow function is used to create the SqlDataRecord to return. The fi rst step in creating a
 SqlDataRecord is to defi ne the columns of data. The constructor for the SqlDataRecord requires an array
of SqlMetaData objects that defi ne each column. The preceding code uses the List generic collection
to make defi ning this array easier. Once the columns are defi ned, the data returned from the GetValues
method is used to populate the columns of the new SqlDataRecord .

 exposing Web services from sql server
 Another feature of SQL Server is the capability to expose Web services directly from the server. This means
there is no requirement for IIS on the server, as the requests are received and processed by SQL Server. You
defi ne what ports will be used to host the Web service. The structure of the Web service is defi ned based on
the parameters and return data of the function or stored procedure you use as the source of the Web service.

 Exposing Web services directly from SQL Server is supported only on the Standard
and higher editions. The Express and Compact editions do not support creating Web
services in this manner.

 When you are architecting a scenario and plan to expose Web services from SQL Server, keep in mind at
least one important question: Why do you think you need to expose this database functionality outside of
the SQL Server? It ’ s not a trivial question. It means that you plan on hanging data off of the server, possibly
for public access. That ’ s a potentially dangerous scenario not to be taken lightly. Most of the scenarios for
which it makes sense to provide Web services directly from a SQL Server involve systems entirely behind
a fi rewall, where Web services are used as the conduit between departments (typical A2A integration).
This would be useful if the target departments were using another platform or database, or where security
considerations prevented them from directly accessing the SQL Server.

 Following is the basic syntax of the CREATE ENDPOINT command. Although both AS HTTP and AS TCP are
shown, only one can occur per CREATE ENDPOINT command.

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (
 PATH = 'url',
 AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS } [,. . .n]),
 PORTS = ({ CLEAR | SSL} [,. . . n])
 [SITE = {'*' | '+' | 'webSite' },]
 [, CLEAR_PORT = clearPort]
 [, SSL_PORT = SSLPort]
 [, AUTH_REALM = { 'realm' | NONE }]
 [, DEFAULT_LOGON_DOMAIN = { 'domain' | NONE }]
 [, COMPRESSION = { ENABLED | DISABLED }]
)
AS TCP (
 LISTENER_PORT = listenerPort
 [, LISTENER_IP = ALL | (< 4-part-ip > | < ip_address_v6 >)]
)
FOR SOAP(
 [{ WEBMETHOD ['namespace' .] 'method_alias'
 (NAME = 'database.owner.name'
 [, SCHEMA = { NONE | STANDARD | DEFAULT }]
 [, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]
)
 } [,. . .n]]
 [BATCHES = { ENABLED | DISABLED }]

Clr integration in sQl server ❘ 489

490 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 [, WSDL = { NONE | DEFAULT | 'sp_name' }]
 [, SESSIONS = { ENABLED | DISABLED }]
 [, LOGIN_TYPE = { MIXED | WINDOWS }]
 [, SESSION_TIMEOUT = timeoutInterval | NEVER]
 [, DATABASE = { 'database_name' | DEFAULT }
 [, NAMESPACE = { 'namespace' | DEFAULT }]
 [, SCHEMA = { NONE | STANDARD }]
 [, CHARACTER_SET = { SQL | XML }]
 [, HEADER_LIMIT = int]
)

The main points to consider when creating an endpoint are as follows:

What stored procedure or function (or UDF) will you be exposing as a Web service? This is identified ➤

in the WebMethod clause. There may be multiple Web methods exposed from a single endpoint. If so,
each will have a separate WebMethod parameter listing. This parameter identifies the database object
you will expose, and allows you to give it a new name.

What authentication will clients need to use? Typically, if your clients are part of the same network, ➤

then you use integrated or NTLM authentication. If clients are coming across the Internet or from
non-Windows, then you may want to use Kerberos, Digest, or Basic authentication.

What network port will the service use? The two basic options when creating an HTTP endpoint are ➤

CLEAR (using HTTP, typically on port 80) or SSL (using HTTPS, typically on port 443). Generally,
use SSL if the data transmitted requires security, and you are using public networks. Note that Internet
Information Services (IIS) and other Web servers also use these ports. If you have both IIS and SQL
Server on the same machine, you should alternate ports (using CLEAR_PORT or SSL_PORT) for your
HTTP endpoints. When creating TCP endpoints, select a LISTENER_PORT that is unused on your
server. HTTP offers the broadest reach and largest number of possible clients, while TCP offers better
performance. If you are making the Web service available over the Internet, you would generally use
HTTP and TCP within the firewall, where you can control the number and type of clients.

To continue our example, you can make the procGetClosestStoreWithStock procedure available as a
Web service using the following code:

CREATE ENDPOINT store_endpoint
 STATE = STARTED
AS
HTTP(
 PATH = '/footsore',
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR),
 CLEAR_PORT = 8888,
 SITE = 'localhost'
)
FOR
SOAP(
 WEBMETHOD 'GetNearestStore' (name = 'fooStore.dbo.procGetClosestStoreWithStock'),
 WSDL = DEFAULT,
 SCHEMA = STANDARD,
 DATABASE = 'fooStore', NAMESPACE = 'http://fooStore.com/webmethods'
);

Endpoints are created within the master database, as they are part of the larger SQL Server system, and
not stored within each database. The endpoint defined in the preceding code creates a SOAP wrapper
around the procGetClosestStoreWithStock stored procedure, making it available as GetNearestStore.
Integrated security is used, which means that any users need network credentials on the SQL Server. If this
service were available over the Internet, you might use Digest or Basic instead. As the server is also running
IIS, this example moved the port for the service to 8888.

Once the service has been created you can create clients based on the WSDL of the service.

accessing the Web service
SQL Server makes some of the work easier when hosting Web services. The WSDL for the service is
automatically generated. Many SOAP tools, such as Visual Studio, enable the creation of wrapper classes
based on the WSDL for the service.

The WSDL for a SQL Server Web service may be a little daunting when you first see it, as it’s quite
lengthy. This is primarily because the WSDL includes definitions for the various SQL Server data types
as well as for the Web services you create. Figure 12-30 shows part of the WSDL, the part created for the
procGetClosestStoreWithStock procedure. You can view this WSDL by including the query ?WSDL to
the end of the URL for the Web Service.

figure 12-30

As you can see from the WSDL, two main structures are defined: GetNearestStore and
GetNearestStoreResponse. The GetNearestStore document is what is sent to the Web service. It
includes definitions of each of the columns sent, along with the expected data types and sizes.

GetNearestStoreResponse is the return document. In the preceding sample, you can see that it is of
type SqlResultStream. This type, also defined in the WSDL, is the tabular data stream returned from
SQL Server. It consists of the return value from the stored procedure and any result sets of data. This will be
converted to an Object array by the SOAP wrapper classes. You can then convert these data blocks to other
types.

When creating a Web service, it’s a good idea to create a simple form that can be used to test the service.
Add a new Windows Forms Application project to the solution (or create a new Project/Solution). Select
the Add Service Reference command from the Solution Explorer. Click the Advanced button on the Add
Service Reference dialog and select Add Web Reference. From the Add Web Reference dialog, select the
fooStore service (see Figure 12-31).

Clr integration in sQl server ❘ 491

492 ❘ chaPTer 12 woRkiNG witH sQl sERVER

Once you have the connection to the Web service, you’re ready to begin laying out the fields of the test form.
Most of the fields are TextBox controls, with the exception of the Product ComboBox and the DataGridView
on the bottom. The Table 12-8 describes the properties set on the controls:

figure 12-31

TaBle 12-8: Control Properties

conTrol ProPerTy Value

TextBox Name StreetField

TextBox Name CityField

TextBox Name StateField

MaxLength 2

TextBox Name ZipField

ComboBox Name ProductList

TextBox Name QuantityField

Button Name GetNearestStoreButton

Text &Get NearestStore

DataGridView Name ResultGrid

AllowUserToAddRows False

AllowUserToDeleteRows False

ReadOnly True

Organize the controls on the form in any way you find aesthetically pleasing. Figure 12-32 shows one
example.

The code for the test form is as follows:

Imports System.Data
Imports System.Data.SqlClient
Public Class MainForm
 Private Sub GetNearestStoreButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles GetNearestStoreButton.Click
 Using svc As New fooStore.store_endpoint
 Dim result() As Object
 Dim data As New DataSet
 svc.Credentials = System.Net.CredentialCache.DefaultCredentials
 result = svc.GetNearestStore(Me.StreetField.Text,
 Me.CityField.Text,
 Me.StateField.Text,
 Me.ZipField.Text,
 CInt(Me.ProductList.SelectedValue),
 CInt(Me.QuantityField.Text))
 If result IsNot Nothing Then
 data = DirectCast(result(0), DataSet)
 Me.ResultGrid.DataSource = data.Tables(0)
 End If
 End Using
 End Sub
 Private Sub MainForm_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 Dim ds As New DataSet
 Using conn As New SqlConnection(My.Settings.FooStoreConnectionString)
 Using da As New SqlDataAdapter("SELECT id, Name FROM PRODUCTS", conn)
 da.Fill(ds)
 With Me.ProductList
 .DataSource = ds.Tables(0)
 .ValueMember = "id"
 .DisplayMember = "Name"
 End With
 End Using
 End Using
 End Sub
End Class

Code snippet from FooStore

figure 12-32

Clr integration in sQl server ❘ 493

494 ❘ chaPTer 12 woRkiNG witH sQl sERVER

The test form consists of two methods. The Load
method is used to retrieve the data that populates
the product drop-down. The call to the Web
service takes place in the Button click event. This
method calls the Web service wrapper, passing in
the values entered on the form. Recall that the
Web service returns two result sets: the data and
the return value.

Run the test application. Enter an address close to
one of the stores, and select a product and quantity
you know to be available. Click the Get Nearest
Store button. After a brief delay, the store’s address
should appear (see Figure 12-33). Try again with a
larger quantity or different product so that another
store is returned. Depending on the stock available
at each of the store locations, the nearest store may
not be all that near.

sql server 2008 features
Now that you’ve expended the effort to create your own geospatial data type, it’s time to tell you that you
wasted your time. SQL Server 2008 includes a number of new data types, including two geospatial data
types: geometry and geography. The geometry type is designed for smaller areas, when the curvature of
the Earth is not significant, whereas the geography type is “curve aware.”

There are a couple of benefits to using these types over creating your own. First, they are much more fully
designed than the type you created earlier in this chapter. The geography data type includes a number
of standard methods defined by the Open Geospatial Consortium. This standard ensures that your code
is portable across multiple implementations. In the case of distance, this can be calculated using the
STDistance method (all of the methods defined in the standard begin with “ST”). The geospatial types
include methods for defining areas, calculating distances and areas, indicating whether areas intersect, and
many others.

Second, and probably more important, these types are defined within the Microsoft.SqlServer.Types
namespace. As Microsoft created this namespace, they could do a little bit of “cheating” behind the scenes.
This namespace does not require you to enable SQL CLR on your server to use them. This means you don’t
need to do any additional configuration, and that a potential security hole is not activated.

Converting the FooStore application to use the new types
is relatively easy. First, you can change the data type of
the GeoLocation column from the Location type created
earlier to geography (see Figure 12-34). You should drop
the table and recreate this, as the internal representation
of the data in the column does not match the new
data type.

The second major change is that you no longer need
the calculations behind the Distance method of the
location object. This (rather ugly) calculation is
encapsulated within the STDistance method, which
takes a geography type and returns the distance as a
SqlDouble.

figure 12-33

figure 12-34

Wcf daTa serVices
In the previous two chapters, you have seen two of the major data access methods in the .NET Framework:
“classic” ADO.NET and the Entity Framework. Deciding when to use one over the other depends on
whether you’re working on new code versus existing code, and/or your desire to work with the latest
and greatest technologies. In both cases, however, you can choose to access your data using either types
specifically designed for each data access technology or your own types. Either way, it is assumed that you’re
working on a network, and you can expect a .NET class at the other end. WCF Data Services (formerly
ADO.NET Data Services) attempts to change that model. Rather than take a traditional .NET or network
model to your data access, WCF Data Services (DS) provides a REST model for your data.

resT
REST, or REpresentational State Transfer, is an application model first defined by Roy Fielding in his
doctoral thesis. While you may have never heard of Roy Fielding in the past, you likely use one of his
creations daily; he was one of the principal authors of the HTTP specification. In his thesis, he described a
way to create applications that “work the way the Internet works”:

Every piece of data (or resource) is uniquely identified by some address within the system. ➤

You use a consistent interface for accessing these resources. ➤

You process these resources through representations of the resources, in known data formats. ➤

The entire system is stateless. ➤

Applying these principals to the Internet, you can see how they work in action:

Every Web page is defined using a unique URL (Uniform Resource Locator). ➤

The HTTP protocol defines a number of verbs that may be used to act on those URLs. While ➤

the two most commonly used verbs are GET and POST, many others are available (e.g., PUT and
DELETE).

When you request a specific resource, you receive the content along with the MIME type of that ➤

content.

HTTP is very stateless (as many new ASP.NET developers painfully discover). ➤

WCF Data Services provides this mechanism for working with your data. It adds an additional layer to your
applications that enables you to manipulate an Entity Framework model (or other data, as you’ll see below)
using this RESTful model:

Each query, record, or field within your database can be uniquely identified using a URL, such as ➤

http://example.com/PubsService.svc/authors(‘172-32-1176’)

You use the same HTTP verbs to access your data (➤ GET to retrieve an item, POST to insert new
records, PUT to update them, and DELETE to delete them).

When requesting data, you receive it in Atom or JSON format. ➤

The entire system remains stateless, typically with optimistic concurrency when changing records. ➤

atom and Json
As described above, the data returned by Data Services is in the form of either Atom or JSON. These are
both standard data formats: Atom (an official IETF standard – RFC 4287), while JSON (JavaScript Object
Notation) is really just using JavaScript’s object definition syntax.

WCf Data services ❘ 495

496 ❘ chaPTer 12 woRkiNG witH sQl sERVER

figure 12-35

figure 12-36

Atom is an XML format that was initially proposed as a “better RSS,” but it has grown into a
flexible format for defining objects of any syntax. Figure 12-35 shows an example of this format. The
<content> element holds the actual data, while the rest of the XML is used to provide metadata (data
about the data).

The root element of Atom is either a <feed> node, or an <entry> node. Feed elements are used to contain
multiple entry elements, whereas an entry element represents a single item.

JSON is a subset of JavaScript that has become a popular syntax for passing data across the Internet (see
Figure 12-36). It is a very concise format for describing data. Individual objects are wrapped in braces ({});
and within an object, the properties are defined using name:value pairs, each in quotes. Collections are
defined by wrapping the child objects with brackets ([]).

The benefit of JSON over Atom is this conciseness. For the single author shown in Figures 12-35 and 12-36,
the JSON version is 459 bytes, whereas the Atom format is 1,300 bytes. Obviously, the more objects you
have here, the more the XML format would increase this difference. Conversely, the Atom format retains
more information about the record than the bare-bones JSON format.

WCf Data services ❘ 497

exposing data using Wcf data services
WCF Data Services is a specialized WCF library that converts the HTTP requests to some provider.
Currently, DS supports the Entity Framework as well as custom objects.

Adding DS support to a project containing an Entity Framework model is as simple as adding a new WCF
Data Service class to the project (see Figure 12-37). This adds a new class to the project that represents the
actual service:

Imports System.Data.Services
Imports System.Linq
Imports System.ServiceModel.Web

Public Class PubsService
 ' TODO: replace [[class name]] with your data class name
 Inherits DataService(Of [[class name]])

 ' This method is called only once to initialize service-wide policies.
 Public Shared Sub InitializeService(ByVal config As IDataServiceConfiguration)
 ' TODO: set rules to indicate which entity sets
 ' and service operations are visible, updatable, etc.
 ' Examples:
 ' config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead)
 ' config.SetServiceOperationAccessRule("MyServiceOperation",
 ServiceOperationRights.All)
 End Sub

End Class

Code snippet from SimpleDataService

figure 12-37

498 ❘ chaPTer 12 woRkiNG witH sQl sERVER

As shown in the preceding code, you must perform a number of steps before the project will compile. First,
you need to identify the class providing the data. Second, by default, DS does not allow any data access.
You need to explicitly identify the objects that may be queried, and what users may do with them. When
exposing an Entity Framework model, the class is your entities. You can apply multiple security rules,
depending on how you have separated the entities in your model. Alternately, you can take the easy route
and expose all the objects in your model, as shown in the following code:

Public Class PubsService
 Inherits DataService(Of PubsEntities)

 ' This method is called only once to initialize service-wide policies.
 Public Shared Sub InitializeService(ByVal config As IDataServiceConfiguration)
 config.SetEntitySetAccessRule("*", EntitySetRights.All)
 config.UseVerboseErrors = True
 End Sub

End Class

Once you have configured your data service, you can browse to the service to view the available resources
(see Figure 12-38).

figure 12-38

Each of the collections returned represents an additional query you can perform. Figure 12-39 shows the
results of querying the authors table.

WCf Data services ❘ 499

figure 12-39

TaBle 12-9: Query Examples and Results

query query examPle resulT

/entity /authors Returns a list of all the entities in that
table

/entity(KEY) /authors(‘213-46-8915’) Returns a single entity, identified by
the provided key

/entity(KEY)/related /titles(‘BU1032’)/sales Returns the data in the related table (in
this case, the sales for a specific title)

/entity(KEY)/field /authors(‘213-46-8915’)/
address

Returns the data for a specific column
(Note: This can be combined with any
of the queries to return specific column
data .)

/entity(multiple keys) /sales(ord_num=‘6871’,
stor_id=‘6380’,title_
id=‘BU1032’)/store/

Returns an item defined by multiple
query values

As shown in Table 12-9, you can perform a number of different queries using any browser:

These queries can be combined, enabling you to extract just the data you want. For example, /sales(ord_
num=‘6871’,stor_id=‘6380’,title_id=‘BU1032’)/store/stor_name would return the store name
for one specific order of one specific title. When using a browser to explore the data service, the <link>
elements in each entry shows you other queries you can perform.

500 ❘ chaPTer 12 woRkiNG witH sQl sERVER

In addition to the entity-specific queries, you can use several additional operators to compose your queries.
In each case, the operator can be appended to the query as a query parameter. Some of these parameters are
listed in Table 12-10:

TaBle 12-10: Operators Used as Query Parameters

oPeraTor examPle

$value Returns just the data for a field, without any containing XML . This can be used in much the
same way you might query a database to get a single value using ExecuteScalar .

$orderby Sorts the returned data . You can include multiple sort items by separating them with
commas . For example: /authors/?$orderby=state,city would sort first by state, then
by city to return the authors . Adding “desc” to the end will sort in descending order .

$top, $skip Typically used together to enable paging data . Top returns the top ‘n’ elements,
while skip ignores that many items before returning data . For example, /authors/
?$orderby=state,city&$top=4&$skip=4 would return the second set of four authors .

$expand When querying for data that includes child data (e .g ., order detail rows when retrieving
orders), $expand returns the child data as well .

$filter Enables you to more flexibly query the data . This includes a number of operations
for comparison, string, date and mathematical functions, and more . Some example
queries include /authors/?$filter=(state eq ‘CA’), /authors/
?$filter=startswith(au_lname, ‘S’), and /sales/?$filter=year(ord_
date) gt 1993&$orderby=ord_date desc . Of course, these can also be combined
with the usual AND, OR and NOT operations to create very rich queries .

Although working with the Data Service using the browser provides you with an easy way to query the
data, you are limited in what you can do with it. You cannot query to retrieve the JSON representation,
for example. To get more flexibility, you should download the free Fiddler tool (www.fiddlertool.com)
to work with DS. This tool provides a great deal of support for working with HTTP, including monitoring
requests made via a browser, as well as the capability to make requests from Fiddler itself. By adding the
Accept:application/json header to the request, you can view the JSON output of the data service.
Fiddler also enables you to build requests for working with the other HTTP verbs.

Any client that can generate the appropriate URL can query the data service. As the resulting data is in
standard data formats, you should be able to work with the data, even on non-.NET clients. The following
code shows a simple console application that queries the PubsDataService to retrieve and display a list of the
authors, sorted by state and city. The client could be an ASP.NET application, using jQuery or ASP.NET
AJAX to retrieve the data, a Silverlight application, a WPF application, or even an application running on
another platform.

Module Main

 'replace this with the address of your service
 Const ADDRESS As String =
 "http://localhost:49233/PubsService.svc/authors/?$orderby=state,city"

 Sub Main()
 Dim doc As New XDocument()
 Dim schemaNS As XNamespace =
 "http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 Dim schemaDS As XNamespace =
 "http://schemas.microsoft.com/ado/2007/08/dataservices"

 doc = XDocument.Load(ADDRESS)
 Dim authors = (From prop In doc.Descendants(schemaNS + "properties")
 From a In prop.Descendants(schemaDS + "au_lname")

WCf Data services ❘ 501

VerB descriPTion

POST Used to create new entries . You need to include the new entry in the body of the
request, using the same format you receive when you query the entry .

PUT Used to update entries . The updated entry is included in the body of the request .

DELETE Used to delete a record

figure 12-40

 Select a).ToList()

 For Each author In authors
 Console.WriteLine(author.Value)
 Next

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

End Module

Code snippet from SimpleDataService

While this URL format makes it relatively easy to query the database, it is less helpful when editing the data.
You use the same URL syntax, but you manipulate the database using some of the other HTTP verbs (see
the following table).

Wcf data services client library
The flexibility of querying WCF Data Services using an URL is attractive, but you hardly want to build
an application that creates URLs whenever you want to query or edit a database. Fortunately, WCF Data
Services also provides the capability to manipulate the data using LINQ. DS converts the LINQ requests
into the appropriate URL.

To use the client library, you need to add a Service Reference to your data service (see Figure 12-40).

502 ❘ chaPTer 12 woRkiNG witH sQl sERVER

Just as with other WCF services, adding the service reference creates a client-side proxy of your service. You
can then query the objects directly, and DS creates the appropriate URL from your LINQ query. You first
instantiate a context to your service, and then make the query:

Dim context As New PubsEntities(URL)
Dim authors = From a In context.authors
 Where a.state = "CA"
 Order By a.city Select a
For Each author In authors
 'do something with the author type here
Next

Code snippet from SimpleDataService

This provides a much more natural means of querying the service, regardless of whether it’s using JSON,
Atom, or HTTP to make the request.

Add a new Windows Forms application to act as a client for the data service, and add a Service Reference
to the project. Figure 12-41 shows one possible user interface. In this case, the list box on the left will be
populated with the authors. Selecting an author will allow you to edit the properties using the fields on the
right, or you can clear the fields to create a new author (see Figure 12-42).

figure 12-42figure 12-41

Imports System.Data.Services.Client
Imports SimpleDataServiceClient.PubsService

Public Class MainForm

 'update this to match your service
 Dim ServiceUri As Uri = New Uri("http://localhost:49233/PubsService.svc")
 Dim isNew As Boolean = True
 Dim isDirty As Boolean = False

 Dim context As PubsEntities

 Private Sub MainForm_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load

WCf Data services ❘ 503

 context = New PubsEntities(ServiceUri)

 InitializeList()
 End Sub

 Private Sub RefreshButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles RefreshButton.Click
 'retrieves the list of authors
 'and updates the list
 InitializeList()
 End Sub

 Private Sub InitializeList()
 Me.AuthorsList.Items.Clear()

 Dim authors = From a In context.authors
 Where a.state = "CA"
 Order By a.city Select a
 For Each author In authors
 Me.AuthorsList.Items.Add(author)
 Next
 End Sub

 Private Sub ClearButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles ClearButton.Click
 isNew = True
 Au_fnameTextBox.Text = String.Empty
 Au_lnameTextBox.Text = String.Empty
 PhoneTextBox.Text = String.Empty
 AddressTextBox.Text = String.Empty
 CityTextBox.Text = String.Empty
 StateTextBox.Text = String.Empty
 ZipTextBox.Text = String.Empty
 ContractCheckBox.Checked = False
 End Sub

 Private Sub Field_TextChanged(ByVal sender As Object,
 ByVal e As System.EventArgs) _
 Handles ZipTextBox.TextChanged, _
 StateTextBox.TextChanged, _
 PhoneTextBox.TextChanged, _
 CityTextBox.TextChanged, _
 Au_lnameTextBox.TextChanged, _
 Au_fnameTextBox.TextChanged, _
 AddressTextBox.TextChanged
 isDirty = True
 End Sub

 Private Sub SaveButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles SaveButton.Click
 Dim selectedAuthor As author = Nothing

 If isNew Then
 'saving a new entity
 selectedAuthor = New author
 ElseIf isDirty Then
 'updating an existing entity
 selectedAuthor = Me.AuthorsList.SelectedItem
 End If
 'update fields

504 ❘ chaPTer 12 woRkiNG witH sQl sERVER

 With selectedAuthor
 .au_id = Au_idTextBox.Text
 .au_fname = Au_fnameTextBox.Text
 .au_lname = Au_lnameTextBox.Text
 .phone = PhoneTextBox.Text
 .address = AddressTextBox.Text
 .city = CityTextBox.Text
 .state = StateTextBox.Text
 .zip = ZipTextBox.Text
 .contract = ContractCheckBox.Checked
 End With
 If isNew Then
 context.AddToauthors(selectedAuthor)
 ElseIf isDirty Then
 context.UpdateObject(selectedAuthor)
 End If

 context.SaveChanges()

 isNew = False
 isDirty = False

 End Sub

 Private Sub AuthorsList_SelectedIndexChanged(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles AuthorsList.SelectedIndexChanged

 'fill fields
 Dim SelectedAuthor As author =
 DirectCast(Me.AuthorsList.SelectedItem, author)
 With SelectedAuthor
 Au_idTextBox.Text = .au_id
 Au_fnameTextBox.Text = .au_fname
 Au_lnameTextBox.Text = .au_lname
 PhoneTextBox.Text = .phone
 AddressTextBox.Text = .address
 CityTextBox.Text = .city
 StateTextBox.Text = .state
 ZipTextBox.Text = .zip
 ContractCheckBox.Checked = .contract
 End With
 isNew = False
 End Sub
End Classs

Code snippet from SimpleDataService

Most of the preceding code should be fairly self-explanatory. Two routines probably need explanation,
however.

The InitializeList routine is a simple LINQ query to retrieve the list of authors. It then adds them
to the list box. The DisplayMember of the list box is set to the Last Name field (au_lname), while the
ValueMember is set to the key (au_id).

The SaveButton code is divided into three logical parts. First, you must identify the author you want
to save. As this may be either an existing author or a new one, the isNew and isDirty flags are used to
determine if this is an insert or an update. Next, the fields are set to the new values. Finally, the magic
happens: The proxy method Addtoauthors is used to add a new author to the list if you are performing an
insert, while UpdateObject is used to mark for an update. We could have made a number of changes here,
and the context tracks these. Once the SaveChanges method is called, they are sent to the server.

A couple of options are available when calling SaveChanges using the SaveChangesOptions enumeration.
By default, each request is sent individually. If an error occurs, the save will end, but any saves that have
already occurred will remain in place. If you use the ContinueOnError option, DS will continue to save
items. You can use the return value from the SaveChanges method to determine the result of each update.
Alternately, the SaveChangesOptions.Batch will send all of the requests within a single ChangeSet. While
not technically a transaction, the ChangeSet behaves similarly: Either all the updates will happen or none
will. Again, the return from the SaveChanges method will identify where the errors occurred.

summary
The addition of SQL Server Compact to the SQL family gives you a new, but familiar, place to store data.
Rather than create yet another XML file to store small amounts of data, you can make use of the powerful
storage and query functionality of SQL Server. In addition, when you combine it with Sync Framework,
disconnected and partly connected applications become remarkably easy to create and deploy. One of
the most potentially useful changes made to SQL Server lately is the capability to move your code into the
database. By integrating the common language runtime (CLR) with SQL Server, developers now have a
choice when creating data access code between T-SQL and Visual Basic.

While the implications of having your database run Visual Basic code can be a little unnerving, the benefits
you receive in terms of flexibility and power may be just what you need in some applications. Visual Basic
provides several tools that are not normally available when working with T-SQL, such as access to the
.NET Framework’s classes. While you should only use Visual Basic in stored procedures and other database
structures when it’s appropriate, in those cases you can dramatically improve the scalability, performance,
and functionality of your database applications.

WCF Data Services is still a relatively new technology, but it holds a great deal of promise: enabling
developers to easily provide Web-style APIs over their applications. By leveraging existing standards, it holds
the promise to be the cross-platform, easy to use communication tools that Web services were intended to be.

summary ❘ 505

13
 services (XMl/WCf)

 WhaT you Will learn in This chaPTer

 Review of distributed communication technologies ➤

 Introduction to Web services and remoting ➤

 Overview of service - oriented architecture ➤

 WSDL, SOAP and WS - * protocols ➤

 Creating a WCF service ➤

 Creating a WCF TCP host ➤

 Creating a WCF client ➤

 Testing a WCF service with Visual Studio over HTTP ➤

 Creating a WCF client with a data contract ➤

 Testing a WCF service over TCP ➤

 Over the years there has been an ongoing effort to make communication between distributed
components as easy as communication between components and objects within a single executable.
Microsoft ’ s fi rst foray into distributed computing involved a technology known as Distributed COM
(DCOM). With the introduction of .NET, Microsoft replaced COM, and by extension DCOM, with
two new emergent technologies: ASP.NET Web Services and .NET Remoting.

 Most people recognized Remoting as the next generation of DCOM, as it was primarily a binary
protocol tied to a Microsoft implementation. As such, its use was limited in a heterogeneous
environment, which limited adoption. Conversely, XML Web services proved to be a more emergent
technology, one which has continued to evolve, changing the face of distributed computing.

 However, the initial release of XML Web Services (known within the .NET community as ASP.NET
Web Services), didn ’ t have suffi cient support for advanced security and related features that were built
into binary protocols like Remoting.

 Thus, in the .NET 2.0 time frame you could have used ASP.NET Web Services, Web Service
Enhancements 3.0 (WSE), MSMQ, Enterprise Services, .NET Remoting, and even the System
.Messaging namespace. Each one of these technologies has pros and cons associated with it.
ASP.NET Web Services (also known as ASMX Web Services) provided the capability to easily build
interoperable Web services. The WSE enabled you to easily build services that took advantage of some
of the WS - * message protocols. MSMQ enabled the queuing of messages, making it easy to work with

508 ❘ chaPTer 13 sERViCEs (xml/wCF)

solutions that were only intermittently connected. Enterprise Services, provided as a successor to COM+,
offered an easy means to build distributed applications. .NET Remoting provided a fast way to move
messages from one .NET application to another. Moreover, this is only the Microsoft world — it does not
include all the options available in other environments, such as the Java world.

With all these options for a Microsoft developer, it became difficult to decide on the best technology for a
solution. Another problematic issue was that almost no one had mastered all of the preceding technologies.
While XML Web Services were becoming something of an interoperability standard, under the heading service-
oriented architecture (SOA), that still left multiple different solutions and all sorts of interoperability issues.
With these challenges in mind, Microsoft brought forth the Windows Communication Foundation (WCF).

WCF is a framework for building services. Originally introduced as part of the .NET 3.0 enhancements,
WCF combines support for several different protocols. Microsoft wanted to provide its developers with
a framework that would offer the fastest means to getting a service solution in place, while remaining somewhat
agnostic of the underlying transport protocol. Using the WCF, you can take advantage of a variety of powerful
protocols under the covers — everything from binary to basic XML Web Services can be supported with the
same implementation. WCF is the successor to a series of different distributed communication technologies.

inTroducTion To serVices
Understanding the history of the search for a decent remote method invocation (RMI) protocol is imperative
to an understanding of why Web services are so important. Each of the RMI systems, created before the
current Web services model, solved a particular set of problems. In this section, you will see how current WCF
services represent the next stage in the evolution of these cross-platform boundaries. While each of these
technologies managed to address one or more issues, all ultimately failed to fully provide a solution.

The network angle
Throughout the history of computing, networking operations were largely handled by the operating
system. UNIX, the networking host of early computing, featured a body of shell operations that provided
remarkable user control over network operations. Personal computing was slower to catch up: Microsoft
and Apple software didn’t inherently support networking protocols until the mid-1990s. Third-party add-
ons by Novell and Banyan were available earlier, but they were only an adjunct to the operating system.
The concept of the network being the computer did not fully infiltrate the development community until the
expansion of the World Wide Web.

application development
Let’s break away from networking for a minute and look at how application development evolved until now.
Early time-sharing operating systems enabled several people to use the same application with its built-in data.
These single-tier systems didn’t allow for growth in the system’s size, and data redundancy became the standard,
with nightly batch jobs to synchronize the data becoming commonplace through the 1970s and early 1980s.

Eventually, the opportunity presented by networks became the overriding factor in systems development,
and enterprise network developers began offering the loosely termed Object Request Brokers (ORBs)
on their systems: Microsoft’s Transaction Server (MTS), Common Object Request Broker Architecture
(CORBA), and the like. These ORBs enabled the separation of the user interface from the business logic
using tightly coupled method pooling. This three-tier architecture brings you to the present in development
terms, so let’s step back and let networking catch up.

merging the network and application development
The HTTP protocol was born in 1990. There were several other information delivery protocols before, such
as Gopher, but HTTP was different because of the extensibility of the related language, HTML, and the
flexibility of the transport layer, TCP/IP. Suddenly, the movement of many data formats was possible in a
stateless, distributed way. Software as a service was born.

Over the next decade, low-level protocols supported by network systems and the Internet became a staple
in applications, with SMTP and FTP providing file and information transfer among distributed servers.
Remote procedure calls (RPCs) took things to the next level, but they were platform specific, with UNIX
implementations in CORBA and Microsoft’s Distributed COM (DCOM) leading the pack.

Enterprise development took a cue from the emerging technologies in wide area network (WAN) networking
and personal computing, and development for these large-scale business systems began to mature. As usage
of networks grew, developers began to solve problems of scalability, reliability, and adaptability with the
traditional flat-format programming model. Multi-tier development began to spread the data, processing,
and user interface of applications over several machines connected by local area networks (LANs).

This made applications more scalable and reliable by accommodating growth and providing redundancy.
Gradually, vendor compliance and the Java programming language provided adaptability, enabling
applications to run in a variety of circumstances on a variety of platforms.

However, there was a dichotomy between the capabilities of the network and the features of the programming
environment. Specifically, after the introduction of XML, there still existed no “killer app” using its power.
XML is a subset of Standard Generalized Markup Language (SGML), an international standard that describes
the relationship between a document’s content and its structure. It enables developers to create their own tags
for hierarchical data transport in an HTML-like format. With HTTP as a transport and Simple Object Access
Protocol SOAP as a protocol, still needed was an interoperable, ubiquitous, simple, broadly supported system
for the execution of business logic throughout the world of Internet application development.

The foundations of Web services
The hunt began with a look at the existing protocols. As had been the case for years, the Microsoft versus
Sun Alliance debate was heating up among RPC programmers. CORBA versus DCOM was a source of
continuing debate for developers using those platforms for distributed object development. After Sun added
Remote Method Invocation to Java with Java-RMI, there were three distributed object protocols that fit
none of the requirements.

Because DCOM and RMI are manufacturer-specific, it makes sense to start with those. CORBA is centrally
managed by the Object Management Group, so it is a special case and should be considered separately.

RMI and DCOM provide distributed object invocation for their respective platforms — extremely
important in this era of distributed networks. Both accommodate enterprise-wide reuse of existing
functionality, which dramatically reduces cost and time-to-market. Both provide encapsulated object
methodology, preventing changes made to one set of business logic from affecting another. Finally, similar
to ORB-managed objects, maintenance and client weight are reduced by the simple fact that applications
using distributed objects are by nature multi-tier.

DCoM
DCOM’s best feature is the fact that it is based on COM, one of the most prevalent desktop object models
in use today. COM components are shielded from one another, and calls between them are so well defined
by the OS-specific languages that there is practically no overhead to the methods. Each COM object is
instantiated in its own space, with the necessary security and protocol providers. When an object in one
process needs to call an object in another process, COM handles the exchange by intercepting the call and
forwarding it through one of the network protocols.

When you use DCOM, all you are doing is making the wire a bit longer. With Windows NT4, Microsoft
added the TCP/IP protocol to the COM network architecture and essentially made DCOM Internet-savvy.
Aside from the setup on the client and server, the inter-object calls are transparent to the client, and even to
the programmer.

Any Microsoft programmer can tell you, though, that DCOM has its problems. First, because there is a
customer wire transport function, most firewalls do not allow DCOM calls to get through, even though
they are by nature quite benign. There is no way to query DCOM about the methods and properties

introduction to services ❘ 509

510 ❘ chaPTer 13 sERViCEs (xml/wCF)

available, unless you have the opportunity to get the source code or request the remote component locally.
In addition, there is no standard data transfer protocol (though that is less of a problem because DCOM is
mostly for Microsoft networks).

As noted, DCOM essentially transitioned to Remoting with the launch of .NET. A fully binary communication
protocol that allowed communication across the wire between .NET components. Remoting did what it was
designed to do, but being limited to .NET-enabled solutions on both ends of the connection also limited its
usefulness in the same way that all of the other binary communication protocols were limited. As part of .NET
3.0 and the introduction of WCF, Remoting is essentially encapsulated in that communication framework.

remote Method invocation in Java
RMI is Sun’s answer to DCOM. Java relies on a really neat, but very proprietary, protocol called Java
Object Serialization, which protects objects marshaled as a stream. The client and server both need to be
constructed in Java for this to work, but it further simplifies RMI because Java doesn’t care whether the
serialization takes place on one machine or across a continent. Similarly to DCOM, RMI enables the object
developer to define an interface for remote access to certain methods.

CorBa
CORBA uses the Internet Inter-ORB Protocol to provide remote method invocation. It is remarkably
similar to Java Object Serialization in this regard. Because it is only a specification, though, it is supported
by a number of languages on diverse operating systems. With CORBA, the ORB does all the work, such as
finding the pointer to the parent, instantiating it so that it can receive remote requests, carrying messages
back and forth, and disputing arbitration and garbage collecting. The CORBA objects use specially designed
sub-ORB objects called basic (or portable) object adapters to communicate with remote ORBs, giving
developers more leeway in code reuse.

At first glance, CORBA would seem to be your ace in the hole. Unfortunately, it doesn’t actually work that
way. CORBA suffers from the same problem Web browsers do — poor implementations of the standards,
which causes lack of interoperability between ORBs. With IE and Netscape, minor differences in the way
pages are displayed is written off as cosmetic. When there is a problem with the CORBA standard, however,
it is a real problem. Not only is appearance affected, but also network interactions, as if there were 15
different implementations of HTTP.

The Problems
The principal problem of the DCOM/CORBA/RMI methods is complexity of implementation. The transfer
protocol of each is based on vendor-specific standards, generally preventing interoperability. In essence, the
left hand has to know what the right hand is doing. This prevents a company using DCOM from communicating
with a company using CORBA.

First, there is the problem of wire format. Each of these three methods uses an OS-specific wire format that
encompasses information supplied only by the operating system in question. This means two diverse machines
cannot usually share information. The benefit is security: Because the client and server can make assumptions
about the availability of functionality, data security can be managed with API calls to the operating system.

The second problem is the number of issues associated with describing the format of the protocol. Apart
from the actual transport layer, there must be a schema, or layout, for the data that moves back and forth.
Each of the three contemporary protocols makes numerous assumptions between the client and server.
DCOM, for instance, provides ADO/RDS for data transport, whereas RMI has JDBC. While we can
endlessly debate the merits of one over the other, we can at least agree that they don’t play well together.

The third problem is knowing where to find broadly available services, even within your own network. We have
all faced the problem of having to call up the COM + MMC panel so that we could remember how to spell this
component or that method. When the method is resident on a server ten buildings away and you don’t have
access to the MMC console, the next step is digging through the text documentation, if there is any.

some other Players
On a path to providing these services, we stumble across a few other technologies. While Java applets and
Microsoft’s client-side ActiveX technically are not distributed object invocations, they do provide distributed
computing and provide important lessons. Fortunately, we can describe both in the same section because they
are largely the same, with different operating systems as their backbone.

Applets and client-side ActiveX are both attempts to use the HTTP protocol to send thick clients to the
end user. In circumstances where a user can provide a platform previously prepared to maintain a thicker-
than-HTML client base to a precompiled binary, the ActiveX and applet protocols pass small applications
to the end user, usually running a Web browser. These applications are still managed by their servers, at
least loosely, and usually provide custom data transmission, utilizing the power of the client to manage the
information distributed, as well as display it.

This concept was taken to the extreme with Distributed Applet-Based Massively Parallel Processing, a
strategy that used the power of the Internet to complete processor-intense tasks, such as 3-D rendering or
massive economic models, with a small application installed on the user’s computer. If you view the Internet
as a massive collection of parallel processors, sitting mostly unused, you have the right idea.

In short, HTTP can provide distributed computing. The problem is that the tightly coupled connection
between the client and server has to go, given the nature of today’s large enterprises. The HTTP angle did
show developers that using an industry-recognized transport method solved problem number one, wire
format. Using HTTP meant that regardless of the network, the object could communicate. The client still
had to know a lot about the service being sent, but the network did not.

The goal? Distributed Object Invocation meets the World Wide Web. The problems are wire format, protocol,
and discovery. The solution is a standards-based, loosely coupled method invocation protocol with a huge
catalog. Microsoft, IBM, and Ariba set out in 1999 to create just that, and generated the RFC for Web services.

Web services
A Web service is a means of exposing application logic or data via standard protocols such as XML or SOAP
(Simple Object Access Protocol). A Web service comprises one or more function endpoints, packaged together
for use in a common framework throughout a network. Web services provide access to information through
standard Internet protocols, such as HTTP/HTTPS. A Web Services Description Language (WSDL) contract is
used to detail the input and output requirements for calling the interface. Consumers of the Web service can
learn about the structure of the data the Web service provides, as well as all the details about how to actually
consume this data, from the WSDL. A WSDL provides a detailed description of the remote interface offered
from the Web service.

This simple concept provides for a very wide variety of potential uses by developers of Internet and intranet
applications alike. Today, the Web services model is often the heart of the next generation of systems
architecture because it is all of the following:

 ➤ Architecturally neutral — Web services do not depend on a proprietary wire format, schema
description, or discovery standard.

 ➤ Ubiquitous — Any service that supports the associated Web service standards can support the service.

 ➤ Simple — Creating Web services is quick and easy. The data schema is human readable. Any
programming language can participate.

 ➤ Interoperable — Because the Web services all conform to the same standards, and use common
communication protocols, they are not concerned about the technology of the application calling them.

In basic terms, a Web service is an interface with an XML document describing all of the methods and
properties available for use by the caller. Any body of code written in just about any programming language
can be described with this XML document, and any application that understands XML (or SOAP) over
the assigned protocol (such as HTTP) can access the object. That’s because the parameters you type after the
function name are passed via XML to the Web service, and because SOAP is an open standard.

introduction to services ❘ 511

512 ❘ chaPTer 13 sERViCEs (xml/wCF)

Web services are remarkably easy to deploy. The power of Web services comes from the use of the WSDL
contract. In addition, Web services are inherently cross-platform, even when created with Microsoft
products. The standard XML schemas are part of the WSDL specification.

The key is that even though this protocol may not be as efficient or fast as some of the binary protocols
of the past, its implementation-agnostic contracts make it more useful. Given that you can create a
communication protocol that is either available for use by 50% of users and which runs superfast versus
one that is available to 100% of users and runs fast, the tendency will be to adopt the solution with greater
reach. Thus, Web services became the interoperability baseline for service communication.

For this reason, they best represent where the Internet is heading — toward an architecturally neutral
collection of devices, rather than millions of PCs surfing the World Wide Web. Encapsulating code so that
you can simply and easily enable cell phones to use your logic is a major boon to developers, even if they do
not realize it yet.

How This all fits Together
Microsoft’s support for Web services really took off with the introduction of .NET. However, support was
available to have Web services run on older operating systems like Windows NT4 SP6, with the SOAP
Toolkit installed.

The .NET Framework encapsulated the Web service protocol into objects. This was great initially, but
as noted earlier, over time it was generally agreed that not every communication needed to be put up as a
HTTP/HTTPS-based service. WCF was the result of Microsoft taking a look at the common concepts from
all of the preceding communication technologies and seeking a unified solution.

While Web services remain one of the most common underlying implementations for WCF services,
the reality is that they are now a subset of what you can do with WCF. Things like the WS-* protocols
become configuration settings; similarly, you can have a single interface that supports multiple different
communication protocols. Thus, the same service that is used with a client that supports a binary transfer
protocol like Remoting can communicate via HTTP protocol for a client that doesn’t support those binary
protocols.

WCF is now an integrated part of the service-oriented architecture strategy. Historically, the starting
place on MSDN for Web Services was http://msdn.microsoft.com/webservices, but that link now
takes you directly to http://msdn.microsoft.com/wcf. It’s not that Web services have gone away or
become less important, it’s simply that Web services are a subset of the complete WCF communication
framework.

The goal of WCF is to provide a loosely coupled, ubiquitous, universal information exchange format.
Toward that end, SOAP is not the only mechanism for communicating with WCF services.

What makes a Wcf service
A WCF service consists of three parts: the service, one or more endpoints, and an environment in which to
host the service.

A service is a class that is written in (or in the case of Interop, wrapped by) one of the .NET-compliant
languages. The class can contain one or more methods that are exposed through the WCF service. A service
can have one or more endpoints, which are used to communicate through the service to the client.

Endpoints themselves are also made up of three parts. These parts are usually defined by Microsoft as the
“ABC” of WCF. Each letter of WCF means something in particular in the WCF model. Similarly,

“A” is for address ➤

“B” is for binding ➤

“C” is for contract ➤

Basically, you can think of this as follows: “A” is the
where, “B” is the how, and “C” is the what. Finally, a
hosting environment is where the service is contained.
This constitutes an application domain and process. All
three of these elements (the service, the endpoints, and
the hosting environment) together create a WCF service
offering, as depicted in Figure 13-1.

The core idea is that when you want to create an
enterprise architecture supporting multiple different
applications, the most appropriate protocol will
vary depending on how a service is currently being
used. Having a unified strategy that allows you,
as a developer, to specify a given endpoint and how
that endpoint communicates means that the same
underlying implementation can power multiple different
endpoints. Thus, questions of security and performance
can be viewed on a per-connection basis. This
enables an organization to create a service-oriented
architecture (SOA).

The larger moVe To soa
Looking at what WCF provides, you will find that it is supporting of a larger move that organizations are
making to the much-discussed SOA. Keep in mind that an SOA is a message-based service architecture that is
vendor-agnostic. This means you have the capability to distribute messages across a system, and the messages
are interoperable with other systems that would otherwise be considered incompatible with the provider system.

Looking back, you can see the gradual progression to the service-oriented architecture model. In the 1980s,
the revolutions arrived amid the paradigm of everything being an object. When object-oriented programming
came on the scene, it was enthusiastically accepted as the proper means to represent entities within a
programming model. The 1990s took that one step further, and the component-oriented model was born. This
enabled objects to be encapsulated in a tightly coupled manner. It was only recently that the industry turned to
a service-oriented architecture, once developers and architects needed to distribute components to other points
in an organization, to their partners, or to their customers. This distribution system needed to have the means
to transfer messages between machines that were generally incompatible with one another. In addition, the
messages had to include the capability to express the metadata about how a system should handle a message.

If you ask 10 people what an SOA is, you’ll probably get 11 different answers, but there are some common
principles that are considered to be the foundation of a service-oriented architecture:

 ➤ Boundaries are explicit — Any data store, logic, or entity uses an interface to expose its data or
capabilities. The interface provides the means to hide the behaviors within the service, and the
interface front-end enables you to change this behavior as required without affecting downstream
consumers.

 ➤ Services are autonomous — All the services are updated or versioned independently of one another.
This means that you don’t upgrade a system in its entirety; instead, each component of these systems
is an individual entity within itself and can move forward without waiting for other components to
progress forward. Note that with this type of model, once you publish an interface, that interface
must remain unchanged. Interface changes require new interfaces (versioned, of course).

 ➤ Services are based upon contracts — All services developed require a contract regarding what is
needed to consume items from the interface (usually done through a WSDL document).

 ➤ Schemas are used to define the data formats — Along with a contract, schemas are required to define
the items passed in as parameters or delivered through the service (using XSD schemas).

Service
method

Service
method

WCF Service

Application Domain

Process

Endpoint
Endpoint
Endpoint

Endpoint
Endpoint
Endpoint

figure 13-1

The larger Move to soa ❘ 513

514 ❘ chaPTer 13 sERViCEs (xml/wCF)

 ➤ Service compatibility that is based upon policy — The final principle enables services to define policies
(decided at runtime) that are required to consume the service. These policies are usually expressed
through WS-Policy. A policy provides consumers with an understanding of what is actually required
to consume a service.

If your own organization is considering establishing an SOA, the WCF is a framework that works on these
principles and makes it relatively simple to implement. The next section looks at what the WCF offers. Then
you can dive into building your first WCF service.

As stated, the Windows Communication Foundation is a means to build distributed applications in a
Microsoft environment. Though the distributed application is built upon that environment, this does not mean
that the consumers are required to be Microsoft clients; nor is any Microsoft component or technology
necessary to accomplish the task of consumption. Conversely, building WCF services means you are also
building services that abide by the principles set forth in the aforementioned SOA discussion, and that these
services are vendor-agnostic — that is, they can be consumed by almost anyone.

WCF is part of the .NET Framework and is available to applications targeting .NET 3.0 or later.

capabilities of Wcf
WCF provides you with the capability to build all kinds of distributed applications. You can build Web
services just as you could previously in earlier .NET Framework releases. This means that your services
will support SOAP, and therefore will be compatible with older .NET technologies, older Microsoft
technologies, and even non-Microsoft technologies (such as any Java-based consumers).

WCF is not limited to pure SOAP over a wire; you can also work with an InfoSet, and create a binary
representation of your SOAP message that can then be sent along your choice of protocol. This is for folks
who are concerned about the performance of their services and have traditionally turned to .NET Remoting
for this binary-based distribution system.

The WCF framework can also work with a message through its life cycle, meaning that WCF can deal
with transactions. Along with distributed transactions, WCF can deal with the queuing of messages, and it
allows for the intermittent connected nature that an application or process might experience across the
web. Of course, what WCF truly provides is a framework to communicate with tools that support many of
these capabilities. It’s not that WCF provides a message store and forward capability so much as it supports
the protocols used in message store and forward.

When you need to get messages from one point to another, the WCF is the big gun in your arsenal to get the
job accomplished. For instance, many developers might consider using WCF primarily to communicate
ASP.NET Web Service-like messages (SOAP) from one disparate system to another, but you can use WCF
for much more than this. For instance, WCF can be used to communicate messages to components
contained on the same machine on which the WCF service is running.

This means you can use WCF to communicate with components contained in different processes on the
same machine. For example the same service might be called by a WPF application using a binary format
within your organization, while the same service may expose an endpoint hosted on a web server and
accessible over the Web via HTTP and SOAP. You use WCF to communicate with components on the same
machine or on another machine — even accepting calls from a client that is not a Microsoft-based machine.

contracts and metadata
Probably the biggest and most exciting part of the WCF model is that it enables you to develop a service
once and then expose that service via multiple endpoints (even endpoints on entirely different protocols) via
simple configuration changes. These changes start with the interface definition. As part of creating a service
you’ll be able to define an Interface and that interface has two top level contracts.

From an implementation standpoint a contract is an attribute that is associated with either an interface or a
class definition. The <Service Contract> is used as part of an interface definition. That interface will expose
a series of <OperationContract> method definitions, which describe what services this service provides.

A Service Contract with at least one operation is required in order to have a service. Without this minimum
definition there isn’t anything to call. The methods within the ServiceContract interface are attributed
with the <OperationContract> to define the various interfaces.

Optionally, if your service is going to accept data types other than primitive types, it needs to provide metadata
to define these data types. A <DataContract> attribute can be associated with one or more classes to define
these custom data structures. An interface does not need to expose any custom data structures, but if it does,
it needs to determine which properties of the class to include in the interface. Each property to be exposed is
associated with a <DataMember> attribute to identify it as part of the DataContract.

Working with the Ws-* Protocols
WCF understands and can work with the full set of WS-* specifications, and these specifications can be
enabled to create messages that meet defined ways of dealing with security, reliability, and transactions.
A few of these protocols and an understanding of how messages are managed are important enough to take
a closer look at their implementation details.

Messages, as defined by the Messaging layer, rely on SOAP (sent as open text or in a binary format). The
advanced WS-* specifications make heavy use of the SOAP header, enabling messages to be self-contained
and not have any real reliance on the transport protocol to provide items such as security, reliability, or any
other capability beyond the simple transmission of the message itself. Message Transmission Optimization
Mechanism (MTOM) is a capability to replace Direct Internet Message Encapsulation (DIME) as a means
to transmit binary objects along with a SOAP message. An example binary object would be a JPEG image
that you want to expose through a WCF service.

The security implementation in WCF enables you to work with WS-Security. Before WS-Security came along,
the initial lack of a security model in Web services kept many companies from massively adopting them
companywide and moving to a service-oriented architecture. WS-Security addresses the main areas that are
required to keep messages secure — credential exchange, message integrity, and message confidentiality.

To do this WS-Security supports implementing security at two levels. The first is at the message level.
WS-Security enables entities to provide and validate credentials within the messages that are exchanged.
Alternatively WS-Security also enables transport level security. This form of security focuses on establishing
credentials based on the transport protocol, for example using HTTPS to securely transmit data.

With message level security WS-Security enables two entities to exchange their security credentials from
within the message itself (actually, from the SOAP header of the message). The great thing about
WS-Security is that it doesn’t require a specific type of credential set to be used. Instead, it allows any type
of credentials to be used. In addition, it is possible to send messages through multiple routers. In effect, this
allows your solution to bounce messages from here to there before they reach their final destination while
ensuring that the messages are not tampered with in transport. As messages move from one SOAP router to
another, these SOAP nodes can make additions to or subtractions from the messages. If such SOAP nodes
were to get into the hands of malicious parties, the integrity of the messages could be compromised. This is
where WS-Security comes into play.

The other area in which WS-Security helps is when you need to have WS-Security encrypt all or part of
your SOAP messages. When your messages are zipping across the virtual world, there is a chance that they
might be intercepted and opened for viewing by parties who should not be looking at their contents. That’s
why it is often beneficial to scramble the contents of the message. When it reaches the intended receiver, the
application can then use your encryption key and unscramble the message to read the contents.

WS-SecureConversation works to establish a connection that enables entities to exchange multiple messages
and maintain their established security arrangements. WS-Trust, conversely, works in conjunction with
WS-Security and allows for the issuance of security tokens and a way in which entities can exchange these
tokens. This specification also deals with establishing trust relationships between two entities.

WS-ReliableMessaging allows for reliable end-to-end communications of messages to ensure that they are
delivered.

The larger Move to soa ❘ 515

516 ❘ chaPTer 13 sERViCEs (xml/wCF)

The Transactions section allows for the use of WS-Coordination and WS-AtomicTransaction.
WS-Coordination is there for the purpose of addressing the description of the relationships that multiple
services have to one another. As a company starts developing a multitude of services within its enterprise,
it realizes that many of the services developed have a relationship with one another, and that’s where
WS-Coordination comes into play. This specification is meant to be expanded by other specifications that
will further define particular coordination types.

WS-AtomicTransaction uses WS-Coordination and WS-Security to allow for the definition of a service
transaction process. An atomic transaction is a way of creating a transaction process that works on an all-
or-nothing basis. These are meant to be short-lived transactions, so when you use them you are locking data
resources and holding onto physical resources such as connections, threads, and memory.

The main point of this discussion is to emphasize the slew of WS-* specifications at your disposal. Even better,
when working with WCF you really don’t have to be aware that these specifications are even there — you can
access the capabilities these specifications offer through programmatic or declarative programming.

Building a Wcf serVice
Building a WCF service is not hard to accomplish. Using Visual Studio 2010, you’ll see the WCF new project
templates shown in Figure 13-2. One word of warning however, in order to host a WCF service you’ll need
to have started Visual Studio with the Run as Administrator menu link. Before attempting to replicate all
of the steps in the sample, make sure you’ve started Visual Studio using the ‘Run as Administrator’ option
from the context menu.

figure 13-2

When you build a WCF project in this manner, the idea is that you build a traditional Class Library that
is compiled down to a DLL that can then be added to another project. The separation of code and use of
multiple projects is a powerful tool for managing complexity on larger projects. That said, though, you can
also just as easily build a WCF service directly in your .NET project, whether that is a console application
or a Windows Forms application.

This example will first create a new WCF service in a Service Library. It then demonstrates how to host
the WCF service inside a console application. Start by creating a new Service Library with the name
ProVB_WCFCalculatorService.

Once you have created your new library project, Visual Studio will look similar to what is shown in
Figure 13-3.

figure 13-3

This example first demonstrates how to build the WCF service. It then demonstrates how to build a console
application that will host this service, and finally demonstrates how to leverage Visual Studio 2010 to test
this service.

creating the interface
To create your service, you need a service contract, which is the interface of the service. This consists of all
the methods exposed, as well as the input and output parameters that are required to invoke the methods.
To accomplish this task, rename the file IService1.vb to ICalculator.vb. Then replace the contents
of the generated file with the code presented here:

<ServiceContract()>
Public Interface ICalculator
 <OperationContract()>
 Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 <OperationContract()>
 Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
 <OperationContract()>
 Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer
 <OperationContract()>
 Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer
End Interface

Code snippet from ICalculator.vb

Building a WCf service ❘ 517

518 ❘ chaPTer 13 sERViCEs (xml/wCF)

This is pretty much the normal interface definition you would expect, but with a couple of new attributes
included. The <ServiceContract()> attribute is used to define the class or interface as the service class,
and it needs to precede the opening declaration of the class or interface.

Within the interface, four methods are defined. Each of these methods is going to be exposed through the
WCF service as part of the service contract, so they all require that the <OperationContract()> attribute
be applied to them.

utilizing the interface
The next step is to create a class that implements the interface. Not only is the new class implementing
the interface defined, it is also implementing the service contract. From Solution Explorer, right-click on the
generated Service1.vb file and rename this file as Calculator.vb. Next, replace the code in this file with
the code that follows:

Public Class Calculator
 Implements ICalculator
 Public Function Add(ByVal a As Integer,
 ByVal b As Integer) As Integer _
 Implements ICalculator.Add
 Return (a + b)
 End Function
 Public Function Subtract(ByVal a As Integer,
 ByVal b As Integer) As Integer _
 Implements ICalculator.Subtract
 Return (a - b)
 End Function
 Public Function Multiply(ByVal a As Integer,
 ByVal b As Integer) As Integer _
 Implements ICalculator.Multiply
 Return (a * b)
 End Function
 Public Function Divide(ByVal a As Integer,
 ByVal b As Integer) As Integer _
 Implements ICalculator.Divide
 Return (a / b)
 End Function
End Class

Code snippet from Calculator.vb

From these new additions, you can see that nothing is done differently with the Calculator class than
what you might do otherwise. It is a simple class that implements the ICalculator interface and provides
implementations of the Add, Subtract, Multiply, and Divide methods.

With the interface and the class available, you now have your WCF service built and ready to go. The next
step is to get the service hosted. This is a simple service. One of the simplicities of the service is that it exposes
only simple types, rather than a complex type. This enables you to build only a service contract and not have
to deal with construction of a data contract. Constructing data contracts is presented later in this chapter.

Hosting the WCf service in a Console application
The next step is to take the service just developed and host it in some type of application process. You have
many available hosting options, including the following:

Console applications ➤

Windows Forms applications ➤

Windows Presentation Foundation applications ➤

Managed Windows Services ➤

Internet Information Services (IIS) 5.1 ➤

Internet Information Services (IIS) 6.0 ➤

Internet Information Services (IIS) 7.0 and the Windows Activation Service (WAS) ➤

As stated earlier, this example hosts the service in a simple console application. There are a couple of ways
to activate hosting — either through the direct coding of the hosting behaviors or through declarative
programming (usually done via the configuration file).

For this example, the console application will define the host through coding the behaviors of the host
environment directly. As mentioned at the start of this sample, in order to host a WCF service this way,
you need to have started Visual Studio with the Run as Administrator menu link. If you are not running as
administrator, you will get a permissions error when the console application attempts to start.

Using the File menu in Visual Studio, select Add ➪
New Project to add a new Console Application to
your solution. Name the new console
application ProVB_ServiceHost. After creating
the new project, right-click the project name in
Solution Explorer and set this project to be the
startup project.

Next, right-click the project and select Add
Reference. You need to add two references for
this console application to act as a service host.
The first will be shown when the Add Reference
dialog opens — it will open to the Projects tab
and you’ll want to add a reference to the
ProVB_WCFCalculatorLibrary. After adding this
reference, open the dialog a second time and switch
to the .NET tab. Scroll down and select System
.ServiceModel.dll as shown in Figure 13-4.

You are now ready to start making changes to the code. The following is the code for the console
application:

Imports System.ServiceModel
Imports System.ServiceModel.Description

Module Module1
 Sub Main()
 Using svcHost As New ServiceHost(_
 GetType(ProVB_WCFCalculatorLibrary.Calculator))
 Dim netBind As New NetTcpBinding(SecurityMode.None)
 svcHost.AddServiceEndpoint(_
 GetType(ProVB_WCFCalculatorLibrary.ICalculator),
 netBind,
 New Uri("net.tcp://localhost:8080/Calculator/"))
 Dim smb As New ServiceMetadataBehavior()
 smb.HttpGetEnabled = True
 smb.HttpGetUrl = New Uri("http://localhost:8000/Calculator")
 svcHost.Description.Behaviors.Add(smb)
 svcHost.Open()
 Console.WriteLine("Press <Enter> to close and end the Service Host")
 Console.ReadLine()
 End Using
 End Sub
End Module

Code snippet from Module1.vb

figure 13-4

Building a WCf service ❘ 519

520 ❘ chaPTer 13 sERViCEs (xml/wCF)

A couple of things are going on in this file. First, in order to gain access to work with any of the WCF
framework pieces, you need a reference to the System.ServiceModel and the System.ServiceModel
.Description namespaces in the file. The System.ServiceModel gives you access to defining things
such as the endpoints that you need to create, while the System.ServiceModel.Description namespace
reference gives you access to defining things such as the WSDL file.

Remember that creating endpoints uses the ABC model (address, binding, and contract). The address part here
is net.tcp://localhost:8080/Calculator. The binding is a TCP binding — NetTcpBinding — while the
contract part is the ICalculator interface.

Many different bindings are available to you when coding WCF services. Here, this example makes use of
the NetTcpBinding. The full list of available bindings is as follows:

System.ServiceModel.BasicHttpBinding ➤

System.ServiceModel.Channels.CustomBinding ➤

System.ServiceModel.MsmqBindingBase ➤

System.ServiceModel.NetNamedPipeBinding ➤

System.ServiceModel.NetPeerTcpBinding ➤

System.ServiceModel.NetTcpBinding ➤

System.ServiceModel.WebHTTPBinding ➤

System.ServiceModel.WSDualHttpBinding ➤

System.ServiceModel.WSHttpBindingBase ➤

Clearly, several bindings are available. In the preceding example, the NetTcpBinding class is the transport
pipe being used. This means that the service being built will be delivered over TCP. At this point your
development environment should look similar to what is shown in Figure 13-5. However, before running the
new console, let’s look at the various commands it will use to host your custom service.

figure 13-5

In the first step of the example, for the console-application code, a ServiceHost object is established:

Using svcHost As New ServiceHost(_
 GetType(ProVB_WCFCalculatorLibrary.Calculator))

By working with the Using keyword, when the End Using statement is encountered, the ServiceHost
object is destroyed. In the creation of the host, the Calculator type is assigned. From there, the endpoint
is established. In this case, a NetTcpBinding object is created with a security setting of None through the
command SecurityMode.None:

Dim netBind = New NetTcpBinding(SecurityMode.None)

This means that no security is applied to the message. The other options include Message, Transport,
and TransportWithMessageCredential. The Message option signifies that the security credentials
will be included in the message (in the SOAP header, for instance), whereas the Transport option
indicates that the transport protocol provides the security implementation. The last option,
TransportWithMessageCredential, means that the message contains some security credentials along with
the transport protocol security provided by the transport protocol.

Once the NetTcpBinding object is in place, the next step is to finalize the endpoint creation. This is done
through the use of the ServiceHost object’s AddServiceEndpoint method:

 svcHost.AddServiceEndpoint(_
 GetType(ProVB_WCFCalculatorLibrary.ICalculator),
 netBind,
 New Uri("net.tcp://localhost:8080/Calculator/"))

From this, you can see that the entire ABC statement is used in the creation of the endpoint, although
not necessarily in ABC order; in fact, the first item defined is actually the “C” — the contract. This is
done through the GetType(ICalculator)setting. The “B” is next (the binding) with the reference to the
NetTcpBinding object. Then, finally, the “A” is defined through an instantiation of a Uri object pointing to
net.tcp://localhost:8080/Calcuator/.

The next step is a process to bring forth the WSDL document so that it can be viewed by the developer
consuming this service:

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/calculator")
serviceHost.Description.Behaviors.Add(smb)

This bit of code is the reason why the System.ServiceModel.Description namespace is imported into the
file at the beginning. Here, a ServiceMetadataBehavior object is created, the object’s HttpGetEnabled
property is set to True, and the HttpGetUrl property is provided an address of http://localhost:8000/
calculator. The documents can be located anywhere you like.

After the ServiceMetadataBehavior object is created as you wish, the next step is to associate this object
with the ServiceHost through the serviceHost.Description.Behaviors.Add method.

After all of these items are defined — you only need to open the ServiceHost for business, using the
serviceHost.Open method. The console application is kept alive through the use of a Console.ReadLine
method call, which waits for the end user to press the Enter key before shutting down the application. You
want the Console.ReadLine command there because you want to keep the host open.

Compiling and running this application produces the results illustrated in Figure 13-6. Note that you
may initially get a firewall warning when you run this application, but you’ll want to allow access for this
application to communicate (at least locally) through your local firewall. Additionally, if you didn’t start
Visual Studio with Administrator rights as noted at the beginning of this step, you’ll get a runtime error
related to permissions.

Building a WCf service ❘ 521

522 ❘ chaPTer 13 sERViCEs (xml/wCF)

Keep in mind that your service is only available for as long as that console window is open and active; when
you close the console you are stopping the listener for your new service.

reviewing the Wsdl document
The preceding console-application code provides an instantiation of the ServiceMetadataBehavior
object and defines a Uri object for it as well. You can simply type in that address to get at the WSDL file
for the service you just built. Therefore, calling http://localhost:8000/calculator from your browser
provides the WSDL file shown in Figure 13-7.

figure 13-6

figure 13-7

With this WSDL file, you can now consume the service it defines through TCP. Note the following element
at the bottom of the document:

<wsdl:service name="Calculator">
 <wsdl:port name="NetTcpBinding_ICalculator"
 binding="tns:NetTcpBinding_ICalculator">
 <soap12:address location="net.tcp://localhost:8080/Calculator/" />
 <wsa10:EndpointReference>
 <wsa10:Address>net.tcp://localhost:8080/Calculator/</wsa10:Address>
 </wsa10:EndpointReference>
 </wsdl:port>
</wsdl:service>

This element in the XML document indicates that in order to consume the service, the end user needs to use
SOAP 1.2 over TCP. This is presented through the use of the <soap12:address> element in the document.
The <wsa10:EndpointReference> is a WS-Addressing endpoint definition.

Using this simple WSDL document, you can now build a consumer that makes use of this interface. Just as
important, you have created not only a service that meets the standards for a Web service, but also a custom
host that is communicating via standard protocols.

Building a Wcf consumer
Now that a TCP service is out there, which you built using the WCF framework, the next step is to build a
consumer application that uses the simple Calculator service. The consumer sends its request via TCP using
SOAP. Using TCP means that the consumption can actually occur with a binary encoding of the SOAP
message on the wire, substantially decreasing the size of the payload being transmitted.

This section describes how to consume this service. You have two options at this point: You can open a second
instance of Visual Studio 2010 and create a new Windows Forms project to reference your service or you can
add a new Windows Forms project to your current solution. For simplicity, this example uses the latter.

The only difference in terms of what is needed occurs as part of adding a reference to the service. If you create
your application in a new solution, then in order to add the reference you’ll need to have a copy of the service
running. To that end, after you add a new solution called ProVB_WCFCalculatorClient you can start the add
reference process.

adding a service reference
Right-click on the project name in the Solution Explorer and select Add Service Reference from the dialog.

After selecting Add Service Reference, you are presented with the dialog shown in Figure 13-8. The selections you
make within this dialog, and to some extent what you’ll get at the other end, depends on how you’ve approached
creating your project. Let’s start with what you need to do if you have your client in a separate solution.

The Add Service Reference dialog asks you for two things: the Service URI (basically a pointer to the WSDL
file) and the name you want to give to the reference. The name you provide the reference is the name that
will be used for the instantiated object that enables you to interact with the service.

Referring to Figure 13-8, you can see that the name provided for the Address text box is http://
localhost:8000/calculator. Remember that this is the location you defined earlier when you built the
service. This URI was defined in code directly in the service:

Dim smb As New ServiceMetadataBehavior()
smb.HttpGetEnabled = True
smb.HttpGetUrl = New Uri("http://localhost:8000/calculator")
serviceHost.Description.Behaviors.Add(smb)

Manually entering that URL is the difference between having your client in a separate solution and what we
are about to do for a client in the same solution. Since in this case you are working with a service within the
same solution, you are going to use the Discover button. The Discover button has a single option: Services in
Solution. Using this button will trigger Visual Studio to look at the current solution, locate any services, and
dynamically create a host for that service.

Building a WCf Consumer ❘ 523

524 ❘ chaPTer 13 sERViCEs (xml/wCF)

This is a great feature of Visual Studio 2010, as it recognizes and supports the developer who needs to
implement and test a WCF Service. Instead of needing that production URL, which you would need
to track, it will simply create a runtime reference. Figure 13-9 illustrates the Add Service Reference dialog
after having located the local service using the Discover button.

figure 13-8

figure 13-9

 Notice that by expanding the top - level Calculator node within
the Services pane in Figure 13 - 9, a single interface is exposed, and
selecting that interface populates the available operations in the
Operations pane.

 Rename the service reference to CalculatorService from
ServiceReference1 (refer to Figure 13 - 9). Press the OK button in the
Add Service Reference dialog.

 Finally, a quick best practices note concerning the address. For this
example and as a tester, you will of course have a generated or test
URI. When the application is ready to deploy, you want this URI to
refl ect production. The best practice is to have a custom confi guration
setting in your app.config (or web.config) fi le that is updated with
the production URI. This application setting is read at runtime, and
then after the service reference is created, its uri property is updated
with the correct value from the application confi guration fi le.

 reviewing the reference
 You ’ ve now added a Service References folder to your project,
which contains the proxy details for your Calculator service. This
proxy is a collection of fi les, as shown in Figure 13 - 10. Note that
you ’ ll need to show all the fi les in order to see the fi les shown in
Figure 13 - 10.

 Digging down into these fi les, you will fi nd Reference.svcmap and Reference.vb . The other important
addition to note is the System.ServiceModel reference, made for you in the References folder.

 Looking at the Reference.svcmap fi le, you can see that it is a simple XML fi le that provides some
information about where the WSDL fi le is located, as well as the location of the service (referenced through
the configuration.svcinfo fi le):

 < ?xml version="1.0" encoding="utf-8"? >
 < ReferenceGroup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 ID="db9d4ff8-090f-433b-880e-617eee3924ed"
 xmlns="urn:schemas-microsoft-com:xml-wcfservicemap" >
 < ClientOptions >
 < GenerateAsynchronousMethods > false < /GenerateAsynchronousMethods >
 < EnableDataBinding > true < /EnableDataBinding >
 < ExcludedTypes / >
 < ImportXmlTypes > false < /ImportXmlTypes >
 < GenerateInternalTypes > false < /GenerateInternalTypes >
 < GenerateMessageContracts > false < /GenerateMessageContracts >
 < NamespaceMappings / >
 < CollectionMappings / >
 < GenerateSerializableTypes > true < /GenerateSerializableTypes >
 < Serializer > Auto < /Serializer >
 < UseSerializerForFaults > true < /UseSerializerForFaults >
 < ReferenceAllAssemblies > true < /ReferenceAllAssemblies >
 < ReferencedAssemblies / >
 < ReferencedDataContractTypes / >
 < ServiceContractMappings / >
 < /ClientOptions >

 The port shown in Figure 13 - 9 was randomly generated by Visual Studio. Running this
code locally, you can expect to see a different port generated.

 figure 13 - 10

Building a WCf Consumer ❘ 525

526 ❘ chaPTer 13 sERViCEs (xml/wCF)

 <MetadataSources>
 <MetadataSource Address="http://localhost:8732/Design_Time_Addresses/
 ProVB_WCFCalculatorLibrary/Service1/mex"
 Protocol="mex" SourceId="1" />
 </MetadataSources>
 <Metadata>
 <MetadataFile FileName="service.wsdl" MetadataType="Wsdl"
 ID="849df155-c852-41ae-99cf-730f184b9b72" SourceId="1"
 SourceUrl="http://localhost:8732/Design_Time_Addresses/
 ProVB_WCFCalculatorLibrary/Service1/mex" />
 <MetadataFile FileName="service.xsd" MetadataType="Schema"
 ID="10793301-16af-4981-ac16-b09e798357a6" SourceId="1"
 SourceUrl="http://localhost:8732/Design_Time_Addresses/
 ProVB_WCFCalculatorLibrary/Service1/mex" />
 <MetadataFile FileName="service1.xsd" MetadataType="Schema"
 ID="669fdea8-5375-4987-8922-bc2910d40492" SourceId="1"
 SourceUrl="http://localhost:8732/Design_Time_Addresses/
 ProVB_WCFCalculatorLibrary/Service1/mex" />
 </Metadata>
 <Extensions>
 <ExtensionFile FileName="configuration91.svcinfo" Name="configuration91.svcinfo" />
 <ExtensionFile FileName="configuration.svcinfo" Name="configuration.svcinfo" />
 </Extensions>
</ReferenceGroup>

Code snippet from Reference.svcmap

This file provides the capability to later update the reference to the service if needed, due to a change in the
service interface. You can see this capability by right-clicking on the CalculatorService reference; an
Update Service Reference option appears in the provided menu.

The other file in the reference collection of files, the Reference.vb file, is your proxy to interact with the
service. This file is presented here:

Option Strict On
Option Explicit On
Namespace CalculatorService

 <System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0"), _
 System.ServiceModel.ServiceContractAttribute(
 ConfigurationName:="CalculatorService.ICalculator")> _
 Public Interface ICalculator

 <System.ServiceModel.OperationContractAttribute(
 Action:="http://tempuri.org/ICalculator/Add",
 ReplyAction:="http://tempuri.org/ICalculator/AddResponse")> _
 Function Add(ByVal a As Integer, ByVal b As Integer) As Integer

 <System.ServiceModel.OperationContractAttribute(
 Action:="http://tempuri.org/ICalculator/Subtract",
 ReplyAction:="http://tempuri.org/ICalculator/SubtractResponse")> _
 Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer

 <System.ServiceModel.OperationContractAttribute(
 Action:="http://tempuri.org/ICalculator/Multiply",
 ReplyAction:="http://tempuri.org/ICalculator/MultiplyResponse")> _
 Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer

 <System.ServiceModel.OperationContractAttribute(
 Action:="http://tempuri.org/ICalculator/Divide",
 ReplyAction:="http://tempuri.org/ICalculator/DivideResponse")> _
 Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer

 End Interface

 <System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")> _
 Public Interface ICalculatorChannel
 Inherits CalculatorService.ICalculator, System.ServiceModel.IClientChannel
 End Interface

 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")> _
 Partial Public Class CalculatorClient
 Inherits System.ServiceModel.ClientBase(Of CalculatorService.ICalculator)
 Implements CalculatorService.ICalculator

 Public Sub New()
 MyBase.New
 End Sub

 Public Sub New(ByVal endpointConfigurationName As String)
 MyBase.New(endpointConfigurationName)
 End Sub

 Public Sub New(ByVal endpointConfigurationName As String,
 ByVal remoteAddress As String)
 MyBase.New(endpointConfigurationName, remoteAddress)
 End Sub

 Public Sub New(ByVal endpointConfigurationName As String,
 ByVal remoteAddress As System.ServiceModel.EndpointAddress)
 MyBase.New(endpointConfigurationName, remoteAddress)
 End Sub

 Public Sub New(ByVal binding As System.ServiceModel.Channels.Binding,
 ByVal remoteAddress As System.ServiceModel.EndpointAddress)
 MyBase.New(binding, remoteAddress)
 End Sub

 Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Implements CalculatorService.ICalculator.Add
 Return MyBase.Channel.Add(a, b)
 End Function

 Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
 Implements CalculatorService.ICalculator.Subtract
 Return MyBase.Channel.Subtract(a, b)
 End Function

 Public Function Multiply(ByVal a As Integer, ByVal b As Integer) As Integer
 Implements CalculatorService.ICalculator.Multiply
 Return MyBase.Channel.Multiply(a, b)
 End Function

 Public Function Divide(ByVal a As Integer, ByVal b As Integer) As Integer
 Implements CalculatorService.ICalculator.Divide
 Return MyBase.Channel.Divide(a, b)
 End Function
 End Class
End Namespace

Code snippet from Reference.vb

Here, an interface is defining the four methods and the implementing class CalculatorClient, which
contains the functions that, in turn, call the service built earlier in the chapter.

Building a WCf Consumer ❘ 527

528 ❘ chaPTer 13 sERViCEs (xml/wCF)

configuration file changes
Another addition to your project is the app.config file. After the service reference is made, the
app.config file contains several new configuration settings. These configuration settings were
automatically added by the Visual Studio WCF extensions. The new app.config file is presented in the
following code block:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0,Profile=Client" />
 </startup>
 <system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding_ICalculator" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00"
 sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true"
 allowCookies="false">
 <readerQuotas maxDepth="32" maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:10:00"
 enabled="false" />
 <security mode="Message">
 <transport clientCredentialType="Windows"
 proxyCredentialType="None"
 realm="" />
 <message clientCredentialType="Windows"
 negotiateServiceCredential="true"
 algorithmSuite="Default" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>
 <client>
 <endpoint address= "http://localhost:8732/Design_Time_Addresses/
 ProVB_WCFCalculatorLibrary/Service1/"
 binding="wsHttpBinding" bindingConfiguration=
 "WSHttpBinding_ICalculator"
 contract="CalculatorService.ICalculator"
 name="WSHttpBinding_ICalculator">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
</configuration>

Code snippet from app.config

There are two important parts to this file. First, the information in the wsHttpBinding section is important
because this defines behaviors such as the timeouts and the maximum amount of data that can be placed in
a message. It is not uncommon for these defaults to prevent people from successfully sending messages and
cause great confusion. Note that if you right-click on your service reference, another context menu option is

to Configure Your Service Reference. This key dialog enables you to edit these values to reflect your service’s
specific needs.

The second important part of this configuration document is the <client> element. This element contains a
child element called <endpoint> that defines the where and how of the service consumption process.

The <endpoint> element provides the address of the service — and it specifies which binding of the
available WCF bindings should be used. In this case, the wsHttpBinding is the required binding. Although
you are using an established binding from the WCF framework, from the client side you can customize
how this binding behaves. As noted, the settings that define the behavior of the binding are specified using
the bindingConfiguration attribute of the <endpoint> element. In this case, the value provided to the
bindingConfiguration attribute is WSHttpBinding_ICalculator, which is a reference to the <binding>
element contained within the <wsHttpBinding> element:

<binding name="WSHttpBinding_ICalculator" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true"
 allowCookies="false">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" />
 <security mode="Message">
 <transport clientCredentialType="Windows" proxyCredentialType="None"
 realm="" />
 <message clientCredentialType="Windows" negotiateServiceCredential="true"
 algorithmSuite="Default" />
 </security>
</binding>

Note one important distinction here. If instead of using the built-in Visual Studio test engine to test your
service declaration, you bound to the custom client, you would find that this configuration file would be
subtly different. Instead of having a wsHttpBinding, you would have a netTCP binding. This binding
would have different setting defaults and, more important, indicate a different transport protocol for your
requests. If you play with these two different bindings, you’ll find that the binary format used by netTCP
responds much more quickly than the wsHttpBinding that Visual Studio has generated for you.

As demonstrated, the Visual Studio 2010 capabilities for WCF make the consumption of these services
fairly trivial. The next step is to code the Windows Forms project to test the consumption of the service
interface.

Writing the consumption code
The code to consume the interface is quite minimal. End users will merely select the radio button of the
operation they want to perform. The default radio button selected is Add. The user places a number in each of
the two text boxes provided and clicks the Calculate button to call the service to perform the designated
operation on the provided numbers.

To accomplish this, add two text boxes, four radio buttons, one button, and one label to your form. The
display (for labeling the controls) should look similar to what is shown in Figure 13-11. Next, you want to
create two event handlers; the first is on Form Load to pre-populate the text boxes with default numbers
(to speed testing), and the second is an event handler for the button you’ve labeled Calculate.

Clicking the Calculate button will create an instance of the service and then open a connection and make
the appropriate call. In a production environment, you might keep a static instance of the service available
in your application so you could create it once instead of for each event. Similarly, you’ll want to follow the
best practice mentioned earlier of assigning the URI at runtime based on an application setting.

Building a WCf Consumer ❘ 529

530 ❘ chaPTer 13 sERViCEs (xml/wCF)

The code for the form is as follows:

Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles MyBase.Load
 TextBox1.Text = 21
 TextBox2.Text = 21
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim result As Integer
 Dim ws As New CalculatorService.CalculatorClient()
 ws.Open()
 If RadioButton1.Checked = True Then
 result = ws.Add(Integer.Parse(TextBox1.Text), Integer.Parse(TextBox2.Text))
 ElseIf RadioButton2.Checked = True Then
 result = ws.Subtract(Integer.Parse(TextBox1.Text),
 Integer.Parse(TextBox2.Text))
 ElseIf RadioButton3.Checked = True Then
 result = ws.Multiply(Integer.Parse(TextBox1.Text),
 Integer.Parse(TextBox2.Text))
 ElseIf RadioButton4.Checked = True Then
 result = ws.Divide(Integer.Parse(TextBox1.Text),
 Integer.Parse(TextBox2.Text))
 End If
 ws.Close()
 Label1.Text = result.ToString()
 End Sub

End Class

Code snippet from Form1.vb

This is quite similar to the steps taken when working with Web references from the XML Web Services
world. First is an instantiation of the proxy class, as shown with the creation of the svc object:

Dim ws As New CalculatorService.CalculatorClient()

figure 13-11

Working with the ws object now, the IntelliSense options
provide you with the appropriate Add, Subtract, Multiply,
and Divide methods. Running this application provides
results similar to those presented in Figure 13-12.

In this case, the Add method is invoked from the service when
the form’s Calculate button is pressed.

Another best practice is to get a tool such as Fiddler2 to track
communication with your service. (www.fiddler2.com/
fiddler2/) This free tool enables you to view messages sent
across a HTTP/HTTPS.

Note that while this tool will work if you’ve used Visual Studio to configure your testing to be transported
via HTTP, if you’ve relied on the custom client, you’ll find that the requests are instead sent as binary data
over TCP and are not available to Fiddler2.

Using a binding to the custom client means the requests and responses are sent over TCP as binary,
dramatically decreasing the size of the payload for large messages. This is something that .NET Remoting
was used for prior to the release of the WCF framework.

This concludes the short tutorial demonstrating how to build a single service that can support two different
endpoints. Visual Studio 2010 can generate one such endpoint, which is based on the same XML and open
standards as a traditional Web service. The other you built manually into your command-line application to
support the TCP protocol and binary data transfer. Depending on how you map that service to your client,
you can consume the service as either an XML-based data transfer or a binary data transfer that can map
directly into your .NET Windows Forms application.

WorKing WiTh daTa conTracTs
In the preceding sample WCF service, the data contract depended upon simple types or primitive data types.
A .NET type of Integer was exposed, which in turn was mapped to an XSD type of int. You might not
have noticed the input and output types actually defined in the WSDL document that was provided via the
WCF-generated one, but they are there. These types are exposed through an imported .xsd document (a
dynamic document). This bit of the WSDL document is presented here:

<wsdl:types>
 <xsd:schema targetNamespace="http://tempuri.org/Imports">
 <xsd:import schemaLocation="http://localhost:8000/calculator?xsd=xsd0"
 namespace="http://tempuri.org/" />
 <xsd:import schemaLocation="http://localhost:8000/calculator?xsd=xsd1"
 namespace="http://schemas.microsoft.com/2003/10/Serialization/" />
 </xsd:schema>
</wsdl:types>

Typing in the XSD location of http://localhost:8000/calculator?xsd=xsd0 gives you the input and
output parameters of the service. For instance, looking at the definition of the Add method, you will see the
following bit of XML:

<xs:element name="Add">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" name="a" type="xs:int" />
 <xs:element minOccurs="0" name="b" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="AddResponse">
 <xs:complexType>

figure 13-12

Working with Data Contracts ❘ 531

532 ❘ chaPTer 13 sERViCEs (xml/wCF)

 <xs:sequence>
 <xs:element minOccurs="0" name="AddResult" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Code snippet from ProVB_WCFCalculatorClient\Service References\CalculatorService\service.xsd

This XML code indicates that there are two required input parameters (a and b) that are of type int; in
return, the consumer gets an element called <AddResult>, which contains a value of type int.

As a builder of this WCF service, you didn’t have to build the data contract, mainly because this service uses
simple types. When using complex types, you have to create a data contract in addition to your service contract.

Building a service with a data contract
For an example of working with data contracts, you can create a new WCF service (again within a Console
Application project) called ProVB_WCFWithDataContract. As with the other samples this solution is
available as part of the online code download. In this case, you still need an interface that defines your
service contract, and then another class that implements that interface. In addition to these items, you need
another class that defines the data contract.

Like the service contract, which makes use of the <ServiceContract()> and the <OperationContract()>
attributes, the data contract uses the <DataContract()> and <DataMember()> attributes. To gain access to
these attributes, you have to make a reference to the System.Runtime.Serialization namespace in your
project and import this namespace into the file.

The full WCF interface definition located in IHelloCustomer.vb in the code download is presented here:

<ServiceContract()> _
Public Interface IHelloCustomer
 <OperationContract()> _
 Function HelloFirstName(ByVal cust As Customer) As String
 <OperationContract()> _
 Function HelloFullName(ByVal cust As Customer) As String
End Interface

<DataContract()> _
Public Class Customer
 <DataMember()> _
 Public FirstName As String
 <DataMember()> _
 Public LastName As String
End Class

Code snippet from IHelloCustomer.vb

Similarly, the project contains the file HelloCustomer.vb, which contains the implementation class. The
code for that file follows:

Public Class HelloCustomer
 Implements IHelloCustomer
 Public Function HelloFirstName(ByVal cust As Customer) As String _
 Implements IHelloCustomer.HelloFirstName
 Return "Hello " & cust.FirstName
 End Function
 Public Function HelloFullName(ByVal cust As Customer) As String _
 Implements IHelloCustomer.HelloFullName
 Return "Hello " & cust.FirstName & " " & cust.LastName
 End Function
End Class

Code snippet from HelloCustomer.vb

namespaces ❘ 533

This class, the Customer class, has two members: FirstName and LastName. Both of these properties are of
type String. You specify a class as a data contract as part of the interface definition through the use of the
<DataContract()> attribute:

<DataContract()> _
Public Class Customer
 ' Code removed for clarity
End Class

Now, any of the properties contained in the class are also part of the data contract through the use of the
<DataMember()> attribute:

<DataContract()> _
Public Class Customer
 <DataMember()> _
 Public FirstName As String
 <DataMember()> _
 Public LastName As String
End Class

Finally, the Customer object is used in the interface, as well as the class that implements the
IHelloCustomer interface.

namesPaces
Note that the services built in the chapter have no defined namespaces. If you looked at the WSDL files that
were produced, you would see that the namespace provided is http://tempuri.org. Obviously, you do not
want to go live with this default namespace. Instead, you need to define your own namespace.

To accomplish this task, the interface’s <ServiceContract()> attribute enables you to set the namespace:

<ServiceContract(Namespace:="http://www.Wrox.com/ns/")> _
Public Interface IHelloCustomer
 <OperationContract()> _
 Function HelloFirstName(ByVal cust As Customer) As String
 <OperationContract()> _
 Function HelloFullName(ByVal cust As Customer) As String
End Interface

Code snippet from ProVB_WCFWithDataContract\IHelloCustomer.vb

Here, the <ServiceContract()> attribute uses the Namespace property to provide a namespace.

Building the host
The next step is the same as before: Create a new Console Application project to act as the WCF service
host. Name the new project ProVB_WCFWithDataContractHost and change the Module1.vb file so that
it becomes the host of the WCF service you just built. Keep in mind that you’ll need to add the appropriate
project reference and System.ServiceModel references to the code. Once that is complete, the updated
code will look similar to the following:

Imports System.ServiceModel
Imports System.ServiceModel.Description

Module Module1
 Sub Main()
 Using svcHost =
 New ServiceHost(GetType(ProVB_WCFWithDataContract.HelloCustomer))
 Dim netBind = New NetTcpBinding(SecurityMode.None)
 svcHost.AddServiceEndpoint(GetType(ProVB_WCFWithDataContract.IHelloCustomer),
 netBind,

534 ❘ chaPTer 13 sERViCEs (xml/wCF)

 New Uri("net.tcp://localhost:8080/HelloCustomer/"))
 Dim smb = New ServiceMetadataBehavior()
 smb.HttpGetEnabled = True
 smb.HttpGetUrl = New Uri("http://localhost:8000/HelloCustomer")
 svcHost.Description.Behaviors.Add(smb)
 svcHost.Open()
 Console.WriteLine("Press the <ENTER> key to close the host.")
 Console.ReadLine()
 End Using
 End Sub
End Module

Code snippet from ProVB_WCFWithDataContractHost \module1.vb

This host uses the IHelloCustomer interface and builds an endpoint at net.tcp://localhost:8080/
HelloCustomer. This time, however, we’ll have this running when we map our interface so you can see an
example of the TCP binding. Build your solution and show all files in the Solution Explorer for your host
project. You can then see the bin folder for your project, which contains the Debug folder. Right-click the
Debug folder and from the context menu select Open Folder in Windows Explorer.

This should give you a view similar to what is shown in Figure 13-13. Right-click on ProVB_
WCFWithDataContractHost and run your application as Administrator (you may be prompted to resolve a
firewall issue and to confirm that you want to elevate the privileges of this process) to start your WCF host
outside of Visual Studio. By starting this application outside of Visual Studio, you can directly reference the
TCP-based binding you created as part of your host console from the Add Service Reference dialog. Just
leave this running in the background as you continue this example.

figure 13-13

Building the consumer
Now that the service is running and in place, the next step is to build the consumer. To begin, add a new
Console Application project to your Service Library solution called ProVB_HelloWorldConsumer. Right-
click on the project and select Add Service Reference from the options provided. In short you are going to
create another copy of the service host created in the previous example.

From the Add Service Reference dialog, target your custom service host by entering http://
localhost:8000/HelloCustomer as the service URI. Then simply rename the default ServiceReference1
with the name HelloCustomerService as shown in Figure 13-14.

namespaces ❘ 535

This will add the changes to the references and the app.config file just as before, enabling you to consume
the service. You can use the steps to create the service host from the first sample, but update the connections
to reference the new service. The following code shows what is required:

Module Module1
 Sub Main()
 Dim svc As New HelloCustomerService.HelloCustomerClient()
 Dim cust As New HelloCustomerService.Customer()
 Dim result As String
 svc.Open()
 Console.WriteLine("What is your first name?")
 cust.FirstName = Console.ReadLine()
 Console.WriteLine("What is your last name?")
 cust.LastName = Console.ReadLine()
 result = svc.HelloFullName(cust)
 svc.Close()
 Console.WriteLine(result)
 Console.ReadLine()
 End Sub
End Module

Code snippet from ProVB_HelloWorldConsumer\Module1.vb

As a consumer, once you make the reference, the service reference doesn’t just provide a HelloCustomerClient
object; you will also find the Customer object that was defined through the service’s data contract.

Therefore, the preceding code block just instantiates both of these objects and builds the Customer object
before it is passed into the HelloFullName method provided by the service. Running this bit of code will
return the results shown in Figure 13-15.

figure 13-14

536 ❘ chaPTer 13 sERViCEs (xml/wCF)

looking at Wsdl and the schema for hellocustomerservice
After you made the reference to the HelloCustomer service, it was possible for you to review the WSDL in your
new reference. With the Solution Explorer showing all files, you’ll see the HelloCustomer1.wsdl within
your solution. You can open this file to look at the WSDL, where you will find the following XSD imports:

 <wsdl:types>
 <xsd:schema targetNamespace="http://www.Wrox.com/ns/Imports">
 <xsd:import schemaLocation="http://localhost:8000/HelloCustomer?xsd=xsd0"
 namespace="http://www.Wrox.com/ns/" />
 <xsd:import schemaLocation="http://localhost:8000/HelloCustomer?xsd=xsd1"
 namespace="http://schemas.microsoft.com/2003/10/Serialization/" />
 <xsd:import schemaLocation="http://localhost:8000/HelloCustomer?xsd=xsd2"
 namespace="http://schemas.datacontract.org/2004/07/
 ProVB_WCFWithDataContract" />
 </xsd:schema>
 </wsdl:types>

Code snippet from ProVB_HelloWorldConsumer\Service References\HelloCustomerService\HelloCustomer1.wsdl

http://localhost:8000/HelloCustomer?xsd=xsd2 provides the details about your Customer object.
The code from the file HelloCustomer2.xsd, which is part of your reference definition, is shown here:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
 xmlns:tns="http://schemas.datacontract.org/2004/07/ProVB_WCFWithDataContract"
 elementFormDefault="qualified"
 targetNamespace=
 "http://schemas.datacontract.org/2004/07/ProVB_WCFWithDataContract"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="Customer">
 <xs:sequence>
 <xs:element minOccurs="0" name="FirstName" nillable="true"
 type="xs:string" />
 <xs:element minOccurs="0" name="LastName" nillable="true"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Customer" nillable="true" type="tns:Customer" />
</xs:schema>

Code snippet from ProVB_HelloWorldConsumer\Service References\HelloCustomerService\HelloCustomer2.xsd

This is an XSD description of the Customer object. Making a reference to the WSDL that includes the XSD
description of the Customer object causes the auto-generated proxy class (located in the file Reference.vb)
to create the following class as part of the proxy (this code follows the Namespace declaration in the
downloadable sample):

 <System.Diagnostics.DebuggerStepThroughAttribute(), _
System.CodeDom.Compiler.GeneratedCodeAttribute("System.Runtime.Serialization" _
 , "4.0.0.0"), _
 System.Runtime.Serialization.DataContractAttribute(Name:="Customer", _

figure 13-15

namespaces ❘ 537

 [Namespace]:= _
 "http://schemas.datacontract.org/2004/07/ProVB_WCFWithDataContract"), _
 System.SerializableAttribute()> _
 Partial Public Class Customer
 Inherits Object
 Implements System.Runtime.Serialization.IExtensibleDataObject,
 System.ComponentModel.INotifyPropertyChanged
 <System.NonSerializedAttribute()> _
 Private extensionDataField As _
 System.Runtime.Serialization.ExtensionDataObject

 <System.Runtime.Serialization.OptionalFieldAttribute()> _
 Private FirstNameField As String

 <System.Runtime.Serialization.OptionalFieldAttribute()> _
 Private LastNameField As String

 <Global.System.ComponentModel.BrowsableAttribute(false)> _
 Public Property ExtensionData() As _
 System.Runtime.Serialization.ExtensionDataObject _
 Implements System.Runtime.Serialization.IExtensibleDataObject.ExtensionData
 Get
 Return Me.extensionDataField
 End Get
 Set
 Me.extensionDataField = value
 End Set
 End Property

 <System.Runtime.Serialization.DataMemberAttribute()> _
 Public Property FirstName() As String
 Get
 Return Me.FirstNameField
 End Get
 Set
 If (Object.ReferenceEquals(Me.FirstNameField, value) <> _
 true) Then
 Me.FirstNameField = value
 Me.RaisePropertyChanged("FirstName")
 End If
 End Set
 End Property

 <System.Runtime.Serialization.DataMemberAttribute()> _
 Public Property LastName() As String
 Get
 Return Me.LastNameField
 End Get
 Set
 If (Object.ReferenceEquals(Me.LastNameField, value) <> _
 true) Then
 Me.LastNameField = value
 Me.RaisePropertyChanged("LastName")
 End If
 End Set
 End Property

Code snippet from ProVB_HelloWorldConsumer\Service References\HelloCustomerService\Reference.vb

As you can see, Visual Studio and WCF provide the tools you need to define and share complex data types
across a distributed system. Combined with the other powerful features supported by WCF, you have the
tools to build robust, enterprise-quality distributed solutions.

538 ❘ chaPTer 13 sERViCEs (xml/wCF)

summary
This chapter looked at one of the more outstanding capabilities provided to the Visual Basic world. Visual
Studio 2010 and .NET 4 are a great combination for building advanced services that take your application
to a distributed level.

Though not exhaustive, this chapter broadly outlined the basics of the WCF framework. As you begin to dig
more deeply into the technology, you will find strong and extensible capabilities.

 PART III

smart client applications

chaPTer 14: ⊲ Windows Forms

chaPTer 15: ⊲ Advanced Windows Forms

chaPTer 16: ⊲ User Controls Combining WPF and Windows Forms

chaPTer 17: ⊲ WPF Desktop Applications

chaPTer 18: ⊲ Expression Blend 3

chaPTer 19: ⊲ Silverlight

14
Windows forms

 WhaT you Will learn in This chaPTer

 How to construct a Windows Forms application ➤

 How to control the startup and organization of your forms ➤

 Important controls available in Windows Forms and how to take advantage ➤

of their capabilities

 Usage of special families of controls and components, such as extender ➤

providers, common dialogs, and the ToolStrip

 Programming tips for a variety of programming scenarios ➤

 Windows Forms is a part of the .NET Framework that is used to create user interfaces for local
applications, often called Win32 clients. Windows Forms does not change when moving from Visual
Basic 2005 or Visual Basic 2008 to Visual Basic 2010. Accordingly, the version number used for
Windows Forms in Visual Studio 2010 is still 2.0.

 The pace of change in Windows Forms is slowing because of the advent of Windows Presentation
Foundation (WPF). Going forward, you can expect continued innovation in WPF, but not much
in Windows Forms. However, that does not imply that you should abandon Windows Forms or be
reluctant to write programs in it. Windows Forms still has many advantages over WPF.

 Those advantages include a more complete set of controls and a mature, easy - to - use designer. The
result is often faster development in Windows Forms compared to WPF. WPF has advantages of its
own, of course. These are discussed in Chapter 17, which provides an introduction to WPF.

 Chapter 15 includes more advanced treatment of certain aspects of Windows Forms. After gaining
a basic understanding of the key capabilities in this chapter, you ’ ll be ready to go on to the more
advanced concepts in that chapter.

 The sysTem.WindoWs.forms namesPace
 You ’ ve already seen how namespaces are used to organize related classes in the .NET Framework.
The main namespace used for Windows Forms classes is System.Windows.Forms . The classes in this
namespace are contained in the System.Windows.Forms.dll assembly.

542 ❘ chaPTer 14 wiNdows FoRms

If you choose a Windows Forms Application project or Windows Forms Control Library project in VS.NET,
a reference to System.Windows.Forms.dll is added by default. In some other cases, such as creating a
library that will work with controls, you need to add that reference manually. (You can learn more about
creating controls in Windows Forms in Chapter 15.)

using forms
A window on the desktop is created in Windows Forms by using a form. Thus, a form is the outer container
for your application’s interface.

A form is just a special kind of class in Windows Forms. A class becomes a form based on inheritance.
It must have the System.Windows.Forms class in its inheritance tree, which causes the form to have the
behavior and object interface a form requires.

The preferred technique to create a form is to create an instance with the New keyword, just as you would
with any other class. Typical code would look like this:

Dim f As New Form1
f.Show()

setting a startup form
If you create a new Windows Forms application in Visual Studio, by default it will contain a form class
named Form1. The properties for the project will be set to use that form as the startup form for the
application — that is, it will be the initial form displayed when the application begins.

To change the startup form, open the Properties dialog for the project. Do this using the Project ➪
Properties menu. You can also invoke the window by right-clicking the project name in the Solution
Explorer and selecting Properties from the context menu. The Properties dialog for a Windows Forms
application is shown in Figure 14-1.

figure 14-1

If the Properties menu item doesn’t appear under your Project menu, open the Solution Explorer
(Ctrl+Alt+L), highlight the project name (it will be in bold font), and then try again.

The Startup form drop-down will contain the available forms in your application. Selecting a form in this
drop-down will cause that form to be the first form displayed when your application begins.

You can also use this dialog to specify other startup tasks, such as showing a splash screen. To control these
additional options, the check box labeled “Enable application framework” must be checked.

showing forms via sub main
If you do not wish to use the default way to load your Windows Forms application, you can take explicit
control of the startup process in code. You might do this, for example, because you have logic you must run
for authentication before the first form is loaded.

To take control of the startup process, first create an empty subroutine named Sub Main in a code module.
If your project does not yet contain a code module, you may need to create one. Code modules are discussed
in Chapter 2.

Uncheck the check box labeled “Enable application framework” in the project properties dialog. The
drop-down for Startup form will change its label to Startup object, and it will contain a new entry: Sub Main.

Finally, create your logic for Sub Main. Typical logic looks like this:

Sub Main()
 ' Do start up work here
 Dim f As New Form1
 Application.Run(f)
End Sub

Note that you do not use the earlier technique to show a form with the Show method when you are creating
your Sub Main logic. The object reference to the form would immediately fall out of scope. The form
would briefly appear, then the application would terminate. Instead, in Sub Main, your logic should use the
Application object’s Run method to load your starting form.

more about the application class
The Application class contains a number of shared methods and properties that are useful in managing
your Windows Forms application. In addition to the Run method shown earlier, the Application class has
an Exit method to end an application, and a Restart method to cause an application to shut down and
immediately restart.

The Application class also has useful events to manage your application. For example, the ApplicationExit
event fires when your application is about to shut down.

startup location for a form
Often, you’ll want a form to be centered on the screen when it first appears. VB.NET does this automatically
for you when you set the StartPosition property. Table 14-1 shows the settings and their meanings.

TaBle 14-1: Options for Starting Position of a Form

sTarTPosiTion Value effecT

Manual Shows the form positioned at the values defined by the form’s Location property

CenterScreen Shows the form centered on the screen

WindowsDefaultLocation Shows the form at the window’s default location

WindowsDefaultBounds Shows the form at the window’s default location, with the window’s default
bounding size

CenterParent Shows the form centered in its owner

Using forms ❘ 543

544 ❘ chaPTer 14 wiNdows FoRms

form Borders
Forms have a number of border options in Windows Forms. The FormBorderStyle property is used to set
the border option, and the options can affect the way a form can be manipulated by the user. The options
available for FormBorderStyle include the following:

 ➤ None — No border, and the user cannot resize the form

 ➤ FixedSingle — Single 3-D border, and the user cannot resize the form

 ➤ Fixed3D — 3-D border, and the user cannot resize the form

 ➤ FixedDialog — Dialog-box-style border, and the user cannot resize the form

 ➤ Sizeable — Same as FixedSingle, except that the user can resize the form

 ➤ FixedToolWindow — Single border, and the user cannot resize the form

 ➤ SizeableToolWindow — Single border, and the user can resize the form

Each of these has a different effect on the buttons that appear in the title bar of the form. For details, check
the help topic for the FormBorderStyle property.

always on Top — the Topmost Property
Some forms need to remain visible at all times, even when they don’t have the focus, such as floating toolbars
and tutorial windows. In Windows Forms, forms have a property called TopMost. Set it to True to have a
form overlay other forms even when it does not have the focus.

Note that a form with TopMost set to True is on top of all applications, not just the hosting application. If
you need a form to only be on top of other forms in the application, then this capability is provided by an
owned form.

owned forms
As with the TopMost property, an owned form floats above the application but it does not interfere with
using the application. An example is a search-and-replace box. However, an owned form is not on top of all
forms, just the form that is its owner.

When a form is owned by another form, it is minimized and closed with the owner form. Owned forms are
never displayed behind their owner form, but they do not prevent their owner form from gaining the focus
and being used. However, if you want to click on the area covered by an owned form, the owned form has
to be moved out of the way first.

A form can only have one “owner” at a time. If a form that is already owned by Form1 is added to the
owned forms collection for Form2, then the form is no longer owned by Form1.

There are two ways to make a form owned by another form. It can be done in the owner form or in the
owned form.

addownedform Method
In the owner form, another form can be made owned with the AddOwnedForm method. The following code
makes an instance of Form2 become owned by Form1. This code would reside somewhere in Form1 and
would typically be placed just before the line that shows the instance of Form2 to the screen:

Dim frm As New Form2
Me.AddOwnedForm(frm)

owner Property
The relationship can also be set up in the owned form. This is done with the Owner property of the form.
Here is a method that would work inside Form2 to make it owned by a form that is passed in as an
argument to the function:

Public Sub MakeMeOwned(frmOwner As Form)
 Me.Owner = frmOwner
End Sub

 Because this technique requires a reference to the owner inside the owned form, it is not used as often as
using the AddOwnedForm method in the owner form.

 ownedforms Collection
 The owner form can access its collection of owned forms with the OwnedForms property. Here is code to
loop through the forms owned by a form:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms
 Console.WriteLine(frmOwnedForm.Text)
Next

 Code snippet from StartForm

 The owner form can remove an owned form with the RemoveOwnedForm property. This could be done in a
loop like the previous example, with code like the following:

Dim frmOwnedForm As Form
For Each frmOwnedForm In Me.OwnedForms
 Console.WriteLine(frmOwnedForm.Text)
 Me.RemoveOwnedForm(frmOwnedForm)
Next

 Code snippet from StartForm

 This loop would cause an owner form to stop owning all of its slaved forms. Note that those “ deslaved ”
forms would not be unloaded, they would simply no longer be owned.

 making forms Transparent and Translucent
 Windows Forms offers advanced capabilities to make forms translucent, or parts of a form transparent. You
can even change the entire shape of a form.

 The opacity Property
 The Opacity property measures how opaque or transparent a form is. A value of 0 percent makes the form
fully transparent. A value of 100 percent makes the form fully visible. Any value greater than 0 and less
than 100 makes the form partially visible, as if it were a ghost. Note that an opacity value of 0 percent
disables the capability to click the form.

 Very low levels of opacity, in the range of 1 or 2 percent, make the form effectively invisible, but still allow
the form to be clickable. This means that the Opacity property has the potential to create mischievous
applications that sit in front of other applications and “ steal ” their mouse clicks and other events.

 Percentage values are used to set opacity in the Properties window, but if you want to
set the Opacity property in code, you must use values between 0 and 1 instead, with 0
equivalent to 0 percent and 1 equivalent to 100 percent.

 Tool and dialog windows that should not completely obscure their background are one example of a usage
for Opacity . Setting expiration for a “ free trial ” by gradually fading out the application ’ s user interface is
another.

Using forms ❘ 545

546 ❘ chaPTer 14 wiNdows FoRms

The following block of code shows how to fade a form out and back in when the user clicks a button named
Button1. You may have to adjust the Step value of the array, depending on your computer’s performance:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Dim i As Double
 For i = -1 To 1 Step 0.005
 ' Note - opacity is a value from 0.0 to 1.0 in code
 ' Absolute value is used to keep us in that range
 Me.Opacity = System.Math.Abs(i)
 Me.Refresh
 Next i
End Sub

Code snippet from StartForm

The TransparencyKey Property
Instead of making an entire form translucent or transparent, the TransparencyKey property enables you to
specify a color that will become transparent on the form. This enables you to make some sections of a form
transparent, while other sections are unchanged.

For example, if TransparencyKey is set to a red color and some areas of the form are that exact shade of
red, then they will be transparent. Whatever is behind the form shows through in those areas; and if you
click in one of those areas, you are actually clicking the object behind the form.

TransparencyKey can be used to create irregularly shaped “skin” forms. A form can have its BackgroundImage
property set with an image, and by just painting a part of the image with the TransparencyKey color, you can
make parts of the form disappear.

The region Property
Another way to gain the capability of “skins” is by using the Region property of a form. The Region
property allows a shape for a form to be encoded as a “graphics path,” thereby changing the shape from the
default rectangle to another shape. A path can contain line segments between points, curves, and arcs, and
outlines of letters, in any combination.

The following example changes the shape of a form to an arrow. Create a new Windows application. Set the
FormBorderStyle property of Form1 to None. Then place the following code in the Load event for Form1:

Dim PointArray(6) As Point
PointArray(0) = New Point(0, 40)
PointArray(1) = New Point(200, 40)
PointArray(2) = New Point(200, 0)
PointArray(3) = New Point(250, 100)
PointArray(4) = New Point(200, 200)
PointArray(5) = New Point(200, 160)
PointArray(6) = New Point(0, 160)
Dim myGraphicsPath As _
System.Drawing.Drawing2D.GraphicsPath = _
 New System.Drawing.Drawing2D.GraphicsPath
myGraphicsPath.AddPolygon(PointArray)
Me.Region = New Region(myGraphicsPath)

Code snippet from ArrowShapedForm

When the program is run, Form1 will appear in the shape of a right-pointing arrow. If you lay out the points
in the array, you will see that they have become the vertices of the arrow.

 Visual inheritance
 By inheriting from System.Windows.Forms.Form , any class automatically gets all the properties,
methods, and events that a form based on Windows Forms is supposed to have. However, a class does
not have to inherit directly from the System.Windows.Forms.Form class to become a Windows form.
It can become a form by inheriting from another form, which itself inherits from System.Windows
.Forms.Form . In this way, controls originally placed on one form can be directly inherited by a second
form. Not only is the design of the original form inherited, but also any code associated with these
controls (the processing logic behind an Add New button, for example). This means you can create a
base form with processing logic required in a number of forms, and then create other forms that inherit
the base controls and functionality.

 VB 2010 provides an Inheritance Picker tool to aid in this process. Note, however, that a form must be
compiled into either an .exe or .dll fi le before it can be used by the Inheritance Picker. Once that is done,
adding a form that inherits from another form in the project can be achieved by selecting Project ➪ Add
Windows Form and then choosing the template type of Inherited Form in the resulting dialog.

 scrollable forms
 Some applications need fi elds that will fi t on a single screen. While you could split the data entry into
multiple screens, an alternative is a scrollable form.

 You can set your forms to automatically have scrollbars when they are sized smaller than the child controls
they contain. To do so, set the AutoScroll property of your form to True. When you run your program,
resize the form to make it smaller than the controls require and presto — instant scrolling.

 mdi forms
 MDI (Multiple Document Interface) forms are
forms that are created to hold other forms. The
MDI form is often referred to as the parent , and
the forms displayed within the MDI parent are
often called children . Figure 14 - 2 shows a typical
MDI parent with several children displayed
within it.

 Creating an MDi Parent form
 In Windows Forms, a regular form is
converted to an MDI parent form by setting
the IsMdiContainer property of the form to
True. This is normally done in the Properties
window at design time.

 A form can also be made into an MDI parent at runtime by setting the IsMdiContainer property to True in
code, but the design of an MDI form is usually different from that of a normal form, so this approach is not
often needed.

 figure 14 - 2

 You cannot have both Autoscroll and IsMdiContainer set to True at the same time.
MDI containers have their own scrolling functionality. If you set Autoscroll to True
for an MDI container, then the IsMdiContainer property will be set to False, and the
form will cease to be an MDI container.

Using forms ❘ 547

548 ❘ chaPTer 14 wiNdows FoRms

MDi Child forms
In Windows Forms, a form becomes an MDI child at runtime by setting the form’s MDIParent property to
point to an MDI parent form. This makes it possible to use a form as either a standalone form or an MDI
child in different circumstances. In fact, the MDIParent property cannot be set at design time — it must be
set at runtime to make a form an MDI child.

Any number of MDI child forms can be displayed in the MDI parent-client area. The currently active child
form can be determined with the ActiveForm property of the MDI parent form.

an mdi example in VB 2010
To see these changes to MDI forms in action, try the following exercise. It shows the basics of creating an
MDI parent and having it display an MDI child form:

 1. Create a new Windows application. It will have an empty form named Form1. Change both the name
of the form and the form’s Text property to MDIParentForm.

 2. In the Properties window, set the IsMDIContainer property for MDIParentForm to True. This desig-
nates the form as an MDI container for child windows. (Setting this property also causes the form to
have a different default background color.)

 3. From the Toolbox, drag a MenuStrip control to the form. Create a top-level menu item called File
with submenu items called New MDI Child and Quit. In addition, create a top-level menu item called
Window. The File ➪ New MDI Child menu option creates and shows new MDI child forms at runtime;
the Window menu keeps track of the open MDI child windows.

 4. In the component tray at the bottom of the form, click the MenuStrip item and select Properties. In
the Properties window, set the MDIWindowListItem property to WindowToolStripMenuItem. This
enables the Window menu to maintain a list of open MDI child windows, with a check mark next to
the active child window.

 5. Create an MDI child form to use as a template for multiple instances. Select Project ➪ Add Windows
Form and click the Add button in the Add New Item dialog. That results in a new blank form named
Form2. Place any controls you like on the form. As an alternative, you can reuse any of the forms
 created in previous exercises in this chapter.

 6. Return to the MDIParentForm. In the menu editing bar, double-click the New MDI Child option under
File. The Code Editor will appear, with the cursor in the event routine for that menu option. Place the
following code in the event:
 ' This line may change if you are using a form with a different name.
 Dim NewMDIChild As New Form2()
 'Set the Parent Form of the Child window.
 NewMDIChild.MDIParent = Me
 'Display the new form.
 NewMDIChild.Show()

Code snippet from MDIParentForm

 7. In the menu editing bar for the MDIParentForm, double-click the Quit option under File. The Code
Editor will appear, with the cursor in the event routine for that menu option. Place the following
code in the event:
Protected Sub QuitToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 End
End Sub

Code snippet from MDIParentForm

 8. Run and test the program. Use the File ➪ New MDI Child option to create several child forms. Note
how the Window menu option automatically lists them with the active one checked and allows you to
activate a different one.

arranging Child Windows
MDI parent forms have a method called
LayoutMDI that automatically arranges child
forms in the familiar cascade or tile layout. For
the preceding example, add a menu item to your
Windows menu called Tile Vertical and insert
the following code into the menu item’s Click
event to handle it:

Me.LayoutMdi(MDILayout.TileVertical)

To see an example of the rearrangement,
suppose that the MDI form in Figure 14-2 is
rearranged with the MDILayout.TileVertical
option. It would then look similar to the image
in Figure 14-3.

dialog forms
The Show method of a form displays modeless forms, which are forms that enable users to click off them
onto another form in the application.

Applications also sometimes need forms that retain control until their operation is finished. That is, you
can’t click off such a form onto another form. Such a form is called a modal form.

Showing a form modally is done with the ShowDialog method. The following code shows a modal dialog in
Windows Forms, assuming the project contains a form with a type of DialogForm:

Dim frmDialogForm As New DialogForm
frmDialogForm.ShowDialog()

Dialogresult
When showing a dialog form, you’ll often need to get information about what action the user selected.
Windows Forms has a built-in property for that purpose. When a form is shown with the ShowDialog
method, the form has a property called DialogResult to indicate its state.

The DialogResult property can take the following enumerated results:

 ➤ DialogResult.Abort

 ➤ DialogResult.Cancel

 ➤ DialogResult.Ignore

 ➤ DialogResult.No

 ➤ DialogResult.None

 ➤ DialogResult.OK

 ➤ DialogResult.Retry

 ➤ DialogResult.Yes

When the DialogResult property is set, the dialog is hidden as a result. That is, setting the DialogResult
property causes an implicit call to the Hide method of the dialog form, so that control is released back to
the form that called the dialog.

figure 14-3

Using forms ❘ 549

550 ❘ chaPTer 14 wiNdows FoRms

The DialogResult property of a dialog box can be set in two ways. The most common way is to associate a
DialogResult value with a button. Then, when the button is pressed, the associated value is automatically
placed in the DialogResult property of the form.

To set the DialogResult value associated with a button, use the DialogResult property of the button.
If this property is set for the button, then it is unnecessary to set the DialogResult in code when the
button is pressed.

The following example uses this technique. In Visual Studio 2010, start a new VB Windows application.
On the automatic blank form that appears (named Form1), place a single button and set its Text property
to Dialog.

Now add a new Windows form by selecting Project ➪ Add Windows Form and name it DialogForm.vb.
Place two buttons on DialogForm and set the properties for the buttons as shown in the following table.

ProPerTy Value for firsT BuTTon Value for second BuTTon

Name OKButton CancelButton

Text OK Cancel

DialogResult OK Cancel

Do not put any code in DialogForm at all. The form should look like the one
shown in Figure 14-4.

On the first form, Form1, place the following code in the Click event for Button1:

 Dim frmDialogForm As New DialogForm()
 frmDialogForm.ShowDialog()
 ' You're back from the dialog - check user action.
 Select Case frmDialogForm.DialogResult
 Case DialogResult.OK
 MsgBox("The user pressed OK")
 Case DialogResult.Cancel
 MsgBox("The user pressed cancel")
 End Select
 frmDialogForm = Nothing

Run and test the code. When a button is pressed on the dialog form, a message box should be displayed (by
the calling form) indicating the button that was pressed.

The second way to set the DialogResult property of the form is in code. In a Button_Click event, or
anywhere else in the dialog form, a line like the following can be used to set the DialogResult property for
the form and simultaneously hide the dialog form, returning control to the calling form:

Me.DialogResult = DialogResult.Ignore

This particular line sets the dialog result to DialogResult.Ignore, but setting the dialog result to any of
the permitted values also hides the dialog form.

forms at runtime
The life cycle of a form is like that of all objects: It is created and later destroyed. Forms have a visual
component, so they use system resources, such as handles. These are created and destroyed at interim stages
within the lifetime of the form. Forms can be created and will hold state as a class, but will not appear until
they are activated.

Table 14-2 summarizes the typical states of a form’s existence. For each state, it includes how you get the
form to that state, the events that occur when the form enters a state, and a brief description of each.

figure 14-4

default instances of forms
There is one additional way to display a form to the screen. It is included in Windows Forms for
compatibility with VB6 and earlier versions, and is not recommended in code you create. However, you may
see it in code you maintain.

A form can be shown to the screen with a shared Show method, like this:

 Form1.Show()

Showing a form without instancing it is referred to as using the default instance of the form. That default
instance is available from anywhere in a project containing a form. There is only one default instance, and
any reference to it will bring up the same underlying instance of the form.

Another way to get to the default instance of a form is through the My namespace. The following line has
exactly the same effect, showing the default instance of a form:

My.Forms.Form1.Show()

TaBle 14-2: Typical States during the Lifecycle of a Form

code eVenTs fired noTes

MyForm = New Form1 Load The form’s New method will be called (as will
InitializeComponent) .

MyForm.Show or
MyForm.ShowDialog

HandleCreated Use Show for modeless display .

Load Use ShowDialog for modal display .

VisibleChanged The HandleCreated event only fires the first time the
form is shown or after it has previously been closed .

Activated

MyForm.Activate Activated A form can be activated when it is visible but does not
have the focus .

MyForm.Hide Deactivate Hides the form (sets the Visible property to False)

VisibleChanged

MyForm.Close Deactivate Closes the form and calls Dispose to release the
window’s resources

Closing During the Closing event, you can set the
CancelEventArgs.Cancel property to True to
abort the close .

Closed

VisibleChanged

HandleDestroyed Also called when the user closes the form using the
control box or the X button

Disposed The Deactivate event will only fire if the form is
currently active .

Note: There is no longer an Unload event . Use the
Closing or Closed event instead .

MyForm.Dispose None Use the Close method to finish using your form .

MyForm = Nothing None Releasing the reference to the form flags it for garbage
collection . The garbage collector calls the form’s
Finalize method .

Using forms ❘ 551

552 ❘ chaPTer 14 wiNdows FoRms

 conTrols
 The controls included in Windows Forms provide basic functionality for a wide range of applications. This
section covers the features that all controls use (such as docking) and summarizes the standard controls
available to you.

 control Tab order
 The VS 2010 design environment enables you to set the tab order
of the controls on a form simply by clicking them in sequence.
To activate the feature, open a form in the designer and select
View ➪ Tab Order. This will place a small number in the upper -
 left corner of each control on your form, representing the tab
index of that control.

 To set the values, simply click each control in the sequence you
want the tab fl ow to operate. Figure 14 - 5 shows a simple form
with the tab order feature enabled.

 In Windows Forms 2.0, it is possible to have two or more controls with the same tab
index value. At runtime, Visual Basic will break the tie by using the z - order of the
controls. The control that is highest in the z - order receives the focus fi rst. The z - order
is a ranking number that determines which controls are in front of or behind other
controls. (The term comes from the z - axis, which is an axis perpendicular to the
traditional x - axis and y - axis.) The z - order can be changed by right - clicking the control
and selecting Bring to Front.

 figure 14 - 5

 Properties for all controls
 The base Control class, which is a base class for all Windows Forms controls, has many properties that
affect all types of controls. Height , Width , Top , Left , BackColor , and ForeColor are examples. Because
all controls inherit from this class, all Windows Forms controls have these properties and the functionality
they provide.

 Most of these properties are self - explanatory or familiar to experienced developers. However, you may not
be familiar with some properties that were added for the 2.0 version of Windows Forms: MaximumSize ,
 MinimumSize , and UseWaitCursor .

 Maximumsize and Minimumsize Properties
 The MaximumSize and MinimumSize properties specify the control ’ s maximum and minimum height and
width, respectively. Forms had these properties in Windows Forms 1.0 and 1.1, but in 2.0 all controls
have them.

 If the maximum height and width are both set to the default value of 0, then there is no maximum.
Similarly, if the minimum height and width are set to zero, then there is no minimum. The form or control
can be any size.

 If these properties are set to anything else, then the settings become limits on the size of the control. For
example, if the MaximumSize height and width are both set to 100, then the control cannot be bigger than
100 × 100 pixels. The visual designer will not make the control any larger on the form design surface.
Attempting to set the height or width of the control in code at runtime to a value greater than 100 will
cause it to be set to 100 instead.

The MaximumSize and MinimumSize properties can be reset at runtime to enable sizing of the controls
outside the limits imposed at design time. However, the properties have a return type of Size, so resetting
either property requires creating a Size structure. For example, you can reset the MinimumSize property for
a button named Button1 with the following line of code:

 Button1.MinimumSize = New Size(20, 20)

This sets the new minimum width and height to 20 pixels.

The Size structure has members for Height and Width, which can be used to fetch the current minimum or
maximum sizes for either height or width. For example, to find the current minimum height for Button1, use
the following line of code:

 Dim n As Integer = Button1.MinimumSize.Height

UseWaitCursor Property
Windows Forms interfaces can use threading or asynchronous requests to allow tasks to execute in the
background. When a control is waiting for an asynchronous request to finish, it is helpful to indicate that
to the user by changing the mouse cursor when the mouse is inside the control. Normally, the cursor used is
the familiar hourglass, which is called the WaitCursor in Windows Forms.

For any control, setting the UseWaitCursor property to True causes the cursor to change to the
hourglass (or whatever is being used for the WaitCursor) while the mouse is positioned inside the control.
This enables a control to visually indicate that it is waiting for something. The typical usage is to set
UseWaitCursor to True when an asynchronous process is begun and then set it back to False when the
process is finished and the control is ready for normal operation again.

dynamic sizing and Positioning of controls
Windows Forms 2.0 includes a variety of ways to enable dynamic user interfaces. Not only can controls
be set to automatically stretch and reposition themselves as a form is resized, they can also be dynamically
arranged inside some special container controls intended for that purpose. This section covers all these ways
of enabling dynamic sizing and positioning of controls.

Docking
Docking refers to “gluing” a control to the edge of a parent control. Good examples of docked controls are
menu bars and status bars, which are typically docked to the top and bottom of a form, respectively. All
visual controls have a Dock property.

To work through an example, create a new Windows application and place a TextBox control on a form. Set
the Text property of the TextBox to “I’m Getting Docked.” The result when you show the form should look
something like Figure 14-6.

Suppose that you need to glue this TextBox to the top of the form. To do this, view the Dock property of the
label. If you pull it down, you’ll see a small graphic showing several sections, like the one shown in Figure 14-7.

Simply click the top section of the graphic to stick the label at the top of the form. The other sections give
you other effects. (A status bar would use the bottom section, for example. Clicking the box in the middle
causes the control to fill the form.) The TextBox control will immediately “stick” to the top of your form.
When you run your program and stretch the window sideways, you’ll see the effect shown in Figure 14-8.

figure 14-6 figure 14-7 figure 14-8

Controls ❘ 553

554 ❘ chaPTer 14 wiNdows FoRms

 If you want a gap between the edge of your form and the docked controls, set the DockPadding property of
the parent control. You can set a different value for each of the four directions (Left, Right, Top, Bottom);
and you can set all four properties to the same value using the All setting.

 anchoring
 Anchoring is similar to docking except that you can specifi cally defi ne the distance that each edge of your
control will maintain from the edges of a parent. To see it in action, add a button to the form in the docking
example. The result should look like what is shown in Figure 14 - 9.

 Dropping down the Anchor property of the button gives you the graphic shown in Figure 14 - 10.

 The four rectangles surrounding the center box enable you to toggle the anchor settings of the control.
Figure 14 - 10 shows the default anchor setting of Top, Left for all controls.

 When the setting is on (dark gray), the edge of the control maintains its original distance from the edge of
the parent as the parent is resized. If you set the anchor to two opposing edges (such as the left and right
edges), the control stretches to accommodate this, as shown in Figure 14 - 11.

 If you try to dock multiple controls to the same edge, Windows Forms must decide
how to break the tie. Precedence is given to controls in reverse z - order. That is, the
control that is furthest back in the z - order will be the fi rst control next to the edge. If
you dock two controls to the same edge and want to switch them, then right - click the
control you want docked fi rst and select Send to Back.

 figure 14 - 9 figure 14 - 10 figure 14 - 11

 One of the most common uses of anchoring is to set the Anchor property for buttons in the lower - right
portion of a form. Setting the Anchor property of a button to Bottom , Right causes the button to maintain
a constant distance from the bottom - right corner of the form.

 You can also set the Anchor property in code. The most common scenario for this would be for a control
created on - the - fl y. To set the Anchor property in code, you must add the anchor styles for all the sides to
which you need to anchor. For example, setting the Anchor property to Bottom , Left would require a line
of code like this:

MyControl.Anchor = Ctype(AnchorStyles.Bottom + AnchorStyles.Right, AnchorStyles)

 sizable Containers
 Early versions of Windows Forms used the Splitter control to allow resizing of containers. This control
is still available in Windows Forms 2.0 but it doesn ’ t appear by default in the Toolbox. In its place is a
replacement control, SplitContainer , that provides the same functionality with less work on your part.

 A single SplitContainer acts much like two panels with an appropriately inserted Splitter . You can
think of it as a panel with two sections separated by a movable divider so that the relative sizes of the
sections can be changed by a user.

 To use a SplitContainer , simply drop it on a form, resize it, and position the draggable divider to the
appropriate point. If you want the divider to be horizontal instead of vertical, you change the Orientation
property. Then you can place controls in each subpanel in any way you like. It is common to insert a control
such as a TreeView or ListBox , and then dock it to its respective subpanel. This enables users to resize such

contained controls. A typical example of a SplitContainer in action is
shown in Figure 14-12.

The cursor in Figure 14-12 shows that the mouse is hovering over the
divider, allowing repositioning of the divider by dragging the mouse.
A SplitContainer may be nested inside another SplitContainer.
This enables you to build forms in which several parts are resizable relative
to each other.

flowlayoutPanel control
The FlowLayoutPanel control enables the dynamic layout of controls contained within it, based on the size
of the FlowLayoutPanel.

FlowLayoutPanel works conceptually much like a simple HTML page shown in a browser. The controls
placed in the FlowLayoutPanel are positioned in sequence horizontally until there’s not enough space for
the next control, which then wraps further down for another row of controls. The following walk-through
demonstrates this capability.

Start a new Windows Application project. On the blank Form1 included in the new project, place a
FlowLayoutPanel control toward the top of the form, making it a bit less wide than the width of the form.
Set the Anchor property for the FlowLayoutPanel to Top, Left, and Right. Set the BorderStyle property
for the FlowLayoutPanel to FixedSingle so it’s easy to see.

Place three Button controls in the FlowLayoutPanel, keeping their default sizes. The form you create
should look like the one shown in Figure 14-13.

Run the application. The initial layout will be similar to the design-time layout. However, if you resize the
form to about two thirds of its original width, the layout of the buttons changes. Because there is no longer
enough room for them to be arranged side by side, the arrangement automatically switches. Figure 14-14
shows the form in three configurations: first with its original width, then narrower so that only two buttons
fit in the FlowLayoutPanel, and finally so narrow that the buttons are all stacked in the FlowLayoutPanel.

figure 14-12

figure 14-13 figure 14-14

Controls ❘ 555

Note that no logic of any kind was added to the form — the FlowLayoutPanel handles the repositioning of
the buttons automatically. In fact, any position information you set for the button controls is ignored if they
are placed in a FlowLayoutPanel.

Padding and Margin Properties
To assist in positioning controls in the FlowLayoutPanel, all controls have a property called Margin. There
are settings for Margin.Left, Margin.Right, Margin.Top, and Margin.Bottom. These settings determine
how much space is reserved around a control when calculating its automatic position in a FlowLayoutPanel.

You can see the Margin property in action by changing the Margin property
for one or more of the buttons in the previous example. If you change all the
Margin settings for the first button to 10 pixels, for example, and run the
application, the form will look like the one shown in Figure 14-15.

The first button now has a 10-pixel separation from all the other controls in
the FlowLayoutPanel, as well as a 10-pixel separation from the edges of the
FlowLayoutPanel itself. figure 14-15

556 ❘ chaPTer 14 wiNdows FoRms

The Padding property is for the FlowLayoutPanel or other container control. When a control is embedded
into a FlowLayoutPanel, the Padding.Left, Padding.Right, Padding.
Top, and Padding.Bottom properties of the FlowLayoutPanel determine
how far the control should be positioned from the inside edge of the
container.

You can see the Padding property in action by changing the Padding
property for the FlowLayoutPanel in the previous example. If you set all
Padding settings to 15 pixels, and reset the Margin property for the first
button back to the default, then the form will look like what is shown in
Figure 14-16 in the visual designer.

Notice that all the controls in the FlowLayoutPanel are now at least 15 pixels from the edges.

The Padding property is also applicable to other container controls if the contained controls have their
Dock property set. If the settings for Padding are not zero, then a docked control will be offset from the
edge of the container by the amount specified by the Padding property.

TablelayoutPanel control
Another control that uses dynamic layout of child controls is the TableLayoutPanel. This control consists
of a table of rows and columns, resulting in a rectangular array of cells. You can place one control in each
cell. However, that control can itself be a container, such as a Panel or FlowLayoutPanel.

You can control the dimensions of the columns and rows by setting some key properties. For columns, set
the number of columns with the ColumnCount property, and then control each individual column with the
ColumnStyles collection. When you click the button for the ColumnStyles collection, you get a designer
window that enables you to set two key properties for each column: SizeType and Width.

SizeType can be set to one of the following enumerations:

 ➤ Absolute — Sets the column width to a fixed size in pixels

 ➤ AutoSize — Indicates that the size of the column should be managed by the TableLayoutPanel,
which allocates width to the column depending on the widest control contained in the column

 ➤ Percent — Sets what percentage of the TableLayoutPanel to use for the width of the column

The Width property is only applicable if you do not choose a SizeType of AutoSize. It sets either the
number of pixels for the width of the column (if the SizeType is Absolute) or the percentage width for the
column (if the SizeType is Percent).

Similarly, for rows, there is a RowCount property to set the number of rows, and a RowStyles collection to
manage the size of the rows. Each row in RowStyles has a SizeType, which works the same way as SizeType
does for columns except that it manages the height of the row instead of the width of a column. The Height
property is used for rows instead of a Width property, but it works in a corresponding way. Height is either the
number of pixels (if SizeType is Absolute) or a percentage of the height of the TableLayoutPanel (if SizeType
is Percent). If SizeType is AutoSize, then a row is sized to the height of the tallest control in the row.

An advanced UI layout technique is to first create a TableLayoutPanel, and then embed a FlowLayoutPanel
in some of the cells of the TableLayoutPanel. This enables several controls to be contained in a cell and
repositioned as the size of the cell changes.

A step-by-step example of using a TableLayoutPanel with an embedded FlowLayoutPanel is included in
the next chapter in the section “Creating a Composite UserControl.”

Panel and groupBox container controls
Of course, not all applications need the dynamic layout of the containers just discussed. Windows Forms
includes two controls that are static containers, in which the positions and layout of the contained controls
are not adjusted at all.

These two containers, which have only minor differences, are the GroupBox control and the Panel control.

figure 14-16

These two controls are similar in the following ways:

They can serve as a container for other controls. ➤

If they are hidden or moved, then the action affects all the controls in the container. ➤

The GroupBox control always has a border, and it can have a title, if needed. The border is always set the
same way. Figure 14-17 shows a form with a GroupBox control containing three RadioButton controls.

The Panel control has three major differences from the GroupBox control:

It has options for displaying its border in the ➤ BorderStyle property, with a default of no border.

It has the capability to scroll if its ➤ AutoScroll property is set to True.

It cannot set a title or caption. ➤

Figure 14-18 shows a form containing a Panel control with its BorderStyle property set to FixedSingle,
with scrolling turned on by setting AutoScroll to True, and with a CheckedListBox that is too big to
display all at once (which forces the panel to show a scrollbar).

figure 14-19

figure 14-17 figure 14-18

Controls ❘ 557

extender Providers
Windows Forms has a family of components that can only be used in association with visual controls.
These components are known as extender providers. They work with the Visual Studio IDE to cause new
properties to appear in the Properties window for controls on the form.

Extender providers have no visible manifestation except in conjunction with other controls, so they
appear in the component tray. The three extender providers available with Windows Forms 2.0 are the
HelpProvider, the ToolTip, and the ErrorProvider. All three work in basically the same way. Each
extender provider implements the properties that are “attached” to other controls. The best way to see how
this works is to go through an example, so let’s do that with a ToolTip component.

ToolTip
The ToolTip is the simplest of the built-in extender providers. It adds just one property to each control:
ToolTip on ToolTip1 (assuming the ToolTip control has the default name of ToolTip1). This property
works in very much the same way the ToolTipText property works in VB6, and in fact replaces it.

To see this in action, create a Windows Forms application. On the blank Form1 that is created for the
project, place a couple of buttons. Take a look at the Properties window for Button1. Notice that it does not
have a ToolTip property of any kind.

Drag over the ToolTip control, which will be placed in the component tray. Go back to the Properties window for
Button1. A property named ToolTip on ToolTip1 is now present. Set any string value you like for this property.

Run the project and hover the mouse pointer over Button1. You will see a ToolTip containing the string
value you entered for the ToolTip on ToolTip1 property.

Other properties of the ToolTip component enable you to control other
characteristics of the ToolTip, such as the initial delay before the ToolTip appears.

New in Windows Forms 2.0 is the capability to change the shape of ToolTips to
a “balloon.” This is done by setting the IsBalloon property of the ToolTip
component to True. Instead of a hovering rectangular ToolTip, the ToolTip has
a rounded rectangular outline with a pointer to the control it is associated with,
not unlike the dialog balloons in a comic strip. Figure 14-19 shows an example.

558 ❘ chaPTer 14 wiNdows FoRms

HelpProvider
The HelpProvider enables controls to have associated context-sensitive help available by pressing F1. When
a HelpProvider is added to a form, all controls on the form get the new properties shown in Table 14-3,
which show up in the controls’ Properties window.

TaBle 14-3: Properties of the HelpProvider Component

ProPerTy usage

HelpString on
HelpProvider1

Provides a pop-up ToolTip for the control when F1 is pressed while the control has the
focus . If the HelpKeyword and HelpNavigator properties (described later) are set to
provide a valid reference to a help file, then the HelpString value is ignored in favor of
the help file information .

HelpKeyword
onHelpProvider1

Provides a keyword or other index to use in a help file for context-sensitive help for this
control . The HelpProvider1 control has a property that indicates which help file to use .
This replaces the HelpContextID property in VB6 .

HelpNavigator
onHelpProvider1

Contains an enumerated value that determines how the value in HelpKeyword is used
to refer to the help file . There are several possible values for displaying elements such as
a topic, an index, or a table of contents in the help file .

ShowHelp
onHelpProvider1

Determines whether the HelpProvider control is active for this control

Filling in the HelpString property immediately causes the control to provide ToolTip help when F1 is
pressed while the control has the focus. The HelpProvider control has a property to point to a help file
(either an HTML help file or a Win32 help file), and the help topic in the HelpTopic property points to a
topic in this file.

errorProvider
The ErrorProvider component presents a simple, visual way to indicate to a user that a control on a form
has an error associated with it. The added property for controls on the form when an ErrorProvider is used
is called Error on ErrorProvider1 (assuming the ErrorProvider has the default name of ErrorProvider1).
Setting this property to a string value causes the error icon to appear next to a control. In addition, the text
appears in a ToolTip if the mouse hovers over the error icon.

Figure 14-20 shows a screen with several text boxes, one of which has
an error icon next to it (with a ToolTip). The error icon and ToolTip
are displayed and managed by an ErrorProvider.

The ErrorProvider component’s default icon is a red circle with
an exclamation point. When the Error property for the text box is
set, the icon blinks for a few moments, and hovering over the icon
causes the ToolTip to appear. Writing your own code to set the Error
property is explained in the section “Working with Extender Providers in Code.”

Properties of extender Providers
In addition to providing other controls with properties, extender providers also have properties of their
own. For example, the ErrorProvider has a property named BlinkStyle. When it is set to NeverBlink,
the blinking of the icon is stopped for all controls affected by the ErrorProvider.

Other properties of the ErrorProvider enable you to change things such as the icon used and where the
icon appears in relation to the field containing the error. For instance, you might want the icon to appear
on the left side of a field instead of the default right side. You can also have multiple error providers on your
form. For example, you might wish to give users a warning, rather than an error. A second error provider
with a yellow icon could be used for this feature.

figure 14-20

Working with extender Providers in Code
You can set the Error property in the previous example with the Properties window, but this is not very
useful for on-the-fly error management. However, setting the Error property in code is not done with
typical property syntax. By convention, extender providers have a method for each extended property they
need to set, and the arguments for the method include the associated control and the property setting. To set
the Error property in the previous example, the following code was used:

ErrorProvider1.SetError(txtName, "You must provide a location!")

The name of the method to set a property is the word Set prefixed to the name of the property. The preceding
line of code shows that the Error property is set with the SetError method of the ErrorProvider.

There is a corresponding method to get the value of the property, and it is named with Get prefixed to the
name of the property. To determine the current Error property setting for txtName, you would use the
following line:

sError = ErrorProvider1.GetError(txtName)

Similar syntax is used to manipulate any of the properties managed by an extender provider. The discussion
of the ToolTip provider earlier mentioned setting the ToolTip property in the Properties window. To set
that same property in code, the syntax would be as follows:

ToolTip1.SetToolTip(Button1, "New tooltip for Button1")

advanced capabilities for data entry
Windows Forms 2.0 includes some advanced capabilities for data entry that were not available in earlier
versions. TextBox and ComboBox controls in 2.0 have autocompletion capabilities, and a MaskedTextbox
control allows entry of formatted input such as phone numbers.

autocompletion
Responsive user interfaces help users accomplish their purposes, thereby making them more productive. One
classic way to do this is with autocompletion.

An example of autocompletion is IntelliSense in Visual Studio. Using IntelliSense, a user only has to type in
a few letters, and Visual Studio presents a list of probable entries matching those letters. If the desired entry
is found, the user only needs to select it, rather than type the entire entry.

Autocompletion is available in Windows Forms 2.0 with text boxes and combo boxes. Both use a set of
properties to control how autocompletion works and from where the list of entries available to the user
comes.

To see autocompletion in action, create a Windows application project. Drag a TextBox control from the
Toolbox onto the blank Form1 created for the project. Set the AutoCompleteMode for the text box to
Suggest in the Properties window. Then set the AutoCompleteSource to CustomSource. Finally, click the
button in the settings window for AutoCompleteCustomSource. You’ll see a window for adding entries that
is very similar to the window for entering items for a list box or combo box.

Enter the following items into the dialog:

Holder
Holland
Hollis
Holloway
Holly
Holstein
Holt

Start the project and type Hol into the text box. As soon as you start typing, a drop-down will appear
that contains entries matching what you’ve typed, including all seven elements in the list. If you then type

Controls ❘ 559

560 ❘ chaPTer 14 wiNdows FoRms

another 1, the list will decrease to the four elements that begin with Holl. If you then type an o, the list will
contain only the entry Holloway.

The AutoCompleteMode has two other modes. The Append mode does not automatically present a drop-
down, but instead appends the rest of the closest matching entry to the text in the Textbox or ComboBox,
and highlights the untyped characters. This allows the closest matching entry to be placed in the text area
without the user explicitly selecting an entry.

The SuggestAppend mode combines Suggest and Append. The current best match is displayed in the text
area, and the drop-down with other possibilities is automatically displayed. This mode is the one most like
IntelliSense.

You can also set the list of items to be included in the autocompletion list at runtime, which is the most
common usage scenario. A list of items from a database table would typically be loaded for autocompletion.
Here is typical code to create a list of items and attach the list to a ComboBox:

Dim autoCompleteStringCollection1 As New AutoCompleteStringCollection
Dim nReturn As Integer
nReturn = autoCompleteStringCollection1.Add("Holder")
nReturn = autoCompleteStringCollection1.Add("Holland")
nReturn = autoCompleteStringCollection1.Add("Hollis")
nReturn = autoCompleteStringCollection1.Add("Holloway")
ComboBox1.AutoCompleteCustomSource = autoCompleteStringCollection1

Code snippet from AutoComplete

For this sample to work properly, the ComboBox control’s AutoCompleteSource property must be set to
CustomSource.

Several built-in lists are available for use with autocompletion. Instead of setting AutoCompleteSource to
CustomSource, you can set it to sources such as files in the file system, or URLs recently used in Internet
Explorer. See the documentation for AutoCompleteSource for additional options; or, if you are using
AutoCompleteSource in code, IntelliSense will show the options available.

MaskedTextbox Control
The MaskedTextbox control allows entry of information that conforms to a “mask” which determines what
is and is not valid in each character position. You can set the Mask property in the Properties window, but
you can also click the smart tag (right-pointing arrow) on the right side of the MaskedTextbox. In both
cases, you can either construct a mask manually or select one of the commonly used masks from a list.

If you want to create your own mask, you need to design it based on the set of formatting characters
described in Table 14-4.

TaBle 14-4: Mask Characters Available in the MaskedTextBox Control

masK

characTer descriPTion

Digit placeholder

 . Decimal placeholder . The actual character used is the one specified as the decimal placeholder
in your international settings . This character is treated as a literal for masking purposes .

, Thousands separator . The actual character used is the one specified as the thousands separator
in your international settings . This character is treated as a literal for masking purposes .

: Time separator . The actual character used is the one specified as the time separator in your
international settings . This character is treated as a literal for masking purposes .

/ Date separator . The actual character used is the one specified as the date separator in your
international settings . This character is treated as a literal for masking purposes .

Literal characters are simply inserted automatically by the MaskedTextbox control. If you have literal
characters for the parentheses in a phone number, for example, the user need not type these in order for
them to show up in the text area of the control.

As an example of a mask, suppose that you have an account number that must consist of exactly two
uppercase letters and five digits. You could construct a mask of >??00000. The first character forces all
letters to uppercase. The two question marks specify two required alphabetic characters, and the five zeros
specify five required digits.

Once you have set the Mask for the MaskedTextbox, all entries in the control will be coerced to the mask
pattern. Keystrokes that don’t conform will be thrown away.

Validating data entry
Most controls that you place on a form require that its content be validated in some way. A TextBox might
require a numeric value only or simply require that the user provide any value and not leave it blank.

The ErrorProvider component discussed earlier makes this task significantly
easier than it was in previous versions. To illustrate the use of an ErrorProvider
in data validation, create a new Windows Application project and change the
Text property for the blank Form1 to Data Validation Demo. Then place two
TextBox controls on the form that will hold a user ID and password, as shown in
Figure 14-21.

Name the first text box UserNameTextBox and name the second text box
PasswordTextBox. Drag an ErrorProvider onto the form, which will cause it to appear in the component
tray. In the next section, you’ll add the code that simply verifies that the user has filled in both text boxes
and then provides a visual indication, via the ErrorProvider, if either of the fields has been left blank.

The Validating event
The Validating event fires when your control begins its validation. It is here that you need to both place
the code that validates your control and set a visual indication for an error. Insert the following code to see
this in action:

Private Sub UserNameTextBox_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles UserNameTextBox.Validating
 If userNameTextbox.Text = "" Then
 ErrorProvider1.SetError(UserNameTextBox, "User Name cannot be blank")

masK

characTer descriPTion

\ Treat the next character in the mask string as a literal . This enables you to include the #, &, A,
and ? characters in the mask . This character is treated as a literal for masking purposes .

& Character placeholder . Valid values for this placeholder are ANSI characters in the following
ranges: 32–126 and 128–255 .

> Converts all the characters that follow to uppercase

< Converts all the characters that follow to lowercase

A Alphanumeric character placeholder (entry required); e .g ., a–z, A–Z, or 0–9

a Alphanumeric character placeholder (entry optional)

9 Digit placeholder (entry optional); e .g ., 0–9

C Character or space placeholder (entry optional) . This operates exactly like the & placeholder
and ensures compatibility with Microsoft Access .

? Letter placeholder; e .g ., a–z or A–Z

Literal All other symbols are displayed as literals — that is, as themselves .

figure 14-21

Controls ❘ 561

562 ❘ chaPTer 14 wiNdows FoRms

 Else
 ErrorProvider1.SetError(UserNameTextBox, "")
 End If
End Sub
Private Sub PasswordTextBox_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles PasswordTextBox.Validating
 If passwordTextbox.Text = "" Then
 ErrorProvider1.SetError(PasswordTextBox, "Password cannot be blank")
 Else
 ErrorProvider1.SetError(PasswordTextBox, "")
 End If
End Sub

Code snippet from Data_Validation

Run the program and then tab between the controls without entering any text to get the error message.
You’ll see an icon blink next to each of the TextBox controls; and if you hover over an error icon, you’ll
see the appropriate error message.

There is also a Validated event that fires after a control’s Validating event. It can be used, for example,
to do a final check after other events have manipulated the contents of the control.

The CausesValidation Property
The CausesValidation property determines whether the control will participate in the validation events on
the form. A control with a CausesValidation setting of True (it is True by default) has two effects:

The control’s ➤ Validating/Validated events fire when appropriate.

The control triggers the ➤ Validating/Validated events for other controls.

It is important to understand that the validation events fire for a control not when the focus is lost but when
the focus shifts to a control that has a CausesValidation value of True.

To see this effect, set the CausesValidation property of the Password text box in your application to
False (be sure to leave it True for the User ID and OK button). When you run the program, tab off the
User ID text box and again to the OK button. Notice that it isn’t until the focus reaches the OK button that
the validating event of the User ID text box fires. Also notice that the validating event of the Password field
never fires.

Ultimately, if you determine that the control is not valid, you need to specify what happens. That may
include setting the focus to the control that needs attention (as well as indicating the error with an
ErrorProvider).

Toolbars and the Toolstrip control
Earlier versions of Windows Forms (prior to 2.0) had a control named Toolbar, but this has been
superseded by the ToolStrip control in Windows Forms 2.0. ToolStrip has many improvements. It
supports movement to sides of a form other than the place where it was laid out, and you have much more
flexibility in placing items on the toolbar. It also integrates better with the IDE to assist in creating toolbars
and manipulating the many settings available.

The ToolStrip does not sit alone on a form. When a ToolStrip is dragged onto a form, the container that
actually sits on the form is called a RaftingContainer. This container handles the positioning so that the
toolbar created by a ToolStrip can be dragged to other parts of the form.

The ToolStrip sits inside the RaftingContainer and is the container for toolbar elements. It handles the
sizing of the toolbar, movement of toolbar elements, and other general toolbar functions.

The items on the toolbar must be from a set of controls specially designed to serve as toolbar items. All
of these items inherit from the ToolStripItem base class. The controls available for toolbar items are
described in Table 14-5.

TaBle 14-5: Controls Available for Inclusion in a ToolStrip Control

conTrol descriPTion

ToolStripButton Replicates the functionality of a regular Button for a toolbar

ToolStripLabel Replicates the functionality of a regular Label for a toolbar

ToolStripSeparator A visual toolbar element that displays a vertical bar to separate other
groups of elements (no user interaction)

ToolStripComboBox Replicates the functionality of a regular ComboBox for a toolbar . This item
must be contained within a ToolStripControlHost (see below) .

ToolStripTextBox Replicates the functionality of a regular TextBox for a toolbar . This item
must be contained within a ToolStripControlHost (see below) .

ToolStripControlHost A hosting container for other controls that reside on a ToolStrip .
It can host any of the following controls: ToolStripComboBox,
ToolStripTextBox, other Windows Forms controls, or user controls .

ToolStripDropDownItem A hosting container for toolbar elements that feature drop-
down functionality . It can host a ToolStripMenuItem, a
ToolStripSplitButton, or a ToolStripDropDownButton .

ToolStripDropDownButton A button that supports drop-down functionality . Clicking the button shows
a list of options from which the user must select the one desired . This item
is used when the user needs to select from a group of options, none of
which is used a large majority of the time .

ToolStripSplitButton A combination of a regular button and a drop-down button . This item is
often used when there is a frequently used option to click but you also
need to offer users other options that are less frequently used .

ToolStripMenuItem A selectable option displayed on a menu or context menu . This item is
typically used with the menu controls that inherit from the ToolStrip,
discussed later in this chapter in the section “Menus .”

Note that almost any control can be hosted on a toolbar using the ToolStripControlHost. However, for
buttons, text boxes, labels, and combo boxes, it is much easier to use the ToolStrip version instead of the
standard version.

Creating a Toolstrip and adding Toolbar elements
Try an example to see how to build a toolbar using the ToolStrip control. Create a new Windows
application. Add a ToolStrip control to the blank Form1 that is included with the new project. Make the
form about twice its default width so that you have
plenty of room to see the ToolStrip as you work on it.

The ToolStrip is positioned at the top of the form by
default. It does not contain any elements, although if
you highlight the ToolStrip control in the component
tray, a “menu designer” will appear in the ToolStrip.

The easiest way to add multiple elements to the
ToolStrip is to use the Items Collection Editor
for the ToolStrip. Highlight the ToolStrip in
the component tray and click the button in the
Properties window for the Items property. You’ll see
the Items Collection Editor as a dialog, as shown in
Figure 14-22.

The drop-down in the upper-left corner contains the
different types of items that can be placed on the toolbar. The names in the drop-down are the same as

figure 14-22

Controls ❘ 563

564 ❘ chaPTer 14 wiNdows FoRms

the names in the table of controls except that the “Toolstrip” prefix is not present. Add one each of the
following types, with the setting specified:

 ➤ Button — Set the Text property to Go. Set the DisplayStyle property to Text.

 ➤ ComboBox — Leave the Text property blank. Set DropDownStyle to DropDownList. Open the Items
dialog and add the names of some colors.

 ➤ SplitButton — Set the Text property to Options. Set the DisplayStyle property to Text.

 ➤ TextBox — Leave the Text property blank.

Click OK. The ToolStrip on the design surface will
look like the one shown in Figure 14-23.

You can now handle events on any of these toolbar
elements the same way you would any other controls.
You can double-click to get a Click event routine or
access the event routines through the drop-downs in
the Code Editor.

To make the ToolStrip more dynamic, it must be
embedded in a ToolStripContainer. You can do
that manually by dragging one over and putting the
ToolStrip in it, but it’s easier to click the smart tag
on the ToolStrip and then select Embed in ToolStripContainer. This causes a ToolStripContainer to
appear on your form. Set the Dock property for the ToolStripContainer to Fill and it will provide a
surface for the ToolStrip that includes all four edges of the form.

Run your program. Using the mouse, grab the dotted handle on the far left edge of the toolbar. If you drag
this to the right, then the toolbar will be repositioned. If you drag it to other positions on the form, then the
entire toolbar will dock to different edges of the form.

allowing Users to Move Toolbar elements
By default, the AllowItemReorder property of the ToolStrip is set to False. If you change that to True,
then the elements on the toolbar can be moved around in relation to one another (reordered) at runtime.

Change the AllowItemReorder property to True for the ToolStrip and run your program again. Hold
down the Alt key and drag elements on the toolbar around. They will assume new positions on the toolbar
when you drop them.

Creating a standard set of Toolbar elements
If you need a toolbar that has the typical visual elements for cut, copy, paste, and so on, it is not necessary
to create the elements. The designer will do it for you.

Create a new form in your project and drag a ToolStrip onto it. As before, it will be positioned at the top
and will not contain any elements. With the ToolStrip highlighted in the component tray, click the Item
property. Below the properties in the Properties
window, a link named Insert Standard Items will
appear. Click that link; elements will be inserted
into the ToolStrip, making it look like the one
shown in Figure 14-24.

menus
Menus are added to a form in Windows Forms 2.0 by dragging controls called MenuStrip or
ContextMenuStrip onto your form. MenuStrip implements a standard Windows-style menu at the top of
the form. ContextMenuStrip enables a pop-up menu with a right mouse button click.

figure 14-23

figure 14-24

These controls are actually subclasses of the ToolStrip, so much of the information you learned earlier in
this chapter about working with the ToolStrip also applies to the MenuStrip and ContextMenuStrip.
When dragged onto the form, these controls appear in the component tray just as the ToolStrip does, and
you access the designer for these controls the same way you do for the ToolStrip. However, because these
are menus, the most common way to add items is to type them directly into the menu designer that appears
when the control is highlighted.

The menu designer is extremely intuitive — the menu appears on your form just as it would at runtime,
and you simply fill in the menu items you need. Each item can be renamed, and each can have a Click event
associated with it.

adding standard items to a Menu
If your form’s menu needs to have the standard top-level options (File, Edit, and so on) and the typical
options under these items, then you can have all these usual options inserted for you automatically.

To see this capability in action, drag a MenuStrip to a form and then click the smart tag (the right arrow at
the right edge) for the MenuStrip to bring up the Items Collection Editor. Click the Insert Standard Items
link at the bottom of the dialog.

icons and Checkmarks for Menu items
Each menu item has an Image property. Setting this property to an image causes the image to appear on the
left side of the text for the menu option. You can see this property in use by looking at the standard items
inserted in the preceding example. The File ➪ Save option has an icon of a diskette, which is produced by
setting the image property of that item.

Items can also have check marks beside them. This is done by changing the Checked property of the item
to True. You can do this at design time or runtime, enabling you to manipulate the check marks on menus
as necessary.

Context Menus
To implement a context menu for a form or any control on a form, drag a ContextMenuStrip to the form
and add the menu items. Items are added and changed the same way as they are with the MenuStrip.

To hook a context menu to a control, set the control’s ContextMenuStrip property to the
ContextMenuStrip menu control you want to use. Then, when your program runs and you right-click in
the control, the context menu will pop up.

Dynamically Manipulating Menus at runtime
Menus can be adjusted at runtime using code. Context menus, for instance, may need to vary according to
the state of your form. The following walk-through shows how to add a new menu item to a context menu
and how to clear the menu items.

Create a new Windows application. On the blank Form1 for the project, drag over a MenuStrip control.
Using the menu designer, type in a top-level menu option of File. Under that option, type in options for
Open and Save.

Now place a button on the form. Double-click the button to get its Click event, and place the following code
into the event:

Dim NewItem As New ToolStripMenuItem
NewItem.Text = "Save As"
' Set any other properties of the menu item you like.
FileToolStripMenuItem.DropDownItems.Add(NewItem)
AddHandler NewItem.Click, _
 AddressOf Me.NewMenuItem_Click

Code snippet from AddMenuItem

Controls ❘ 565

566 ❘ chaPTer 14 wiNdows FoRms

Add the event handler referenced in this code at the bottom of the form’s code:

Private Sub NewMenuItem_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 MessageBox.Show("New menu item clicked!")
End Sub

Code snippet from AddMenuItem

If you now run the program and look at the menu, it will only have File and Save options. Clicking the
button will cause a new Save As item to be added to the menu, and it will be hooked to the event routine
called NewMenuItem_Click.

common dialogs
Windows Forms provides you with seven common dialog controls. Each control opens a predefined form
that is identical to the one used by the operating system.

These dialogs cannot be shown modeless. They have a ShowDialog method to show them modally. That
method returns one of the standard DialogResult values, as discussed earlier in this chapter.

openfileDialog and savefileDialog
These two controls open the standard dialog control that enables users to select files on the system. They are
quite similar except for the buttons and labels that appear on the actual dialog box when it is shown to the user.
Each prompts the user for a file on the system by allowing the user to browse the files and folders available.

Use the properties described in Table 14-6 to set up the dialogs.

TaBle 14-6: Important Properties of the OpenFileDialog and SaveFileDialog Controls

ProPerTy descriPTion

InitialDirectory Defines the initial location that is displayed when the dialog opens, e .g .,
OpenFileDialog1.InitialDirectory = “C:\Program Files”

Filter String that defines the Files of Type list . Separate items using the pipe character .
Items are entered in pairs; the first of each pair is the description of the file type, and
the second half is the file wildcard, e .g ., OpenFileDialog1
.Filter = “All Files$|*.* |Text Files|*.txt|Rich Text Files|*.rtf”

FilterIndex Integer that specifies the default filter item to use when the dialog box opens .
For example, with the preceding filter used, defaults to text files as follows:
OpenFileDialog1.FilterIndex = 2

RestoreDirectory Boolean value that, when True, forces the system’s default directory to be restored
to the location it was in when the dialog was first opened . This is False by default .

Filename Holds the full name of the file that the user selected, including the path

ShowDialog Displays the dialog

The following code opens the standard dialog box, asking the user to select a file that currently exists on the
system, and simply displays the choice in a message box upon return:

OpenFileDialog1.InitialDirectory = "C:\"
OpenFileDialog1.Filter = "Text files|*.txt|All files|*.*"
OpenFileDialog1.FilterIndex = 1
OpenFileDialog1.RestoreDirectory = True
If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
 MessageBox.Show("You selected """ & OpenFileDialog1.FileName & """")
End If

Code snippet from CommonDialogDemo

ColorDialog Control
As the name implies, this control gives the user a dialog box from which to select a color. Use the properties
described in Table 14-7 to set up the dialog boxes as follows:

ColorDialog1.Color = TextBox1.BackColor
ColorDialog1.AllowFullOpen = True
If ColorDialog1.ShowDialog()= Windows.Forms.DialogResult.OK Then
 TextBox1.BackColor = ColorDialog1.Color
End If

Code snippet from CommonDialogDemo

TaBle 14-7: Important Properties of the ColorDialog Control

ProPerTy descriPTion

Color The System.Drawing.Color that the user selected . You can also use this to set the
initial color selected when the user opens the dialog .

AllowFullOpen Boolean value that when True, allows the user to select any color . If False, then the
user is restricted to the set of default colors .

ShowDialog Displays the dialog

fontDialog Control
This control displays the standard dialog box, allowing users to select a font. Use the properties described in
Table 14-8 to set up the dialog boxes.

TaBle 14-8: Important Properties of the FontDialog Control

ProPerTy commenTs

Font The System.Drawing.Font that the user selected . Also used to set the initial font .

ShowEffects Boolean value that when True, makes the dialog box display the text effects options of
underline and strikeout

ShowColor Boolean value that when True, makes the dialog box display the combo box of the font
colors . The ShowEffects property must be True for this to have an effect .

FixedPitchOnly Boolean value that when True, limits the list of font options to only those that have a
fixed pitch (such as Courier or Lucida console) .

ShowDialog Displays the dialog

Using these properties looks like this:

FontDialog1.Font = TextBox1.Font
FontDialog1.ShowColor = True
FontDialog1.ShowEffects = True
FontDialog1.FixedPitchOnly = False
If FontDialog1.ShowDialog()= Windows.Forms.DialogResult.OK Then
 TextBox1.Font = FontDialog1.Font
End If

Printer Dialog Controls
There are three more common dialog controls: PrintDialog, PrintPreviewDialog, and PageSetup-Dialog.
They can all be used to control the output of a file to the printer, and you can use these in conjunction with the
PrintDocument component to run and control print jobs.

Controls ❘ 567

568 ❘ chaPTer 14 wiNdows FoRms

drag and drop
Implementing a drag-and-drop operation in the .NET Framework is accomplished by a short sequence of
events. Typically, it begins in a MouseDown event of one control, and always ends with the DragDrop event
of another.

To demonstrate the process, begin with a new Windows application. Add two list boxes to your form, and
add three items to the first using the Items Property Designer. This application enables you to drag the items
from one list box into the other.

The first step in making drag and drop work is specifying whether or not a control will accept a drop. By
default, all controls reject such behavior and do not respond to any attempt by the user to drop something
onto them. In this case, set the AllowDrop property of the second list box (the one without the items added)
to True.

The next item of business is to invoke the drag-and-drop operation. This is typically done in the MouseDown
event of the control containing the data you want to drag (although you’re not restricted to it). The
DoDragDrop method is used to start the operation. This method defines the data that will be dragged and
the type of dragging that is allowed. Here, you’ll drag the text of the selected list box item, and permit both
a move and a copy of the data to occur.

Switch over to the code window of your form and add the following code to the MouseDown event of
ListBox1:

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseDown
 Dim DragDropResult As DragDropEffects
 If e.Button = MouseButtons.Left Then
 DragDropResult = ListBox1.DoDragDrop(_
 ListBox1.Items(ListBox1.SelectedIndex), _
 DragDropEffects.Move Or DragDropEffects.Copy)
 ' Leave some room here to check the result of the operation
 ' (You'll fill it in next).
 End If
End Sub

Code snippet from DragAndDropSampleScreen

Notice the comment about leaving room to check the result of the operation. You’ll fill that in shortly. For
now, calling the DoDragDrop method has gotten you started.

The next step involves the recipient of the data — in this case, ListBox2. Two events here are important to
monitor: DragEnter and DragDrop.

As you can guess by the name, the DragEnter event occurs when the user first moves over the recipient
control. The DragEnter event has a parameter of type DragEventArgs that contains an Effect property
and a KeyState property.

The Effect property enables you to set the display of the drop icon for the user to indicate whether a move
or a copy occurs when the mouse button is released. The KeyState property enables you to determine
the state of the Ctrl, Alt, and Shift keys. It is a Windows standard that when both a move or a copy can
occur, a user indicates the copy action by holding down the Ctrl key. Therefore, in this event, you check the
KeyState property and use it to determine how to set the Effect property.

Add the following code to the DragEnter event of ListBox2:

Private Sub ListBox2_DragEnter(ByVal sender As Object, _
 ByVal e As DragEventArgs) _
 Handles ListBox2.DragOver
 If e.KeyState = 9 Then ' Control key
 e.Effect = DragDropEffects.Copy

 Else
 e.Effect = DragDropEffects.Move
 End If
End Sub

Code snippet from DragAndDropSampleScreen

Note that you can also use the DragOver event if you want, but it will fire continuously as the mouse moves
over the target control. In this situation, you only need to trap the initial entry of the mouse into the control.

The final step in the operation occurs when the user lets go of the mouse button to drop the data at its
destination. This is captured by the DragDrop event. The parameter contains a property holding the data
that is being dragged. It’s now a simple process of placing it into the recipient control as follows:

Private Sub ListBox2_DragDrop(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DragEventArgs) _
 Handles ListBox2.DragDrop
 ListBox2.Items.Add(e.Data.GetData(DataFormats.Text))
End Sub

Code snippet from DragAndDropSampleScreen

One last step: You can’t forget to manipulate ListBox1 if the drag and drop was a move. Here’s where
you’ll fill in the hole you left in the MouseDown event of ListBox1. Once the DragDrop has occurred, the
initial call that invoked the procedure returns a result indicating what ultimately happened. Go back to
the ListBox1_MouseDown event and enhance it to remove the item from Listbox1 if it was moved (and not
simply copied):

Private Sub ListBox1_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles ListBox1.MouseDown
 Dim DragDropResult As DragDropEffects
 If e.Button = MouseButtons.Left Then
 DragDropResult = ListBox1.DoDragDrop(_
 ListBox1.Items(ListBox1.SelectedIndex), _
 DragDropEffects.Move Or DragDropEffects.Copy)
 ' If operation is a move (and not a copy), then remove then
 ' remove the item from the first list box.
 If DragDropResult = DragDropEffects.Move Then
 ListBox1.Items.RemoveAt(ListBox1.SelectedIndex)
 End If
 End If
End Sub

Code snippet from DragAndDropSampleScreen

When you’re done, run your application and drag the items from Listbox1
into Listbox2. Try a copy by holding down the Ctrl key when you do it. The
screenshot in Figure 14-25 shows the result after Item1 has been moved and
Item3 has been copied a few times.

summary of standard Windows.forms controls
This section lists the basic controls that are generally quite intuitive and don’t
warrant a full example to explain.

 ➤ Button

Can display both an icon and text simultaneously. The image is set using the ➤ Image property
(instead of Picture). The image position can be set using the ImageAlign property (left,
right, center, and so on).

Text on the button can be aligned using the ➤ TextAlign property.

figure 14-25

Controls ❘ 569

570 ❘ chaPTer 14 wiNdows FoRms

Can have different appearances using the ➤ FlatStyle property

Has ➤ AcceptButton and CancelButton properties to allow a button click on an Enter
keypress or an Escape keypress, respectively

 ➤ CheckBox

Can appear as a toggle button using the ➤ Appearance property

Check box and text can be positioned within the defined area using the ➤ CheckAlign and
TextAlign properties.

Checked value is stored in the ➤ CheckState property.

Has a ➤ FlatStyle property controlling the appearance of the check box

 ➤ CheckedListBox

A list box that has check boxes beside each item (see ➤ ListBox)

 ➤ ComboBox

Like the new ➤ ListBox control, it can now hold a collection of objects instead of an array of
strings (see ListBox).

Now has a ➤ MaxDropDownItems property that specifies how many items to display when the
list opens

 ➤ DateTimePicker

 ➤ DomainUpDown

A simple one-line version of a list box ➤

Can hold a collection of objects and will display the ➤ ToString result of an item in the
collection

Can wrap around the list to give a continuous scrolling effect using the ➤ Wrap property

 ➤ HScrollBar

 ➤ ImageList

 ➤ Label

Can display an image and text ➤

Has automatic sizing capability. Set the ➤ AutoSize property to True for automatic horizontal
sizing (this is the default value of the property).

Can specify whether a mnemonic should be interpreted (If ➤ UseMnemonic is True, then the
first ampersand (&) in the Text property specifies underlining the following character and
having it react to the Alt key shortcut, placing the focus on the next control in the tab order
that can hold focus, such as a text box.)

 ➤ LinkLabel

Identical to a label, but behaves like a hyperlink with extra properties, such as ➤

LinkBehavior (for example, HoverUnderline), LinkColor, and ActiveLinkColor

 ➤ ListBox

A list box can now hold a collection of objects, instead of an array of strings. Use the ➤

DisplayMember property to specify what property of the objects to display in the list, and the
ValueMember property to specify what property of the objects to use as the values of the list
items. (This is similar to the ItemData array from previous versions.) For example, a combo
box could store a collection of employee objects, and display to the user the Name property of
each, as well as retrieve the EmployeeId as the value of the item currently selected.

 ➤ ListView

Sub-items can have their own font display properties. ➤

 ➤ MonthCalendar

 ➤ NotifyIcon

Gives a form an icon in the system tray ➤

ToolTip of the icon is set by the ➤ Text property of the control.

Pop-up menus are set using a ➤ ContextMenu control (see the “Menus” section earlier in
chapter).

 ➤ NumericUpDown

A single-line text box that displays a number and up/down buttons that increment/decrement ➤

the number when clicked

 ➤ PictureBox

 ➤ Image property defines the graphic to display instead of Picture.

Use the ➤ SizeMode property to autostretch or center the picture.

 ➤ ProgressBar

Has a ➤ Step method that automatically increments the value of the progress bar by the
amount defined in the Step property

 ➤ RadioButton

Use ➤ CheckAlign and TextAlign to specify where the radio button and text appear in
relation to the area of the control.

 ➤ RichTextBox

Use the ➤ Lines array to get or set specific individual lines of the control’s text.

 ➤ TabControl

Has a ➤ TabPages collection of TabPage objects. A TabPage object is a subclass of the Panel
control specialized for use in the TabControl.

Uses the ➤ Appearance property to display the tabs as buttons, if desired (formerly the Style
property of the TabStrip control)

 ➤ TextBox

Now has a ➤ CharacterCasing property that can automatically adjust the text entered into
uppercase or lowercase

The ➤ ReadOnly property is used to prevent the text from being edited.

Now has ➤ Cut, Copy, Paste, Undo, and ClearUndo methods

 ➤ Timer

Special version of ➤ Timer that conforms to the Windows Forms threading model (Don’t use
Timer classes from other namespaces in Windows Forms.)

 ➤ TrackBar

 ➤ TreeView

 ➤ VScrollBar

 ➤ WebBrowser

Even smart client applications often need to display HTML or browse websites. The ➤ WebBrowser
control is in an intelligent wrapper around the browsing control built in to Windows.

handling groups of related controls
Occasionally it is necessary for a set of controls to be treated as a group. For example, a set of RadioButton
controls might be related, and you might want to channel the Click event for all the controls in the group to
the same event handler.

Controls ❘ 571

572 ❘ chaPTer 14 wiNdows FoRms

To have a single method handle multiple events from controls, you must attach those controls’ events to
the handler. You can do that with multiple controls specified in a Handles clause or by using AddHandler
for each control. Unless controls are being added to your form on-the-fly, using additional controls in the
Handles clause is usually preferable. Here is an example of a declaration for a Click event that handles three
RadioButton controls:

 Private Sub RadioButton3_Click(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles RadioButton1.Click, _
 RadioButton2.Click, RadioButton3.Click

There is no Index property as in old-style control arrays in VB6. Instead, simply use the Sender parameter
of the event handler to determine which control originated the event.

A simple example is helpful to see how to set this up. Create a new
Windows application and set the Text property of the blank Form1 to
Add Dynamic Control Demo. Then add two buttons to the form, as
shown in Figure 14-26.

Double-click Button1 to switch over to the code that handles the
Button1.Click event. To make this method respond to the Button2
.Click event as well, simply add the Button2.Click event handler to the end of the Handles list, and then
add some simple code to display a message box indicating what button triggered the event:

' Note the change in the method name from Button1_Click. Since
' two objects are hooked up, it's a good idea to avoid having the
' method specifically named to a single object.
Private Sub Button_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click, Button2.Click
 Dim buttonClicked As Button
 buttonClicked = CType(sender, Button)
 ' Tell the world what button was clicked
 MessageBox.Show("You clicked " & buttonClicked.Text)
End Sub

Code snippet from AddDynamicControl

Run the program and click the two buttons. Each one will trigger the event and display a message box with
the appropriate text from the button that was clicked.

adding controls at runtime
You may add controls to a form at runtime. Here is an example that
enhances the preceding program to add a third button dynamically at
runtime. Add another button to your form that will trigger the addition
of Button3, as shown in Figure 14-27.

Name the new button AddNewButton and add the following code to
handle its Click event:

Private Sub AddNewButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles addNewButton.Click
 Dim newButton As Button
 ' Create the new control
 newButton = New Button()
 ' Set it up on the form
 newButton.Location = New System.Drawing.Point(184, 12)
 newButton.Size = New System.Drawing.Size(75, 23)
 newButton.Text = "Button3"
 ' Add it to the form's controls collection

figure 14-26

figure 14-27

 Me.Controls.Add(newButton)
 ' Hook up the event handler.
 AddHandler newButton.Click, AddressOf Me.Button_Click
End Sub

Code snippet from AddDynamicControl

When the AddNewButton button is clicked,
the code creates a new button, sets its size and
position, and then does two essential things.
First, it adds the button to the form’s controls
collection; second, it connects the Click event of
the button to the method that handles it.

With this done, run the program and click the
AddNewButton button. Button3 will appear.
Then, simply click Button3 to prove that the
Click event is being handled. You should get the
result shown in Figure 14-28.

oTher handy Programming TiPs
Here are some other handy programming tips for using Windows Forms:

 ➤ Switch the focus to a control — Use the .Focus method. To set the focus to TextBox1, for example,
use the following code:
 TextBox1.Focus()

 ➤ Quickly determine the container control or parent form — With the use of group boxes and panels,
controls are often contained many times. You can now use the FindForm method to immediately
get a reference to the form. Use the GetContainerControl method to access the immediate parent
of a control.

 ➤ Traverse the tab order — Use the GetNextControl method of any control to get a reference to the
next control on the form in the tab order.

 ➤ Convert client coordinates to screen coordinates (and back) — Want to know where a control is in
screen coordinates? Use the PointToScreen method. Convert back using the PointToClient method.

 ➤ Change the z-order of controls at runtime — Controls now have both BringToFront and
SendToBack methods.

 ➤ Locate the mouse pointer — The Control class now exposes a MousePosition property that returns
the location of the mouse in screen coordinates.

 ➤ Manage child controls — Container controls, such as a group box or panel, can use the HasChildren
property and Controls collection to determine the existence of, and direct references to, child controls,
respectively.

 ➤ Maximize, minimize, or restore a form — Use the form’s WindowState property.

 ➤ Create a global exception handler — On the Project Properties dialog, click the button labeled View
Application Events. (This button is available only if the Use Application Framework check box is
checked.) A new code module will be created named ApplicationEvents.vb, and you can handle the
UnhandledException event in that module. Any exceptions that are not handled in other code cause
this event to fire.

summary
Windows Forms is still an excellent technology for the development of rich client and smart client interfaces.
While Windows Presentation Foundation will experience more innovation in coming generations of the .NET
platform, at present it’s significantly easier to develop on Windows Forms. The maturity of the designer and

figure 14-28

summary ❘ 573

574 ❘ chaPTer 14 wiNdows FoRms

control set in Windows Forms makes it a good choice for many client-based applications, and Windows
Forms will be supported indefinitely on the .NET platform.

Becoming a capable Windows Forms developer requires becoming familiar with the controls that are available,
including their properties, events, and methods. This takes time. If you are inexperienced with form-based
interfaces, you can expend a fair amount of time using the reference documentation to find the control
capabilities you need. However, that investment is worthwhile, both because it enables you to be a proficient
Windows Forms developer and because many of the concepts will carry over into WPF.

Many professional Windows Forms developers need to go beyond just creating forms and laying out
controls. Complex applications often also require creating new controls or enhancing built-in controls.
Accordingly, the next chapter discusses how to create and modify Windows Forms controls, along with
some additional advanced Windows Forms topics.

15
 advanced Windows forms

 WhaT you Will learn in This chaPTer

 How to inherit from existing Windows Forms controls and extend them for ➤

your own purposes

 How to create UserControls that combine controls into a reusable surface ➤

 How to create Windows Forms controls that draw their own interface ➤

 The previous chapter discussed the basics of Windows Forms 2.0. These capabilities are suffi cient for
straightforward user interfaces for systems written in VB 2010; but as applications become larger and
more complex, it becomes more important to use the advanced capabilities of the .NET environment
to better structure the application. Poorly structured large systems tend to have redundant code.
Repeated code patterns end up being used (in slightly different variations) in numerous places in an
application, which has numerous bad side effects: longer development time, less reliability, more
diffi cult debugging and testing, and tougher maintenance.

 Examples of needs that often result in repeated code include ensuring that fi elds are entered by the
user, that the fi elds are formatted correctly, and that null fi elds in the database are handled correctly.
Proper object - oriented design can encapsulate such functionality, making it unnecessary to use
repeated code. Using the full object - oriented capabilities of the .NET environment, plus additional
capabilities specifi c to Windows Forms programming, you can componentize your logic, enabling the
same code to be used in numerous places in your application.

 This chapter discusses techniques for componentizing code in Windows Forms applications. It is
assumed that you have already read Chapters 2 and 3 on inheritance and other object - oriented
techniques available in .NET before working with this chapter.

 PacKaging logic in Visual conTrols
 As shown in the last chapter, Windows Forms user interfaces are based on using controls. A control
is simply a special type of .NET class (just as forms are). As a fully object - oriented programming
environment, VB 2010 gives you the capability to inherit and extend classes, and controls are no
exception. Therefore, it is possible to create new controls that extend what the built - in controls can do.

576 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

There are four primary sources of controls for use on Windows Forms interfaces:

Controls packaged with the .NET Framework (referred to in this chapter as ➤ built-in controls)

Existing ActiveX controls that are imported into Windows Forms (➤ These are briefly discussed in
Chapter 30.)

Third-party .NET-based controls from a software vendor ➤

Custom controls that are created for a specific purpose in a particular project or organization ➤

If you can build your application with controls from the first three categories, so much the better. Using
prewritten functionality that serves the purpose is generally a good idea. However, this chapter assumes you
need more than such prepackaged functionality.

cusTom conTrols in WindoWs forms
There are three basic techniques for creating custom Windows Forms controls in .NET, corresponding to
three different starting points. This range of options offers the flexibility to choose a technique that offers
an appropriate balance between simplicity and flexibility:

You can inherit from an existing control. ➤

You can build a composite control (using the ➤ UserControl class as your starting point).

You can write a control from scratch (using the very simple ➤ Control class as your starting point).

These options are in rough order of complexity, from simplest to most complex. Let’s look at each one with
a view to understanding the scenarios in which each one is useful.

inheriting from an existing control
The simplest technique starts with a complete Windows Forms control that is already developed. A new
class is created that inherits the existing control. This new class has all the functionality of the base class
from which it inherits, and the new logic can be added to create additional functionality in this new class or,
indeed, to override functionality from the parent (when permitted).

Here are some typical scenarios where it might make sense to extend an existing Windows Forms control:

A text box used for entry of American-style dates ➤

A self-loading list box, combo box, or data grid ➤

A ➤ ComboBox control that had a mechanism to be reset to an unselected state

A ➤ NumericUpDown control that generates a special event when it reaches 80 percent of its maximum
allowed value

Each of these scenarios starts with an existing control that simply needs some additional functionality. The
more often such functionality is needed in your project, the more sense it makes to package it in a custom
control. If a text box that needs special validation or editing will be used in only one place, then it probably
doesn’t make sense to create an inherited control. In that case, it’s probably sufficient to simply add some
logic in the form where the control is used to handle the control’s events and manipulate the control’s
properties and methods.

Building a composite control
In some cases, a single existing control does not furnish the needed functionality, but a combination of two
or more existing controls does. Such a combination is called a composite control. Here are some typical
examples:

A set of buttons with related logic that are always used together (such as Save, Delete, and Cancel ➤

buttons on a file maintenance form)

A set of text boxes to hold a name, address, and phone number, with the combined information ➤

formatted and validated in a particular way

A set of option buttons with a single property exposed as the chosen option ➤

As with inherited controls, composite controls are only appropriate for situations that require the same
functionality in multiple places. If the functionality is only needed once, then simply placing the relevant
controls on the form and including appropriate logic right in the form is usually better.

Composite controls in Windows Forms are most often created using the UserControl class as a base
class. Composite controls can be created using other classes as a base, however, and a later section entitled
Embedding Controls in Other Controls shows an example.

Writing a control from scratch
If a control needs special functionality not available in any existing control, then it can be written from
scratch to draw its own visual interface and implement its own logic. This option requires more work, but it
enables you to do just about anything within .NET and Windows Forms, including very sophisticated user
interfaces.

To write a control from scratch, it is necessary to inherit from the Control class, which provides basic
functionality such as properties for colors and size. With this basic functionality already built in, your
required development tasks include adding any specific properties and methods needed for the control,
writing rendering logic that will paint the control to the screen, and handling mouse and keyboard input
to the control.

inheriTing from an exisTing conTrol
With this background on the options for creating custom controls, the next step is to look in depth at the
procedures used for their development. First up is creating a custom control by inheriting from an existing
control and extending it with new functionality. This is the simplest method for the creation of new controls,
and the best way to introduce generic techniques that apply to all custom controls.

After you look at the general steps needed to create a custom control via inheritance, an example illustrates
the details. It is important to understand that many of the techniques described for working with a control
created through inheritance also apply to the other ways that a control can be created. Whether inheriting
from the Control class, the UserControl class, or from an existing control, a control is a .NET class.
Creating properties, methods, and events, and coordinating these members with the Visual Studio designers,
is done in a similar fashion, regardless of the starting point.

Process overview
Here are the general stages involved in creating a custom control via inheritance from an existing control.
This is not a step-by-step recipe, just an overview. A subsequent example provides more detail on the specific
steps, but those steps follow these basic stages:

 1. Create or open a Windows Control Library project and add a new custom control to the project. The
class that is created will inherit from the System.Windows.Forms.Control base class. The line
that specifies the inherited class must be changed to inherit from the control that is being used as the
starting point.

 2. The class file gets new logic added as necessary to add new functionality. Then the project is compiled
with a Build operation in order to create a DLL containing the new control’s code.

 3. The control is now ready to be used. It can be placed in the Windows Forms Toolbox with the Choose
Items option in Visual Studio 2010. From that point forward, it can be dragged onto forms like any
other control.

inheriting from an existing Control ❘ 577

578 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

Stage 2, of course, is where the effort lies. New logic for the custom control may include new properties,
methods, and events. It may also include intercepting events for the base control and taking special actions
as necessary. These tasks are done with standard .NET coding techniques.

Several coding techniques are specific to developing Windows Forms controls, such as using particular
.NET attributes. While our example includes adding routine properties and events, we focus on these
special techniques for programming controls.

Writing code for an inherited control
This section discusses how to place new logic in an inherited control, with special emphasis on
techniques that go beyond basic object orientation. A detailed example using the techniques follows
this section.

Creating a Property for a Custom Control
Creating a property for a custom control is just like creating a property for any other class. It is necessary to
write a property procedure, and to store the value for the property somewhere, most often in a module-level
variable, which is often called a backing field.

Properties typically need a default value — that is, a value the property takes on automatically when the
control is instantiated. Typically, this means setting the backing field that holds the property value to some
initial value. That can be done when the backing field is declared, or it can be done in the constructor for
the control.

Here’s the code for a typical simple property for a custom control:

Dim _nMaxItemsSelected As Integer = 10
Public Property MaxItemsSelected() As Integer
 Get
 Return _nMaxItemsSelected
 End Get
 Set(ByVal Value As Integer)
 If Value < 0 Then
 Throw New ArgumentException("Property value cannot be negative")
 Else
 _nMaxItemsSelected = Value
 End If
 End Set
End Property

Code snippet from LimitedCheckedListBox

After a property is created for a control, it automatically shows up in the Properties window for the
control. If your Properties window is arranged alphabetically, you will see it in the list. If your window is
arranged by category, then the new property will appear in the Misc category. However, you can use some
additional capabilities to make the property work better with the designers and the Properties window in
Visual Studio.

Coordinating with the Visual studio iDe
Controls are normally dragged onto a visual design surface, which is managed by the Visual Studio IDE. In
order for your control to work effectively with the IDE, it must be able to indicate the default value of its
properties. The IDE needs the default value of a property for two important capabilities:

To reset the value of the property (done when a user right-clicks the property in the Properties window ➤

and selects Reset)

To determine whether to set the property in designer-generated code. A property that is at its default ➤

value does not need to be explicitly set in the designer-generated code.

 There are two ways for your control to work with the IDE to accomplish these tasks. For properties that
take simple values, such as integers, Booleans, fl oating - point numbers, or strings, .NET provides an
attribute. For properties that take complex types, such as structures, enumerated types, or object references,
two methods need to be implemented.

 Attributes

 You can learn more about attributes in Chapter 4, but a short summary of important points is included
here. Attributes reside in namespaces, just as components do. The attributes used in this chapter are in the
 System.ComponentModel namespace. To use attributes, the project must have a reference to the assembly
containing the namespace for the attributes. For System.ComponentModel , that ’ s no problem — the project
automatically has the reference.

 However, the project will not automatically have an Imports statement for that namespace. Attributes could
be referred to with a full type name, but that ’ s a bit clumsy. To make it easy to refer to the attributes in code,
put the following line at the beginning of all modules that need to use the attributes discussed in this chapter:

Imports System.ComponentModel

 That way, an attribute can be referred to with just its name. For example, the DefaultValue attribute,
discussed in detail below, can be declared like this:

 < DefaultValue(4) > Public Property MyProperty() As Integer

 All the examples in this chapter assume that the Imports statement has been placed
at the top of the class, so all attributes are referenced by their short name. If you get a
compile error on an attribute, then it ’ s likely that you ’ ve omitted that line.

 Unlike earlier versions of Visual Basic, Visual Basic 2010 allows such lines of code to be split into separate
lines, without the need for line continuation characters. For example, the last example could also be written
as follows:

 < DefaultValue(4) >
Public Property MyProperty() As Integer

 setting a Default Value with an attribute
 The .NET Framework contains many attributes. Most are used to tag classes, properties, and methods with
metadata — that is, information that some other entity, such as a compiler or the Visual Studio IDE, might
need to know.

 For example, the DefaultValue attribute tells the Visual Studio IDE the default value of a property. You
can change the preceding code for a simple property to include a DefaultValue attribute. Here are the fi rst
few lines, showing the change to the property declaration that applies the attribute:

Dim mnMaxItemsSelected As Integer = 10
 < DefaultValue(10) > Public Property MaxItemsSelected() As Integer
 Get
 Return mnMaxItemsSelected
 ...

 Code snippet from LimitedCheckedListBox

 Including the DefaultValue attribute enables the Properties window to reset the value of the property back
to the default value. That is, if you right - click the property in the Properties window and select Reset from
the pop - up context menu, the value of the property returns to 10 from any other value to which it was set.

 Another effect of the attribute can be seen in the code generated by the visual designer. If the preceding
property is set to any value that is not the default, a line of code appears in the designer - generated code to
set the property value. This is called serializing the property.

inheriting from an existing Control ❘ 579

580 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

 For example, if the value of MaxItemsSelected is set to 5, then a line of code something like this appears in
the designer - generated code:

MyControl.MaxItemsSelected = 5

 If the property has the default value of 10 (because it was never changed or it was reset to 10), then the line
to set the property value is not present in the designer - generated code. That is, the property does not need to
be serialized in code if the value is at the default.

 To see serialized code, you need to look in the partial class that holds the Windows
Forms designer - generated code. This partial class is not visible in the Solution Explorer
by default. To see it, press the Show All Files button in the Solution Explorer.

 alternate Techniques for Working with the iDe
 The last sample property returned an Integer . Some custom properties return more complex types, such
as structures, enumerated types, or object references. These properties cannot use a simple DefaultValue
attribute to take care of resetting and serializing the property. An alternate technique is needed.

 For complex types, designers check to see whether a property needs to be serialized by using a method on
the control containing the property. The method returns a Boolean value that indicates whether a property
needs to be serialized (True if it does, False if it does not).

 For the following examples, suppose a control has a property named MyColor , which is of type Color . The
 Color type is a structure in Windows Forms, so the normal DefaultValue attribute can ’ t be used with it.
Further suppose the backing variable for the property is named _ MyColor .

 In this case, the method to check serialization would be called ShouldSerializeMyColor . It would
typically look something like the following code:

Public Function ShouldSerializeMyColor() As Boolean
 If Color.Equals(_MyColor, Color.Red) Then
 Return False
 Else
 Return True
 End If
End Function

 Code snippet from LimitedCheckedListBox

 This is a good example of why a DefaultValue attribute can ’ t work for all types. There is no equality
operator for the Color type, so you have to write appropriate code to perform the check to determine
whether the current value of the MyColor property is the default. In this case, that ’ s done with the Equals
method of the Color type.

 If a property in a custom control does not have a related ShouldSerializeXXX method or a DefaultValue
attribute, then the property is always serialized. Code for setting the property ’ s value is always
included by the designer in the generated code for a form, so it ’ s a good idea to always include either a
 ShouldSerializeXXX method or a DefaultValue attribute for every new property created for a control.

 Providing a Reset Method for a Control Property

 The ShouldSerialize method only takes care of telling the IDE whether to serialize the property value.
Properties that require a ShouldSerialize method also need a way to reset a property ’ s value to the
default. This is done by providing a special reset method. In the case of the MyColor property, the reset
method is named ResetMyColor . It would look something like the following:

Public Sub ResetMyColor()
 _MyColor = Color.Red
End Sub

 Code snippet from LimitedCheckedListBox

other useful attributes
DefaultValue is not the only attribute that is useful for properties. The Description attribute is also one
that should be used consistently. It contains a text description of the property, and that description shows up
at the bottom of the Properties windows when a property is selected. To include a Description attribute,
the declaration of the preceding property would appear as follows:

<DefaultValue(100),
Description("This is a pithy description of my property")>
Public Property MyProperty() As Integer

Code snippet from LimitedCheckedListBox

Such a property will look like Figure 15-1 when highlighted in the Properties
window.

Another attribute you will sometimes need is the Browsable attribute. As
mentioned earlier, a new property appears in the Properties window automatically.
In some cases, you may need to create a property for a control that you do not
want to show up in the Properties window. In that case, you use a Browsable
attribute set to False. Here is code similar to the last, making a property
nonbrowsable in the Properties window:

<Browsable(False)>
Public Property MyProperty() As Integer

One additional attribute you may want to use regularly is the Category attribute. Properties can be grouped
by category in the Properties window by pressing a button at the top of the window. Standard categories
include Behavior, Appearance, and so on. You can have your property appear in any of those categories, or
you can make up a new category of your own. To assign a category to a property, use code like this:

<Category("Appearance")>
Public Property MyProperty() As Integer

There are other attributes for control properties that are useful in specific circumstances. If you understand
how the common ones discussed here are used, then you can investigate additional attributes for other
purposes in the documentation.

defining a custom event for the inherited control
Events in .NET are covered in Chapter 2. To recap, for controls, the process for creating and handling an
event includes these steps:

 1. Declare the event in the control. The event can have any arguments that are appropriate, but it cannot
have named arguments, optional arguments, or arguments that are ParamArrays. Though not
required, normally you will want to follow the same convention as events in the .NET Framework,
which means an event declaration similar to this:
Public Event MyEvent(ByVal sender As Object, e As EventArgs)

 2. Elsewhere in the control’s code, implement code to raise the event. The location and circumstances of
this code vary depending on the nature of the event, but a typical line that raises the preceding event
looks like the following code:
RaiseEvent MyEvent(Me, New EventArgs)

 3. The form that contains the control can now handle the event. The process for doing that is the same as
handling an event for a built-in control.

As the preceding example shows, the standard convention in .NET is to use two arguments for an event:
Sender, which is the object raising the event, and e, which is an object of type EventArgs or a type that
inherits from EventArgs. This is not a requirement of the syntax (you can actually use any arguments you
like when you declare your event), but it’s a consistent convention throughout the .NET Framework, so

figure 15-1

inheriting from an existing Control ❘ 581

582 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

it is used in this chapter. It is suggested that you follow this convention as well, because it will make your
controls consistent with the built-in controls in their operation.

The following example illustrates these concepts. In this example, you create a new control that contains a
custom property and a custom event. The property uses several of the attributes discussed.

a checkedlistBox limiting selected items
This example inherits the built-in CheckedListBox control and extends its functionality. If you are not
familiar with this control, it works just like a normal ListBox control except that selected items are
indicated with a check in a check box at the front of the item, rather than by highlighting the item.

To extend the functionality of this control, the example includes the creation of a property called
MaxItemsToSelect. This property holds a maximum value for the number of items that a user can select.
The event that fires when a user checks an item is then monitored to determine whether the maximum has
already been reached.

If selection of another item would exceed the maximum number, then the selection is prevented, and an
event is fired to let the consumer form know that the user has tried to exceed the maximum limit. The code
that handles the event in the form can then do whatever is appropriate. In this case, a message box is used to
tell the user that no more items can be selected.

The DefaultValue, Description, and Category attributes are placed on the MaxItemsToSelect property
to coordinate with the IDE.

Here is the step-by-step construction of our example:

 1. Start a new Windows Control Library project in Visual Studio and name it MyControls. In the Solution
Explorer, select the UserControl1.vb file, right-click it, and delete it.

 2. Select Project ➪ Add New Item, and select the item template called Custom Control. Name the item
LimitedCheckedListBox.

 3. Click the button in the Solution Explorer to show all files for the project. Bring up the file
LimitedCheckedListBox.Designer.vb, which is found by clicking the plus sign next to
LimitedCheckedListBox.vb. (If you don’t see a plus sign next to LimitedCheckedListBox.vb,
click the Show All Files button at the top of the Solution Explorer.)

 4. At the top of the LimitedCheckedListbox.Designer.vb code, look for the line that reads as follows:
Inherits System.Windows.Forms.Control

 5. Change that line to the following:
Inherits System.Windows.Forms.CheckedListbox

 6. Close LimitedCheckedListbox.Designer.vb and open LimitedCheckedListBox.vb in the Code
Editor. Add the following declarations at the top of the code (before the line declaring the class):
Imports System.ComponentModel

This enables you to utilize the attributes required from the System.ComponentModel namespace.

 7. The code for LimitedCheckedListBox.vb will contain an event for painting the control. Since you
are not using a control that draws its own surface, delete that event. (It won’t hurt to leave it, but
you don’t need it.)

 8. Begin adding code specifically for this control. First, implement the MaxItemsToSelect property.
A module-level variable is needed to hold the property’s value, so insert this line just under the class
declaration line:
Private _nMaxItemsToSelect As Integer = 4

 9. Create the code for the property itself. Insert the following code into the class just above the line that
says End Class:

<DefaultValue(4), Category("Behavior"),

Description("The maximum number of items allowed to be checked")>
Public Property MaxItemsToSelect() As Integer
 Get
 Return _nMaxItemsToSelect
 End Get
 Set(ByVal Value As Integer)
 If Value < 0 Then
 Throw New ArgumentException("Property value cannot be negative")
 Else
 _nMaxItemsToSelect = Value
 End If
 End Set
End Property

Code snippet from LimitedCheckedListBox

This code sets the default value of the MaxItemsToSelect property to 4, and sets a description for the
property to be shown in the Properties window when the property is selected there. It also specifies
that the property should appear in the Behavior category when properties in the Properties window are
sorted by category.

 10. Declare the event that will be fired when a user selects too many items. The event is named
MaxItemsExceeded. Just under the code for step 9, insert the following line:
Public Event MaxItemsExceeded(Sender As Object, e As EventArgs)

 11. Insert code into the event routine that fires when the user clicks on an item. For the CheckedListBox
base class, this is called the ItemCheck property. Open the left-hand drop-down box in the code
window and select the option LimitedCheckedListBox Events. Then, select the ItemCheck event in
the right-hand drop-down box of the code window. The following code will be inserted to handle the
ItemCheck event:
Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object,
 ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
 Handles Me.ItemCheck
End Sub

Code snippet from LimitedCheckedListBox

 12. The following code should be added to the ItemCheck event to monitor it for too many items:
 Private Sub LimitedCheckedListBox_ItemCheck(ByVal sender As Object,
 ByVal e As System.Windows.Forms.ItemCheckEventArgs) _
 Handles MyBase.ItemCheck
If (Me.CheckedItems.Count >= _nMaxItemsToSelect) _
 And (e.NewValue = CheckState.Checked) Then
 RaiseEvent MaxItemsExceeded(Me, New EventArgs)
 e.NewValue = CheckState.Unchecked
End If

End Sub

Code snippet from LimitedCheckedListBox

 13. Build the project to create a DLL containing the LimitedCheckedListBox control.

 14. Add a new Windows Application project to the solution (using the File ➪ Add Project ➪ New Project
menu) to test the control. Name the new project anything you like. Right-click the project in the
Solution Explorer, and select Set as Startup Project in the pop-up menu. This will cause your Windows
application to run when you press F5 in Visual Studio.

 15. Scroll to the top of the controls in the Toolbox. The LimitedCheckedListBox control should be there.

 16. The Windows Application project will have a Form1 that was created automatically. Drag a
LimitedCheckedListBox control onto Form1, just as you would a normal list box. Change the

inheriting from an existing Control ❘ 583

584 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

CheckOnClick property for the LimitedCheckedListBox to True (to make
testing easier). This property was inherited from the base CheckedListBox
control.

 17. In the Items property of the LimitedCheckedListBox, click the button
to add some items. Insert the following list of colors: Red, Yellow, Green,
Brown, Blue, Pink, and Black. At this point, your Windows Application
project should have a Form1 that looks something like Figure 15-2.

 18. Bring up the code window for Form1. In the left-hand drop-down box above
the code window, select LimitedCheckedListBox1 to get to its events.
Then, in the right-hand drop-down box, select the MaxItemsExceeded event. The empty event will
look like the following code:
Private Sub LimitedCheckedListBox1_MaxItemsExceeded(
 ByVal sender As System.Object, e As System.EventArgs) _
 Handles LimitedCheckedListBox1.MaxItemsExceeded
 End Sub

Code snippet from LimitedCheckedListBox

 19. Insert the following code to handle the event:
MsgBox("You are attempting to select more than " &
 LimitedCheckedListBox1.MaxItemsToSelect &
 " items. You must uncheck some other item " &
 " before checking this one.")

Code snippet from LimitedCheckedListBox

 20. Start the Windows Application project. Check and uncheck various items in the list box to verify that
the control works as intended. You should get a message box whenever you attempt to check more than
four items. (Four items is the default maximum, which was not changed.) If you uncheck some items,
then you can check items again until the maximum is once again exceeded. When finished, close the
form to stop execution.

 21. If you want to check the serialization of the code, look at the designer-generated code in the partial
class for Form1 (named LimitedCheckedListBox.Designer.vb), and examine the properties
for LimitedCheckedListBox1. Note that there is no line of code that sets MaxSelectedItems.
Remember that if you don’t see the partial class in the Solution Explorer, then you’ll need to press the
Show All button at the top of the Solution Explorer.

 22. Go back to the Design view for Form1 and select LimitedCheckedListBox1. In the Properties window,
change the MaxSelectedItems property to 3.

 23. Return to the partial class and look again at the code that declares the properties for
LimitedCheckedListBox1. Note that there is now a line of code that sets MaxSelectedItems to the
value of 3.

 24. Go back to the Design view for Form1 and select LimitedCheckedListBox1. In the Properties window,
right-click the MaxSelectedItems property. In the pop-up menu, select Reset. The property will change
back to a value of 4, and the line of code that sets the property you looked at in the last step will be gone.

These last few steps showed that the DefaultValue attribute is working as it should.

The conTrol and userconTrol Base classes
In the earlier example, a new control was created by inheriting from an existing control. As is standard
with inheritance, this means the new control began with all the functionality of the control from which it
inherited. Then new functionality was added.

This chapter didn’t discuss the base class for this new control (CheckedListBox) because you probably
already understand a lot about the properties, methods, events, and behavior of that class. However, you are

figure 15-2

not likely to be as familiar with the base classes used for the other techniques for creating controls, so it ’ s
appropriate to discuss them now.

 Two generic base classes are used as a starting point to create a control. It is helpful to understand
something about the structure of these classes to know when the use of each is appropriate.

 The classes discussed in this chapter are all in the System.Windows.Forms namespace.
There are similarly named classes for some of these in the System.Web.UI namespace
(which is used for Web Forms), but these classes should not be confused with anything
discussed in this chapter.

 The control class
 The Control class is contained within the System.Windows.Forms namespace and contains base
functionality to defi ne a rectangle on the screen, provide a handle for it, and process routine operating
system messages. This enables the class to perform such functions as handling user input through the
keyboard and mouse. The Control class serves as the base class for any component that needs a visual
representation on a Win32 - type graphical interface. Besides built - in controls and custom controls that
inherit from the Control class, the Form class also ultimately derives from the Control class.

 In addition to these low - level windowing capabilities, the Control class also includes such visually related
properties as Font , ForeColor , BackColor , and BackGroundImage . The Control class also has properties
that are used to manage layout of the control on a form, such as docking and anchoring.

 The Control class does not contain any logic to paint to the screen except to paint a
background color or show a background image. While it does offer access to the keyboard
and mouse, it does not contain any actual input processing logic except for the ability to
generate standard control events such as Click and KeyPress . The developer of a custom
control based on the Control class must provide all of the functions for the control
beyond the basic capabilities provided by the Control class.

 A standard set of events is also furnished by the Control class, including events for clicking the control
(Click , DoubleClick), for keystroke handling (KeyUp , KeyPress , KeyDown), for mouse handling (MouseUp ,
 MouseHover , MouseDown , etc.), and drag - and - drop operations (DragEnter , DragOver , DragLeave , DragDrop).
Also included are standard events for managing focus and validation in the control (GotFocus , Validating ,
 Validated). See the help fi les on the Control class for details about these events and a comprehensive list.

 The usercontrol class
 The built - in functionality of the Control class is a great starting point for controls that will be built from
scratch, with their own display and keyboard handling logic. However, the Control class has limited
capability for use as a container for other controls.

 That means that composite controls do not typically use the Control class as a starting point. Composite
controls combine two or more existing controls, so the starting point must be able to manage contained controls.
The class that is most often used to meet this requirement is the UserControl class. Because it ultimately derives
from the Control class, it has all of the properties, methods, and events discussed earlier for that class.

 However, the UserControl class does not derive directly from the Control class. It derives from the
 ContainerControl class, which, in turn, derives from the ScrollableControl class.

 As the name suggests, the ScrollableControl class adds support for scrolling the client area of the
control ’ s window. Almost all the members implemented by this class relate to scrolling. They include
 AutoScroll , which turns scrolling on or off, and controlling properties such as AutoScrollPosition ,
which gets or sets the position within the scrollable area.

The Control and UserControl Base Classes ❘ 585

586 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

 The ContainerControl class derives from ScrollableControl and adds the capability to support and
manage child controls. It manages the focus and the capability to tab from control to control. It includes
properties such as ActiveControl to point to the control with the focus, and Validate , which validates the
most recently changed control that has not had its validation event fi red.

 Neither ScrollableControl nor ContainerControl are usually inherited from directly; they add
functionality that is needed by their more commonly used child classes: Form and UserControl .

 The UserControl class can contain other child controls, but the interface of UserControl does not
automatically expose these child controls in any way. Instead, the interface of UserControl is designed to
present a single, unifi ed interface to outside clients such as forms or container controls. Any object interface
that is needed to access the child controls must be specifi cally implemented in your custom control. The
following example demonstrates this.

 a comPosiTe userconTrol
 Our earlier example showed inheriting an existing control, which was the fi rst of the three techniques
for creating custom controls. The next step up in complexity and fl exibility is to combine more than one
existing control to become a new control. This is similar to the process of creating a UserControl in VB6,
but it is easier to do in Windows Forms.

 The main steps in the process of creating a UserControl are as follows:

 1. Start a new Windows Control Library project and assign names to the project and the class
representing the control.

 2. The project will contain a design surface that looks a lot like a form. You can drag controls onto this
surface just as you would a form. Writing code that works with the controls, such as event routines, is
done the same way as with a form, but with a few extra considerations that don ’ t apply to most forms. In
particular, it is important to handle resizing when the UserControl is resized. This can be done by using
the Anchor and Dock properties of the constituent controls, or you can create resize logic that repositions
and resizes the controls on your UserControl when it is resized on the form containing it. Another
option is to use FlowLayoutPanel and/or TableLayoutPanel controls to do automatic layout.

 3. Create properties of the UserControl to expose functionality to a form that will use it. This typically
means creating a property to load information into and get information out of the control. Sometimes
properties to handle cosmetic elements are also necessary.

 4. Build the control and use it in a Windows application exactly as you did for the inherited controls
 discussed earlier.

 There is a key difference between this type of development and inheriting a control,
as shown in the preceding examples. A UserControl will not by default expose the
properties of the controls it contains. It exposes the properties of the UserControl
class plus any custom properties that you give it. If you want properties for contained
controls to be exposed, then you must explicitly create logic to expose them.

 creating a composite usercontrol
 To demonstrate the process of creating a composite UserControl ,
the next exercise builds one that is similar to what is shown in
Figure 15 - 3. The control is named ListSelector .

 This type of layout is common in wizards and other user interfaces
that require selection from a long list of items. The control has one
list box holding a list of items that can be chosen (on the left), and
another list box containing the items chosen so far (on the right).
Buttons enable items to be moved back and forth. figure 15 - 3

a Composite UserControl ❘ 587

Loading this control means loading items into the left list box, which we will call SourceListBox. Getting
selected items back out involves exposing the items that are selected in the right list box, named TargetListBox.

The buttons in the middle that transfer elements back and forth are called AddButton, AddAllButton,
RemoveButton, and ClearButton, from top to bottom, respectively.

There are several ways to handle this kind of interface element in detail. A production-level version would
have the following characteristics:

Buttons would gray out (disable) when they are not appropriate. For example, ➤ btnAdd would not be
enabled unless an item were selected in lstSource.

Items could be dragged and dropped between the two list boxes. ➤

Items could be selected and moved with a double-click. ➤

Such a production-type version contains too much code to discuss in this chapter. For simplicity, the
exercise has the following limitations:

Buttons do not gray out when they should be unavailable. ➤

Drag-and-drop is not supported. (Implementation of drag-and-drop is discussed in Chapter 14, if you ➤

are interested in adding it to the example.)

No double-clicking is supported. ➤

This leaves the following general tasks to make the control work, which are detailed in the step-by-step
exercise that follows:

 1. Create a UserControl and name it ListSelector.

 2. Add the list boxes and buttons to the ListSelector design surface, using a TableLayoutPanel and a
FlowLayoutPanel to control layout when the control is resized.

 3. Add logic to transfer elements back and forth between the list boxes when buttons are pressed. (More
than one item may be selected for an operation, so several items may need to be transferred when a
button is pressed.)

 4. Expose properties to enable the control to be loaded, and for selected items to be fetched by the form
that contains the control.

resizing the control
As shown in Figure 15-3, there are three main areas of the control: the two ListBox controls and a
vertical strip between them that holds the buttons. As the control is resized, these areas need to also be
appropriately resized.

If the ListSelector control gets too small, then there won’t be enough room for the buttons and the list
boxes to display properly, so it needs to have a minimum size. That’s enforced by setting the MinimumSize
property for the UserControl in the designer. The MinimumSize property is inherited from the Control
class (as discussed in the previous chapter).

The rest of the resizing is handled by using a TableLayoutPanel that contains three columns, one for each of the
three areas. That is, the first column of the TableLayoutPanel will hold SourceListBox, the second column
will hold the buttons, and the third column will hold TargetListBox. The capabilities of the TableLayoutPanel
enable the middle column to be a fixed size, and the left and right columns to share all remaining width.

The middle column could contain a standard Panel to hold the buttons, but it’s a bit easier to use a
FlowLayoutPanel because it automatically stacks the buttons.

exposing Properties of contained controls
Most of the controls contained in the composite control in this exercise do not need to expose their
interfaces to the form that will use the composite control. The buttons, for example, are completely private
to the ListSelector — none of their properties or methods need to be exposed.

588 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

The easiest way to load up the control is to expose the Items property of the source list box. Similarly, the
easiest way to allow access to the selected items is to expose the Items property of the target list box.
The Items property exposes the entire collection of items in a list box, and can be used to add, clear, or
examine items. No other properties of the list boxes need to be exposed.

The exercise also includes a Clear method that clears both list boxes simultaneously. This allows the
control to be easily flushed and reused by a form that consumes it.

stepping through the example
Here is the step-by-step procedure to build the composite UserControl:

 1. Start a new Windows Control Library project and name it ListSelector.

 2. Right-click on the UserControl1.vb module that is generated for the project and select Rename. Change
the name of the module to ListSelector.vb. The resulting dialog asks if you wish to rename all
references in the project. Click Yes. This automatically changes the name of your class to ListSelector.

 3. Go to the design surface for the control. Increase the size of the control to about 300 × 200. Then drag
a TableLayoutPanel onto the control and set the Dock property of the TableLayoutPanel to Fill.

 4. Click the smart tag (the triangular glyph in the upper-right corner) of the TableLayoutPanel. A menu
will appear. Select Edit Rows and Columns.

 5. Highlight Column2 and click the Insert
button. The TableLayoutPanel will now
have three columns. In the new column
just inserted (the new Column2), the width
will be set to an absolute size of 20 pixels.
Change that width to 100 pixels. The dialog
containing your column settings should now
look like Figure 15-4.

 6. Click the Show drop-down menu in the
upper-left corner and select Rows. Press the
Delete button to delete a row because you
need only one row in the control. Click OK.
The design surface for the control should now
look similar to Figure 15-5.

 7. Drag a ListBox into the first cell and another
one into the third cell. Drag a FlowLayoutPanel into the middle cell. For all three of these, set the
Dock property to Fill.

 8. Drag four buttons into the FlowLayoutPanel in the middle. At this point your control should look like
the one shown in Figure 15-6.

figure 15-4

figure 15-5 figure 15-6

a Composite UserControl ❘ 589

 9. Change the names and properties of these controls as shown in the following table:

original name neW name ProPerTies To seT for conTrol

ListBox1 SourceListBox

ListBox2 TargetListBox

Button1 AddButton Text = “Add >“

Size.Width = 90

Button2 AddAllButton Text = “Add All >>“

Size.Width = 90

Button3 RemoveButton Text = “< Remove”

Margin.Top = 20

Size.Width = 90

Button4 ClearButton Text = “<< Clear”

Size.Width = 90

 10. In the Properties window, click the drop-down at the top and select ListSelector so that the properties for
the UserControl itself appear in the Properties window. Set the MinimumSize height and width to 200
pixels each.

 11. Create the public properties and methods of the composite control. In this case, you need the following
members:

memBer descriPTion

Clear method Clears both list boxes of their items

SourceItems property Exposes the Items collection for the source list box

SelectedItems property Exposes the Items collection for the target list box

The code for these properties and methods is as follows:

<Browsable(False)>
Public ReadOnly Property SourceItems() As ListBox.ObjectCollection
 Get
 Return SourceListBox.Items
 End Get
End Property
<Browsable(False)>
Public ReadOnly Property SelectedItems() As ListBox.ObjectCollection
 Get
 Return TargetListBox.Items
 End Get
End Property
Public Sub Clear()
 SourceListBox.Items.Clear()
 TargetListBox.Items.Clear()
End Sub

Remember that your class must have an Imports for System.ComponentModel at the top so that the
attributes can be identified by the compiler.

 12. Put logic in the class to transfer items back and forth between the list boxes and clear the target list box
when the Clear button is pressed. This logic manipulates the collections of items in the list boxes, and is
fairly brief. You need one helper function to check whether an item is already in a list box before adding it
(to avoid duplicates). Here are the Click events for each of the buttons, with the helper function at the top:

Private Function ItemInListBox(ByVal ListBoxToCheck As ListBox,
 ByVal ItemToCheck As Object) As Boolean
 Dim bFound As Boolean = False

590 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

 For Each Item As Object In ListBoxToCheck.Items
 If Item Is ItemToCheck Then
 bFound = True
 Exit For
 End If
 Next
 Return bFound
End Function
Private Sub AddButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles AddButton.Click
 For Each SelectedItem As Object In SourceListBox.SelectedItems
 If Not ItemInListBox(TargetListBox, SelectedItem) Then
 TargetListBox.Items.Add(SelectedItem)
 End If
 Next
End Sub
Private Sub AddAllButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles AddAllButton.Click
 For Each SelectedItem As Object In SourceListBox.Items
 If Not ItemInListBox(TargetListBox, SelectedItem) Then
 TargetListBox.Items.Add(SelectedItem)
 End If
 Next
End Sub
' For both the following operations, we have to go through the
' collection in reverse because we are removing items.
Private Sub RemoveButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles RemoveButton.Click
 For iIndex As Integer = TargetListBox.SelectedItems.Count - 1 To 0 _
 Step -1
 TargetListBox.Items.Remove(TargetListBox.SelectedItems(iIndex))
 Next iIndex
End Sub
Private Sub ClearButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles ClearButton.Click
 For iIndex As Integer = TargetListBox.Items.Count - 1 To 0 Step -1
 TargetListBox.Items.Remove(TargetListBox.Items(iIndex))
 Next iIndex
End Sub

Code snippet from ListSelector

The logic in the Click events for RemoveButton and ClearButton needs a bit of explanation. Because
items are being removed from the collection, it is necessary to go through the collection in reverse.
Otherwise, the removal of items will confuse the looping enumeration and a runtime error will be
generated.

 13. Build the control. Then create a Windows Application project to test it in. You can drag the control
from the top of the Toolbox, add items in code (via the Add method of the SourceItems collection),
resize, and so on. For testing, you should arrange for some items to be added to SourceItems, and
the easiest way to do this is to use the Add method to add some items in the form’s Load event.
When the project is run, the buttons can be used to transfer items back and forth between the list
boxes, and the items in the target list box can be read with the SelectedItems property.

Keep in mind that you can also use the techniques for inherited controls in composite controls, too. You can
create custom events, apply attributes to properties, and create ShouldSerialize and Reset methods to make
properties work better with the designer. (That wasn’t necessary here because our two properties were ReadOnly.)

Building a conTrol from scraTch
If your custom control needs to draw its own interface, you should use the Control class as your starting point.
Such a control gets a fair amount of base functionality from the Control class. A partial list of properties and
methods of the Control class was included earlier in the chapter. These properties arrange for the control to
automatically have visual elements such as background and foreground colors, fonts, window size, and so on.

However, such a control does not automatically use any of that information to actually display anything
(except for a BackgroundImage, if that property is set). A control derived from the Control class must
implement its own logic for painting the control’s visual representation. In all but the most trivial examples,
such a control also needs to implement its own properties and methods to gain the functionality it needs.

The techniques used in the earlier example for default values and the ShouldSerialize and Reset methods
all work fine with the controls created from the Control class, so that capability is not discussed again.
Instead, this section focuses on the capability that is very different in the Control class — the logic to paint
the control to the screen.

Painting a custom control with gdi+
The base functionality used to paint visual elements for a custom control is in the part of .NET called
GDI+. A complete explanation of GDI+ is too complex for this chapter, but an overview of some of the main
concepts is needed here.

What is GDi+?
GDI+ is an updated version of the old GDI (Graphics Device Interface) functions provided by the Windows
API. GDI+ provides a new API for graphics functions, which then takes advantage of the Windows graphics
library.

The system.Drawing namespace
The GDI+ functionality can be found in the System.Drawing namespace and its subnamespaces. Some of
the classes and members in this namespace will look familiar if you have used the Win32 GDI functions.
Classes are available for such items as pens, brushes, and rectangles. Naturally, the System.Drawing
namespace makes these capabilities much easier to use than the equivalent API functions.

With the System.Drawing namespace, you can manipulate bitmaps and use various structures for dealing
with graphics such as Point, Size, Color, and Rectangle. Also included are numerous classes for use in
drawing logic. The first three such classes you need to understand represent the surface on which drawing
takes place, and the objects used to draw lines and fill shapes:

 ➤ Graphics — Represents the surface on which drawing is done. Contains methods to draw items to
the surface, including lines, curves, ellipses, text, and so on.

 ➤ Pen — Used for drawing line-based objects

 ➤ Brush — Used for filling shapes (includes its subclasses)

The System.Drawing namespace includes many other classes and some subsidiary namespaces. Let’s look
at the Graphics class in a bit more detail.

The system.Drawing.Graphics Class
Many of the important drawing functions are members of the System.Drawing.Graphics class. Methods
such as DrawArc, FillRectangle, DrawEllipse, and DrawIcon have self-evident actions. More than 40
methods provide drawing-related functions in the class.

Many drawing members require one or more points as arguments. A point is a structure in the System
.Drawing namespace. It has X and Y values for horizontal and vertical positions, respectively. When a variable
number of points are needed, an array of points may be used as an argument. The next example uses points.

Building a Control from scratch ❘ 591

592 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

The System.Drawing.Graphics class cannot be directly instantiated. It is only supposed to be manipulated
by objects that can set the Graphics class up for themselves. There are several ways to get a reference to
a Graphics class, but the one most commonly used in the creation of Windows controls is to get one out
of the arguments in a Paint event. That technique is used in a later example. For now, to understand the
capabilities of GDI+ a little better, let’s do a quick example on a standard Windows Form.

Using GDi+ Capabilities in a Windows form
Here is an example of a form that uses the System.Drawing.Graphics class to draw some graphic elements
on the form’s surface. The example code runs in the Paint event for the form, and draws an ellipse, an icon
(which it gets from the form itself), and two triangles: one in outline and one filled.

Start a Windows Application project in VB 2010. On the Form1 that is automatically created for the
project, place the following code in the Paint event for the form:

' Need a pen for the drawing. We'll make it violet.
Dim penDrawingPen As New _
 System.Drawing.Pen(System.Drawing.Color.BlueViolet)
' Draw an ellipse and an icon on the form
e.Graphics.DrawEllipse(penDrawingPen, 30, 100, 30, 60)
e.Graphics.DrawIcon(Me.Icon, 90, 20)
' Draw a triangle on the form.
' First have to define an array of points.
Dim pntPoint(2) As System.Drawing.Point
pntPoint(0).X = 150
pntPoint(0).Y = 100
pntPoint(1).X = 150
pntPoint(1).Y = 150
pntPoint(2).X = 50
pntPoint(2).Y = 70
e.Graphics.DrawPolygon(penDrawingPen, pntPoint)
' Do a filled triangle.
' First need a brush to specify how it is filled.
Dim bshBrush As System.Drawing.Brush
bshBrush = New SolidBrush(Color.Blue)
' Now relocate the points for the triangle.
' We'll just move it 100 pixels to the right.
pntPoint(0).X += 100
pntPoint(1).X += 100
pntPoint(2).X += 100
e.Graphics.FillPolygon(bshBrush, pntPoint)

Code snippet from GDIScreenShot

Start the program. The form that appears will look like the one shown in
Figure 15-7.

To apply GDI+ to control creation, you create a custom control that displays
a “traffic light,” with red, yellow, and green signals that can be displayed
via a property of the control. GDI+ classes will be used to draw the traffic
light graphics in the control.

Start a new project in VB 2010 of the Windows Control Library type and name
it TrafficLight. The created module has a class in it named UserControl1. We
want a different type of control class, so you need to get rid of this one. Right-
click on this module in the Solution Explorer and select Delete.

Next, right-click on the project and select Add New Item. Select the item
type of Custom Control and name it TrafficLight.vb.

As with the other examples in this chapter, it is necessary to include the Imports statement for the
namespace containing the attribute you will use. This line should go at the very top of the code module for
TrafficLight.vb:

figure 15-7

Imports System.ComponentModel

The TrafficLight control needs to know which “light” to display. The control can be in three states: red, yellow,
or green. An enumerated type will be used for these states. Add the following code just below the previous code:

Public Enum TrafficLightStatus
 statusRed = 1
 statusYellow = 2
 statusGreen = 3
End Enum

Code snippet from TrafficLight

The example also needs a module-level variable and a property procedure to support changing and retaining
the state of the light. The property is named Status. To handle the Status property, first place a declaration
directly under the last enumeration declaration that creates a module-level variable to hold the current status:

Private mStatus As TrafficLightStatus = TrafficLightStatus.statusGreen

Then, insert the following property procedure in the class to create the Status property:

<Description("Status (color) of the traffic light")>
Public Property Status() As TrafficLightStatus
 Get
 Status = mStatus
 End Get
 Set(ByVal Value As TrafficLightStatus)
 If mStatus <> Value Then
 mStatus = Value
 Me.Invalidate()
 End If
 End Set
End Property

Code snippet from TrafficLight

The Invalidate method of the control is used when the Status property changes, which forces a redraw of
the control. Ideally, this type of logic should be placed in all of the events that affect rendering of the control.

Now add procedures to make the property serialize and reset properly:

Public Function ShouldSerializeStatus() As Boolean
 If mStatus = TrafficLightStatus.statusGreen Then
 Return False
 Else
 Return True
 End If
End Function
Public Sub ResetStatus()
 Me.Status = TrafficLightStatus.statusGreen
End Sub

Code snippet from TrafficLight

Place code to do painting of the control, to draw the “traffic light” when the control repaints. We will use
code similar to that used previously. The code generated for the new custom control will already have a
blank OnPaint method inserted. You just need to insert the following highlighted code into that event,
below the comment line that says “Add your custom paint code here”:

Protected Overrides Sub OnPaint(ByVal pe As _
 System.Windows.Forms.PaintEventArgs)
 MyBase.OnPaint(pe)
 'Add your custom paint code here
 Dim grfGraphics As System.Drawing.Graphics
 grfGraphics = pe.Graphics
 ' Need a pen for the drawing the outline. We'll make it black.

Building a Control from scratch ❘ 593

594 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

 Dim penDrawingPen As New _
 System.Drawing.Pen(System.Drawing.Color.Black)
 ' Draw the outline of the traffic light on the control.
 ' First have to define an array of points.
 Dim pntPoint(3) As System.Drawing.Point
 pntPoint(0).X = 0
 pntPoint(0).Y = 0
 pntPoint(1).X = Me.Size.Width - 2
 pntPoint(1).Y = 0
 pntPoint(2).X = Me.Size.Width - 2
 pntPoint(2).Y = Me.Size.Height - 2
 pntPoint(3).X = 0
 pntPoint(3).Y = Me.Size.Height - 2
 grfGraphics.DrawPolygon(penDrawingPen, pntPoint)
 ' Now ready to draw the circle for the "light"
 Dim nCirclePositionX As Integer
 Dim nCirclePositionY As Integer
 Dim nCircleDiameter As Integer
 Dim nCircleColor As Color = Color.LightGreen
 nCirclePositionX = Me.Size.Width * 0.02
 nCircleDiameter = Me.Size.Height * 0.3
 Select Case Me.Status
 Case TrafficLightStatus.statusRed
 nCircleColor = Color.OrangeRed
 nCirclePositionY = Me.Size.Height * 0.01
 Case TrafficLightStatus.statusYellow
 nCircleColor = Color.Yellow
 nCirclePositionY = Me.Size.Height * 0.34
 Case TrafficLightStatus.statusGreen
 nCircleColor = Color.LightGreen
 nCirclePositionY = Me.Size.Height * 0.67
 End Select
 Dim bshBrush As System.Drawing.Brush
 bshBrush = New SolidBrush(nCircleColor)
 ' Draw the circle for the signal light
 grfGraphics.FillEllipse(bshBrush, nCirclePositionX,
 nCirclePositionY, nCircleDiameter, nCircleDiameter)
End Sub

Code snippet from TrafficLight

Build the control library by selecting Build from the Build menu. This will create a DLL in the /bin
directory where the Control Library solution is saved.

Next, start a new Windows Application project. Drag a TrafficLight control from the top of the Toolbox
onto the form in the Windows Application project. Notice that its property window includes a Status
property. Set that to statusYellow. The rendering on the control on the form’s design surface will change
to reflect this new status. Change the background color of the TrafficLight control to a darker gray to
improve its contrast. (The BackColor property for TrafficLight was inherited from the Control class.)

At the top of the code for the form, place the following line to make the enumerated value for the traffic
light’s status available:

Imports TrafficLight.TrafficLight

Add three buttons (named btnRed, btnYellow, and btnGreen) to the form to make the TrafficLight
control display as red, yellow, and green. The logic for the buttons looks something like the following:

Private Sub btnRed_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnRed.Click
 TrafficLight1.Status = TrafficLightStatus.statusRed
End Sub
Private Sub btnYellow_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnYellow.Click

 TrafficLight1.Status = TrafficLightStatus.statusYellow
End Sub
Private Sub btnGreen_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnGreen.Click
 TrafficLight1.Status = TrafficLightStatus.statusGreen
End Sub

 Code snippet from Traffi cLight

 In the Solution Explorer, right - click your test Windows Application project
and select Set as Startup Project. Then press F5 to run. When your test form
appears, you can change the “ signal ” on the traffi c light by pressing the buttons.
Figure 15 - 8 shows a sample screen.

 Of course, you can ’ t see the color in a black - and - white screenshot; but as you can
tell from its position, the circle is red. The “ yellow light ” displays in the middle of
the control, and the “ green light ” displays at the bottom. These positions are all
calculated in the Paint event logic, depending on the value of the Status property.

 For a complete example, it would be desirable for the control to allow the user to change the Status by
clicking on a different part of the “ traffi c light. ” That means including logic to examine mouse clicks,
calculate whether they are in a given area, and change the Status property if appropriate. In the code
available for download for this book, the Traffi cLight example includes such functionality.

 aTTaching an icon for The ToolBox
 By default, the icon that appears in the Toolbox next to your control ’ s name is a gear - shaped icon. However,
you can attach an icon to a control for the Toolbox to display. There are two ways to do that.

 Windows Forms includes a ToolboxBitmap attribute that can specify an icon for a class. It can be used in
several ways, and you can see examples in the help fi le for the ToolboxBitmap attribute.

 The easy way to attach an icon to your control is to let Visual Studio do it for you. Simply locate or draw the
icon you want to use and add it to the project containing your control. Then rename the icon so that it has
the same name as your control but an extension of .ico instead of vb .

 For example, to attach an icon to the TrafficLight control in the preceding example, fi nd an icon you like,
place it in your project, and name it Traffi cLight.ico . Then Visual Studio will attach the icon to your control
during the compilation process; and when your control is added to the Toolbox, your icon will be used
instead of the gear - shaped one.

 Custom icons are displayed for a control in the Toolbox only when the control is added
with the Toolbox ’ s Choose Items option. Controls that appear in the Toolbox at the
top because their project is currently loaded do not exhibit custom icons. They always
have a blue, gear - shaped icon.

 emBedding conTrols in oTher conTrols
 Another valuable technique for creating custom controls is to embed other controls. In a sense, the UserControl
does this; but when a UserControl is used as the base class, by default it only exposes the properties of the
 UserControl class. Instead, you may want to use a control such as TextBox or Grid as the starting point, but
embed a Button in the TextBox or Grid to obtain some new functionality.

 The embedding technique relies on the fact that in Windows Forms, all controls can be containers for other
controls. Visual Basic developers are familiar with the idea that Panels and GroupBoxes can be containers,
but in fact a TextBox or a Grid can also be a container of other controls.

 figure 15 - 8

embedding Controls in other Controls ❘ 595

596 ❘ chaPTer 15 adVaNCEd wiNdows FoRms

This technique is best presented with an example. The standard ComboBox control does not have a way for
users to reset to a “no selection” state. Once an item is selected, setting to that state requires code that sets
the SelectedIndex to -1.

This exercise creates a ComboBox that has a button to reset the selection state back to “no selection.” That
enables users to access that capability directly. Now that you have worked with several controls in the
examples, rather than proceed step by step, we’ll just show the code for such a ComboBox and discuss how
the code works:

Public Class SpecialComboBox
 Inherits ComboBox
 Dim WithEvents btnEmbeddedButton As Button
 Public Sub New()
 Me.DropDownStyle = ComboBoxStyle.DropDownList
 ' Fix up the embedded button.
 btnEmbeddedButton = New Button
 btnEmbeddedButton.Width = SystemInformation.VerticalScrollBarWidth
 btnEmbeddedButton.Top = 0
 btnEmbeddedButton.Height = Me.Height - 4
 btnEmbeddedButton.BackColor = SystemColors.Control
 btnEmbeddedButton.FlatStyle = FlatStyle.Popup
 btnEmbeddedButton.Text = "t"
 Dim fSpecial As New Font("Wingdings 3", Me.Font.Size - 1)
 btnEmbeddedButton.Font = fSpecial
 btnEmbeddedButton.Left = Me.Width - btnEmbeddedButton.Width - _
 SystemInformation.VerticalScrollBarWidth
 Me.Controls.Add(btnEmbeddedButton)
 btnEmbeddedButton.Anchor = CType(AnchorStyles.Right _
 Or AnchorStyles.Top Or AnchorStyles.Bottom, AnchorStyles)
 btnEmbeddedButton.BringToFront()
 End Sub

 Private Sub btnEmbeddedButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnEmbeddedButton.Click
 Me.SelectedIndex = -1
 Me.Focus
 End Sub
 Private Sub BillysComboBox_DropDownStyleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.DropDownStyleChanged
 If Me.DropDownStyle <> ComboBoxStyle.DropDownList Then
 Me.DropDownStyle = ComboBoxStyle.DropDownList
 Throw New _
 InvalidOperationException("DropDownStyle must be DropDownList")
 End If
 End Sub
End Class
$$

Code snippet from SpecialCombo

Like the first example in the chapter, this example inherits from a built-in control. Thus, it immediately gets
all the capabilities of the standard ComboBox. All you need to add is the capability to reset the selected state.

To do that, you need a button for the user to press. The class declares the button as a private object named
btnEmbeddedButton. Then, in the constructor for the class, the button is instantiated, and its properties
are set as necessary. The size and position of the button need to be calculated. This is done using the size of
the ComboBox and a special system parameter called SystemInformation.VerticalScrollBarWidth. This
parameter is chosen because it is also used to calculate the size of the button used to drop down a combo
box. Thus, your new embedded button will be the same width as the button that the regular ComboBox
displays for dropping down the list.

Of course, you need to display something in the new button to indicate
its purpose. For simplicity, the preceding code displays a lowercase “t”
using the WingDings 3 font (which all Windows systems should have
installed). This causes a left-pointing triangle to appear, as shown in
Figure 15-9, which is a screenshot of the control in use.

The button is then added to the Controls collection of the ComboBox.
You may be surprised to learn that a ComboBox even has a Controls
collection for embedded controls, but all controls in Windows Forms
have one.

Finally, the Anchor property of the new button is set to maintain the position if the SpecialComboBox is
resized by its consumer.

Besides the constructor, only a couple of small routines are needed. The Click event for the button must be
handled, and in it the SelectedIndex must be set to -1. In addition, because this functionality is only for
combo boxes with a style of DropDownList, the DropDownStyleChanged event of the ComboBox must be
trapped, and the style prevented from being set to anything else.

summary
This chapter discussed how to create custom controls in Windows Forms, enabling you to consolidate
logic used throughout your user interfaces. The full inheritance capabilities in .NET and the classes in
the Windows Forms namespace enable several options for creating controls. It is probably best to start by
overriding these controls in order to learn the basics of creating properties and coordinating them with the
designer, building controls and testing them, and so on. These techniques can then be extended by creating
composite controls, as illustrated by the examples in this chapter.

We also discussed creating a control from scratch, using the base Control class. In the course of writing
a control from scratch, it was necessary to discuss the basics of GDI+, but if you are going to do extensive
work with GDI+, you need to seek out additional resources to aid in that effort.

The key concept that you should take away from this chapter is that Windows Forms controls are a great
way both to package functionality that will be reused across many forms and to create more dynamic,
responsive user interfaces much more quickly with much less code.

figure 15-9

summary ❘ 597

 User Controls Combining
WPf and Windows forms

 WhaT you Will learn in This chaPTer

 The Windows Forms Integration Library ➤

 Using WPF controls in Windows Forms ➤

 Using Windows Forms controls in WPF ➤

 Integration library limitations ➤

 Chapter 15 looked at advanced features of Windows Forms. One of these features goes well beyond
Windows Forms: user controls. User controls are used in Windows Forms, ASP.NET, WPF, and
Silverlight. The concepts around user controls refl ect a best practice for encapsulating application logic
within a reusable component. Within an application, smaller components that encapsulate functionality
and communicate via a method such as events provide a robust architecture. This chapter acts as a
bridge to the next chapter which deals with WPF and also references using a user control.

 The same concept is used to provide a migration path from Windows Forms to Windows Presentation
Foundation (WPF). WPF was fi rst introduced in .NET 3.0 as Microsoft ’ s next - generation solution to
graphical user - interface development. In terms of user interfaces, the transition to this new model will
be similar in signifi cance and paradigm shift to the shift from COM - based Visual Basic to Visual Basic
.NET. The core paradigms and syntax familiar to developers of Windows applications are changing,
and most of the changes are not backwardly compatible.

 As a result, developers will need to transition existing application source code to a new technology
paradigm. Perhaps not this year or next, but at some point the WPF paradigm will be used to update
the look and feel of existing applications. How will this transition compare to the last major .NET -
 related transition — the one from COM? The original version of Visual Studio .NET included a tool
to aid in migrating code from the COM - based world to .NET. No migration tool will be provided to
transition existing user interfaces to WPF, which should be considered a good thing, considering the
history of the current migration tools.

 Instead, Microsoft learned the lesson that migration is both diffi cult and time consuming and is best done
at the developer ’ s pace. Therefore, instead of trying to automatically process code based on a procedural
paradigm to work under a declarative paradigm, the tool of choice is one that enables components built in
the respective paradigms to communicate. After all, in some cases a change like this results in a complete
rewrite of an application or the application UI, and the migration library will never be used.

16

600 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

This same interoperability paradigm is repeated in the Power Pack tools for Visual Basic, which Microsoft
first released in 2006. These tools, covered in Appendix B, are similar in concept to the Interop methodology
that Microsoft has chosen to follow with WPF.

Microsoft is providing libraries that enable user-interface developers to integrate these two user-interface models
(WPF and Windows Forms). In the long run, Windows Forms to WPF integration will probably go the way
of COM-Interop, which is to say it will be available for many years, but its limitations and ties to an older
technology will reduce its influence, and eventually it will be forced into retirement with the older technology.

The focus of this chapter is how to use the Windows Forms Integration Library to best enable you to both
leverage WPF with your existing code and leverage your existing code and related forms-based code with
your new WPF applications. Just as with COM-Interop, the point of the integration library is to help you, the
developer, transition your application from Windows Forms to WPF gradually, while working with the time
and budget constraints that all developers face and potentially waiting for a control that isn’t available in WPF.

The inTegraTion liBrary
WindowsFormsIntegration library enables WPF applications to host Windows Forms controls and
vice versa. The library is contained in the WindowFormsIntegration.dll which supports the
System.Windows.Forms.Integration namespace. This namespace provides the tools necessary for
using WPF and Windows Forms in a single application. At the core of this namespace are the two classes
ElementHost and WindowsFormsHost. These two classes provide for interoperability in the WPF and the
Windows Forms environment, respectively.

The WindowsFormsIntegration.dll is located with the other .NET assemblies and is imported like any other
common namespace. After you add a reference and import the namespace you’ll find the appropriate control
class for your project type — ElementHost or WindowsFormsHost — in the list of tools in the Toolbox window
for the designer.

Table 16-1 describes the classes and the delegate that make up the Windows.Forms.Integration namespace,
a similar list is available from MSDN: http://msdn.microsoft.com/en-us/library/system.windows
.forms.integration.aspx.

class descriPTion

ChildChangedEventArgs This class is used when passing event arguments to the
ChildChanged event . This event occurs on both the
WindowsFormsHost and ElementHost classes when the
content of the Child property is changed .

ElementHost This is the core class for embedding WPF controls within Windows
Forms . Using the Child property, you identify the top-level object
(probably some type of panel) that will be hosted, and via this object
define an area that will be controlled by that object . The object
referenced by the host can contain other controls but the host
references only this one .

IntegrationExceptionEventArgs This is the base class for the Integration and
Property Mapping exception classes . It provides the
common implementation used by these classes .

LayoutExceptionEventArgs This class enables you to return information related to a Layout
error within a host class to the hosting environment, Windows
Forms, or WPF .

TaBle 16-1: Windows .Forms .Integration Classes and Delegate

These classes enable your application to host controls within its display area. As noted, when you add the
appropriate host class to your display area, the host class contains a child control. Each host contains only
a single child control. The one-to-one relationship enables the integration library to assign the display area
allocated to the host directly to the child and not be concerned with maintaining positioning multiple children,
but instead be focused on a single target child. Thus, when you assign a control to a WindowsFormsHost,
behind the scenes the Margin, Docking, AutoSizing, and Location properties of the WindowsFormsHost
control are automatically applied to the child control. The host controls don’t contain a great deal of logic
about the workings of what they are hosting; instead, they just act as an interop layer. The properties of the
child are controlled via the host, and that child control can, via user controls and panels, act as a native host
for other controls you want to display within the host control.

Similar to the WindowsFormsHost, the ElementHost control automatically controls the display characteristics,
including the following properties: Height, Width, Margin, HorizontalAlignment, and VerticalAlignment.
In both cases, the host control acts as the virtual display area for the hosted control, and you should manage
that display area via the host control, not the child it contains. Even though both controls are targeted at area
controls such as user controls and panels, their purpose is to access controls and features across the UI display
models.

hosTing WPf conTrols in WindoWs forms
Hosting WPF controls within your existing Windows Forms–based applications enables you to introduce
new functionality that requires the capabilities of WPF without forcing you to entirely rewrite your
application. This way, even as you work on upgrading an existing application to WPF, you aren’t forced
to take on a single large project. As for the integration itself, it isn’t page- or window-based, although you
can introduce new WPF windows to an existing application. The integration is focused on enabling you to
incorporate new user controls into your existing Windows Forms application.

class descriPTion

PropertyMap A property on each of the host classes . It provides a way for a
Windows Form to handle a change that occurs to one of the
properties of a hosted control — for example, if the size of the
ElementHost control has changed, causing the form to carry
out some other action . The same capability exists for WPF
applications hosting a WindowsFormsHost control .

PropertyMappingExceptionEventArgs Similar to the layout exception class, this enables a hosted
control to return information related to an exception to the
hosting environment .

WindowsFormsHost This is the primary control when a WPF application wants to host
Windows Forms controls . Similar to ElementHost, the actual
WindowsFormsHost object contains only a single child —
typically, a user control . This control can then contain an array of
controls, but it is this class that acts as the virtual Windows Form
that is referencing the user control .

PropertyTranslator This is the only delegate in this namespace . It is used within your
Visual Basic code to enable you to translate properties from a
WindowsFormsHost control to a WPF ElementHost control
(and vice versa) . Essentially, you provide it with the property to
be updated and the value to update that property with, and this
method passes that value across the boundary from one UI model
to the other . It works in conjunction with the PropertyMap class .

Hosting WPf Controls in Windows forms ❘ 601

602 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

Accordingly, the model is based around the idea that you can encapsulate the functionality of a set of WPF
UI features as a user control. This has a couple of key advantages, the first being that if you’ve been working
with .NET, you are already familiar with user controls and how they function. Once again, the paradigms
of previous user-interface models appear and are reused within WPF. The second big advantage to modeling
this around user controls is that as more of your application moves to WPF, you don’t have to rewrite the
user controls you create today when later they are used within a pure WPF environment.

With this goal in mind of creating a control that can later be moved from being hosted within a Windows
Form application to running unchanged within a WPF application, you can turn your attention to creating a
sample solution.

creating a WPf control library
The first step is to open Visual Studio 2010 and go to the New Project dialog. From here, select the Windows
category of templates and create a new Windows Forms Application. For example purposes, you can name
this ProVBWinform_Interop — the name used for the downloadable sample. As discussed in Chapter 1, Visual
Studio uses the template to create a new Windows Forms project, and you can accept the default of targeting
.NET 4. At this point, using the File menu, add a second project to your solution (File ➪ Add ➪ New Project).

Again select the Windows category of templates and create
a new WPF user control library. You could add a WPF
control to your Windows Forms project, but this would
limit the portability of the control when you wanted to
transition to a WPF project and reuse it. For demonstration
purposes, use the name WpfInteropCtrl. When you are
done, the Visual Studio Solution Explorer will look similar
to what is shown in Figure 16-1.

The next step is to add customization to the newly created
WPF library, after which the Windows Forms application
will be updated to reference the integration library and the
new WPF user control. The first customization is to the grid,
which is by default in the display area. For this example,
you will change the background color of the grid that fills
your control’s display. You will also add a new Image
control to the grid and bind it to the edges using the Margin
property, not the Height or Width properties.

The complete XAML is shown in the following code block. You can replace the default XAML for
UserControl1 with the code shown in the following snippet:

<UserControl x:Class="UserControl1"
 xmlns:="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <Grid Background="LightSteelBlue">
 <Image Margin="10,10,10,10" Name="Image1" />
 </Grid>
</UserControl>

Code snippet from UserControl1.xaml

One important change to this XAML with .NET 4.0 is the inclusion of the Expression/blend/2008
namespace and the DesignHeight and DesignWidth properties. These attributes provide a new feature
for Visual Studio 2010. It is common to want the size of a user control to be defined by the area within

figure 16-1

the parent. However, traditionally, without declaring a default height and width for a control, your design
surface was unusable. Because data isn’t typically available in Design view, controls resize down to nothing
visually. These attributes enable you to define the design surface such that at runtime the control will
respond dynamically to the area available.

Now that you have completed your work in XAML, it’s time for some code to accompany your control.
As you can imagine, this WPF control is fairly simple in that you merely want it to display an image. This
means you need a property that represents the path to the image to be displayed, some logic to load that
image, the capability to respond to changes in size, and, for the purposes of custom code, the capability to
prevent increasing the size of the image beyond its original size.

To meet these requirements you add a public property Image to your control that represents the path to the image
that will be loaded. Within the Set logic for this property, you load the image. As noted in the following code
block, the internal value has been set to a specific picture, but to be thorough, take a minute to review the accessors.

The Get and Set property accessors have been defined, and the Set accessor is customized. Note that after
assigning the path for the current image to the internal value, this accessor then creates a new local image object
and attempts to load the selected image path as a bitmap. WPF comes with converters for several common image
types, but because this is demo code, no real checking is done to ensure the validity of the path passed in.

Thus, this logic is located within a Try...Catch block; and if the image load fails, the image value in the
control is set to nothing. However, if a valid image path is provided, then the code loads the image and calls
the local ResizeMargins method to handle adding margins based on the size of the image. Similarly, the
SizeChanged event is handled in this code, and it calls the same private method to ensure that the image is
not stretched beyond its original size:

Public Class UserControl1
 ' The default directory and image path are native to Windows 7.
 ' On other operating system's you'll need to select an appropriate directory.
 Private imageSource As String = "C:\Users\Public\Pictures\Sample Pictures "

 Public Property Image() As String
 Get
 Return imageSource
 End Get
 Set(ByVal value As String)
 imageSource = value
 Dim image As BitmapImage
 Try
 image = New Windows.Media.Imaging.BitmapImage(_
 New Uri("file:///" + imageSource))
 ' Add any path validation prior to trying to load the selected file...
 Image1.Source = image
 ' resize Margins if appropriate
 ResizeMargins(image)
 Catch
 Image1.Source = Nothing
 Return
 End Try
 End Set
 End Property

 Private Sub UserControl1_SizeChanged(ByVal sender As Object,
 ByVal e As System.Windows.SizeChangedEventArgs) Handles Me.SizeChanged
 If Image1.Source IsNot Nothing Then
 ResizeMargins(CType(Image1.Source, Windows.Media.Imaging.BitmapImage))
 End If
 End Sub

 Public Sub ResizeMargins(ByVal image As Windows.Media.Imaging.BitmapImage)
 ' actualheight and actualwidth represent the size of the image control

Hosting WPf Controls in Windows forms ❘ 603

604 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

 ' whether margin is set or not. if the actual size is greater than the
 ' size of the image reset margins to the max size of the image.
 Dim imgH As Double = image.Height
 Dim ctrlH As Double = Me.ActualHeight
 Dim marginHorizontal As Double
 If imgH > ctrlH Then
 marginHorizontal = 0
 Else
 marginHorizontal = (ctrlH - imgH) / 2
 End If

 Dim imgW As Double = image.Width
 Dim ctrlW As Double = Me.ActualWidth
 Dim marginSide As Double
 If imgW > ctrlW Then
 marginSide = 0
 Else
 marginSide = (ctrlW - imgW) / 2
 End If
 Image1.Margin = New Thickness(marginSide, marginHorizontal,
 marginSide, marginHorizontal)
 End Sub
End Class

Code snippet from UserControl1.xaml

The remaining custom code is in fact the ResizeMargins method. This method is reasonably simple. It takes
the size of the image itself and compares this to the size of the control Image1. Note that this code references the
ActualHeight property. Unlike the Height property, which for controls that are docked doesn’t provide a valid
size, the ActualHeight property reflects the current size of the Image1 control. If the control size is larger than
the original size of the image, then the code adjusts the margins to fill in around the image.

This completes the definition of your sample WPF control library, so compile your application to ensure that
no errors are pending.

The Windows forms application
The next step is to customize the Windows Forms application. Begin by adding the five required references
that enable you to embed and manipulate this control. They are the four framework libraries —
WindowsFormsIntegration, PresentationCore, PresentationFramework, and WindowsBase — and
a project reference to your custom WpfInteropCtrl library. Open the project properties for your
ProVBWinForm_Interop project and go to the References tab.

Choose Add References, and in the list of available .NET libraries you’ll find all four framework references
available. Other presentation libraries are also available from this screen; and depending on what you intend
to do in your application, you can choose to add other library references to your project as well. Finally,
switch to the Project References tab and add a reference to your local project.

laying out Controls on the form
Now go to the Design mode for the Form1.vb file that was created by the Windows Forms template when
you created this project. Extend the default size of the design surface with the size of your control in mind,
allocating enough room to align three rows of Windows Forms controls above your custom user control.

Starting at the top, you are going to add a new Button control to the upper-left corner of the form. The
label on this button will be “Select Folder”; to change this you will update the Text property on the control.
Ensure the button is sized to display fully . Next, add a FolderBrowserDialog control to your window;
this control doesn’t have a display element and will be shown below your form. Now add a Label control
below your button and change its text property to “Image:.” Once this is in place, add a ComboBox control to
the right of this label. Accept the default name of ComboBox1, and using the properties for the control, select

the anchor property and add a binding to the right side of the container in addition to the default top and
left bindings. This tells the control to expand as the containing form is widened.

Next, add a Label control to the right of your button, and use the text “Mask:.” To the right of the “Mask:”
label, add a new combo box, ComboBox2, in the sample code. Go to the context menu for this ComboBox and
select Edit Items to open the edit window. Within this screen add the three options that will make up the image
mask options: No Mask, Ellipse, and Rectangle. Ensure that this control is also bound to the form’s width.

Below the image ComboBox, in a third row on your Windows Form. add a Label control with the
text “Margin:” and a TextBox control with the name TextBoxMargin. Set the default value for this
TextBox to 10 and limit its length to 4 characters in the properties display. Similarly, alongside this text
box, add another Label control with the text “Corner Radius,” and a second TextBox control called
TextBoxRounding. Set the default value for this second text box to 50.

At this point, drag and drop your UserControl1 directly onto the form surface. This is a change from
Visual Studio 2008. With Visual Studio 2010, you drag the targeted WPF control onto the form and the
designer automatically encapsulates the WPF control with an Element Host control. The controls then allow
you to resize the Element Host to fill the available area, and then using the anchor property of the element
host, anchor it to all four sides to ensure it resizes with the form.

The Design view for Form1 should look similar to the one shown in Figure 16-2. Note the expanded
Properties pane. This is currently set to display/edit the properties for ElementHost1, focusing on its
reference to the user control.

figure 16-2

adding Custom Code to the form
The next step is to add some custom code to this form. The form will allow you to select a folder containing
images and then display any of those images. Additionally, you will have the capability to place a mask over
the image to provide a custom “frame” around the displayed image. The goal is to demonstrate not only

Hosting WPf Controls in Windows forms ❘ 605

606 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

adding a control, but also a scenario in which you need to map one of the ElementHost’s properties within
your code.

The next listing provides the basis for your customization. The first item is to hold onto the current directory
path. The private value is defined on the form class, and a default path for images on Windows 7 is assigned to
this property. Next, the Load event for the form is handled. Within the Load event, the code will get the list of
files from the default directory and then load ComboBox1 with this list of files. It will select the first file from the
list, and then ensure that no mask is selected. Finally, the sample code calls the method AddPropertyMapping.
This call is currently commented on, and you will uncomment it after the reason for mapping a property is
illustrated.

The next method shown in this code block is the event handler for the button’s Click event. This event
handler opens a folder browsing dialog using the control FolderBrowserDialog1. It uses the current
path as the default for this dialog, and if the user selects a new directory for images, it loads the new list
of files into the ComboBox. Note that it doesn’t change the selected image, so a user won’t see a new image
automatically displayed when the list of files is loaded. You should update Form1.vb with the code in the
following snippet:

Public Class Form1
 ' The default directory path is native to Windows 7.
 ' On other operating systems select an appropriate directory.
 Private m_path As String = "C:\Users\Public\Pictures\Sample Pictures"
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load
 For Each filename As String In System.IO.Directory.GetFiles(m_path)
 ComboBox1.Items.Add(filename)
 Next
 ComboBox1.SelectedIndex = 0
 Me.ComboBox2.SelectedIndex = 0
 'AddPropertyMapping()
 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 FolderBrowserDialog1.SelectedPath = m_path
 If (FolderBrowserDialog1.ShowDialog() = _
 Windows.Forms.DialogResult.OK) Then
 If Not m_path = FolderBrowserDialog1.SelectedPath Then
 m_path = FolderBrowserDialog1.SelectedPath
 ComboBox1.Items.Clear()
 For Each filename As String In _
 System.IO.Directory.GetFiles(m_path)
 ComboBox1.Items.Add(filename)
 Next
 End If
 End If
 End Sub
 Private Sub ComboBox1_SelectedIndexChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles ComboBox1.SelectedIndexChanged
 Dim x As WpfInteropCtrl.UserControl1 = _
 CType(ElementHost1.Child, WpfInteropCtrl.UserControl1)
 x.Image = ComboBox1.SelectedItem.ToString
 End Sub
End Class

Code snippet from Form1

Finally, the preceding code includes the SelectedIndexChanged event handler, which is called when a user
selects a new item from the list of available image files. This event handler retrieves the selected image path

and passes this path to the child of the ElementHost1 control. Because the child object is in fact an instance
of the class WpfInteropCtrl.UserControl1, the generic child property can be cast to this object, which
supports the public property defined as part of the user control’s definition, discussed earlier.

At this point, if you are following along with the text, you should save, build, and run your project. The
project will work, although to be honest at this point it isn’t doing too much. It illustrates that you can, in
fact, host classes from the System.Windows.Controls namespace in an ElementHost control.

Custom Display Masking
The next part of this demonstration involves altering the display of the ElementHost content based on code
located within the Windows Form. Accordingly, the next block of code uses a geometric shape to overlay a
mask above the selected display, making it possible to round the corners or the entire image. The application
of the mask occurs based on the second ComboBox control you added to the form.

This control was assigned three values, and when one of the values is selected, it triggers the ComboBox2
.SelectedIndexChanged event, which has been handled in this code. The code follows a best practice
and calls a private method that implements the appropriate action based on which value was selected.
The method ApplyMask uses a Select Case statement to identify which of the three fixed maps has been
selected and then either disables the clipping region or enables a clipping region of the appropriate shape.

The clipping region is a WPF property available on WPF controls. The Clip property enables you to overlay
a given control with a geometric shape that masks out portions of the targeted control. This example
implements two simple masks: an ellipse and a rectangle. Selecting to not have a mask sets the Clip
property for the Child object within the control ElementHost1 to Nothing. However, selecting a mask to
screen out a portion of the display results in the code calling one of a pair of methods, EllipseMask and
RectMask, each of which is focused on a single geometric shape.

These two methods share the majority of their logic, first getting the available display area from ElementHost1’s
Child property. Both then use the TextBoxMargin to allow the user to change the size of the margin
surrounding the clip region. Note that in both cases the margin isn’t applied in the same manner as setting
a margin in WPF was.

Under WPF, a Margin property is defined as a thickness or distance between the edge of the control and the
edge of the display for each of the four sides. Thus, both the left and right or top and bottom values are the
same. However, in the case of a clipping region, the code is defining the size of a rectangle. Thus, the size of
the rectangle needs to account for the fact that moving the top of the image 10 pixels lower means that the
box needs to be 20 pixels smaller on the length of the side so that the 10 pixels from the top balance the 10
matching pixels on the bottom. This is why the margin is doubled when describing the height and width,
but not doubled when defining the upper-left corner location. To get this feature you’ll want to create an
event handler with an implementation similar to what is shown in the following snippet:

 Private Sub ComboBox2_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles ComboBox2.SelectedIndexChanged
 ApplyMask()
 End Sub
 Private Sub ApplyMask()
 Select Case ComboBox2.SelectedIndex
 Case 0
 ElementHost1.Child.Clip = Nothing
 TextBoxMargin.Enabled = False
 TextBoxRounding.Enabled = False
 Case 1
 EllipseMask()
 TextBoxMargin.Enabled = True
 TextBoxRounding.Enabled = False
 Case 2
 RectMask()

Hosting WPf Controls in Windows forms ❘ 607

608 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

 TextBoxMargin.Enabled = True
 TextBoxRounding.Enabled = True
 Case Else
 ' Can occur if the textbox controls load before the combo box.
 ' Nothing needs to be done in that case.
 End Select
 End Sub
 Private Sub EllipseMask()
 Dim width As Double = ElementHost1.Child.RenderSize.Width
 Dim height As Double = ElementHost1.Child.RenderSize.Height
 Dim margin As Double = Convert.ToDouble(TextBoxMargin.Text)
 If width = 0 Then
 width = ElementHost1.Width
 End If
 If height = 0 Then
 height = ElementHost1.Height
 End If
 If (margin * 2) > height Or (margin * 2) > width Then
 ElementHost1.Child.Clip = Nothing
 Else
 ElementHost1.Child.Clip = New Windows.Media.EllipseGeometry(_
 New Windows.Rect(margin, margin, _
 width - (margin * 2), height - (margin * 2)))
 End If
 End Sub
 Private Sub RectMask()
 Dim width As Double = ElementHost1.Width
 Dim height As Double = ElementHost1.Height
 Dim margin As Double = Convert.ToDouble(TextBoxMargin.Text)
 If (margin * 2) > height Or (margin * 2) > width Then
 ElementHost1.Child.Clip = Nothing
 Else
 Dim rect As New Windows.Media.RectangleGeometry(_
 New Windows.Rect(margin, margin, _
 width - (margin * 2), height - (margin * 2)))
 rect.RadiusX = Convert.ToDouble(TextBoxRounding.Text)
 rect.RadiusY = rect.RadiusX
 ElementHost1.Child.Clip = rect
 End If
 End Sub
 Private Sub TextBoxMargin_TextChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TextBoxMargin.TextChanged
 Dim margin As Double
 If Double.TryParse(TextBoxMargin.Text, margin) Then
 ApplyMask()
 Else
 TextBoxMargin.Text = 0
 End If
 End Sub
 Private Sub TextBoxRounding_TextChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TextBoxRounding.TextChanged
 Dim margin As Double
 If Double.TryParse(TextBoxRounding.Text, margin) Then
 ApplyMask()
 Else
 TextBoxRounding.Text = 0
 End If
 End Sub

Code snippet from Form1

Aside from the margin, note that in the RectMask function the code also applies the value from the
TextBoxRounding control to the RadiusX and RadiusY properties on the rectangle. These properties cause
the corners of the rectangle to be rounded, so when the rectangle mask is selected, the user is able to apply a
value that changes the amount of corner rounding.

Finally, the preceding code block includes two additional event handlers, one for each of the two text boxes
on the form. The first one handles events related to the margin’s width, and the second event is related to
the radius for rounded corners on your rectangle map. In both cases they call the same ApplyMask method,
which is called when you select a mask.

Now it’s time to build and run your application. After
building and running your control, you should see
a display similar to the one shown in Figure 16-3.
Superficially, this application works, allowing you to
apply different masks and resize them. Notice that you
are now modifying your WPF controls from within
your Windows Forms application.

However, apply a mask and then resize your main
frame. Notice how even though the image was
resized, the mask remained static. Your application
isn’t recognizing a change in the size of control
ElementHost1 or the need to recalculate the size
and location of the mask.

Using a Mapped Property of a WPf Control
There are a couple of potential solutions to this
problem; however, for the purposes of this chapter,
which focuses on demonstrating the features of the
Windows Forms Integration library, the solution
described here uses a mapped property on your
control. The capability to access the mapped
properties of WPF controls is one of the features of this library that provides you with greater flexibility. One
of the available properties on control ElementHost1, the PropertyMap collection, enables you to select one
or more of the ElementHost1 properties and essentially register for a custom event handler. This is not an
event handler in the traditional Windows Forms sense of the word, but rather the assignment of a delegate
that is called when that property is changed.

The first step is to go to the load event described earlier in this chapter and uncomment the line that is calling
the method AddPropertyMapping. Once you have uncommented this line, add the functions shown in the
block of code that follows. The first of these is, in fact, the custom function AddPropertyMapping. This
function simply calls the Add method on the PropertyMap collection to assign a new delegate in the form of
a PropertyTranslator from the Windows.Forms.Integration library that will be called when the Size
property of control ElementHost1 is changed. Note that by assigning this value at the end of the Form1_Load
event handler, your application will now make this call whenever the size of the control changes:

 ' The AddPropertynMapping method assigns a custom
 ' mapping for the Size property.
 Private Sub AddPropertyMapping()
 ElementHost1.PropertyMap.Add(_
 "Size", _
 New Integration.PropertyTranslator(AddressOf OnEHSizeChange))
 End Sub
 ''' <summary>
 ''' Called when the ElementHost control's size is changed
 ''' </summary>
 ''' <param name="h"></param>

figure 16-3

Hosting WPf Controls in Windows forms ❘ 609

610 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

 ''' <param name="propertyName"></param>
 ''' <param name="value"></param>
 ''' <remarks>A change of this property requires the form hosting this
 ''' control to adjust the clipping region, so the Property Mapper
 ''' in the Integration library is used to map an "event" handler.</remarks>
 Private Sub OnEHSizeChange(ByVal h As Object, _
 ByVal propertyName As String, ByVal value As Object)
 ApplyMask()
 End Sub

Code snippet from Form1

The second method in the preceding block of code is the actual OnEHSizeChange method. Note that this
method has three parameters:

The first is the actual object that has been changed. ➤

The second is the name of the property, so multiple properties could call the same delegate in your ➤

Windows Forms code.

The third is the new value of that property. ➤

For the purposes of this demonstration, because this method will only be called for a single property on a single
object, and because the new value will already be assigned within the control, the only thing this method needs
to do is call the same ApplyMask method that is called elsewhere to correctly apply the mask to the image.

Save, build, and run your example code again and notice how the mapping of the property has enabled your
form to detect when a property on control ElementHost1, or potentially even on one of the WPF controls
within your ElementHost control, has changed. As an exercise, consider changing this example to detect
when the image hosted in control Image1 changes.

This example illustrates how you can create a new WPF component that can be incorporated into an existing
Windows Forms application. You can start the process of migrating your application to WPF while still
focusing the majority of your available resources on adding new capabilities to your existing application.
Migration in this context means you are not forced to spend the majority of your cycles rewriting your
entire existing interface. Instead, you can integrate these two display methodologies. The preceding example
demonstrates one way of working with a WPF control within a Windows Forms application.

Other methods for carrying out the same tasks, including adding WPF controls within the context of the
same project, are also possible. However, defining WPF controls within a Windows Forms project reduces
your ability to migrate your control into a larger WPF model. Using the method demonstrated in this
chapter makes that transition easy, as you’ll just be hosting Windows Forms controls in WPF.

hosTing WindoWs forms conTrols in WPf
In the case of WPF hosting Windows Forms controls, you might choose to do this if you have an existing
application that relies on certain controls that have not yet been implemented in WPF. For example, the
following table lists some of the controls that are not directly supported in WPF:

BindingNavigator DataGridView DateTimePicker

ErrorProvider HelpProvider ImageList

LinkLabel MaskedTextBox MonthCalendar

NotifyIcon PrintDocument PropertyGrid

In addition to these controls that aren’t directly supported, still other controls may behave differently in
this release. For example, the ComboBox control in WPF doesn’t provide built-in support for autocomplete.
In other cases, such as the HelpProvider (F1 Help), a control isn’t supported because WPF provides an
alternative implementation. Even if you have an application in which the existing user interface takes

advantage of one of the preceding control’s features, it is understandable that you might be interested in
integrating your existing investment in the next version of your application.

However, there is a real possibility that if you have heavily leveraged a DataGridView control, you will want
to reuse your existing control, rather than attempt to design a custom replacement.

To walk through the process of using the
WindowsFormsHost control, create a new WPF
Application called ProVB_WPFInterop; a copy of
the completed project is available with this name
as part of the code download. Once you have done
that, select File ➪ Add to add a second project to
this solution. This time, pick a Windows Control
Library and give it the name WinFormInteropCtrl.
Again, Visual Studio will execute the template to
create a new project. At this point you will have
access to a new control called UserControl1. Go
to the designer for this new user control and add a
Button control and a DataGridView control to the
design surface, as shown in Figure 16-4.

Figure 16-4 shows one way to arrange these
controls. For the purposes of this demonstration,
the Button control is static; it is there to
demonstrate a formatting issue. Next, manually
add the two columns shown in the grid through
Visual Studio 2010. You can do this using the
context menu available in the upper-right corner
of the control’s display. Simply select Add Column
for each of the two columns, calling the first
File Path and the second Size. The first column will wind up holding lengthy string values representing the
available images, so ensure you add a decent default length to this column. This control represents a complex
grid but it is not meant to be one. Resize the grid to fit within the display area of your user control. This
demonstration focuses on display characteristics, so there is no need to edit the default code-behind or provide
an action for the click event of the button.

After you have created a new UserControl1, build the project so that the WinFormInteropCtrl has been
compiled and then close this window. The next step is to update your WPF project with the appropriate
references. Three references need to be added. From the Project Settings window, select the References tab.
Add references to the .NET assemblies System.Windows.Forms and WindowsFormsIntegration. Finally,
add a reference to the WinFormInteropCtrl project. After adding these three references, close the Project
Settings window and recompile the project.

Having created a new user control and added the references, open the MainWindow.xaml file that’s created
with this template. In that XAML file you’ll see the “Window” declaration. This declaration in Visual
Studio imports a few namespaces, as discussed in Chapter 17. You’ll want to change the title attribute of the
window in XAML to reflect the new form title, Pro VB WPF Interop.

Next, switch to Design view and add a button to the upper-left corner of the display. This button will
illustrate two concepts. First, just like the Windows Forms example, where the code leveraged some of
the WPF classes outside the context of the interop form, this WPF form is going to leverage the same
FolderBrowseDialog that was used in the preceding Windows form. Second, it will help show that
although WPF and Windows Forms share the same control, a button, the default display of that control is
very different, a problem that can be corrected. Label this button “Select Folder.” Note technically the text
shown on the button is part of the content property. In this case you can implicitly reference that property
by putting the desired text directly into the XAML between the open and close tags of the buttons.

figure 16-4

Hosting Windows forms Controls in WPf ❘ 611

612 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

Next, add a second button to the upper-right corner of the display. Align the buttons, label this as a Close
button. Next, drag and drop a WindowsFormsHost control onto the display. The control should be docked
to the bottom bounds of the display below the two buttons.

Unlike the Windows Forms project earlier in this chapter, the WPF design surface currently does not support
adding your custom user control to this display. At this point you can review the XAML view within Visual
Studio to compare your XAML to the XAML shown in the following listing. Your overall display should look
similar to Figure 16-5.

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB WPF Interop" Height="350" Width="525">
 <Grid>
 <Button Height="23" HorizontalAlignment="Left" Margin="14,14,0,0"
 Name="Button1" VerticalAlignment="Top"
 Width="100">Select Folder</Button>
 <Button Height="23" HorizontalAlignment="Right" Margin="0,14,26,0"
 Name="Button2" VerticalAlignment="Top"
 Width="75">Close</Button>
 <my:WindowsFormsHost Margin="0,50,0,0" Name="WindowsFormsHost1"
 xmlns:my="clr-namespace:System.Windows.Forms.Integration;
 assembly=WindowsFormsIntegration" />
 </Grid>
</Window>

Code snippet from MainWindow.xaml

figure 16-5

Once you have set up your application’s look, it’s time to start handling some of the code. You’ll notice in the
code that follows there is again a default directory that is the Images directory on Windows 7. The next method
is the Window1_Loaded method. This method is called once when your form is initially loaded, and it’s a great
place to create an instance of your custom user control and assign it as the child of WindowsFormsHost1. There
is also a line that has been commented out in this initial listing; you will uncomment that line after the first time
you test run your application.

Both of the buttons need event handlers. In this case you can use the Visual Basic Handles clause to associate
the method shown in the sample code with the button. Both Button1 and Button2 have associated handlers
in the code snippet which follows.

The majority of this code is associated with the Button1.Click event handler. In this case, for brevity, the
application doesn’t automatically load the contents of the directory. Instead when you first click Button1, you’ll
be allowed to select the default folder and then have it load the contents of that folder. Notice that although
the grid was created with two columns, this sample code merely loads the document name for demonstration
purposes into the grid that is part of your custom user control:

Class MainWindow
 'Private Sub Window1_Initialized(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Initialized
 ' Me.WindowStyle = Windows.WindowStyle.None
 ' Me.AllowsTransparency = True
 'End Sub

 Private Sub Window1_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles MyBase.Loaded
 WindowsFormsHost1.Child = New WinFormInteropCtrl.UserControl1()
 PopulateGrid("C:\Users\Public\Pictures\Sample Pictures")
 System.Windows.Forms.Application.EnableVisualStyles()
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Button1.Click
 Dim FolderBrowserDialog1 As New System.Windows.Forms.FolderBrowserDialog()
 FolderBrowserDialog1.SelectedPath = "C:\Users\Public\Pictures\Sample Pictures"
 If (FolderBrowserDialog1.ShowDialog() = Windows.Forms.DialogResult.OK) Then
 PopulateGrid(FolderBrowserDialog1.SelectedPath)
 End If
 End Sub

 Private Sub PopulateGrid(ByVal path As String)
 Dim uc As WinFormInteropCtrl.UserControl1 =
 CType(WindowsFormsHost1.Child, WinFormInteropCtrl.UserControl1)
 Dim roid As Integer
 For Each control As System.Windows.Forms.Control In uc.Controls
 If TypeOf control Is System.Windows.Forms.DataGridView Then
 Dim grid As System.Windows.Forms.DataGridView = control
 grid.Rows.Clear()
 For Each filename As String In System.IO.Directory.GetFiles(path)
 roid = grid.Rows.Add()
 grid.Rows(roid).Cells(0).Value = filename
 grid.Rows(roid).Cells(1).Value = New System.IO.FileInfo(filename).Length
 Next
 End If
 Next
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Button2.Click
 Me.Close()

Hosting Windows forms Controls in WPf ❘ 613

614 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

 End Sub
End Class

Code snippet from MainWindow.xaml

Finally, note that the last method is the event handler for the Button2.Click event. As you might expect,
this event handles closing the window, an important capability if you hide the outer frame of your window.

At this point you can run the application. If you are
using the downloadable package, you should see the
results shown in Figure 16-6. If you are creating
your own copy of the project, you should see similar
results; however, the button in WindowsFormsHost1
should have the incorrect styling.

The first item that should jump out at you is that
the WinFormInteropCtrl has lost the Windows
XP visual styling. Referring back to Figure 16-6,
you can confirm that this styling was present in the
designer for this control. To resolve this issue, go
to the code-behind file for your Window1.xaml file,
Window1.xaml.vb. Within the Window1_Loaded
method, either before or after the call to create your
user control as the child of the control WindowsFormsHost1, add the following line of code:

 System.Windows.Forms.Application.EnableVisualStyles()

Rerun the application. The visual styling is now correct, but you should also be able to see that WPF and
Windows Forms render this style differently on a similar control. Thus, you’ll want to ensure that you
minimize the number of similar controls you reference on different sides of the host boundary. In this case,
you simply needed to manually reset the display settings for your control to indicate that it should use the
Windows XP styling; however, this styling issue provides an excellent introduction to the next topic.

Note Windows 7 users may experience an added display issue. For some reason Windows 7 and the WPF
Interop libraries cause a display issue. The issue goes away when the window is resized, but if you see a
ghost image, resize the running window and it will go away. This issue is not shown in Figure 16-6.

One of the options discussed in the preceding chapter that focused on WPF was the capability to change
the window style so that the traditional border and controls in the frame were hidden. Once this is done, it
is possible to enable transparency and really work on creating a custom look and feel for your application.
However, you’ll note that the following code is commented out in the online materials. That’s because this
code is there to illustrate one of the limitations of the WindowsFormsHost control.

 Private Sub Window1_Initialized(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Initialized
 Me.WindowStyle = Windows.WindowStyle.None
 Me.AllowsTransparency = True
 End Sub

If you enable this code, you’ll find that instead of getting your interop control to display, the WPF rendering
engine does not render anything. Thus, while the limitations include not being able to use certain types of
transparency with the control, this provides a much better illustration of how using a WindowsFormsHost
control can affect your application’s overall look and feel.

inTegraTion limiTaTions
The challenge with integration is that these two display models don’t operate under the same paradigm.
The Windows Forms world and the WindowsFormsHost are based on window handles, also known as HWnd
structures. WPF, conversely, has only a single HWnd to define its display area for the operating system and

figure 16-6

then avoids using HWnds. Keep in mind, then, that when you are working with encapsulating a control, that
control — be it WPF or Windows Forms — will be affected by the environment in which it is hosted.

For example, if you host a WPF control inside a Windows Forms application, then the ability to control
low-level graphical display characteristics such as opacity or background will be limited by the rules for
Windows Forms. Unlike WPF, which layers control characteristics supporting the display of a control at a
layer below the current control, Windows Forms controls are contained in an HWnd; when the HWnd doesn’t
paint a background for your WPF control, the display may show that region as not painted and use a black
or white background instead. Note that setting the AllowTransparency property for a control is supported
when hosting WPF controls on a Windows Form. You can play with the background color used for the
ElementHost control introduced earlier in this chapter to get a feel for this issue.

Recognizing that the host control is often limited by the underlying environment containing it is a good
guide to predicting limitations. Although sometimes the actual characteristics of the parent application
framework might come as a surprise, as you gain more experience with WPF you’ll be able to predict where
issues are likely to exist. For example, you can create both window- and page-based WPF applications,
but these applications work on entirely different models. For example, a page-based WPF application is
stateless. To support this stateless nature in those instances where it finds itself used in a page-based WPF
application, the WindowsFormsHost control fully refreshes the contained control each time the page is
refreshed — losing any user input that you might expect to remain within a Windows Forms control.

Another issue can arise with the advanced scaling capabilities of WPF. Although Windows Forms controls
are scalable, Windows Forms doesn’t support the concept of scaling down to 0 and then restoring properly.

Similarly, be aware of the message loop, current control focus, and property mapping of hosted controls.
The host controls support passing messages to the controls they contain, but across the application the
ordering of messages may not occur in the expected order. Similarly, when a WindowsFormsHost control
has passed focus to a contained control and then the form is minimized, the host control may lose track of
which control within its child has that focus. As a result, even though the unseen host has the current focus
within your WPF application, there is no visible control with that focus.

Finally, there are additional potential issues with property mapping other than the background color issue
described earlier, so you need to watch the behavior of these controls carefully and be prepared to manually
map properties as shown in this chapter’s first example.

This is not a complete list of potential issues you may encounter when attempting to integrate these two
distinct user-interface implementations. One final warning is that you can’t nest host controls. Both
Windows Forms and WPF can contain multiple-host controls within a given window, but each of these
host controls must be separate and of the same type. Thus, you can’t create a WPF application containing
a WindowsFormsHost control that contains an ElementHost control. If you’re integrating controls, try to
minimize the number of panels containing the host controls so that you don’t accidentally attempt to nest
the embedded host controls in another layer of integration.

summary
This chapter extended the coverage of user controls with regard to how you can leverage them to
encapsulate application logic across disparate display systems. The chapter introduced the Windows
.Forms.Integration library and the capability to have WPF and Windows Forms components provide
an application user interface. This library is similar to other transitional libraries in that the focus is
on supporting business needs and not on complete support for the features of WPF by Windows Forms
components within the WPF environment. Key points from this chapter include the following:

It is possible to start a migration to a WPF-based application interface using the ➤ Windows.Forms
.Integration library and the ElementHost class.

Such an interface enables you to embed enhanced image processing into an existing Windows Forms ➤

application.

summary ❘ 615

616 ❘ chaPTer 16 usER CoNtRols ComBiNiNG wPF aNd wiNdows FoRms

Using the ➤ WindowsFormsHost class enables you to embed a complex business or third-party control
that you are not ready to replace within a WPF application.

Using the integration library, you can support key business-driven components, but it may affect the ➤

visual appeal of your user interface.

While this chapter introduced the Windows Forms integration library, you may have noticed that the overall
tone isn’t describing this as the next great feature. This isn’t because the integration library didn’t require
significant effort to create or wasn’t well designed. This library is an excellent resource — in the limited
area for which it was designed: to support your transition from Windows Forms to WPF. Using this library
across a few releases of your application as you migrate to a WPF-based user interface is an excellent way
to manage complexity, but always remember that you want to fully commit to the WPF-based paradigms,
which means moving beyond this library.

Finally, if you do have the opportunity to create a complete new user interface and can avoid the added
complexity associated with using multiple different display technologies via these integration classes, then you
should. While user controls are a best practice, so is building an application that can fully leverage all of the
new features of declarative programming, as you’ll see in the next chapter on WPF.

17
 WPf Desktop applications

 WhaT you Will learn in This chaPTer

 The WPF strategy ➤

 Why you should use WPF ➤

 Creating a WPF application ➤

 Implementing a custom WPF application ➤

 Dynamic properties ➤

 Customizing the user interface ➤

 Data binding ➤

 Windows Presentation Foundation (WPF) — previously known as Avalon — is the next - generation
presentation library and development paradigm for user interfaces. It was introduced with Windows
Vista as a key architectural component in the .NET 3.0 Framework. This chapter introduces you to
the WPF programming model and discusses key elements you ’ ll need to know in order to work with
WPF. Rest assured you will be creating applications that leverage the features of WPF in the future.
Visual Studio introduces a fully enabled development environment for creating and customizing
WPF - based applications.

 The libraries that make up WPF were released in conjunction with the release of Windows Vista —
not the commercial and much - publicized public launch of Vista in January 2007, but the initial release of
Vista to enterprise partners in November 2006. The libraries shipped with Vista and coincidentally with
Microsoft Offi ce 2007, but what you may have noticed at the time was the lack of development tools.

 However, with Visual Studio 2010, there are tools for not only the .NET 4 libraries, but also for all
of the .NET 3.0 libraries. In fact, one of the main focuses of Visual Studio 2010 is the introduction
of a WPF - based user interface and better support for developing WPF applications. Prior to Visual
Studio 2010 it was a given that you would need to have someone, either a designer or a developer,
use a design tool to build your user interface. Microsoft ’ s Expression suite of tools — in particular
Expression Blend, was considered a requirement to create a custom WPF application.

 This chapter introduces a basic WPF application. It goes through a series of steps to build a custom
WPF Windows framework application that you can leverage. The goal is to introduce you to WPF in
a manner that should be familiar to Windows Forms developers and then expand on what additional

618 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

items WPF brings to the equation, such as declarative data binding. This chapter will not make you an
expert WPF developer — WPF is too large a topic to fully cover in a single chapter — but it does provide a
good starting place.

WhaT, Where, Why, hoW — WPf sTraTegy
When .NET was released, most people realized that in terms of application development, a paradigm shift
was occurring. The release of WPF was the first step in yet another paradigm shift, this one focusing on how
user interfaces are designed and implemented. Therefore, it’s appropriate to take a little time to look at not
only where the user interface models are coming from, but also where they are going. Understanding that
will enable you to see how WPF fits in, and not only why you’ll want WPF in the future, but also how you
can start leveraging it today.

The original user interfaces were punch cards for input and hard-copy text for output. OK, maybe that’s
going a little too far back. Instead, let’s jump ahead to the part of the user interface’s resume that applies to
where we’re going today. In the 1980s and 1990s, several computer and software manufacturers introduced
the graphical user interface (GUI). These GUI environments, while implemented differently on different
platforms, became a part of the operating system. For Windows, this is the User32.dll and its companion
UI classes. The original Visual Basic 1.0 was designed to enable developers to interact in a simple manner
with these files, unlike C++, which referenced the raw User32.dll interfaces for everything.

Over time, Visual Basic’s simple drag-and-drop approach to creating the forms that users would access as
part of an application in that GUI environment helped make it the most popular development language.
However, with Web migrations, the paradigm started to shift. The Web introduced its own way of creating
forms — one that used HTML. The HTML model is more declarative and doesn’t guarantee the behavior of
the components in the user interface. For example, the HTML page may declare it wants a text box, but it’s
up to the browser to interpret and provide the code that creates the actual object. The HTML control model
is supported on Windows by Internet Explorer, and by third-party tools such as Firefox and Netscape.

.NET ushered in the next stage of client UI implementation with ASP.NET and Windows Forms. Changing
the UI model wasn’t a primary focus of .NET; .NET introduced new tools for the UI. .NET shipped with
two user-interface implementations: ASP.NET’s HTML-based UI and the desktop-centric Windows Forms.
It’s important to realize that Windows Forms isn’t based on the same code that User32 windows are,
even though the programming model whereby the designer adds the code to a portion of the application’s
source is similar. The managed environment represents both the second and third programming models for
developing user interfaces under Windows. Of course, other platforms include still other GUI models, but
these three GUI models — User32.dll, ASP.NET, and Windows Forms — represent the ones Microsoft
supported as of .NET 2.0.

Thus, Microsoft was creating many user-interface controls with three distinct implementations, a cost
noticeable to even an organization as large as Microsoft. For developers, including those at Microsoft, the
pain starts with the fact that a user interface can’t be transported seamlessly between a Web-based version
of an application and a local desktop version of the same application, or across platforms. For example,
Microsoft can’t design a UI for Outlook and reuse it for Outlook Web Access (OWA). Instead, it needs a
different team of developers with different skills to create the OWA interface, and have you seen a remotely
downloadable Windows Forms–based OWA application?

Having pointed out how some applications are designed with dual interfaces, that’s certainly not the
norm. Let’s face it: There often isn’t much economic incentive to create both a Windows Forms-based and
ASP.NET-based user interface for the same application. There are certainly cases where an application is
successful, and a follow-up task may be to attempt to reproduce the user interface for another target UI, but
that is the exception, not the rule.

This is where the WPF model comes in. WPF is a declarative way of designing interfaces. The idea is that
you can use a declaration to describe your user interface and then compile or include that definition with

either a desktop or Web or even another operating system version of your application. WPF uses XML to
declare the user-interface elements, relying on a standard known as the Extensible Application Markup
Language (XAML). Taken a step further consider that going forward an application could be built using
Silverlight and that same XAML used for a WPF version.

rasTer graPhics and VecTor graPhics
Currently, when you create a Windows Forms control you decide how large, in pixels, that button should
be. A similar action is taken with regard to HTML forms, where you can specify either a size in pixels or
a percentage of the screen. In both cases, the computer simply lays out a square or rounded square based
on a flat set of pixels. It does the same with other images you use, working with what are known as raster
graphics. Raster graphics are a collection of points on the surface of a screen that represent an image.

The alternative form of graphics is known as vector graphics. A vector is a line with a point of origin that
continues forward in space from that point of origin. Vector graphics aren’t based on a collection of points,
but rather on a series of vectors. A plane representing the surface of your screen is placed in the path
of these vectors, which define a set of points, and that is what you see on your screen. Vector graphics
provide much better and more realistic image manipulation. Note that you can incorporate a raster
image with vector graphics because you can place the raster image in your virtual plane, but the reverse
isn’t feasible.

WPF is the first forms-based engine that relies on this vector-based model. The good news is that you can
create user interfaces that truly look fantastic. The bad news is that you need to account for the fact that
computing a series of vectors and the plane that intersects those vectors requires more CPU or graphical
processing unit (GPU) cycles. Thus, like Vista or Windows 7 UI, all WPF user interfaces require a bit more
computing horsepower. However, unlike Vista or Windows 7, for which certain graphical features are
disabled if your computer doesn’t natively have that horsepower, for WPF, that isn’t the case.

Because WPF is compatible with Windows XP, it isn’t limited to those scenarios in which a powerful GPU
is available to offload that processing. After all, Windows Vista was the first operating system to support
leveraging the GPU, so system performance only degrades when you run a WPF application on Windows XP
or an older computer that isn’t able to support something like the Glass display settings.

However, those concerns aside, one of the main appeals of the WPF model is its graphical capabilities.
Because WPF is built around vector graphics and enhanced GPU processor support, it enables a much
more appealing user interface. You can hide the native Windows frame, as you’ll see later in this chapter,
make round buttons, and essentially begin to create a truly custom user interface, one that in an artistically
designed application has users saying “wow” in a truly memorable experience.

should your nexT WindoWs ProJecT use WPf?
Microsoft will, of course, need to support all its previous GUI models in addition to WPF for the foreseeable
future. However, Microsoft is motivated by the same factors that the rest of us can leverage — better
graphics and a single application that can have a UI that runs in multiple environments. Accordingly,
Microsoft announced that enhancements to the .NET-based Windows Forms Class Libraries would not
be occurring. While this UI model will receive maintenance and security-related updates, there will be no
future new development on that set of libraries.

Does this mean you should automatically plan on moving to WPF for your next Windows application? Prior
to Visual Studio 2010 the answer to that depended on several factors. If you need to target a client who is
limited to .NET 2.0, then the answer is obviously no. However, now that Visual Studio 2010 is available,
the answer consistently looks more and more like yes. Of course, there are always mitigating factors —
for example, if your clients are on an older operating system, then the enhanced graphics can incur a
performance hit. While Windows Forms still has a more mature control set, the WPF control gallery has
made gains such that it is almost on a par with it. The bigger challenge is the shift in development paradigm.

should Your next Windows Project Use WPf?❘ 619

620 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

While WPF provides a great deal of flexibility, we’re only now getting past the point where using it also
meant a lot of manual implementation. With Visual Studio 2010, it is much easier to do many of the tasks
we expect to be easy. For example, whereas originally a simple setting such as Transparency might have
required a lot of consideration to incorporate standard Windows behavior, now that is better understood;
and the enhanced capability to manage it can make WPF development faster than the equivalent Windows
Forms development. The challenge, of course, is experience in dealing with the new declarative development
paradigm for your UI.

Coincidentally, this is the main reason why you should consider starting to switch to WPF. At this point,
even Visual Studio is using WPF. If you want to maintain your skills, then you need to start down the WPF
path. In fact, while most of the demos in this book still leverage Windows Forms, the next edition, which
will target the next version of WPF, will request that authors migrate to WPF-based demo applications. An
increasing amount of development is moving to WPF, and job postings are looking for developers with WPF
and Silverlight experience. While you may have a large investment in a Windows Forms application (and
therefore need to start with the ElementHost control discussed in Chapter 16), you should still start the
process of moving from Windows Forms to WPF.

creaTing a WPf aPPlicaTion
Chapter 5 introduced you to declarative concepts and XAML so this chapter focuses on WPF specifics.
The first time this book looked at WPF, in Professional Visual Basic 2005 with .NET 3.0 Evjen et al., 2007,
the focus was on going through the manual steps of both creating a basic WPF application and updating the
build file to create that application. These steps were appropriate because at the time WPF didn’t have a
native IDE and code-generation toolset. Most early WPF applications were built by hand or with limited
conversion tools that could output graphics as XAML.

With Visual Studio 2010 we’ve come a long way in a relatively short time. Visual Studio now includes a true
WPF IDE, support for XAML-based IntelliSense, and a robust designer in the form of Expression Blend, a
powerful option (not a requirement) for building a compelling WPF application.

Be aware that while working in WPF, whether you are in Visual Studio or Expression Blend, it is very easy
to spend a lot of time adjusting colors or fades, or adding simple animations. In an ideal scenario the idea
is that the UI design will be handled by a UI designer and those costs will be accounted for separately.
However, if you are doing the design as a developer this can chew up an application development budget
in nothing flat. Accordingly, it is recommended that you define the initial application layout and then get
the application operational. Only after you have completed the business integration and gotten the control
elements working as required should you return to the design surface to provide complex graphics and
behavior on top of your application.

Thus, the next step is to use Visual Studio to generate your WPF application. This chapter will take an
application through three phases, so the code download contains three different projects. For now we
will create the first project, after which we transition to either the _Step2 or _Step3 version of the sample
project. In each case, the project contains the completed code for the previous phase, but because this
code is transformed rather dramatically, with some elements disappearing completely over the course
of the chapter, this format provides you with a series of checkpoints while going through this chapter
yourself.

Create a .NET 4 WPF application called ProVB_WPF_Step1. This application could also be created as a
.NET 3.0 application, but in that case you wouldn’t have access to .NET 4 Class Libraries. Additionally,
note that the list of available templates for WPF applications disappears if you choose to target a .NET 2.0
baseline.

As shown in Figure 17-1, Visual Studio opens in the main window you’ve just declared. One thing to notice
is that there isn’t a line of VB code in this project, just a few XAML snippets.

figure 17-1

You’ll also note a new feature of Visual Studio 2010 has been highlighted in Figure 17-1. In the lower-left
corner is a drop-down showing a series of percentages. Changing the value here changes the default size of
the text in the XAML code window. Thus, at 200% the text in the text editor is shown at 200% normal
size. This is one of the benefits of having a WPF-based editor; the vector graphics allow for scaling on-the-fly
without needing to change a font size to change the size of the displayed text.

Chapter 5 also introduced the XAML that is generated with a new project, so the next step is to start
customizing this newly created project.

implementing a custom WPf application
It is possible to do much of your WPF programming using XAML, but the next step is to examine how
XAML can be integrated with code. After all, at some point you probably expect to start seeing some Visual
Basic code again. Until now the ProVB_WPF_Step1 sample has been a pure XAML application, so first we
will make a quick plan for what this application will do and then we will create a first-cut implementation.
For demonstration purposes, we will create a simple photo-viewing application. The user should be able to
select a folder containing one or more images and then view those images, moving forward and backward
through the list.

For now, that will be the extent of the requirements; later, after the basic application is operational, you
can expand the scope to customize the look and feel further. Begin by modifying the “empty” window. Of
course, it’s not really empty. The window actually has a grid within it, so you can start with that and create
three sections. After selecting the grid, hover over the left-hand border of your window. You’ll see a point
appear within the border that sends a guide line horizontally across the window. Select a point about
40 pixels from the top and a second point approximately 40 pixels from the bottom, dividing your grid
into three sections.

Creating a WPf application ❘ 621

622 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

Don’t worry about being exactly on 40, because after you’ve selected your two points you are going to switch
to the XAML view. Now, instead of the previous display, you have code similar to what appears here:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="350" Width="525" Name="MainWindow">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="45" />
 <RowDefinition Height="215*" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 </Grid>
</Window>

Code snippet from MainWindow.xaml

Note if instead of working along with the text you are looking at the sample download, keep in mind that
the download includes all of the changes that will be made during the creation of this first step.

The preceding snippet includes a few edits that you can reproduce at this point. Note that the title of the
window has been modified to match the project name.

The XAML now includes a new section related to the Grid.RowDefinitions. This section contains the
specification of sections within the points in the grid. When you selected those points in the designer, you
were defining these sections. The default syntax associated with the height of each section is the number of
pixels followed by an asterisk. The asterisk indicates that when the window is resized, this row should also
resize. For this application, only the center section should resize, so the asterisk has been removed from the
top and bottom row definitions.

This provides a set of defined regions that can be used to align controls within this form. Thus, the next step
is to add some controls to the form and create a basic user interface. In this scenario, the actions should be
very familiar to any developer who has worked with either Windows Forms or ASP.NET forms.

Controls
WPF provides an entirely different set of libraries for developing applications. However, although these
controls exist in a different library, how you interact with them from Visual Basic is generally the same.
Each control has a set of properties, events, and methods that you can leverage. The XAML file may
assign these values in the declarative format of XML, but you can still reference the same properties on the
instances of the objects that the framework creates within your Visual Basic code.

Starting with the topmost section of the grid, Grid.Row 0, drag the following controls from the Toolbox
onto the form: a Label, a TextBox, and a Button. These can be aligned into this region in the same order
they were added. Ensure that the label is bound to the left side and top of the window, while the button is
bound to the right side and top of the window. Meanwhile, the text box should be bound to the top and
both sides of the window so that as the window is stretched, the width of the text box increases.
The resulting XAML should be similar to this:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="350" Width="525" Name="MainWindow">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="45" />
 <RowDefinition Height="215*" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>

 <Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"
Height="23" VerticalAlignment="Top">Image Path:</Label>

 <TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"
VerticalAlignment="Top" />

 <Button HorizontalAlignment="Right" Margin="0,11,9,11" Name="ButtonBrowse"
Width="75">Images . . .</Button>
 </Grid>
</Window>

Code snippet from MainWindow.xaml

As shown in the newly added lines (in bold), each control is assigned a name and defines a set of editable
properties. Note that these names can be addressed from within the code and that you can handle events
from each control based on that control’s named instance. For now, however, just adjust the text within the
label to indicate that the text box to its immediate right will contain a folder path for images, and adjust
the button control. Rename the Button control to ButtonBrowse and use the text Images... to label the
button. There is obviously more to do with this button, but for now you can finish creating the initial user
interface.

Next, add the following controls in the following order. First, add an Image control. To achieve a design
surface similar to the one shown in Figure 17-2, drop the Image control so that it overlaps both the middle
and bottom sections of the grid display. Now add three buttons to the bottom portion of the display. At this
point the controls can be aligned. You can do this through a combination of editing the XAML directly and
positioning things on the screen. For example, expand the Image control to the limits of the two bottom
grid rows using the design surface; similarly, align the buttons visually on the design surface.

figure 17-2

Creating a WPf application ❘ 623

624 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

As shown in the figure, the separations for the two row definitions are described in the design surface, and
each of the buttons has a custom label. Note that the Next button is followed by a pair of greater than
symbols, but the Prev button is missing a matching set of less than symbols. They could have been added as
the < symbol but instead one of the changes to be made in the Visual Basic code is the addition of these
symbols to the button label.

First, however, review the XAML code and ensure that, for example, the Image control is assigned to Grid
.Row 1 and that the property Grid.RowSpan is 2. Unlike the items that were in Grid.Row 0, the items in
other rows of the grid must be explicitly assigned. Similarly, the name and caption of each button in the
bottom row of the grid are modified to reflect that control’s behavior. These and similar changes are shown
in the following XAML:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="350" Width="525" Name="MainWindow">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="45" />
 <RowDefinition Height="215*" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 <Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"
Height="23" VerticalAlignment="Top">Image Path:</Label>

 <TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"
VerticalAlignment="Top" />

 <Button HorizontalAlignment="Right" Margin="0,11,9,11" Name="ButtonBrowse"
Width="75">Images . . .</Button>

 <Image Grid.Row="1" Grid.RowSpan="2" Margin="0,0,0,0" Name="Image1"
Stretch="Fill" />

 <Button Grid.Row="2" HorizontalAlignment="Right" Margin="0,0,15,8"
Name="ButtonNext" Width="75" Height="23" VerticalAlignment="Bottom">Next >>
</Button>

 <Button Grid.Row="2" HorizontalAlignment="Left" Margin="15,0,0,8"
Name="ButtonPrev" Width="75" Height="23" VerticalAlignment="Bottom">
Prev</Button>

 <Button Grid.Row="2" Margin="150,0,150,8" Name="ButtonLoad" Height="23"
VerticalAlignment="Bottom">View Images</Button>
 </Grid>
</Window>

Code snippet from MainWindow.xaml

Note in the bold sections the description of the new controls. The Image control is first, and it is positioned
in Grid.Row number 1, which, because .NET arrays are always zero-based, is the second row. The second
attribute on this node indicates that it will span more then a single row in the grid. For now, this control
uses the default name, and it has been set so that it will stretch to fill the area that contains it.

Following the Image control are the definitions for the three buttons along the bottom of the display. For
now, these buttons will control the loading of images; over the course of this chapter, these buttons will be
either removed or redone significantly. The order of these buttons isn’t important, so following their order in
the file, the first button is like the others positioned in the final row of the grid. This button has been placed
on the right-hand side of this area and is bound to the bottom and right corners of the display. Its name has
been changed to “ButtonNext” and its label is “Next >>.”

 The next button is the Prev button, which has been placed and bound to the left - hand side and bottom
of the display. Its name has been changed to “ ButtonPrev, ” and its display text has been changed to read
 “ Prev. ” As noted earlier, the arrow symbols are not in the button name; and, as you can test in your own
code, attempting to add them here causes an error.

 Finally, there is the ButtonLoad button, which is centered in the display area. It has been bound to both
sides of the display to maintain its position in the center. The label for this button is “ View Images, ” which
is, of course, the goal of this application. However, in order for that to happen, you need an event handler
for this button; in fact, you need several event handlers in order to get the basic behavior of the application
in place.

 event Handlers
 In previous versions of Visual Studio you could click on a control and Visual Studio would automatically
generate the default event handler for that control in your code. Fortunately, WPF also provides this
behavior, so generate the following event handlers:

 Double - click on the title bar of the form to generate the ➤ MainWindow_Loaded event handler.

 Double - click on the Images button to create the ➤ ButtonBrowse_Click handler.

 Double - click on the Load button to create the ➤ ButtonLoad_Click handler.

 Double - click on the Prev button to create the ➤ ButtonPrev_Click handler.

 Double - click on the Next button to create the ➤ ButtonNext_Click handler.

 To create each of these handlers, you need to return to the Design view and click on the associated
control, but after they are created you can stay in Code view for most of this section. Take a look at the
 ButtonBrowse_Click event handler ’ s method stub:

 Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonBrowse.Click
 End Sub

 The preceding code was reformatted with line extension characters to improve readability, but this is
essentially what each of your event handlers looks like. As a Visual Basic developer, you should fi nd this
syntax very familiar. Note that the method name has been generated based on the control name and the
event being handled. The parameter list is generated with the “ sender ” and e parameter values, although
the e value now references a different object in the System.Windows namespace. Finally, defi ned here is the
VB - specifi c Handles syntax that indicates this method is an event handler, and which specifi c event or
events it handles.

 While this is a very familiar, powerful, and even recommended way of defi ning event handlers with VB and
WPF, it isn ’ t the only way. WPF allows you to defi ne event handlers within your XAML code. To be honest,
if this were a book on C#, we would probably spend a fair amount of time covering the advantages of that
type of event handler declaration. After all, C# doesn ’ t support the direct association of the event handler
declaration with the method handling the event; as a result, C# developers prefer to declare their event
handlers in XAML.

 However, one of the goals of XAML is the separation of the application logic from the UI, and placing
the names of event handlers in the UI actually couples the UI to the application logic. It shouldn ’ t matter
to the UI whether the Click event or the DoubleClick or any other event is being handled by custom logic.
Therefore, although this section introduces the way to defi ne events directly in XAML, the recommendation
is to defi ne event handlers with the code that implements the handler.

Visual Basic provides a default implementation of WPF that encourages less coupling
of the UI to the application code than C# does.

Creating a WPf application ❘ 625

626 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

In order to demonstrate this in the code, return to the Design view for your form. Select the Images button
and position your cursor just after the word Button, which names this node. Press the spacebar. You’ll see
that you have IntelliSense, indicating which properties and events are available on this control. Typing a c
adjusts the IntelliSense display so that you see the Click event. Select this event by pressing Tab and you’ll
see the display shown in Figure 17-3.

figure 17-3

As shown here, not only does the XAML editor support full IntelliSense for selecting properties and events
on a control, when an event is selected, it displays a list of possible methods that can handle this event. Of
particular note is the first item in the list, which enables you to request that a new event handler be created in
your code. Selecting this item tells Visual Studio to generate the same event handler stub that you created
by double-clicking on the control; however, instead of placing the Handles clause on this method, the
definition of this method as an event handler is kept in the XAML.

This causes two issues. First, if you are looking only at the code, then nothing explicitly indicates whether
a given method in your code is in fact an event handler. This makes maintaining the code a bit (not a lot)
more difficult to maintain. Second, if you have handled an event that is specific to Windows as opposed to
the Web, then your XAML won’t be portable. Neither of these side effects is desirable. Thus, given the VB
syntax for defining events as part of the method declaration, the code in this chapter avoids the embedded
XAML style of declaring standard Windows event handlers.

At this point, you could run your application. It won’t do anything except allow you to close it, but you can
verify that it behaves as expected and save your work.

adding Behavior
It’s almost time to make this UI do something, but there is one more step before you start working with
code. As part of this application, you want to allow users to select the directory from which images should
be displayed. In theory, you could (and in practice, at some time probably would) write a custom interface

for selecting or navigating to the images directory. However, for this application that isn’t important, and
you want a quick and easy solution.

Unfortunately, WPF doesn’t offer any native control that supports providing a quick and easy view into
the file system. However, Windows Forms does, and in this case you want to leverage this control. The
good news is that you can, and the even better news is that you don’t need the Windows interop library in
order to do so. Because something like the Browse Folders dialog isn’t a control hosted on your form, you
can reference it from your code. Thus, although you need the Windows Forms Integration Library and the
WindowsFormsHost control discussed in Chapter 16 for any UI-based controls, in this case the code just
needs to reference the System.Windows.Forms library.

Because the System.Windows.Forms library isn’t
automatically included as a reference in a WPF
application, you need to manually add a reference
to this library. Keep in mind that this library isn’t
going to be available to you outside of WPF’s
rich client implementation. Thus, this feature is
limited to WPF running on the client; for other
scenarios you would change out how you select an
image. Open the My Project display and select
the References tab. Click the Add button to open the
Add Reference dialog and then select the System
.Windows.Forms library, as shown in Figure 17-4.
You can’t add controls to your WPF form without
leveraging the Windows.Forms.Integration
library, but you can, behind the scenes, continue to
reference controls and features of Windows Forms.

With this additional reference, you can begin to
place some code into this application. Start with
the window_loaded event. This event is where you’ll define the default path for the image library, set up the
label for the Prev button, and change the default property of the grid control so that it handles the images
the way you want:

 Private Sub MainWindow_Loaded(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles MyBase.Loaded
 ' Append the << to the text for the button since these are _
 ' reserved characters within XAML
 ButtonPrev.Content = "<< " + ButtonPrev.Content.ToString()
 ' Set the default path from which to load images
 TextBox1.Text = _
 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
 ' Have the images maintain their aspect ration
 Image1.Stretch = Stretch.Uniform
 End Sub

Code snippet from MainWindow.vb

The preceding implementation handles these three tasks. It takes the content of the ButtonPrev control and
appends the two less than symbols to the front of the string so that both buttons are displayed uniformly.
Of course, long term, this code is going to be disposed of, but for now it helps to illustrate that while
controls such as Button may seem familiar from Windows Forms, these controls are in fact different. The
WPF version of the Button control doesn’t have a text property; it has a content property. The content
property is, in fact, an untyped object reference. In the case of this application, you know this content
is a string to which you can append additional text. However, this code is neither a good idea nor easily
maintained, so this is just a temporary solution.

figure 17-4

Creating a WPf application ❘ 627

628 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

Next, the code updates the text property of the TextBox control used on the form. This text box
displays the folder for the images to display. In order to provide a dynamic path, the code leverages the
Environment class to get a folder path. To this shared method the code passes a shared environment
variable: Environment.SpecialFolder.MyPictures. This variable provides the path to the current user’s
My Pictures folder (or the User’s Pictures folder on Windows 7 and Vista). By using this value, the code
automatically points to a directory where the current user would be expected to have images.

Finally, to again demonstrate that any of the WPF classes can be modified within your code, this code
sets a property on the Image control. Specifically, it updates the Stretch property of the Image control to
ensure that images are resized with their aspect maintained. Thus, if an image is square, then when your
image control becomes a rectangle, the image remains square. The Stretch.Uniform value indicates that
the aspect should be maintained, while other members of the Windows.Stretch enumeration provide
alternative behavior.

The next step is to implement your first button handler, the ButtonBrowse_Click handler. When this
button is clicked, the application should open the Folder Browse dialog, displaying the currently selected
folder as the default. The user should be allowed to navigate to an existing folder or create a new folder.
When the dialog is closed, the application should, if the user selected a new folder, update the folder’s text
box to display this new location:

 Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonBrowse.Click
 Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
 New System.Windows.Forms.FolderBrowserDialog()
 folderDialog.Description = "Select the folder for images."
 folderDialog.SelectedPath = TextBox1.Text
 Dim res As System.Windows.Forms.DialogResult = _
 folderDialog.ShowDialog()
 If res = System.Windows.Forms.DialogResult.OK Then
 TextBox1.Text = folderDialog.SelectedPath
 End If
 End Sub

Code snippet from MainWindow.vb

The preceding code block declares an instance of the System.Windows.Forms.FolderBrowserDialog
control. As noted when the reference was added, this control isn’t part of your primary window display,
so you can create an instance of this dialog without needing the Windows.Forms.Interface library. It
then sets a description, indicating to users what they should do while in the dialog, and updates the current
path for the dialog to reflect the currently selected folder. The dialog is then opened and the result assigned
directly into the variable res. This variable is of type System.Windows.Forms.DialogResult and is
checked to determine whether the user selected the OK button or the Cancel button. If OK was selected,
then the currently selected folder is updated.

Now it’s time to start working with the images. That means you need to retrieve a list of images and
manipulate that list as the user moves forward and backward through it. You could constantly return to
the source directory to find the next and previous images, but you will get much better performance by
capturing the list locally and keeping your current location in the list. This implies two local variables; and
because you want these variables available across different events, you need to declare them as member
variables to your class:

Class MainWindow
 Private m_imageList As String() = {}
 Private m_curIndex As Integer = 0
 Private Sub MainWindow_Loaded(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles MyBase.Loaded
 ' Append the << to the text for the button since these are _
 ' reserved characters within XAML
 ButtonPrev.Content = "<< " + ButtonPrev.Content.ToString()

 ' Set the default path from which to load images
 TextBox1.Text = _
 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
 ' Have the images maintain their aspect ration
 Image1.Stretch = Stretch.Uniform
 End Sub
 Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonBrowse.Click
 Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
 New System.Windows.Forms.FolderBrowserDialog()
 folderDialog.Description = "Select the folder for images."
 folderDialog.SelectedPath = TextBox1.Text
 Dim res As System.Windows.Forms.DialogResult = _
 folderDialog.ShowDialog()
 If res = System.Windows.Forms.DialogResult.OK Then
 TextBox1.Text = folderDialog.SelectedPath
 End If
 End Sub
 Private Sub ButtonLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonLoad.Click
 Image1.Source = Nothing
 m_imageList = System.IO.Directory.GetFiles(TextBox1.Text, "*.jpg")
 m_curIndex = 0
 If m_imageList.Count > 0 Then
 Image1.Source = _
 New System.Windows.Media.Imaging.BitmapImage(_
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub

Code snippet from MainWindow.vb

The beginning of the preceding code adds two new properties to the class MainWindow. Both values are
private variables that have not been exposed as public properties. They are being made available for use in
the image-handling buttons. Your code should look similar to the preceding code. The second bold section
is an implementation of the ButtonLoad Click event handler. This event handler is called when the user
clicks the button, ButtonLoad, and the first thing it does is clear the current image from the display. It then
leverages the System.IO.Directory class, calling the shared method GetFiles to retrieve a list of files. For
simplicity, this call screens out all files that don’t have the extension .jpg. In a full production application,
this call would probably use a much more complex screening system to gather all types of images and
potentially feed a folder navigation control so that users could change the selected folder or even add
multiple folders at once.

Once the list of files is retrieved and assigned to the private variable m_imageList, the code clears the
current index and determines whether any files were returned for the current directory. The screenshots
in this chapter have three images in the folder in order to obtain a small array; however, if no images are
present, then the code exists without displaying anything. Here, presume an image is available. The code
uses the System.Windows.Media.Imaging class to load an image file as a bitmap. It does this by accepting the
URI or path to that image, a path that was returned as an array from your call to GetFiles. Note that
the BitmapImage call doesn’t need an image formatted as a bitmap, but instead converts the chosen image
to a bitmap format that can then be directly referenced by the source property of the Image control:

 Private Sub ButtonPrev_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonPrev.Click
 If m_imageList.Count > 0 Then
 m_curIndex -= 1
 If m_curIndex < 0 Then
 m_curIndex = m_imageList.Count - 1

Creating a WPf application ❘ 629

630 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

 End If
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub
 Private Sub ButtonNext_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonNext.Click
 If m_imageList.Count > 0 Then
 m_curIndex += 1
 If m_curIndex > m_imageList.Count - 1 Then
 m_curIndex = 0
 End If
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub
End Class

Code snippet from MainWindow.vb

After the code to load an image has been added, implementing the ButtonPrev and ButtonNext event
handlers is fairly simple. In both cases the code first checks to ensure that one or more images are available
in the m_imageList. If so, then the code either decrements or increments the m_curIndex value, indicating
the image that should currently be displayed. In each case the code ensures that the new index value is
within the limits of the array. For example, if it is below 0, then it is reset to the last image index; and if it
is greater than the last used index, the counter is reset to 0 to return it to the start of the list.

The next logical step is to run the application. If you have images loaded in your Pictures folder, then you
can open the first of these images in the application. If not, then you can navigate to another directory
such as the Samples folder using the Images button. At this point, you’ll probably agree that the sample
application shown in Figure 17-5 looks just like a typical Windows Forms application — so much so in fact
that the next steps are included to ensure that this doesn’t look like a Windows Forms application.

However, before adding new features, there is a possibility that when you loaded your image, your
application didn’t display the image quite like the one shown in Figure 17-5; in fact, it might look more like
Figure 17-6. If, when you worked on your own code, you added the Image control after adding the View,
Prev, and Next buttons, then your buttons — in particular, the View Images button — might be completely

figure 17-5 figure 17-6

hidden from view. This is caused by the way in which WPF layers and loads controls, and to resolve it you
need to change the order in which the controls are loaded in your XAML. Before doing that, however, this
is a good place to discuss layers and the WPF layering and layout model.

layout
WPF supports a very robust model for control layout, which it achieves by leveraging the capability to layer
controls and by providing a set of controls directly related to layout. Combined with the capability to define
a reasonable set of layout information for each control, what you wind up with is an adaptable environment
that can, at the extreme, provide unique behavior.

How does the process work? Within each control are the basic elements associated with the sizing of that
control. As with past versions of Windows Forms, included is the concept of height and width and the four
associated limitations: MaxHeight, MaxWidth, MinHeight, and MinWidth. Additionally, as shown in this
chapter, it is possible to bind controls to window borders.

The layout properties aren’t the focus of this section, however. More important is the concept of layered
controls. What happens when you layer an image on top of something such as a grid? Recall how the Image
control you defined was bound to the four borders of its display area. In fact, the control isn’t bound to the
limits of the window per se; it is bound to the limits of the grid control upon which it is explicitly layered.
This layering occurs because the Image control is defined as part of the content of the grid. That content is
actually a collection containing each of the layered controls for the selected control.

When it comes to layout and layering, keep in mind that if a control is explicitly layered on top of another
control as part of its content, then its display boundaries are by default limited by the containing control’s
boundaries. This layering is as much about containing as it is layering.

However, you can override this behavior using the combination of the ClipToBounds property, the
LayoutClip property, and the GetLayoutClip method of the container. Note, however, that the default
behavior of WPF controls is to set ClipToBounds to false and then use the LayoutClip property and
the GetLayoutClip method to specify the actual clipping bounds. Resetting and manually managing the
clipping behavior enables a control to be drawn outside the bounds of its parent container. That behavior
is beyond the scope of this chapter, as the process is somewhat involved; the preferred behavior, when
available, is to clip within the region of the parent control.

The fact that your control can be drawn beyond the limits of its container is an important concept. It
means your controls are no longer “contained,” but rather are truly layered. This may sound trivial, but
the implications are significant. Under previous UI models, an object had a container of some sort. For
example, a panel could contain other controls of certain types, but not necessarily all types. A button’s
content was generally text unless you had a button configured for images, but you couldn’t really find
a button configured to contain, for example, a drop-down list box, unless you wrote a custom display
implementation.

By moving to a more layered approach, it’s possible to create a single control that handles text, images, and
other controls. Controls that support layering encapsulate a content presenter control. Thus, when you
indicated that the Image control in ProVB_WPF should stretch, it stretched in accordance with the grid
control. Were you to change the XAML definition of the grid control and give it a fixed height or width,
then even though the window might change, the Image control would still be bound to the limits of the grid
control.

This behavior is explicit layering, and it is only available with certain control types. For example, WPF
provides a series of different “panel” controls that are used to provide a framework for control layout. The
grid is probably the one most familiar to .NET Windows Forms developers because it maps most closely to
the default behavior of Windows Forms. Other similar controls include StackPanel, Canvas, DockPanel,
ToolBar, and Tab-related controls. Each of these provides unique layout behavior. Because these are
available as controls, which you can nest, you can combine these different layout paradigms within different

Creating a WPf application ❘ 631

632 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

sections of a single form, which enables you to group controls and achieve a common layout behavior of
related controls.

To be clear, however, explicit layering or nesting isn’t just available with Panel controls; another WPF
example is the Button control. The button has a layer of generic button code — background color,
border, size, and so on — that is managed within the display for the button. The button also has a content
presenter within its definition that takes whatever was placed into the button’s content property and calls
the presentation logic for that control. This enables the button and many other controls to contain other
controls of any type.

You can place a button on a form and bind it to the form’s borders, and then place other controls on the
form. Because the button exposes a content property, it supports explicit layering, and other controls can
in fact be placed within the content of the button. Thus, whenever a user clicks on the surface of the form, a
Click event is raised to the underlying button that is the owner of that content. The fact that WPF controls
forward events up the chain of containers is an important factor to consider when capturing events and
planning for application behavior. The formal name for this behavior is routed events.

Routed events are a key new concept introduced with WPF, and they are important in the sense that as you
add controls to your UI, you create a hierarchy. In the example thus far, this hierarchy is rather flat: There
is a window, and then a grid, and each of the controls is a child of the grid. However, you can make this
hierarchy much deeper, and routed events enable the controls at the top of the hierarchy to be notified when
something changes in the controls that are part of their content structure.

In addition to these explicit concepts of layering, hierarchy, and routed events, WPF also has the concept
of implicit layering. An implicit layer describes the scenario when you have two different controls defined
to occupy the same space on your form. In the case of the example code, recall that the image was defined to
overlay both of the row definitions, including the one containing the three Image control buttons. Thus,
these controls were defined to display in the same area, which isn’t a problem for WPF, but which in the
current design isn’t ideal for display purposes either.

The key point is that layering can be either implicit or explicit. In case you didn’t see the same behavior
that’s been described in terms of the loaded image hiding the control buttons, you’ll need to modify the
XAML code. Note that the code available for download implements the solution correctly, so if you are
following along with the sample code you’ll need to modify the XAML in MainWindow.xaml. The incorrect
version of this XAML is as follows:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="45" />
 <RowDefinition Height="215*" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>
 <Label Margin="0,11,0,0" Name="Label1" HorizontalAlignment="Left" Width="80"
Height="23" VerticalAlignment="Top">Image Path:</Label>
 <TextBox Margin="81,13,92,0" Name="TextBox1" Height="21"
VerticalAlignment="Top" />
 <Button HorizontalAlignment="Right" Margin="0,11,9,0" Name="ButtonBrowse"
Width="75" Height="23" VerticalAlignment="Top">Images ...</Button>
 <Button Grid.Row="2" HorizontalAlignment="Right" Margin="0,0,15,8"
Name="ButtonNext" Width="75" Height="23" VerticalAlignment="Bottom">Next >></Button>
 <Button Grid.Row="2" HorizontalAlignment="Left" Margin="15,0,0,8"
Name="ButtonPrev" Width="75" Height="23" VerticalAlignment="Bottom"> Prev</Button>
 <Button Grid.Row="2" Margin="150,0,150,8" Name="ButtonLoad" Height="23"
VerticalAlignment="Bottom">View Images</Button>
 <Image Grid.Row="1" Grid.RowSpan="2" Margin="0,0,0,0" Name="Image1"
Stretch="Fill" />
 </Grid>

In the preceding XAML, the buttons are defined and loaded, and the Image control isn’t defined until
later. As a result, the Image control is considered to be layered on top of the Button controls. When the

application starts, you might expect that Image control to immediately block the buttons, but it doesn’t.
That’s because there is no image to display, so the Image control essentially stays out of the way, enabling
the controls that would otherwise be behind it to both be displayed and receive input. WPF fully supports the
concept of transparency, as demonstrated later in this chapter.

When there is something to display, the resulting image can block the same buttons that were used to load
it (refer to Figure 17-6). Because the image isn’t part of the content for any of these buttons, none of the
click events that would occur on the image at this point are raised to those buttons, so the buttons that
are hidden don’t respond. This is different behavior from what you get when you layer controls, and much
closer to what a Windows Forms developer might expect. As a result, you need to be aware, just as with
other user interfaces, of the order in which controls overlap in the same display area that’s loaded.

Thus, everything you’ve done in the past, both with Windows Forms and ASP.NET, is still possible. On
the surface, the WPF controls have more in common with existing programming models than might at first
seem apparent.

Now that we have uttered heresy against this new UI paradigm, it’s time to examine what is meant by a
paradigm shift with the XAML model. As noted, it starts with a new set of classes and a new declarative
language, but it continues with being able to have much finer control over your application’s UI behavior.

customizing the user interface
While you can create a user interface that looks disappointingly similar to a Windows Forms application,
the real power of WPF is the customization it enables you to create for your application. At this point, our
example moves from the ProVB_WPF application to the second application, ProVB_WPF_Step2. The goal
here is to provide, through Visual Studio 2010, an even cleaner interface — not one that leverages all of
WPF’s power, but one that at least reduces the Windows Forms look and feel of this application.

The first step is to change some of the application. For starters, a text box with the name of the selected
directory is redundant. You don’t expect users to type that name, but rather to select it, so you can instead
display the currently selected directory on the actual button label. Accordingly, the current Label and
TextBox controls in the form can be removed. Additionally, both at load and following a change to the
selected folder, instead of waiting for the user to request the image folder, the application should just query
and pull the initial image.

Carrying out these changes is relatively simple. The first step is to adjust the existing button handler for the
View Images button. Because this button will be deleted but the actions that the handler implements are still
needed, change the method definition from being an event handler with associated parameters to being a
private method that doesn’t require any parameters:

Private Sub LoadImages()

Next, this method needs to be called when a new directory is chosen, so update the event handler for
ButtonBrowse_Click to include a call to this method when the name of the directory is updated.

Now you can get rid of the Label and TextBox controls. Eliminating the Label control is easy, as it isn’t
referenced in the code, but the TextBox poses a challenge. You can replace the TextBox control with a
reference to the content of the Button control, but in this case you’ve jumped from the frying pan into the
fire in terms of maintenance. Face it: The button content over time could be anything.

From a coding standpoint, it makes much more sense to store the current path as part of your local business
data. Then, if the goal is to have the label of that button display the current path, fine; but if for some reason
that changes, then you can minimize the changes required to your application code. Therefore, add a new
private value to your class:

 Private m_curImagePath As String = ""

Now replace all of the references to TextBox1.Text with the new value of m_curImagePath in your
code. There are likely more than you would expect, and not using the button’s label for this task should
make more sense at this point. Next, you need to update the button label for when the m_curImagePath

Creating a WPf application ❘ 633

634 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

value changes. This occurs only in two places: in the MainWindow_Loaded event handler and in the
ButtonBrowse_Click event handler.

Finally, update the code in the MainWindow_Loaded event handler. There are three actions in the current
method, and two of them should be eliminated. The first is where the code is adding the “<<” to the
ButtonPrev label. This label is going to become an image, so get rid of this assignment statement. Similarly,
setting the Stretch property of the Image control within this event is a duplicate effort. Instead, update the
XAML by directly setting that property to the desired value. When you are done, the code for your class
and its first three methods should look similar to the following, given that there were no changes to the
event handlers for ButtonPrev and ButtonNext:

Class MainWindow
 Private m_imageList As String() = {}
 Private m_curIndex As Integer = 0
 Private m_curImagePath As String = ""

 Private Sub MainWindow_Loaded(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles MyBase.Loaded
 ' Set the default path from which to load images and load them
 m_curImagePath = _
 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
 ButtonBrowse.Content = m_curImagePath
 LoadImages()
 End Sub

 Private Sub ButtonBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles ButtonBrowse.Click
 Dim folderDialog As System.Windows.Forms.FolderBrowserDialog = _
 New System.Windows.Forms.FolderBrowserDialog()
 folderDialog.Description = "Select the folder for images."
 folderDialog.SelectedPath = m_curImagePath
 Dim res As System.Windows.Forms.DialogResult = _
 folderDialog.ShowDialog()
 If res = System.Windows.Forms.DialogResult.OK Then
 m_curImagePath = folderDialog.SelectedPath
 ButtonBrowse.Content = m_curImagePath
 LoadImages()
 End If
 End Sub

 Private Sub LoadImages()
 Image1.Source = Nothing
 m_imageList = System.IO.Directory.GetFiles(m_curImagePath, "*.jpg")
 m_curIndex = 0
 If m_imageList.Count > 0 Then
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(_
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub

Code snippet from MainWindow.vb

Now that you have updated your code, it’s time to clean up the XAML. First, delete the Label and
TextBox controls and move the button that is currently on the right-hand side of the top section to the
left-hand side. Next, bind the window to both sides of the display and expand its size to allow it to
display the full path. (Of course, this is ugly, which means it will be changed as part of the upcoming UI
changes.)

Next, delete the button labeled View Images from the design surface. At this point you could stop, but to
help prepare for other design changes you are going to make, review the placement of the Prev and Next
buttons. Currently, these buttons are tied to the bottom portion of the grid; instead, get rid of that third
grid row definition and center the Prev and Next buttons on the side of the image. At this point, the designer
should look similar to what is shown in Figure 17-7.

figure 17-7

This is a much simpler and cleaner interface. The XAML is as follows:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="215*" />
 </Grid.RowDefinitions>
 <Button HorizontalAlignment="Stretch" Margin="0,0,100,2" Name="ButtonBrowse" >
Images Folder</Button>
 <Image Grid.Row="1" Margin="0,0,0,0" Name="Image1" Stretch="Uniform" />
 <Button Grid.Row="1" HorizontalAlignment="Right" Name="ButtonNext"
VerticalAlignment="Center" Margin="0,0,15,8" Width="75">Next</Button>
 <Button Grid.Row="1" HorizontalAlignment="Left" Name="ButtonPrev"
VerticalAlignment="Center" Margin="17,113,0,116" Width="75"> Prev</Button>
 </Grid>

Code snippet from MainWindows.vb

This indicates that the Grid now has only two row definitions, and the Image control was updated to be
located in row 1, as were the Prev and Next buttons.

Now you are ready to address the next set of changes to make this application look and behave more like
a WPF application. One is to get rid of the “ugly” Windows frame around the application. (Your designer

Creating a WPf application ❘ 635

636 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

may want to skin this application later, and that frame just won’t support the look desired.) Second, the
designer wants the Prev and Next buttons modified so that they are circular instead of square and use
images instead of text; and just to be consistent, the designer would like those buttons hidden except when
the user hovers over them.

removing the frame
Removing the Windows frame from your application is actually fairly easy to do, as you only need to set two
properties on your form. The first is WindowStyle, which is set to None; the second is AllowTransparency,
which is set to True. You can accomplish that by adding the following line before the closing bracket of your
window attributes:

WindowStyle="None" AllowsTransparency="True"

Once you’ve added this line to your XAML, run the
application in the debugger. This is a good point to
test not only what happens based on this change,
but also the other changes you made to reduce the
number of controls in your application. The result
is shown in Figure 17-8. You probably notice that
there are no longer any controls related to moving,
resizing, closing, or maximizing your window. In
fact, if you don’t start the application within the
Visual Studio debugger, you’ll need to go to the Task
Manager in order to end the process, as you haven’t
provided any way to end this application through the
user interface.

In order to be able to skin this application, you
need to provide some controls that implement many
of the baseline window behaviors that most form
developers take for granted. This isn’t as hard as it
might sound. The main challenge is to add a series
of buttons for maximizing and restoring your application window, closing the application, and, of course,
resizing the application. Because your designer wants to skin the application, you decide that the best way
to handle the resize capability is with a single hotspot in the bottom-right corner that represents the resize
capability.

However, your first task is to provide a way to move the window. To do that you are going to add a rectangular
area that maps to the top Grid.Row. This rectangle supports capturing the MouseDown event and then responds
if the user drags the window with the mouse button down. Because moving the window is essentially a mouse
down and drag activity, as opposed to a Click event, the Rectangle is a quick and easy way to implement this
feature. It takes only a single line of XAML added as the first control in the grid:

 <Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"
Stroke="Black" Fill="Green" VerticalAlignment="Stretch" />

Now, of course, you’ve filled the default rectangle with a beautiful green color to help with visibility, leaving
the black border around the control. These two elements help you see where the rectangle is prior to taking this
XAML into a designer and cleaning it up. Aside from this, however, having a control is only half the equation;
the other half is detecting and responding to the DragMove event.

This is done with the following event handler, which is added using VB:

 Private Sub Rectangle_MouseLeftButtonDown(ByVal sender As Object, _
 ByVal e As System.Windows.Input.MouseButtonEventArgs) _
 Handles TitleBar.MouseLeftButtonDown
 Me.DragMove()
 End Sub

figure 17-8

To recap, that’s a single line of code in the handler — calling the built-in method on the Window base class,
DragMove. This method handles dragging the window to a new location. Right now the handler only looks
for the dragging to occur from a control named TitleBar, but you could change this to something else or
even change which control was called Titlebar.

Having resolved the first issue, you can move to the second: implementing the three buttons required for
minimize, maximize, and close. In each case the action required only occurs after a Click event. One of the
unique characteristics of a button is that it detects a Click event, so it is the natural choice for implementing
these actions. The buttons in this case should be images, so the first step is to create a few simple images.

Four image references have been added to the example project. Yes, these images are ugly, but the goal here
isn’t to create flashy design elements. You can literally spend days tweaking minor UI elements, which shouldn’t
be your focus. The focus here is on creating the elements that can be used in the UI. The color of the buttons,
whether the Close button looks like the Windows icon, and so on are irrelevant at this point. What you care
about here is providing a button with basic elements that a designer can later customize. As a rule, don’t mix
design and implementation.

The simplest way for an engineer to create graphics is with the world-famous Paint program. Not that it’s
the best way or even the only way, after all, even Visual Studio includes a basic image editor. The goal here
isn’t something fancy but something reasonably meaningful. Create the four necessary .jpg files as 24×24
pixel images, and include an image for the resize handle for the window. Next, access the MyProject page
and select the Resources tab. Then, select each of your .jpg files and add them as Image resources to the
project, as shown in Figure 17-9.

figure 17-9

Note that Visual Studio automatically places these items in the Resources folder for your project. Next,
verify that in the properties for each file, the BuildAction property is set to Resource. In order for these
resources to be referenced from within your XAML, they need to be designated as resources, not just
located in this folder. Now do a complete build of your project so the resources are compiled.

Creating a WPf application ❘ 637

638 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

At this point you can move back to the XAML designer and add the three buttons for minimize, maximize,
and close. For your purposes, they should reside in the upper-right corner of the display and be around the
same size as your new graphics. Drag a button onto the design surface and then edit the XAML to place
it in the upper-right corner and size it to a height and width of 20 pixels. After doing this, one easy way to
proceed is to simply copy that first button and paste two more buttons just like it into the XAML. Then all
you need to do is change the button names and locations. Voilà — three buttons.

Of course, your goal is for these buttons to have images on them, so you need to add an Image control to
the form and then move it so that it becomes the content for the first button. In this case, just bind the image
control to the borders of the button using the Margin attribute and then add a source to the button. Here,
the source is the local reference to your .jpg resource, so in the case of ButtonClose, the source value
is set to /Resources/20by_Exit.jpg. Add an Image control to the other two buttons and reference the
associated resource in order to get the XAML here:

<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,1,0"
 Name="ButtonClose" VerticalAlignment="Top">
 <Image Margin="0,0,0,0" Name="Image2" Stretch="Fill"
 Source="/Resources/20by_Exit.JPG"/>
</Button>
<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,25,0"
 Name="ButtonMax" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image3" Stretch="Fill"
 Source="/Resources/20by_Max.JPG"/>
</Button>
<Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,47,0"
 Name="ButtonMin" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image4" Stretch="Fill"
 Source="/Resources/20by_Min.JPG"/>
</Button>

Code snippet from MainWindow.xaml

At this point the basic XAML elements needed in order to implement a custom shell on this application are in
place. Note that each button has a specific name: ButtonClose, ButtonMax, and ButtonMin. You’ll need these,
and the design can’t change them because you’ll use the button names to handle the Click event for each button.
In each case, you need to carry out a simple action:

 Private Sub ButtonMin_Click(ByVal sender As Object, _
 ByVal e As RoutedEventArgs) _
 Handles ButtonMin.Click
 Me.WindowState = WindowState.Minimized
 End Sub

 Private Sub ButtonMax_Click(ByVal sender As Object, _
 ByVal e As RoutedEventArgs) _
 Handles ButtonMax.Click
 If (Me.WindowState = WindowState.Maximized) Then
 Me.WindowState = WindowState.Normal
 Else
 Me.WindowState = WindowState.Maximized
 End If
 End Sub

 Private Sub ButtonClose_Click(ByVal sender As Object, _
 ByVal e As RoutedEventArgs) _
 Handles ButtonClose.Click
 Me.Close()
 End Sub

Code snippet from MainWindow.vb

The code is fairly simple. After all, it’s not as if the methods you need aren’t still available; all you are doing is
providing part of the plumbing that will enable your custom UI to reach these methods. Thus, to minimize the
button’s Click event, merely reset the window state to minimized. The real plumbing, however, was prebuilt
for you as part of the way WPF layers controls. Keep in mind that when users click the minimize button, they
are actually clicking on an image. WPF routes the Click event that occurred on that image.

When you hear about routed events and how powerful they are, remember that they are a capability built into
the way that WPF layers and associates different controls. The routing mechanism in this case is referred to as
bubbling because the event bubbles up to the parent; however, routed events can travel both up and down the
control hierarchy.

For the ButtonMax event handler, the code is significantly more complex. Unlike minimizing a window,
which has only one action when the button is pressed, the maximize button has two options. The first time
it is pressed it takes the window from its current size and fills the display. If it is then pressed again, it needs
to detect that the window has already been maximized and instead restore that original size. As a result, this
event handler has an actual If statement that checks the current window state and then determines which
value to assign.

Finally, the ButtonClose event handler has that one line of code that has been with VB developers pretty
much since the beginning, Me.Close, which tells the current window it’s time to close. As noted, there
isn’t much magic here; the actual “magic” occurs with resizing.

Up until this point, changing the default window frame for a set of custom controls has been surprisingly
easy. Now, however, if you are working on your own, you are about to hit a challenge. You need a control
that will respond to the user’s drag action and enable the user to drag the window frame while providing
you with updates on that status.

There isn’t a tool in the Visual Studio Toolbox for WPF that does this, but there are things such as splitter
windows and other resizable controls that have this behavior. WPF was written in such a way that most of
what you consider “controls” are actually an amalgamation of primitive single-feature controls. In this case, the
primitive you are looking for is called a Thumb. The Thumb control is a WPF control, and it is located in the
System.Windows.Controls.Primitives namespace.

Fortunately, you can directly reference this control from within your XAML; and once you have added it to
your XAML, handling the events is just as simple as it is with your other custom UI elements. However, this
control can’t contain another control, and its default look is blank. For the moment, examine the XAML
that is used to create an instance of this control on your form:

<Thumb Grid.Row="1" Cursor="ScrollAll" Name="ThumbResize" Height="20" Width="20"
HorizontalAlignment="Right" VerticalAlignment="Bottom" Margin="0,0,0,0" />

Note a few items of customization. Because the typical location to resize from in most UI models is the
lower-right corner, this control is placed in the lower-right corner and aligned to the bottom and right edges
of the bottom grid row. The control itself is sized to match the other buttons used to control the window’s
behavior. The name ThumbResize is used to indicate the control, and in this case the property Cursor is
set. The Cursor property enables you to control the display of the mouse cursor when it moves over the
control. There are several options in the enumeration of standard mouse cursors, and for this control arrows
are displayed in every direction.

Before you change the default display any further, it makes sense to wire up an event handler. This enables
you to test the control’s behavior. Just as with the other event handlers, double-clicking on the control in
the designer generates a default event handler for the control. In this case, the event to be handled is the
DragDelta event. As the name implies, this event fires every time the potential size of the display area is
changed. There are multiple ways to handle resizing. For this application, having the window redisplay as
the user drags the mouse is feasible because the amount of time to update the display is short.

If that weren’t the case, then you would want to override two additional events: DragStarted and DragOver.
These events enable you to catch the window’s start size and the final size based on the end of the user’s
action. You would then only resize the form in the DragOver event instead of in the DragDelta event.

Creating a WPf application ❘ 639

640 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

You would still need to override DragDelta because it is in this event that you monitor whether the
window’s minimum and/or maximum size constraints have been met:

 Private Sub ThumbResize_DragDelta(ByVal sender As System.Object, _
 ByVal e As Primitives.DragDeltaEventArgs) _
 Handles ThumbResize.DragDelta
 Me.Height += e.VerticalChange
 If (Me.Height < Me.MinHeight) Then
 Me.Height = Me.MinHeight
 End If
 Me.Width += e.HorizontalChange
 If (Me.Width < Me.MinWidth) Then
 Me.Width = Me.MinWidth
 End If
 End Sub

Code snippet from MainWindow.vb

The preceding block of code illustrates the code for this event handler. Notice that in this case the
parameter e is specific to the DragDeltaEventArgs structure. This structure enables you to retrieve
the current totals for both the vertical and horizontal change of the current drag location from the current
window’s frame.

This code enables you to see the visible window as the window is dragged because each time the event is fired,
the Height and Width properties of the window are updated with the changes so that the window is resized.
Note that this code handles checking the minimum height and width of your window. The code to check for
the maximum size is similar. At this point, you can rerun the application to verify that the event is handled
correctly and that as you drag the thumb, the application is resized.

Once you have the ThumbResize control working, the next step is to customize the display of this control.
Unlike a button or other more advanced controls, this control won’t allow you to associate it with an image
or have content. As one of the primitive control types, you are limited to working with aspects such as the
background color; and just assigning a color to this control really doesn’t meet your needs. Thus, this is an
excellent place to talk about another WPF feature: resources.

resources
Typically, there comes a point where you want to include one or more resources with your application. A
resource can be anything, including a static string, an image, a graphics element, and so on. In this case, you
want to associate an image with the background of a control that would otherwise not support an image.
Resources enable you to set up a more complex structure than just a color, which can then be assigned to a
control’s property. For this simple example you’ll create a basic application-level resource that uses an image
brush, and then have your control reference this resource.

As noted in the introduction to XAML syntax, the definition for x:Key included the label object.Resources.
The implication is that objects of different types can include resources. The scope of a resource, then, is defined
by the scope of the object with which it is defined. For a resource that will span your application, you can in
fact define that resource within your application XAML. Resources that are to be available within a given
window are defined in the XAML file for that window. The following XAML demonstrates adding a resource
to the application file of the sample application created earlier:

<Application x:Class="Application"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>
 <ImageBrush x:Key="ResizeImage"
 ImageSource="/Resources/20by_Arrows.JPG">

 </ImageBrush>
 </Application.Resources>
</Application>

Code snippet from Application.xaml

Here, you are going to create a new ImageBrush. An image brush, as you would expect, accepts an image
source and then it “paints” this image onto the surface where it is applied. In the XAML, notice that you
assign an x:Key value. As far as XAML is concerned, this name is the identity of the resource. Once this has
been assigned, other controls and objects within your XAML can reference this resource and apply it to an
object or property. Thus, you need to add a reference to this resource to your definition of the ThumbResize
control. This should result in a change to your XAML similar to this:

<Thumb Grid.Row="1" Cursor="ScrollAll" HorizontalAlignment="Right" Height="20"
Background="{StaticResource ResizeImage}" Name="ThumbResize"
Margin="0,0,0,0" Width="20" VerticalAlignment="Bottom" />

This change involves what is assigned to the Background property of your Thumb control. As you look
through XAML files, you will often see references to items such as StaticResources, and these can become
fairly complex when you start to work with a tool such as Expression Blend. However, this example should
help you recognize what you are seeing when you look at more complex XAML files. You will also see
references to dynamic resources, which are discussed later in this chapter in conjunction with dependency
properties.

Resources can be referenced by several different controls and even other resources. However, resources aren’t
the only, or most maintainable, resource in all instances. Because a resource must be referenced within each
object that uses it, it doesn’t scale well across several dozen controls. In addition, during maintenance, each time
someone edited a XAML file that applies resources to every control, they would also need to be careful to add
that resource to any new controls. Fortunately, XAML borrows other resource types based on the basic idea of
style sheets. WPF supports other types of resources, including templates and styles, which are discussed later
in this chapter. Unlike styles and resources, templates are applied to all objects of the same type. Coverage of
templates is beyond the scope of this chapter, but they work similarly to resources except that the settings they
define are automatically applied to every control of a given type.

This juncture is an excellent point to test your
application. When you start it, you should see
something similar to Figure 17-10. As noted earlier,
at this point the application isn’t exactly going to
win a beauty contest (although the baby might).
What you have achieved is a custom framework
that enables you to literally treat an application UI
as a blank slate, while still providing the standard
Windows services that users have come to expect.
This is important as you start to create applications
that truly push the UI design envelope.

customizing the Buttons
Your next task is to adjust the buttons in the
application. Recall that the ButtonPrev and
ButtonNext controls need to be round and only
appear when the mouse is over them. This
requires both XAML updates and new event handlers to hide the buttons. The second task results from
the fact that when the mouse hovers over a button, Windows automatically changes the color of that button.
This is a problem because the graphic guru doesn’t want Windows changing the color of elements in the
display.

figure 17-10

Creating a WPf application ❘ 641

642 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

We’ll begin with making the current buttons round and changing them to use images instead of text. Making
the buttons round in Visual Studio isn’t as hard as it sounds. You can clip the button display and thus quickly
create a round button. The easiest way to do this is to place the button on a Panel control and then clip the
display region of the panel. You might be tempted to clip the button or place it within a border region, but
neither of these actions will work as expected.

What you need to leverage is the capability to layer controls and a Panel control for each of these buttons.
In this case, placing a panel on the display and then telling the panel that its contents have been clipped
to fit within a geometric shape enables the clipped control to be displayed with the desired shape.
Additionally, when it comes to hiding the button and only showing it when the mouse is over the control,
the container is the control you need to detect the MouseEnter event. Instead of adding a panel to your
application window, you are welcome to try the following: Go to the ButtonPrev XAML and set its
visibility to Hidden. Next, from within the XAML, add a new event handler for the MouseEnter event
and generate the stub. Within this stub, add a single line of code to make the button visible and set a
breakpoint on this line of code.

Now start your application. Do you see any good way of knowing when the mouse is over the area where
the control should be? No matter how many times you move across the area where the control should
be, your MouseEnter event handler isn’t called. Similarly, you can stop your application and change the
visibility setting on the button from Hidden to Collapsed. Restart the application. You’ll get the same result.
In fact, short of attempting to track where the mouse is over your entire application and then computing
the current location of the buttons to determine whether the mouse’s current position happens to fall in
that region, there isn’t a good way to handle this aside from adding another control. If you chose to run this
experiment, you should remove the reference to the event handler from your XAML — you can leave the
button visibility set to either Hidden or Collapsed — and the event handler code.

The UI trick is that the Panel, or in this case the StackPanel, control that you use supports true
background transparency. Thus, even though it doesn’t display, it does register for handling events. Thus,
the StackPanel acts not only as a way to clip the display area available to the button, but also as the
control that knows when the button should be visible. You’ll create MouseEnter and MouseLeave event
handlers for the StackPanel, and these will then tell ButtonNext when to be visible and when to be
hidden.

First, add a StackPanel control to your display. This stack panel, once it has been added to your design
surface, will be easier to manipulate from within the XAML display. Ensure that the StackPanel was
created in the second grid row. Then ensure that it has both an open and a close tag, and position these
tags so they encapsulate your existing ButtonNext declaration. At this point, the ButtonNext declaration
is constrained by the StackPanel’s display region. Next, ensure that most of the layout settings previously
associated with the button are instead associated with the StackPanel:

<StackPanel Background="Transparent" Margin="0,0,25,0" Height="75" Width="75"
Name="StackPanelNext" Grid.Row="1" HorizontalAlignment="Right"
VerticalAlignment="Center" >
 <Button Grid.Row="1" Height="75" Width="75" HorizontalAlignment="Center"
VerticalAlignment="Center" Name="ButtonNext" Visibility="Hidden">Next</Button>
</StackPanel>

Code snippet from MainWindow.xaml

The preceding snippet shows how the Margin property that was set on the button is now associated with the
StackPanel. Similarly, the StackPanel has the VerticalAlignment and HorizontalAlignment settings
that were previously defined on the button. The Button now places both its vertical and horizontal alignment
settings to Stretch because it is mainly concerned with filling the available area. Finally, note that both the
ButtonNext control and the StackPanelNext control are given Height and Width properties of 75 pixels,
making them square.

Before you address that issue, it makes sense to set up the event handlers to show and hide ButtonNext;
otherwise, there won’t be anything in the display. Within the code you can create an event handler for

the MouseLeave event and associate it with Handles StackPanelNext.MouseLeave. If you previously
attempted to capture the MouseEnter event with the button itself, you already have that method and all you
need to do is add the Handles clause to the event definition:

 Private Sub StackPanelNext_MouseEnter(ByVal sender As System.Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles StackPanelNext.MouseEnter
 ButtonNext.Visibility = Windows.Visibility.Visible
 End Sub

 Private Sub StackPanelNext_MouseLeave(ByVal sender As System.Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles StackPanelNext.MouseLeave
 ButtonNext.Visibility = Windows.Visibility.Hidden
 End Sub

Code snippet from MainWindow.vb

At this point, test your code and ensure that it compiles. If so, make a test run and see whether the button
is hidden and reappears as you mouse over the area where it should be located. If everything works, you are
almost ready to repeat this logic for ButtonPrev. First, however, add the clip region to your StackPanel
control so that the button displays as a circle instead of as a square.

The Clip property needs a geometry for the display region. Creating this requires that you define another object
and then assign this object to that property. Since you’ll want to report this geometric definition for both buttons,
the most efficient way of doing this is to add a resource to your window. Go to the top of your MainWindow
XAML, just below the attributes for the window. Add a new XML node for <Window.Resources></Window
.Resources>. Between the start and end tags, create a new EllipseGeometry object. A radius is the distance
from the center to the edge of a circle, so define your X and Y radius properties as 34. This is less than the
distance between any edge and the center of your StackPanel.

Next, center the ellipse on the point 36, 36 — placing it near the center of your StackPanel and far enough
from the edges that neither radius reaches all the way to one of the edges. The resulting XAML is shown in
the following code block:

 <Window.Resources>
 <EllipseGeometry x:Key="RoundPanel" Center="36, 36" RadiusX="34" RadiusY="34">
</EllipseGeometry>
 </Window.Resources>

Code snippet from MainWindow.xaml

Define the Clip property for your StackPanel to reference this new resource. As shown in the sample
code, the name for this resource is RoundPanel. Then, add the following property definition to your
StackPanelNext control:

Clip="{StaticResource RoundPanel}"

Next, add the images that will be used on these buttons. From the Resources tab of the MyProject screen, add
two new images: LeftArrow.jpg and RightArrow.jpg. The images here were created with Microsoft Paint.
Of course, both images are also square, but from the standpoint of what will be visible this doesn’t matter. Once
the images have been loaded, the last step is to add an Image control to the ButtonNext content, similar to what
was done earlier for your minimize, maximize, and close buttons:

<Image Margin="0,0,0,0" Stretch="Fill"
 Source="/Resources/RightArrow.jpg"></Image>

Once you have defined this you can then copy the StackPanel definition you’ve set up around ButtonNext and
replicate it around ButtonPrev. You’ll need to customize the location settings and then create event handlers for
the StackPanelPrev mouse events that update the visibility of the ButtonPrev control. The code block that
follows shows the complete XAML file to this point:

Creating a WPf application ❘ 643

644 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="335" Width="415" Name="MainWindow"
 WindowStyle="None" AllowsTransparency="True">
 <Window.Resources>
 <EllipseGeometry x:Key="RoundPanel" Center="36, 36" RadiusX="34" RadiusY="34">
</EllipseGeometry>
 </Window.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="215*" />
 </Grid.RowDefinitions>
 <Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"
Stroke="Black" Fill="Green" VerticalAlignment="Stretch" />
 <Button HorizontalAlignment="Stretch" Margin="0,0,130,2" Name="ButtonBrowse">
Images Folder</Button>
 <Button Height="20" Width="23" HorizontalAlignment="Right" Margin="0,1,1,0"
Name="ButtonClose" VerticalAlignment="Top">
 <Image Margin="0,0,0,0" Name="Image2" Stretch="Fill" Source="/Resources/
20by_Exit.JPG"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,25,0"
Name="ButtonMax" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" HorizontalAlignment="Center" Name="Image3"
Stretch="Fill" Source="/Resources/20by_Max.JPG"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,47,0"
Name="ButtonMin" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image4" Stretch="Fill" Source="/Resources/
20by_Min.JPG"/>
 </Button>
 <Image Grid.Row="1" Margin="0,0,0,0" Name="Image1" Stretch="Uniform" />
 <StackPanel Background="Transparent" VerticalAlignment="Center"
Margin="0,0,25,0" Height="75" Name="StackPanelNext" Grid.Row="1"
HorizontalAlignment="Right" Width="75" Clip="{StaticResource RoundPanel}">
 <Button Grid.Row="1" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Name="ButtonNext" Height="75" Width="75"
Visibility="Hidden">
 <Image Margin="0,0,0,0" Stretch="Fill" Source="/Resources/
RightArrow.jpg"></Image>
 </Button>
 </StackPanel>
 <StackPanel Background="Transparent" VerticalAlignment="Center"
Margin="25,0,0,0" Height="75" Name="StackPanelPrev" Grid.Row="1"
HorizontalAlignment="Left" Width="75" Clip="{StaticResource RoundPanel}">
 <Button Grid.Row="1" HorizontalAlignment="Left" VerticalAlignment="Center"
Name="ButtonPrev" Height="75" Width="75" Visibility="Hidden">
 <Image Margin=“0,0,0,0” Stretch=“Fill”
 Source=”/Resources/LeftArrow.jpg"></Image>
 </Button>
 </StackPanel>
 <Thumb Grid.Row="1" Cursor="ScrollAll" Background="{StaticResource
ResizeImage}" Height="20" Width="20" HorizontalAlignment="Right" Margin="0,0,0,0"
Name="ThumbResize" VerticalAlignment="Bottom" />
 </Grid>
</Window>

Code snippet from MainWindow.xaml

Next, test run the application. Figure 17-11 shows
the application with the mouse over the Next button,
causing that button to appear.

That completes the steps for the code in the ProVB_WPF_
Step2 project. The next step is to separate out the custom
window framework that was the focus of the ProVB_
WPF_Step2. This can act as a base set of window classes
that can be reused across multiple different applications.
You can leverage the main application window and move
the current logic associated with displaying images into a
user control.

WPf User Controls
As for the specific controls available in WPF, you’ve seen
in this chapter that several are available, although even
those like the button that seem familiar may not work as
expected. WPF controls need to fit a different paradigm
than the old Windows Forms model. In that model, a
control could be associated with data, and in some cases undergo minor customization to its look and feel.
Under WPF, the concept of a grid is used. It isn’t, however, similar to the old Windows Forms DataGridView
in any way. The WPF grid is a much more generic grid that enables you to truly customize almost every aspect
of its behavior.

Part of the goal of WPF is to make it immaterial which environment your application will work in, Web or
desktop. For most of us, our code will either be on the desktop for WPF or running under Silverlight if on
the Web. Thus, in most cases you’ll want to make your XAML portable.

A Page control is, of course, the base UI element for a WPF-based Web application, so it’s easy to see how
this paradigm of the content area can support the layering of two different user-interface implementations.
Once you have defined the base elements of your user interface you can leverage user controls, which are
equally happy on the desktop or in the browser. Of course, creating applications that flexible is a bit more
challenging, unless you are leveraging services. In other words, instead of targeting the file system, you
would target a service, which might be local or remote, and that would be focused on the appropriate
file system. Then the application is running on a local computer. It can encapsulate the pages in a Window
control; and when hosted in a browser, it can use those same user controls within the framework of
a Page.

Aside from some standard user interface controls, the WPF Toolbox contains nearly all of the controls that
you can find in every other Windows-based user interface model, such as tabs, toolbars, tooltips, text boxes,
drop downs, expanders, and so on. It should also be noted that the WPF namespace consists of several
graphics, ink, and even data and data-bound controls.

Accordingly, the key to working with WPF is taking these basic controls and using WPF user control
projects to create the building blocks that you will then use to create your custom user interfaces. If the
example in this chapter demonstrated anything, it is how time-consuming making changes to the XAML
can be. If you open ProVB_WPF_Step3, you’ll find that this is exactly what was done with all of the image
handling from ProVB_WPF_Step2.

The newly created user control is called ImageRotator. This control contains not only the Image control
and the buttons associated with moving to the next and previous image, but also the button to select the
correct folder. The main changes that were made to implement this control involve that button. Figure 17-12
shows the updated control within the designer.

figure 17-11

Creating a WPf application ❘ 645

646 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

During Step 2 of the project, that button was “conveniently” located in the custom title bar. What might not
be obvious as you look at a black-and-white copy of Figure 17-12 is that the background of the control is in
fact covered by ButtonBrowse. ButtonBrowse now needs to be within the control, and the goal is to still
keep it from overlying the screen real estate available to the image. As strange as it sounds having the button
over the full control display allows you to minimize its display impact by covering it with the image and
removing its explicit visual presence. The key takeaway as you look within the following updated XAML is
that the Image control is now the button’s content:

<UserControl x:Class="ImageRotator"
 xmlns=
"http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc=
"http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:d=
"http://schemas.microsoft.com/expression/blend/2008"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="300">
 <UserControl.Resources>
 <EllipseGeometry x:Key="RoundPanel" Center="36, 36"
 RadiusX="34" RadiusY="34"></EllipseGeometry>
 </UserControl.Resources>
 <Grid Name="Grid1" MinWidth="100" MinHeight="100">
 <Button Height="{Binding ElementName=Image1, Path=Height}"
Width="{Binding ElementName=Image1, Path=Width}" Name="ButtonBrowse" >
 <Image Margin="0,0,0,0" Name="Image1" Stretch="Uniform" />
 </Button>
 <StackPanel Background="Transparent" VerticalAlignment="Center"
 Margin="0,0,25,0" Height="75" Name="StackPanelNext"

figure 17-12

 HorizontalAlignment="Right" Width="75"
 Clip="{StaticResource RoundPanel}">
 <Button HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch" Name="ButtonNext"
 Height="75" Width="75" Visibility="Hidden">
 <Image Margin="0,0,0,0" Stretch="Fill"
 Source="/Resources/RightArrow.jpg"></Image>
 </Button>
 </StackPanel>
 <StackPanel Background="Transparent" VerticalAlignment="Center"
 Margin="25,0,0,0" Height="75" Name="StackPanelPrev"
 HorizontalAlignment="Left" Width="75"
 Clip="{StaticResource RoundPanel}">
 <Button HorizontalAlignment="Left"
 VerticalAlignment="Center" Name="ButtonPrev"
 Height="75" Width="75" Visibility="Hidden">
 <Image Margin="0,0,0,0" Stretch="Fill"
 Source="/Resources/LeftArrow.jpg"></Image>
 </Button>
 </StackPanel>
 </Grid>
</UserControl>

Code snippet from ImageRotator.xaml

The preceding XAML should look familiar. The main differences from the last time we looked at this
code as part of the MainWindow class are the changes related to the user control declaration and to
ButtonBrowse.

In terms of the UserControl, it has several attributes that should be very familiar in terms of class
and namespace definitions. One which may not be familiar is the one labeled mc and associated with
markup compatibility. This library is also used within the attributes of the user control declaration.
mc:Ignorable=“d“ indicates that attribute values which are namespaced within the “d” namespace can
be ignored when processing this XAML.

DesignHeight and DesignWidth are the two attributes prefaced with d:. In this context it should be
relatively clear what is occurring: We are introducing the idea that when designing this user control, it is
useful to have a visible design surface. However, at deployment, this user control should be sized to the needs
of the containing object. Since the design surface has no containing object, this could cause an issue because
the height and width would default to 0. The only way to prevent that would be to introduce an element to
force a size on the user control, and of course that would carry forward into the deployment and affect use
of the control.

What mc:Ignorable provides is a way within XAML to describe aspects of the UI that are specific to design
time. That way, at runtime it isn’t necessary to remember to remove these attributes; instead they are ignored.

In addition to the elements used to define the new user control class, the other change of interest involves
ButtonBrowse. As noted, ButtonBrowse is now included in the same display area as the image. You’ll note
that the button’s height and width are now data bound, as explained in more detail shortly.

Before discussing data binding and leaving the majority of this XAML behind, notice how the image has
been placed as the content of the button. Placing the image into the button’s content allows the code to
leverage the built-in command routing of WPF. When someone clicks on the image, the image doesn’t
handle the Click event. It is therefore passed to the UI element layered below the image, the button. The
button, of course, handles the Click event. Thus, unlike the days of Windows Forms, when you would
attach the image to the button which had some knowledge about using an image as its surface, in WPF the
button is blissfully unaware that an image is acting as its content. However, this decoupling of the image
from the button leaves a gap in relation to the sizing of the button, and that’s where data binding the
button’s height and width to those of the image comes in.

Creating a WPf application ❘ 647

648 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

Data Binding in WPf
WPF includes significant support for binding, whether it is between controls or to a data source. Binding to a
source is a very declarative method for associating an external value with a control. Because you specify what
is bound, if the bound item changes, then WPF knows to automatically reflect that change in your control.
Thus, you aren’t managing state and attempting to track and update changes; that becomes part of the
“plumbing” and you can just expect it to work.

In order to manage some of the complexity of data binding, this chapter looks at binding between controls,
the use of dependency properties, and then binding to external data sources.

Binding between WPf Controls
As noted in the updated XAML for the ImageRotator control, the size of ButtonBrowse has been bound
to the size of the control Image1. Control Image1 conveniently is the contents of ButtonBrowse, which
creates an interesting dependency when you think about it. However, the size of the image is constrained
by the available space within the control’s display area and the scaling of the image being displayed. Thus,
if the control is sized at 300×300 and an image is loaded, the control will compute its scale based on the
available space. For an image which has a greater height than width, that might be 250×300. Notice how all
of this is handled automatically.

In the past your next step would have been to detect that the Image control changed size, communicating
this size change to the button to keep it “hidden” behind the image. The code would also need to capture
when a new image was loaded, since this would result in resizing the image and another notification to the
button. To this also add another notification each time the control was resized, etc. In other words, you
would be attempting to ensure that your plumbing captured every change in the Image control’s size.

With WPF you can simply associate the height of the button with the same value that the Image control
is using for its height, and step back. It doesn’t matter how or when the Image control changes size; when
the height changes, it changes for both controls. The same is done for the Width property and that’s it; no
custom code, no custom event — nothing.

The format used in the ButtonBrowse control is what might be called an inline format for binding:

<Button Height="{Binding ElementName=Image1, Path=Height}"
Width="{Binding ElementName=Image1, Path=Width}" Name="ButtonBrowse" >

Notice that the Height and Width properties remain as attributes of the Button’s XML node. This method
is convenient when you have only a couple of properties to bind. A second method for binding is discussed
later in the chapter.

Binding between controls is, of course, not the only form of binding; nor are you limited to binding to
just another named control. In fact, in some cases it’s not realistic to bind to a named control. For example,
if you are working with a data grid, you’ll want to bind to the current row, and that implies an associative
binding. In that case you want to use a RelativeSource binding so that you can indicate that the row
associated with your control in the data grid is the one to which you are binding. That row won’t have
a name, just a direct parent relationship. Keep in mind that this example shows only one set of binding
parameters; several others are available in order to support the disparate needs of different
requirements.

In terms of limitations, you can bind to any object that inherits from DependencyObject. This class is in the
class hierarchy for all of the controls in the System.Windows.Controls namespace. It can also be in the class
hierarchy of your own customer classes. However, your property also needs to be implemented as a dependency
property, the subject of the next section.

Dependency Properties
Not all properties are dependency properties, but any property used where the design allows for data binding
is typically implemented as a dependency property. For the purposes of this chapter, it’s only necessary to

understand a few things about dependency properties. First, they are often used to reference resources and
styles as dynamic resources, not static resources. Second, they are identified in the documentation of the WPF
components. Finally, to help expand your concept of binding, keep in mind that the Style property is in fact
a dependency property.

Every control can be associated with one or more styles. As part of your development, you can create a style
just as you create a resource. Styles can be assigned similarly to resources — that is, either by referencing
them by name when assigning a new style to an instance of a control, or by creating a style that is associated
with all instances of a given type. In either case, the Style property of a control is what is known as a
dependency property.

When you hear the term dependency you may initially assume this means the property has a dependency on
some other item. However, in the context of WPF, a better way to think of the term dependency is that “it
depends on who set that specific value in the object that defines that property.” A dependency property isn’t
dependent on some external item; the property’s value varies over time depending upon the last update to
the property.

Going into the details of why this occurs is beyond the scope of this chapter. However, dependency
properties are coupled with change notification logic, and play a significant role in things such as animation
and 3-D layout. For our purposes, the goal is to demonstrate the usefulness of dependency properties and
how to create a custom dependency property.

To this end, start by assuming that you would like the ImageRotator control to notify its parent container
whenever the path for images changes. The traditional way to do this, using a custom event, is illustrated in
the code for the ImageRotator control:

Public Class ImageRotator

 Private m_imageList As String() = {}
 Private m_curIndex As Integer = 0
 Private m_curImagePath As String = ""
 Private thename As String

 Public Event ImagePathChanged(ByVal sender As Object, ByVal e As String)

 Private Sub Grid1_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles
 Grid1.Loaded
 m_curImagePath = Environment.GetFolderPath(Environment.SpecialFolder.MyPictures)
 RaiseEvent ImagePathChanged(Me, m_curImagePath)
 LoadImages()
 End Sub

 Private Sub ButtonBrowse_Click(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles
 ButtonBrowse.Click
 Dim folderDialog As System.Windows.Forms.FolderBrowserDialog =
 New System.Windows.Forms.FolderBrowserDialog()
 folderDialog.Description = "Select the folder for images."
 folderDialog.SelectedPath = m_curImagePath
 Dim res As System.Windows.Forms.DialogResult = folderDialog.ShowDialog()
 If res = System.Windows.Forms.DialogResult.OK Then
 m_curImagePath = folderDialog.SelectedPath
 RaiseEvent ImagePathChanged(Me, m_curImagePath)
 LoadImages()
 End If
 End Sub

 Private Sub LoadImages()
 Image1.Source = Nothing

Creating a WPf application ❘ 649

650 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

 m_imageList = System.IO.Directory.GetFiles(m_curImagePath, "*.jpg")
 m_curIndex = 0
 If m_imageList.Count > 0 Then
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub

 Private Sub ButtonPrev_Click(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles
 ButtonPrev.Click
 If m_imageList.Count > 0 Then
 m_curIndex -= 1
 If m_curIndex < 0 Then
 m_curIndex = m_imageList.Count - 1
 End If
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub

 Private Sub ButtonNext_Click(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles
 ButtonNext.Click
 If m_imageList.Count > 0 Then
 m_curIndex += 1
 If m_curIndex > m_imageList.Count - 1 Then
 m_curIndex = 0
 End If
 Image1.Source = New System.Windows.Media.Imaging.BitmapImage(
 New System.Uri(m_imageList(m_curIndex)))
 End If
 End Sub

 Private Sub StackPanelPrev_MouseEnter(ByVal sender As System.Object,
 ByVal e As System.Windows.Input.MouseEventArgs) Handles StackPanelPrev.MouseEnter
 ButtonPrev.Visibility = Windows.Visibility.Visible
 End Sub

 Private Sub StackPanelPrev_MouseLeave(ByVal sender As System.Object,
 ByVal e As System.Windows.Input.MouseEventArgs) Handles StackPanelPrev.MouseLeave
 ButtonPrev.Visibility = Windows.Visibility.Hidden
 End Sub

 Private Sub StackPanelNext_MouseEnter(ByVal sender As System.Object,
 ByVal e As System.Windows.Input.MouseEventArgs) Handles StackPanelNext.MouseEnter
 ButtonNext.Visibility = Windows.Visibility.Visible
 End Sub

 Private Sub StackPanelNext_MouseLeave(ByVal sender As System.Object,
 ByVal e As System.Windows.Input.MouseEventArgs) Handles StackPanelNext.MouseLeave
 ButtonNext.Visibility = Windows.Visibility.Hidden
 End Sub
End Class

Code snippet from ImageRotator.vb

The preceding code block is mostly the same code which previously existed in the MainWindow.vb class. The
changes to support a custom event have been highlighted in bold. Notice that in addition to the declaration
of the custom event and the custom property, which is passed with the event, the only other change is to raise
that event as required.

Now that we have a custom event, let’s take the updated (and much shorter) code for the main window
and add a handler for this event. You’ll find the new event handler at the bottom of the following code
block:

Class MainWindow

 'Move Window
 Private Sub Rectangle_MouseLeftButtonDown(ByVal sender As Object,
 ByVal e As System.Windows.Input.MouseButtonEventArgs) _

Handles TitleBar.MouseLeftButtonDown
 Me.DragMove()
 End Sub

 'Minimize
 Private Sub ButtonMin_Click(ByVal sender As Object,
 ByVal e As RoutedEventArgs) Handles ButtonMin.Click
 Me.WindowState = WindowState.Minimized
 End Sub

 Private Sub ButtonMax_Click(ByVal sender As Object,
 ByVal e As RoutedEventArgs) Handles ButtonMax.Click
 If (Me.WindowState = WindowState.Maximized) Then
 Me.WindowState = WindowState.Normal
 Else
 Me.WindowState = WindowState.Maximized
 End If
 End Sub

 Private Sub ButtonClose_Click(ByVal sender As Object,
 ByVal e As RoutedEventArgs) Handles ButtonClose.Click
 Me.Close()
 End Sub

 'Resize
 Private Sub ThumbResize_DragDelta(ByVal sender As System.Object,
 ByVal e As Primitives.DragDeltaEventArgs) Handles ThumbResize.DragDelta

 If (Me.Height + e.VerticalChange < Me.MinHeight) Then
 Me.Height = Me.MinHeight
 Else
 Me.Height += e.VerticalChange
 End If

 If (Me.Width + e.HorizontalChange < Me.MinWidth) Then
 Me.Width = Me.MinWidth
 Else
 Me.Width += e.HorizontalChange
 End If
 End Sub

 Private Sub ImageRotater_UpdatedPath(ByVal sender As Object,
 ByVal e As String) Handles imageRotator1.ImagePathChanged
 labelWindowTitle.Content = e
 End Sub
End Class

Code snippet from MainWindow.vb

The new event handler is shown at the bottom of the code handling the new ImagePathChanged event from
the ImageRotator control (instance imageRotator1 is shown within the window). At this point the view
in the designer for the updated window is shown in Figure 17-13. There have been a couple of changes related
to the display, including the addition of a Label control, as referenced in the event hander.

Creating a WPf application ❘ 651

652 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

In moving the previous Image controls into a user control, other changes were made. First, as previously
discussed, the stylish button on the title rectangle was removed and placed in the control. In its place,
although not visible, is the Label control
labelWindowTitle. This label is the target of the
new event and will display the image folder. Next,
note that the buttons on the title rectangle have been
updated. These updated graphics were imported
from the Visual Studio 10 image library. You’ll find
the library under the Visual Studio 10 installation
folder within the Common7 folder.

Within the main portion of the display, the control
imageRotator1 is only a portion of the display. Two
labels and two buttons have been added. These are
currently unused but will be before this phase of the
application is complete. In fact, if you just download
and run the sample code you’ll find that the current
image doesn’t match the final display. However, the
goal here is to run the application, and if everything
is working correctly you’ll see something similar to
what is shown in Figure 17-14.

Creating a Custom Dependency Property

At this point we have a tool that supports one-way communication. In transforming this to a dependency
property, the first example is going to use a read-only dependency property. Thus, in the sample code all of the
event-specific code is now commented out. In its place a new read-only region is added. (Note that in the final
sample code that region is also commented out, replaced by a new read-write dependency property.)

figure 17-13

figure 17-14

The place to start is back within the code for the ImageRotator control. Once you have commented out the
single line that defines the custom event, you are going to add all of the following code to define a read-only
dependency property:

 Public ReadOnly Property ImageURI As String
 Get
 Try
 If Image1 IsNot Nothing AndAlso Image1.Source IsNot Nothing Then
 Return Image1.Source.ToString()
 Else
 Return "No Selection"
 End If
 Catch ex As Exception
 Return ""
 End Try
 Return ""
 End Get
 End Property

 Private Shared ReadOnly ImageProp As DependencyPropertyKey =
 DependencyProperty.RegisterAttachedReadOnly("ImageURI",
 GetType(String),
 Type.GetType("ProVB_WPF_Step3.ImageRotator"),
 New FrameworkPropertyMetadata(
 "Can you see me now?"))

Code snippet from ImageRotator.vb

At this point, you are likely wondering why you are substituting more code. There are two elements to that
answer. One, you are creating something that can be referenced directly in XAML in a declarative fashion.
Two, and more important, when you transform this to a read-write property, you’ll be able to replace that
one-way communication, which is the event pattern, with a two-way communication pattern that supports
all the same decoupling provided by the custom event.

For now you should review each of these two new property declarations. From the top, the first one should
look reasonably familiar in that it is a standard class property definition. This property is mapping to the source
property within the Image control for now, but in the big picture this is just the property that would need to
be exposed. As you’ll soon see, you can map this to a property on the user control, as opposed to one of the
controls in the user control, and this will be more valuable.

Next up is a line that is marked Private, and it defines a Shared ReadOnly field called ImageProp. ImageProp
will be the name of the read-only property; and because it is read only, instead of being created as a true
dependency property, you need to create a DependencyPropertyKey. This is a read-only version of a dependency
property, and the main parameters are the name of the property to be exposed and the type of that property.
In this case, we are using the GetType method to get that type. Next is the type of the object that provides this
property. Note that here we switch to the less precise Type.GetType() method. Note that this method accepts a
string, and that string must include the full namespace of the object. Thus, the GetType method is preferred.

The final parameter to the RegisterAttachedReadOnly method is a FrameworkPropertyMetadata
object. The first parameter of this object is a default value for the property. It includes other attributes
related to where setters should call and defines potential dependencies for the system when a property value
is changed. These are not required for this example.

If you did nothing else for your new property and jumped ahead to the mapping in the main window, then
you would be able to go to the designer for MainWindow and see this in the Design view. That’s a tip in case you
are doing this on your own and face any issues; you can step back to this point for debugging purposes.

I say that because the next step before leaving this code is to replace the locations where you previously
called RaiseEvent and instead set your new dependency property. You’ll see that next to each of the now
commented RaiseEvent calls in the code is a new line that reads as follows:

 SetValue(ImageProp, m_curImagePath)

Creating a WPf application ❘ 653

654 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

Hopefully, at this point you are thinking that this is just like a custom event. When new concepts are
introduced, such as something like XAML, users often need a familiar point of reference on which to base
their understanding. Here you can see that the dependency property’s behavior is much like the combination
of a custom property with a custom event.

The remaining step in implementing this dependency property is “listening” for updates. Of course, in
reality the event handler in the final MainWindow.vb source file is commented out. Instead of replacing that
custom event handler with more VB code, you are going to modify the XAML. What follows is the XAML
for the main window (highlighted in bold are the changes that were made to the baseline XAML when it
was brought over to the Step 3 version of the project):

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="363" Width="444" Name="MainWindow"
 WindowStyle="None" AllowsTransparency="True"
 xmlns:my="clr-namespace:ProVB_WPF_Step3">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="215*" />
 </Grid.RowDefinitions>
 <Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"
 Stroke="Black" Fill="Green" VerticalAlignment="Stretch" />
 <Label Grid.Row="0" Height="28" HorizontalAlignment="Left" Margin="10,0,0,0"
 Name="labelWindowTitle" VerticalAlignment="Top" ></Label>
 <Button Height="20" Width="23" HorizontalAlignment="Right" Margin="0,1,1,0"
 Name="ButtonClose" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image2" Stretch="Fill"
 Source="/ProVB_WPF_Step3;component/Resources/1385_Disable_24x24_72.png"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,25,0"
 Name="ButtonMax" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" HorizontalAlignment="Center" Name="Image3"
 Stretch="Fill"
 Source="/ProVB_WPF_Step3;component/Resources/112_Plus_Green_24x24_72.png"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right" Margin="0,1,47,0"
 Name="ButtonMin" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image4" Stretch="Fill"
Source="/ProVB_WPF_Step3;component/Resources/112_DownArrowShort_Green_24x24_72.png"/>
 </Button>
 <my:ImageRotator Grid.Row="1" HorizontalAlignment="Center" x:Name="imageRotator1"
 VerticalAlignment="Top" Margin="0,0,0,100" />
 <Thumb Grid.Row="1" Cursor="ScrollAll" Background="{StaticResource ResizeImage}"
 Height="20" Width="20" HorizontalAlignment="Right" Margin="0,0,0,0"
 Name="ThumbResize" VerticalAlignment="Bottom" />
 <Label Content="Name:" Grid.Row="1" HorizontalAlignment="Left" Margin="12,0,0,48"
 Name="label1" Height="28" VerticalAlignment="Bottom" />
 <TextBox Grid.Row="1" Margin="81,0,86,53" Name="textBox1" Height="23"
 VerticalAlignment="Bottom" />
 <Label Content="Job Title:" Grid.Row="1" Height="28" HorizontalAlignment="Left"
 Margin="10,0,0,12" Name="label2" VerticalAlignment="Bottom" />
 <TextBox Grid.Row="1" Height="23" Margin="81,0,86,17" Name="textBox2"
 VerticalAlignment="Bottom" />
 </Grid>
</Window>

Code snippet from MainWindow.xaml

The first changed line adds a new namespace, which references the current project. One of the nice
integrations with .NET is the ability to reference any .NET namespace from within WPF. In this case the
my alias is assigned to the current project and is then used in the XAML when the ImageRotator control is

referenced. Near the bottom of the XAML are the declarations for the new labels and text boxes, which are
located at the bottom of the window.

Of particular interest here, however, is the second highlighted code section, which describes the new Label
control. Keep in mind that the goal is to have this label display the path for the images, the same path that is
now represented with a dependency object. To make this association you could add XAML similar to what
was done for ButtonBrowse in the ImageRotator XAML. However, this is an opportunity to bind with an
alternate XAML syntax.

In this case, between the <Label> and </Label> tags you’ll want to add the following XAML:

 <Label.Content>
 <Binding ElementName="imageRotator1" Path="ImageURI"></Binding>
 </Label.Content>

Code snippet from MainWindow.xaml

The preceding XAML should look familiar, as it has the same attributes that you embedded within the
ButtonBrowse binding. However, in this case you’ll see that you have a very readable binding declaration, and
if you were going to bind several different properties, this format might be a bit more readable. However, at
this point, instead of having custom code to listen for a custom event, you’ve simply bound the label to the user
control’s ImageURI property.

This causes only one visible change to how the application behaves, and it occurs within the designer. Unlike
Figure 17-13, where the title bar’s label isn’t visible, once you have mapped the dependency property, the path
to the default image that is shown in the figure is displayed on the title bar. However, at runtime, you get what
is shown in Figure 17-14.

Before departing this section, let’s shift over to the Properties window for the label control. Now that you’ve
manually added this XAML you can use the Properties window to examine this binding. The Properties
window for WPF has been greatly enhanced, as you can see in Figure 17-15, which shows the Content
property for the labelWindowTitle control. Notice that this property’s binding definition is accurately
reflected within the Properties window, which shows the source as the imageRotator1 control, and that the
ImageURI property is the path for the binding within that control.

figure 17-15

Creating a WPf application ❘ 655

656 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

The properties haven’t just been updated for WPF bindings. Updates and several enhancements related to
the design and styles in the application have been applied. It is now possible to do much more core design of
your application from within Visual Studio. Unlike in the past where the use of Expression Blend was an
expectation, for business applications that need minimal customization it is likely that a developer can add
some simple styling to update the application look and feel.

Modifying the Look of the User Interface

As noted earlier, one of the primary uses for binding is to bind styles and design changes. To demonstrate both
this and a new feature of Visual Studio 2010, it is time to make some additional design changes to the application.
Prior to Visual Studio 2010, creating a gradient color for a control was easy to do in Expression Blend but difficult
to manage in Visual Studio. Thus, the next change that you can make to have your project match the final version
of ProVB_WPF_Step3 is to change that green bar acting as a header.

Figure 17-16 shows the new Properties window containing the Rectangle, which is used as a title bar. Here,
the background property is being customized. Unlike with Windows Forms, the color-based properties enable
you to specify that you want to use a gradient brush. To do so, select the third button above the color window,
which is a black-white gradient. Once that is done, you can start adding gradient points in the same manner
that a user of Word can add tabs to a document.

figure 17-16

Replicating what was done in ProVB_WPF_Step3 requires six tags on your gradient bar, and to add those tags you
simply click on the bar. Just like adding tabs in Word, you can easily define additional color transition points. By
defining the two inner tags as transparent and adjusting their position near the edges of the ButtonBrowse display,
you can create a transparent background for the button while creating a gradient on either side of the title bar.

For the three control buttons, I first created a blue gradient background below the buttons. Finally, to mimic
some of the glass styling, I modified the Opacity property within the Visibility portion of the properties
window and set the opacity of the rectangle to 50% (aka .5). This setting enables you to see both the colors
and what is in back of the control.

At this point I also ensured that the border, or “Stroke,” of the rectangle was transparent (refer to Figure 17-16).
However, if you ran the application now, you would find that instead of being transparent, the newly transparent
areas are instead white. This is because the underlying window’s background is painted with a white brush by
default.

Therefore, the next step is to access the window properties and set the background brush to transparent.
This is good to know because you might be tempted to change the window’s opacity property. After all, if
the opacity allows you to see through, then wouldn’t setting that to 0 allow you to see through the window?
The answer is yes, but that property is applied to the contents of the window as well as the background. As
a result, your entire application disappears. Instead, you want only the background to disappear; and the
correct way to handle that is to set the background brush.

At this point, if you run the application you’ll have
something that looks similar to what is shown in
Figure 17-17. Of course, Figure 17-17 also shows
how difficult making your background transparent
can be when looking for the controls that are part
of your application. However, you might want this
capability in some situations.

Notice how if you click outside one of the colored
regions your window allows that click to pass
through. This gives you an opportunity to explore
some of the advantages and challenges of having a
completely transparent surface. You might want to
test what happens by setting just the background
brush to have an almost imperceptible presence.

However, by now you’ve probably noticed that it’s
not only difficult to see the controls, but moving
the window is tricky because the new label doesn’t
respond to the mouse down by allowing you to
drag the window. Returning to Visual Studio, select the Label control. Then, in the Properties window, select
the Events tab. Find the MouseDown event and click in the area where it is defined to get the drop-down list of
available events. Select the existing event handler for the Rectangle control.

This is where Visual Studio 2010 does something awesome: Instead of mapping this handler within the
XAML, as it does for C#, it recognizes that you have a Handles clause and adds the Label control’s
MouseDown event to the list of events on your Handles clause in the code. In other words, it recognizes what
you are doing and handles the event appropriately based on how you have chosen to handle events in your
existing code.

Now it’s time to make the final UI changes for the application, the ones which you actually see in the sample
code. Notice that the ImageRotator has been shifted to the left side of the display and it’s margin is tied to
the bottom of the window. A new Label control that has its text property set to “Name List” is placed to the
right of the ImageRotator. Below the label is a new List control. At this point the user interface should
look similar to the final UI.

Note in order to give the application some coherence, the experimental background has been eliminated and
some of the visibility of the background has been restored. This is why when you run the code download it
doesn’t have a completely invisible background. The final design within Visual Studio should look similar to
what is shown in Figure 17-18. This image shows the final layout of the ProVB_WPF_Step3 look and feel.

figure 17-17

Creating a WPf application ❘ 657

658 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

Before leaving the design discussion, a quick introduction to styles is in order. It may not be obvious, but
every WPF application has an implicit style definition if you don’t override it. For example, when you added
a button to your form, how did it know that its background should be a gradient silver-like color? Where
did those hover-over and mouse-down effects come from?

Styles

Styles essentially leverage the concept of resources. With a style you have the option of either referencing all
objects of a common type and setting the default style for that control type or creating a custom style that
is specific to those control instances that reference it. In short, styles provide a mechanism for you to apply
a theme across an application and to override that theme in those specific instances where you want to. If
another developer later adds new elements to your application, the default styles are automatically applied.

Styles are defined like resources; in fact, they are defined within the same section of your XAML file in
which resources are defined. As with resources, when you define a style at the application level, the style
can be applied across all of the windows in the application. Conversely, if a style is meant to target only the
objects in a given window, page, or user control, then it makes sense to define them at that level.

Rather than provide a simple example of a style, let’s look at a complex style that focuses on the hover effect
for a standard button. This effect is defined within the default style, and the following code block provides
the default style for the control of type Button. Note that generating this style information in XAML
format is best done with Expression Blend, as discussed in Chapter 18.

<Style x:Key="ButtonFocusVisual">
 <Setter Property="Control.Template">
 <Setter.Value>
 <ControlTemplate>
 <Rectangle SnapsToDevicePixels="true" Stroke="Black" StrokeDashArray="1 2"
StrokeThickness="1" Margin="2"/>

figure 17-18

 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>
<LinearGradientBrush x:Key="ButtonNormalBackground" EndPoint="0,1" StartPoint="0,0">
 <GradientStop Color="#F3F3F3" Offset="0"/>
 <GradientStop Color="#EBEBEB" Offset="0.5"/>
 <GradientStop Color="#DDDDDD" Offset="0.5"/>
 <GradientStop Color="#CDCDCD" Offset="1"/>
</LinearGradientBrush>
<SolidColorBrush x:Key="ButtonNormalBorder" Color="#FF707070"/>
<Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">
 <Setter Property="FocusVisualStyle" Value="{StaticResource ButtonFocusVisual}"/>
 <Setter Property="Background" Value="{StaticResource ButtonNormalBackground}"/>
 <Setter Property="BorderBrush" Value="{StaticResource ButtonNormalBorder}"/>
 <Setter Property="BorderThickness" Value="1"/>
 <Setter Property="Foreground" Value="{DynamicResource {x:Static SystemColors.
ControlTextBrushKey}}"/>
 <Setter Property="HorizontalContentAlignment" Value="Center"/>
 <Setter Property="VerticalContentAlignment" Value="Center"/>
 <Setter Property="Padding" Value="1"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type Button}">
 <Microsoft_Windows_Themes:ButtonChrome SnapsToDevicePixels="true"
 x:Name="Chrome" Background="{TemplateBinding Background}" BorderBrush="{
 TemplateBinding BorderBrush}" RenderDefaulted="{TemplateBinding IsDefaulted}"
RenderMouseOver="{TemplateBinding IsMouseOver}" RenderPressed="{TemplateBinding
 IsPressed}">
 <ContentPresenter SnapsToDevicePixels="{TemplateBinding
 SnapsToDevicePixels}" HorizontalAlignment="{TemplateBinding
 HorizontalContentAlignment}" Margin="{TemplateBinding Padding}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 RecognizesAccessKey="True"/>
 </Microsoft_Windows_Themes:ButtonChrome>
 <ControlTemplate.Triggers>
 <Trigger Property="IsKeyboardFocused" Value="true">
 <Setter Property="RenderDefaulted" TargetName="Chrome" Value="true"/>
 </Trigger>
 <Trigger Property="ToggleButton.IsChecked" Value="true">
 <Setter Property="RenderPressed" TargetName="Chrome" Value="true"/>
 </Trigger>
 <Trigger Property="IsEnabled" Value="false">
 <Setter Property="Foreground" Value="#ADADAD"/>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

There are two lines of interest in the preceding code block. The first concerns the actual button style defined.
Styles often reference other resources; and similar to early C compilers, references must be defined before they
are actually referenced. Thus, the style defined in the preceding code block is actually the last style entry:

<Style x:Key="ButtonStyle1" TargetType="{x:Type Button}">

This line, which is highlighted in bold in the code block, indicates that this set of resources defines a style with
the key ButtonStyle1. Because this style is defined with a key, it is not a default style applied to all controls
of the target type. Styles always define a target type because different control types expect different specific
values defined within all of the detailed elements of a style.

Creating a WPf application ❘ 659

660 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

To have every control button use the same style, instead of providing a key for the style ButtonStyle1,
you provide only the type definition. If at some point you want objects of different types to share certain
characteristics, this can be done by defining a resource and then applying it to the style for each of the
types. If these styles are then designated without a key, then they are by default applied to every object of
that type.

Next, if you want to find a way to remove the default highlight that occurs as you mouse over a button, then
you need to determine how the style specifies that effect. The good news is that the hook that causes that
behavior is in fact included in this file; the bad news is that it references a template that is then assigned to
that behavior. The following line of XAML shows that the RenderMouseOver property is being associated
with the template IsMouseOver:

RenderMouseOver="{TemplateBinding IsMouseOver}"

It is this template that causes the button to change its look to reflect this state. Thus, to have a button
without this default behavior, you need to either define a new template or delete this XAML element from
your custom style.

You could, of course, take the preceding code block, make the necessary change, and paste it into your
application’s XAML. Certainly that will work if you also carry out the other steps that you need. However,
long term, the preceding block of XAML is specific to controls of the type Button. Moreover, all of the
preceding code was in fact generated. If you need to customize the runtime behavior of another control type,
you’ll need to generate the default style for that control. Expression Blend although no longer a requirement is
still a good option for doing this.

Data Binding to a Data Source

The final item to look at in this chapter is binding to a data source. For brevity, this example uses a simple
XML file People.xml, which is part of the ProVB_WPF_Step3 project. The contents of this file are as
follows:

<?xml version="1.0" encoding="utf-8" ?>
<People xmlns="">
 <Person PersonID="187012">
 <FirstName>Johnny</FirstName>
 <LastName>Climber</LastName>
 <JobTitle>Danger Boy</JobTitle>
 <working_folder>C:\Users\WSheldon\Pictures\Johnny</working_folder>
 </Person>
 <Person PersonID="181810">
 <FirstName>Billy</FirstName>
 <LastName>Karate</LastName>
 <JobTitle>Gold Belt</JobTitle>
 <working_folder>C:\Users\WSheldon\Pictures\Billy</working_folder>
 </Person>
</People>

Code snippet from People.xml

The contents of this file are fairly simple, and represent a human resource-style application. Each entry has an
internal ID and a series of fields. The working_folder node is machine specific, so when you consider running
this application you’ll need to map that to folders that exist on your local machine. Otherwise, you won’t see
any images.

While this file will be data-bound in the main window, the first step is to update the ImageRotator control.
The first part of its transformation involves taking the read-only ImageURI property and transforming
it into a read-write dependency property. As noted, the previously referenced read-only property was
commented out and in a collapsed region in the sample download code. The final code begins similarly to
the original in that it defines a standard class property. In this case, however, the property supports a Set
method, which calls the local method to update the displayed image in the Image control.

The updated property code follows, starting with the updated ImageURI property:

 Public Property ImageURI As String
 Get
 Return m_curImagePath
 End Get
 Set(ByVal value As String)
 m_curImagePath = value
 LoadImages()
 End Set
 End Property

 Private Shared ImageProp As DependencyProperty =
 DependencyProperty.RegisterAttached("ImageURI",
 GetType(String),
 GetType(ProVB_WPF_Step3.ImageRotator),
 New FrameworkPropertyMetadata(Nothing,
 FrameworkPropertyMetadataOptions.AffectsRender,
 New PropertyChangedCallback(AddressOf UriChanged)))

 Public Shared Sub UriChanged(ByVal prop As DependencyObject,
 ByVal args As DependencyPropertyChangedEventArgs)
 CType(prop, ImageRotator).ImageURI = args.NewValue
 End Sub

Code snippet from ImageRotator.vb

The original call to reference a DependencyPropertyKey has also been updated and the code now
references a true DependencyProperty update. However, your focus should be on the fourth parameter to
the RegisterAttached method. While the first three parameters are unchanged, the fourth parameter is
now passing two new properties.

The new constructor for the FrameworkPropertyMetadata has a null parameter for the “default” value.
It then passes an option flag indicating that when this property is updated, the rendering of the window
is affected and will need to be updated. This is true because an update to this property will result in the
selection of a new image, which will need to be sized and displayed.

However, it is the final parameter, the new PropertyChangedCallback, that is important. This is registering
with the property what method should be notified when a change is made for this property. As noted earlier,
when you think of a dependency property as a property plus an event with two-way communication, you need
a place that will accept the inbound communications. This callback method is essentially an event handler for
the PropertyChanged event when it is fired outside of the local class.

In this case, the address of the UriChanged method is passed. That method is the remaining new code. As
you’ll note by looking at the code, the UriChanged method is a Shared method, which means it can’t just
reference the local property. Fortunately, the first parameter is the instance of the DependencyObject which
needs to be updated, and one of the values passed within the EventArgs parameter is in fact the new value.
As a result, the method only requires a single line which casts the inbound dependency object to the local
type and then calls the appropriate property on the local class, passing the new value.

This creates an infrastructure that supports two-way communication whereby your object will notify those
who are interested in the value of this property about changes to it, and those who need to update this
property can notify your object of a new proposed value. Note that if, for example, someone passed a path
which wasn’t valid, then you could reject the assignment of that value. If you are looking at the download
code, then you know there is one last set of changes to comment out, some of the lines in the Load event of
this class; however, that change is covered as the last step in this process.

The code now supports a bi-directional property associated with the image path, allowing updates to be sent
to the control via binding within the XAML of the main window. Note that there are no updates to the
ImageRotator.xaml file or the MainWindow.xaml.vb file. The data binding is focused on the

Creating a WPf application ❘ 661

662 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

MainWindow.xaml file, which has again grown in length, and accordingly complexity. To help manage this, the
next code block addresses the changes to this file which occur in the resources and data context for the file, while
the updates to individual control binding are the focus of the second block.

The XAML which follows shows a couple of minor modifications to the window, but it is the bold lines
which are of interest for the purposes of data binding. Because these lines are located near the top, we’ll
discuss them before the code. The first is a new DataContext assigned to the top-level grid. This grid,
which isn’t given a name but which is parent to all of the other controls, acts as the central clearing for the
binding contexts.

The first highlighted line, which creates a data context for the grid, actually binds it to the new ListBox
control. The selected item in the ListBox is then bound to the grid. By referencing this context across all of
the other controls in the window, these controls can use this data context as their current context. Because
updates to the selected item in the list are automatically updated to this context, each control can thus be
kept in sync with the selected item in the grid, with no further code.

What may then interest you is the next highlighted section, which contains the grid resources. Most of the
time developers would traditionally take these resources and map them to the selected item in the ListBox.
However, as just discussed with WPF, the grid is binding to the selected item in the ListBox; thus, all of the
other controls can inherit that context for the data context.

The implication is that the one control that won’t inherit is the ListBox. Instead, as you’ll see later, the
ListBox explicitly binds to the first of the grid resources, the XmlDataProvider. This class is available to
provide a way for XAML to load an XML file and bind to its contents. Either the provider can use a Source
property, or you could embed the data within an x:Data block. Once bound, the provider is assigned a key
so that it can be referenced from other controls. In this example, only the ListBox control will actually bind
to this data source, but in theory other controls could bind to it. Additionally, the top-level node for XPath
queries is defined as People. When the code asks for a property, it will get one based on entries under People.
This is the starting point for the very simple XPath that the application will use.

The creation of the data provider is short and sweet; what comes next, however, is a data template. Called
the PersonName template, this template defines an output format. It is also used by the ListBox control,
although it could be used, for example, to populate the window title if you wanted a different title on the
window. Within is a short snippet of WPF that describes a container — in this case, a StackPanel and
the controls which are on the StackPanel. This means that a DataTemplate can be an extremely powerful
way to format complex data structures. The controls within map directly to the default data source, in this
case referencing two of the nodes from the Person structure in the XML.

These represent the only highlighted areas for binding in the first section of XML. The block which follows
includes the top-level window showing a partially transparent background, through the buttons that are on
the title bar rectangle:

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="ProVB_WPF" Height="363" Width="444" Name="MainWindow"
 WindowStyle="None" AllowsTransparency="True" xmlns:my="clr-namespace:ProVB_WPF_Step3"
WindowStartupLocation="CenterScreen" Background="#B4FFFFFF">
 <Grid OpacityMask="Black" Opacity="1"
 DataContext="{Binding ElementName=ListBox1, Path=SelectedItem}">
 <Grid.RowDefinitions>
 <RowDefinition Height="25" />
 <RowDefinition Height="215*" />
 </Grid.RowDefinitions>
 <Grid.Resources>
 <XmlDataProvider Source="People.xml" x:Key="People"
 XPath="People">
 </XmlDataProvider>
 <DataTemplate x:Key="PersonName">

 <StackPanel Orientation="Horizontal">
 <TextBlock>
 <TextBlock.Text>
 <Binding XPath="FirstName"></Binding>
 </TextBlock.Text>
 </TextBlock>
 <TextBlock Text=" "></TextBlock>
 <TextBlock>
 <TextBlock.Text>
 <Binding XPath="LastName"></Binding>
 </TextBlock.Text>
 </TextBlock>
 </StackPanel>
 </DataTemplate>
 </Grid.Resources>
 <Rectangle Name="TitleBar" HorizontalAlignment="Stretch" Margin="0,0,0,0"
 Stroke="#00000000" VerticalAlignment="Stretch" Opacity="0.5">
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint="1,0.5" StartPoint="0,0.5">
 <GradientStop Color="#FF0AFF0A" Offset="0" />
 <GradientStop Color="Blue" Offset="1" />
 <GradientStop Color="#005F9C4B" Offset="0.474" />
 <GradientStop Color="#00638F54" Offset="0.785" />
 <GradientStop Color="#9D0000FF" Offset="0.826" />
 <GradientStop Color="#FF00ED00" Offset="0.359" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Label Grid.Row="0" Height="28" HorizontalAlignment="Left"
 Margin="10,0,0,0" Name="labelWindowTitle" VerticalAlignment="Top">
 <Label.Content>
 <Binding ElementName="imageRotator1" Path="ImageURI"></Binding>
 </Label.Content>
 </Label>
 <Button Height="20" Width="23" HorizontalAlignment="Right"
 Margin="0,1,1,0" Name="ButtonClose" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image2" Stretch="Fill"
 Source="/ProVB_WPF_Step3;component/Resources/1385_Disable_24x24_72.png"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right"
 Margin="0,1,25,0" Name="ButtonMax" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" HorizontalAlignment="Center" Name="Image3"
 Stretch="Fill" Source=
 "/ProVB_WPF_Step3;component/Resources/112_Plus_Green_24x24_72.png"/>
 </Button>
 <Button Height="20" Width="20" HorizontalAlignment="Right"
 Margin="0,1,47,0" Name="ButtonMin" VerticalAlignment="Top" >
 <Image Margin="0,0,0,0" Name="Image4" Stretch="Fill" Source=
"/ProVB_WPF_Step3;component/Resources/112_DownArrowShort_Green_24x24_72.png"/>
 </Button>

Code snippet from MainWindows.xaml

Note that a couple of minor changes to the preceding XAML aren’t covered here — for example, the gradient
information for the LinearGradientBrush. In addition, note something that has not been changed. The first
step in the binding process was to have the labelWindowTitle control bind to the ImageURI property of
the ImageRotator. With the changes you are about to make, it would make sense to have this property bind
locally instead of to the control. This is not changed in the sample in order to reduce the complexity of the
changes to the code, but it’s something you can do on your own.

The focus is on the highlighted sections and the changes to support data binding. You can see that the changes
to support data binding in the XAML are relatively minor. The second half of the MainWindow.xaml file starts

Creating a WPf application ❘ 663

664 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

with the ImageRotator control declaration. Note that this is now being bound to the working_folder node
of the imported XML. By binding to this property, as you shift from one entry to another, the location for the
available images will automatically update and a new image will be loaded for each entry.

Below that are the two new text boxes, which have each been bound to a node in the data. Note that similar
to the ImageRotator, each is inheriting the binding source from a parent control in the hierarchy: the grid.
As such, they are all focused on the currently selected entry in the list box — which, by the way, is the first
entry. Changing what is selected, changes what is editable in the control.

No, this isn’t one-way binding; this is full two-way, editable binding. Start the application and type in a new
name, and you’ll see the display in the list box updated once you leave the text box. The updates occur on the
change in focus and it should be noted that this sample code does not include any persistence mechanism to save
your edits before you close the window, but from the standpoint of binding you have full two-way binding.

The only remaining question involves the changes to the ListBox control, which are discussed following the
XAML block:

 <my:ImageRotator Grid.Row="1" HorizontalAlignment="Left"
 x:Name="imageRotator1" Margin="0,0,0,100"
 ImageURI="{Binding XPath=working_folder}"/>
 <Thumb Grid.Row="1" Cursor="ScrollAll"
 Background="{StaticResource ResizeImage}" Height="20"
 Width="20" HorizontalAlignment="Right" Margin="0,0,0,0"
 Name="ThumbResize" VerticalAlignment="Bottom" />
 <Label Content="Name:" Grid.Row="1" HorizontalAlignment="Left"
 Margin="12,0,0,48" Name="label1" Height="28"
 VerticalAlignment="Bottom" />
 <TextBox Grid.Row="1" Margin="81,0,86,53" Name="textBox1" Height="23"
 VerticalAlignment="Bottom"
 Text="{Binding XPath=FirstName}" >
 </TextBox>
 <Label Content="Job Title:" Grid.Row="1" Height="28"
 HorizontalAlignment="Left" Margin="10,0,0,12" Name="label2"
 VerticalAlignment="Bottom" />
 <TextBox Grid.Row="1" Height="23" Margin="81,0,86,17" Name="textBox2"
 VerticalAlignment="Bottom"
 Text="{Binding XPath=JobTitle}"/>
 <ListBox Grid.Row="1" Height="100" Margin="0,99,0,0"
 Name="ListBox1" VerticalAlignment="Top"
 HorizontalAlignment="Right" Width="120"
 IsSynchronizedWithCurrentItem="True"
 ItemTemplate="{StaticResource PersonName}">
 <ListBox.ItemsSource>
 <Binding Source="{StaticResource People}"
 XPath="Person[*]"/>
 </ListBox.ItemsSource>
 </ListBox>
 <Label Content="Name List" Grid.Row="1" Height="28"
 HorizontalAlignment="Left" Margin="302,66,0,0" Name="Label3"
 VerticalAlignment="Top" />
 </Grid>
</Window>

Code snippet from MainWindow.xaml

The final highlighted section of code is for the data that will be shown in the ListBox. The list box itself is
relatively standard but it has two key bindings. The ItemTemplate is a property of the ListBox control that
enables you to apply a data template to the items that will be displayed. As noted earlier, this XAML defines a
data template that combines the FirstName and LastName data elements from the XML. For example, if your
application needed to place LastName first or change the separator to a comma instead of a space, you would

edit the data template. Having these changes encapsulated in a template enables you to make them in one place
and then apply them anywhere they are needed.

Finally, there is the binding for the source of items in the ListBox. Notice that in this case the control isn’t
defining a data source, but instead is binding to a source that will be used for the items that it contains. You’ll
probably recognize the People resource as the XML data source defined as one of the grid resources. The ListBox
has access to this resource as a child of the grid. The resource could also have been defined at the window or
application level and still be accessible by any of the controls on the grid. Within the binding to this data source is
the remaining XPath statement, which simply asks the grid to display all of the available Person items.

Without the data template this display would simply take each of those items and serialize the results into
the display. However, by applying the data template, what you see as a result are the names of each entry.
Note that you could add or reduce the amount of information provided by the data template to the ListBox
item display by changing the data template.

With the MainWindow updates in place, only one change remains. Up until now you have consistently seen
a default image in the ImageRotator based on the use of a default path. In fact, if you’ve mapped the first
entry in your copy of the XML data file to a folder that varies from this, you might be thinking that the
image data binding isn’t working. That’s because right now the ImageRotator.vb control’s Load event
loads a default path. This path interferes with the data binding from the XML file. Thus, in the final version
of the sample code, you’ll find that all of the lines within the Load event have been commented out as shown
here:

 Private Sub Grid1_Loaded(ByVal sender As System.Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Grid1.Loaded
 'm_curImagePath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyPictures)
 'RaiseEvent ImagePathChanged(Me, m_curImagePath)
 'SetValue(ImageProp, m_curImagePath)
 'LoadImages()
 End Sub

Code snippet from MainWindow.xaml

That’s it. At this point your design surface should
show an image associated with the first entry in your
People.xml data file. When you run the application,
you’ll see the screen shown in Figure 17-19. Not only
can you switch between entries, more important,
everything is editable. If you change the first name of
an entry and move to the Job Title field, you’ll see the
name updated within the list box.

Note that the code didn’t implement any persistence
for changes made on the screen that would require
additional code to take the XML and save it back
to the system. However, you have an example that
demonstrates how to create a data-bound set of
controls that are dependent on each other such that
an item selected from a list or grid becomes available
to controls that are completely unaware of that list
or grid.

You could continue to make several changes and
enhancements to this sample code. However, this
example focused on ensuring that you are exposed to
the power, and accordingly some of the complexity,
of data binding with WPF.

figure 17-19

Creating a WPf application ❘ 665

666 ❘ chaPTer 17 wPF dEsktoP aPPliCatioNs

summary
A good exercise moving forward with the demonstration code from this chapter is to combine this code with
one of the examples provided in Expression Blend. For example, the original version of Blend included a Photo
Book application which provided a XAML layer you could use in the Image control to provide a better UI feel
to that control. The Photo Book sample application includes an excellent user control, Photobook.xaml, that
encapsulates the page-turning effect. The challenge isn’t just to leverage a control but to enhance it, such as
extending the full Windows.Media.MediaPlayer control so that you could display not only saved images,
but also recordings.

This chapter focused on familiarizing you with WPF. WPF implements a new application development paradigm
for user interfaces. You can start designing and planning the next versions of your applications to use these new
controls. Keep in mind that this single chapter hasn’t covered all the new features you can potentially leverage
with WPF — that would require an entire book. Instead, you should now have an understanding of the base
principals of the WPF programming model and how it integrates with Visual Basic.

WPF is the user interface paradigm of the future for .NET developers. However, while the graphic support is
more powerful, certain elements of this model require you to handle more of what traditionally was thought of
as standard window behavior. It is hoped that this chapter has clarified several key concepts that you need to
know when working with WPF:

WPF-based applications leverage traditional programming languages such as Visual Basic. ➤

Creating the custom window behaviors, while sometimes required, is not especially difficult. ➤

Visual Basic is uniquely positioned with literal XML strings to dynamically generate and display ➤

XAML elements as part of your application.

Data binding in WPF is an extremely powerful concept that is used at multiple layers of the applica- ➤

tion interface to create many of the dynamic elements of the user interface.

The updates in Visual Studio 2010 make it possible for a developer to create visually compelling busi- ➤

ness applications with WPF.

This chapter focused on the WPF libraries within the context of building new applications. At this point you are
probably wondering about your existing applications. Unlike the early releases, unless you are tied to a production
environment capped at .NET 2.0, you should be working with WPF and Silverlight. The next chapter is going to
take you into Expression Blend and from there onto Silverlight. Expression Blend will still be the place to go to get
beyond the current capabilities for UI design in Visual Studio. Then there is Silverlight, the new XAML based UI
for cutting-edge Web hosted applications.

18
 expression Blend 3

 WhaT you Will learn in This chaPTer

 Getting to know Expression Blend ➤

 How to create a new project ➤

 Blend ’ s Toolbox and Assets tab ➤

 Objects and Timeline ➤

 Visual State Manager ➤

 How to use Resources ➤

 Getting started with SketchFlow ➤

 Documenting SketchFlow ➤

 While Visual Studio 2010 has introduced several new features for editing both WPF and
Silverlight applications, Microsoft has another very essential tool called Microsoft Expression
Blend. With Blend, Microsoft has introduced a more designer - friendly tool that enables designers
to be involved in the development process by editing the same Solution and Project fi les that
Visual Studio creates. While Blend is primarily targeted toward designers, this is not a tool that
developers should shy away from, because it will enable you to do much more than you could do
in just Visual Studio.

 Through the use of both Visual Studio 2010 and Expression Blend 3, you can create rich user experiences
that enable you to do more than just drop some text boxes on a form. Although everything you can do in
Blend you can do in Visual Studio by just editing your XAML, Blend simply offers a much better format
for editing complex concepts such as the following:

 Visual State Manager ➤

 Styling ➤

 Behaviors ➤

 With Blend 3, Microsoft also introduced a powerful feature called SketchFlow . With SketchFlow
you can build quick and powerful mock - ups of an application ’ s user interface with little or no
code. SketchFlow provides an informal look and feel that enables your users to see an interactive
design that is not as formal as a fi nalized application. We will show you some examples of this later

668 ❘ chaPTer 18 ExPREssioN BlENd 3

in the chapter. Unlike previous chapters, this chapter has very little code and focuses primarily on the
user interface.

geTTing To KnoW Blend
While Blend has many similarities with Visual Studio, it is not exactly the same application. The most
notable difference is that Blend uses a dark UI schema. The dark UI schema helps when designing many
applications because it seems to make the design pop against the darker background. As we go through the
UI of Blend, you will notice several other things that differ from Visual Studio besides the dark UI schema.
After working through this chapter, you should be comfortable enough with Blend that you know when to
use it versus when to use Visual Studio.

Since Blend is not included with Visual Studio, you will need to download it from www.microsoft.com/
Expression/try-it/default.aspx#PageTop -DCP.

creating a new Project
When you start Blend for the first time you are welcomed with a screen that has three tabs. The Projects
tab is shown in Figure 18-1; also included are a Help tab and a Samples tab, which you can use to jump to
several examples that come with Expression Blend 3.

figure 18-1

To create a new project, click New Project; the dialog shown in Figure 18-2 will appear.

This dialog gives you four project type options: two Silverlight project types and two WPF project
types. This chapter primarily covers creating a Silverlight 3 application in Expression Blend, so select
Silverlight 3 Application + Website. This has the exact same effect that it would if you were doing it in
Visual Studio; it will create both a Silverlight 3 application and an ASP.NET application in which to
host the Silverlight application.

After the application is created you will see several things you are accustomed to in Visual Studio, and many
new options. The following sections describe the various parts of the user interface.

Projects and solutions Tab
One of the greatest things about the integration between Blend
and Visual Studio is that both use the same project and solution
files, thus enabling both a designer and a developer to work in
the same project. If you aren’t working with a designer, you can
seamlessly switch between Visual Studio and Blend to edit the
same project files. In Visual Studio you can simply right-click a file
in your solution explorer and click Edit in Expression Blend. Or in
Expression Blend you can right-click a file and select Edit in Visual
Studio.

Just like Visual Studio, you have a Projects window; but by default
it is in the top-left corner, rather than the top-right corner in Visual
Studio. Figure 18-3 shows the default view of the Projects window
with a new Silverlight application loaded.

Blend’s Toolbox and the assets Tab
One of the first things you will want to do is add controls to your
design surface. Blend actually has two windows for finding controls. One is the Toolbox, which is very
similar to Visual Studio’s Toolbox except that it shows only one column of controls; these are the most
common controls. If you have ever used Adobe Photoshop it will remind you more of that application’s
Toolbox than the one in Visual Studio. The other way to access controls is via the Assets window, which

figure 18-2

figure 18-3

Getting to Know Blend ❘ 669

670 ❘ chaPTer 18 ExPREssioN BlENd 3

shows controls by category and enables you to search by control
name. This search feature is tremendously useful when you have
large projects with hundreds of user controls and you want to find
one quickly. Figure 18-4 shows both the Toolbox and the Assets
window.

Design surface
Visual Studio and Expression Blend also share a similar design
surface. The design surface is the area onto which you can drag
your controls. For example, you can drag a Button control onto
the design surface from the Toolbox or the Assets window. Just as
in Visual Studio, you can drag any control to any location on the
layout.

Before delving too deeply into the design surface, drag a few
controls onto it. For this example, you’ll build a simple login
screen by dragging two TextBlocks, a TextBox, a PasswordBox,
and a Button onto the design surface. Position your controls as
shown in Figure 18-5.

figure 18-5

figure 18-4

Three buttons in the top-right corner of the design surface are very similar to the design surface in Visual
Studio, and enable you to select the view of the design surface. The top button is the Design button, and
when this button is selected it will show the visual design of your control. The next button is the XAML
view, and when this button is selected it will show the XAML view of the control. The last button is the
Split view, which shows both the Design view and the XAML view. This is the default view in Visual Studio.

In the bottom-left corner of the design surface are a few buttons that enable you to adjust the view and how
the design surface reacts. The first button, and one of the most useful, is the Zoom button. Unlike the zoom
in Visual Studio, you can actually use your mouse wheel to zoom in on and out of a control. This is very
helpful when you are laying out a lot of controls and fine-tuning their placement.

The next button on the bottom is the fx button, which will turn off any effects you have applied to any
controls. You will sometimes find this necessary when you have a large number of controls that have
different effects applied and you want to return to the raw design.

The next three buttons on the bottom all relate to the gridline placement options. The first button will make
the gridlines visible or hidden — previously, in Visual Studio you had to use the Options menu to turn this
feature on and off. The next button enables you to turn on gridline snapping. This is great if you want most
items to be consistently spaced or similarly aligned.

The design surface also has a number of visual cues that indicate when controls are placed in alignment with
each other or are spaced as desired. This is great for creating controls of the same height or horizontally
aligning them. These suggestions are very subtle, and most you will not notice until you drag a control
around; and most of them you will use without even realizing.
Microsoft has outdone itself in making Blend the ideal layout tool
for both WPF and Silverlight.

The last button on the bottom will hide and show annotations that
are placed on your controls. Annotations are covered in more detail
later in this chapter.

objects and Timeline
One of the greatest things about Blend is the Objects and Timeline
window. This window provides you with a visual insight into
the hierarchy of your XAML, as well as giving you insight into the
animation timeline. Figure 18-6 shows a basic hierarchy of the login
control you created earlier.

While this login control is very simple, the information provided
here offers some great insight into what is going on in the XAML.
Here is the XAML for the same control:

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="ProVB_ExpressionBlend.MainPage"
 Width="640" Height="480">
 <Grid x:Name="LayoutRoot" Background="White">

 <TextBlock HorizontalAlignment="Left" VerticalAlignment="Top" Text="User Name:"
TextWrapping="Wrap" Margin="130,85,0,0"/>
 <TextBlock HorizontalAlignment="Left" Margin="130,119,0,0" VerticalAlignment="Top"
Text="Password:" TextWrapping="Wrap"/>
 <TextBox VerticalAlignment="Top" TextWrapping="Wrap" Margin="204,83,260,0"/>
 <PasswordBox VerticalAlignment="Top" Margin="204,111,260,0"/>
 <Button VerticalAlignment="Top" Content="Login" Margin="236,141,0,0"
HorizontalAlignment="Left" Width="75"/>
 </Grid>
</UserControl>

Code snippet from MainPage.xaml

Although it is important to dig into the XAML and truly understand it, sometimes you just need a visual
representation of a control’s hierarchy. This is what the Objects and Timeline window provides.

figure 18-6

Getting to Know Blend ❘ 671

672 ❘ chaPTer 18 ExPREssioN BlENd 3

Sometimes when designing a complex control you need to hide or show controls just at design time, perhaps
because you have several controls or graphics overlapping and need to get to one of the controls in the
background. The Objects and Timeline window enables you to hide controls by clicking the eye icon
to the right of the controls. When you change a control to be hidden at design time, Blend will add the
following as a parameter to the actual XAML of the control:

d:IsHidden="True"

While this does change your XAML, it does not change the runtime experience of the control. Therefore, if
you have the control hidden at design time but have the Visibility set to visible, the control will still show
when you run the application. This can be confusing because this setting is not a runtime setting.

Next to the eye icon you will see a little circle with which you can lock the position of the control. This is
great when you have a number of controls you may want to move at once while keeping one in place, or you
want to avoid accidently moving the control.

The other main feature of the Objects and Timeline window is, you guessed it, the timeline. This is where
you can add storyboard animations to your control by adding key frames for placement. You can see an
example blank storyboard in Figure 18-7.

figure 18-7

While the timeline feature opens a whole other world for the designer, it is a world that many developers
will shy away from. It is also a complex topic requiring a complete book of its own, so we will not dive any
deeper into this feature.

states
The next window in the top left is the States window. This window
provides two major functions: the capability to edit the state of an
existing control and the capability to add custom states to your own
controls. Later in this chapter we will go into much more detail about
editing states and customizing states. For example, Figure 18-8 shows
some of the basic visual states when editing a button.

While all the controls that ship with Silverlight have basic states, such
as MouseOver and Disabled, some have more complex states, such
as Invalid and Valid, which interact with the validation features of
Silverlight. Later in this chapter you will learn how to both customize
existing controls and create your own controls. figure 18-8

In the States window you can also customize the transition between states. By adjusting both time and the
easing function between states, you can provide rich flowing animations without the need for storyboards.
In addition, this window will save you a lot of time learning the XAML to do these animations.

Properties
As with many of the other windows, you will find the Properties window
to be almost identical to the functionality provided by the Properties
window in Visual Studio. While this window is very similar, it also gives
you greater insight into what is actually going on in your XAML than
Visual Studio does. Figure 18-9 shows the properties for a button.

Just as in Visual Studio, a search box at the top of the dialog enables
you to quickly find a property by typing its name. Then you have the
properties grouped by category below the search. Note that Blend gives
you much finer control of the appearance-related properties than Visual
Studio provides.

The other thing you may notice is a small square box to the right of every
property. This small box looks insignificant at first, but it offers a lot of
insight into your XAML. It also enables you to do some significant tasks
without having to dive too deeply into editing your XAML. By clicking
this box you can specify whether this property is data bound or associated
with a resource or just a plain old local value.

This box will also change colors based on what has been applied to the
property. If the box is white, that simply means that the property has a
local value applied to it. If is green, then a resource has been applied to
it. Finally, if it is yellow, then the property has been data bound. If you
click on the box when it is a color, you have the option to reset the value,
which will completely remove the setting in your XAML. This is useful
for keeping your XAML really clean. In Blend, you will find that it’s very
easy to reset properties of controls without even knowing it when trying to
get them placed exactly where you want. Once you have finished working
with a control or a set of controls, it isn’t a bad idea to look them over to
see if these boxes have changed colors because you can quickly see what
has changed and to what.

resources
The Resources window is one of the simplest windows and it can provide you with insight about many things,
such as the static resources in your application or your control. Resources are most commonly used like
Cascading Style Sheets in an ASP.NET application for setting common design properties. From the Resources
window you can edit these values easily without having to switch to your app.xaml file to find a property.

Using the Resources window, you can also manage and create new resource dictionaries. This is ideal for
large projects for which you may want to organize your resources into
individual resource dictionaries so that you can share them, or to simplify
finding them later.

Data
The Data window is a great tool for creating things like sample data for
SketchFlow mock-ups or to organize XML and object data sets. If you
click the first button on the right of the Data screen it will ask you if
you want to create a sample data set. Figure 18-10 shows what you will
see when you create a sample data set.

figure 18-9

figure 18-10

Getting to Know Blend ❘ 673

674 ❘ chaPTer 18 ExPREssioN BlENd 3

sKeTchfloW
One of the most important innovations introduced by Microsoft with Blend 3 is SketchFlow. With
SketchFlow you can create detailed prototypes of an application, website, or nearly anything that
needs to be visualized on a computer screen. This capability to rapidly prototype user interfaces enables
you to communicate with your customers or users before investing a large amount of time implementing
a design.

The name SketchFlow comes from the informal look of the prototype, which resembles a manually
drawn sketch. This hand-drawn look helps convey to your customer the idea that it is a prototype and
not a finished product. This informal approach helps cut the cost of developing working designs in
other applications.

While communicating to a customer is just a small piece of the puzzle when initially designing an application,
there is a greater need for the customer to relay changes back to the developers and the designer. Using
the SketchFlow Player, the end user can add comments and make drawings right on top of the working
prototype, exporting this feedback and e-mailing it to the developer or the designer, who can then import it
directly into Blend. This feedback is then overlaid directly onto the design surface of the controls they made
comments on.

One of the other great things about a SketchFlow application is that you can create rich documentation
of your controls by simply exporting it to Word. This enables you to use the content of your SketchFlow
application and layout in a professional manner, such as for a presentation, a proposal, or a sales contract.

With rich interactivity, SketchFlow takes you beyond just writing a few wireframes on a napkin. It provides
a robust application that demonstrates everything from sample data to animations — and all this is done
through a Silverlight or WPF application.

your first sketchflow
In this section, you’ll start using Blend by creating a new Silverlight 3
SketchFlow application. You will quickly find that this is simply a
Silverlight application with a few extras, including SketchFlow Map
and SketchFlow Animations. As shown in Figure 18-11, the application
also includes Sketch.Flow and SketchStyles.xaml files.

sketchflow Map
The best place to start when beginning a SketchFlow application is
the SketchFlow Map window, shown in Figure 18-12. This window
enables you to create various screens and components that you
may use in your application. As you create these screens, Blend will
actually create physical user controls in your SketchFlow
application. In this example we have mapped out a simple
sales dashboard.

This SketchFlow is very similar to a site map or an
application flow diagram. From the map, you can click
a control to be taken directly to that control in your
project.

Using SketchFlow Map, you can also add component
screens, which can be used for things like navigation or
other common controls such as a header. If you have a
component screen, you can simply drag the component
screen to connect to another screen and Blend will place figure 18-12

figure 18-11

that control in the top-left corner of the window. This is really powerful when quickly mocking up a large
number of controls and their relationships.

adding sketch Controls
Now that you have controls created, you will want to place something on them. Instead of dragging
controls from the Toolbox onto the design surface, go to the Assets window. In the Assets window you
will see a category Styles, which has a SketchStyles subcategory under it. This subcategory contains all the
hand-drawn styled controls as shown in Figure 18-13.

Put the following controls on the login screen by dragging them to the design surface: two TextBlock-Sketchs,
one Button-Sketch, one TextBox-Sketch, and a PasswordBox-Sketch. When you are done, instead of
having the traditional-looking text boxes and controls, you have controls that look hand drawn, as shown in
Figure 18-14.

figure 18-13 figure 18-14

This simple method of creating an informal look for a prototype helps to keep your customers from
getting too concerned about the application’s actual look and feel, and instead focus on its functionality.
Providing customers with an informal prototype enables you to deliver a final product that offers both a
rich experience and correct functionality, rather than initially focusing on, for example, the color of
a button.

SketchFlow provides you with 33 controls that have the SketchFlow style applied to them. Many of
them you will recognize as standard controls, including items such as ListBox, TabControl, and others;
but you will also notice a few controls that are not in the standard control set. One such control is the
Note-Sketch, which provides a Post-it-style note that you can place on a control. This control is useful
for describing some functionality in an unfinished screen in your prototype, or for relaying notes to your
customer for a specific screen. Many of the other controls are just specialized styles of controls, such as the
TitleCenter-Sketch, which is just a styled version of the TextBlock that is centered and a little larger
than the standard TextBlock.

adding simple Behaviors to navigate
One of the main goals in SketchFlow is to create a prototype with no code, and one of the ways you do this
is through behaviors. Behaviors offer you a number of out-of-the-box actions you can apply to any object.
The behaviors that are included with SketchFlow are shown in Table 18-1.

sketchflow ❘ 675

676 ❘ chaPTer 18 ExPREssioN BlENd 3

Clearly, you can choose from a wide variety of behaviors
to create a very interactive prototype; and if these don’t
completely suit your needs, you can also develop your own
simply by clicking File ➪ New Item ➪ Behavior. A large
number of behaviors are also available on CodePlex at
http://expressionblend.codeplex.com.

The easiest way to add navigation is simply by right-clicking
the Login button you created and selecting Navigate To ➪
Sales Dashboard. This will create a NavigateToScreenAction
behavior for your button, as shown in Figure 18-15.

sketchflow Player
So far, you have only seen half of the SketchFlow prototyping
tool; the second half is the actual SketchFlow Player. This player
does much more than just play back your SketchFlow: It also allows user feedback that can be directly
layered over the design surface in Expression Blend. This powerful form of communication enables your
users to interact with the design process in a way they have never been able to with previous Microsoft
products.

To view the SketchFlow Player, simply press F5 just as you would in Visual Studio to run an application.
Once it is running, it will bring up your web browser. SketchFlow Player is shown in Figure 18-16.

The SketchFlow Player UI is very minimal so that your users can understand it without much training,
and they can focus on your prototype. With a SketchFlow prototype, users can interact with it just as if it
were a real application. Things like buttons work based on the behaviors you applied in Blend, and other
controls such as list boxes and text boxes give the appearance of actually working. As mentioned earlier, the
prototype’s informal look and feel helps users to focus on the functionality and the user experience.

figure 18-15

TaBle 18-1: SketchFlow Behaviors

BehaVior descriPTion

ActivateStateAction Activates a specific state for the active screen or a specific control
on the current screen

ChangePropertyAction Changes a property of a specific control and can optionally
animate the change with an easing function

ControlStoryboardAction Performs basic actions such as play, stop, and pause on a
storyboard

FluidMoveBehavior Animates the change of an object’s properties inside a panel

GoToStateAction Applies a specific state to the current control

HyperlinkAction A simple navigation behavior for changing the URI of the browser

MouseDragElementBehavior Allows an object to be moved by the mouse

NavigateForwardAction Acts much like the forward button on the browser to move forward
in your SketchFlow

NavigateToScreenAction Navigates to a specific screen

NavigateBackAction Acts like the Back button would in the browser but within your
SketchFlow screens

PlaySketchFlowAnimationAction Plays a SketchFlow Animation

PlaySoundAction Plays a specified sound

RemoveElementAction Removes an element from your control

User feedback
Recall that the SketchFlow Player enables users to give you rich feedback by two methods. The first method
is simply by typing in a message in the left panel under the Feedback tab. The other method is by actually
drawing on the design surface, as shown in Figure 18-17.

figure 18-16

figure 18-17

After users have entered this type of feedback, they can simply click the folder icon under the Feedback
tab and select Export Feedback. This will create a feedback file that users can e-mail to you for your use
in Blend. Once you have the feedback file, you can pull it into Blend by going to the Feedback window.

sketchflow ❘ 677

678 ❘ chaPTer 18 ExPREssioN BlENd 3

You can show the Feedback window by clicking
Window ➪ Feedback. Once the window appears,
click the plus icon to import your feedback file. This
will overlay the user’s feedback directly over the
design of the control, as well as put their comments
in the Feedback window. When working on a large
SketchFlow for which a user may have commented
on several screens, you will see a lightbulb icon
just above any screen that contains feedback in the
SketchFlow Map, as shown in Figure 18-18.

documenting your sketchflow
At this point, you have seen the interactive portion of the SketchFlow Player, but there is also a very rich
documentation feature that enables you to put annotations directly into your control. While annotations
have always been a great way to make comments in your application, they have typically been used for
communicating with other developers or your designer. With SketchFlow you can use this for actual
documentation through the Word Export feature. Combining both of these features provides an ideal
solution for tasks such as proposal requirements or specification documentation.

annotations
Creating annotations is fairly simple. From any screen you can simply select Tools ➪ Create Annotation.
This will give you a nice little yellow box into which you can type your annotation. Once you have created
a few annotations you can run your SketchFlow prototype again. You will notice that the annotation does
not show by default. To show the annotations, simply click the icon to the left of the Export Feedback
button. This is a great place to communicate the functionality of a screen that doesn’t interact with the
screen. For example, if you wanted to describe the screen’s function for later documentation, place that in
an annotation.

exporting to Word
Once you have created a SketchFlow prototype, documented it by using annotations, and received feedback
from your users, you may want to actually put it to paper. Blend has made this very easy to do: Select File
➪ Export To Word. This will create a very rich documentation of your SketchFlow prototype that you could
include in a proposal or other documentation.

summary
This chapter has demonstrated how to leverage Expression Blend 3 to create richer user experiences.
Along the way, you have also seen the similarities and differences between Blend and Visual Studio. While
Microsoft has designed Blend to be optimized for the designer, this is not a tool that developers should shy
away from. Many users have become accustomed to more advanced and richer user experiences than what
was really capable in previous versions of .NET. With the advent of both WPF and Silverlight, Microsoft
has opened the door to creating applications that engage the user as never before, and the optimal tool for
designing the interfaces of these applications is Blend.

Blend is also a great tool for quickly creating prototypes with zero code. This enables both developers and
designers to focus on the business requirements, rather than interactive technologies to produce a costly,
showy prototype.

figure 18-18

19
 silverlight

 WhaT you Will learn in This chaPTer

 General Silverlight Overview ➤

 Silverlight Media Features ➤

 Starting a Silverlight Project ➤

 Silverlight Navigation Application ➤

 Silverlight Class Library ➤

 What makes up a Silverlight Solution ➤

 How to use layout controls ➤

 Using Silverlight out of the browser ➤

 Rich internet application (RIA) is growing at a fast pace with new technologies coming out every day.
Many of these technologies begin to widen the gap between the traditional application developer and
Web developers. At the same time, Web development continues to be a conglomerate of many different
technologies, including things like CSS, JavaScript, PHP, Flash, Action Scripting, and a dozen other
languages and technologies. Silverlight was introduced by Microsoft so that .NET developers could
leverage their existing skill set. By leveraging the skills you have already learned in this book, you can
create complex applications without all the various Web technologies.

 This chapter takes a comprehensive look at Silverlight and its similarities to WPF. Many of the things
you learned in Chapter 17 about layout and design will also apply to this chapter.

 WhaT is silVerlighT?
 Microsoft introduced Silverlight in September 2007 as a rich media plug - in alternative to other platforms
like Flash, but Silverlight has quickly matured to a powerful rich internet application platform. Silverlight 3,
introduced in July 2009, enables .NET developers to create powerful line-of-business (LOB) applications
that can be distributed on the Web. This cross - browser and cross - platform plug - in enables you to develop
Web applications that are completely built in .NET for both the server - side and client - side code.

 This unifi ed experience across multiple platforms enables you, as a developer, to focus on the needs of your
user, rather than why your JavaScript won ’ t run in Firefox but will run in Internet Explorer. For most Web
developers, the frustration of many loosely coupled technologies can create more support than it is worth;
for most developers this frustration leads to creating simpler applications. While many things in ASP.NET
have helped simplify this concern, it still lacks the rich design capabilities that Silverlight can offer.

680 ❘ chaPTer 19 silVERliGHt

Microsoft has also created a rich media experience in Silverlight that includes things like true HD video as well
as digital rights management (DRM) for protecting media. This chapter primarily focuses on the development
environment of Silverlight, but it is important to be familiar with some of the rich media features.

smooth streaming
One of the most common problems when delivering HD video across the Web is the varying access speeds
of users. We have all seen the results of this when watching various online videos; while you are watching,
suddenly the video decides to buffer. This is why Microsoft has added the Smooth Streaming feature to
Silverlight; it enables a much smoother user experience. With Smooth Streaming, instead of buffering,
the video quality is briefly lowered until the buffer can catch up. As a result, most users won’t notice the
lower video quality because it is both minimal and short.

industry standard Video
With the introduction of true high-definition video into Silverlight, Microsoft has also introduced many
industry standard formats, as well as the capability to create your own. The provided formats include the
very popular H.264, which is what popular sites like YouTube have begun to use.

Because Silverlight enables you to use your own custom codecs, you can create streaming media with
proprietary media files. This is actually what NetFlix uses to deliver their streaming movies.

digital rights management
When creating an application in which you deliver copyrighted video and audio, it is always necessary to protect that
data. This is where digital rights management (DRM) comes into play — by providing a way to secure that content
from anyone trying to convert it to a format that they can then copy. Silverlight provides this protection through
several different methods, including PlayReady, Windows Media DRM 10, or third-party DRM extensibility.

sTarTing a silVerlighT ProJecT
Now that you have seen some of the benefits of Silverlight and what it has to offer on the media side, let’s
dive into some Silverlight development. Silverlight is much more than a Flash alternative; it is one of the best
platforms for delivering line-of-business (LOB) applications.

When creating a Silverlight application, you are presented with three options: Silverlight Application,
Silverlight Navigation Application, and Silverlight Class Library, as shown in Figure 19-1.

figure 19-1

silverlight application
The Silverlight Application project is a baseline application
that serves as a very common starting point for most
developers. When you create a Silverlight Application
solution, it will create both an ASP.NET application that
will host the Silverlight application and the actual Silverlight
application, as shown in Figure 19-2.

The Silverlight application contains an App.xaml file, which
is covered in greater detail later in the chapter, and the
MainPage.xaml file, which is the first control that loads. This
would be similar to your main form in a Windows application
and what is shown in your edit window after creating the
project. Much like Windows development, you can simply
copy controls from the Toolbox to the design surface.

Unlike the Silverlight Navigation application, the Silverlight
application does not support deep linking right out-of-the-box. It is therefore ideal when you don’t need
your users to bookmark sections of your app like they would in a Web application.

silverlight navigation application
When working with Web applications, we have all become accustomed to
doing things like bookmarking or forwarding links to friends. Silverlight 3
features a built-in navigation framework that enables users to create deep
linking, such as www.mywebsite.com/default.aspx#/Home. When
you create a navigation framework application, you will see the page
highlighted in Figure 19-3 in your solution folder.

The MainPage.xaml in this project is actually a container control
for Silverlight pages. A Silverlight page is simply a variation of the
UserControl but runs in the navigation frame. You can also see that
the project contains a Views folder that contains a Home.xaml and an
About.xaml. These are similar to your pages in an ASP.NET application.

The navigation framework relies on a control called a Frame. This
frame is similar to the frameset in HTML, but unlike framesets you can
define various ways of mapping content to them through the UriMapper.
The navigation frame that is created with the Navigation Application’s
XAML looks like this:

<navigation:Frame x:Name=”ContentFrame” Style=”{StaticResource ContentFrameStyle}”
 Source=”/Home”
Navigated=”ContentFrame_Navigated” NavigationFailed=”ContentFrame_NavigationFailed”>
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri=”” MappedUri=”/Views/Home.xaml”/>
 <uriMapper:UriMapping Uri=”/{pageName}”
 MappedUri=”/Views/{pageName}.xaml”/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
 </navigation:Frame>

Code snippet from MainPage.xaml

As you can see, there are two defined mappings: one for when no URI is mapped and one for when someone
specifies a page like default.aspx#/About, in which case it will load the About.xaml page in the Views
folder. Later in this chapter, you will learn more about how to add pages and see what their code actually
looks like.

figure 19-3

figure 19-2

starting a silverlight Project ❘ 681

682 ❘ chaPTer 19 silVERliGHt

silverlight class library
The Silverlight Class Library template provides a way to consolidate various items into their own assembly. This
is exactly the same as adding a Class Library to a Windows Forms Application project, but Visual Studio knows
to target a Silverlight application. This is important because Silverlight runs a subset of the .NET Framework.

silVerlighT soluTion
While we have described the various types of solutions you can create in Silverlight, there are many common
items between the Silverlight Application solution and the Silverlight Navigation Application solution. This
section covers their commonality, including the common files in a Silverlight application. Both solution
types have similar structures containing a Web Application and a Silverlight Application.

Web application
The Web application that is created is simply an ASP.NET application with a page to host your Silverlight
controls. It also contains a Silverlight.js file that contains the JavaScript that helps assist users if they
do not have Silverlight installed. It also creates a <project name>TestPage.aspx file and a <project
name>TestPage.html file, both of which serve the same purpose of displaying the Silverlight application
but give you two different ways of doing it. The only difference is that one is an ASP.NET page and the
other is an HTML page.

The ClientBin folder and .xap file
Also in your Web project is a ClientBin folder. When you compile your Silverlight application, this is where
it is actually placed. When a Silverlight application is compiled, it creates a .xap file — a compressed file
that contains your Silverlight application. You can change the .xap extension to .zip to view its contents in
Windows Explorer.

application library caching
Now that you have seen where Visual Studio stores the compiled version of your Silverlight application,
let’s look at one way to optimize what it stores in that folder. As you build larger applications that contain
references to third-Party controls and other assemblies, you may find that your .xap file’s size has grown
very large. If you know that several assemblies or libraries it contains will not change, you might like to just
cache the individual assemblies but update others. You can do this with application library caching.

To enable application library caching, simply right-click on the Silverlight project and select Properties. This
will bring up the Silverlight build options shown in Figure 19-4.

figure 19-4

 Simply check the “ Reduce XAP size by using application library caching ” fi eld. Now when you compile the
Navigation example, it will create three fi les in your ClientBin folder: the .xap for your application, and
two zip fi les that contain the additional assemblies so they can be cached on the client side.

 If you are developing an application that will use the “ Enable running application out
of the browser ” option, you will not be able to use application library caching.

 silverlight application
 The Silverlight project contains all your client - side logic that makes up the Silverlight application. This
section describes several fi les you should be familiar with and why they are there.

 app.xaml
 Much like a Windows Forms application, you have a starting point for the application, which is contained
in the App.xaml fi le. This fi le also contains the logic for unhandled exceptions. Here is the App.xaml code:

Partial Public Class App
 Inherits Application

 Public Sub New()
 InitializeComponent()
 End Sub

 Private Sub Application_Startup(ByVal o As Object, ByVal e As StartupEventArgs)
 Handles Me.Startup
 Me.RootVisual = New MainPage()
 End Sub

 Private Sub Application_UnhandledException(ByVal sender As Object,
 ByVal e As ApplicationUnhandledExceptionEventArgs)
 Handles Me.UnhandledException

' If the app is running outside of the debugger then report the exception using
' the browser's exception mechanism. On IE this will display it a yellow alert
' icon in the status bar and Firefox will display a script error.
 If Not System.Diagnostics.Debugger.IsAttached Then

' NOTE: This will allow the application to continue running after an exception has been thrown
 ' but not handled.
' For production applications this error handling should be replaced with something that will
 ' report the error to the website and stop the application.
 e.Handled = True
 Dim errorWindow As ChildWindow = New ErrorWindow(e.ExceptionObject)
 errorWindow.Show()
 End If
 End Sub

End Class

 Code snippet from App.xaml.vb

 As you can see, the Application_Startup event is fi rst called when your Silverlight Application is loaded.
The StartupEventArgs property can have parameters passed from the ASP.NET or HTML page if needed.
Then, it uses the me.RootVisual property to tell the Silverlight runtime what control to show.

 Using the Application_UnhandledException function, you can add global error handling for your
application. This is the optimal place for putting logging logic for unhandled exceptions.

silverlight solution ❘ 683

684 ❘ chaPTer 19 silVERliGHt

MainPage.xaml
Now that you have an understanding of how the application starts, this section looks at what it will use to
display. By default, it will be a UserControl that is set to the RootVisual in the app.xaml. A user control
consists of two files: a .xaml file containing the layout information and a .vb file containing the class
associated with the UI. Here is the sample MainPage.xaml from the Navigation application:

<UserControl
 x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:navigation="clr-namespace:System.Windows.Controls;assembly=System.Windows
.Controls.Navigation"
 xmlns:uriMapper="clr-namespace:System.Windows.Navigation;assembly=System.Windows
.Controls.Navigation"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:
mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

 <Grid x:Name="LayoutRoot" Style="{StaticResource LayoutRootGridStyle}">

 <Border x:Name="ContentBorder" Style="{StaticResource ContentBorderStyle}">

 <navigation:Frame x:Name="ContentFrame"
 Style="{StaticResource ContentFrameStyle}"
 Source="/Home"
Navigated="ContentFrame_Navigated" NavigationFailed="ContentFrame_NavigationFailed">
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri="" MappedUri="/Views/Home.xaml"/>
 <uriMapper:UriMapping Uri="/{pageName}"
 MappedUri="/Views/{pageName}.xaml"/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
 </navigation:Frame>
 </Border>

 <Grid x:Name="NavigationGrid" Style="{StaticResource NavigationGridStyle}">

 <Border x:Name="BrandingBorder" Style="{StaticResource BrandingBorderStyle}">
 <StackPanel x:Name="BrandingStackPanel"
 Style="{StaticResource BrandingStackPanelStyle}">

 <ContentControl Style="{StaticResource LogoIcon}"/>
 <TextBlock x:Name="ApplicationNameTextBlock"
 Style="{StaticResource ApplicationNameStyle}"
 Text="Application Name"/>

 </StackPanel>
 </Border>

 <Border x:Name="LinksBorder" Style="{StaticResource LinksBorderStyle}">
 <StackPanel x:Name="LinksStackPanel"
 Style="{StaticResource LinksStackPanelStyle}">

 <HyperlinkButton x:Name="Link1" Style="{StaticResource LinkStyle}"
 NavigateUri="/Home"
 TargetName="ContentFrame" Content="home"/>

 <Rectangle x:Name="Divider1" Style="{StaticResource DividerStyle}"/>

 <HyperlinkButton x:Name="Link2" Style="{StaticResource LinkStyle}"
 NavigateUri="/About"

 TargetName="ContentFrame" Content="about"/>

 </StackPanel>
 </Border>

 </Grid>

 </Grid>

</UserControl>

Code snippet from MainPage.xaml

The code-behind file is as follows:

Imports System.Windows.Navigation

Partial Public Class MainPage
 Inherits UserControl

 Public Sub New()
 InitializeComponent()
 End Sub

 Private Sub ContentFrame_Navigated(ByVal sender As Object,
 ByVal e As NavigationEventArgs) Handles ContentFrame.Navigated
 For Each child As UIElement In LinksStackPanel.Children
 Dim hb As HyperlinkButton = TryCast(child, HyperlinkButton)
 If hb IsNot Nothing AndAlso hb.NavigateUri IsNot Nothing Then
 If hb.NavigateUri = e.Uri Then
 VisualStateManager.GoToState(hb, "ActiveLink", True)
 Else
 VisualStateManager.GoToState(hb, "InactiveLink", True)
 End If
 End If
 Next
 End Sub

 Private Sub ContentFrame_NavigationFailed(ByVal sender As Object,
 ByVal e As NavigationFailedEventArgs) Handles ContentFrame.NavigationFailed
 e.Handled = True
 Dim errorWindow As ChildWindow = New ErrorWindow(e.Uri)
 errorWindow.Show()
 End Sub
End Class

Code snippet from MainPage.xaml.vb

You probably noticed that this is very similar to what you learned about WPF. The general idea is the same. You
can add controls to the XAML and then modify the code for the control. This separation of UI and code helps
create a simple architecture for managing the application design. This separation is very useful when using both
Visual Studio and Microsoft Expression Blend.

conTrols
Just as in Windows forms development, Silverlight offers a large collection of controls that give you a lot
of options for developing rich interfaces. In addition, you will find Silverlight development to be almost
identical to WPF development, as both user interfaces use XAML as the layout method.

Controls ❘ 685

686 ❘ chaPTer 19 silVERliGHt

layout management
When developing Silverlight applications, you are given a few different options for placing controls on the
primary design surface: Grid, StackPanel, Canvas, ScrollViewer and Border. Each one of these layouts
has its own set of features that reflect when to use it; and you are not limited to just one type of layout
control because you can actually nest them inside of each other to create a variety of layout options.

Grid
By default, when creating any Silverlight control, you will have a Grid as your root layout control. The Grid
control gives you the most flexibility, supporting options like rows and columns. If you are familiar with HTML
tables, you will feel pretty comfortable with this option. The Grid control enables you to define rows and columns
using the Grid.RowDefinitions and Grid.ColumnDefinitions properties. In the row definitions, you can set
two primary options, Height and MinHeight, but most of the time you will just set the Height. Similarly, you
have the option to set the Width and MinWidth properties in the ColumnDefinitions. The following example
sets a grid with four rows that are 50 pixels high, along with four columns that are 100 pixels wide:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

Figure 19-5 shows what you would see on your design surface.

figure 19-5

Here is where the Silverlight grid begins to differ from the HTML grid, as you do not have to place controls
inside of something, such as the <td> in the XAML; you merely have to set the properties of Grid.Column
and Grid.Row on your controls. So, for example, if you wanted to place a button on the second row and
third column, you would set it like this:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
 <Button Content="Button" Grid.Column="2" Grid.Row="1" />
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

Here, the Grid.Column and Grid.Row are a zero-based index. In addition to just setting the position of
your button this way, the layout manager will have your button fill the designated cell of the grid. Your
button should look like the one shown in Figure 19-6.

figure 19-6

Two other control placement options are the Grid.ColumnSpan and Grid.RowSpan properties. These can
be used to have controls span multiple columns or rows, respectively. For example, you could set the button
in the preceding example to be defined like this:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Controls ❘ 687

688 ❘ chaPTer 19 silVERliGHt

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>
<Button Content="Button" Grid.Column="2" Grid.Row="1"
 Grid.ColumnSpan="2" Grid.RowSpan="2" />
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

The Grid control also offers proportional sizing, so you can size the grid’s rows and columns proportionally.
To enable proportional sizing, you simply set the Height or Width to a value like 2*, which specifies that a
given column should be twice the size of the other columns that are set to 1*. For example, you could define
your grid’s rows and columns like this:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="1*" />
 <RowDefinition Height="1*" />
 <RowDefinition Height="2*" />
 <RowDefinition Height="2*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*" />
 <ColumnDefinition Width="2*" />
 <ColumnDefinition Width="2*" />
 <ColumnDefinition Width="1*" />
 </Grid.ColumnDefinitions>
 <Button Content="Button" Grid.Column="2" Grid.Row="1"
 Grid.ColumnSpan="2" Grid.RowSpan="2" />
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

The preceding code would result in a layout that looks something like what is shown in Figure 19-7.

As you can see, there is a lot of power in the Grid control; but it is not just limited to a column and row
structure. One thing that the Grid control can offer that none of the other layout controls can offer is
anchoring. As you saw in Chapter 15, anchoring is extremely useful for placing controls on user controls
that may be resized. For example, if you wanted to place a button in the center of the grid, you would define
it like this:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Button Content="Button" Width="100" Height="30" HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

Once you have the button centered, you can set the HorizontalAlignment option to Center, Left, Right,
or Stretch; and you can set the VerticalAlignment option to Center, Top, Bottom, or Stretch. This will
place your button in relation to the Grid control. This is great for placing the control in the bottom-right
corner, but sometimes you may not want it directly on the bottom and all the way to the right. This is where
margins come into play. For example, if you want to place the button in the bottom-right corner and offset
it by 12 pixels from the bottom and the right, you would define it like this:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">

figure 19-7

Controls ❘ 689

690 ❘ chaPTer 19 silVERliGHt

 <Button Content="Button" Width="100" Height="30"
 HorizontalAlignment="Right" VerticalAlignment="Bottom" Margin="0,0,12,12" />
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

From what you have seen of the Grid control’s capabilities, it should be clear that it will fit most situations.
However, although it is probably the most commonly used layout control, it is not the only one and it does
not fit every situation.

stackPanel
One frequently overlooked aspect of the Grid is that it does not offer an optimized way to place controls
that actually stack. The StackPanel control is most often used when you want to arrange items next to
each other or on top of each other in a row or column manner. Unlike the Grid, the StackPanel does not
have to have the rows and columns defined; it simply needs its Orientation value set. The Orientation
value can be set to either Horizontal or Vertical.

You might use the StackPanel to define elements such as a menu on which you would place several buttons,
as shown in this example:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <StackPanel x:Name="LayoutRoot" Background="White">
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 </StackPanel>
</UserControl>

Code snippet from SilverlightControl1.xaml

This will create a stack panel for which the menu items are stacked on top of each other. Alternatively, you
could have the menu items stack beside one another by setting the Orientation property as shown in this
example:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <StackPanel x:Name="LayoutRoot" Background="White" Orientation="Horizontal">
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5"/>
 </StackPanel>
</UserControl>

Code snippet from SilverlightControl1.xaml

This will place the menu items side-by-side.

As you have seen, this simple control is very powerful for various layout options; and it is used as the layout
method for things like list views and combo boxes.

Canvas
The Canvas control is very basic compared to the previous layout controls. It enables you to place controls
by defining coordinates relative to the parent control, as shown in the following example:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Canvas x:Name="LayoutRoot" Background="White" >
 <Button Content="Menu Item 1" Width="100" Height="30" Canvas.Left="100"
 Canvas.Top="200" />
 <Button Content="Menu Item 2" Width="100" Height="30" Canvas.Left="100"
 Canvas.Top="100"/>
 </Canvas>
</UserControl>

Code snippet from SilverlightControl1.xaml

You can set the positions of any controls inside of the Canvas control based on Canvas.Top, Canvas.Left,
Canvas.Right, and Canvas.Bottom. The Canvas control offers the least amount of flexibility and creates
your controls in a static position, unlike the Grid and StackPanel. In other words, if your canvas is resized
at runtime, then your controls will not move, a result that is only appropriate in certain scenarios. Most of
the time you will find it easier to use the Grid or StackPanel controls.

scrollViewer
The ScrollViewer control is most commonly used with other layout controls, and most commonly the
StackPanel. The ScrollViewer is simply a container element that provides horizontal and vertical
scrollbars in case the content within it exceeds the size of the ScrollViewer. Note that the ScrollViewer
can only contain one child control, which is why you would want to use it in conjunction with another
layout control. Typically, you would place either a StackPanel or a Grid as the main child of the
ScrollViewer, and then place more controls inside of them. Here is an example in which 10 buttons are
specified inside of the StackPanel:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <ScrollViewer x:Name="LayoutRoot" Background="White" >
 <StackPanel>
 <Button Content="Menu Item 1" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 2" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 3" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 4" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 5" Width="100" Height="30" Margin="5" />

Controls ❘ 691

692 ❘ chaPTer 19 silVERliGHt

 <Button Content="Menu Item 6" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 7" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 8" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 9" Width="100" Height="30" Margin="5" />
 <Button Content="Menu Item 10" Width="100" Height="30" Margin="5" />
 </StackPanel>
 </ScrollViewer>
</UserControl>

Code snippet from SilverlightControl1.xaml

As you can see from this example, the StackPanel would grow outside of your design surface, but instead it
creates the necessary scrollbars for your content. This gives you the flexibility to put controls inside an area
that might be smaller than the area required to display them.

Border
Last but not least is the Border control, which simply adds a border to a control. Like the ScrollViewer,
the Border control only allows one child control. One common use of the Border control would be to add
rounded corners using the curved CornerRadius property, as shown in this example:

<UserControl x:Class="SilverlightApplication1.SilverlightControl1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White" >
 <Border BorderBrush="Silver" BorderThickness="1" Height="263"
 HorizontalAlignment="Left" Margin="12,25,0,0"
 Name="Border1" VerticalAlignment="Top" Width="376"
 Background="Gray" CornerRadius="20">
 <Grid Name="Grid1">
 <Button Content="Button" Height="23" Name="Center"
 VerticalAlignment="Center" Width="75" />
 </Grid>
 </Border>
 </Grid>
</UserControl>

Code snippet from SilverlightControl1.xaml

Although the Border control is simple, it does help add a small improvement to the overall look and feel of
your content.

adding iTems To The silVerlighT ProJecT
As with all other .NET projects, you will need to add more than just the basic items provided when you first
create a Silverlight project, and Silverlight offers several different options. Most are very similar to what you
will find in other project types in Visual Studio, but many are unique to Silverlight.

You will find all of these options when you right-click on your Silverlight project and select Add New Item,
as shown in Figure 19-8.

The following sections provide a brief overview of each item type and when to use it.

silverlight user control
The Silverlight User Control is probably the most common item you will add to your Silverlight project. It is
almost exactly like adding a user control in a Windows Forms application or a WPF project. Selecting it will
provide you with both a XAML and .vb code-behind file. This is where you can create the user interface for
your controls.

silverlight application class
The Silverlight Application Class is similar to what you have learned earlier in the chapter about the
App.xaml because this is exactly what the App.xaml is. The only time you would probably create a
Silverlight Application Class is when you have created a Silverlight project and removed your App.xaml,
or you created a Silverlight Class Library and wanted to convert it to a complete application.

silverlight Page
The Silverlight Page is very similar to a page in ASP.NET and is what works with the navigation framework
described earlier in the chapter. The only real difference is the capability to set the Page title that will show
in the browser title bar. For a basic page the code looks like this:

<navigation:Page x:Class="SilverlightApplication1.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 xmlns:navigation="clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation"
 d:DesignWidth="640" d:DesignHeight="480"
 Title="Page1 Page" >

figure 19-8

adding items to the silverlight Project ❘ 693

694 ❘ chaPTer 19 silVERliGHt

 <Grid x:Name="LayoutRoot">

 </Grid>
</navigation:Page>

Code snippet from Page1.xaml

silverlight child Window
The Silverlight Child Window is a modal dialog within
Silverlight that gives you the look and feel of a Windows
Forms modal dialog. When you create a Child Window
you will get a design surface that looks like the one
shown in Figure 19-9.

To show this Child Window you would use the following
code:

Dim nWnd as New ChildWindow1
nWnd.Show()

When a Child Window is shown, you will see a nice
animation of the window zooming in; and when it is hidden,
it will zoom out. This adds a nice touch to your application.

silverlight Template control
A Silverlight Template Control is a class that has an
existing control as its base class. It is similar to a control
template in Windows Forms or WPF. Unlike a User Control, it does not have a design surface, but when
compiled it does create a class which is available in the Toolbox window for use as a control.

silverlight resource dictionary
Last but not least is the Silverlight Resource Dictionary. This class enables you to centralize things like templates,
styles, and more. It also creates a simple way to organize these items into separate files for better manageability.

silVerlighT ouT of The BroWser
One of the features introduced in Silverlight 3 is “out
of the browser” capabilities. This feature allows your
users to create a desktop and start menu icon for
your application. It also enables your application to
run out of the browser even when there is no Internet
connection. These features are not just limited to the
PC, but also work on the Mac, so now you can build
cross-platform .NET applications without having to
use something like the Mono Project to develop them.

To enable Out of the Browser options, simply right-click
on your Silverlight project and click Properties. Then you
can simply check “Enable running application out of the
browser.” That’s it — you have just made your Silverlight
application capable of running out of the browser on
both a PC and a Mac. To set up a few more options, you
can click the Out-of-Browser Settings button, which will
bring up the dialog shown in Figure 19-10.

figure 19-10

figure 19-9

From here you can set several additional options, including the title of the window, window size, and
icon options. When you define these settings under the Properties window, you are actually creating an
OutOfBrowserSettings.xml file under the My Project folder, which can be viewed by clicking the Show
Hidden Files button on the Solution Explorer. Here is a sample OutOfBrowserSettings.xml file:

<OutOfBrowserSettings
ShortName="SilverlightApplication1 Application"
EnableGPUAcceleration="False"
ShowInstallMenuItem="True">
 <OutOfBrowserSettings.Blurb>SilverlightApplication1 Application on your desktop;
 at home, at work or on the go.
</OutOfBrowserSettings.Blurb>
 <OutOfBrowserSettings.WindowSettings>
 <WindowSettings Title="SilverlightApplication1 Application" />
 </OutOfBrowserSettings.WindowSettings>
 <OutOfBrowserSettings.Icons>
 <Icon Size="16,16">MyIcon.png</Icon>
 <Icon Size="32,32">MyIcon.png</Icon>
 <Icon Size="48,48">MyIcon.png</Icon>
 <Icon Size="128,128">MyIcon.png</Icon>
 </OutOfBrowserSettings.Icons>
</OutOfBrowserSettings>

Of course, this just describes the setup for running your application out of the browser. To actually install
the application, there are two options for installing the application: by right-clicking the application and
selecting install or by initiating it from the code.

Let’s take a look at the first option. After setting your
application to run out of the browser, actually run
your application. You will see that it runs just as you
expect. Now right-click the application. You will be
presented with the dialog shown in Figure 19-11.

Once you have installed the application, it will
run the Silverlight application in what seems to
be a standalone application. This application will
automatically update itself to the version hosted on in
your Asp.NET appication. To uninstall the running
application, right-click on it.

The second way of installing the application, from code, is actually very simple — only one line of code:

App.Current.Install()

That’s it! You can create a button and call the Install function to install the application locally.

summary
This chapter has only briefly described a diverse set of features from Silverlight, as entire books could be
written about Silverlight and its various elements. In this chapter you have learned how to do basic layout
and design, and have seen how it relates to other technologies that you have learned in previous chapters.
We will continue with Silverlight in the next chapter to dig deeper into building more complex applications,
and how to interact with Web services, including SOAP and WCF to interact with data. We will also build
on your knowledge of Visual Basic and Silverlight to create a Model View View-Model application which
enables better separation of concerns for your application.

figure 19-11

summary ❘ 695

 PART IV

 internet applications

 chaPTer 20: ⊲ Silverlight and Services

 chaPTer 21: ⊲ Working with ASP .NET

 chaPTer 22: ⊲ ASP .NET Advanced Features

 chaPTer 23: ⊲ ASP .NET MVC

 chaPTer 24: ⊲ SharePoint 2010 Development

20
 silverlight and services

 WhaT you Will learn in This chaPTer

 ASMX Web Service ➤

 ADO .NET Data Service ➤

 WCF Ria Services ➤

 Model - View - ViewModel ➤

 As you have seen in the previous chapter, Silverlight offers developers a familiar environment for
developing applications. However, Silverlight offers a lot more than the capability to make great -
 looking websites. Silverlight has a rich line - of - business applications too. With Silverlight 3, Microsoft
enabled developers to easily create a variety of business applications, including new DataForm
controls and Validation controls. Silverlight 4, now in beta and soon to be released, will continue to
strengthen Silverlight ’ s line - of - business support by adding additional features such as trusted offl ine
capabilities and fi ner control on the offl ine.

 Throughout this chapter you will learn both how to leverage existing Web service technologies and
how to use some of the newer technologies targeted toward Silverlight. As with all line - of - business
applications, it is important to be able to get to data and then update it back on the server. Silverlight
can do this through existing Web services like SOAP or WCF with little modifi cation, or you can use
some of the new offerings of ADO.NET Data Services and RIA Services.

 This chapter also offers a high - level overview of a commonly suggested best practice for developing
Silverlight line - of - business applications called Model - View - ViewModel (MVVM) . This suggested best
practice is ideal for creating software that is easy to test and maintain.

 serVices and silVerlighT
 In previous chapters, you saw how to use various Web Service technologies to get data into Windows
Forms applications, and we will continue to use these concepts with regard to Silverlight. For the
most part, this chapter is a review of what you already learned in the previous service chapters, but
it points out the differences between calling these services in Silverlight compared to any other type
of application.

700 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

asmx Web service
One of the first Web service types made available in .NET was the ASMX Web service sometimes referred
to as SOAP. This simple protocol uses XML to send messages back and forth between the server and the
client. ASMX Web services are designed to handle synchronous calls between the client and the server,
but with Silverlight you must take a slightly different approach because all calls in Silverlight have to be
asynchronous in order to prevent your web browser from locking up while waiting on the Silverlight
application to get a response from the server.

To get started, we’ll create a new Silverlight application in Visual Studio and then add a new Web service to
the ASP.NET project by right-clicking the project and selecting Add New Item. From the list that appears,
select Web Service as shown in Figure 20-1.

figure 20-1

Once you have created a Web service you will be presented with the following code:

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel

' To allow this Web Service to be called from script,
' using ASP.NET AJAX, uncomment the following line.
' <System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://tempuri.org/")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<ToolboxItem(False)> _
Public Class WebService1
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function HelloWorld() As String
 Return "Hello World"
 End Function

End Class

This is about as basic as you can get for a Web
service — a simple HelloWorld function that returns
a string. The next step is to reference the Web service
from your Silverlight application. Right-click the
Silverlight project and select Add Service Reference.
The Add Service Reference dialog shown in
Figure 20-2 will appear.

Build your project then, click the Discover button
on the right side. When it finds the Web service
you just created, click OK. Once you have done
this, your Silverlight project will now contain a
reference to your service, as well as a new file called
ServiceReferences.ClientConfig that contains
similar code:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name=”WebService1Soap” maxBufferSize=”2147483647”
 maxReceivedMessageSize=”2147483647”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=”http://localhost:38588/WebService1.asmx”
 binding=”basicHttpBinding”
 bindingConfiguration=”WebService1Soap”
 contract=”ServiceReference1.WebService1Soap”
 name=”WebService1Soap” />
 </client>
 </system.serviceModel>
</configuration>

This file is added when using most of the various Web services. As shown in the code, it defines the
endpoint address as your local test Web server. When moving a Silverlight application from development
to production, you need to change that property to point to your production address.

In addition, when creating a Web service reference, Visual Studio auto-generates a proxy class to make
calling the Web service much easier. In this example it is called WebService1SoapClient and you can
reference it by ServiceReference1.WebService1SoapClient. This works the same as adding Web
services to other project types except that it generates a function called <functioname>Async for every
function that is exposed in the Web service, as well as an event called <functionname>Completed. This
event is where you will receive the results from the Web service function call.

To call that from the Silverlight application, open the code view of the MainPage.xaml and create the
following code:

 Private WithEvents svc As New ServiceReference1.WebService1SoapClient

 Private Sub MainPage_Loaded(ByVal sender As Object,
ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
 TestSoapCall()
 End Sub

 Private Sub TestSoapCall()
 svc.HelloWorldAsync()
 End Sub

 Private Sub svc_HelloWorldCompleted(ByVal sender As Object,

figure 20-2

services and silverlight ❘ 701

702 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

ByVal e As ServiceReference1.HelloWorldCompletedEventArgs) Handles svc.HelloWorldCompleted
 MessageBox.Show(e.Result)
 End Sub

Code snippet from WebService1SoapClient

Unlike calling the Web service from another type of application, with Silverlight you need to create an event
handler to handle the HelloWorldComplete function, due to the asynchronous limitations of Silverlight.
This is a little different from what you may have done with other Web services, and it does require keeping
some things in mind when using this method. This includes updating your user interface to notify the user
that you are waiting on something from the server, and disabling buttons that may require the data you are
getting back from the server.

With an ASMX Web service, you can also pass more complex objects than just strings to Silverlight. This
opens a large set of possibilities for passing data from a database or other server system. While ASMX Web
services are simple, they are not always the optimal way of sending data back and forth, as each object is
serialized to XML and is not compressed. As you will see in the next example, WCF services offer some of
these options with no special configuration or coding.

Wcf service
The WCF service is almost identical to the ASMX Web service method of creating a connection to the
server, but it offers many performance and security benefits over ASMX Web services.

Begin by creating another service: Right-click your ASP.NET application and select Add New Item. Under
the Silverlight category you will find a Silverlight-enabled WCF service, as shown in Figure 20-3.

figure 20-3

Creating a Silverlight-enabled WCF service is nearly identical to creating a normal WCF service; the only
difference is the following option:

<AspNetCompatibilityRequirements(
RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)>

Just as you did earlier for the ASMX Web service, make a HelloWorld function in your WCF service as
shown here:

Imports System.ServiceModel
Imports System.ServiceModel.Activation

<ServiceContract(Namespace:="")>
<AspNetCompatibilityRequirements(
RequirementsMode:=AspNetCompatibilityRequirementsMode.Allowed)>
Public Class Service1

 <OperationContract()>
 Public Function HelloWorld() As String
 Return "Hello from WCF Service"
 End Function

End Class

Code snippet from Service1

As you can see, there is very little difference between the ASMX and WCF services so far, and you also add
the reference the same way.

Now add the WCF service by right-clicking the Silverlight application, selecting Add Service Reference, and
then clicking the Discover button, as you did before. You will see both services on the ASP.NET project:
Service1.svc and WebService1.asmx. Select Service1.asmx and click OK. Now add the following code
to the MainPage.xaml.vb:

Partial Public Class MainPage
 Inherits UserControl

 Public Sub New()
 InitializeComponent()
 End Sub

 Private WithEvents svc As New ServiceReference1.WebService1SoapClient
 Private WithEvents svc2 As New ServiceReference2.Service1Client
 Private Sub MainPage_Loaded(ByVal sender As Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
 TestSoapCall()

 End Sub

 Private Sub TestSoapCall()
 svc.HelloWorldAsync()
 svc2.HelloWorldAsync()
 End Sub

 Private Sub TestWCFCall()
 TestWCFCall()
 End Sub

 Private Sub svc_HelloWorldCompleted(ByVal sender As Object,
 ByVal e As ServiceReference1.HelloWorldCompletedEventArgs)
 Handles svc.HelloWorldCompleted
 MessageBox.Show(e.Result)
 End Sub

services and silverlight ❘ 703

704 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

 Private Sub svc2_HelloWorldCompleted(ByVal sender As Object,
 ByVal e As ServiceReference2.HelloWorldCompletedEventArgs)
 Handles svc2.HelloWorldCompleted
 MessageBox.Show(e.Result)
 End Sub
End Class

Code snippet from MainPage.xaml

This appears to be exactly the same as the ASMX Web service, but this is only an appearance of similarities.
The way the code is actually executed is in fact much different because of the way in which WCF binds to
the Web service. You can see where it defines this in the ServiceReferences.ClientConfig:

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name=”WebService1Soap” maxBufferSize=”2147483647”
 maxReceivedMessageSize=”2147483647”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 <customBinding>
 <binding name=”CustomBinding_Service1”>
 <binaryMessageEncoding />
 <httpTransport maxReceivedMessageSize=”2147483647”
 maxBufferSize=”2147483647” />
 </binding>
 </customBinding>
 </bindings>
 <client>
 <endpoint address=”http://localhost:38588/WebService1.asmx”
 binding=”basicHttpBinding”
 bindingConfiguration=”WebService1Soap”
 contract=”ServiceReference1.WebService1Soap”
 name=”WebService1Soap” />
 <endpoint address=”http://localhost:38588/Service1.svc”
 binding=”customBinding”
 bindingConfiguration=”CustomBinding_Service1”
contract=”ServiceReference2.Service1”
 name=”CustomBinding_Service1” />
 </client>
 </system.serviceModel>
</configuration>

Code snippet from ServiceReferences.ClientConfig

Unlike the basicHttpBinding that the ASMX service assigned to its endpoint, WCF-based services
bind using a customBinding. The customBinding is actually defined slightly above the endpoints, and
you can see that it is defined to use binaryMessageEncoding. This is what tells Silverlight to use binary
messaging to communicate with the Web service, but this only half the story; this binding is also defined
in the web.config, as shown here:

 <?xml version=”1.0”?>
<configuration>

 <system.web>
 <compilation debug=”true” strict=”false” explicit=”true”
targetFramework=”4.0” />
 </system.web>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests=”true”/>
 </system.webServer>

 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name=””>
 <serviceMetadata httpGetEnabled=”true” />
 <serviceDebug includeExceptionDetailInFaults=”false” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings>
 <customBinding>
 <binding name=”ProVB_SLServices.Web.Service1.customBinding0”>
 <binaryMessageEncoding />
 <httpTransport />
 </binding>
 </customBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=”true” />
 <services>
 <service name=”ProVB_SLServices.Web.Service1”>
 <endpoint address=”” binding=”customBinding”
 bindingConfiguration=”ProVB_SLServices.Web.Service1.customBinding0”
 contract=”ProVB_SLServices.Web.Service1” />
 <endpoint address=”mex” binding=”mexHttpBinding”
contract=”IMetadataExchange” />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Code snippet from web.config

This not only converts your message to binary, but gives you a significant boost to performance, as the
binary objects are also compressed. This method also results in a slight security improvement because
the objects are not sent across in plain text, where a network monitoring tool could see the data. It is not,
however, secure enough to rely on this as your only method of security — you would still want to rely on
SSL and other levels of security for highly secured applications.

While both WCF and ASMX Web services provide a great way to access your data, you still have to define
all your function calls between the server and the client. For smaller applications this is not an issue, but
imagine applications for which you may have 300 or more database tables that you need to send data back
and forth. These types of situations lead us into the next type of service.

ado.neT data service
Now that you have seen the two most classic examples of Web services, this section looks at one of the
latest Microsoft technologies for getting to your data. Microsoft has created ADO.NET Data Services
to provide a REST-based Web service to expose LINQ to SQL, Entity Framework, or other ORM
technology classes. REST (Representational state transfer) uses traditional Web-based standards to
expose data for create, read, update, and delete (CRUD) operations. To do this with WCF, you would
have to build your own CRUD operations for every table in your database, which for a large application
can be impractical to implement.

To get started with ADO.NET Data Services, we’ll set up a few things in our project that we will use
throughout the rest of the chapter. Rather than use the traditional Northwind database, we are going
to build our own. We are going to create a basic “issue management system” where we keep track of
customers and their issues. To begin, first add a SQL Server Database to the ASP.NET project as shown
in Figure 20-4.

services and silverlight ❘ 705

706 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

Visual Studio will create an App_Data folder and place your database in it. Now double-click your database
and add two tables, beginning with the Customers table shown in Table 20-1.

TaBle 20-1: Customers

column name TyPe descriPTion

CustomerID Int Unique identity for customers

Name Varchar(50) Name of customer

PhoneNumber Varchar(50) Phone number of customer

EMailAddress Varchar(50) E-mail address of customer

Address Varchar(50) Address of customer

City Varchar(50) City of customer

State Varchar(50) State of customer

TaBle 20-2: Issues

column name TyPe descriPTion

IssueID Int Unique identity for issues

CustomerID Int ID of customer to whom the issue belongs

IssueDate Datetime Date of issue

ResolvedDate Datetime Date the issue was resolved

Description Varchar(5000) Description of issue

Resolution Varchar(5000) Resolution of issue

figure 20-4

Now that we have a customer table, we’ll also add an Issues table to keep track of issues for the customer. This
will build a basic issue-tracking database. Add the structure for the Issues table as shown in Table 20-2.

Now that we have the tables, we can also add a foreign key between the Issues and Customers table by using
the following script:

/* To prevent any potential data loss issues,
 you should review this script in detail before
running it outside the context of the database designer.*/
BEGIN TRANSACTION
SET QUOTED_IDENTIFIER ON
SET ARITHABORT ON
SET NUMERIC_ROUNDABORT OFF
SET CONCAT_NULL_YIELDS_NULL ON
SET ANSI_NULLS ON
SET ANSI_PADDING ON
SET ANSI_WARNINGS ON
COMMIT
BEGIN TRANSACTION
GO
COMMIT
BEGIN TRANSACTION
GO
ALTER TABLE dbo.Issues ADD CONSTRAINT
 FK_Issues_Customers FOREIGN KEY
 (
 CustomerID
) REFERENCES dbo.Customers
 (
 CustomerID
) ON UPDATE NO ACTION
 ON DELETE NO ACTION

GO
COMMIT

Code snippet from CreateTable.sql

Once we have the tables, we need some data in them, so use the following script to generate the data:

Insert Into Customers (Name,PhoneNumber,EmailAddress,Address,City,State,Zip)
Values ('ACME Corp','(123) 123-1234','jonathan@acme.com','123 Main Street',
'Beverly Hills','CA', '90210')
Insert Into Customers (Name,PhoneNumber,EmailAddress,Address,City,State,Zip)
Values ('East Coast Computers','(311) 123-1235',
'jonathan@acme.com','123 Broadway', 'New York','NY', '10249')

Insert Into Issues (CustomerID,IssueDate,ResolvedDate,Description)
 Values (1,GetDate(),null,'I can''t login into my program')
Insert Into Issues (CustomerID,IssueDate,ResolvedDate,Description)
Values (1,GetDate() - 5 ,GetDate(),'What is a mouse?')
Insert Into Issues (CustomerID,IssueDate,ResolvedDate,Description)
Values (1,GetDate() - 10 ,GetDate() - 9,'My computer came in how do I open the box?')
Insert Into Issues (CustomerID,IssueDate,ResolvedDate,Description)
Values (2,GetDate(),null,'My computer is saying I need Silverlight, what do I do?')
Insert Into Issues (CustomerID,IssueDate,ResolvedDate,Description)
Values (2,GetDate() - 5 ,GetDate() - 4,'How do I hook up my internet connection?')

Code snippet from InsertData.sql

Now that we have some data, we can use it for the rest of the chapter. Right-click your ASP.NET project,
add a new item, select ADO.NET Entity Data Model, and name it CustomerIssueModel.edmx, as shown in
Figure 20-5.

services and silverlight ❘ 707

708 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

When the Entity Data Model Wizard appears, select Generate from Database and click Next. When it
asks you to choose the database connection, select the ProVB_DB.mdf that we created earlier and enter
CustomerIssueEntities as the name for the connection string. Select Next. When the Choose Your Database
Objects dialog appears, check Tables, and enter CustomerIssueEntitiesModel in the Model Namespace text
box, as shown in Figure 20-6.

Click Finish. You have just created your first ADO.NET Entity Data model. See Figure 20-7.

figure 20-5

figure 20-6 figure 20-7

As you can see, table names are converted to singular versions of the table names and automatic links are created
to the other tables based on the foreign key. This model is all you need to access your database from the server-
side code, but now we must create an ADO.NET Data Service so that Silverlight can also access this data. To do
so, add an item of ADO.NET Data Service to your ASP.NET application. This will create the following code:

Imports System.Data.Services
Imports System.Data.Services.Common
Imports System.Linq
Imports System.ServiceModel.Web

Public Class WebDataService1
 ' TODO: replace [[class name]] with your data class name
 Inherits DataService(Of [[class name]])

 ' This method is called only once to initialize service-wide policies.
 Public Shared Sub InitializeService(ByVal config As DataServiceConfiguration)
 ' TODO: set rules to indicate which entity sets and service operations
 ' are visible, updatable, etc.
 ' Examples:
 ' config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead)
 ' config.SetServiceOperationAccessRule("MyServiceOperation",
 ServiceOperationRights.All)
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2
 End Sub

End Class

There is an error with the code and it contains several to-do comments. We need to set the class to inherit
a DataService(Of CustomerIssueEntities) so that it will compile. We also need to set up the
security on the ADO.NET Data Service, so the final version of the code should look like this:

Imports System.Data.Services
Imports System.Data.Services.Common
Imports System.Linq
Imports System.ServiceModel.Web

Public Class WebDataService1
 ' TODO: replace [[class name]] with your data class name
 Inherits DataService(Of CustomerIssueEntities)

 ' This method is called only once to initialize service-wide policies.
 Public Shared Sub InitializeService(ByVal config As DataServiceConfiguration)

 config.SetEntitySetAccessRule("*", EntitySetRights.AllRead)
 config.SetServiceOperationAccessRule("*", ServiceOperationRights.All)
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2
 End Sub

End Class

As you can tell from the security settings, you probably wouldn’t want to do this from a production
application, but rather make it more secure than this.

You have just created your first REST API, which is accessible not only by Silverlight, but also by other Web
technologies such as PHP, ASP.NET, and many more. The great thing about ADO.NET Data Services is
that it takes your model and creates a standard based API that almost any Web developer could consume.
To see how this actually works, set the WebDataService1.svc as your start page in your Web project and
run your project. You will see the following XML:

 <?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>
 <service xml:base=”http://localhost:38588/WebDataService1.svc/”
xmlns:atom=”http://www.w3.org/2005/Atom”
xmlns:app=”http://www.w3.org/2007/app”

services and silverlight ❘ 709

710 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

xmlns=”http://www.w3.org/2007/app”>
<workspace>
 <atom:title>Default</atom:title>
 <collection href=”Customers”>
 <atom:title>Customers</atom:title>
 </collection>
 <collection href=”Issues”>
 <atom:title>Issues</atom:title>
 </collection>
 </workspace>
 </service>

This tells you that there are two collections in the ADO.NET Data Service, so, for example, you can navigate
to WebDataService1.svc/Customers, which will return all the customers in the Customers table and return
the following XML:

<?xml version=”1.0” encoding=”iso-8859-1” standalone=”yes”?>
<feed xml:base=”http://localhost:38588/WebDataService1.svc/”
xmlns:d=”http://schemas.microsoft.com/ado/2007/08/dataservices”
xmlns:m=”http://schemas.microsoft.com/ado/2007/08/dataservices/metadata”
xmlns=”http://www.w3.org/2005/Atom”>
 <title type=”text”>Customers</title>
 <id>http://localhost:38588/WebDataService1.svc/Customers</id>
 <updated>2009-11-21T01:47:49Z</updated>
 <link rel=”self” title=”Customers” href=”Customers” />
 <entry>
 <id>http://localhost:38588/WebDataService1.svc/Customers(1)</id>
 <title type=”text”></title>
 <updated>2009-11-21T01:47:49Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Customer” href=”Customers(1)” />
 <link
 rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Issues”
 type=”application/atom+xml;type=feed” title=”Issues” href=”Customers(1)/Issues” />
 <category term=”CustomerIssueEntitiesModel.Customer”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme”
/>
 <content type=”application/xml”>
 <m:properties>
 <d:CustomerID m:type=”Edm.Int32”>1</d:CustomerID>
 <d:Name>ACME Corp</d:Name>
 <d:PhoneNumber>(123) 123-1234</d:PhoneNumber>
 <d:EMailAddress>jonathan@acme.com</d:EMailAddress>
 <d:Address>123 Main Street</d:Address>
 <d:City>Beverly Hills</d:City>
 <d:State>CA</d:State>
 <d:Zip>90210</d:Zip>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:38588/WebDataService1.svc/Customers(2)</id>
 <title type=”text”></title>
 <updated>2009-11-21T01:47:49Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Customer” href=”Customers(2)” />
 <link
 rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Issues”
 type=”application/atom+xml;type=feed” title=”Issues” href=”Customers(2)/Issues” />

 <category term=”CustomerIssueEntitiesModel.Customer”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme”
/>
 <content type=”application/xml”>
 <m:properties>
 <d:CustomerID m:type=”Edm.Int32”>2</d:CustomerID>
 <d:Name>East Coast Computers</d:Name>
 <d:PhoneNumber>(311) 123-1235</d:PhoneNumber>
 <d:EMailAddress>jonathan@acme.com</d:EMailAddress>
 <d:Address>123 Broadway</d:Address>
 <d:City>New York</d:City>
 <d:State>NY</d:State>
 <d:Zip>10249</d:Zip>
 </m:properties>
 </content>
 </entry>
</feed>

And if you wanted to return the first customer, you could simply change the address to WebDataService1
.svc/Customers(1), which will return the following:

<?xml version=”1.0” encoding=”iso-8859-1” standalone=”yes”?>
<entry xml:base=”http://localhost:38588/WebDataService1.svc/”
xmlns:d=”http://schemas.microsoft.com/ado/2007/08/dataservices”
xmlns:m=”http://schemas.microsoft.com/ado/2007/08/dataservices/metadata”
xmlns=”http://www.w3.org/2005/Atom”>
 <id>http://localhost:38588/WebDataService1.svc/Customers(1)</id>
 <title type=”text”></title>
 <updated>2009-11-21T02:05:05Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Customer” href=”Customers(1)” />
 <link rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Issues”
type=”application/atom+xml;type=feed” title=”Issues” href=”Customers(1)/Issues” />
 <category term=”CustomerIssueEntitiesModel.Customer”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:CustomerID m:type=”Edm.Int32”>1</d:CustomerID>
 <d:Name>ACME Corp</d:Name>
 <d:PhoneNumber>(123) 123-1234</d:PhoneNumber>
 <d:EMailAddress>jonathan@acme.com</d:EMailAddress>
 <d:Address>123 Main Street</d:Address>
 <d:City>Beverly Hills</d:City>
 <d:State>CA</d:State>
 <d:Zip>90210</d:Zip>
 </m:properties>
 </content>
</entry>

If you wanted to get the issues for the first customer, then you would change the address to
WebDataService1.svc/Customers(1)/Issues:

<?xml version=”1.0” encoding=”iso-8859-1” standalone=”yes”?>
<feed xml:base=”http://localhost:38588/WebDataService1.svc/”
xmlns:d=”http://schemas.microsoft.com/ado/2007/08/dataservices”
xmlns:m=”http://schemas.microsoft.com/ado/2007/08/dataservices/metadata”
xmlns=”http://www.w3.org/2005/Atom”>
 <title type=”text”>Issues</title>
 <id>http://localhost:38588/WebDataService1.svc/Customers(1)/Issues</id>
 <updated>2009-11-21T02:06:12Z</updated>
 <link rel=”self” title=”Issues” href=”Issues” />

services and silverlight ❘ 711

712 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

 <entry>
 <id>http://localhost:38588/WebDataService1.svc/Issues(1)</id>
 <title type=”text”></title>
 <updated>2009-11-21T02:06:12Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Issue” href=”Issues(1)” />
 <link rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer”
type=”application/atom+xml;type=entry”
title=”Customer” href=”Issues(1)/Customer” />
 <category term=”CustomerIssueEntitiesModel.Issue”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:IssueID m:type=”Edm.Int32”>1</d:IssueID>
 <d:CustomerID m:type=”Edm.Int32”>1</d:CustomerID>
 <d:IssueDate m:type=”Edm.DateTime”>2009-11-20T16:50:18.43</d:IssueDate>
 <d:ResolvedDate m:type=”Edm.DateTime” m:null=”true” />
 <d:Description>I can’t login into my program</d:Description>
 <d:Resolution m:null=”true” />
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:38588/WebDataService1.svc/Issues(2)</id>
 <title type=”text”></title>
 <updated>2009-11-21T02:06:12Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Issue” href=”Issues(2)” />
 <link
 rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer”
 type=”application/atom+xml;type=entry” title=”Customer” href=”Issues(2)/Customer” />
 <category term=”CustomerIssueEntitiesModel.Issue”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:IssueID m:type=”Edm.Int32”>2</d:IssueID>
 <d:CustomerID m:type=”Edm.Int32”>1</d:CustomerID>
 <d:IssueDate m:type=”Edm.DateTime”>2009-11-15T16:50:18.43</d:IssueDate>
 <d:ResolvedDate m:type=”Edm.DateTime”>2009-11-20T16:50:18.43
 </d:ResolvedDate>
 <d:Description>What is a mouse?</d:Description>
 <d:Resolution m:null=”true” />
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:38588/WebDataService1.svc/Issues(3)</id>
 <title type=”text”></title>
 <updated>2009-11-21T02:06:12Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Issue” href=”Issues(3)” />
 <link
 rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/Customer”
 type=”application/atom+xml;type=entry” title=”Customer” href=”Issues(3)/Customer” />
 <category term=”CustomerIssueEntitiesModel.Issue”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />

 <content type=”application/xml”>
 <m:properties>
 <d:IssueID m:type=”Edm.Int32”>3</d:IssueID>
 <d:CustomerID m:type=”Edm.Int32”>1</d:CustomerID>
 <d:IssueDate m:type=”Edm.DateTime”>2009-11-10T16:50:18.43</d:IssueDate>
 <d:ResolvedDate m:type=”Edm.DateTime”>2009-11-11T16:50:18.43</d:ResolvedDate>
 <d:Description>My computer came in how do I open the box?</d:Description>
 <d:Resolution m:null=”true” />
 </m:properties>
 </content>
 </entry>
</feed>

Through all these requests, you can start to see how REST works. It’s just as easy to update the data. For
example, if you wanted to update the first customer, you could post the field names to WebDataService1
.svc/Customers(1) from any Web form. This creates a very powerful API that you could expose to other
third parties and such. But how does this apply to Silverlight? To see that, add a reference to the ADO.NET
Data Service just as you have done with the other services.

Now that you have the reference, add a DataGrid to your MainPage.xaml as shown here:

<UserControl xmlns:my="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
x:Class="ProVB_SLServices.MainPage"
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <my:DataGrid x:Name=”dtGrid”></my:DataGrid>
 </Grid>
</UserControl>

Code snippet from MainPage.xaml

Now let’s see how you get the data and bind it to the grid. This is actually very simple. You will
leverage what you have learned about LINQ to make a LINQ call directly to the Web service; but
because ADO.NET Data Services is asynchronous, you need to have a function to receive the data.
Here is what the code looks like:

Imports System.Data.Services.Client

Partial Public Class MainPage
 Inherits UserControl

 Public Sub New()
 InitializeComponent()
 End Sub

 Private Sub MainPage_Loaded(ByVal sender As Object,
 ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded
 TestADODS()
 End Sub

 Private Sub TestADODS()

 Dim entities As New
 ServiceReference3.CustomerIssueEntitiesModel.CustomerIssueEntities(New
Uri("WebDataService1.svc", UriKind.Relative))

services and silverlight ❘ 713

714 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

 Dim customers As DataServiceQuery(Of
ServiceReference3.CustomerIssueEntitiesModel.Customer) = _
 From e In entities.Customers _
 Select e

 customers.BeginExecute(
New AsyncCallback(AddressOf OnCustomersLoaded), customers)
 End Sub

 Private Sub OnCustomersLoaded(ByVal result As IAsyncResult)

 Dim customerQuery As DataServiceQuery(Of
 ServiceReference3.CustomerIssueEntitiesModel.Customer) = result.AsyncState

 Dim customers = customerQuery.EndExecute(result)

 dtGrid.ItemsSource = customers.ToList
 End Sub

End Class

Code snippet from MainPage.xaml

Now that you have seen how easy it is to get data from an ADO.NET Data Service, you are ready to look at
the last service type, RIA Services, which offers the best options for Silverlight developers.

model-VieW-VieWmodel
Now that you know how to develop Web services to interact with data on the server, let’s take a look at
a suggested best practice regarding how to interact with the data. Silverlight (and WPF for that matter)
caters to using a pattern called Model-View-ViewModel (MVVM), which highly isolates the individual
parts of a line-of-business application into pieces that are easily tested and maintained. This section
provides a high-level overview of MVVM and what it means for you.

separation of concerns
Traditionally, developers have done a poor job of designing applications that keep a true separation of
concerns. For example, if you have a business rule saying that the Customer name is required on customer,
then, in the past, you might put code on every user control in which you let someone edit customer to validate
that they entered the name. This is not too bad on small projects, but what happens when that project grows,
and you give users various ways to edit the same data, and you need to add a new business rule; must you edit
every user control to handle that business rule? Not with MVVM, which simplifies your project by isolating
these needs into discrete testable units.

While MVVM does not reduce the amount of code you need to write, and in most cases can actually mean
more code, it creates very manageable code in the long run. It is also a pattern that can be a little intimidating
to jump into at first, to do it in the true MVVM fashion. Throughout this section, we will describe how to
build the MVVM pattern for the database we created, highlighting the true strengths of MVVM.

The model
The Model is the first M in the MVVM pattern, and this is very similar, if not identical, to what you have
learned about the MVC pattern for ASP.NET. A model class is a simple class that merely handles the
description of the data and validation of the data. For example, if we created a Model for the Customer in
our database, it might look something like this:

Imports System.ComponentModel.DataAnnotations

Namespace Models
 Public Class Customer
 Inherits ModelBase

 <Display(AutoGenerateField:=False)>
 Public Property CustomerID As Integer

 Private _Name As String
 <Display(Name:=”Customer Name”, Order:=0, Description:=”This is the Customer’s Name”)>
 <Required()>
 Public Property Name As String
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value
 RaisePropertyChange(“Name”)
 End Set
 End Property

 Private _PhoneNumber As String
 <Display(Name:=”Phone Number”, Order:=1)>
 <RegularExpression(“^0{0,1}[1-9]{1}[0-9]{2}[\s]{0,1}[\-]{0,1}[\s]{0,1}[1-9]
{1}[0-9]{6}$”,
ErrorMessage:=”Please enter valid Phone Number (xxx) xxx-xxxx”)>
 Public Property PhoneNumber As String
 Get
 Return _PhoneNumber
 End Get
 Set(ByVal value As String)
 _PhoneNumber = value
 RaisePropertyChange(“PhoneNumber”)
 End Set
 End Property

 Private _EMailAddress As String
 <Display(Name:=”EMail Address”, Order:=2)>
 <Required()>
 <RegularExpression(“^([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0
-9a-zA-Z]\.)+[a-zA-Z]{2,9})$”, ErrorMessage:=”Please enter valid email address”)>
 Public Property EMailAddress As String
 Get
 Return _EMailAddress
 End Get
 Set(ByVal value As String)
 _EMailAddress = value
 RaisePropertyChange(“EMailAddress”)
 End Set
 End Property

 Private _Address As String
 <Display(Name:=”Address”, Order:=3)>
 Public Property Address As String
 Get
 Return _Address
 End Get
 Set(ByVal value As String)
 _Address = value
 RaisePropertyChange(“Address”)
 End Set

Model-View-ViewModel ❘ 715

716 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

 End Property

 Private _City As String
 <Display(Name:=”City”, Order:=4)>
 Public Property City As String
 Get
 Return _City
 End Get
 Set(ByVal value As String)
 _City = value
 RaisePropertyChange(“City”)
 End Set
 End Property

 Private _State As String
 <Display(Name:=”State”, Order:=5)>
 Public Property State As String
 Get
 Return _State
 End Get
 Set(ByVal value As String)
 _State = value
 RaisePropertyChange(“State”)
 End Set
 End Property

 Private _Zip As String
 <Display(Name:=”Zip”, Order:=6)>
 Public Property Zip As String
 Get
 Return _Zip
 End Get
 Set(ByVal value As String)
 _Zip = value
 RaisePropertyChange(“Zip”)
 End Set
 End Property

 End Class
End Namespace

Code snippet from MyModels

As you can see, this model simply describes the data. You can also do custom validation in the model by
using the CustomValidation attribute — for example, to do more complex validation you may need to use
the regular expression validation.

Through such a simple model class you have centralized all of your business logic for the Customer class. This
makes the class very simple to test and very reusable. If you create a List(Of Customer) and bind it to a data
grid, it will use this logic to validate the rows; or if you bind one instance of the Customer class to a DataForm,
it will also use the same validation. Clearly, centralizing this logic in one place creates powerful code.

The other part of the implementation for the model is the model base. All models in your project
should inherit from a ModelBase class. This is how you can centralize how you implement the
INotifyPropertyChanged needs of a model. Here is the sample ModelBase for this project:

Imports System
Imports System.Collections.Generic
Imports System.ComponentModel
Imports System.ComponentModel.DataAnnotations

Namespace Models

 Public MustInherit Class ModelBase
 Implements INotifyPropertyChanged

 Private Property validationResults() As List(Of ValidationResult)

 Protected Sub RaisePropertyChange(ByVal ParamArray propertyname() As String)
 For Each s As String In propertyname
 RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs(s))
 Next

 End Sub

 Protected Sub Validate(ByVal value As Object, ByVal propertyName As String)
 Validator.ValidateProperty(value,
 New ValidationContext(Me, Nothing, Nothing))
 End Sub

 Public Function IsValid() As Boolean
 Return Validator.TryValidateObject(Me,
 New ValidationContext(Me, Nothing, Nothing), Me.validationResults, True)
 End Function

 Public Event PropertyChanged(ByVal sender As Object,
 ByVal e As System.ComponentModel.PropertyChangedEventArgs)
Implements System.ComponentModel.INotifyPropertyChanged.PropertyChanged

 End Class
End Namespace

Code snippet from MyModels

The PropertyChanged event is what lets the View know that something changed in your model. This is the
most basic model implementation for MVVM.

The View
The View is simply the user interface to which you will bind your ViewModel. The ViewModel should simply
be a description of where fields are placed to display data. If you read various references outlining the ways to
do MVVM, you will find many highly opinionated developers who believe that there should be zero code in
your code-behind for your views. While this is a noble goal, it is not always practical.

The View is generally just a simple user control to place controls on the form; but there is also an out-of-the-
box view called DataForm that will use the metadata from the model to generate the form. This is great for
building applications quickly and easily.

That is just one way to create a View; the other is to actually define the fields directly on the user control. To
bind a text field to a model, you would do the following:

<TextBox Text="{Binding CompanyName,Mode=TwoWay,ValidatesOnDataErrors=True,
NotifyOnValidationError=True}" />

This will allow the View to receive validation errors directly from the model. For you, this means that there
is no business logic in your View — it is self-contained in the Model, which creates an ideal way of testing
your UI also.

The Viewmodel
The final part of the MVVM puzzle is the ViewModel. You can think of this as the glue that binds the
Model and the View together. It is what will go and get the data from the Web service and fill a collection of
your model class to bind to other controls.

Model-View-ViewModel ❘ 717

718 ❘ chaPTer 20 silVERliGHt aNd sERViCEs

In addition, you will bind the View’s data context to an instance of the ViewModel. This basically becomes
the code-behind for your view except that it is loosely tied to the view so you can reuse it for multiple views.
This also gives you great flexibility for testing and much more.

summary
In this chapter you saw how to interact with various types of Web services, and used that knowledge to
build a basic MVVM application. This will give you a foundation for building stronger Silverlight line-of-
business applications. The lessons you have learned throughout this chapter, Chapter 18, and Chapter 19
should enable you to build very powerful Silverlight applications with rich interfaces. There are also many
new technologies coming with Silverlight 4 that will continue to make it easier to build applications, and
using less code.

21
 Working with asP.neT

 WhaT you Will learn in This chaPTer

 Overview of ASP .NET ➤

 Introduction to Web Forms ➤

 Using server controls ➤

 Working with events ➤

 Understanding ViewState ➤

 Adding validation ➤

 Building data - driven applications ➤

 ASP.NET is a Web application framework (built on top of the .NET framework) that enables you to
build powerful, secure, and dynamic applications in a highly productive environment. This chapter
introduces ASP.NET and helps get you started building applications for the Web.

 The hisTory of asP.neT
 The technologies and practices around Web development have changed considerably since .NET was
fi rst released in 2002, and ASP.NET has evolved to keep up. The additions of the provider model,
ASP.NET AJAX, ASP.NET MVC, ASP.NET Dynamic Data, Silverlight, and SharePoint have enabled
Web developers on the Microsoft platform to build applications that meet the needs and expectations
of today ’ s consumer.

 Here ’ s a brief summary of the versions of ASP.NET and some of the key features introduced with
each version.

 Version feaTures

 1 .0/1 .1 Web Forms

 2 .0 Master pages

 Themes and skins

 DataSource controls

continues

720 ❘ chaPTer 21 woRkiNG witH asP.NEt

Key feaTures of asP.neT
As you can see, there’s a lot to cover to fully understand ASP.NET. We’re not going to be able to get through
all of it in this book so it’s worth spending some time summarizing the key features before we get into the
mechanics of building Web applications.

developer Productivity
Much of ASP.NET’s focus is on developer productivity. Huge gains were made with the move from Classic
ASP to ASP.NET Web Forms. Server controls and the underlying framework removed the need for much of
the tedious coding required when using existing Web development technologies.

Web Forms continues to evolve with each new version of the framework. ASP.NET AJAX makes it easy to
handle user interactions with client-side JavaScript and Web service calls. Automated view generation (or
scaffolding) and HtmlHelper classes assist in building ASP.NET MVC applications.

The ASP.NET development team is continually striving to add capabilities to the framework and to Visual
Studio so that developers can focus on solving business problems, rather than “plumbing.”

Performance and scalability
The Microsoft team set out to provide the world’s fastest Web application server. One of the most exciting
performance features of ASP.NET is the caching capability aimed at exploiting Microsoft’s SQL Server.
This feature is called SQL cache invalidation. Before ASP.NET 2.0, it was possible to cache the results
that came from SQL Server and to update the cache based on a time interval — for example, every
15 seconds or so. This meant that end users might see stale data if the result set changed sometime during
that 15-second interval.

In some cases, this time interval result set is unacceptable. Ideally, the result set stored in the cache is
destroyed if any underlying change occurs in the source from which the result set is retrieved — in this case,
SQL Server. Ever since ASP.NET 2.0, you can make this happen with the use of SQL cache invalidation.
When the result set from SQL Server changes, the output cache is triggered to change, and the end user
always sees the latest result set. The data presented is never stale.

ASP.NET 4 provides 64-bit support, which means you can run your ASP.NET applications on 64-bit Intel
or AMD processors. In addition, because ASP.NET 4 is fully backwardly compatible with ASP.NET 1.0/1.1

Version feaTures

Provider model

Membership and profiles

Navigation controls

ASP .NET AJAX extensions

3 .5 ASP .NET AJAX integrated in .NET Framework

Support for REST and JSON in Web services

3 .5 SP1 ASP .NET MVC

ASP .NET Routing

ASP .NET Dynamic Data

4 .0 Web application deployment

Web Forms additions (control over client IDs, support for routing, enhanced support for
standards, integration with Dynamic Data)

Microsoft Ajax Library additions (templates, observer, script loader)

(continued)

and 2.0, you can now take any former ASP.NET application, recompile it on the .NET Framework 4, and
run it on a 64-bit processor.

localization
ASP.NET and Visual Studio make it easy (well, relatively easy) to localize applications. Through the use of
resource files (.resx), strongly typed resource access, and locale-aware data binding, you can build pages
that will dynamically change based on the culture settings of the requester.

health monitoring
The built-in health-monitoring capabilities are rather significant features designed to make it easier to
manage a deployed ASP.NET application. ASP.NET health monitoring is built around various health-
monitoring events (referred to as Web events) occurring in your application. Using the health-monitoring
system enables you to perform event logging for Web events such as failed logins, application starts and
stops, or any unhandled exceptions. The event logging can occur in more than one place, so you can log to
the Event Log or even back to a database. In addition to performing this disk-based logging, you can also
use the system to e-mail health-monitoring information.

Besides working with specific events in your application, you can use the health-monitoring system to take
health snapshots of a running application. As with many of the features built into ASP.NET, you can extend
the health-monitoring system and create your own events for recording application information.

easy access to data
ASP.NET Web Forms include a set of server controls designed to enable you to easily bind data to user
interface elements on a page. Using these data controls can significantly reduce the amount of VB code you
would need to write to manually retrieve data and bind to it — sometimes they eliminate the need for VB
code altogether. Even better, this functionality is not limited to data coming from a relational database. In
fact, several data-source server controls are at your disposal; and you can even create your own.

ASP.NET AJAX 4 adds client-side data-binding with the addition of the DataView control and client-side
templates. These tools enable JSON (JavaScript Object Notation) objects to be bound to the values or
attributes of elements in a page using a notation similar to that of WPF.

administration and management
The initial release of ASP.NET focused on the developer, and little thought was given to the people who
had to administer and manage all the ASP.NET applications. Instead of working with consoles and wizards
as they did in the past, administrators and managers of these new applications now had to work with
unfamiliar XML configuration files such as machine.config and web.config.

To remedy this situation, if you are using Windows XP or Windows Server 2003, ASP.NET includes a
Microsoft Management Console (MMC) snap-in that enables Web application administrators to edit
configuration settings easily on-the-fly through IIS. If you are using one of the newer versions of Windows
that include IIS 7.0, the IIS Manager has been enhanced to give you the same capabilities of the MMC
snap-in.

Visual sTudio suPPorT for asP.neT
Visual Studio 2010 offers a wide range of features to assist you in building applications; IntelliSense, code
snippets, integrated debugging, CSS style support, and the ability to target multiple versions of the .NET
framework are a few examples. When working with ASP.NET you’ll see that many of these productivity
features also apply when working with inline code, client-side JavaScript code, XML, and HTML markup.

Visual studio support for asP.neT ❘ 721

722 ❘ chaPTer 21 woRkiNG witH asP.NEt

Web site and Web application Projects
Visual Studio gives you two models for ASP.NET projects: Web site projects and Web application projects.

The Web site project model was added with Visual Studio 2005. This model is designed to be very lightweight
and familiar to Web developers and designers coming to Visual Studio from other tools. It uses a folder
structure to define the contents of a project, enabling you to open a website just by pointing Visual Studio at
a folder or a virtual directory. The default deployment model uses dynamic compilation whereby VB source
files are deployed along with markup and other content files. Alternatively, the project can be precompiled,
which creates an assembly per folder or an assembly per page depending on settings passed to the complier.
You can create a new website by selecting File ➪ New ➪ Web Site from the main menu in Visual Studio.

The Web application project model is very similar to other project types. The structure is based on a project
file (.vbproj) and all VB code in the project compiles into a single assembly. To deploy, the assembly along
with markup and static content files are copied to the server. You can create a new Web application project
by selecting File ➪ New ➪ Project from the main menu in Visual Studio.

asP.neT application folders
ASP.NET 2.0 added a set of special folders that have specific meaning to ASP.NET applications. By using these
folders, you can have your code automatically compiled for you, your application themes accessible throughout
your application, and your globalization resources available whenever you need them. The following sections
show how these defined folders work. For additional information you can visit the ASP.NET Web Site Layout
page on MSDN (http://msdn.microsoft.com/en-us/library/ex526337.aspx).

\app_Code folder (Web site Projects only)
The \App_Code folder is meant to store your classes, .wsdl files, and typed data sets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the \App_Code folder is that when you place something inside it, Visual Studio automatically detects
this and compiles it if it is a class (such as a .vb file), automatically creates your XML Web service proxy
class (from the .wsdl file), or automatically creates a typed data set for you from your .xsd files.

\app_Data folder
The \App_Data folder holds the data stores used by the application. It is a good spot to centrally store all
the data stores your application might use. The \App_Data folder can contain Microsoft SQL Express files
(.mdf files), Microsoft Access files (.mdb files), XML files, and more.

The user account utilized by your application has read and write access to any of the files contained within
the \App_Data folder. By default, this is the ASP.NET account. Another reason to store all your data files
in this folder is that much of the ASP.NET system — from the membership and role management systems
to the GUI tools such as the ASP.NET MMC snap-in, the new IIS Manager, and the ASP.NET Web Site
Administration Tool — is built to work with the \App_Data folder.

\app_Themes folder
Themes are a way of providing a common look and feel to your site across every page. You implement
a theme by using a .skin file, CSS files, and images used by the server controls of your site. All these
elements can make a theme, which is then stored in the \App_Themes folder of your solution. By storing
these elements within the \App_Themes folder, you ensure that all the pages within the solution can take
advantage of the theme and easily apply its elements to the controls and markup of the page.

\app_Globalresources folder
Resource files are string tables that can serve as data dictionaries for your applications when they require
changes to content based on things such as changes in culture. You can add Assembly Resource files (.resx)

to the \App_GlobalResources folder, and they are dynamically compiled and made part of the solution for
use by all your .aspx pages in the application.

\app_localresources
Even if you are not interested in constructing application-wide resources using the \App_GlobalResources
folder, you may want resources that can be used for a single .aspx page. You can do this very simply by
using the \App_LocalResources folder.

Add page-specific resource files to the \App_LocalResources folder by constructing the name of the .resx
file in the following manner:

 ➤ Default.aspx.resx

 ➤ Default.aspx.fi.resx

 ➤ Default.aspx.ja.resx

 ➤ Default.aspx.en-gb.resx

\app_Webreferences
The \App_WebReferences folder is a new name for the Web References folder used in earlier versions of
ASP.NET. Using the \App_WebReferences folder, you have automatic access to the remote Web services
referenced from your application.

\app_Browsers
The \App_Browsers folder holds .browser files, which are XML files used both to identify the browsers
making requests to the application and to understand the capabilities of these browsers. You can find
a list of globally accessible .browser files at C:\Windows\Microsoft.NET\Framework\v4.0.21006\
CONFIG\Browsers. If you want to change any part of these default browser definition files, just copy the
appropriate .browser file from the Browsers folder to your application’s \App_Browsers folder and change
the definition.

Web server options
ASP.NET gives you several options to host your Web projects. The two most popular by far are IIS and
the ASP.NET Development Server (also known as Cassini) that comes with Visual Studio. The ASP.NET
Development Server is lightweight and convenient but it only allows you to run and test pages locally,
and it does not include all the features of IIS. This is the default server for both Web site and Web
application projects.

The mechanism used to select which server will be used depends on the project type. For Web site projects,
you can choose in the New Web Site dialog by selecting an option from the Web Location drop-down.
Selecting File System will use the development server, while selecting HTTP will use IIS.

For Web application projects you can set which server to use after the project has been created. This is
done through the Web tab of the project properties. You can even switch back and forth, enabling you to
do most of your development with the development server but switching to IIS when you want to test in an
environment closer to production.

Building asP.neT aPPlicaTions using WeB forms
ASP.NET offers two models for building Web applications: Web Forms and ASP.NET MVC (or just MVC
for short). Web Forms has been around since .NET 1.0, and MVC was added with .NET 3.5 SP1 in late
2007. MVC is covered in detail in Chapter 23 so this chapter and the next focus on Web Forms.

Building asP.neT applications Using Web forms ❘ 723

724 ❘ chaPTer 21 woRkiNG witH asP.NEt

Pages, forms, controls, and events
When viewed as a whole, Web Forms is an abstraction that enables you to develop an ASP.NET application
in almost exactly the same way you would develop a Windows Forms (or Classic VB) application. You build
pages by dragging and dropping controls on a design surface, you set properties of those controls though
the Properties window, you add event handlers by double-clicking the controls, and you have separation
between the code generated by the designer and the code you write.

As you will see, this abstraction can be a little leaky, but on the whole it makes the transition from building
client applications to building Web applications much more inviting than it was before .NET.

server Controls
ASP.NET provides two distinct types of controls: HTML controls and Web server controls. Each type of
control is quite different; and as you work with ASP.NET, you will see that much of the focus is on the Web
server controls. This does not mean that HTML server controls have no value. They do provide you with
many capabilities — some that Web server controls do not.

If you are wondering which is the better control type to use, it depends on what you are trying to achieve.
HTML server controls map to specific HTML elements. You can place an HtmlTable server control on your
ASP.NET page that works dynamically with a <table> element. On the other hand, Web server controls
map to specific functionality that you want on your ASP.NET pages. This means an <asp:Panel> control
might use a <table> or an <IFrame> element — it depends on the capability of the requesting browser.

The following list summarizes some advice regarding when to use HTML server controls and when to use
Web server controls:

Use HTML server: ➤

When converting traditional ASP 3.0 Web pages to ASP.NET Web pages and speed of com- ➤

pletion is a concern. It is a lot easier to change your HTML elements to HTML server con-
trols than it is to change them to Web server controls.

When you prefer a more HTML-type programming model ➤

When you want to explicitly control the code that is generated for the browser ➤

Use Web server ➤

When you require a richer set of functionality to achieve complicated page requirements ➤

When you are developing Web pages that will be viewed by a multitude of browser types and ➤

therefore require different code based upon these types

When you prefer a more Visual Basic–type programming model that is based on the use of ➤

controls and control properties

You have a couple of ways to use these controls to construct pages. You can use tools that enable you to
visually drag and drop controls onto a design surface or you can work with server controls directly in the
markup for the page.

To experience working with a page you can follow along with the instructions below or you can examine
the sample project included with the book. The instructions below have you working with a single page over
several steps while the sample project has a page including the work done up to the end of each step.

Create a folder named BasicWebForms somewhere in your file system. This folder will be used to store the
files that make up the sample Web site we are about to build. Open Visual Studio 2010 and select File ➪
New ➪ Web Site. In the New Web Site dialog that comes up, select the Empty Web Site template, click the
Browse button to navigate to the folder you just created and then click the Open button and the OK button
to create the Web site (see Figure 21-1). Then create a page by right-clicking on the project and selecting Add
New Item, selecting the Web Forms item template, setting the Name to Default.aspx (see Figure 21-2).

In the sample application, Step01-ServerControls.aspx contains all the code and markup you will add in
this section.

With the project created, we can return to the discussion of controls. To use the drag-and-drop technique
to build your page, click the Design or Split tab at the bottom of the design area in the IDE. When either of
these views is active, you can drag and drop controls from the Toolbox onto the design surface, or you can
place the cursor in the location where you want the control to appear and then double-click the control in
the Toolbox (see Figure 21-3).

figure 21-1

figure 21-2

Building asP.neT applications Using Web forms ❘ 725

726 ❘ chaPTer 21 woRkiNG witH asP.NEt

You also can work directly in the markup. Because many developers prefer this, it is the default view of
a page. Hand-coding your own ASP.NET pages may seem to be a slower approach than simply dragging
and dropping controls onto a design surface, but it isn’t as slow as you might think. Many of the same
productivity features available when editing Visual Basic code, such as IntelliSense and Code Snippets, are
also available when editing page markup. Also, like Design view, the Source view enables you to drag and
drop controls from the Toolbox into the markup itself (see Figure 21-4).

figure 21-4

figure 21-3

Whether you are in Design view or Source view, you can highlight a control to edit its properties in the
Properties window. Changing the properties will change the appearance or behavior of the highlighted control.
Because all controls inherit from a specific base class (WebControl), you can highlight multiple controls at
the same time and change the base properties of all the controls at once by holding down the Ctrl key as you
make your control selections.

Use the techniques described above to add controls to Default.aspx so that it looks like Figure 21-5 in split
view. This is a simple form that will allow users to enter their name and e-mail address and submit them
to some process by clicking a Submit button. The markup for the body of the page should look something
like this:

<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Name: "></asp:Label>
 <asp:TextBox ID="NameTextBox" runat="server" Width="200px"></asp:TextBox>

 <asp:Label ID="Label2" runat="server" Text="Email: "></asp:Label>
 <asp:TextBox ID="EmailTextBox" runat="server" Width="200px"></asp:TextBox>

 <asp:Button ID="SubmitButton" runat="server" Text="Submit" />

 <asp:Label ID="ResultsLabel" runat="server" Text="Label"></asp:Label>
 </div>
 </form>
</body>

Code snippet from Step01-ServerControls.aspx

figure 21-5

Building asP.neT applications Using Web forms ❘ 727

728 ❘ chaPTer 21 woRkiNG witH asP.NEt

events
ASP.NET Web Forms uses an event-driven model similar to that used with Windows Forms. Developers
can handle events generated by the page or the controls that appear on the page. For example, the code to
handle the Click event of the Submit button would look like this:

Protected Sub SubmitButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 Handles SubmitButton.Click
 'Code actions here
End Sub

The key difference between ASP.NET Web Forms events and those of Windows Forms is what happens
when an event occurs. The objects that make up a Windows Form exist as long as the form; thus, they
maintain state across user interactions. Because of the stateless model of the Web, the objects that make up
the page (in the sample project that means the page, the labels, the text boxes, and the button) only live long
enough to generate the markup for that page. Once a request is complete and the final markup has been sent
to the client browser, the objects that comprise the page are orphaned and they await garbage collection.

Since the original objects are no longer available, new objects will need to be created for the event code to
run. Therefore, when a user interaction triggers a server-side event, a request is sent to the server, which
includes information about the event; the page and the control objects are created on the server; the internal
state of these objects is set using information passed in the request; the event handler executes; and an
updated version of the page is sent back to the client browser. This process is called a postback.

The code for an event handler can use the traditional ASP style and be placed inline in the same page as
your markup, as shown here:

<script runat="server">
 Protected Sub SubmitButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 Handles SubmitButton.Click
 'Code actions here
 End Sub
</script>

However, the more common approach is to use a code-behind file (sometimes called a code-beside file). The
idea of using the code-behind model is to separate the business logic and presentation logic into their own files.
This makes it easier to work with your pages, especially if you are working in a team environment where visual
designers work on the UI of the page and coders work on the business logic that sits behind the presentation
pieces. The code-behind file is associated with the ASPX file through attributes of the Page directive. Note that the
Page directive will differ slightly depending on whether you are using the Web site or Web application project type.

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="Default.aspx.vb" Inherits="BasicWebForms._Default" %>

How do you hook up these events for server controls? Again, the model is similar to that seen in Windows
Forms. You can double-click a control in the Design view to add the handler for the default event for that
control, you can use Event view in the Properties window (see Figure 21-6), or you can use the drop-downs
at the top of the Code Editor (see Figure 21-7).

figure 21-6 figure 21-7

In the sample application, Step02-Events.aspx is the completed version of the page up to the end of this
section.

Add an event handler for the Click event of the Submit button. In the event handler show the values for the
name and e-mail entered by the user in the Result label. The code shown here will accomplish this:

Protected Sub SubmitButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 Handles SubmitButton.Click
 ResultsLabel.Text = String.Format("You entered Name: {0} and Email: {1}",
 NameTextBox.Text, EmailTextBox.Text)
End Sub

Code snippet from Step02-Events.aspx.vb

Figure 21-8 shows the page before the Submit button is clicked and Figure 21-9 shows the page after.

figure 21-8

Building asP.neT applications Using Web forms ❘ 729

figure 21-9

Page life Cycle
In addition to handling the events of controls, you will often want to handle the events raised during the life
cycle of the page. This enables you to tailor the generation of the page to suit your needs.

730 ❘ chaPTer 21 woRkiNG witH asP.NEt

Here is a list of the commonly used events in the page life cycle. Additional events are possible, but those are
primarily used by developers creating custom server controls.

 1. PreInit

 2. Init

 3. InitComplete

 4. PreLoad

 5. Load

 6. LoadComplete

 7. PreRender

 8. SaveStateComplete

 9. Unload

Of these, the most frequently used is the Load event, which is generally used to initialize the properties of
the page and its child controls:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load
 ' Retrieve data from a database or service
 ' Use data to populate the properties of controls
End Sub

In the sample application, Step03-PageLifecycle.aspx is the completed version of the page up to the end
of this section.

Go back to your application and add a drop-down list to enable users to enter the state in which
they live:

<asp:Label ID="Label3" runat="server" Text="State: "></asp:Label>
<asp:DropDownList ID="StateDropDown" runat="server" Width="200px">
</asp:DropDownList>

Code snippet from Step03-PageLifecycle.aspx

In the Load event for the page, we’ll populate this control with a few state names. We’ll also update the
Submit button’s Click event handler to output the selected state:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load
 ResultsLabel.Text = String.Empty
 StateDropDown.Items.Add("New York")
 StateDropDown.Items.Add("California")
 StateDropDown.Items.Add("Florida")
End Sub

Protected Sub SubmitButton_Click(ByVal sender As Object, ByVal e As EventArgs)
 Handles SubmitButton.Click
 ResultsLabel.Text = String.Format(
 "You entered Name: {0}, Email: {1}, and State: {2}",
 NameTextBox.Text, EmailTextBox.Text, StateDropDown.Text)
End Sub

Code snippet from Step03-PageLifecycle.aspx.vb

Running the sample now seems to work correctly, but if you inspect the items in the State drop-down after
clicking the Submit button at least once, you’ll notice that they appear multiple times (see Figure 21-10).
It seems that the values in the control are being persisted across page requests and that the code in the
Page_Load event handler is adding to the existing items instead of populating the item collection
from scratch.

figure 21-10

Viewstate
As previously mentioned, the Page object and each of its child controls are constructed on each request. The
ASP.NET team needed a way to persist some of the properties of the controls across postbacks to maintain
the illusion that pages were living across requests. What they came up with is a somewhat ingenious trick
called ViewState.

The properties that need to be persisted across calls are packaged up and encoded and then placed in a
hidden field within the page. When a postback occurs, these values are unpackaged and placed into the
properties of the newly created server controls. The ViewState for a page looks something like this:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/
wEPDwUKMjAxNDUzMTQ4NA9kFgICAw9kFgQCEQ8QZA8WA2YCAQICFgMQBQhOZXcgWW9yawUI
TmV3IFlvcmtnEAUKQ2FsaWZvcm5pYQUKQ2FsaWZvcm5pYWcQBQdGbG9yaWRhBQdGbG9yaWRhZ2Rk
AhUPDxYCHgRUZXh0ZWRkZFU1smgJJtYR8JfiZ/9yASSM5EIp" />

ViewState can be turned off at the page or the control level via the EnableViewState property. The ASP
.NET team has gone to great lengths to keep the size of ViewState as small as possible but it still needs to be
monitored and managed. Unchecked, ViewState can get large enough to affect the load times of your pages.

With these facts in mind, a simple adjustment is all that is required to address the issue with the sample
project. In the Page_Load event handler, we need to check if the current request is a postback. If it is, the
items will be populated automatically from the ViewState; otherwise, we need to execute our code to get
the items into the control:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load
 ResultsLabel.Text = String.Empty
 If Not Me.IsPostBack Then
 StateDropDown.Items.Add("New York")
 StateDropDown.Items.Add("California")
 StateDropDown.Items.Add("Florida")
 End If
End Sub

Code snippet from Step04-ViewState.aspx.vb

Now, no matter how many times you click the button, the list will have the proper number of items.

Building asP.neT applications Using Web forms ❘ 731

732 ❘ chaPTer 21 woRkiNG witH asP.NEt

In the sample application, Step04-ViewState.aspx is the completed version of the page up to this point.

field Validation
Validating user input is important in two ways: You want to effectively communicate to users that they have
entered invalid data, and you want to prevent a malicious user from compromising your application (via a SQL
injection attack, for example). This process can be particularly tricky with Web applications, as you want to do as
much validation as possible on the client side so that users don’t have to wait for a postback to see potential issues.

Fortunately, ASP.NET Web Forms include a set of server controls that handle common validation needs,
including checking for required fields, checking the type of input data, range checking, field comparison,
and data validation by regular expression. By adding these controls to your page and setting the required
properties, the ASP.NET Framework will add code to validate input on both the client side and the server side.

The key properties common to the validation controls are as follows:

 ➤ ControlToValidate — The control whose state will be validated

 ➤ Text — The message to show beside the control

 ➤ ErrorMessage — Detailed information to show in a summary

 ➤ SetFocusOnError — Move the focus to the target control when invalid

In addition to the controls that perform validation, a ValidationSummary control will display a summary
of the appropriate error messages when the user attempts to submit invalid values.

Continuing with your project, add validation controls to ensure that the user enters a value for the Name
and E-mail fields (using the RequiredFieldValidator) and that the e-mail address is in the proper format
(using the RegularExpressionValidator). Figure 21-11 shows the Design view of the page. The updated
markup is shown here:

<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" Text="Name: "></asp:Label>
 <asp:TextBox ID="NameTextBox" runat="server" Width="200px"></asp:TextBox>

 <asp:RequiredFieldValidator
 ID="RequiredFieldValidator1" runat="server"
 ControlToValidate="NameTextBox"
 ErrorMessage="You must enter a name"
 SetFocusOnError="True">*</asp:RequiredFieldValidator>

 <asp:Label ID="Label2" runat="server" Text="Email: "></asp:Label>
 <asp:TextBox ID="EmailTextBox" runat="server" Width="200px"></asp:TextBox>

 <asp:RequiredFieldValidator
 ID="RequiredFieldValidator2" runat="server"
 ControlToValidate="EmailTextBox"
 ErrorMessage="You must enter an email address"
 SetFocusOnError="True">*</asp:RequiredFieldValidator>

 <asp:RegularExpressionValidator
 ID="RegularExpressionValidator1" runat="server"
 ControlToValidate="EmailTextBox"
 ErrorMessage="The email address has an invalid format"
 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">
 *
 </asp:RegularExpressionValidator>

 <asp:Label ID="Label3" runat="server" Text="State: "></asp:Label>
 <asp:DropDownList ID="StateDropDown" runat="server" Width="200px">
 </asp:DropDownList>

 <asp:Button ID="SubmitButton" runat="server" Text="Submit" />

 <asp:Label ID="ResultsLabel" runat="server" Text="Label"></asp:Label>
 <asp:ValidationSummary ID="ValidationSummary1" runat="server" />
 </div>
 </form>
</body>

Code snippet from Step05-Validation.aspx

figure 21-11

figure 21-12

Figure 21-12 shows the page after an attempt to submit with an invalid name and an improperly formatted
e-mail address.

In the sample application, Step05-Validation.aspx is the completed version of the page.

Building asP.neT applications Using Web forms ❘ 733

734 ❘ chaPTer 21 woRkiNG witH asP.NEt

Compilation
One of the big advantages that ASP.NET has over other Web development tools is that it uses compiled
code. You can observe the effects of the compilation process when you navigate to a page the first time after
an update; it will take noticeably longer because the page is being parsed and compiled. When an ASP.NET
page is hit for the first time, the request is passed to the ASP.NET page parser, which takes the markup
for the page and converts it into a VB class (see Figure 21-13). ASP.NET then compiles the class (and the
code-behind if you are using a Web site project) and caches the DLL in the Framework folders. Subsequent
requests for the page will use the compiled code from the cached DLL. If an updated version of the page is
deployed, the dynamic compilation process will be repeated.

Parse

ASP.NET
Engine

Generate

Generated
Page
Class

Compile

Code-
Behind
Class

.ASPX
File

Page
Class

Instantiate,
process, and

render

Request

Response

figure 21-13

If you are using the Web site project model, ASP.NET allows you to precompile your site (both Web pages
and code) prior to deployment, thus avoiding the cost of dynamic compilation. This is discussed further in
the next section.

Deployment
Like many other areas of .NET and Visual Studio, you have several options when it is time to deploy your
website to the server on which it will be hosted.

If you have network access to the server, you can just copy the required files using Windows Explorer. If you
are using the Web site project model and you haven’t precompiled your site, you copy the VB source code
files to the server; otherwise, you will not.

The next option (traditionally the most common) is to copy the files via FTP. Several available programs
make this easy. If you are using the Web site project model, you can use the Copy Web Site utility built into
Visual Studio. Just select Website ➪ Copy Web Site from the main menu.

Another option for those using the Web site project model is the Publish Web Site utility. This utility
precompiles the content of the website and then copies the output to a directory or server location that you
specify. You can publish directly as part of the precompilation process or you can precompile locally and

then copy the files yourself using Windows Explorer or FTP. The Publish Web Site utility can be accessed by
selecting Build ➪ Publish Web Site from the main menu.

For those that are using Web application projects, Visual Studio 2010 adds some interesting new capabilities
when it comes to deployment: Web.config Transformations, an integrated Web Deployment Tool, and Web
One-Click Deployment. Due to space limitations, we are not going to be able to cover this topic here. For more
information, you can check out the Making Web Deployment Easier episode of the 10-4 Show on Channel 9
(http://channel9.msdn.com/shows/10-4/10-4-Episode-10-Making-Web- Deployment-Easier/).

daTa-driVen aPPlicaTions
ASP.NET provides several server controls that make it easy for you to work with data in your pages. As data
for your applications finds itself in more and more types of data stores, it can sometimes be a nightmare
to figure out how to get at and aggregate these information sets onto a Web page in a simple and logical
manner. ASP.NET data source controls are meant to work with a specific type of data store by connecting
to them and performing operations such as inserts, updates, and deletes — all on your behalf. The following
table details the data source controls included in .NET 4:

daTa source conTrol descriPTion

SqlDataSource Enables you to work with any SQL-based database, such as Microsoft SQL
Server or Oracle

AccessDataSource Enables you to work with a Microsoft Access file (.mdb)

ObjectDataSource Enables you to work with custom business objects

LinqDataSource Enables you to use LINQ to query everything — from in-memory collections to
databases

EntityDataSource Enables you to work with an Entity Data Model

XmlDataSource Enables you to work with the information from an XML source (e .g ., a file or an
RSS feed)

SiteMapDataSource Enables you to work with the hierarchical data represented in the site map file
(.sitemap)

In tandem with the data source controls, ASP.NET provides a number of server controls that you can use to
display and interact with data on a page. These controls have sophisticated two-way data-binding, enabling
you to attach to the data source controls by setting a few properties. In addition to the standard controls
such as the TextBox, ListBox, and CheckBox, there are more complex controls such as the GridView,
FormView, and ListView.

data Binding with the sqldatasource control
The instructions in this section assume you have a SQL Server 2005 or 2008 Express instance named
SqlExpress. If you have the full version of SQL Server or are using a differently named instance, you will
need to modify the connection strings shown accordingly. If you do not have SQL Server at all, the easiest
way to get the Express version is to use Microsoft’s Web Platform Installer (www.microsoft.com/web/
downloads/platform.aspx).

To explore the use of the data controls, let’s turn to Visual Studio. Create a new Web application project
named DataControls by selecting File ➪ New Project and completing the New Project dialog as shown in
Figure 21-14. Once the project has been created, add a new page named Step01-Sql.aspx.

Data-Driven applications ❘ 735

736 ❘ chaPTer 21 woRkiNG witH asP.NEt

 figure 21 - 14

 For all of the data - access examples in this chapter and the next, you will need the
Northwind database. To get this database you have two options. If you are using
SQL Express, you can use the local version included with the book ’ s sample code.
Just copy Northwind.mdb from the sample code into the App_Data folder of your
Web project. The other option, whether you are using SQL Express or the full
version of SQL Server, is to add the Northwind database to a SQL instance.
Do a search for “ Northwind and pubs Sample Databases for SQL Server 2000. ”
This should take you to www.microsoft.com/downloads/
details.aspx?familyid=06616212-0356-46a0-8da2-eebc53a68034 & displaylang=en .
Even though the download page indicates the databases are for SQL Server 2000,
they will work with newer versions of the product. Once installed, you will fi nd the
Northwind.mdf fi le in the C:\ SQL Server 2000 Sample Databases directory.

 Assuming you now have a sample database available, you can return to the Visual Studio project.
Add a SqlDataSource control from the Data tab of the Toolbox to the page created earlier. This
control is nonvisual, so it appears as a gray box on the design surface. Use the smart tag on the
 SqlDataSource control to access the Confi gure Data Source Wizard. Working through the wizard, you
must choose your data connection and then indicate whether you want to store this connection in the
 web.config fi le which is highly advisable. Figure 21 - 15 shows the confi guration process for a local
Northwind database.

Data-Driven applications ❘ 737

Within this configuration process, you also choose the table you are going to work with, and test out the
queries that the wizard generates. For this example, choose the Customers table and select every row by
checking the * check box, as shown in Figure 21-16.

figure 21-15

figure 21-16

738 ❘ chaPTer 21 woRkiNG witH asP.NEt

When the configuration process is complete, you will notice that your web.config file has changed to
include the connection string:

<configuration>

 <connectionStrings>
 <add name="NorthwindConnectionString"
 connectionString="Data Source=.\SQLEXPRESS;
 AttachDbFilename=|DataDirectory|\NORTHWND.MDF;
 Integrated Security=True;User Instance=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>
 . . .
 </system.web>
</configuration>

Code snippet from Web.config

Once you have configured the SqlDataSource control, add a GridView control to the page and connect
it to the SqlDataSource. This can be done through the GridView control’s smart tag, as shown in
Figure 21-17. You can also enable paging and sorting for the control in the same form. Finally, go back
to the smart tag and click the Auto Format link to give your GridView control a more appealing appearance
than the default provided. Choose the look and feel that best suits your mood.

figure 21-17

The code generated by the wizard (it is also how you would code it yourself) is shown here:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Step01-Sql.aspx.vb"
 Inherits="DataControls.Step01_Sql" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>SqlDataSource Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" DataKeyNames="CustomerID"
 DataSourceID="SqlDataSource1" CellPadding="4"
 ForeColor="#333333" GridLines="None">
 <AlternatingRowStyle BackColor="White" />
 <Columns>

Data-Driven applications ❘ 739

 <asp:BoundField DataField="CustomerID" HeaderText="CustomerID"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="CompanyName"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="ContactName"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="ContactTitle"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="Address" HeaderText="Address"
 SortExpression="Address" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
 SortExpression="Region" />
 <asp:BoundField DataField="PostalCode" HeaderText="PostalCode"
 SortExpression="PostalCode" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 <asp:BoundField DataField="Fax" HeaderText="Fax"
 SortExpression="Fax" />
 </Columns>
 <EditRowStyle BackColor="#2461BF" />
 <FooterStyle BackColor="#507CD1" Font-Bold="True"
 ForeColor="White" />
 <HeaderStyle BackColor="#507CD1" Font-Bold="True"
 ForeColor="White" />
 <PagerStyle BackColor="#2461BF"
 ForeColor="White" HorizontalAlign="Center" />
 <RowStyle BackColor="#EFF3FB" />
 <SelectedRowStyle BackColor="#D1DDF1"
 Font-Bold="True" ForeColor="#333333" />
 <SortedAscendingCellStyle BackColor="#F5F7FB" />
 <SortedAscendingHeaderStyle BackColor="#6D95E1" />
 <SortedDescendingCellStyle BackColor="#E9EBEF" />
 <SortedDescendingHeaderStyle BackColor="#4870BE" />
 </asp:GridView>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT * FROM [Customers]"></asp:SqlDataSource>
 </div>
 </form>
</body>
</html>

Code snippet from Step01-Sql.aspx

Looking at the markup for the SqlDataSource, notice that the SelectCommand attribute contains the query
you built when configuring the data source. Also note that the ConnectionString attribute points at a
setting placed inside the web.config file. You could put the connection string directly in the page but that
would likely make maintenance more difficult if you ever needed to make a change.

Looking now at the GridView control, you can see how easy it is to add paging and sorting capabilities. It
is simply a matter of adding the attributes AllowPaging and AllowSorting to the control and setting their
values to True (they are set to False by default):

<asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False" DataKeyNames="CustomerID"
 DataSourceID="SqlDataSource1" CellPadding="4"

740 ❘ chaPTer 21 woRkiNG witH asP.NEt

 ForeColor="#333333" GridLines="None">
 <!-- Inner content removed for clarity -->
</asp:GridView>

Code snippet from Step01-Sql.aspx

Each of the columns from the Customers table of the Northwind database is defined in the control through
the use of the <asp:BoundField> control, a subcontrol of the GridView. The BoundField control enables
you to specify the header text of the column through the use of the HeaderText attribute. The DataField
attribute actually ties the values displayed in this column to a particular value from the Customers table, and
the SortExpression attribute should use the same values for sorting — unless you are sorting on a different
value than what is being displayed.

Ultimately, when your run your page it should look similar to what is shown in Figure 21-18.

Now let’s expand upon the previous example by allowing for the editing and deletion of records that are displayed
in the GridView. If you are using the Visual Studio SqlDataSource Configuration Wizard to accomplish these
tasks, then you need to take some extra steps beyond what was shown in the preceding GridView example.

You can continue working the page created earlier.
The sample project contains a new page,
Demo02-SqlWithUpdate.aspx, with the code and
markup you are about to add.

Go back to the SqlDataSource control on the design
surface of your page and pull up the control’s smart
tag. Select the Configure Data Source option to
reconfigure the SqlDataSource control to enable the
editing and deletion of data from the Customers table
of the Northwind database.

To do this, go through the wizard again, but when you
get to the Configure the Select Statement screen click the
Advanced button. This will pull up the Advanced SQL
Generation Options dialog, shown in Figure 21-19. figure 21-19

figure 21-18

Data-Driven applications ❘ 741

As shown in this dialog, select both of the check boxes. This will instruct the SqlDataSource control to
not only handle the simple SELECT query, but also the UPDATE and DELETE queries. Press OK and then work
through the rest of the wizard.

Click the Yes button in the dialog that appears asking if you want to refresh the fields and keys used by the
GridView.

Return to the GridView control’s smart tag. You will also now find check boxes in the smart tag for editing
and deleting rows of data. Make sure both of these check boxes are checked.

Now look at what changed in the code. First, the SqlDataSource control has changed to allow for the
updating and deletion of data:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT * FROM [Customers]"
 ConflictDetection="CompareAllValues"
 DeleteCommand="DELETE FROM [Customers] WHERE ... "
 InsertCommand="INSERT INTO [Customers] ... "
 UpdateCommand="UPDATE [Customers] ... ">
 <DeleteParameters>
 <asp:Parameter Name="original_CustomerID" Type="String" />
 <asp:Parameter Name="original_CompanyName" Type="String" />
 <asp:Parameter Name="original_ContactName" Type="String" />
 <asp:Parameter Name="original_ContactTitle" Type="String" />
 <asp:Parameter Name="original_Address" Type="String" />
 <asp:Parameter Name="original_City" Type="String" />
 <asp:Parameter Name="original_Region" Type="String" />
 <asp:Parameter Name="original_PostalCode" Type="String" />
 <asp:Parameter Name="original_Country" Type="String" />
 <asp:Parameter Name="original_Phone" Type="String" />
 <asp:Parameter Name="original_Fax" Type="String" />
 </DeleteParameters>
 <InsertParameters>
 <asp:Parameter Name="CustomerID" Type="String" />
 <asp:Parameter Name="CompanyName" Type="String" />
 <asp:Parameter Name="ContactName" Type="String" />
 <asp:Parameter Name="ContactTitle" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="Region" Type="String" />
 <asp:Parameter Name="PostalCode" Type="String" />
 <asp:Parameter Name="Country" Type="String" />
 <asp:Parameter Name="Phone" Type="String" />
 <asp:Parameter Name="Fax" Type="String" />
 </InsertParameters>
 <UpdateParameters>
 <asp:Parameter Name="CompanyName" Type="String" />
 <asp:Parameter Name="ContactName" Type="String" />
 <asp:Parameter Name="ContactTitle" Type="String" />
 <asp:Parameter Name="Address" Type="String" />
 <asp:Parameter Name="City" Type="String" />
 <asp:Parameter Name="Region" Type="String" />
 <asp:Parameter Name="PostalCode" Type="String" />
 <asp:Parameter Name="Country" Type="String" />
 <asp:Parameter Name="Phone" Type="String" />
 <asp:Parameter Name="Fax" Type="String" />
 <asp:Parameter Name="original_CustomerID" Type="String" />
 <asp:Parameter Name="original_CompanyName" Type="String" />
 <asp:Parameter Name="original_ContactName" Type="String" />
 <asp:Parameter Name="original_ContactTitle" Type="String" />

742 ❘ chaPTer 21 woRkiNG witH asP.NEt

 <asp:Parameter Name="original_Address" Type="String" />
 <asp:Parameter Name="original_City" Type="String" />
 <asp:Parameter Name="original_Region" Type="String" />
 <asp:Parameter Name="original_PostalCode" Type="String" />
 <asp:Parameter Name="original_Country" Type="String" />
 <asp:Parameter Name="original_Phone" Type="String" />
 <asp:Parameter Name="original_Fax" Type="String" />
 </UpdateParameters>
</asp:SqlDataSource>

Code snippet from Step02-SqlWithUpdate.aspx

Second, additional queries have been added to the control. Using the DeleteCommand, InsertCommand, and
UpdateCommand attributes of the SqlDataSource control, these functions can now be performed just as
SELECT queries were enabled through the use of the SelectCommand attribute. As you can see, each of these
new queries has parameters that are assigned through the <DeleteParameters>, <UpdateParameters>,
and <InsertParameters> elements. Within each of these subsections, the actual parameters are defined
through the use of the <asp:Parameter> control.

Besides these changes to the SqlDataSource, only one small change has been made to the GridView
control:

<Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
 <asp:BoundField DataField="CustomerID" HeaderText="CustomerID"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="CompanyName"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="ContactName"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="ContactTitle"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="Address" HeaderText="Address"
 SortExpression="Address" />
 <asp:BoundField DataField="City" HeaderText="City"
 SortExpression="City" />
 <asp:BoundField DataField="Region" HeaderText="Region"
 SortExpression="Region" />
 <asp:BoundField DataField="PostalCode" HeaderText="PostalCode"
 SortExpression="PostalCode" />
 <asp:BoundField DataField="Country" HeaderText="Country"
 SortExpression="Country" />
 <asp:BoundField DataField="Phone" HeaderText="Phone"
 SortExpression="Phone" />
 <asp:BoundField DataField="Fax" HeaderText="Fax"
 SortExpression="Fax" />

</Columns>

Code snippet from Step02-SqlWithUpdate.aspx

The only change needed for the GridView control is the addition of a new column from which editing and
deleting commands can be initiated. This is done with the <asp:CommandField> control. From this control,
you can see that we also enabled the Edit and Delete buttons through a Boolean value. Once built and run,
your new page will look like the one shown in Figure 21-20.

Data-Driven applications ❘ 743

figure 21-20

data Binding with the linqdatasource control
It is hoped that while we were building the sample something jumped out at you as being odd or out of place.
For the vast majority of applications, accessing the database directly from the user interface is an anti-pattern.
Architectural best practices dictate that there should be one or more logical layers (e.g., data access layer,
business logic layer, service layer) between the two. In an effort to keep this book from getting so large it would
have to be sold in volumes, we will bypass the discussion of application architecture here and limit ourselves
to building a data access layer using LINQ to SQL. Once we have the model, we will build a new page that
emulates the behavior of the one we just built.

Returning to your project, create a new LINQ to SQL model called Northwind.dbml and add the
Customers table to it. Saving the model will create the NorthwindDataContext and the Customer entity we
are about to use. Create a new page named Step03-Linq.aspx and add a GridView and a LinqDataSource
to it. Build the project to ensure that the NorthwindDataContext will be visible to the LinqDataSource.
Use the LinqDataSource control’s smart tag to access the data source configuration.

The first page of the wizard allows selection of the data context. This will generally be a LINQ to SQL
model but it could also be a collection or array. Select the NorthwindDataContext (see Figure 21-21) and
click the Next button.

744 ❘ chaPTer 21 woRkiNG witH asP.NEt

You want to emulate what you did previously, so in the second page choose the values that will select all
columns from the Customers table, as shown in Figure 21-22. Click the Advanced button and enable inserts,
updates, and deletes as shown in Figure 21-23. Click the OK button to close the Advanced Options dialog
and click the Finish button to close the wizard.

figure 21-22 figure 21-23

figure 21-21

Data-Driven applications ❘ 745

Now use the smart tag on the GridView control to bind to the
LinqDataSource and to enable paging, sorting, editing, and deleting,
as shown in Figure 21-24. Also use the smart tag to Auto Format your
GridView control.

Notice that except for some minor differences in the configuration
wizard for the data source, the process of designing this page was the
same as that used for the SqlDataSource. Additionally, when you run
the page you should see the same content and behavior as before. This
consistency of design is one of the big advantages of the data source
controls.

Taking a look at the markup for the LinqDataSource, you can see that it
is quite simple:

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="DataControls.NorthwindDataContext" EnableDelete="True"
 EnableInsert="True" EnableUpdate="True" EntityTypeName="" TableName="Customers">
</asp:LinqDataSource>

Code snippet from Step03-Linq.aspx

Let’s extend it a little bit by adding the capability to filter the customers by country. In the sample project,
the filter is added in a new page named Step04-LinqWithParameter.aspx. You can continue working
with the page you created earlier.

Run the Configure Data Source Wizard for the LinqDataSource. In the second page, click the Where button and
enter the options shown in Figure 21-25 to add the filter based on a parameter coming from the query string.

figure 21-25

figure 21-24

Taking another look at the markup for the LinqDataSource, you can see that there is now a Where attribute
representing your filter, and a QueryStringParameter that takes the name of the country on which to filter:

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="DataControls.NorthwindDataContext" EnableDelete="True"
 EnableInsert="True" EnableUpdate="True" EntityTypeName=""
 TableName="Customers" Where="Country == @Country">
 <WhereParameters>

746 ❘ chaPTer 21 woRkiNG witH asP.NEt

 <asp:QueryStringParameter DefaultValue="Canada" Name="Country"
 QueryStringField="Country" Type="String" />
 </WhereParameters>
</asp:LinqDataSource>

Code snippet from Step04-LinqWithParameter.aspx

Run the page and add “?Country=Mexico” to the end of the URL to set the query string parameter. You
should see a page similar to the one shown in Figure 21-26.

data Binding with the objectdatasource control
Passing the country on the query string works fine, but what if you want to allow the user to select the country
in a drop-down instead? The Northwind database does not have a Country table, so you need to get the possible
values using a query. Specifically, you need to find the distinct set of country names from the Customers table.

You can easily add a method to the NorthwindDataContext to perform the query and return the names of the
countries. Right-click on Northwind.dbml in the Solution Explorer, select View Code, and add the following:

Public Function GetCountryNames() As String()
 Dim query = From cust In Customers
 Select cust.Country Distinct
 Order By Country

 Return query.ToArray()
End Function

Code snippet from Northwind.vb

With this method in place, you can now add a DropDown control and bind it to the method using the
ObjectDataSource. The ObjectDataSource enables you to use any object that has methods that expose
standard CRUD functionality as a data source. Add a DropDown control above the GridView and add an
ObjectDataSource control to the bottom of the page. Use the smart tag on the ObjectDataSource to open
the Configure Data Source Wizard.

On the first page, choose the NorthwindDataContext as the business object that will supply the data, as
show in Figure 21-27.

figure 21-26

Data-Driven applications ❘ 747

figure 21-27

figure 21-28

In the second page you can set the methods of the business object that will be called when attempting to
select, insert, update or delete. You don’t need to update data, so only choose a select method. On the Select
tab, choose GetCountryNames and click the Finish button to complete the wizard (see Figure 21-28).

748 ❘ chaPTer 21 woRkiNG witH asP.NEt

Configuring the DropDown control to bind to the ObjectDataSource gets a little tricky when using an
array of simple types (i.e., string, integers, dates), as the Choose Data Source Wizard (available via the
smart tag) assumes that you want to bind to properties of the objects being returned by the select method,
not the objects themselves. For example, if you run the wizard to bind to the array of strings returned by
GetCountryNames, it will try to get you to display the length of each string (see Figure 21-29)

figure 21-29

In this case, we’ll go a little bit more “old school”
and set the properties of the DropDown control
using the Properties window, rather than use a
wizard in the designer. Hooking up the data binding
just requires that you set the DataSourceID
attribute to ObjectDataSource1. You also need
to set the AutoPostBack property to True so that
the page will rebind when a new country name is
selected.

Finally, you want to update the LinqDataSource
to use the value coming from the DropDown
control instead of one being passed on the
query string. Open the Configure Data Source
Wizard for the LinqDataSource control, and
on the second page click the Where button. In
the dialog that pops up, remove the existing
expression and add a new one using the values
shown in Figure 21-30.

figure 21-30

figure 21-31

summary
This chapter covered a lot of ground. It discussed many aspects of ASP.NET applications as a whole and
the options you have when building and deploying these applications. With the skills learned in this chapter
you should be able to build and deploy simple applications that allow you to display and edit data from a
database. For many of you, these skills will be enough to solve a good deal of the tasks assigned to you.

However, that doesn’t mean there isn’t a lot more to cover. The next chapter delves into some of the more
advanced features available to you when building Web applications with ASP.NET and WebForms.

summary ❘ 749

When you run the project you should see only the customers from the country selected in the drop-down.
The page should look something like the one show in Figure 21-31.

22
 asP.neT advanced features

 WhaT you Will learn in This chaPTer

 The purpose and use of master pages ➤

 Quickly and easily adding navigation to your site ➤

 Securing access to your site with membership and roles ➤

 Adding persistent profi les for users of your site ➤

 Working with the ASP .NET provider model ➤

 Adding richness and interactivity with Microsoft Ajax ➤

 ASP.NET is an exciting technology. It enables the creation and delivery of remotely generated
applications (Web applications) accessible via a simple browser — a container that many are
rather familiar with. The purpose of Web - based applications (in our case, ASP.NET applications)
is to deliver only a single instance of the application to the end user over HTTP. This means
that the end users viewing your application will always have the latest version at their disposal.
Because of this, many companies today are looking at ASP.NET to not only deliver the company ’ s
website, but also to deliver some of their latest applications for their employees, partners, and
customers.

 The last chapter looked at some of the basics of ASP.NET. This chapter continues that exploration,
showing you some additional and exciting technologies, including master pages, navigation,
personalization, AJAX and more.

 masTer Pages
 Many Web applications are built so that each page of the application has a similar look and feel; and
there may be common page elements such as a header, navigation sections, advertisements, footers,
and more. Most people prefer uniformity in their applications in order to give end users a consistent
experience across pages.

 ASP.NET 2.0 introduced a feature called master pages that enable you to create a template (or a set
of templates) that defi ne the common elements for a set of pages. Once a master page is created, you

752 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

can then create a content page (with an .aspx
extension), and that defines the content specific to a
single page. The content page and the master page
are associated by attributes in the Page directive
so ASP.NET can combine the two files into a single
Web page to display in a browser (see Figure 22-1).

The following sections describe how you make this
work, beginning with the master page.

creating a master Page
The first step is to create a template that will end
up being your master page. You can build a master
page using any text editor (such as Notepad), but it
is far easier to use Visual Studio.

The sample code included with the book contains
a Web site project named MasterPages. We will use
this project to explore the use of master pages in
ASP.NET. If you wish to follow along, create the
project and add a master page by right-clicking on
the project in the Solution Explorer, and selecting
Add New Item. In the Add New Item dialog is an
option to add a master page to the solution, as
shown in Figure 22-2.

Master Page
MyMaster.master

Content Page
Default.aspx

CombinedPage
Default.aspx

M C

MC

figure 22-1

figure 22-2

The options available when creating a master page are quite similar to those when creating a standard
.aspx page. You can create master pages to be inline or you can have master pages that utilize the code-
behind model. If you wish to use the code-behind model, then make sure that you have the Place code in

a separate file check box checked in the dialog — otherwise, leave it blank. Creating an inline master page
produces a single .master file. Using the code-behind model produces a .master file in addition to a
.master.vb file. The master page in the sample project was created to use the inline model. You also have
the option to nest your master page within another master page by selecting the Select master page field.

A master page should be built so that it contains one or more ContentPlaceHolder controls. The content
for these controls will be “filled in” by the associated content pages. The master page item template includes
two place holders: one for the main content of the page and one for the page head.

<%@ Master Language="VB" %>

<!DOCTYPE html PUBLIC ... >

<script runat="server">

</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">

 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Update the master page so that it contains three place holder controls. Leave the existing control inside the
head tag. In the body, create a table with the other two place holders contained within. The modified master
page should look similar to the following:

<%@ Master Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
</script>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>My Company Master Page</title>
 <asp:ContentPlaceHolder id="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <table cellpadding="3" border="1">
 <tr bgcolor="silver">
 <td colspan="2"><h1>My Company Home Page</h1></td>
 </tr>
 <tr>
 <td>
 <asp:contentplaceholder id="ContentPlaceHolder1"
 runat="server">

Master Pages ❘ 753

754 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

 </asp:contentplaceholder>
 </td>
 <td>
 <asp:contentplaceholder id="ContentPlaceHolder2"
 runat="server">
 </asp:contentplaceholder>
 </td>
 </tr>
 <tr>
 <td colspan="2">Copyright 2010 - My Company</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Code snippet from MasterPage.master

The first thing to notice is the <% Master %> directive at the top of the page instead of the standard
<% Page %> directive. This specifies that this is a master page and cannot be navigated to in the browser. In
this case, the Master directive simply uses the Language attribute and nothing more, but it has a number of
other attributes at its disposal to fine-tune the behavior of the page.

The idea is to code the master page as you would any other .aspx page. This master page contains a simple
table and three areas that are meant for the content pages. It is only in these three specified areas that
content pages are allowed to inject content into the dynamically created page (as shown shortly).

The nice thing about working with master pages is that you are not limited to working with them in the
Source view of the IDE; Visual Studio also enables you to work with them in Design view, shown in
Figure 22-3. In this view, you can work with the master page by simply dragging and dropping controls
onto the design surface, just as you would with any typical .aspx page.

figure 22-3

creating the content Page
Now that you have a master page you can start creating content pages associated with it. To create a content
page, right-click on the solution in the Solution Explorer and select Add New Item. Select the Web Form
template, and check the Select master page check box. The settings used to create the content page in the
sample project are shown in Figure 22-4. Clicking the Add button brings up a dialog that enables you to
select a master page to associate with this new file, as shown in Figure 22-5.

figure 22-4

figure 22-5

Master Pages ❘ 755

756 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

In this case you should only have a single master page available in the dialog, though it is possible to have as
many master pages as you wish in a single project. Select the MasterPage.master page and click OK.

The page created should have one Content control for each of the ContentPlaceHolder controls in the
selected master page:

<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPage.master" %>

<script runat="server">
</script>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="ContentPlaceHolder2" Runat="Server">
</asp:Content>

This file is quite a bit different from a typical .aspx page. First, there is none of the default HTML code,
script tags, and DOCTYPE declarations. Second, note the addition of the MasterPageFile attribute in the
Page directive. This new attribute makes the association to the master page that will be used for this content
page. In this case, it is the MasterPage.master file created earlier.

There isn’t much to show while in the Source view of Visual Studio when looking at a content page; the real
power of master pages can be seen when you work with the page in the designer by switching to the Design
or Split view (see Figure 22-6).

figure 22-6

This view shows you the entire template and the two content areas that can contain server controls. All
the grayed-out areas are off-limits and do not allow for any changes from the content page, whereas the
available areas allow you to deal with any type of content you wish. For instance, not only can you place

raw text in these content areas, you can also add anything that you would normally place into a typical
.aspx page. The page in the sample application includes a simple form as shown below. If you’re following
along you can use the Design or Source view to build a similar user interface. If you want to build an
identical interface you will need to get the wrox.jpg file from the sample code included with the book and
put it in a folder named Images in your project.

<%@ Page Title="" Language="VB" MasterPageFile="~/MasterPage.master" %>

<script runat="server">
 Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = "Hello " & TextBox1.Text
 End Sub
</script>

<asp:Content ID="Content1" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
 Enter in your name:

 <asp:TextBox ID="TextBox1" Runat="server"></asp:TextBox>
 <asp:Button ID="Button1" Runat="server" Text="Submit" OnClick="Button1_Click" />

 <asp:Label ID="Label1" Runat="server"></asp:Label>

</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="ContentPlaceHolder2" Runat="Server">
 <asp:Image ID="Image1" Runat="server" ImageUrl="~/Images/wrox.jpg" />
</asp:Content>

Code snippet from Default.aspx

Just as with typical .aspx pages, you can create any event handlers you may need for your content page.
This particular example uses a button-click event for when the end user submits the form. Running this
example produces the results shown in Figure 22-7.

figure 22-7

Master Pages ❘ 757

758 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

Providing default content in your master Page
Earlier, you saw how to use a basic ContentPlaceHolder control. In addition to using it as shown, you can
also create ContentPlaceHolder controls that contain default content:

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 Here is some default content!
</asp:ContentPlaceHolder>

For default content, you can again use whatever you want, including any other ASP.NET server controls.
A content page that uses a master page containing one of these ContentPlaceHolder controls can then
either override the default content — by just specifying other content (which overrides the original content
declared in the master page) — or keep the default content contained in the control.

naVigaTion
Developers rarely build single-page Web applications. Instead, applications are usually made up of multiple
pages that are related to each other in some fashion. Some applications have a workflow through which
end users can work from page to page, while other applications have a navigation structure that allows for
free roaming throughout the pages. Sometimes the navigation structure of a site becomes complex, and
managing this complexity can be rather cumbersome.

ASP.NET includes a way to manage the navigational structure of your Web applications by defining it
in an XML file and then binding the XML data to server controls focused on navigation. You maintain
your navigational structure in a single file, and the data-binding mechanism ensures that any changes are
instantaneously reflected throughout your application.

The sample projects included with the book contain a Web site project named Navigation. You can open
this project and follow along with the existing code or you can build your own project as we go.

The first step in working with the ASP.NET navigation system is to create a sitemap file, the XML file that
will contain the complete site structure. For instance, suppose you want the following navigation:

Home
 Books
 Magazines
 U.S. Magazines
 European Magazines

This site structure has three levels to it, with multiple items in the lowest level. You can reflect this in the
web.sitemap file as follows:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="default.aspx" title="Home"
 description="The site homepage">
 <siteMapNode url="books.aspx" title="Books"
 description="Books from our catalog" />
 <siteMapNode url="magazines.aspx" title="Magazines"
 description="Magazines from our catalog">
 <siteMapNode url="magazines_us.aspx" title="U.S. Magazines"
 description="Magazines from the U.S." />
 <siteMapNode url="magazines_eur.aspx" title="European Magazines"
 description="Magazines from Europe" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Code snippet from Web.sitemap

To create a sitemap file in Visual Studio, go to the Add New Item dialog and select the Site Map option.
You can place the preceding content in this file. To move a level down in the hierarchy, nest <siteMapNode>

elements within other <siteMapNode> elements. A <siteMapNode> element can contain several different
attributes, as defined in Table 22-1.

TaBle 22-1: siteMapNode Element Attributes

aTTriBuTe descriPTion

Title Provides a textual description of the link . The String value used here is the text used
for the link .

Description This attribute not only reminds you what the link is for, it is also used for the ToolTip
attribute on the link . The ToolTip attribute is the yellow box that appears next to the
link when the user hovers the cursor over the link for a couple of seconds .

Url Describes where the file is located in the solution . If the file is in the root directory, then
simply use the filename, such as default.aspx . If the file is located in a subfolder,
then be sure to include the folders in the String value used for this attribute, e .g .,
MySubFolder/MyFile.aspx .

Roles If ASP .NET security trimming is enabled, you can use the Roles attribute to define which
roles are allowed to view and click the provided link in the navigation .

figure 22-8

using the sitemapPath server control
One of the available server controls that can bind to a site map is the SiteMapPath control. This control
provides a popular structure found on many Internet websites. Sometimes called breadcrumb navigation,
this feature is simple to implement in ASP.NET.

To see an example of this control at work, we’ll need a page that would be at the bottom of the site map
structure. Within the project that contains your site map file, create a Web Form named magazines_us.aspx
(this page name is included in the site map file) and drag and drop a SiteMapPath control from the
Navigation section of the Toolbox onto it. This control’s markup looks as follows:

<asp:SiteMapPath ID="SiteMapPath1" runat="server"></asp:SiteMapPath>

What else do you need to do to get this control to work? Nothing. Simply build and run the page to see the
results shown in Figure 22-8.

The SiteMapPath control defines the end user’s place in the application’s site structure. It shows the current
page the user is on (U.S. Magazines), as well as the two pages above it in the hierarchy.

The SiteMapPath control requires no DataSource control, as it automatically binds itself to any .sitemap
file it finds in the project; nothing is required on your part to make this happen. The SiteMapPath’s smart

navigation ❘ 759

760 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

tag enables you to customize the control’s appearance too, so you can produce other results, as shown
in Figure 22-9.

figure 22-9

The code for this version of the SiteMapPath control is as follows:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" Font-Names="Verdana"
 Font-Size="0.8em" PathSeparator=" : " >
 <CurrentNodeStyle ForeColor="#333333" />
 <NodeStyle Font-Bold="True" ForeColor="#284E98" />
 <PathSeparatorStyle Font-Bold="True" ForeColor="#507CD1" />
 <RootNodeStyle Font-Bold="True" ForeColor="#507CD1" />
</asp:SiteMapPath>

Code snippet from magazines_us.aspx

This example illustrates that a lot of style elements and attributes can be used with the SiteMapPath
control. Many options at your disposal enable you to create breadcrumb navigation that is unique.

menu server control
Another navigation control enables end users of your application to navigate throughout the pages based
upon information stored within the web.sitemap file. The Menu server control produces a compact
navigation system that pops up sub-options when the user hovers the mouse over an option. The result of
the Menu server control when bound to the site map is shown in Figure 22-10.

figure 22-10

To see this, examine the Web Form named magazines_eur.aspx. It has both a Menu and a SiteMapDataSource
control on the page:

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />
<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1">
</asp:Menu>

Code snippet from magazines_eur.aspx

The SiteMapDataSource control automatically works with the application’s web.sitemap file and the
Menu control to bind to the SiteMapDataSource (just like a GridView can bind to a SqlDataSource). Like
many of the other visual controls in ASP.NET, you can easily modify the appearance of the Menu control
by clicking the Auto Format link in the control’s smart tag. Choosing Classic produces the result shown in
Figure 22-11.

figure 22-11

As with the other controls, a lot of sub-elements contribute to the changed look of the control’s style:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
 BackColor="#B5C7DE" DynamicHorizontalOffset="2" Font-Names="Verdana"
 Font-Size="0.8em" ForeColor="#284E98" StaticSubMenuIndent="10px">
 <DynamicHoverStyle BackColor="#284E98" ForeColor="White" />
 <DynamicMenuItemStyle HorizontalPadding="5px" VerticalPadding="2px" />
 <DynamicMenuStyle BackColor="#B5C7DE" />
 <DynamicSelectedStyle BackColor="#507CD1" />
 <StaticHoverStyle BackColor="#284E98" ForeColor="White" />
 <StaticMenuItemStyle HorizontalPadding="5px" VerticalPadding="2px" />
 <StaticSelectedStyle BackColor="#507CD1" />
</asp:Menu>

Code snippet from magazines_eur.aspx

WorKing WiTh The asP.neT ProVider model
Ever since the beginning days of ASP.NET, users wanted to be able to store sessions by means other than the
three traditional storage modes: InProc, StateServer, and SQLServer. One such request was for a new
storage mode that could store sessions in an Oracle database. This might seem like a logical thing to add,
but if the team added a storage mode for Oracle they would soon get requests to add additional modes for
other databases and data storage methods. For this reason, instead of building storage modes for specific
scenarios, the ASP.NET team made the system extensible by designing a plugable provider model that
enables anyone to add new modes as needed.

In addition to session state, there are several other features included in ASP.NET that require state
storage of some kind. In addition, instead of recording state in a fragile mode (the way sessions are stored
by default), many of these features require their state to be stored in more concrete data stores such as
databases or XML files. This also enables a longer-lived state for the users visiting an application —
something else that is required by these new systems.

Working with the asP.neT Provider Model ❘ 761

762 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

The features found in ASP.NET today that require advanced state management include the following:

Membership ➤

Role management ➤

Site navigation ➤

Personalization ➤

Health-monitoring Web events ➤

Web parts personalization ➤

Configuration file protection ➤

For each of the features one or more providers are available by default to define the way the state of that
system is recorded. Figure 22-12 illustrates these providers.

DPAPIProtectedConfigurationProvider

SqlPersonalizationProvider

SqlMembershipProvider

ActiveDirectoryMembershipProvider

AuthorizationRoleMembershipProvider

SqlRoleProvider

WindowsTokenRoleProvider

XmlSiteMapProvider

SqlProfileProvider

RSAProtectedConfigurationProvider

WmiWebEventProvider

TraceWebEventProvider

SqlWebEventProvider

TemplatedMailWebEventProvider

SimpleMailWebEventProvider

EventLogWebEventProvider

SqlSessionStateStore

OutOfProcSessionStateStore

InProcSessionStateStore

ASP.NET RoleWebEvents

WebParts

Configuration Membership

SiteMapSessionState

Profile

figure 22-12

The next section describes how to set up SQL Server to work with several of the providers presented in
this chapter. You can use SQL Server 7.0, 2000, 2005, or 2008 for the back-end data store for many of the
providers presented (although not all of them).

creating an application services database
The instructions in this section and the next assume you have a SQL Server 2005 or 2008 Express instance
named SqlExpress. If you have differently named instances available, you will need to modify the connection
strings shown accordingly. If you do not have SQL Server at all, the easiest way to get the Express version is to
use Microsoft’s Web Platform Installer (www.microsoft.com/web/downloads/platform.aspx).

There are two mechanisms you can use to create an application services database. Let Visual Studio or
another .NET framework tool do it for you, or do it yourself.

The first option is only available when you have configured your application to use a local (or user instance)
database for application services. Unfortunately the tools are inconsistent, sometimes the database will be
created automatically, and sometimes you will need to create it. We’ll see two examples where the database
is created automatically in this chapter: by Visual Studio when we add profile properties to an application,
and by the Web Site Administration Tool when we configure membership and role information.

To create the database explicitly, you can use a tool named aspnet_regsql.exe that comes with the .NET
Framework. This tool can create the necessary tables, roles, stored procedures, and other items needed
by the providers. To access this tool, open the Visual Studio 2010 command prompt by selecting Start ➪
All Programs ➪ Microsoft Visual Studio 2010 ➪ Visual Studio Tools ➪ Visual Studio Command Prompt
(2010). Make sure you run the command prompt as administrator. You will likely need the additional
privilege to be able to create the application services database. With the command prompt open, you can
access aspnet_regsql.exe, which can be run as a command-line tool or a GUI interface.

The asP.neT sQl server setup Wizard Command-line Tool
The command-line version gives developers optimal control over how the database is created. Working from
the command line using this tool is not difficult, so don’t be intimidated by it.

At the command prompt, type aspnet_regsql.exe -? to get a list of all the command-line options at your
disposal for working with this tool.

Table 22-2 describes some of the available options for setting up your SQL Server instance to work with the
ASP.NET application services.

TaBle 22-2: Frequently Used Setup Wizard Command-Line Options

command oPTion descriPTion

-? Displays a list of available option commands .

-W Uses the Wizard mode . This is the default if no other parameters are used .

-S <server> Specifies the SQL Server instance to work with .

-U <login> Specifies the username for logging in to SQL Server . If you use this, then you also use
the -P command .

-P <password> Specifies the password to use for logging in to SQL Server . If you use this, then you also
use the -U command .

-E Provides instructions for using the current Windows credentials for authentication .

-C Specifies the connection string for connecting to SQL Server . If you use this, then you
don’t need to use the -U and -P commands because they are specified in the connec-
tion string itself .

-A all Adds support for all the available SQL Server operations provided by ASP .NET, including
membership, role management, profiles, site counters, and page/control personalization .

-A p Adds support for working with profiles .

_R all Removes support for all the available SQL Server operations that have been previously
installed . These include membership, role management, profiles, site counters, and
page/control personalization .

-R p Removes support for the profile capability from SQL Server .

-d <database> Specifies the database name to use with the application services . If you don’t specify a
database name, then aspnetdb is used .

-sqlexportonly
<filename>

Instead of modifying an instance of a SQL Server database, use this command in conjunction
with the other commands to generate a SQL script that adds or removes the features speci-
fied . This command creates the scripts in a file that has the name specified in the command .

Working with the asP.neT Provider Model ❘ 763

764 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

figure 22-13

figure 22-14

One advantage of using the command-line tool, rather than the GUI-based version of the ASP.NET SQL
Server Setup Wizard, is that you can install in the database just the features you’re interested in working
with, instead of installing everything (as the GUI-based version does). For instance, if you want only the
membership system to interact with SQL Server — not any of the other systems (such as role management
and personalization) — then you can configure the setup so that only the tables, roles, stored procedures, and
other items required by the membership system are established in the database.

The asP.neT sQl server setup Wizard GUi Tool
To access the GUI version, type the following at the Visual Studio command prompt:

aspnet_regsql.exe

At this point, the ASP.NET SQL Server Setup Wizard welcome screen appears, as shown in Figure 22-13.

Clicking the Next button gives you a new screen that offers two options: one to configure SQL Server for
application services and the other to remove existing tables used by the application services (see Figure 22-14).

From here, choose Configure SQL Server for application services and click Next. The third screen (see
Figure 22-15) asks for the login credentials to SQL Server and the name of the database to perform the
operations. The Database option is <default> — meaning the wizard creates a database called aspnetdb. If
you want to add application services to an existing database you can select it from the drop-down at the
bottom on the page.

figure 22-15

figure 22-16

After you have made your server and database selections, click Next. The screen shown in Figure 22-16 asks
you to confirm your settings. If everything looks correct, click the Next button — otherwise, click Previous
and correct your settings.

When this is complete, you get a notification that everything was set up correctly.

Working with the asP.neT Provider Model ❘ 765

766 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

Connecting the Built-in Providers to a Database
The built-in providers that require storage will look in the web.config file for a connection string entry
named LocalSqlServer to determine how they should connect to the database. If this entry does not exist
in web.config, they will use the default entry from machine.config which indicates a local database
should be used. Here is an example connection string that is configured to use the database created by the
wizard in the last section:

<configuration>

 <connectionStrings>
 <clear />
 <add name="LocalSqlServer"
 connectionString="Data Source=localhost\sqlexpress;Database=aspnetdb;
 Integrated Security=SSPI" />
 </connectionStrings>

</configuration>

Notice the <clear> element. This is required as the machine.config file already has an entry named
LocalSqlServer. This entry must be cleared first, so we can add the new entry with the proper connection string.

Just like the default connection string, the built-in providers have their default settings defined in the
machine.config file. In most cases the defaults are suitable, and you do not need to do any application
specific configuration. However, if you want to customize the way individual providers work, you can
override their default settings in the web.config file. For instance, if you are using the membership
provider, and you want a minimum password length of 12 characters and login to fail after three invalid
password attempts, then you would add the following:

<configuration>
 <system.web>

 <membership>
 <providers>
 <clear />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, ..."
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="3"
 minRequiredPasswordLength="12"
 minRequiredNonalphanumericCharacters="1"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression=""/>
 </providers>
 </membership>

 </system.web>
</configuration>

memBershiP and role managemenT
ASP.NET contains a built-in membership and role management system that can be initiated either through
code or through the ASP.NET Web Site Administration Tool. This is an ideal system for authenticating users
to access a page or even your entire site. This management system not only provides a new API suite for
managing users, but also provides you with some server controls that interact with this API.

The sample code contains a Web site project called Membership that we will use as an example for this
section. It’s based on the Empty Web site project template. After the project was created, a couple of pages
were added to help demonstrate the security features of the Membership provider. If you want to build your
own project, you’ll need to create a folder called Secret and then create a page in this folder called Payroll
.aspx. Also, create a Default.aspx page in the root folder. Add a line of text (something like “This is the
payroll page”) to both the payroll and default pages.

As mentioned previously, the membership and role-management providers access their data by finding
a connection string named LocalSqlServer. The Web Site Administration Tool uses these providers so the
connection string must be properly configured before using the tool. Also recall that if you do not have an entry
for LocalSqlServer in the web.config file, the tool will create and use a local database in your application
for storage. The sample application included with this book uses a local database that was automatically
created when membership was configured. It is named aspnetdb.mdb and it is located in the App_Data folder.

Let’s walk through the process of using the ASP.NET Web Site Administration Tool to set up security and user
roles. You can launch this tool through a button in the Solution Explorer or by selecting ASP.NET Configuration
under Website (Web site projects) or Project (Web application projects) in the main menu. When the tool opens,
click the Security tab and then click the link to start the Security Setup Wizard as shown in Figure 22-17.

figure 22-17

You’ll be greeted with the Welcome page for the wizard. This page describes how the wizard will help you
set up security for your site. Clicking the Next button will take you to the page where you can choose which
authentication you will use.

The options presented ask whether your application will be available on the public Internet or hosted on
an intranet. These options are misleading because you can use either of them regardless of where the site is
being hosted. What the wizard is really asking is what kind of authentication you wish to use. If you select
Internet, then your website will be enabled with forms authentication. If you select local network, then
your site will be configured to work with Windows Integrated Authentication. For our example, select the
Internet option as shown in Figure 22-18.

Membership and role Management ❘ 767

768 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

Working through the wizard, you are also asked whether you are going to work with role management.
Enable role management by checking the appropriate check box and add a role named Manager. After this
step, you can begin to enter users into the system. Fill out information for each user you want in the system,
as shown in Figure 22-19. The database used in the sample application has three users: Rob Windsor, Bill
Sheldon, and Billy Hollis. The password is the same for all users: pass@word1.

figure 22-18

figure 22-19

The next step is to create the access rules for your site. You can pick specific folders and apply the rules for
the folder. Click the Membership folder on the left and then add an access rule to deny anonymous users
to the folder (see Figure 22-20). Now click the Secret folder and add two access rules, one to allow people
in the Manager role and one to deny all users (see Figure 22-21). The order is important, as the rules are
applied in the order in which they appear in the web.config file(s). If the order of the rules were reversed,
users in the Manager role would be denied access to the Secret folder.

figure 22-20

figure 22-21

figure 22-22

Click the Finish button to exit the wizard. You should be redirected back to the Security tab. The last
step is to add at least one of the users you created to the Manager role. Click the Manage users link, and
then click the Edit roles link for one or more of the users and add them to the Manager role as shown in
Figure 22-22.

The contents added to the web.config file in the root folder include the following:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="Manager" />

Membership and role Management ❘ 769

770 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

 <deny users="?" />
 </authorization>
 <roleManager enabled="true" />
 <authentication mode="Forms" />
 </system.web>
</configuration>

Code snippet from web.config

This shows all the settings that were added by the wizard. The <authorization> section allows for users
who are in the role of Manager, and denies all anonymous users (defined with a question mark). The
<roleManager> element turns on the role management system, while the <authentication> element turns
on forms authentication.

Note that there is a second web.config in the Secret folder. This defines the security for the folder and the
pages inside:

<configuration>
 <system.web>
 <authorization>
 <allow roles="Manager" />
 <deny users="*" />
 </authorization>
 </system.web>
</configuration>

Code snippet from Secret\web.config

Now, add a page called Login.aspx. This page will be used when users need to enter their credentials.
On the login page place a Login server control. This is one of the many server controls that are designed
 to work with the Membership and Role providers. Each one requires little or no configuration because
they are aware of the methods and properties of the providers to which they are connected. For example,
the Login control natively knows how to ask the Membership provider to validate credentials entered
by a user.

Now run the application trying to access the Default.aspx page. You will start out as an anonymous
user. Because anonymous users have been denied access to all pages in the site, you will be redirected to the
Login.aspx page so you can enter your credentials, as shown in Figure 22-23.

figure 22-23

Entering the credentials for any of the users you created earlier should get you to the Default.aspx page.
However, only the credentials for users in the Manager role will be sufficient to allow you to navigate to the
Payroll.aspx page.

Profile ProPerTies
Many Web applications have features that allow for personalization of some kind. This might be as simple
as greeting a user by name, or it might deal with more advanced issues such as content placement. Whatever
the case, personalization techniques have always been tricky. Developers have used anything from cookies,
sessions, or database entries to control the personalization that users can perform on their pages.

ASP.NET includes a personalization system that is easy to use. It is as simple as making entries in the
web.config file to get the personalization system started. Like the membership and role management
systems, the personalization system uses the provider model so it can be customized to suit your needs.

Continuing with the Membership project created in the last section, we’ll create two profile properties,
FirstName and LastName, both of type String. To get started, alter the web.config file in the root folder
as shown here:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <profile>
 <properties>
 <add name="FirstName" type="System.String" />
 <add name="LastName" type="System.String" />
 </properties>
 </profile>
 </system.web>
</configuration>

Code snippet from web.config

When you are using a Web site project, which makes use of dynamic compilation, ASP.NET will create a
class in the background with strongly typed properties matching those you just defined. When you are using
a Web application project you have to get and set the properties using methods of the Profile property of
the current HttpContext.

Update the Default.aspx page by adding the controls and code required to allow the user to enter a first
name and last name, and then save these values to the corresponding Profile properties. In addition, add
controls and code required to show the values of the Profile properties when the page loads and when
their values are updated. You should end up with something similar to this:

<%@ Page Language="VB" %>

<script runat="server">
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 If Not IsPostBack Then
 ' Web Application projects
 'Dim prof = HttpContext.Current.Profile
 'TextBox1.Text = prof.GetPropertyValue("FirstName")
 'TextBox2.Text = prof.GetPropertyValue("LastName")

 ' Web Site projects
 TextBox1.Text = Profile.FirstName
 TextBox2.Text = Profile.LastName
 End If
 PopulateLabel()
 End Sub

 Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 ' Web Application projects
 'Dim prof = HttpContext.Current.Profile

Profile Properties ❘ 771

772 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

 'prof.SetPropertyValue("FirstName", TextBox1.Text)
 'prof.SetPropertyValue("LastName", TextBox2.Text)

 ' Web Site projects
 Profile.FirstName = TextBox1.Text
 Profile.LastName = TextBox2.Text
 PopulateLabel()
 End Sub

 Private Sub PopulateLabel
 ' Web Application projects
 'Dim prof = HttpContext.Current.Profile
 'Label1.Text = "First name: " & prof.GetPropertyValue("FirstName") & _
 '"
Last name: " & prof.GetPropertyValue("LastName")

 ' Web Site projects
 Label1.Text = "First name: " & Profile.FirstName & _
 "
Last name: " & Profile.LastName
 End Sub
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>Welcome Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:LoginName ID="LoginName1" runat="server" />

 First name:

 <asp:TextBox ID="TextBox1" Runat="server"></asp:TextBox>

 Last name:

 <asp:TextBox ID="TextBox2" Runat="server"></asp:TextBox>

 <asp:Button ID="Button1" Runat="server" Text="Submit Information"
 OnClick="Button1_Click" />

 <asp:Label ID="Label1" Runat="server"></asp:Label>
 </div>
 </form>
</body>
</html>

Code snippet from Default.aspx

When this page is posted back to itself, the values entered into the two text boxes are placed into the
personalization engine and associated with this particular user through the Profile object. Once stored in
the personalization engine, they are then available to you on any page within the application through the
use of the same Profile object.

microsofT aJax (asP.neT aJax)
In Web development, Ajax (asynchronous JavaScript and XML) is a term that signifies the capability
to build rich, interactive applications. These applications contain client-side code that responds to user
interactions by making asynchronous Web service calls via the XMLHttpRequest object and then updating
areas of the page using the Document Object Model (DOM). Because the Web service calls are made
asynchronously, the page remains responsive to the user throughout the process.

Microsoft ajax (asP.neT aJaX) ❘ 773

The creation and inclusion of the XMLHttpRequest object in JavaScript and the fact that most upper-level
browsers support it led to the creation of the Ajax model. Ajax applications, although they have been around
for a few years, gained popularity after Google released a number of notable, Ajax-enabled applications such
as Google Maps and Google Suggest. These applications clearly demonstrated the value of Ajax.

Shortly thereafter, Microsoft released a beta for a new toolkit that enabled developers to incorporate Ajax
features in their Web applications. This toolkit has had several names — initially it was code-named Atlas,
at release it was renamed to ASP.NET AJAX, and with the release of .NET 4 Beta 2 it has been renamed
again to Microsoft Ajax. Whatever the name, this toolkit abstracts away the low-level coding previously
required, making it extremely simple to start using Ajax features in your applications today.

understanding the need for ajax
To understand what Ajax is doing to your Web application, it would be instructive to first take a look at
what a Web page does when it does not use Ajax. Figure 22-24 shows a typical request and response activity
for a Web application.

In this case, end user interactions cause a full page postback. The Web server processes the request,
ASP.NET generates the updated page (including ViewState), and the full page is sent to the end user’s
browser where it is rendered. During this process the page is unresponsive to additional user interactions
and the user generally experiences a “flicker” as the page is being updated.

Conversely, an Ajax-enabled Web page includes JavaScript that takes care of issuing the calls to the Web
server. It does this when it is possible to send a request and get a response for just part of the page and using
script; the client library only updates the parts of the page that have changed due to the request. With only
part of the page being processed, the end user experiences what some people term “fluidity” in the page, which
makes the page seem more responsive. Less code is required to update just a portion of a page, and it produces
the responsiveness the end user expects. Figure 22-25 shows a diagram of how this works.

Windows Server

ASP.NET
Processing Engine

Request

End User’s Internet
Browser (e.g. IE7)

End User’s Client Computer

Response

figure 22-24

Windows Server

ASP.NET
Processing Engine

Request
Response

Asynchronous
Response

Asynchronous
Request

End User's Internet
Browser (e.g. IE7)

ASP.NET AJAX Library

End User's Client Computer

figure 22-25

microsoft ajax implementation
There are actually two parts to Microsoft Ajax: a client-side JavaScript library and a set of server controls.

774 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

The Microsoft Ajax Library is a set of JavaScript files that expose an object-oriented interface that is
designed to be familiar to those who have used the .NET Framework (see Figure 22-26). Even though
many of the namespaces, types, and calling conventions are similar to those found in .NET, the client-side
library has no dependency on the .NET Framework. Thus, it can be used in Web pages of any kind: ASPX,
HTML, PHP, JSP and so on. This fact was the primary motivation for removing ASP.NET from the name
of the toolkit. The toolkit is also designed with browser compatibility in mind; anything you build using the
library should work consistently across recent versions of the popular browsers.

Controls and Components

Client Script Library

Client Application
Services

Browser Integration

Component Model and UI Framework

Base Class Library

Script Core

Browser Compatibility

HTML,
Script,

ASP.NET AJAX
Markup

Service Proxies

figure 22-26

The server-side framework is mostly made up of a set of server controls that appear in the AJAX Extensions tab of
the Toolbox (see Figure 22-27). The most commonly used controls are the ScriptManager and the UpdatePanel
(you’ll see both of these later). In addition, the server-side framework adds extensions to WCF and ASMX Web
services that enable the automatic creation of JavaScript proxies and automatic marshalling of objects back and
forth between JavaScript objects (JSON) and the .NET objects, significantly easing the process of calling services
from client-side code. Figure 22-28 illustrates the server-side framework provided by Microsoft Ajax.

figure 22-27

ASP.NET AJAX Server Controls

App Services Bridge

ASP.NET AJAX Server Extensions

Page Framework
Server Controls

ASP.NET AJAX
ASP.NET Pages

Web Services

Application Services

ASP.NET

figure 22-28

Microsoft ajax (asP.neT aJaX) ❘ 775

updatePanel control vs. client-side service calls
Like many things in the .NET arena, Microsoft gives you options for adding Ajax behavior to your
applications. Using the UpdatePanel control enables you to continue to develop with server controls and
the Web Forms model. It has a small learning curve and is great when working with existing applications,
but it is somewhat limited in functionality. The alternative is to move to a more architecturally pure Ajax
implementation whereby you use client-side JavaScript to make Web service calls and update pages using
the DOM or using the new DataView control and client templates. Because this changes the development
process for many, it has a steeper learning curve; but it offers greater flexibility in implementation.

introducing the sample Project
For this example you will build an application similar to something you built earlier. You will have a
page that displays customers from the Northwind database, filtered by country. The big difference will
be the introduction of a Web service that sits between the user interface code and the data model. You
will start with an application that does not make use of Microsoft Ajax and then update it first to use the
UpdatePanel control and then to use client-side service calls and client templates.

The solution will contain two projects, a Class Library project named Service that will have the data
model and the implementation of the service operations, and a Web application project named Client that
will expose the Web service and the pages with which end users interact. The data model and the solution
structure are shown in Figure 22-29.

figure 22-29

The code for the service implementation (Service.NorthwindService) is shown below. You’ll need to add
the LINQ to SQL model shown in Figure 22-29 before adding this code.

Public Class CustomerDto
 Property CustomerID As String
 Property CompanyName As String
 Property ContactName As String
 Property ContactTitle As String
 Property OrderCount As Integer
End Class

776 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

Public Class NorthwindService
 Public Function GetCountryNames() As String()
 Dim dc As New NorthwindDataContext
 Dim query = From cust In dc.Customers
 Select cust.Country Distinct
 Order By Country
 Return query.ToArray()
 End Function

 Public Function GetCustomersByCountry(ByVal country As String) _
 As CustomerDto()
 Dim dc As New NorthwindDataContext
 Dim query = From cust In dc.Customers
 Where cust.Country = country
 Select New CustomerDto With {
 .CustomerID = cust.CustomerID,
 .CompanyName = cust.CompanyName,
 .ContactName = cust.ContactName,
 .ContactTitle = cust.ContactTitle,
 .OrderCount = cust.Orders.Count
 }
 Return query.ToArray()
 End Function
End Class

Code snippet from Service\NortwindService.vb

The code for the Web service (Client.NorthwindService) is shown next (note that it just delegates calls to
the service implementation class):

Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.ComponentModel

<System.Web.Script.Services.ScriptService()> _
<System.Web.Services.WebService(Namespace:="http://mycompany.com/Northwind")> _
<System.Web.Services.WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<ToolboxItem(False)> _
Public Class NorthwindService
 Inherits System.Web.Services.WebService

 <WebMethod()> _
 Public Function CountryNames() As String()
 Dim svc As New Service.NorthwindService()
 Return svc.GetCountryNames()
 End Function

 <WebMethod()> _
 Public Function GetCustomersByCountry(ByVal country As String) _
 As Service.CustomerDto()
 Dim svc As New Service.NorthwindService()
 Return svc.GetCustomersByCountry(country)
 End Function
End Class

Code snippet from Client\NorthwindService.asmx.vb

Finally, the markup for the page (Client.Demo01-NoAjax) is shown here. It uses the ObjectDataSource
control to communicate with the Web service to get data, and uses standard data binding to populate the
DropDownList and GridView controls:

Microsoft ajax (asP.neT aJaX) ❘ 777

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Demo01-NoAjax.aspx.vb"
Inherits="Client.Demo01_NoAjax" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>No Ajax</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 SelectMethod="CountryNames" TypeName="Client.NorthwindService">
 </asp:ObjectDataSource>
 <asp:DropDownList ID="DropDownList1" runat="server"
 DataSourceID="ObjectDataSource1" AutoPostBack="True">
 </asp:DropDownList>

 <asp:ObjectDataSource ID="ObjectDataSource2" runat="server"
 SelectMethod="GetCustomersByCountry"
 TypeName="Client.NorthwindService">
 <SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1"
 Name="country"
 PropertyName="SelectedValue" Type="String" />
 </SelectParameters>
 </asp:ObjectDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="ObjectDataSource2">
 <Columns>
 <asp:BoundField DataField="CustomerID"
 HeaderText="Customer ID"
 SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName"
 HeaderText="Company Name"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName"
 HeaderText="Contact Name"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle"
 HeaderText="Contact Title"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="OrderCount"
 HeaderText="Order Count"
 SortExpression="OrderCount" />
 </Columns>
 </asp:GridView>
 </div>
 </form>
</body>
</html>

Code snippet from Client\Demo01-NoAjax.aspx

Figure 22-30 shows the Demo01-NoAjax.aspx page running. What can’t be captured in an image is that there
is a full-page postback each time the user selects a new country. However, you can see the communication
with the server when a new country is selected using a tracing tool like Fiddler (www.fiddlertool.com).
Figure 22-31 shows the request in the upper pane (1,590 bytes) and the response in the lower pane (4,374
bytes).

778 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

adding the updatePanel control
One of the drawbacks to the current implementation is that the markup for the drop-down list containing
the countries is sent with every response even though the list of countries rarely changes. When a country is
selected from the list, all you really need to update is the grid containing the customer data.

The previously mentioned UpdatePanel control enables you to do this quite easily. The UpdatePanel,
along with the rest of the Microsoft Ajax framework, allows for partial-page rendering. In other words,
you can indicate a section of a page that you want to be updated when a user interaction occurs, leaving the

figure 22-30

figure 22-31

Microsoft ajax (asP.neT aJaX) ❘ 779

remainder of the page unchanged. An added benefit is that this process will be done asynchronously, so the
page remains responsive while the update is in progress. To achieve this goal, you need to use the properties
of the UpdatePanel to indicate which events of which controls will trigger an asynchronous postback
instead of a regular full-page postback.

In our example, we want to wrap the GridView control in an UpdatePanel and indicate that a
SelectedIndexChanged event on the DropDownList control should cause an asynchronous postback.
To do this, add a ScriptManager control to the top of the page, and then update the part of the page (or
create a modified copy) that includes the markup for the GridView to look like this from the Demo02-
UpdatePanel.aspx page:

<asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server"
 SelectMethod="CountryNames" TypeName="Client.NorthwindService">
</asp:ObjectDataSource>
<asp:DropDownList ID="DropDownList1" runat="server"
 DataSourceID="ObjectDataSource1" AutoPostBack="True">
</asp:DropDownList>

<asp:ObjectDataSource ID="ObjectDataSource2" runat="server"
 SelectMethod="GetCustomersByCountry"
 TypeName="Client.NorthwindService">
 <SelectParameters>
 <asp:ControlParameter ControlID="DropDownList1"
 Name="country"
 PropertyName="SelectedValue" Type="String" />
 </SelectParameters>
</asp:ObjectDataSource>
<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
 <asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="ObjectDataSource2">
 <Columns>
 <asp:BoundField DataField="CustomerID" HeaderText="Customer ID"
 SortExpression="CustomerID" />
 <asp:BoundField DataField="CompanyName" HeaderText="Company Name"
 SortExpression="CompanyName" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact Name"
 SortExpression="ContactName" />
 <asp:BoundField DataField="ContactTitle" HeaderText="Contact Title"
 SortExpression="ContactTitle" />
 <asp:BoundField DataField="OrderCount" HeaderText="Order Count"
 SortExpression="OrderCount" />
 </Columns>
 </asp:GridView>
</ContentTemplate>
<Triggers>
 <asp:AsyncPostBackTrigger ControlID="DropDownList1"
 EventName="SelectedIndexChanged" />
</Triggers>
</asp:UpdatePanel>

Code snippet from Client\Demo02-UpdatePanel.aspx

Figure 22-32 shows the page running. In this case, when a new country is selected the page is asynchronously
posted back to the server and the page-lifecycle runs, but only the markup for the grid is sent to the client.
Looking at the trace in Figure 22-33, you can see that the request is virtually the same as before (1,668 bytes)
but the response is significantly smaller (2,625 bytes).

780 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

figure 22-32

figure 22-33

using client-side service calls and client Templates
As you’ve seen, refactoring the page to add Ajax-like behavior with the UpdatePanel is fairly easy and
doesn’t require a significant change in the way you develop pages. You also get the benefit of reduced traffic,
as only the markup for the area of the page that is contained in the UpdatePanel is sent in the response.

Unfortunately, there are some drawbacks. The main drawback is that the full page life cycle is running for
each request. This means that markup for the entire page is being generated on the server even though some
of it is going to be discarded because it is outside the UpdatePanel. The second drawback is the size of the

Microsoft ajax (asP.neT aJaX) ❘ 781

request and response. Even though we reduced it significantly from the full-page postback, we can do much,
much better (as you will see shortly).

Let’s modify the application to use a purer Ajax implementation in which we are calling Web services from
the client-side JavaScript. This is done in Demo03-Ajax.aspx in the sample application.

The first thing we need to do is ensure that the Web service we are going to call is able to generate a
JavaScript proxy. If you are using ASMX Web Services, all that is required is the addition of the
System.Web.Script.Services.ScriptService attribute to your service type. If you look back at the
sample code, our service type (NorthwindService.asmx.vb) already has that attribute so we are good to go.
If we were using a WCF service, we would need an endpoint that used the webHttpBinding and had the
enableWebScript element in its endpoint behavior.

Next, we need to add a service reference and a couple of script references to the ScriptManager. Since
we’ll be calling our service from the client-side, we need to ensure that the JavaScript proxy is added to
our page; the service reference will take care of this. The script references ensure that the page has access
to the required client-side libraries. Traditionally, the client-side libraries have been deployed as embedded
resources in the System.Web.Extensions assembly. With the release of .NET 4 Beta 2, Microsoft decided
to take the Microsoft Ajax Library out of band, allowing the library to be updated more frequently than
the .NET Framework. The most recent version of the Microsoft Ajax Library can be downloaded from
CodePlex (http://ajax.codeplex.com).

For the sample application, the ASP.NET Ajax Library 0911 Beta was downloaded and the JavaScript files
were added to the Client project in a folder named Scripts.

<asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/MicrosoftAjax.js" />
 <asp:ScriptReference Path="~/Scripts/MicrosoftAjaxTemplates.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="NorthwindService.asmx" />
 </Services>
</asp:ScriptManager>

Code snippet from Client\Demo03-Ajax.aspx

If you know your application will have reliable access to the Internet, you have the option of using the
Microsoft Ajax Content Delivery Network (CDN). This allows your application to load the required
JavaScript files directly from the Microsoft site instead of having to include them with each project. An
additional benefit is that the ScriptManager control is aware of the CDN so all you need to do is set one
property and the ScriptManager automatically ensures that the required JavaScript files are included with
each response.

<asp:ScriptManager EnableCdn="true" ID="ScriptManager1" runat="server">
 <Services>
 <asp:ServiceReference Path="NorthwindService.asmx" />
 </Services>
</asp:ScriptManager>

Since we will be calling the service to get the customer data from the client side, we will also be
rendering the customer data on the client side. We’ll replace the UpdatePanel, the GridView, and its
associated ObjectDataSource with a HTML table. What will be a little unusual about the table is that
we will use the client template features to enable client-side data binding. This allows us to define a template
for the table body that includes placeholders for properties of the objects that will be bound to the template.
For simple binding, the name of the property is surrounded in double curly braces (e.g., {{ CustomerID }});
however, more complex binding scenarios are supported using a syntax similar to that used in WPF (e.g.,
{binding RequiredDate, convert=dateConverter}). In a moment you will create a DataView control
and attach it to the tbody element. The DataView will act like the server-side DataSource controls we used

782 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

earlier. It will be the object that receives the data and populates the target element via the data-binding
mechanism.

The last important point to note is the class attribute on the tbody element. It needs to have the value
“sys-template” for the data binding to work:

<table id="customersTable" cellspacing="0" border="1">
<thead>
 <tr>
 <th>Customer ID</th>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>Contact Title</th>
 <th>Order Count</th>
 </tr>
</thead>
<tbody id="customersBody" class="sys-template">
 <tr>
 <td>{{CustomerID}}</td>
 <td>{{CompanyName}}</td>
 <td>{{ContactName}}</td>
 <td>{{ContactTitle}}</td>
 <td align="right">{{OrderCount}}</td>
 </tr>
</tbody>
</table>

Code snippet from Client\Demo03-Ajax.aspx

Finally, we need to add the JavaScript code to populate the table we just created. Let’s start with what
happens when the page loads. Just as we have a Page_Load event hander on the server side, we can create
a pageLoad function in JavaScript and the framework will call it for us when the client-side elements have
been initialized.

When the page loads, we want to create the DataView that will be used to populate the body of the table;
then we want to populate the table; and finally we want to hook up an event handler so that when the
user selects a different country, the table is refreshed. When we create the DataView we will pass a string
parameter that uses CSS selector syntax to identify the element to attach to. In this case, that element is the
table body. To show the customers we will call a custom showCustomers function, which we’ll add shortly.
To add the event handler to the DropDownList, we will use the $addhandler shortcut method, indicating
that when the change event happens we want to call the showCustomers function:

var custView;

function pageLoad() {
 custView = Sys.create.dataView("#customersBody");
 showCustomers();
 $addHandler($get("DropDownList1"), "change", showCustomers);
}

Code snippet from Client\Demo03-Ajax.aspx

The code to show the customers is fairly simple. First, we get the name of the country the user has selected
from the DropDownList. Then we call the Web service to get the customers for the selected country. This
is done asynchronously, so the Web service call takes two parameters: the country and the name of the
function we want to call when the service operation is complete (this is generally known as the callback
function). When the service operation returns, the callback function will be passed the data representing the

Microsoft ajax (asP.neT aJaX) ❘ 783

customers as a JavaScript array. All we need to do to update the table is to give the DataView the array; it
will take care of the data binding and rendering:

function showCustomers() {
 var country = $get("DropDownList1").value;
 Client.NorthwindService.GetCustomersByCountry(country, showCustomersComplete);
}

function showCustomersComplete(data) {
 custView.set_data(data);
}

Code snippet from Client\Demo03-Ajax.aspx

Our page is now complete and ready for testing. The complete code and markup is shown here:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Demo03-Ajax.aspx.vb"
Inherits="Client.Demo03_Ajax" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Ajax</title>
 <link href="Site.css" rel="stylesheet" type="text/css" />

 <script type="text/javascript">
 var custView;

 function pageLoad() {
 custView = Sys.create.dataView("#customersBody");
 showCustomers();
 $addHandler($get("DropDownList1"), "change", showCustomers);
 }

 function showCustomers() {
 var country = $get("DropDownList1").value;
 Client.NorthwindService.GetCustomersByCountry(
 country, showCustomersComplete);
 }

 function showCustomersComplete(data) {
 custView.set_data(data);
 }
 </script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server">
 <Scripts>
 <asp:ScriptReference Path="~/Scripts/MicrosoftAjax.js" />
 <asp:ScriptReference Path="~/Scripts/MicrosoftAjaxTemplates.js" />
 </Scripts>
 <Services>
 <asp:ServiceReference Path="NorthwindService.asmx" />
 </Services>
 </asp:ScriptManager>

 <asp:ObjectDataSource ID="ObjectDataSource1" runat="server"

784 ❘ chaPTer 22 asP.NEt adVaNCEd FEatuREs

 SelectMethod="CountryNames" TypeName="Client.NorthwindService">
 </asp:ObjectDataSource>
 <asp:DropDownList ID="DropDownList1" runat="server"
 DataSourceID="ObjectDataSource1">
 </asp:DropDownList>

 <table id="customersTable" cellspacing="0" border="1">
 <thead>
 <tr>
 <th>Customer ID</th>
 <th>Company Name</th>
 <th>Contact Name</th>
 <th>Contact Title</th>
 <th>Order Count</th>
 </tr>
 </thead>
 <tbody id="customersBody" class="sys-template">
 <tr>
 <td>{{CustomerID}}</td>
 <td>{{CompanyName}}</td>
 <td>{{ContactName}}</td>
 <td>{{ContactTitle}}</td>
 <td align="right">{{OrderCount}}</td>
 </tr>
 </tbody>
 </table>
 </div>
 </form>
</body>
</html>

Code snippet from Client\Demo03-Ajax.aspx

Figure 22-34 shows the page running. Looking at the trace in Figure 22-35, you can see that the request is
a simple JavaScript object that represents the country selected (20 bytes); and the response is a JavaScript
array that represents the customer data from the selected country (538 bytes). That’s an 87% savings in
network traffic when compared to the example using the UpdatePanel.

figure 22-34

summary
This chapter and the previous chapter offered a whirlwind tour of ASP.NET and some of the features
that you can provide in the projects you develop. ASP.NET is highly focused on the area of developer
productivity, and it works very hard at providing you access to functionality expected in websites today.

A nice aspect of most of the features presented is that you can either utilize the wizards that are built into
the underlying technology or skip these wizards and employ the technologies by editing markup. Either
way is fine. Another useful aspect of the technologies introduced is that they all enable a huge amount of
customization. You can alter the behavior and output of these technologies to achieve exactly what you need.
If you want to dig deeper into ASP.NET, be sure to take a look at Professional ASP.NET 4 (Evjen et al.,
Wiley, 2010).

figure 22-35

summary ❘ 785

23
 asP.neT MVC

 WhaT you Will learn in This chaPTer

 The Model - View - Controller (MVC) Pattern ➤

 The goals of ASP .NET MVC ➤

 How the MVC pattern has been applied to ASP .NET MVC ➤

 Working with controllers and actions ➤

 Using scaff olding to help generate views ➤

 Validation in ASP .NET MVC 2 ➤

 ASP.NET MVC is a Web framework that was originally released in March 2009 as an alternative
to ASP.NET Web Forms. It was designed to limit abstractions and give developers a great deal of
control over the creation of pages in an application. Specifi cally, ASP.NET MVC was designed to do
the following:

 ➤ Provide complete control over HTML markup — With Web Forms, the fi nal markup is mostly
determined by the server controls on a page.

 ➤ Have intuitive website URLs — With Web Forms, the URL is determined by the location and
name of the fi le being addressed.

 ➤ Have a clear separation of concerns — The Web Forms programming model encourages
developers to put business logic and database access code in the code - behind for a page.

 ➤ Be testable by default — Several aspects of the Web Forms model make it diffi cult to write unit
tests for user interface layer logic.

 It ’ s important to repeat that ASP.NET MVC is an alternative to Web Forms, not its replacement.
MVC will suit the style of some developers, and seem a step backward for others. Many have used
the analogy of manual versus automatic transmission. Manual (MVC) gives you complete control but
requires more effort; automatic (Web Forms) may be slightly less effi cient but it does the work for you.
Ultimately, the choice of framework is yours. Choose the one that best suits your development style.

 As this book is being written, ASP.NET MVC 2 is in Beta and is projected to be complete with the
release of Visual Studio 2010. The contents of this chapter are based on the version of ASP.NET
MVC 2 included with the Beta 2 versions of Visual Studio 2010 and .NET 4.

788 ❘ chaPTer 23 asP.NEt mVC

model-VieW-conTroller and asP.neT
The Model-View-Controller pattern was conceived in the late 1970s by Trygve Reenskaug, a Norwegian
computer scientist. It provides a powerful and elegant means of separating concerns within an application,
and it applies extremely well to Web development.

The pattern separates an application into three components:

 ➤ Model — The business objects in the application

 ➤ View — The user interface

 ➤ Controller — Classes that handle user requests and manage application logic and flow

In the ASP.NET implementation of the pattern, requests are routed to controller classes that generally apply
application logic (authorization, for example), interact with the model to retrieve or update data, determine
the data that needs to be rendered in the response, and then pass control to a view to format the data and
render the final markup to the user.

Another important aspect of the implementation of ASP.NET MVC is the use of convention over configuration.
As we build an application in the next section, you will see that conventions are used to determine the names and
locations of files in a project or to determine which class or file to load at runtime. You are not forced to follow
these conventions, but doing so allows for a consistent experience across ASP.NET MVC applications.

Building an asP.neT mVc aPPlicaTion
ASP.NET MVC is a new addition to the ASP.NET family and is likely new to most of you reading this book.
Following the premise that the most effective way to learn a new framework is to use it, we will spend the
remainder of this chapter building an ASP.NET MVC 2 application.

creating the Project
Open Visual Studio and create a new ASP.NET MVC 2 Web Application named MvcDemo. You will
immediately be asked if you want to create an associated unit test project (see Figure 23-1). Because
testability is one of the core tenets of ASP.NET MVC it makes sense that the project template would
encourage you to do so. Keep the default test project name and click OK to create the projects.

If you look at the MVC project in the Solution Explorer (see Figure 23-2),
you’ll see that several files and folders have been created by default. Three
of the folders should jump out at you immediately: Models, Views, and
Controllers. These folders map to the three components of the pattern on
which this style of application is based.

figure 23-1 figure 23-2

 If you run the application, you will see that a few pages (including the master page) are included as part of
the project template (see Figure 23 - 3). While not exactly the same, the site will be similar in look and feel to
one created when you use the non - empty Web Forms project templates.

figure 23-3

Currently, there are no out - of - the - box Web site project templates for ASP.NET MVC.

 controllers and actions
 In traditional Web application frameworks, requests are mapped to fi les containing markup for pages. In
ASP.NET MVC, requests are mapped to methods on classes. The classes are the previously mentioned
controller classes, and the methods are known as actions. Action methods are responsible for receiving user
input, retrieving or saving data to the model, and passing control to the appropriate view. The view will
typically return the markup for a page but it could also return other content types such as a binary fi le
or JSON formatted data. Typical actions will handle requests to list, add, edit, or delete entities from
the model.

 Let ’ s examine these concepts further by creating
a new controller. In the Solution Explorer, right -
 click on the Controllers folder and select Add ➪
Controller. By convention, the names of controller
classes should end with “ Controller. ” The Add
Controller dialog even encourages the use of this
convention, as shown in Figure 23 - 4. Set the name
to SimpleController and click the Add button.

 The class that ’ s created will inherit from the base
 Controller class (System.Web.Mvc.Controller)
and will have the shell for a default action method named Index :

Public Class SimpleController
 Inherits System.Web.Mvc.Controller

 '

figure 23-4

 Building an asP.neT MVC application ❘ 789

790 ❘ chaPTer 23 asP.NEt mVC

 ' GET: /Simple/

 Function Index() As ActionResult
 Return View()
 End Function

End Class

The Index action method is about as simple as it gets. When a request comes in for this action it just passes
control to a view without any application logic or data access. Because the action method has not specified
which view to show, convention states that ASP.NET MVC should look for a file matching the pattern
/Views/{Controller}/{Action}.aspx. In the case of the Index action, that would be /Views/Simple/
Index.aspx, which does not exist at this point.

The comment above the method is not required but
it is something you’ll typically see in code generated
by Visual Studio. It indicates that this action will be
accessed via an HTTP GET request to /Simple. This
illustrates another convention. The default routing
rules used by MVC expect something in the form
of /{Controller}/{Action}. If the action is not
specified, then ASP.NET MVC will default to
calling the Index action method, so a request
to /Simple or /Simple/Index will be routed to
the Index action. You will learn about routing
and how to add or modify routing rules later in
this chapter.

Because the view for the Index action does not exist,
let’s create it. We could do this rather easily by hand,
but there’s no need to; Visual Studio will create it for
us. In the Code Editor, right-click anywhere in the
code for the Index method and select the Add View
option in the context menu. In the Add View dialog,
leave the default values as they are (see Figure 23-5)
and click the Add button. You should be presented
with a new content page that looks something like the
following:

<%@ Page Title="" Language="VB" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Index
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Index</h2>
</asp:Content>

Note two things about the page: It was created in the proper folder by default (that is, \Views\Simple) and
it inherits from System.Web.Mvc.ViewPage instead of System.Web.UI.Page. At this point you should be
able to run the application. Once it is loaded in the browser, navigate to /Simple and you’ll see a page like
the one shown in Figure 23-6.

figure 23-5

figure 23-6

Now we’ll look at an example in which data is passed from the action method to the view. Back in the
SimpleController class, add a new action method called SayHello that takes a string parameter called name.
When a request is made, ASP.NET will match parameters on the query string to parameters of the method.
The action method can pass the value of the parameter to the view by adding it to the built-in ViewData
collection.

'
' GET: /Simple/SayHello?name=Rob

Function SayHello(ByVal name As String) As ActionResult
 ViewData("Name") = name
 Return View()
End Function

Code snippet from \Controllers\SimpleController.vb

Create the view by right-clicking anywhere in the code for the SayHello function, selecting Add View in the
context menu, and clicking the Add button. In the content page that’s created, modify the value of the <h2>
element to output the value of the name parameter stored in the ViewData:

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Hello <%: ViewData("Name")%></h2>
</asp:Content>

Note the use of the new <%: %> syntax. This is the same as <%= %> except that it automatically HTML
encodes the output. This new syntax works in both Web Forms and MVC.

If you run the application and navigate to /Simple/SayHello?name=Rob, you should see a page similar to
the one shown in Figure 23-7.

Building an asP.neT MVC application ❘ 791

792 ❘ chaPTer 23 asP.NEt mVC

adding the model
In MVC, the model typically refers to the business or domain objects. These are classes that represent the data
in the application, along with the corresponding business rules and validation. For our sample application we
will use LINQ to SQL to create a simple domain model over data from the Northwind database.

If you don’t have the Northwind database available, get the one included in the sample code for the book
and add it to the App_Data folder of your project. In the Models folder, create a new LINQ to SQL model
called Northwind.dbml and add the Categories and Products table to it as shown in Figure 23-8. Saving the
model will create the NorthwindDataContext and the domain objects for categories and products.

figure 23-8

figure 23-7

We could stop here and have our controllers access the data model directly, but doing so will reduce
testability and lead to duplication of queries across the application. To avoid these issues, we will create a
class that encapsulates access to the data model.

In the Models folder, create a new class called NorthwindRepository. In it create three methods: one that
returns all categories, one that returns all products, and one that returns products in a specific category. In
all three of the methods, sort the results by the name of the product or category.

Public Class NorthwindRepository
 Private _context As New NorthwindDataContext()

 Public Function GetCategories() As IQueryable(Of Category)
 Dim query = From cat In _context.Categories
 Order By cat.CategoryName
 Select cat
 Return query
 End Function

 Public Function GetProducts() As IQueryable(Of Product)
 Dim query = From prod In _context.Products
 Order By prod.ProductName
 Select prod
 Return query
 End Function

 Public Function GetProductsForCategory(ByVal categoryName As String) _
 As IQueryable(Of Product)
 Dim query = From prod In _context.Products
 Where prod.Category.CategoryName = categoryName
 Order By prod.ProductName
 Select prod
 Return query
 End Function
End Class

Code snippet from \Models\NorthwindRepository.vb

Views
Now that we have a model, we can create some controllers, actions, and views that are more like those you
would create in a traditional business application. To start off, we will look at views that display data from
the database; later in the chapter we add views that let us modify the data.

Create a new controller called ProductsController. The Index action should be modified to get the list of
categories and return a view that will display them:

Public Class ProductsController
 Inherits System.Web.Mvc.Controller

 Private _repository As New NorthwindRepository()

 '
 ' GET: /Products/

 Function Index() As ActionResult
 Dim categories = _repository.GetCategories().ToList()
 Return View(categories)
 End Function

End Class

Code snippet from \Controllers\ProductsController.vb

Notice that instead of passing the list of categories to the view using the ViewData collection (which would
be weakly typed), we pass them as the first parameter to the View method. This enables us to create a
strongly typed view, one that is aware that it is rendering category objects. Bring up the Add View dialog as
before, but this time check the Create a Strongly-Typed View check box and select MvcDemo.Category

Building an asP.neT MVC application ❘ 793

794 ❘ chaPTer 23 asP.NEt mVC

from the View data class drop-down. For now we’ll keep the default value of Empty in the View content
drop-down. You’ll see the effect of using the other values in this drop-down later in the chapter.

In the resulting view page, you show the category names in an unordered list:

<%@ Page Title="" Language="VB" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage(Of IEnumerable(Of MvcDemo.Category))" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Product Categories
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Product Categories</h2>

 <% For Each category In Model %>
 <%: category.CategoryName %>
 <% Next %>

</asp:Content>

The first thing to note is the value of the Inherits attribute of the Page directive. ViewPage is a generic type, so
setting the type parameter to the name of the type of data used in the page enables that data to be accessed in a
strongly typed fashion. When this page was generated by Visual Studio, the type parameter was set to MvcDemo
.Category (the type name we provided in the Add View dialog). Since we are working with a list of categories
instead of an individual category, this needs to be manually changed to IEnumerable(Of MvcDemo.Category).

The other thing that might jump out is the code used to generate the unordered list. If you’ve done Classic
ASP programming, this style of mixing HTML markup with VB code will bring back memories (probably
scary ones). Yes, this style of programming does return when building views in ASP.NET MVC, but its
potentially negative effect on readability and maintainability is greatly reduced because the view pages will
contain minimal logic and no data access code.

If you run the application and navigate to /Products, you should see a page similar to the one shown in
Figure 23-9.

figure 23-9

Now that we have a way to create a list a categories, let’s repeat the process to create a list of products.
Because there are a lot of products, we can show them by category to limit the number shown on a page. In
the ProductsController, create a new action method called Browse. It should use the repository to get the
products for the category passed in as a parameter and then pass control to the Browse view:

'
' GET: /Products/Browse?category=beverages

Function Browse(ByVal category As String) As ActionResult
 Dim products = _repository.GetProductsForCategory(category)
 Return View(products.ToList())
End Function

Code snippet from \Controllers\ProductsController.vb

Create the strongly typed view for this action using the same steps you used for the Index action. In this
case, set the View data class option to MvcDemo.Product as shown in Figure 23-10.

Building an asP.neT MVC application ❘ 795

figure 23-10

As before, the Inherits attribute of the Page directive in the generated view page must be manually
modified (the type parameter needs to be IEnumerable(Of MvcDemo.Product)). This view will show an
unordered list of products and their corresponding unit prices:

<%@ Page Title="" Language="VB" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage(Of IEnumerable (Of MvcDemo.Product))" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server">
 Browse Products
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Browse Products</h2>

 <% For Each prod In Model%>
 <% Dim item = String.Format("{0} (${1:F})",
 prod.ProductName, prod.UnitPrice)%>
 <%: item%>
 <% Next%>

</asp:Content>

Code snippet from \Views\Products\Browse.aspx

796 ❘ chaPTer 23 asP.NEt mVC

Running the application and navigating to /Products/Browse?category=beverages should render a page
similar to the one shown in Figure 23-11.

figure 23-11

To complete this section, we’ll tie the list of categories and products together. We’ll modify the Index view
(i.e., the list of categories), changing the items in the unordered list to links that will take us to the page
showing the products for the selected category. Instead of creating anchor tags directly, we’ll use
the ActionLink HTML Helper to build the links for us; specifically, we’ll use the overloaded version
that takes the link text, the target action, and the parameters to pass to the action:

<% For Each category In Model%>

 <%: Html.ActionLink(category.CategoryName,
 "Browse", New With {.Category = category.CategoryName}) %>

<% Next%>

Code snippet from \Views\Products\Index.aspx

You should now be able to navigate to the list of categories, click one of the links, and get the list of
products for the category you selected.

routing
One of the goals of ASP.NET MVC is to enable developers to create “friendly” URLs for their users. In our
application, it would be nice to get a list of products in the beverage category by navigating to /Products/
Browse/Beverages instead of using the query string as we are now.

This change can be accomplished through the routing engine included in ASP.NET. This engine enables us
to map a URL template to a controller (and potentially an action and parameters). When a request comes in,
the engine uses pattern-matching algorithms to find a template that matches the “shape” of the request and
then routes the request to the corresponding controller.

Open the Global.asax file and look for the method named RegisterRoutes. In it you will see the code
that has been routing the requests we’ve been making so far to controllers and actions:

routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id = ""} _
)

The first parameter is the route name used as the key in the route table. The second parameter is the URL
template. This template indicates there are potentially three segments: the first mapping to the controller
name, the second mapping to the action name, and the third mapping to an id. The final parameter is an
anonymous type that defines the default values of the segments.

Add the following code (above the existing call to MapRoute) to add a mapping that allows us to include the
category name as part of the URL when we browse products:

routes.MapRoute("BrowseProducts", _
 "Products/Browse/{Category}", _
 New With {.controller = "Products", .action = "Browse", .Category = ""})

Code snippet from Global.asax

You should now be able to run the application and navigate to /Products/Browse/Beverages or
/Products/Browse/Condiments to see products in those categories.

scaffolding and crud operations
We’ve used the tooling in Visual Studio to assist us in creating controllers and views but we haven’t explored
these tools fully. They have additional functionality to assist in creating the action methods and views for a
slightly modified version of the CRUD (create, read, update and delete) operations.

Before we get into creating new MVC elements, however, we need to revisit the NorthwindRepository
class. Two new methods will be needed: one to retrieve a single product by ID, and the second to enable us
to save any changes to the LINQ to SQL entities:

Public Function GetProduct(ByVal id As Integer) As Product
 Dim query = From prod In _context.Products
 Where prod.ProductID = id
 Select prod
 Return query.SingleOrDefault()
End Function

Public Sub Save()
 _context.SubmitChanges()
End Sub

Code snippet from \Models\NorthwindRepository.vb

With these changes complete, we are now able to properly explore the scaffolding tools in Visual Studio.
These work in a very similar way to the data server controls in Web Forms. By indicating the type of data to
render and the type of view you desire (list, edit, create, etc.), Visual Studio can use reflection to determine
the properties of the object being rendered and generate the appropriate markup and code.

To see this in action, create a new controller called
AdminController but this time check the option to
“Add action methods for Create, Update and Details
scenarios,” as shown in Figure 23-12. The generated
code contains base implementations of Index,
Details, Create and Edit action methods.

We’ll start by modifying the Index action method.
When it is requested we’ll return a view showing
a grid with the data for all products. Modify the figure 23-12

Building an asP.neT MVC application ❘ 797

798 ❘ chaPTer 23 asP.NEt mVC

action method to both get all products from the NorthwindRepository and pass the resulting list to the
Index view:

Private _repository As New NorthwindRepository()

'
' GET: /Admin/

Function Index() As ActionResult
 Dim products = _repository.GetProducts()
 Return View(products.ToList())
End Function

Add a strongly typed view for the Index action, choosing List from the View content drop-down, as shown
in Figure 23-13.

figure 23-13

Choosing List will cause Visual Studio to generate a table to show the product data along with links to
create, edit, or display the product data. Because the generated table will be too wide for the page, we’ll
delete some of the columns. The modified view should look something like the following:

<h2>Product Index</h2>

<p><%=Html.ActionLink("Create New", "Create")%></p>

<table>
 <tr>
 <th></th>
 <th>ProductName</th>
 <th>Category</th>
 <th>UnitPrice</th>
 <th>UnitsInStock</th>
 <th>Discontinued</th>
 </tr>

<% For Each item In Model%>
 <tr>
 <td>
 <%=Html.ActionLink("Edit", "Edit", New With {.id = item.ProductID})%> |
 <%=Html.ActionLink("Details", "Details", New With {.id = item.ProductID})%>
 </td>

figure 23-14

 <td>
 <%= Html.Encode(item.ProductName) %>
 </td>
 <td>
 <%= Html.Encode(item.CategoryID) %>
 </td>
 <td>
 <%= Html.Encode(String.Format("{0:F}", item.UnitPrice)) %>
 </td>
 <td>
 <%= Html.Encode(item.UnitsInStock) %>
 </td>
 <td>
 <%= Html.Encode(item.Discontinued) %>
 </td>
 </tr>
<% Next%>

</table>

Code snippet from \Views\Admin\Index.aspx

Notice the assumptions based on the ASP.NET MVC conventions. The Create link assumes you will have a
Create action method, the Edit link assumes you have an Edit action method that takes the ProductID as
a parameter, and so on. Without the conventions in place, these links would not be able to be code generated.

Running the application and navigating to /Admin should render a page similar to the one shown in Figure 23-14.

Building an asP.neT MVC application ❘ 799

Moving to the Details action method, modify the code to get the requested product from the repository
and pass it on to the Details view:

'
' GET: /Admin/Details/5

Function Details(ByVal id As Integer) As ActionResult

800 ❘ chaPTer 23 asP.NEt mVC

 Dim product = _repository.GetProduct(id)
 Return View(product)
End Function

Code snippet from \Controllers\AdminController.vb

Generate the strongly typed view, this time selecting Details from the View content drop-down menu.

<h2>Product Details</h2>

<fieldset>
 <legend>Fields</legend>
 <p>ProductID: <%= Html.Encode(Model.ProductID) %></p>
 <p>ProductName: <%= Html.Encode(Model.ProductName) %></p>
 <p>SupplierID: <%= Html.Encode(Model.SupplierID) %></p>
 <p>CategoryID: <%= Html.Encode(Model.CategoryID) %></p>
 <p>QuantityPerUnit: <%= Html.Encode(Model.QuantityPerUnit) %></p>
 <p>UnitPrice: <%= Html.Encode(String.Format("{0:F}", Model.UnitPrice)) %></p>
 <p>UnitsInStock: <%= Html.Encode(Model.UnitsInStock) %></p>
 <p>UnitsOnOrder: <%= Html.Encode(Model.UnitsOnOrder) %></p>
 <p>ReorderLevel: <%= Html.Encode(Model.ReorderLevel) %></p>
 <p>Discontinued: <%= Html.Encode(Model.Discontinued) %></p>
</fieldset>
<p>
 <%=Html.ActionLink("Edit", "Edit", New With {.id = Model.ProductID})%> |
 <%=Html.ActionLink("Back to List", "Index") %>
</p>

Code snippet from \Views\Admin\Details.aspx

Run the application, navigate to /Admin, and click the Details link for one of the items. You should be taken
to a page similar to the one shown in Figure 23-15. Clicking the Back to List link at the bottom of the page
will take you back to the list of products.

figure 23-15

We’ll look at the Edit action in two parts. The first part involves generating a form that allows editing of
product data; the second involves receiving the updated data when the user submits the form.

The Edit action method will have the same implementation as the Details action method. Modify it so
that it retrieves the requested product and returns the Details view:

'
' GET: /Admin/Edit/5

Function Edit(ByVal id As Integer) As ActionResult
 Dim product = _repository.GetProduct(id)
 Return View(product)
End Function

Code snippet from \Controllers\AdminController.vb

Generate a strongly typed view, selecting Edit from the View content drop-down, as shown in Figure 23-16.

<h2>Edit Product</h2>

<script src="../../Scripts/jquery-1.3.2.min.js" type="text/javascript"></script>
<script src="../../Scripts/jquery.validate.min.js" type="text/javascript"></script>
<script src="../../Scripts/MicrosoftMvcJQueryValidation.js" type="text/javascript">
</script>

<%=Html.ValidationSummary("Edit was unsuccessful. Please correct the errors ... ")%>
<% Html.EnableClientValidation()%>

<% Using Html.BeginForm() %>

 <fieldset>
 <legend>Fields</legend>
 <p>
 <label for="ProductName">ProductName:</label>
 <%= Html.TextBox("ProductName", Model.ProductName) %>
 <%= Html.ValidationMessage("ProductName", "*") %>
 </p>
 <p>
 <label for="SupplierID">SupplierID:</label>
 <%= Html.TextBox("SupplierID", Model.SupplierID) %>
 <%= Html.ValidationMessage("SupplierID", "*") %>
 </p>
 <!-- Some fields removed for brevity -->
 <p>
 <%= Html.LabelFor(Function(p) p.Discontinued)%>
 <%= Html.EditorFor(Function(p) p.Discontinued)%>
 <%= Html.ValidationMessage("Discontinued", "*") %>
 </p>
 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>

<% End Using %>

<div>
 <%=Html.ActionLink("Back to List", "Index") %>
</div>

Code snippet from \Views\Admin\Edit.aspx

Building an asP.neT MVC application ❘ 801

802 ❘ chaPTer 23 asP.NEt mVC

A few things in the generated view require further
discussion. Note that several elements in the code snippet
deal with validation. ASP.NET MVC 1.0 supported
server-side validation, and ASP.NET MVC 2 adds native
support for client-side validation. The links to the script
files include the required JavaScript to implement the
client-side validation framework. One of these files is
the jQuery base library, and the second is a jQuery
validation plug-in. Microsoft is including jQuery as
part of ASP.NET 4, and the jQuery base library as
part of many of the out-of-the-box project templates
(including the one we are currently using). It’s a safe bet
that we’ll see jQuery being used regularly as part of
Visual Studio project and item templates in the future.
The ValidationSummary and ValidationMessage
HTML Helpers act very similarly to the validation server
controls in the Web Forms framework. You’ll learn how
to implement rules to populate these controls more deeply
in the next section.

The next item of note is the use of the TextBox helper.
Several HTML Helpers can be used to render intrinsic elements such as text boxes, check boxes, buttons,
drop-downs, and so on. The current implementation of the auto-scaffolding uses these kinds of helpers in
the generated code.

ASP.NET MVC 2 adds new strongly typed helper methods that enable better compile-time checking and
IntelliSense. The markup and code for the Discontinued property have been modified to use the new
LabelFor and EditorFor helpers. Both these methods expect a lambda expression returning the value for
the property as parameters. Reflection is used to determine the name of the property, so it can be shown
in the label, and the type of property, so the proper HTML element can be rendered to display and edit. In
our example, the Discontinued property is a Boolean, so a check box is rendered in the form. It seems
a foregone conclusion that the scaffolding mechanism will be modified to generate these strongly typed
helpers in the near future.

The final item of note is the BeginForm helper. This method is responsible for rendering the HTML form
tag that will determine how updated data is sent to the client when the user submits the form. Calling
BeginForm without any parameters will cause the form data to be sent via an HTTP POST to the current URL.
To handle the POST, we have a second Edit action method:

'
' POST: /Admin/Edit/5

<AcceptVerbs(HttpVerbs.Post)> _
Function Edit(ByVal id As Integer, ByVal collection As FormCollection) As ActionResult
 Dim product = _repository.GetProduct(id)
 Try
 UpdateModel(product)
 _repository.Save()
 Return RedirectToAction("Index")
 Catch
 Return View(product)
 End Try
End Function

Code snippet from \Controllers\AdminController.vb

figure 23-16

figure 23-17

Building an asP.neT MVC application ❘ 803

Using the AcceptVerbs attribute enables differentiation between action methods of the same name. Think
of it as an additional form of method overloading.

Also note the parameter list. The id will be populated from the query string parameter of the same name,
and the FormCollection will be populated from the payload of the POST. We can retrieve the values entered
by the user via the Request.Form collection or the collection parameter. It is not difficult to write the code
to go through each property of the entity object being edited and update the property value from the form
parameters, but it is tedious and verbose. Fortunately, the framework includes a helper method on the
controller base class called UpdateModel that will do this for us. It uses reflection to determine the property
names on the object, and then automatically converts and assigns values to them based on the input values
submitted by the client. It will also add any validation errors encountered when assigning property values to
the ModelState property of the controller class.

Therefore, when the user submits the form, we need to do the following: Get the product object being edited
from the repository, use UpdateModel to update its properties from the form parameters, save to properties
of the updated entity to the database, and then redirect to the Index view. If the update fails, we want to
return the Edit view for the product so that any validation errors contained in the ModelState will be
rendered via the ValidationMessage and ValidationSummary helpers.

Run the application, navigate to /Admin, and click the Edit link for one of the items. You should be taken to
a page similar to the one shown in Figure 23-17. Update a field or two and click the Save button. Confirm
that the values were actually updated by opening the table via the Server Explorer in Visual Studio (see
Figure 23-18).

804 ❘ chaPTer 23 asP.NEt mVC

Validation
So far you’ve seen how to use the HTML Helpers to render validation information in your views. What
we have yet to look at is how to define the validation rules for the properties in your entities. ASP.NET
MVC 2 makes this easy by adding support for data annotation validation attributes. You can use the built-
in attributes in System.ComponentModel.DataAnnotations or you can create your own custom attributes.
You can use these attributes to indicate several things about a value: that it is required, that it should be in a
specified range, that it should be of a certain data type, and so on.

Your first instinct is likely to put these attributes on the properties of the entities in our LINQ to SQL model.
Unfortunately, these properties are part of the code generated by the designer, so any changes would be lost
if the model were updated. Instead, we will create a metadata class (often referred to as a “buddy” class) that
has properties that match the name and type of the properties on an entity from the model. We’ll attribute
the properties in the metadata class to indicate their validation requirements, and then associate the metadata
class to the entity in the model using the MetadataType attribute. This last step can be done safely because
the classes representing the entities in the LINQ to SQL model are implemented as partial classes.

To add the validation rules for the Product entity, create a new class called Product.vb in the Model folder
and add the following implementation:

Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(ProductValidation))> _
Public Class Product
End Class

Friend Class ProductValidation
 Private Const MoneyMaxValue As Double = 922227203685477.62

 <Required()> _
 Public Property ProductID As Integer

 <Required()> _
 <StringLength(40)> _

figure 23-18

 Public Property ProductName As String

 <Required()> _
 <Range(1, Integer.MaxValue)> _
 Public Property SupplierID As Integer

 <Required()> _
 <Range(1, Integer.MaxValue)> _
 Public Property CategoryID As Integer

 <StringLength(20)> _
 Public Property QuantityPerUnit As String

 <Range(0.0, MoneyMaxValue)> _
 Public Property UnitPrice As Nullable(Of Decimal)

 <Range(0, Short.MaxValue)> _
 Public Property UnitsInStock As Nullable(Of Short)

 <Range(0, Short.MaxValue)> _
 Public Property UnitsOnOrder As Nullable(Of Short)

 <Range(0, Short.MaxValue)> _
 Public Property ReorderLevel As Nullable(Of Short)
End Class

Code snippet from \Models\Product.vb

Run the application, navigate to /Admin, and click the Edit link for one of the items. Update a field or
two with values that will fail validation and click the Save button. Because we have client validation
implemented, you should see the error messages without posting back to the server (see Figure 23-19).
Correcting the errors and tabbing out of the fields should remove the error messages.

figure 23-19

Building an asP.neT MVC application ❘ 805

806 ❘ chaPTer 23 asP.NEt mVC

summary
This chapter only scratches the surface of ASP.NET MVC, but it covered enough of the fundamentals to
enable you to start building applications using the framework. Hopefully, this chapter also gives you enough
of a sense of what ASP.NET MVC is about to know whether it is something that suits your style. For more
on ASP.NET MVC, be sure to check out Professional ASP.NET MVC 2 (Galloway et al., Wiley, 2010).

24
 sharePoint 2010 Development

 WhaT you Will learn in This chaPTer

 Introduction to SharePoint ➤

 Using Features to componentize functionality ➤

 Packaging and deployment with the Solutions Framework ➤

 Setting up a development environment ➤

 Using the SharePoint tools in Visual Studio 2010 ➤

 Building visual Web Parts ➤

 It ’ s fair to say that SharePoint has been a wildly successful product for Microsoft. If you are doing
Web development on the ASP.NET platform, it is very likely that you are already doing development
for SharePoint or will be given the opportunity to do so in the near future.

 To successfully build customizations for SharePoint, you need to understand several fundamental
concepts before starting to write code. The component, packaging, and deployment model used in
SharePoint is signifi cantly different from that used in other areas of ASP.NET. In addition, there
are several object models (or APIs) used to interact with SharePoint depending on what type of
application you ’ re building and where it will be deployed.

 This chapter is designed to teach you the fundamental concepts and enough about the tools in Visual
Studio 2010 and the developer object models to enable you to start developing for SharePoint 2010.

 inTroducTion
 So, what is SharePoint? There are many answers to this question. From a technical aspect, SharePoint
is a Web application that is hosted in IIS and runs on top of ASP.NET. For end users, SharePoint is
an information collaboration and management system. For developers, SharePoint is an application
development platform.

 SharePoint 2010, which is the focus of this chapter, runs on 64 - bit versions of Windows Server 2008
or Windows Server 2008 R2. A deployment of SharePoint 2010 also requires a 64 - bit instance of
Microsoft SQL Server to store confi guration information and content. One additional aspect, which is
key for developers, is that SharePoint 2010 runs on .NET 3.5, not .NET 4 as you might expect.

808 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

What we refer to as SharePoint is really a set of products and technologies. These are grouped into a set of
services and a set of products built on top of those services. In SharePoint 2003, the services were referred to
as Windows SharePoint Services 2.0 and the products were referred to as SharePoint Portal Server 2003. In
SharePoint 2007, it was Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server 2007. Now,
in SharePoint 2010, we have Microsoft SharePoint Foundation 2010 and Microsoft SharePoint Server 2010.

sharePoint foundation 2010
Microsoft SharePoint Foundation 2010 is a free add-on to Windows Server 2008 or Windows Server 2008 R2.
It provides the core features (or the foundation) for the SharePoint platform. It implements the provisioning
engine that enables end users to create sites, lists, and libraries and the security model to ensure that access
to these resources is protected. It also implements the information collaboration and management features
mentioned previously. SharePoint Foundation is a powerful piece of software on its own and has enough
functionality to meet the needs of many small to mid-size organizations.

sharePoint server 2010
SharePoint Server 2010 is a retail product that sits on top of SharePoint Foundation, adding functionality
commonly desired by larger organizations. At a high level, the Server product editions are separated into
two groups depending on whether you plan to use SharePoint internally on an intranet or externally on the
Internet. Enterprise search, Web content management, social networking, InfoPath and Excel services, and
access to external applications through Business Connectivity Services are just a few of the features offered
by SharePoint Server 2010.

sharePoint Terminology
You should be familiar with several terms and concepts when working with SharePoint. The most important
of these are the architectural concepts: farm, Web application, site collection, site, list, and library.

A SharePoint deployment is called a farm. The farm is made up of one or more front-end Web servers and a
SQL Server database used to store configuration information. A simple deployment can be done on a single
server using SQL Server 2008 Express.

A farm may contain one or more SharePoint Web applications. A Web application is an IIS website extended
for use with SharePoint. In general, you will segregate Web applications by authentication mode. For
example, you may have one Web application for internal use that uses integrated Windows authentication,
and another that acts as an extranet that uses ASP.NET forms authentication.

A SharePoint Web application is made up of several site collections. These are portions of the application
that are isolated from each other in terms of administrative privilege and visibility of data. For example, a
company intranet could have site collections for individual departments (Sales, Marketing, HR, and so on).
One or more end users can be designated as owners of a site collection, giving them administrative privilege
within its boundaries. Within a site collection, the owner can create new sites, pages, lists of data, or
libraries of documents, and they can give rights to other users to view or contribute to these resources.

A site collection contains a hierarchy of sites. The root of this hierarchy acts as the entry point for the
collection. The root may contain many child sites, and they in turn may have child sites of their own.
For example, the site at the root of the Sales site collection may have child sites named North Division
and South Division.

Within each site, owners can provision lists, libraries, and pages. The list, which consists of rows and
columns of data, is the basic storage mechanism in SharePoint. It is similar to an Excel worksheet or a
database table. SharePoint has several built-in list templates, including contacts, announcements, and
events. A special form of a list is the library. The library has the same features but it is centralized around a
document (Word, Excel, InfoPath, image, etc.). Both lists and libraries have built-in collaboration features,
including major and minor versioning, content approval, and check in/out policy.

The sharePoint development environment
To effectively do SharePoint development you need an isolated environment in which to work — in other
words, a single machine with both SharePoint and Visual Studio installed. The development process requires
files to be added or removed from common areas of the file system, the Web server to be reset regularly, and
functionality to be added and removed from SharePoint sites and site collections. Trying to do this on a shared
SharePoint Web application in a team environment can easily cause havoc.

It is a common practice in the SharePoint community to do your work in a virtualized environment using
products like Virtual PC, Hyper-V, VMware, or VirtualBox. One of the main reasons for this practice had
been that SharePoint would only run on Windows Server. This changes with SharePoint 2010, which can be
run on 64-bit versions of Windows 7 or Windows Vista SP1 for development purposes. This doesn’t mean
that developers will stop running a virtualized environment, it just removes one of the motivating factors.
If you do decide to go the virtualized route, make sure you give your environment at least 1GB of RAM and
40GB of disk space.

You can find additional details about setting up a development environment for SharePoint 2010 in Setting
Up the Development Environment for SharePoint Server (http://msdn.microsoft.com/en-us/library/
ee554869(office.14).aspx).

In addition to SharePoint and Visual Studio, you will want to have Microsoft SharePoint Designer 2010
installed on your development machine. This free tool is mostly used by power users and designers to
customize SharePoint sites. It is quite powerful and can do many of the tasks developers can do with Visual
Studio. They key difference is that the customizations made with SharePoint Designer are meant to be done
on the live site and are not meant to be reusable. The big benefit of SharePoint Designer is the immediate
results. Since you are working on the live site you see your changes as soon as you save them. This makes
SharePoint Designer an excellent prototyping tool for markup and styles that you will ultimately copy into
your Visual Studio solutions.

feaTures and The soluTions frameWorK
Visual Studio 2010 includes tooling that aids you when doing SharePoint development. These tools
automatically generate and manage the documents required to properly componentized, package, and deploy
your customizations. This is great for experienced SharePoint developers, as it reduces their workload. It’s
not so great for those new to SharePoint development, as it hides or obfuscates some of the very important
tasks being performed. The following sections should help to provide you with a clear understanding of
the foundational topics of Features and the Solutions Framework, without which you will not be able to
effectively work with the tools and designers available in Visual Studio.

features
Features are, in effect, the component model in SharePoint. They enable you to define a set of functionality
as a logical group of elements. The elements may include menu items, pages, event handlers, Web Parts, list
definitions, and more. For example, you could create a feature that creates and populates a list, provisions a
page to show data from the list, and adds a link to the page somewhere in the site.

Once a Feature has been installed, it needs to be activated in order for the elements to be used. Features
can be activated at four different scopes: site, site collection, Web application, or farm. End users interact
with Features scoped only to the site or site collection level; the other two scopes are the domain of the
administrator. Features may also be deactivated. This will generally remove elements added at activation,
although that is not always the case.

Creating a site Collection
To explore how to work with Features, we’ll create a site collection to use for testing. Creating a site collection
can be done is several ways: using SharePoint 2010 Central Administration, using the stsadm.exe
command-line utility, or using the new PowerShell administration commands (also known as cmdlets). The

features and the solutions framework ❘ 809

810 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

Stsadm utility has been around for several versions of SharePoint and will be familiar to those who have
done SharePoint development in the past. However, it won’t be long before the PowerShell cmdlets become
the standard for command-line administration of SharePoint (just as PowerShell is becoming the standard
administration tool for other Microsoft server products); thus, examples in this chapter will use them in favor
of the other options.

To create the site collection and its root site, select All Programs ➪ Microsoft SharePoint 2010 Products ➪
SharePoint 2010 Management Shell from the Start menu. When the command window opens, enter the
following command, replacing the placeholder with your full user name (see Figure 24-1):

New-SPSite http://localhost/sites/demo -Name "Demo"
 -OwnerAlias "<Machine Name>\<User Name>" -Template "STS#0"

figure 24-1

figure 24-2

For more information on this or any of the other available PowerShell cmdlets, use the Get-Help
command — for example:

Get-Help New-SPSite

You should now be able to navigate to http://localhost/sites/demo and see a page similar to that
shown in Figure 24-2.

 Building a feature
 With the site and site collection in place, you can move on to building a Feature. At the core of a Feature
are XML documents that defi ne the Feature and its elements. In fact, simple Features can be created with
the XML documents alone.

 You ’ ll create just such a Feature, one that does the following: creates a list of contacts and populates it with
some data, provisions a page that displays the contacts in the list, and adds a link to the page to the containing
site. Using Windows Explorer, create a folder named SimpleFeature . This folder will contain the fi les that
defi ne the Feature, along with the page that displays the list of contacts. The fi rst document you ’ ll create is
known as the Feature manifest . Using any text or XML editor you like, create a new fi le named feature.xml
and save it into the SimpleFeature folder created earlier. Add the following Collaborative Application Markup
Language to the fi le:

 < Feature
 xmlns="http://schemas.microsoft.com/sharepoint/"
 Id="BEAE3C0D-EF1F-4341-B7C4-6BF3C59D2162"
 Title="Simple Feature"
 Description="No Visual Studio here"
 Scope="Web"
 Hidden="FALSE" >

 < ElementManifests >
 < ElementManifest Location="elements.xml" / >
 < ElementFile Location="Contacts.aspx" / >
 < /ElementManifests >

 < /Feature >

 Code snippet from feature.xml

 collaBoraTiVe aPPlicaTion marKuP language (caml)

 Collaborative Application Markup Language is XML that conforms to specifi c schemas
defi ned by SharePoint. It is used in confi guration fi les and code to defi ne features and
elements, to query data contained in lists, to defi ne how data is rendered to the browser,
and much more. We ’ ll explore several uses of CAML in this chapter. More information
is available in this article from the SharePoint Foundation SDK: http://msdn.microsoft
.com/en-us/library/ms426449(office.14).aspx

 When copying a sample like the one above, it is considered a
best practice to replace any GUIDs you fi nd. In this case, replace
the Id attribute of the Feature with a freshly generated GUID.
This eliminates the chance that you will have multiple Features
with the same unique identifi er in your farm. You can generate
a GUID using the guidgen.exe command - line utility from the
Windows SDK (see Figure 24 - 3). You can also access this utility
from Visual Studio by selecting Tools ➪ Create GUID from the
main menu.

 Several aspects of the Feature are defi ned by the attributes of
the Feature XML element. The Title and Description are the
text displayed on the page where the Feature will be activated
or deactivated, and the Scope determines the level at which the
Feature will be activated.

 figure 24 - 3

features and the solutions framework ❘ 811

812 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

 Also contained in the feature manifest are references to the associated element manifests which describe
the contents of the Feature. For our sample Feature there will only be one element manifest but it will
defi ne three elements. The fi rst (a ListInstance) will create the list of contacts and populate it with some
data. The second (a Module) will add the page you will create shortly to the target site, and the third (a
 CustomAction) will add a link to the page in the Site Actions menu.

 Creating the element Maniftest
 To create the element manifest, create a new fi le named elements.xml , save it to the SimpleFeature folder,
and add the following code:

 < Elements xmlns="http://schemas.microsoft.com/sharepoint/" >

 < !-- Create the contacts list -- >
 < ListInstance
 FeatureId="00BFEA71-7E6D-4186-9BA8-C047AC750105"
 TemplateType="105"
 Title="Contacts"
 Url="Contacts"
 QuickLaunchUrl="Contacts/Forms/AllItems.aspx" >
 < Data >
 < Rows >
 < Row >
 < Field Name="ID" > 1 < /Field >
 < Field Name="Last Name" > Anders < /Field >
 < Field Name="First Name" > Maria < /Field >
 < Field Name="Company" > Alfreds Futerkiste < /Field >
 < Field Name="Business Phone" > 030-0074321 < /Field >
 < /Row >
 < Row >
 < Field Name="ID" > 2 < /Field >
 < Field Name="Last Name" > Hardy < /Field >
 < Field Name="First Name" > Thomas < /Field >
 < Field Name="Company" > Around the Horn < /Field >
 < Field Name="Business Phone" > (171) 555-7788 < /Field >
 < /Row >
 < Row >
 < Field Name="ID" > 3 < /Field >
 < Field Name="Last Name" > Lebihan < /Field >
 < Field Name="First Name" > Laurence < /Field >
 < Field Name="Company" > Bon app' < /Field >
 < Field Name="Business Phone" > 91.24.45.40 < /Field >
 < /Row >
 < Row >
 < Field Name="ID" > 4 < /Field >
 < Field Name="Last Name" > Ashworth < /Field >
 < Field Name="First Name" > Victoria < /Field >
 < Field Name="Company" > B's Beverages < /Field >
 < Field Name="Business Phone" > (171) 555-1212 < /Field >
 < /Row >

 siTe collecTions, siTes, and WeBs

 In regard to scope, you should be aware of a naming inconsistency. This issue will also
be apparent when you begin to write code against the SharePoint object models. What
we call site collections and sites today were formerly called sites and webs, respectively.
These legacy terms remain in the XML schemas and developer object models we use
today. Therefore, when you want to activate a Feature at the site level, you set the
scope to Web. When you want to activate it at the site collection level, you set the scope
to Site. This will be somewhat confusing when you fi rst start developing on the SharePoint
platform but it will become second nature in no time.

 <Row>
 <Field Name="ID">5</Field>
 <Field Name="Last Name">Mendel</Field>
 <Field Name="First Name">Roland</Field>
 <Field Name="Company">Ernst Handel</Field>
 <Field Name="Business Phone">7675-3425</Field>
 </Row>
 </Rows>
 </Data>
 </ListInstance>

 <!-- Provision the page to display the contacts -->
 <Module Url="MySitePages" >
 <File Url="Contacts.aspx" Type="Ghostable" />
 </Module>

 <!-- Add the menu option that links to Contacts.aspx -->
 <CustomAction
 Id="SiteActionsToolbar"
 GroupId="SiteActions"
 Location="Microsoft.SharePoint.StandardMenu"
 Sequence="100"
 Title="Contacts"
 Description="A page showing some sample data">
 <UrlAction Url="~site/MySitePages/Contacts.aspx"/>
 </CustomAction>

</Elements>

Code snippet from elements.xml

You can add many types of elements, far more than can be covered in this chapter. The three used here
(ListInstance, Module, and CustomAction) are among the most common. Additional information
is available in this section of the SharePoint Foundation SDK: http://msdn.microsoft.com/en-us/
library/ms414322(office.14).aspx

One important aspect of the definition of an element is the use of what are commonly called magic numbers
and strings. These are hard-coded values that have specific meaning. For example, the string “FF0000” is
used to represent the color Red in certain contexts. The use of magic strings and numbers are quite common
in CAML.

The preceding file demonstrates two examples. First, the combination of the FeatureId and TemplateType
in the ListInstance element indicate the type of list you wish to create. Second, the combination of the
GroupId and Location attributes in the CustomAction element indicate where the menu option or link will
be placed within the SharePoint site.

The final file to create is the page that will show the data from the contacts list. This is a standard ASP.NET
content page that will fill two of the several content placeholders in the default master page for the site. It
will use SharePoint-specific versions of the ASP.NET DataSource and GridView controls to retrieve and
display data from the contacts list.

The SPDataSource is specifically designed to work with data coming from SharePoint lists, and the
SPGridView is designed to respect the CSS styles used in a SharePoint site. Using these controls together
provide a simple, no-code method to surface data from your SharePoint site.

Create a file named Contacts.aspx, add the following code, and save it to the SimpleFeature folder:

<% Assembly Name="Microsoft.SharePoint, Version=14.0.0.0, ..." %>

<% Page MasterPageFile="~masterurl/default.master"
 meta:progid="SharePoint.WebPartPage.Document" %>

<% Register TagPrefix="SharePoint"
 Namespace="Microsoft.SharePoint.WebControls"

features and the solutions framework ❘ 813

814 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

 Assembly="Microsoft.SharePoint, Version=14.0.0.0, ..." %>

<asp:Content runat="server" ContentPlaceHolderID="PlaceHolderPageTitle">
 Contacts
</asp:Content>

<asp:Content runat="server" ContentPlaceHolderID="PlaceHolderMain">
 <h3>Contacts</h3>

 <SharePoint:SPDataSource runat="server"
 ID="ContactsDataSource" DataSourceMode="List"
 UseInternalName="false">
 <SelectParameters>
 <asp:Parameter Name="ListName" DefaultValue="Contacts" />
 </SelectParameters>
 </SharePoint:SPDataSource>

 <SharePoint:SPGridView runat="server"
 ID="ContactsGridView" DataSourceID="ContactsDataSource"
 AutoGenerateColumns="false" RowStyle-BackColor="#DDDDDD"
 AlternatingRowStyle-BackColor="#EEEEEE">
 <Columns>
 <asp:BoundField HeaderText="Company"
 HeaderStyle-HorizontalAlign="Left" DataField="Company" />
 <asp:BoundField HeaderText="First Name"
 HeaderStyle-HorizontalAlign="Left" DataField="First Name" />
 <asp:BoundField HeaderText="Last Name"
 HeaderStyle-HorizontalAlign="Left" DataField="Last Name" />
 <asp:BoundField HeaderText="Phone"
 HeaderStyle-HorizontalAlign="Left" DataField="Business Phone" />
 </Columns>
 </SharePoint:SPGridView>
</asp:Content>

Code snippet from Contacts.aspx

Manually Deploying and installing the feature
Now that you have all the files in place, you need to deploy the Feature. We’ll start by looking at a manual
technique, and later you’ll learn how to properly package your Feature for production deployment. Manual
deployment is a two-step process:

 1. Copy the Feature files to the SharePoint system folders.

 2. Install the Feature.

The SharePoint system folders are found under the system root, which is located at C:\Program Files\
Common Files\Microsoft Shared\web server extensions\14\. (You may hear of this referred to as the
“14 Hive,” although Microsoft and the SharePoint community are moving away from using the term.) It is in
the system folders that files common across the farm are stored, which include the files that define Features.
For the remainder of this chapter, the short form of [14] will be used to represent the path to the system root.

Features are stored in [14]\TEMPLATES\FEATURES. Each Feature has its own subfolder that contains the feature
and element manifests, along with other supporting files. The first step in deploying your sample Feature is to
copy the SimpleFeature folder here. Use Windows Explorer (or some other technique) to do so.

To install the feature, open the SharePoint 2010 Management Shell and enter the following command,
which is the relative path from [14]\TEMPLATES\FEATURES to the folder containing the Feature manifest:

Install-SPFeature -path SimpleFeature

activating the feature
You are now ready to activate the sample Feature. Navigate to the team site you created earlier (http://
localhost/sites/demo) and select Site Settings ➪ Manage site features from the Site Actions menu

located at the top-left corner of the page. The sample Feature, named Simple Feature, should appear in the
list, as shown in Figure 24-4.

figure 24-4

figure 24-5

Before you activate the Feature, note the two list names shown in the Quick Launch area on the left of the
page; there should be Calendar and Tasks. Click the Activate button for the Simple Feature. Activating
the Feature creates the Contacts list, which should appear in the Lists area as shown in Figure 24-5. You
can click on the Contacts link to see the data that was added when the list was created.

features and the solutions framework ❘ 815

816 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

The other way to see the list data is to navigate to the Contacts.aspx page. Opening the Site Actions menu
and selecting Contacts (see Figure 24-6) should get you to the page (see Figure 24-7).

figure 24-7

figure 24-6

Deactivating and removing the feature
To remove the Feature, just reverse the process used to deploy it. First deactivate the Feature by selecting
Site Settings ➪ Manage site features from the Site Actions menu and clicking the appropriate Deactivate
button. You’ll be redirected to a page asking you confirm that you want to deactivate the Feature. Click the
Deactivate This Feature link to do so.

Note that deactivating the Feature removes the menu option that was added to the Site Actions menu but it
does not remove the contacts list or the page that displays its data. This emphasizes that some elements are
automatically removed, whereas other elements require code to be removed.

The next step in removing the Feature is to open the SharePoint 2010 Management Shell and enter the
following command:

Uninstall-SPFeature -Identity SimpleFeature -Confirm:$False

Finally, delete the SimpleFeature folder from [14]\TEMPLATE\FEATURES and you are done.

While this deployment process works well enough for a simple example, it is not suitable for a production
environment. For production purposes, you will package the files that comprise your Feature, including a
solution manifest, into a solution package.

solution framework
The Solution Framework included with SharePoint Foundation provides a mechanism for you to package
Features for deployment. The package is a CAB file that includes the files that make up the Features to be
deployed, along with a solution manifest. The process used to deploy a package depends on the type: farm
or sandbox.

Farm solutions are deployed using a two-step process. The package is copied into the solution store and
then timer jobs are set up on the front-end Web servers to retrieve the package and deploy the files based
on instructions contained in the solution manifest. Most of the files will be deployed to folders under the
system root. Only administrators may deploy a farm solution.

Sandboxed solutions, which are new to SharePoint 2010, allow a non-administrator to deploy a solution within
the context of a site collection. As the name implies, these solutions run in a sandbox. That is, they are restricted
to using a subset of the server object model and are restricted in the number of resources they may use.

Creating a solution Package
To begin we will deploy the package as a farm solution. The first step is to create the solution manifest. The
manifest won’t be a very complex document because there isn’t much the automated deployment mechanism
needs to know to deploy our Feature. Create a file named manifest.xml, add the following CAML, and
save it to the SimpleFeature folder. Be sure to replace the value of the SolutionId attribute with a freshly
generated GUID.

<Solution
 SolutionId="361A1DD0-E8A1-4559-A429-A381B4CC9A90"
 xmlns="http://schemas.microsoft.com/sharepoint/">

 <FeatureManifests>
 <FeatureManifest Location="SimpleFeature\feature.xml" />
 </FeatureManifests>

</Solution>

Code snippet from manifest.xml

Now you need to build the package. The package is a CAB file, so you’ll use a command-line tool named
makecab.exe to build it. This utility, which is included with all recent versions of Windows, takes a text file
describing the contents and structure of the CAB as input. Create a file named Cab.ddf, add the following
text, and save it to the SimpleFeature folder (key aspects of the file are shown in bold):

;
.OPTION EXPLICIT ; Generate errors
.Set CabinetNameTemplate=SimpleFeature.wsp
.set DiskDirectoryTemplate=CDROM ; All cabinets go in a single directory
.Set CompressionType=MSZIP;** All files are compressed in cabinet files
.Set UniqueFiles="ON"
.Set Cabinet=on
.Set DiskDirectory1=Package

manifest.xml

.Set DestinationDir=SimpleFeature

features and the solutions framework ❘ 817

818 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

feature.xml
elements.xml
Contacts.aspx

;***

Note that the filename is SimpleFeature.wsp, it should be output to a folder named Package, and the
contents of the file should include the solution manifest and the files that comprise the Feature.

You are now ready to build the package. Open the SharePoint 2010 Management Shell from the Start menu
and navigate to the SimpleFeature folder. Then execute the following command to build the package:

Makecab /f Cab.ddf

You should see output similar to that shown in Figure 24-8. Note that the package has been created in the
SimpleFeature\Package folder.

figure 24-8

figure 24-9

Before deploying the package, let’s start fresh by deleting and recreating our test site collection. Open the
SharePoint 2010 Management Shell and execute the following two commands. Remember that you need to
replace the placeholder with your full user name:

Remove-SPSite http://localhost/sites/demo -Confirm:$False
New-SPSite http://localhost/sites/demo -Name "Demo"
 -OwnerAlias "<Machine Name>\<User Name>" -Template "STS#0"

Deploying a farm solution
As mentioned previously, deploying a package to the farm is a two-step process, so you need to use calls to two
PowerShell cmdlets to achieve it. Open a new SharePoint 2010 Management Shell, this time as Administrator,
and execute the following commands (note that the LiteralPath parameter to the first command requires the
absolute path to the package). You should see output similar to that shown in Figure 24-9.

Add-SPSolution -LiteralPath <Path>\SimpleFeature\Package\SimpleFeature.wsp
Install-SPSolution -Identity SimpleFeature.wsp

At this point, your Feature should be available not only to your test site but to all sites in the farm.

To confirm that everything worked as expected, use the same steps you did previously to activate the
Feature. Ensure that the Contacts list was created and populated with data and that you can navigate to
Contacts.aspx using the menu option that was added to the Site Actions menu.

To clean up, deactivate the Feature and use the following to PowerShell commands to uninstall it and
remove it from the solution store:

Uninstall-SPSolution -Identity SimpleFeature.wsp -Confirm:$False
Remove-SPSolution -Identity SimpleFeature.wsp -Confirm:$False

Deploying a sandboxed solution
Now that you’ve seen how deployment of a farm solution works, this section takes a look at deploying a
sandboxed solution. Recall that sandboxed solutions are designed to be deployed and administered by site
collection owners rather than SharePoint administrators.

Start fresh by deleting and recreating your test site. Open the SharePoint 2010 Management Shell and
execute the following two commands. Remember to replace the placeholder with your full user name:

Remove-SPSite http://localhost/sites/demo -Confirm:$False
New-SPSite http://localhost/sites/demo -Name "Demo"
 -OwnerAlias "<Machine Name>\<User Name>" -Template "STS#0"

If you didn’t do this previously, run the following two additional PowerShell commands to uninstall and
remove the package deployed to the farm:

Uninstall-SPSolution -Identity SimpleFeature.wsp
Remove-SPSolution -Identity SimpleFeature.wsp

Navigate to the demo site (http://localhost/sites/demo) and then to the Solutions Gallery by selecting
Site Actions ➪ Site Settings ➪ Solutions (the Solutions link is at the bottom of the Galleries group). At the
top of the page, click the Solutions tab, and click the Upload Solution button in the ribbon. In the Upload
Solution dialog, browse to SimpleFeature.wsp in the SimpleFeature\Package folder and click OK (see
Figure 24-10). In the Activate Solution dialog that pops up, click the Activate button in the ribbon and then
click the Close button (see Figure 24-11).

figure 24-10

features and the solutions framework ❘ 819

820 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

At this point the package has been deployed to
the test site collection. The Simple Feature is
now available to be activated by any site in the
collection, but the deployment process would
need to be repeated to make it available to sites
in other site collections. The overloaded use
of the term activate may be confusing; activating
the solution does not activate the Features
contained within. Therefore, you need to go to
the Site Features page and activate the Simple
Feature.

Once the Feature has been activated, check that
the Contacts list was created and populated with
data and that you can navigate to Contacts
.aspx using the menu option that was added to
the Site Actions menu.

To remove the sandboxed solution, deactivate the Feature and return to the Solutions Gallery. Click the check
box beside the SimpleFeature item and then click the Deactivate button in the ribbon (see Figure 24-12). In
the Deactivate Solution dialog that pops up, click the Deactivate button to confirm. Now click the check box
beside the SimpleFeature item once more and click the Delete button in the ribbon to remove the solution
from the gallery.

figure 24-11

figure 24-12

At this point you should have enough of an understanding of Features and the Solution Framework to move
forward and start using Visual Studio. From this point forward, you’ll no longer need to manually manage
the files we created by hand — but if something goes wrong you’ll have enough of a background to know
where to look.

Visual sTudio Tools for sharePoinT deVeloPmenT
One of the things that was clearly missing from previous versions of Visual Studio was tooling to assist in
SharePoint development. Out-of-the-box, Visual Studio 2005 had none and Visual Studio 2008 only had
templates for building SharePoint workflows. To attempt to address this issue, Microsoft and members of
the community built extensions to Visual Studio. The three most popular of these were the Visual Studio
Extensions for Windows SharePoint Services 3.0 (VSeWSS), WSPBuilder, and STSDev.

As SharePoint rose in popularity, the need for more and better tooling for SharePoint development became
glaringly obvious. It’s clear that this was understood by Microsoft because they’ve added extensive support
for SharePoint development to Visual Studio 2010. Multiple project and item templates, solution and
Feature explorers and designers, the capability to use visual designers when creating Web Parts, and the
capability to deploy and debug using F5 are just some of the features that were added.

This section takes a look at some of these tools by recreating the Feature used in the last example with
Visual Studio 2010. You’ll start fresh by recreating your test site. Open the SharePoint 2010 Management
Shell and execute the following two commands:

Remove-SPSite http://localhost/sites/demo -Confirm:$False
New-SPSite http://localhost/sites/demo -Name "Demo"
 -OwnerAlias "<Machine Name>\<User Name>" -Template "STS#0"

Start Visual Studio 2010 as Administrator and select File ➪ New Project from the main menu. In the
New Project dialog, pick the Visual Basic ➪ SharePoint ➪ 2010 node from the Installed Templates,
select Empty SharePoint Project, set the target framework to .NET Framework 3.5, set the Name to
SimpleFeatureVisualStudio, and click the OK button (see Figure 24-13). Recall that SharePoint 2010 runs
on .NET 3.5, not .NET 4, so it’s important to set the target framework.

figure 24-13

A dialog will appear asking you which local site you wish to use for debugging and whether you want
to deploy the solution as a farm or sandboxed solution when testing (see Figure 24-14). Set the site to
http://localhost/sites/demo, choose to deploy as a farm solution, and click the Finish button. The

Visual studio Tools for sharePoint Development ❘ 821

822 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

Visual Studio project created for you represents the SharePoint solution; now you need to add your Feature
and its elements.

figure 24-14

figure 24-15

To create the Feature, right-click on the Features node in the Solution Explorer and select Add Feature. In
the Feature designer, set the Title to Simple Feature 2, and the Description to something that indicates this
Feature was built with Visual Studio (see Figure 24-15). Now you are ready to create the elements.

We’ll start with the Contacts list. Right-click on the project in the Solution Explorer, select Add ➪ New
Item, select the List Instance item template, set the Name to Contacts, and click the Add button. Visual
Studio will examine the test site you selected when you created the project to see what kinds of lists are
available. It will then present a dialog allowing you to select the list type, and give your list a name and
description. Complete the dialog as shown in Figure 24-16 and click the Finish button.

figure 24-16

figure 24-17

Two things should happen: A new folder containing the elements.xml file for the list instance should be
added to the project, and the new element should be added to the Feature created earlier (see Figure 24-17).

Visual studio Tools for sharePoint Development ❘ 823

824 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

The CAML generated for the list instance is sufficient to create the Contacts list but it will not
populate the data. You’ll need to add that by copying the Data element from the last example into the
Elements.xml file.

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListInstance Title="Contacts"
 OnQuickLaunch="TRUE"
 TemplateType="105"
 FeatureId="00bfea71-7e6d-4186-9ba8-c047ac750105"
 Url="Lists/Contacts"
 Description="">
 <!-- Insert Data element here -->
 </ListInstance>
</Elements>

Next, you want to add the Contacts.aspx page. If you recall, this page was provisioned into the site using
a Module. Right-click on the project in the Solution Explorer, select Add ➪ New Item, select the Module
item template, and click the Add button. A new folder will be created in the project for the Module, a
sample file will be created for the Module to provision, and the new element will be added to the Feature
(see Figure 24-18).

figure 24-18

The Contacts.aspx page from the last example can be used as-is, so right-click on the Module1 folder in
the Solution Explorer, select Add ➪ Existing Item, navigate to and select Contacts.aspx used previously,
and click the Add button. A new File element should be added to the Module. We don’t need the sample
file, so right-click on it in the Solution Explorer and select Delete.

The last step is to modify the generated CAML. Update the URL property of the File element so that the
Contacts.aspx page is provisioned into a virtual folder named MySitePages (instead of Module1).
The completed Elements.xml should look like the following:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="Module1">
 <File Path="Module1\Contacts.aspx" Url="MySitePages/Contacts.aspx" />
 </Module>
</Elements>

Code snippet from Module1\Elements.xml

The final element to add is the option in the Site Actions menu that enables you to navigate to the
Contacts.aspx page. This is defined by a CustomAction element. Right-click on the project in the Solution
Explorer, select Add ➪ New Item, and look through the list of item templates. You won’t find a template
for a custom action, so select the Empty Element template instead. Copy and paste the CAML for the
CustomAction used in the previous example into the newly created Elements.xml (see Figure 24-19).

figure 24-19

At this point you’ve replicated everything done in the previous example. To confirm that you’re ready to
move forward, examine the generated Feature and solution manifests. Double-click Feature1.feature in
the Solution Explorer and select the Manifest tab at the bottom of the designer to see the generated CAML.
You should see something similar to the following (also shown in Figure 24-20):

<Feature
 xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="Simple Feature 2"
 Description="This one uses the tools in Visual Studio"
 Id="fabe1b4b-5a99-4d06-80d0-30922bb53322"
 Scope="Web">
 <ElementManifests>
 <ElementManifest Location="Contacts\Elements.xml" />
 <ElementFile Location="Module1\Contacts.aspx" />
 <ElementManifest Location="Module1\Elements.xml" />
 <ElementManifest Location="EmptyElement1\Elements.xml" />
 </ElementManifests>
</Feature>

Visual studio Tools for sharePoint Development ❘ 825

826 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

This is effectively the same as the Feature manifest from the previous example except that the elements are
split into three manifests, rather than being included in one.

To see the solution manifest, double-click Package.package in the Solution Explorer (you may need
to expand the Package folder) and select the Manifest tab at the bottom of the designer. You should see
something similar to the following (also shown in Figure 24-21):

<Solution
 xmlns="http://schemas.microsoft.com/sharepoint/"
 SolutionId="7aa00dc0-bd83-4bff-a99b-271ddd6e713e">
 <Assemblies>
 <Assembly
 Location="SimpleFeatureVisualStudio.dll"
 DeploymentTarget="GlobalAssemblyCache" />
 </Assemblies>
 <FeatureManifests>
 <FeatureManifest Location="SimpleFeatureVisualStudio_Feature1\Feature.xml" />
 </FeatureManifests>
</Solution>

The big difference between this manifest and the one used in the previous example is the inclusion of
the Assembly element. This directs SharePoint to deploy the assembly for this project into the global
assembly cache (GAC). This project does not include any Visual Basic code so the presence of the element is
inconsequential.

You are now ready to test. Press F5 and several things will happen: Visual Studio will build the package
and deploy it, it will activate the Feature in the site you indicated you want to use for testing, it will attach
the debugger to the appropriate worker process, and it will launch the site in your browser. To confirm
that everything worked as expected, ensure that the Contacts list was created and populated with data
and that you can navigate to Contacts.aspx using the menu option that was added to the Site Actions
menu. Close the browser to stop your debugging section.

figure 24-20

Now let’s deploy and use the project as a sandboxed solution. Select the project in the Solution Explorer
and set the Sandboxed Solution property to True in the Properties Window. Pressing F5 this time will
remove the farm solution deployed previously and then deploy the sandboxed solution and activate the
Feature. The end-user experience from this point should be exactly the same as before.

Those of you who are new to SharePoint development may not appreciate it, but this is a huge improvement
over anything that was available in the past. To sweeten the story even further, Microsoft has gone to great
lengths to make tooling for SharePoint extensible, so you can look forward to additional tools being released
by Microsoft and the SharePoint developer community.

The sharePoinT 2010 oBJecT models
It’s quite likely that by this point in the chapter you are wondering whether any actual coding is done when
customizing SharePoint. Of course, the answer is yes. Developers can use the server object model, the client
object models, or the SharePoint Web services to interact with the functionality and data exposed by
SharePoint 2010. Which one of these mechanisms you use will depend on the type of application you are
building and where it will run.

The server object model is designed to be used when writing code that will run as part of a SharePoint Web
application. If you create a Web Part, site or application page, or write an event handler to work with a
Feature or a list, you’ll be using the server object model. You may also use the server object model in a client
application as long as it runs on a server that is part of the SharePoint farm. This practice is not common
and is generally restricted to custom administration utilities.

The client object models (.NET managed, JavaScript, and Silverlight) are designed to be used in situations
where you cannot use the server object model. The .NET managed object model can be used in client or
ASP.NET Web applications targeting .NET 3.5 or later. The JavaScript object model can be used in client-
side code running in pages or Web parts that are hosted in SharePoint. The Silverlight object model can be
used in Silverlight applications or controls that run inside or outside the context of SharePoint.

figure 24-21

The sharePoint 2010 object Models ❘ 827

828 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

The final option is to use the SharePoint Web services. These can be used in all of the places we’ve discussed
so far (on the server, on the client, in JavaScript, and in Silverlight). Because the need for the Web services
has, for the most part, been replaced by the client object models, the SharePoint Web services are not
covered in this chapter.

server object model
You’ve waited long enough to see some code so let’s dive right in. The canonical “Hello, World” example for
SharePoint is a console application that loops through the lists in a site and displays the items for each list.

Open Visual Studio 2010 and select File ➪ New Project from the main menu. Select the Visual Basic node in
the Installed Templates, select the Console Application item template, set the Name to ServerObjectModel,
and click OK (see Figure 24-22).

figure 24-22

Two other project settings need to be set to ensure that this application is compatible with SharePoint 2010.
Because this application will be using the server object model, it will only be able to be run on a server in the
SharePoint farm and will effectively run in the context of SharePoint; therefore, it needs to target the .NET
Framework 3.5 and a 64-bit CPU. Right-click on the project in the Solution Explorer and select Properties,
select the Compile tab, scroll down to the bottom of the settings and click the Advanced Compile Options
button, and configure the Advanced Compiler Settings dialog as shown in Figure 24-23.

The server object model contains types that map to the common architectural concepts in SharePoint. The
types we will use in the example are SPSite, SPWeb, SPList, and SPListItem, which map to a site collection, a
site, a list, and a list item, respectively.

The server object model is implemented in the Microsoft.SharePoint.dll. Add a reference to this
assembly, which you’ll find on the .NET tab of the Add Reference dialog.

Getting back to the code for the console application, the first thing you need to do is get access to the site
you want to inspect. You can’t create a SPWeb object directly, so you need to get an object representing the
parent site collection and use one of its properties or methods. Because the site we want is the root site in
the collection, we’ll use the RootWeb property.

Update Module1.vb to look like the following:

Imports Microsoft.SharePoint

Module Module1
 Sub Main()
 Dim siteUrl = "http://localhost/sites/demo/"
 Using site As New SPSite(siteUrl)
 Dim web = site.RootWeb

 End Using
 End Sub
End Module

Code snippet from Module1.vb

Note that the SPSite object is instantiated with a Using statement. Both the SPSite and SPWeb objects
hold references to unmanaged resources that need to be cleaned up in a timely manner. Not doing so can
have significant adverse effects on the performance and resource usage of your applications. The rule of
thumb is that if you create an instance of an SPSite or SPWeb, you should ensure that it is disposed. If you
get a reference to the SPSite or SPWeb from a property of another object, you should not dispose.

figure 24-23

The sharePoint 2010 object Models ❘ 829

830 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

Inside the Using statement, loop through the lists contained in the site and write out the name of the list to
the console. Hidden lists and document libraries should be skipped:

For Each list As SPList In web.Lists
 If Not list.Hidden AndAlso _
 list.BaseType <> SPBaseType.DocumentLibrary Then

 Console.WriteLine(list.Title)
 End If
Next

Code snippet from Module1.vb

After you display the title of the list to the console, display the title of each item in the list:

For Each item As SPListItem In list.Items
 Console.WriteLine(vbTab + item.Title)
Next

The completed code should look like the following.

Imports Microsoft.SharePoint

Module Module1
 Sub Main()
 Dim siteUrl = "http://localhost/sites/demo/"
 Using site As New SPSite(siteUrl)
 Dim web = site.RootWeb

 For Each list As SPList In web.Lists
 If Not list.Hidden AndAlso _
 list.BaseType <> SPBaseType.DocumentLibrary Then
 Console.WriteLine(list.Title)

 For Each item As SPListItem In list.Items
 Console.WriteLine(vbTab + item.Title)
 Next
 End If
 Next
 End Using
 End Sub
End Module

Code snippet from Module1.vb

Press Ctrl+F5 to run the application. If your test site still has the Contacts list created in one of the previous
sample Features, you should see output similar to that shown in Figure 24-24.

figure 24-24

Now let’s see how you can build the same application using the managed client object model.

client object models
The client object models are a new addition to SharePoint 2010. They can be used in most (but not all) places
where the SharePoint Web services were used previously. As mentioned, there are three client object models:
one used with .NET managed code, one used with JavaScript, and one used with Silverlight. These three are
very similar (disregarding the differences of the hosts in which they operate). Once you have learned how to
use one, picking up the other two is not difficult. This section focuses on the managed client object model.

The biggest difference between the server and client object models is the batching used to access resources
in the client object models. Recall that applications written with the client object model are running outside
the context of SharePoint. That means that access to resources crosses a process or machine boundary, and
that means service calls. While it may not be obvious from the code, when you make requests for resources
from code in the client object models, a call to a WCF service is being made. To make this as efficient as
possible, the client object models allow you to batch the requests for resources together.

For this sample application, open Visual Studio 2010 and select File ➪ New Project from the main menu.
Select the Console Application item template, set the Name to ClientObjectModel, and click OK. The
restrictions on the target version of the .NET Framework and CPU do not apply to applications built using
the managed client object model.

Like the server object model, the managed client object model contains types that map to the common
architectural concepts in SharePoint, but the names of the types are not prefixed with SP. The managed
client object model is implemented in Microsoft.SharePoint.Client.dll and Microsoft.SharePoint
.Client.Runtime.dll. Add a reference to these assemblies, which you’ll find on the .NET tab of the Add
Reference dialog.

Also like the server object model, the client object model has a context object that is central to many
operations. These context objects are conceptually similar to the HttpContext object in ASP.NET. On the
server side, this is the SPContext; on the client side, it is the ClientContext.

Moving to the code, the first thing you need to do is get access to the site you want to inspect. This will be
done through the ClientContext, which has properties that allow access to the site collection and the site
associated with the URL passed into the constructor of the ClientContext.

Accessing properties does not actually get their values. As mentioned previously, retrieving the values is
done in batches. Therefore, once you have the ClientContext constructed, you’ll create variables to hold
a reference to the site and its collection of lists. To populate those variables, you pass references to them
to the context via the Load method and then retrieve their values via the ExecuteQuery method. It’s the
ExecuteQuery method that calls the WCF service mentioned earlier. Add this code to the Main method of
Module1:

Imports Microsoft.SharePoint.Client

Module Module1
 Sub Main()
 Dim siteUrl = "http://localhost/sites/demo/"
 Using context As New ClientContext(siteUrl)
 Dim web = context.Web
 Dim lists = web.Lists
 context.Load(web)
 context.Load(lists)
 context.ExecuteQuery()

 End Using
 End Sub
End Module

Code snippet from Module1.vb

The sharePoint 2010 object Models ❘ 831

832 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

After the call to ExecuteQuery, loop through the lists you just retrieved and write out the name of the list
to the console. Hidden lists and document libraries should be skipped:

For Each list As List In lists
 If Not list.Hidden AndAlso _
 list.BaseType <> BaseType.DocumentLibrary Then

 Console.WriteLine(list.Title)
 End If
Next

Code snippet from Module1.vb

After you display the title of the list to the console, display the title of each item in the list. This needs to be
done a little differently than the last example. Instead of the List type having an Items property, the client
object model encourages you to limit the information crossing the wire by exposing a GetItems method
that executes a CAML query. You only need the value of the Title property for each item, so that is all you
will retrieve:

Dim xml = <View>
 <ViewFields>
 <FieldRef Name="Title"/>
 </ViewFields>
 </View>

Dim query As New CamlQuery()
query.ViewXml = xml.ToString()
Dim items = list.GetItems(query)
context.Load(items)
context.ExecuteQuery()

For Each item In items
 Console.WriteLine(vbTab + item("Title"))
Next

Code snippet from Module1.vb

The completed code should look like the following:

Imports Microsoft.SharePoint.Client

Module Module1
 Sub Main()
 Dim siteUrl = "http://localhost/sites/demo/"
 Using context As New ClientContext(siteUrl)
 Dim web = context.Web
 Dim lists = web.Lists
 context.Load(web)
 context.Load(lists)
 context.ExecuteQuery()

 For Each list As List In lists
 If Not list.Hidden AndAlso _
 list.BaseType <> BaseType.DocumentLibrary Then
 Console.WriteLine(list.Title)

 Dim xml = <View>
 <ViewFields>
 <FieldRef Name="Title"/>
 </ViewFields>
 </View>

 Dim query As New CamlQuery()
 query.ViewXml = xml.ToString()

 Dim items = list.GetItems(query)
 context.Load(items)
 context.ExecuteQuery()

 For Each item In items
 Console.WriteLine(vbTab + item("Title"))
 Next
 End If
 Next
 End Using
 End Sub
End Module

Code snippet from Module1.vb

Press Ctrl+F5 to run the application. Unless you added, edited, or deleted items since running the last
example, you should get identical output to Figure 24-24.

Building WeB ParTs
Web Parts are one of the core elements used to build user interfaces in SharePoint. They are a special type of
server control that support customizable properties and personalization.

From a development aspect, there are two types of Web Parts: SharePoint and ASP.NET. That is, you can
build Web Parts specifically for SharePoint using types found in the SharePoint server object model, or you
can build Web Parts that will work in both ASP.NET and SharePoint using types found in ASP.NET 3.5.
The SharePoint-specific Web Part framework is really there for backward compatibility; any new work
should be done using the ASP.NET Web Part framework.

Like any server control in ASP.NET, Web Parts are built with code
only. That is, there is no design-time experience during development.
The user interface is expressed in Visual Basic code and you only see
the result when the page hosting the control is executed.

To address this issue, Web Part developers have begun to build the
user interface for Web Parts with user controls (which do have a
design-time experience), and then the Web Part hosts the user control.
This type of Web Part is commonly called a Visual Web Part.

To see how to build a Visual Web Part with Visual Studio 2010, open
Visual Studio 2010, select File ➪ New Project, select the Visual Web
Part project template, set the Name to ContactsEditorWebPart, and
click the Add button.

A folder named VisualWebPart1 will be added to the project. This
folder will contain four files (see Figure 24-25):

 ➤ Elements.xml — The element manifest that provisions the Web Part definition to the Web Part
gallery of the target site collection

 ➤ VisualWebPart.vb — The code file for the Web Part

 ➤ VisualWebPart1.webpart — The Web Part definition file

 ➤ VisualWebPart1UserControl.ascx — The user control that represents the user interface for the
Web Part

Add the following markup to VisualWebPart1UserControl.ascx to implement the user interface for a
form that allows users to select and edit an existing contact. The Design view for the completed form should
look similar to the one shown in Figure 24-26.

figure 24-25

Building Web Parts ❘ 833

834 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

<asp:DropDownList ID="ContactsDropDownList" runat="server" AutoPostBack="True">
</asp:DropDownList>

<asp:Label ID="Label1" runat="server" Text="First Name"></asp:Label>

<asp:TextBox ID="FirstNameTextBox" runat="server"></asp:TextBox>

<asp:Label ID="Label2" runat="server" Text="Last Name"></asp:Label>

<asp:TextBox ID="LastNameTextBox" runat="server"></asp:TextBox>

<asp:Label ID="Label3" runat="server" Text="Company"></asp:Label>

<asp:TextBox ID="CompanyTextBox" runat="server"></asp:TextBox>

<asp:Label ID="Label4" runat="server" Text="Business Phone"></asp:Label>

<asp:TextBox ID="BusinessPhoneTextBox" runat="server"></asp:TextBox>

<asp:Button ID="SaveButton" runat="server" Text="Save" />

Code snippet from VisualWebPart1UserControl.ascx

figure 24-26

Right-click in the Code Editor (away from any text) and select View Code. Add the following code to populate
the drop-down list that shows the existing items in the Contacts list:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Handles Me.Load
 If Not IsPostBack Then
 LoadContactsDropDown()
 End If
End Sub

Private Sub LoadContactsDropDown()
 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim data = list.Items.GetDataTable()
 ContactsDropDownList.DataSource = data
 ContactsDropDownList.DataTextField = "Title"

 ContactsDropDownList.DataValueField = "ID"
 ContactsDropDownList.DataBind()
 End If
End Sub

 Code snippet from VisualWebPart1UserControl.ascx.vb

 To get the items, you must fi rst get access to the current site using the SPContext object. Then you attempt to
get a reference to the Contacts list. If the list exists, then you can use a very handy helper method to get the
item data for the list as a DataTable . Once you have the DataTable , you can use standard ASP.NET
data - binding techniques to populate the drop - down.

 Although we want to show the last names of the contacts in the drop - down, we bind to
the Title column. In SharePoint, the fi rst column in any list is named Title internally.
A complete explanation of why this is the case is beyond the scope of this chapter.

 Now you need some code to populate the text boxes in the form. This needs to be done when the page
is fi rst loaded and when the selected item in the drop - down list changes. Add a method that gets the
appropriate item from the Contacts list and populates the text boxes with the values of its properties.
Update the Load event handler for the page to call this method. Also, add an event handler for the
 SelectedIndexChanged event of the drop - down and call the method within:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Handles Me.Load
 If Not IsPostBack Then
 LoadContactsDropDown()
 LoadTextBoxes()
 End If
End Sub

Protected Sub ContactsDropDownList_SelectedIndexChanged(...)
 Handles ContactsDropDownList.SelectedIndexChanged
 LoadTextBoxes()
End Sub

Private Sub LoadTextBoxes()
 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim id = CInt(ContactsDropDownList.SelectedValue)
 Dim item = list.Items.GetItemById(id)

 LastNameTextBox.Text = item("Title").ToString()
 FirstNameTextBox.Text = item("First Name").ToString()
 CompanyTextBox.Text = item("Company").ToString()
 BusinessPhoneTextBox.Text = item("Business Phone").ToString()
 End If
End Sub

 Code snippet from VisualWebPart1UserControl.ascx.vb

 Again, you will go to the SPContext to get the current site and then attempt to get the Contacts list. You get
the ID of the selected item from the drop - down and then get that item from the list. Once you have the item,
you populate the text boxes in the form with the item ’ s properties. Finally, you need to be able to save the
new values for the properties when the Save button is clicked:

Protected Sub SaveButton_Click() Handles SaveButton.Click
 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim id = CInt(ContactsDropDownList.SelectedValue)

Building Web Parts ❘ 835

836 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

 Dim item = list.Items.GetItemById(id)

 item("Title") = LastNameTextBox.Text
 item("First Name") = FirstNameTextBox.Text
 item("Company") = CompanyTextBox.Text
 item("Business Phone") = BusinessPhoneTextBox.Text
 item.Update()

 LoadContactsDropDown()
 LoadTextBoxes()
 End If
End Sub

Code snippet from VisualWebPart1UserControl.ascx.vb

This code will be similar to the code that populates the form but instead of populating the values of the text
boxes, you’ll be updating the properties of the item. Once the item has been updated, you’ll repopulate the
drop-down (in case the last name was changed for the item being edited) and repopulate the form.

The completed code-behind for the user control should look similar to the following:

Partial Public Class VisualWebPart1UserControl
 Inherits UserControl

 Protected Sub Page_Load() Handles Me.Load
 If Not IsPostBack Then
 LoadContactsDropDown()
 LoadTextBoxes()
 End If
 End Sub

 Protected Sub ContactsDropDownList_SelectedIndexChanged()
 Handles ContactsDropDownList.SelectedIndexChanged
 LoadTextBoxes()
 End Sub

 Protected Sub SaveButton_Click() Handles SaveButton.Click
 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim id = CInt(ContactsDropDownList.SelectedValue)
 Dim item = list.Items.GetItemById(id)

 item("Title") = LastNameTextBox.Text
 item("First Name") = FirstNameTextBox.Text
 item("Company") = CompanyTextBox.Text
 item("Business Phone") = BusinessPhoneTextBox.Text
 item.Update()

 LoadContactsDropDown()
 LoadTextBoxes()
 End If
 End Sub

 Private Sub LoadContactsDropDown()
 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim data = list.Items.GetDataTable()
 ContactsDropDownList.DataSource = data
 ContactsDropDownList.DataTextField = "Title"
 ContactsDropDownList.DataValueField = "ID"
 ContactsDropDownList.DataBind()
 End If
 End Sub

 Private Sub LoadTextBoxes()

 Dim web = SPContext.Current.Web
 Dim list = web.Lists.TryGetList("Contacts")
 If list IsNot Nothing Then
 Dim id = CInt(ContactsDropDownList.SelectedValue)
 Dim item = list.Items.GetItemById(id)

 LastNameTextBox.Text = item("Title").ToString()
 FirstNameTextBox.Text = item("First Name").ToString()
 CompanyTextBox.Text = item("Company").ToString()
 BusinessPhoneTextBox.Text = item("Business Phone").ToString()
 End If
 End Sub

End Class

Code snippet from VisualWebPart1UserControl.ascx.vb

The last thing to do before testing out the Web Part is to set the name and description that will be shown
to the user in the Web Part Gallery. Double-click VisualWebPart1.webpart in the Solution Explorer and
update the two property elements as shown here:

<properties>
 <property name=”Title” type=”string”>Contacts Editor Part</property>
 <property name=”Description” type=”string”>This is a test</property>
</properties>

Oh, it appears there is one more last thing to do before testing your Web Part. Make sure you have a Contacts
list with some data in it. If you don’t, then install and activate one of the Simple Features created in the Features
section. The easiest way to do this is to open the SimpleFeatureVisualStudio solution, right-click on the project in
the Solution Explorer, and select Deploy. This will deploy the solution and activate the Feature contained within.

Press F5 to deploy your Web Part and bring up the test site in the browser. You’ll be directed to a page that
will let you create a page with which you can test your work. Name the page TestPage.aspx, choose the
Full Page, Vertical Layout Template, and scroll down to find and click the Create button (see Figure 24-27).

figure 24-27

Building Web Parts ❘ 837

838 ❘ chaPTer 24 sHaREPoiNt 2010 dEVEloPmENt

You should be directed to the newly created TestPage.aspx. Once there, click the Add a Web Part link in
the main body of the page, select the Custom Category and the Contacts Editor Part in the ribbon, and click
the Add button (see Figure 24-28). Click the Stop Editing button in the ribbon and the page with your Web
Part will be added (you may need to refresh the page for the data to be populated). The final page should
look similar to that shown in Figure 24-29.

figure 24-28

figure 24-29

summary
At this point, while you may not be an expert SharePoint developer, you should understand the important
foundational concepts and have enough of a familiarity with the tools in Visual Studio 2010 to continue
your own exploration of the subject.

SharePoint development is not as easy to pick up as ASP.NET. There are many quirks and oddities that
will have you pulling your hair out at times. Fortunately, the platform and the tools in Visual Studio have
matured to the point that many of the issues faced in the past have been addressed or can easily be avoided.

As someone who has gone through the learning curve, I cannot stress enough how important it is to learn
the fundamentals. This chapter covered Features, Solutions, and deployment but there is much more
to learn. Site columns, content types, field types, master pages, list and site definitions, event handlers
and more still await you. The investment in learning these concepts will pay off many times over when
architecting, developing, and debugging your SharePoint applications.

For more information on this subject, be sure to check out Professional SharePoint 2010 Development
(Rizzo et al. Wiley, 2010).

summary ❘ 839

 PART V

 libraries and specialized Topics

 chaPTer 25: ⊲ Visual Studio Tools for Offi ce

 chaPTer 26: ⊲ Windows Workfl ow Foundation

 chaPTer 27: ⊲ Localization

 chaPTer 28: ⊲ Com-Interop

 chaPTer 29: ⊲ Network Programming

 chaPTer 30: ⊲ Application Services

 chaPTer 31: ⊲ Assemblies and Refl ection

 chaPTer 32: ⊲ Security in the .NET Framework

 chaPTer 33: ⊲ Parallel Programming Using Tasks and Threads

 chaPTer 34: ⊲ Deployment

25
 Visual studio Tools for offi ce

 WhaT you Will learn in This chaPTer

 VSTO releases and Offi ce Automation ➤

 Offi ce business application architecture ➤

 VBA - VSTO interop ➤

 Creating a document template (Word) ➤

 Creating an Offi ce add - in (Excel) ➤

 Outlook form regions ➤

 This chapter introduces the Visual Studio Tools for Offi ce (VSTO) project templates. VSTO was
originally available as an add - in to Visual Studio for several releases, and then became part of the core
product with Visual Studio 2008. Visual Studio 2010 continues to include it as part of the standard
installation of all versions of Visual Studio Professional and above. The VSTO package isn ’ t so much
a set of new menus as it is templates and DLLs that enable you to integrate custom business logic into
Microsoft Offi ce products.

 VSTO was somewhat neglected in the .NET development world prior to Visual Studio 2008. The
main Offi ce client applications that most people think about targeting, Word and Excel, have
supported customization through Visual Basic for Applications (VBA) since long before .NET. Visual
Studio 2008 expanded the list of supported applications, and support for customization of the full
Offi ce System, including SharePoint, continues with the latest version of Visual Studio, which enables
full - featured Offi ce Business Application (OBA) development.

 This chapter focuses on using Visual Studio 2010 with the Offi ce 2010 Beta — the existing code
demos for Offi ce 2007 released with Professional Visual Basic 2008 are still functional with Visual
Studio 2010 and available as part of the code download. In addition to introducing you to the role
of the VSTO family of tools, this chapter demonstrates three different implementation examples.
Everything covered in this chapter can be targeted at both Offi ce 2007 and Offi ce 2010.

 VSTO is available as part of Visual Studio 2010 Professional and is focused on enabling you to move
from a goal of “ this project will create a custom grid with the following capabilities ” to a goal of “ this
project will enable users to leverage Excel 2007/2010 and surface our business application data in the
robust Excel table management system, where users can customize and save the data back into our
custom line - of - business data store. ” Developers and customers often talk about how nice it would be to
embed Excel in their application. Now, as you ’ ll see in this chapter, the real solution is the reverse — your
application can be embedded in Excel.

844 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

examining The VsTo releases
With Visual Studio 2005, the VSTO package was available as an add-in to Visual Studio. VSTO has been
around since early in the .NET tools life cycle. That original package targeted Office 2003, which was the
most recent version of Office at the time Visual Studio 2007 was released. There were five templates, two each
for Word and Excel document-level customizations and then a single template for creating Outlook add-ins.

With the release of Office 2007, Microsoft provided an update to the Visual Studio 2005 environment called
VSTO 2005 SE, where SE stood for Second Edition. This update essentially enabled VSTO to access some
of the same templates for Office 2007; however, access to other features, such as the Office 2007 Ribbon,
was limited in this set of tools. The requirement to manually create and edit an XML file to define a custom
Ribbon bar made approaching this solution somewhat intimidating. However, VSTO 2005 SE was just an
interim release until the VSTO team could put together a more complete package for Visual Studio 2008.

With the release of Visual Studio 2008, the number of available options enabling you to extend the standard
features of Office VSTO expanded. This continues with the release of Visual Studio 2010, although with Visual
Studio 2010 the templates targeting SharePoint have been moved out of the Office category and into a new
SharePoint category. Note that for Office 2003 support, you need to continue to leverage Visual Studio 2008.

office automation versus VsTo
In any discussion of VSTO, it’s important to distinguish between Office automation and VSTO. Office
automation is a term that actually refers to the capability to create a custom application that references
Word or Excel or some other Office application. In this case, the user of your custom application can start
and send data to your application. This type of automation does not necessarily involve VSTO or VBA.

Office automation relies on the custom application having a reference to Office and then sending
information into or retrieving information from that application without Office being customized. This
type of automation leverages COM-based interop to the Office components and doesn’t fall into the same
category of application as VSTO. A VSTO application is one in which the actual Office application is aware
of and connected to the custom logic. Thus, when a user of an application that supports Office automation
wants to retrieve data from an Excel spreadsheet, that user exits Excel, goes to that custom application,
asks it to connect to the currently running instance of Excel, and attempts to retrieve the data. This type of
automation tends to treat Office as more of a black box.

VSTO applications are built into Office. They can and do display UI elements directly within applications
such as Word, and they can and do leverage the same automation elements and interop assemblies that
Office automation clients leverage. The key difference is that VSTO applications are directly integrated with
the application process (threads) and have direct access to UI elements that are part of the application.

Pia-free deployment
One of the key new features related to Visual Studio 2010 and .NET Framework 4 is support for assemblies
that don’t require Primary Interop Assembly (PIA). A PIA encapsulates the metadata that defines the .NET
types needed to take an external and often COM-based interface and expose that interface within
.NET. Traditionally, to work with VSTO you were required to ensure that the client would have the
appropriate PIA for the targeted version of Office.

Visual Studio 2010 makes this unnecessary. Instead, when you reference an Office assembly such as those
used in VSTO, you can choose to have Visual Studio generate those portions of the PIA that you actually
reference as part of your assembly. Thus, instead of needing to ship and reference an external assembly to
get the metadata that defines the Office interfaces, you can now have that metadata embedded into your
executable. The result is a smaller package for deployment, as it is no longer necessary to ship the entire set
of PIA assemblies with your application.

There is one item to check, however, especially when
migrating a project from a previous version of Visual Studio.
Embedding of interop types is optional. By default, when
you create a new VSTO solution, the assemblies will be
marked to embed the interop types within your assemblies.
However, you should check referenced assemblies on your
migrated projects by selecting referenced Office assemblies
within Visual Studio Solution Explorer and reviewing the
reference properties. As shown in Figure 25-1, the Embed
Interop Types property should be set to True. This will
allow Visual Studio 2010 to remove your external assembly
references.

Because this capability is specific to Visual Studio 2010,
which doesn’t support Office 2003, it isn’t available for
projects targeting Office 2003. Additionally, when it comes
to the Office Primary Interop Assemblies (PIA) for Office
2003, the Office installer did not automatically include
these when Office 2003 was installed. As a result, if at
some point you choose to do either a VSTO or an Office
automation project for an Office 2003 project, you’ll want
to include the redistributable for these assemblies. The PIA
for Office 2003 is available from Microsoft Downloads,
currently located at www.microsoft.com/downloads/details
.aspx?familyid=3c9a983a-ac14-4125-8ba0-d36d67e0f4ad&displaylang=en. If it moves, you’ll want
to Bing Office 2003 PIA and proceed to the new MSDN download page. You should only download these
assemblies directly from Microsoft.

VsTo Project Types
While the difference between a Word project and an Excel project is no doubt self-evident to you, the
difference between an Add-In project and a Document project might not be. In short, each of the different
VSTO project types targets not only a given client or server Office application, but also a different way of
customizing that application. In the case of Add-In projects, the project type enables you to customize the
application. The main project types for VSTO are as follows:

 ➤ Add-In — This template enables you to create an extension to an Office product that is loaded every
time that product is started. Add-ins, as with Visual Studio add-ins, are code that is registered with
the application and started every time that application is started. Add-ins are needed for some applica-
tions such as Outlook in which an inbound customized message would need the add-in support on the
client to recognize the customizations in order to load the document (mail message) correctly.

 ➤ Document/Workbook — These are two separate templates, associated with Word and Excel, respec-
tively. The key aspect of these templates is that the code associated with your custom logic is embed-
ded in a specific document file. The model is much closer to the model exposed by the original VBA
customization in these products. In fact, there is even a way to interoperate between Document/
Workbook projects and VBA projects. If you open Word or Excel and select a new document or a doc-
ument that doesn’t include this logic, the custom code isn’t loaded. On the one hand, this makes these
projects lower risk in that you are less likely to disable a client’s system. On the other hand, without
a central location such as SharePoint to host these custom documents, the application model is much
weaker.

 ➤ Template — These projects are similar to the Document/Workbook model in that you are defining
code that lives in a single template. This template and code are loaded only when a user chooses to use
it from within Office.

figure 25-1

examining the VsTo releases ❘ 845

846 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

A Word add-in is built using a project template that enables you to create a custom actions pane and a
custom menu and/or ribbon bar for Word. The Add-In project types host code that will run each time
that Word (or the selected application) is started. Thus, it doesn’t matter which document the user chooses
to open or the underlying template that is part of the current document — the code in the Add-In will be
loaded.

This doesn’t mean that an Add-In template can’t be document specific. In the case of Outlook, the only
available template is an Add-In template. This is because of the nature of the extensions to Outlook, which
loads a complete collection of “documents” (i.e., e-mail messages) when it is started. As such, the document
model isn’t directly used in Outlook, although Outlook does support custom Outlook Form Regions.

What makes an Outlook Form Region (OFR) different from a Document or Template model VSTO
extension? The OFR is part of an add-in to Outlook, so if a new message is received that references that
custom OFR, Outlook is ready to load the custom application logic. The potential challenges of OFR
messages are discussed later in this chapter. The OFR customization provides a very powerful, compelling
application model, but it also has key requirements in order for it to function correctly.

office Business aPPlicaTion archiTecTure
The Office Business Application (OBA) model is one that Microsoft promotes as a product. Indeed, if you go
to www.microsoft.com/office/oba, you’ll find yourself redirected to the OBA product site at Microsoft.
However, there isn’t a license or a product called OBA that you can order in a box. Rather, the OBA model
is conceptual, explaining how you can leverage the components that make up Microsoft Office to create
a custom business logic solution. Instead of building applications from scratch, you can integrate the
functionality of Excel for managing table data into your business logic using VSTO (not that VSTO is
the only enabling technology associated with an OBA).

The OBA model has been made possible by a combination of several changes to Microsoft Office that
have occurred over the years. When products such as Word and Excel were originally rolled into the larger
“Office” product group, it was primarily a licensing arrangement. The original Office designation was a
little like MSDN in that it enabled you to purchase a group of products for a lower price than purchasing
each independently. Aside from some limited integration points, such as using the Word engine to edit
Outlook messages, these products were independent.

However, over time, integration has gone beyond COM-based document integration. Arguably one of the key
enabling technologies within the Office integration and collaboration framework is SharePoint. Other servers
in the Office suite also fill this role in specialized areas — for example, Office Communication Server. This
chapter doesn’t cover SharePoint in depth, or its far more functional upgrade, Microsoft Office SharePoint
Server (MOSS).

SharePoint provides a central location from which you can host customized Office documents. It also
enables you to host custom workflow logic and provides a central location for e-mail and notification
messages related to business processes. Feature-rich versions of MOSS include capabilities such as Excel
Services and other advanced capabilities.

Because of these benefits, the OBA model builds around a central server. As noted, this might be a
SharePoint server if the goal is to create a custom workflow to monitor an internal business process, but it
doesn’t have to be SharePoint. As shown in Figure 25-2, you might choose to create your OBA to leverage
data stored in a line-of-business (LOB) system such as SAP, PeopleSoft, SQL Server, or any of several other
business and data systems. Often these systems have either limited or no custom user interface. As a result,
the user interface may or may not include features that your customers are familiar with from Office. Given
that millions of people are familiar with Office and its interface, the OBA model enables taking this data
and placing it into that interface.

This brings up the second key enabling technology: the ease with which you can now import and export
data and behavior to the Office client applications via VSTO. In fact, even with SharePoint it is the VSTO
piece that truly enables you to integrate your custom business application into the Office client tools.
VSTO enables you to retrieve data from a database via ADO.NET or LINQ or to communicate with XML
Web Services and WCF. Once you have the data, you can enable your users to leverage their experience with
the Office user interface to manipulate that data. As you’ll see in this chapter, VSTO allows you to interface
your LOB processes and data into every one of the Microsoft Office client applications.

This should give you a better idea of what an OBA is and how it provides an architectural pattern that you
can use to create a business application using VSTO. In addition to the URL provided at the start of this
section, you can also find more information at the Microsoft-sponsored site www.obacentral.com.

Finally, to see an example of an OBA consider TFS, and what was known as Team System. The Team
Explorer install not only provides a set of add-ins for Visual Studio, but also provides support for a set of
custom VSTO document applications. Every time you create a new Team Foundation Server (TFS) project,
a new SharePoint project site is created. The site will contain several VSTO-based documents for Word and
Excel. These illustrate one example of how to use VSTO and the OBA model for your custom applications.

Of course, VSTO wasn’t the original — or even now the only — way to create custom logic within an
Office client application. Since the early days of COM, both Microsoft Word and Microsoft Excel have
supported Visual Basic for Applications (VBA). Fortunately, ongoing improvements occurring within VSTO
can be integrated with existing VBA.

WorKing WiTh BoTh VBa and VsTo
The VBA model for Office document customization was limited at best. For starters, it is only available in
Word and Excel. However, the VBA application model is not yet retired. That bears repeating: VBA is still a
viable and supported set of tools for customizing the Microsoft Office experience. As with all such changes

Outlook PowerPoint Excel

Typical Business User

SharePoint SQL Server
SAP,

Word Other O�ce
Products

Visual Studio Tools for O�ce & .NET

PeopleSoft,
CRM

Web Services,
WCF EndPoints

figure 25-2

Working with Both VBa and VsTo ❘ 847

848 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

in technology, there are certain things that VSTO does that VBA wasn’t designed to do, and to a certain
degree is not capable of doing. However, there are also certain VBA optimizations within the existing tools
with which VSTO can’t currently compete.

Office 2007 is also known as Office version 12. Because Microsoft is committed to keeping VBA through
Office 2010 (aka version 14), instead of doing a blanket conversion you’ll be able to interoperate with existing
code. Just like the WPF interop library and the Visual Basic 6.0 interop library, VSTO and VBA have
an interop library. Microsoft suggests that companies with complex VBA solutions will probably want to
update these Document/Workbook-style solutions with VSTO features, but not necessarily attempt
to convert working code and features. Thus, your new VSTO code may call existing VBA functions; and
similarly your existing VBA code may start calling your VSTO objects.

There are, of course, limitations to this model, and it isn’t one that’s recommended for new development.
When it comes to the capability to call VBA from VSTO, you can call the Run method on the Office object
model. This method accepts the name of a VBA method and a list of parameters. There is no IntelliSense, as
what you are doing is making a dynamic runtime call. An example of this call is as follows:

 Dim result As Integer = Me.Application.Run("MyFunctionAdd", 1, 2)

That’s it — no special steps or hoops, just a
standard call. Of course, your document or
workbook needs to actually include the VBA
function MyFunctionAdd, but that should be
apparent. Also note that when you combine VBA
and VSTO, you have to handle permissions for
both, so plan to spend a little more time building
your installation package and permissions. In
addition, when you create your first custom
VSTO Document or Workbook project, you’ll get
the warning shown in Figure 25-3.

At this point, you may not know whether you
want to enable VBA interop within Visual Studio
and your VSTO projects. If you’ve worked with VBA in the past or think you might need to do any VBA,
consider enabling access to the VBA project system. As noted in the dialog, while turning this off completely
is meant to act as a first layer of defense against the spread of macro viruses, your project will still maintain
protection via other layers of security. Keep in mind that this option is available only to Word Document
and Excel Workbook templates.

While this chapter isn’t going to focus on security, sometimes — such as when you are enabling VBA macro
interop — you do require a few specific settings. While it’s possible to call VSTO from VBA in Office
2007/2010, it isn’t the default. Starting with Office 2007, it’s possible to enable macros, and as part of the
creation of a VSTO project on a macro-enabled document, by changing a couple of document properties in
your VSTO project, you can reference your VSTO methods and properties from VBA code. This process only
begins after you have enabled macros within your document.

Your first step in enabling macros in a document is to ensure that the file is saved as a .docm file instead
of a .docx file. The same is true for Excel, where the file type needs to be .xlsm as opposed to .xlsx. By
default, documents saved with the extension .docx do not allow macros. Open Word 2007/2010 with your
.docm file and press Alt+F11 to open the VBA editor for your document. You can add an actual macro or
something as simple as a comment inside a default event handler. Alternatively, you can select a document
that already contains a macro.

The demo document has a single macro ProVB, which was created to open a user form and insert the text
“Hello World” at the start of the document. Once this is complete, you need to save your document. For
this example, call your document VBAInterop. Then, select the Word Macro-Enabled Document type, as
shown in Figure 25-4.

figure 25-3

If you accidentally attempt to save your document as a .docx, the file system should warn you that it is
about to clear your macros. The message box allows you to return to the Save As window and change the
document type to a macro-enabled document.

Next, you need to ensure that Word considers your macro available whenever the document is opened. This
demo was written on the Windows 7 operating system with Office 2010. In this environment you need to
change your Trust settings for Office. Once you have added your comment macro and saved your .docm
file, within Word (you may need to reopen the document) you should see a notification that a macro in the
document has been prevented from running.

At this point you can choose to enable the macro. However, that choice is for the currently running instance
only. If you closed and reopened the document, you would again be presented with that prompt. To make it
possible to always run macros, you need to access the Trust Center for Word.

To traverse the menus, go to the File tab in the upper-left corner of your document and select Options. On
the left side of the Word Options dialog is an item labeled Trust Center. This opens the Trust Center dialog,
shown in Figure 25-5.

For the VBA interop to work, go to the Macro Settings in the Word/Excel Trust Center and select Enable all
macros. Yes, you essentially need to turn off the security for macros on your development machine (unless
you are using digitally signed macros — which isn’t the case for this example).

figure 25-4

Working with Both VBa and VsTo ❘ 849

850 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Once you have saved your document, it’s time to open Visual Studio 2010 and create a new Office 2010
Word Document project, which in this case you can also name VBAInterop, as shown in Figure 25-6.

figure 25-5

figure 25-6

This brings up a second dialog, which is where you need to change from the default process. Normally, you
would create a new document in the dialog shown in Figure 25-7. However, in this case you actually want to
import your macro-enabled document VBAInterop.docm. By default, the Browse button limits the display
of available files to those with the .docx extension, so you need to change the default in the file browse
window to .docm in order to see your document.

Clicking OK triggers Visual Studio to generate your
project. When the generation is complete, Visual
Studio will display your Word document within the
main window, and in the lower right-hand corner you
should have your Properties window. This window,
shown in Figure 25-8, has two new Interop properties
at the bottom. These properties are specific to macro-
enabled documents and are not available if you didn’t
start your project with a macro-enabled document.
You need to modify both these properties from their
default of False to the new value of True.

These properties cause your VSTO project to regenerate
and insert a new property within your project’s macro
file. To test this, you can start your project; once the
project builds, Word will start and open your custom
document. Once your document is open, press Alt+F11
to open the Macro Editor. Within the source for the

figure 25-7

figure 25-8

Working with Both VBa and VsTo ❘ 851

852 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

ThisDocument code should be the newly generated property value, as shown in Figure 25-9. The resulting
code should look similar to the following:

Property Get CallVSTOAssembly() As VBAInterop.ThisDocument
 Set CallVSTOAssembly = GetManagedClass(Me)
End Property

figure 25-9

The code in this block shows the newly generated property that associates your VBA environment with the
VSTO code you are creating. You can then proceed to the placeholder comment in the Document_New
method where you initially entered a comment to maintain your macro’s existence. Within this method,
on a new line, make a call to CallVSTOAssembly, and you’ll have IntelliSense for the list of available
methods and properties.

There are a few additional steps in order to enable VBA to connect to VSTO, but for those who are already
working with VBA these steps won’t be a significant challenge. After all, it is development experience and
the ability to continue to leverage existing resources that really drive this interop feature. The fact that this
feature is so natural for a VBA developer — who may want to leverage key new capabilities such as WCF,
WF, or possibly even WPF-based graphics in Excel — means that you can expect to be able to leverage your
existing VBA code for several more years. When you do “migrate,” the process is one that you control and
execute in stages based on your requirements and decisions, not some overriding conversion process.

creaTing a documenT TemPlaTe (Word)
The previous section introduced you to creating a document template from the standpoint of interoperating
with VBA; but unless you have an existing VBA application, in most cases you’ll just create a new, clean
Word Document project. These projects focus on a specific document. They are self-contained in the sense
that your changes only affect the user’s system when the user chooses to open a document that specifically
includes your changes.

This is great, as it isolates your changes. When users open Word or Excel they don’t automatically load
your customization. This way, your code won’t affect the overall performance of their system (not that most
developers care about this). The model also means that customizations for Application A aren’t competing
with Application B, which is in some ways a bigger challenge with add-ins.

However, this model (shared by VBA) has a limitation. The user must open a copy of the correct document
to access your custom code. In an uncontrolled environment it may be difficult for a user to find the most
recent version of that code. Sure, the first time your document customization is sent out to 10, 20, or
200,000 users, it’s easy to locate and update the source documents. However, when you need to update
some element of that standalone document, you have a problem.

Fortunately, this is where the OBA model and SharePoint become invaluable. By placing your documents
onto SharePoint, you now have a controlled location from which users can access your VSTO application.
In fact, with SharePoint 3.0, MOSS 2007, and SharePoint 2010 you can actually create a library for copies
of your custom document that uses your document as what is known as a content type. By using your
VSTO document as a SharePoint content type, when users access that SharePoint library and request a
“new” document, they’ll automatically open a new document that leverages your customizations.

An alternative to leveraging SharePoint is illustrated by another way to leverage document-based VSTO
solutions. Your document might be included in a Microsoft or Windows Installer (MSI) package that is part
of a larger installed application. In fact, you might not want users to directly open your customizations.
Instead, your custom application might install your custom document via an MSI so that updates can occur
in conjunction with your application updates. For example, when a user needs to modify data in a grid, you
might open a custom Excel document, which, rather then save data in Excel automatically, places the data
back into your application data store when the user asks to save.

The first step in creating such a solution is to create a new project. In this case the sample project will be
named ProVB_WordDocument. Once you have changed the default name, click OK in the New Project
dialog. This will take you to the Office Project Wizard dialog shown in Figure 25-10.

figure 25-10

Creating a Document Template (Word) ❘ 853

854 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Note that you can specify a name for the document but it defaults to the project name you’ve chosen. That’s
because as part of this process, Visual Studio is going to generate a new Office 2007/2010 document and
place that .docx file in your solution directory. When you work on this project, you’ll be customizing that
document. Thus, in many cases you may want to give the document that will host your customization an
end-user-friendly name instead of your project name.

Once this is complete you are returned to the main Visual Studio window with a new project. Unlike other
project types, however, in this case the template creates a Word document and then opens that document
within Visual Studio. As shown in Figure 25-11, within the Solution Explorer, on the upper-right side of the
display, your project contains a .docx file. The full name of the ProVB_WordDocument.docx file is shown
in the tab in the upper-left corner. Associated with this file is a second .vb file, which is where some of your
custom code may be placed. As shown in the figure, the Visual Studio user interface actually encapsulates
this document. The Properties window shows the properties for this document. Note that unlike when you
created your VSTO project from an existing VBA document, there are no properties to support integration
with VBA.

figure 25-11

Also noteworthy (although not shown) is that if you were to open your project’s properties and review the
references, you’d find that all the Office Primary Interop assemblies you need in order to work with the
Office object model have automatically been added to your project, and that the Embed Interop Types
property has been set to True. You no longer need to try to figure out which COM interop assemblies are
needed to access that interface from Word.

adding content to the document
Of course, the main visual feature in Figure 25-11 is that Visual Studio has fully encapsulated the Word user
interface. Note how the Insert tab has been selected in the document. You have full access to all the features
in Word in this mode; and to demonstrate this, let’s adjust the default contents of this document. Choose the

Smart Art ribbon bar button. Then, from within its dialogs, go to the Process tab of the SmartArt Graphic
dialog, scroll down, and select the circular equation image. This will add that item to your document and
automatically open an equation editor, as shown in Figure 25-12.

figure 25-12

You can enter some numbers into the text box for this equation but there is no built-in adding logic. Close
that text window and return to Visual Studio. Of course, at this point you haven’t actually added any code
to your document, so switch to the Code view. By default, VSTO inserts two event handlers when your
project is created. Note that as long as the .docx file is displayed, you can’t access the ThisDocument
.vb file for that document. To switch the view, close the default .docx display and then right-click on the
ThisDocument.vb file in the Solution Explorer and select Code View from the context menu. Now you
should be able to see the code that was created as part of your project:

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub ThisDocument_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Code snippet from ThisDocument.vb

Creating a Document Template (Word) ❘ 855

856 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

As the preceding code illustrates, the document has two events available within VSTO. The first handles the
startup event; the second handles the shutdown event. These are the only two events that are added to your
project by default. You’ll learn more about these shortly, but first add another event. This is the BeforeSave
event; and as you might expect, it fires just before your document is saved:

Private Sub ThisDocument_BeforeSave(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.SaveEventArgs) _
 Handles Me.BeforeSave
 Dim res As DialogResult = MessageBox.Show(_
 "Should I save?", "Before Save", _
 MessageBoxButtons.YesNo)
 If res = DialogResult.No Then
 ' This code could call a backend data store and then
 ' not save the associated document so the document would remain
 ' unchanged.
 e.Cancel = True
 Else
 ' This code would allow you to encourage the user to
 ' always save a new copy of the document
 e.ShowSaveAsDialog = True
 End If
End Sub

Code snippet from ThisDocument.vb

The preceding code illustrates a custom override of the BeforeSave event on the document. Note that
after the event handler is declared, the code creates a local variable to hold a dialog result. It then shows a
message box asking the user if it should save. Normally this isn’t something you would do on this event, but
in this case it enables you to see two of the attributes of the SaveEventArgs class.

If the user chooses not to save, then you have the option to not save data. Alternatively, you don’t have to
offer a choice to the user; instead, you can simply add code ensuring that the user simultaneously saves data
to a back-end data store. Whether you need to call a Web service or update a database, this is a good place to
call that logic. You then can save to the database and decide whether or not you actually want to update
the underlying document. In some cases you might quietly save the data to the database and never save the
document; then, when the document is next opened, you retrieve the data from the database as part of
the startup. This is a particularly useful trick if you don’t trust the file system’s read-only privileges or you
want to ensure that data from multiple different users is properly refreshed each time the document is opened.

Alternatively, you can force the user to perform a “save as” instead of a typical save. This uses the self-
explanatory ShowSaveAsDialog property. The idea, again, is that you might not want the user to replace
the original document; to keep that from happening, you can have Word automatically prompt the user to
save the document with a different name. You can also save data to a database or other data store during
this process.

adding a ribbon and an actions Pane
The preceding work provides some baseline code in your application but it doesn’t provide either a custom
ribbon or a custom task pane. Therefore, before testing this, let’s add one of each of these items to the
project. To add either of these controls, right-click on your project in the Solution Explorer and then select
the Add button to open the Add New Item dialog.

As shown in Figure 25-13, when this dialog opens you can select from one or more categories. In order to
manage the available selections, select the Office category. This will reduce the number of available options
from dozens to the three that are appropriate for a Word Document project. Start by adding a new ribbon
bar. There are two options: XML and visual designer. Select visual designer and enter DocRibbon for your
control’s name.

Figure 25-13 shows two alternatives for the Ribbon control, for backward compatibility. Previously, if you
were customizing a ribbon bar for Office 2007 under Visual Studio 2005 and VSTO 2005 SE, then you
didn’t have access to a visual designer for the ribbon bar. Instead, you needed to create and edit an XML
file, which would define your ribbon and the controls that were placed on it. There was neither a designer
nor a tool customized for this task.

With the release of Visual Studio 2008, the VSTO team had an opportunity to create a visual designer for
the ribbon bar. Thus, unless you are working with a legacy XML definition file, you should always select the
ribbon with visual design support. Once you have modified the name of the new control to DocRibbon, select
OK and return to Visual Studio. The control template will generate the control and open in Design view.

In Design mode, note that if you open the control Toolbox, you have a new category of controls available at
the top. The Office Ribbon Controls, shown on the left in Figure 25-14, provide a list of controls that you
can add to the default ribbon. Note that these controls are Windows Forms controls, not WPF controls.

figure 25-13

figure 25-14

Creating a Document Template (Word) ❘ 857

858 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Add a button to the default Group1 in the designer. Once the button has been added, go to its properties
and change the label for the button to “Hide/Show the Actions Pane.” You can optionally add an icon to
the button. For this I went into the Visual Studio directory to retrieve one of the icons that ship with Visual
Studio 2010. If you navigate to the folder where you installed Visual Studio 10 and navigate the folder tree
Common7\VS2010ImageLibrary\1033, within this folder you’ll find a zip file: VS2010ImageLibrary.zip.
Within this zip file are several thousand different images and icons that you can leverage within your
application. Figure 25-14 shows the updated button display which includes an icon on the left side. The
icon named NewDocument.bmp was taken from the VS2010ImageLibrary.

For now, skip implementing a handler for this button, as you want to see the default behavior of the ribbon
and the actions pane. Instead, right-click on your project and again request to add a new item. In the Add
New Item dialog, select an actions pane and name it DocActionPane. Once you have created your new
actions pane you’ll again be in Visual Studio, this time in the designer for your new pane.

Unlike the Ribbon control, the designer for the actions pane doesn’t require a
special set of controls and by default has a white background. Unfortunately, I’ve
had trouble delineating the edges of the control in a white-on-white scenario.
Therefore, before doing anything else, I proceed to the properties for the control
and select the BackColor property. Visual Studio 2010 opens a small window with
three tabs, Custom, Web, and System, as shown in Figure 25-15.

This illustrates the default setting for the background, which is the system-defined
color for control surfaces. Specifically, the System tab colors are those defined for your
system based on setting your own visual preferences. The other two tabs present color
options the developer has selected. If you only want to change the display color while
you are working on the design and layout, it’s good to capture the original color and then go to the highlighted
Custom tab and select a nice bright color such as red to highlight the actual surface area of your actions pane.

Now it’s time to add a simple control to this panel. Once again, drag a button onto the design surface.
Orient it in the upper-left corner and change the label to “Load.” Eventually this button will be used to load
some data into the document, but this is a good time to test run your project using F5. Your project will
start and Visual Studio will start Microsoft Word. When Word opens, your document will display the image
that you’ve embedded, as shown in Figure 25-16.

figure 25-15

figure 25-16

Figure 25-16 shows your custom document in Word. Note a few things about the running application at
this point. First, the tab Add-Ins is set to display the custom ribbon bar. This isn’t an error; even though
you have created a custom VSTO Document solution, the customizations you made to the ribbon bar were
automatically placed in this section.

Next, Figure 25-16 also captures the message box that was added to the BeforeSave event earlier. Because
the Save button in the upper-left corner of the title bar was selected, the event was fired. Below this you
see the custom smart graphics that were added to the document itself. So far, so good, but where is the
document’s actions pane?

Unlike the ribbon bar, which is automatically associated with your custom document when you add it
to your project, the document actions pane needs to be manually associated with your document. As a
result, Figure 25-16 does not show your custom actions pane, so your next step is to add that pane to your
document, and in this case have it shown or hidden based on the selection of the toggle button added to the
ribbon bar. Close the running document and return to Visual Studio once the debugger has stopped.

activating the actions Pane
If you choose to view all files in your project, you can select and open your DocActionPane.Designer
.vb source file. Within this file you’ll find that your DocActionPane class inherits from System.Windows
.Forms.UserControl. That’s right; the document actions pane is just a customized user control.

Knowing this tells you that you can in fact include not only individual controls, but also panel controls,
such as a tab panel, or other custom user controls in this display area. More important, you can take a user
control that you might be using in your current application logic and use it with no significant changes
within the document’s actions pane. However, anticipating your probable question, the reason the panel
didn’t show up is that both Word and Excel expect you to associate a user control with the ActionsPane
property of your document.

Because the actions pane is actually open for use by any user control in your project, it is up to you to tell
Word which control to assign. View the code for your document in the ThisDocument.vb file. Earlier you
saw that the template created the Startup event handler by default. Add to this handler the following line:

Private Sub ThisDocument_Startup() Handles Me.Startup

 ActionsPane.Controls.Add(New DocActionPane())
End Sub

Code snippet fromThisDocument.vb

That line of code takes the built-in actions pane associated with your document and adds a control to
that pane. Of course, you could also add items such as buttons and text boxes directly to your document’s
actions pane. However, as the control you added demonstrated, the preferred method is to create a custom
user control and add this one control to the embedded actions pane in your document. The
New DocActionPane() literally creates a new instance of your user control and places it onto the actions pane.

However, this isn’t very flexible, in that you want users to be able to show or hide that pane. Instead of
relying on the built-in controls for displaying or hiding the pane, you want to be able to toggle the actions
pane on and off, which is why you have already added a button to the ribbon. That means customizing the
Click handler for your toggle button. Before leaving the ThisDocument.vb display, make sure you close
this file’s editor so that later you’ll be able to get to the document itself.

Next, select DocRibbon and double-click your button to add an event handler for your ToggleButton1
control’s Click event. This is where you want to alter the status of your actions pane’s display. The way to
access the actions pane from the ribbon bar is through the application’s Globals collection. Within VSTO
you’ll find a reference to the current document or workbook within this collection. From here you have
access to objects such as the actions pane. In fact, you can type Globals.ThisDocument.ActionsPane to
get access to the actions pane to which you assigned your user control.

Creating a Document Template (Word) ❘ 859

860 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

However, while this does give you access to the user control, that control in your display is hosted by a
frame, so even if you add code that sets the Visibility property on the ActionsPane attribute of your
document, it probably won’t have the desired effect. Setting the visibility status on the control only hides
the control; it does not hide the now empty frame that was hosting the control. However, keep in mind that
you can access the actions pane directly, as there may be a point when you want to do more than just hide
and show the actions pane. For example, if you wanted to pass data or set a custom property on your user
control, then you would leverage this object and retrieve your control from the Controls collection.

For this task you want to hide the entire Document Actions frame, not just the control it contains. The
secret to this is the fact that the frame is considered by Word to be a CommandBar. Therefore, you need to
access the CommandBars collection. However, the CommandBars collection has multiple different controls in
it, so you need to retrieve the Document Actions pane from this collection. The most reliable way to do that
is by name, so your Click event handler code should look similar to the following:

Private Sub ToggleButton1_Click(ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs) _
 Handles ToggleButton1.Click
 If ToggleButton1.Checked = True Then
 Globals.ThisDocument.CommandBars("Document Actions").Visible = _
 True
 ToggleButton1.Label = "Hide Action Pane"
 Else
 Globals.ThisDocument.CommandBars("Document Actions").Visible = _
 False
 ToggleButton1.Label = "Show Action Pane"
 End If
End Sub

Code snippet from DocRibbon.vb

The preceding code is called when the toggle button on your ribbon is clicked. It first determines whether the
toggle button is selected or unselected. The Checked property provides this; and if the button is being
selected, then the next step is to ensure that the Document Actions command bar is visible. Next, the code
updates the text label on the button to “Hide Action Pane.” This provides the user with initial feedback
regarding what the button will do if it is clicked again.

Similarly, the code does the reverse, hiding the command bar and updating the text on the toggle button to
indicate that in order to restore the command bar, the user should press the button again.

Now there is only one other thing to do. By default, because you are assigning a control to the actions pane,
your pane should be displayed. However, it may not be; the user might load an add-in that suppresses the
Document Actions command bar. Additionally, your toggle button is by default not selected, which is
the state normally associated with the command bar being hidden.

To resolve these issues, you can override the Load event on your ribbon. Within the Load event, check the
visibility status of the command bar and set the appropriate values for the display text and checked status of
your toggle button:

Private Sub DocRibbon_Load(ByVal sender As System.Object, _
 ByVal e As RibbonUIEventArgs) _
 Handles MyBase.Load
 If Globals.ThisDocument.CommandBars("Document Actions").Visible Then
 ToggleButton1.Checked = True
 ToggleButton1.Label = "Hide Action Pane"
 Else
 ToggleButton1.Label = "Show Action Pane"
 End If
End Sub

Code snippet from DocRibbon.vb

Now that you have created the appropriate handlers for your ribbon bar, which will enable you to show
and hide the actions pane, it’s a good time to again test your application. Figure 25-17 shows your custom
document. It displays the Add-Ins ribbon, and your Show/Hide toggle button is selected with the caption
“Hide Action Pane.” This correctly reflects that the next time that button is toggled, the display of the
actions pane will be hidden. Although you can’t see it in the book, notice how the toggle button indicates
its visual state by applying the Office color scheme for a selected control. When working with a custom
Office application, it’s often said that your UI will be more intuitive to a user familiar with the behavior
of Office; this example demonstrates that.

figure 25-17

The other item that Figure 25-17 displays is the actual Document Actions window with your actions pane.
You may recall that I changed the background color of the DocActionPane control to red. This should leave
you a little concerned about why that red background (not apparent in Figure 25-17) is near only the top
of the window. This challenge is one for which there is only a partial resolution.

Unfortunately, the layout of a .NET control within the Document Actions host is limited. You can request
that your control fill the display, but this value is ignored. You can request that it stretch, but this setting
determines whether the size of the control should by default match the display area of its contents. There
simply isn’t a good way to automatically resize your custom display area.

You can return to Visual Studio and increase the height of your background. In fact, you can make the
background tall enough and wide enough to account for a display area of almost any size, but the real
challenge is related to the controls that you place in your display. Unfortunately, you can’t be certain that as
the user resizes Word, the key controls you’ve chosen to place on the actions pane will always be displayed.
However, right now there is only a single button on this control and it isn’t doing anything, so it’s time to
add some logic for placing data into the Word document.

Creating a Document Template (Word) ❘ 861

862 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

updating a content control
Until now the only thing placed in your Word document was a simple graphic. While this made it apparent
that you can in fact customize the content of this VSTO document, it didn’t really demonstrate the capability
to dynamically update the content of the document. The first step is to look at what was one of the new
features of Office 2007 — content controls. Return to the Design view of your Word document, as shown
in Figure 25-18, and notice the Toolbox. Within this Toolbox is a section titled Word Controls, which has
been expanded.

figure 25-18

The controls shown in this section of the Toolbox are controls that you can apply to your document. Let’s
look at a couple of simple examples. Add some text similar to what is shown in Figure 25-18 (the actual
content isn’t that important). Then, on a new line within the document, add the text Document Name:
followed by a tab or two. Drag a PlainTextContentControl onto your document. On the next line, add
the label Application Name: followed by a tab. Then drag a RichTextContentControl onto the document.
These two controls will provide a simple example of working with content controls.

On the lower right-hand side of Figure 25-18, you’ll notice the Properties window. It is currently selected
for the second control, but it provides an illustration of a few key content control properties. The first two
are the capability to lock the control or to lock the contents of the control. Locking the control prevents
users of your document from being able to delete the control. Locking the contents enables you to ensure that
the text within the control can’t be modified by the user. Of the other properties shown, the Text property
represents the text that should be displayed in the control, which is customized along with the Title property.

The Title property was customized to demonstrate how you can reference these controls within your
code. Keep in mind that these are controls, which means you can data bind these controls to data you have
retrieved, and you can handle events on these controls. Several chapters have already covered handling
events, so this demo code focuses on having the actions pane interface with these controls.

With that in mind, switch to the Design view for your DocActionPane control. Not that you are going to
make changes to this beautiful design — you just want to double-click your Load button to create an event
handler for the Click event. This will take you to the Code view, where you can enter the custom code
to update your content controls. The code block that follows includes two methods for accessing these
controls, one of which has been commented out:

Public Class DocActionPane
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 'This code could make database calls, process user input etc.
 'For Each ctrl As Word.ContentControl In _
 ' Globals.ThisDocument.ContentControls
 ' 'This will retrieve all of the embedded content controls.
 ' 'Cycle through the list looking for those of interest
 ' Select Case ctrl.Title
 ' Case "PlainText1"
 ' ctrl.Range.Text = My.User.Name
 ' Case "RichText1"
 ' ctrl.Range.Text = My.Application.Info.ProductName
 ' Case Else
 ' End Select
 'Next
 Globals.ThisDocument.PlainTextContentControl1.Text = _
 Globals.ThisDocument.Name
 Globals.ThisDocument.PlainTextContentControl1.LockContentControl = _
 True
 Globals.ThisDocument.PlainTextContentControl1.LockContents = True
 Globals.ThisDocument.RichTextContentControl1.Text = _
 My.Application.Info.ProductName
 End Sub
End Class

Code snippet from DocActionPane.vb

The event handler starts with a comment related to the fact that at this point you are essentially working
within the confines of a user control. Thus, you can add any data access code or XML processing code you
want into this class. (Because those have already been covered in other chapters, this code focuses on the
content controls.)

The first block of code, which is associated with a For loop, has been commented out because it isn’t needed
or even the preferred solution in this scenario. However, if instead of working with Word this solution
were focused on Excel, and if you were working with cells, each of which might contain a content control,
then the odds are good you would want an efficient way to access this large array of controls. This loop
leverages the ContentControls collection. It also serves to illustrate a couple of key idiosyncrasies of this
control collection.

Unlike what you might expect after the controls are retrieved from the collection, they do not directly
expose all of their properties. In fact, the first missing property is the Name property. Thus, for this code to
work based on identifying specific controls, you would need to use a separate identifier such as Title. In
fact, a title has been added to each of the controls in the document, so if you want to you can uncomment
and run this code. However, in typical scenarios where you use this code, you would be processing an array
of controls and be primarily interested in control type and control location.

Control location would be related in Excel to the range associated with that control. Specifically, the Range
property and its property Cells would tell you where on the spreadsheet you were. The Range property is
important for a second reason. Like the control’s Name property, the controls in this array don’t expose a
Text property. Instead, you can access the Text property of the Range in order to update the text in that
control. As noted, however, this code has been commented out because there is a more direct way to access
named properties.

Creating a Document Template (Word) ❘ 863

864 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

The uncommented lines of code leverage the Globals.ThisDocument object to access by name the
controls in your document. This code is not limited to Word and will work for Excel if you have only a
small number of controls in your workbook. Note that the first line updates the value displayed in the
PlainTextContentControl. It replaces the default text (which was formatted with a larger font and
colored red) with the current document name.

Next, the code locks the control and its content. Not that you would necessarily wait until this point to set
those properties, but this is just an illustration of accessing these properties and seeing the results when you
run your document. The final line updates the RichTextContentControl using the My namespace, this time
to retrieve the application name for your project.

At this point you can build and run your code. Once your document is displayed, go to the actions pane
and use the Load button. Your results should look similar to what is shown in Figure 25-19. Note that
the formatting for both the plain-text controls and the rich-text controls, which was applied in your source
code, has remained unchanged.

figure 25-19

Note also that the highlight around your content control is by default visible to the end user. This is why
you may want to lock these controls. In fact, you can attempt to delete or edit the document name to get a
feel for the end-user experience. In case it wasn’t clear, the work shown in this section can be replicated in
an Excel workbook. In fact, the next section looks at using Excel, but instead of creating another VSTO
document, the focus is on creating an add-in.

creaTing an office add-in (excel)
Unlike the Document/Workbook project, the Add-In project type is installed on the user’s computer and
then loaded for every document that is opened. This introduces a set of different issues and concerns. For
starters, unlike the document project, where you focus on the content of the document or workbook, in
an add-in scenario you don’t have an associated document in your project. Nor can you access the actions
pane, although the Add-In project allows you to access not only the ribbon bar but also a similar UI feature
called the task pane.

Of course, the most important difference is the fact that once your add-in is registered, it will be loaded for
every document that the user accesses. This means that even if the user opens a VSTO document project,
your add-in will be loaded alongside the customizations associated with that document. Similarly, if the user
has multiple add-ins installed, then each one will be loaded for every document the user accesses. In short,
your code has to play well with others and should load with minimal delay. When working with an add-in,
keep in mind that it is unlikely to be the user’s only one.

Create a new project of the type Excel 2010 Add-In. While in the New Project dialog, name your project
ProVB_ExcelAddIn and click OK. You’ll notice that, unlike when you created a document project and
were deposited within your Office client inside Visual Studio, you are now in a code page. As shown in
Figure 25-20, the code associated with your document looks very similar to what you had with your
document project. However, unlike that project, you don’t have access to the document itself.

figure 25-20

Just like the document-based project, you have the Startup and Shutdown event handlers and no others,
but you can create any that are available for your application. To begin, access the ribbon bar and task pane
by right-clicking on your project. Select Add New Item to open the Add New Item dialog, and select the
Office category. This is where the next difference for an Add-In project becomes apparent: As illustrated in
Figure 25-21, only the two Ribbon templates are available.

Select the Ribbon (visual designer) template and name your new control RibbonAddIn. Selecting Add will
add this control to your project; and just as with the document project, you’ll be in the designer for your
ribbon. Leaving the ribbon alone for now, return to your project and again select Add New Item and return
to the dialog shown in Figure 25-21. This time select the Common Items category.

Creating an office add-in (excel) ❘ 865

866 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Earlier in this chapter, the Actions Pane template was described as a customized user control. The template
took a common user control and added some custom properties to enable it to work with the actions pane.
The task pane, conversely, doesn’t need much in the way of customization for the user control it will use, so
simply select the User Control template, use TaskPaneUC for your control name, and click Add.

After you are returned to Visual Studio, drag a button and a label into your new user control’s design
surface. The result should look similar to what is displayed in Figure 25-22. You can provide a custom
label for your button if you choose, and after you have reviewed the layout of your controls, go ahead and
double-click your button to create the event handler for the Click event.

figure 25-21

figure 25-22

After adding the event handler, add a simple call to reset the text displayed by the label control, which is in
your user control. In theory, you could add any code you wanted, but in keeping with the idea that you don’t
want to necessarily target or count on anything existing within your document, the goal is just to ensure
that your code is accessible:

Public Class TaskPaneUC
 Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs)
 Handles Button1.Click
 Label1.Text = "Clicked it."
 End Sub
End Class

Code snippet from TaskPaneUC.vb

You could run your project and look for your custom task pane at this point, but by now you can probably
guess that you won’t find it. Just as with the actions pane, you need to associate your custom control with
the collection of available task panes. Unlike the actions pane, for which there is only a single instance,
each Add-In project could in theory want access to its own task pane. To resolve this, when you create an
instance of a task pane, you create an item in a collection and assign it a unique name. This is significant,
because although it wasn’t mentioned earlier, regardless of how badly you want to change the name of the
Document Actions pane, it isn’t possible.

To associate your control with the task pane, switch to your Add-In and take two steps. First, declare a
property for your Add-In that will hold a copy of your task pane. Note that this property has been declared
as a “Friend” member so that other classes in the same project can access it. This will be important when
you want to reference that control from within your ribbon bar.

Second, code is added to the Startup event handler. The first line assigns your custom user control as a
new entry in the list of available task panes, and passes a copy of that control to the member variable you
created. The second line is temporary; it indicates that your task pane should be visible, so you can ensure
that you are seeing what you expect:

Public Class ThisAddIn
 Private m_ProVBTaskPane As Microsoft.Office.Tools.CustomTaskPane
 Friend Property ProVBTaskPane() As Microsoft.Office.Tools.CustomTaskPane

 Get
 Return m_ProVBTaskPane
 End Get
 Set(ByVal value As Microsoft.Office.Tools.CustomTaskPane)
 m_ProVBTaskPane = value
 End Set
 End Property

 Private Sub ThisAddIn_Startup(ByVal sender As Object,
 ByVal e As System.EventArgs)
 Handles Me.Startup
 ProVBTaskPane = Me.CustomTaskPanes.Add(New TaskPaneUC(),
 "Do Not Push Me")
 ProVBTaskPane.Visible = True
 End Sub

Code snippet from ThisAddIn.vb

Once you’ve added the preceding code to your project, it’s time to test run your application. Using F5, build
and start your project. Excel 2007 will open and then a blank spreadsheet will open. Your custom task pane
should appear on the right-hand side; and once you click the button, your display should look similar to
Figure 25-23.

Creating an office add-in (excel) ❘ 867

868 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Notice that your custom title for the task pane is displayed. Of course, you could exit Visual Studio right
now and open an Excel spreadsheet that was completely unrelated to your current project. However,
your code has been registered for COM interop, so if you do this your custom task pane appears within your
totally unrelated spreadsheet. This would quickly become annoying, which is why you’ll want to display
your custom task pane only when the user asks for it.

The next step is to customize your ribbon so that it can control your task pane. First, within your
ThisAddIn.vb logic, remove the following line:

ProVBTaskPane.Visible = True

Next, go to the designer for your ribbon and add a new ToggleButton. You can label this button with some
descriptive text. Additionally, select the group control that is already on your ribbon and change the text
shown as the label for that control to something such as “ProVB Add-In.” Double-click your new button
and add the event handler for the Click event. Within this event you are going to again hide and show the
control and update the display text of the button:

Private Sub ToggleButton1_Click(ByVal sender As System.Object,
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs)
 Handles ToggleButton1.Click
 If ToggleButton1.Checked = True Then
 Globals.ThisAddIn.ProVBTaskPane.Visible = True
 ToggleButton1.Label = "Hide Push Me Pane"
 Else
 Globals.ThisAddIn.ProVBTaskPane.Visible = False
 ToggleButton1.Label = "Show Push Me Pane"
 End If
End Sub

Code snippet from RibbonAddIn.vb

The preceding code block should in fact look very similar to what you did within your Document project
earlier in this chapter. However, there is a key difference when it comes to referencing the task pane. Notice
that instead of accessing the CommandBars collection to make the entire pane display clear correctly, you
are instead referencing the local ProVBTaskPane property that you declared in your ThisAddIn class. In
addition, instead of a global reference to ThisDocument, you access the ThisAddIn object.

figure 25-23

Similar to working with the earlier project, you will want to modify the Load event. However, there is an
additional consideration here. When your add-in is loaded by Excel, the ribbon bar is loaded before the core
add-in’s Startup event fires. This is important because you can’t just check to see whether your task pane
is visible. First you need to determine whether the task pane exists. Then, if it does, you check whether
it is visible. To do this you create an If statement, which as shown in the following code block leverages the
conditional AndAlso:

Imports Microsoft.Office.Tools.Ribbon

Public Class RibbonAddIn

 Private Sub RibbonAddIn_Load(ByVal sender As System.Object,
 ByVal e As RibbonUIEventArgs)
 Handles MyBase.Load
 If Globals.ThisAddIn.ProVBTaskPane IsNot Nothing AndAlso
 Globals.ThisAddIn.ProVBTaskPane.Visible Then
 ToggleButton1.Checked = True
 ToggleButton1.Label = “Hide Push Me Pane”
 Else
 ToggleButton1.Label = “Show Push Me Pane”
 End If

 End Sub
 Private Sub ToggleButton1_Click(ByVal sender As System.Object,
 ByVal e As Microsoft.Office.Tools.Ribbon.RibbonControlEventArgs)
 Handles ToggleButton1.Click
 If ToggleButton1.Checked = True Then
 Globals.ThisAddIn.ProVBTaskPane.Visible = True
 ToggleButton1.Label = "Hide Push Me Pane"
 Else
 Globals.ThisAddIn.ProVBTaskPane.Visible = False
 ToggleButton1.Label = "Show Push Me Pane"
 End If
 End Sub
End Class

Code snippet from RibbonAddIn.vb

If you fail to add that check, then you’ll throw an exception as Excel is trying to load. Excel won’t appreciate
this, and it remembers. The next time Excel starts it will warn the user that your add-in caused an error the
last time it tried to load it, and suggest that the user disable your add-in — not exactly the result you want
for your code.

If your code is working, then your display should look similar to what is shown in Figure 25-24, which
shows the user interface with the mouse hovering over your new ribbon bar button. Note you can’t actually
see the mouse, but can see the hover over effect in the button coloring and the Office tip on the screen. By
leaving the mouse over your button, you’ll get an Office tip telling you that you can select F1 for help about
this control. Using the F1 key starts the help system and Excel opens a help page describing how you can
manage add-ins within Excel.

The F1 help page is a good resource for assistance if you need a bit of help on a topic. You can test your add-
in at this point to ensure that it opens and closes the task pane correctly. However, just as you can manage
add-ins from Excel, it is difficult to dispose of them from within Excel. This is important, because if you
start creating add-ins for several different customers, you could wind up with ten or twenty such add-ins
taking up residence on your system. Excel would open only after a longer and longer delay.

Creating an office add-in (excel ❘ 869

870 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Of course, it’s bad enough that during testing, every time you debug, you’re paying a price to ensure
that your current code is registered properly. Having add-ins piling up could be even more of a problem.
Fortunately, Visual Studio has an easy solution, as shown in Figure 25-25.

figure 25-24

figure 25-25

This same menu option is available across all the different Add-In project types. Selecting this enables you
to easily remove from your system the test add-ins that you make. As annoying as this might be for Excel or
Word, when you see the implications of an Outlook Form Region, which relies on an Outlook add-in, you’ll
understand why this clean option is important.

ouTlooK form regions
As previously noted, Visual Studio 2010 VSTO provides templates for every client application in
the Microsoft Office suite. Some of these, such as Word and Excel, are the traditional favorites for
customization. Others, such as PowerPoint, may see very little automation. However, there is a new kid
on the block. Outlook supports an add-in template that includes what is sure to become one of the more
popular extension models.

Outlook form regions (OFRs) provide you with the capability to customize what users see when they open
an e-mail message or a contact or any of several other components within Outlook. As you’ll see in this
section, OFRs provide a very flexible framework that enables you to embed anything from an HTML view
to a custom WPF user control in Outlook. Because Outlook is as popular as almost any other Office client
application, this feature will have a broad reach.

Using an OFR provides a canvas that isn’t simply visible alongside your primary focus; the OFR provides
a very configurable UI that enables you to extend or replace the default interface associated with typical
components in Outlook. Because e-mail has become the ubiquitous office and home communication tool,
being able to customize how key business data is presented in this medium is powerful.

To get started, create a new Outlook add-in project named ProVB_OFR. (Not shown here are screenshots of
the New Project dialog or the initial view in Visual Studio after the template has run, as the Outlook add-in
looks very similar to the Excel add-in discussed earlier.) You’ll find yourself in the code view for your add-
in, with the Startup and Shutdown event handlers.

At this point, add your OFR to your project. Right-click on your project and select the Add option from the
context menu to open the Add New Item dialog. As before, go to the Office category to review the available
templates, where you’ll find an Outlook Form Region template (see Figure 25-26). Give it a meaningful
name, such as AdjoiningOFR, to reflect the type of form region you’ll create.

figure 25-26

outlook form regions ❘ 871

872 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

After clicking the Add button, instead of being returned to Visual Studio, you’ll be presented with the first
screen in the wizard for the New Outlook Form Region. This wizard walks you through several different
options related to your OFR. The first choice, shown in Figure 25-27, is whether you want to generate your
form from scratch or would like to import one of the standard templates that ship with Outlook.

figure 25-27

The current example will go through the steps to create a new form region. (Take some time to explore one
or more of the standard forms on your own, as a complete discussion is beyond the scope of this chapter.)
Click Next to be taken to the second step of the wizard — selecting a type of form.

The dialog shown in Figure 25-28 lists four different types of potential regions. As you move between the
different options, the wizard displays a graphic that illustrates how each one affects the default display.
These four options can actually be grouped into two sets. The first two options — Separate and Adjoining —
are form types that modify the built-in components of Outlook. When displayed, these forms keep their
default display and then add your customization. So for example an e-mail message will be displayed with
the original body plus your customization shown either adjoining or available as a separate tab. The second
group consists of the Replacement and Replace-all regions. These form types replace the object that would
normally display within Outlook.

As noted in the naming of your OFR, the plan is to demonstrate creating an Adjoining form region, but
to demonstrate how Replacement and Replace-all forms work, select one of these two options and click
Next. This will take you to a screen where you can name and set some options related to your OFR. You
will return to this screen when you revert to the Adjoining OFR type. Instead of discussing this now, click
Next a second time and move to the next step in the wizard. This will take you to the screen shown in
Figure 25-29, defining the classes that can be associated with your OFR.

figure 25-29

figure 25-28

outlook form regions ❘ 873

874 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Keep in mind that Figure 25-29 shows this dialog as it looks when you have selected either a Replacement
or a Replace-all OFR type. As noted, these form types replace the underlying class. In Figure 25-29, each
of the built-in classes has been disabled, so you can’t ask to apply your change to one of those existing
types. Instead, your only option is to define a custom class or classes; the best practice is to define a
single class.

This custom message class is one that you would define within your custom add-in. To better explain
what is occurring, let’s use a mail message as an example. Typically, when Outlook receives a mail
message, the message is assigned to the class IPM.Note. The IPM.Note class is what provides all of the
typical display elements that you see in a message within Outlook. If you create a replacement form,
then when that form is sent it is flagged not as a typical message, but instead as an instance of your
custom class.

In other words, the sender of the message needs to be aware of the class name used for this type of
OFR. In theory, this is all that the sender needs to be aware of — however, that’s only in theory. The
Replacement and Replace-all form types work fine as long as the initial message is sent to the Microsoft
Exchange Server. If, however, you are attempting to trigger a message from, say, SharePoint, there is a
problem. Typically, when SharePoint is installed and configured, the e-mail options are set up such that
SharePoint handles its own messages. However, SharePoint doesn’t allow for sending messages with
custom message types, so when your code attempts to trigger this custom message type from within
SharePoint, the message is sent only if you have configured your SharePoint server to communicate with
an Exchange Server.

There are other unique features to Replacement and Replace-all forms. On the positive side, unlike the
OFRs that modify an existing object type, Replacement and Replace-all forms are instantiated only when
a message of that specific class is received. As discussed later in this section, Adjoining and Separate forms
need to have custom code added that screens when that OFR should be displayed.

Another advantage of Replacement and Replace-all forms is that they give you more control over the
message content. Any text in the underlying body is hidden, which means that you can embed information
in the message body that will later be used in the form. In addition, these form types also hide enclosures, so
it is possible to enclose, for example, an XML file containing application data and then retrieve and process
this data when the message is opened.

However, for this example you are creating a new Adjoining OFR, so use the Previous button twice in order
to return to the screen shown in Figure 25-28. Change your OFR type from Replacement to Adjoining and
click Next. This should bring you to the screen shown in Figure 25-30. Here you have the option to provide
a display name for your OFR. In order to see the effect of this, place the word An at the start of your class
name so that you’ll be able to see where this value is used.

The three check boxes in this dialog represent situations when this OFR will, by default, be available in
Outlook. In the case of the first one at least, you might not want to accept that default. “Inspectors that are
in compose mode,” enables you to determine whether someone who is creating a new message or contact
should also see your OFR region by default.

Although the setting is present for all OFR types, it in fact is not applicable to Replacement and Replace-all.
In the case of Replacement and Replace-all forms, Outlook doesn’t automatically offer these as an option
for creating a new message. Instead, users need to access the File menu and select the Forms option to tell
Outlook that they are attempting to send a message defined by the custom type.

However, for Separate and Adjoining forms, Outlook will, if you leave this checked, automatically add your
custom region to the standard new message, contact, appointment, and so on, window. This could get quite
annoying if your users aren’t going to be placing data into that OFR and it is for display only. Thus, in many
cases you’ll clear this first check box. However, if you are customizing a contact to capture and update new
data elements, you would probably want to leave this check box selected.

As for the other two check boxes in Figure 25-30, these refer to displaying your custom OFR, and typically
these remain selected so that your OFR will be visible to display data.

Clicking Next takes you to the dialog shown in Figure 25-31. This dialog enables you to select from any of
the standard classes that are used within Outlook. The goal is to enable you to create a custom OFR for one
or more of these classes, although typically you’ll select just one. For now, select just Mail Message and click
Finish to complete the creation of your OFR and return to Visual Studio.

After returning to Visual Studio, you’ll be in the designer for your AdjoiningOFR user control. That’s right,
once again you are working with a Windows Forms user control that has been customized by the VSTO
team to provide the characteristics you defined in the preceding wizard. At this point you can open the
Toolbox and drag and drop controls onto the form.

figure 25-30

outlook form regions ❘ 875

876 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Figure 25-32 illustrates a few changes that you can make so that your form will be both visible and
have some simple elements you can manipulate. The user control shown in Figure 25-32 has had a new
background color assigned, and has had two label controls dragged onto the form. Label1 has had its font
changed to a much larger size and the background changed to white. The default text in Label1 is now a
zero. To the left of Label1 is Label2, which has had its text updated to read “Attachment Count.”

figure 25-31

figure 25-32

You still haven’t written any actual code, so this is a great time to test your application. Use F5 to build and
run it. Once the build is complete, Outlook will automatically open. You should see something similar to
what is shown in Figure 25-33.

figure 25-33

Note that even the original Outlook test message, which was received two days previously, now includes
your custom OFR. In fact, you’ll find that every message you open includes the OFR — which could easily
become annoying, given that in a real application your OFR would probably be targeting a single message
type. Similarly, if you choose to create a new message, there it is again — an OFR that has only display
information. Once you have satisfied yourself with the impact of this region on Outlook, close Outlook and
return to Visual Studio.

Figure 25-34 provides a view of the default generated code for your OFR. Your goal is to carry out two
tasks: First, make this OFR display only if the associated message includes one or more attachments.
Second, update Label1 so that the number of attachments is shown in the OFR.

The first item to note is the Form Region Factory code block, which has been collapsed. There are
actually three generated methods, and it is the method hidden inside this code block where you’ll want
to put the custom logic specifying when this OFR should be visible. When expanded, as shown in the
following code, not only do you have your AdjoiningOFR class, but within this collapsed block is a
second partial class definition that defines an implementation to create your OFR as part of a factory.
Factories are a well-known software pattern wherein the calling application might not know the details
of which class is being created, but only the base-class OFR and the methods and properties exposed at
the base-class level.

outlook form regions ❘ 877

878 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

Software patterns are outside the scope of this chapter, but in short, the factory patterns indicate that there
will be a FormRegionInitializing event handler, and that the calling application will be able to create
several different types of OFRs based on which factory has been implemented within each OFR. Here is
the code:

Public Class AdjoiningOFR
#Region "Form Region Factory"
 <Microsoft.Office.Tools.Outlook.FormRegionMessageClass
 (Microsoft.Office.Tools.Outlook.FormRegionMessageClassAttribute.Note)> _
 <Microsoft.Office.Tools.Outlook.FormRegionName("ProVB_OFR.AdjoiningOFR")> _
 Partial Public Class AdjoiningOFRFactory

 ' Occurs before the form region is initialized.
 ' To prevent the form region from appearing, set e.Cancel to true.
 ' Use e.OutlookItem to get a reference to the current Outlook item.
 Private Sub AdjoiningOFRFactory_FormRegionInitializing(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Outlook.FormRegionInitializingEventArgs) _
 Handles Me.FormRegionInitializing
 End Sub

 End Class

#End Region

 'Occurs before the form region is displayed.
 'Use Me.OutlookItem to get a reference to the current Outlook item.
 'Use Me.OutlookFormRegion to get a reference to the form region.
 Private Sub AdjoiningOFR_FormRegionShowing(ByVal sender As Object, _

figure 25-34

 ByVal e As System.EventArgs) _
 Handles MyBase.FormRegionShowing
 End Sub
 'Occurs when the form region is closed.
 'Use Me.OutlookItem to get a reference to the current Outlook item.
 'Use Me.OutlookFormRegion to get a reference to the form region.
 Private Sub AdjoiningOFR_FormRegionClosed(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.FormRegionClosed
 End Sub

End Class

Code snippet from AdjoiningOFR.vb

In order to prevent your OFR from being displayed, you need to add custom code to the
FormRegionInitializing event handler. In this case you simply want to determine whether the message
has one or more attachments. If it doesn’t have any attachments, then you want the OFR to remain hidden:

 Private Sub AdjoiningOFRFactory_FormRegionInitializing(_
 ByVal sender As Object, _
ByVal e As Microsoft.Office.Tools.Outlook.FormRegionInitializingEventArgs) _
 Handles Me.FormRegionInitializing
 Try
 Dim mail = CType(e.OutlookItem, Outlook.MailItem)
 If Not mail.Attachments.Count > 0 Then
 e.Cancel = True
 Return
 End If
 Catch
 e.Cancel = True
 End Try
 End Sub

Code snippet from AdjoiningOFR.vb

The preceding code illustrates some of the key elements to screening your OFR. The first thing to note is
that you can access the inbound e-mail message by retrieving the OutlookItem object from the parameter
e. Of course, you need to cast this item, as it is passed as type Object. Once you’ve done this, you have full
access to the Outlook object model for e-mail messages. Thus, you can quickly determine the number of
attachments; and if there are none, you can set the Cancel property to True.

The next task is getting the number of attachments in your message into the OFR. This is a fairly easy task.
Unlike the decision about whether to display the OFR, which occurs when the code is about to create that
OFR, your ability to influence what is displayed doesn’t occur until the FormRegionShowing event handler
is called. In the code block that follows, instead of retrieving the current e-mail object from a parameter,
it is one of the member values for your OFR:

 Private Sub AdjoiningOFR_FormRegionShowing(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.FormRegionShowing
 Dim mail = CType(Me.OutlookItem, Outlook.MailItem)
 Me.Label1.Text = mail.Attachments.Count
 End Sub

Code snippet from AdjoiningOFR.vb

Thus, the code to get the number of attachments and assign that as the contents of the label boils down
to two lines of custom code. At this point you can rerun the application to test your code. Once Outlook
opens, you should see that the AnAdjoiningPane, which was previously displayed for all messages, is now
gone except in the case of those that have attachments.

outlook form regions ❘ 879

880 ❘ chaPTer 25 Visual studio tools FoR oFFiCE

This means that when you now create a new message, the OFR is still not shown. However, if you add an
attachment and then save that message before sending, you can reopen the saved message and you’ll see the
OFR displayed. Keep in mind that the determination of whether the OFR should be displayed occurs during
the creation of the OFR, and once the OFR has been hidden you can’t change that setting while the object
remains open.

summary
This chapter looked at VSTO and introduced many of its new features. It didn’t spend a lot of time talking
about how you can add controls and logic to user controls, but instead focused on how to work with the
custom task pane or actions pane, and how to leverage new capabilities such as content controls.

VSTO isn’t just a simple set of extensions that mirrors what you could do in VBA. In fact, VSTO extends
every client in the Office system and provides multiple templates. It provides flexibility with Word and
Excel to customize either at the document level or by creating a custom add-in; and if you do customize
at the document level, it provides the option to interoperate with any existing VBA code you have in your
document.

In addition to Word and Excel, you’ve been introduced to Windows Outlook form regions. The OFR model
enables you to send business data directly into the application that everyone uses. The various OFR models
have differing advantages and disadvantages, but each is based on an underlying user control, which enables
you to leverage everything that is available via Windows Forms, including WPF interop.

You also learned that the OBA model is becoming an increasingly important focus for Microsoft. The
ability to tie your business logic into applications such as Word, Excel, and Outlook means that your
developers can spend less time creating and maintaining custom grid controls, and your end users can get
started with less time spent in training.

 Windows Workfl ow foundation
 WhaT you Will learn in This chaPTer

 What is workfl ow? ➤

 How Windows Workfl ow Foundation abstracts workfl ow in your ➤

applications

 How you build workfl ows with Windows Workfl ow Foundation ➤

 How you can extend Windows Workfl ow Foundation by creating custom ➤

activities

 How you can integrate Windows Workfl ow Foundation into your ➤

applications

 Windows Workfl ow Foundation (WF) is a powerful tool when developing applications, as it provides
a standard means of adding workfl ow to an application. Workfl ow refers to the steps involved in an
application. Most business applications contain one or more workfl ows, such as the approval steps
in an expense - tracking application or the steps involved in paying for a cart full of items at an online
store. Normally, a workfl ow is created in code and is an integral part of the application. WF enables
developers to graphically build the workfl ow, keeping it logically separated from the code itself. It
also enables the workfl ow to change as the needs of the business change. These workfl ows may be as
complex as needed and may integrate child workfl ows, human processes, or Web services.

 This chapter looks at how you can take advantage of WF in your applications: how you can add and
edit workfl ows, how you can integrate workfl ows into an existing business process, and how the
graphical tools used to build workfl ows with Visual Studio can help you communicate with business
users and avoid errors caused by mistakes in the workfl ow.

 The method of building workfl ows with WF changed with Visual Basic 2010. If you are
working with an earlier version of the .NET Framework, see the samples in Appendix C.

 WorKfloW in aPPlicaTions
 Just what is workfl ow? It ’ s a very heavily used word, and many developers use it in multiple contexts.
For our purposes, it is the description of the steps involved in some process performed at least
partially by a computer. Workfl ows are common in many types of business applications. For example,

26

882 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

if you were building an application for tracking employee expense reports, the workflow might look
something like the following:

 1. The employee completes a form and submits it into the system.

 2. The system examines the data in the expense report:

 a. Depending on the rules defined by the company, it may be automatically approved, require
management approval, or require investigation by the accounting department. Some of the rules
that may come into play would likely be the expense types, the amount of each expense, how the
expense was paid, the level of the employee, and so on.

 b. Copies of the expense report are e-mailed if additional approval is required.

 c. If approved, the expense report continues in the workflow; otherwise, it is returned to the
submitting employee for correction (or to complain to the employee’s manager).

 3. Expense report values are recorded in the accounting system.

 4. A check is printed and sent to the happy employee.

The steps in a workflow may be carried out by a human or a computer; they may require custom code
or calculations, or they may need to integrate with an external application. Building workflows into an
application is frequently a process that can lead to a number of errors in the system. Unless a developer
completely understands the business process (and they rarely do), identifying the true workflow used for a
process requires interviewing multiple people at one or more companies. This often results in conflicting
descriptions of the steps involved, or of the actions required at each step, requiring someone to decide on the
actual intent. WF reduces the risk of building errors into the system by providing a graphical tool that can
be better understood by nontechnical analysts and users of the system to validate the workflow.

Even after the exact workflow has been defined, it frequently changes. This may be due to some new legal
requirements, a company merger, or even (frequently) the whims of management. In traditional applications,
this would likely mean that a developer would have to change the code for one or more steps of the process,
ideally without introducing any new bugs into the system. In short, developing workflow applications using
traditional tools can be a difficult, time-consuming process. WF makes building and maintaining these
workflows easier by abstracting away the logic of the workflow, and by providing several of the common
services required.

Building WorKfloWs
The actual workflow files in WF are typically XML files written in a version of XAML. This is the same
XAML used to describe Windows Presentation Foundation (WPF) files. (See Chapter 17 for more details on
WPF.) The XAML files describe the actions to perform within the workflow, and the relationship between
those actions. You could create a workflow using only a text editor, but Visual Studio makes creating
these workflows much easier. It provides a graphical designer that enables developers to visually design the
workflow, creating the XAML in the background.

A workflow comprises a number of activities, although even the top-level workflow is itself an activity. This
should give you the (correct) idea that you can nest many activities within one another, which provides a
natural-feeling composition model to building up a workflow from smaller components.

adding Workflow with Windows Workflow foundation
Workflow Foundation is composed of a number of components that work together with your application to
carry out the desired workflow. Six main components make up any WF application:

 ➤ Host process — The executable that will host the workflow. Typically, this is your application, and
usually a Windows Form, Silverlight, WPF, ASP.NET, or Windows service application. The workflow
is hosted and runs within this process. All normal rules of application design apply here: If another
application needs to communicate with the workflow, then you need to use Web services to enable
communication between the two applications.

 ➤ Runtime services — WF provides several essential services to your application. Most notable, of
course, is the capability to execute workflows. This service is responsible for loading, scheduling,
and executing your workflows within the context of the host process. In addition to this service, WF
provides services for persistence and tracking. The persistence service enables saving the state of a
workflow as needed. Because a workflow may take a long time to complete, having multiple workflows
in process can use a lot of the computer’s memory. The persistence services enable the workflow to be
saved for later use. When there is more to complete, the workflow can be reactivated and continue,
even after weeks of inactivity. The tracking services enable the developer to monitor the state of the
workflows. This is particularly useful when you have multiple workflows active at any given time
(such as in a shopping checkout workflow). The tracking services enable the creation of applications
to monitor the health of your workflow applications. This layer will also be extended in the future
through Windows Server AppFabric, which will provide a number of management and tracking
services for WF and WCF services.

 ➤ Workflow invoker — Responsible for executing each workflow instance. It runs in process within
the host process. Each engine may execute multiple workflow instances simultaneously, and multiple
engines may be running concurrently within the same host process.

 ➤ Workflow — The list of steps required to carry out a process. The workflow may be created
graphically using a tool such as Visual Studio, or manually using a text editor. Each workflow is
composed of one or more activities, and
may consist of workflow markup and/or
code. Multiple instances of a workflow
may be active at any given moment in an
application.

 ➤ Activity library — A collection of the
standard actions used to create workflows.
If you are familiar with flowcharts, the
activities are the individual elements you
use to draw the flowchart. There are
several different types of activities. Some
are used to communicate with outside
processes, while others affect the flow of a
workflow.

 ➤ Custom activities — In addition to the
standard activities that exist within
the activity library, developers can create
custom activities. This may be to support
a particular application you need to
integrate with WF, or as a simplification
of a complex composite activity. Creating custom activities is done
mostly through attributes and inheritance.

Figure 26-1 shows how the main components of WF fit together.

WF supports two main styles of creating workflows: sequential and
flowchart. Sequential workflows (see Figure 26-2) are the classic style of
process. They begin when some action initiates the workflow, such as the
submission of an expense report or a user decision to check out a shopping
cart. The workflow then continues stepwise through the activities until it
reaches the end. There may be branching or looping, but generally the flow
moves down the workflow. Sequential workflows are best when a set series
of steps is needed for the workflow, and the workflow proceeds in a single
direction until completed.

figure 26-1

Workflow

Rest of Application

Runtime Engine

Runtime Services

Host Process

Windows Workflow Foundation (WF)

Activity Library

Custom
Activity

figure 26-2

Building Workflows ❘ 883

884 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

Flowchart workflows (see Figure 26-3) are less linear than sequential
workflows. They provide a more familiar metaphor for most developers, as
they work similarly to the classic model of a flowchart in application design.
They are typically used when the data moves through a series of steps toward
completion. Typically, the flow goes in a single direction, but branching is more
common in this style of workflow.

While any workflow can contain elements of each of these workflow types, a
good way to decide between the two is the linearity of the desired workflow.
If it is a linear series of steps, then the bulk of the workflow likely would fit
into the sequential model, while more branching processes would likely be
better modeled as a flowchart. For example, browsing a shopping site is a
classic example of a flowchart. Users are either in browse mode or cart view
mode, and they may move between the two modes in either direction. Selecting
checkout would likely initiate a sequential workflow, as the steps in that
process are more easily described in a linear fashion.

a simple Workflow
As with any other programming endeavor, the best way to understand WF is to create a simple workflow
and extend it with additional steps. Start Visual Studio and create a new Workflow Console Application
called HelloWorkflow.

This project creates three files: a module that includes the main file for the application (originally Module1.vb,
renamed to Main.vb in the sample), the application configuration file (app.config), and the workflow
(workflow1.xaml). The workflow begins life blank, but you can drag activities from the Toolbox onto the
design surface. This design surface is the equivalent of the designers you use when creating Windows Forms
or WPF applications: Dragging activities onto the WF design surface edits the underlying XAML files.

To begin, drag a WriteLine activity (from the Primitives category of activities) onto the surface. This is a
very simple activity that simply writes some text to the console (or other class that inherits the TextWriter
class). Set the Text property of the WriteLine activity to something appropriate like “Hello Workflow”
(with the quotes). In order to better see this, you can add some code to the Main method to pause the
console when the application is running:

 Shared Sub Main()
 WorkflowInvoker.Invoke(New Workflow1())
 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
 End Sub

Code snippet from HelloWorkflow

Run the project to see the console window (see Figure 26-4), along with the message you are expecting.

figure 26-3

figure 26-4

While trivial, the project makes a useful test bed for experimenting with the various activities.
Delete the WriteLine activity and replace it with a Flowchart activity. Add an If activity
to the designer and a WriteLine activity. As you hover your mouse over the Start icon on
the flowchart, you will see a number of handles appear on the icon (see Figure 26-5). Drag
an arrow from these handles from the start icon to a handle on the If activity. Add a similar
arrow between the If activity and the WriteLine activity. Notice the red exclamation icons
that are added to the If and Flowchart icons,
as shown in Figure 26-6 (without the color).
This is used throughout the workflow designer
to indicate that either there is an error in an
activity’s settings or you still have to make a
change to one or more settings. This bubbles up
to any container of the activity. In this case, as
you haven’t set any condition on the If statement,
it indicates the error. This is also the cause of the
error marker on the Flowchart.

Double-click the If activity to open its designer
(see Figure 26-7). Notice that you have three
areas to edit. First, a condition must be set.
This is similar to the code you would use in any
normal If statement. Then you can add other
activities to the Then and Else areas. While
these two areas can accept only a single activity,
if you have a complex chain of events you can
drag a Sequence activity to wrap the steps
required.

You can either type the expression into the
field or bring up the Expression Editor dialog
(see Figure 26 -8) by clicking the ellipses next
to the Condition property in the Properties
Window of Visual Studio. Set the Condition to System.DateTime.Now.Hour < 12.

figure 26-5

figure 26-6

figure 26-7 figure 26-8

This will return True before noon. In this case, the WriteLine activity should display a greeting for
morning. You therefore need a way for this activity to supply a value to the WriteLine activity. In WF, this
is done through the use of variables and arguments. Variables are used within a workflow, while arguments
provide the means to send data into and extract data from a workflow. In this case, you want a variable
to provide the time of day to the WriteLine activity.

You create new variables using the Variables pane of the workflow designer. Open this by clicking the
Variables link at the bottom-left corner of the designer. Create a new string variable called TimeOfDay
(see Figure 26-9)

Building Workflows ❘ 885

886 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

Now you can drag an Assign activity to the Then section of the If activity designer. The To property is the
name of the variable you’ll assign a value into (in this case the TimeOfDay variable) and the Expression
property is a VB expression to assign to the variable. In this case, something like “morning” should work
(with the quotes).

For cases when the time of day is not before noon, it would be best if the message were a little more
variable. Drag another If activity into the Else area of the If activity designer. Set the condition of this
activity to System.DateTime.Now.Hour < 18, and add an Assign activity to each of the Then and Else
areas of this activity. They should assign the value of “afternoon” and “evening” to the TimeOfDay variable.
The completed If activity should look similar to Figure 26-10.

figure 26-9

figure 26-10

Return to the main flowchart by clicking the Flowchart item in the breadcrumb at
the top of the workflow designer (see Figure 26-11). Before you update the
WriteLine activity, drag a new Assign activity onto the designer. This will be
used to hold the current user’s name. Delete the arrow connecting the Start icon and
the If activity and connect the Start icon to the new Assign activity and then to the
If activity. Create a new string variable called UserName to hold the user name,
and set the value to System.Environment.UserName. Set the Text property of
the WriteLine activity to “Good “ & TimeOfDay & “, “ & Username. The
final workflow should appear as shown in Figure 26-12. Run the workflow to see
the resulting message.

While this workflow is probably overkill to generate a simple message, the
example does show many of the common steps used in defining a workflow.
Workflows are composed of multiple activities. Many activities can in turn be
composed of other activities. Activities may use declarative properties, or code
may be executed as needed.

figure 26-11

figure 26-12

standard activities
The standard WF activities can be divided into five major categories:

 ➤ Low-level activities — These activities perform some minor task, usually as part of a larger process.

acTiViTy descriPTion

Assign Assigns a new value to a workflow variable

Delay Causes a delay in the workflow . This may be useful in cases where you
would like a timed event to occur, or you want to provide some sort of
timeout for a long-running process .

InvokeMethod Calls a method on a class or object . You can supply parameters as needed .

WriteLine Writes a message to either the console or any TextWriter class . In
addition to using it for debugging purposes, this is also useful as a logging
mechanism, or to create text files to be used elsewhere in the workflow .

AddToCollection<T> Adds an item into a collection managed by the workflow . For example, it
might add an item into a processing queue for other parts of the workflow .
This is a generic activity, and you need to assign the type for the objects
stored in the collection .

ClearCollection<T> Clears the items from the collection managed by the workflow

ExistsInCollection<T> Determines whether a given object is already stored in the collection
managed by the workflow

RemoveFromCollection<T> Removes an item from the collection managed by the workflow

 ➤ Control of flow activities — These activities are the equivalent of Visual Basic’s If statement or While
loop. They enable the workflow to branch or repeat as needed to carry out a step.

acTiViTy descriPTion

DoWhile Works like the VB do...while loop . Performs a child activity (use a sequence if
you need multiple steps) while a condition is true . Will run at least once .

ForEach<T> Works like the VB for each...next loop . Performs a child activity on each of
the items in a collection . You need to define the type used in the iteration .

If Chooses a child activity based on a given condition . If you need multiple
children, then use a sequence .

Parallel Performs two or more child activities on the input simultaneously . For example,
you might define a Parallel to write to a log, submit to a Web service, and add
to a collection at the same time .

ParallelForEach<T> Like the ForEach<T>, but the child activities are executed in parallel, rather
than sequentially .

Pick Schedules two or more PickBranch activities . These activities will wait until
one of them is triggered, and the flow will follow that branch from then on . This
can be used to provide routing for a system, such as where the data is submitted
to multiple Web services . Once one of the Web services has been selected
using the Pick, you can then continue with the workflow . Alternately, if you
had a manual process in a workflow (e .g ., a pause waiting for an e-mail to be
returned), you could use a Pick activity to select between the manual process
and a Delay, with the process timing out if the Delay is triggered first .

PickBranch Used with the Pick activity to provide new branches for the stage

Sequence Container for multiple steps in a workflow . This may be the parent of the
workflow, or it may be used within another activity when you need multiple
children at a given step .

Building Workflows ❘ 887

continues

888 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

 ➤ Activities that communicate with external code — These activities are either called by external
code to initiate a workflow or used to call to external code as part of a workflow. This category also
includes activities that communicate with external systems to persist the workflow state.

acTiViTy descriPTion

Receive Receives a one-way WCF message

ReceiveAndSendReply Receives a WCF message and sends back a result

Send Sends a one-way WCF message

SendAndReceiveReply Sends a WCF message and waits for a result

Persist Saves the current state of the workflow . This is very useful for long-running
workflows, as it enables you to save the current state of the workflow, saving
memory . You can then reload the workflow as it was persisted as needed later .

acTiViTy descriPTion

CancellationScope Marks the boundaries of a set of activities to perform if a process is cancelled .
Typically, this would be used to close any handles, undo any partially
completed steps, etc .

CompensableActivity Marks the boundaries of an activity that may be “undone .” This activity groups one
or more actions to be performed . In addition, it contains actions to undo whatever
steps may have already been performed . This is typically to enable rollback of a
partially failed transaction . This activity is used as an alternative to transactions
when you don’t necessarily control the success of each of the steps in a process .
For example, if you send a request to a Web service, and then fail another step,
the CompensableActivity can send a cancel request to the Web service .

Compensate Invokes the compensation activity in a CompensableActivity activity . That
is, it “undoes” whatever activity was performed .

Confirm Performs the equivalent of a commit on the CompensableActivity

TransactionScope Marks the boundaries of a transaction within the workflow

Rethrow Rethrows an existing exception . This is typically done within the Catch clause of a
Try...Catch activity to propagate the exception to another part of the workflow .

Throw Creates an exception within a workflow

TryCatch Wraps an activity (use a sequence if you need multiple children) within a
Try...Catch block to handle exceptions

CorrelationScope Marks the boundaries of a set of Web services that will share a correlation handle

InitializeCorrelation Allows you to initialize a correlation . Typically, this is done using a message,
but this activity allows you to start it without an explicit correlation message .

TransactedReceiveScope Allows you to flow a transaction into a WCF communication

 ➤ Transaction activities — These activities group a number of other activities together into some logical
element. This is usually done to mark a number of activities that participate in a transaction.

acTiViTy descriPTion

Switch<T> Works like the VB case statement . Switches the flow through a workflow based
on the value of a variable or condition .

While Works like the VB while…end while loop . Performs a child activity (use a
sequence if you need multiple steps) while a condition is true .

TerminateWorkflow Stops the workflow before the end of the workflow is reached . This is useful
in the event of errors in the workflow, or if the data input doesn’t allow for
completion . Also used for flowchart workflows as a means of completion .

(continued)

 ➤ Flowchart activities — These activities are used in flowchart-style workflows and allow for the
organization of the steps, simple decisions, and other stages.

acTiViTy descriPTion

Flowchart This activity is used to create a flowchart workflow . It is a container for all the steps
involved in the workflow .

FlowDecision A simple If statement within a flowchart workflow . This is used to control the actions of a
workflow based on a condition .

FlowSwitch A switch statement within a flowchart workflow . This works similar to the VB case
statement in that you have multiple cases that work based on the assigned condition . You
also define a default condition if none of the cases apply .

a less simple Workflow
To see a few of these activities together, create a new
Workflow Console Application named Fulfillment.
This will be used to create part of a workflow for
an order fulfillment application. The workflow will
collect an XML file from a directory on disk, validate
it using a few simple rules, and add it to a collection
representing the order queue. Other workflows might
then retrieve items from this collection for actual
processing. Figure 26-13 shows the final workflow.

As you can see from the figure, the workflow is a
flowchart consisting of four stages. The DisplayName
property of each of these stages has been set to
better describe the contents of the stage. As you
would expect, this is invaluable in improving the
understanding of the workflow when you come back
to it later (or try to explain it to end users). The basic
outline of the workflow is as follows:

The workflow begins a loop to monitor ➤

a directory for XML files. This file will
represent an order, with one or more details. This is a DoWhile activity.

Once an order is received, a few simple validations are performed by calling a method on a .NET ➤

class. This is an InvokeMethod activity.

If the order is valid, it is added to a collection for later processing. If not, the validation errors are ➤

displayed and the workflow completes. This is an If activity.

To demonstrate additional processing, the orders collection is simply displayed to the console. Of ➤

course, in a real application, this stage would send the orders on to another application for actual
fulfillment and shipping. This is a ForEach<T> activity.

Before you begin building the workflow, there are some helper classes that you need to build. These
represent an order, an order detail line, and a manager class for processing the order. Add a new Class
Library project to the solution, named OrderManager. This has three classes: Order, OrderDetail, and
OrderSystem.

The Order class represents an order in the system. For this example, it consists of a few properties,
including the collection of order details.:

Public Class Order
 Public Property OrderID As Integer
 Public Property OrderDate As Date
 Public Property CustomerName As String
 Public Property ShipAddress As String

figure 26-13

Building Workflows ❘ 889

890 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

 Public Property Details As List(Of OrderDetail)

 Public Sub New()
 Details = New List(Of OrderDetail)
 End Sub
End Class

Code snippet from OrderManager

The OrderDetail class is an individual line item within an order. Again, for this example it is greatly
simplified:

Public Class OrderDetail
 Public Property Parent As Order
 Public Property ItemName As String
 Public Property Quantity As Integer
End Class

Code snippet from OrderManager

The OrderSystem class is a general manager class for the orders. In addition to the functionality for this
demo, it would likely be responsible for saving orders to a database, and so on:

Public Class OrderSystem

 Public Function GetOrderFromDropFile(ByVal path As String) As Order
 Dim result As Order = Nothing
 Dim files As String()
 Dim doc As New XDocument
 Dim detail As OrderDetail

 files = IO.Directory.GetFiles(path)
 If files.Length > 0 Then
 doc = XDocument.Load(files(0))
 'load header
 result = New Order
 With result
 .OrderID = CInt(doc.Root.Attribute("id").Value)
 .CustomerName = doc.Root.Element("customerName").Value
 .OrderDate = CDate(doc.Root.Element("orderDate").Value)
 .ShipAddress = doc.Root.Element("shipAddress").Value
 End With
 'load detail rows
 Dim details As List(Of XElement) = (From item In doc.Descendants
 Where item.Name = "orderDetail"
 Select item).ToList

 For Each d In details
 detail = New OrderDetail
 With detail
 .Parent = result
 .ItemName = d.Element("itemName").Value
 .Quantity = CDec(d.Element("quantity").Value)
 End With
 result.Details.Add(detail)
 Next
 'delete file to avoid calling this again
 'likely you would move to a backup directory instead
 ' IO.File.Delete(files(0))
 End If

 Return result

 End Function

 Public Function ValidateOrder(ByVal anOrder As Order) As String()
 Dim result As New List(Of String)

 'check for OrderID
 If Not IsNumeric(anOrder.OrderID) Then
 result.Add("Order ID is not valid")
 End If
 'check for ship address
 If Not String.IsNullOrEmpty(anOrder.ShipAddress) Then
 result.Add("No ship address")
 End If
 'check for at least one OrderDetail
 If anOrder.Details.Count < 1 Then
 result.Add("Must have at least one item in order")
 End If
 'other checks here

 Return result.ToArray
 End Function

End Class

Code snippet from OrderManager

For this example, the OrderSystem class exposes two methods. The first attempts to load an XML file
from an assigned directory. Once a file has been loaded, it converts the contents of the XML file into
an Order object, and one or more OrderDetail objects. LINQ to XML is used to retrieve the rows
containing order details.

The second method does a few simple validations on the order, and returns a list of validation errors (as
strings) to the calling program.

The following code shows a sample order XML file (also included in the source code for the OrderManager
project):

<?xml version=”1.0” encoding=”utf-8” ?>
<order id=”1234”>
 <orderDate>2009-12-01</orderDate>
 <customerName>Moe’s Family Diner</customerName>
 <shipAddress>1313 Mockingbird Lane, Springfield, AK</shipAddress>
 <orderDetails>
 <orderDetail>
 <itemName>Mango puree</itemName>
 <quantity>2</quantity>
 </orderDetail>
 <orderDetail>
 <itemName>Everso Sharp Knives</itemName>
 <quantity>15</quantity>
 </orderDetail>
 <orderDetail>
 <itemName>Mega frier</itemName>
 <quantity>1</quantity>
 </orderDetail>
 <orderDetail>
 <itemName>Case of sparklers</itemName>
 <quantity>200</quantity>
 </orderDetail>
 </orderDetails>
</order>

Code snippet from OrderManager

Building Workflows ❘ 891

892 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

Build the project to ensure you have no errors, and then you’re ready to build the workflow to use these
classes. Add a new Flowchart activity to the designer, and add the four activities shown in Figure 26-12,
connecting them as shown.

The workflow will make use of the objects in the
OrderManager project. As such, you should import
that namespace into your workflow. First, add a
reference to the OrderManager project: Right click on
the Fulfillment project and select Add Reference.
Select the OrderManager project on the Projects tab.
Next, click the Imports link at the bottom of the
workflow designer on the FulfillmentWorkflow.
This displays the current list of namespaces available
to your workflow. Add the OrderManager namespace
by entering it in the space at the top of the list and
pressing Enter to save it to the list.

The DoWhile loop consists of a Sequence, which in
turn contains a Delay activity and an InvokeMethod
activity (see Figure 26-14). The DoWhile activity
requires that you set a condition that will end the
loop. In this case, it will be when an order has been
picked up by the InvokeMethod.

The following table describes the property settings
for the added activities.

figure 26-14

acTiViTy ProPerTy Value descriPTion

DoWhile Condition theOrder Is Nothing You will create the theOrder variable
shortly . This variable will hold an
instance of an Order class for
processing .

Delay Duration 00:00:10 The Duration property is a
TimeSpan . In this case, the
delay is set for 10 seconds . In a
real-world application, you would
set this based on the frequency
of orders being processed .

InvokeMethod TargetObject manager This is an instance of an
OrderSystem class .

MethodName GetOrderFromDropFile A method on the OrderSystem class

Result theOrder Once a new file has been processed,
the resulting order is saved for
processing within the workflow .

Parameters System
.Configuration
.ConfigurationManager
.AppSettings(“dropFilePath”)
.ToString()

The directory to monitor will be
set using the application
configuration file .

The InvokeMethod activity is used to call the ValidateOrder method on the manager object. Set the
properties on this activity as shown in this table:

figure 26-15

acTiViTy ProPerTy Value descriPTion

InvokeMethod TargetObject manager This is an instance of an OrderSystem class .

MethodName ValidateOrder A method on the OrderSystem class

Result ValidationErrors A variable that will be added to the
workflow shortly

Parameters theOrder The instance of the Order class created by
the GetOrderFromDropFile method above

Building Workflows ❘ 893

acTiViTy ProPerTy Value descriPTion

If Condition ValidationErrors
.Length > 0

The condition will return true if any
errors were added to the collection
by the earlier ValidateOrder call .

AddToCollection<T> TypeArgument OrderManager
.Order

This defines the type of objects
stored in the collection .

Collection Orders This is a variable of the workflow
that will store the orders .

Item theOrder The item to add to the collection . In
this case it is a workflow variable .

ForEach<T> TypeArgument String This will iterate over each of the
items in the ValidationErrors
collection to display them .

Values ValidationErrors This is the collection to iterate over .

WriteLine Text ValidationError This is the value of the current
iteration in the loop .

TerminateWorkflow Reason “One or more
orders have
errors”

This will be available to the calling
application to determine why the
workflow terminated .

Next, the processing branches based on whether errors are encountered in the order. If the order is valid,
then it is added to a collection for further processing. If, however, there are any validation errors, they are
displayed and the workflow ends (see Figure 26-15). Set the properties for these activities as follows:

894 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

Finally, the orders are simply displayed on the console to confirm they have been processed. This is done
with another ForEach<T> activity that writes the order’s information, followed by each of the detail rows in
the order (see Figure 26-16). The properties of these activities are defined as follows:

acTiViTy ProPerTy Value descriPTion

ForEach<T> TypeArgument OrderManager.Order This will iterate over each of the orders
in the collection to display them .

Values Orders This is a workflow variable containing
the orders submitted .

WriteLine Text String
.Format(“Order on {0}
by {1} for:”, item
.OrderDate, item
.CustomerName)

Displays the contents of the order’s
header information

ForEach<T> TypeArgument OrderManager
.OrderDetails

This will iterate over the detail
rows contained within the
submitted order .

Values item.Details This is the collection of order details
within the current order .

WriteLine Text String
.Format(“{0} {1}(s)”,
detail
.Quantity, detail
.ItemName)

Displays the contents of the fields of
each order detail row

figure 26-16

VariaBle TyPe descriPTion

theOrder OrderManager.Order Will hold the current submitted order

Orders List<Order> Represents the current queue of orders for processing .
Set the default to New List(Of Order) to ensure that
the collection is initialized .

ValidationErrors String() Will hold any validation errors in the current submitted
order

argumenT TyPe descriPTion

manager OrderManager.OrderSystem Will hold the object that provides the processing for
the loading and validating of the orders

As described above, you will use a number of workflow variables needed to store data during processing.
These are described in the following table:

All that remains is to update the host application. As described above, you will provide an instance of the
OrderSystem class to the workflow. This is done in the Main method for the Console application:

Shared Sub Main()
 Dim inputs As New Dictionary(Of String, Object)
 'Workflow expects the OrderSystem as parameter
 Dim sys As New OrderManager.OrderSystem
 inputs.Add("manager", sys)
 WorkflowInvoker.Invoke(New FulfilmentWorkflow(), inputs)

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
End Sub

Code snippet from Fulfillment

Recall that the input for a workflow is a Dictionary(Of String, Object), and that the key in this
dictionary must match the name of an argument in the system — in this case, manager.

Before running the application, you also need to add an application configuration file. This will include a
single application setting named dropFilePath that should be set to the location where you will add the
XML files.

Run the application and copy an XML file to the monitored directory. After a brief delay, you should see the
contents of the order displayed on the console (see Figure 26-17).

figure 26-17

Building Workflows ❘ 895

In addition to those variables, an instance of the OrderSystem class will be passed into the workflow as an
argument. Open the Arguments pane and add the following item.

896 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

Building custom activities
In addition to the standard activity library, WF supports extensibility through the creation of custom
activities. Creating custom activities is a matter of creating a new class that inherits from Activity (or one
of the existing child classes). Creating custom activities is the primary means of extending WF. You might
use custom activities to simplify a complex workflow, grouping a number of common activities into a single
new activity. Alternatively, custom activities can create a workflow that is easier to understand, using terms
that are more familiar to the developers and business experts. Finally, custom activities can be used to
support software used within the business, such as activities to communicate with a Customer Relationship
Management (CRM) or Enterprise Resource Planning (ERP) system.

Creating custom activities with WF 4 is much easier than it was with earlier releases. To create a custom
activity, you inherit from Activity, or one of the existing children of Activity, and override the
appropriate methods. The most common classes you will inherit from are as follows:

 ➤ Activity — The base class. Use only if one of the other following three classes are too specific for
your needs.

 ➤ CodeActivity — Use when your activity performs some action. You override the Execute method
to carry out your action. This activity works synchronously (as opposed to the AsyncCodeActivity
below), so the entire activity must complete before the workflow continues.

 ➤ AsyncCodeActivity — Similar to CodeActivity, but the work is performed asynchronously. This
is the most commonly used class to inherit from when creating custom activities.

 ➤ NativeActivity — Use this when your activity needs to interact with the workflow engine itself. For
example, the flow control activities inherit from this class.

When defining properties for your custom activities, you do not use the standard types. Instead, you use a
generic class to wrap the type. This enables your properties to communicate with the running workflow.
There are three wrappers you should use in your activities:

 ➤ InArgument(Of type) — Used to wrap a property that will be provided to the workflow

 ➤ OutArgument(Of type) — Used to wrap a property that the workflow will expose to the calling
code

 ➤ InOutArgument(Of type) — Used to wrap a property that will be provided to the workflow, as well
as returned

To see how you can easily create a new activity and use it within a workflow, create a new Workflow
Console application (CustomActivity). Add a new class (EncryptActivity) to the project for your
new activity. This new activity will be used to encrypt a string within a workflow (you’ll also be creating
an activity to decrypt the text):

Imports System.Activities
Imports System.Security.Cryptography
Imports System.Text

Public Class EncryptActivity
 Inherits CodeActivity

 Public Property Input As InArgument(Of String)
 Public Property Password As InArgument(Of String)
 Public Property Output As OutArgument(Of String)

 Protected Overrides Sub Execute(ByVal context As CodeActivityContext)
 Dim aes As New AesCryptoServiceProvider
 Dim hash As New MD5CryptoServiceProvider

 'load the properties from the current workflow context
 Dim plaintext As String = Input.Get(context)

 Dim pwd As String = Password.Get(context)

 Dim inBuffer As Byte()
 Dim outBuffer As Byte()

 'the key is the input to the encryptor
 'we can only decrypt using the same password
 aes.Key = hash.ComputeHash(Encoding.ASCII.GetBytes(pwd))
 'Electronic CodeBook format (each block is encrypted individually)
 aes.Mode = CipherMode.ECB

 Dim encrypt As ICryptoTransform = aes.CreateEncryptor
 inBuffer = Encoding.ASCII.GetBytes(plaintext)

 'here's the actual encryption
 outBuffer = encrypt.TransformFinalBlock(inBuffer,
 0, inBuffer.Length)

 'store the output in the current workflow context
 'Base64 to avoid any high ASCII issues
 Output.Set(context, Convert.ToBase64String(outBuffer))

 End Sub
End Class

Code snippet from CustomActivity

The encryption uses the AES encryption, although you could use any of the encryption methods in the
System.Security.Cryptography namespace. You can see Chapter 34 for more details on the classes in
this namespace, but the mechanics of using them are as follows:

 1. Create an instance of one of the cryptography service providers.

 2. Set the Key (and optionally IV, or initialization vector, properties) on the service provider. This is the
value used to provide the encryption (i.e., the password).

 3. Create an actual encryptor using the service provider.

 4. Encrypt the text. Note that the encryption method (TransformFinalBlock) does not take a string, but
an array of bytes, so you need to convert your input (and output).

Add another class (DecryptActivity) to the project. The code for the DecryptActivity is basically a
mirror image of the EncryptActivity:

Imports System.Activities
Imports System.Security.Cryptography
Imports System.Text

Public Class DecryptActivity
 Inherits CodeActivity

 Public Property Input As InArgument(Of String)
 Public Property Password As InArgument(Of String)
 Public Property Output As OutArgument(Of String)

 Protected Overrides Sub Execute(ByVal context As CodeActivityContext)
 Dim aes As New AesCryptoServiceProvider
 Dim hash As New MD5CryptoServiceProvider

 'convert the input parameters from the current context
 Dim encryptedtext As String = Input.Get(context)
 Dim pwd As String = Password.Get(context)

 Dim inBuffer As Byte()

Building Workflows ❘ 897

898 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

 Dim outBuffer As Byte()

 'generate security hash from the password
 aes.Key = hash.ComputeHash(Encoding.ASCII.GetBytes(pwd))
 aes.Mode = CipherMode.ECB

 'create decryptor
 Dim decrypt As ICryptoTransform = aes.CreateDecryptor
 inBuffer = Convert.FromBase64String(encryptedtext)

 'do actual decryption
 outBuffer = decrypt.TransformFinalBlock(inBuffer, 0, inBuffer.Length)

 'Save the decrypted text to the current workflow context
 Output.Set(context, Encoding.ASCII.GetString(outBuffer))

 End Sub

End Class

Code snippet from CustomActivity

The main difference between the two activities is that rather than create an
encryptor, you create a decryptor. In addition, because the output of the
encryptor was converted to a base 64 string, it is converted to a byte array using
FromBase64String.

New activities will not appear in the Toolbox until they have been compiled, so
build the project to ensure that everything is working. Once you have done that,
you can build your workflow to test the two activities. Switch to the workflow
designer. You should see the new activities in the Toolbox (see Figure 26-18).

Drag a Sequence activity onto the designer, and then add an EncryptActivity,
DecryptActivity, and WriteLine activity to it. The final workflow should
look like Figure 26-19.

The input parameters will be provided by the host console application. To do
this, you need to configure the workflow with the desired parameters. You then
provide them to the workflow by including a Dictionary containing those
parameters. Click the Arguments link on the workflow designer. You will use
two input parameters (for the text to encrypt and the password) and an output
parameter (for the decrypted text). The names of these parameters do not
need to match the properties of the custom activities, but the case is significant
in the Dictionary, so you need to ensure that they are added correctly (see
Figure 26-20).

figure 26-18

figure 26-19

figure 26-20

Similarly, you need a variable to hold the temporary value after the encryption, so add a new variable using
the Variables pane of the designer. The name is not important, but it should be a String. In the table below,
this variable is called tempText.

Now you’re ready to set the properties for the activities. The following table shows how they should be set:

You can now turn your attention to the main routine that will call the workflow. The input to the workflow
and the output of the Invoke method are both of type Dictionary(Of String, Object). The key you use
to add the item to the Dictionary is important, as it should match the names of the arguments you added to
the workflow, including the case of the name. The following code shows the Main method of the console
application:

 Shared Sub Main()
 Dim parms As New Dictionary(Of String, Object)
 Dim output As New Dictionary(Of String, Object)

 'add the input parameters
 parms.Add("inputText", "Some text to encrypt")
 parms.Add("password", "5up3r53cr3t!")

 Console.WriteLine("The original text is: {0}",
 parms.Item("inputText").ToString())

 output = WorkflowInvoker.Invoke(New Workflow1(), parms)

 Console.WriteLine("The decrypted string is: {0}",
 output.Item("outputText").ToString())

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()

 End Sub

Code snippet from CustomActivity

You could reuse the Dictionary for both input and output, but in this case two dictionaries are created
to avoid any confusion. The two input parameters are added to the input dictionary, keeping in mind
that case is significant and should match the arguments you created earlier on the workflow. This input
dictionary is added as a parameter in the call to the WorkflowInvoker.Invoke. This also populates the
output dictionary with any OutArgument arguments of the workflow — in this case, the outputText value.
Running this workflow should display the same text for input and output.

dynamically loading Workflows
As each workflow is a self-contained block of XAML, you might want to dynamically load your workflows,
rather than compile them into the application. This gives you easier access to changing or extending your
application by creating or editing the XAML and making it available to your application.

In order to have the XAML files left “loose” when you compile them, you need to change the properties for
the XAML file. Select the workflow file in the Solution Explorer and set the Build Action to Content and

acTiViTy ProPerTy Value

EncryptActivity Input inputText

Password password

Output tempText

DecryptActivity Input tempText

Password password

Output outputText

WriteLine Text String
.Format(“{0} encrypted is {1}
. Decrypted to {2}”, inputText, tempText,
outputText)

Building Workflows ❘ 899

900 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

the Copy to Output Directory to Copy if newer. This will move the XAML files to the output directory
when you build the application. The DynamicallyLoadingWorkflows sample includes three sample
workflows.

To load one of the workflows, you use the ActivityXamlServices.Load method. This is from the System
.Activities.XamlIntegration namespace. The method takes a path to a XAML file and loads it. You
can then pass it on to the WorkflowInvoker to execute as normal:

Shared Sub Main()
 'load a workflow
 ' in this case based on the current tick
 ' of the clock
 ' ((in this case 0 to 2))
 Dim pick As Integer = DateTime.Now.Second Mod 3
 Dim filename As String =
 String.Format("Workflow{0}.xaml", pick + 1)
 WorkflowInvoker.Invoke(ActivityXamlServices.Load(filename))

 Console.WriteLine("Press ENTER to exit")
 Console.ReadLine()
End Sub

Code snippet from DynamicallyLoadingWorkflow

The preceding code expects three XAML files in the same directory as the executable. It randomly selects
one of the three, loads it using ActivityXamlServices.Load, and executes it. You can run this multiple
times to confirm that it selects the different workflows.

While this is a simple example of loading the workflows dynamically, the method can be quite useful when
building workflow applications. For example, you may have separate workflows based on customer type or
product. You can use this method to load the correct workflow from a library of workflows as needed. In
addition, as your needs change, you can update the XAML files, without having to update your application
to reflect the changes.

rehosTing The WorKfloW designer
One common request when working with workflows is to enable users to create and edit their own workflows.
In the past, this has been problematic because you’d then have to either recreate the functionality yourself
using WPF or figure out the interfaces required to get it to work. With this version of WF, however, it has
become much easier.

You can host the workflow designer surface in any WPF application by creating a new instance of
the WorkflowDesigner class and inserting the View property into the location of the host. The
WorkflowDesigner class also makes the standard property grid available to your application using
the PropertyInspectorView property.

Create a new WPF application to host the workflow designer. The main window of the application will host
a collection of available controls, as well as the workflow designer and property window. The following
code shows the XAML for the application:

<Window x:Class=”MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”
 xmlns:tool=”clr-namespace:System.Activities.Presentation.Toolbox;
 assembly=System.Activities.Presentation”
 Title=”Rehosting Workflow Designer” Height=”500” Width=”700” >
 <Window.Resources>

 <sys:String x:Key=”AssemblyName”>System.Activities, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35</sys:String>
 <sys:String x:Key=”CustomActivityAssembly”>CustomActivities</sys:String>
 </Window.Resources>
 <Grid x:Name=”DesignerGrid”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”200” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”1*” />
 <RowDefinition Height=”1*” />
 </Grid.RowDefinitions>
 <Border>
 <tool:ToolboxControl>
 <tool:ToolboxControl.Categories>
 <tool:ToolboxCategory CategoryName=”Basic”>
 <tool:ToolboxItemWrapper
 AssemblyName=”{StaticResource AssemblyName}” >
 <tool:ToolboxItemWrapper.ToolName>
 System.Activities.Statements.Sequence
 </tool:ToolboxItemWrapper.ToolName>
 </tool:ToolboxItemWrapper>
 <tool:ToolboxItemWrapper
 AssemblyName=”{StaticResource AssemblyName}”>
 <tool:ToolboxItemWrapper.ToolName>
 System.Activities.Statements.WriteLine
 </tool:ToolboxItemWrapper.ToolName>
 </tool:ToolboxItemWrapper>
 <tool:ToolboxItemWrapper
 AssemblyName=”{StaticResource CustomActivityAssembly}”>
 <tool:ToolboxItemWrapper.ToolName>
 CustomActivities.EncryptActivity
 </tool:ToolboxItemWrapper.ToolName>
 </tool:ToolboxItemWrapper>
 <tool:ToolboxItemWrapper
 AssemblyName=”{StaticResource CustomActivityAssembly}”>
 <tool:ToolboxItemWrapper.ToolName>
 CustomActivities.DecryptActivity
 </tool:ToolboxItemWrapper.ToolName>
 </tool:ToolboxItemWrapper>
 </tool:ToolboxCategory>
 </tool:ToolboxControl.Categories>
 </tool:ToolboxControl>
 </Border>
 <Border Name=”DesignerBorder” Grid.Column=”1” Grid.RowSpan=”2” />
 <Border Grid.Row=”2” Grid.Column=”0” Name=”PropertyGridBorder” />
 </Grid>
</Window>

The application’s main window uses a grid to lay out the ”Toolbox” of available activities added above and
a property view on the left, and the bulk of the window hosting the designer. The designer and property
grid will be added in code later, but Border controls have been added at the appropriate locations in the
XAML where they will appear. Figure 26-21 shows the resulting window in the designer.

Notice that a custom namespace has been added to the XAML for the System.Activities.Presentation
namespace. This includes the classes that will be used to insert the Toolbox items. You need to add each of
the desired activities individually. This gives you the flexibility to customize the controls you present to end
users.

rehosting the Workflow Designer ❘ 901

902 ❘ chaPTer 26 wiNdows woRkFlow FouNdatioN

In addition to the standard controls, you can also include custom controls. I created a new Activity Library
project (CustomActivities) and added the EncryptActivity and DecryptActivity activities to that project.
I then referenced that project from this one. If you look at the preceding XAML, you will see a new resource
created pointing at that assembly. The activities are then loaded just as you load the standard activities.

All that remains is to create the new instance of the WorkflowDesigner, and insert it into the application:

Imports System.Activities
Imports System.Activities.Core.Presentation
Imports System.Activities.Presentation

Class MainWindow
 Public Sub New()
 InitializeComponent()

 'load the standard control metadata (for the "toolbox")
 Dim designerMeta As New DesignerMetadata
 designerMeta.Register()

 'create the new design surface
 Dim designer As New WorkflowDesigner()
 'adding a sequence as a default activity
 designer.Load(New System.Activities.Statements.Sequence())

 'add the designer into the app
 DesignerBorder.Child = designer.View
 'add the default property grid to the app
 PropertyGridBorder.Child = designer.PropertyInspectorView
 End Sub

Code snippet from RehostingDesigner

The DesignerMetadata class provides the information used by the designer to display the controls
on the design surface. If you fail to register this class first, the designer won’t be able to draw the
appropriate designers for each control.

figure 26-21

You can customize the WorkflowDesigner before adding it to the application. In this case, a default
Sequence activity is added.

Finally, the designer and property window are inserted into the main window. The final result (see
Figure 26-22) allows the end user to create or edit workflows. Saving the workflow is left as an exercise
for you (but the WorkflowDesigner.Save and WorkflowDesigner.Load methods would likely come
in handy).

figure 26-22

summary
While Windows Workflow Foundation does not have the visual glitz of WPF or the broad reach of WCF, it is
a highly useful addition to the .NET Framework. Most business applications have some need for workflows,
and having a standard means of creating a workflow ensures that the workflow is fully featured and accurately
reflects business needs. As WF is readily available with the .NET Framework, you no longer need to create
your own workflow capabilities for each application. Moreover, WF is extensible, so you can take advantage
of it in your applications without being limited to the included features.

As with the other components of the .NET Framework, WF integrates well into other applications, including
Windows Forms and ASP.NET applications. It provides the means to extract the frequently complex workflow
from those applications and to graphically design it. This graphical representation can be used to communicate
the process to business users, increasing the chance that the workflow is represented correctly. Finally, as
business needs change, it is a simple process to update the workflow, without requiring changes to the core
application.

summary ❘ 903

27
localization

 WhaT you Will learn in This chaPTer

 Understanding culture types ➤

 Getting culture settings from a thread ➤

 Declaring culture in ASP .NET ➤

 Understanding diff erences in dates ➤

 Understanding diff erences in currency & numbers ➤

 Understanding diff erences in sorting ➤

 Using culture specifi c resource fi les ➤

 As the audience for an application expands, businesses often realize they need to globalize the
application. Of course, the ideal is to build the application to handle an international audience right
from the start, but in most cases this may not be feasible because building for localized versions
requires extra work and cost.

 The core of any localization effort is the translation of resources, and user interface changes. Such
changes are application specifi c and therefore not really open to generic implementation across the
multitude of potential cultures for which you might choose to target an application. However,
some common elements of localization such as date support or numeric and currency formats can
be implemented by .NET Framework classes.

 The .NET Framework has made a considerable effort to support the internationalization of .NET
applications. API support, server controls, and even Visual Studio itself equip you to do the extra
work required to bring your application to an international audience. This chapter looks at some of
the important items to consider when building your applications for the world.

 culTures and regions
 As an example, the ASP.NET page that is pulled up in an end user ’ s browser runs under a specifi c
culture and region setting. When building an ASP.NET application or page, the defi ned culture in
which it runs is dependent upon a culture and region setting specifi ed either in the server in which
the application is run or in a setting applied by the client (the end user). By default, ASP.NET runs
under a culture setting defi ned by the server. Stated simply, unless you specifi cally look for a client ’ s
requested culture, your application will run based on the server ’ s culture settings.

906 ❘ chaPTer 27 loCaliZatioN

The world is made up of a multitude of cultures, each of which has a language and a set of defined ways
in which it views and consumes numbers, uses currencies, sorts alphabetically, and so on. The .NET
Framework defines languages and regions using the Request for Comments 1766 standard definition (tags
for identification of languages — www.ietf.org/rfc/rfc1766.txt), which specifies a language and region
using two-letter codes separated by a dash. The following table provides examples of some culture definitions:

culTure code descriPTion

en-US English language; United States

en-GB English language; United Kingdom (Great Britain)

en-AU English language; Australia

en-CA English language; Canada

fr-CA French language; Canada

The examples in this table define five distinct cultures. These
five cultures have some similarities and some differences.
Four of the cultures speak the same language (English), so
the language code of “en” is used in these culture settings.
Following the language setting is the region setting. Even
though most of these cultures speak the same language, it is
important to distinguish them further by setting their region
(such as US for the United States, GB for the United Kingdom,
AU for Australia, and CA for Canada). These settings reflect the
fact that the English used in the United States is slightly different
from the English used in the United Kingdom, and so forth.
Beyond language, differences exist in how dates and numerical
values are represented. This is why a culture’s language and
region are presented together.

The differences between the cultures in the table do not
break down by region only. Many countries contain more
than a single language, and each may have its own preference
for notation of dates and other items. For example, en-CA
specifies English speakers in Canada. Because Canada is not
only an English-speaking country, it also includes the culture
setting of fr-CA for French-speaking Canadians.

understanding culture Types
The culture definition just given is called a specific culture
definition. This definition is as detailed as you can possibly
get, defining both the language and the region. The other
type of culture definition is a neutral culture definition. Each
specific culture has a specified neutral culture with which it is
associated. For instance, the English language cultures shown
in the previous table are separate, but they also belong to one
neutral culture: EN (English). The diagram presented in Figure
27-1 illustrates how these culture types relate to one another.

From this diagram, you can see that many specific cultures belong to a neutral culture. Higher in the
hierarchy than the neutral culture is an invariant culture, which is an agnostic culture setting that should be
utilized when passing items (such as dates and numbers) around a network. When performing these kinds
of operations, you should make your back-end data flows devoid of user-specific culture settings. Instead,
apply these settings in the business and presentation layers of your applications.

en-US

en-GB

en-AU

es-ES

es-MX

es-AR

en-CA

Invariant
Culture

EN
(Neutral Culture)

ES
(Neutral Culture)

figure 27-1

In addition, pay attention to neutral culture when working with your applications. In most cases, you are
going to build applications with views that are more dependent on a neutral culture than on a specific
culture. For instance, if you have a Spanish version of your application, you’ll probably make this version
available to all Spanish speakers regardless of where they live. In many applications, it won’t matter whether
the Spanish speaker is from Spain, Mexico, or Argentina. In cases where it does make a difference, use the
specific culture settings.

looking at your Thread
When the end user requests an ASP.NET page or runs a Windows Forms dialog, the item is executed on a
thread from the thread pool. That thread has a culture associated with it. You can get information about the
culture of the thread programmatically and then check for particular details about that culture.

To see an example of working with a thread and reading the culture information of that thread, start with
the basic Windows Forms application created in Chapter 1. To reproduce this create a new project called
ProVB2010_Localization, and add the appropriate button and text box controls. A copy of the code in this
chapter is part of the code download with the name ProVB2010_Localization.

Add a new Sub DisplayCultureInfo and have it called by the Click event handler for the test button
on the form. When the TestButton_Click event is fired, the user’s culture information is retrieved and
displayed in the TextBox control. The code for the new Sub is presented here:

Private Sub DisplayCultureInfo()
 Dim ci As New System.Globalization.CultureInfo(
 System.Threading.Thread.CurrentThread.CurrentCulture.ToString())
 TextBox1.Text = "CURRENT CULTURE'S INFO" & Environment.NewLine
 TextBox1.Text += "Name: " & ci.Name & Environment.NewLine
 TextBox1.Text += "Parent Name: " & ci.Parent.Name & Environment.NewLine
 TextBox1.Text += "Display Name: " & ci.DisplayName & Environment.NewLine
 TextBox1.Text += "English Name: " & ci.EnglishName & Environment.NewLine
 TextBox1.Text += "Native Name: " & ci.NativeName & Environment.NewLine
 TextBox1.Text += "Three Letter ISO Name: " &
 ci.ThreeLetterISOLanguageName & Environment.NewLine
 TextBox1.Text += "Calendar Type: " & ci.Calendar.ToString() & Environment.NewLine
End Sub

Code snippet from Form1.vb

This simple form creates a CultureInfo object
from the System.Globalization namespace
and assigns the culture from the current thread
that is running using the System.Threading
.Thread.CurrentThread.CurrentCulture
.ToString call. Once the CultureInfo object is
populated with the end user’s culture, details about
that culture can be retrieved using a number of
available properties that the CultureInfo object
offers. Example results of running the form are
shown in Figure 27-2.

Note that in the code download there is an
additional button on the form based on additional
changes that are made to this sample project.

The CultureInfo object contains a number of
properties that provide you with specific culture figure 27-2

Cultures and regions ❘ 907

908 ❘ chaPTer 27 loCaliZatioN

information. The items displayed are only a small sampling of what is available from this object. From this
figure, you can see that the en-US culture is the default setting in which the thread executes. In addition
to this, you can use the CultureInfo object to get at a lot of other descriptive information about the
culture. You can always change a thread’s culture on the overloads provided via a new instantiation of
the CultureInfo object, as shown here:

Private Sub DisplayCultureInfo()
 System.Threading.Thread.CurrentThread.CurrentCulture =
 New Globalization.CultureInfo(“th-TH”)
 Dim ci As Globalization.CultureInfo =
 System.Threading.Thread.CurrentThread.CurrentCulture

 ' Dim ci As New System.Globalization.CultureInfo(
 ' System.Threading.Thread.CurrentThread.CurrentCulture.ToString())
 TextBox1.Text = "CURRENT CULTURE'S INFO" & Environment.NewLine
 TextBox1.Text += "Name: " & ci.Name & Environment.NewLine
 TextBox1.Text += "Parent Name: " & ci.Parent.Name & Environment.NewLine
 TextBox1.Text += "Display Name: " & ci.DisplayName & Environment.NewLine
 TextBox1.Text += "English Name: " & ci.EnglishName & Environment.NewLine
 TextBox1.Text += "Native Name: " & ci.NativeName & Environment.NewLine
 TextBox1.Text += "Three Letter ISO Name: " &
 ci.ThreeLetterISOLanguageName & Environment.NewLine
 TextBox1.Text += "Calendar Type: " & ci.Calendar.ToString() & Environment.NewLine
End Sub

Code snippet from Form1.vb

In this example, only a couple of lines of code
are changed to assign a new instance of the
CultureInfo object to the CurrentCulture
property of the thread being executed by
the application. The culture setting enables the
CultureInfo object to define the culture you
want to utilize. In this case, the Thai language of
Thailand is assigned. The results produced in the
TextBox control are illustrated in Figure 27-3.

From this figure, you can see that the
.NET Framework provides the native name
of the language used even if it is not a Latin-based
letter style. In this case, the results are presented
for the Thai language in Thailand, including some
of the properties associated with this culture (such
as an entirely different calendar than the one used
in Western Europe and the United States).

declaring culture globally in asP.neT
ASP.NET enables you to easily define the culture that is used either by your entire ASP.NET application or
by a specific page within your Web application, using what are termed server-side culture declarations. You
can specify the culture for any of your ASP.NET applications by means of the appropriate configuration
files. To demonstrate this, close the ProVB2010_Localization application you started with and create a new
ASP.NET website called ProVB_Russian. Alternatively, you can open this download folder as a website in
Visual Studio 2010. On the default.aspx page add a new Calendar control from the toolbox, following the
text: Welcome to ASP.NET!

figure 27-3

To change the default language used by this control you can specify culture settings in the web.config file
of the application itself, as illustrated here:

<configuration>
 <system.web>
 <globalization culture="ru-RU" uiCulture="ru-RU" />
 </system.web>
</configuration>

Code snippet from ProVB_Russian\web.config

Only the <globalization> line will need to be added to your default web.config file; it should also be
noted that based on the page specific settings described below, this line has been commented out in the code
download.

Note the two attributes represented: culture and uiCulture. The culture attribute enables you to define
the culture to use for processing incoming requests, whereas the uiCulture attribute enables you to define the
default culture needed to process any resource files in the application (use of these attributes is covered later
in the chapter).

Note that one additional option you have when specifying a culture on the server is to define this culture in
the root web.config file for the server. Thus, if you are setting up a web server that will be used with only
a single culture, you can specify that culture at the server level, instead of needing to specify it as part of the
settings for each application running on the server. This can be useful if you are installing Web applications
created outside of your native culture, but where you want date, currency, sorting, and similar formats to
default appropriately.

In the preceding snippet, the culture established for this ASP.NET application is the Russian language in the
country of Russia. In addition to setting the culture at either the server-wide or the application-wide level,
another option is to set the culture at the page level, as shown here:

<%@ Page Title="Home Page" Language="VB" MasterPageFile="~/Site.Master"
 AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default"
 UICulture="ru-RU" Culture="ru-RU"%>
%>

Code snippet from ProVB_Russian\default.aspx

This example specifies that the Russian language and culture
settings are used for everything on the page. You can see this
in action by using this @Page directive and a simple calendar
control on the page. Figure 27-4 shows the output. Notice
that marking the page as using Russian settings does not
automatically translate text within the page; it only updates the
embedded control added to the page.

adopting culture settings in asP.neT
In addition to using server-side settings to define the culture
for your ASP.NET pages, you also have the option to define
the culture according to what the client has set as his or her
preference in a browser instance.

When end users install Microsoft’s Internet Explorer or some
other browser, they have the option to select their preferred cultures in a particular order (if they have
selected more than a single culture preference). To see this in action in IE, select Tools ➪ Internet Options

figure 27-4

Cultures and regions ❘ 909

910 ❘ chaPTer 27 loCaliZatioN

from the IE menu. On the first tab provided (General) is
a Languages button at the bottom of the dialog. Select
this button and you are provided with the Language
Preference dialog shown in Figure 27-5.

To add any additional cultures to the list, click the Add
button and select the appropriate culture from the
list. After you have selected any cultures present in
the list, you can select the order in which you prefer to
use them. Thus, a user with multiple settings in this list
will have a version of the application with their first
language choice before anything else; if a version that
supports that language is not available, their second and
then consecutive versions are checked. The first available
language matching one of their preferences will be
presented.

Making language selections, the end user can leverage
the automatic culture recognition feature provided in
ASP.NET. Instead of specifying a distinct culture in any
of the configuration files or from the @Page directive, you
can also state that ASP.NET should automatically select
the culture provided by the end user requesting the page.
This is done using the auto keyword, as illustrated here:

<%@ Page UICulture="auto" Culture="auto" %>

With this construction in your page, the dates, calendars,
and numbers appear in the preferred culture of the
requester. What happens if you have translated resources
in resource files (shown later in the chapter) that depend on a culture specification? Or what if you have
only specific translations and therefore can’t handle every possible culture that might be returned to your
ASP.NET page? In this case, you can specify the auto option with an additional fallback option if ASP
.NET cannot find any of the culture settings of the user (such as culture-specific resource files). This usage is
illustrated in the following code:

<%@ Page UICulture="auto:en-US" Culture="auto:en-US" %>

In this case, the automatic detection is utilized; but if the culture preferred by the end user is not present,
then en-US is used.

TranslaTing Values and BehaViors
In the process of globalizing your .NET application, you may notice a number of aspects that are handled
differently compared to building an application that is devoid of globalization, including how dates are
represented and how currencies are shown. This section looks at some of these issues.

understanding differences in dates
Different cultures specify dates and time very differently. For instance, take the following date as an example:

08/11/2008

Is this date August 11, 2008 or is it November 8, 2008? It should be the job of the business logic layer
or the presentation layer to convert all date and times for use by the end user. To avoid interpretation
errors, always use the same culture (or invariant culture) when storing values, such as dates and times, in a
database or other data store.

figure 27-5

Setting the culture at the server level in ASP.NET or within a Windows Forms application, as shown in the
earlier examples, enables your .NET application to make these conversions for you. You can also simply
assign a new culture to the thread in which the code is running. For instance, consider the following sub,
which can be called from the ButtonTest Click event handler (note that this Sub is dependent on these
Imports statements):

Imports System.Globalization
Imports System.Threading

Private Sub DisplayCalendarByCulture()
 Dim dt As DateTime = New DateTime(2010, 3, 2, 13, 5, 1, 10)

 Thread.CurrentThread.CurrentCulture = New CultureInfo("pt-br")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("es-mx")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("es-es")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("ru-RU")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("ar-SA")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("am-ET")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("as-IN")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("th-TH")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _

Translating Values and Behaviors ❘ 911

912 ❘ chaPTer 27 loCaliZatioN

 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("zh-cn")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("zh-tw")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("ko-kr")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("zh-hk")
 TextBox1.Text +=
 Thread.CurrentThread.CurrentCulture.EnglishName & " : " & _
 dt.ToString() & Environment.NewLine
End Sub

Code snippet from Form1.vb

Using the ProVB2010_Localization test form again, you can test this code. The code snippet captures the
current date time for output, but does so while referencing a dozen or more different cultures, one for
each copy output to the screen. The date/time construction used by the defined culture is written to the
TextBox control. The result from this code operation is presented in Figure 27-6.

figure 27-6

Clearly, the formats used to represent a date/time value can be dramatically different between cultures —
some, such as Saudi Arabia (ar-SA) and Thailand, (th-TH) use entirely different calendar baselines.

differences in numbers and currencies
In addition to date/time values, numbers are displayed quite differently from one culture to the next. How
can a number be represented differently in different cultures? Well, it has less to do with the actual number
(although certain cultures use different number symbols) and more to do with how the number separators
are used for decimals or for showing amounts such as thousands, millions, and more. For instance, in the
English culture of the United States (en-US), numbers are represented in the following fashion:

5,123,456.00

From this example, you can see that the en-US culture uses a comma as a separator for thousands and a period
for signifying the start of any decimals that might appear after the number is presented. It is quite different
when working with other cultures. The following code block shows an example of representing numbers in
other cultures:

Private Sub Numbers()
 Dim myNumber As Double = 5123456.0

 Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("n") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("vi-VN")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("n") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("n") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("fr-CH")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("n") & Environment.NewLine

End Sub

Code snippet from Form1.vb

Adding this code to your project and running it
from the click event produces the results shown in
Figure 27-7.

As you can see, cultures show numbers in numerous
different formats. The second culture listed in the
figure, vi-VN (Vietnamese in Vietnam), constructs
a number exactly the opposite from the way it is
constructed in en-US. The Vietnamese culture uses
periods for the thousand separators and a comma
for signifying decimals, a somewhat common
format around the world. Finnish uses spaces for
the thousand separators and a comma for the
decimal separator, whereas the French-speaking
Swiss use an apostrophe for separating thousands,
and a period for the decimal separator. This
demonstrates that not only do you need to consider
dates and language constructs, but that it is also
important to “translate” numbers to the proper
format so that users of your application can properly understand the numbers represented.

figure 27-7

Translating Values and Behaviors ❘ 913

914 ❘ chaPTer 27 loCaliZatioN

Another scenario in which you represent numbers is when working with currencies. It is one thing to
convert currencies so that end users understand the proper value of an item; it is another to translate the
construction of the currency just as you would a basic number.

Each culture has a distinct currency symbol used to signify that a number represented is an actual currency
value. For instance, the en-US culture represents currency in the following format:

$5,123,456.00

The en-US culture uses a U.S. dollar symbol ($), and the location of this symbol is just as important as
the symbol itself. For en-US, the $ symbol directly precedes the currency value (with no space in between the
symbol and the first character of the number). Other cultures use different symbols to represent currency
and often place those currency symbols in different locations.

Create another Sub that can be called from the button’s click event handler, and this time format the same
numbers using the built-in .NET currency formatting, as shown in the following code:

Private Sub Currency()
 Dim myNumber As Double = 5123456.0

 Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("c") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("vi-VN")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("c") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("c") & Environment.NewLine

 Thread.CurrentThread.CurrentCulture = New CultureInfo("fr-CH")
 TextBox1.Text += Thread.CurrentThread.CurrentCulture.EnglishName &
 " : " & myNumber.ToString("c") & Environment.NewLine
End Sub

Code snippet from Form1.vb

Executing the preceding Sub displays the output
shown in Figure 27-8.

Not only are the numbers constructed quite
differently from one another, but the currency
symbol and the location of the symbol in regard to
the number are quite different as well.

Note that when you are using currencies on an
ASP.NET page and you have provided an automatic
culture setting for the page as a whole (such as
setting the culture in the @Page directive), you need
to specify a specific culture for the currency that is
the same in all cases. Unlike dates, for which the
differences are primarily display oriented, with a
currency there is an expectation of value conversion.
Thus, reformatting a currency can cause expensive
errors unless you are actually doing a currency
conversion.

For instance, if you are specifying a U.S. dollar currency value in your data, , you do not want your ASP
.NET page to display that value as something else (for example, the euro) based on translating the remainder

figure 27-8

of the page information to another language. Of course, if you actually performed a currency conversion
and showed the appropriate euro value along with the culture specification of the currency, that makes
sense and is the best solution.

Therefore, if you are using an automatic culture setting on your ASP.NET page and you are not converting
the currency, you should perform something similar to the following code for currency values:

Dim myNumber As Double = 5123456.00
Dim usCurr As CultureInfo = New CultureInfo("en-US")
Response.Write(myNumber.ToString("c", usCurr))

understanding differences in sorting
You have learned to translate textual values and alter the construction of the numbers, date/time values,
currencies, and more when you are globalizing an application. You should also take care when applying
culture settings to some of the programmatic behaviors that you establish for values in your applications.
One operation that can change based upon the culture setting applied is how .NET sorts strings. You might
think that all cultures sort strings in the same way (and generally they do), but sometimes differences exist.
For example, the following shows a sorting operation occurring in the en-US culture:

Imports System.Collections.Generic

Private Sub Sorting()
 Thread.CurrentThread.CurrentCulture = New CultureInfo("en-US")
 'Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")

 Dim myList As List(Of String) = New List(Of String)

 myList.Add("Washington D.C.")
 myList.Add("Helsinki")
 myList.Add("Moscow")
 myList.Add("Warsaw")
 myList.Add("Vienna")
 myList.Add("Tokyo")

 myList.Sort()

 For Each item As String In myList
 TextBox1.Text += item.ToString() & Environment.NewLine
 Next
End Sub

Code snippet from Form1.vb

For this example to work, you have to reference the System.Collections and the System.Collections
.Generic namespaces because this example makes use of the List(Of String) object.

In this example, a generic list of capitals from various countries of the world is created in random order.
Then the Sort method of the generic List(Of String) object is invoked. This sorting operation sorts the
strings according to how sorting is done for the defined culture in which the application thread is running.
The preceding code shows the sorting as it is done for the en-US culture. The result of this operation when
used within the ProVB2010_Localization form is shown in Figure 27-9.

This is pretty much what you would expect. Now, however, change the previous example so that the culture
is set to the Finnish culture. Do this by uncommenting the second line of the Sub Sorting and commenting
out the first line of the Sub Sorting which sets the “en-US” culture settings, in the preceding snippet.

If you run the same bit of code under the Finnish culture setting, you get the results presented in
Figure 27-10.

Translating Values and Behaviors ❘ 915

916 ❘ chaPTer 27 loCaliZatioN

figure 27-9

figure 27-10

Comparing the Finnish culture sorting shown in Figure 27-10 and the U.S. English culture sorting done in
Figure 27-9, you can see that the city of Vienna is in a different place in the Finnish version. This is because
in the Finnish language, there is no difference between the letter V and the letter W. Therefore, if you are
sorting using the Finnish culture setting, Vi comes after Wa, and thus, Vienna appears last in the list of
strings in the sorting operation.

asP.neT resource files
When you work with ASP.NET, resources are handled by resource files. A resource file is an XML-based file
that has a .resx extension. You can have Visual Studio help you construct this file. Resource files provide a
set of items that are utilized by a specified culture. In your ASP.NET applications, you store resource files as
either local resources or global resources. The following sections describe how to use each type of resource.

making use of local resources
You might be surprised how easily you can build an ASP.NET page so that it can be localized into other
languages. In fact, the only thing you need to do is build the ASP.NET page as you normally would and then

asP.neT resource files ❘ 917

use some built-in capabilities from Visual Studio to convert the page to a format that enables you to plug in
other languages easily.

To see this in action, build a simple ASP.NET website called ProVB_Localization and open the Default
.aspx page as presented here. Note that we have added a few simple controls to replace the default labels
generated with a new page. This page will be referred to later in the chapter as the “ASP.NET page code
block.” Keep in mind that the downloaded code will not match this initial code snippet as this chapter
modifies this code to support multiple languages.

<%@ Page Title="Home Page" Language="VB" MasterPageFile="~/Site.Master" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">

 <div>
 <asp:Label ID="Label1" runat="server"
 Text="What is your name?"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" Text="Submit Name" />

 <asp:Label ID="Label2" runat="server"></asp:Label>
 </div>

</asp:Content>

Code snippet from ProVB_Localization\Default.aspx

As you can see, there is not much to this page. It is composed of a couple of
Label controls, as well as TextBox and Button controls. Update the click
event handler for Button1 to set the Label2.Text property text to the
TextBox1.Text property value. This way, when users enter their name into
the text box, the Label2 server control is populated with the inputted name.

The next step is what makes Visual Studio so great. To change the
construction of this page so that it can be localized easily from resource
files, open the page in Visual Studio and ensure that you are in Design view.
Next, using the Visual Studio menu, select Tools ➪ Generate Local Resource.
Note that you can select this tool only when you are in the Design view of
your page.

Selecting Generate Local Resource from the Tools menu causes Visual Studio
to create an App_LocalResources folder in your project if you don’t have
one already. A .resx file based upon this ASP.NET page is then placed in the
folder. For instance, if you are working with the Default.aspx page, then
the resource file is named Default.aspx.resx (see Figure 27-11).

Right-click on the .resx file, select View Code. If View Code isn’t present
on your default menu, select Open With; you’ll get a dialog with a list of editor options. From the Open
With dialog, select the XML (Text) Editor as the program to open this file using the OK button. After
doing this, you should find the View Code option on the context menu for this file. When the .resx file
opens, you’ll notice that the .resx file is nothing more than an XML file with an associated schema at the
beginning of the document. The resource file that is generated for you takes every possible property of every
translatable control on the page and gives each item a key value that can be referenced in your ASP.NET
page. Looking at the page’s code, note that all the text values you placed in the page have been retained, but

figure 27-11

918 ❘ chaPTer 27 loCaliZatioN

they have also been placed inside the resource file. Visual Studio changed the code of the Default.aspx
page as shown in the following code block:

<%@ Page Title="Home Page" Language="VB" MasterPageFile="~/Site.Master"
 AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_Default"
 culture="auto" meta:resourcekey="PageResource1" uiculture="auto" %>

<asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent">
</asp:Content>
<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <div>
 <asp:Label ID="Label1" runat="server"
 Text="What is your name?" meta:resourcekey="Label1Resource1"></asp:Label>

 <asp:TextBox ID="TextBox1" runat="server"
 meta:resourcekey="TextBox1Resource1"></asp:TextBox>
 <asp:Button ID="Button1" runat="server" Text="Submit Name"
 meta:resourcekey="Button1Resource1" />

 <asp:Label ID="Label2" runat="server" meta:resourcekey="Label2Resource1"></asp:Label>
 </div>

</asp:Content>

Code snippet from ProVB_Localization\Default.aspx

From this bit of code, you can see that the Culture and UICulture attributes have been added to the
@Page directive with a value of auto, thus, enabling this application to be localized. In addition, the
attribute meta:resourcekey has been added to each of the controls, along with an associated value. This
is the key from the .resx file that was created on your behalf. Double-clicking on the Default.aspx.resx
file opens the resource file in the Resource Editor, shown in Figure 27-12, built into Visual Studio. Keep in
mind the code download will have additional settings not shown if you are working along with the chapter.

figure 27-12

asP.neT resource files ❘ 919

Note that a few properties from each of the server controls have been defined in the resource file. For
instance, the Button server control has its Text and ToolTip properties exposed in this resource file, and
the Visual Studio localization tool has pulled the default Text property value from the control based on
what you placed there. Looking more closely at the Button server control constructions in this file, you
can see that both the Text and ToolTip properties have a defining Button1Resource1 value preceding the
property name. This is the key that is used in the Button server control shown earlier.

In the following aspx source, a meta:resourcekey attribute has been added to a button control. In this
case it references Button1Resource1. All the properties using this key in the resource file (for example, the
Text and ToolTip properties) are applied to this Button server control at runtime.

<asp:Button ID="Button1" runat="server" Text="Submit Name"
 meta:resourcekey="Button1Resource1" />

Code snippet from ProVB_Localization\Default.aspx

adding another language resource file
The Default.aspx.resx file created in the last section is used by the application as the default or invariant
culture. No specific culture is assigned to this resource file. If for a given request no culture can be
determined, then this is the resource file that is utilized. To add another resource file for the Default.aspx
page that handles another language altogether, copy and paste the Default.aspx.resx file into the same
App_LocalResources folder and rename the newly copied file. If you use Default.aspx.fi-FI.resx, give
the following keys the values shown to make a Finnish-language resource file:

Button1Resource1.Text Lähetä Nimi
Label1Resource1.Text Mikä sinun nimi on?
PageResource1.Title Näytesivu

Once you have created this file, take an additional step and create a custom resource in both resource files
using the key Label2Answer. The Default.aspx.resx file should have the following new key:

Label2Answer Hello

Now you can add the key Label2Answer to the Default.aspx.fi-FI.resx file as shown here:

Label2Answer Hei

You now have resources for specific controls, and a resource that you can access later programmatically.

finalizing the Building of the Default.aspx Page
Finalizing the Default.aspx page, you want to add a Button1_Click event so that when the end user
enters a name into the text box and clicks the Submit button, the Label2 server control provides a greeting
pulled from the local resource files. When all is said and done, your default page should have a code-behind
element that matches the following code:

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 Label2.Text = GetLocalResourceObject("Label2Answer") &
 " " & TextBox1.Text
 End Sub
End Class

Code snippet from ProVB_Localization\Default.aspx.vb

In addition to pulling local resources using the meta:resourcekey attribute in the server controls on the
page to access the exposed attributes, you can also access any property value contained in the local resource

920 ❘ chaPTer 27 loCaliZatioN

file by using the GetLocalResourceObject. When using GetLocalResourceObject, you simply use the
name of the key as a parameter, as shown here:

GetLocalResourceObject("Label2Answer")

With the code from the Default.aspx page in place and the resource files completed, you can run the page,
entering a name in the text box and then clicking the Submit Name button to get a response, as shown in
Figure 27-13.

What happened behind the scenes that caused this page to be constructed in this manner? First, only two
resource files — Default.aspx.resx and Default.aspx.fi-FI.resx — are available. The Default
.aspx.resx resource file is the invariant culture resource file, whereas the Default.aspx.fi-FI.resx
resource file is for a specific culture (fi-FI). Because the browser requesting the Default.aspx page was set to
en-US as the preferred culture, ASP.NET found the local resources for the Default.aspx page. From there,
ASP.NET checked for an en-US-specific version of the Default.aspx page. Because there isn’t a specific page
for the en-US culture, ASP.NET checked for an EN-(neutral culture)-specific page. Not finding a page for the
EN neutral culture, ASP.NET was then forced to use the invariant culture resource file of Default.aspx
.resx, producing the page shown in Figure 27-13.

If you now set your IE language preference as fi-FI and rerun the Default.aspx page, you’ll see a Finnish
version of the page, as shown in Figure 27-14.

figure 27-13

figure 27-14

asP.neT resource files ❘ 921

In this case, having set the IE language preference to fi-FI, you are presented with this culture’s page instead
of the invariant culture page presented earlier. ASP.NET found this specific culture through use of the
Default.aspx.fi-FI.resx resource file.

You can see that all the control properties that were translated and placed within the resource file are
utilized automatically by ASP.NET, including the page title presented in the title bar of IE.

neutral Cultures are Generally Preferred
When you are working with the resource files from this example, note that one of the resources is for a
specific culture. The Default.aspx.fi-FI.resx file is for a specific culture — the Finnish language as
spoken in Finland. Another option would be to make this file work not for a specific culture, but instead for
a neutral culture. To do so, simply name the file Default.aspx.FI.resx. In this case, it doesn’t make any
difference because no other countries speak Finnish; but it would make sense for languages such as German,
Spanish, or French, which are spoken in multiple countries.

For instance, if you are going to have a Spanish version of the Default.aspx page, you could definitely
build it for a specific culture, such as Default.aspx.es-MX.resx. This construction is for the Spanish
language as spoken in Mexico. With this in place, if someone requests the Default.aspx page with
the language setting of es-MX, that user is provided with the contents of this resource file. If the requester
has a setting of es-ES, he or she will not get the Default.aspx.es-MX.resx resource file, but the invariant
culture resource file of Default.aspx.resx. If you are going to make only a single translation for your site
or any of your pages, construct the resource files to be for neutral cultures, not specific cultures.

If you have the resource file Default.aspx.ES.resx, then it won’t matter if the end user’s preferred
setting is set to es-MX, es-ES, or even es-AR — that user gets the appropriate ES neutral-culture version of
the page.

global resources
Besides using only local resources that specifically deal with a particular page in your ASP.NET application,
you also have the option to create global resources that can be used across multiple pages. To create a
resource file that can be utilized across the entire application, right-click on the solution in the Solution
Explorer of Visual Studio and select Add New Item. From the Add New Item dialog, select Resource File.
Visual Studio prompts you to place this file in a new folder called App_GlobalResources. You’ll see that this
file already exists in the sample code download. Once again, your first resource file is the invariant culture
resource file. Add a single string resource with the key LabelText and assign a long string value to this
key. The string “Non-Variant Format Label Text” was used in the code download. Next, add a third Label
control, Label3 to the bottom of your existing page.

Now that you have the invariant culture resource file completed, the next step is to add another resource
file, but this time name it Resource.es.resx. Again, for this resource file, use a string key of LabelText
and paste in the Spanish translation of the preceding text.

The point of a global resource file is to have access to these resources across the entire application. You can
access the values that you place in these files in several ways. One way is to work the value directly into any
of your server control declarations. For instance, you can place the following privacy statement in a Label
server control as shown here:

<asp:Label ID="Label3" runat="server"
 Text='<%$ Resources: Resource, LabelText %>'></asp:Label>

Code snippet from ProVB_Localization\Default.aspx.vb

922 ❘ chaPTer 27 loCaliZatioN

With this construction in place, you can now grab the appropriate value of the LabelText global resource,
depending on the language preference of the end user requesting the page. To make this work, you use
the keyword Resources followed by a colon. Next, you specify the name of the resource file. In this
case, the name of the resource file is Resource, because this statement goes to the Resource.resx and
Resource.es.resx files in order to find what it needs. After specifying the particular resource file to use,
the next item in the statement is the key — in this case, LabelText.

Another way to achieve the same result is to use some built-in dialogs within Visual Studio. Highlight the
server control you want in Visual Studio from Design view so that the control appears within the Properties
window. For my example, I highlighted a Label server control. From the Properties window, click the
button within the Expressions property. This launches the Expressions dialog, where you can bind
the LabelText value to the Text property of the control, as shown in Figure 27-15.

figure 27-15

To make this work, highlight the Text property in the Bindable properties list. Then select an expression
type from the drop-down list on the right-hand side of the dialog. Your options include AppSettings,
ConnectionStrings, and Resources. Select Resources. You are then asked for the ClassKey and ResourceKey
property values. The ClassKey is the name of the file that should be utilized. In this example, the name of the
file is Resource.resx, so use the Resources keyword as a value. You are provided with a drop-down list in
the ResourceKey property section, with all the keys available in this file. Because only a single key exists at
this point, only the LabelText key appears in this list. Make this selection and click OK. The Label server
control changes and now appears as it was presented earlier in the two-line code block.

Note that the resources provided via global resources are available in a strongly typed manner. For instance,
you can programmatically get at a global resource value by using the construction presented in the following
example:

Label3.Text = Resources.Resource.LabelText.ToString()

Figure 27-16 shows that you have full IntelliSense for these resource values.

However in the case of the sample download the changes shown for the .aspx file were maintained
(although commented out). Enabling this line in the sample application, combined with a request that
specifies a Spanish language culture, results in a page with the Spanish text for Label3.

figure 27-16

resource files in WindoWs forms
Just as with ASP.NET, you can also work with resource files (.resx) for Windows applications using
Visual Studio. To see how to localize a Windows Forms application, you will want to reopen the
ProVB_2010Localization project introduced earlier in this chapter. In this case you are going to add a
new form to your Localization project called UsingResx.vb.

Like the ASP.NET form described earlier in this chapter (and identified as “ASP.NET page code block”),
this Windows Forms dialog should contain a couple of Label controls, a Button, and a TextBox control.
Initially, your form (with its controls) should look like the one shown in Figure 27-17.

resource files in Windows forms ❘ 923

figure 27-17

924 ❘ chaPTer 27 loCaliZatioN

Before you get started, turn on localization features for the form. Keep in mind that the following steps can
also be used for a form that already exists if you are converting an existing form to deal with more than one
language.

Selecting the form in the designer, go to the Properties window and change the Localizable property to
True. This enables you to apply more than one language to a form and have the elements for a particular
culture stored in a resource file.

After you have set the Localizable property to True, you can then provide alternate language values for
the controls on the form. The properties that you currently have assigned to the controls are for the Default
language setting.

As with ASP.NET, if a culture is undetermined or a resource file is not available for this culture, then the
Default settings are utilized. To create a new language-specific set of resources, the first step is to change
the Language property of the form to the desired language. You will find this setting within the Language
property of the form, as shown in Figure 27-18.

Notice that the property window lists not only the Finnish language as an option, but also culture-specific
options such as Finnish (Finland). As with ASP.NET, selecting the language can speed the process of
creating localized version(s) of your application, as opposed to creating country-specific resources. From
the language property window shown in Figure 27-18, select Finnish as the language and then change the
values of the three controls as follows:

Button1.Text Lähetä Nimi
Label1.Text Mikä sinun nimi on?
Label2.Text Hei

figure 27-18

Note that once you change the value of the Language property, the title of the design window in Visual
Studio is also updated to reflect that you are looking at the design for the Finnish view.

Next you are going to set up a couple of methods for your form. First, by double-clicking on the form’s
button, you will create a Button1_Click event. Within this event you’ll add code to assign the value of the
TextBox1.Text property to Label2. Additionally, you will add a constructor to the form so that you can
specify the current culture info for the thread on which the form is being created. The code-behind for this
form is as follows:

Imports System.Threading
Imports System.Globalization

Public Class UsingResx
 Sub New()
 'Thread.CurrentThread.CurrentCulture = New CultureInfo("fi-FI")
 'Thread.CurrentThread.CurrentUICulture = New CultureInfo("fi-FI")

 ' This call is required by the designer.
 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.

 End Sub
 Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 Label2.Text += TextBox1.Text
 End Sub
End Class

Code snippet from UsingResx.vb

The preceding code shows that you have added two lines that will specify the culture info on the
current thread prior to processing the form. Leaving these two lines commented out, running the application,
and using the Open UsingResx button to open the UsingResx form produces the output shown in Figure 27-19.
After doing this, uncomment the two lines, which will simulate a user whose system settings are defined
as Finnish. Again, accessing the UsingResx form, the display automatically changes to the one shown in
Figure 27-20.

figure 27-19 figure 27-20

resource files in Windows forms ❘ 925

926 ❘ chaPTer 27 loCaliZatioN

Where are all the translations stored? Just as with ASP.NET, they are stored in
the resource file for this form. Using the Solution Explorer to show all the files
in your solution, you will now find a UsingResx.resx file and a UsingResx
.fi.resx file, as shown in Figure 27-21.

Opening the UsingResx.resx file will cause Visual Studio to open the file in a
manner that enables you to directly edit the values it stores. The default resource
file stores some type references as well as other properties of the controls on the
form, as shown in Figure 27-22.

Opening the UsingResx.fi.resx file instead shows only the three changed
properties and the updated page title. The rest of the properties are read from
the default resource file. The contents of the Finnish resource file are presented
in Figure 27-23.

figure 27-21

figure 27-22

figure 27-23

Visual Studio 2010 provides an editor for working with resource files. You have already seen some of the
views available from the Resource Editor. Resources are categorized visually according to the data type
of the resource. This chapter has covered only the handling of strings, but other categories exist (such as
images, icons, audio files, miscellaneous files, and other items). These options are shown in Figure 27-24.

figure 27-24

summary
This chapter has looked at some of the localization tools available to you. It started with a review of the
Culture types and how to determine the preferred culture for either a thread or Web request. It looked at
understanding how different cultures may treat the same date or number differently for display and just
as importantly how .NET can automate this handling for you. It also examined differences with currency
with a warning about the need to convert a value and not just swap the display formatting when dealing with
currency. The chapter then looked at how .NET supports both Windows Forms and ASP.NET use of
multiple resource files to provide support for different languages and cultures.

While .NET has provided many tools to help you with this process, you should keep in mind that these tools
only make the process easier when looking; when you want to localize an application, you need to plan to
work with someone familiar with the language, and ideally the culture, you will target.

In addition to making many of the changes described in this chapter, localization is a process that requires
consideration of multiple different time zones, consideration for information that reads Left to Right vs
cultures which expect information to flow Right to Left, and other issues that are outside the scope of the
tools you use. While that seems like a lot, you’ll note that the same concepts for using resource files exist
between Windows Forms and ASP.NET.

summary ❘ 927

28
 CoM - interop

 WhaT you Will learn in This chaPTer

 Review of COM ➤

 Calling COM from .NET ➤

 Interop with ActiveX controls ➤

 Confi guring .NET assemblies to be called from COM ➤

 Introduction to P/Invoke ➤

 A vast body of technology surrounds Microsoft ’ s Component Object Model (COM). Over the years,
this model has been the cornerstone of so much Microsoft - related development that we have to take a
long, hard look at how to integrate all that technology into the world of .NET.

 This chapter begins by taking a brief backward glance at COM, and then compares it with the way
that components interact in .NET. It also takes a look at the tools Microsoft provides to help link the
two together. Having looked at the theory, you then try it out by building a few example applications.
First you take a legacy basic COM object and run it from a Visual Basic 2010 program. Then you
repeat the trick with a full - blown ActiveX control. Next, you run some Visual Basic code in the guise
of a COM object. Finally, this chapter takes a look at some tools associated with going below the
COM layer and into the P/Invoke layer of the operating system.

 The COM - related examples in this chapter are exclusive to a 32 - bit environment.
Attempting to run these examples on a 64 - bit environment will result in runtime errors
unless you reset the project settings to specifi cally target a 32 - bit (x86) operating system.

 When considering the differences between COM and .NET, keep in mind one thing: COM is,
to a large extent, where .NET came from. In addition, with all the time and resources that have
been invested in this technology, it is important to consider the best ways to both maintain these
investments and integrate them into new investments you make, and over time migrate your
components to .NET - based implementations for the transition to 64 - bit computing.

930 ❘ chaPTer 28 Com-iNtERoP

undersTanding com
Before looking into the COM-.NET interoperability story, it is important to understand COM’s main
concepts. This section does not attempt to do more than skim the surface of COM. While the basic
concepts are fundamentally simple, the underlying technology is anything but simple. Some of the most
impenetrable books on software ever written have COM as their subject, and we have no wish to add to
these.

COM was Microsoft’s first full-blown attempt to create a language-independent standard for programming.
The idea was that interfaces between components would be defined according to a binary standard. This
means that you could, for the first time, invoke a VB component from a VC++ application, and vice versa.
It would also be possible to invoke a component in another process or even on another machine, via
Distributed COM (DCOM). You will not be looking at out-of-process servers here, however, because the
vast majority of components developed were in process.

A COM component implements one or more interfaces, a few of which are standards provided by the system.
In addition to the required interfaces, a COM component adds custom interfaces defined by the component
developer. An interface defines the various methods that an application may invoke. Once specified, an
interface definition is supposed to be inviolate, so that even when the underlying code changes, applications
that use the interface do not need to be rebuilt. If the component developers find that they have left something
out, then they should define a new interface containing the extra functionality in addition to what remains
in the original interface. This has, in fact, happened with a number of standard Microsoft interfaces.
For example, the IClassFactory2 interface extends the IClassFactory interface by adding features for
managing the creation of licensed objects.

The key to getting applications and components to work together is binding. COM offers two forms of
binding, early and late:

In ➤ early binding, the application uses a type library at compile time to determine how to link in to the
methods in the component’s interfaces. A type library can exist as a separate file, with the extension
.tlb, or as part of the DLL containing the component code.

In ➤ late binding, no connection is made between the application and its components at compile time.
Instead, the COM runtime searches through the component for the location of the required member
when the application is actually run. This advantage is offset by two main disadvantages: It is slower
and potentially unreliable. If a programming error is made (e.g., the wrong method is called or the
right method is called but with the wrong number of arguments), it is not caught at compile time and
instead creates a runtime error for the end user.

When a type library is not explicitly referred to, there are two ways to identify a COM component: by class ID
(CLSID), which is actually a GUID, and by ProgID, which is a string and looks something like “MyProject
.MyComponent.” These are all cross-referenced in the registry. In fact, COM makes extensive use of the
registry to maintain links between applications, their components, and their interfaces. Experienced COM
programmers know their way around the registry blindfolded.

VB6 has encapsulated many of COM’s implementation details, to the extent that many VB6 programmers
were unaware that they were developing COM components. For instance, if you create a DLL containing
an instance of a VB6 class, then you have in fact created a COM object without even asking for one. The
relative ease of this process is demonstrated in this chapter.

There are clearly similarities between COM and .NET; in fact, you can see the evolution from a two-tier
ProgID to the .NET namespace model. However, .NET obviously came about after COM’s binary protocols
were defined, so to a large extent, all you have to do to make them work together is put a wrapper around a
COM object to turn it into a .NET assembly, and vice versa.

CoM and .neT in Practice ❘ 931

com and .neT in PracTice
To see how all this seamless integration works we have to simulate a legacy situation. Suppose your
enterprise depends on a particular COM object that was written for you a long time ago by staff who are no
longer in the organization. All you know about the component is that the code within it works and you need
to employ it for your .NET application.

You have one, possibly two, options in this case. If you have the source code of the COM component (which
is not always the case) and you have sufficient time (budget), then you can upgrade the object to .NET and
continue to maintain it as a .NET assembly. For the purist, or for someone looking at migrating to a 64-bit
solution, this is the ideal solution. Visual Studio does offer an upgrade for VB-6 based on COM objects,
but it does not cope well with COM objects using interfaces specified as abstract classes. Nor does it handle
COM objects written in C++, so if you are considering an upgrade you need to factor in time to manually
recreate the core logic provided by the object using .NET.

If upgrading the object to a .NET component is not an option for you, then all you really can do is include
the DLL as it stands as a COM object, register it on the server containing the .NET Framework, and use the
.NET interoperability tools to integrate the two technologies. Moving forward, because COM is a 32-bit
protocol, either you will need to consider rewriting the component from scratch or you will have a permanent
dependency on the 32-bit compatibility layer within your 64-bit environment. Since this is the option which
requires interoperating with the existing component, it is the option that this chapter implements.

Therefore, what you need for this example is a genuine legacy COM object. This chapter uses a VB6
component to integrate within a .NET application. For the next section, this chapter steps back in time and
uses VB6 for the classic component required. If you are not very interested in VB6, then feel free to skip this
section. In any case, the DLL created is available as part of the code download for this book.

a legacy component
For the legacy component, imagine that you have an analytics engine that requires a number of calculations.
Because of the highly complex nature of these calculations, their development was given to specialists, while
the user interface for the application was given to some UI specialists. A COM interface was specified to
which all calculations must conform. This interface is given the name IMegaCalc and has the following
methods:

meThod descriPTion

Sub AddInput(InputValue as Double) Adds the input value to the calculation

Sub DoCalculation() Performs the calculation

Function GetOutput() as Double Gets the output from the calculation

Sub Reset() Resets the calculation for the next time

The following steps use VB6 to create an ActiveX DLL which can be referenced from .NET. If you aren’t
interested in working with VB6 you can use the copy of this DLL which is part of the code download. The
VB6 folder for this chapter has all of the VB6 projects precompiled for registration and use. You can jump
ahead to Registering the component.

implementing the Component
For the purposes of this example, the actual calculation that you are going to perform is fairly mundane:
The component will calculate the mean of a series of numbers. Create an ActiveX DLL project called
MeanCalculator2. Add a reference to the type library for the interface that you are going to implement by
selecting the MegaCalculator2 DLL via the References dialog box that opens when you select Project ➪
References.

932 ❘ chaPTer 28 Com-iNtERoP

Having done that, go ahead and write the code for the mean calculation. You do that in a class called
MeanCalc:

Option Explicit
Dim mintValue As Integer
Dim mdblValues() As Double
Dim mdblMean As Double
Private Sub Class_Initialize()
 Reset
End Sub
Private Sub IMegaCalc_AddInput(InputValue As Double)
 mintValue = mintValue + 1
 ReDim Preserve mdblValues(mintValue)
 mdblValues(mintValue) = InputValue
End Sub
Private Sub IMegaCalc_DoCalculation()
 Dim iValue As Integer
 mdblMean = 0#
 If (mintValue = 0) Then Exit Sub
 For iValue = 1 To mintValue
 mdblMean = mdblMean + mdblValues(iValue)
 Next iValue
 mdblMean = mdblMean / mintValue
End Sub
Private Function IMegaCalc_GetOutput() As Double
 IMegaCalc_GetOutput = mdblMean
End Function
Private Sub IMegaCalc_Reset()
 mintValue = 0
End Sub

Code snippet from MeanCalc

step 2: registering the legacy Component
If you have made it this far, then you should now have
your legacy component. When developing your new
.NET application on the same machine, you do not
need to do anything more because your component is
already registered by the build process. However, if
you are working on an entirely new machine, then you
must register it there. To do that, open a command
window (on Windows Vista and Windows 7, ensure
that you start the command window with administrator permissions) and register it with the following
command using regsvr32.exe found at C:\Windows\system32:

regsvr32 MeanCalculator2.dll

You should then see the result shown in Figure 28-1.

The .neT application
For the .NET application used in this chapter, you only need to instantiate an instance of the MeanCalc object
and get it to figure out a mean calculation for you. In order to accomplish that, create a .NET Windows
Forms Application project in Visual Basic called CalcApp. Laid out, the form looks like what is shown in
Figure 28-2.

The two text boxes are called txtInput and txtOutput, respectively; the second one is not enabled for user
input. The three command buttons are btnAdd, btnCalculate, and btnReset, respectively.

figure 28-1

CoM and .neT in Practice ❘ 933

referencing the legacy CoM Component from .neT
Before you dive into writing the code behind the buttons on the form, you first need to make your new
application aware of the MeanCalculator2 component. Add a reference to the component via the Project
Properties. From the References tab select the “Add..” button to open the Add Reference dialog box. This
dialog contains five tabs: .NET, COM, Projects, Browse, and Recent. From the COM tab, select Interop
.MeanCalculator2 (see Figure 28-3).

figure 28-2

figure 28-3

934 ❘ chaPTer 28 Com-iNtERoP

Note that in the list of references shown in the References tab, you can now see the MeanCalculator
component. This view is presented in Figure 28-4.

figure 28-4

inside the .neT application
Now that you have successfully referenced the components in the .NET application, you can finish coding
the application, using the functionality provided via the COM components. To start making use of the new
capabilities provided by the COM component, add to the code a global variable (mobjMean) that will hold a
reference to an instance of the mean calculation component, as shown here:

Public Class Form1
 Dim mobjMean As MeanCalculator2.MeanCalc = New MeanCalculator2.MeanCalc()

Code snippet from Form1

Next, add the code behind the form’s buttons. First, working with the Add button, add the following code
that calls the COM component:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnAdd.Click
 mobjMean.AddInput(CDbl(txtInput.Text))
 txtInput.Text = ""
End Sub

Code snippet from Form1

This adds whatever is in the input text box into the list of numbers for the calculation. Next, here’s the
code-behind for the Calculate button:

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnCalculate.Click
 mobjMean.DoCalculation()

CoM and .neT in Practice ❘ 935

 txtOutput.Text = CStr(mobjMean.GetOutput())
End Sub

Code snippet from Form1

This performs the calculation, retrieves the answer, and puts it into the output text box — all of this from
the COM component. Finally, the code behind the Reset button simply resets the calculation:

Private Sub btnReset_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnReset.Click
 mobjMean.Reset()
 txtInput.Text = ""
 txtOutput.Text = ""
End Sub

Code snippet from Form1

Trying it all out
As noted at the start of this chapter you need to ensure that your application targets an x86 environment.
To do this go to Build Menu and select Build Configuration. From the Configuration Manager dialog select
the Active Solution Platform and select <New…> to open the New Project Platform dialog. Within this
dialog change the setting for the value “New platform” from Any CPU to x86 as shown in Figure 28-5.

figure 28-5

Compile and run the application and place a value in the first text
box — for example, 2 — and click the Add button on the form.
Next, enter another value — for example, 3 — and click the Add
button again. When you click Calculate, you’ll get the mean of the
two values (2.5 in this case), as shown in Figure 28-6.

using Tlbimp directly
In the preceding example, there is actually quite a lot going on
under the hood. Every time you import a COM DLL into Visual
Studio, it creates a default interop assembly, which is basically a figure 28-6

936 ❘ chaPTer 28 Com-iNtERoP

.NET assembly (DLL) that acts as a wrapper for the COM object. If you are doing this a lot, then it might
be better to do the wrapping once and for all, and then let your application developers import the resulting
.NET assembly instead. Let’s see how you might accomplish this task.

The process that creates the default interop assembly on behalf of Visual Studio is called TlbImp.exe. The
name stands for Type Library Import, and that’s pretty much what the process does. It is included in the
.NET Framework SDK, and you might find it convenient to extend the PATH environment variable on your
machine to include the \bin directory of the .NET Framework SDK.

TlbImp takes a COM DLL as its input and generates a .NET assembly DLL as its output. By default, the
.NET assembly has the same name as the type library, which will — in the case of VB6 components —
always be the same as the COM DLL. This means you have to explicitly specify a different output file. You
do this by using the /out: switch. If you want to see what’s going on at each step in the process, then
you should also specify the /verbose flag:

tlbimp MeanCalculator2.dll /out:MeanCalculatorNet2.dll

Having converted your COM DLLs into .NET assemblies, you can now reference them in an application as
you would any other .NET DLL.

late Binding
You’ve seen that you can successfully do early binding on COM components within a .NET application, but
what if you want to do late binding instead? Suppose you don’t have access to a type library at application
development time. Can you still make use of the COM component? Does the .NET equivalent of late
binding even exist?

The answer is yes, it does, but it is not as transparent as it is with VB6. Let’s take a look at what occurred in
VB6. If you wanted to do early binding, you would do this:

Dim myObj As MyObj
Set myObj = New MyObj
MyObj.MyMethod (…)

For late binding, it would look like this instead:

Dim myObj As Object
Set myObj = CreateObject ("MyLibrary.MyObject")
MyObj.MyMethod (…)

There is actually an enormous amount of activity going on under the hood here but most of that is beyond
the concern of a .NET developer.

an example for late Binding
For the sample being built in this chapter, let’s extend the calculator to a more generic framework that
can feed inputs into a number of different calculation modules, rather than just the fixed one it currently
implements. For this example, you’ll keep a table in memory of calculation ProgIDs and present the user
with a combo box to select the correct one.

The sample CoM object
The first item to note with late binding is that you can only late bind to the default interface, which in this
case is MeanCalculator2.MeanCalc. Fortunately, this component was developed as a standalone library,
with no references to other interfaces.

The Calculation framework
For your generic calculation framework, you’ll create a new application in Visual Basic 2010 called
CalcFrame. You will basically use the same dialog box as before, but with an extra combo box at the top of
the form. This new layout is illustrated in Figure 28-7.

CoM and .neT in Practice ❘ 937

The new combo box is called cmbCalculation. For this to work, you also need to disable the controls
txtInput, btnAdd, btnCalculate, and btnReset until you know whether the selected calculation is
valid. You’ll want to access the properties of the new drop down and add two. Begin your application by
importing the Reflection namespace, which you need for handling the application’s late binding:

Imports System.Reflection

Once the form is in place, add a few member variables to the code of your application:

Public Class Form1
 Inherits System.Windows.Forms.Form
 Private mstrObjects() As String
 Private mnObject As Integer
 Private mtypCalc As Type
 Private mobjcalc As Object

Code snippet from Form1

From there, add a few new lines to Form1_Load:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 mnObject = 0
 AddObject("Mean", "MeanCalculator2.MeanCalc")
 AddObject("StdDev", "StddevCalculator.StddevCalc")
 If (mnObject > 0) Then
 cmbCalculation.SelectedIndex = 0
 End If
End Sub

Code snippet from Form1

figure 28-7

938 ❘ chaPTer 28 Com-iNtERoP

What you are doing here is building a list of calculations. When you’re finished, you select the first one in
the list. Let’s take a look at that subroutine AddObject:

Private Sub AddObject(ByVal strName As String, ByVal strObject As String)
 cmbCalculation.Items.Add(strName)
 mnObject = mnObject + 1
 ReDim Preserve mstrObjects(mnObject)
 mstrObjects(mnObject - 1) = strObject
End Sub

Code snippet from Form1

The preceding code segment adds the calculation name to the combo box, and its ProgID to an array of
strings. Neither of these is sorted, so you get a one-to-one mapping between them. Check out what happens
when you select a calculation via the combo box:

Private Sub cmbCalculation_SelectedIndexChanged(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles cmbCalculation.SelectedIndexChanged
 Dim intIndex As Integer
 Dim bEnabled As Boolean
 intIndex = cmbCalculation.SelectedIndex
 mtypCalc = Type.GetTypeFromProgID(mstrObjects(intIndex))
 If (mtypCalc Is Nothing) Then
 mobjcalc = Nothing
 bEnabled = False
 Else
 mobjcalc = Activator.CreateInstance(mtypCalc)
 bEnabled = True
 End If
 txtInput.Enabled = bEnabled
 btnAdd.Enabled = bEnabled
 btnCalculate.Enabled = bEnabled
 btnReset.Enabled = bEnabled
End Sub

Code snippet from Form1

There are two key calls in this example. The first is to Type.GetTypeFromProgID. This takes the incoming
ProgID string and converts it to a Type object. This process either succeeds or fails; if it fails, then you
disable all the controls and let the user try again. If it succeeds, however, then you create an instance of the
object described by the type. You do this in the call to the static method Activator.CreateInstance().

For this example, assume that the user has selected a calculation that you can successfully instantiate. What
next? The user enters a number and clicks the Add button on the form:

 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click
 Dim objArgs() As Object
 objArgs = New Object(0) {CDbl(TxtInput.Text)}
 mtypCalc.InvokeMember("AddInput", BindingFlags.InvokeMethod, _
 Nothing, mobjCalc, objArgs)
 txtInput.Text = ""
 End Sub

Code snippet from Form1

The important call here is to the InvokeMember() method. Let’s take a closer look at what is going on. Five
parameters are passed into the InvokeMember() method:

The first parameter is the name of the method that you want to call: ➤ AddInput in this case. Therefore,
instead of going directly to the location of the routine in memory, you ask the .NET runtime to find it
for you.

CoM and .neT in Practice ❘ 939

The value from the ➤ BindingFlags enumeration tells it to invoke a method.

The next parameter provides language-specific binding information, which is not needed in this case. ➤

The fourth parameter is a reference to the COM object itself (the one you instantiated using ➤

Activator.CreateInstance).

Finally, the fifth parameter is an array of objects representing the arguments for the method. In this ➤

case, there is only one argument, the input value.

Something very similar to this is going on underneath VB6 late binding, except that here it is exposed in
all its horror. In some ways, that’s not a bad thing, because it should highlight the point that late binding is
something to avoid if possible. Anyway, let’s carry on and complete the program. Here are the remaining
event handlers for the other buttons:

 Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click
 Dim objResult As Object
 mtypCalc.InvokeMember("DoCalculation", BindingFlags.InvokeMethod, _
 Nothing, mobjCalc, Nothing)
 objResult = mtypCalc.InvokeMember("GetOutput", _
 BindingFlags.InvokeMethod, Nothing, mobjCalc, Nothing)
 txtOutput.Text = Cstr(objResult)
 End Sub
 Private Sub btnReset_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnReset.Click
 mtypCalc.InvokeMember("Reset", BindingFlags.InvokeMethod, _
 Nothing, mobjCalc, Nothing)
 txtInput.Text = ""
 txtOutput.Text = ""
 End Sub

Code snippet from Form1

running the Calculation framework
Let’s quickly complete the job by running the application. Figure 28-8 shows what happens when you select
the nonexistent calculation StdDev.

As shown in the screenshot, the input fields have been disabled, as desired. Figure 28-9 shows what happens
when you select Mean. You can then enter a couple of numeric values and retest the Mean calculation. This
time, the input fields are enabled, and the calculation can be carried out as before.

figure 28-8 figure 28-9

One final word about late binding: This sample took care to ensure that you checked whether the object was
successfully instantiated. In a real-life application, you also need to ensure that the method invocations are
successful and that all exceptions are caught — you do not have the luxury of having the compiler find all
your bugs for you.

940 ❘ chaPTer 28 Com-iNtERoP

acTiVex conTrols
Let’s move on from basic COM objects to ActiveX controls. You are going to do much the same thing you
did with the basic COM component (apart from late binding, which has no relevance to ActiveX controls):
Build a legacy control using VB6 and then import it into your .NET Visual Basic project.

The legacy activex control
For your legacy ActiveX control, you are going to build a simple button-like object that is capable of
interpreting a mouse click and can be one of two colors according to its state. To accomplish this task,
you will take a second foray into VB6, so if you don’t have VB6 handy, feel free to skip the next section,
download the OCX file (it’s Magic.ocx under the VB6\Magic\ directory in the sample code), and pick it up
when you start developing your .NET application.

step 1: Creating the Control
This time, within the VB6 IDE, you need to create an ActiveX Control project. For this example, call the
project Magic, and the control class MagicButton, to reflect its remarkable powers. From the Toolbox,
select a Shape control and place it on the UserControl form that VB6 provides for you. Rename the shape
provided on the form to shpButton, and change its properties as follows:

ProPerTy Value

FillStyle 0 ‘Solid

Shape 4 ‘Rounded Rectangle

FillColor &H008F8F8F&

The fill color hex value represents the color Gray. Next add a label on top of the Shape control and rename
it to lblText. Change this control’s properties to the following:

ProPerTy Value

BackStyle 0 ‘Transparent

Alignment 2 ‘Center

Switch to the code view of the MagicButton component. Within the code presented, add two properties
called Caption and State, and an event called Click(), as well as code to handle the initialization of the
properties and persisting them, to ensure that the shape resizes correctly and that the label is centered. You
also need to handle mouse clicks within the code. The final code of the MagicButton class should look as
follows:

Option Explicit
Public Event Click()
Dim mintState As Integer
Public Property Get Caption() As String
 Caption = lblText.Caption
End Property
Public Property Let Caption(ByVal vNewValue As String)
 lblText.Caption = vNewValue
 PropertyChanged ("Caption")
End Property
Public Property Get State() As Integer
 State = mintState
End Property
Public Property Let State(ByVal vNewValue As Integer)

 mintState = vNewValue
 PropertyChanged ("State")
 If (State = 0) Then
 shpButton.FillColor = &HFFFFFF&
 Else
 shpButton.FillColor = &H8F8F8F&
 End If
End Property
Private Sub UserControl_InitProperties()
 Caption = Extender.Name
 State = 1
End Sub
Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 Caption = PropBag.ReadProperty("Caption", Extender.Name)
 State = PropBag.ReadProperty("State", 1)
End Sub
Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 PropBag.WriteProperty "Caption", lblText.Caption
 PropBag.WriteProperty "State", mintState
End Sub
Private Sub UserControl_Resize()
 shpButton.Move 0, 0, ScaleWidth, ScaleHeight
 lblText.Move 0, (ScaleHeight - lblText.Height) / 2, ScaleWidth
End Sub
Private Sub lblText_Click()
 RaiseEvent Click
End Sub
Private Sub UserControl_MouseUp(Button As Integer, Shift As Integer, _
 X As Single, Y As Single)
 RaiseEvent Click
End Sub

Code snippet from MagicButton

If you build this, you’ll get an ActiveX control called Magic.ocx.

step 2: registering Your legacy Control
You now have your legacy control. As before, if you are developing your new .NET application on the same
machine, then you don’t need to do anything else because your control is registered by the build process.
However, if you are working on an entirely new machine or if you didn’t build the control in Visual Basic 6,
then you need to register it there. As before, open a command window and register it as follows:

regsvr32 Magic.ocx

You should again see the dialog shown in Figure 28-1, this time indicating that your Magic.ocx component
has been successfully registered. Having done that, you are ready to build your .NET application.

a .neT application, again
This .NET application is even more straightforward than the last one. All you are going to do this time is
display a button that changes color whenever the user clicks it. To begin, create a .NET Windows Application
project in Visual Basic called ButtonApp. Before you start to develop it, however, extend the Toolbox to
incorporate your new control by right-clicking within the General section of the Toolbox and selecting Choose
Items. Figure 28-10 shows the context menu. Once you select Choose Items, you’ll see the window shown in
Figure 28-11.

activeX Controls ❘ 941

942 ❘ chaPTer 28 Com-iNtERoP

When you click the OK button, your MagicButton class is now available to you in the Toolbox (see
Figure 28-12). Add the Magic.MagicButton control to your form, as shown in Figure 28-13, by dragging
the control onto the form. Note that references to AxMagic and Magic are automatically added to the project
in the Solution Explorer window within the References folder, as shown in Figure 28-14.

figure 28-10 figure 28-11

figure 28-12

figure 28-13

figure 28-14

activeX Controls ❘ 943

944 ❘ chaPTer 28 Com-iNtERoP

All you need to do now is initialize the Caption property to ON, and code up a handler for the mouse
Click event:

Private Sub AxMagicButton1_ClickEvent(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles AxMagicButton1.ClickEvent
 AxMagicButton1.CtlState = CType(1 - AxMagicButton1.CtlState, Short)
 If (AxMagicButton1.CtlState = 0) Then
 AxMagicButton1.Caption = "OFF"
 Else
 AxMagicButton1.Caption = "ON"
 End If
End Sub

Code snippet from Form1

Note something slightly peculiar happening here. In the course of importing the control into .NET, the
variable State mutated into CtlState. This is because there is already a class in the AxHost namespace
called State, which is used to encapsulate the persisted state of an ActiveX control.

Trying it all out, again
When you run this application, note that the control is in the ON position, as shown in Figure 28-15. If you
click the control, it changes to the OFF position, as shown in Figure 28-16.

figure 28-15 figure 28-16

using .neT comPonenTs in The com World
So far, this chapter has established, through a couple of examples, that you can use your COM legacy
components within any of your .NET-based applications. You do not have to throw everything out quite
yet. Now it’s time to consider the opposite question: Can you run .NET components in the COM world?

Why on earth would you want to run .NET components in the COM world? It is not immediately obvious,
in fact, because migration to .NET would almost certainly be application-led in most cases, rather than
component-led. However, it is possible (just) to imagine a situation in which a particularly large application
remains not based on .NET, while component development moves over to .NET. Let’s assume that’s the case
for the next section. The technology is quite cool, anyway.

a .neT component
Let’s take a look at the .NET component. Here, you will implement an exact copy of the functionality
created earlier with the MegaCalculator and MeanCalculator components, except you will use Visual
Basic 2010, rather than VB6.

Begin by creating a Class Library project called MegaCalculator2. Here is the entire code of the interface for
the Class Library:

Public Interface IMegaCalc
 Sub AddInput(ByVal InputValue As Double)
 Sub DoCalculation()
 Function GetResult() As Double
 Sub Reset()
End Interface

Code snippet from IMegaCalc

Now create another Class Library project called MeanCalculator3. This will contain a class called MeanCalc
that is going to implement the interface IMegaCalc, as a mirror of the MeanCalc in your original VB6
MeanCalculator2 project. As before, you need to add a reference to MegaCalculator2 first, although, to
make this easier, go to the File menu and choose to add an existing project to this solution and import the
MegaCalculator2 project into the current solution. Now add a reference to this project that is part of
the solution.

Once that reference exists you can add the following class definition for MeanCalc:

Public Class MeanCalc
 Implements MegaCalculator2.IMegaCalc
 Dim mintValue As Integer
 Dim mdblValues() As Double
 Dim mdblMean As Double
 Public Sub AddInput(ByVal InputValue As Double) _
 Implements MegaCalculator2.IMegaCalc.AddInput
 mintValue = mintValue + 1
 ReDim Preserve mdblValues(mintValue)
 mdblValues(mintValue - 1) = InputValue
 End Sub
 Public Sub DoCalculation() _
 Implements MegaCalculator2.IMegaCalc.DoCalculation
 Dim iValue As Integer
 mdblMean = 0
 If (mintValue = 0) Then Exit Sub
 For iValue = 0 To mintValue - 1 Step 1
 mdblMean = mdblMean + mdblValues(iValue)
 Next iValue
 mdblMean = mdblMean / iValue
 End Sub
 Public Function GetResult() As Double Implements _
 MegaCalculator2.IMegaCalc.GetResult
 GetResult = mdblMean
 End Function
 Public Sub Reset() Implements MegaCalculator2.IMegaCalc.Reset
 mintValue = 0
 End Sub
 Public Sub New()
 Reset()
 End Sub
End Class

Code snippet from MeanCalc

Before compiling this application, make sure the component that you are building is COM-visible. To do
this, right-click on the MeanCalculator3 solution within Visual Studio 2010 Solution Explorer and select
Properties from the context menu.

Using .neT Components in the CoM World ❘ 945

946 ❘ chaPTer 28 Com-iNtERoP

From the Properties window, select the Application tab,
and then select the Assembly Information button to open
the Assembly Information dialog. At the bottom of this
dialog you will find a check box called Make assembly
COM-Visible (see Figure 28-17). Make sure that this is
checked and then compile the application.

This component is quite similar to the VB6 version, apart
from the way in which Implements is used. After this is
all in place, build the assembly. If you have security issues
with this compilation, then you need to ensure that you are
running Visual Studio as an administrator. Now we come
to the interesting part: How do you register the resulting
assembly so that a COM-enabled application can make
use of it?

regasm
The tool provided with the .NET Framework SDK to
register assemblies for use by COM is called RegAsm. This
tool is very simple to use. If all you are interested in is late
binding, then you simply run it as presented in Figure 28-18. Make sure you’ve started the Command window
as administrator.

figure 28-17

figure 28-18

The only challenge with RegAsm is finding the thing. It is usually found lurking in %SystemRoot%\
Microsoft.NET\Framework\<version> where version is the current .NET Framework version number. You
might find it useful to add this to your path in the system environment. You can also use the Visual Studio
command prompt (found in the Microsoft Visual Studio menu under Visual Studio Tools) to directly access
this tool.

However, there is probably even less reason for late binding to an exported .NET component than there is
for early binding, so we’ll move on to look at early binding. For this, you need a type library, so add another
parameter, /tlb as shown on the following line and in Figure 28-19:

C:\Users\[user name]\Documents\Visual Studio 2010\Projects\[Project Hierarchy]
\bin: regasm meancalculator3.dll /tlb:meancalculator3.tlb

Now, when you look in the target directory, not only do you have the original MeanCalculator3.dll,
you’ve also acquired a copy of the MegaCalculator2.dll and two type libraries: MeanCalculator3
.tlb and MegaCalculator2.tlb. You may need both of these if you need to register your new libraries on
a machine not running .NET (for example a machine with only VB6 installed), so it was good of RegAsm
to provide them for you. You need the MegaCalculator2 type library for the same reason that .NET
needed the MegaCalculator assembly: because it contains the definition of the IMegaCalc interface that
MeanCalculator is using, in this case in a format familiar to Regsvr32. Of course without .NET you still
can’t run your components on that machine, but you could have them in place for build purposes.

At that point it is simply a matter of creating a reference to your components in VB6 and running your
application. Appendix B talks about the Interop libraries which were provided by the Visual Basic team to
simplify this process even further, and if you are working to incorporate .NET capabilities with an existing
COM based application it is suggested you refer to this section.

Tlbexp
In fact, Microsoft provides you with not one, but two tools for registering .NET apps as COM objects.
The other one is TlbExp, which, as its name suggests, is the counterpart of TlbImp. You can use TlbExp to
achieve the same result as RegAsm in the previous section.

P/inVoKe
While up until now we’ve focused on interfacing with COM, it bears noting that .NET can also interoperate
below the COM layer with traditional C/C++ DLLs. Since even with Windows 7 the core interfaces for
Windows are provided outside of .NET and often unrelated to COM, you may find yourself wanting
to implement a call to get at some operating system level feature. The P/Invoke interface allows .NET
developers to make calls to existing or custom methods implemented in a traditional language. However, it
is, to say the least, difficult.

I worked on a P/Invoke project for which we manually created each of the necessary interface definitions
in order to support calls to external methods. To say that this was a painful process I would prefer to never
repeat is an understatement. However, it was an effective way to access capabilities not provided by .NET.

Fortunately, Jarod Parsons, who was working with the Visual Basic team, has helped simplify this process
for us. As part of the Visual Basic Team blog on MSDN, Jarod posted an excellent entry that refers to a tool
that he helped create which will automatically find and generate P/Invoke proxies for you. You can find his
blog post at http://blogs.msdn.com/vbteam/archive/2008/03/14/making-pinvoke-easy.aspx.

figure 28-19

P/invoke ❘ 947

948 ❘ chaPTer 28 Com-iNtERoP

In addition to the blog post, Jarod introduces a tool for generating the P/Invoke signatures. The P/Invoke
Interop Assistant enables you to find existing P/Invoke interfaces and automatically generate the necessary
Visual Basic code to call these interfaces from your .NET application. The P/Invoke Interop Assistant is
available as a free download from MSDN at http://code.msdn.microsoft.com/WindowsAPICodePack.

Windows aPi code Pack
One more tool that is available to Visual Basic developers is the Windows API Code Pack for Microsoft
.NET Framework. This is another free download from MSDN targeting operating system APIs, which
aren’t directly available from within the .NET Framework. In this case the authors have chosen to create a
library which provides .NET classes to wrap the associated P/Invoke calls.

The code pack provides a C# library which you can reference from your Visual Basic project. You can
then make calls to take advantage of things like the Windows 7 taskbar via this library. The library ships
with several additional examples demonstrating how to use the various library classes to access different
capabilities with the OS. You can download the files from MSDN at http://code.msdn.microsoft
.com/WindowsAPICodePack

summary
Even with the migration to 64-bit environments, COM is not going to go away for quite some time, so .NET
applications have to interoperate with COM, and they have to do it well. By the end of this chapter, you
have achieved several things:

You made a .NET application early bind to a COM component, using the import features available in ➤

Visual Basic.

You looked at the underlying tool, ➤ TlbImp.

You managed to make the application late bind as well, although it wasn’t a pleasant experience. ➤

You incorporated an ActiveX control into a .NET user interface, again using the features of Visual ➤

Basic.

You looked at using ➤ RegAsm and TlbExp to export type libraries from .NET assemblies in order to
enable VB6 applications to use .NET assemblies as if they were COM components.

Additional interop capabilities provided by ➤ P/Invoke were introduced along with two freely available
tools which allow you to leverage these capabilities.

 network Programming
 WhaT you Will learn in This chaPTer

 Basic network programming topics ➤

 Communicating with network servers using the classes of the System .Net ➤

namespace

 Creating sockets to create servers and clients ➤

 Using Internet Explorer in your applications ➤

 Just as it is diffi cult to live your life without talking with people, your applications also need to
communicate, perhaps with other programs or perhaps with hardware devices. As you have seen
throughout this book, you can use a variety of techniques to have your program communicate,
including Windows Communication Foundation (WCF), .NET Remoting, Web Services, and Enterprise
Services. This chapter looks at yet another way to communicate: using the basic protocols on which
the Internet and many networks have been built. You will learn how the classes in the System.Net
namespace can provide a variety of techniques for communicating with existing applications such as
Web or FTP servers, and how you can use them to create your own network applications.

 Before starting to write applications using these classes, however, it would be good to get some
background on how networks are bolted together, and how machines and applications are identifi ed.

 ProTocols, addresses, and PorTs
 No discussion of a network is complete without a huge number of acronyms, seemingly random numbers,
and the idea of a protocol. For example, the World Wide Web runs using a protocol called Hypertext
Transfer Protocol (HTTP). Similarly, there is the File Transfer Protocol (FTP), the Network News
Transfer Protocol (NNTP), and Gopher, among many others. Each application you run on a network
communicates with another program using a defi ned protocol. The protocol is simply the expected
messages each program will send the other, in the order they should be sent. For a real - world example,
consider a scenario in which you want to go see a movie with a friend. A simplifi ed conversation could
look like this:

You: Dials phone
Friend: Hears phone ringing, answers phone. "Hello?"
You: "Hello. Want to go see 'Freddie and Jason Escape from New York, Part 6'?"
Friend: "No, I saw that one already. What about 'Star Warthogs'?"

29

950 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

You: "OK, 9:30 showing downtown?"
Friend: "Yes."
You: "Later."
Friend: "See you." Hangs up

Apart from a bad taste in movies, you can see a basic protocol here. Someone initiates a communication
channel. The recipient accepts the channel and signals the start of the communication. The initial caller then
sends a series of messages to which the recipient replies, either to signify they have been received or to indicate
a positive or a negative response. Finally, one of the messages indicates the end of the communication channel,
and the two disconnect.

Similarly, network applications have their own protocols; for example, sending an e-mail using SMTP (Simple
Mail Transfer Protocol) could look like this:

220 schroedinger Microsoft ESMTP MAIL Service, Version: 6.0.2600.2180 ready at Wed,
6 Oct 2004 15:58:28 -0700
HELLO
250 schroedinger Hello [127.0.0.1]
FOO
500 5.3.3 Unrecognized command
MAIL FROM: me
250 2.1.0 me@schroedinger....Sender OK
RCPT TO: him
250 2.1.5 him@schroedinger
DATA
354 Start mail input; end with <CRLF>.<CRLF>
subject: Testing SMTP
Hello World, via mail.
.
250 2.6.0 <SCHROEDINGERKaq65r500000001@schroedinger> Queued mail for delivery
QUIT
221 2.0.0 schroedinger Service closing transmission channel
Connection to host lost.

In this case, lines beginning with numbers are coming from the server, while the items in uppercase (and the
message itself) were sent from the client. If the client sends an invalid message (such as the FOO message in
the preceding example), then it receives a gentle rebuff from the server, while correct messages receive the
equivalent of an “OK” or “Go on” reply. Traditionally, for SMTP and many other protocols (including
HTTP), the reply is a three-digit number (see Table 29-1) identifying the result of the request. The text after
the number, such as 2.1.0 me@schroedinger . . . Sender OK, isn’t really needed, and many servers attempt
to be overly cute or clever here, so it isn’t a good idea to assume anything about this text. The return values
for the services generally fall into one of the five ranges shown in Table 29-1. Each range identifies a certain
family of responses.

range descriPTion

100–199 Message is good, but the server is still working on the request .

200–299 Message is good, and the server has completed acting on the request .

300–399 Message is good, but the server needs more information to work on the request .

400–499 Message is good, but the server could not act on the request . You may try the request again
to see whether it works in the future .

500–599 The server could not act on the request . Either the message was bad or an error occurred . It
likely won’t work next time .

TaBle 29-1: Standard Response Ranges

Other protocols use these response ranges as well (leading to the infamous HTTP 404 error for “Page
not found”), but they don’t have to. Having a good reference is key to your success, and the best reference
for existing protocols is the Request for Comments (RFC) for the protocol. These documents outline the
definitions that are used by protocol authors to create their implementation of the standard. Many of
these RFCs are available on the IETF (www.ietf.org) and the World Wide Web Consortium (www.w3.org)
websites.

addresses and names
The next important topic necessary to a thorough understanding of network programming is the relationship
between the names and addresses of each of the computers involved. Each form of network communication
(such as TCP/IP networks like the Internet) has its own way of mapping the name of a computer (or host)
to an address. The reason for this is simple: Computers deal with numbers better than text, and humans
can remember text better than numbers (generally). Therefore, while you may have named your computer
something clever like “l33t_#4x0R,” applications and other computers know it by its IP (Internet Protocol)
address.

The IP address is a 32-bit value, usually written in four parts (each one a byte that is a number from
0 to 255), such as 192.168.1.39. This is the standard on which the Internet has operated for many years.
However, as only about four billion unique addresses are possible using this method, another standard,
IPv6, has been proposed. It is called IPv6 because it is the sixth recommendation in the series (the older
32-bit addresses are often called IPv4 to differentiate them from this new standard). With IPv6, a 128-bit
address is used, leading to a maximum number of about 3 × 1028 unique addresses, which should be more
than enough for every Internet-enabled toaster.

This IP address (whether IPv4 or IPv6) must uniquely identify each host on a network (actually subnetwork,
but we’ll get to that). If not, messages will not be routed to their destination properly, and chaos will ensue.
The matter gets more complicated when another 32-bit number, the subnet mask, enters the picture. This
is a value that is masked (using a Boolean AND operation) over the address to identify the subnetwork of
the network on which the computer resides. All addresses on the same subnetwork must be unique. Two
subnetworks may have the same address, however, as long as their subnet masks are different.

Many common subnetworks use the value 255.255.255.0 for the subnet mask. When this is applied to
the network address, as shown in the following example, only the last address is considered significant.
Therefore, the subnetwork can include only 254 unique addresses (0 and 255 are used for other
purposes).

Network address: 192.168. 1.107
Subnet Mask: 255.255.255. 0
Result: 192.168. 1. 0

Because computers and humans use two different means of identifying computers, there must be some
way to relate the two. The term for this process is name resolution. In the case of the Internet, a common
means of name resolution is yet another protocol, the Domain Naming System (DNS). A computer, when
faced with an unknown text-based name, will send a message to the closest DNS server. It then determines
whether it knows the IP address of that host. If it does, it passes this back to the requester. If not, it asks
another DNS server it knows. This process continues until either the IP address is found or you run out of
DNS servers. After the IP address is found, all of the servers (and the original computer) store that number
for a while in case they are asked again.

Keeping in mind the problems that can ensue during name resolution can often solve many development
problems. For example, if you are having difficulty communicating with a computer that should be responding,
then it may be that your computer simply can’t resolve the name of the remote computer. Try using the IP
address instead. This removes any name-resolution problems from the equation, and may allow you to continue
developing while someone else fixes the name-resolution problem.

Protocols, addresses, and Ports ❘ 951

952 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 Ports: They ’ re not Just for ships
 As described earlier, each computer or host on a network is uniquely identifi ed by an address. How does
your computer realize which of possibly many applications running are meant to receive a given message
arriving on the network? This is determined by the port at which the message is targeted. The port is
another number, in this case an integer value from 1 to 32,767. The unique combination of address and port
identifi es the target application.

 For example, assume you currently have a Web server (IIS) running, as well as an SMTP server, and a few
browser windows open. When a network message comes in, how does the operating system “ know ” which
of these applications should receive the packet? Each of the applications (either client or server) that may
receive a message is assigned a unique port number. In the case of servers, this is typically a fi xed number,
whereas client applications, such as your Web browser, are assigned a random available port.

 To make communication with servers easier, they typically use a well - known assigned port. In the case of
Web servers, this is port 80, while SMTP servers use port 25. You can see a list of common servers and their
ports in the fi le %windir%sudhasystem32sudhadriverssudhaetcsudhaservices .

 A small segment of this fi le appears as below:

smtp 25/tcp mail #Simple Mail Transfer Protocol
time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource #Resource Location Protocol
nameserver 42/tcp name #Host Name Server
nameserver 42/udp name #Host Name Server
nicname 43/tcp whois
domain 53/tcp #Domain Name Server
domain 53/udp #Domain Name Server
bootps 67/udp dhcps #Bootstrap Protocol Server
bootpc 68/udp dhcpc #Bootstrap Protocol Client
tftp 69/udp #Trivial File Transfer
gopher 70/tcp
finger 79/tcp
http 80/tcp www www-http #World Wide Web

 If you ’ re writing a server application, then you can either use these common port numbers (and you should if
you ’ re attempting to write a common type of server) or choose your own. If you ’ re writing a new type of server,
then you should choose a port that has not been assigned to another server; choosing a port higher than 1024
should prevent any confl icts, as these are not assigned. When writing a client application, there is typically no
need to assign a port, as a dynamic port is assigned to the client for communication with a server.

 Ports below 1024 should be considered secure ports, and applications that use them
should have administrative access.

 firewalls: can ’ t live with Them, can ’ t live without Them
 Many people have a love - hate relationship with fi rewalls. While they are invaluable in today ’ s network,
sometimes it would be nice if they got out of the way. A fi rewall is a piece of hardware or software that
monitors network traffi c, either incoming, outgoing, or both. It can be confi gured to allow only particular
ports or applications to transmit information beyond it. Firewalls protect against hackers or viruses that
may attempt to connect to open ports, leveraging them to their own ends. They protect against spyware
applications that may attempt to communicate out from your machine. As a means of protecting the
network, your computer(s) and your data, they are invaluable. However, they also “ protect ” against
any network programming you may attempt to do. You must invariably cooperate with your network

administrators, working within their guidelines for network access. If they make only certain ports
available, then your applications should use only those ports. Alternately, you may be able to get them
to confi gure the fi rewalls involved to permit the ports needed by your applications. Thankfully, creating
network messages is a bit easier with Visual Basic 2010. The following sections demonstrate how.

 The sysTem.neT namesPace
 Most of the functionality used when writing network applications is contained within the System.Net and
 System.Net.Sockets namespaces. This chapter covers the following main classes in these namespaces:

 ➤ WebRequest and WebResponse , and their subclasses, including FtpWebRequest

 ➤ WebClient , the simplifi ed WebRequest for common scenarios

 ➤ HttpListener , which enables you to create your own Web server

 There are many more classes, methods, properties, and events included in the System
.Net and System.Net.Sockets namespaces. You can locate the current reference for
these namespaces at http://msdn.microsoft.com/library/system.net.aspx as
of this writing.

 Web requests (and responses)
 When most people think of network programming these days, they ’ re really thinking of communication via a
Web server or client. Therefore, it shouldn ’ t be surprising that there is a set of classes for this communication
need. In this case, it is the abstract WebRequest class and the associated WebResponse . These two classes
represent the concept of a request/response communication with a Web server, or similar server. As these are
abstract classes — that is, MustInherit classes — they cannot be created by themselves. Instead, you create
the subclasses of WebRequest that are optimized for specifi c types of communication.

 The most important properties and methods of the WebRequest class are shown in Table 29 - 2.

 memBer descriPTion

 Create Method used to create a specifi c type of WebRequest . This method uses the URL (either
as a string or as an Uri class) passed to identify and create a subclass of WebRequest .

 GetRequestStream Method that allows access to the outgoing request . This enables you to add additional
information, such as POST data, to the request before sending .

 GetResponse Method used to perform the request and retrieve the corresponding WebResponse class .

 Credentials Property that enables you to set the user ID and password for the request if they are
needed to perform it .

 Headers Property that enables you to change or add to the headers for the request .

 Method Property used to identify the action for the request, such as GET or POST . The list of
available methods is specifi c to each type of server .

 Proxy Property that enables you to identify a proxy server for the communication if needed .
You generally don ’ t need to set this property, as Visual Basic 2010 detects the settings
for Internet Explorer and uses them by default .

 Timeout Property that enables you to defi ne the duration of the request before you “ give up ” on
the server .

 TaBle 29 - 2: Signifi cant Properties and Methods of WebRequest

The system.net namespace ❘ 953

954 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 Each subclass of WebRequest supports these methods, providing a very consistent programming model for
communication with a variety of server types. The basic model for working with any of the subclasses of
 WebRequest can be written in the following pseudo - code:

Declare variables as either WebRequest and WebResponse, or the specific child classes
Create the variable based on the URL
Make any changes to the Request object you may need
Use the GetResponse method to retrieve the response from the server
Get the Stream from the WebResponse
Do something with the Stream

 If you decide to change the protocol (e.g., from HTTP to a fi le - based protocol), then you may only need to
change the URL used to retrieve the object.

 Webrequest Child Classes
 Three of the commonly used types of WebRequest in the .NET Framework are FileWebRequest ,
 FtpWebRequest , and HttpWebRequest . FileWebRequest is used infrequently; it represents a request to
a local fi le, using the “ file:// ” URL format. You have likely seen this type of request if you attempted
to open a local fi le using your Web browser. FtpWebRequest is used to work with FTP servers. As such,
it supports a number of methods for querying the FTP server to locate and create fi les and directories.
Generally, however, the subclass most developers will use is HttpWebRequest . This class enables you to
make HTTP requests to a Web server without requiring a browser. This could enable you to communicate
with a Web server, or, using the time - honored tradition of “ screen scraping, ” to retrieve data available on
the Web.

 One hurdle many developers encounter when fi rst working with HttpWebRequest is that there is no
available constructor. Instead, you must use the WebRequest.Create method (or the Create method of
your desired subclass) to create new instances of any of the subclasses. This method uses the URL requested
to create the appropriate subtype of WebRequest . For example, this would create a new HttpWebRequest :

Imports System.Net //earlier in the class/module
Dim req As HttpWebRequest = WebRequest.Create("http://msdn.microsoft.com")

 Note that if you have Option Strict turned on (and you should), the preceding code will produce an error.
Instead, you should explicitly cast the return value of Create to the desired type:

Dim req As HttpWebRequest =
 DirectCast(WebRequest.Create("http://msdn.microsoft.com"),
 System.Net.HttpWebRequest)

 Putting it Together
 In order to demonstrate how to use WebRequest/WebResponse , the following example (Defi nePad in
the download) shows how to wrap a Web call into a Visual Basic class. In this case, we ’ ll wrap Google ’ s
 define: keyword, which enables you to retrieve a set of defi nitions for a word (e.g., www.google.com/
search?q = define%3A + protocol), and then use that in a sample application.

 When creating a Windows Forms application with Visual Studio 2010, it sets the
Target Framework for the application to the .NET Framework 4 Client Profi le.
In order to add a reference to System.Web , you need to change this to the .NET
Framework 4 profi le. You set this by selecting the Advanced Compile Options (see
Figure 29 - 1) on the Compile tab of the project ’ s properties.

 1. Create a new Windows Forms Application
project named “DefinePad.”

 2. Add a new class to the project by right-
clicking the project and selecting Add > Class.
This will hold the actual WebRequest code.
Call it GoogleClient.

 3. Add a reference to the System.Web DLL, as you
will need access to some of its functionality later.

 4. In the GoogleClient.vb file, add Imports
statements to make the coding a little briefer:

Imports System.IO
Imports System.Net
Imports System.Web
Imports System.Collections.Generic

 5. The main function in GoogleClient will
be a Define function that returns an array
of strings. Each string will be one definition returned by Google:

 Public Function Define(ByVal word As String) As String()
 Dim req As HttpWebRequest = Nothing
 Dim resp As HttpWebResponse
 Dim query As String
 Dim result As New List(Of String)
 query = "http://www.google.com/search?q=define%3A" & _
 HttpUtility.UrlEncode(word)
 Try
 req = DirectCast(WebRequest.Create(query), HttpWebRequest)
 With req
 .Method = "GET"
 resp = req.GetResponse
 If resp.StatusCode = HttpStatusCode.OK Then
 ParseResponse(resp.GetResponseStream, result)
 Else
 MessageBox.Show("Error calling definition service")
 End If
 End With
 Catch ex As Exception
 End Try
 Return result.ToArray()
End Function

Code snippet from DefinePad

The first task is to guarantee that no invalid characters appear in the query string when you send
the request, such as a space, an accented character, or other non-ASCII characters. The System.Web
.HttpUtility class has a number of handy shared methods for encoding strings, including the
UrlEncode method. This replaces characters with a safe representation of the character that looks
like %value, where the value is the Unicode code for the character. For example, in the definition of
the query variable above, the %3A is actually the colon character (“:”), which has been encoded.
Anytime you retrieve a URL based on user input, encode it because there is no guarantee the resulting
URL is safe to send.

Once the query is ready, you create the WebRequest. As the URL is for an HTTP resource, an
HttpWebRequest is created. While the default method for WebRequest is a GET, it’s still good practice
to set it. You’ll create the ParseResponse method shortly to process the stream returned from the server.

figure 29-1

The system.net namespace ❘ 955

956 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

One other piece of code worth mentioning is the return value for this method, and how it is created.
In order to return arrays of a specific type (rather than return actual collections from a method),
you must either know the actual size to initialize the array or use the List generic type or the older
ArrayList. These classes behave like the Visual Basic 6.0 Collection class, which enables you to
add items, and grows as needed. They also have a handy method that enables you to convert the array
into an array of any type; you can see this in the return statement. The ArrayList requires you to do
a bit more work. If you want to use an ArrayList for this method, then you must identify the type of
array you’d like to return. The resulting return statement would look like this using an ArrayList:

Return result.ToArray(GetType(String))

 6. The ProcessRequest method parses the stream returned from the server and converts it into an array of
items. Note that this is slightly simplified; in a real application, you would likely want to return an array
of objects, where each object provides access to the definition and the URL of the site providing it:

 Private Sub ParseResponse (ByVal input As System.IO.Stream, _
 ByRef output As List(Of String))
 'definitions are in a block beginning with <p>Definitions for...
 'then are marked with tags

Dim reader As New StreamReader(input)
 Dim work As String = reader.ReadToEnd
 Dim blockStart As String = "<p>Definitions of"
 Dim pos As Integer = work.IndexOf(blockStart)
 Dim posEnd As Integer
 Dim temp As String
 Do
 pos = work.IndexOf("", pos + 1)
 If pos > 0 Then
 posEnd = work.IndexOf("
", pos)
 temp = work.Substring(pos + 4, posEnd - pos - 4)
 output.Add(ParseDefinition(temp))
 pos = posEnd + 1
 End If
 Loop While pos > 0
End Sub

Code snippet from DefinePad

The code is fairly simple, using the time-honored tradition of screen scraping — processing the HTML
of a page to find the section you need and then removing the HTML to produce the result.

 7. The last part of the GoogleClient class is the ParseDefinition method that cleans up the definition,
removing the link and other HTML tags:

 Private Function ParseDefinition(ByVal input As String) As String
 Dim result As String = ""
 Dim lineBreak As Integer
 lineBreak = input.IndexOf("
")
 If lineBreak > 0 Then
 result = input.Substring(0, input.IndexOf("
"))
 Else
 result = input
 End If
 Return result.Trim
End Function

Code snippet from DefinePad

 8. Now, with the class in hand, you can create a client to use it. In this case, you’ll create a simple text
editor that adds the capability to retrieve definitions for words. Go back to the form created for the
application and add controls as shown in Figure 29-2.

 9. The user interface for DefinePad is simple: a TextBox and a ContextMenuStrip. Set the properties as
shown in the following table:

figure 29-2

conTrol ProPerTy Value

TextBox Name TextField

Multiline True

Dock Fill

ContextMenuStrip DefinitionMenu

ContextMenuStrip Name DefinitionMenu

 10. The only code in the form is for the Opening event of the ContextMenuStrip. Here, you add the
definitions to the menu. Add the following code to the handler for the Opening event:

 Private Sub DefinitionMenu_Opening(ByVal sender As Object,
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles DefinitionMenu.Opening
 Dim svc As New GoogleClient
 Dim definitions() As String
 Dim definitionCount As Integer
 DefinitionMenu.Items.Clear()
 Try
 'define the currently selected word
 If TextField.SelectionLength > 0 Then
 definitions = svc.Define(TextField.SelectedText)
 'build context menu of returned definitions
 definitionCount = definitions.Length
 If definitionCount > 6 Then
 definitionCount = 6
 ElseIf definitionCount = 0 Then
 'we can't do any more, so exit
 Dim item As New ToolStripButton
 item.Text = "Sorry, no definitions available"
 DefinitionMenu.Items.Add(item)
 Exit Sub
 End If
 For i As Integer = 1 To definitionCount
 Dim item As New ToolStripButton

The system.net namespace ❘ 957

958 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 item.Text = definitions(i-1)
 DefinitionMenu.Items.Add(item)
 Next
 End If
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Error getting definitions",
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End Sub

Code snippet from DefinePad

The bulk of the code in this event is to limit the number of items displayed in the menu. The actual
functional part of the routine is the call to the Define method of the GoogleClient. If you trace
through the code as it runs, you’ll see the WebRequest generated, the call made, and the resulting
response stream parsed into the individual items as desired. Finally, you can use the returned list to
create a set of menu items (that don’t actually do anything), and display the “menu.” Clicking on any
definition closes the menu.

 11. To test the application, run it. Type or copy some text into the text box, select a word, and right-click
on it. After a brief pause, you should see the definitions for the word (Figure 29-3 shows definitions of
“protocol”).

figure 29-3

While it isn’t as sexy as Web services, using this technique (WebRequest, screen scraping of the resulting
HTML) can provide access to a great deal of the Internet’s functionality for your applications.

simplifying common Web requests with Webclient
When I first saw a demo of WebRequest class in early 2000, I was delighted. Here was the capability to easily
access Internet resources. However, one of the other attendees of the demo asked, “Why is that so difficult?
You need to do so much to get it to work.” The next time I saw the same WebRequest demo, the presenter
concluded with, “For those of you doing the common scenarios, we have an even easier way.” He then went
on to show us how to use System.Net.WebClient.

For those times when you just want to send a GET or POST request and download a file or the resulting data,
you can forget about WebRequest/WebResponse. WebClient abstracts away all of the little details of making
Web requests, and makes it amazingly easy to grab data from the Web. It does this by abstracting out the most
commonly used tasks people perform with WebRequest/WebResponse. The WebClient class includes methods
for uploading and downloading data, strings, and files.

All of the DownloadX and UploadX methods also support an asynchronous version of the method, called
DownloadXAsync, such as DownloadFileAsync or UploadValuesAsync. These methods perform the actual
request on a background thread, and fire an event when the task is completed. If your application has some
form of user interface, such as a form, then you should generally use these methods to keep your application
responsive.

As the WebClient class uses the WebRequest classes to actually perform its magic, it can greatly simplify
network coding. For example, just replace the code used in the WebRequest sample created earlier.

Before:

 Public Function Define(ByVal word As String) As String()
 Dim req As HttpWebRequest = Nothing
 Dim resp As HttpWebResponse
 Dim query As String
 Dim result As New List(Of String)
 query = "http://www.google.com/search?q=define%3A" &
 HttpUtility.UrlEncode(word)
 Try
 req = DirectCast(WebRequest.Create(query), HttpWebRequest)
 With req
 .Method = "GET"
 resp = req.GetResponse
 If resp.StatusCode = HttpStatusCode.OK Then
 ParseResponse(resp.GetResponseStream, result)
 Else
 MessageBox.Show("Error calling definition service")
 End If
 End With
 Catch ex As Exception
 End Try
 Return result.ToArray()
End Function

Code snippet from DefinePad

After:

 Public Function Define(ByVal word As String) As String()
 Dim client As New WebClient
 Dim query As String
 Dim result As New List(Of String)
 query = "http://www.google.com/search?q=define%3A" &
 HttpUtility.UrlEncode(word)
 Try
 result = ParseResponse(client.DownloadString(query))
 Catch ex As Exception
 End Try
 Return result.ToArray()
 End Function
 Private Function ParseResponse(ByVal data As String) As List(Of String)
 Dim result As New List(Of String)

 Dim blockStart As String = "<p>Definitions of"
 Dim pos As Integer = data.IndexOf(blockStart)
 Dim posEnd As Integer
 Dim temp As String
 Do
 pos = data.IndexOf("", pos + 1)
 If pos > 0 Then
 posEnd = data.IndexOf("
", pos)
 temp = data.Substring(pos + 4, posEnd - pos - 4)
 result.Add(ParseDefinition(temp))

The system.net namespace ❘ 959

960 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 pos = posEnd + 1
 End If
 Loop While pos > 0

 Return result
 End Function

Code snippet from DefinePad

WebClient avoids all of the stream handling required for WebRequest. However, you should still know how
WebRequest operates, as this knowledge is directly relatable to WebClient.

socKeTs
There may be times when you need to transfer data across a network (either a private network or the
Internet) but the existing techniques and protocols do not exactly suit your needs. For example, you cannot
download resources using the techniques discussed earlier in this chapter, and you cannot use Windows
Communication Foundation, Web services, or remoting. In these cases, the best course of action is to roll
your own protocol using sockets.

TCP/IP and, therefore, the Internet itself are based on sockets. The principle is simple: Establish a port
at one end and allow clients to “plug in” to that port from the other end. Once the connection is made,
applications can send and receive data through a stream. For example, HTTP nearly always operates on
port 80, so a Web server opens a socket on port 80 and waits for incoming connections (Web browsers,
unless told otherwise, attempt to connect to port 80 in order to make a request of that Web server).

In .NET, sockets are implemented in the System.Net.Sockets namespace and use classes from System.Net
and System.IO to get the stream classes. Although working with sockets can be a little tricky outside of .NET,
the framework includes classes that enable you to open a socket for inbound connections (System.Net
.TcpListener) and for communication between two open sockets (System.Net.TcpClient). These two classes,
in combination with some threading shenanigans, enable you to build your own protocol through which you can
send any data you like. With your own protocol, you have ultimate control over the communication.

To demonstrate these techniques, you are going to build Wrox Messenger, a very basic instant messenger
application similar to MSN Messenger.

Building the application
You will wrap all the functionality of your application into a single Windows application, which will act as
both a server that waits for inbound connections and a client that has established outbound connections.

Create a new Windows Forms Application project called
“WroxMessenger.” Change the title of Form1 to Wrox
Messenger and add a TextBox control called ConnectToField
and a Button control called ConnectButton. Set the name of
the form to ConnectForm. The form should appear as shown in
Figure 29-4.

You will learn more about this in greater detail later, but for now it is very important that all of your UI code
runs in the same thread, and that the thread is actually the main application that creates and runs your form.

To keep track of what is happening, you will add a field to the form that enables you to store the ID of the startup
thread and report that ID on the caption. This helps provide a context for the thread/UI issues discussed later. You
also need some namespace imports and a constant specifying the ID of the default port. Add the following code to
your form:

Imports System.Net
Imports System.Net.Sockets
Imports System.Threading
Public Class ConnectForm

figure 29-4

 Private Shared _mainThreadId As Integer
 Public Const ServicePort As Integer = 10101

Code snippet from WroxMessenger

Next, create a New method for the form and add this code to the constructor that populates the field and
changes the caption:

Public Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 _mainThreadId = System.Threading.Thread.CurrentThread.GetHashCode()
 Text &= "-" & _mainThreadId.ToString()
End Sub

Code snippet from WroxMessenger

To listen for incoming connections, you will create a separate class called Listener. This class uses an instance
of System.Net.Sockets.TcpListener to wait for incoming connections. Specifically, it opens a TCP port
that any client can connect to — sockets are not platform-specific. Although connections are always made on a
specific, known port, the actual communication takes place on a port of the TCP/IP subsystem’s choosing, which
means you can support many inbound connections at once, despite the fact that each of them connects to the same
port. Sockets are an open standard available on pretty much any platform. For example, if you publish the
specification for your protocol, then developers working on Linux can connect to your Wrox Messenger service.

When you detect an inbound connection, you are given a System.Net.Sockets.TcpClient object. This is your
gateway to the remote client. To send and receive data, you need to obtain a System.Net.NetworkStream object
(returned through a call to GetStream on TcpClient), which returns a stream that you can use.

Create a new class called Listener. This thread needs members to hold an instance of a System.Threading
.Thread object, and a reference back to the ConnectForm class that is the main form in the application. Not
covered here is how to spin up and down threads, or synchronization. (Refer to Chapter 33 if you need more
information about that.)

Here is the basic code for the Listener class:

Imports System.Net.Sockets
Imports System.Threading
Imports System.Net

Public Class Listener
 Implements IDisposable

 Private main As ConnectForm
 Private listener As TcpListener
 Private thread As Thread
 Public Sub New(ByVal main As ConnectForm)
 main = main
 End Sub
 Public Sub SpinUp()
 ' create and start the new thread...
 thread = New Thread(AddressOf ThreadEntryPoint)
 thread.Start()
 End Sub End Class

Code snippet from WroxMessenger

The obvious missing method here is ThreadEntryPoint. This is where you need to create the socket and
wait for inbound connections. When you get them, you are given a TcpClient object, which you pass back
to your form, where the conversation window can be created. You create this method in the Listener.vb
class file.

sockets ❘ 961

962 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

To create the socket, create an instance of TcpListener and give it a port. In your application, the port
you are going to use is 10101. This port should be free on your computer, but if the debugger breaks on an
exception when you instantiate TcpListener or call Start, then try another port. Once you have done that
and called Start to configure the object to listen for connections, you drop into an infinite loop and call
AcceptTcpClient. This method blocks until the socket is closed or a connection becomes available. If you
get Nothing back, then either the socket is closed or there is a problem, so you drop out of the thread. If
you get something back, then you pass the TcpClient over to your form through a call to the (not yet built)
ReceiveInboundConnection method. Add this new method to the Listener class you created earlier:

 ' ThreadEntryPoint...
 Protected Sub ThreadEntryPoint()
 ' Create a socket...
 listener = New TcpListener(IPAddress.Loopback, ConnectForm.ServicePort)
 listener.Start()
 ' Loop infinitely, waiting for connections.
 Try
 Do While True
 ' Get a connection...
 Dim client As TcpClient = listener.AcceptTcpClient()
 If client Is Nothing Then
 Exit Do
 End If
 ' Process it...
 main.ReceiveInboundConnection(client)
 Loop
 Catch
 'eat any exceptions
 End Try
 End Sub

Code snippet from WroxMessenger

It is in the ReceiveInboundConnection method that you create the Conversation form that the user can
use to send messages. You’ll add this method to the form shortly.

creating conversation Windows
When building Windows Forms applications that support threading, there is always the possibility of
running into a problem with the Windows messaging subsystem. This is a very old part of Windows that
powers the Windows user interface (the idea has been around since version 1.0 of the platform, although the
implementation on modern Windows versions is far removed from the original).

Even those who are not familiar with old-school Windows programming, such as MFC, Win32, or even Win16
development, should be familiar with events. When you move a mouse over a form, you get MouseMove events.
When you close a form, you get a Closed event. There is a mapping between these events and the messages that
Windows passes around to support the actual display of the windows. For example, whenever you receive a
MouseMove event, a message called WM_MOUSEMOVE is sent to the window by Windows, in response to the mouse
driver. In .NET and other rapid application development (RAD) environments such as Visual Basic and Delphi,
this message is converted into an event that you can write code against.

Although this is getting way off the topic — you know how to build Windows Forms applications by now and
don’t need the details of messages such as WM_NCHITTEST or WM_PAINT — it has an important implication.
In effect, Windows creates a message queue for each thread into which it posts the messages that the thread’s
windows have to work with. This queue is looped on a virtually constant basis, and the messages are distributed
to the appropriate window (remember that small controls such as buttons and text boxes are also windows). In
.NET, these messages are turned into events, but unless the message queue is looped, the messages do not
get through.

Suppose Windows needs to paint a window. It posts a WM_PAINT message to the queue. A message loop
implemented on the main thread of the process containing the window detects the message and dispatches
it on to the appropriate window, where it is processed. Now suppose that the queue is not looped. The
message is never picked up and the window is never painted.

In a Windows application, a single thread is usually responsible for message dispatch. This thread is
typically (but not necessarily) the main application thread — the one that is created when the process is
first created. If you create windows in a different thread, then that new thread has to support the message
dispatch loop so that messages destined for the windows get through. However, with Listener, you have
no code for processing the message loop, and there is little point in writing any because the next time you
call AcceptTcpClient, you are going to block, and everything will stop working.

The trick, therefore, is to create the windows only in the main application thread, which is the thread that
created ConnectForm and is processing the messages for all the windows created in this thread. You can
pass calls from one thread to the other by calling the Invoke method of ConnectForm.

This is where things start to get complicated. There is a very lot of code to write to get to a point where you
can see that the socket connection has been established and get conversation windows to appear. Here is
what you need to do:

Create a new Conversation form. This form needs controls for displaying the total content of the con- ➤

versation, plus a TextBox control for adding new messages.

The Conversation window needs to be able to send and receive messages through its own thread. ➤

 ➤ ConnectForm needs to be able to initiate new connections. This will be done in a separate thread that
is managed by the thread pool. When the connection has been established, a new Conversation
window needs to be created and configured.

 ➤ ConnectForm also needs to receive inbound connections. When it gets one of these, a new conversa-
tion must be created and configured.

Let’s look at each of these challenges.

Creating the Conversation form
The simplest place to start is to build the new conversation form (creatively
named ConversationForm), which needs three TextBox controls
(UsernameField, AllMessagesField, and MessageField in order on the
form) and a Button control (SendButton), as shown in Figure 29-5.
The AllMessagesField and MessageField are both configured with
Multiline=True.

This class requires a number of fields and an enumeration. It needs fields to
hold the username of the user (which you will default to Foo), the underlying
TcpClient, and the NetworkStream returned by that client. The enumeration
indicates the direction of the connection (which will help you when
debugging):

 Imports System.Net
Imports System.Net.Sockets
Imports System.Text
Imports System.Threading
Imports System.Runtime.Serialization.Formatters.Binary
Public Class ConversationForm
 Private _username As String = "Foo"
 Private _client As TcpClient
 Private _stream As NetworkStream
 Private _direction As ConversationDirection

figure 29-5

sockets ❘ 963

964 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 Public Enum ConversationDirection As Integer
 Inbound = 0
 Outbound = 1
 End Enum

Code snippet from WroxMessenger

At this point, we won’t look into the issues surrounding establishing a thread for exchanging messages, but
we will look at implementing the ConfigureClient method. This method eventually does more work than
this, but for now it sets a couple of fields and calls UpdateCaption:

 Public Sub ConfigureClient(ByVal client As TcpClient, _
 ByVal direction As ConversationDirection)
 ' Set it up...
 _client = client
 _direction = direction
 ' Update the window...
 UpdateCaption()
End Sub
Protected Sub UpdateCaption()
 ' Set the text.
 Dim builder As New StringBuilder(_username)
 builder.Append(" - ")
 builder.Append(_direction.ToString())
 builder.Append(" - ")
 builder.Append(Thread.CurrentThread.GetHashCode())
 builder.Append(" - ")
 If Not _client Is Nothing Then
 builder.Append("Connected")
 Else
 builder.Append("Not connected")
 End If
 Text = builder.ToString()
End Sub

Code snippet from WroxMessenger

Note a debugging issue to deal with: If you are connecting to a conversation on the same machine, then
you need a way to change the name of the user sending each message; otherwise, things get confusing. That
is what the topmost TextBox control is for. In the constructor, set the text for the UsernameField.Text
property:

 Public Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 UsernameField.Text = _username
End Sub

Code snippet from WroxMessenger

On the TextChanged event for this control, update the caption and the internal _username field:

 Private Sub UsernameField_TextChanged(ByVal sender As System.Object,
 ByVal e As System.EventArgs) _
 Handles UsernameField.TextChanged
 _username = UsernameField.Text
 UpdateCaption()
End Sub

Code snippet from WroxMessenger

initiating Connections
The ConnectForm needs to be able to both initiate connections and receive inbound connections — the
application is both a client and a server. You have already created some of the server portion by creating
Listener; now you will look at the client side.

The general rule when working with sockets is that anytime you send anything over the wire, you must
perform the actual communication in a separate thread. Virtually all calls to send and receive do so in a
blocking manner; that is, they block until data is received, block until all data is sent, and so on.

If threads are used well, then the UI will keep running as normal, irrespective of the problems that
may occur during transmitting and receiving. This is why in the InitiateConnection method on the
ConnectForm, you defer processing to another method called InitiateConnectionThreadEntryPoint,
which is called from a new thread:. Add this method to the code for the ConnectForm:

 Private Sub InitiateConnectionThreadEntryPoint(ByVal state As Object)
 Try
 ' Get the host name...
 Dim hostName As String = CStr(state)
 ' Resolve...
 Dim hostEntry As IPHostEntry = Dns.GetHostEntry(hostName)
 If Not hostEntry Is Nothing Then
 ' Create an end point for the first address.
 Dim endPoint As New IPEndPoint(hostEntry.AddressList(0), ServicePort)
 ' Create a TCP client...
 Dim client As New TcpClient()
 client.Connect(endPoint)
 ' Create the connection window...
 ProcessOutboundConnection(client)
 Else
 Throw New ApplicationException("Host '" & hostName & _
 "' could not be resolved.")
 End If
 Catch ex As Exception
 HandleInitiateConnectionException(ex)
 End Try
End Sub

Code snippet from WroxMessenger

Inside the thread, you try to convert the hostname that you are given into an IP address (localhost is used
as the hostname in the demonstration, but it could be the name of a machine on the local network or a
hostname on the Internet). This is done through the shared GetHostEntry method on System.Net.Dns,
and returns a System.Net.IPHostEntry object. Because a hostname can point to multiple IP addresses,
you will just use the first one that you are given. You take this address expressed as an IP (for example,
192.168.0.4) and combine it with the port number to get a new System.Net.IPEndPoint. Then you create
a new TcpClient from this IPEndPoint and try to connect.

If at any time an exception is thrown (which can happen because the name could not be resolved or the connection
could not be established), you pass the exception to HandleInitiateConnectionException. If it succeeds, then
you pass it to ProcessOutboundConnection. Both of these methods will be implemented shortly:

 Private Sub InitiateConnectionThreadEntryPoint(ByVal state As Object)
 Try
 ' Get the host name...
 Dim hostName As String = CStr(state)
 ' Resolve...
 Dim hostEntry As IPHostEntry = Dns.GetHostEntry(hostName)
 If Not hostEntry Is Nothing Then
 ' Create an end point for the first address.

sockets ❘ 965

966 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 Dim endPoint As New IPEndPoint(hostEntry.AddressList(0), ServicePort)
 ' Create a TCP client...
 Dim client As New TcpClient()
 client.Connect(endPoint)
 ' Create the connection window...
 ProcessOutboundConnection(client)
 Else
 Throw New ApplicationException("Host '" & hostName & _
 "' could not be resolved.")
 End If
 Catch ex As Exception
 HandleInitiateConnectionException(ex)
 End Try
End Sub

Code snippet from WroxMessenger

When it comes to HandleInitiateConnectionException, you start to see the inter-thread UI problems that
were mentioned earlier. When there is a problem with the exception, you need to tell the user, which means
you need to move the exception from the thread-pool-managed thread into the main application thread. The
principle for this is the same; you need to create a delegate and call that delegate through the form’s Invoke
method. This method does all the hard work in marshaling the call across to the other thread.

Here is what the delegates look like. They have the same parameters as the calls themselves. As a naming
convention, it is a good idea to use the same name as the method and tack the word “Delegate” on the end:

 Public Class ConnectForm
 Private Shared _mainThreadId As Integer
 ' delegates...
 Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(_
 ByVal ex As Exception)

Code snippet from WroxMessenger

In the constructor for ConnectForm, you capture the thread caller’s thread ID and store it in
_mainThreadId. Here is a method that compares the captured ID with the ID of the current thread:

 Public Shared Function IsMainThread() As Boolean
 If Thread.CurrentThread.GetHashCode() = _mainThreadId Then
 Return True
 Else
 Return False
 End If
End Function

Code snippet from WroxMessenger

The first thing you do at the top of HandleInitiateConnectionException is check the thread ID. If it
does not match, then you create the delegate and call it. Notice that you set the delegate to call back into
the same method because the second time it is called, you would have moved to the main thread; therefore,
IsMainThread returns True, and you can process the exception properly:

 Protected Sub HandleInitiateConnectionException(ByVal ex As Exception)
 ' main thread?
 If IsMainThread() = False Then
 ' Create and call...
 Dim args(0) As Object
 args(0) = ex
 Invoke(New HandleInitiateConnectionExceptionDelegate(AddressOf _
 HandleInitiateConnectionException), args)

 ' return

 Return
 End If
 ' Show it.
 MessageBox.Show(ex.GetType().ToString() & ":" & ex.Message)
End Sub

Code snippet from WroxMessenger

The result is that when the call comes in from the thread-pool-managed thread, IsMainThread returns
False, and the delegate is created and called. When the method is entered again as a result of the delegate
call, IsMainThread returns True, and you see the message box.

When it comes to ProcessOutboundConnection, you have to again jump into the main UI thread. However,
the magic behind this method is implemented in a separate method called Process-Connection, which can
handle either inbound or outbound connections. Here is the delegate:

 Public Class ConnectForm
 Private Shared _mainThreadId As Integer
 Private _listener As Listener
 Protected Delegate Sub ProcessConnectionDelegate(ByVal client As _
 TcpClient, ByVal direction As ConversationForm.ConversationDirection)
 Protected Delegate Sub HandleInitiateConnectionExceptionDelegate(ByVal _
 ex As Exception)

Code snippet from WroxMessenger

Here is the method itself, which creates the new conversation form and calls the ConfigureClient method:

 Protected Sub ProcessConnection(ByVal client As TcpClient, _
 ByVal direction As ConversationForm.ConversationDirection)
 ' Do you have to move to another thread?
 If IsMainThread() = False Then
 ' Create and call...
 Dim args(1) As Object
 args(0) = client
 args(1) = direction
 Invoke(New ProcessConnectionDelegate(AddressOf ProcessConnection), args)
 Return
 End If

 ' Create the conversation window...
 Dim conversation As New ConversationForm()
 conversation.Show()
 conversation.ConfigureClient(client, direction)
End Sub

Code snippet from WroxMessenger

Of course, ProcessOutboundConnection needs to defer to ProcessConnection:

 Public Sub ProcessOutboundConnection(ByVal client As TcpClient)
 ProcessConnection(client, ConversationForm.ConversationDirection.Outbound)
End Sub

Code snippet from WroxMessenger

Now that you can connect to something on the client side, let’s look at how to receive connections (on the
server side).

receiving inbound Connections
You have already built Listener, but you have not created an instance of it or spun up its thread to wait for
incoming connections. To do that, you need a field in ConnectForm to hold an instance of the object. You
also need to tweak the constructor. Here is the field:

sockets ❘ 967

968 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

Public Class ConnectForm
 Private _mainThreadId As Integer
 Private _listener As Listener

Here is the new code that needs to be added to the constructor:

 Public Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 _mainThreadId = System.Threading.Thread.CurrentThread.GetHashCode()
 Text &= "-" & _mainThreadId.ToString()
 ' listener...
 _listener = New Listener(Me)
 _listener.SpinUp()
End Sub

Code snippet from WroxMessenger

When inbound connections are received, you get a new TcpClient object. This is passed back to ConnectForm
through the ReceiveInboundConnection method. This method, like ProcessOutboundConnection, defers
to ProcessConnection. Because ProcessConnection already handles the issue of moving the call to the main
application thread, ReceiveInboundConnection looks like this:

 Public Sub ReceiveInboundConnection(ByVal client As TcpClient)
 ProcessConnection(client, ConversationForm.ConversationDirection.Inbound)
End Sub

Code snippet from WroxMessenger

If you run the project now, you should be able to click
the Connect button and see two windows — Inbound
and Outbound (see Figure 29-6).

If you close all three windows, the application keeps
running because you have not written code to close
down the listener thread, and having an open thread
like this keeps the application open. Select Debug ➪
Stop Debugging in Visual Studio to close the
application down by killing all running threads.

By clicking the Connect button, you are calling
InitiateConnection. This spins up a new thread
in the pool that resolves the given hostname
(localhost) into an IP address. This IP address,
in combination with a port number, is then used in
the creation of a TcpClient object. If the connection
can be made, then ProcessOutboundConnection
is called, which results in the first of the
conversation windows being created and marked as
“outbound.”

This example is somewhat artificial, as the two instances of Wrox Messenger should be running on separate
computers. On the remote computer (if you are connecting to localhost, this will be the same computer),
a connection is received through the AcceptTcpClient method of TcpListener. This results in a call to
ReceiveInboundConnection, which in turn results in the creation of the second conversation window, this
time marked as “inbound.”

figure 29-6

sending messages
The next step is to determine how to exchange messages between the two conversation windows. You
already have a TcpClient in each case, so all you have to do is send binary data down the wire on one side
and pick it up at the other end. The two conversation windows act as both client and server, so both need to
be able to send and receive.

You have three challenges to meet:

You need to establish one thread to send data and another thread to receive data. ➤

Data sent and received needs to be reported back to the user so that he or she can follow the ➤

conversation.

The data that you want to send has to be converted into a wire-ready format, which in .NET terms ➤

usually means serialization.

The power of sockets enables you to define whatever protocol you like for data transmission. If you wanted
to build your own SMTP server, you could implement the (publicly available) specifications, set up a listener to
wait for connections on port 25 (the standard port for SMTP), wait for data to come in, process it, and
return responses as appropriate.

It is best to work in this way when building protocols. Unless there are very strong reasons for not doing so,
make your server as open as possible; don’t tie it to a specific platform. This is how things are done on the
Internet. To an extent, things like Web services should negate the need to build your own protocols; as you
go forward, you will rely instead on the “remote object available to local client” paradigm.

Now it is time to consider the idea of using the serialization features of .NET to transmit data across the
network. After all, you have already seen this in action in previous chapters with WCF, Web services, and
remoting. You can take an object in .NET, use serialization to convert it to a string of bytes, and expose
that string to a Web service consumer, to a remoting client, or even to a file.

The System.Runtime.Serialization.Formatters namespace includes a number of classes you can use to
format your messages, including the BinaryFormatter and SoapFormatter classes. You could use either of
those classes, or create your own custom formatter, to convert data for transmission and reception. In this
case, you are going to create a new class called Message and use the BinaryFormatter class to crunch it
down into a wire-ready format and convert it back again for processing.

This approach is not ideal from the perspective of interoperability, because the actual protocol used is lost in
the implementation of the .NET Framework, rather than being under your absolute control.

If you want to build an open protocol, this is not the best way to do it. Unfortunately, an explanation of
the best way is beyond the scope of this book, but a good place to start is to look at existing protocols
and standards and model any protocol on their approach. BinaryFormatter provides a quick-and-dirty
approach, which is why you are going to use it here.

The Message Class
Add a new class to the project, named Message. The Message class contains two fields, username and
message, which form the entirety of the data that you want to transmit. The code for this class follows; note
how the Serializable attribute is applied to it so that BinaryFormatter can change it into a wire-ready
form. You are also providing a new implementation of ToString:

Imports System.Text
<Serializable()> Public Class Message
 Private username As String
 Private message As String
 Public Sub New(ByVal name As String)
 username = name
 End Sub

sockets ❘ 969

970 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 Public Sub New(ByVal name As String, ByVal message As String)
 username = name
 message = message
 End Sub
 Public Overrides Function ToString() As String
 Dim builder As New StringBuilder(username)
 builder.Append(" says:")
 builder.Append(ControlChars.CrLf)
 builder.Append(message)
 builder.Append(ControlChars.CrLf)
 Return builder.ToString()
 End Function
End Class

Code snippet from WroxMessenger

Now all you have to do is spin up two threads: one for transmission and one for reception, updating the
display. You need two threads per conversation, so if you have 10 conversations open, you need 20 threads
plus the main UI thread, plus the thread running TcpListener.

Receiving messages is easy. When calling Deserialize on BinaryFormatter, you give it the stream
returned to you from TcpClient. If there is no data, then this blocks. If there is data, then it is decoded
into a Message object that you can display. If you have multiple messages coming down the pipe, then
BinaryFormatter keeps processing them until the pipe is empty. Here is the method for this, which should
be added to ConversationForm. Remember that you haven’t implemented ShowMessage yet:

 Protected Sub ReceiveThreadEntryPoint()
 ' Create a formatter...
 Dim formatter As New BinaryFormatter()
 ' Loop
 Do While True
 ' Receive...
 Dim message As Message = formatter.Deserialize(_stream)

 If message Is Nothing Then
 Exit Do
 End If
 ' Show it...
 ShowMessage(message)
 Loop
End Sub

Code snippet from WroxMessenger

Transmitting messages is a bit more complex. You want a queue (managed by a System.Collections
.Queue) of outgoing messages. Every second, you will examine the state of the queue. If you find any
messages, then you use BinaryFormatter to transmit them. Because you will be accessing this queue from
multiple threads, you use a System.Threading.ReaderWriterLock to control access. To minimize the
amount of time you spend inside locked code, you quickly transfer the contents of the shared queue into a
private queue that you can process at your leisure. This enables the client to continue to add messages to the
queue through the UI, even though existing messages are being sent by the transmit thread.

First, add the following members to ConversationForm:

 Public Class ConversationForm
 Private _username As String = "Foo"
 Private _client As TcpClient
 Private _stream As NetworkStream
 Private _direction As ConversationDirection
 Private _receiveThread As Thread
 Private _transmitThread As Thread

 Private _transmitQueue As New Queue()
 Private _transmitLock As New ReaderWriterLock()

Code snippet from WroxMessenger

Now, add this method (again to ConversationForm):

 Protected Sub TransmitThreadEntryPoint()
 ' Create a formatter...
 Dim formatter As New BinaryFormatter()
 Dim workQueue As New Queue()
 ' Loop
 Do While True
 ' Wait for the signal...
 Thread.Sleep(1000)
 ' Go through the queue...
 _transmitLock.AcquireWriterLock(-1)
 Dim message As Message
 workQueue.Clear()
 For Each message In _transmitQueue
 workQueue.Enqueue(message)
 Next
 _transmitQueue.Clear()
 _transmitLock.ReleaseWriterLock()
 ' Loop the outbound messages...
 For Each message In workQueue
 ' Send it...
 formatter.Serialize(_stream, message)
 Next
 Loop
End Sub

Code snippet from WroxMessenger

When you want to send a message, you call one version of the SendMessage method. Here are all of the
implementations, and the Click handler for buttonSend:

 Private Sub SendButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles SendButton.Click
 SendMessage(MessageField.Text)
End Sub
Public Sub SendMessage(ByVal message As String)
 SendMessage(_username, message)
End Sub
Public Sub SendMessage(ByVal username As String, ByVal message As String)
 SendMessage(New Message(username, message))
End Sub
Public Sub SendMessage(ByVal message As Message)
 ' Queue it
 _transmitLock.AcquireWriterLock(-1)
 _transmitQueue.Enqueue(message)
 _transmitLock.ReleaseWriterLock()
 ' Show it...
 ShowMessage(message)
End Sub

Code snippet from WroxMessenger

ShowMessage is responsible for updating AllMessagesField so that the conversation remains up to date
(notice how you add the message both when you send it and when you receive it so that both parties have an
up-to-date thread). This is a UI feature, so it is good practice to pass it over to the main application thread for

sockets ❘ 971

972 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

processing. Although the call in response to the button click comes off the main application thread, the one
from inside ReceiveThreadEntryPoint does not. Here is what the delegate looks like:

 Public Class ConversationForm
 ' members...
 Private _username As String = "Foo"
 Private _client As TcpClient
 Private _stream As NetworkStream
 Private _direction As ConversationDirection
 Private _receiveThread As Thread
 Private _transmitThread As Thread
 Private _transmitQueue As New Queue()
 Private _transmitLock As New ReaderWriterLock()
 Public Delegate Sub ShowMessageDelegate(ByVal message As Message)

Code snippet from WroxMessenger

Here is the method implementation:

 Public Sub ShowMessage(ByVal message As Message)
 ' Thread?
 If ConnectForm.IsMainThread() = False Then
 ' Run...
 Dim args(0) As Object
 args(0) = message
 Invoke(New ShowMessageDelegate(AddressOf ShowMessage), args)
 ' Return...
 Return
 End If
 ' Show it...
 AllMessagesField.Text &= message.ToString()
End Sub

Code snippet from WroxMessenger

All that remains now is to spin up the threads. This should be done from within ConfigureClient. Before
the threads are spun up, you need to obtain the stream and store it in the private _stream field. After
that, you create new Thread objects as normal:

 Public Sub ConfigureClient(ByVal client As TcpClient, _
 ByVal direction As ConversationDirection)
 ' Set it up...
 _client = client
 _direction = direction
 ' Update the window...
 UpdateCaption()
 ' Get the stream...
 _stream = _client.GetStream()
 ' Spin up the threads...
 _transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
 _transmitThread.Start()
 _receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
 _receiveThread.Start()
End Sub

Code snippet from WroxMessenger

At this point, you should be able to connect and exchange messages, as shown in Figure 29-7.

Note that the screenshots show the username of the
inbound connection as Bar. This was done with
the UsernameField text box so that you can follow
which half of the conversation comes from where.

shutting down the application
You have yet to solve the problem of neatly closing
the application, or, in fact, dealing with one person
in the conversation closing down his or her window,
indicating a wish to end the conversation. When the
process ends (whether neatly or forcefully), Windows
automatically mops up any open connections and
frees up the port for other processes.

Suppose you have two computers, one window per
computer, as you would in a production environment.
When you close your window, you are indicating
that you want to end the conversation. You need to
close the socket and spin down the transmission and
reception threads. At the other end, you should be
able to detect that the socket has been closed, spin down the threads, and tell the user that the other user has
terminated the conversation.

This all hinges on being able to detect when the socket has been closed. Unfortunately, Microsoft has made
this very hard due to the design of the TcpClient class. TcpClient effectively encapsulates a System.Net
.Sockets.Socket class, providing methods for helping to manage the connection lifetime and communication
streams. However, TcpClient does not have a method or property that answers the question “Am I still
connected?” Therefore, you need to get the Socket object that TcpClient is wrapping, and then you can use
its Connected property to determine whether the connection has been closed.

TcpClient does support a property called Client that returns a Socket, but this property is protected,
meaning you can only access it by inheriting a new class from TcpClient. There is another way, though:
You can use reflection to get at the property and call it without having to inherit a new class.

Microsoft claims that this is a legitimate technique, even though it appears to violate every rule in the book
about encapsulation. Reflection is designed not only for finding out which types are available, and learning
which methods and properties each type supports, but also for invoking those methods and properties
whether they’re protected or public. Therefore, in ConversationForm, you need to store the socket:

 Public Class ConversationForm
 Private _username As String = "Foo"
 Private _client As TcpClient
 Private _socket As Socket

Code snippet from WroxMessenger

In ConfigureClient, you use reflection to peek into the Type object for TcpClient and dig out the Client
property. Once you have a System.Reflection.PropertyInfo for this property, you can retrieve its value
by using the GetValue method. Don’t forget to import the System.Reflection namespace:

 Public Sub ConfigureClient(ByVal client As TcpClient, _
 ByVal direction As ConversationDirection)
 ' Set it up...
 _client = client
 _direction = direction
 ' Update the window...

figure 29-7

sockets ❘ 973

974 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 UpdateCaption()
 ' Get the stream...
 _stream = _client.GetStream()
 ' Get the socket through reflection...
 Dim propertyInfo As PropertyInfo = _
 _client.GetType().GetProperty("Client", _
 BindingFlags.Instance Or BindingFlags.Public)
 If Not propertyInfo Is Nothing Then
 _socket = propertyInfo.GetValue(_client, Nothing)
 Else
 Throw New Exception("Could not retrieve Client property from TcpClient")
 End If
 ' Spin up the threads...
 _transmitThread = New Thread(AddressOf TransmitThreadEntryPoint)
 _transmitThread.Start()
 _receiveThread = New Thread(AddressOf ReceiveThreadEntryPoint)
 _receiveThread.Start()
End Sub

Code snippet from WroxMessenger

Applications are able to check the state of the socket either by detecting when an error occurs because you
have tried to send data over a closed socket or by actually checking whether the socket is connected. If the
Socket has not been initialized (that is, it is Nothing) or the Socket has not been connected, then you give
the user some feedback and exit the loop. By exiting the loop, you effectively exit the thread, which is a neat
way of quitting the thread. Notice as well that you might not have a window at this point (you might be the
one who closed the conversation by closing the window), so you wrap the UI call in a Try Catch (the other
side will see a <disconnect> message):

 Protected Sub TransmitThreadEntryPoint()
 ' Create a formatter...
 Dim formatter As New BinaryFormatter()
 Dim workQueue As New Queue()
 ' name...
 Thread.CurrentThread.Name = "Tx-" & _direction.ToString()
 ' Loop...
 Do While True
 ' Wait for the signal...
 Thread.Sleep(1000)
 ' Disconnected?
 If _socket Is Nothing OrElse _socket.Connected = False Then
 Try
 ShowMessage(New Message("Debug", "<disconnect>"))
 Catch
 End Try
 Exit Do
 End If
 ' Go through the queue...

Code snippet from WroxMessenger

ReceiveThreadEntryPoint also needs some massaging. When the socket is closed, the stream is no
longer valid and so BinaryFormatter.Deserialize throws an exception. Likewise, you quit the loop and
therefore neatly quit the thread:

 Protected Sub ReceiveThreadEntryPoint()
 ' Create a formatter...
 Dim formatter As New BinaryFormatter()
 ' Loop...
 Do While True
 ' Receive...

 Dim message As Message = Nothing
 Try
 message = formatter.Deserialize(_stream)
 Catch
 End Try

 If message Is Nothing Then
 Exit Do
 End If
 ' Show it...
 ShowMessage(message)
 Loop
 End Sub

How do you deal with actually closing the socket? You tweak the Dispose method of the form itself (you
can find this method in the Windows-generated code section of the file), and if you have a _socket object,
you close it:

 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 Try
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 ' Close the socket...
 If Not _socket Is Nothing Then
 _socket.Close()
 _socket = Nothing
 End If
 Finally
 MyBase.Dispose(disposing)
 End Try
 End Sub

Code snippet from WroxMessenger

Now you will be able to start a conversation; and if one of the windows
is closed, then <disconnect> will appear in the other, as shown in
Figure 29-8. In the background, the four threads (one transmit and one
receive per window) will spin down properly.

The application itself still will not close properly, even if you
close all the windows, because you need to stop the Listener
when ConnectForm closes. To do so, make Listener implement
IDisposable:

 Public Class Listener
 Implements IDisposable
 Public Sub Dispose() Implements System.IDisposable.Dispose
 ' Stop it...
 Finalize()
 GC.SuppressFinalize(Me)
 End Sub
 Protected Overrides Sub Finalize()
 ' Stop the listener...
 If Not _listener Is Nothing Then
 _listener.Stop()
 _listener = Nothing
 End If
 ' Stop the thread...
 If Not _thread Is Nothing Then

figure 29-8

sockets ❘ 975

976 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

 _thread.Join()
 _thread = Nothing
 End If
 ' Call up...
 MyBase.Finalize()
 End Sub

Code snippet from WroxMessenger

Now all that remains is to call Dispose from within the ConnectForm. A good place to do this is in the
Closed event handler:

 Private Sub ConnectForm_FormClosed(ByVal sender As Object,
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 If Not _listener Is Nothing Then
 _listener.Dispose()
 _listener = Nothing
 End If
 End Sub

Code snippet from WroxMessenger

After the code is compiled again, the application can be closed.

using inTerneT exPlorer in your aPPlicaTions
A common requirement of modern applications is to display HTML files and other files commonly used
with Internet applications. Although the .NET Framework has considerable support for common image
formats (such as GIF, JPEG, and PNG), working with HTML used to be a touch trickier in versions 1.0
and 1.1 of the .NET Framework. Life was made considerably easier with the inclusion of the WebBrowser
control in the .NET Framework 2.0.

You don’t want to have to write your own HTML parser, so using this control to display HTML pages is,
in most cases, your only option. Microsoft’s Internet Explorer was implemented as a standalone component
comprising a parser and a renderer, all packaged up in a neat COM object. The WebBrowser control
“simply” wraps this COM object. There is nothing to stop you from using this COM object directly in
your own applications, but it is considerably easier to use the newer control for hosting Web pages in your
applications.

Yes, a COM object. Considering that writing an HTML parser is extremely hard, and writing a renderer is
extremely hard, it is easy to conclude that it’s much easier to use interop to get to Internet Explorer in .NET
applications than to have Microsoft try to rewrite a managed version of it just for .NET. Maybe we will see
“Internet Explorer .NET” eventually, but for now you have to use interop.

Windows forms and hTml — no Problem!
These sections demonstrate how to build a mini-browser application. Sometimes you might want to display
HTML pages without giving users UI widgets, such as a toolbar or the capability to enter their own URLs.
You might also want to use the control in a nonvisual manner. For example, using the WebBrowser control,
you can retrieve Web pages and then print the results without ever needing to display the contents.

allowing simple Web Browsing in Your Windows application
The first step is to create a new Windows Forms Application project called MyBrowser. On the default form,
change the name to MainForm, place a single TextBox control (named AddressField) and the WebBrowser
control (named TheBrowser), as shown in Figure 29-9.

The idea is that when the end user presses the Enter (or Return) key, the URL entered in the text box will be
the HTML page that is retrieved and displayed in the WebBrowser control. To accomplish this task, use the
following code for your form:

 Public Class MainForm
 Private Sub AddressField_KeyPress(ByVal sender As Object,
 ByVal e As System.Windows.Forms.KeyPressEventArgs) Handles AddressField.KeyPress
 If e.KeyChar = Chr(13) Then
 TheBrowser.Navigate(AddressField.Text)
 End If
 End Sub
End Class

Code snippet from MyBrowser

For this simple example, you check the key presses that are made in the AddressField TextBox control, and if
the key press is a specific one — the Enter key — then you use the WebBrowser control’s Navigate method to
navigate to the requested page. The Navigate method can take a single String value, which represents the
location of the Web page to retrieve. The example shown in Figure 29-10 shows the Wrox website.

figure 29-9

figure 29-10

Using internet explorer in Your applications ❘ 977

978 ❘ chaPTer 29 NEtwoRk PRoGRammiNG

launching internet explorer from Your Windows application
Sometimes, the goal is not to host a browser inside the application but to allow users to find the website
in a typical Web browser. For an example of this task, add a LinkLabel control (named JumpLink) to the
MyBrowser form. For instance, you can have a form that has a LinkLabel control on it that simply states
“Visit your company website!”

Once this control is in place, use the following code to launch the company’s website in an independent
browser, as opposed to directly in the form of your application:

 Public Class MainForm
 Private Sub JumpLink_LinkClicked(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles _
 LinkLabel1.LinkClicked
 Dim wb As New WebBrowser
 wb.Navigate("http://www.wrox.com", True)
 End Sub
End Class

Code snippet from MyBrowser

In this example, when the LinkLabel control is clicked by the user, a new instance of the WebBrowser
class is created. Then, using the WebBrowser control’s Navigate method, the code specifies the location
of the Web page, as well as a Boolean value that specifies whether this endpoint should be opened within
the Windows Form application (a False value) or from within an independent browser (a True value).
By default, this is set to False. With the preceding construct, when the user clicks the link found in the
Windows application, a browser instance is instantiated and the Wrox website is immediately launched.

Updating Urls and Page Titles
Note that when working with the MyBrowser example in which the WebBrowser control is directly in the
form, when you click the links, the text in the AddressField control is not updated. You can fix this by
listening for events coming off the WebBrowser control and adding handlers to the control.

It is easy to update the form’s title with the HTML page’s title. Create a DocumentTitleChanged event and
update the form’s Text property:

 Private Sub TheBrowser_DocumentTitleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles TheBrowser.DocumentTitleChanged
 Me.Text = TheBrowser.DocumentTitle.ToString()
End Sub

Code snippet from MyBrowser

In this case, when the WebBrowser control notices that the page title has changed (due to changing the page
viewed), the DocumentTitleChanged event will fire. In this case, you change the form’s Text property (its
title) to the title of the page being viewed using the DocumentTitle property of the WebBrowser control.

Next, update the text string that appears in the form’s text box, based on the complete URL of the page
being viewed. To do this, you can use the WebBrowser control’s Navigated event:

 Private Sub TheBrowser_Navigated(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.WebBrowserNavigatedEventArgs) Handles _
 TheBrowser.Navigated
 AddressField.Text = TheBrowser.Url.ToString()
End Sub

Code snippet from MyBrowser

In this case, when the requested page is finished being downloaded in the WebBrowser control, the Navigated
event is fired. You simply update the Text value of the AddressField control to be the URL of the page. This

means that once a page is loaded in the WebBrowser control’s HTML container, if the URL changes in this
process, then the new URL will be shown in the text box. For example, if you employ these steps and navigate
to the Wrox website (www.wrox.com), the page’s URL will immediately change to http://www.wrox.com/
WileyCDA/. This process also means that if the end user clicks one of the links contained within the HTML
view, then the URL of the newly requested page will also be shown in the text box.

Now if you run the application with the preceding changes put into place, the form’s title and address bar will
work as they do in Microsoft’s Internet Explorer, as demonstrated in Figure 29-11.

figure 29-11

summary ❘ 979

summary
Programming directly to the network provides a great deal of power and flexibility. Of course, all of that power
and flexibility comes at a cost. Many of the services that are built into higher-level technologies, such as Web
services or remoting, aren’t built into the WebRequest or Socket classes, and must often be recreated. However,
in those situations where you must communicate with an existing application, or when you need the ultimate in
control and speed, using the classes in the System.Net namespace makes life easier than it would be otherwise.

This chapter looked at many of the classes that expose network programming. You’ve learned how to make
Web requests without a browser so you could use the data on the Internet in your applications; you’ve seen
how you can leverage the bare sockets layer to write your own communication protocols, and you’ve been
introduced to some of the classes in Visual Basic 2010 for creating FTP clients and Web servers.

 application services
 WhaT you Will learn in This chaPTer

 Choices for implementing application services ➤

 Characteristics of one of the most common technologies for application ➤

services, namely Windows Services

 How to interact with a Windows Service using Visual Studio 2010 and the ➤

management applets in the Windows Control Panel

 How to create, install, and communicate with a Windows Service using ➤

Visual Basic

 How to debug a Windows Service from within Visual Studio 2010 ➤

 Modern, multitasking operating systems often need to run applications that operate in the background
and that are independent of the user who is logged in. For example, an application that provides a
service interface to obtain data needs to service external requests for data regardless of whether there
is a current user.

 Over time, the number of choices to implement application services has increased. Originally, the main
choice was Windows Services, but other choices have been added as .NET and Windows have evolved.

 using iis for aPPlicaTion serVices
 Depending on the version of Windows in use and the Windows options that have been installed, there
are multiple ways to host .NET programs in the background. Chapter 14 covered Web Services and
Windows Communication Foundation (WCF) services, both of which are examples of technologies that
can use Internet Information Services (IIS) to load programs and run them independent of the user.

 If you are using IIS 7.0 or above, you also have the option to run WCF services using the Windows
Process Activation Service (normally called WAS). This allows hosting of WCF services using
non - HTTP protocols such as TCP. As with IIS, no code needs to be written; only the proper
confi guration is necessary.

 Another option that offers more control over when and how background programs are loaded is called
Windows Services. The basic concept goes back to Windows NT, when this capability was called NT
Services, but the name was changed for Windows 2000 and later versions.

30

982 ❘ chaPTer 30 aPPliCatioN sERViCEs

WindoWs serVices
The tasks carried out by Windows Services are typically long-running tasks and have little or no direct
interaction with a user. Many of the constituent parts of Windows and other products use Windows
Services to carry out their functions. For example, some versions of Windows install an indexing service
to enable searching of the file system. IIS and SQL Server both use Windows Services for important
functionality. Such applications may be started when the computer is booted and often continue to run until
the computer is shut down.

Example scenarios for creating your own Windows Services would include programs such as the following:

 ➤ A file watcher — Suppose you are running an FTP server that enables users to place files in a
particular directory. You could use a Windows Service to monitor and process files within that
directory as they arrive. The service runs in the background and detects when files are changed or
added within the directory, and then extracts information from these files in order to process orders,
or update address and billing information. You will see an example of such a Windows Service later in
this chapter.

 ➤ An automated stock price reporter — You could build a system that extracts stock prices from a Web
service or website and then e-mails the information to users. You could set thresholds such that an
e-mail is sent only when the stock price reaches a certain price. This Windows Service can be automated
to extract the information every 10 minutes, every 10 seconds, or whatever time interval you choose.
Because a Windows Service can contain any logic that does not require a user interface, you have a lot
of flexibility in constructing such applications.

 ➤ A system activity logger — You might want to have a service that monitors a TCP channel and accepts
activity log entries. The service could then place the log entries in an appropriate location, such as a
database. Having a single service would relieve your application of the responsibility for knowing how
activity is logged. They would only need to know how to send an entry to your service.

characTerisTics of a WindoWs serVice
To properly design and develop a Windows Service, it is important to understand how it differs from a
typical Windows program. Here are the most important characteristics of a Windows Service:

It can start before a user logs on. The system maintains a list of Windows Services, which can be set ➤

to start at boot time. Services can also be installed such that they require a manual startup and will
not start at bootup.

It can run under a different account from that of the current user. Most Windows Services provide ➤

functionality that needs to be running all the time, and some load before a user logs on, so they
cannot depend on a user being logged on to run.

It has its own process. It does not run in the process of a program communicating with it. ➤

It typically has no built-in user interface. This is because the service may be running under a different ➤

account from that of the current user, or the service may start at bootup, which means that calls to
put up a user interface might fail because they are out of context.

Under certain operating systems, activities permitted in normal programs are not allowed in Windows ➤

Services. For example, you can play a sound from a Windows Service in Windows XP, but you cannot
do so in Windows Vista, Windows Server 2008, or Windows 7.

User interaction with the service is accomplished either via a built-in Windows program, the ➤ Service
Control Manager, or using a special external program you develop. Creation of such an external
program is covered in this chapter. The Service Control Manager can be accessed through the
Computer Management section of the Control Panel.

It requires a special installation procedure; just clicking on a compiled Windows service EXE will not ➤

run it. The program must run in a special context in the operating system, and a specific installation
process is required to do the configuration necessary for a Windows Service to be run in this special
context.

inTeracTing WiTh WindoWs serVices
You can view the services that are used on your computer by opening the Service Control Manager user
interface. To do so in Windows 2000, select Administrative Tools ➪ Services in the Control Panel. In
Windows XP Professional, select Start ➪ All Programs ➪ Administrative Tools ➪ Services. In Windows
Vista, select Start ➪ Control Panel ➪ System and Maintenance ➪ Administrative Tools. In Windows 7,
select Start ➪ Control Panel ➪ Administrative Tools ➪ Services.

Using the Service Control Manager, a service can be set to automatically start when the system is booted,
or it can be started manually. Services can also be stopped or paused. The list of services contained in the
Service Control Manager includes the current state for each service. Figure 30-1 shows the Service Control
Manager in Windows Vista.

figure 30-1

The Status column indicates the current state of the service. If this column is blank, then the service has not
been started since the last time the computer was booted. Other possible values for Status are Started, Stopped,
and Paused. You can access additional settings and details concerning a service by double-clicking it.

When a service is started, it automatically logs into the system using one of the following accounts:

 ➤ User account — A regular Windows account that allows the program to interact with the system; in
essence, the service impersonates a user.

 ➤ LocalSystem account — Not associated with a particular user. This built-in account has a lot of
privileges, and can roughly be thought of as the equivalent of an administrator account for services.

 ➤ LocalService account — Not associated with a particular user. This built-in account has a more
limited set of privileges, and is commonly used for routine services.

 ➤ NetworkService account — Not associated with a particular user. This built-in account is similar
to LocalService, but is designed for services that communicate across the local network rather than
working only on the local system.

interacting with Windows services ❘ 983

984 ❘ chaPTer 30 aPPliCatioN sERViCEs

The Service Control Manager shown in Figure 30-1 is part of the operating system (OS), which is what
supports Windows Services; it is not a part of the .NET Framework. Any service run by the OS is exposed
through the Service Control Manager, regardless of how the service was created or installed. You can also
examine the installed Windows Services via the Server Explorer in Visual Studio 2010.

creaTing a WindoWs serVice
Creating a Windows Service in .NET requires using several .NET classes, which provide the necessary
interface to the operating system required by a Windows Service.

The .neT framework classes for Windows services
Several base classes are needed to create a Windows Service:

 ➤ System.ServiceProcess.ServiceBase — Provides the base class for the Windows Service. The
class containing the logic that will run in the service inherits from ServiceBase. A single executable
can contain more than one service, but each service in the executable is a separate class that inherits
from ServiceBase.

 ➤ System.Configuration.Install.Installer — This is a generic class that performs the
installation chores for a variety of components. One class in a Windows Service process must inherit
and extend Installer in order to provide the interface necessary to install the service under the
various Windows operating systems.

Each class that inherits from Installer needs to contain an instance of each of the following classes:

 ➤ System.ServiceProcess.ServiceProcessInstaller — This class contains the information
needed to install a .NET executable that contains Windows Services (that is, an executable that
contains classes that inherit from ServiceBase). The .NET installation utility for Windows Services
(InstallUtil.exe, discussed later) calls this class to get the information it needs to perform the
installation.

 ➤ System.ServiceProcess.ServiceInstaller — This class also interacts with the InstallUtil
.exe installation program. Whereas ServiceProcessInstaller contains information needed
to install the executable as a whole, ServiceInstaller contains information about a specific
service in the executable. If an executable contains more than one service, then an instance of
ServiceInstaller is needed for each one.

For most Windows Services you develop, you can let Visual Studio 2010 take care of Installer,
ServiceProcessInstaller, and ServiceInstaller. You just need to set a few properties. The class
you should thoroughly understand is ServiceBase, as this is the class that contains the essential
functionality of a Windows Service.

The serviceBase Class
The ServiceBase class contains several useful properties and methods, but initially it is more important
to understand the methods that are fired by the Service Control Manager when the state of the service is
changed. Table 30-1 describes the most important of these methods.

TaBle 30-1: Important ServiceBase Events

eVenT descriPTion

OnStart Occurs when the service is started . This is where the initialization logic for a
service is usually placed .

OnStop Occurs when the service is stopped . Cleanup and shutdown logic are generally
placed here .

The events used most frequently are OnStart, OnStop, and OnCustomCommand. The OnStart and OnStop
events are used in almost every Windows service written in Visual Basic, and the OnCustomCommand is used
when any special configuration of the service is needed while the service is running.

All of these are Protected events, so they are only available to classes that inherit from the ServiceBase
class. Because of the restricted context in which it runs, a Windows Service component that inherits from
ServiceBase often lacks a public interface. While you can add public properties and methods to such a
component, they are of limited use because programs running in a normal user context cannot obtain an
object reference to running a Windows Service component, which is running in a special system context
created by the System Control Manager.

To be active as a Windows Service, an instance of the ServiceBase class must be started via the shared
Run method of the ServiceBase class. However, normally you don’t have to write code to do this because
the template code generated by a Visual Studio 2010 Windows Service project places the correct code in the
Main subroutine of the project for you.

The most commonly used property of the ServiceBase class is the AutoLog property. This Boolean
property is set to True by default. If True, then the Windows service automatically logs the Start, Stop,
Pause, and Continue events to an event log. The event log used is the Application Event Log and the Source
in the log entries is taken from the name of the Windows service. This automatic event logging is stopped by
setting the AutoLog property to False.

The following File Watcher example goes into more detail about the automatic logging capabilities in a
Windows service, and about event logs in general.

installation-oriented Classes
The Installer, ServiceProcessInstaller, and ServiceInstaller classes are quite simple to build and
use if you are employing Visual Studio 2010. After you create your Windows Service project, Visual Studio
2010 will create a class file called Service1.vb for you. To add the Installer, ServiceProcessInstaller,
and ServiceInstaller classes to your project, simply right-click the design surface of this ServiceBase
class, Service1.vb, and select Add Installer. This creates the code framework necessary to use them.

The Installer class (named ProjectInstaller.vb by default in a Windows Service project) generally
needs no interaction at all — it is ready to use when created by Visual Studio 2010. However, it may be
appropriate to change some properties of the ServiceProcessInstaller and ServiceInstaller classes.
You can do this by simply highlighting these objects on the design surface and changing their properties

eVenT descriPTion

OnPause Occurs when the service is paused . Any logic required to suspend operations
during a pause goes here .

OnContinue Occurs when a service continues after being paused .

OnShutdown Occurs when the operating system is being shut down .

OnSessionChange Occurs when a change event is received from a Terminal Session service . This
method was new in .NET Framework 2 .0 .

OnPowerEvent Occurs when the system’s power management software causes a change in the
power status of the system . This is typically used to change the behavior of a
service when a system is entering or leaving a “suspended” power mode . This is
more frequent with end users who are working on laptops .

OnCustomCommand Occurs when an external program has told the Service Control Manager that it
wants to send a command to the service . The operation of this event is covered in
“Communicating with the Service .”

Creating a Windows service ❘ 985

986 ❘ chaPTer 30 aPPliCatioN sERViCEs

directly in the Properties window of Visual Studio 2010. The properties that are typically modified for
ServiceProcessInstaller include the following:

 ➤ Account — This specifies the type of account under which the entire service application will run.
Different settings give the services in the application different levels of privilege on the local system.
For simplicity, this chapter uses the highest level of privilege, LocalSystem, for most of the examples.
If this property is set to User (which is the default), then you must supply a username and password
when the service is installed. (You’ll see more about that when InstallUtil.exe is discussed later
in the chapter.) That user’s account is used to determine privileges for the service. If there is any
possibility that a service could access system resources that should be “out of bounds,” then using the
User setting to restrict privileges is a good idea. Besides LocalSystem and User, other possible settings
for the Account property include NetworkService and LocalService.

 ➤ HelpText — This specifies information about the service that will be displayed in certain installation
options.

If the Account property is set to User, then it is good practice to set up a special user account for the service,
rather than rely on some existing account intended for a live user. The special account can be set up with
exactly the appropriate privileges for the service. This way, it is not as vulnerable to having its password or
its privileges inadvertently changed in a way that would cause problems in running the service.

For the ServiceInstaller class, the properties you might change include the following:

 ➤ DisplayName — The name of the service displayed in the Service Manager or the Server Explorer can
be different from the class name and the executable name if desired, though it is better to make this
name the same as the class name for the service.

 ➤ StartType — This specifies how the service is started. The default is Manual, which means you must
start the service yourself, as it will not start automatically after the system boots. If you want the
service to always start when the system starts, then change this property to Automatic. The Service
Manager can be used to override the StartType setting.

 ➤ ServiceName — The name of the service that this ServiceInstaller handles during installation. If
you changed the class name of the service after using the Add Installer option, then you would need to
change this property to correspond to the new name for the service.

ServiceProcessInstaller and ServiceInstaller are used as necessary during the installation process,
so there is no need to understand or manipulate the methods of these.

Multiple services within one executable
It is possible to place more than one class that inherits from the ServiceBase class in a single Windows
Service executable. Each such class then allows for a separate service that can be started, stopped, and so
on, independently of the other services in the executable.

If a Windows Service executable contains more than one service, then it must contain one ServiceInstaller
for each service. Each ServiceInstaller is configured with the information used for its associated service,
such as the displayed name and the start type (automatic or manual). However, the executable still needs only
one ServiceProcessInstaller, which works for all the services in the executable. It is configured with the
account information that is used for all the services in the executable.

The serviceController Class
Another important .NET Framework class used with Windows Services is System.ServiceProcess
.ServiceController. This class is not used when constructing a service; it is used by external applications
to communicate with a running service, enabling operations such as starting and stopping the service. The
ServiceController class is described in detail in the section “Communicating with the Service.”

other Types of Windows services
The ServiceBase and ServiceController classes can be used to create typical Windows Services that
work with high-level system resources such as the file system or performance counters. However, some
Windows Services need to interact at a deeper level. For example, a service may work at the kernel level,
fulfilling functions such as that of a device driver.

Presently, the .NET Framework classes for Windows Services cannot be used to create such lower-level services,
which rules out both Visual Basic and C# as tools to create them. C++ is typically the tool of choice for these
types of services. If the C++ is used, the code for such services would typically run in unmanaged mode.

Another type of service that cannot be created with the .NET Framework classes is one that interacts with
the Windows desktop. Again, C++ is the preferred tool for such services.

You’ll look at the types of services that are possible during the discussion of the ServiceType property of
the ServiceController class, in “Communicating with the Service.”

creaTing a WindoWs serVice in Visual Basic
Here is a high-level description of the necessary tasks to create a Windows Service. These tasks are
demonstrated later in a detailed example:

 1. Create a new project of the type Windows Service. By default, the service will be in a module
named Service1.vb, but it can be renamed, like any other .NET module. The class automatically
placed in Service1.vb is named Service1 by default, and it inherits from the ServiceBase class.

 2. Place any logic that needs to run when the service is started in the OnStart event of the service class.
You can find the code listing for the Service1.vb file by double-clicking this file’s design surface.

 3. Add any additional logic that the service needs to carry out its operation. Logic can be placed in the
class for the service, or in any other class module in the project. Such logic is typically called via some
event that is generated by the operating system and passed to the service, such as a file changing in a
directory, or a timer tick.

 4. Add an installer to the project. This module provides the interface to the Windows operating
system to install the module as a Windows Service. The installer is a class that inherits from
System.Configuration.Install.Installer, and it contains instances of the
ServiceProcessInstaller and ServiceInstaller classes.

 5. Set the properties of the installer modules as necessary. The most common settings needed are
the account under which the service will run and the name the service will display in the Service
Control Manager.

 6. Build the project. This results in an EXE file. For example, if the service were named
WindowsService1, then the executable file would be named WindowsService1.exe.

 7. Install the Windows Service with a command-line utility named InstallUtil.exe. (As previously
mentioned, a service cannot be started by just running the EXE file.)

 8. Start the Windows Service with the Service Control Manager or with the Server Explorer in Visual
Studio 2010.

You can also start a service from the command console if the proper paths to .NET are set. The command is
as follows:

NET START <servicename>

Note that the <servicename> used in this command is the name of the service, not the name of the
executable in which the service resides.

Creating a Windows service in Visual Basic ❘ 987

988 ❘ chaPTer 30 aPPliCatioN sERViCEs

 Depending on the confi guration of your system, a service started with any of the aforementioned methods
will sometimes fail, resulting in an error message indicating that the service did not start in a timely fashion.
This may be because the .NET libraries and other initialization tasks did not fi nish fast enough to suit the
Service Control Manager. If this happens, attempt to start the service again; if it has no actual defects, it
usually succeeds the second time.

 Steps 2 through 5 can be done in a different order. It doesn ’ t matter whether the
installer is added and confi gured before or after the logic that does the processing for
the service is added.

 At this point, a service is installed and running. The Service Control Manager can stop the service, or it will
be automatically stopped when the system is shut down. The command to stop the service in a command
console is as follows:

NET STOP < servicename >

 The service does not automatically start the next time the system is booted unless it is confi gured for that.
This can be done by setting the StartType property for the service to Automatic when developing the
service, or it can be done in the Service Manager. Right - clicking the service in the Service Manager provides
access to this capability.

 Developing a Windows Service project is similar to most other Visual Basic projects. There are a few
important differences, however:

 You cannot debug the project in the environment as you normally would with any other Visual Basic ➤

program. The service must be installed and started before it can be debugged. It is also necessary to
attach to the process for the service to do debugging. Details about this are included in the section
 “ Debugging the Service. ”

 Even though the result of the development is an EXE, you should not include any message boxes or ➤

other visual elements in the code. The Windows Service executable is more like a component library
in that sense, and should not have a visual interface. If you include visual elements such as message
boxes, the results can vary. In some cases, the UI code will have no effect. In other cases, the service
may hang when attempting to write to the user interface.

 Finally, be especially careful to handle all errors within the program. The program is not running ➤

in a user context, so a runtime error has no place to report itself visually. Handle all errors with
structured exception handling, and use an Event Log or other offl ine means to record and
communicate runtime errors.

 creaTing a file WaTcher serVice
 To illustrate the outlined steps, the following example monitors a particular directory and reacts when a
new or changed fi le is placed in the directory. The example Windows Service application waits for those
fi les, extracts information from them, and then logs an event to a system log to record the fi le change.

 creating a solution for the Windows service
 First, you need an appropriate solution in place to hold the Windows Service. To do so, follow these steps:

 1. Create a new Windows Service project using Visual Studio 2010. Name the project FileWatcherService .

 2. In the Solution Explorer, rename Service1.vb to FileWatcherService.vb .

 3. Click the design surface for FileWatcherService.vb . In the Properties window, change the ServiceName
property from Service1 to FileWatcherService . The earlier rename in step 2 changes the name of the

class on which the service is based, while the ServiceName property changes the name of the service as
known to the Service Control Manager.

 4. Add an installer to the project. Go back to the design surface for FileWatcherService and right-click
it. Select Add Installer. A new file called ProjectInstaller1.vb is created and added to the
project. The ProjectInstaller1.vb file has two components added to its design surface:
ServiceProcessInstaller1 and ServiceInstaller1.

 5. On the ProjectInstaller.vb design surface, highlight the ServiceProcessInstaller1 control. In
its Properties window, change the Account property to LocalSystem.

 6. Highlight the ServiceInstaller1 control. In its Properties window, type in FileWatcherService as the
value of the DisplayName property. (The ServiceName property will already have this value.)

 7. Build the project by right-clicking on the solution and selecting Build from the menu. An EXE named
FileWatcherService.exe will be created for the service.

At this point, you have a Windows Service that is compiled and ready to be installed, but it doesn’t do
anything yet. The preceding steps are very similar for every Windows Service you would create; the main
points that vary are the name and the type of account you choose to use. The next part, however, is specific
to a particular Windows Service: creating the application logic to support the functionality you need in the
Windows Service.

adding .neT components to the service
This example service will have the capability to watch a directory for file changes and log events to report its
activity. Two .NET components will facilitate these capabilities: the FileSystemWatcher component and
the EventLog component.

The filesystemWatcher Component
The FileSystemWatcher component is used to monitor a particular directory. The component implements
Created, Changed, Deleted, and Renamed events, which are fired when files are placed in the directory,
changed, deleted, or renamed, respectively.

The operation that takes place when one of these events is fired is determined by the application developer.
Most often, logic is included to read and process the new or changed files. However, you are just going to
write a message to a log file.

To implement the component in the project, drag and drop a FileSystemWatcher control from the
Components tab of the Toolbox onto the design surface of FileWatcherService.vb. (Be sure not to
drag the component onto ProjectInstaller.vb. If ProjectInstaller.vb is still the displayed design
surface, you’ll need to click on the tab for the FileWatcherService.vb design surface.) This control is
automatically called FileSystemWatcher1.

The enableraisingevents Property
The FileSystemWatcher component should not generate any events until the service is initialized and
ready to handle them. To prevent this, set the EnableRaisingEvents property of FileSystemWatcher1
to False. This prevents the component from firing any events. You will enable it during the OnStart
event in the service. These events fired by the FileSystemWatcher component are controlled using the
NotifyFilter property, discussed later.

The Path Property
The path that you want to monitor is the TEMP directory on the C: drive, so set the Path property to
C:\TEMP (be sure to confirm that there is a TEMP directory on your C: drive). Of course, this path can be
changed to monitor any directory depending on your system, including any network or removable drives.

Creating a file Watcher service ❘ 989

990 ❘ chaPTer 30 aPPliCatioN sERViCEs

The notifyfilter Property
For this example, you only want to monitor when a file is freshly created or the last modified value of a
file has changed. To do this, set the NotifyFilter property to FileName, LastWrite. Note that you can
specify multiple changes to monitor by including a comma-separated list. Even though the property has a
drop-down, you’ll need to type in the value to get both parts of it.

You could also watch for other changes such as attributes, security, size, and directory name changes as
well, just by including those options as part of the NotifyFilter property.

The filter Property
The types of files that you will look for are text files, so set the Filter property to *.txt. Note that if you
were going to watch for all file types, then the value of the Filter property would be set to *.* (which is
the default).

The includesubdirectories Property
If you wanted to watch subdirectories, you would set the
IncludeSubdirectories property to True. This example leaves
it as False, which is the default value. Figure 30-2 shows how the
properties should be set.

adding filesystemWatcher Code to onstart and onstop
Now that some properties are set, let’s add some code to the
OnStart event for FileWatcherService.vb. You want to start
the FileSystemWatcher1 component so it will start triggering
events when files are created or copied into the directory you are
monitoring, so set the EnableRaisingEvents property to True:

Protected Overrides Sub OnStart(ByVal args() As String)
 ' Add code here to start your service. This method should set things
 ' in motion so your service can do its work.
 ' Start monitoring for files
 FileSystemWatcher1.EnableRaisingEvents = True
End Sub

Code snippet from FileWatcherService

After the file monitoring properties are initialized, you are ready to start the monitoring. When the service
stops, you need to stop the file monitoring process. Add the following code to the OnStop event:

Protected Overrides Sub OnStop()
 ' Add code here to perform any tear-down necessary to stop your service.
 ' Stop monitoring for files
 FileSystemWatcher1.EnableRaisingEvents = False
End Sub

Code snippet from FileWatcherService

The eventlog Component
Now you are ready to place an EventLog component in the service to facilitate the logging of events. Event
logs are available under the Windows operating system, and were discussed in Chapter 6. As with many
other system-level features, the use of Event Logs is simplified in .NET because a .NET Framework base
class does most of the work for you.

figure 30-2

Depending on your system’s configuration and installed software, there should be several Event Logs on
the system. Normally, your applications should only write to the Application Log. A property of a log entry
called Source identifies the application writing the message. This property does not have to share the same
name as the executable of the application, but it is often given that name to make it easy to identify the
source of the message.

You can look at the events in the Event Log by using the Event Viewer. Select Control Panel ➪ Administrative
Tools ➪ Event Viewer on Windows 2000; Start ➪ All Programs ➪ Administrative Tools ➪ Event Viewer
on Windows XP; and Start ➪ Control Panel ➪ System and Maintenance ➪ Administrative Tools ➪ Event
Viewer on Windows Vista and Windows 7. The example uses the Event Viewer to ensure that the service is
generating events.

It was mentioned earlier in the chapter that the AutoLog property of the ServiceBase class determines
whether the service automatically writes events to the Application Log. The AutoLog property instructs the
service to use the Application event log to report command failures, as well as information for OnStart,
OnStop, OnPause, and OnContinue events on the service. What is actually logged to the event log is an
entry indicating whether the service started successfully and stopped successfully, and any errors that might
have occurred.

You can turn off event log reporting by setting the AutoLog property to False in the Properties window for
the service, but leave it set to True for this example. That means some events will be logged automatically
(without you including any code for them). If desired, you can add some code to the service to log additional
events not covered by the AutoLog property.

Drag and drop an EventLog control from the Components tab of the Toolbox onto the designer surface of
FileWatcherService.vb. This control is automatically called EventLog1.

Set the Log property for Eventlog1 to Application, and set the Source property to FileWatcherService.

The Created event
Next, you will place some logic in the Created event of the FileSystemWatcher component to log when
a file has been created. This event fires when a file has been placed or created in the directory that you are
monitoring. It fires because the information last modified on the file has changed.

Bring up FileSystemWatcher1.vb in the code editor. Select FileSystemWatcher1 from the left hand
drop-down list and then select Created from the right hand drop-down list. The Created event will be
added to your code. Add code to the Created event as follows:

Public Sub FileSystemWatcher1_Created(ByVal sender As Object, _
 ByVal e As System.IO.FileSystemEventArgs) _
 Handles FileSystemWatcher1.Created
 Dim sMessage As String
 sMessage = "File created in directory - file name is " + e.Name
 EventLog1.WriteEntry(sMessage)
End Sub

Code snippet from FileWatcherService

Notice that the event argument’s object (the object named “e” in the event parameters) includes a property
called Name. This property holds the name of the file that generated the event.

At this point, you could add the other events for FileSystemWatcher (Changed, Deleted, Renamed) in a
similar way and create corresponding log messages for those events. To keep the example simple, you will
just use the Created event in this service.

Build the service again to compile the new functionality. You are now ready to install the service and test it.

Creating a file Watcher service ❘ 991

992 ❘ chaPTer 30 aPPliCatioN sERViCEs

 installing the service
 The utility for installing the service, InstallUtil.exe , must be run from a command line. InstallUtil
.exe is located in the .NET utilities directory, found at C:\WINNT\Microsoft.NET\Framework\
v4.0.xxxxx on Windows 2000 and NT systems, or C:\Windows\Microsoft.NET\Framework\
v4.0.xxxxx on Windows XP, Windows Vista, Windows 7, Windows Server 2003, and Windows Server
2008 (“ xxxxx ” is a placeholder for the version number of the .NET Framework you have installed).

 You ’ ll need a command window to access this utility. It is available by choosing Microsoft Visual Studio
2010 ➪ Visual Studio Tools ➪ Visual Studio Command Prompt (2010). Depending on your security
settings, you may wish to right - click on the link for the command window, and select Run as Administrator.

 In the command window, change to the directory that contains FileWatcherService.exe . By default,
when using Visual Studio 2010, you ’ ll fi nd this executable at C:\Users\[user]\ Documents\Visual
Studio 2010\\Projects\FileWatcherService\ FileWatcherService\obj\Debug if you are currently
using a Debug confi guration in Visual Studio, or in C:\Users\[user]\ Documents\Visual Studio
2010\\Projects\FileWatcherService\ FileWatcherService\obj\Release if you are currently using
the Release confi guration. Once found, run the following command:

InstallUtil FileWatcherService.exe

 Check the messages generated by InstallUtil.exe to ensure that installation of the service was successful.
The utility generates several lines of information; if successful, the last two lines are as follows:

The Commit phase completed successfully.
The transacted install has completed.

 If the preceding two lines do not appear, then you need to read all the information generated by the
utility to fi nd out why the install didn ’ t work. Reasons might include a bad pathname for the executable,
or trying to install the service when it is already installed (it must be uninstalled before it can be reinstalled;
the uninstall process is described later). Also, if you did not select Run as Administrator for the command
window, you may get an error relating to insuffi cient security privileges.

 If your service has the Account property of the ServiceProcessInstaller set to
 User, you will need to arrange for a user name and password during installation. The
user name and password to use are passed as parameters in the InstallUtil command.
The InstallContext class is then used in code inside your ServiceProcessInstaller
to set the UserName and Password properties. The documentation for the
InstallContext class includes an example.

 starting the service
 Later in this chapter, you will create your own “ control panel ” screen to start and stop the service. For now,
to test the new Windows service, you will use the Service Control Manager built into Windows to start the
FileWatcherService service. It was shown previously in Figure 30 - 1. Open the Service Control Manager and
locate the FileWatcherService service. If you already had the Service Control Manager open, you ’ ll need to
refresh it after installing the FileWatcherService.

 If the FileWatcherService service does not appear in the list, then the installation failed. Try the installation
again and check the error messages. Right - click the FileWatcherService service and select the Start menu option.

 To test the service, copy or create a .TXT fi le in the C:/TEMP directory (or any other directory you decided
to use). You should be able to see a corresponding event in the event log for your machine, using the Event
Viewer as described earlier.

 Figure 30 - 3 shows the Event Viewer with several example messages created by the service. If you right - click
one of the events for FileWatcherService, you will see a detail screen. Notice that the message corresponds
to the event log message you constructed in the Created event of the FileSystemWatcher control in the
service, as shown in Figure 30 - 4.

 uninstalling the service
 Uninstalling the service is very similar to installing
it. The service must be in a stopped state before it
can be uninstalled, but the uninstall operation will
attempt to stop the service if it is running. The
uninstall operation is done in the same command
window as the install operation, and the command
used is the same as the one for installation, except
that the option /u is included just before the name
of the service. Remember that you need to navigate
to C:\Users\[user]\Documents\Visual
Studio 2010\Projects\ FileWatcherService\
FileWatcherService\obj\Debug (or the
equivalent Release directory, depending on your
current confi guration) to run this command:

InstallUtil.exe /u FileWatcherService.exe

 You can tell that the uninstall was successful if the
information displayed by the utility contains the following line:

Service FileWatcherService was successfully removed from the system.

 If the uninstall is not successful, then read the rest of the information to determine why. Besides typing in
the wrong pathname, another common reason for failure is trying to uninstall a service that is in a running
state and could not be stopped in a timely fashion.

 Once you have uninstalled FileWatcherService, it will no longer show up in the list of available services to
start and stop (at least, after a refresh it won ’ t).

 figure 30 - 3

 figure 30 - 4

 A Windows Service must be uninstalled and reinstalled every time you make changes
to it.

Creating a file Watcher service ❘ 993

994 ❘ chaPTer 30 aPPliCatioN sERViCEs

communicaTing WiTh The serVice
Up to this point, you have learned how to do the following:

Create a Windows service using Visual Basic ➤

Start and stop a service with the Service Control Manager from the Control Panel ➤

Make a service work with a system-level function such as a FileSystemWatcher ➤

If these procedures are sufficient to start, stop, and check on the service through the Server Explorer or the
Service Control Manager, and there is no need for any other communication with the service, then this is all
you have to do. However, it is often helpful to create a specialized application to manipulate your service.
This application will typically be able to start and stop a service, and check on its status. The application
may also need to communicate with the service to change its configuration. Such an application is often
referred to as a control panel for the service, even though it does not necessarily reside in the operating
system’s Control Panel. A commonly used example of such an application is the SQL Server Service Manager,
whose icon appears in the tray on the taskbar (normally in the lower-right section of the screen) if you have
SQL Server installed.

Such an application needs a way to communicate with the service. The .NET Framework base class that is
used for such communication is ServiceController. It is in the System.ServiceProcess namespace. You
need to add a reference to System.ServiceProcess.dll (which contains this namespace) before a project
can use the ServiceController class.

The ServiceController class provides an interface to the Service Control Manager, which coordinates
all communication with Windows Services. However, you do not have to know anything about the Service
Control Manager to use the ServiceController class. You just manipulate the properties and methods
of the ServiceController class, and any necessary communication with the Service Control Manager is
accomplished on your behalf behind the scenes.

Because multiple instances of ServiceController that are communicating with the same service can have
timing conflicts, it is a good idea to use exactly one instance of the ServiceController class for each
service you are controlling. Typically, that means using a module-level object variable to hold the reference
to the active ServiceController, and instantiating the ServiceController during the initialization logic
for the application. The following example uses this technique.

The servicecontroller class
The constructor for the ServiceController requires the name of the Windows Service with which it will
be communicating. This is the same name that was placed in the ServiceName property of the class that
defined the service. You will see how to instantiate the ServiceController class shortly.

The ServiceController class has several members that are useful in manipulating services. Table 30-2
describes the most important methods, followed by the most important properties in Table 30-3.

TaBle 30-2: Important ServiceController Methods

meThod descriPTion

Start A method to start the service

Stop A method to stop the service

Refresh A method to ensure that the ServiceController object contains the latest state of
the service (needed because the service might be manipulated from another program)

ExecuteCommand A method used to send a custom command to the service . This method is covered later
in the section “Custom Commands .”

integrating a servicecontroller into the example
To manipulate the service, you need to create a program with an appropriate user interface. For
simplicity, the example presented will use Windows Forms. Here are step-by-step instructions to create
the example:

 1. Create a new Windows Forms Application program and name it FileWatcherPanel.

 2. Add three new buttons to the blank Form1 form, with the following names and text labels:

TaBle 30-3: Important ServiceController Properties

ProPerTy descriPTion

CanStop A property indicating whether the service can be stopped

ServiceName A property containing the name of the associated service

Status An enumerated property that indicates whether a service is stopped, started, in the
process of being started, and so on . The ToString method on this property is useful
for getting the status in a string form for text messages . The possible values of the
enumeration are as follows:

ContinuePending — The service is attempting to continue .

Paused — The service is paused .

PausePending — The service is attempting to go into a paused state .

Running — The service is running .

StartPending — The service is starting .

Stopped — The service is not running .

StopPending — The service is stopping .

ServiceType A property that indicates the type of service . The result is an enumerated value . The
enumerations are as follows:

Win32OwnProcess — The service uses its own process (this is the default for a
service created in .NET) .

Win32ShareProcess — The service shares a process with another service (this
advanced capability is not covered here) .

Adapter, FileSystemDriver, InteractiveProcess, KernelDriver,
RecognizerDriver — These are low-level service types that cannot be created
with Visual Basic because the ServiceBase class does not support them . However,
the value of the ServiceType property may still have these values for services
created with other tools .

name TexT

BtnCheckStatus Check Status

BtnStartService Start Service

BtnStopService Stop Service

 3. Add a reference to the DLL that contains the ServiceController class: Select Project ➪ Add
Reference. On the .NET tab, highlight the System.ServiceProcess option and click OK.

 4. Add this line at the top of the code for Form1:
Imports System.ServiceProcess

Communicating with the service ❘ 995

996 ❘ chaPTer 30 aPPliCatioN sERViCEs

 5. As discussed, the project needs only one instance of the ServiceController class. Create a module-
level object reference to a ServiceController class by adding the following line of code within the
Form1 class:

Private myController As ServiceController

 6. Create a Form Load event in Form1, and place the following line of code in it to instantiate the
ServiceController class:

myController = New ServiceController("FileWatcherService")

You now have a ServiceController class named myController that you can use to manipulate the
FileWatcherService Windows service. In the click event for btnCheckStatus, place the following code:

Dim sStatus As String
myController.Refresh()
sStatus = myController.Status.ToString
MsgBox(myController.ServiceName & " is in state: " & sStatus)

Code snippet from FileWatcherPanel

In the click event for btnStartService, place this code:

Try
 myController.Start()
Catch exp As Exception
 MsgBox("Could not start service or the service is already running")
End Try

Code snippet from FileWatcherPanel

In the click event for btnStopService, place this code:

If myController.CanStop Then
 myController.Stop()
Else
 MsgBox("Service cannot be stopped or the service is already stopped")
End If

Code snippet from FileWatcherPanel

Run and test the program. The service may already be running because of one of your previous tests. You
may need to copy or create some text files in your watched directory to see if the service is running. If your
program cannot stop or start the service, your user account may not have sufficient security privileges, so
you may need to start Visual Studio 2010 with Run as Administrator.

more about servicecontroller
ServiceController classes can be created for any Windows service, not just those created in .NET. For
example, you could instantiate a ServiceController class that was associated with the Windows Service for
Internet Information Services (IIS) and use it to start, pause, and stop IIS. The code would look just like the
code used earlier for the application that controlled the FileWatcherService service. The only difference is that
the name of the service would need to be changed in the line that instantiates the ServiceController (step 6).

Keep in mind that the ServiceController is not communicating directly with the service. It is working
through the Service Control Manager. That means the requests from the ServiceController to start, stop,
or pause a service do not behave synchronously. As soon as the ServiceController has passed the request
to the Services Control Manager, it continues to execute its own code without waiting for the Service
Control Manager to pass on the request, or for the service to act on the request.

cusTom commands
Some services need additional operations besides starting and stopping. For example, for the FileWatcherService,
you might want to support multiple file extensions, using a different FileSystemWatcher component for each.

With most components, you would implement such functionality through a public interface. That is, you
would put public properties and methods on the component. However, you cannot do this with a Windows
Service because it has no public interface that you can access from outside the service.

To deal with this need, the interface for a Windows Service contains a special event called
OnCustomCommand. The event arguments include a numeric code that can serve as a command sent to
the Windows Service. The code can be any number in the range 128 to 255. (The numbers under 128 are
reserved for use by the operating system.)

To fire the event and send a custom command to a service, the ExecuteCommand method of the
ServiceController is used. The ExecuteCommand method takes the numeric code that needs to be sent
to the service as a parameter. When this method is accessed, the ServiceController class tells the Service
Control Manager to fire the OnCustomCommand event in the service, and to pass it the numeric code.

The next example demonstrates this process in action. Suppose you want to be able to change the file filter
being used for the FileWatcherService service. You cannot directly send the filter that you want, but you can
pick various values of the filter, and associate a custom command numeric code with each.

For example, assume you want to be able to set filters of *.txt, *.dat, or *.docx. You could set up the
following correspondence:

cusTom command numeric code filTer for filesysTemWaTcher

201 * .txt

203 * .docx

210 * .dat

The correspondences in the table are completely arbitrary. You could use any codes between 128 and 255 to
associate with the filters. These were chosen because they are easy to remember.

First, you need to change the FileWatcherService service so that it is able to accept the custom commands for
the beep interval. To do that, first make sure the FileWatcherService service is uninstalled from any previous
installs. Then open the Visual Studio 2010 project for the FileWatcherService service.

Create an OnCustomCommand event in the service: Open the code window for FileWatcherService.vb and
type Protected Overrides OnCustomCommand. By this point, IntelliSense will kick in and you can press the
Tab key to autocomplete the shell event. Notice how it only accepts a single Integer as a parameter:

Protected Overrides Sub OnCustomCommand(ByVal command As Integer)
 MyBase.OnCustomCommand(command)
End Sub

In the OnCustomCommand event handler, replace the single line that was generated automatically (the one
beginning with MyBase) with the following code:

 Select Case command
 Case 201
 FileSystemWatcher1.Filter = "*.txt"
 Case 203
 FileSystemWatcher1.Filter = "*.docx"
 Case 210
 FileSystemWatcher1.Filter = "*.dat"
 End Select

Code snippet from FileWatcherService

Custom Commands ❘ 997

998 ❘ chaPTer 30 aPPliCatioN sERViCEs

 Build the FileWatcherService service, reinstall it, and start it.

 Now you can enhance the FileWatcherPanel application created earlier to set the fi lter. To enable users to
select the fi le fi lter, you will use radio buttons. On the FileWatcherPanel program Form1 (which currently
contains three buttons), place three radio buttons. Set their text labels as follows:

RadioButton1 - TXT files
RadioButton2 - DOCX files
RadioButton3 - DAT files

 Place a button directly under these option buttons. Name it btnSetFilter and set its text to Set Filter. In
the click event for this button, place the following code:

 Dim nFilterCommand As Integer = 201
 If RadioButton1.Checked Then
 nFilterCommand = 201
 End If
 If RadioButton2.Checked Then
 nFilterCommand = 203
 End If
 If RadioButton3.Checked Then
 nFilterCommand = 210
 End If
 myController.ExecuteCommand(nFilterCommand)

 Code snippet from FileWatcherPanel

 At this point, Form1 should look something like the screen shown in
Figure 30 - 5.

 Start the FileWatcherPanel control program and test the capability to
change the fi lter by adding different fi le types with each fi lter setting
and examining the resulting logged events.

 Passing sTrings To a serVice
 Because the OnCustomCommand event only takes numeric codes as input
parameters, you cannot directly pass strings to the service. For example,
if you wanted to reconfi gure a directory name for a service, you could
not just send the directory name over. Instead, it would be necessary to
place the information to be passed to the service in a fi le in some known location on disk. Then a custom
command for the service could instruct it to look at the standard fi le location and read the information in
the fi le. What the service did with the contents of the fi le would, of course, be customized for the service.

 deBugging The serVice
 Because a service must be run from within the context of the Service Control Manager, rather than from
within Visual Studio 2010, debugging a service is not as straightforward as debugging other Visual Studio
2010 application types. To debug a service, you must start the service and then attach a debugger to the
process in which it is running. You can then debug the application using all of the standard debugging
functionality of Visual Studio 2010.

 figure 30 - 5

 Don ’ t attach to a process unless you know what the process is and understand the
 consequences of attaching to and possibly killing that process.

To avoid going through this extra effort, you may want to test most of the code in your service in a standard
Windows Forms application. This test-bed application can have the same components (FileSystemWatchers,
EventLogs, Timers, and so on) as the Windows Service, and thus will be able to run the same logic in events.
Once you have checked out the logic in this context, you can just copy and paste it into a Windows Service
application.

However, sometimes the service itself needs to be debugged directly, so it is important to understand how
to attach to the service’s process and do direct debugging. You can only debug a service when it is running.
When you attach the debugger to the service, you are interrupting it. The service is suspended for a short
period while you attach to it. It is also interrupted when you place breakpoints and step through your code.

Attaching to the service’s process enables you to debug most, but not all, of the service’s code. For instance,
because the service has already been started, you cannot debug the code in the service’s OnStart method
this way, or the code in the Main method that is used to load the service. To debug the OnStart event or any
of the Visual Studio 2010 designer code, you have to add a dummy service and start that service first. In the
dummy service, you would create an instance of the service that you want to debug. You can place some
code in a Timer object and create the new instance of the object that you want to debug after 30 seconds
or so. Allow enough time to attach to the debugger before the new instance is created. Meanwhile, place
breakpoints in your startup code to debug those events, if desired.

Follow these steps to debug a service:

 1. Install the service.

 2. Start the service, either from the Service Control Manager or from code.

 3. In Visual Studio 2010, load the solution for the service. Then select Attach to Process from the Debug
menu. The Attach to Process dialog appears (see Figure 30-6).

figure 30-6

 4. For a Windows Service, the desired process to attach to is not a foreground process; be sure to enable
the check boxes next to the “Show processes from all users” and “Show processes in all sessions”
options.

Debugging the service ❘ 999

1000 ❘ chaPTer 30 aPPliCatioN sERViCEs

 5. In the Available Processes section, click the process indicated by the executable name for the service,
and then click Attach.

 6. You can now debug your process. Place a breakpoint in the code for the service at the place you want to
debug. Cause the code in the service to execute (by placing a file in a monitored directory, for example).

 7. When finished, select Stop Debugging from the Debug menu.

Let’s go through an actual scenario, using your earlier FileWatcherService example. Bring up both the
FileWatcherService project and the FileWatcherPanel project in separate instances of the Visual Studio 2010
IDE. Make sure that the FileWatcherService service has been started.

In the FileWatcherService project, select Debug ➪ Attach to Processes; you will get a dialog similar to the
one shown in Figure 30-6. Check the boxes for “Show processes from all users” and “Show processes
in all sessions.” This will expand the list of processes, and one of the processes in the list will be
FileWatcherService.exe. Highlight it and click Attach. You are now attached to the process running
FileWatcherService in the background.

Place a breakpoint on the first line of the OnCustomCommand event:

Select Case command

Now you are ready to check debugging. Bring up the FileWatcherPanel program and start it. Press one of
the radio buttons to change the watched file extension. Switch back to the FileWatcherService project. The
cursor will be on the breakpoint line in OnCustomCommand. You can use the normal commands at this point
to step through the code.

summary
This chapter presented a general overview of what a Windows Service is and how to create one with Visual
Basic. The techniques in this chapter can be used for many different types of background service, including
the following:

Automatically moving statistical files from a database server to a Web server ➤

Pushing general files across computers and platforms ➤

A watchdog timer to ensure that a connection is always available ➤

An application to move and process FTP files, or indeed files received from any source ➤

While Visual Basic cannot be used to create every type of Windows Service, it is effective for creating many
of the most useful ones. The .NET Framework classes for Windows Services make this creation relatively
straightforward. The designers generate much of the routine code needed, enabling you, as a developer, to
concentrate on the code specific to your particular Windows Service.

31
 assemblies and refl ection

 WhaT you Will learn in This chaPTer

 What assemblies are and how they are used ➤

 The general structure of an assembly ➤

 How assemblies can be versioned ➤

 The global assembly cache (GAC), including how and when to use it ➤

 How assemblies are located and loaded by the CLR ➤

 Using refl ection to inspect assemblies in order to determine the types they ➤

contain and the interfaces of those types

 Dynamic loading of assemblies, allowing your application to inject ➤

functionality that was not available at compile time

 By now, you ’ ve probably developed some programs in .NET, so you ’ ve seen the modules produced
by the .NET compilers, which have fi le extensions of .dll or .exe . Most .NET modules are DLLs,
including class libraries and those that serve as code - behind for ASP.NET. Windows applications,
console applications, and Windows Services are examples of .NET modules that are executables and
thus have an extension of .exe .

 These .NET - compiled modules, both DLLs and EXEs, are referred to as assemblies . Assemblies are
the unit of deployment in .NET, containing both compiled code and metadata that is needed by the
.NET common language runtime (CLR) to run the code. Metadata includes information such as
the code ’ s identity and version, dependencies on other assemblies, and a list of types and resources
exposed by the assembly.

 Basic development in .NET doesn ’ t require you to know any more than that. However, as your
applications become more complex, and as you begin considering such issues as deployment and
maintenance of your code, you need to understand more about assemblies. For advanced scenarios,
you ’ ll also need to know how to inspect assemblies to fi nd out the types they contain and the interfaces
of those types. This inspection capability is known as refl ection .

 After you are familiar with these essentials, Chapter 34 uses this information to discuss deployment
in depth.

1002 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

assemBlies
The assembly is used by the CLR as the smallest unit for the following:

Deployment ➤

Version control ➤

Security ➤

Type grouping ➤

Code reuse ➤

An assembly must contain a manifest, which tells the CLR what else is in the assembly. The other elements
can be any of the following three categories:

Type metadata ➤

Microsoft Intermediate Language (MSIL) code ➤

Resources ➤

An assembly can be just one file. Figure 31-1 details the contents of a single-file assembly.

Alternatively, the structure can be split across multiple files, as shown in Figure 31-2. This is just one
example of a multiple-file assembly configuration.

Assembly.dll

Manifest

Type Metadata

MSIL Code

Resources

figure 31-1

Assembly.dll AssemblyRes.dll

Manifest Resources

Type Metadata

MSIL Code

figure 31-2

An assembly can only have one manifest section across all the files that make up the assembly. There is
nothing stopping you, however, from having a resource section (or any of the other available section types,
such as Metadata and MSIL code) in each of the files that make up an assembly.

The manifesT
The manifest is the part of the assembly that contains a list of the other elements contained in the
assembly and basic identification information for the assembly. The manifest contains the largest part of
the information that enables the assembly to be self-describing. Elements listed in the manifest are placed

in appropriate sections. The manifest includes the sections
displayed in Figure 31-3. These sections are covered later in the
chapter.

To look at the manifest for a particular assembly, you can use
the IL Disassembler (Ildasm.exe), which is included with the
Windows SDK installed with Visual Studio 2010. The version
of Ildasm.exe in the SDK for .NET Framework 4 can examine
assemblies created with earlier versions of the .NET Framework.
A shortcut to ildasm.exe is included on the Start menu in
All Programs ➪ Microsoft Visual Studio 2010 ➪ Microsoft
Windows SDK Tools, and it is named IL Disassembler.

When Ildasm.exe loads, you can browse for an assembly
to view by selecting File ➪ Open. Once an assembly has
been loaded into Ildasm.exe, it disassembles the metadata
contained within the assembly and presents you with a tree-
view layout of the data. Initially, the tree view shows only top-
level elements, as illustrated in Figure 31-4. This example
has only one namespace element in the tree, but if an assembly
contains classes in more than one namespace, then additional
elements will be shown.

The full path of the assembly you are viewing represents the root node. The first node below the root is
called MANIFEST; and as you’ve probably guessed, it contains all the information about the assembly’s
manifest. If you double-click this node, a new window is displayed with the information contained within
the manifest. The manifest for a complex assembly can be rather long. For our example, three sections of
a manifest are shown in Figures 31-5, 31-6, and 31-7. Figure 31-5 shows the top of the manifest, which
contains the external references needed by this assembly, such as other .NET assemblies on which this
assembly depends. If the assembly depends on COM libraries, those will be shown as external modules and
listed before the external assemblies.

Identity Culture
(Optional)

Version

Strong Name
(Optional)

File List
(Optional)

Referenced
Assemblies

Custom
Assembly
Attributes
(Optional)

Description

...

Name

figure 31-3

figure 31-4 figure 31-5

The Manifest ❘ 1003

Figure 31-6 shows a portion of the manifest further down, containing the beginning of the section for the
actual assembly. The first items listed in the manifest for the assembly itself are the attributes that apply to
the assembly.

Further down are items such as resources that reside in the assembly. Figure 31-7 shows a bitmap named
checkmark8.bmp that is used by this particular assembly.

1004 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

figure 31-6 figure 31-7

assembly identity
The manifest for an assembly also contains information used to uniquely identify the assembly. This section
contains some standard information, such as the version number, and may also contain some optional
elements, such as a strong name for the assembly. Assemblies come in two types: application-private and shared
(differences between the two types are covered shortly), and they have slightly different identity information.

The Version number
The manifest for an assembly contains a version number, which is indicated by the .ver directive in
Ildasm.exe. Figure 31-7, shown earlier, includes a .ver directive on the following line in the .assembly
section:

.ver 1.0.2473.30111

A version number contains four parts:

Major : Minor : Build : Revision

Assemblies that have the same name but different version numbers are treated as completely different
assemblies. If you have an assembly on your machine that has a version number of 1.5.2.3 and another version
of the same assembly with a version number of 1.6.0.1, then the CLR treats them as different assemblies. The
version number of an assembly is part of what is used to define dependencies between assemblies.

strong names
The manifest can also contain an optional strong name for an assembly. The strong name is not a name per
se, but a public key that has been generated by the author of the assembly to uniquely identify it. A strong
name is used to ensure that your assembly has a unique signature compared to other assemblies that may
have the same name. Strong names were introduced to combat DLL hell by providing an unambiguous way
to differentiate among assemblies.

A strong name is based on public-private key encryption and creates a unique identity for your assembly.
The public key is stored in the identity section of the manifest. A signature of the file containing the
assembly’s manifest is created and stored in the resulting EXE or DLL file. The .NET Framework uses these
two signatures when resolving type references to ensure that the correct assembly is loaded at runtime.
A strong name is indicated in the manifest by the .publickey directive in the .assembly section.

signing an assembly with a strong name
As mentioned above, applying a strong name to an assembly is based on public-private key encryption. The
public and private keys are related, and a set is called a public-private key pair. Applying a strong name to
an assembly is usually called signing the assembly with the strong name.

Visual Studio 2010 gives you a straightforward way to sign an assembly. The project’s Properties page
(accessed by right-clicking on a project and choosing Properties) contains a Signing tab. You simply check
the CheckBox labeled “Sign the assembly” and then specify a key pair file. The drop down for the strong
name key file allows you to browse for a key pair file, or create a new one.

You can also control the signing process manually. You can create a key pair with the sn.exe utility, which
is also in the Windows SDK installed with Visual Studio 2010. Here’s the syntax for using sn.exe to create
a key pair:

sn -k pairname.snk

You should replace pairname with an appropriate name, often the name of your product or system. The
same key pair can be used to apply a strong name to all the assemblies in your system.

Once you have a key pair, you need to add it to any projects in Visual Studio that need to generate a strongly
named assembly. To do that, just select Project ➪ Add Existing Item, and browse to the key pair.

The final step is to change the module AssemblyInfo.vb to apply the strong name. AssemblyInfo.vb was
automatically created when your project was created, and is under the My Project area in the Solution Explorer. If
you can’t see a plus sign to expand My Project, press the Show All Files button at the top of the Solution Explorer.

In AssemblyInfo.vb, insert a line that looks like this:

<Assembly: AssemblyKeyFile("pairname.snk")>

Again, you should replace pairname with the name you actually used for the key pair file earlier. The next
time your project is built, the resulting assembly will have a strong name, generated by using the key pair
you have indicated.

You can also sign an assembly with a strong name by compiling at the command line. This might be the
case if you want to sign the assembly outside of Visual Studio. A typical command line to compile and sign a
Visual Basic assembly looks like this:

vbc /reference:Microsoft.VisualBasic.dll /reference:System.Windows.Forms.dll
/target:library /keyfile:c:\mykeys\keypair.snk /out:MyAssembly.dll
/rootnamespace:MyAssembly *.vb

The separate elements of the command line have been placed on different lines for ease of reading, but they
should all be on the same line in actual use. The preceding is just a template. You would need to change the
/reference options to include any references needed by your assembly. You would also need to specify
the correct file path for your own key pair file (.snk file) and apply your assembly and root namespace names.

Finally, strong names can be applied with a technique called delay signing. That’s a topic beyond the scope
of this chapter, but the Visual Studio help files include step-by-step instructions. Delayed signing is helpful
when assemblies need to be properly strongly named during development (so that any problems with strong
names are detected at that point), but it is undesirable for all the developers to have a copy of the key pair
that will be used for signing the final compiled version of the assembly.

The Culture
The final part of an assembly’s identity is its culture, which is optional. Cultures are used to define the
country/language for which the assembly is targeted.

The combination of name, strong name, version number, and culture is used by the CLR to enforce version
dependencies. For example, you could create one version of your assembly targeted at English users, another
for German users, another for Finnish users, and so on.

Cultures can be general, as in the case of English, or more specific, as in the case of US-English. Cultures
are represented by a string that can contain two parts: primary and secondary (optional). The culture for
English is “en,” and the culture for US-English is “en-us.” See Chapter 27 for more about cultures in .NET.

The Manifest ❘ 1005

1006 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

If a culture is not indicated in the assembly, then it is assumed that the assembly can be used for any culture.
Such an assembly is said to be culture neutral. You can assign a culture to an assembly by including the
attribute AssemblyCulture from the System.Reflection namespace in your assembly’s code (usually
within the AssemblyInfo.vb file):

<Assembly: AssemblyCulture("en")>

The culture of an assembly is represented in the manifest by the .locale directive in the .assembly section.

referenced assemblies
It was mentioned earlier that the first section of the manifest contains referenced assemblies. An assembly
reference is indicated in the manifest with the .assembly extern directive (refer to Figure 31-5).

The first piece of information included is the name of the referenced assembly. Figure 31-5 shows a reference
to the mscorlib assembly. This name is used to determine the name of the file that contains the actual
assembly. The CLR takes the name of the assembly reference and appends .dll. For instance, in the last
example, the CLR will look for a file called mscorlib.dll. The assembly mscorlib is a special assembly in
.NET that contains all the definitions of the base types used in .NET, and is referenced by all assemblies.

The .publickeytoken Directive
If the assembly being referenced contains a strong name, then a hash of the public key of the referenced
assembly is stored as part of the record to the external reference. This hash is stored in the manifest using
the .publickeytoken directive as part of the .assembly extern section. The assembly reference shown
in Figure 31-5 contains a hash of the strong name of the mscorlib assembly. The stored hash of the strong
name is compared at runtime to a hash of the strong name (.publickey) contained within the referenced
assembly to help ensure that the correct assembly is loaded. The value of the .publickeytoken is computed
by taking the lower 8 bytes of a hash (SHA1) of the strong name of the referenced assemblies.

The .ver Directive
The version of the assembly being referenced is also stored in the manifest. This version information is used
with the rest of the information stored about a reference to ensure that the correct assembly is loaded (this
is discussed later). If an application references version 1.1.0.0 of an assembly, it will not load version 2.1.0.0
of the assembly unless a version policy (also discussed later) exists to indicate otherwise. The version of the
referenced assembly is stored in the manifest using the .ver directive as part of an .assembly extern section.

The .locale Directive
If an assembly that is being referenced has a culture, then the culture information is also stored in the
external assembly reference section, using the .locale directive. The combination of name, strong name (if
it exists), version number, and culture are what constitute a unique version of an assembly.

assemBlies and dePloymenT
The information in the manifest enables the reliable determination of the identity and version of an
assembly. This is the basis for the deployment options available in .NET, and for the side-by-side execution
of assemblies that helps .NET overcome DLL hell. This section looks at these issues in detail.

application-Private assemblies
It was mentioned earlier that assemblies can be of two types. The first is an application-private assembly. As
the name implies, this type of assembly is used by one application only and is not shared. This is the default
style of assembly in .NET and is the main mechanism by which an application can be independent of changes
to the system.

Application-private assemblies are deployed into the application’s own directory. Because application-
private assemblies are not shared, they do not need a strong name. This means that, at a minimum, they
only need to have a name and version number in the identity section of the manifest. Because the assemblies
are private to the application, the application does not perform version checks on the assemblies, as the
application developer has control over the assemblies that are deployed to the application directory. If strong
names exist, however, the CLR will verify that they match.

If all the assemblies that an application uses are application-private and the CLR is already installed on the
target machine, then deployment is quite simple. Chapter 23 discusses this implication in more detail.

shared assemblies
The second type of assembly is the shared assembly. As the name suggests, this type of assembly can be
shared among several different applications that reside on the same server. This type of assembly should
only be used when it is important to share assemblies among many applications. For example, if a Windows
Forms control purchased as part of a package is used in many of your applications, then it is better to
install a shared version of the assembly, rather than copies of it, for each application. The .NET Framework
assemblies themselves are also examples of shared assemblies.

Certain requirements are placed upon shared assemblies. The assembly needs to have a globally unique
name, which is not a requirement of application-private assemblies. As mentioned earlier, a strong name is
used to create a globally unique name for an assembly. As the assembly is shared, all references to the shared
assembly are checked to ensure that the correct version is being used by an application.

Shared assemblies are stored in the global assembly cache (GAC), which is usually located in the assembly folder
in the Windows directory (in a typical Windows XP or Vista installation, C:\Windows\assembly). However,
it’s not enough to just copy an assembly into that directory. In fact, if you browse to that directory using
Windows Explorer, you’ll find that you can’t just drag files in and out of it. The process for placing an assembly
in the GAC is similar in concept to registering a COM DLL, a process discussed in detail later in this chapter.

No other changes to the code of the assembly are necessary to differentiate it from that of an application-
private assembly. In fact, just because an assembly has a strong name does not mean that it has to be
deployed as a shared assembly; it could just as easily be deployed in the application directory as an
application-private assembly.

Installing a shared assembly into the GAC requires administrator rights on the machine. This is another
factor complicating deployment of shared assemblies. Because of the extra effort involved in the creation
and deployment of shared assemblies, you should avoid this type of assembly unless you really need it.

The Global assembly Cache
Each computer that has the .NET runtime installed has a global assembly cache. However, assemblies in
the GAC are always stored in the same folder, no matter which version of .NET you have. The folder is a
subfolder of your main Windows folder, and it is named Assembly. If you have multiple versions of the .NET
Framework, assemblies in the GAC for all of them are stored in this directory.

As previously noted, a strong name is required for an assembly placed in that GAC. That strong name is used to
identify a particular assembly. However, another piece of metadata is also used for verification of an assembly.
When an assembly is created, a hash of the assembly is placed in the metadata. If an assembly is changed (with
a binary editor, for example), the hash of the assembly will no longer match the hash in the metadata. The
metadata hash is checked against the actual hash when an assembly is placed in the GAC with the
gacutil.exe utility (described later). If the two hash codes do not match, the installation cannot be completed.

The strong name is also used when an application resolves a reference to an external assembly. It checks
whether the public key stored in the assembly is equal to the hash of the public key stored as part of the
reference in the application. If the two do not match, then the application knows that the external assembly
has not been created by the original author of the assembly.

assemblies and Deployment ❘ 1007

1008 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

 You can view the assemblies contained within the GAC by navigating to the directory using the Windows
Explorer.

 The gacutil.exe utility that ships with .NET is used to add and remove assemblies from the GAC. To add
an assembly into the GAC with the gacutil.exe tool, use the following command line:

gacutil.exe /i myassembly.dll

 Recall that the assembly being loaded must have a strong name.

 To remove an assembly, use the /u option, like this:

gacutil.exe /u myassembly.dll

 gacutil.exe has a number of other options. You can examine them and see examples of their usage by
typing in the following command:

gacutil.exe /?

 Versioning issues
 In COM, the versioning of DLLs had some signifi cant limitations. For example, a different DLL with the
same nominal version number could be indistinguishable from the one desired.

 .NET ’ s versioning scheme was specifi cally designed to alleviate the problems of COM. The major
capabilities of .NET that solve versioning issues are as follows:

 Application isolation ➤

 Side - by - side execution ➤

 Self - describing components ➤

 application isolation
 For an application to be isolated, it should be self - contained and independent. This means that the
application should rely on its own dependencies for ActiveX controls, components, or fi les, and not share
those fi les with other applications. The option of having application isolation is essential for a good solution
to versioning problems.

 If an application is isolated, components are owned, managed, and used by the parent application alone. If a
component is used by another application, even if it is the same version, the other application must have its
own copy. This ensures that each application can install and uninstall dependencies and not interfere with
other applications.

 Does this sound familiar? This is what most early Windows and DOS applications did
until COM required registration of DLLs in the registry and placement of shared DLLs
in the system directory. The wheel surely does turn!

 The .NET Framework enables application isolation by allowing developers to create application - private
assemblies. These are in the application ’ s own directory; and if another application needs the same assembly,
it can be duplicated in that application ’ s directory.

 This means that each application is independent from the others. This isolation works best for many
scenarios. It is sometimes referred to as a zero - impact deployment because when you either install or
uninstall such an application, you are in no danger of causing problems for any other application.

side-By-side execution
Side-by-side execution occurs when multiple versions of the same assembly can run at the same time. Side-
by-side execution is performed by the CLR. Components that are to execute side by side must be installed
within the application directory or a subdirectory of it.

With application assemblies, versioning is not much of an issue. The interfaces are dynamically resolved
by the CLR. If you replace an application assembly with a different version, the CLR will load it and
make it work with the other assemblies in the application, as long as the new version doesn’t have any
interface incompatibilities. The new version may even have interface elements that are new and therefore
don’t exist in the old version (new properties or methods). As long as the existing class interface elements
used by the other application assemblies are unchanged, the new version will work fine. In the following
discussion of exactly how the CLR locates a referenced assembly, you’ll learn more about how this works.

self-describing components
In the earlier section on the manifest, the self-describing nature of .NET assemblies was mentioned. The
term “self-describing” means that all the information the CLR needs to know to load and execute an
assembly is inside the assembly itself.

Self-describing components are essential to .NET’s side-by-side execution. Once the CLR knows that the
extra version is needed, everything else about the assembly needed to run side by side is in the assembly
itself. Each application can get its own version of an assembly, and all the work to coordinate the versions in
memory is performed transparently by the CLR.

Versioning becomes more important with shared assemblies. Without good coordination of versions, .NET
applications with shared assemblies are subject to some of the same problems as COM applications. In
particular, if a new version of a shared assembly is placed in the GAC, then there must be a means to control
which applications get which version of a shared assembly. This is accomplished with a versioning policy.

Version Policies
As discussed earlier, a version number includes four parts: major, minor, build, and revision. The version
number is part of the identity of the assembly. When a new version of a shared assembly is created
and placed in the GAC, any of these parts can change. Which ones change affects how the CLR views
compatibility for the new assembly.

When the version number of a component only changes according to its build and revision parts, it is
compatible. This is often referred to as Quick Fix Engineering (QFE). It’s only necessary to place the new
assembly in the GAC, and it will automatically be considered compatible with applications that were created
to use the folder version even though those applications are expecting a different build number and revision.

If either the major or minor build number changes, however, compatibility is not assumed by the CLR. In that
case, there are manual ways to indicate compatibility if necessary, and these are covered later in this section.

When an application comes across a type that is implemented in an external reference, the CLR has to
determine what version of the referenced assembly to load. What steps does the CLR go through to ensure
that the correct version of an assembly is loaded? To answer this question, you need to understand version
policies and how they affect which version of an assembly is loaded.

The Default Versioning Policy
Let’s start by looking at the default versioning policy. This policy is followed in the absence of any
configuration files that would modify the versioning policy. The runtime default behavior is to consult the
manifest for the name of the referenced assembly and the version of the assembly to use.

Versioning issues ❘ 1009

1010 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

If the referenced assembly does not contain a strong name, then it is assumed that the referenced assembly
is application-private and is located in the application’s directory. The CLR takes the name of the referenced
assembly and appends .dll to create the filename that contains the referenced assembly’s manifest. The
CLR then searches in the application’s directory for the filename. If it’s found, then it uses the version
indicated, even if the version number is different from the one specified in the manifest. Therefore, the
version numbers of application-private assemblies are not checked, because the application developer, in
theory, has control over which assemblies are deployed to the application’s directory. If the file cannot be
found, the CLR raises a System.IO.FileNotFoundException.

automatic Quick fix engineering Policy
If the referenced assembly contains a strong name, then the process by which an assembly is loaded is different:

 1. The three different types of assembly configuration files (discussed later) are consulted, if they exist, to
see whether they contain any settings that will modify which version of the assembly the CLR should
load.

 2. The CLR then checks whether the assembly has been requested and loaded in a previous call. If it has,
it uses the loaded assembly.

 3. If the assembly is not already loaded, then the GAC is queried for a match. If a match is found, it is
used by the application.

 4. If any of the configuration files contains a codebase (discussed later) entry for the assembly, then
the assembly is looked for in the location specified. If the assembly cannot be found in the location
specified in the codebase, then a TypeLoadException is raised to the application.

 5. If there are no configuration files or no codebase entries for the assembly, then the CLR probes for the
assembly starting in the application’s base directory.

 6. If the assembly still isn’t found, then the CLR asks the Windows Installer service if it has the assembly
in question. If it does, then the assembly is installed and the application uses it. This is a feature called
on-demand installation.

If the assembly hasn’t been found by the end of this entire process, then a TypeLoadException is raised.

Although a referenced assembly contains a strong name, this does not mean that it has to be deployed into
the GAC. This enables application developers to install a version with the application that is known to
work. The GAC is consulted to see whether it contains a version of an assembly with a higher build revision
number to enable administrators to deploy an updated assembly without having to reinstall or rebuild the
application. This is known as the Automatic Quick Fix Engineering Policy.

configuration files
The default versioning policy described earlier may not be the most appropriate policy for your
requirements. Fortunately, you can modify this policy through the use of XML configuration files to meet
your specific needs. Two types of configuration files can hold versioning information:

The first is an ➤ application configuration file, and it is created in the application directory. As the name
implies, this configuration file applies to a single application only. You need to create the application
configuration file in the application directory with the same name as the application filename and
append .config. For example, if you have a Windows Forms application called HelloWorld
.exe installed in the C:\HelloWorld directory, then the application configuration file would be C:\
HelloWorld\HelloWorld.exe.config. Note that if your project contains an app.config file, that
file is copied to the application configuration file during a build of your project.

The second type of configuration file is called the ➤ machine configuration file. It is named machine
.config and can be found in the C:\Windows\Microsoft.NET\Framework\v4.0.xxxx\ CONFIG
directory. The machine.config file overrides any other configuration files on a machine and can be
thought of as containing global settings.

The main purpose of the configuration file is to provide binding-related information to the developer or
administrator who wishes to override the default policy handling of the CLR.

Specifically, the configuration file, as it’s written in XML, has a root node named <configuration>, and it
must have the end node of </configuration> present to be syntactically correct. The configuration file is
divided into specific types of nodes that represent different areas of control. These areas are as follows:

Startup ➤

Runtime ➤

Remoting ➤

Crypto ➤

Class API ➤

Security ➤

Although all of these areas are important, this chapter covers only the first two. All of the settings discussed can
be added to the application configuration file. Some of the settings (these are pointed out) can also be added to
the machine configuration file. If a setting in the application configuration file conflicts with one in the machine
configuration file, then the setting in the machine configuration file is used. When we talk about assembly
references in the following discussion of configuration settings, we are talking exclusively about shared
assemblies (which implies that the assemblies have a strong name, as required by assemblies in the GAC).

startup settings
The <startup> node of the application and machine configuration files has a <requiredRuntime> node
that specifies the runtime version required by the application. This is because different versions of the CLR
can run on a machine side by side. The following example shows how you would specify the version of the
.NET runtime inside the configuration file:

<configuration>
 <startup>
 <requiredRuntime version ="4.0.xxxx" safemode ="true"/>
 </startup>
</configuration>

runtime settings
The runtime node, which is written as <runtime> (not to be confused with <requiredRuntime>), specifies
the settings that manage how the CLR handles garbage collection and versions of assemblies. With these
settings, you can specify which version of an assembly the application requires, or redirect it to another
version entirely.

Loading a Particular Version of an Assembly

The application and machine configuration files can be used to ensure that a particular version of an assembly
is loaded. You can indicate whether this version should be loaded all the time or should only replace a specific
version of the assembly. This functionality is supported through the use of the <assemblyIdentity> and
<bindingRedirect> elements in the configuration file, as shown in the following example:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="AssemblyName"
 publickeytoken="b77a5c561934e089"
 culture="en-us"/>
 <bindingRedirect oldVersion="*"
 newVersion="2.0.50.0"/>

Versioning issues ❘ 1011

1012 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

 </dependentAssembly>
 </assemblyBindings>
 </runtime>
</configuration>

Code snippet from CodeSnippetsChapter31

The <assemblyBinding> node is used to declare settings for the locations of assemblies and redirections via
the <dependentAssembly> node and the <probing> node (which you will look at shortly).

In the last example, when the CLR resolves the reference to the assembly named AssemblyName, it loads
version 2.0.50.0 instead of the version that appears in the manifest. If you want to load only version
2.0.50.0 of the assembly when a specific version is referenced, then you can replace the value of the
oldVersion attribute with the version number that you would like to replace (for example, 1.5.0.0). The
publickeytoken attribute is used to store the hash of the strong name of the assembly to replace. This
ensures that the correct assembly is identified. The same is true of the culture attribute.

Defining the Location of an Assembly

The location of an assembly can also be defined in both the application and machine configuration files.
You can use the <codeBase> element to inform the CLR of the location of an assembly. This enables you to
distribute an application and have the externally referenced assemblies downloaded the first time they are
used (on-demand downloading):

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="AssemblyName"
 publickeytoken="b77a5c561934e089"
 culture="en-us"/>
 <codeBase version="2.0.50.0"
 href="http://www.wrox.com/AssemblyName.dll/>
 </dependentAssembly>
 </assemblyBindings>
 </runtime>
</configuration>

Code snippet from CodeSnippetsChapter31

You can see from this example that whenever a reference to version 2.0.50.0 of the assembly AssemblyName
is resolved (and the assembly isn’t already on the user’s computer), the CLR will try to load the assembly
from the location defined in the href attribute. The location defined in the href attribute is a standard URL
and can be used to locate a file across the Internet or locally.

If the assembly cannot be found or the details in the manifest of the assembly defined in the href attribute
do not match those defined in the configuration file, then the loading of the assembly will fail and you
will receive a TypeLoadException. If the version of the assembly in the preceding example were actually
2.0.60.0, then the assembly would load because the version number is only different by build and revision
number.

Providing the Search Path

The final use of configuration files to consider is that of providing the search path to use when locating
assemblies in the application’s directory. This setting applies only to the application configuration file
(AppName.exe.config, for example). By default, the CLR searches for an assembly only in the application’s
base directory — it will not look in any subdirectories. You can modify this behavior by using the
<probing> element in an application configuration file, as shown in the following example:

<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <probing privatePath="regional"/>
 </assemblyBinding>
 </runtime>
</configuration>

Code snippet from CodeSnippetsChapter31

The privatePath attribute can contain a list of directories relative to the application’s directory (separated
by a semicolon) that you would like the CLR to search when trying to locate an assembly. The privatePath
attribute cannot contain an absolute pathname.

As part of resolving an assembly reference, the CLR checks in the application’s base directory for it. If it
cannot find it, then it looks through, in order, all the subdirectories specified in the privatePath variable, as
well as looking for a subdirectory with the same name as the assembly. If the assembly being resolved is called
AssemblyName, then the CLR also checks for the assembly in a subdirectory called AssemblyName, if it exists.

This isn’t the end of the story, though. If the referenced assembly being resolved contains a culture setting,
then the CLR also checks for culture-specific subdirectories in each of the directories it searches in. For
example, if the CLR is trying to resolve a reference to an assembly named AssemblyName with a culture of
en and a privatePath equal to that in the last example, and the application being run has a home directory
of C:\ExampleApp, then the CLR will look in the following directories (in the order shown):

C:\ExampleApp ➤

C:\ExampleApp\en ➤

C:\ExampleApp\en\AssemblyName ➤

C:\ExampleApp\regional\en ➤

C:\ExampleApp\regional\en\AssemblyName ➤

As you can see, the CLR can probe quite a number of directories to locate an assembly. When an external
assembly is resolved by the CLR, it consults the configuration files first to determine whether it needs to
modify the process by which it resolves an assembly. As discussed, you can modify the resolution process
to suit your needs.

Basics of reflecTion
As mentioned in Chapter 4, you can explore the internals of a given assembly using a process called
reflection. You can find out what assemblies are loaded into your current application domain. You can
discover what types reside in each assembly, and for any given type, the methods and properties exposed by
the type. You can even execute a method or change a property value via reflection, even though you might
not know the name of the method or property at compile time.

In this section, you’ll see the basic code required for each of these operations. The code uses classes in the
System.Reflection namespace, most notably the Assembly class, and each example assumes that the code
module has an Imports statement to import System.Reflection.

Major classes needed to use reflection capabilities include the following:

 ➤ Assembly — Contains members to examine an assembly’s metadata and even manipulate the
assembly

 ➤ AppDomain — Contains information about the currently running application domain

 ➤ Type — Gives access to information about a .NET type

Basics of reflection ❘ 1013

1014 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

 After this section, you will also see an additional capability provided through refl ection: dynamic loading.
You ’ ll see how to gain a reference to an assembly on - the - fl y and generate an instance of a type within the
assembly.

 While the process of refl ection is powerful and enables you to perform operations that
would otherwise be impossible, you should be aware of the performance implications of
using refl ection heavily. Some refl ection operations are rather slow; code that contains many
such operations, as in a loop, can cause your program to experience noticeable delays.

 The assembly class
 Almost all work with refl ection will require you to work with the Assembly class. An instance of this class
is associated with a .NET assembly.

 There are several ways to get a reference to an instance of an Assembly class. Several shared methods of the
 Assembly class can return such an instance. The ones most commonly used are as follows:

 ➤ GetAssembly — Takes a Type instance and returns a reference to the assembly containing that Type.
The assembly must already be available in the current application domain.

 ➤ GetExecutingAssembly — Returns the assembly that contains the code currently being executed.

 ➤ LoadFile — Loads an assembly using a string containing the fi lename in which the assembly resides.

 ➤ LoadFrom — Loads an assembly from a string containing a fi lename or URL.

 Here is a code example that gets an assembly reference using each of the fi rst three of these methods. The
fourth method is covered in the section on dynamic loading later in the chapter.

Dim Assembly1 As [Assembly]
Assembly1 = [Assembly].GetAssembly(GetType(System.Boolean))
' This would return a reference to mscorlib

Dim Assembly2 As [Assembly]
Assembly2 = [Assembly].GetExecutingAssembly
' This would return a reference to the assembly
' containing this code.

Dim Assembly3 As [Assembly]
Dim sFileName As String
sFileName = "C:\Dev\MyProject\bin\Release\MyLibrary.dll"
Assembly3 = [Assembly].LoadFile(sFileName)

 Code snippet from CodeSnippetsChapter31

 You can also get a reference to an assembly by fi rst getting a list of the assemblies loaded into an application
and then choosing an assembly from that list.

 getting currently loaded assemblies
 The application domain is the context for your current running application. You can work with an
application domain using the AppDomain class in the System namespace. AppDomain has a shared property
called CurrentDomain that will return the application domain in which you are currently running.

 An application domain instance has a GetAssemblies method to obtain the assemblies currently loaded in
the application domain. GetAssemblies returns an array of type Assembly .

 Putting these capabilities together, you can print out the long name of each assembly in the current
application domain using the following code:

Dim LoadedAssemblies As Assembly()
'Get the list of loaded assemblies from the current AppDomain.
LoadedAssemblies = AppDomain.CurrentDomain.GetAssemblies()

For Each LoadedAssembly In LoadedAssemblies
 ' There are many operations available on
 ' each assembly. This code simply lists the
 ' assembly's full name.
 Console.WriteLine(LoadedAssembly.FullName)
Next

Code snippet from CodeSnippetsChapter31

The Type class
Chapter 4 discussed types in .NET. To recap, a type is a class, structure, or native value type such as a
Double or Boolean.

A type is represented during reflection by an instance of the Type class. As Chapter 4 explained, you can get a
reference to a type by using the GetType method of the type. However, you can also get a reference to a type via
a method on an instance of the Assembly class that is associated with the assembly containing the type.

finding the Types in an assembly
The GetTypes method of an Assembly class instance returns an array containing all the types in the
assembly. You can also get a reference to a single type in an assembly with the GetType method, which
takes a string with the fully qualified namespace path name of the type.

For example, the following code will print out the names of all the types in the assembly containing the
currently executing code:

Dim CurrentAssembly As [Assembly]
CurrentAssembly = [Assembly].GetExecutingAssembly
For Each IndividualType In CurrentAssembly.GetTypes
 Console.WriteLine(IndividualType.Name)
Next

Code snippet from CodeSnippetsChapter31

finding the Members of a Type
Reflection also allows you to explore a type and discover the members (properties and methods) of the type.
The GetProperties method of a type will return an array of property descriptor objects, and the
GetMethods method will return an array of method descriptors in the form of MethodInfo instances.
The more general GetMembers method will return all the members of a Type, including properties, methods,
events, and so forth. The following code, when placed inside a class, will print out all the properties, events,
and public methods for the class:

For Each Member In Me.GetType.GetMembers
 Console.WriteLine(Member.Name)
Next

For Each IndividualProperty In Me.GetType.GetProperties
 Console.WriteLine(IndividualProperty.Name)
Next

Code snippet from CodeSnippetsChapter31

There is some redundancy between these two methods. At a binary level, properties are actually pairs of get
and set methods. That means you will see the get and set methods for a type’s properties when you list out the
methods.

Basics of reflection ❘ 1015

1016 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

Visual Basic Sub and Function routines are both considered methods in reflection. The only difference
is that a Sub has no return value. If a method is a Function, and thus does have a return value, reflection
allows you to discover the type of that return value.

Methods may have calling parameters. Reflection allows you to discover the calling parameters of a
method, if there are any, using the GetParameters method of the MethodInfo instance for the method. The
GetParameters method returns an array of ParameterInfo objects.

Using parameters, if any, a method can be invoked with the Invoke method of the MethodInfo instance.
Suppose, for example, that the current class has a function named CalculateFee that takes an integer for
customer ID and returns a decimal value.

Here is sample code to print the parameters for the method:

Dim MyMethodInfo As MethodInfo = Me.GetType.GetMember("CalculateFee")(0)
For Each ParamInfo In MyMethodInfo.GetParameters
 Console.WriteLine("Parameter name:" & ParamInfo.Name)
 Console.WriteLine("Parameter type:" & ParamInfo.ParameterType.Name)
Next

Code snippet from CodeSnippetsChapter31

To set up the parameter values and invoke the method, the code would look like this:

Dim MyMethodInfo2 As MethodInfo = _ Me.GetType.GetMember("CalculateFee")(0)

'Create array of objects to serve as parameters.
'In this case, only one integer is needed.
Dim MyParameters() As Object = {4321}
Dim oReturn As Object
oReturn = MyMethodInfo2.Invoke(Me, MyParameters)
' Now cast oReturn to Decimal

Code snippet from CodeSnippetsChapter31

The code download for this chapter includes a WPF program that enables you to locate an assembly on
disk and load the types from that assembly. For any type available in the assembly, you can then load all the
methods of the type.

dynamic loading of assemBlies
The preceding discussion about locating and loading assemblies refers to assemblies that are known at
compile time through the application’s references. There is an alternative method of locating and loading an
assembly that is useful for certain scenarios.

In this technique, the location of the assembly is supplied by the application, using a URL or filename. The
normal rules for locating the assembly do not apply — only the location specified by the application is used.

The location is just a string variable, so it may come from a configuration file or a database. In fact, the
assembly to be loaded may be newly created, and perhaps did not even exist when the original application
was compiled. Because the information to load the assembly can be passed into the application on-the-fly at
runtime, this type of assembly loading is called dynamic loading.

The loadfrom method of the assembly class
The Assembly class has a shared method called LoadFrom that takes a URL or filename and returns a
reference to the assembly at that location. Here’s a code example of LoadFrom in action, getting an
assembly reference from a URL:

Dim asmDynamic As [Assembly]
asmDynamic = [Assembly].LoadFrom("http://www.dotnetmasters.com/loancalc2.dll")

As previously discussed, the brackets around Assembly are needed because it is a reserved keyword in Visual
Basic. The brackets indicate that the word applies to the Assembly class, and the keyword is not being used.

After these lines are executed, the code contains a reference to the assembly at the given location. That enables
the reflection operations discussed earlier for finding types in the assembly. Recall that one such operation is
getting a reference to a particular type (which could be a class, structure, or enumeration) in the assembly.

For dynamic loading, normally the GetType method of the Assembly class is used to get the reference, using
a string that represents the identification of the type. The identification consists of the full namespace path
that uniquely identifies the type within the current application. Once a reference to a type is obtained, an
instance of the type can be created, even though the assembly was loaded dynamically.

For example, suppose that you wanted to get an instance of a certain form in the assembly, with a namespace
path of MyProject.Form1. The following line of code would get a reference to the type for that form:

Dim typMyForm As Type = formAsm.GetType("MyProject.Form1")

The type reference can then be used to generate an instance of the type. To do this, you need another class in
the System namespace called the Activator class. This class has a shared method called CreateInstance,
which takes a type reference and returns an instance of that type. You could, therefore, get an instance of
the form with these lines:

Dim objForm As Object
objForm = Activator.CreateInstance(typeMyForm)

CreateInstance always returns a generic object. That means it may be necessary to coerce the returned
reference to a particular type to gain access to the type’s interface. For example, assuming that you knew the
object was actually a Windows form, you could cast the preceding instance into the type of System.Windows
.Forms.Form and then do normal operations that are available on a form:

Dim FormToShow As Form = CType(objForm, System.Windows.Forms.Form)
FormToShow.MdiParent = Me
FormToShow.Show()

At this point, the form will operate normally. It will behave no differently from a form that was in a
referenced assembly (except for potential code access security limitations, as discussed in Chapter 32).

If the newly loaded form needs to load other classes in the dynamic assembly, nothing special needs to be
done. For example, suppose that the form just shown needs to load an instance of another form, named
Form2, that resides in the same dynamically loaded assembly. The standard code to instantiate a form will
work fine. The CLR will automatically load the Form2 type because it already has a reference to the assembly
containing Form2.

Furthermore, suppose that the dynamically loaded form needs to instantiate a class from another DLL that
is not referenced by the application. For example, suppose that the form needs to create an instance of a
Customer object, and the Customer class is in a different DLL. As long as that DLL is in the same folder as
the dynamically loaded DLL, the CLR will automatically locate and load the second DLL.

dynamic loading example
To see dynamic loading in action, try the following step-by-step example:

 1. Create a new Windows Forms Application project in Visual Studio and name it DynamicLoading. On the
blank Form1 that appears, drag a Button control from the Toolbox, and set its Text property to Load.

 2. Double-click the Load button to get to its Click event in the Code Editor. Then go to the top of the code
module and insert the following Imports statement:

Imports System.Reflection

Dynamic loading of assemblies ❘ 1017

1018 ❘ chaPTer 31 assEmBliEs aNd REFlECtioN

 3. Insert the following code into the button’s Click event:
Dim sLocation As String = "C:\Deploy\DynamicForms.dll"
If My.Computer.FileSystem.FileExists(sLocation) Then
 Dim sType As String = "DynamicForms.Form1"
 Dim DynamicAssembly As [Assembly] = _
 [Assembly].LoadFrom(sLocation)
 Dim DynamicType As Type = DynamicAssembly.GetType(sType)
 Dim DynamicObject As Object
 DynamicObject = Activator.CreateInstance(DynamicType)
 ' We know it's a form - cast to form type
 Dim FormToShow As Form = CType(DynamicObject, Form)
 FormToShow.Show()
Else
 MsgBox("Unable to load assembly " & sLocation & _
 " because the file does not exist")
End If

Code snippet from Form1.vb in project DynamicLoading

 4. Run the program and click the Load button. You should get a message box with the message “Unable
to load assembly C:\Deploy\DynamicForms.dll because the form does not exist.” Leave this program
running while you carry out the next few steps.

 5. Start another separate Visual Studio instance, and create a new Windows Forms Application project
named DynamicForms. On the blank Form1 that appears, drag over a few controls. It doesn’t really
matter what controls you drag onto Form1. The version that can be downloaded for the book includes
some labels, buttons, and text boxes.

 6. In the properties for DynamicForms, change the application type to Class Library.

 7. Build the DynamicForms project by selecting Build ➪ Build DynamicForms from the Visual Studio
menu. This will place a file named DynamicForms.dll in the project’s \bin\Debug directory (or the
\bin\Release directory if you happen to have the Release configuration set in Visual Studio).

 8. Create a directory named C:\Deploy and copy the DynamicForms.dll file to that directory.

 9. Return to the running program DynamicLoading. Click the Load button again. This time, it should load
the assembly from the DLL you just copied and launch an instance of Form1 from the DynamicForms
project.

Notice that the DynamicForms.dll was created and compiled after the DynamicLoading.exe project that
loaded it. It is not necessary to recompile or even restart DynamicLoading.exe to load a new assembly
dynamically, as long as DynamicLoading.exe knows the location of the assembly and the type to be loaded
from it.

Putting assemblies to Work
The previous code examples include hard-coded strings for the location of the assembly and the identification
of the type. There are uses for such a technique, such as certain types of Internet deployment of an application.
However, when using dynamic loading, it is common for these values to be obtained from outside the
code. For example, a database table or an XML-based configuration file can be used to store the information.

This enables you to add new capabilities to an application on-the-fly. A new assembly with new
functionality can be written, and then the location of the assembly and the identity of the type to load from
the assembly can be added to the configuration file or database table.

Unlike application assemblies automatically located by the CLR, which must be in the application’s
directory or a subdirectory of it, dynamically loaded assemblies can be anywhere the application knows
how to access. Possibilities include the following:

A website ➤

A directory on the local machine ➤

A directory on a shared network machine ➤

The security privileges available to code vary, depending on where the assembly was loaded from. Code
loaded from a URL via HTTP, as shown earlier, has a very restricted set of privileges by default compared
to code loaded from a local directory. Chapter 32 has details on code access security, default security
policies, and how default policies can be changed.

summary
Assemblies are the basic unit of deployment and versioning in .NET. You can write and install simple
applications without knowing much about assemblies. More complex applications require an in-depth
understanding of the structure of assemblies, the metadata they contain, and how assemblies are located
and loaded by the CLR.

You have learned how the identity of an assembly is used to allow multiple versions of an assembly to be
installed on a machine and run side by side. This chapter explained how an assembly is versioned, the
process by which the CLR resolves an external assembly reference, and how you can modify this process
through the use of configuration files.

You also learned about how an assembly stores information, such as version number, strong name, and
culture, about any external assemblies that it references, and information checked at runtime to ensure that
the correct version of the assembly is referenced. You saw how you can use versioning policies to override
this in the case of a buggy assembly. The assembly is the single biggest aid in reducing the errors that can
occur due to DLL hell, and in helping with deployment.

You’ve also seen how to examine assemblies to discover the types they contain, and the members of those
types. You can even invoke a method on a type using the capabilities of reflection.

The chapter also discussed the capability to load an assembly dynamically, based on a location that is
derived at runtime. This capability is useful for some special deployment scenarios, such as simple Internet
deployment. Understanding all these elements helps you understand how to structure an application, when
and how to use shared assemblies, and the deployment implications of your choices for assemblies.

Simple applications are usually created with no strong names or shared assemblies, and all assemblies for the
application are deployed to the application directory. Versioning issues are rare as long as class interfaces are
consistent.

Complex applications may require shared assemblies to be placed in the GAC, which means that those
assemblies must have strong names, and you must control your version numbers. You also need to
understand your options for allowing an application to load a version of an assembly other than the one
it would load by default, or for loading assemblies dynamically using an application-specific technique to
determine the assembly’s location. This chapter has covered the basics for all of these needs.

summary ❘ 1019

 security in the .neT framework
 WhaT you Will learn in This chaPTer

 Concepts and defi nitions ➤

 Permissions ➤

 Roles ➤

 Principals ➤

 Code access permissions ➤

 Role - based permissions ➤

 Identity permissions ➤

 User Access Control (UAC) ➤

 Encryption ➤

 Hashing ➤

 Symmetric Key Encryption ➤

 Asymmetric Key Encryption ➤

 Digital Signatures ➤

 X .509 Certifi cates ➤

 SSL ➤

 This chapter covers the basics of security and cryptography. It begins with a brief discussion of the .NET
Framework ’ s security architecture, because this affects all the solutions you may choose to implement.

 The .NET Framework provides you with best practices, tools, and core functionality with regard to
security. You have the System.Security.Permissions namespace, which enables you to control
code access permissions along with role - based and identity permissions. Through your code, you can
control access to objects programmatically, as well as receive information on the current permissions
of objects. This security framework will assist you in determining whether you have permissions to
run your code, instead of getting halfway through execution and having to deal with permission -
 based exceptions.

32

1022 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

 Cryptography is the cornerstone of the .NET Web Services security model, so the second half of this chapter
discusses the basis of cryptography and how to implement it. Specifi cally, it covers the following:

 Hash algorithms ➤

 SHA ➤

 MD5 ➤

 Secret key encryption ➤

 Public key cryptography standard ➤

 Digital signatures ➤

 Certifi cation ➤

 Secure Sockets Layer communications ➤

 Let ’ s begin by looking at some security concepts and defi nitions.

 As always, the code for this chapter is available for download from www.wrox.com ,
which you may want in order to follow along.

 securiTy concePTs and definiTions
 Table 32 - 1 describes the different types of security presented in this chapter and how they relate to real - world
scenarios.

 securiTy TyPe

 relaTed concePT in securiTy

.Permissions namesPace PurPose

 NTFS None Allows for detailed fi le system rights, e .g ., locking
down of specifi c fi les

 Cryptographic Strong name and assembly,
generation, SignCode .exe utility

 Use of public key infrastructure and certifi cates

 Programmatic Groups and permission sets For use in pieces of code that are being called
into . Provides extra security to prevent users of
calling code from violating security measures
implemented by the programs that are not
provided for on a machine level .

 User Access Control Users run without administrative
permission

 Provided by the operating system to help users
protect their system from unexpected changes that
might occur when logged in using the machine ’ s
administrator account .

TaBle 32-1: Types of Security

 There are many approaches to providing security on the machines where your shared code is hosted. If multiple
shared code applications are on one machine, each piece of shared code can be called from many front - end
applications. Each piece of shared code will have its own security requirements for accessing environment
variables — such as the registry, the fi le system, and other items — on the machine that it is running on. From
an NTFS perspective, the administrator of your server can only lock down those items on the machine that are
not required to be accessed from any piece of shared code running on it. Therefore, some applications need
additional security built-in to prevent any calling code from doing things it is not supposed to do.

 One of the more signifi cant changes to security in .NET 4 is the removal of Code Access Security policies.
Similar to the old Permview.exe , CasPol.exe is now an obsolete utility, and as such coverage of this topic
has been omitted. Additionally, the PermCalc.exe tool has also been made obsolete with .NET 4.

To limit your Internet applications’ access to the local file system, you create a permission set that limits
that access and associates the Internet application group with this permission set. By default, the .NET
environment provides one code group named All Code that is associated with the FullTrust permission set.

A permission set is a combination of security configurations. This set defines what each authorized user has
access to and what that user can do on that machine — for instance, whether the user can read environment
variables or the file system, or execute other code.

Security that is used within the programming environment also makes use of permission sets. Through
code you can control access to files in a file system, environment variables, file dialogs, isolated storage,
reflections, registry, sockets, and UI. Isolated storage and virtual file systems are new operating system–level
storage locations that can be used by programs and are governed by the machine security policies. These file
systems keep a machine safe from file system intrusion by designating a regulated area for file storage. The
main access to these items is controlled through code access permissions.

Although many methods that we use in Visual Basic provide an identifiable return value, the only time we get
a return value from security methods is when the method fails. When a security method succeeds, it does not
provide a return value. If it fails, then it returns an exception object reflecting the specific error that occurred.

Permissions in The sysTem.securiTy.Permissions namesPace
The System.Security.Permissions namespace is the namespace used in code to establish and use
permissions associated with objects, including the file system, environment variables, and the registry.
The namespace controls access to both operating system–level objects as well as code objects. In order
to use this namespace in your project, you need to import it. Using this namespace gives you access to the
CodeAccessPermission and PrincipalPermission classes for using role-based permissions and
information supplied by identity permissions. CodeAccessPermission controls access to the operating
system–level objects. Role-based permissions and identity permissions grant access to objects based on the
identity of the user of the program that is running (the user context).

Table 32-2 lists the members of the System.Security.Permissions namespace that apply to Windows
application programming. While there is a description accompanying each member, those classes that end
with Attribute, such as EnvironmentPermissionAttribute, are classes that enable you to modify the
security level at which your code is allowed to interact with each respective object. These objects create a
declarative model for setting security that can be leveraged across multiple different implementation models.

The default environment will provide a given level of access. It is not possible to grant access beyond this
level via code access security; however, when working with these classes you can specify exactly what
should or should not be available in a given situation. Additionally, these classes have been marked to
prevent inheritance. It really wouldn’t be a very secure system if you could inherit from one of these classes.
Code could be written to override the associated security methods and grant unlimited permissions.

Table 32-2 also deals with security in regard to software publishers. A software publisher is a specific entity
that is using a digital signature to identify itself in a Web-based scenario.

class descriPTion

CodeAccessSecurityAttribute Base class for code access security attribute classes

DataProtectionPermission Controls access to the data protection APIs , T

DataProtectionPermissionAttribute Allows declarative control of
DataProtectionPermssion via code

EnvironmentPermission Controls the capability to see and modify system and
user environment variables

TaBle 32-2: Members of System .Security .Permissions

continues

Permissions in the system.security.Permissions namespace ❘ 1023

1024 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

class descriPTion

EnvironmentPermissionAttribute Allows security actions for environment variables to be
added via code

FileDialogPermission Controls the capability to open files via a file dialog

FileDialogPermissionAttribute Allows security actions to be added for file dialogs
via code

FileIOPermission Controls the capability to read and write files in the file
system

FileIOPermissionAttribute Allows security actions to be added for file access
attempts via code

GacIdentityPermission Defines the identity permissions for files that come
from the global assembly cache (GAC)

GacIdentityPermissionAttribute Allows security actions to be added for files that
originate from the GAC

HostProtectionAttribute Allows for the use of security actions to determine host
protection requirements

IsolatedStorageFilePermission Controls access to a private virtual file system within
the isolated storage area of an application

IsolatedStorageFilePermissionAttribute Allows security actions to be added for private virtual
file systems via code

IsolatedStoragePermission Controls access to the isolated storage area of an
application

IsolatedStoragePermissionAttribute Allows security actions to be added for the isolated
storage area of an application

KeyContainerPermission Controls access to key containers

KeyContainerPermissionAccessEntry Defines the access rights for particular key containers

KeyContainerPermissionAccess
EntryCollection

Represents a collection of
KeyContainerPermission-AccessEntry objects

KeyContainerPermissionAccess
EntryEnumerator

Represents the enumerators for the objects contained
in the
KeyContainerPermissionAccessEntryCollection
object

KeyContainerPermissionAttribute Allows security actions to be added for key containers

MediaPermission The permission set associated with the capability to
access audio, video, and images . WPF leverages this
capability .

MediaPermissionAttribute Allows code to set permissions related to the
MediaPermission set

PermissionSetAttribute Allows security actions to be added for a permission set

PrincipalPermission Controls the capability to verify the active principal

PrincipalPermissionAttribute Allows verification of a specific user . Security principals
are a user and role combination used to establish
security identity .

PublisherIdentityPermission Allows access based on the identity of a software
publisher

PublisherIdentityPermissionAttribute Allows security to be defined for a software publisher

TaBle 32-2 (continued)

class descriPTion

ReflectionPermission Controls access to nonpublic members of a given type

ReflectionPermissionAttribute Allows security to be defined for public and nonpublic
members of a given type

RegistryPermission Controls access to registry keys and values

RegistryPermissionAttribute Allows security to be defined for the registry

ResourcePermissionBase Controls the capability to work with the code access
security permissions

ResourcePermissionBaseEntry Allows you to define the smallest part of a code access
security permission set

SecurityAttribute Controls which security attributes are representing code;
used to control security when creating an assembly

SecurityPermission This collection is used in code to specify a set of
permissions for which access will be defined .

SecurityPermissionAttribute Allows security actions for the security permission
flags

StorePermission Controls access to stores that contain X .509
certificates

StorePermissionAttribute Allows security actions to be added for access stores
that contain X .509 certificates

StrongNameIdentityPermission Defines the permission level for creating strong names

StrongNameIdentityPermissionAttribute Allows security to be defined on the
StrongNameIdentityPermission set

StrongNamePublicKeyBlob The public key information associated with a strong
name

TypeDescriptorPermission Permission set that controls partial-trust access to the
TypeDescriptor class

TypeDescriptorPermissionAttribute Allows security to be defined on the
TypeDescriptorPermission set

UIPermission Controls access to user interfaces and use of the
Windows clipboard

UIPermissionAttribute Allows security actions to be added for UI interfaces
and the use of the clipboard

UrlIdentityPermission Permission set associated with the identity and related
permissions for the URL from which code originates

UrlIdentityPermissionAttribute Allows security to be defined on the
UrlIdentityPermission set

WebBrowserPermission Controls the capability to create the WebBrowser
control

WebBrowserPermissionAttribute Allows security to be defined on the
WebBrowser Permission set

ZoneIdentityPermission Defines the identity permission for the zone from which
code originates

ZoneIdentityPermissionAttribute Allows security to be defined on the
ZoneIdentity Permission set

Permissions in the system.security.Permissions namespace ❘ 1025

1026 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

code access Permissions
Code access permissions are controlled through the CodeAccessPermission class within the System.Security
namespace The code access permissions are used extensively by the common language runtime (CLR) to manage
and secure the operating environment.

The code access permissions grant and deny access to portions of the operating system such as the file system,
but although your code can request permission changes, there is a key limit. Code using this API can request
to reduce the rights of the user currently executing the code, but the API will not grant rights that a user does
not have within his or her current context or based on those available from the CLR.

When code is downloaded from a website,and the user then attempts to run the code; the CLR can choose
to limit the rights of that code given that it shouldn’t by default be trusted. For example, requesting access to
the system registry will be denied if the operating system does not trust that code. Thus, the primary use of
code access security by application developers is to limit the permissions already available to a user given
the current context of what the user is doing. Code access security leverages many of the same core security
methods used across the various security categories, many of which are described in Table 32-3.

meThod descriPTion

Assert Sets the permission to full access so that the specific resource can be accessed
even if the caller hasn’t been granted permission to access the resource

Copy Copies a permission object

Demand Returns an exception unless all callers in the call chain have been granted the
permission to access the resource in a given manner

Deny In prior versions of .NET you would use this to explicitly deny access . This will still
work, but it’s becoming obsolete and should be avoided .

Equals Determines whether a given object is the same instance of the current object

FromXml Establishes a permission set given a specific XML encoding . This parameter that this
method takes is an XML encoding .

Intersect Returns the permissions that two permission objects have in common

IsSubsetOf Returns a result indicating whether the current permission object is a subset of a
specified permission

PermitOnly Specifies that only those rights within this permission set can be accessed even if
the user of the assembly has been granted additional permission to the underlying
objects . This is one of the more common permission levels when working with
custom permission sets .

RevertAll Reverses all previous assert, deny, or permit-only methods

RevertAssert Reverses all previous assert methods

RevertDeny Reverses all previous deny methods

RevertPermitOnly Reverses all previous permit-only methods

Union Creates a permission that is the union of two permission objects

TaBle 32-3: Methods of CodeAccessPermission

identity Permissions
Identity permissions are pieces of information, also called evidence, by which an assembly can be identified.
Examples of the evidence would be the strong name of the assembly or the digital signature associated with
the assembly.

 Identity permissions are granted by the runtime based on information received from the trusted host, or the
operating system ’ s loader. Therefore, they are permissions that you don ’ t specifi cally request. Identity permissions
provide additional information to be used by the runtime. The identity information can take the form of a trusted
host ’ s URL or can be supplied via a digital signature, the application directory, or the strong name of the assembly.
Identity permissions are similar to code access permissions discussed in the preceding section. They derive from
the same base class as the code access permissions.

 role - Based Permissions
 Role - based permissions are permissions granted based on the user and the role that code is being
called with. Users are authenticated within the operating system platform and hold a Security Identifi er
(SID) that is associated within a security context. The SID is associated with one or more roles or
group memberships that are established within a security context. .NET supports those users and roles
associated within a security context and has support for generic and custom users and roles through the
concept of principals.

 A principal is an object that holds the current caller ’ s credentials. This includes the identity of the user.
Principals come in two types: Windows principals and non - Windows principals. Windows - based principal
objects are objects that store the Windows SID information regarding the current user context associated
with the code that is calling into the module role - based permissions that are being used. Non - Windows
principals are principal objects that are created programmatically via a custom login methodology and
which are made available to the current thread.

 Role - based permissions are not set against objects within your environment like code access permissions.
They are checked within the context of the current user and user ’ s role. The concepts of principals and the
 PrincipalPermission class are used to establish and check permissions. If a programmer passes the user
and role information during a call as captured from a custom login, then the PrincipalPermission class
can be used to verify this information as well.

 The PrincipalPermission class does not grant access to objects, but has methods that determine whether
a caller has been given permissions according to the current permission object through the Demand method.
If a security exception is generated, then the user does not have suffi cient permission. As an example of how
you might use these methods, the following code snippet captures the current Windows principal information
and displays it on the screen in a text box. It is included as part of the ProVB_Security project, which has the
same basic structure as the ProVB_VS2010 project introduced in Chapter 1. Each element of the principal
information could be used in a program to validate against, and thus restrict, code execution based on the
values in the principal information. This example inserts an Imports System.Security.Principal
line at the top of Form1.vb so you can directly reference identity and principal objects without full
namespace qualifi ers:

Imports System.Security.Principal

 ' < PrincipalPermissionAttribute(SecurityAction.Demand, Name:="WSheldon", Role:="Users") > _
 Private Sub DisplayPrincipalIdentity()
 ' The attribute above can be used to check security declaratively
 ' similar to how you would check using WPF or Silverlight.
 ' The code below uses imperative commands to get security information.
 Dim objIdentity As WindowsIdentity = WindowsIdentity.GetCurrent()
 TextBox1.Text = "User Name: " & objIdentity.Name & Environment.NewLine
 TextBox1.Text & = "Is Guest: " & objIdentity.IsGuest.ToString()
 & Environment.NewLine

 A strong name is a combination of the name of a program, its version number, and its
associated cryptographic key and digital signature fi les.

Permissions in the system.security.Permissions namespace ❘ 1027

1028 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

 TextBox1.Text & = "Is Authenticated: " & objIdentity.IsAuthenticated.ToString()
 & Environment.NewLine
 Dim objPrincipal As New Security.Principal.WindowsPrincipal(objIdentity)
 ' Determine if the user is part of an authorized group.
 TextBox1.Text & = "Is in Role Users? " & objPrincipal.IsInRole("Users")
 & Environment.NewLine
 TextBox1.Text & = "Is in Role Administrators? "
 & objPrincipal.IsInRole("Administrators")
 End Sub

 Code snippet from Form1.vb

 This code illustrates a few of the properties that could be used
to validate against when a caller wants to run your code. The
attribute at the top of this is commented out at this point by
design. It represents a declarative security check similar to
what you would use from the XAML in a WPF or Silverlight
project. First, however, lets examine this code being run, as
shown in Figure 32 - 1.

 It starts by retrieving the user name of the currently
authenticated Windows principal. Pay attention to the fact
that this is a fully qualifi ed username with the machine
name included. It then uses the identity checks to see if the
current identity is the Guest account, and ensures that
the user was authenticated.

 At this point the snippet creates a new WindowsPrincipal
based on the current user ’ s identity. This object allows you
to query to see if the current user is in a role. In this case,
my account is in the role of a user as a member of the Users
security group, but is not in the role of an administrator even
though it is part of the Administrators group.

 Roles are typically defi ned via security groups, but I was careful to not say that this method allowed you to
determine if a user were in a given group. That ’ s because under Windows Vista and Windows 7, the operating
system keeps a user from running in the Administrator role even if they are part of the Administrators group.
Thus, the check for whether the code is running in the role Administrators returns false — even though my
WSheldon account is in fact a member of the Administrators group on this machine. Only if the user chooses
to have their permission elevated will this query return true.

 figure 32 - 1

 The issue of permission elevation in relation to User Access Control (UAC) and the fact
that the WSheldon account is in fact an Administrator on the system is discussed later
in this chapter.

 However, now uncomment the attribute line that precedes this method. Notice that it is making a Demand
security query and passing a user name, and a role name as part of this name. Because these are named
optional parameters, the code could in theory only check for a role, which is a much more usable check in a
real - world application. However, in this case only use a name and do not include the machine as part of the
full user name. As a result, when ButtonTest is clicked this declarative check fails and the error shown in
Figure 32 - 2 is displayed.

figure 32-2

This illustrates how the same objects that have been available since the early versions of .NET are
still used within XAML to enable the same level of security to declarative applications. The principal
and identity objects are used in verifying the identity or aspects of the identity of the caller attempting
to execute your code. Based on this information, your application can either lock down system resources
or adjust the options available to users within your custom application. The Identity and Principal
objects make it possible to have your application respond as changes to user roles occur within
Active Directory.

managing code access Permission seTs
This section looks at programmatic access to permissions. The example extends the ProVB_Security project
discussed earlier. This example illustrates how when a method fails, an exception object containing the
result is generated. Note that in the case of a real-world example, you would be setting up permissions for a
calling application. In many instances, you don’t want a calling application to be able to access the registry,
or you want a calling application to be able to read memory variables but not change them. Keep in mind
that you can only limit those permissions which are already available to a user based on their identity. You
can’t grant access to a portion of the operating system via code that the user doesn’t have access to based on
their identity.

The example first sets up the permission that is wanted and then grants the code the appropriate access
level. Then code that accesses this security object illustrates the effect of these new permissions on
the code:

 Private Sub TestFileIOPermission()
 Dim oFp = New FileIOPermission(

Managing Code access Permission sets ❘ 1029

1030 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

 FileIOPermissionAccess.AllAccess,
 "C:\Test")
 oFp.PermitOnly()
 'Try
 Dim strmWrite As New IO.StreamWriter(
 File.Open("C:\Test\Permission.txt",
 IO.FileMode.Open))
 strmWrite.WriteLine("Hi there!")
 strmWrite.Flush()
 strmWrite.Close()
 Dim objWriter As New IO.StreamWriter(
 File.Open("C:\Test\NoPermission.txt",
 IO.FileMode.Open))
 objWriter.WriteLine("Hi there!")
 objWriter.Flush()
 objWriter.Close()

 'Uncomment the lines below (comment those above) to reverse the test.

 'Dim oFp = New FileIOPermission(FileIOPermissionAccess.Read, "C:\")
 'oFp.PermitOnly()
 'Dim temp = oFp.AllFiles.ToString()
 'Dim strmWrite = New IO.StreamWriter(
 ' File.Open("C:\Test\Permission.txt",
 ' IO.FileMode.Open))
 'strmWrite.WriteLine("Hi there!")
 'strmWrite.Flush()
 'strmWrite.Close()
 'Dim objWriter = New IO.StreamWriter(
 ' File.Open("C:\Test\NoPermission.txt",
 ' IO.FileMode.Open))
 'objWriter.WriteLine("Hi there!")
 'objWriter.Flush()
 'objWriter.Close()
 ''Catch objA As System.Exception
 ''MessageBox.Show(objA.Message)
 ''End Try
 End Sub

Code snippet from Form1.vb

The first example attempts to access a file in the file system. This illustrates the use of the FileIOPermission
class. Create a new folder on your C:\ drive called Test. Within this folder create two new files, the first file
 C:\Test\Permission.txt will use the default permissions assigned when you created the account. The second
file C:\Test\NoPermission.txt (these files are not part of the download) has its permissions modified.

To do this, access the file’s properties by right-clicking on the file and choosing Properties. On the Properties
dialog select the Security tab and then use the Advanced button. Within the Advanced Security Settings dialog
use the Change Permission button to open the Advanced Security Settings dialog. Next go to the bottom of
this dialog and unclick the check box “Include inheritable permissions from this object’s parent” check box.
You will need to verify that you want to add the security settings for this file to the file itself. After returning to
the original Properties dialog by clicking the OK buttons you will want to remove the settings for Authorized
Users. To do this you will need to use the Edit button to access the Permission dialog where you can use the
Remove button. After having done this you will have removed the default modify permission for authenticated
users to this file. The result should be the permission level that is depicted in Figure 32-3. Note that there are
only three Group or usernames assigned permissions.

Looking at the previous code snippet notice that the Sub TestFileIOPermission first grants FileIO write
permissions to the current user and attempts to access both files. This will fail for the NoPermissions.txt
file because code access security can’t grant additional access to a user at runtime. You can see this result in
the error shown in Figure 32-4.

figure 32-3

figure 32-4

Managing Code access Permission sets ❘ 1031

1032 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

Now to test the reverse, comment out the top half of the preceding method and uncomment the bottom
half. Now the method uses the PermitOnly assignment to limit the user to ReadOnly permissions for the
FileIO permission set. In this case the code will fail when attempting to write to the Permission.txt file
because of the stricter limits of this setting as opposed to what the operating system would allow. You can
see this result in the error shown in Figure 32-5.

figure 32-5

user access conTrol
With the introduction of Windows Vista and continuing with Windows 7, developers became aware
of a new security model: User Access Control (UAC). The core premise of UAC is that even a user with
administrative rights should normally run in the context of a reduced privilege user account. The concept
is quite simply a best practice. Unfortunately, as with any situation where rights are reduced, application
developers and users have spent so much time running with elevated permissions that any time the system
interrupts what they want they become upset. But for security to work, sometimes its best to keep access
limited and force you to recognize when you are granting access. This is what the UAC system does: it
locks the access; you still have the ability to grant that access, but the system makes you pause and evaluate
if that access should be granted. If you get a UAC prompt when you aren’t expecting it, or realize that
software you don’t fully trust is attempting privileged access that you may not expect or want it to have,
you are far better off than had the system not prompted you to grant that access. All for the price of a click
of your mouse.

UAC gets a bit of a bad rap in part because it was introduced to end users as part of Vista before custom
application developers, or even Microsoft developers, could get out in front of the required code changes.
Thus, user’s were asking, “Why am I getting this prompt?” Developers, having no real good answers
then, had to answer, “Because Vista changed things.” The unfortunate result is that many people and
organizations have turned off UAC. However, as a developer you should now have it reenabled on your
desktop and should begin to understand how to work both within its default constraints and beyond
them.

defining your aPPlicaTion uac seTTings
By default in Visual Studio 2010, your application settings include information related to UAC. It is possible
to create your application so that it ships with certain permissions. Within your application manifest you’ll
find the section requestedPrivileges. This section is where the requested UAC execution level for your
application is defined.

To get to your application manifest, right-click on your project in Solution Explorer and select Properties. In the
Properties pane, select the Application tab and there you’ll find a button labeled View Windows Settings. Selecting
this button will open your application manifest (app.manifest) XML file in the editor window. Within the
XML, you’ll find the requestedPrivileges node, a copy of which is shown in the following code block:

 <requestedPrivileges xmlns="urn:schemas-microsoft-com:asm.v3">
 <!-- UAC Manifest Options
 If you want to change the Windows User Account Control level replace the
 requestedExecutionLevel node with one of the following.

 <requestedExecutionLevel level="asInvoker" uiAccess="false" />
 <requestedExecutionLevel level="requireAdministrator" uiAccess="false" />
 <requestedExecutionLevel level="highestAvailable" uiAccess="false" />

 Specifying requestedExecutionLevel node will disable file and registry
 virtualization. If you want to utilize File and Registry Virtualization
 for backward compatibility then delete the requestedExecutionLevel node.-->
 <requestedExecutionLevel level="asInvoker" uiAccess="false" />
 </requestedPrivileges>

Code snippet from app.manifest

The beauty of this XML is that Microsoft took the time to include meaningful XML comments about the
requestedExecutionLevel setting. By default, as shown in the preceding snippet, your application requests
to run asInvoker. Thus, as discussed earlier when looking at which group you are running as, this means you
are running as a user, not an administrator.

As the comments make clear, it is possible to change this to requireAdministrator, so make this change. Next
ensure that you have both the Sub DisplayPrincipalIdentity() and the Sub TestFileIOPermission()
uncommented in the ButtonTest click event handler within the ProVB_Security project. Finally, within the
Sub TestFileIOPermission(), ensure that you have restored which block is commented out; the code
should look like the previous listing where the bottom half of the method is commented and the top half is
uncommented. Now that you have indicated that this application requires administrator privileges, you can repeat
the first test where the user account didn’t have permission to write to NoPermission.txt, but where the code
attempted to grant permission. Note, this test depends on the Administrator having permission to access the file
C:\Test\NoPermission.txt. Save your change to the app.manifest and attempt to run the application. If you
are running on Windows 7 and didn’t start Visual Studio 2010 using Run as Administrator you should get the
error shown in Figure 32-6.

figure 32-6

Defining Your application UaC settings ❘ 1033

1034 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

What happened? As noted above, the error message in Figure 32-6 is dependent on having not started Visual
Studio with the Run as Administrator option from the right-click context menu. Since Visual Studio is running
under your downgraded rights at the level of user, when it attempts to create a new process with the rights for
administrator, the system refuses.

Just as you can’t use code access security to grant the running account additional rights, you can’t use the
application manifest for the same purpose. The operating system knows that the current process has only
user rights, so when you attempt to have that process spawn a new debugging process with administrator
rights, the operating system throws an error.

You can get around this in one of two ways. The first,
obviously, is to start or restart Visual Studio running as
Administrator. Alternatively, you can go to the bin/debug
folder and manually start the ProVB_Security.exe
executable outside of the debugger. In either case you should
now be prompted to grant administrator rights to this assembly,
because the current code does not sign the assembly. Accepting
this grant of elevated privileges, the results should be similar to
what is shown in Figure 32-7.

The successful completion of the Run Code button highlights
two important points. First, as shown in Figure 32-7, the fact
that the WSheldon account is in fact an administrator is now
reflected in the onscreen permission display. Second, no error
was thrown in the attempt to write the NoPermission.txt
because the application is now running with the rights of an
Administrator.

Regarding the uiAccess setting within the application manifest, this Boolean value defaults to false, and
in most cases this is the correct setting. Changing this value to true will allow your code to update the user
interface that is part of another assembly. However, setting this to true means that the application must be
signed and that it must run from a trusted location.

As noted, signing your application will make the elevated privileges warning more meaningful and user friendly.
Application signing is typically done during deployment, which is covered in detail in Chapter 34. It is not
suggested that you just go in and start marking all of your applications with the requireAdministrator
flag. Instead, you should elevate a user’s rights when those rights are needed. Unfortunately, this option is only
available at the time your application starts, but there is an important capability involved. In short, if you
mark your application as essentially requiring Administrator rights, only administrators will be able to run the
application.

Thus, the third application activation alternative is to use the highestAvailable setting. This setting
allows both users and administrators to run your application. Within your application code, you’ll need
to check what privileges are available to the current user. As demonstrated earlier in this chapter, this
will allow you to enable or disable application features depending upon whether the current user is an
administrator.

security Tools
Microsoft provides many security tools in its .NET SDK. Most of these tools are console-based utility
applications. These tools can be used to help implement the security processes outlined earlier. They are not
described in great detail, though they do deserve a review. Basically, two groups of tools are provided with
the SDK:

Permissions and assembly management tools ➤

Certificate management tools ➤

figure 32-7

Table 32-4 describes the permissions and assembly management tools. Table 32-5 describes the certificate
management tools.

Program name descriPTion

Storeadm.exe An administrative tool for isolated storage management . It restricts code access to
the file system .

Peverify.exe Checks whether the executable file will pass the runtime test for type-safe coding

Sn.exe Creates assemblies with strong names — that is, a digitally signed namespace and
version information

TaBle 32-4: Permissions and Assembly Management Tools

Program name descriPTion

Makecert.exe Creates an X .509 certificate for testing purposes

Certmgr.exe Assembles certificates into a CTL (Certificate Trust List) . It can also be used for
revoking certificates .

Cert2spc.exe Creates an SPC (Software Publisher Certificate) from an X .509 certificate

TaBle 32-5: Certificate Management Tools

exceptions using the securityexception class
Originally, using the .NET Framework versions 1.0/1.1, the SecurityException class provided very little
information in terms of actually telling you what was wrong and why an exception was thrown. Due to this
limitation, the .NET Framework 2.0 added a number of new properties to the SecurityException class.
Table 32-6 details some of these properties.

ProPerTy descriPTion

Action Retrieves the security action that caused the exception to occur

Data Gets a collection of key/value pairs that provide user-defined information
about an exception

Demanded Returns the permissions, permission sets, or permission set collections
that caused the error to occur

DenySetInstance Returns the denied permissions, permission sets, or permission set
collections that caused the security actions to fail

FailedAssemblyInfo Returns information about the failed assembly

FirstPermissionThatFailed Returns the first permission contained in the permission set or
permission set collection that failed

GrantedSet Returns the set of permissions that caused the security actions to fail

HelpLink Gets or sets a link to a help file associated with this error

InnerException A reference to an earlier exception that triggered the current exception

Method Returns information about the method connected to the exception

PermissionState Returns the state of the permission that threw the exception

PermissionType Returns the type of the permission that threw the exception

TaBle 32-6: Common SecurityException Properties

continues

Defining Your application UaC settings ❘ 1035

1036 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

Clearly, you can get your hands on a lot of information if a security exception is thrown in your application. For
instance, you can use something similar to the following Catch section of code to check for security errors:

Dim myFile as FileInfo

Try
 myFile = _
 My.Computer.FileSystem.GetFileInfo("C:\Test\NoPermission.txt")
Catch ex As Security.SecurityException
 MessageBox.Show(ex.Method.Name.ToString())
End Try

encryPTion Basics
Rather than present an exposition of cryptography, this section is meant to familiarize you with basic
techniques required to deal with .NET security and protect your Web services through encryption. There are
four different categories of cryptography: encoding, hashing, and symmetric and asymmetric encryption.

First let’s review each of these four different cryptographic categories. The first is encoding, which, as you
may already know, if you are at all familiar with encryption, doesn’t actually protect information. The most
common encodings are things like UTF8, UTF7, and Base64 encoding. These encodings are typically used
to take information that might interact with a container and hide the special characters. Thus, if you want
to embed binary data within an XML file and want to ensure that the binary data won’t interfere with the
XML, you can Base64 the data, and it can safely be placed within an XML file.

Encoding is quite common for passing hidden or state data in Web pages, MIME, and XML file formats. For
example, in ASP.NET, ViewState is an encoded block of information about the state of an ASP.NET page.
However, keep in mind that encoded data, while not immediately humanly readable, uses a public algorithm
to create its string. Encoding algorithms are designed to be quickly and easily reversed, and without any form
of implied privacy. This means that anyone can reverse the encoded data, so for ASP.NET, ViewState does not
protect the data which has been encoded, it just allows for transport of that data. To reiterate, encoding does
not protect information.

The next item in the list of cryptography categories is hashing. Hashing algorithms digest sequences of data,
creating a “random” output for the input string. A hash has a private key that can be varied by each
application using the hash. Using a different key ensures you get different random string representations.
While changing a single character will result in an entirely different result, the key to a hash is that there is no
way to decrypt the original string from that result. In fact, hashing algorithms are specifically designed to not
support the decryption of data once it has been hashed. At the same time, a hash always produces the same
result for a given input string.

In terms of degree of security, hash keys are generally judged by the size of the encryption key, with larger keys
(512-bit) providing greater security than shorter (128-bit) keys. Two popular hashing algorithms are SHA (Secure
Hash Algorithm) and MD5 (Message-Digest algorithm 5). These hash keys are used for everything from saving
passwords to signing digital documents; in other words, the hash is generated and encrypted using a private key.

ProPerTy descriPTion

PermitOnlySetInstance Returns a permission set or permission set collection that is part of the
permit-only stack frame if a security action has failed

RefusedSet Returns the permissions that were refused by the assembly

Source Gets or sets the name of the application or object that triggered the error

Url Returns the URL of the assembly that caused the exception

Zone Returns the zone of the assembly that caused the exception

TaBle 32-6 (continued)

Hashing works for passwords and pass phrases (longer authentication strings, which are far more difficult to
guess) by never actually decrypting the password value. In order to validate your protected data, you reenter
that data, which is then hashed, and the original hash is compared to the hashing of the newly entered text.
If these two hashed values match, then the same text was entered. If the hashed values don’t match, it means
that the correct password or other information was not entered. In this way the original password can be
protected not only from outsiders, but also from insiders who might want to impersonate another user.

Hashing algorithms, unlike other forms of encryption, are meant to be nonreversible. This is an important
part of the security they provide. Note that in most cases, complex algorithms can be developed to reverse a
hash, the most common being the creation of a dictionary of hashed values. However, the point of a hash is
to create a “random” string based on input and ensure that the “random” element is repeatable for the same
string. Thus, each password attempt is hashed, and the result is compared to the stored hash value for that
user’s password or pass phrase; matches mean success, and there is no relationship to ‘how close’ the entered
text is to the correct text, because the hashed value is “random” for any given set of characters.

Symmetric encryption is commonly used to protect data such as private messages or data that will be
retrieved. Symmetric key encryption is suitable for situations where the encrypted data needs to be accessed
by someone in the same organization as the one who protected it. In this scenario, a key might be embedded
within an application or stored as part of some device that the organization members control. It is
important to keep the key private, as the same key is used to both encrypt and decrypt the data. Private keys
work well as long as only those people who are authorized to view the protected data have them. It breaks
down when attempting to interchange private data with the world at large. For that you need one key used
by outsiders and a different key used by insiders.

Asymmetric public key encryption is most widely used in protecting the data that may be shared with an outside
group. It is also used for digital signatures. Public key encryption is based on asymmetric keys, which means you
always have a pair of keys. One key is known to all and is called the public key. The other key of the pair is kept
secret and is known only to the owner. This is called the private key. If you use the public key to encrypt data, it
can only be decrypted using the corresponding private key of the key pair, and vice versa.

Because the public key is known to all, anyone can decrypt information protected by the private key. However,
the private key is known only to the owner, so this process acts as a digital signature. In other words, if the
public key decrypts the message, then you know that the sender was the owner of the private key. It is important
to remember that when data is protected using the public key, only the holder of the private key can decrypt it;
another holder of the public key will be unable to decrypt the protected information.

In some cases an entire set of data is encrypted — for example, HTTPS does this. Similarly, asymmetric encryption
is also used for digital signatures. Rather than encrypt the whole document using the private key, a public key
and an agreed upon hash algorithm describing the data is used to “sign” the document. The signature is attached
to the document, and the receiver then decrypts it using the private key. The result of the decryption is compared
with rerunning the same hash on the key document characteristics that were agreed upon for the hash; if the
results match, then the document is considered authentic. The result of this process is a digital signature associated
with the digital document. This process works bi-directionally, so a document can be signed with the private key
and the signature can be checked with the public key.

Because the holder of the private key will be able to read the data, it is very important that when you create
a key pair, the private key must be protected and never shared.

hash algorithms
Hash algorithms are also called one-way functions because of their mathematical property of nonreversibility.
The hash algorithms reduce large strings into a fixed-length binary byte array.

To verify a piece of information, the hash is recomputed and compared against a previously computed hash
value. If both values match, then the newly provided data is correct. Cryptographic hashing algorithms map
strings of data to a fixed-length result. Thus, two strings of different length will have a hash of the same size.

Although it is theoretically possible for two documents to have the same MD5 hash result, it is computationally
impossible to create a meaningful forged document having the same hash key as the original hash value.

encryption Basics ❘ 1037

1038 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

Cryptographic Hash algorithms
The abstract class System.Security.Cryptography.HashAlgorithm represents the concept of cryptographic
hash algorithms within the .NET Framework. The framework provides eight classes that extend the
HashAlgorithm abstract class:

 ➤ MD5CryptoServiceProvider (extends abstract class MD5)

 ➤ RIPEMD160Managed (extends abstract class RIPEMD160)

 ➤ SHA1CryptoServiceProvider (extends abstract class SHA1)

 ➤ SHA256Managed (extends abstract class SHA256)

 ➤ SHA384Managed (extends abstract class SHA384)

 ➤ SHA512Managed (extends abstract class SHA512)

 ➤ HMACSHA1 (extends abstract class KeyedHashAlgorithm)

 ➤ MACTripleDES (extends abstract class KeyedHashAlgorithm)

The last two classes belong to a class of algorithm called keyed hash algorithms. The keyed hashes
extend the concept of the cryptographic hash with the use of a shared secret key. This is used for computing
the hash of data transported over an unsecured channel.

To demonstrate this, a hashing example is available as part of the code download. The TestHashKey.vb
file is part of the ProVB_Security solution. This class can be called using the following line of code:

TextBox1.Text = TestHashKey.Main("..\..\TestHashKey.vb")

Code snippet from TestHashKey.vb

Calling the shared method Main using the line of code above from the ButtonTest_Click event handler
will run the following example code telling it to encrypt a copy of the source file TestHashKey.vb:

'TestHashKey.vb
Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Public Class TestHashKey
 Public Shared Function Main(ByVal pathToFileToProtect As String) As String
 Dim key() As Byte = Encoding.ASCII.GetBytes("My Secret Key".ToCharArray())
 Dim hmac As HMACSHA1 = New HMACSHA1(key)
 Dim fs As FileStream = File.OpenRead(pathToFileToProtect)
 Dim hash() As Byte = hmac.ComputeHash(fs)
 Dim b64 As String = Convert.ToBase64String(hash)
 fs.Close()
 Return b64
 End Function
End Class

Code snippet from TestHashKey.vb

The preceding snippet creates the object instance
of the .NET SDK Framework class with a salt
(a random secret to confuse a snooper). The next
four lines compute the hash, encode the binary
hash into a printable Base64 format, close the file,
and then return the Base64 encoded string.
Running this will result in the hashed output
shown in Figure 32-8. figure 32-8

The previous example uses an instance of the HMACSHA1 class. The output displayed is a Base64 encoding
of the binary hash result value. As noted earlier, Base64 encoding is widely used in MIME and XML file
formats to represent binary data. To recover the binary data from a Base64-encoded string, you could use
the following code fragment:

Dim orig() As Byte = Convert.FromBase64String(b64)

The XML parser, however, does this automatically, as shown in later examples.

SHA

Secure Hash Algorithm (SHA) is a block cipher that operates on a block size of 64 bits. However, subsequent
enhancements of this algorithm have bigger key values, thus, increasing the value range and therefore enhancing
the cryptographic utility. Note that the bigger the key value sizes, the longer it takes to compute the hash.
Moreover, for relatively smaller data files, smaller hash values are more secure. To put it another way, the hash
algorithm’s block size should be less than or equal to the size of the data itself.

The hash size for the SHA1 algorithm is 160 bits. Similar to the HMACSHA1 code discussed previously, the
following code shows an example of using this algorithm:

'TestSHA1.vb
Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Public Class TestSHA1
 Public Shared Function Main(ByVal pathToFileToProtect As String) As String

 Dim fs As FileStream = File.OpenRead(pathToFileToProtect)
 Dim sha As SHA1 = New SHA1CryptoServiceProvider
 Dim hash() As Byte = sha.ComputeHash(fs)
 Dim b64 As String = Convert.ToBase64String(hash)
 fs.Close()
 Return b64
 End Function
End Class

Code snippet from TestSHA1.vb

The .NET Framework provides larger key size algorithms as well — namely, SHA256, SHA384, and
SHA512. The numbers at the end of the name indicate the block size.

The class SHA256Managed extends the abstract class SHA256, which in turn extends the abstract class
HashAlgorithm. The forms authentication module of ASP.NET security (System.Web.Security
.Forms AuthenticationModule) uses SHA1 as one of its valid formats to store and compare user passwords.

MD5

Message-Digest algorithm 5 (MD5) is a cryptographic, one-way hash algorithm. The MD5 algorithm
competes well with SHA. MD5 is an improved version of MD4, devised by Ronald Rivest of Rivest, Shamir
and Adleman (RSA) fame. In fact, FIPS PUB 180-1 states that SHA-1 is based on principles similar to MD4.
The salient features of this class of algorithms are as follows:

It is computationally unfeasible to forge an MD5 hash digest. ➤

MD5 is not based on any mathematical assumption such as the difficulty of factoring large binary ➤

integers.

MD5 is computationally cheap, and therefore suitable for low-latency requirements. ➤

It is relatively simple to implement. ➤

encryption Basics ❘ 1039

1040 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

MD5 was the de facto standard for hash digest computation, due to the popularity of RSA. The .NET Framework
provides an implementation of this algorithm through the class MD5CryptoServiceProvider in the System
.Security.Cryptography namespace. This class extends the MD5 abstract class, which in turn extends the
abstract class HashAlgorithm. This class shares a common base class with SHA1, so the examples previously
discussed can be easily replicated by updating the SHA1 source to reference the MD5CryptoServiceProvider
instead of the SHA1 provider.

Dim md5 As MD5 = New MD5CryptoServiceProvider()
Dim hash() As Byte = md5.ComputeHash(fs)

RIPEMD-160

Based on MD5, RIPEMD-160 started as a project in Europe called the RIPE (RACE Integrity Primitives
Evaluation) project Message Digest in 1996. By 1997, the design of RIPEMD-160 was finalized. RIPEMD-
160 is a 160-bit hash algorithm that is meant to be a replacement for MD4 and MD5.

The .NET Framework 2.0 introduced the RIPEMD160 class to work with this iteration of encryption
techniques. As you should recognize from the preceding MD5 example, switching to this provider is also
easily accomplished:

Dim myRIPEMD As New RIPEMD160Managed()
Dim hash() As Byte = myRIPEMD.ComputeHash(fs)

symmetric Key encryption
Symmetric key encryption is widely used to encrypt data files using passwords. The simplest technique is
to seed a random number using a password, and then encrypt the files with an XOR operation using this
random number generator.

The .NET Framework provides an abstract base class SymmetricAlgorithm. Five concrete implementations
of different symmetric key algorithms are provided by default:

 ➤ AesCryptoServiceProvider (extends abstract class Aes)

 ➤ DESCryptoServiceProvider (extends abstract class DES)

 ➤ RC2CryptoServiceProvider (extends abstract class RC2)

 ➤ RijndaelManaged (extends abstract class Rijndael)

 ➤ TripleDESCryptoServiceProvider (extends abstract class TripleDES)

Let’s explore the SymmetricAlgorithm design. As indicated by the following example code, two separate
methods are provided to access encryption and decryption. You can run a copy of symmetric encryption
using the sample code. Uncomment the following line of code in the ButtonTest_Click event handler in
Form1.vb. An example of this call is shown below:

SymEnc.Main(TextBox1, 0, "..\..\SymEnc.vb", "DESencrypted.txt", True)

Code snippet from Form1.vb

Here is code that encrypts and decrypts a file, given a secret key:

'SymEnc.vb
Imports System.Security.Cryptography
Imports System.IO
Imports System.Text
Imports System

Public Class SymEnc
 Private Shared algo() As String = {"DES", "RC2", "Rijndael", "TripleDES"}
 Private Shared b64Keys() As String = {"YE32PGCJ/g0=", _
 "vct+rJ09WuUcR61yfxniTQ==", _
 "PHDPqfwE3z25f2UYjwwfwg4XSqxvl8WYmy+2h8t6AUg=", _

 "Q1/lWoraddTH3IXAQUJGDSYDQcYYuOpm"}
 Private Shared b64IVs() As String = {"onQX8hdHeWQ=", _
 "jgetiyz+pIc=", _
 "pd5mgMMfDI2Gxm/SKl5I8A==", _
 "6jpFrUh8FF4="}

 Public Shared Sub Main(ByVal textBox As TextBox, ByVal algoIndex As Integer,
 ByVal inputFile As String, ByVal outputFile As String,
 ByVal encryptFile As Boolean)

 Dim fin As FileStream = File.OpenRead(inputFile)
 Dim fout As FileStream = File.OpenWrite(outputFile)
 Dim sa As SymmetricAlgorithm = SymmetricAlgorithm.Create(algo(algoIndex))
 sa.IV = Convert.FromBase64String(b64IVs(algoIndex))
 sa.Key = Convert.FromBase64String(b64Keys(algoIndex))
 textBox.Text = "Key length: " & CType(sa.Key.Length, String) & Environment.NewLine
 textBox.Text &= "Initial Vector length: " & CType(sa.IV.Length, String) &
 Environment.NewLine
 textBox.Text &= "KeySize: " & CType(sa.KeySize, String) & Environment.NewLine
 textBox.Text &= "BlockSize: " & CType(sa.BlockSize, String) & Environment.NewLine
 textBox.Text &= "Padding: " & CType(sa.Padding, String) & Environment.NewLine
 If (encryptFile) Then
 Encrypt(sa, fin, fout)
 Else
 Decrypt(sa, fin, fout)
 End If
 End Sub

Code snippet from SyncEnc.vb

The parameters to Main provide the Textbox where the output will be displayed and the index from the
array algo, which is the name of the algorithm to be used. It then looks for the input and output files, and
finally a Boolean indicating whether the input should be encrypted or decrypted.

Within the code, first the action is to open the input and output files. The code then creates an instance of
the selected algorithm and converts the initial vector and key strings for use by the algorithm. Symmetric
algorithms essentially rely on two secret values: one called the key; the other, the initial vector, both of
which are used to encrypt and decrypt the data. Both private values are required for either encryption or
decryption.

The code then outputs some generic information related to the encryption being used and then checks which
operation is required, executing the appropriate static method to encrypt or decrypt the file.

To encrypt, the code gets an instance of the ICryptoTransform interface by calling the CreateEncryptor
method of the SymmetricAlgorithm class extender. The encryption itself is done in the following method:

 Private Shared Sub Encrypt(ByVal sa As SymmetricAlgorithm, _
 ByVal fin As Stream, _
 ByVal fout As Stream)
 Dim trans As ICryptoTransform = sa.CreateEncryptor()
 Dim buf() As Byte = New Byte(fin.Length) {}
 Dim cs As CryptoStream = _
 New CryptoStream(fout, trans, CryptoStreamMode.Write)
 Dim Len As Integer
 fin.Position = 0
 Len = fin.Read(buf, 0, buf.Length)
 While (Len > 0)
 cs.Write(buf, 0, Len)
 Len = fin.Read(buf, 0, buf.Length)
 End While
 cs.Close()

encryption Basics ❘ 1041

1042 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

 fin.Close()
 End Sub

Code snippet from SymEnc.vb

For decryption, the code gets an instance of the ICryptoTransform interface by calling the CreateDecryptor
method of the SymmetricAlgorithm class instance. To test this you can uncomment the line of code which
follows the call to encrypt and matches the line below:

SymEnc.Main(TextBox1, 0, "DESencrypted.txt", "DESdecrypted.txt", False)

Code snippet from Form1.vb

The following code provides the decryption method:

 Private Shared Sub Decrypt(ByVal sa As SymmetricAlgorithm, _
 ByVal fin As Stream, _
 ByVal fout As Stream)
 Dim trans As ICryptoTransform = sa.CreateDecryptor()
 Dim buf() As Byte = New Byte(fin.Length) {}
 Dim cs As CryptoStream = _
 New CryptoStream(fin, trans, CryptoStreamMode.Read)
 Dim Len As Integer
 Len = cs.Read(buf, 0, buf.Length - 1)
 While (Len > 0)
 fout.Write(buf, 0, Len)
 Len = cs.Read(buf, 0, buf.Length)
 End While
 fin.Close()
 fout.Close()
 End Sub

Code snippet from SymEnc.vb

The class CryptoStream is used for both encryption and decryption. You’ll find it listed both in the Decrypt
method shown in the preceding code snippet and also in the earlier code snippet that showed the Encrypt
method. Notice however, that depending on if you are encrypting or decrypting, the parameters to the
constructor for the CryptoStream differ.

You’ll also notice if you review the code in SymEnc.vb, that this code supports testing of encryption and
decryption using any of the four symmetric key implementations provided by the .NET Framework. The
second parameter to Sub Main is an index indicating which algorithm to use. The secret keys and associated
initialization vectors (IVs) were generated by a simple source code generator, examined shortly.

If you haven’t done so yet, you should run the application
and verify the contents of the DESencrypted.txt and
DESdecrypted.txt files. If the new methods run to
completion, the screen display should look similar to what
is shown in Figure 32-9.

To generate the keys, a simple code generator is available in
the file SymKey.vb. It can be extracted and compiled as a
command-line executable to generate your own keys. The
code used is shown in the following snippet:

'SymKey.vb
Imports System.Security.Cryptography
Imports System.Text
Imports System.IO
Imports System
Imports Microsoft.VisualBasic.ControlChars

Public Class SymKey

figure 32-9

 Public Sub Main(ByVal CmdArgs() As String)
 Dim keyz As StringBuilder = New StringBuilder
 Dim ivz As StringBuilder = New StringBuilder
 keyz.Append("Dim b64Keys() As String = { _" + VbCrLf)
 ivz.Append(vbCrLf + "Dim b64IVs() As String = { _" + vbCrLf)
 Dim comma As String = ", _" + vbCrLf
 Dim algo() As String = {"DES", "RC2", "Rijndael", "TripleDES"}
 For i As Integer = 0 To 3
 Dim sa As SymmetricAlgorithm = SymmetricAlgorithm.Create(algo(i))
 sa.GenerateIV()
 sa.GenerateKey()
 Dim Key As String
 Dim IV As String
 Key = Convert.ToBase64String(sa.Key)
 IV = Convert.ToBase64String(sa.IV)
 keyz.AppendFormat(vbTab + """" + Key + """" + comma)
 ivz.AppendFormat(vbTab + """" + IV + """" + comma)
 If i = 2 Then comma = " "
 Next i
 keyz.Append("}")
 ivz.Append("}")
 Console.WriteLine(keyz.ToString())
 Console.WriteLine(ivz.ToString())
 End Sub
End Class

Code snippet from SymEnc.vb

The preceding program creates a random key and an initializing vector for each algorithm. The output from
this can be copied into the SymEnc.vb program.

PKCs
The Public Key Cryptographic System (PKCS) is a type of asymmetric key encryption. This system uses two
keys, one private and the other public. The public key is widely distributed, whereas the private key is kept
secret. One cannot derive or deduce the private key by knowing the public key, so the public key can be
safely distributed.

The keys are different, yet complementary. That is, if you encrypt data using the public key, then only the
owner of the private key can decipher it, and vice versa. This forms the basis of PKCS encryption.

If the private key holder encrypts a piece of data using his or her private key, any person with access to
the public key can decrypt it. The public key, as the name suggests, is available publicly. This property of the
PKCS is exploited along with a hashing algorithm, such as SHA or MD5, to provide a verifiable digital
signature process.

The abstract class System.Security.Cryptography.AsymmetricAlgorithm represents this concept in the
.NET Framework. Four concrete implementations of this class are provided by default:

 ➤ DSACryptoServiceProvider, which extends the abstract class DSA

 ➤ ECDiffieHellmanCngCryptoServiceProvider, which extends the ECDiffieHellmanCng abstract
class

 ➤ ECDsaCngCryptoServiceProvider, which extends the abstract class ECDsaCng

 ➤ RSACryptoServiceProvider, which extends the abstract class RSA

The Digital Signature Algorithm (DSA) was specified by the National Institute of Standards and Technology
(NIST) in January 2000. The original DSA standard, however, was issued by NIST much earlier, in August 1991.
DSA cannot be used for encryption and is good only for digital signature. Digital signature is discussed in more
detail in the next section.

encryption Basics ❘ 1043

1044 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

Similarly, the ECDsa algorithm is also an elliptic curve algorithm, in this case combined with the Digital
Signature Algorithm. This is then enhanced with a Cryptographic Next Generation algorithm.

RSA algorithms can also be used for encryption as well as digital signatures. RSA is the de facto standard
and has much wider acceptance than DSA. RSA is a tiny bit faster than DSA as well.

RSA can be used for both digital signature and data encryption. It is based on the assumption that large
numbers are extremely difficult to factor. The use of RSA for digital signatures is approved within the FIPS
PUB 186-2 and is defined in the ANSI X9.31 standard document.

Digital signature example
Digital signature is the encryption of a hash digest (for example, MD5 or SHA-1) of data using a public key.
The digital signature can be verified by decrypting the hash digest and comparing it against a hash digest
computed from the data by the verifier.

As noted earlier, the private key is known only to the owner, so the owner can sign a digital document by
encrypting the hash computed from the document. The public key is known to all, so anyone can verify the
signature by recomputing the hash and comparing it against the decrypted value, using the public key of
the signer.

The .NET Framework provides DSA and RSA digital signature implementations by default. This section
considers only DSA, as both implementations extend the same base class, so all programs for DSA discussed
here work for RSA as well.

First, you need to produce a key pair. To do this, you’ll need the following method, which has been added
to the ProVB_Security main form. It can be called once from the ButtonTest click event to generate the
necessary files in your application’s folder:

 Private Sub GenDSAKeys()
 Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
 Dim prv As String = dsa.ToXmlString(True)
 Dim pub As String = dsa.ToXmlString(False)
 Dim fileutil As FileUtil = New FileUtil
 fileutil.SaveString("dsa-key.xml", prv)
 fileutil.SaveString("dsa-pub.xml", pub)
 End Sub

Code snippet from Form1.vb

This method generates two XML-formatted files, dsa-key.xml and dsa-pub.xml, containing private
and public keys, respectively. This code is dependent on an additional class, FileUtil that is available in the
project to wrap some of the common file I/O operations. This file is shown in the following code snippet:

'FileUtil.vb
Imports System.IO
Imports System.Text
Public Class FileUtil
 Public Sub SaveString(ByVal fname As String, ByVal data As String)
 SaveBytes(fname, (New ASCIIEncoding).GetBytes(data))
 End Sub
 Public Function LoadString(ByVal fname As String)
 Dim buf() As Byte = LoadBytes(fname)
 Return (New ASCIIEncoding).GetString(buf)
 End Function
 Public Function LoadBytes(ByVal fname As String)
 Dim finfo As FileInfo = New FileInfo(fname)
 Dim length As String = CType(finfo.Length, String)
 Dim buf() As Byte = New Byte(length) {}
 Dim fs As FileStream = File.OpenRead(fname)
 fs.Read(buf, 0, buf.Length)
 fs.Close()

 Return buf
 End Function
 Public Sub SaveBytes(ByVal fname As String, ByVal data() As Byte)
 Dim fs As FileStream = File.OpenWrite(fname)
 fs.SetLength(0)
 fs.Write(data, 0, data.Length)
 fs.Close()
 End Sub
 Public Function LoadSig(ByVal fname As String)
 Dim fs As FileStream = File.OpenRead(fname)
 ' Need to omit the trailing null from the end of the 0 based buffer.
 Dim buf() As Byte = New Byte(39) {}
 fs.Read(buf, 0, buf.Length)
 fs.Close()
 Return buf
 End Function
End Class

Code snippet from FileUtil.vb

To create the signature for a data file, reference the DSASign class from the ButtonTest click event handler.
The following code signs the data:

'DSASign.vb
Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Public Class DSASign
 Public Shared Sub Main()

 Dim fileutil As FileUtil = New FileUtil
 Dim xkey As String = fileutil.LoadString("dsa-key.xml")
 Dim fs As FileStream = File.OpenRead("..\..\FileUtil.vb")
 Dim data(fs.Length) As Byte
 fs.Read(data, 0, fs.Length)
 Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
 dsa.FromXmlString(xkey)
 Dim sig() As Byte = dsa.SignData(data)
 fs.Close()
 fileutil.SaveBytes("FileUtilSignature.txt", sig)
 End Sub
End Class

Code snippet from DSASign.vb

The two lines of code that reference the DSACryptoServiceProvider and dsa.FromXmlString method
actually create the DSA provider instance and reconstruct the private key from the XML format. Next, the
file is signed using the call to dsa.SignData while passing the file stream to be signed to this method.
The FileStream is then cleaned up and the resulting signature is saved into the output file.

Now that you have a data file and a signature, the next step is to verify the signature. The class DSAVerify
can be leveraged to verify that the signature file created is in fact valid:

'DSAVerify.vb
Imports System
Imports System.IO
Imports System.Security.Cryptography
Imports System.Text

Public Class DSAVerify

encryption Basics ❘ 1045

1046 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

 Public Shared Function Main() As String

 Dim fileutil As FileUtil = New FileUtil
 Dim xkey As String = fileutil.LoadString("dsa-key.xml")
 Dim fs As FileStream = File.OpenRead("..\..\FileUtil.vb")
 Dim data(fs.Length) As Byte
 fs.Read(data, 0, fs.Length)
 Dim xsig() As Byte = fileutil.LoadSig("FileUtilSignature.txt")
 Dim dsa As DSACryptoServiceProvider = New DSACryptoServiceProvider
 dsa.FromXmlString(xkey)
 Dim verify As Boolean = dsa.VerifyData(data, xsig)
 Return String.Format("Signature Verification is {0}", verify)
 End Function
End Class

Code snippet from DSAVerfiry.vb

During testing you may want to ensure that both of these
methods are enabled at the same time. This will ensure that
you are encrypting and decrypting with the same keys. When
working correctly, your display should look similar to what
is shown in Figure 32-10.

There are many helper classes in the System.Security
.Cryptography and System.Security.Cryptography
.Xml namespaces. These classes provide numerous features
to help deal with digital signatures and encryption. They also provide overlapping functionality, so there is
more than one way of doing the same thing.

X.509 Certificates
X.509 is a public key certificate exchange framework. A public key certificate is a digitally signed statement
by the owner of a private key, trusted by the verifier (usually a certifying authority), that certifies the validity
of the public key of another entity. This creates a trust relationship between two unknown entities. X.509 is
an ISO standard specified by the document ISO/IEC 9594-8. X.509 certificates are also used in SSL (Secure
Sockets Layer), which is covered in the next section.

Many certifying authority services are available over the Internet. VeriSign (www.verisign.com) is one of
the most popular, and was founded by the RSA trio themselves. Other providers may cost less but if you
intend to make your certificate public, you’ll want to investigate if they are default providers within the
Windows operating system. Alternatively, at the low-cost end, and during development, you can run your
own Certificate Authority (CA) service over an intranet using Microsoft Certificate Services.

The Microsoft .NET Framework SDK also provides tools for generating certificates for testing purposes. The
following command generates a test certificate:

makecert -n CN=ProVB test.cer

The certificate is with the code at the solution directory level.

Three classes dealing with X.509 certificates are provided in the .NET Framework in the namespace
System.Security.Cryptography.X509Certificates. The following program loads and manipulates the
certificate created earlier:

' CertLoad.vb
Imports System
Imports System.Security.Cryptography.X509Certificates

Public Class CertLoad
 Public Shared Sub Main(ByVal certFilePath As String, ByVal textbox As TextBox)

 Dim cert As X509Certificate = _

figure 32-10

 X509Certificate.CreateFromCertFile(certFilePath)
 textbox.Text = "Hash = " & cert.GetCertHashString() & Environment.NewLine
 textbox.Text &= "Effective Date = " &
 cert.GetEffectiveDateString() & Environment.NewLine
 textbox.Text &= "Expire Date = " &
 cert.GetExpirationDateString() & Environment.NewLine
 textbox.Text &= "Issued By = " & cert.Issuer & Environment.NewLine
 textbox.Text &= "Issued To = " & cert.Subject & Environment.NewLine
 textbox.Text &= "Algorithm = " & cert.GetKeyAlgorithm() & Environment.NewLine
 textbox.Text &= "Pub Key = " & cert.GetPublicKeyString() & Environment.NewLine
 End Sub
End Class

Code snippet from CertLoad.vb

The static method loads CreateFromCertFile (the certificate file) and creates a new instance of the class
X509Certificate. When working correctly, the results are displayed in ProVB_Security as shown in
Figure 32-11. The next section deals with Secure Sockets Layer (SSL), which uses X.509 certificates to
establish the trust relationship.

figure 32-11

secure sockets layer
The Secure Sockets Layer (SSL) protocol provides privacy and reliability between two communicating
applications over the Internet. SSL is built over the TCP layer. In January 1999, the Internet Engineering
Task Force (IETF) adopted an enhanced version of SSL 3.0 called Transport Layer Security (TLS). TLS is
backwardly compatible with SSL, and is defined in RFC 2246. However, the name SSL was retained due
to wide acceptance of this Netscape protocol name. This section provides a simplified overview of the SSL
algorithm sequence. SSL provides connection-oriented security via the following four properties:

Connection is private and encryption is valid for the current session only. ➤

Symmetric key cryptography, like DES, is used for encryption. However, the session symmetric key is ➤

exchanged using public key encryption.

encryption Basics ❘ 1047

1048 ❘ chaPTer 32 sECuRity iN tHE .NEt FRamEwoRk

Digital certificates are used to verify the identities of the communicating entities. ➤

Secure hash functions, such as SHA and MD5, are used for message authentication code (MAC). ➤

The SSL protocol provides the following features:

 ➤ Cryptographic security — Using a symmetric key for session data-encryption, and a public key for
authentication

 ➤ Interoperability — Interpolates OS and programming languages

 ➤ Extensibility — Adds new data-encryption protocols that are allowed within the SSL framework

 ➤ Relative efficiency — Reduces computation and network activity by using caching techniques

Two entities communicating using SSL protocols must have a public-private key pair, optionally with digital
certificates validating their respective public keys.

At the beginning of a session, the client and server exchange information to authenticate each other. This ritual of
authentication is called the handshake protocol. During this handshake, a session ID, the compression method, and
the cipher suite to be used are negotiated. If the certificates exist, then they are exchanged. Although certificates
are optional, either the client or the server may refuse to continue with the connection and end the session in the
absence of a certificate.

After receiving each other’s public keys, a set of secret keys based on a randomly generated number is
exchanged by encrypting them with each other’s public keys. After this, the application data exchange can
commence. The application data is encrypted using a secret key, and a signed hash of the data is sent to
verify data integrity.

Microsoft implements the SSL client in the .NET Framework classes. However, the server-side SSL can be
used by deploying your service through the IIS Web server.

The following code demonstrates a method for accessing a secured URL. It takes care of minor details, such
as encoding:

' Cryptography/GetWeb.vb
Imports System
Imports System.IO
Imports System.Net
Imports System.Text

Public Class GetWeb
 Dim MaxContentLength As Integer = 16384 ' 16k

 Public Shared Function QueryURL(ByVal url As String) As String
 Dim req As WebRequest = WebRequest.Create(url)
 Dim result As WebResponse = req.GetResponse()
 Dim ReceiveStream As Stream = result.GetResponseStream()
 Dim enc As Encoding = System.Text.Encoding.GetEncoding("utf-8")
 Dim sr As StreamReader = New StreamReader(ReceiveStream, enc)
 Dim response As String = sr.ReadToEnd()
 Return response
 End Function

End Class

Code snippet from Cryptography/GetWeb.vb

Using this method from the ProVB_Security application allows you to retrieve the information associated
with the selected Web page. In this case, you can pass the URL www.amazon.com to the method
from the ButtonTest click event handler. The resulting display should be similar to what is shown in
Figure 32-12.

summary
This chapter covered the basics of security and cryptography. It began with an overview of the security
architecture of the .NET Framework. The chapter introduced the four types of security within Windows
and .NET: NTFS, User Access Control (UAC), cryptographic, and programmatic.

It then examined the security tools and functionality that the .NET Framework provides. You looked at the
System.Security.Permissions namespace and learned how you can control code access permissions,
role-based permissions, and identity permissions. You also learned how to manage code access permissions
and UAC for your assembly.

The second half of the chapter looked at cryptography, both the underlying theory and how it can be
applied within your applications. You looked at the different types of cryptographic hash algorithms,
including SHA, MD5, symmetric key encryption, and PKCS. You should also understand how you can use
digital certificates, such as X.509 and Secure Socket Layer (SSL) certificates.

figure 32-12

summary ❘ 1049

 Parallel Programming Using
Tasks and Threads

 WhaT you Will learn in This chaPTer

 Understanding the new task - based programming model and the Task ➤

Parallel Library

 Launching, controlling, managing, and synchronizing parallel tasks ➤

 Refactoring loops to run them in parallel using Parallel .For and ➤

Parallel .ForEach

 Transforming existing sequential code into parallelized code ➤

 Measuring the speed gain and the scalability off ered by parallelized code ➤

 Working with diff erent degrees of parallelism ➤

 Understanding the advantages of working with concurrent collections ➤

 Implementing a parallel producer - consumer pattern ➤

 Parallelizing LINQ queries using PLINQ ➤

 In the last few years, multicore technology has become the mainstream in CPU designs, and
microprocessor manufacturers continue to improve their processing power. However, the shift to
multicore is an infl exion point for software design philosophy.

 This chapter is about the new lightweight concurrency model offered by Visual Basic 2010 with .NET
Framework 4 and its related hardware technologies. A comprehensive treatment of the challenges
offered by the new multicore designs could easily fi ll 600 pages or more, so this chapter attempts to
strike a reasonable balance between detail and succinctness.

 launching Parallel TasKs
 It was really diffi cult to develop applications capable of taking full advantage of multicore
microprocessors working with previous .NET Framework versions. It was necessary to launch,
control, manage, and synchronize multiple threads using complex structures prepared for some
concurrency but not tuned for the modern multicore age.

33

1052 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

.NET Framework 4 introduces the new Task Parallel Library (TPL), born in the multicore age and prepared
to work with a new lightweight concurrency model. The TPL provides a lightweight framework that enables
developers to work with the following parallelism scenarios, implementing task-based designs instead of
working with heavyweight and complex threads:

 ➤ Data parallelism — There is a lot of data and it is necessary to perform the same operations for each
piece — for example, encrypting 100 Unicode strings using the Advanced Encryption Standard (AES)
algorithm with a 256-bits key.

 ➤ Task parallelism — There are many different operations that can run concurrently, taking advantage
of parallelism — for example, generating hash codes for files, encrypting Unicode strings, and creating
thumbnail representations of images.

 ➤ Pipelining — A mix of task and data parallelism. It is the most complex scenario because it always
requires the coordination between multiple concurrent specialized tasks — for example, encrypting
100 Unicode strings using the AES algorithm with a 256-bits key and then generating a hash code
for each encrypted string. This pipeline could be implemented running two concurrent tasks: the
encryption and the hash code generation. Each encrypted Unicode string would enter into a queue in
order to be processed by the hash code generation algorithm.

The easiest way to understand how to work with parallel tasks is by using them. Thus, you can take your
first step toward creating parallelized code with the methods offered by the System.Threading.Tasks.
Parallel static class.

system.Threading.Tasks.Parallel class
The most important namespace for TPL is the new System.Threading.Tasks. It offers access to classes,
structures, and enumerations introduced in .NET Framework 4, including the new System.Threading
.Tasks.Parallel static class. Therefore, it is a good idea to import this namespace whenever you want to
work with TPL:

Imports System.Threading.Tasks

This way, you will avoid large references. For example, instead of writing System.Threading.Tasks
.Parallel.Invoke, you will be able to write Parallel.Invoke. In order to simplify the code, I will
assume the aforementioned import is used in all the code snippets. However, remember that you can
download the sample code for each code snippet and listing.

The main class is Task, representing an asynchronous and potentially concurrent operation. However, it
is not necessary to work directly with instances of Task in order to create parallel code. Sometimes, the
best option is to create parallel loops or regions, especially when the code seems to be appropriate for a
sequential loop. In these cases, instead of working with the lower-level Task instances, it is possible to work
with the methods offered by the Parallel static class (System.Threading.Tasks.Parallel):

 ➤ Parallel.For — Offers a load-balanced, potentially parallel execution of a fixed number of
independent For loop iterations

 ➤ Parallel.ForEach — Offers a load-balanced, potentially parallel execution of a fixed number of
independent ForEach loop iterations

 ➤ Parallel.Invoke — Offers the potentially parallel execution of the provided independent actions

These methods are very useful when you are refactoring existing code to take advantage of potential
parallelism. However, it is very important to understand that it is not as simple as replacing a For statement
with Parallel.For. Many techniques for refactoring existing loops are covered in detail later in this chapter.

Parallel.invoke
The easiest way to try to run many methods in parallel is by using the new Invoke method provided by
the Parallel class. For example, suppose that you have the following four independent subroutines that
perform a format conversion, and you are sure it is safe to run them concurrently:

 ➤ ConvertEllipses

 ➤ ConvertRectangles

 ➤ ConvertLines

 ➤ ConvertText

 You can use the following line in order to launch these subroutines, taking advantage of potential
parallelism:

Parallel.Invoke(AddressOf ConvertEllipses, AddressOf ConvertRectangles,
AddressOf ConvertLines, AddressOf ConvertText)

 In this case, each AddressOf operator creates a function delegate that points to each subroutine. The
defi nition of the Invoke method receives an array of Action (System.Action()) to execute in parallel.

 The following code produces the same results using single - line lambda expression syntax for the subroutines
to run. Instead of using the aforementioned AddressOf operator, it adds Sub() before each method name.

Parallel.Invoke(Sub() ConvertEllipses(), Sub() ConvertRectangles(), Sub()
ConvertLines(), Sub() ConvertText())

 New to Visual Basic 2010 is the following multi - line lambda expression syntax to run the subroutines.
The following code uses them to produce the same result:

Parallel.Invoke(Sub()
 ConvertEllipses()
 ' Do something else adding more lines
 End Sub,
 Sub()
 ConvertRectangles()
 ' Do something else adding more lines
 End Sub,
 Sub()
 ConvertLines()
 ' Do something else adding more lines
 End Sub,
 Sub()
 ConvertText()
 ' Do something else adding more lines
 End Sub)

 Code snippet from Snippet01

 One of the great advantages of using the new multi - line lambda expression syntax is that
it enables you to defi ne and run in parallel more complex multi - line subroutines without
needing to create additional methods. When working with parallel programming using
TPL, it is very important to master delegates and lambda expressions.

 lack of execution order
 The following explanations apply to any of the previously shown code examples. The Parallel.Invoke
method will not return until each of the four subroutines shown earlier has completed. However, completion
could occur even with exceptions.

 The method will try to start the four subroutines concurrently, taking advantage of the multiple logical
cores , also known as hardware threads , offered by one or more physical microprocessors. However, their
actual parallel execution depends on many factors. In this case, there are four subroutines. This means
that Parallel.Invoke needs at least four logical cores available to be able to run the four methods
concurrently.

launching Parallel Tasks ❘ 1053

1054 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

In addition, having four logical cores doesn’t guarantee that the four subroutines are going to start at
the same time. The underlying scheduling logic could delay the initial execution of some of the provided
subroutines because one or more cores could be too busy. It is indeed very difficult to make accurate
predictions about the execution order because the underlying logic will try to create the most appropriate
execution plan according to the available resources at runtime.

Figure 33-1 shows three of the possible concurrent execution scenarios that could take place according
to different hardware configurations or diverse workloads. It is very important to keep in mind that the
same code doesn’t require a fixed time to run. Therefore, sometimes, the ConvertText method could
take more time than the ConvertLines method, even using the same hardware configuration and input
data stream.

ConvertEllipses

ConvertEllipses

ConvertEllipses

ConvertRectangles

ConvertRectangles

ConvertRectangles

ConvertLines

ConvertLines

ConvertLines

ConvertText

ConvertText

Time

Time

Time

ConvertText

Schedule
concurrent tasks

Return from
Parallel.InvokeParallel.Invoke

Schedule
concurrent tasks

Schedule
concurrent tasks

Return from
Parallel.Invoke

Return from
Parallel.Invoke

Parallel.Invoke

Parallel.Invoke

figure 33-1

The top diagram represents an almost ideal situation, the four subroutines running in parallel. It is very
important to consider the necessary time to schedule the concurrent tasks, which adds an initial overhead to
the overall time.

The middle diagram shows a scenario with just two concurrent lanes and four subroutines to run. On one
lane, once ConvertEllipses finishes, ConvertRectangles starts. On the other lane, once ConvertLines
finishes, ConvertText starts. Parallel.Invoke takes more time than the previous scenario to run all the
subroutines.

 The bottom diagram shows another scenario with three concurrent lanes. However, it takes almost the same
amount of time as the middle scenario, because in this case the ConvertLines subroutine takes more time
to run. Thus, Parallel.Invoke takes almost the same amount of time as the previous scenario to run all
the subroutines, even using one additional parallel lane.

 The code written to run concurrently using Parallel.Invoke doesn ’ t have to rely on
a specifi c execution order. If you have concurrent code that needs a specifi c execution
order, you can work with other mechanisms provided by the TPL. These are covered in
detail later in this chapter.

 advantages and Disadvantages
 The key advantage of using Parallel.Invoke is its simplicity; you can run many subroutines in parallel
without having to worry about tasks or threads. However, it isn ’ t suitable for all the situations in which it
is possible to take advantage of parallel execution. Parallel.Invoke has many trade - offs, including the
following:

 If you use it to launch subroutines that need very different times to run, it will need the longest time to ➤

return control. This could mean that many logical cores stay idle for long periods of time. Therefore,
it is very important to measure the results of using this method — that is, the speed gain achieved and
the logical core usage.

 If you use it to launch delegates with different running times, it will need the longest time to return. ➤

 It imposes a limit on the parallel scalability because it calls a fi xed number of delegates. In the ➤

previous example, if you run it in a computer with 16 logical cores, it will launch only four
subroutines in parallel. Therefore, 12 logical cores could remain idle.

 Each call to this method adds an overhead before running the potentially parallel subroutines. ➤

 Like any parallelized code, the existence of interdependencies or uncontrolled interaction between ➤

the different subroutines could lead to concurrency bugs that are diffi cult to detect, and unexpected
side effects. However, this trade - off applies to any concurrent code; it isn ’ t a problem limited to using
 Parallel.Invoke .

 As there are no guarantees made about the order in which the subroutines are executed, it isn ’ t ➤

suitable for running complex algorithms that require a specifi c execution plan of concurrent methods.

 Because exceptions could be thrown by any of the delegates launched with different parallel execution ➤

plans, the code to catch and handle these exceptions is more complex than the traditional sequential
exception handling code.

 The aforementioned trade - offs apply to the use of Parallel.Invoke as explained
in the examples. However, it is possible to combine various different techniques to
solve many of these trade - offs. You will learn about many of these mechanisms in this
chapter. Parallel.Invoke is ideal to begin working with parallelism and to measure
potential speed gains running CPU - intensive methods in parallel. You can improve the
code later using the other parallelization methods provided by TPL.

 Parallelism and Concurrency
 The previously explained example provides a good transition to the differences between parallelism and
 concurrency , because they aren ’ t the same thing, as shown in Figure 33 - 2.

launching Parallel Tasks ❘ 1055

1056 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

Concurrency means that different parts of code can start, run, and complete in overlapping time
periods. Concurrency can happen even on computers with a single logical core. When many parts
of code run concurrently on a computer with a single logical core, time-slicing mechanisms and fast
context switches can offer the impression of parallel execution. However, on this hardware, it requires
more time to run many parts of code concurrently than to run a single part of code alone, because
the concurrent code is competing for hardware resources (refer to Figure 33-2). You can think of
concurrency as many cars sharing a single lane. This is why concurrency is also defined as a form
of virtual parallelism but it isn’t real parallelism.

Parallelism means that different parts of code can actually run simultaneously, i.e., at the same time,
taking advantage of real parallel processing capabilities found in the underlying hardware. Parallelism isn’t
possible on computers with a single logical core. You need at least two logical cores in order to run parallel
code. When many parts of code run in parallel on a computer with multiple logical cores, time-slicing
mechanisms and context switches also occur, because typically many other parts of code are trying to use
processor time. However, when real parallelism occurs, you can achieve speed gains because many parts of
code running in parallel can reduce the overall necessary time to complete certain algorithms. The diagram
shown in Figure 33-2 offers two possible parallelism scenarios:

An ideal situation: perfect parallelism on four logical cores (four lanes). The instructions for each of ➤

the four methods run in a different logical core.

Concurrency (concurrent code
running on 1 logical core)

Parallelism (perfect parallelism on
4 logical cores)

Imperfect parallelism
(4 concurrent methods

running on 2 logical cores)

ConvertEllipses

ConvertRectangles

ConvertLines

ConvertText

Time

Time

Time

ConvertEllipses

ConvertRectangles

ConvertLines

ConvertText

ConvertEllipses

ConvertRectangles

ConvertLines

ConvertText

figure 33-2

 A combination of concurrency and parallelism, imperfect parallelism, whereby four methods take ➤

advantage of just two logical cores (two lanes). Sometimes the instructions for each of the four
methods run in a different logical core, in parallel, and sometimes they have to wait for their
time - slice. Therefore, in this case, there is concurrency combined with parallelism. This is the most
common situation, because it is indeed very diffi cult to achieve a perfect parallelism even on real - time
operating systems (RTOS).

 When parts of code run in parallel with other parts, sometimes new bugs are introduced
because of parallelism — that is, they appear only when certain parts of code run exactly
at the same time. These bugs can be diffi cult to locate, making parallel programming
even more complex than concurrent programming. Luckily, TPL offers many structures
and new debugging features that can help to avoid many parallelism nightmares.

 Transforming sequenTial code To Parallel code
 Until recently, most Visual Basic code was written with a sequential and synchronous execution approach.
Therefore, a lot of algorithms have been designed with neither concurrency nor parallelism in mind.
Typically, you won ’ t fi nd algorithms that can be completely converted to fully parallelized and perfectly
scalable code. It could happen, but it represents an ideal situation and it isn ’ t the most common scenario.

 When you have sequential code and you want to take advantage of potential parallelism to achieve better
performance, you have to fi nd hotspots . Then you can convert them to parallel code, measure speedups,
identify potential scalability, and ensure that you haven ’ t introduced new bugs while transforming the
existing sequential code to parallel code.

 A hotspot is a part of the code that takes signifi cant time to run. You can achieve
speedups if it is split into two or more pieces running in parallel. If part of the code
doesn ’ t take signifi cant time to run, the overhead introduced by TPL could reduce the
performance improvement to worthless or even make the parallelized code run slower
than the sequential version. Once you begin working with the different options offered
by TPL, it is going to be easier for you to detect the hotspots in sequential code.

 detecting hotspots
 Listing 33-1 shows an example of a very simple console application that runs two sequential subroutines:

 ➤ GenerateAESKeys — This runs a For loop to generate the number of AES keys specifi ed by the
 NUM_AES_KEYS constant. It uses the GenerateKey method provided by the System.Security
.Cryptography.AesManaged class. Once the key is generated, it stores the results of converting
the Byte array into a hexadecimal string representation (ConvertToHexString) in the hexString
local variable.

 ➤ GenerateMD5Hashes — This runs a For loop to compute a number of hashes, using the Message -
 Digest algorithm 5 (MD5 algorithm), specifi ed by the NUM_MD5_HASHES constant. It uses the user
name to call the ComputeHash method provided by the System.Security.Cryptography.MD5
class. Once the hash is generated, it stores the results of converting the Byte array into a hexadecimal
string representation (ConvertToHexString) in the hexString local variable.

 The highlighted lines of code in Listing 33 - 1 are the ones added to measure the time it takes to run each
subroutine, and the total elapsed time. It starts a new Stopwatch , calling its StartNew method at the
beginning of each method, and then it writes the elapsed time to the Debug output.

Transforming sequential Code to Parallel Code ❘ 1057

1058 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

lisTing 33-1: simple serial aes keys and MD5 hash generators

Imports System
Imports System.Text
Imports System.Security.Cryptography
' This import will be used later to run code in parallel
Imports System.Threading.Tasks

Module Module1

 Private Const NUM_AES_KEYS As Integer = 800000
 Private Const NUM_MD5_HASHES As Integer = 100000

 Function ConvertToHexString(ByRef byteArray() As Byte)
 ' Convert the byte array to hexadecimal string
 Dim sb As New StringBuilder()

 For i As Integer = 0 To (byteArray.Length() - 1)
 sb.Append(byteArray(i).ToString("X2"))
 Next

 Return sb.ToString()
 End Function

 Sub GenerateAESKeys()
 Dim sw = Stopwatch.StartNew()
 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_AES_KEYS
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
 Next
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
 End Sub

 Sub GenerateMD5Hashes()
 Dim sw = Stopwatch.StartNew()
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_MD5_HASHES
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
 Next
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
 End Sub

 Sub Main()
 Dim sw = Stopwatch.StartNew()
 GenerateAESKeys()
 GenerateMD5Hashes()
 Debug.WriteLine(sw.Elapsed.ToString())
 ' Display the results and wait for the user to press a key

 Console.ReadLine()
 End Sub
End Module

Code snippet from Listing01

The For loop in the GenerateAESKeys subroutine doesn’t use its controlled variable (i) in its code
because it just controls the number of times it generates a random AES key. However, the For loop in the
GenerateMD5Hashes subroutine uses its controlled variable (i) to add a number to the computer’s user
name. Then, it uses this string as the input data to call the method that computes its hash, as shown here:

For i As Integer = 1 To NUM_MD5_HASHES
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
Next

Code snippet from Listing01

The lines of code that write the generated keys and hashes to the default console output appear commented
in Listing 33-1 because these operations would generate a bottleneck that would distort the accuracy of the
time measurement.

Figure 33-3 shows the sequential execution flow for this application and the time it takes to run each of the
two aforementioned subroutines in a specific computer with a dual-core microprocessor.

GenerateAESKeys

GenerateMD5Hashes

8 seconds

6 seconds

14 seconds

figure 33-3

GenerateAESKeys and GenerateMD5Hashes need approximately 14 seconds to run. The first one takes
8 seconds and the latter 6 seconds. Of course, these times will vary considerably according to the underlying
hardware configuration.

There is no interaction between these two subroutines. Thus, they are completely independent from each
other. As the subroutines run one after the other, in a sequential way, they aren’t taking advantage of the
parallel processing capabilities offered by the additional core(s). Therefore, these two subroutines represent
a clear hotspot where parallelism could help to achieve a significant speedup over sequential execution. For
example, it is possible to run both subroutines in parallel using Parallel.Invoke.

Transforming sequential Code to Parallel Code ❘ 1059

1060 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

measuring speedups achieved by Parallel execution
Replace the Main subroutine shown in the simple console application with the following new version,
launching both GenerateAESKeys and GenerateMD5Hashes in parallel, using Parallel.Invoke:

Sub Main()
 Dim sw = Stopwatch.StartNew()
 Parallel.Invoke(Sub() GenerateAESKeys(), Sub() GenerateMD5Hashes())
 Debug.WriteLine(sw.Elapsed.ToString())
End Sub

Code snippet from Snippet02

Figure 33-4 shows the parallel execution flow for the new version of this application and the time it takes to
run each of the two subroutines in a specific computer with a dual-core microprocessor.

GenerateMD5Hashes GenerateAESKeys6 seconds 9 seconds 9 seconds

figure 33-4

Schedule
concurrent tasks

Parallel.Invoke

One core free
all this time

3 seconds6 seconds

GenerateAESKeys

GenerateMD5Hashes

9 seconds

Time

Return from
Parellel.Invoke

figure 33-5

Now, GenerateAESKeys and GenerateMD5Hashes need approximately nine seconds to run because they
take advantage of both cores offered by the microprocessor. Thus, it is possible to calculate the speedup
achieved using the following formula:

Speedup = (Serial execution time) / (Parallel execution time)

In the preceding example, 14 / 9 = 1.56 times faster, usually expressed as a 1.56x speedup over the sequential
version. GenerateAESKeys takes more time than GenerateMD5Hashes to run, nine seconds versus six
seconds. However, Parallel.Invoke doesn’t continue with the next line until all the delegates finish their
execution. Therefore, during three seconds, the application is not taking advantage of one of the cores, as
shown in Figure 33-5.

 In addition, if this application runs on a computer with a quad - core microprocessor, its speedup over the
sequential version would be nearly the same, as it won ’ t scale to take advantage of the two additional cores
found in the underlying hardware.

 In this section, you saw how it is possible to detect hotspots by adding some code to measure the elapsed
time to run certain methods. By changing just a few lines of code, a noticeable improvement in speed was
achieved. Now it is time to learn other TPL structures that can help to achieve better results and offer
improved scalability when the number of available cores increases.

 There is no need to initialize TPL in order to begin working with its classes and
methods. TPL does a lot of work under the hood and does its best to optimize its
scheduling mechanisms to take advantage of the underlying hardware at runtime.
However, choosing the right structure to parallelize a hotspot is a very important task.

 understanding Parallel and concurrent execution
 Now, uncomment the lines that send output to the console in both GenerateAESKeys and
 GenerateMD5Hashes :

Console.WriteLine(hexString)

 Writing to the console will generate a bottleneck for the parallel execution. However, this time, there
is no need to measure accurate times. Instead, you can view the output to determine that both methods
are running in parallel. Listing 33 - 2 shows a sample console output generated by this application. The
highlighted lines, the shorter hexadecimal strings, correspond to the MD5 hashes. The others represent
AES keys. Each AES key takes less time to generate than each MD5 hash. Remember that the code creates
800,000 AES keys (NUM_AES_KEYS) and 100,000 MD5 hashes (NUM_MD5_HASHES).

 lisTing 33 - 2: example output generated by aes keys and MD5 hash generators running
in parallel

0364DBC9A8FA3EAC793FC53AAE6D0193484087634C3033C470D96C72F89D7254
E410BCB82B36729CB7CCCCDFE30746F2DF141CC8275790360E2ED731F8C7113D
66CF85EA8FC77746A7C4A116F68D802D7167AE9E7C5FB0B6B85D44B8929386DE
0421897DCF492380BADF872205AE32D94632C60022A4E965652524D7023C59AD
C3BEF1DFFF5A9CAB11BFF8EA3F7DEFC97D91562A358DB56477AD445ACB4F1DE3
AF521D65489CA5C69517E32E652D464676E5F2487E438124DBF9ACF4157301AA
A641EB67C88A29985CFB0B2097B12CFB9296B4659E0949F20271984A3868E0B3
D7A05587DFDFD0C49BEF613F2EB78A43
90BF115C60B2DECA60C237F3D06E42EE
B3519CBA0137FD814C09371836F90322
1415C19F7F93306D35186721AF6B8DDE56427BB9AF29D22E37B34CB49E96BB49
208B73D3E6468F48B950E5F5006DDF30FE7A1B3BCC46489F7722BD98D54079D7
ACD0312DFF1BF29ECA2721DAFA9B20AB5FBDBD20E76C150C5CCE4026990C9D26
EB68C902145439F2A66514B9D89E9A958F18EE15D491014D3DCB312781F277D1
9DB8ABF087C78091F1E77AC769FF175A
F3EFB2804A969D890AFABCE17E84B26E
B342A8A253003754B752B85C67DA1560F30CD36A1AA759A0010E1F8E5045CBB5
9681656DC08F29AB1911A1CCCFBE6B468D1DF7B9D8722324E5E2BB4A314EC649
7DE56E111213655F54D6F8656238CA5E
196D194BA2B786EADD1B6852645C67C5
BA7AC6B878064E98D98336CA5DE45DEC
875DAB451CCE3B5FBD8E5091BAD1A8ED7DB2FF8C9E3EEA834C6DEA7C2467F27E
C1AA2CB88AB669317CB90CD842BF01DB26C6A655D10660AF01C37ECC7AEDA267
66E1F4F56E04FC9BFF225F68008A129D93F9B277ADAB43FF764FB87FFD098B78

Transforming sequential Code to Parallel Code ❘ 1061

1062 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

Now, comment the lines that send output to the console in both GenerateAESKeys and GenerateMD5Hashes
again.

ParalleliZing looPs
Both GenerateAESKeys and GenerateMD5Hashes represent an opportunity to run iterations in parallel.
They generate the input data to simplify the example and perform the same operation for each piece. Thus,
it represents a data parallelism scenario. It is possible to refactor the loops to run the operations in parallel.
This way, instead of running both subroutines in parallel, each one can take full advantage of parallelism
and automatically scale according to the number of existing logical cores.

Parallel.for
You can think of refactoring an existing For loop to take advantage of parallelism as a simple replacement
of For with Parallel.For. Unfortunately, it isn’t as simple as that.

Listings 33-3 and 33-4 refactor the subroutines shown in the preceding section, showing the code for both
the original loops and the new code with the refactored loops using the imperative syntax to implement
the data parallelism offered by Parallel.For. The new methods, ParallelGenerateAESKeys and
ParallelGenerateMD5Hashes, try to take advantage of all the cores available, relying on the work done
under the hood by Parallel.For to optimize its behavior according to the existing hardware at runtime.

lisTing 33-3: The original GenerateaesKeys subroutine with the sequential for loop, and its
parallelized version

original sequential for version
Sub GenerateAESKeys()
 Dim sw = Stopwatch.StartNew()
 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_AES_KEYS
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
 Next
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing02

Parallelized version using Parallel.for
Sub ParallelGenerateAESKeys()
 Dim sw = Stopwatch.StartNew()
 Parallel.For(1, NUM_AES_KEYS + 1, Sub(i As Integer)
 Dim result() As Byte
 Dim hexString As String

 Dim aesM As New AesManaged()
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)

 ' Console.WriteLine(hexString)
 End Sub)
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing03

lisTing 33-4: The original GenerateMD5Hashes subroutine with the sequential for loop,
and its parallelized version

original sequential for version
Sub GenerateMD5Hashes()
 Dim sw = Stopwatch.StartNew()
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_MD5_HASHES
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
 Next
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing 02

Parallelized version using Parallel.for
Sub ParallelGenerateMD5Hashes()
 Dim sw = Stopwatch.StartNew()
 Parallel.For(1, NUM_MD5_HASHES + 1, Sub(i As Integer)
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
 End Sub)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing03

The most basic version of the class function Parallel.For has the following parameters:

 ➤ fromInclusive — The first number for the iteration range (Integer or Long).

 ➤ toExclusive — The number before which the iteration will stop, this number is an exclusive upper
bound (Integer or Long). The iteration range will be from fromInclusive up to toExlusive
- 1. It is very important to pay attention to this parameter because the classic For loop defines the
iteration range using an inclusive upper bound. Thus, when converting a For loop to a Parallel.For
loop, the original upper bound has to be converted to an upper bound minus 1.

 ➤ body — The delegate to be invoked, once per iteration, and without a predefined execution plan. It
can be of the type Action(Of Integer) or Action (Of Long)depending on the type used in the
iteration range definition.

Parallelizing loops ❘ 1063

1064 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 In addition, Parallel.For can return a ParallelLoopResult value because parallelized loops, like
any parallelized code, are more complex than sequential loops. Because execution is not sequential, you
cannot access a variable to determine where the loop stopped its execution. In fact, many chunks are
running in parallel.

 refactoring an existing sequential loop
 Listing 33 - 3 showed the original GenerateAESKey subroutine with the sequential For loop. It is a good
practice to create a new subroutine, function, or method with a different name when refactoring sequential
code to create a parallelized version. In this case, ParallelGenerateAESKeys is the new subroutine.

 The original For loop ’ s iteration range defi nition is as follows:

For i As Integer = 1 To NUM_AES_KEYS

 This means that it will run the loop body NUM_AES_KEYS times, from 1 (inclusive) to NUM_AES_KEYS
(inclusive).

 It is necessary to translate this defi nition to a Parallel.For , adding 1 to NUM_AES_KEYS because it is an
exclusive upper bound:

Parallel.For(1, NUM_AES_KEYS + 1,

 The third parameter is the delegate. In this case, this loop doesn ’ t use the iteration variable. However, the
code uses multi - line lambda expression syntax to defi ne a subroutine with an Integer parameter (i) that is
going to work as the iteration variable, holding the current number:

Parallel.For(1, NUM_AES_KEYS + 1, Sub(i As Integer)

 An End Sub) replaces the previous Next statement.

 The preceding code was prepared to run alone, or perhaps with other methods running in parallel.
However, each iteration was not designed to run in parallel with other iterations of the same loop body.
Using Parallel.For changes the rules. The code has some problems that need to be solved. The sequential
iterations shared the following three local variables:

 ➤ aesM

 ➤ result()

 ➤ hexString

 The loop body has code that changes the values of these variables in each iteration — for example, the
following lines:

aesM.GenerateKey()
result = aesM.Key
hexString = ConvertToHexString(result)

 Parallel.For supports neither fl oating - point values nor steps. It works with Integer
and Long values and it runs adding 1 in each iteration. In addition, it partitions the
iteration range according to the available hardware resources at runtime and runs the
body in parallel tasks. Thus, there are no guarantees made about the order in which the
iterations are executed. For example, in an iteration from 1 to 101 - 1 (100 inclusive),
the iteration number 50 could begin running before the iteration number 2, which could
also be executing in parallel, because the time it takes to run each iteration is unknown
and variable. Because the loop could be split into many parallel iterations, it ’ s impossible
to predict the execution order. The code has to be prepared for parallel execution and it
must avoid undesired side effects generated by parallel and concurrent executions.

First, the key generated by calling the GenerateKey method of the AesManaged instance, stored in aesM,
is held in the Key property. Then, the code assigns the value stored in this property to the result variable.
Finally, the last line assigns the product of converting it to a hexadecimal string to hexString, the third
local variable. It is really difficult to imagine the results of running this code in parallel or concurrently,
because it could result in a very large mess. For example, one part of the code could generate a new key,
which would be stored in the aesM.Key property that was going to be read in another part of the code
running in parallel. Therefore, the value read from the aesM.Key property is corrupted.

One possible solution could be using synchronization structures to protect each value and state that
is changing. However, that’s not appropriate in this case because it would add more code and more
synchronization overhead. There is another solution that is more scalable: refactoring the loop body,
transferring these local variables as local variables inside the subroutine acting as a delegate. In order to do
this, it is also necessary to create an instance of AesManaged inside the loop body. This way, it is not going
to be shared by all the parallel iterations. This change adds more instructions to run for each iteration, but
it removes the undesirable side effects and creates safe and stateless parallel code. The following lines show
the new body. The highlighted lines of code are the variables moved inside the delegate:

Sub(i As Integer)
 Dim result() As Byte
 Dim hexString As String
 Dim aesM As New AesManaged()

 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
End Sub)

Code snippet from Listing03

A very similar problem has to be solved in order to transform the original loop body found in
GenerateMD5Hashes. Listing 33-4 showed the original subroutine with the sequential For loop. In this
case, ParallelGenerateMD5Hashes is the new subroutine. It was necessary to use the same aforementioned
refactoring technique because we don’t know whether the MD5 instance holds internal states that could
generate problems. It is safer to create a new independent instance for each iteration. The following lines
show the new body. The highlighted lines of code are the variables moved inside the delegate:

Sub(i As Integer)
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(hexString)
End Sub)

Code snippet from Listing03

Measuring scalability
Replace the Main subroutine with the following new version, launching first ParallelGenerateAESKeys
and then ParallelGenerateMD5Hashes:

Sub Main()
 Dim sw = Stopwatch.StartNew()
 ParallelGenerateAESKeys()

Parallelizing loops ❘ 1065

1066 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 ParallelGenerateMD5Hashes()
 Debug.WriteLine(sw.Elapsed.ToString())
End Sub

 Code snippet from Listing03

 Now, ParallelGenerateAESKeys and ParallelGenerateMD5Hashes need approximately 7.5 seconds
to run, because each one takes full advantage of both cores offered by the microprocessor. Thus, the
speedup achieved is 14 / 7.5 = 1.87x over the sequential version. It is better than the previous performance
gain achieved using Parallel.Invoke (1.56x) because the time wasted in that version is now used
to run the loops, using parallel chunks in an attempt to load - balance the work done by each core.
 ParallelGenerateAESKeys takes 4.2 seconds and ParallelGenerateMD5Hashes takes 3.3 seconds.

 Using Parallel.For to parallelize this code has another advantage: The same code can scale when executed
with more than two cores. The sequential version of this application running on a computer with a specifi c
quad - core microprocessor needs approximately 11 seconds to run. It is necessary to measure the time needed
to run the sequential version again because each hardware confi guration will provide different results with
both sequential and parallel code.

 In order to measure the achieved speedup, you will always need a baseline calculated on the same hardware
confi guration. The version optimized using Parallel.For needs approximately 4.1 seconds to run.
Each subroutine takes full advantage of the four cores offered by the microprocessor. Thus, the speedup
achieved is 11 / 4.1 = 2.68x over the sequential version. ParallelGenerateAESKeys takes 2.12 seconds and
 ParallelGenerateMD5Hashes takes 1.98 seconds.

 The parallelized code is capable of scaling as the number of cores increases. That
didn ’ t happen with the Parallel.Invoke version. However, it doesn ’ t mean that the
parallelized code will offer a linear speedup. In fact, most of the time, there is a limit
to the scalability — that is, once it reaches a certain number of cores, the parallelized
algorithms won ’ t achieve additional speedup.

 In this case, it was necessary to change the code for the loop ’ s body used in each
iteration. Thus, there is an additional overhead in each iteration that wasn ’ t part
of each sequential iteration, and calling delegates is more expensive than calling
direct methods. In addition, Parallel.For and its underlying work adds additional
overhead to distribute and coordinate the execution of different chunks with parallel
iterations. This is why the speedup is not near 4x and is approximately 2.68x when
running with four cores. Typically, the parallelized algorithms won ’ t offer a linear
speedup. Furthermore, serial and hardware architecture - related bottlenecks can make
it very diffi cult to scale beyond a certain number of cores.

 It is very important to measure speedup in order to determine whether the overhead
added to parallelize the code brings present and potentially future (further scalability)
performance benefi ts.

 The diagram shown in Figure 33 - 6 represents one of the possible execution fl ows, taking advantage
of the four cores. Each box shown inside a method represents a chunk that is automatically created by
 Parallel.For at runtime.

Parallel.foreach
Sometimes, refactoring an existing For loop as previously explained can be a very complex task, and
the changes to the code could generate too much overhead for each iteration, reducing the overall
performance. Another useful alternative is to partition all the data to be processed into parts that can
be run as smaller loops in parallel, defining a custom partitioner, a mechanism tailored to split the
input data into specific pieces that overrides the default partitioning mechanism. It is possible to use a
Parallel.ForEach loop with a override partitioner in order to create new versions of the sequential
loops with a simpler refactoring process.

Listing 33-5 shows the new code with the refactored loops using the imperative syntax to implement
data parallelism offered by Parallel.ForEach, combined with a sequential For loop and a custom
partitioner created with System.Collections.Concurrent.Partitioner. The new methods,
ParallelPartitionGenerateAESKeys and ParallelPartitionGenerateMD5Hashes, also try to take
advantage of all the cores available, relying on the work done under the hood by Parallel.ForEach and
the range partitioning performed to distribute smaller sequential loops inside as many parallel loops as
available cores. The code also optimizes its behavior according to the existing hardware at runtime.

ParallelGenerateAESKeys

ParallelGenerateMD5Hashes

figure 33-6

Parallelizing loops ❘ 1067

1068 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

The code uses another important namespace for TPL, the new System.Collections.Concurrent
namespace. This namespace offers access to useful collections prepared for concurrency and custom
partitioners introduced in .NET Framework 4. Therefore, it is a good idea to import this namespace to work
with the new examples:

Imports System.Collections.Concurrent

lisTing 33-5: another parallellized version of the original sequential loops using Parallel
.foreach with a custom partitioner

Sub ParallelPartitionGenerateAESKeys()
 Dim sw = Stopwatch.StartNew()
 Parallel.ForEach(Partitioner.Create(1, NUM_AES_KEYS + 1),
 Sub(range)
 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 Debug.WriteLine("Range ({0}, {1}. Time: {2})",
 range.Item1, range.Item2, Now().TimeOfDay)
 For i As Integer = range.Item1 To range.Item2 - 1
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine("AES: " + hexString)
 Next
 End Sub)
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Sub ParallelPartitionGenerateMD5Hashes()
 Dim sw = Stopwatch.StartNew()
 Parallel.ForEach(Partitioner.Create(1, NUM_MD5_HASHES + 1),
 Sub(range)
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 For i As Integer = range.Item1 To range.Item2 - 1
 data = Encoding.Unicode.GetBytes(
 Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(“MD5:” + hexString)
 Next
 End Sub)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing05

The class function Parallel.ForEach offers 20 overrides. The definition used in Listing 33-5 has the
following parameters:

 ➤ source — The partitioner that provides the data source split into multiple partitions

 ➤ body — The delegate to be invoked, once per iteration, and without a predefined execution plan. It
receives each defined partition as a parameter — in this case, Tuple(Of Integer, Integer).

In addition, Parallel.ForEach can return a ParallelLoopResult value. The information offered in this
structure is covered in detail later in this chapter.

Working with Partitions in a Parallel loop
Listing 33-3 showed the original GenerateAESKey subroutine with the sequential For loop. The highlighted
lines of code shown in Listing 33-5 represent the same sequential For loop. The only line that changes is the
For definition, which takes into account the lower bound and the upper bound of the partition assigned by
range.Item1 and range.Item2:

For i As Integer = range.Item1 To range.Item2 - 1

In this case, it is easier to refactor the sequential loop because there is no need to move local variables. The
only difference is that instead of working with the entire source data, it splits it into many independent and
potentially parallel partitions. Each one works with a sequential inner loop.

The following call to the Partitioner.Create method defines the partitions as the first parameter for
Parallel.ForEach:

Partitioner.Create(1, NUM_AES_KEYS + 1)

This line splits the range from 1 to NUM_AES_KEYS into many partitions with an upper bound and a lower
bound, creating a Tuple(Of Integer, Integer). However, it doesn’t specify the number of partitions to
create. ParallelPartitionGenerateAESKeys includes a line to write the lower and upper bounds of each
generated partition and the actual time when it starts to run the sequential loop for this range.

Debug.WriteLine("Range ({0}, {1}. Time: {2})",
 range.Item1, range.Item2, Now().TimeOfDay)

Replace the Main subroutine with the following new version, launching first
ParallelPartitionGenerateAESKeys and then ParallelParallelGenerateMD5Hashes:

Sub Main()
 Dim sw = Stopwatch.StartNew()
 ParallelPartitionGenerateAESKeys()
 ParallelPartitionGenerateMD5Hashes()
 Debug.WriteLine(sw.Elapsed.ToString())
End Sub

Code snippet from Listing05

As shown in Listing 33-6, the partitioner creates 13 ranges. Thus, the Parallel.ForEach will run 13
sequential inner For loops with ranges. However, they don’t start at the same time, because that wouldn’t
be a good idea with four cores available. The parallelized loop tries to load-balance the execution, taking
into account the available hardware resources. The highlighted line shows the complexity added by both
parallelism and concurrency. If you take into account the time, the first partition that reaches the sequential
inner For loop is (66667, 133333) and not (1, 66667). Remember that the upper bound values shown in
Listing 33-6 are exclusive.

lisTing 33-6: Debug output example generated running ParallelPartitionGenerateaesKeys
with a quad-core microprocessor

Range (133333, 199999. Time: 15:45:38.2205775)
Range (66667, 133333. Time: 15:45:38.2049775)
Range (266665, 333331. Time: 15:45:38.2361775)
Range (199999, 266665. Time: 15:45:38.2205775)
Range (1, 66667. Time: 15:45:38.2205775)
Range (333331, 399997. Time: 15:45:39.0317789)
Range (399997, 466663. Time: 15:45:39.0317789)
Range (466663, 533329. Time: 15:45:39.1097790)
Range (533329, 599995. Time: 15:45:39.2345793)
Range (599995, 666661. Time: 15:45:39.3281794)
Range (666661, 733327. Time: 15:45:39.9365805)
Range (733327, 799993. Time: 15:45:40.0145806)
Range (799993, 800001. Time: 15:45:40.1705809)

Parallelizing loops ❘ 1069

1070 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 In addition, the order in which the data appears in the debug output is different because there are many
concurrent calls to the WriteLine . In fact, when measuring speedups, it is very important to comment these
lines before the loop begins because they have affect the overall time by generating a bottleneck.

 This new version using Parallel.ForEach with custom partitions needs approximately the same time as
the previous Parallel.For version to run.

 optimizing Partitions according to number of Cores
 It is possible to tune the generated partitions in order to match them with the number of logical cores found
at runtime. System.Environment.ProcessorCount offers the number of logical cores or logical processors
detected by the operating system. Hence, it is possible to use this value to calculate the desired range size
for each partition and use it as a third parameter for the call to Partitioner.Create , using the following
formula:

 ((numberOfElements / numberOfLogicalCores) + 1) As Integer or As Long

 ParallelPartitionGenerateAESKeys can use the following code to create the partitions:

Partitioner.Create(0, NUM_AES_KEYS, (CInt(NUM_AES_KEYS / Environment.ProcessorCount) + 1))

 A very similar line can also help to improve ParallelPartitionGenerateMD5Hashes :

Partitioner.Create(1, NUM_MD5_HASHES, (CInt(NUM_MD5_HASHES / Environment.ProcessorCount) + 1))

 As shown in Listing 33 - 7, now the partitioner creates four ranges because the desired range size is
CInt((800000 / 4) + 1) = 200001. Thus, the Parallel.ForEach will run four sequential inner For loops
with ranges, according to the number of available logical cores.

 lisTing 33 - 7: Debug output example generated running the optimized partitions version of
ParallelPartitionGenerateaesKeys with a quad - core microprocessor

Range (1, 200002. Time: 16:32:51.3754528)
Range (600004, 800000. Time: 16:32:51.3754528)
Range (400003, 600004. Time: 16:32:51.3754528)
Range (200002, 400003. Time: 16:32:51.3754528)

 Now, ParallelPartitionGenerateAESKeys and ParallelPartitionGenerateMD5Hashes need
approximately 3.40 seconds to run because each one generates as many partitions as cores available and
uses a sequential loop in each delegate; therefore, it reduces the previously added overhead. Thus, the
speedup achieved is 11 / 3.4 = 3.23x over the sequential version. The reduced overhead makes it possible to
reduce the time from 4.1 seconds to 3.4 seconds.

 Most of the time, the load - balancing schemes used by TPL under the hood are very
effi cient. However, you know your designs, code, and algorithms better than TPL
at runtime. Therefore, considering the capabilities offered by modern hardware
architectures and using many of the features included in TPL, you can improve
overall performance, reducing unnecessary overhead introduced by the fi rst loop
parallelization without the custom partitioner.

 The diagram shown in Figure 33 - 7 represents one of the possible execution fl ows with the numbers for
the lower and upper bounds for each partition, taking advantage of the four cores with the optimized
partitioning scheme.

Working with ienumerable sources of Data
Parallel.ForEach is also useful to refactor existing ForEach loops that iterate over a collection that
exposes an IEnumerable interface.

The simplest definition of the class function Parallel.ForEach, used in Listing 33-8 to generate a
new version of the MD5 hashes generation subroutine, ParallelForEachGenerateMD5Hashes, has the
following parameters:

 ➤ source — The collection that exposes an IEnumerable interface and provides the data source.

 ➤ body — The delegate to be invoked, once per iteration, and without a predefined execution plan. It
receives each element of the source collection — in this case, an Integer.

lisTing 33-8: a parallelized version of the GenerateMD5Hashes subroutine using Parallel
.foreach with an ienumerable source

Private Function GenerateMD5InputData() As IEnumerable(Of Integer)
 Return Enumerable.Range(1, NUM_AES_KEYS)
End Function

ParallelPartitionGenerateAESKeys

ParallelPartitionGenerateMD5Hashes

Upper bounds are inclusive values in this diagram.

Lower Bound

Lower Bound

Upper bound
(inclusive)

Upper bound
(inclusive)

200,002

400,002

400,003

600,003

600,004

800,000

1

200,001

25,002

50,002

50,003

75,003

75,004

100,000

1

25,001

figure 33-7

Parallelizing loops ❘ 1071

continues

1072 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

lisTing 33 - 8 (continued)

Sub ParallelForEachGenerateMD5Hashes()
 Dim sw = Stopwatch.StartNew()
 Dim inputData = GenerateMD5InputData()

 Parallel.ForEach(inputData, Sub(number As Integer)
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(
 Environment.UserName + number.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(“MD5:” + hexString)
 End Sub)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

 Code snippet from Listing08

 The GenerateMD5InputData function returns a sequence of Integer numbers from 1 to NUM_AES_KEYS
(inclusive). Instead of using the loop to control the numbers for the iteration, the code in the
 ParallelForEachGenerateMD5Hashes subroutine saves this sequence in the inputData local variable.

 The following line calls Parallel.ForEach with the source (inputData) and a multi - line lambda delegate
subroutine, receiving the number for each iteration:

Parallel.ForEach(inputData, Sub(number As Integer)

 The line that prepares the input data for the hash computing method also changes to use the value found in
 number :

data = Encoding.Unicode.GetBytes(Environment.UserName + number.ToString())

 In this case, performance isn ’ t really good compared with the other versions. However,
when each iteration performs time - consuming operations, it would improve performance
with an IEnumerable collection. The subroutine needs almost 16 seconds to run in the
same hardware confi guration used for the last examples. However, it should be obvious
that this isn ’ t an optimal implementation because the code has to iterate the 100,000
items of a sequence. It does it in parallel but it takes more time than running loops with
less overhead. It also consumes more memory. The example isn ’ t intended to be a best
practice for this case. The idea is to understand the different opportunities offered by the
 Parallel class methods and to be able to evaluate them.

 exiting from Parallel loops
 If you want to interrupt a sequential loop, you can use Exit For or Exit For Each . When working with
parallel loops, it requires more complex code because exiting the delegate body sub or function doesn ’ t
have any effect on the parallel loop ’ s execution, as it is the one that ’ s being called on each new iteration. In
addition, because it is a delegate, it is disconnected from the traditional loop structure.

 Listing 33 - 9 shows a new version of the ParallelForEachGenerateMD5Hashes subroutine, called
 ParallelForEachGenerateMD5HashesBreak . Now, the loopResult local variable saves the result of
calling the Parallel.ForEach class function. Moreover, the delegate body subroutine receives a second
parameter — a ParallelLoopState instance:

Dim loopResult = Parallel.ForEach(inputData, Sub(number As Integer, loopState As
ParallelLoopState)

lisTing 33-9: a new version of the ParallelforeachGenerateMD5Hashes subroutine that
enables exiting from the loop

Private Sub DisplayParallelLoopResult(ByVal loopResult As ParallelLoopResult)
 Dim text As String
 If loopResult.IsCompleted Then
 text = "The loop ran to completion."
 Else
 If loopResult.LowestBreakIteration.HasValue = False Then
 text = "The loop ended prematurely with a Stop statement."
 Else
 text = "The loop ended by calling the Break statement."
 End If
 End If
 Console.WriteLine(text)
End Sub

Sub ParallelForEachGenerateMD5HashesBreak()
 Dim sw = Stopwatch.StartNew()
 Dim inputData = GenerateMD5InputData()

 Dim loopResult = Parallel.ForEach(inputData, Sub(number As Integer, loopState As
 ParallelLoopState)
 'If loopState.ShouldExitCurrentIteration Then
 ' Exit Sub
 'End If
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(Environment.UserName + number.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 If (sw.Elapsed.Seconds > 3) Then
 loopState.Break()
 Exit Sub
 End If
 ' Console.WriteLine(“MD5:” + hexString)
 End Sub)
 DisplayParallelLoopResult(loopResult)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Private Function GenerateMD5InputData() As IEnumerable(Of Integer)
 Return Enumerable.Range(1, NUM_AES_KEYS)
End Function

Code snippet from Listing09

Understanding Parallelloopstate
The instance of ParallelLoopState (loopState) offers two methods to cease the execution of a
Parallel.For or Parallel.ForEach:

 ➤ Break — Communicates that the parallel loop should cease the execution beyond the current
iteration, as soon as possible

 ➤ Stop — Communicates that the parallel loop should cease the execution as soon as possible

Parallelizing loops ❘ 1073

1074 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 The code shown in Listing 33 - 9 calls the Break method if the elapsed time is more than 3 seconds:

If (sw.Elapsed.Seconds > 3) Then
 loopState.Break()
 Exit Sub
End If

 It is very important to note that the code in the multi - line lambda is accessing the sw variable that is defi ned
in ParallelForEachGenerateMD5HashesBreak . It reads the value of the Seconds read - only property.

 It is also possible to check the value of the ShouldExitCurrentIteration read - only property in order to make
decisions when the current or other concurrent iterations make requests to stop the parallel loop execution.
Listing 33 - 9 shows a few commented lines that check whether ShouldExitConcurrentIteration is True :

If loopState.ShouldExitCurrentIteration Then
 Exit Sub
End If

 If the property is true, then it exits the subroutine, avoiding the execution of unnecessary iterations. The
lines are commented because in this case an additional iteration isn ’ t a problem; therefore, it isn ’ t necessary
to add this additional instruction to each iteration.

 analyzing the results of a Parallel loop execution
 Once the Parallel.ForEach fi nishes its execution, loopResult has information about the results, in a
 ParallelLoopResult structure.

 The DisplayParallelLoopResult subroutine shown in Listing 33 - 9 receives a ParallelLoopResult
structure, evaluates its read - only properties, and outputs the results of executing the Parallel.ForEach
loop to the console. Table 33 - 1 explains the three possible results of in this example.

 TaBle 33 - 1: ParallelLoopResult Read - only Properties

 condiTion descriPTion

 IsCompleted = True The loop ran to completion .

 IsCompleted = False And
LowestBreakIteration.HasValue = False

 The loop ended prematurely with a Stop statement .

 IsCompleted = False And
LowestBreakIteration.HasValue = True

 The loop ended by calling the Break statement . The
 LowestBreakIteration property holds the value of
the lowest iteration that called the Break statement .

 Using these methods doesn ’ t guarantee that the execution will stop as soon as possible,
because parallel loops are complex and sometimes it is diffi cult to cease the execution
of all the parallel and concurrent iterations. The difference between Break and Stop is
that the former tries to cease execution once the current iteration is fi nished, whereas
the latter tries to cease it immediately.

 It is very important to analyze the results of a parallel loop execution because
continuation with the next statement doesn ’ t mean that it completed all the iterations.
Thus, it is necessary to check the values of the ParallelLoopResult properties or
to include customized control mechanisms inside the loop bodies. Again, converting
sequential code to parallel and concurrent code isn ’ t just replacing a few loops. It is
necessary to understand a very different programming paradigm and new structures
prepared for this new scenario.

Catching Parallel loop exceptions
As many iterations run in parallel, many exceptions can occur in parallel. The classic exception management
techniques used in sequential code aren’t useful with parallel loops.

When the code inside the delegate that is being called in each parallelized iteration throws an exception
that isn’t captured inside the delegate, it becomes part of a set of exceptions, handled by the new
System.AggregateException class.

You have already learned how to handle exceptions in your sequential code in Chapter 6. You can apply
almost the same techniques. The only difference is when an exception is thrown inside the loop body, which
is a delegate. Listing 33-10 shows a new version of the ParallelForEachGenerateMD5Hashes subroutine,
called ParallelForEachGenerateMD5HashesException. Now, the body throws a TimeOutException if
the elapsed time is more than three seconds:

If (sw.Elapsed.Seconds > 3) Then
 Throw New TimeoutException("Parallel.ForEach is taking more than 3 seconds to complete.")
End If

lisTing 33-10: a new version of the ParallelforeachGenerateMD5Hashes subroutine, throwing
and handling exceptions

Sub ParallelForEachGenerateMD5HashesExceptions()
 Dim sw = Stopwatch.StartNew()
 Dim inputData = GenerateMD5InputData()
 Dim loopResult As ParallelLoopResult

 Try
 loopResult = Parallel.ForEach(inputData,
 Sub(number As Integer, loopState As ParallelLoopState)
 'If loopState.ShouldExitCurrentIteration Then
 ' Exit Sub
 'End If
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(Environment.UserName + number.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 If (sw.Elapsed.Seconds > 3) Then
 Throw New TimeoutException("Parallel.ForEach is taking
more than 3 seconds to complete.")
 End If
 ' Console.WriteLine(“MD5:” + hexString)
 End Sub)
 Catch ex As AggregateException
 For Each innerEx As Exception In ex.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something considering the innerEx Exception
 Next
 End Try
 DisplayParallelLoopResult(loopResult)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing10

A Try...Catch...End Try block encloses the call to Parallel.ForEach. Nevertheless, the line that
catches the exceptions is

Catch ex As AggregateException

Parallelizing loops ❘ 1075

1076 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

instead of the classic

Catch ex As Exception

 An AggregateException contains one or more exceptions that occurred during the execution of parallel
and concurrent code. However, this class isn ’ t specifi cally for parallel computing, it can be used to represent
one or more errors that occur during application execution. Therefore, once it is captured, it is possible
to iterate through each individual exception contained in the InnerExceptions read - only collection of
 Exception . In this case, the Parallel.ForEach without the custom partitioner will display the contents
of many exceptions. The loop result will look like it was stopped using the Stop keyword. However,
as it is possible to catch the AggregateException , you can make decisions based on the problems that
made it impossible to complete all the iterations. In this case, a sequential For Each loop retrieves all the
information about each Exception in InnerExceptions . Listing 33 - 11 shows the information about the
fi rst two exceptions converted to a string and sent to the Debug output.

Catch ex As AggregateException
 For Each innerEx As Exception In ex.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something considering the innerEx Exception
 Next
End Try

 lisTing 33 - 11: Debug output, with two exceptions found in the innerexceptions collection

System.TimeoutException: Parallel.ForEach is taking more than 3 seconds to complete.
 at ConsoleApplication3.Module1._Closure$__2._Lambda$__9(Int32 number,
 ParallelLoopState loopState) in
 C:\Users\Public\Documents\ConsoleApplication3\ConsoleApplication3\Module1.vb:line 255
 at System.Threading.Tasks.Parallel. < > c__DisplayClass32`2. < PartitionerForEachWorker > b__30()
 at System.Threading.Tasks.Task.InnerInvoke()
 at System.Threading.Tasks.Task.InnerInvokeWithArg(Task childTask)
 at System.Threading.Tasks.Task. < > c__DisplayClass7. < ExecuteSelfReplicating > b__6(Object)
System.TimeoutException: Parallel.ForEach is taking more than 3 seconds to complete.
 at ConsoleApplication3.Module1._Closure$__2._Lambda$__9(Int32 number,
 ParallelLoopState loopState) in
 C:\Users\Public\Documents\ConsoleApplication3\ConsoleApplication3\Module1.vb:line 255
 at System.Threading.Tasks.Parallel. < > c__DisplayClass32`2. < PartitionerForEachWorker > b__30()
 at System.Threading.Tasks.Task.InnerInvoke()
 at System.Threading.Tasks.Task.InnerInvokeWithArg(Task childTask)
 at System.Threading.Tasks.Task. < > c__DisplayClass7. < ExecuteSelfReplicating > b__6(Object)

 As you can see in Listing 33 - 11, the two exceptions display the same information to the
Debug output. However, most of the time you will use a more sophisticated exception
management technique, and you will provide more information about the iteration
that is generating the problem. This example focuses on the differences between an
 AggregateException and the traditional Exception . It doesn ’ t promote the practice
of writing information about errors to the Debug output as a complete exception
management technique.

 sPecifying The desired degree of Parallelism
 TPL methods always try to achieve the best results using all the available logical cores. Sometimes, however,
you don ’ t want to use all the available cores in a parallel loop, either because you have specifi c needs,
and therefore better plans for the remaining available cores, or you want to leave one core free to create a

responsive application and the remaining core can help you run another part of code in parallel. In these
cases, you want to specify the maximum degree of parallelism for a parallel loop.

Paralleloptions
TPL enables you to specify a different maximum desired degree of parallelism by creating an instance
of the new ParallelOptions class and changing the value of its MaxDegreeOfParallelism property.
Listing 33-12 shows a new version of the two well-known subroutines that use Parallel.For,
ParallelGenerateAESKeysMaxDegree and ParallelGenerateMD5HashesMaxDegree.

Now, they receive an Integer with the maximum desired degree of parallelism, maxDegree. Each
subroutine creates a local instance of ParallelOptions and assigns the value received as a parameter
to its MaxDegreeOfParallelism property, which is a new parameter for each parallel loop before
the body. This way, the loop won’t be optimized to take advantage of all the available cores
(MaxDegreeOfParallelism = -1). Instead, it will be optimized as if the total number of available
cores were equal to the maximum degree of parallelism specified in the property:

Dim parallelOptions As New ParallelOptions()
parallelOptions.MaxDegreeOfParallelism = maxDegree

lisTing 33-12: specifying maximum desired degree of parallelism for Parallel.for loops

Sub ParallelGenerateAESKeysMaxDegree(ByVal maxDegree As Integer)
 Dim parallelOptions As New ParallelOptions()
 parallelOptions.MaxDegreeOfParallelism = maxDegree
 Dim sw = Stopwatch.StartNew()
 Parallel.For(1, NUM_AES_KEYS + 1, parallelOptions,
 Sub(i As Integer)
 Dim result() As Byte
 Dim hexString As String

 Dim aesM As New AesManaged()
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(“AES:” + hexString)
 End Sub)
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Sub ParallelGenerateMD5HashesMaxDegree(ByVal maxDegree As Integer)
 Dim parallelOptions As New ParallelOptions
 parallelOptions.MaxDegreeOfParallelism = maxDegree
 Dim sw = Stopwatch.StartNew()
 Parallel.For(1, NUM_MD5_HASHES + 1, parallelOptions,
 Sub(i As Integer)
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(“MD5:” + hexString)
 End Sub)
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing12

specifying the Desired Degree of Parallelism ❘ 1077

1078 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 This way, it is possible to call both subroutines with a dynamic value, considering the number of logical
cores at runtime:

 ParallelGenerateAESKeysMaxDegree(Environment.ProcessorCount - 1)
 ParallelGenerateMD5HashesMaxDegree(Environment.ProcessorCount - 1)

 Both Parallel.For loops are going to try to work with the number of logical cores minus 1. If the code
runs with a quad - core microprocessor, then it will use just three cores.

 The following is not a best practice for fi nal code. However, sometimes you want to know whether two
parallelized subroutines offer better performance if they are executed at the same time, limiting the number
of cores for each one. You can test this situation using the following line:

Parallel.Invoke(Sub() ParallelGenerateAESKeysMaxDegree(2), Sub()
ParallelGenerateAESKeysMaxDegree(2))

 Code snippet from Listing12

 The two subroutines will be launched in parallel and each will try to optimize its execution to use two of
the four cores of a quad - core microprocessor. The obvious drawback of the previous line is that it uses a
static number of cores. Nonetheless, this is just for performance testing purposes.

 ParallelOptions also offers two additional properties to control more advanced options:

 ➤ CancellationToken — Allows assigning a new System.Threading.CancellationToken instance
in order to propagate notifi cation that parallel operations should be cancelled. The usage of this
property is covered in detail later in this chapter.

 ➤ TaskScheduler — Allows assigning a customized System.Threading.Tasks.TaskScheduler
instance. It is usually not necessary to defi ne a customized task scheduler to schedule parallel tasks
unless you are working with very specifi c algorithms.

 understanding hardware Threads and logical cores
 The Environment.ProcessorCount property provides the number of logical cores. However, sometimes
the number of logical cores, also known as hardware threads , is different from the number of physical cores.

 For example, an Intel Core i7 microprocessor with four physical cores offering hyperthreading technology
doubles the number to eight logical cores. Therefore, in this case, Environment.ProcessorCount is eight,
not four. The operating system also works with eight logical processors.

 All the code created using TPL runs using multiple software threads . Threads are the low - level lanes to
run many parts of code in parallel, taking advantage of the presence of multiple cores in the underlying
hardware. However, most of the time, the code running in these lanes has some imperfections. It waits for
I/O data or other threads to fi nish, or it causes latency as it waits for data to be fetched from the different
caches available in the microprocessor or the system memory. This means that there are idle execution units.

 HyperThreading technology offers an increased degree of instruction - level parallelism, by duplicating the
architectural states for each physical core in order to mitigate the imperfections of the parallel code running
code from a second thread when the fi rst one is waiting. This way, it appears to be a microprocessor with
two times the real number of physical cores.

 It is not convenient to work with static values for the desired degree of parallelism,
because it can limit scalability when more cores are available. These options should
be used carefully; it is best to work with relative values according to the number of
available logical cores, or consider this number in order to prepare the code for further
scalability.

 As TPL uses the number of hardware threads, or logical cores, to optimize its execution, sometimes certain
algorithms won ’ t offer the expected scalability as more cores appear because they aren ’ t real physical cores.

 For example, if an algorithm offered a 6.5x speedup when executed with eight physical cores, it would offer
a more reticent 4.5x speedup with a microprocessor with four physical cores and eight logical cores with
hyperthreading technology.

 creaTing and managing TasKs
 TPL introduced the new task - based programming model to translate multicore power into application
performance without having to work with low - level, more complex and heavyweight, threads. It is very
important to understand that tasks aren ’ t threads. Tasks run using threads. However, it doesn ’ t mean they
replace threads. In fact, all the parallel loops used in the previous examples run by creating tasks, and their
parallel and concurrent execution is supported by underlying threads, as shown in Figure 33 - 8.

Task #6

Task #3

Task #1

Task #4

Task #2

Task #5

Task #1 Task #4

Task #3Task #2
Task #5

Task #5

Task #2 Task #6

Time

Task #3

Worker thread #1

Worker thread #2

Worker thread #3

Worker thread #4

Main thread

 figure 33 - 8

 Logical cores are not the same as real physical cores. Although this technique sometimes
improves performance through increased instruction - level parallelism when each physical
core has two threads with independent instruction streams, if the software threads don ’ t
have many data dependencies, the performance improvements could be less than
expected. It depends on the application.

Creating and Managing Tasks ❘ 1079

1080 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 When you work with tasks, they run their code using underlying threads (software threads, scheduled on
certain hardware threads, or logical cores). However, there isn ’ t a one - to - one relationship between tasks and
threads. This means you aren ’ t creating a new thread each time you create a new task. The CLR creates the
necessary threads to support the tasks ’ execution needs. Of course, this is a simplifi ed view of what goes on
when creating tasks.

 Synchronizing code running in multiple threads is indeed complex. Thus, a task - based alternative offers
an excellent opportunity to leave some synchronization problems behind, especially those regarding work
scheduling mechanisms. The CLR uses work - stealing queues to reduce the locks and to schedule small work
chunks without adding a signifi cant overhead. Creating a new thread introduces a big overhead, but creating
a new task “ steals ” work from an existing thread. Therefore, tasks offer a new lightweight mechanism for
parts of code capable of taking advantage of multiple cores.

 The default task scheduler relies on an underlying thread pool engine. Thus, when you create a new task, it
will use the steal - working queues to fi nd the most appropriate thread to enqueue it. It steals work from an
existing thread or creates a new one when necessary. The code included in tasks will run in one thread, but
this happens under the hood, and the overhead is smaller than manually creating a new thread.

 system.Threading.Tasks.Task
 So far, TPL has been creating instances of System.Threading.Tasks.Task under the hood in order to
support the parallel execution of the iterations. In addition, calling Parallel.Invoke also creates as many
instances of Task as delegates are called.

 A Task represents an asynchronous operation. It offers many methods and properties that enable you to
control its execution and get information about its status. The creation of a Task is independent of its
execution. This means that you have complete control over the execution of the associated operation. The
 Task class provides the following properties:

 TaBle 33 - 2: Task Read - only Properties

 ProPerTy descriPTion

 AsyncState A state Object supplied when you created the Task instance

 CreationOptions The TaskCreationOptions enum value used to provide hints to the task scheduler
in order to help it make the best scheduling decisions

 CurrentId The unique ID for the Task being executed . It is not equivalent to a thread ID in
unmanaged code .

 Exception The AggregateException that caused the Task to end prematurely . It is a null value
if the Task hasn ’ t thrown exceptions at all or fi nished without throwing exceptions .

 When you launch many asynchronous operations as Task instances, the task scheduler
will try to run them in parallel in order to load - balance all the available logical cores
at runtime. However, it isn ’ t convenient to use tasks to run any existing piece of code
because tasks add an overhead. Sometimes it doesn ’ t make sense to use tasks. Although
this overhead is smaller than that added by a thread, it is still an overhead that has
to be considered. For example, it doesn ’ t make sense to create tasks to run two lines
of code as two independent asynchronous tasks that solve very simple calculations.
Remember to measure the speedups achieved between the parallel execution and the
sequential version to decide whether parallelism is appropriate or not.

 Table 33 - 2 explains the three possible situations considered in this example.

understanding a Task’s life cycle
It is very important to understand that each Task instance has a life cycle. However, it represents concurrent
code potentially running in parallel according to the possibilities offered by the underlying hardware and
the availability of resources at runtime. Therefore, any information about the Task instance could change as
soon as you retrieve it, because its states are changing concurrently.

A Task instance completes its life cycle just once. After it reaches one of its three possible final states, it
doesn’t go back to any previous state, as shown in the state diagram in Figure 33-9.

Created/WaitingForActivation/WaitingToRun

Running

Yes

No

Does it have
children?

WaitingForChildrenToComplete

RunToCompletion

RunToCompletion

Canceled

Canceled

Canceled

Faulted

Faulted

Possible initial states

Possible final states

figure 33-9

ProPerTy descriPTion

Factory Provides access to the factory methods that allow the creation of Task instances with
and without results

Id The unique ID for the Task instance

IsCanceled A Boolean value indicating whether the Task instance was canceled

IsCompleted A Boolean value indicating whether the Task has completed its execution

IsFaulted A Boolean value indicating whether the Task has aborted its execution due to an
unhandled exception

Status The TaskStatus value indicating the current stage in the life cycle of a Task
instance

A Task instance has three possible initial states, depending on how it was created, as described in
Table 33-3.

Creating and Managing Tasks ❘ 1081

1082 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

Next, the task status can transition to the TaskStatus.Running state, and finally move to a final
state. If it has attached children, it isn’t considered complete and will transition to the TaskStatus.
WaitingForChildrenToComplete state. Once its children tasks complete, the task moves to one of the
three possible final states shown in Table 33-4.

TaBle 33-3: Initial States for a Task Instance

Value descriPTion

TaskStatus.Created A Task instance created using the Task constructor has this
initial state . It will change once there is a call to either Start or
RunSynchronously, or if the task is canceled .

TaskStatus.WaitingForActivation This is the initial state for tasks created through methods that
allow the definition of continuations — that is, tasks that aren’t
scheduled until other dependent tasks finish their execution .

TaskStatus.WaitingToRun This is the initial state for a task created through TaskFactory.
StartNew . It is waiting for the specified scheduler to pick it up
and run it .

TaBle 33-4: Final States for a Task Instance

Value descriPTion

TaskStatus.Canceled A cancellation request arrived before the task started its execution or
during it . The IsCanceled property will be True .

TaskStatus.Faulted An unhandled exception in its body or the bodies of its children made
the task end . The IsFaulted property will be True and the Exception
property will be non-null and will hold the AggregateException that
caused the task or its children to end prematurely .

TaskStatus.RanToCompletion The task completed its execution . It ran to the end of its body
without being canceled or throwing an unhandled exception . The
IsCompleted property will be True . In addition, IsCanceled and
IsFaulted will be both False .

using Tasks to Parallelize code
In a previous example, you used Parallel.Invoke to launch two subroutines in parallel:

Parallel.Invoke(Sub() GenerateAESKeys(), Sub() GenerateMD5Hashes())

It is possible to do the same job using two instances of Task, as shown in Listing 33-13. Working with
instances of Tasks offers more flexibility to schedule and start independent and chained tasks that can take
advantage of multiple cores.

lisTing 33-13: Working with tasks

' Create the tasks
Dim t1 = New Task(Sub() GenerateAESKeys())
Dim t2 = New Task(Sub() GenerateMD5Hashes())
' Start the tasks
t1.Start()
t2.Start()
' Wait for all the tasks to finish
Task.WaitAll(t1, t2)

Code snippet from Listing13

 The fi rst two lines create two instances of Task with a lambda expression to create a delegate for
 GenerateAESKeys and GenerateMD5Hashes . t1 is associated with the fi rst subroutine, and t2 with the
second. It is also possible to use multi - line lambda expression syntax to defi ne the action that the Task
constructor receives as a parameter. At this point, the Status for both Task instances is TaskStatus.
Created . The subroutines aren ’ t running yet, but the code continues with the next line.

 starting Tasks
 Then, the following line starts the asynchronous execution of t1 :

t1.Start()

 The Start method initiates the execution of the delegate in an independent way, and the program fl ow
continues with the instruction after this method, even though the delegate has not fi nished its execution.
The code in the delegate associated with the task runs concurrently and potentially in parallel with the main
program fl ow, the main thread . This means that at this point, there is a main thread and another thread or
threads supporting the execution of this new task.

 The execution of the main program fl ow, the main thread, is synchronous. This means that it will continue
with the next instruction, the line that starts the asynchronous execution of t2 :

t2.Start()

 Now the Start method initiates the execution of the delegate in another independent way and the program
fl ow continues with the instruction after this method, even though this other delegate has not fi nished its
execution. The code in the delegate associated with the task runs concurrently and potentially in parallel
with the main thread and the code inside GenerateAESKeys that is already running. This means that at this
point, there is a main thread and other threads supporting the execution of the two tasks.

 It is indeed easy to run asynchronous code using Task instances and the latest language
improvements added to Visual Basic. With just a few lines, you can create code that
runs asynchronously, control its execution fl ow, and take advantage of multicore
microprocessors or multiple processors.

 The sequence diagram in Figure 33 - 10 shows the
parallel and asynchronous execution fl ow for the
main thread and the two tasks.

 Visualizing Tasks Using Parallel Tasks and
Parallel stacks

 The Visual Basic 2010 IDE offers two new debugging
windows: Parallel Tasks and Parallel Stacks. They
offer information about the tasks that are running,
including their status and their relationship with the
underlying threads. These new debugging windows
allow you to monitor what is going on under the hood
with tasks and threads in .NET Framework 4 but they
also let you see the Visual Basic code that is running
in each task and thread. By running the code, step by
step, you can see the differences between synchronous
and asynchronous execution.

 For example, if you insert a breakpoint on the line
 Task.WaitAll(t1, t2) and your microprocessor has at least two cores, you will be able to see two tasks
running in parallel. To do so, select Debug ➪ Windows ➪ Parallel Tasks (Ctrl + Shift + D, K). The IDE will

Main thread t1

Start()

Start()

t2

GenerateAESKeys

GenerateMD5Hashes

Task,WaitAll(t1, t2)

 figure 33 - 10

Creating and Managing Tasks ❘ 1083

1084 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

display the Parallel Tasks dialog shown in Figure 33 - 11, which includes a list of all the tasks and their status
(scheduled, running, waiting, waiting - deadlocked, etc.).

 figure 33 - 12

 figure 33 - 11

 There are two tasks:

 Task ID 1: ➤ < lambda12 > () — Assigned to Worker thread ID 384

 Task ID 2: ➤ < lambda13 > () — Assigned to Worker thread ID 1020

 Therefore, in this case, each of the two tasks is assigned to a different thread. The status for both tasks is Running,
and they are identifi ed by an auto - generated lambda name and number, < lambda12 > () and < lambda13 > () . This
happens because the code uses lambda expressions to generate the delegates associated with each task.

 If you double - click on a task name, the IDE will display the next statement that is going to run for
the selected task. Remember that the threads assigned to these tasks and the main thread are running
concurrently and potentially in parallel, according to the available hardware resources and the decisions
taken by the schedulers.

 The CLR task scheduler tries to steal work from the most appropriate underlying
thread, by consuming time from an idle one. It can also decide to create a new thread
to support the task ’ s execution. However, this procedure doesn ’ t guarantee that the
underlying threads are going to run in parallel, even when the necessary number
of logical cores is available. The operating system scheduler distributes the cores
between the dozens or hundreds of threads scheduled to receive processor time from
the available cores. This is why the same concurrent code can run with different
parallelism levels and different concurrent times on the same hardware confi guration.

 You can check what is going on with each different concurrent or parallel task. You have similar options to
those offered by previous Visual Basic versions with threads, but the information is better because you can
check whether a task is scheduled or waiting - deadlocked. You can also order and group the information
shown in the windows, as you can with any other Visual Basic IDE feature.

 The Parallel Tasks grid includes a column named Thread Assignment. This number is the ID shown in the
Threads window. Thus, you know which managed thread is supporting the execution of a certain task. You
can also check the next statement and additional detailed information for each different thread. To do so,
select Debug ➪ Windows ➪ Threads (Ctrl + Alt + H). The IDE will display the Threads dialog shown in
Figure 33 - 12, which includes a list of all the threads, their category, and their locations.

 There is a simpler way to visualize the relationship between tasks and threads. You can select Debug ➪
Windows ➪ Parallel Stacks (Ctrl + Shift + D, S). The IDE will display the Parallel Stacks window shown in
Figure 33 - 13, which includes a diagram with all the tasks or threads, their status, and their relationships.
The default view is Threads.

 figure 33 - 13

 Although it isn ’ t visible in the black - and - white screenshot, the Threads dialog uses a
different color and name to distinguish the main thread, the one that is usually running
the UI code or supporting the Main subroutine (Main thread, green square), and the
others (Worker thread, yellow square). The running tasks steal work from worker
threads, not the main thread. Therefore, the tasks must use delegates to update the UI
in order to run code in the main thread for this purpose.

 The two threads on the right side of the diagram are running the code scheduled by the two tasks.
Each thread shows its call stack. The thread that supports Module1. < lambda12 > is running the
 GenerateAESKeys subroutine — specifi cally, code inside the call to the ConvertToHexString subroutine.
The thread that supports Module1. < lambda13 > is running
the GenerateMD5Hashes subroutine and it shows many
native - to - managed - code transitions and vice versa. This
diagram indicates what each thread is doing with a great
level of detail.

 You can change the value for the combo box in the upper -
 left corner from Threads to Tasks, and the IDE will
display a diagram with all the tasks, including their status,
relationships, and the call stack, as shown in Figure 33 - 14.

 Waiting for Tasks to finish
 At some point, you need to wait for certain tasks, started with an asynchronous execution, to fi nish.
The following line calls the Task.WaitAll method, which will wait for the Task instances received as a
 ParamArray , separated by commas. This method has a synchronous execution, which means that the main
thread won ’ t continue with the next statement until the Task instances received as parameters fi nish their
execution.

Task.WaitAll(t1, t2)

Creating and Managing Tasks ❘ 1085

 figure 33 - 14

1086 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

Here, t1 and t2 have to finish their execution. The current thread — in this case, the main thread — will
wait until both tasks finish their execution. However, it is very important that this time waiting for the
tasks to finish is not a loop continuously checking a status and consuming a lot of CPU cycles. The WaitAll
method uses a lightweight mechanism to reduce the need for CPU cycles as much as possible. This way, once
these tasks finish their execution, the next statement will run.

Because the WaitAll method uses a synchronous execution, if the tasks take one minute to run, then the
thread where this method was called (in this case, the main thread) will be waiting for this amount of time.
Therefore, sometimes you want to limit the number of milliseconds to wait for the tasks to finish. You
can use another definition for the Task.WaitAll method that accepts an array of Task instances and the
number of milliseconds to wait. The method returns a Boolean value indicating whether the tasks where
able to finish within the specified timeout. The following code waits for t1 and t2 to finish their execution
with a three-second timeout:

If Task.WaitAll(New Task() {t1, t2}, 3000) = False Then
 Console.WriteLine("GenerateAESKeys and GenerateMD5Hashes are taking more than 3
seconds to complete.")
 Console.WriteLine(t1.Status.ToString())
 Console.WriteLine(t2.Status.ToString())
End If

Code snippet from Snippet03

If t1 and t2 don’t finish in three seconds, the code displays a message and the status for both tasks. If no
exceptions occurred in the code for these tasks, they could be still running. The Task.WaitAll method with
a specific timeout doesn’t cancel the tasks if they take more time to run; it just returns from its synchronous
execution with the Boolean result.

It is also possible to call the Wait method for a Task instance. In this case, the current thread will wait
until that task finishes its execution. Of course, there is no need to send the task instance as a parameter
because the Wait method is an instance method. The Task.Wait method also supports a timeout in one of
its definitions. The following code waits for t1 to finish and if it doesn’t complete its work in three seconds,
it displays a message and its status:

If t1.Wait (3000) = False Then
 Console.WriteLine("GenerateAESKeys is taking more than 3 seconds to complete.")
 Console.WriteLine(t1.Status.ToString())
End If

Code snippet from Snippet04

Canceling Tasks Using Tokens
You can interrupt the execution of Task instances through the use of cancellation tokens. To do so, it is
necessary to add some code in the delegate, in order to create an cancelable operation that is capable of
terminating in a timely manner.

Listing 33-14 shows two new versions of the AES keys and MD5 hash generators. The changes made
in order to support cancellation appear in bold. The new GenerateAESKeysCancel, replacing the
old GenerateAESKeys, receives a System.Threading.CancellationToken instance and throws an
OperationCanceledException calling the ThrowIfCancellationRequested method. This way, the Task
instance transitions to the TaskStatus.Canceled state and the IsCanceled property will be True.

lisTing 33-14: Canceling tasks using tokens with the changes in the aes keys and MD5
hash generators

Sub GenerateAESKeysCancel(ByVal ct As System.Threading.CancellationToken)
 ct.ThrowIfCancellationRequested()
 Dim sw = Stopwatch.StartNew()
 Dim aesM As New AesManaged()

 Dim result() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_AES_KEYS
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine("AES: " + hexString)
 If ct.IsCancellationRequested Then
 ct.ThrowIfCancellationRequested()
 End If
 Next
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Sub GenerateMD5HashesCancel(ByVal ct As System.Threading.CancellationToken)
 ct.ThrowIfCancellationRequested()
 Dim sw = Stopwatch.StartNew()
 Dim md5M As MD5 = MD5.Create()
 Dim result() As Byte
 Dim data() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_MD5_HASHES
 data = Encoding.Unicode.GetBytes(Environment.UserName + i.ToString())
 result = md5M.ComputeHash(data)
 hexString = ConvertToHexString(result)
 ' Console.WriteLine(“MD5:” + hexString)
 If ct.IsCancellationRequested Then
 ct.ThrowIfCancellationRequested()
 End If
 Next
 Debug.WriteLine("MD5: " + sw.Elapsed.ToString())
End Sub

Sub Main()
 Dim cts As New System.Threading.CancellationTokenSource()
 Dim ct As System.Threading.CancellationToken = cts.Token

 Dim t1 = Task.Factory.StartNew(Sub() GenerateAESKeysCancel(ct), ct)
 Dim t2 = Task.Factory.StartNew(Sub() GenerateMD5HashesCancel(ct), ct)

 ' Sleep the main thread for 1 second
 Threading.Thread.Sleep(1000)

 cts.Cancel()

 Try
 If Task.WaitAll(New Task() {t1, t2}, 1000) = False Then
 Console.WriteLine("GenerateAESKeys and GenerateMD5Hashes are taking more
than 1 second to complete.")
 Console.WriteLine(t1.Status.ToString())
 Console.WriteLine(t2.Status.ToString())
 End If
 Catch ex As AggregateException
 For Each innerEx As Exception In ex.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something else considering the innerEx Exception
 Next
 End Try
 If t1.IsCanceled Then
 Console.WriteLine("The task running GenerateAESKeysCancel was cancelled.")
 End If

Creating and Managing Tasks ❘ 1087

continues

1088 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

lisTing 33 - 14 (continued)

 If t2.IsCanceled Then
 Console.WriteLine("The task running GenerateMD5HashesCancel was cancelled.")
 End If
 ' Display the results and wait for the user to press a key
 Console.ReadLine()
End Sub

 Code snippet from Listing14

 The fi rst line of GenerateAESKeysCancel will throw the aforementioned exception if its cancellation was
already requested at that time. This way, it won ’ t start the loop if unnecessary at that point.

ct.ThrowIfCancellationRequested()

 In addition, after each iteration of the loop, new code checks the token ’ s IsCancellationRequested .
If it is True , it calls the ThrowIfCancellationRequested method. Before calling this method, when
 IsCancellationRequested is True , it is possible to add clean - up code when necessary:

If ct.IsCancellationRequested Then
 ' It is important to add clean up code here when necessary
 ct.ThrowIfCancellationRequested()
End If

 This extra code adds a small amount of overhead to each iteration of the loop. However, it adds the
capability of observing the OperationCanceledException and comparing its token to the one associated
to the Task instance. If they are the same and its IsCancelledProperty is True , the Task instance
understands that there is a request for cancellation and makes the transition to the Canceled state,
interrupting its execution. When there is code waiting for the cancelled Task instance, this also generates an
automatic TaskCanceledException , which is wrapped in an AggregateException .

 In this case, the main subroutine creates a CancellationTokenSource , cts , and a Cancellation Token , ct :

 Dim cts As New System.Threading.CancellationTokenSource()
 Dim ct As System.Threading.CancellationToken = cts.Token

 CancellationTokenSource is capable of initiating cancellation requests, and CancellationToken
communicates it to asynchronous operations.

 It is necessary to send a CancellationToken as a parameter to each task delegate; therefore, the code uses
one of the defi nitions of the TaskFactory.StartNew method. The following lines create and start two Task
instances with associated actions and the same CancellationToken instance (ct) as parameters:

 Dim t1 = Task.Factory.StartNew(Sub() GenerateAESKeysCancel(ct), ct)
 Dim t2 = Task.Factory.StartNew(Sub() GenerateMD5HashesCancel(ct), ct)

 The preceding lines use the Task class Factory property to retrieve a TaskFactory instance that can be
used to create tasks with more options than those offered by direct instantiation of the Task class. In this
case, it uses the StartNew method, which is functionally equivalent to creating a Task using one of its
constructors and then calling Start to schedule it for execution.

 Then, the code calls the Sleep method to make the main thread sleep for one second. This method suspends
the current thread for the indicated time — in this case, specifi ed as an Integer in milliseconds:

Threading.Thread.Sleep(1000)

 The main thread remains suspended for one second, but the threads that are supporting
the tasks ’ execution won ’ t be suspended. Therefore, the tasks will be scheduled to begin
their execution.

One second later, the main thread communicates a request for cancellation for both tasks through the
CancellationTokenSource instance’s Cancel method:

cts.Cancel()

The cancellation token is evaluated in the two delegates launched by the Task instances, as previously
explained.

Adding a few lines, it is indeed easy to cancel asynchronous actions. However, it is very important to add
the necessary clean-up code.

A Try...Catch...End Try block encloses the call to Task.WaitAll. Because there was a request for
cancellation for both tasks, there will be two benign exceptions of type OperationCanceledException.

The IsCanceled property for both tasks is going to be True. Checking this property, you can add code
whenever a task was cancelled.

Handling exceptions Thrown by Tasks
As many tasks run in parallel, many exceptions can occur in parallel. Task instances also work with a set of
exceptions, handled by the previously explained System.AggregateException class.

Listing 33-15 shows the highlighted lines that add an unhandled exception in the GenerateAESKeysCancel
subroutine.

Comment the code that requested cancellation for both tasks:

' cts.Cancel()

lisTing 33-15: an unhandled exception in the subroutine called by an asynchronous delegate

Sub GenerateAESKeysCancel(ByVal ct As System.Threading.CancellationToken)
 ct.ThrowIfCancellationRequested()
 Dim sw = Stopwatch.StartNew()
 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 For i As Integer = 1 To NUM_AES_KEYS
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine("AES: " + hexString)
 If (sw.Elapsed.Seconds > 0.5) Then
 Throw New TimeoutException("GenerateAESKeysCancel is taking more than 0.5
seconds to complete.")
 End If
 If ct.IsCancellationRequested Then
 ct.ThrowIfCancellationRequested()
 End If
 Next
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Code snippet from Listing15

Add the following lines to the Main subroutine:

If t1.IsFaulted Then
 For Each innerEx As Exception In t1.Exception.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something else considering the innerEx Exception
 Next
End If

Code snippet from Listing15

Creating and Managing Tasks ❘ 1089

1090 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 Because there is an unhandled exception in t1 , its IsFaulted property is True . Therefore, t1.Exception ,
an AggregateException , contains one or more exceptions that occurred during the execution of its
associated delegate. After checking the IsFaulted property, it is possible to iterate through each individual
exception contained in the InnerExceptions read - only collection of Exception . You can make decisions
according to the problems that made it impossible to complete the task. Listing 33 - 16 shows the information
about the unhandled exception converted to a string and sent to the Debug output.

 lisTing 33 - 16: Debug output with the exceptions found in the innerexceptions collection

System.TimeoutException: GenerateAESKeysCancel is taking more than 0.5 seconds to complete.
 at ConsoleApplication3.Module1.GenerateAESKeysCancel(CancellationToken ct) in
C:\Wrox\Professional_VB_2010\ConsoleApplication3\ConsoleApplication3\Module1.vb:line 427
 at ConsoleApplication3.Module1._Closure$__3._Lambda$__12() in
C:\Wrox\Professional_VB_2010\ConsoleApplication3\ConsoleApplication3\Module1.vb:line 337
 at System.Threading.Tasks.Task.InnerInvoke()
 at System.Threading.Tasks.Task.Execute()

 Unhandled exceptions inside asynchronous operations are usually complex problems
because sometimes you need to perform important clean - up operations. For example,
when an exception occurs, you can have partial results and you could have to remove
these values if the job doesn ’ t complete because of an exception. Thus, you have to
consider clean - up operations when working with tasks.

 returning Values from Tasks
 So far, task instances did not return values; they were delegates running subroutines. However, it is also
possible to return values from tasks, invoking functions and using Task(Of TResult) instances, where
 TResult has to be replaced by the returned type.

 Listing 33 - 17 shows the code for a new function that generates the well - known AES keys and then
returns a list of the ones that begin with the character prefi x received as one of the parameters (prefix).
 GenerateAESKeysWithCharPrefix returns a List of String .

 The Main subroutine uses the defi nition of the TaskFactory.StartNew method, but this time it calls it from
a Task(Of TResult) instance and not a Task instance. Specifi cally, it creates a Task(Of List(Of String))
instance, sending it a CancellationToken as a parameter to the task delegate:

Dim t1 = Task(Of List(Of String)).Factory.StartNew(Function()
GenerateAESKeysWithCharPrefix(ct, "A"), ct)

 The delegate is a function that returns a List(Of String) , which is going to be available in the
 Task(Of Result) instance (t1) through its Result property, after the associated delegate completes its
execution and the function returns a value.

 The main thread waits for t1 to fi nish and then checks whether it completed its execution, checking the
previously explained Task instance properties.

 Then, it iterates through each string in the list, returned by the function called in the previous task, and
displays the results on the console. It does this job running a new asynchronous task, t2 .

 lisTing 33 - 17: returning a list of string instances from a task

Function GenerateAESKeysWithCharPrefix(ByVal ct As
System.Threading.CancellationToken, ByVal prefix As Char) As List(Of String)
 ct.ThrowIfCancellationRequested()
 Dim sw = Stopwatch.StartNew()

 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 Dim keysList As New List(Of String)
 For i As Integer = 1 To NUM_AES_KEYS
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 If Left(hexString, 1) = prefix Then
 keysList.Add(hexString)
 End If
 If ct.IsCancellationRequested Then
 ' It is important to add clean up code here
 ct.ThrowIfCancellationRequested()
 End If
 Next
 Return keysList
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Function

Sub Main()
 Dim sw = Stopwatch.StartNew()
 Dim cts As New System.Threading.CancellationTokenSource()
 Dim ct As System.Threading.CancellationToken = cts.Token

 Dim t1 = Task(Of List(Of String)).Factory.StartNew(
 Function() GenerateAESKeysWithCharPrefix(ct, "A"), ct)

 Try
 t1.Wait()
 Catch ex As AggregateException
 For Each innerEx As Exception In ex.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something else considering the innerEx Exception
 Next
 End Try
 If t1.IsCanceled Then
 Console.WriteLine("The task running GenerateAESKeysWithCharPrefix was cancelled.")
 Exit Sub
 End If
 If t1.IsFaulted Then
 For Each innerEx As Exception In t1.Exception.InnerExceptions
 Debug.WriteLine(innerEx.ToString())
 ' Do something else considering the innerEx Exception
 Next
 Exit Sub
 End If

 Dim t2 = Task.Factory.StartNew(Sub()
 ' Do something with the result returned by the task's delegate
 For i As Integer = 0 To t1.Result.Count - 1
 Console.WriteLine(t1.Result(i))
 Next
 End Sub, TaskCreationOptions.LongRunning)

 Debug.WriteLine(sw.Elapsed.ToString())
 ' Display the results and wait for the user to press a key
 Console.ReadLine()
End Sub

Code snippet from Listing17

Creating and Managing Tasks ❘ 1091

1092 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 TaskCreationoptions
 The code creates and starts the second task, t2 , using the StartNew method and multi - line lambda expression
syntax. However, in this case, it uses a different defi nition that receives a TaskCreationOptions parameter
that specifi es fl ags to control optional behavior for the creation, scheduling, and execution of tasks.

 The TaskCreationOptions enumeration has the four members described in Table 33 - 5.

 TaBle 33 - 5: Optional Behaviors for Tasks

 Value descriPTion

 TaskCreationOptions.AttachedToParent The task is attached to a parent task . You can create tasks
inside other tasks .

 TaskCreationOptions.None The task can use the default behavior .

 TaskCreationOptions.LongRunning The task will take a long time to run . Therefore, the
scheduler can work with it as a coarse - grained operation .
You can use this option if the task is likely to take many
seconds to run . It is not advisable to use this option when a
task takes less than one second to run .

 TaskCreationOptions.PreferFairness This option tells the scheduler that tasks scheduled sooner
should be run sooner and tasks scheduled later should be
run later .

 Chaining Two Tasks Using Continuations
 Clearly, the previous case shows an example of chained tasks. Task t1 produces a result and t2 needs it
as an input in order to start processing it. In these cases, instead of adding many lines that check for the
successful completion of a precedent task and then schedule a new task, TPL enables you to chain tasks
using continuations.

 You can call the ContinueWith method for any task instance and create a continuation that executes when
this task successfully completes its execution. It has many defi nitions, the simplest of which defi nes an
action as done when creating Task instances.

 The following lines show a simplifi ed version of the code used in the previous example to display the results
generated by t1 :

Dim t1 = Task(Of List(Of String)).Factory.StartNew(Function()
GenerateAESKeysWithCharPrefix(ct, "A"), ct)

Dim t2 = t1.ContinueWith(Sub(t)
 ' Do something with the result returned by the task's delegate
 For i As Integer = 0 To t.Result.Count - 1
 Console.WriteLine(t.Result(i))
 Next
 End Sub)

 Code snippet from Snippet05

 It is possible to chain many tasks and then wait for the last task to be executed. However, you have to be
careful with the continuous changes in the states when checking their values for all these asynchronous
operations. In addition, it is very important to consider all the potential exceptions that could be thrown.

 It is possible to combine multiple TaskCreationOptions enum values using bitwise
operations.

Preparing the code for concurrency and Parallelism
Parallel and concurrent programming applied to certain complex algorithms is not as simple as shown in
the previously explained examples. Sometimes, the differences between a reliable and bug-free parallelized
version and its sequential counterpart could reveal an initially unexpected complexity. The code can become
too complex, even when taking advantage of the new features offered by TPL. In fact, a complex sequential
algorithm is probably going to be a more complex parallel algorithm. Therefore, TPL offers many new data
structures for parallel programming that simplify many complex synchronization problems:

Concurrent collection classes ➤

Lightweight synchronization primitives ➤

Types for lazy initialization ➤

The aforementioned data structures were designed to avoid locks wherever possible, and use fine-grained
locking when they are necessary on their different shared resources. Locks generate many potential bugs
and can significantly reduce scalability. However, sometimes they are necessary because writing lock-free
code isn’t always possible.

These new data structures enable you to forget about complex lock mechanisms in certain situations,
because they already include all the necessary lightweight synchronization under the hood. Therefore, it is a
good idea to use these data structures whenever possible.

synchronization Primitives
Furthermore, .NET Framework 4 offers synchronization primitives for managing and controlling the
interactions between different tasks and their underlying threads, including the following operations:

 ➤ Locking — As with relational databases, sometimes you need to ensure that only one piece of code
is working with a variable at that time. Unfortunately, the same problems that appear when working
with concurrent access in a relational database are also present in concurrent and parallel code.

 ➤ Signaling — It provides a waiting and signaling mechanism to simplify the communication between
different tasks and their underlying threads. The previously explained cancellation token is a clear
example of signaling among many tasks. The mechanisms to wait for certain tasks to complete and
the continuations are also examples of signaling implementations.

 ➤ Lock constructors (interlocked operations) — These provide a mechanism to perform atomic
operations, such as addition, increment, decrement, exchange, or conditional exchange, depending on
the results of a comparison and read operations.

synchronization Problems
The aforementioned synchronization primitives are advanced topics that require an in-depth analysis in
order to determine the most convenient primitive to apply in a given situation. Nowadays, it is important to
use the right synchronization primitive in order to avoid potential pitfalls, explained in the following list,
while still keeping the code scalable.

Many techniques and new debugging tools can simplify the most complex problems, such as the following:

 ➤ Deadlock — At least two tasks are waiting for each other, but the wait never ends because they
won’t continue with other instructions until the other task releases the protection held over certain
resources. The other task is also waiting for resources held by its counterpart to resume its execution.
As no task is willing to release its protection, none of them make any progress, and the tasks continue
to wait for each other forever. Consider the following situation, task t1 holds a protection over
resource A and is waiting to gain exclusive access over resource B. However, at the same time, task t2
holds a protection over resource B and is waiting to gain exclusive access over resource A. This is one
of the most horrible bugs.

Creating and Managing Tasks ❘ 1093

1094 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 ➤ Race conditions — Many tasks read from and write to the same variable without the appropriate
synchronization mechanism. It is a correctness problem. Erroneous parallelized code could generate
wrong results under certain concurrency or parallel execution scenarios. However, when executed
in some circumstances, it could generate the expected results because the race may fi nish correctly.
Consider the following situation: task t1 writes a value to public variable A . Then, task t2 writes
another value to public variable A . When task t1 reads the value for the public variable A , it will hold
a different value than the one that it had originally written to it.

 understanding concurrent collection features
 Lists, collections, and arrays are excellent examples of when complex synchronization management is
needed to access them concurrently and in parallel. If you have to write a parallel loop that adds elements
in an unordered way into a shared collection, you have to add a synchronization mechanism to generate
a thread - safe collection. The classic lists, collections, and arrays are not thread - safe because they aren ’ t
prepared to receive concurrent instructions to add or remove elements. Therefore, creating a thread - safe
collection is indeed a very complex job.

 systems.Collections.Concurrent
 Luckily, TPL offers a new namespace, System.Collections.Concurrent , for dealing with thread - safe
issues. As previously explained, this namespace provides access to the custom partitioners for parallelized
loops. However, it also offers access to the following collections prepared for concurrency:

 ➤ BlockingCollection(Of T) — Similar to the classic blocking queue data structure — in this case,
prepared for producer - consumer scenarios in which many tasks add and remove data. It is a wrapper
of an IProducerConsumer(Of T) instance, providing blocking and bounding capabilities.

 ➤ ConcurrentBag(Of T) — Offers an unordered collection of objects. It is useful when ordering
doesn ’ t matter.

 ➤ ConcurrentDictionary(Of TKey, TValue) — Similar to a classic dictionary, with key - value pairs
that can be accessed concurrently

 ➤ ConcurrentQueue(Of T) — A FIFO (First In, First Out) collection whereby many tasks can enqueue
and dequeue elements concurrently

 ➤ ConcurrentStack(Of T) — A LIFO (Last In, First Out) collection whereby many tasks can push
and pop elements concurrently

 You don ’ t have to worry about locks and synchronization primitives while using the
aforementioned collections in many tasks, because they are already prepared to receive
concurrent and parallel methods calls. They solve potential deadlocks and race conditions
and they make it easier to work with parallelized code in many advanced scenarios.

 ConcurrentQueue
 It would be diffi cult to use a classic shared list to add elements from many independent tasks created by
the Parallel.ForEach method. You would need to add synchronization code, which would be a great
challenge without restricting the overall scalability. However, it is possible to add strings to a queue
(enqueue strings) in a shared ConcurrentCollection inside the parallelized code, because it is prepared for
adding elements concurrently.

 Listing 33 - 18 uses a shared ConcurrentQueue(Of String) , Keys , in order to hold the strings that contain
the AES keys that begin with a certain prefi x, generated in a parallelized loop with the custom partitioner.

All the tasks created automatically by Parallel.ForEach are going to call the Enqueue method to add the
elements that comply with the condition.

Keys.Enqueue(hexString)

It is indeed simple to work with a ConcurrentQueue. There is no need to worry about synchronization
problems because everything is controlled under the hood.

lisTing 33-18: enqueueing the generated keys in a ConcurrentCollection

Private Keys As Concurrent.ConcurrentQueue(Of String)

Sub ParallelPartitionGenerateAESKeysWCP(ByVal ct As
System.Threading.CancellationToken, ByVal prefix As Char)
 ct.ThrowIfCancellationRequested()
 Dim sw = Stopwatch.StartNew()
 Dim parallelOptions As New ParallelOptions()
 ' Set the CancellationToken for the ParallelOptions instance
 parallelOptions.CancellationToken = ct
 Parallel.ForEach(Partitioner.Create(1, NUM_AES_KEYS + 1), parallelOptions,
 Sub(range)
 Dim aesM As New AesManaged()
 Dim result() As Byte
 Dim hexString As String
 'Debug.WriteLine("Range ({0}, {1}. Time: {2})",
 ' range.Item1, range.Item2, Now().TimeOfDay)
 For i As Integer = range.Item1 To range.Item2 - 1
 aesM.GenerateKey()
 result = aesM.Key
 hexString = ConvertToHexString(result)
 ' Console.WriteLine("AES: " + hexString)
 If Left(hexString, 1) = prefix Then
 Keys.Enqueue(hexString)
 End If
 parallelOptions.CancellationToken.ThrowIfCancellationRequested()
 Next
 End Sub)
 Debug.WriteLine("AES: " + sw.Elapsed.ToString())
End Sub

Sub Main()
 Dim cts As New System.Threading.CancellationTokenSource()
 Dim ct As System.Threading.CancellationToken = cts.Token
 Keys = New ConcurrentQueue(Of String)

 Dim tAsync = New Task(Sub() ParallelPartitionGenerateAESKeysWCP(ct, "A"))
 tAsync.Start()

 ' Do something else
 ' Wait for tAsync to finish
 tAsync.Wait()

 Console.ReadLine()
End Sub

Code snippet from Listing18

For example, it is possible to run many LINQ queries to display partial statistics while running the task that
is adding elements to the ConcurrentQueue (Keys). Listing 33-19 shows a new Main subroutine that checks
whether the task (tAsync) is running or waiting to run, and while this happens it runs a LINQ query to
show the number of keys that contain an F in the shared ConcurrentQueue (Keys).

Creating and Managing Tasks ❘ 1095

1096 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

lisTing 33-19: reporting partial progress querying a ConcurrentQueue being updated by an
asynchronous task

Sub Main()
 Dim cts As New System.Threading.CancellationTokenSource()
 Dim ct As System.Threading.CancellationToken = cts.Token

 Keys = New ConcurrentQueue(Of String)
 Dim tAsync = Task.Factory.StartNew(Sub() ParallelPartitionGenerateAESKeysWCP(ct, "A"))

 Do While (tAsync.Status = TaskStatus.Running) Or (tAsync.Status = TaskStatus.WaitingToRun)
 ' Display partial results
 Dim countQuery = Aggregate key In Keys
 Where key.Contains("F")
 Into Count()

 Console.WriteLine("So far, the number of keys that contain an F is: {0}", countQuery)
 ' Sleep the main thread for 0.5 seconds
 Threading.Thread.Sleep(500)
 Loop

 tAsync.Wait()

 ' Do something else

 Console.ReadLine()
End Sub

Code snippet from Listing19

Another useful feature is the capability to remove an element at the beginning of the queue in a safe way
using its TryDequeue method:

Dim firstKey As String
If Keys.TryDequeue(firstKey) Then
 ' firstKey has the first key added to the ConcurrentQueue
Else
 ' It wasn't possible to remove an element from the ConcurrentQueue
End If

TryDequeue returns a Boolean value indicating whether the operation was successful. It returns the element
using an output attribute — in this case, a String received by reference (firstKey).

It is possible to add and remove elements in different tasks.

Concurrentstack
ConcurrentStack is very similar to the previously explained ConcurrentQueue, but it uses different method
names to better represent a stack (a LIFO collection). Its most important methods are Push and TryPop.

Push inserts an element at the top of the ConcurrentStack. If Keys were a ConcurrentStack(Of
String), the following lines would add hexString at the top of the stack:

If Left(hexString, 1) = prefix Then
 Keys.Push(hexString)
End If

You can remove an element at the top of the stack in a safe way using its TryPop method. However, in this
case, the method will return the last element added because it is a stack and not a queue:

Dim firstKey As String
If Keys.TryPop(firstKey) Then

 ' firstKey has the last key added to the ConcurrentStack
Else
 ' It wasn't possible to remove an element from the ConcurrentStack
End If

 TryPop also returns a Boolean value indicating whether the operation was successful.

 Transforming linq into Plinq
 You already learned that LINQ is very useful to query and process different data sources. If you are using
LINQ to Objects, now it is possible to take advantage of parallelism using its parallel implementation,
 Parallel LINQ (PLINQ) .

 PLINQ implements the full set of LINQ query operators and adds new additional
operators for parallel execution. PLINQ can achieve signifi cant speedups over its
LINQ counterpart, but it depends on the scenario, as always with parallelism. If
the query involves an appreciable number of calculations and memory - intensive
operations and ordering doesn ’ t matter, the speedups could be signifi cant. However,
when ordering matters, the speedups could be reduced.

 As you might have expected, LINQ and PLINQ can work with the previously explained concurrent
collections. The following code defi nes a simple but intensive function to count and return the number of
letters in a string received as a parameter:

Function CountLetters(ByVal key As String) As Integer
 Dim letters As Integer = 0
 For i As Integer = 0 To key.Length() - 1
 If Char.IsLetter(key, i) Then letters += 1
 Next
 Return letters
End Function

 Code snippet from Snippet06

 A simple LINQ expression to return all the AES keys with at least 10 letters containing an A, an F, a 9, and
not a B, would look like the following:

Dim keysWith10Letters = From key In Keys
 Where CountLetters(key) > = 10 And key.Contains("A")
 And key.Contains("F") And key.Contains("9") And Not
 key.Contains("B")

 In order to transform the aforementioned LINQ expression into a PLINQ expression that can take
advantage of parallelism, it is necessary to use the AsParallel method, as shown here:

Dim keysWith10Letters = From key In Keys .AsParallel()
 Where CountLetters(key) > = 10 And key.Contains("A")
 And key.Contains("F") And key.Contains("9") And Not
 key.Contains("B")

 This way, the query will try to take advantage of all the available logical cores at runtime in order to run
faster than its sequential version.

 It is possible to add code at the end of the Main subroutine to return some results according to the PLINQ
query:

Dim sw = Stopwatch.StartNew()

Dim keysWith10Letters = From key In Keys. AsParallel()
 Where CountLetters(key) > = 10 And key.Contains("A")

Creating and Managing Tasks ❘ 1097

1098 ❘ chaPTer 33 PaRallEl PRoGRammiNG usiNG tasks aNd tHREads

 And key.Contains("F") And key.Contains("9") And Not
 key.Contains("B")

Console.WriteLine("The code generated {0} keys with at least ten letters, A,
F and 9 but no B in the hexadecimal code.", keysWith10Letters.Count())
Console.WriteLine("First key {0}: ", keysWith10Letters(0))
Console.WriteLine("Last key {0}: ", keysWith10Letters(keysWith10Letters.Count() - 1))
Debug.WriteLine(sw.Elapsed.ToString())

Console.ReadLine()

Code snippet from Snippet06

This code shows the number of keys that comply with the conditions, the first one and the last one, stored in
the results of the PLINQ query that worked against the ConcurrentQueue(Of String).

Parallelenumerable and its asParallel Method
The System.Linq.ParallelEnumerable class is responsible for exposing most of PLINQ’s additional
functionality, including its most important one: the AsParallel method. Table 33-6 summarizes the
PLINQ-specific methods.

TaBle 33-6: PLINQ Operators Exposed by ParallelEnumerable

Value descriPTion

AsOrdered() PLINQ must preserve the ordering of the source sequence for the rest of
the query or until it changes using an Order By clause .

AsParallel() The rest of the query should be parallelized, whenever possible .

AsSequential() The rest of the query should run sequentially, as traditional LINQ .

AsUnordered() PLINQ doesn’t have to preserve the ordering of the source sequence .

ForAll() An enumeration method that enables the results to be processed in
parallel, using multiple tasks

WithCancellation Enables working with a cancellation token to permit cancelation of the
query execution as previously explained with tasks

WithDegreeOfParallelism PLINQ will be optimized as if the total number of available cores were equal
to the degree of parallelism specified as a parameter for this method .

WithExecutionMode This can force parallel execution when the default behavior would be to
run it sequentially as traditional LINQ .

WithMergeOptions This can provide hints about the way PLINQ should merge the parallel
pieces of the result on the thread that is consuming the query .

In addition, AsParallel offers an Aggregate overload that enables the implementation of parallel reduction
algorithms. It enables intermediate aggregation on each parallelized part of the query and a final aggregation
function that is capable of providing the logic to combine the results of all the generated partitions.

Sometimes is useful to run a PLINQ query with many different degrees of parallelism in order to measure
its scalability. For example, the following line runs the previously shown PLINQ query to take advantage of
no more than three cores:

Dim keysWith10Letters = From key In Keys.AsParallel().WithDegreeOfParallelism(3)
 Where CountLetters(key) >= 10 And key.Contains("A") And

asordered and order By
Because using AsOrdered and the Order By clause in PLINQ queries can reduce any speed gains, it is very
important to compare the speedup achieved against the sequential version before requesting ordered results.

 If a PLINQ query doesn ’ t achieve signifi cant performance improvements, you have another interesting
option to take advantage of parallelism: running many LINQ queries in independent tasks or using
 Parallel.Invoke .

 Working with forall and a ConcurrentBag
 The ForAll extension method is very useful to process the results of a query in parallel without having
to write a parallel loop. It receives an action as a parameter, offering the same possibilities that the same
parameter received by the Task constructors. Therefore, using lambda expressions, you can combine
parallelized processing actions from the results of a PLINQ query. The following lines add elements in
parallel to a new ConcurrentBag (keysBag), an unordered collection of Integer , counting the letters for
each of the keys in the results of the previous PLINQ query:

Dim keysWith10Letters = From key In Keys.AsParallel()
 Where CountLetters(key) > = 10 And key.Contains("A")
 And key.Contains("F") And key.Contains("9") And Not
 key.Contains("B")

Dim keysBag As New ConcurrentBag(Of Integer)
keysWith10Letters.ForAll(Sub(i) keysBag.Add(CountLetters(i)))

 Code snippet from Snippet07

 This parallel processing is possible because ConcurrentBag is one of the concurrent
collections that allows many elements to be added by multiple tasks running in parallel.

 summary
 This chapter provided an overview of the new task - based programming model introduced with .NET
Framework 4 by introducing some of its classes, structures, and enumerations. In order to help you tackle
the multicore revolution, it also explained several related concepts used in basic concurrent and parallel
programming designs, including the following key points:

 You have to plan and design with concurrency and parallelism in mind. TPL offers structures that ➤

simplify the process of creating code that takes advantage of multicore architectures.

 You don ’ t need to recompile your code in order to take advantage of additional cores. TPL optimizes ➤

the parallel loops and the distributions of tasks in underlying threads using load - balancing scheduling
according to the available hardware resources at runtime.

 You can parallelize existing loops and measure the achieved performance gains. ➤

 You can launch tasks and combine everything you learned so far about lists and arrays to work with ➤

multiple tasks and manage their execution.

 Concurrent collections provide a way to update collections in parallel and concurrent tasks without ➤

worrying about complex synchronization mechanisms.

 You can transform a LINQ query into PLINQ in order to test the speedup achieved with multicore ➤

architectures.

 Backward compatibility is possible with threaded code written in previous versions of Visual Basic ➤

and .NET Framework.

summary ❘ 1099

34
 Deployment

 WhaT you Will learn in This chaPTer

The major built-in options for deploying .NET applications ➤

 How to create deployment projects within Visual Studio ➤

 How to use ClickOnce to deploy Windows applications such as those based ➤

on Windows Forms or WPF

 How to access the IIS Web Deployment Tool for deployment of Web projects ➤

 Applications developed with the .NET Framework have a host of deployment options that were
not available for older, COM - based software. These options completely change the economics of
deployment. The changes are so important that they can even alter the preferred architecture for a
system written in .NET.

 Deployment encompasses many activities required to place an application into a production
environment, including setting up databases, placing software in appropriate directories on servers,
and confi guring options for a particular installation. Deployment also includes handling changes and
upgrades to the application.

 This chapter covers the major deployment options for .NET applications. Chapter 31 on assemblies
should be considered a prerequisite for this chapter, as assemblies are the basic unit of deployment.

 First, you ’ ll look at some of the problems that can occur when you deploy applications, along with
a number of terms that are used when talking about application deployment. Then you ’ ll learn how
.NET addresses many of these deployment issues. The remainder of the chapter covers the following:

 Creating deployment projects in Visual Studio 2010 that enable initial installation of ➤

applications

 Deployment of the .NET Framework itself on systems where it does not already reside ➤

 Updating applications on servers, including components and ASP.NET applications ➤

 Installing and updating Windows Forms applications on client machines with ClickOnce ➤

 Deployment in .NET is a huge topic that can ’ t be covered completely within one chapter.
This chapter should provide you with a basic understanding of the options available, and
a desire to learn more about them.

1102 ❘ chaPTer 34 dEPloymENt

aPPlicaTion dePloymenT
In the context of this chapter, application deployment includes two principal functions:

The process of taking an application, packaging it up, and installing it on another machine ➤

The process of updating an already installed application with new or changed functionality ➤

Deployment can, in some cases, also include placing the .NET Framework itself on a particular machine. This
chapter assumes that the .NET Framework is installed on any machines in question. During the discussion of
creating deployment projects, you will learn what to do if the .NET Framework is not available on a system.

Why deployment is straightforward in .neT
As covered in the Chapter 31, assemblies in .NET are self-describing. All the information needed to execute
an assembly is normally contained in the assembly itself. There is no need to place any information in the
Windows registry. If the CLR can find an assembly needed by an application (the process of location was
discussed in the previous chapter), then the assembly can be run.

The previous chapter also discussed side-by-side execution of .NET assemblies. Multiple versions of an
assembly can be executed by .NET, even if they have exactly the same interface and nominal version
number. The implication for deployment is that each application can deploy the assemblies it needs and be
assured that there will be no conflict with assemblies needed by other applications.

These .NET capabilities provide a range of deployment possibilities, from simple to complex. The following
section looks at the simplest method of deployment, which harkens back to the days of DOS XCOPY
deployment.

xcoPy deployment
The term XCOPY deployment was coined to describe an ideal deployment scenario. Its name derives from the
DOS xcopy command. XCOPY deployment means that the only thing you need to do in order to deploy an
application is copy the directory (including all child directories) to the computer on which you want to run the
program.

XCOPY deployment is fine for very simple applications, but most business applications require other
dependencies (such as databases and message queues) to be created on the new computer. .NET cannot help
with those, so applications that have them need more sophisticated deployment.

using the Windows installer
All the operations systems that support .NET Framework 4 also have the Windows Installer service
available. It was specifically created for installing applications onto a Windows system.

The Windows Installer service uses a file, called a Windows Installer package file, to install an application.
Such files have an extension of .msi, an abbreviation derived from “Microsoft Installer.” The files that
make up a product can be packaged inside the .msi file, or externally in a number of cabinet files.

When the user requests that a particular application be installed, he or she can just double-click the .msi
file. The Windows Installer service reads the file and determines what needs to be done to install the
application (such as which files need to be copied and where). All the installation rules are implemented
centrally by the service and do not need to be distributed as part of a setup executable. The Windows
Installer package file contains a list of actions (such as copy file mfc40.dll to the Windows system folder)
and what rules need to be applied to these actions.

The Windows Installer service also has a rollback method to handle failed installations. If the installation
fails for some reason, the Windows Installer service will roll back the computer to its original state.

You can manually create a Windows Installer package file using the Windows Installer SDK tools, but it’s
much easier to use Visual Studio. Several templates in VS 2010 create projects that output .msi files, as
discussed in detail in the section “Visual Studio Deployment Projects,” later in this chapter.

clickonce deployment
An alternative to Windows Installer for Windows Forms and WPF applications is ClickOnce. This deployment
technology was first included in Visual Studio 2005. Creating ClickOnce deployments is simpler than creating
.msi files, but the most important ClickOnce advantage is that it is designed to deploy over the Internet.
ClickOnce is discussed later in the chapter in the section “Internet Deployment of Windows Applications.”

choosing a frameWorK Version
Visual Studio 2010 enables you to target a
particular version of the framework. You can
choose to base your application on version 2.0,
3.0, 3.5, or 4 of the framework by selecting it
from the Advanced Compiler Settings dialog,
which is available by selecting the properties for
a project, navigating to the Compile page, and
clicking the Advanced Compile Options button.
The Advanced Compiler Settings dialog is shown
in Figure 34-1, and the last option in the dialog
is a drop-down list for the version of the .NET
Framework you want to target.

The capability to choose a version of the
framework was introduced in Visual Studio 2008.
When .NET Framework 3.5 Service Pack 1 was
released, a new option was added for choosing a
“Client Profile” version of the framework.

A Client Profile is a subset of the .NET Framework intended for client-based programs, which typically
means user programs based on Windows Forms or WPF. The Client Profile leaves out a lot of framework
functionality that is only applicable to a server. When targeting the Client Profile, deployment to a machine
that does not have the necessary version of the .NET Framework is significantly faster.

Visual Studio 2010 retains the capability to use a Client Profile, though the way to choose a Client Profile
on the Advanced Compiler Settings dialog is different. In Visual Studio 2008 with the service pack, a check
box is used to select the Client Profile, whereas the drop-down in Visual Studio 2010 includes options for
.NET Framework versions with and without the Client Profile.

Visual sTudio dePloymenT ProJecTs
Visual Studio 2010 provides two main options for creating a deployment project in a Visual Studio solution.
The first option is a limited edition of InstallShield 2010. This chapter does not cover using the limited
edition of this third-party product.

The second option is a set of project templates that can be used to help package your application and deploy
it. Most of these templates use Windows Installer technology. Before looking at the project templates,
however, it is important to understand the difference between setup and deployment. Setup is the process
that you use to package your application. Deployment is the process of installing an application on another
machine, usually through a setup application/process.

figure 34-1

Visual studio Deployment Projects ❘ 1103

1104 ❘ chaPTer 34 dEPloymENt

Project Templates
The deployment project templates available within Visual Studio 2010 can be created by the same means as
any other project type, by using the New Project dialog, shown in Figure 34-2.

figure 34-2

As shown in the figure, you first select the Other Project Types node, then the Setup and Deployment node,
and finally the Visual Studio Installer node from the tree view of project types on the left side of the dialog.
Of the five available project templates, four are actual project templates:

CAB Project ➤

Merge Module Project ➤

Setup Project ➤

Web Setup Project ➤

The fifth is a wizard (called the Setup Wizard) that can be used to help create any of the project templates listed.

The CaB Project Template
The CAB Project template is used to create a cabinet file. A cabinet file (.cab) can contain any number of
files. It is often used to package a set of related components in an application.

Controls hosted within Internet Explorer are often packaged into a cabinet file, with a reference added to
the file in the Web page that uses the control. When Internet Explorer encounters this reference, it confirms
that the control isn’t already installed on the user’s computer, at which point it downloads the cabinet file,
extracts the control, and installs it to a protected part of the user’s computer.

You can compress cabinet files to reduce their size and consequently the amount of time it takes to
download them.

The Merge Module Project Template
The Merge Module Project template is used to create a merge module, which is similar to a cabinet file in
that it can be used to package a group of files. The difference is that a merge module file (.msm) cannot be
used by itself to install the files that it contains. The merge module file created by this project template can
only be used within another setup project.

Merge modules were introduced as part of the Microsoft Windows Installer technology to enable a set of
files to be packaged into an easy-to-use file that could be reused and shared between Windows Installer–
based setup programs. The idea is to package all the files and any other resources (e.g., registry entries,
bitmaps, and so on) that are dependent on each other into the merge module.

This type of project can be very useful for packaging a component and all its dependencies. The resulting
merge file can then be used in the setup program of each application that uses the component. This enables
applications, such as Crystal Reports, to have a prepackaged deployment set that can be integrated into the
deployment of other applications.

The setup Project Template
The Setup Project template is used to create a standard Windows Installer setup for an application, which is
normally installed in the Program Files directory of a user’s computer.

The Web setup Project Template
The Web Setup Project template is used to create a Windows Installer setup program that can be used to
install a project into a virtual directory of a Web server. Its intended use is to create a setup program for a
Web application, which may contain ASP.NET Web Forms or Web services.

To a large degree, the functionality in this template has been superceded by a new tool, the IIS Web
Deployment Tool, also known as MSDeploy.exe. A brief introduction to this tool is included in the section
below entitled The IIS Web Deployment Tool.

The setup Wizard
You can use the Setup Wizard to help guide you through the creation of any of the previous setup and
deployment project templates.

creating a deployment Project
A deployment project can be created in exactly the same way as any other project in Visual Studio 2010. It
can be standalone, or it can be part of a solution that contains other projects.

To illustrate a typical deployment project, the following section contains a simple walk-through of one of
the most commonly used templates for a deployment project — the Setup Project, which is used to deploy a
Windows application. The walk-through will assume a Windows Forms application, though the process is
almost identical for a WPF application.

Walk-through
First, create an application that will serve as the desktop application you want to deploy. Create a new project
and choose Windows Forms Application from the list of available Visual Basic project templates. Name the
project SampleForDeployment and don’t add any code to it yet.

Next, add a new project to the solution and choose Setup Project from the list of available Setup and
Deployment templates. You now have a Visual Studio solution containing two projects.

Visual studio Deployment Projects ❘ 1105

1106 ❘ chaPTer 34 dEPloymENt

When created, the deployment project does not contain any files. It has a folder called Detected
Dependencies, which is discussed later. You will need to add the executable file from your Windows
application SampleForDeployment to the deployment project.

You add files to a setup deployment project using the Add function, which is available in two places: You
can select the deployment project in the Solution Explorer and use the Add option from the Project menu, or
you can right-click the setup project file in the Solution Explorer and choose Add from the pop-up menu.
Both methods enable you to choose from one of four options:

If you select File from the submenu, you are presented with a dialog that enables you to browse for ➤

and select a particular file to add to the setup project. This
method is suitable if a file needed by the application is not
the output from another project within the solution.

The Merge Module option enables you to include a merge ➤

module in the deployment project. Third-party vendors
can supply merge modules or you can create your own with
Visual Studio.

The Assembly option can be used to select a .NET ➤

component (assembly) to be included in the deployment
project.

If the deployment project is part of a solution (as in this ➤

walk-through), you can use the Project ➪ Add ➪ Project
Output submenu item. This enables you to add the output
from any of the projects in the solution to the setup project.

Add the output of the Windows Forms Application project to the
setup project. Select the Project Output menu item to bring up
the dialog shown in Figure 34-3.

The Add Project Output Group dialog is divided into several parts:

The combo box at the top contains a list of names of all the nondeployment projects in the current ➤

solution. In your case, there is only one project: SampleForDeployment.

Below the combo box is a list box containing all the possible outputs from the selected project. You ➤

are interested in the Primary output, so make sure that this is selected. (Other options for output are
described in the MSDN for Visual Studio help files.)

Below the list of possible outputs is a combo box from which you can select the configuration to use ➤

for the selected project. You will use the (Active) option here, because this uses whatever configuration
is in effect when the project is built.

Click OK to return to the solution.

At this point, not only has the output from the Windows application been added to the Setup project, but
the Detected Dependencies folder also contains an entry.

Whenever you add a .NET component to this deployment project, its dependencies are added to this folder.
Any dependencies of the dependencies are also added, and so on until all the required files have been added.
The files listed in the Detected Dependencies folder are included in the resulting setup and, by default,
are installed into the application’s directory as application-private assemblies. This default behavior helps
reduce the possible effects of DLL hell by making the application use its own copies of dependent files.

If you don’t want a particular dependency file to be included in the resulting setup, you can exclude it by
right-clicking the file entry under Detected Dependencies and selecting Exclude from the pop-up menu. For
example, you may decide that you want to exclude a detected dependency from the setup of an application
because you know that the dependency is already installed on the target computer. The dependency will
then have a small “circle and slash” icon before its name to indicate that it has been excluded.

figure 34-3

 You can select an item in the setup project in the Solution Explorer and that particular item ’ s properties
will be displayed in the Properties window. Because there are too many properties to discuss them all,
we will take a look at the properties from the root setup node and each of the two different project items.
First, however, ensure that the root setup node is selected, and take some time to browse the list of available
properties.

 The root setup node represents the output from this deployment project type: a Windows Installer package
(.msi). Therefore, the Properties window contains properties that affect the resulting .msi that is produced.

 Important Properties of the Root Setup Node

 The ProductName property is used to set the text name of the product that this Windows Installer package
is installing. By default, it is set to the name of the setup project (in this case, Setup1). The value of this
property is used throughout the steps of the resulting setup. For instance, it is used for the text of the title
bar when the resulting .msi fi le is run. The property is used along with the Manufacturer property to
construct the default installation directory: C:\ProgramFiles\ < Manufacturer > \ < ProductName > .
The ProductName property is also used within the Control Panel by the Add/Remove Programs applet to
show that the application is installed.

 The AddRemoveProgramsIcon property enables you to set the icon that appears in the applet of the Control
Panel that is used to add and remove programs to a system. (The applet is named Add/Remove Programs
in Windows XP and Programs and Features in Window Vista and Windows 7.) The default of (None)
means that the default icon will be used. You can select an icon with the (Browse) option. The icon can be a
standalone icon fi le or you can select an executable or DLL that contains an icon you want to use.

 The Title property is used to set the textual title of the application that is installed. By default, this
property has the same name as the setup project.

 In addition, you may need to set several additional properties of the root node. The remaining properties for
the root setup node are for various advanced options and are not discussed in this walk - through.

 Properties of the Primary Output Project Item

 Previously, you added the primary output from the SampleForDeployment Windows Forms project to your
deployment project. It should now appear as an item in that project. Primary Output project items also have
several important properties that you should know about, including the ones shown in Table 34 - 1.

 Dependencies can also be excluded by selecting the particular dependency and using the
Properties window to set the Exclude property to True . The listed dependencies are
refreshed whenever a .NET fi le is added to or removed from the setup project, taking into
account any fi les that have already been excluded.

 ProPerTy descriPTion

 Condition This enables you to enter a condition that will be evaluated when the installation is run .
If the condition evaluates to True , then the fi le is installed; if the condition evaluates to
 False , then the fi le is not installed . If you only want a particular fi le to be installed and
the installation is being run on Microsoft Windows Vista or later, you could enter the
following for the condition: VersionNT > = 600

 Dependencies Selecting this property displays a window showing all the dependencies of the selected
project output .

 Exclude You can use this property to indicate whether you want the project output to be excluded
from the resulting Windows Installer package .

TaBle 34-1: Primary Output Project Item Properties

continues

Visual studio Deployment Projects ❘ 1107

1108 ❘ chaPTer 34 dEPloymENt

Properties of the Detected Dependency Items

Items that reside in the DetectedDependencies folder have some of the preceding properties, and they also
have some read-only properties that provide you with detailed information about the item. This chapter
does not include a detailed discussion of those informational properties.

This has been only a brief look at the Setup Project template. It uses all the project defaults and provides a
standard set of steps to users when they run the Windows Installer package. Of course, a real application
needs more than a single application file and its dependencies. You can customize the setup project
extensively to meet those additional needs.

Besides adding more files to the deployment project, you may need to create shortcuts, directories, registry
entries, and so on. These customizations and more can be accomplished using the set of built-in editors,
which are covered in the section “Modifying the Deployment Project.”

Creating a Deployment Project for an asP.neT Web application
You can also create a deployment project for an ASP.NET Web application. Such a deployment project can
then publish a web site, including such tasks as creating a virtual directory. However, Web deployment
projects are less commonly used in Visual Studio 2010 than in earlier versions. As mentioned earlier in the
chapter, a newer option is available in Visual Studio 2010 for deployment of web projects called the IIS Web
Deployment Tool. It’s also sometimes referred to as one-click deployment.

This new deployment option is preferred in most cases because it relieves you of the need to create a separate
deployment project. The section below, entitled IIS Web Deployment Tool, covers the basics of using this
option for web application deployment.

However, you still have the option of creating a setup and deployment project for Web applications. You
might choose to do that if you need certain advanced options of a dedicated deployment project, such as
putting up dialogs to guide the user through deployment.

In that case, the template to use is the Web Setup Project template. There is one major difference between
this template and the previously described Setup Project template: The Web Setup Project will, by default,
deploy the application to a virtual directory of the Web server on which the setup is run, whereas a Setup
Project deploys the application to the Program Files folder on the target machine by default.

ProPerTy descriPTion

Folder This property enables you to select the target folder for the project outputs .

KeyOutput This property expands to provide information about the main file that makes up the project
output . In your case, it will show information for the SampleForDeployment.exe file .

Outputs Selecting this property displays a window listing all the files that are part of the project
output, and indicates where these files are located on the development machine .

Permanent This property is used to indicate whether the files that make up the project output
should be removed when the application is uninstalled (False) or left behind (True) .
It is advisable to remove all the files installed by an application when the application is
uninstalled . Therefore, this property should be set to False, which is the default .

ReadOnly This property is used to set the read-only file attribute of all the files that make up the
project output . As the name suggests, this makes the file read-only on the target machine .

Register This property enables you to instruct the Windows Installer to register the files contained within
the project output as COM objects . This only applies to projects (e .g ., the Class Library project
template) that have been compiled with the Register for COM interop project property set .

Vital This property is used to indicate that the files contained within the project output are vital
to the installation — if the installation of these files fails, then the installation as a whole
should fail . The default value is True .

TaBle 34-1 (continued)

There are substantial similarities between producing a deployment project for this scenario and producing
a Windows Application deployment project as shown in the walk-through. They both produce a Windows
Installer package and have the same set of project properties discussed earlier.

As in the previous walk-through, you need to add the output of the Web application to the deployment project.
This is accomplished in much the same way as earlier, by right-clicking on a Web Setup project and selecting
Add ➪ Project Output. There is one key difference: When you add the project representing the website, the only
option you have for the type of files to add is Content Files, which encompasses the files that make up the website.

As before, if you build such a project, the result is an .msi file, which can be used in this case to deploy a website.

modifying The dePloymenT ProJecT
In the walk-through, you created a default Windows Installer package for a particular project template.
You didn’t customize the steps or actions that were performed when the package was run. What if you want
to add a step to the installation process in order to display a ReadMe file to the user? Or what if you need to
create registry entries on the installation computer?

This section focuses on additional capabilities for deployment projects. Most of these capabilities are
accessed by using a series of “editors” to change parts of the deployment project. You can use six editors to
customize a Windows Installer–based deployment project:

File System Editor ➤

Registry Editor ➤

File Types Editor ➤

User Interface Editor ➤

Custom Actions Editor ➤

Launch Conditions Editor ➤

The editors are accessible through the View ➪ Editor menu option or by using the corresponding buttons at
the top of the Solution Explorer.

You can also modify the resulting Windows Installer package through the project’s Properties window. This
section takes a brief look at each of the six editors and the project properties, and describes how you can use
them to modify the resulting Windows Installer package. You will use the project previously created in the
Windows application walk-through.

Project Properties
The first step to take in customizing the Windows
Installer package is to use the project’s property
pages. The Property Pages dialog is accessed by
right-clicking the root of the setup project in the
Solution Explorer and selecting Properties from
the pop-up menu. You can also select the Properties
item from the Project menu when the setup project
is the active project. Both of these methods will
bring up the dialog shown in Figure 34-4.

The Build Page
The only page available from the Property Pages
dialog is the Build page. The options on this page
can be used to affect the way that the resulting
Windows Installer package is built. figure 34-4

Modifying the Deployment Project ❘ 1109

1110 ❘ chaPTer 34 dEPloymENt

As with most other projects in VS 2010, you can create different build configurations. Use the Configuration
combo box to select the build configuration for which you want to alter properties. In Figure 34-4, notice
that you are modifying the properties for the currently active build configuration: Debug. The button labeled
Configuration Manager enables you to add, remove, and edit the build configurations for this project.

The Output File Name setting can be used to modify where the resulting Windows Installer package (.msi)
file is created. You can modify the filename and path directly, or you can click the Browse button.

Package Files

The next setting, Package Files, enables you to specify how the files that make up the installation are
packaged. The possible options are:

 ➤ As loose uncompressed files-When you build the project, the files that are to be included as part of the
installation are copied to the same directory as the resulting Windows Installer package (.msi) file. As
mentioned earlier, this directory can be set using the Output file name setting.

 ➤ In a setup file-When the project is built, the files that are to be included as part of the installation are
packaged in the resulting Windows Installer package file. When you use this method, you have only
one file to distribute. This is the default setting.

 ➤ In cabinet file(s)-With this option, when the project is built, the files that are to be included as part of
the installation are packaged into a number of cabinet files.

Prerequisites

Prerequisites are standard components that may
be needed to install or run the application but
are not a part of it. There are several of these, as
shown in Figure 34-5, which shows the dialog
that is displayed when the Prerequisites button is
clicked.

The .NET Framework is checked by default,
and so is the Windows Installer. You should
only uncheck these if you are sure that all the
machines on which your application will be
installed already have the correct versions of
these prerequisites installed. As mentioned
earlier in this chapter, Visual Studio 2010 allows
targeting of the .NET Framework version you
would like to use, so the targeted version of
the framework needs to be coordinated with the
prerequisites.

If the box for any of these prerequisites is checked, then the resulting installation package will automatically
check for the presence of that prerequisite, installing it if required. If you are installing from a CD or network
share, then it is common for the packages that install these prerequisites to be placed in the same location as
your installation package. The default settings assume that this is true and install the prerequisites from that
location.

However, you can specify a different location for packages that install prerequisites. You can select the
“Download prerequisites from the following location:” option at the bottom of the dialog and then specify
the URL at which the packages are located. Alternately, you can select “Download prerequisites from the
component vendor’s web site,” and then the Installation URL on the previous dialog will be used (refer to
Figure 34-5).

figure 34-5

Compression

You also have the option to modify the compression used when packaging the files that are to be contained
within the installation program. The three options (Optimized for speed, Optimized for size, and None) are
self-explanatory and therefore not covered. The default is Optimized for Speed.

Setting the Cabinet File Size

If you want to package the files in cabinet files, then you have the option to specify the size of those resulting
cabinet file(s):

The first option is to let the resulting cabinet file be of an unlimited size. What this effectively means ➤

is that all the files are packaged into one big cabinet file. The resulting size of the cabinet file depends
on the compression method selected.

If you are installing from floppy disks or CDs, then creating one large cabinet file may not be wise. In ➤

this case, you can use the second option to specify the maximum size of the resulting cabinet file(s).
If you select this option, then you need to specify the maximum allowed size for a cabinet file (this
figure is in KB). If all the files that need to be contained within this installation exceed this size, then
multiple cabinet files are created.

The file system editor
The File System Editor is automatically displayed for you in VS 2010’s document window when you first
create the Setup project. You can also access this editor (and the other editors that are available) via the
View ➪ Editor menu option in the Visual Studio 2010 IDE. The File System Editor is used to manage all the
file system aspects of the installation, including the following:

Creating folders on the user’s machine ➤

Adding files to the folders defined ➤

Creating shortcuts ➤

Basically, this is the editor that you use to define what files need to be installed and where they should be
installed on the user’s machine. The File System Editor is divided into two main panes in the document
window (see Figure 34-6).

figure 34-6

Modifying the Deployment Project ❘ 1111

1112 ❘ chaPTer 34 dEPloymENt

The left pane shows a list of the folders that have been created automatically for the project. When you
select a folder in the left pane, two things happen: first, the right pane of the editor displays a list of the
files to be installed into the selected folder, and second, the Properties window will change to show you
the properties of the currently selected folder. Depending on the size of the Visual Studio 2010 window, you
might not see the right-hand pane unless you widen the screen.

adding items to a folder
To add an item that needs to be installed to a folder, you can either right-click the folder in the left pane and
choose Add from the pop-up menu or you can select the required folder, right-click in the right pane,
and again choose Add from the pop-up menu. You will be presented with four options, three of which were
discussed earlier in the walk-through:

Project output ➤

File ➤

Assembly ➤

The fourth option (Folder) enables you to add a subfolder to the currently selected folder. This subfolder
then becomes a standard folder that can be used to add files. If you add any .NET components or
executables, the dependencies of these components are also added to the installation automatically.

adding special folders
When you create a new deployment project, a set of standard folders is created for you (listed in the desktop
application section). If the folders created do not match your requirements, you can also use the File System
Editor to add special folders. To add a special folder, right-click anywhere in the left pane (other than on a
folder), and you will be presented with a pop-up menu containing one item: Add Special Folder. This menu
item expands to show you a list of folders that you can add to the installation (folders already added to the
project are grayed out).

You can choose from several system folders, which are summarized in Table 34-2.

name descriPTion WindoWs insTaller ProPerTy

Common Files Folder Files (nonsystem) that are shared
by multiple applications are usually
installed to this folder .

[CommonFilesFolder]

Common Files (64-bit) Folder Same as Common Files Folder, but for
64-bit systems

[CommonFiles64Folder]

Fonts Folder Used to contain all the fonts installed
on the computer . If your application
uses a specific font, then you should
install it in this folder .

[FontsFolder]

Program Files Folder Most applications are installed in a
directory below the Program Files
Folder . This acts as the root directory
for installed applications .

[ProgramFilesFolder]

Program Files (64-bit) Folder Same as Program Files Folder, but for
64-bit systems

[ProgramFiles64Folder]

System Folder This folder is used to store shared
system files . The folder typically holds
files that are part of the OS .

[SystemFolder]

TaBle 34-2: Add Special Folder Options

name descriPTion WindoWs insTaller ProPerTy

System (64-bit) Folder Same as System Folder, but for 64-bit
systems

[System64Folder]

User’s Application Data Folder This folder is used to store data on a
per-application basis, specific to a user .

[CommonAppDataFolder]

User’s Desktop This folder represents the user’s
desktop . It can be used to create and
display a shortcut that can be used to
start your application .

[DesktopFolder]

User’s Favorites Folder Used as a central place to store
links to the user’s favorite websites,
documents, folders, and so on

[FavoritesFolder]

User’s Personal Data Folder This folder is where a user stores
important files . It is normally referred
to as My Documents .

[PersonalFolder]

User’s Programs Menu This folder is where shortcuts are
created to applications that appear
on the user’s Program menu . This is
an ideal place to create a shortcut to
your application .

[ProgramMenuFolder]

User’s Send To Menu Stores all the user’s send-to shortcuts .
A send-to shortcut is displayed when
you right-click a file in the Windows
Explorer and choose Send To . The
send-to shortcut usually invokes an
application, passing in the pathname of
the file it was invoked from .

[SendToFolder]

User’s Start Menu This folder can be used to add items to
the user’s Start menu . This is not often
used .

[StartMenuFolder]

User’s Startup Folder Used to start applications whenever
the user logs in to the computer . If you
want your application to start every time
the user logs in, then you can add a
shortcut to your application in this folder .

[StartupFolder]

User’s Template Folder This folder contains templates specific
to the logged-in user . Templates are
usually used by applications such as
Microsoft Office 2000 .

[TemplateFolder]

Windows Folder The Windows root folder . This is
where the OS is installed .

[WindowsFolder]

Global Assembly Cache Folder Used to store all shared assemblies
on the user’s computer

If none of the built-in folders match your requirements, you can create your own custom folder. Right-click
in the left pane of the File Editor and choose Custom Folder from the pop-up menu.

The new folder is created in the left pane of the editor. The folder name appears in Edit mode, so enter the
name of the folder and press Enter. The folder will now be selected, and the Properties window will change
to show the properties of the new folder. The properties of a folder are summarized in Table 34-3.

Modifying the Deployment Project ❘ 1113

1114 ❘ chaPTer 34 dEPloymENt

TaBle 34-3: Custom Folder Options

ProPerTy descriPTion

(Name) The name of the selected folder . The Name property is used within the setup project
as the means by which you select a folder .

AlwaysCreate Indicates whether this folder should be created on installation even if it’s empty
(True) . If the value is False and no files are to be installed into the folder, then the
folder isn’t created . The default is False .

Condition This enables you to enter a condition that will be evaluated when the installation
is run . If the condition evaluates to True, then the folder is created; if the condition
evaluates to False, then the folder won’t be created . For example, you might only
want to create a folder if you are on a certain version of an operating system, or only if
the user has selected a particular option on one of your install dialogs . See the section
on the Launch Conditions Editor below for discussion on creating conditions in your
deployment project . Note that a custom folder must be empty for it to be created
based on a condition .

DefaultLocation This is where you define where the folder is going to be created on the target
machine . You can enter a literal folder name (such as C:\Temp), or you can use a
Windows Installer property, or a combination of the two . A Windows Installer property
contains information that is filled in when the installer is run . The preceding table of
special folders contains a column called Windows Installer property . The property
defined in this table is filled in with the actual location of the special folder at runtime .
Therefore, if you enter [WindowsFolder] as the text for this property, the folder created
represents the Windows special folder .

Property Defines a Windows Installer property that can be used to override the
DefaultLocation property of the folder when the installation is run

Transitive Indicates whether the condition specified in the condition property is reevaluated
on subsequent (re)installs . If the value is True, then the condition is checked on
each additional run of the installation . A value of False causes the condition to be
run only the first time the installation is run on the computer . The default value is
False .

Suppose you name your folder “Wrox Press” and you set the DefaultLocation property for your folder
to [FavoritesFolder]\Wrox Press. You could add some shortcuts to this folder using the technique
described in the following section. When the installation is run, a new folder is added to the user’s Favorites
folder called Wrox Press, and those shortcuts are placed in it.

Creating shortcuts
The first step in creating a shortcut is to locate the file that is the target of the shortcut. In the File System
editor, first select the folder the file resides in, and then select the target file and right-click it. The pop-up
menu that appears includes an option to create a shortcut to the selected file, which is created in the same
folder. Select this option.

To add the shortcut to the user’s desktop, you need to move this shortcut to the folder that represents the
user’s desktop. Likewise, you could move this shortcut to the folder that represents the user’s Programs
menu. Cut and paste the new shortcut to the User’s Desktop folder in the left pane of the editor. The
shortcut will be added to the user’s desktop when the installation is run. You should probably rename
the shortcut, which is easily accomplished via the Rename option of the pop-up menu.

This has been only a brief tour of the File System Editor. There are many additional capabilities that you can
explore.

The registry editor
You can use the Registry Editor to do the following:

Create registry keys ➤

Create values for registry keys ➤

Import a registry file ➤

Like the File System Editor, the Registry Editor is divided into two panes, as illustrated in Figure 34-7.

figure 34-7

The left pane of the editor represents the registry keys on the target computer. When you select a registry
key, two things happen. One, the right pane of the editor is updated to show the values that are to be created
under the selected registry key. Two, if the registry key selected is not a root key in the left pane, then the
Properties window is updated with a set of properties for this registry key.

When you create a new deployment project, a set of registry keys is created for you that correspond to the
standard base registry keys of Windows. Notice in Figure 34-7 that there is a key defined with a name of
[Manufacturer]. When the installation is run, this will be replaced with the value of the Manufacturer
property described earlier in the chapter. [Manufacturer] is a property of the installation and can be used
elsewhere within it. Several of these properties are defined, and they can be used in much the same way
(consult the “Deployment Properties” topic in the MSDN documentation for a full list).

adding a Value to a registry Key
Before adding a value, you must select (or create) the registry key that will hold the value. There are several
ways to add the registry value:

Right-click the registry key and use the resulting pop-up menu. ➤

Right-click in the right pane and use the resulting pop-up menu. ➤

Use the Action menu. ➤

For illustrational purposes here, select one of the Software registry keys. The Action menu contains one
item, New, which contains a number of submenu items:

Key ➤

String Value ➤

Modifying the Deployment Project ❘ 1115

1116 ❘ chaPTer 34 dEPloymENt

 Environment String Value ➤

 Binary Value ➤

 DWORD Value ➤

 Using this menu, you can create a new registry key below the currently selected key (via Key), or you can
create a value for the currently selected registry key using one of the four Value types: String, Environment
String, Binary, and DWORD.

 For example, suppose you need to create a registry entry that informs the application whether or not to run
in Debug mode. The registry value must be applicable to a particular user, must be called Debug, and must
contain the text True or False.

 The fi rst step is to select the following registry key in the left pane of the editor:

HKEY_CURRENT_USER\Software [Manufacturer].

 The registry key HKEY_CURRENT_USER is used to store registry settings that apply to the currently logged - in user.

 Now you want to create a value that it is applicable to only this application, not all applications created by
you. You need to create a new registry key below the HKEY_CURRENT_USER ➪ Software ➪ [Manufacturer]
key that is specifi c to this product, so select Action ➪ New ➪ Key.

 When the key is created, the key name is editable, so give it a name of [ProductName] and press Enter. This
creates a key that is given the name of the product contained within this Windows Installer package. The
 ProductName property of the setup was discussed earlier in this chapter.

 Now that you have created the correct registry key, the next step is to create the actual registry value. Make
sure that your new registry key is selected, choose String Value from the Action ➪ New menu, and give the
new value a name of “ Debug. ”

 Once the value has been created, you can set a default value for it in its Properties window; in this case
 False . When the Windows Installer package is run, the value will be created and given a name of Debug
and a value of False . If a value already exists in the registry, then the Windows Installer package will
overwrite the existing value with what is defi ned in the Registry Editor.

 You can move around most keys and values in the Registry Editor by using cut and paste or simply by
dragging and dropping the required item.

 The alternative to creating registry entries during installation is to have your application create registry
entries the fi rst time they are needed. However, this has one signifi cant difference from registry keys
created with a Windows Installer package. The uninstall corresponding to a Windows Installer installation
automatically removes any registry keys created during the install. If the registry entries are created by the
application instead, then the uninstall has no way of knowing that these registry entries should be removed.

 importing registry files
 If you already have a registry fi le (a .reg fi le) containing the registry settings that you would like to be
created, you can import the fi le into the Registry Editor. To import a registry fi le, you need to ensure that
the root node (“ Registry on Target Machine ”) is selected in the left pane of the editor. You can then use the
Import item of the Action menu to select the registry fi le to import.

 Registry manipulation should be used with extreme caution. Windows relies heavily on
the registry, so you can cause yourself a great number of problems if you delete, overwrite,
or change registry values and keys without knowing the full consequences of the action.

 If you want to create the registry entries that are required to create fi le associations, then use the editor
covered next.

The file Types editor
The File Types Editor can be used to create the required registry entries to establish a file association for
the application being installed. A file association is simply a link between a particular file extension and
a particular application. For example, the file extension .docx is normally associated with Microsoft
WordPad or Microsoft Word.

When you create a file association, not only do you create a link between the file extension and the
application, you also define a set of actions that can be performed from the context menu of the file with
the associated extension. For example, when you right-click a document with an extension of .docx, you get
a context menu that can contain any number of actions, such as Open and Print. The action in bold (Open,
by default) is the default action to be called when you double-click the file, so in the example, double-
clicking a Word document starts Microsoft Word and loads the selected document.

Let’s walk through the creation of a file extension for the application. Suppose that the application uses a
file extension of .set and that the file is to be opened in the application when it is double-clicked. Start the
File Types Editor, which contains a single pane. In a new deployment project, this pane will only contain a
root node called “File Types on Target Machine.”

To add a new file type, make sure the root element is selected in the editor. You can then choose Add File
Type from the Action menu, or right-click on the root node and select Add File Type. Give the new file type
the name “Example File Type.”

Next, you must set the extension and application for this file type. Use the Properties window (shown in
Figure 34-8). Enter .set as the value for the Extensions property.

figure 34-8

To associate an application with this file type, use the Command property. The ellipses button for this property
presents you with a dialog from which you can select an executable file contained within any of the folders
defined in the File System Editor. In this case, you’ll select Primary Output from WindowsApplication (active)
from the Application Folder as the value for Command.

When this new file type was first created, a default action was added for you called &Open — select it.
Now take a look at the Properties window again. Notice the Arguments property: You can use this to add
command-line arguments to the application defined in the last step. In the case of the default action that has
been added for you, the arguments are “%1”, where the value “%1” will be replaced by the filename
that invoked the action. You can add your own hard-coded arguments (such as /d). You can set an
action to be the default by right-clicking it and selecting Set as Default from the pop-up menu.

Modifying the Deployment Project ❘ 1117

1118 ❘ chaPTer 34 dEPloymENt

 The user interface editor
 The User Interface Editor is used to manage the interface that is shown during installation of the application.
This editor enables you to defi ne the dialogs that are displayed to the user and in what order they are
shown. The User Interface Editor is shown in Figure 34 - 9.

 figure 34 - 9

 The editor uses a tree view with two root nodes: Install and Administrative Install. Below each of these nodes
are three nodes that represent the stages of installation: Start, Progress, and End. Each of the three stages can
contain a number of dialogs that are displayed to the user when the resulting Windows Installer package is
run. A default set of dialogs is predefi ned when you create the deployment project. Which default dialogs are
present depends on the type of deployment project: Setup Project or Web Setup Project. Figure 34 - 9 shows
the dialogs that were added by default to a Setup Project. However, if you are creating a Web Setup Project, the
Installation Folder dialog will be replaced by an Installation Address dialog.

 Using Figure 34 - 9, the following section discusses the two modes in which the installer can be run, and
explains the three stages of the installation.

 installation Modes
 The installation can run in two modes, which correspond to the two root nodes of the editor: Install and
Administrative Install. These distinguish between an end user installing the application and a system
administrator performing a network setup.

 To use the Administrative Install mode of the resulting Windows Installer package,
you can use msiexec.exe with the /a command - line parameter: msiexec.exe
/a < PACKAGE > .msi .

 The Install mode is most frequently used and is what you will use in this exercise. As mentioned
earlier, the installation steps are divided into three stages, represented as subnodes of the parent
installation mode.

The Start Stage

The Start stage is the first stage of the installation. It contains the dialogs that need to be displayed
to the user before the actual installation of the files begins. The Start stage should be used to gather any
information from the user that may affect what is installed and where it is installed.

This stage is commonly used to ask the user to select the base installation folder for the application and
which parts of the system should be installed. Another common task at this stage is asking users for their
name and organization. At the end of this stage, the Windows Installer service determines how much disk
space is required on the target machine and checks whether this amount of space is available. If the space is
not available, then the user receives an error and the installation will not continue.

The Progress Stage

The Progress stage is the second stage of the installer. This is where the actual installation of the files occurs.
There isn’t usually any user interaction during this stage, and typically one dialog indicates the current
progress of the install, which is calculated automatically.

The End Stage

Once the actual installation of the files has finished, the installer moves into the End stage. The most
common use of this stage is to inform the user that the installation has been completed successfully. It is also
often used to provide the option to run the application immediately or to view any release notes.

Customizing the order of Dialogs
The order in which the dialogs appear within the tree view determines the order in which they are presented
to the user during an installation. Dialogs cannot be moved between different stages at runtime.

The order of the dialogs can be changed by dragging the respective dialogs to the position in which you
want them to appear. You can also move a particular dialog up or down in the order by right-clicking it and
selecting either Move Up or Move Down.

adding Dialogs
A set of predefined dialogs has been added to the project for you, enabling actions such as prompting a user for a
registration code. If these do not match your requirements, you can add or remove dialogs in any of the stages.

When adding a dialog, you have the choice of using a built-in dialog or importing one. To illustrate how to add
a dialog, consider an example of adding a dialog to display a ReadMe file to the user of a Windows Installer
package. The ReadMe file needs to be displayed before
the actual installation of the files occurs.

The first step is to choose the mode in which
the dialog is to be shown: Install or Administrative
Install. In this example, you will use the Install mode.
Next, you need to determine the stage at which
the dialog is shown. In the example, you want to
display the ReadMe file to the user before the actual
installation of the files occurs, which means you
have to show the ReadMe file in the Start stage.
Make sure the Start node is selected below the Install
parent node.

You are now ready to add the dialog. Using the
Action menu again, select the Add Dialog menu item,
which will display the dialog shown in Figure 34-10,
from which you can choose the desired dialog. figure 34-10

Modifying the Deployment Project ❘ 1119

1120 ❘ chaPTer 34 dEPloymENt

As you can see, several built-in dialogs are available. Each dialog includes a short description that appears at
the bottom of the window to inform you of its intended function. In this case, you want to use the Read Me
dialog, so select it and click OK.

New dialogs are always added as the last dialog in the stage that they are added to, so now you need to
move it into the correct position. In this case, you want the Read Me dialog to be shown immediately after
the Welcome dialog, so drag and drop it into position.

Properties of the Dialogs
Like most other project items in Visual Studio, dialog boxes have a set of properties that you can change to
suit your needs using the Properties window. If you make sure a dialog is selected, you will notice that the
Properties window changes to show its properties. The properties that appear vary according to the dialog
selected. Details of all the properties of the built-in dialog boxes can be found by looking at the “Properties
for the User Interface Editor” topic in the MSDN documentation.

The custom actions editor
The Custom Actions Editor (see Figure 34-11) is used for fairly advanced installations. It enables you to define
actions that are to be performed due to one of the following installation events: Install, Commit, Rollback,
and Uninstall. For example, you can use this editor to define an action that creates a new database when the
installation is committed.

figure 34-11

The custom actions that are added using this editor can be Windows script-based, compiled executables,
or DLLs. Load the editor by right-clicking on the Setup1 project and selecting View ➪ Custom Actions.
The editor uses a tree view to represent the information. The four nodes in the tree view represent each
of the four installation events to which you can add custom actions.

As with the User Interface Editor, the order in which the actions appear determines the order in which they
are run, but you can modify this by dragging and dropping the actions or using the context menus of the
actions to move them up or down.

adding a Custom action
To add a custom action, you must select the node of the event into which you want to install the action. You
can then use the Action menu to select the executable, DLL, or script that implements the custom action.
The four actions defined in the editor are described in Table 34-4.

Suppose that you want to start your application as soon as the installation is completed successfully. Use the
following process to accomplish this.

First, decide when the action must occur. Using the preceding table, you can see that the Commit event will
be run when the installation has been successful. Ensure that this node is selected in the editor. You are now
ready to add the actual action you want to occur when the Commit event is called. Using the Action menu
again, select the Add Custom Action menu item, which will display a dialog that you can use to navigate to
and select a file (.exe, .dll, or Windows script) from any that are included in the File System Editor. For
this example, navigate into the Application Folder by double-clicking it and then select Primary output from
SampleForDeployement (Active), which is contained within the Application Folder.

As with most items in the editors, the new custom action has a number of properties. Table 34-5 describes
some of the properties you are most likely to need.

TaBle 34-4: Custom Action Event Nodes

eVenT descriPTion

Install The actions defined for this event will be run when the installation of the files has finished, but
before the installation has been committed .

Commit The actions defined for this event will be run when the installation has been committed and
has therefore been successful .

Rollback The actions defined for this event will be run when the installation fails or is cancelled and rolls
back the machine to the state it was in before the install was started .

Uninstall The actions defined for this event will be run when the application is being uninstalled from
the machine .

TaBle 34-5: Typical Custom Action Properties

ProPerTy descriPTion

(Name) This is the name given to the selected custom action .

Arguments This property enables you to pass command-line arguments into the executable that
makes up the custom action . This only applies to custom actions that are implemented
in executable files (.exe) . By default, the first argument passed in indicates what
event caused the action to run . It can have the following values: /Install, /Commit,
/Rollback, /Uninstall .

Condition This enables you to enter a condition that will be evaluated before the custom action
is run . If the condition evaluates to True, then the custom action will run; if the
condition evaluates to False, then the custom action will not run .

CustomActionData This property enables you to pass additional information to the custom action .

InstallerClass If the custom action is implemented by an Installer class in the selected component,
then this property must be set to True . If not, it must be set to False (consult the MSDN

documentation for more information on the Installer class, which is used to create
special installers for such .NET applications as Windows Services . The Installer class
is located in the System.Configuration.Install namespace) .

Set the InstallClass property to equal False because your application does not contain an Installer class.

That’s it. When you run the Windows Installer package and the installation is successful, the application
will automatically start. The custom action that you implemented earlier is very simple, but custom actions
can be used to accomplish any customized installation actions that you could want. Take some time to play
around with what can be accomplished using custom actions. For instance, try creating a custom action that
writes a short file into the Application directory.

Modifying the Deployment Project ❘ 1121

1122 ❘ chaPTer 34 dEPloymENt

 The launch conditions editor
 The Launch Conditions Editor can be used to defi ne a number of conditions for the target machine that must
be met before the installation will run. For example, if your application relies on the fact that users must have
Microsoft Word installed on their machine, you can defi ne a launch condition that will check this.

 You can defi ne a number of searches that can be performed to help create launch conditions:

 File search ➤

 Registry search ➤

 Windows Installer search ➤

 As with the Custom Actions Editor, the Launch Conditions Editor (shown in Figure 34 - 12) uses a tree view
to display the information contained within it. The example shows a Launch Conditions Editor that has had
an item added. The steps for adding that item are covered later.

 figure 34 - 12

 There are two root nodes. The fi rst (Search Target Machine) is used to display the searches that have been
defi ned. The second (Launch Conditions) contains a list of the conditions that will be evaluated when the
Windows Installer package is run on the target machine.

 As with many of the other editors, the order in which the items appear below these two nodes determines
the order in which the searches are run and the order in which the conditions are evaluated. If you wish, you
can modify the order of the items in the same way that you did with the previous editors.

 The searches are run and then the conditions are evaluated as soon as the Windows
Installer package is run, before any dialogs are shown to the user.

 We are now going to look at an example of adding a fi le search and launch condition to a setup project. For
this exercise, suppose that you want to make sure that your users have Microsoft Word 2007 installed on
their machine before they are allowed to run the installation for your application.

 adding a file search
 To add a fi le search, you begin by searching for the Microsoft Word 2007 executable. After ensuring that
the Search Target Machine node is currently selected in the editor, add a new fi le search by selecting the

Add File Search item from the Action menu. The new item should be given a meaningful name, so enter
Word2007Search (refer to Figure 34-12).

Modifying the file search Properties
Like most items contained within the editors mentioned in this chapter, the new file search item has a set of
properties that you can modify using the Properties window. The properties of the file search item determine
the criteria that will be used when searching for the file. Most of the properties are self-explanatory and
have been covered in previous sections, so they are not covered here.

In this example, you need to search for the Microsoft Word 2007 executable, which means that a number of
these properties need to be modified to match your own search criteria.

The first property that requires modification is FileName. In this case, you are searching for the Microsoft
Word 2007 executable, so enter winword.exe as the value for this property. Previous versions of
Microsoft Word used the same filename.

There is no need to search for the file from the root of the hard drive. The Folder property can be used
to define the starting folder for the search. By default, the value is [SystemFolder], which indicates that
the search will start from the Windows system folder. There are several of these built-in values; if you are
interested, you can see what these folders correspond to in the section “Adding Special Folders.”

In this example, you do not want to search the Windows system folder because Microsoft Word is usually
installed in the Program Files folder. Set the value of the Folder property to [ProgramFilesFolder] to
indicate that this should be your starting folder.

When the search begins, it will search only the folder specified in the Folder property, as indicated by
the default value (0) of the Depth property. The Depth property is used to specify how many levels of
subfolders are searched for the file in question, beginning from the starting folder specified. Note that there
are performance issues associated with the Depth property. When a search is performed for a file that is very
deep in the file system hierarchy, it can take a long time to find the file. Therefore, wherever possible, use a
combination of the Folder and Depth properties to decrease the possible search range. The file that you are
searching for in your example will probably be at a depth of greater than 1, so change the value to 3.

There may be different versions of the file that you are searching for on a user’s machine. You can use the
remaining properties to specify a set of requirements for the file that must be met in order for it to be found,
such as minimum version number or minimum file size.

You are searching for the existence of Microsoft Word 2007, which means you need to define the minimum
version of the file that you want to find. To search for the correct version
of winword.exe, you need to enter 12.0.0.0 as the value for the
MinVersion property. This ensures that the user has Microsoft Word
2007 or later installed and not an earlier version.

To use the results of the file search, there must be a name for the results.
This name is assigned to a Windows Installer property and is normally
used to create a launch condition later. The Property property is where
this name is specified.

For our example, enter WORDEXISTS as the value for the Property
property. If the file search is successful, then the full path to the found
file will be assigned to this Windows Installer property; otherwise, it will
be left blank. At this point, the Properties window should look like the
window shown in Figure 34-13.

Creating a launch Condition
A file search alone is pretty useless. The second step of the process of ensuring that the user has Microsoft
Word 2007 installed is creating a launch condition that uses the results of the file search.

figure 34-13

Modifying the Deployment Project ❘ 1123

1124 ❘ chaPTer 34 dEPloymENt

Make sure that the Launch Conditions node
is selected in the editor, and add a new launch
condition to the project by selecting Add
Launch Condition from the Action menu. You
need to give this new item a meaningful name; in
this case, give it a name of Word2007Exists (see
Figure 34-14).

This new item has a number of properties that
you need to modify. The first property to change
is called Message, and it is used to set the text of
the message box that appears if this condition is
not met. Enter any meaningful description that
explains why the installation cannot continue.

The next property that you need to change is
called Condition. It is used to define a valid
deployment condition that is evaluated when
the installation runs. The deployment condition
entered must evaluate to True or False. When
the installer is run, the condition is evaluated; if the result of the condition is False, then the message
defined is displayed to the user and the installation stops.

For this example, you need to enter a condition that takes into account whether the winword.exe file was
found. You can use the Windows Installer property defined earlier (WORDEXISTS) as part of the condition.
Because the property is empty if the file was not found, and non-empty if the file was found, you can
perform a simple test to determine whether the property is empty to create the condition. Enter WORDEXISTS
<> “” as the value for the Condition property. At this point, the editor will look like Figure 34-14.

It is hoped that based on the preceding discussion of this search, you will be able to use the other searches
and create your own launch conditions. That completes our brief tour of the editors that you can use to
modify the resulting Windows Installer package to suit your needs. Although you have looked only briefly at
the functionality of the editors, it should be clear that they are extremely powerful, and worth investment of
your time for further investigation.

Building
The final step is to build the deployment or setup project you have created. There is no difference between
how you build a Visual Basic .NET application and a deployment/setup project. If the project is the only
project contained within the solution, then you can just use the Build item from the Build menu, which will
cause the project to be built. As with the other projects, you are informed of what is happening during the
build through the Output window.

The deployment/setup project can also be built as part of a multiproject solution. If the Build Solution item
is chosen from the Build menu, then all the projects in the solution will be built. Any deployment or setup
projects are built last. This ensures that if they contain the output from another project in the solution, they
pick up the latest build of that project.

inTerneT dePloymenT of WindoWs aPPlicaTions
The earlier discussions of creating an installation package for your application assumed that you were able
to transfer the MSI file to each machine that needed installation, either electronically or via some storage
medium such as a CD-ROM. This works well for installations within an organization and can work
acceptably for initial installation from CD-ROMs on distributed systems.

figure 34-14

internet Deployment of Windows applications ❘ 1125

However, the availability of the Internet has raised the bar for acceptable deployment of Windows-based
client applications. Perhaps the most important advantage of browser-based applications has been their ease
of deployment for the user. For Windows Forms applications to be cost-competitive with browser-based
applications, low-cost deployment over the Internet is needed.

Fortunately, there are several ways you can achieve low-cost deployment over the Internet, including two
that are supported by default with .NET and Visual Studio 2010:

“No-touch” deployment ➤

ClickOnce deployment ➤

no-Touch deployment
Built into all versions of the .NET Framework is the capability to run applications from a Web server instead
of from the local machine. There are two ways to do this, depending on how the application is launched.

First, an application EXE that exists on a Web server can be launched via a standard HTML hyperlink. For
example, an application named MyApp.exe that is located at www.mycompany.com/apps can be launched
with the following HTML in a Web page:

Launch MyApp

When the hyperlink is clicked on a system with the .NET Framework installed, Internet Explorer transfers
control to the .NET Framework to launch the program. The Framework then tries to load the EXE assembly,
which does not yet exist on the client. At that point, the assembly is automatically fetched from the deployment
Web server and placed on the local client machine. It resides on the client machine in an area called the
application download cache, which is a special directory on the system managed by the .NET. Framework.

If the EXE tries to load a class from another application assembly (typically, a DLL), then that assembly
is assumed to be in the same directory on the Web server as the EXE. The application assembly is also
transferred to the application download cache and loaded for use. This process continues for any other
application assemblies needed. The application is said to trickle-feed to the client system.

automatic Updating
Whenever an assembly in the application download cache is needed, the .NET Framework automatically
checks for a new version in the appropriate directory on the Web server. Thus, the application can be
updated for all client machines by simply placing an assembly on the Web server.

Using a launch application
One drawback of this technique for deploying the application is that it can be launched only from a Web
page or some other means of accessing a URL (such as a shortcut or the Start ➪ Run dialog).

To get around this limitation, you can get a similar deployment capability by using a small launching
application that uses dynamic loading to start the main application. Dynamic loading was discussed in
Chapter 31. In this case, the location for the assembly used in dynamic loading will be the URL of the
assembly on the Web server. An application that uses this technique still gets all the trickle-feeding and
auto-update features of an application launched straight from a URL.

limitations of no-Touch Deployment
No-touch deployment is useful for simple applications, but it has some serious drawbacks for more complex
applications:

An active Internet connection is required to run the application — no offline capability is available. ➤

Only assemblies can be deployed via no-touch deployment — application files such as configuration ➤

files cannot be included.

1126 ❘ chaPTer 34 dEPloymENt

 Applications deployed via no - touch deployment are subject to code - access security limitations, as ➤

discussed in Chapter 32.

 No - touch deployment has no capability to deploy any prerequisites for the application or any COM ➤

components that it may need.

 Given these limitations of no - touch deployment, starting with the 2.0 version of the .NET Framework,
Microsoft added an alternative called ClickOnce . It is essentially a complete replacement for no - touch
deployment. Thus, while no - touch deployment is still supported in .NET Framework 2.0 and higher, it is no
longer recommended and is not covered in further detail in this chapter.

 clickonce deployment
 ClickOnce has several advantages over alternatives such as no - touch deployment, including the following:

 ➤ Updating from a web server — No - touch deployment allows only completely automatic updating from
the Web server, whereas ClickOnce can also be set up to allow more control by the user regarding
when the application is installed and uninstalled.

 ➤ Offl ine access — Applications deployed with ClickOnce can be confi gured to run in an offl ine
condition also. Applications that can be run offl ine have a shortcut installed on the Start menu.

 ClickOnce also has advantages over applications installed with Windows Installer. These include auto -
 updating of the application from the deployment server, and installation of the application by users who are
not administrators. (Windows Installer applications require the active user to be an administrator of the
local machine. ClickOnce applications can be installed by users with fewer permissions.)

 ClickOnce deployment can be done from a Web server, a network share, or read - only media such as a CD -
 ROM or DVD - ROM. The following discussion assumes you are using a Web server for deployment, but you
can substitute a network share if you do not have access to a Web server.

 ClickOnce does not require any version of the .NET Framework to be installed on the
Web server you use for ClickOnce deployment. However, it does require that the Web
server understand how to handle fi les with extensions .application and .manifest .
The confi guration for these extensions is done automatically if the Framework is installed
on the Web server. On servers that don ’ t contain the .NET Framework, you will probably
have to do the confi guration manually.

 Each extension that a Web server can handle must be associated with an option called a
 MIME type that tells the Web server how to handle that fi le extension when serving a
fi le. The MIME type for each extension used by ClickOnce should be set to “ application/
x - ms - application. ” If you don ’ t know how to confi gure MIME types for your Web server,
ask a network administrator or other professional who can do so.

 Confi guring an application for Clickonce
 For a simple case, no special work is needed to prepare a typical Windows application to be deployed via
ClickOnce. Unlike the deployment options discussed earlier, it is not necessary to add additional projects to
the solution. If you use standard options in ClickOnce, then it is also unnecessary to add any custom logic
to your application. All of the work to enable ClickOnce deployment for an application can be performed by
selecting options in the IDE.

 Although it is possible to control the ClickOnce deployment by writing your own custom logic controlling
the ClickOnce deployment processes, that capability is beyond the scope of this book and is not covered

internet Deployment of Windows applications ❘ 1127

here. Instead, this chapter explains the basic configuration of ClickOnce and common options that don’t
require you to write any code.

online versus locally installed applications
Applications installed via ClickOnce are one of two types:

Online applications, which can be accessed by the user only when the system has a connection to the ➤

website used to deploy the application

Offline applications, which can be used when no connection is available ➤

Online applications must be launched with a URL (Uniform Resource Locator), a standard filename, or a
UNC (Universal Naming Convention) filename. This may be done in various ways, such as clicking a link in
a Web page, typing a URL into the Address text box of a browser, typing a filename into the Address text
box of Windows Explorer, or selecting a shortcut on the local machine that contains the URL or filename.
However, ClickOnce does not automatically add any such mechanisms to a user’s machine to access the
application. That is up to you.

Offline applications can also be launched with a URL or UNC, and are always launched that way the first
time. The differences are as follows:

When ClickOnce performs the initial install of the application on the user’s machine, by default it ➤

places a shortcut to the application on the user’s Start ➪ Programs menu.

The application can be started from the shortcut, and will run with no connection to the original ➤

location used for installation. Of course, any functionality of the application that depends on a
network or Internet connection will be affected if the system is not online. It is your responsibility to
build the application in such a way that it functions properly when offline.

Deploying an online application
A deployment walk-through for a simple
Windows application will demonstrate the basics
of ClickOnce. This first walk-through deploys
an online application to a Web server, which is
one of the simpler user scenarios for ClickOnce.

First, create a simple Windows Forms
Application in Visual Studio, and name it
SimpleApp. On the blank Form1 that is created as
part of the application, place a single button.

To enable ClickOnce deployment, access the
Build menu and select the Publish SimpleApp
option. The ClickOnce Publish Wizard will
appear. The first screen of the wizard is shown in
Figure 34-15.

The location defaults to a local Web server if you
have one; but as discussed earlier, deployment can
be done on a remote website, a network share, or
even a local directory. You should change the location if the default is not appropriate for your circumstances.
Once you’ve verified the publish location, click Next.

figure 34-15

1128 ❘ chaPTer 34 dEPloymENt

 Select one of the two types of ClickOnce
applications discussed earlier. Because
this example is for an online application,
click the second option to make the
application available online only, as shown in
Figure 34 - 16.

 Click Next to see a summary of your
selections, and then click Finish. The ClickOnce
deployment process will begin. A new item
will be added to your project called “ SimpleApp_
TemporaryKey.pfx, ” a complete build will be
done, a new virtual directory will be created
for the application on the Web server, and the
fi les needed to deploy the application will be
copied to that virtual directory. (The new item
is discussed later in the section “ Signing the
Manifest. ”) figure 34 - 16

 If your publish operation fails, look in the Output window for Visual Studio to determine
the reason. Usually, either Internet Information Server (IIS) is not running or you don ’ t
have the appropriate permissions to publish to a website.

 IIS is not installed by default on recent versions of Windows. Under Vista and Windows 7,
you need to ensure that the account in which you are developing with Visual Studio has
appropriate security permissions to create new websites under IIS.

 When the process is complete, a Web page will be generated that contains the link needed to deploy the
application. The Web page has a Run button that activates the link. If you click this button, the application
will be deployed by ClickOnce. (You may wish to view the source for this Web page to obtain the HTML
needed to launch the application from your own Web pages.)

 First, the prerequisites for the application are
verifi ed. In this case, that just means the .NET
Framework. If the website is remote, then you
will see a Security Warning dialog much like
you would get if you attempted to download a
fi le, and you ’ ll need to select the Run option.

 Next, an Application Run - Security Warning
dialog is displayed, asking if it is acceptable to
run the application, as shown in Figure 34 - 17.
You can run the application by selecting the
Run button, or select Don ’ t Run, which aborts
the process. For now, select Run, and after a
short delay you will see the application ’ s form
appear.

 If you now make any changes to the SimpleApp application, you must publish the application again to make
the changes available via ClickOnce. You can do that by stepping through the Publish Wizard again. More
details about automatic updating of ClickOnce applications are provided later in this chapter in the section
 “ The Update Process. ”

 figure 34 - 17

internet Deployment of Windows applications ❘ 1129

Deploying an application That is available offline
In the second screen of the Publish Wizard, if you select the first option, then the installation process has
some differences:

The Web page that ClickOnce generates to test the deployment has an Install button instead of a Run ➤

button.

When the button is pressed, a shortcut to the application is added to the user’s Start ➤ ➪ Programs
menu. The shortcut is in the program folder named for the company name that was entered when
Visual Studio was installed.

The application is launched at the end of the install process, as it was with an online application, but ➤

subsequent launches can be accomplished with the same URL or via the shortcut in the Start menu.

files and Directories Produced by Clickonce
The virtual directory used by ClickOnce to deploy your application
contains a number of files for different aspects of the deployment.
Figure 34-18 shows what the directory for SimpleApp looks like after
ClickOnce has finished copying all the necessary files.

The virtual directory contains a folder for the first version of SimpleApp,
which by default is version 1.0.0.0. It also contains the Web page that
was displayed after ClickOnce finished, which is named publish.htm.

The next file is Setup.exe. This is an executable that does not need the .NET Framework to run. It is used
during the ClickOnce process for all the activities that must take place before the application is launched.
This includes activities such as checking for the presence of the .NET Framework. It is discussed further
later in the chapter in the section “The Bootstrapper.”

The next file is SimpleApp.application. The “.application” extension is specific to ClickOnce, and
indicates the special file called a manifest, introduced in Chapter 31. This is an XML-based file that
contains all the information needed to deploy the application, such as what files are needed and what
options have been chosen. There is also a file named SimpleApp_1_0_0_0.application, which is the
manifest specifically associated with version 1.0.0.0.

Each version of the application has its own manifest, and the one named SimpleApp.application (with no
embedded version number) is typically the currently active one. (Thus, the link to the application does not
need to change when the version number changes.)

Other files associated with a version are in the folder for that version.

signing the Manifest
Because the manifest controls the update process, it is essential that ClickOnce be assured that the manifest
is valid. This is done by signing the manifest, using a public-private key pair. As long as a third party does
not have the key pair, that party cannot “spoof” a manifest, preventing any malicious interference in the
ClickOnce deployment process.

A key pair is automatically generated when you publish with ClickOnce. However, you can supply your
own key pair if you like. Options for signing the application are discussed later in the section “ClickOnce
Configuration Options.”

Note that your application assemblies do not need to be signed in order for them to be used in a ClickOnce
deployment. Only the manifest must be signed. The manifest contains hash codes of all the assemblies
involved, and those hash codes are checked before assemblies are used. This prevents malicious third parties
from inserting their own versions of your assemblies.

figure 34-18

1130 ❘ chaPTer 34 dEPloymENt

The Update Process
By default, all ClickOnce applications check for updates each time the application is launched. This is done
by getting the current version of the manifest and checking whether any changes were made since the last
time the application was launched. This process is automatic, so there’s nothing you need to do to make it
happen, but it’s helpful for you to understand the steps that are taken.

For an online application, if a change is detected, then it is immediately applied by downloading any
changed files. Then the application is launched. This is conceptually similar to a browser-based application
because the user has no option to use an older version.

For an application available offline, if changes are detected, then the user is asked whether the update
should be made. The user can choose to decline the update. A configuration option enables you to
specify a minimum version number, which forces a user to accept an update. You will look at ClickOnce
configuration options later.

If an update is made for an offline application, then the previous version is kept. The user can then roll back
to that version using the Add/Remove Programs option in the Control Panel. A user can also uninstall the
ClickOnce-deployed application from that same location.

Only one previous version is kept. Older versions are removed when a new version is installed, so the only
versions available at any point in time are the current version and the one immediately before it. A rollback
can be made to the immediately preceding version, but not to any earlier versions.

You can control the update process by including code in your application that detects when changes have
been made and applies the changes as necessary. As previously mentioned, this chapter does not cover
writing such logic. You can find samples in the MSDN documentation for this capability.

Clickonce Configuration options
In Visual Studio 2010, the properties for a Windows Application project include several pages that affect
ClickOnce. (You can access the properties for a project by right-clicking on it in the Solution Explorer and
selecting Properties.)

The Signing tab includes options for signing the ClickOnce manifest. There are buttons to select a particular
certificate from a store or a file, or to generate a new test certification for signing. This page also contains
an option to sign the assembly that is compiled from the project, but as mentioned previously, this is not
necessary for ClickOnce to operate.

The Security tab provides settings related to the code access security permissions needed by the application
to run. Because the application is being deployed from a source other than the local machine, if you use
ClickOnce, code access security limitations are in effect, as described in Chapter 32. A typical example of
the Security tab is shown in Figure 34-19.

Using the options on the Security tab, you can arrange to test your application against a particular set of
permissions. To do that, change from the default option “This is a full trust application” to the option
immediately below it, “This is a partial trust application.” Then select the zone from which the application
will be installed. When the application is run by Visual Studio, permission for that zone will be enforced.

All of the other ClickOnce configuration options are on the Publish tab, shown in Figure 34-20.

internet Deployment of Windows applications ❘ 1131

figure 34-19

figure 34-20

1132 ❘ chaPTer 34 dEPloymENt

You can set many options with the Publish page, but Table 34-6 describes some of the most important ones.

TaBle 34-6: Important Publish Page Options

ProPerTy/oPTion descriPTion Where To seT iT on The Page

Publishing Location Specifies the virtual directory,
network directory, or local
directory to which the application
will be published by ClickOnce

Text box labeled Publishing Folder Location .
(Note that this can also be set in the first
screen of the Publish Wizard .)

Installation URL Specifies the location from which
your application will be deployed
by users . By default, this is the
same as the Publishing Location,
but it may be set to be elsewhere .

Text box labeled Installation Folder URL

Install Mode Selects the online only vs . offline
mode for the application

Option buttons under Install Mode and
Settings . (Note that this can also be set in the
second screen of the Publish Wizard .)

Publish Version Sets the version of the application
for publishing purposes .
ClickOnce requires version
changes to properly auto-update
the application .

The text boxes under Publish Version . If the
check box under those boxes is checked,
the publish version will be automatically
incremented each time the application is
published .

Prerequisites Specifies the software that
must be installed before your
application can itself be installed,
including elements such as the
 .NET Framework

The Prerequisites button brings up a dialog
that enables standard prerequisites to be
checked . The .NET Framework is checked by
default . This dialog also enables you to specify
the location for downloading prerequisites .
See the next section, “The Bootstrapper,” for
more information on prerequisites .

Miscellaneous options Options for various purposes,
such as the product name

The Options button brings up a dialog in
which these options can be set .

Update options Options that control the update
process, including when the
application updates (before
or after it starts), the minimum
version number required, etc .

These options are available only for
applications that can run offline . The
Updates button brings up a dialog
controlling these options .

The Bootstrapper
Because applications deployed by ClickOnce are a part of the .NET Framework, the .NET Framework
must be available on the user’s machine before your application can be installed and run. In addition, your
application may require other items, such as a database or COM component, to be installed.

To provide for such needs, ClickOnce includes a bootstrapper that runs as the first step in the ClickOnce
process. The bootstrapper is not a .NET program, so it can run on systems that do not yet have the .NET
Framework installed. The bootstrapper is contained in a program called Setup.exe, which is included by
ClickOnce as part of the publishing process.

When setup.exe runs, it checks for the prerequisites needed by the application, as specified in the Prerequisites
options discussed previously. If needed, these options are then downloaded and installed. Only if the user’s
system contains installed prerequisites does ClickOnce attempt to install and run your Windows application.

The MSDN documentation includes more details on configuring and using the ClickOnce bootstrapper.

Manual editing of Clickonce Manifests
Sometimes an application manifest created by ClickOnce needs to be manually changed. For example, if the
application contains dynamically loaded .NET DLLs (as discussed in Chapter 31), then such DLLs are not
automatically included in a ClickOnce manifest.

In creating a manifest for an installation, ClickOnce relies on the compile-time references for the application
being deployed. It will place any application assemblies that have compile-time references into the manifest.

However, dynamically loaded assemblies do not have a compile-time reference, which means ClickOnce
can’t put them in the manifest automatically. If you have dynamically loaded assemblies in your Windows
Forms application, then you must add them to the manifest manually.

ClickOnce includes a tool for manually editing the manifest. Named MAGE.exe, it can be started by
selecting Microsoft Visual Studio 2010 ➪ Microsoft Windows SDK Tools ➪ Manifest Generation and
Editing Tool. It offers a UI to open a manifest and perform various manual operations on it. MAGE.exe
can also be used from the command line, so you can create batch files or PowerShell scripts to automate
insertion of files in a ClickOnce manifest.

How to use MAGE.exe is beyond the scope of this chapter, but the help files for MAGE.exe are extensive, and
you can find MSDN samples that demonstrate how to use it.

rolling Back or Uninstalling Clickonce applications
In addition to deploying an application for use, ClickOnce also provides the capability to uninstall or roll
back applications that are deployed with the offline option. Such applications will have an entry in the section
of the Control Panel for adding and removing programs (called Add/Remove Programs in Windows XP and
Programs and Features in Windows Vista and Windows 7). That entry will offer an uninstall option — and if
a rollback version is present, an option to roll back the last update.

Only one level of rollback is available. If multiple updates have occurred, then the user can only roll back to
the most recent one. Once a rollback is done, no further rollback is possible until another update has been
deployed.

Clickonce versus other Deployment Technologies
ClickOnce is a complete replacement for no-touch deployment. However, in some deployment
scenarios ClickOnce may not be the ideal solution. For example, ClickOnce can deploy only a per-user
installation. It cannot install an application once to be used by all users on the system.

ClickOnce may be used in combination with technologies such as the Windows Installer. If you create .msi
files, as discussed earlier in the chapter, you may include them as part of ClickOnce’s bootstrapper process.
This is an advanced technique not discussed in this book, but you can learn more about this capability in
the MSDN documentation.

For scenarios in which ClickOnce is not appropriate, you may wish to use more customized deployment
technologies, including commercial products such as InstallShield.

iis WeB dePloymenT Tool
As a part of the development of Internet Information Server 7 (IIS7), Microsoft developed a tool named
MSDeploy.exe to assist in moving projects from previous versions of IIS into IIS7. If you are using IIS as
your web server technology, you can use this tool to deploy your Visual Studio 2010 web applications.

Visual Studio 2010 integrates with the IIS Web Deployment Tool through a special tab on the Properties
page for a web project. The tab is labeled Package/Publish Web. Figure 34-21 shows the tab.

iis Web Deployment Tool ❘ 1133

1134 ❘ chaPTer 34 dEPloymENt

The end product of the IIS Web Deployment Tool
is a zip file containing all the files relevant to
publishing your web site. The options shown in
Figure 34-21 allow control over how this file
is created.

The output of the IIS Web Deployment Tool is then
automatically created and used when the Build ➪
Publish option is selected from Visual Studio.
Figure 34-22 shows the Publish dialog, and you’ll
note that the default Publish method is Web Deploy,
which uses the IIS Web Deployment Tool. The process
of using this dialog is sometimes called a one-click
deployment.

The IIS Web Deployment Tool includes many
advanced capabilities, such as deployment of databases
and the ability to transform Web.config settings
during a publish/deployment of a web site. These
advanced capabilities are beyond the scope of this
chapter. The help files for the Package/Publish Web
Tab and the Publish dialog contain information on
those additional capabilities.

figure 34-21

figure 34-22

summary
An application must be deployed to be useful. How an individual application should be deployed depends
heavily on circumstances. Factors such as the geographic distribution of the application, its complexity, and
how often it will be updated must all be considered when choosing an appropriate strategy.

The main possibilities for deployment are as follows:

XCOPY deployment ➤

Installation via the Windows Installer ➤

No-touch deployment ➤

ClickOnce deployment ➤

The IIS Web Deployment Tool (sometimes called one-click deployment) ➤

Deployment with other technologies, such as InstallShield or your own custom-written deployment ➤

programs

This chapter has covered the first five of these, with some discussion of their applicability. It will be helpful
for you to understand all of these options to make appropriate decisions for the deployment of individual
applications.

On the one hand, if you are deploying a simple utility, for example, you might want to install it by simply
copying files. On the other hand, complex standalone applications that have many dependencies on COM-
based components will more often use Windows Installer technology. Applications that depend on Web
services for data will often be best deployed with ClickOnce. Corporate applications with special needs for
security during installation, or that need to install an application once for multiple users, may be better off
using custom deployment technology. Many Web applications can often be installed by publishing with the IIS
Web Deployment Tool, but complex ones might require a Web deployment project.

You should also be aware that these options are not mutually exclusive. You might have an application with
COM dependencies that needs to use an .msi file for an initial install, but gets the rest of the application and
future updates via ClickOnce. Whatever your application, the plethora of application deployment technologies
available for .NET-based applications means you should be able to find an option or combination that suits
your needs.

summary ❘ 1135

A
 The Visual Basic Compiler

 When the .NET Framework was fi rst introduced, one nice addition for the Visual Basic developer was
the inclusion of a standalone language compiler. This meant you were not required to have the Visual
Studio .NET 2002 IDE in order to build Visual Basic applications. In fact, you could take the .NET
Framework from the Microsoft website (free of charge) and build Web applications, classes, modules,
and more very simply, using a text editor such as Notepad. You could then take the completed fi les and
compile them using the Visual Basic compiler.

 The Visual Basic compiler is included along with the default .NET Framework install. Each version
of the framework has a new compiler. In fact, note that while the core of the .NET 3.5 release is
still running on the .NET Framework 2.0, the .NET Framework 3.5 release includes new compilers
for both the Visual Basic and C# languages. Similarly, version 4 of the .NET Framework also ships
with a new compiler. The compiler for the .NET Framework 2.0 is vbc.exe , and it can be found at
 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\vbc.exe

 The compiler for the .NET Framework 4 is also called vbc.exe , and it can be found at C:\WINDOWS\
Microsoft.NET\Framework\v4.0\vbc.exe

 Note that on a 64 - bit system you will actually fi nd a folder for the framework under C:\Windows\
Microsoft.NET\Framework64\V4.0 . This version of the compiler runs within the 64 - bit memory
space, but keep in mind that Visual Studio 2010 is still a 32 - bit application. This mismatch is part
of the reason why you need to target the x86 version of the compiler if you want to enable Edit and
Continue debugging in Visual Studio 2010.

 As for the future, it was announced at the 2008 Professional Developers Conference (PDC) that Microsoft
was rewriting the language compilers using .NET. The goal is that with the release of V.Next (a version
beyond 2010), the language compilers will have a 64 - bit version. In the case of Visual Basic, the next
version of the compiler will be written primarily in Visual Basic.

 The VBc.exe.config file
 In addition to the vbc.exe fi le, there is a vbc.exe.config fi le in the directory as well. This XML
fi le is used to specify the versions of the .NET Framework for which the compiler should build
applications. Now that there are three versions of the .NET Framework available for our applications
to work with, it is important to understand how this confi guration fi le actually works.

1138 ❘ aPPendix a tHE Visual BasiC ComPilER

With the .NET Framework 3.5 installed, you will find the vbc.exe.config file with the following
construction:

<?xml version =“1.0”?>
<configuration>
 <startup>
 <supportedRuntime version=“v2.0.50727” safemode=“true”/>
 <requiredRuntime version=“v2.0.50727” safemode=“true”/>
 </startup>
</configuration>

Even though you are dealing with the .NET Framework 3.5, you can see that the compiler compiles the
code to run off of the 2.0 version of the framework. This was true for both .NET Framework 3.0 and .NET
Framework 3.5. Both of these releases leveraged the .NET Framework 2.0 core libraries. However, with
.NET Framework 4 this config file is updated to reference version=”v4.0”, and modified by default to
show only the supported runtime. Note that since this appendix is being completed prior to the final RTM
release, the final build number that will appear has been replaced with an *.

<?xml version =“1.0”?>
<configuration>
 <startup>
 <supportedRuntime version=“v4.0.*” />
 </startup>
</configuration>

This .config file, vbc.exe.config, is basically a typical .NET Framework configuration file with the default
<configuration> root element included. Nested within the <configuration> element, you need to place a
<startup> element. This is the only child element that is possible in the configuration file of vbc.exe.

Nested within the <startup> element, you can use two possible elements: <supportedRuntime> and
<requiredRuntime>.

The <requiredRuntime> element is actually needed only if your application is going to run on the .NET
Framework 1.0 (the very first iteration of the .NET Framework). If your application is going to run from this
version, then you build the vbc.exe.config file as follows:

<?xml version =“1.0”?>
<configuration>
 <startup>
 <requiredRuntime version=“v1.0.3705” safemode=“true”/>
 </startup>
</configuration>

Currently, working with three different versions of the .NET Framework, you may wish to compile your
applications using the Visual Basic compiler so that they target multiple versions of the framework explicitly.
To do this, you could use the <supportedRuntime> element:

<?xml version =“1.0”?>
<configuration>
 <startup>
 <supportedRuntime version=“v2.0.50727” safemode=“true”/>
 <supportedRuntime version=“v1.1.4322” safemode=“true”/>
 </startup>
</configuration>

This construction states that the application should first try to run on version 2.0.50727 of the .NET
Framework; and that if this version of the .NET Framework isn’t found, then the next preferred version of
the framework that the compiled object should work with is version 1.1.4322.

When working in this kind of construction, you need to order the framework versions in the XML file so
that the most preferred version of the framework you want to utilize is the uppermost element, and the least
preferred version of the framework appears last in the node list.

Keep in mind that this is similar to what Visual Studio will automatically do for you when you choose
to target a version of the .NET Framework. As noted in Chapter 1, you can choose to target .NET 2.0,

.NET 3.0, .NET 3.5 or .NET 4 with your application. In order to leverage this targeting at the compiler,
you want to ensure that your library references match the framework target you intend to support.
Attempting to support .NET 2.0 while referencing something like the WPF libraries isn’t going to work.

The <supportedRuntime> element is meant for .NET Framework versions 1.1 and later. If you are going to
utilize the .NET Framework version 1.0, then you should use the <requiredRuntime> element.

The <supportedRuntime> element contains two possible attributes: version and safemode. Both
attributes are optional. The attribute version enables you to specify the specific version you want your
application to run against, whereas safemode specifies whether the registry should be searched for the
particular framework version. The safemode attribute takes a Boolean value, and the default value is
false, meaning the framework version is not checked.

Finally, note that in order to leverage this setting, you’ll need to test your application against these various
.NET versions.

simPle sTePs To comPilaTion
To show how the Visual Basic compiler works in the simplest manner, we can begin by looking at how to
compile a single-class file:

 1. Create a module file called MyModule.vb. We will keep the module simple, as this example is meant to
show you how to compile the items using the vbc.exe compiler:

Module Module1
 Sub Main()
 Console.WriteLine("Howdy there")
 Console.ReadLine()
 End Sub
End Module

 2. Once your file is in place, it is time to use the Visual Basic compiler. If you have Visual Studio on the
computer, then you can open the Visual Studio command prompt (found at Start ➪ All Programs ➪
Microsoft Visual Studio 2010 ➪ Visual Studio Tools ➪ Visual Studio Command Prompt (2010). Once
open, just navigate to the location of the file and then run the compiler against the file (shown shortly).

 3. In most cases, you are probably going to be using the Visual Basic compiler on computers that do not
have Visual Studio on them. In those cases, one option is to copy and paste the vbc.exe, vbc.exe
.config, and vbc.rsp files to the folder where the class file you wish to compile is located. Then you
can open a command prompt by selecting Run from the Start menu and typing cmd in the text box.

Another option is to add the compiler to the path itself. This is done by typing the following at the
command prompt:

path %path%;C:\WINDOWS\Microsoft.NET\Framework\v4.0.*
Now you can work with the compilation normally, and the vbc.exe compiler will
be found upon compilation. Yet another option is to work from the Windows
folder, using an explicit reference to the file to be compiled. However, this
option is frowned upon, as you are likely to start creating project-specific
files within your .NET Framework folder hierarchy.

 4. Once the command prompt is open, navigate to the folder that contains the class file that needs
compiling. From this location, type the following command at the command prompt:

vbc.exe MyModule.vb

Items can be compiled in many ways using the Visual Basic compiler, but this is the simplest way to compile
this module. This command compiles the .vb file so that it can be utilized by your applications. Running
the preceding command produces the following:

C:\CoolStuff>vbc.exe MyModule.vb
Microsoft (R) Visual Basic Compiler version 10.0.*
Copyright (c) Microsoft Corporation. All rights reserved.

simple steps to Compilation ❘ 1139

1140 ❘ aPPendix a tHE Visual BasiC ComPilER

What does this operation actually do? Well, in this case, it has created an .exe file for you in the same
directory as the MyModule.vb file. Looking there, you will find MyModule.exe ready to run.

The Visual Basic compiler has a number of options that enable you to dictate what sorts of actions the
compiler will take with the compilation process. These flags will be defined soon, but you can specify
additional settings by using a forward slash followed by the name of the option and the setting assigned
to the option. For instance, if you were going to add a reference to Microsoft.VisualBasic.dll along
with the compilation, you would construct your compiler command as follows:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll

Some of the options listed in this appendix have a plus sign (+) or a minus sign (-) next to them. A plus sign
signifies that the option should be enabled, whereas the minus sign signifies that the option should not be
enabled. For instance, the following signifies that documentation should be enabled:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /doc+

The following, however, signifies that documentation should not be enabled:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /doc-

comPiler oPTions
This section takes a comprehensive look at options available for the Visual Basic compiler. To see the full
list, type the following command:

vbc.exe /?

output files
The following sections explain the output files.

/doc[+:-]
By default, the compiler does not produce the XML documentation file upon compilation. This feature of
Visual Basic enables developers to put structured comments in their code that can then be turned into an
XML document for easy viewing (along with a style sheet). Including the /doc option causes the compiler
to create this documentation. Structure your command as follows if you want to produce this XML
documentation file:

vbc.exe MyModule.vb /doc

You can also specify the name of the XML file as follows:

vbc.exe MyModule.vb /doc:MyModuleXmlFile.xml

/out
Using the /out option enables you to change the name and extension of the file that was produced from
the compilation. By default, it is the name of the file that contains the Main procedure or the first source
code file in a DLL. To modify this yourself instead of using the defaults, you could use something similar
to the following:

vbc.exe MyModule.vb /out:MyReallyCoolModule.exe

/target
This setting enables you to specify what exactly is output from the compilation process. There are four
options: an EXE, a DLL, a module, or a Windows program:

 ➤ /target:exe — Produces an executable console application. This is the default if no /target option is
specified.

 ➤ /target:library — Produces a dynamic link library (also known as a DLL)

 ➤ /target:module — Produces a module

 ➤ /target:winexe — Produces a Windows program

You can also use a short form of this by just using /t:exe, /t:library, /t:module, or /t:winexe.

input files
The following sections explain the input files.

/addmodule
This option is not available to Visual Studio, but is possible when using the Visual Basic compiler. Using
/addmodule enables you to add a .netmodule file to the resulting output of the compiler. In the following
example the MyOtherModule.netmodule is a filename. You can append one or more module files. Module
files aren’t quite the same as an assembly, in that they are specifically compiled using the /target:module option
which creates a netmodule file appropriate for inclusion as part of other compilations. An example of using
/addmodule would look something similar to the following construction:

vbc.exe MyModule.vb /addmodule:MyOtherModule.netmodule

/link
This enables you to reference metadata from the specified interop assembly. Since .NET 4 supports the
no Primary Interop Assembly (PIA) feature, you need to link in the appropriate interop assemblies at
compilation time. Use this option to link the PIA metadata into the assembly during compilation so that
the associated Interop Assembly isn’t required at deployment. It can be abbreviated as /l.

vbc.exe MyModule.vb /l:COMponent.dll

/recurse
The /recurse option tells the compiler to compile all the specified files within a specified directory. Also
included will be all child directories of the directory specified. Here is one example of using /recurse:

vbc.exe /target:library /out:MyComponent.dll /recurse:MyApplication\Classes*.vb

This command takes all of the .vb files from the MyApplication/Classes directory and its subdirectories
and creates a DLL called MyComponent.dll.

/reference
The /reference option enables you to make references to other assemblies in the compilation process. Use
it as follows:

vbc.exe MyModule.vb /reference:MyAssembly.dll

You can also shorten the command option by using just /r:

vbc.exe MyModule.vb /r:MyAssembly.dll

You can make a reference to multiple assemblies by separating them with a comma:

vbc.exe MyModule.vb /reference:MyAssembly.dll, MyOtherAssembly.dll

resources
The following sections elaborate on the resources in the compiler.

/linkresource
Instead of embedding resources directly in the generated output file (such as with the /resource option),
the /linkresource option enables you to create the connection between your output file and the resources
that they require. You would use this option in the following manner:

vbc.exe MyModule.vb /linkresource:MyResourceFile.res

Compiler options ❘ 1141

1142 ❘ aPPendix a tHE Visual BasiC ComPilER

You can specify whether the resource file is supposed to be public or private in the assembly manifest. By
default, the resource file is referenced as public. Here is an example of its use:

vbc.exe MyModule.vb /linkresource:MyResourceFile.res,private

You can shorten the /linkresource option to just /linkres.

/resource
The /resource option enables you to reference managed resource objects. The referenced resource is then
embedded in the assembly. You would do this in the following manner:

vbc.exe MyModule.vb /resource:MyResourceFile.res

Like the /linkresource option, you can specify whether the reference to the resource should be made
either public or private. This is done as follows (the default is public):

vbc.exe MyModule.vb /resource:MyResourceFile.res,private

You can shorten the /resource option to just /res.

/win32icon
Use this option to embed an .ico file (an image that is actually the application’s icon) in the produced file,
as shown in the following example:

vbc.exe MyModule.vb /win32icon:MyIcon.ico

/win32resource
This option enables you to embed a Win32 resource file into the produced file. Use as shown in the
following example:

vbc.exe MyModule.vb /win32resource:MyResourceFile.res

code generation
The following sections address options available for code generation.

/debug[+:-]
By default, the Visual Basic compiler will not build objects with attached debugging information included in
the generated object. Using the /debug option causes the compiler to place this information in the created
output file. In addition, you can choose to debug full, which is the default, or to emit a PDB file only. The
use of this option is shown here:

vbc.exe MyModule.vb /debug
vbc.exe MyModule.vb /debug:full
vbc.exe MyModule.vb /debug:pdbonly

/optimize[+:−]
If you go to your project’s property page (found by right-clicking on the project in the Visual Studio Solution
Explorer), you will see a page for compilation settings. From this page, you can make all sorts of compilation
optimizations. To keep your command-line compiler from ignoring these instructions, set the /optimize
flag in your compilation instructions:

vbc.exe MyModule.vb /optimize

By default, optimizations are turned off.

/removeintchecks[+:-]
By default, the Visual Basic compiler checks all your integer calculations for any possible errors. Possible
errors include division by zero or overflow situations. Using the /removeintchecks option causes the

compiler to not look for these kinds of errors in the code of the files being compiled. You would use this
option as follows:

vbc.exe MyModule.vb /removeintchecks

errors and Warnings
/nowarn

The /nowarn option actually suppresses the compiler from throwing any warnings. There are a couple of
ways to use this option. The first option is to simply use /nowarn without any associated values:

vbc.exe MyModule.vb /nowarn

Instead of suppressing all the warnings that the compiler can issue, the other option at your disposal is to
specify the exact warnings you wish the compiler to suppress, as shown here:

vbc.exe MyModule.vb /nowarn:42016

In this case, you are telling the compiler not to throw any warnings when it encounters a 42016 error (an
implicit conversion warning error). To interject more than one warning code, separate the warning codes
with a comma as illustrated here:

vbc.exe MyModule.vb /nowarn:42016, 42024

You can find a list of available warnings by searching for “Configuring Warnings in Visual Basic” in the
MSDN documentation.

/warnaserror[+:-]
In addition to finding and reporting errors, the compiler can also encounter situations that are only
considered warnings. Even though warnings are encountered, the compilation process continues. Using the
/warnaserror option in the compilation process causes the compiler to treat all warnings as errors. Use this
option as shown here:

vbc.exe MyModule.vb /warnaserror

You might not want each warning to cause an error to be thrown, but instead only specific warnings. For
these occasions, you can state the warning ID number that you want to look out for, as shown here:

vbc.exe MyModule.vb /warnaserror:42016

You can also check for multiple warnings by separating the warning ID numbers with commas:

vbc.exe MyModule.vb /warnaserror:42016, 42024

language
The following sections detail Visual Basic language-specific options.

/define
The /define option enables you to define conditional compiler constants for the compilation process. This
is quite similar to using the #Const directive in your code. Here is an example:

vbc.exe MyModule.vb /define:Version="4.11"

This option can be shortened to /d. You can also place definitions for multiple constants, as shown here:

vbc.exe MyModule.vb /d:Version="4.11",DebugMode=False

For multiple constants, just separate the constants with commas.

/imports
A commonly used compiler option, the /imports option enables you to import namespaces into the
compilation process:

vbc.exe MyModule.vb /imports:System

Compiler options ❘ 1143

1144 ❘ aPPendix a tHE Visual BasiC ComPilER

Add multiple namespaces by separating them with a comma:

vbc.exe MyModule.vb /imports:System, System.Data

/langversion
This option enables you to specify a language version. This version is based on the Visual Basic version not
the .NET version. For example, .NET 4 ships with Visual Basic 10.

vbc.exe MyModule.vb /langversion:10

/optionexplicit[+:-]
Always a good idea, using /optionexplicit causes the compiler to check whether any variables in the code
are used before they are even declared (yes, this is possible and very bad practice). Using this setting, when
variables are found before they are even declared, the compiler throws an error. By default, the compiler does
not check the code using the /optionexplicit option. Use this option as shown in the following example:

vbc.exe MyModule.vb /optionexplicit

/optionstrict[+:-]
It’s also a good idea to use the /optionstrict option in the compilation process. Using this option causes
the compiler to check whether you are making any improper type conversions in your code. Widening type
conversions are allowed, but when you start performing narrowing type conversions, using this option will
cause an error to be thrown by the compiler. By default, the compiler does not look for these types of errors
with your type conversions. Use this option as follows:

vbc.exe MyModule.vb /optionstrict

/optioncompare
By default, the Visual Basic compiler compares strings using a binary comparison. If you want the string
comparisons to use a text comparison, then use the following construction:

vbc.exe MyModule.vb /optioncompare:text

/optioninfer[+:-]
New to the .NET Framework 3.5 version of the compiler, this option specifies that you want to allow type
inference of variables. Use this option as illustrated in the following example:

vbc.exe MyModule.vb /optioninfer

/rootnamespace
Use this option to specify the namespace to use for compilation:

vbc.exe MyClass.vb /rootnamespace:Reuters

miscellaneous features
The rest of this appendix covers some of the other very useful features in the compiler

/?
When you don’t have this book for reference, you can use the Visual Basic compiler for a list of options by
using the /? option, as shown here:

vbc.exe /?

This causes the entire list of options and their definitions to be displayed in the command window.

/help
The /help option is the same as the /? option. Both of these options produce the same result: a list of
options that can be used with the compiler.

/noconfig
By default, the Visual Basic compiler uses the vbc.rsp resource file in the compilation process. Using the
/noconfig option tells the compiler not to use this file in the compilation process, as shown here:

vbc.exe MyClass.vb /noconfig

/nologo
This option causes the compiler to perform its compilation without producing the compiler information
set shown in previous examples. This is really only useful if you are invoking the compiler in your application,
showing the results it produces to the end users, and you have no desire to show this information to users in
the result set.

/quiet
Like some of the other compiler options, the /quiet option is available only to the command-line compiler;
it is not available when compiling your applications using Visual Studio. The /quiet option removes some
of the error notifications from the error text output that is typically generated. Normally, when the compiler
encounters an error that disallows further compilation, the error notification includes the line of code in the
file where the error occurred. The line that is presented has a squiggly line underneath the exact bit of code
where the error occurred. Using the /quiet option causes the compiler to show only the notification line,
leaving the code line out of the output. This might be desirable in some situations.

/verbose
Adding this command causes the compiler to output a complete list of what it is doing, including the
assemblies that are being loaded and the errors that it receives in the compilation process. Use it as follows:

vbc.exe MyModule.vb /reference:Microsoft.VisualBasic.dll /verbose

This would produce results such as the following (abbreviated because the result output is rather lengthy):

Adding assembly reference 'C:\WINDOWS\Microsoft.NET\Framework\v4.0.*\System.
Data.dll'

In addition:

Adding import 'System'
Adding import 'Microsoft.VisualBasic'
Adding file 'C:\MyModule.vb'
Adding assembly reference 'C:\WINDOWS\Microsoft.NET\Framework\v4.0.*\Microso
ft.VisualBasic.dll'
Compiling...

Then the compiler starts loading assemblies . . .

Loading C:\WINDOWS\Microsoft.NET\Framework\v4.0.*\mscorlib.dll.
Loading C:\WINDOWS\Microsoft.NET\Framework\v4.0.*\Microsoft.VisualBasic.dll.

. . . until it finishes:

Building 17d14f5c-a337-4978-8281-53493378c1071.vb.
Building C:\CoolStuff\MyModule.vb.
Compilation successful

advanced features
The following sections discuss optimization and other advanced features that are available.

Compiler options ❘ 1145

1146 ❘ aPPendix a tHE Visual BasiC ComPilER

/baseaddress
When creating a DLL using the /target:library option, you can assign the base address of the DLL. By
default, this is done for you by the compiler, but if you wish to make this assignment yourself, you can. To
accomplish this, you would use something similar to the following:

vbc.exe MyClass.vb /target:library /baseaddress:0x11110000

All base addresses are specified as hexadecimal numbers.

/bugreport
The /bugreport option creates a file that is a full report of the compilation process. This file contains your
code and version information on the computer’s operating system and the compiler itself. Use this option in
the following manner:

vbc.exe MyModule.vb /bugreport:bugsy.txt

/codepage
By default, the compiler expects all files to be using an ANSI, Unicode, or UTF-8 code page. Using the
compiler’s /codepage option, you can specify the code page that the compiler should actually be using.
Setting it to one of the defaults is shown here:

vbc.exe MyClass.vb /codepage:1252

1252 is used for American English and most European languages, although setting it to Japanese Kanji
would be just as simple:

vbc.exe MyClass.vb /codepage:932

/delaysign[+:-]
This compiler option needs to be used in conjunction with the /key or /keycontainer option, which deals
with the signing of your assembly. When used with the /delaysign option, the compiler will create a space
for the digital signature that is later used to sign the assembly, rather than actually signing the assembly at
that point. You would use this option in the following manner:

vbc.exe MyModule.vb /key:myKey1.sn /delaysign

/errorreport
This option defines how to handle internal compiler errors. The possible settings are prompt, send, none,
or the default queue. Prompt will prompt the user for permission to send the error to Microsoft. Send will
automatically send the error to Microsoft, and None reports errors in a text file only.

/filealign
Not typically used by most developers, the /filealign setting enables you to specify the alignment of
sections, or blocks of contiguous memory, in your output file. It uses the following construction:

vbc.exe MyModule.vb /filealign:2048

The number assigned is the byte size of the file produced, and valid values include 512, 1024, 2048, 4096,
8192, and 16384.

/keycontainer
This command causes the compiler to create a sharable component and places a public key into the
component’s assembly manifest while signing the assembly with a private key. Use this option as follows:

vbc.exe MyModule.vb /keycontainer:myKey1

If your key container has a name that includes a space, then you have to place quotes around the value as
shown here:

vbc.exe MyModule.vb /keycontainer:"my Key1"

/keyfile
Similar to the /keycontainer option, the /key option causes the compiler to place a public key into the
component’s assembly manifest while signing the assembly with a private key. Use this as follows:

vbc.exe MyModule.vb /key:myKey1.sn

If your key has a name that includes a space, then you must place quotes around the value as shown here:

vbc.exe MyModule.vb /key:"my Key1.sn"

/libpath
When making references to other assemblies while using the /reference compiler option (described
earlier), you will not always have these referenced assemblies in the same location as the object being
compiled. You can use the /libpath option to specify the location of the referenced assemblies, as
illustrated here:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin

If you want the compiler to search for the referenced DLLs in more than one location, then specify multiple
locations using the /libpath option by separating the locations with a semi-colon:

vbc.exe MyModule.vb /reference:MyAssembly.dll /libpath:c:\Reuters\bin, c:\

This command means that the compiler will look for the MyAssembly.dll in both the C:\Reuters\bin
directory and the root directory found at C:\.

/main
Using the /main or /m option, you can point the compiler to the class or module that contains the Sub Main
procedure. Use it as follows:

vbc.exe MyClass.vb /main:MyClass.vb

/moduleassemblyname
This option specifies the name of the assembly the module will be a part of.

/netcf
This option cannot be executed from Visual Studio itself, but you can use this flag from the Visual Basic
command-line compiler. Using /netcf causes the compiler to build your application so that the result is
targeted for the .NET Compact Framework, not the full .NET Framework itself. To accomplish this, use the
following construct:

vbc.exe MyModule.vb /netcf

/nostdlib
By default, the Visual Basic compiler uses standard libraries (System.dll) and the vbc.rsp resource file in
the compilation process. Using the /nostdlib option tells the compiler not to use this file in the compilation
process, as shown here:

vbc.exe MyClass.vb /nostdlib

/platform
The /platform option enables you to specify the platform the compilation should be geared for. Possible
options include the following:

 ➤ /platform:x86 — Compiles the program for an x86 system

 ➤ /platform:x64 — Compiles the program for a 64-bit system

Compiler options ❘ 1147

1148 ❘ aPPendix a tHE Visual BasiC ComPilER

 ➤ /platform:Itanium — Compiles the program for an Itanium system

 ➤ /platform:anycpu — Compiles the program so that it can be run on any CPU system. This is the
default setting.

/sdkpath
This option enables you to specify the location of mscorlib.dll and Microsoft.VisualBasic.dll if
they are located somewhere other than the default location. This setting is really meant to be used with the
/netcf option, described earlier, and is used as follows:

vbc.exe /sdkpath:"C:\Program Files\Microsoft Visual Studio 8
 \CompactFrameworkSDK\v1.0.5000\Windows CE" MyModule.vb

/utf8output[+:−]
By default, when you use the Visual Basic command-line compiler, it provide console output during the
compilation process. However, in some international configurations, the console is expecting UTF-8
character encoding, and as a result no output is displayed. If your system is configured such that you need
UTF-8 output, you’ll want to include this flag with your compilation so that the compiler’s console output is
visible. The Visual Studio IDE does not use this since it controls it’s internal console display.

@<file>
This option allows you to embed the command-line settings into a text file which will be processed. If you
have a compilation that you frequently perform, or one that is rather lengthy, you can instead create a .rsp
file, a simple text file containing all the compilation instructions needed for the compilation process. Of
course you can use an extension other than .rsp. Historically .rsp files were associated with response files
used by linkers. Here is an example .rsp file:

This is a comment
/target:exe
/out:MyCoolModule.exe
/linkresource=MyResourceFile.res
MyModule.vb
SomeOtherClassFile.vb

If you save this as MySettingsFile.rsp, then you can use it as shown in the following example:

vbc.exe @MySettingsFile.rsp

You can also specify multiple settings files:

vbc.exe @MySettingsFile.rsp @MyOtherResponseFile.rsp

/vbruntime[+:-]
The /vbruntime option enables you compile the program with the Visual Basic runtime. Use it as follows:

vbc.exe MyModule.vb /vbruntime

You can also specify which runtime to use, as shown here:

vbc.exe MyModule.vb /vbruntime:Microsoft.VisualBasic.dll

looKing aT The VBc.rsP file
As stated earlier, the vbc.rsp file is used by default to indicate a set of standard libraries available to the
compiler. When a compilation is being done, the Visual Basic compiler uses the vbc.rsp file for each
compilation (unless you specify the /noconfig option). Inside this .rsp file is a list of compiler commands:

This file contains command-line options that the VB
command-line compiler (VBC) will process as part
of every compilation, unless the "/noconfig" option

is specified.
Reference the common Framework libraries
/r:Accessibility.dll
/r:Microsoft.Vsa.dll
/r:System.Configuration.Install.dll
/r:System.Data.dll
/r:System.Design.dll
/r:System.DirectoryServices.dll
/r:System.dll
/r:System.Drawing.Design.dll
/r:System.Drawing.dll
/r:System.EnterpriseServices.dll
/r:System.Management.dll
/r:System.Messaging.dll
/r:System.Runtime.Remoting.dll
/r:System.Runtime.Serialization.Formatters.Soap.dll
/r:System.Security.dll
/r:System.ServiceProcess.dll
/r:System.Web.dll
/r:System.Web.Mobile.dll
/r:System.Web.RegularExpressions.dll
/r:System.Web.Services.dll
/r:System.Windows.Forms.Dll
/r:System.XML.dll

/r:System.Workflow.Activities.dll
/r:System.Workflow.ComponentModel.dll
/r:System.Workflow.Runtime.dll
/r:System.Runtime.Serialization.dll
/r:System.ServiceModel.dll

/r:System.Core.dll
/r:System.Xml.Linq.dll
/r:System.Data.Linq.dll
/r:System.Data.DataSetExtensions.dll
/r:System.Web.Extensions.dll
/r:System.Web.Extensions.Design.dll
/r:System.ServiceModel.Web.dll

Import System and Microsoft.VisualBasic
/imports:System
/imports:Microsoft.VisualBasic
/imports:System.Linq
/imports:System.Xml.Linq

These commands reflect the references and imports that are done for each item that you compile using
this command-line compiler. Feel free to play with this file as you choose. If you want to add your own
references, then add them to the list and save the file. From then on, every compilation that you make
will include the new reference(s). If you become more familiar with using the Visual Basic command-line
compiler, you will see a lot of power in using .rsp files — even the default Visual Basic one.

looking at the vbc.rsp file ❘ 1149

B
 Visual Basic Power Packs Tools

 This appendix takes a look at the Visual Basic Power Packs Tools. These tools started as a set of
off - cycle release packages that focused on helping developers, who are maintaining traditional VB6
applications, begin the process of transitioning to Visual Basic .NET. Key portions of the original
Power Packs have been incorporated as features within Visual Studio. In addition to the Power Packs
this chapter looks at a second tool for those working with VB6, the VB6 Interop Toolkit. These tools
contain a set of features intended for developers with years of Visual Basic experience to replicate
tasks and behaviors that were easy in VB6 in Visual Basic .NET.

 This appendix briefl y examines the two installation packages that are currently available. These
packages were released targeting Visual Studio 2005, and have been updated for Visual Studio 2010.
Additionally, elements of the Visual Basic Power Packs 3.0 package for printing were fully integrated
with Visual Studio 2008 SP1 and continue to ship with Visual Studio 2010.

 This appendix focuses on three areas:

 Power Packs background, including goals and installation ➤

 The Interop Forms Toolkit 2.1 ➤

 The Visual Basic Power Packs 3.0 ➤

 These tools are available as free downloads; however, due to licensing restrictions on the Express
Editions, Visual Basic Express and the other Express Editions do not support any add - ins. Thus, to
leverage the Interop Forms Toolkit, you need a licensed version of Visual Studio Standard or above.
Why you would want to leverage the Power Packs is a question best answered by understanding the
issues that the Power Packs address. These aren ’ t just technology for technology ’ s sake: They address
very real issues that traditional VB developers are facing today.

 Visual Basic PoWer PacKs
 The Visual Basic Power Packs were introduced by Microsoft ’ s Visual Basic Development team to
introduce new features and capabilities needed by Visual Basic developers between major releases of
Visual Studio. The main focus has been on helping Visual Basic 6.0 developers who have implemented
solutions that aren ’ t easily migrated in one fell swoop to .NET. There are two problems:

 Like it or not, the migration wizard that originally shipped with .NET 1.0 doesn ’ t meet the ➤

requirements of a developer migrating a real - world application.

 Once they are working in .NET, typical developers face challenges with certain tasks that under ➤

Visual Basic 6.0 were easy but in Visual Basic .NET are not.

1152 ❘ aPPendix B Visual BasiC PowER PaCks tools

 Each of these two issues is currently addressed by a different package.

 In a perfect world, when Visual Basic .NET 1.0 came out, the transition from Visual Basic 6.0 to .NET
would have felt seamless. The migration wizard that was introduced would have looked through your
project fi les, found all of the custom COM components for which you had source available, and then been
able to convert every line of VB 6.0 source code to VB.NET without any problem.

 Unfortunately, we don ’ t live in that world, and, in fact, the migration wizard left several gaps in coverage.
These gaps in code migration didn ’ t affect a demonstration, but were of signifi cant concern if you were
trying to update an application to .NET. This meant that your primary tool for migration forced you into
an all - or - nothing decision with regard to moving your application, but at the same time couldn ’ t fully
complete the process. As a result, you faced a scenario in which you couldn ’ t really add new capabilities to
your application without converting it, and converting a decent - sized application with all of the associated
manual migration elements could take months — time you didn ’ t have.

 Recently, the same scenario again appeared with the anticipated end of the Windows Forms user interface.
However, in this case, as discussed in Chapter 15, Microsoft found a better way to handle the migration. Instead
of including a wizard that tried to manage the entire application at once, they created a set of components that
enabled you to interoperate between your existing code and the new feature set. The most exciting part about
this is that when .NET 1.0 shipped, it actually included this same capability for COM. In theory, there was also
support for calling .NET components from COM, but, in reality, that interface was diffi cult, so the Visual Basic
team stepped up to the plate and created a package that would solve that problem.

 The Visual Basic Interop Forms Toolkit 2.1 does this. It was designed to enable you to create and implement
a form in .NET, after which the toolkit makes it easy for you to wrapper this form so that it can function
as a working component within your existing VB6 application. The wrapper handles integrating the
.NET form with your application, enabling you to maintain a common environment for the data, context,
and even messaging. Events can be passed between your new .NET form and your existing Visual Basic
application. The result is that now you can extend your existing VB6 application with new .NET features
without the cost and risk associated with attempting to migrate your entire application in one fell swoop.

 Of course, this was only one aspect of the migration challenge for VB6 developers. The second key
aspect was that under Visual Basic 6.0, it was easy for developers to carry out tasks such as printing.
.NET follows a paradigm that is much closer to the C++ model. It provides a great deal of control and is
fully customizable. However, the ability to control and customize your output also introduces a layer of
complexity for managing those capabilities. VB6 developers often just wanted to output a display or add
a geometric shape to the form. As a result of the added complexity of these tasks, developers were often
unsure how to implement the same capabilities they had under VB6.

 Again the Visual Basic team stepped up and created the Visual Basic Power Packs 3.0. This is a separate
installation package from the Interop Forms Toolkit; and instead of targeting code that can be integrated with
traditional COM applications, it focuses on making it just as easy to do things, like printing, as they were in
Visual Basic 6.0.

 In addition, instead of waiting for the next release of Visual Studio, the Visual Basic team scheduled these
Power Packs as standalone deliverables so that users could take advantage of them much sooner.

 Although originally released outside the Visual Studio release cycle, more of these
tools get incorporated with the Visual Studio baseline with each release. The printing
capabilities introduced in the Power Packs were included within Visual Studio 2008.
Next, Service Pack 1 for Visual Studio 2008 incorporated the full 3.0 package. As of
Visual Studio 2010, the Data Repeater control was added within Visual Studio, which
continues to support all of the previous Power Packs 3.0 tools.

 getting the Visual Basic Power Packs
 The Power Packs are available as free downloads, although as a Visual Studio 2010 user you don ’ t need to
download the Power Packs. However, if you are looking to extend existing VB6 applications with .NET you

Using the interop forms Toolkit 2.1 ❘ 1153

will need the Interop Forms Toolkit 2.1. The download for the Interop Forms Toolkit 2.0 can be found at
www.microsoft.com/downloads/details
.aspx?familyid=934de3c5-dc85-4065-9327-96801e57b81d&displaylang=en. As this book went to
press, the Interop Forms Toolkit 2.1 was still in beta, so you’ll have to Bing its download location or go
through one of the Visual Basic forums to get the most recent release. The 2.1 release of the Interop Forms
Toolkit is a maintenance release to ensure installation compatibility with Visual Studio 2010. Version 2.0 does
not install with Visual Studio 2010.

The download for the Visual Basic Power Packs 3.0 can be found at www.microsoft.com/downloads/
details.aspx?FamilyID=371368A8-7FDC-441F-8E7D-FE78D96D4063&displaylang=en.

Keep in mind that the two separate download packages are different tools available to Visual Basic developers.

Additional forums are available to discuss issues or ask questions regarding use of the tools. The Interop
Forms Toolkit forum is at http://forums.microsoft.com/MSDN/ShowForum
.aspx?ForumID=879&SiteID=1.

The forum for the Power Packs is at http://forums.microsoft.com/MSDN/ShowForum
.aspx?ForumID=903&SiteID=1.

using The inTeroP forms ToolKiT 2.1
To begin working with the Interop Forms Toolkit, download the packages. The default download page
includes three files for download, as shown in Figure B-1.

figure B-1

Download all three of these files to a local directory of your choice:

 ➤ InteropFormToolsInstaller.msi — This file, which is also the largest, contains the actual appli-
cation files that need to be installed.

 ➤ microsoft.interopformsredist.msi — This file, as its name implies, is a redistributable version
of the Interop Forms Toolkit of tools.

 ➤ setup.exe — As you can tell by its size, the third file relies on the installation.msi file, but if you
are running on Vista then you’ll need this file.

Once you have downloaded all three files, run the setup file to install the tool. Aside from selecting the installation
directory and similar standard setup screens, there are no special steps related to installing this package. One
thing to note, regardless of whether you are running Visual Studio 2005, Visual Studio 2008, Visual Studio 2010
or some combination of all three, is that the installation package updates your Visual Studio environment.

1154 ❘ aPPendix B Visual BasiC PowER PaCks tools

 figure B - 2

 Because Visual Basic Express Edition does not support add - ins, this application will
not be updated when you install the software.

 To validate your installation, there are three easy items you can check. First, once the installation is
complete, the help topic associated with the Interop Forms Toolkit 2.1 should open. Second, when you
access the Tools menu, the fi rst item in the menu should be the option to Generate Interop Form Wrapper
Classes. This menu item should be located above the standard option to Attach Process. Third, and
probably most important, when you access the File menu and select the New Project dialog, you should see
two new project types within the Visual Basic section, as shown in Figure B - 2.

 The fi rst custom project type is the VB6 Interop User Control project type. This type of project enables you
to create user controls that can then be used to populate the body of an MDI window. This project type was
introduced with version 2.0 of the Interop Forms Toolkit and is the solution the Visual Basic team developed
to support interoperation within an MDI environment.

 The second project type is the VB6 InteropForm Library project. As the original project type, it was
designed to enable you to create a DLL that defi nes a .NET form.

 After you have validated that your installation is working, the next step is to create a simple Interop Form.

 creating a simple interop form
 Select the project type shown in Figure B - 2 and rename the solution ProVB_AppB_InteropForm . Click
OK to generate your source project fi les. The resulting project opens, and you can open and edit your new
Windows Form. However, note that what you are creating, while it supports the Form Designer, isn ’ t a
standalone executable. If you open your project properties, you ’ ll fi nd that your project will build as a DLL,
not a standalone executable.

 Another thing to note is that as part of the generation of your project, a fi le named InteropInfo.vb is
created. This fi le takes settings that might otherwise exist in your AssemblyInfo.vb fi le and places them
here so they are a bit more apparent. The fi rst line references the standard COM Interop classes and turns
these settings off. This is important because you won ’ t be using traditional COM Interop; you ’ ve added

Using the interop forms Toolkit 2.1 ❘ 1155

a new Interop class specifically for this purpose. By moving this setting into a separate file, if you do
accidentally cause the AssemblyInfo.vb file to be regenerated by Visual Studio, you’ll get a compile error.
This is good because you can quickly and easily delete the newly duplicated line from AssemblyInfo.vb
and not wonder why your project suddenly isn’t working correctly. Compile errors are always better than
runtime errors. The other item in this file is a declaration that extends the My namespace to include the
Interop Toolbox. In general, you shouldn’t make any changes to this file, but now you know what it’s doing.

Opening InteropForm1.vb in the designer, you have a typical design surface for a form, on which you can
add controls. Behind the scenes is the code that contains the following:

Imports Microsoft.InteropFormTools
<InteropForm()> _
Public Class InteropForm1
End Class

Code snippet from InteropForm1

As you can see, the default class definition has been decorated with an attribute indicating that this class
should be considered an InteropForm. This enables the postprocessor that is used to generate your COM
wrappings to recognize which type of wrapping should be applied to this class.

For now, however, go to the Form Designer, and, because this is a truly simple demo, drag a label and
a TextBox control onto the display. Within the code, create the four other types of interface members
you’ll want in your production code: an initializer, a property, a method, and an event (in that order).
The following code is placed within your class definition:

 Public Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 End Sub
 <InteropFormInitializer()> _
 Public Sub New(ByVal label As String)
 Me.New()
 Label1.Text = label
 End Sub
 <InteropFormProperty()> _
 Public Property TextBoxText() As String
 Get
 Return TextBox1.Text
 End Get
 Set(ByVal value As String)
 TextBox1.Text = value
 End Set
 End Property
 <InteropFormMethod()> _
 Public Sub ChangeLabel(ByVal lbl As String)
 Label1.Text = lbl
 RaiseEvent CustomEvent(lbl)
 End Sub
 <InteropFormEvent()> _
 Public Event CustomEvent As CustomEventSig
 'Declare handler signature…
 Public Delegate Sub CustomEventSig(ByVal lblText As String)

Code snippet from InteropForm1

For the initialization code, you’ll note that first a default New constructor is created. When you define the
default New constructor, it adds the call to InitializeComponent, which handles the creation of your
controls within the form. Thus, when the object is initialized, you will be able to reference the controls you
have placed on the form.

The next step is to create a parameterized constructor so that you can quite literally pass a parameter
as part of the initialization process. Note that similar to the class itself, the exposed initialization

1156 ❘ aPPendix B Visual BasiC PowER PaCks tools

method has an attribute as part of its declaration. Each type of class member that is to be exposed gets
an attribute matching the type of that method. Thus, for the New method, the type of the attribute is
 InteropFormInitializer . For this simple example, the parameterized New(ByVal label As String)
simply changes the text associated with the label. Finally, although this class is defi ned in .NET syntax,
COM and VB6 don ’ t allow parameterized New statements. Thus, when you reference this parameterized
initializer, you ’ ll fi nd that the method name is in fact Initialize .

 Next, the code defi nes and exposes a public property. In this case, to help simplify the code, there isn ’ t a
private member variable to hold the value; this provides an easy way for the code that creates this form to
set and retrieve the value of the text box. Similarly, there is a method to allow the calling code to update
the label shown on the form. Note that it has also been attributed; and after you update the label for
demonstration purposes, it raises the custom event that is defi ned next.

 That event, called CustomEvent , is defi ned with an attribute, but the event that is defi ned must also defi ne
the signature or defi nition of its handlers. In this case, the Delegate CustomEventSig handles a single
parameter. This .NET code, as noted, provides a basic example of each of the primary types of Interop
you ’ ll want to carry out. The next step is to generate your Interop methods.

 One of the key differences between an InteropForms project and an Interop User Control project is this
step. Only the InteropForms project requires the generation of custom COM wrappers. To do this, access
the Tools menu and select Generate InteropForm Wrapper Classes. There is no user interface; instead, the
generation process will create a new directory in your project containing the InteropForm1.wrapper.vb
class, as shown in Figure B - 3.

 figure B - 3

 For readers developing on Vista and Windows 7: Keep in mind that registry access
requires elevated permissions. You need to start Visual Studio with the Run as
Administrator option on your right - click context menu. If you don ’ t, then when you
attempt to automatically register your newly built DLL as a COM component, you ’ ll
get an error, which Visual Studio refl ects as a Build Error.

Using the interop forms Toolkit 2.1 ❘ 1157

At this point, your application is ready to be called from VB6. If you follow best practices, you’ll have the
VB6 integrated development environment (IDE) installed on the machine with Visual Studio 2010. In that
scenario, you can immediately go to your VB6 project and reference the necessary DLLs, both the Interop
Forms Toolkit DLL and your custom DLL. Otherwise, you’ll need to get ready for deployment now instead
of later.

deployment
To deploy your Interop Forms project, you need a traditional MSI installation. Creating a setup project is
covered in Chapter 34, so the details of creating your setup project aren’t repeated here. However, note a
couple of special steps. In order for your new Interop Forms project to work on the client, the client needs
both the .NET Framework 2.0 redistributable and the second MSI you downloaded earlier in this chapter,
microsoft.interopformsredist.msi (refer to Figure B-1). If you are using Visual Studio to create your
installation package, then you can add these items as prerequisites for installing your DLL via the user
interface.

The recommendation is to create a simple setup project in Visual Studio for installing your Interop Forms
project and the associated prerequisites and have this run in advance of whatever legacy installation project
you have. To extend an existing MSI, you need to carry out the appropriate steps for the tool generating
your MSI, a subject beyond the scope of this appendix.

debugging
When you first start planning to work with the toolkit, you might try to keep the VB6 IDE on a separate
machine from your primary development machine. However, this leads to two issues. First, in order to work
with the Interop Forms tools on your VB6 machine, you need to install the tools package a second time.
That’s a minor issue. Second, because VB6 doesn’t know how to step into .NET applications, if you want to
debug the Interop Form you created in .NET, you have a problem. The solution to this, of course, is to run
both development environments on the same machine.

Alternatively, you can try to create a simple Windows Forms EXE that will call and initiate your Interop
Forms project from within .NET. The debugging isn’t perfect, of course, because you aren’t actually calling
your code across the correct interface, but it should enable you to find most pure .NET coding issues. You
can also leverage the Debug and Trace classes, but you won’t have any interactive breakpoints in that
scenario.

This still leaves unresolved the issue that you can’t just open Visual Studio and expect the VB6 IDE to call
it when you are in Debug mode. Therefore, this section briefly discusses debugging Interop Forms Toolkit
projects when you are running your VB6 application.

Once you have compiled your .NET application, you have a DLL. This DLL is then exposed to your VB6
development environment and added as another COM component in your VB6 application. However, when
you debug, you can’t step into this DLL from Visual Basic. Presuming you have started your Visual Basic
6.0 project so that its process is now running, your next step is to open Visual Studio and your Interop
Forms project. It is hoped that you have set typical breakpoints in your source code and you might even add
new breakpoints.

Next, go to the Tools menu in Visual Studio and select the Attach to Process menu item. At this point, you
get a dialog containing a list of running processes. Locate the “Visual Basic 6.0.exe” process. Once you have
found this process, which represents the running application in VB6, attach to this process.

At this point, you can work with your running application; and when the call is made into your .NET code,
Visual Studio detects the call into the DLL and stops you on your breakpoint. In order for Visual Studio
to detect the DLL call, you must be calling the same copy of your DLL that your Interop Forms project
references. In other words, you can’t just copy it off to some other location on your local machine for
installation.

1158 ❘ aPPendix B Visual BasiC PowER PaCks tools

 VB6 development
 Overall, the development process in VB6 is simple. Once you have either built your project or deployed it
to the machine on which you have the VB IDE, you ’ ll need to add references to both the Microsoft Interop
Form Toolkit library and your custom DLL. Keep in mind that both of the DLLs must be registered on your
VB6 IDE machine in order for them to be visible. If you are building on the same machine, then they are
automatically visible. Once you have added references for these libraries, you can create a new instance of
your Interop Form ’ s Form class and call the standard methods and any custom methods you ’ ve exposed on
that form.

 The one key point to remember, which was mentioned earlier but bears repeating, is that if you have created
a custom constructor, in order to use it, you will call an Initialize method on your Interop Form ’ s Form
class.

 final interop Tips
 As noted earlier in the book during the discussion of the WPF Interop controls, the Interop control packages
aren ’ t perfect. Each has certain limitations that reduces its desirability for the long term. To resolve this,
keep track of how much of various branches you have already converted. There will be a point where it is
time to convert a larger section so that you can reduce the number of different Interop DLLs that you are
using.

 Along these lines, note that you can ’ t put an Interop Form and an Interop user control into the same project.
Each of these items needs its own DLL; and, in fact, you should consider it a best practice to only expose
the DLL for a single form or control. Similarly, don ’ t plan on calling a VB6 form from within your Interop
Form. The Interop logic was written to enable you to call .NET from VB6.

 In terms of interfaces, the Interop layer was designed to support only a minimum number of interface types. In
particular, the String , Integer , and Boolean types should be at the core of what you expect to pass in terms
of data. In theory, the Object type is supported, which enables you to pass custom data, so you could pass a
 Recordset from .NET to VB6 or vice versa; of course, VB6 doesn ’ t know about a Dataset object, so you need
to reference VB6 types as the generic object. In general, the best practice is to keep your interfaces as simple as
possible.

 When you start the VB6 IDE with your project, it attaches to your DLL. Normally this isn ’ t an issue
until you fi rst run your VB6 application. At this point, you can ’ t rebuild your Interop project. The Interop
project is, in fact, referenced and therefore locked by VB6. If you need to rebuild your Interop project, you
need to fi rst shut down the VB6 development environment so that your code will correctly reference your
latest build. As noted previously, debugging your Interop project from VB6 isn ’ t the most productive set of
steps.

 If you change any of the method attributes, you need to regenerate the Interop wrapper classes that you
generated in the last step of creating your Interop Forms project. Moreover, although it wasn ’ t covered,
you can raise errors from .NET into VB6. To do this, you want to leverage the following method call on
the custom My namespace that was defi ned as part of your Interop Form:

My.InteropToolbox.EventMessenger.RaiseApplicationEvent("CRITICAL_ERROR", _ "Error
Detail.")

 The other runtime issue that you may encounter is that certain internal events to your .NET application will
not be triggered in the same fashion that they were in VB6. Under VB6, for example, when you referenced a

 If you stop and restart your VB6 application, Visual Studio will maintain the attachment,
but if you close the VB6 IDE, then you ’ ll need to reattach the debugger in Visual Studio.

property on a Form class, this triggered the Load event on that class. Under .NET, the Load event is not fired
until the form is being displayed, so you need to recognize the impact on any code that you previously set to
run on the Load event.

The remaining issue is related to the VB6 IDE. The IDE and VB6 don’t really recognize that if you
have started a .NET DLL, there are other in-memory classes to release. For a deployed application, this
isn’t an issue because when the application is closed, all of the memory associated with the process is
automatically released. When you are debugging in VB6, however, the core process is associated with the
IDE, not your application. As a result, the resources are not released between debugging cycles. To ensure
that they are released, you can explicitly instantiate a series of code modifications contained in the Interop
help files and release the .NET resources associated with your application. The recommendation is to
implement these calls only after your references with the Interop tools are functioning correctly.

using The PoWer PacKs 3.0 Tools
Unlike the Interop Forms Toolkit, the Power Packs extensions are intended to facilitate some of the
same development simplicity that existed in VB6 for tasks such as printing. These classes aren’t meant
to support Interop, they are meant to support migration in the sense that the code for creating simple
geometric shapes or using the VB style of form printing could be implemented using syntax similar to
that of VB6. After these Power Packs were released, the printing syntax was so popular that the Visual
Basic team migrated those classes into the core features of Visual Studio 2008. The continued success
of the 3.0 features led to the inclusion of the most of the 3.0 Power Packs classes in Service Pack 1 for
Visual Studio 2008. These components, along with the repeater control continue to ship with Visual
Studio 2010.

Similar to the Interop Forms Toolkit, the Power PacksTools are already installed for Visual Studio
2010. For previous versions of Visual Studio then can be downloaded and installed from the Microsoft
downloads. If you review a typical Windows Forms project in Visual Studio 2010, you’ll see the display
shown in Figure B-4, which already includes the controls as part of your default Toolbox.

Unlike the Interop Forms Toolkit, there is no need to begin with a special project template. There is no
COM Interop involved because the Power Packs don’t target VB6. They target experienced VB developers
who want to be able to continue to implement certain tasks in the same way they could in VB6.

When your application ships, you still need to ensure that you create a dependency for the Power Packs
library if you aren’t using the DLLs that are included with Visual Studio, but that’s it. Additionally, because
the Power Packs are just another set of .NET libraries, there aren’t any issues related to debugging.

For the sample project shown in Figure B-4, you can create a new Windows Forms application and add
the PrintForm control to it. Visual Studio 2010 has a Toolbox section for the Visual Basic Power Packs,
showing the OvalShape and RectangleShape shape controls along with the LineShape, Data Repeater
and PrintForm controls, as shown in Figure B-4.

Add a RectangleShape to the upper section of the display and an OvalShape to the center of the display.
Without getting into pages of details here, using the Visual Studio designer, you should customize the look
and feel of the display by adding a variety of controls. Take some time to color and fill the shape controls
with a solid color. The gradient colors are defined by selecting a fill color (Coral), a FillGradientColor
(Navy), a FillGradientStyle (Horizontal), and a FillStyle (Solid). All of this can and should be done within
the Visual Studio designer to achieve a display similar to what is shown in Figure B-5.

Using the Power Packs 3.0 Tools ❘ 1159

1160 ❘ aPPendix B Visual BasiC PowER PaCks tools

figure B-5

figure B-4

The application should build. The next step is to ensure that the check box in the lower-right center, labeled
“Landscape” in the figure, is checked. Having done this, label the button in the bottom center of the display
“Print Me” and double-click it in the Design view to trigger the automatic event handler generation.

The only code needed for this printing demonstration is placed within the handler for this button. The code hides
the button, determines whether or not the Landscape check box is checked, and uses the Power Packs PrintForm
control to Print Preview the document. Once this is completed, the Print Me button is made visible again:

 Private Sub ButtonPrintForm_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles ButtonPrintForm.Click
 ' Hide the print button since you don't want to see it in the output.
 ButtonPrintForm.Visible = False
 ' Set the printing to landscape mode by default
 PrintForm1.PrinterSettings.DefaultPageSettings.Landscape =
 CheckBox2.Checked
 ' Update the print action to PrintPreview so instead of wasting paper
 ' we see what the output would look like if sent to a printer.
 PrintForm1.PrintAction = Printing.PrintAction.PrintToPreview
 ' Execute the print logic.
 PrintForm1.Print(Me,
 PowerPacks.Printing.PrintForm.PrintOption.ClientAreaOnly)
 'PrintForm1.Print()
 ' Restore the print button
 ButtonPrintForm.Visible = True
 End Sub

Code snippet from Form1

The code shows how you can reference the PrinterSettings property, which contains the page settings
to change details regarding how the page is printed. The PrintAction defines what the control should do.
There are three options: print to the default/selected printer, print to a file, or use the Print Preview window.
In this case, displaying the results (print preview) is the most useful option.

The next line is all you need by default to print the current window. Note that this control doesn’t call the form to
determine what is visible on the form. Instead, it essentially captures the current screenshot of the form for printing.

The current code uses the ClientAreaOnly option, which you are encouraged to test. If you open and
resize this project so that it is fairly wide, and print in profile mode, you’ll see how the control truncates the
printed image (see Figure B-6).

figure B-6

Using the Power Packs 3.0 Tools ❘ 1161

1162 ❘ aPPendix B Visual BasiC PowER PaCks tools

As shown in Figure B-6, the default behavior is to show the contents of the screen without the border
displayed. Unfortunately, in this case the printout shows less than the full window contents. However, don’t
stop at this option; try out other options. The various display options do not always capture the screen
accurately, so test. In some cases the only things visible in the Print Preview window are the shape controls.

However, before you print again, go to the print event handler and comment out the parameterized print
line and uncomment the default print line. In this case, specify the window, which is Me, and then add one
of the print options. The results, which are now correct, are shown in Figure B-7.

Overall, the Power Packs shape controls enable you to easily add a custom look to your otherwise gray
forms. The controls are somewhat limited, but if you want a quick and easy way to add some graphics,
they do the trick. Similarly, the Print control is a quick and easy way to create a hard copy of what
your application is displaying. However, keep in mind that the Print control sacrifices capabilities and
customizations in order to provide a simple interface.

The Power Packs 3.0 provide tools that VB6 developers can leverage for migrating an application; and for
a rapid application design (RAD) prototype, they provide a dynamic and visually interesting display. Just
keep in mind that when it comes to the shape controls, if you need any sort of fancy graphics, then it is
recommended that you leverage the graphical capabilities provided as part of WPF.

summary
This appendix covered the Visual Basic Power Packs. This set of off-cycle release tools enables experienced
Visual Basic developers to leverage their knowledge and existing code with the new capabilities of .NET.
The Visual Basic team has created two downloadable packages that improve your ability to manage COM
to .NET Interop migration and to continue to print and create graphics the same way you did before. As
with all Interop-focused solutions, there are key limitations in working with the Interop Forms Toolkit, but

figure B-7

in general it provides classes that will help you if you need to migrate an existing application in a controlled
and cost-effective manner. In particular, this appendix highlighted the following:

The focus of the Visual Basic Power Packs ➤

How to integrate Visual Basic 2010 forms with Visual Basic 6.0 applications ➤

Leveraging printing and drawing controls that behave similarly to those in Visual Basic 6.0 ➤

Although there are currently only two Power Packs, you can keep track of what is occurring in the Visual
Basic Developer Center at http://msdn.microsoft.com/en-us/vbasic/default.aspx.

summary ❘ 1163

C
 Workfl ow 2008 specifi cs

 As discussed in Chapter 26, Windows Workfl ow Foundation (WF) has changed substantially in
the .NET Framework 4. The models used to organize your workfl ows have changed, and many of the
older activities do not have counterparts in the new version. This appendix discusses the version of WF
supported by the .NET Framework versions 3.0 and 3.5 (i.e., Visual Basic 2005 with .NET Framework
3.0 and Visual Basic 2008). This information is retained in this edition for those users who still need
to maintain existing WF solutions using these older versions. For new applications, the new model
is highly recommended. Here, the older style of building workfl ows is called Windows Workfl ow
Foundation 3.x (or just WF 3.x).

 Building WorKfloWs
 The actual workfl ow fi les in WF 3.x are XML fi les written in a version of XAML. This is the same
XAML used to describe Windows Presentation Foundation (WPF) fi les. (See Chapter 17 for more
details on WPF.) They describe the actions to perform within the workfl ow, and the relationship
between those actions. You can create a workfl ow using only a text editor, but Visual Studio makes
creating these workfl ows much easier. It provides a graphical designer that enables developers to
visually design the workfl ow, creating the XAML in the background. The following code shows a
section of the XAML for a workfl ow:

 < RuleDefinitions xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow" >
 < RuleDefinitions.Conditions >
 < RuleExpressionCondition Name="TranslationCallWorked" >
 < RuleExpressionCondition.Expression >
 < ns0:CodeBinaryOperatorExpression Operator="ValueEquality"
 xmlns:ns0="clr-namespace:System.CodeDom;Assembly=System, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089" >
 < ns0:CodeBinaryOperatorExpression.Left >
 < ns0:CodeBinaryOperatorExpression Operator="ValueEquality" >
 < ns0:CodeBinaryOperatorExpression.Left >
 < ns0:CodeMethodInvokeExpression >
 < ns0:CodeMethodInvokeExpression.Parameters >
 < ns0:CodeFieldReferenceExpression
 FieldName="OutputTextProperty" >
 < ns0:CodeFieldReferenceExpression.TargetObject >
 < ns0:CodeTypeReferenceExpression
 Type="TranslateActivity.TranslateActivity" / >
 < /ns0:CodeFieldReferenceExpression.TargetObject >

1166 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

 </ns0:CodeFieldReferenceExpression>
 </ns0:CodeMethodInvokeExpression.Parameters>
 <ns0:CodeMethodInvokeExpression.Method>
 <ns0:CodeMethodReferenceExpression MethodName="GetValue">
 <ns0:CodeMethodReferenceExpression.TargetObject>
 <ns0:CodeThisReferenceExpression />
 </ns0:CodeMethodReferenceExpression.TargetObject>
 </ns0:CodeMethodReferenceExpression>
 </ns0:CodeMethodInvokeExpression.Method>
 </ns0:CodeMethodInvokeExpression>
 </ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodeBinaryOperatorExpression.Right>
 <ns0:CodePrimitiveExpression />
 </ns0:CodeBinaryOperatorExpression.Right>
 </ns0:CodeBinaryOperatorExpression>
 </ns0:CodeBinaryOperatorExpression.Left>
 <ns0:CodeBinaryOperatorExpression.Right>
 <ns0:CodePrimitiveExpression>
 <ns0:CodePrimitiveExpression.Value>
 <ns1:Boolean xmlns:ns1="clr-namespace:System;Assembly=mscorlib,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">false</ns1:Boolean>
 </ns0:CodePrimitiveExpression.Value>
 </ns0:CodePrimitiveExpression>
 </ns0:CodeBinaryOperatorExpression.Right>
 </ns0:CodeBinaryOperatorExpression>
 </RuleExpressionCondition.Expression>
 </RuleExpressionCondition>
 </RuleDefinitions.Conditions>
</RuleDefinitions>

The workflow comprises a number of rule definitions. Each definition includes activities, conditions, and
expressions. Activities are the steps involved in the workflow. They are executed based on the workflow’s
design and the conditions included. Conditions control the behavior of the workflow; they are evaluated and
may result in code running. Finally, expressions describe the individual tests used as part of the conditions.
For example, each side of an equality condition would be expressions. When building the workflow by hand,
you are responsible for creating the markup. Fortunately, Visual Studio writes it as you design your workflow.

Windows Workflow Foundation 3.x supports two main styles
of creating workflows: sequential and state machine. Sequential
workflows (see Figure C-1) are the classic flowchart style of
process. They begin when some action initiates the workflow,
such as the submission of an expense report or a user decision to
check out a shopping cart. The workflow then continues stepwise
through the activities until it reaches the end. There may be
branching or looping, but generally the flow moves down the
workflow. Sequential workflows are best when a set series of steps
is needed for the workflow.

State machine workflows (see Figure C-2) are less linear than
sequential workflows. They are typically used when the data moves
through a series of steps toward completion. At each step, the state
of the application has a particular value. Transitions move the
state between steps. This style of workflow is common in hardware
systems. One example of a state machine workflow that most people are familiar with (unfortunately) is voice
mail. Most voice-mail systems are collections of states, represented by a menu. You move between the states
by pressing the keys of your phone. State machine workflows can be useful when the process you are modeling
is not necessarily linear. There may still be some required steps, but generally the flow may iterate between the
steps for some time before completion.

figure c-1

figure c-2

A good way to identify a candidate for a state machine workflow is determining whether the process is
better defined in terms of modes, rather than a linear series of steps. For example, a shopping site is a classic
example of a state machine. The user is either in browse mode or cart view mode. Selecting checkout would
likely initiate a sequential workflow, as the steps in that process are more easily described in a linear fashion.

a simple Workflow
As with any other programming endeavor, the best way to understand WF is to create a simple workflow
and extend it incrementally. Start Visual Studio and create a new Sequential Workflow Console application
(see Figure C-3) called HelloWorkflow. Note that you will need to target the .NET Framework 3.5 (or 3.0)
in order to see this project type when you are creating the new project. The dropdown list at the top of the
New Project dialog (highlighted in Figure C-3) allows you to select the version of the .NET Framework used
by the project. Select .NET Framework 3.5 from the list.

figure c-3

Building Workflows ❘ 1167

1168 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

This project creates two files: a module that includes the Main file for the
application and the workflow. The sequential workflow begins life with only
two steps: start and finish, as shown in Figure C-4. You build the workflow by
adding steps between these two.

To begin, drag a Code activity between the start and finish markers. Note that
even if you are targeting the .NET Framework 3.5, most of the controls are still
located within the Windows Workflow 3.0 section of the Toolbox.

Notice the red exclamation mark on the new activity in the diagram (shown
in grayscale in Figure C-5). WF makes heavy use of these tips to help you set
required properties.

Click the code tip and select the menu item “Property ‘ExecuteCode’ is not
set.” This will bring up the Properties window for the Code activity. Enter
SayGreetings and press Enter. This brings up the code window for the activity.
Add the following code:

Private Sub SayGreetings(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Console.WriteLine("Hello world, from workflow")
 Console.WriteLine("Press enter to continue")
 Console.ReadLine()
End Sub

Code snippet from HelloWorld

Notice that coding the action for the activity is the same as any other event. Run the project to see the
console window (see Figure C-6), along with the message you should be expecting.

figure c-4

figure c-5

figure c-6

While trivial, the project makes a useful test bed for experimenting with the various activities. Add an
IfElse activity before the Code activity. IfElse activities are one of the main ways to add logic and
control of flow to your workflows. They have a condition property that determines when each half of the
flow will be executed. The condition may be code that executes or a declarative rule. For this example,
declarative rules are enough. You create these rules in the Select Condition Editor (see Figure C-7). To
display the Select Condition Editor, select Declarative Rule Condition for the Condition property of the first
ifElseBranchActivity component. Once you have selected Declarative Rule Condition, you can click the
ellipsis on the ConditionName property to display the dialog.

Clicking New brings up the Rule Condition Editor (see Figure C-8). This enables you to create simple
expressions that will be used by the IfElse activity to determine flow.

Click the New button on the Select Condition Editor to add a new rule to the If half of the IfElse activity
to determine whether the current time is before noon:

System.DateTime.Now.TimeOfDay.Hours < 12

Right-click on the activity and select Add Branch to create a third branch to the IfElse activity. Set the
condition for this one as you did for the first activity, but use 18 for the value.

Add a Code activity to each of the three sections of the diagram (see Figure C-9). You will use these
activities to affect the message that is displayed. Assign the properties as follows:

figure c-7 figure c-8

figure c-9

acTiViTy ProPerTy Value

codeActivity2 ExecuteCode SetMessageMorning

codeActivity3 ExecuteCode SetMessageAfternoon

codeActivity4 ExecuteCode SetMessageEvening

Finally, update the code for the SayGreetings method created earlier to include the new Message variable,
and the methods used to set the value.

Public class Workflow1
 Inherits SequentialWorkflowActivity
 Private Message As String

Building Workflows ❘ 1169

1170 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

 Private Sub SayGreetings(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Console.WriteLine(Message & ", from workflow")
 Console.WriteLine("Press enter to continue")
 Console.ReadLine()
 End Sub
 Private Sub SetMessageMorning(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Message = "Good morning"
 End Sub
 Private Sub SetMessageAfternoon(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Message = "Good afternoon"
 End Sub
 Private Sub SetMessageEvening(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Message = "Good night"
 End Sub
End Class

Each of the three SetMessage methods changes the greeting as appropriate. The final greeting is displayed in
the SayGreetings method. Run the project again. You should be greeted appropriately for the time of day.

While this workflow is probably overkill to generate a simple message, the example does show many of the
common steps used in defining a workflow. Workflows are composed of multiple activities. Many activities
can in turn be composed of other activities. Activities may use declarative properties, or code may be
executed as needed.

standard activities
The standard activities for WF 3.x are defined within the System.Workflow.Activities namespace.
These activities can be divided into five major categories:

 ➤ Activities that communicate with external code — These activities are either called by external code
to initiate a workflow or used to call to external code as part of a workflow.

 ➤ Control of flow activities — These activities are the equivalent of Visual Basic’s If statement or While
loop. They enable the workflow to branch or repeat as needed to carry out a step.

 ➤ Scope activities — These activities group a number of other activities together into some logical ele-
ment. This is usually done to mark a number of activities that participate in a transaction.

 ➤ State activities — These activities are used exclusively in state machine workflows. They represent the
state of the process involved as part of the overall state machine.

 ➤ Action activities — These activities perform some action as part of the overall workflow.

In order for a workflow to begin, there must be some way for external code to initiate it. In addition, a
workflow would be limited if there were no way for the workflow to execute external code and/or Web
services. The standard activities that are used to communicate with external code include the following:

acTiViTy descriPTion

CallExternalMethod As the name implies, this activity calls an external method . The activity requires
two properties . The first property identifies an interface shared by the workflow
and the external code . The second property identifies the method on that
interface that will be called . If the method requires additional parameters, they
appear on the property grid after setting the other two properties . This activity
is frequently used in combination with the HandleExternalEvent activity .
This activity executes the external method synchronously, so be cautious when
calling external methods that take a long time to execute .

acTiViTy descriPTion

HandleExternalEvent Receives a trigger from an external block of code . This is a commonly used
activity to initiate a workflow when the workflow is running in the context of a
Windows Forms or ASP .NET application . As with the CallExternalMethod
activity, it requires at least two properties . The first property identifies a shared
interface and the second property identifies the event on that interface that will
be received .

InvokeWebService Calls an external Web service . You assign a WSDL file to the activity and it
generates a proxy class for the Web service . You must also identify the method
on the class that will be called . The SessionId property is used to identify
the session that will be used for the requests . All requests with the same
SessionId value share the session . If the SessionId is blank, then this
activity creates a new session per request .

InvokeWorkflow Calls another workflow . This is a useful activity for chaining multiple workflows
together, reducing the complexity of each workflow . Keep in mind that this
external workflow is called synchronously, so the original workflow will not be
processed until the called workflow completes .

WebServiceInput Receives an incoming Web service request . You must publish the workflow
containing this activity for it to work . You publish the workflow by selecting
Publish as Web Service from the Project menu . This generates a new Web
Service project that includes the output from the workflow project as well as an
ASMX file that serves as the address for the workflow .

WebServiceOutput Produces the output for a Web service request . This activity is used in
partnership with the WebServiceInput activity .

WebServiceFault Triggers a Web service error . This is used in partnership with the
WebServiceInput activity to signal an error with the Web service call .

All programming languages need some form of flow control to regulate the applications. Visual Basic includes
language elements such as If..Else, Do..While, For..Next, and Select Case to perform these actions. WF
includes a number of activities to perform similar actions, although the options are more limited:

acTiViTy descriPTion

IfElse Provides for executing two or more different workflow paths based on the status of
a condition . The condition may be code or an expression . This is a commonly used
activity to branch a workflow .

Listen Provides for executing two or more different workflow paths based on an event . The
path chosen is selected by the first event that occurs . This is a useful activity for
monitoring a class that could generate multiple events (such as a class that could
either approve or reject a request) .

Policy Provides for executing multiple rules . Each rule is a condition with some resulting
action . This activity provides a way to group multiple related rules into a single
activity .

Replicator Enables the workflow to create multiple instances of an activity for processing . The
resulting child activities may run serially or in parallel . This is an excellent way to
divide a large task: For example, you could have the Replicator activity create
multiple child activities that are responsible for mailing a newsletter to a large list .
The child activities could run in parallel, dividing the list into smaller groups for faster
processing .

While Loops the workflow until a condition has been met . The condition may be the result
of code or an expression . This is typically used to receive multiple input values or to
process multiple requests, such as a batch job .

Building Workflows ❘ 1171

1172 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

Several composite activities may cooperate to complete a single logical action by grouping other activities:

acTiViTy descriPTion

CompensatableSequence Similar to the Sequence activity (see below), this activity differs in that it
supports “undoing” the child activities . You can think of this in terms of a
transaction: If one child activity fails, then the completed activities must
be undone . The CompensatableSequence activity includes handles
that enable the developer to perform this correction .

ConditionedActivityGroup Includes a number of child activities that are run based on a condition .
All child activities will execute until some defined condition occurs . This
provides a means of grouping a number of related activities into a single
activity .

EventDriven Responds to an external event to initiate a set of activities . This is similar
to the HandleExternalEvent activity, but the events are internal to the
workflow . This activity is commonly used in a state machine workflow to
move between the states .

FaultHandler Enables handling an error within a workflow . You use the FaultHandler
activity to either correct or report the error gracefully . For example, a
timeout may occur, triggering a fault condition in the workflow . This
handler would contain other activities that are responsible for an alternate
method of processing the item .

Parallel Contains a series of child activities that run concurrently . You should only
use this if either the child activities do not affect the data or the order of
change is not important .

Sequence Contains a series of child activities that run in order . This is the default
model for a workflow . Each child activity must complete before the next
one begins .

State activities represent the current state of the data and process for the workflow. They are only used
within state machine workflows:

acTiViTy descriPTion

State Represents the current state of the workflow . For example, in a workflow
driving a voice-mail system, the state would represent the current menu
item selected by the client .

StateFinalization Provides an activity to handle the actions needed as a given state is
completed . This would provide a place to record the user’s selection or to
free up resources used by the state .

StateInitialization Provides an activity to handle the actions needed before the given state
is entered . This would enable the creation of any data or code needed to
prepare for the state functioning .

The final group of activities are those that perform some action. You already saw this activity type in the
form of the CodeActivity. These activities are the cornerstone of any workflow. The standard activities in
this group include the following:

acTiViTy descriPTion

Code Enables custom Visual Basic code to be performed at a stage in the workflow . You
can use these wherever you need to perform some action not done by another
activity . Whenever you use one of these — especially if you use the same type of
code frequently — you should consider moving the code into a custom activity .

Compensate Enables custom code to undo a previous action . This is typically done if an error
occurs within the workflow .

acTiViTy descriPTion

Delay Pauses the flow of the workflow . This is typically used to schedule some event . For
example, you might have a workflow that is responsible for printing a daily report .
The Delay activity could be used to schedule this printout so that it is ready
as the workers come in to read it . You can either set the delay explicitly by setting
the TimeoutDuration property or set it via code using the event identified in the
InitializeTimeoutDuration property .

Suspend Temporarily stops the workflow . This is usually due to some extraordinary event
that you would want an administrator or developer to correct . The workflow will
continue to receive requests, but not complete them past the Suspend activity . The
administrator may then resume the workflow to complete processing .

Terminate Ends the workflow immediately . This should only be done in extreme situations
such as when the workflow is not capable of any further processing (e .g ., it has lost
the connection to a database or other needed resource) .

Throw Creates an exception that can be caught by the code hosting the workflow . This
provides a means of propagating an error from the workflow to the containing code .

Building custom activities
In addition to the standard activity library, WF supports extensibility through the creation of custom
activities. Creating custom activities is a matter of creating a new class that inherits from Activity (or
one of the existing child classes). Several available attributes enable customization of the activity and
how it appears when you use it in your workflows.

Creating custom activities is the primary means of extending WF. You might use custom activities to simplify
a complex workflow, grouping a number of common activities into a single new activity. Alternatively,
custom activities can create a workflow that is easier to understand, using terms that are more familiar to the
developers and business experts. Finally, custom activities can be used to support software used within
the business, such as activities to communicate with a existing system.

So you can see the steps required for creating a custom activity, the next exercise creates a simple activity that
wraps the Google translation service. Create a new project using the Workflow Activity Library template,
called TranslationActivity. Again, you will have to target the .NET Framework 3.5 to view the correct
template. This project will create a DLL that contains the activities you create. It will include a single custom
activity initially. This activity inherits from SequenceActivity, so it might include multiple child activities.
You can change this as needed, but it’s a good enough default for most activities. Drag a Code activity onto
the designer. This activity does the actual translation work.

Because the new activity will be used to convert between a number of set language pairs, create an
enumeration containing the valid options. This enumeration can be expanded as new options become
available:

Public Enum TranslationOptions As Integer
 EnglishToFrench
 EnglishToSpanish
 EnglishToGerman
 EnglishToItalian
 EnglishToRussian
 EnglishToChinese
 FrenchToEnglish
 SpanishToEnglish
 GermanToEnglish
 ItalianToEnglish
 RussianToEnglish
 ChineseToEnglish
End Enum

Code snippet from TranslateActivity

Building Workflows ❘ 1173

1174 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

The new activity has three properties: the input text, a language pair that defines the source and target
languages, and the output text (the latter being a read-only property). You can create properties normally
in an activity, but it is beneficial to create them so that they participate in the workflow and are available to
other activities. In order to do this, use the following pattern to describe your properties:

Public Shared SomeProperty As DependencyProperty = _
 DependencyProperty.Register("PropertyName", _
 GetType(ReturnType), _
 GetType(ClassName))
 Public Property PropertyName () As ReturnType
 Get
 Return CType(MyBase.GetValue(SomeProperty), _
 ReturnType)
 End Get
 Set(ByVal value As ReturnType)
 MyBase.SetValue(SomeProperty, value)
 End Set
End Property

Code snippet from TranslateActivity

The initial shared field of type DependencyProperty identifies the field that will be used to communicate
with other activities. DependencyProperty is a common type used in WF programming, enabling easier
communication between nested types. The Public property enables the more common use of the property.
Notice that it stores the data in the shared property between all instances of the type.

As described, there are three properties in the translate activity:

Public Shared InputTextProperty As DependencyProperty = _
 DependencyProperty.Register("InputText", _
 GetType(System.String), _
 GetType(TranslateActivity))
 Public Shared TranslationTypeProperty As DependencyProperty = _
 DependencyProperty.Register("TranslationType", _
 GetType(TranslationOptions), _
 GetType(TranslateActivity))
 Public Shared OutputTextProperty As DependencyProperty = _
 DependencyProperty.Register("OutputText", _
 GetType(System.String), _
 GetType(TranslateActivity))
 <DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)> _
 <BrowsableAttribute(True)> _
 <DescriptionAttribute("Text to be translated")> _
 Public Property InputText() As String
 Get
 Return CStr(MyBase.GetValue(InputTextProperty))
 End Get
 Set(ByVal value As String)
 MyBase.SetValue(InputTextProperty, value)
 End Set
 End Property
 <DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)> _
 <BrowsableAttribute(False)> _
 <DescriptionAttribute("Translated text")> _
 Public ReadOnly Property OutputText() As String
 Get
 Return CStr(MyBase.GetValue(OutputTextProperty))
 End Get
 End Property
 <DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)> _
 <BrowsableAttribute(True)> _
 <DescriptionAttribute("Language pair to use for the translation")> _

 Public Property TranslationType() As TranslationOptions
 Get
 Return CType(MyBase.GetValue(TranslationTypeProperty), TranslationOptions)
 End Get
 Set(ByVal value As TranslationOptions)
 MyBase.SetValue(TranslationTypeProperty, value)
 End Set
 End Property

 Code snippet from TranslateActivity

 While you may be tempted to not include the line continuation characters on some of
these long lines, remember that you are targeting .NET Framework 3.5, so you will
need to continue to use line continuation characters here.

 Attributes are added to the properties to enable communication with the designer. The core translation method
is assigned to the ExecuteCode property of the Code activity. It calls the Google AJAX translation service:

 Private Const SERVICE_URL As String = _
 "http://ajax.googleapis.com/ajax/services/language/translate"
 Private Sub Translate(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Dim reqString As String = _
 String.Format("{0}?v=1.0 & q={1} & langpair={2}", _
 SERVICE_URL, _
 Encode(Me.InputText), _
 BuildLanguageClause(Me.TranslationType))
 Dim respString As String
 Dim req As HttpWebRequest
 Try
 req = CType(WebRequest.Create(reqString), HttpWebRequest)
 req.ProtocolVersion = HttpVersion.Version10
 Using resp As HttpWebResponse = CType(req.GetResponse(), _
 HttpWebResponse)
 If resp.StatusCode = HttpStatusCode.OK Then
 respString = ExtractText(resp.GetResponseStream)
 Else
 respString = "Error translating text"
 End If
 End Using
 If Not String.IsNullOrEmpty(respString) Then
 MyBase.SetValue(OutputTextProperty, _
 Decode(respString))
 End If
 Catch ex As Exception
 Console.WriteLine("Error translating text: " & ex.Message)
 End Try
 End Sub

 Code snippet from TranslateActivity

 A typical request to the Google AJAX translation service is performed using the service URL, available at
 http://ajax.googleapis.com/ajax/services/language/translate . You can get more information on
this API at http://code.google.com/apis/ajaxlanguage/documentation . The service then returns a
JSON (JavaScript Object Notation) response. A typical response looks like

{"responseData": {
 "translatedText":"Ciao mondo"
},
"responseDetails": null, "responseStatus": 200}

Building Workfl ows ❘ 1175

1176 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

where the result is the text after the “translatedText” label. You could use normal string handling to find
the resulting text. Instead, I’ve used the JSON handling code from the System.ServiceModel.Web.dll. To
use these classes, you need to include references to the .NET assemblies System.ServiceModel.Web.dll,
and System.Runtime.Serialization.dll.

The routines used by the Translate method are as follows:

Private _langOptions As New List(Of String)()
Public Sub New()
 ' This call is required by the Windows Form Designer.
 InitializeComponent()
 ' Add any initialization after the InitializeComponent() call.
 _langOptions.Add("en|fr")
 _langOptions.Add("en|es")
 _langOptions.Add("en|de")
 _langOptions.Add("en|it")
 _langOptions.Add("en|zn-CH")
 _langOptions.Add("en|ru")
 _langOptions.Add("fr|en")
 _langOptions.Add("es|en")
 _langOptions.Add("de|en")
 _langOptions.Add("it|en")
 _langOptions.Add("ru|en")
 _langOptions.Add("zn-CH|en")
End Sub
 Private Function Encode(ByVal value As String) As String
 Return Web.HttpUtility.UrlEncode(value)
 End Function
 Private Function Decode(ByVal value As String) As String
 Return Web.HttpUtility.HtmlDecode(value)
 End Function
 Private Function BuildLanguageClause(_
 ByVal languages As TranslationOptions) As String
 Dim result As String = String.Empty
 result = Encode(_langOptions.Item(languages))
 Return result
 End Function
 Private Function ExtractText(ByVal data As Stream) As String
 Dim result As String = String.Empty
 Dim reader As XmlDictionaryReader = _
 JsonReaderWriterFactory.CreateJsonReader(data, _
 XmlDictionaryReaderQuotas.Max)

 While reader.Read
 If reader.Name = "translatedText" Then
 result = reader.ReadElementString()
 End If
 End While
 Return result
 End Function

Code snippet from TranslateActivity

The _langOptions list is used to track the strings needed by the various language pairs. This is used by the
BuildLanguageClause method to write the appropriate pair to the posted data. The order of the items
in the TranslationOptions enumeration matches the order in which items are added to the list, so the
BuildLanguageOptions method simply does a lookup into the list.

The ExtractText function uses a XmlDictionaryReader to extract the translated text. This is created
using the JsonReaderWriterFactory class. To use these classes, you also need to add a couple of imports
to the Translate.vb file:

Imports System.Net
Imports System.Runtime.Serialization.Json
Imports System.Xml
Imports System.IO

Code snippet from TranslateActivity

The resulting activity can now be compiled and included in other workflows. Just as with custom controls,
you can add this DLL to the Toolbox using the Choose Toolbox Items dialog after it has been compiled.
If the Workflow Activity project is in the same solution as the workflow, it will be automatically added
to the Toolbox after it has been compiled. Figure C-10 shows the Translate activity added to the earlier
example.

Recall that the Message field was used to store the message you wanted the workflow to generate. This is the
text you want to translate. Select the TranslateActivity and click the ellipses button on the InputText
property in the property grid to bring up the Bind property dialog (see Figure C-11). This enables you to
visually connect the Message field to the input of the TranslateActivity.

figure c-10 figure c-11

The last change to the workflow is to update the text you output. Change the code for the SayGreetings
method to display the OutputText of the TranslateActivity, as shown here:

Private Sub SayGreetings(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)
 Console.WriteLine(translateActivity1.OutputText & ", from workflow")
 Console.WriteLine("Press enter to continue")
 Console.ReadLine()
End Sub

Code snippet from HelloWorkflowTranslate

Select the TranslationType and run the test project. Depending on the time of day and the language
selected, you should see something similar to what is shown in Figure C-12.

Building Workflows ❘ 1177

1178 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

using WorKfloWs WiTh oTher aPPlicaTions
Workflows are not typically standalone applications, or run as part of a console application, although this
is an excellent way to develop them initially. Usually workflows are created to work within some larger
application, so you need to integrate your workflow with the rest of your application, whether it is a Windows
Forms application or ASP.NET.

using Workflow foundation with Windows forms
When combining WF with Windows Forms, there are three main points of contact:

hosting (and starting) the workflow ➤

setting parameters for the workflow ➤

getting data out of the workflow. ➤

The workflow runs within a host process. This process may be the Windows Forms process itself or an
external one. If the Windows Forms process is hosting the workflow, then the workflow only exists as
long as the application is running. The alternative is a workflow hosted within a Windows Service or
another Windows Forms application. In this case, your application needs to use some form of interprocess
communication to communicate with the workflow. Typically, communication between the two applications
would take the form of sockets; remoting; or the application that hosts the workflow needs to initialize the
WF runtime, load the workflow, and start it. In addition, the workflow host may initialize event handlers
for the events that the WF runtime will throw. The following code shows an example of hosting the WF
runtime and loading a workflow:

Imports System.Workflow.Activities
Imports System.Workflow.ComponentModel
Imports System.Workflow.Runtime
Public Class MainForm
 Private WithEvents wr As WorkflowRuntime
 Private wf As WorkflowInstance
 Private Sub TranslateButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles TranslateButton.Click
 If wr Is Nothing Then
 wr = New WorkflowRuntime
 wr.StartRuntime()
 End If
 'load a new instance of the workflow
 Me.EventList.Items.Add("Translating: " & Me.MessageField.Text)
 Dim parms As New Dictionary(Of String, Object)
 parms.Add("Message", Me.MessageField.Text)

figure c-12

Using Workflows with other applications ❘ 1179

 wf = wr.CreateWorkflow(GetType(TranslateWorkflow.SimpleWorkflow), parms)
 'start the workflow
 wf.Start()
 End Sub
 Private Sub MainForm_FormClosing(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosingEventArgs) _
 Handles Me.FormClosing
 If wr IsNot Nothing Then
 If wr.IsStarted Then
 wr.StopRuntime()
 End If
 End If
 End Sub

Code snippet from HelloWorldWinForms

In addition, you have to load references to the three workflow DLLs, and to the assembly that holds the
workflow you want to create. Notice that you must create and start the WF runtime before you can load
and start workflows. While the preceding code creates only a single instance of a workflow, you can create
multiple instances from a single application. Stopping the runtime is not absolutely necessary but gives you
better control when the resources used by the WF runtime are freed.

The second step in working with WF and Windows Forms is providing parameters to the workflow. This is
done by supplying a Dictionary when you create the workflow. The items in the Dictionary should match
the public properties of the workflow. This changes the code used to create the workflow in the preceding
sample as follows:

'load a new instance of the workflow
Dim parms As New Dictionary(Of String, Object)
parms.Add("Message", Me.MessageField.Text)
wf = wr.CreateWorkflow(GetType(TranslateWorkflow.SimpleWorkflow), parms)

Code snippet from HelloWorldWinForms

By using a Dictionary with an Object value, any type of data can be supplied to the workflow. This
provides flexibility in terms of the number and type of parameters you supply to the workflow, including
changing the parameters over time.

The final step when working with WF and Windows Forms is retrieving data from the workflow. This
is slightly more difficult than it may first seem because the workflow runs on a separate thread from the
Windows Forms code. Therefore, the workflow can’t directly access the controls on a form, and vice versa.
The communication between the two is best performed by having the workflow generate events. The
following code receives the WorkflowCompleted event and updates the ListBox control on the form:

Private Sub wr_WorkflowCompleted(ByVal sender As Object, _
 ByVal e As System.Workflow.Runtime.WorkflowCompletedEventArgs) _
 Handles wr.WorkflowCompleted
 If Me. EventList.InvokeRequired Then
 Me. EventList.Invoke(New EventHandler(Of WorkflowCompletedEventArgs)(_
 AddressOf Me.wr_WorkflowCompleted), _
 New Object() {sender, e})
 Else
 Me.EventList.Items.Add("Translation: " & _
 e.OutputParameters("Message").ToString())
 End If
End Sub

Code snippet from HelloWorldWinForms

Recall that the workflow runtime is actually running on a separate thread. Therefore, any attempts to access
the EventList directly throw an exception. The first time through this code, the InvokeRequired property
of the EventList is true. This means that the running code is executing on a separate thread. In this case,
the code invokes a new instance of the event, passing in copies of the sender and EventArgs. This has the

1180 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

side effect of marshaling the data across to the thread
containing the form. In this case, InvokeRequired is
false, and you can retrieve the data from the workflow.
Figure C-13 shows the result.

Combining ASP.NET with Windows Workflow
Foundation raises many of the same issues involved in
using WF with other technologies. That is, you still need
to host the services and the runtime of WF within the
host process under which ASP.NET runs — within IIS.
However, developing solutions using ASP.NET offers
more features and requires more decisions than other
solutions. In particular, it is possible to publish workflows
as ASP.NET Web services. Hosting workflows within ASP.NET solutions is similar to hosting workflows with
Windows Forms, but an ASP.NET solution might actually be supporting multiple concurrent users. This means
that you must be more aware of where the runtime is created and how instances are created and freed.

You can host a workflow as a Web service if it has one or more WebServiceInput activities. This activity
represents a SOAP endpoint. The WebServiceInput activity needs two properties set: InterfaceType
and MethodName. Communication between the client code and the Web service is achieved via a shared
interface. This interface is the value needed for the InterfaceType property. It represents the contract
between the client code and the WebServiceInput activity. The MethodName identifies the method on
the interface that will initiate the Web service call. The first WebServiceInput activity should have the
IsActivating property set to true. In addition to the WebServiceInput activity, the workflow should also
include a WebServiceOutput activity if the method includes a return value. Including a WebServiceFault
activity is also useful if you need to return an error to the client code. If the Web service has parameters or
return values, these may be mapped to the properties of the workflow using the Bind property dialog (see
Figure C-14). Open this dialog by clicking the ellipsis next to the property in the Properties window.

Once you have built the workflow, including the WebServiceInput and WebServiceOutput activities (see
Figure C-15), you then publish it as a Web service. This adds an additional ASP.NET Web Service project
to the solution. The wizard creates the ASMX file that wraps the workflow and adds the required settings to
the web.config file. The ASMX wrapper does nothing but delegate to the workflow class.

<%@WebService Class="TranslateService.TranslateWorkflow_WebService" %>

figure c-13

figure c-14 figure c-15

Using Workflows with other applications ❘ 1181

The additional settings in the configuration file add a new section for configuring the workflow runtime and
load the workflow HTTP handler that translates the incoming request:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="WorkflowRuntime"
 type="System.Workflow.Runtime.Configuration.WorkflowRuntimeSection,
 System.Workflow.Runtime, Version=3.0.00000.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </configSections>
 <WorkflowRuntime Name="WorkflowServiceContainer">
 <Services>
 <add type="System.Workflow.Runtime.Hosting.ManualWorkflowSchedulerService,
 System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <add
 type="System.Workflow.Runtime.Hosting.DefaultWorkflowCommitWorkBatchService,
 System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </Services>
 </WorkflowRuntime>
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <httpModules>
 <add type="System.Workflow.Runtime.Hosting.WorkflowWebHostingModule,
 System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" name="WorkflowHost"/>
 </httpModules>
 </system.web>
</configuration>

The resulting Web service works just like any other created by Visual Studio: You can access it in a browser
to receive a test form (see Figure C-16), request the WSDL, and access it using Web service clients.

figure c-16

1182 ❘ aPPendix c woRkFlow 2008 sPECiFiCs

Beyond Web services, ASP.NET applications can also host and access regular workflows. When hosting
workflows in ASP.NET, keep in mind that your application may be accessed by many concurrent users,
so you must be aware of when you create the runtime instance. In addition, remember that each workflow
instance can use a good deal of memory. Therefore, limit the creation of workflows to when they are needed
and free them quickly when they are no longer needed.

As you will probably want a single workflow runtime instance supporting all of your workflows, the best
place to create the workflow runtime is when the application first starts. You can do this in the application’s
Start event in the global.asax file:

Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Dim wfRun As New System.Workflow.Runtime.WorkflowRuntime
 Dim wfSked As _
 New System.Workflow.Runtime.Hosting.ManualWorkflowSchedulerService
 wfRun.AddService(wfSked)
 wfRun.StartRuntime()
 Application.Item("WorkflowRuntime") = wfRun
End Sub

Code snippet from TranslateService

This ensures that the same runtime is available to all sessions. Next, free up the resources used by the
runtime when the application ends:

Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 Dim wfRun As System.Workflow.Runtime.WorkflowRuntime
 wfRun = CType(Application.Item("WorkflowRuntime"), _
 System.Workflow.Runtime.WorkflowRuntime)
 wfRun.StopRuntime()
End Sub

Code snippet from TranslateService

Running a workflow instance is now a matter of retrieving the runtime instance and using it to execute
the workflow. This leads to another issue related to the way Web pages are handled. Recall that the
workflow typically runs asynchronously. This could mean that the workflow instance continues to run
in the background after the Web page has returned. Therefore, you must run the workflow instance
synchronously, so that it completes before returning data to the Web page:

Dim wfRun As WorkflowRuntime
wfRun = CType(Application.Item("WorkflowRuntime"), WorkflowRuntime)
Dim wfSked As ManualWorkflowSchedulerService
wfSked = wfRun.GetService(GetType(ManualWorkflowSchedulerService))
Dim wfInst As WorkflowInstance
wfInst = wfRun.CreateWorkflow(GetType(SimpleWorkflow))
wfInst.Start()
wfSked.RunWorkflow(wfInst.InstanceId)

Code snippet from TranslateService

The preceding code extracts the workflow runtime from the Application storage. It then retrieves the
workflow scheduling service that was associated with the runtime as part of the Application_Start
event handler. This scheduling service executes the workflows synchronously. This ensures that the entire
workflow runs before the Web page is returned. The runtime is also used to create a new instance of
the workflow desired, which is then started and associated with the scheduler. You could provide parameters
to the workflow just as you did with the Windows Forms sample, by creating a Dictionary and populating it
with the properties. This Dictionary would then be provided as a second parameter on the CreateWorkflow
call. Similarly, you could retrieve the result of the workflow using the OutputParameters property in the
Completed event handler for the workflow, just as you did with Windows Forms.

summary
While Windows Workflow Foundation does not have the visual glitz of WPF or the broad reach of WCF, it is a
highly useful addition to the .NET Framework. Most business applications have some need for workflows, and
having a standard means of creating this workflow ensures that the workflow is fully featured and accurately
reflects business needs. As WF is readily available with the .NET Framework, developers no longer need to
recreate a core business rules engine with each application. WF is extensible, so developers can take advantage
of it in their applications, without being limited to the designed features.

As with the other components of the .NET Framework, WF integrates well into other applications, including
Windows Forms and ASP.NET applications. It provides the means to extract the frequently complex workflow
from those applications and to graphically design it. This graphical representation can be used to communicate
the process to business users, increasing the chance that the workflow is represented correctly. Finally, as
business needs change, it is a simple process to update the workflow, without requiring changes to the core
application.

summary ❘ 1183

D
 enterprise services

 Chapter 28 explored the vast hinterland of legacy software known as COM. This appendix looks
at “ what COM did next ” and how it fi ts into the world of .NET, in the form of . NET Enterprise
Services .

 To understand Enterprise Services, you must go back in time (all the way to the last century!) when
a number of technologies began to emerge from Microsoft, including Microsoft Transaction Server
(MTS), Microsoft Message Queuing (MSMQ) , and Microsoft Clustering Services . The aim of these
developments was to increase the scalability, performance, and reliability of applications.

 Handling transactions involved a considerable extension to the NT/COM runtime. It also involved
the introduction of several new standard COM interfaces, some to be used or implemented by
transactional components and some to be used or implemented by the underlying resource managers,
such as SQL Server. These additions, along with some other innovations relating to areas such as
asynchronous COM, came to be known as COM +.

 This appendix explores the .NET Enterprise Services. In particular, it looks at transaction processing
and queued components using the classes of the System.EnterpriseServices namespace. The
 System.EnterpriseServices provides a number of classes that wrap the technologies that
composed COM+. These include the classes that represent the ObjectContext , and the component
interfaces that assist the system in transactions and queuing.

 This is an enormous subject that could easily fi ll a whole book by itself, so this appendix only
scratches the surface of it. However, by the end of the appendix, you will understand how all the
pieces fi t together. Let ’ s begin by looking at what transactions are, and how they fi t into Visual Basic.

 TransacTions
 A transaction is one or more linked units of processing placed together as a single unit of work, which
either succeeds or fails. If the unit of work succeeds, then all the work is committed. If the unit fails,
then every item of processing is rolled back and the process is returned to its original state.

 The standard transaction example involves transferring money from account A to account B. The
money must either end up in account B (and nowhere else), or — if something goes wrong — stay in
account A (and go nowhere else). This avoids the very undesirable case in which you have taken
money from account A but haven ’ t put it in account B.

1186 ❘ aPPendix d ENtERPRisE sERViCEs

The acid Test
Transaction theory starts with ACID, an acronym describing the following properties that all transactions
should have:

 ➤ Atomicity—A transaction is atomic; that is, everything is treated as one unit. However many different
components the transaction involves, and however many different method calls are made on those
components, the system treats it as a single operation that either entirely succeeds or entirely fails. If it
fails, then the system is left in the state it was in before the transaction was attempted.

 ➤ Consistency—All changes are done in a consistent manner. The system goes from one valid state to
another.

 ➤ Isolation—Transactions that are going on at the same time are isolated from each other. If transaction
A changes the system from state 1 to state 2, transaction B will see the system in either state 1 or 2,
but not some half-baked state in between the two.

 ➤ Durability—If a transaction has been committed, the effect is permanent, even if the system fails.

Let’s illustrate this with a concrete example. Imagine that after spending a happy afternoon browsing
in your favorite bookstore, you decide to shell out some of your hard-earned dollars for a copy of, yes,
Professional Visual Basic 2010 (a wise choice). You take the copy to the checkout and exchange a bit of cash
for the book. A transaction is going on here: You pay money and the store provides you with a book.

The important aspect of this transaction isn’t the exchange of money, but that only two reasonable
outcomes are possible—either you get the book and the store gets its money or you don’t get the book
and the store doesn’t get its money. If, for example, there is insufficient credit on your credit card, then
you’ll leave the shop without the book. In that case, the transaction doesn’t happen. The only way for
the transaction to complete is both for you to get the book and for the store to get its money. This is the
principle of atomicity.

If the store provides you with a copy of some other book instead, then you would reasonably feel that you
ended up with an outcome that was neither anticipated nor desirable. This would be a violation of the
principle of consistency.

Now imagine that there is one copy of the book in the store, and another potential buyer of that book has
gone up to the cashier next to you. As far as the person at the other checkout is concerned, your respective
transactions are isolated from each other (even though you are competing for the same resource). Either
your transaction succeeds or the other person’s does. What definitely doesn’t happen is that the bookstore
decides to exert the wisdom of Solomon and give you half each.

Now suppose you take the book home and the bookstore calls you to ask if they can have the book back.
Apparently, an important customer (well, far more important than you, anyway) needs a copy. You would
find this a tad unreasonable, and a violation of the principle of durability.

At this point, it’s worth considering what implications all this is likely to have on the underlying components.
How can you ensure that all of the changes in the system can be unwound if the transaction is aborted at
some point? Perhaps you’re in the middle of updating dozens of database files and something goes wrong.

There are three aspects to rescuing this situation with transactions:

Knowledge that something has gone wrong ➤

Knowledge to perform the recovery ➤

Coordination of the recovery process ➤

The middle part of the process is handled by the resource managers themselves. The likes of SQL Server and
Oracle are fully equipped to deal with transactions and rollback (even if the resource manager in question is
restarted partway through a transaction), so you don’t need to worry about any of that. The last part of the
process, coordination, is handled by the .NET runtime (or at least the Enterprise Services part of it). The first
part, knowing that something is wrong, is shared between the components themselves and the .NET runtime.

This isn’t at all unusual: Sometimes a component can detect that something has gone wrong itself and signal
that recovery is necessary, while on other occasions it may not be able to do so, because it has crashed.

Later, you will see how all this works as you build a transactional application.

TransacTional comPonenTs
To understand what components are actually managed by Enterprise Services and what purpose they serve,
you need to consider what a typical real-world n-tier application looks like. The bottom tier is the persistent
data store, typically a database such as SQL Server or Oracle. However, there are other possible data stores,
including the file system (on Windows NT and above). These are termed resource managers because they
manage resources. The software here is concerned with maintaining the integrity of the application’s data
and providing rapid and efficient access to it.

The top tier is the user interface. This is a completely different specialization, and the software here
is concerned with presenting a smooth, easy-to-follow front end to the end user. This layer shouldn’t
actually do any data manipulation at all, apart from whatever formatting is necessary to meet each user’s
presentational needs. The interesting stuff is in the tiers in between—in particular, the business logic. In the
.NET/COM+ transactional model, the software elements that implement this are components running under
the control of the Enterprise Services runtime.

Typically, these components are called into being to perform some sort of transaction and then, to all intents
and purposes, disappear again. For example, a component might be called into play to transfer information
from one database to another in such a way that the information is either in one database or the other, but
not both. This component might have a number of different methods, each of which does a different kind of
transfer. However, each method call would carry out a complete transfer:

Public Sub TransferSomething()
 TakeSomethingFromA
 AddSomethingToB
End Sub

Crucially, this means that most transaction components have no concept of state; there are no properties
that hold values between method calls. You can see the reason for this if you imagine what would happen
if you had a number of instances of the preceding components all vying for the attention of the database. If
instance one of the control started the transfer, remembering the state or current values of A and B just after
instance two had done the same, you could end up with the state being different between the two instances.
This would violate the isolation of the transaction. Persistence is left to the outside data stores in this model.

The business logic is the area of the system that requires all the transactional management. Anything that
happens here needs to be monitored and controlled to ensure that all the ACID requirements are met. The
neatest way to do this in a component-oriented framework is to develop the business logic as components
that are required to implement a standard interface. The transaction management framework can then use
this interface to monitor and control how the logic is implemented from a transactional point of view. The
transaction interface is a means for the business logic elements to talk to the transaction framework and for
the transaction framework to reply to the logic elements.

So what’s all this about not having state? Well, if you maintain state inside your components, then you
immediately have a scaling problem. The middle tiers of your application are now seriously resource
hungry. If you want an analogy from another area of software, consider why the Internet scales so well:
because HTTP is a stateless protocol. Every HTTP request stands in isolation, so no resources are tied up in
maintaining any form of session. It’s the same with transactional components.

This is not to say that you can never maintain state inside your transactional components. You can, but it’s
not recommended, and the examples in this appendix don’t illustrate it.

Transactional Components ❘ 1187

1188 ❘ aPPendix d ENtERPRisE sERViCEs

an example of Transactions
For the transaction example, you’ll build a simple business-logic component that transfers data from one
bank account to another account. The current balance in the first bank account will be represented by a row
in one database, while the other will be represented by a row in another database.

Before beginning, note one important point: You can’t have transactions without any resource managers.
It’s very tempting to assume that you can experiment with transactional component services without
actually involving, say, a database, because (as you shall see) none of the methods in the transactional
classes make any explicit references to one. However, if you do try to do this, then you will find that your
transactions don’t actually trouble the system’s statistics. Fortunately, you don’t need to lay out your hard-
earned cash for a copy of SQL Server (nice though that is), because a lightweight (but fully functional)
version of SQL Server is available: SQL Server 2008 Express Edition, or more simply SQL Server Express.
In addition, SQL Express is available separately, so you can even work with databases if you use Visual
Basic Express.

Creating the Databases
First, set up the databases. Check whether the Server Explorer tab is visible
in Visual Studio (see Figure D-1). If not, then open it by selecting View
Server Explorer. Create a new database in the Data Connections tree.

Right-click Data Connections and select Create New SQL Server Database
from the menu. The Create New SQL Server Database dialog appears (see
Figure D-2).

Enter the database name (BankOfWrox) and select Use Windows Authentication. After clicking OK, you
are prompted to create the database if it doesn’t exist. You should now see BankOfWrox in the list of data
connections (see Figure D-3).

figure d-1

figure d-2 figure d-3

Set up the database. If you open the new node, you will see several other nodes, including Tables. Right-
click this and then select Add New Table from the menu. Another dialog should appear (see Figure D-4).
Create two columns, Name and Amount, as shown. Make sure that Name is set up to be the primary key.
When you click Close, you’ll be asked whether you want to save the changes to Table1. Select Yes, and the
Choose Name dialog will appear (see Figure D-5).

Use the name Accounts for the table. You should now see a child node
called Accounts below Tables in the tree. That completes the creation
of BankOfWrox. Repeat the process for the BankOfMe database.
The structure is exactly the same (although it doesn’t need to be
for the purposes of this example). Don’t forget to set Name as the
primary key. You could have created these two as separate rows in the
same database, but it doesn’t really simulate the scenario for which
Enterprise Services is intended (inter-application communication).

Populating Your Databases
The next thing to do is populate the databases. If you right-click over
Accounts for either database and select Show Table Data from Table
from the menu, you will see a grid that enables you to add
rows and initialize the values of their columns (see Figure
D-6).

Enter two accounts in BankOfWrox—Professional Visual
Basic 2010 and Professional XML—and allocate $5,000 to
each. Now repeat the process for BankOfMe, setting up one
account, Me, with $0 in it.

The Business logic
The next step is to create the transactional component to
support the business logic. Create a new Class Library
project called Transactions. Then, add a reference to
System.EnterpriseServices (see Figure D-7).

figure d-4

figure d-5

figure d-6

figure d-7

Transactional Components ❘ 1189

1190 ❘ aPPendix d ENtERPRisE sERViCEs

This reference is needed because in order to come under the control of the Enterprise Services runtime, the
component must inherit from the System.EnterpriseServices.ServicedComponent class:

Imports System.EnterpriseServices
Imports System.Configuration
Imports System.Data.SqlClient
<Assembly: ApplicationName("WroxTransactions")>
<Assembly: ApplicationAccessControl(True)>
Public Class BankTransactions
 Inherits ServicedComponent

Code snippet from Transactions

Here’s the main function in the component, TransferMoney:

Public Sub TransferMoney(ByVal amount As Decimal, _
 ByVal sourceBank As String, _
 ByVal sourceAccount As String, _
 ByVal destinationBank As String, _
 ByVal destinationAccount As String)
 Try
 Withdraw(sourceBank, sourceAccount, amount)
 Try
 Deposit(destinationBank, destinationAccount, amount)
 Catch ex As Exception
 'deposit failed
 Throw New _
 ApplicationException("Error transfering money, deposit failed.", _
 ex)
 End Try
 'both operations succeeded
 ContextUtil.SetComplete()
 Catch ex As Exception
 'withdraw failed
 Throw New _
 ApplicationException("Error transfering money, withdrawal failed.", _
 ex)
 End Try
End Sub

Code snippet from Transactions

Ignoring for the moment the references to ContextUtil, you have effectively divided the logic into two
halves: the half that takes money from the Wrox account (represented by the private function Withdraw),
and the half that adds it to your account (represented by the private function Deposit). In order for the
function to complete successfully, each of the two halves must complete successfully.

The ContextUtil class represents the context of the transaction. Within that context are basically two bits
that control the behavior of the transaction from the point of view of each participant: the consistent bit and
the done bit. The done bit determines whether or not the transaction is finished, so that resources can be
reused. The consistent bit determines whether or not the transaction was successful from the point of view
of the participant. This is established during the first phase of the two-phase commit process. In complex
distributed transactions involving more than one participant, the overall consistency and completeness are
voted on, such that a transaction is only consistent or done when everyone agrees that it is. If a transaction
completes in an inconsistent state, then it is not allowed to proceed to the second phase of the commit.

In this case, there is only a single participant, but the principle remains the same. You can determine the
overall outcome by setting these two bits, which is done via SetComplete and SetAbort, which are static
methods in the ContextUtil class. Both of these set the done bit to True. SetComplete also sets the
consistent bit to True, whereas SetAbort sets the consistent bit to False. In this example, SetComplete is
set only if both halves of the transaction are successful.

The First Half of the Transaction

Now it’s time to see what’s going on in the two halves of the transaction itself. The component is responsible
for reading from and writing to the two databases, so it needs two connection strings. You could hard-code
these into the component, but a better solution is to use the project settings feature to include them. Double-
click My Project in the Solution Explorer and navigate to the Settings tab. Add the two connection strings
using the names BankOfWrox and BankOfMe, as shown in Figure D-8.

figure d-8

 1. Here’s the function that removes money from the Wrox account:
Private Sub Withdraw(ByVal bank As String, _
 ByVal account As String, _
 ByVal amount As Decimal)

Code snippet from Transactions

 2. Establish a connection to the database and retrieve the current account balance from it:
Dim ConnectionString As String
Dim SQL As String
Dim conn As SqlConnection = Nothing
Dim cmdCurrent As SqlCommand
Dim currentValue As Decimal
Dim cmdUpdate As SqlCommand
ConnectionString = My.Settings.Item(bank).ToString
SQL = String.Format("SELECT Amount FROM Accounts WHERE Name = '{0}'", _
 account)

Code snippet from Transactions

 3. The call to ExecuteScalar retrieves a single value from the database—in this case, the amount for the
requested account. Note that there is an exception handler started with the Try keyword. You’ll finish
the Try block in a moment:
Try
 conn = New SqlConnection(ConnectionString)
 conn.Open()
 cmdCurrent = New SqlCommand(SQL, conn)
 currentValue = CDec(cmdCurrent.ExecuteScalar())

Code snippet from Transactions

Transactional Components ❘ 1191

1192 ❘ aPPendix d ENtERPRisE sERViCEs

 4. Note the current balance and determine whether you can afford to transfer the amount asked for. If
not, raise an exception:
'check for overdrafts
 If amount > currentValue Then
 Throw New ArgumentException("Attempt to overdraft account")
 End If

Code snippet from Transactions

 5. Otherwise, subtract the amount and update the table accordingly:
'otherwise, we're good to withdraw
SQL = _
 String.Format("UPDATE Accounts SET Amount = {0} WHERE Name = '{1}'", _
 currentValue - amount, account)
cmdUpdate = New SqlCommand(SQL, conn)
cmdUpdate.ExecuteNonQuery()

Code snippet from Transactions

 6. Close the exception handler and the database:
Catch ex As Exception
 Throw New DataException("Error withdrawing", ex)
 Finally
 If Not conn Is Nothing Then
 conn.Close()
 End If
 End Try
End Sub

Code snippet from Transactions

The Second Half of the Transaction

The second half of the transaction is similar, except that the failure conditions are slightly different.
First, the code stipulates that you can’t transfer less than $50. Second, a bug has been included such that
an attempt to transfer a negative amount will cause a divide by zero. (You’ll see why this was added in a
moment.) Here’s the code:

Private Sub Deposit(ByVal bank As String, _
 ByVal account As String, _
 ByVal amount As Decimal)
 Dim ConnectionString As String
 Dim SQL As String
 Dim conn As SqlConnection = Nothing
 Dim cmdCurrent As SqlCommand
 Dim currentValue As Decimal
 Dim cmdUpdate As SqlCommand
 ConnectionString = My.Settings.Item(bank).ToString
 SQL = String.Format("SELECT Amount FROM Accounts WHERE Name = '{0}'", _
 account)
 If amount < 0 Then
 amount = amount / 0
 ElseIf amount < 50 Then
 Throw New ArgumentException("Value of deposit must be greater than $50")
 Else
 Try
 conn = New SqlConnection(ConnectionString)
 conn.Open()
 'get the current value
 cmdCurrent = New SqlCommand(SQL, conn)
 currentValue = CDec(cmdCurrent.ExecuteScalar())

 SQL = _
 String.Format("UPDATE Accounts SET Amount = {0} WHERE Name = '{1}'", _
 currentValue + amount, account)
 cmdUpdate = New SqlCommand(SQL, conn)
 cmdUpdate.ExecuteNonQuery()
 Finally
 If Not conn Is Nothing Then
 conn.Close()
 End If
 End Try
 End If
End Sub

 Code snippet from Transactions

 The business logic component is complete. Let ’ s see how you can bring it under the control of Enterprise
Services. First, of course, you need to build your DLL. Select Build Transactions from the Build menu.

 Why was the divide by zero error included? This gives you a chance to see what happens to the transaction
when an exception occurs in your code. The transaction will automatically fail and roll back, which means
that your data will still be in a good state at the end.

 registering Your Component
 Because the Enterprise Services infrastructure is COM - oriented, you need to expose the .NET component as
a COM component, and register it with Component Services. Component Services handles all transaction
coordination; that is, Component Services tracks any changes
and restores the data should the transaction fail. First, some
changes to the component are needed to enable this COM
interaction. Prepare to take a trip down memory lane.

 All COM components must have a GUID (globally
unique identifi er) that uniquely identifi es it to the COM
infrastructure. This was done for you in Visual Basic 6.0,
but .NET requires you to add a value. In addition, your
component needs an attribute to make it visible to COM. You
can set both of these in the Assembly Information dialog.
Double - click My Project in the Solution Explorer. On the
Application page, click Assembly Information. There should
already be a GUID assigned to your component. Check the
option Make Assembly COM - Visible, as shown in Figure D - 9.
This makes all of the Public types accessible to COM.

 You should also update the Assembly Version fi elds as you
make changes to the component.

 figure d - 9

 Chapter 28 contains more information about strong names and assemblies.

 The problem is that the assembly is a private assembly. In order to make it available to the transaction
framework, it needs to be a shared assembly. To do this, give the assembly a cryptographically strong name ,
generally referred to as its strong name .

 Cryptographically strong means that the name has been signed with the private key of a dual key pair.
This isn ’ t the place to go into a long discussion about dual - key cryptography, but essentially a pair of keys
is generated, one public and one private. If something is encrypted using the private key, it can only be
decrypted using the public key from that pair, and vice versa. It is therefore an excellent tool for preventing

Transactional Components ❘ 1193

1194 ❘ aPPendix d ENtERPRisE sERViCEs

tampering with information. If, for example, the name of an assembly were to be encrypted using the
private key of a pair, then the recipient of a new version of that assembly could verify the origin of that new
version, and be confi dent that it was not a rogue version from some other source. This is because only the
original creator of the assembly retains access to its private key.

 Giving the assembly a strong name
 You now need to ensure that your assembly uses the
strong name. You can create a new strong name fi le,
or assign an existing strong name fi le on the Signing
tab of the Project Properties (see Figure D - 10).

 registering with Component services
 Once you ’ ve built the DLL again, you can run
RegSvcs to register the DLL with Component
Services (see Figure D - 11). RegSvcs is a command - line tool, so start a Windows Command Prompt. You will
fi nd the RegSvc.exe tool in the directory %Windir%\Microsoft.NET\Framework\v4.0.21006 directory. To
register a DLL, simply pass the full path of the DLL on the command - line:

regsvcs.exe {path to DLL}\transactions.dll

 To unregister a DLL, include the /u parameter on the command - line.

 figure d - 10

 figure d - 11

 Running RegSvcs.exe requires administrative permissions. Therefore, when running
under Windows Vista or Windows 7, you should start the command prompt by
selecting “ Run As Administrator. ” Otherwise, RegSvcs will fail when run.

 RegSvcs does a few things at this point. It creates a COM type library for the DLL, which enables it to
communicate with COM, and it creates a COM+ application for the component.

 The Component services Console
 The Component Services Console is the control interface for Component Services. This is an MMC snap - in,
which you can fi nd by selecting Control Panel Administrative Tools Component Services (see Figure D - 12).
If the Component Services tool is not available, you can also run it by selecting Run from the start menu/orb
and running c:\windows\system32\comexp.msc .

You should be able to find the sample under COM+ Applications. A COM+ application is a set of related
COM+ components that have been packaged together. RegSvcs creates a new application for every
component that it registers. If you want to bundle together a series of components from separate DLLs, you
can do so, but only by creating a new application via the Component Services Console (right-click COM+
Applications and then select New). You’ll explore the console a little more as you go on.

Now you need a test application. More important, you need to tell Component Services that you’re
interested in transactions.

Test application
Create a Windows Application project called TestTransactions and a
very simple form (see Figure D-13).

The text field is called TransferField and the command button
is called TransferButton. In order to access the transactional
component, add references to a couple of DLLs. First, add a reference
to the transactional component DLL itself. You’ll need to browse
for this, as it isn’t currently in the global assembly cache. Second,
in order to access the objects in this DLL, you also need to make the application aware of the System.
EnterpriseServices assembly, so add a reference to that as well. Having done that, it’s time to import
Transactions into the application:

Imports Transactions

Here’s the code behind the TransferButton button:

Private Sub TransferButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles TransferButton.Click
 Dim txn As New BankTransactions
 Try
 txn.TransferMoney(CDec(Me.TransferField.Text),
 "BankOfWrox", "Professional Visual Basic 2010",

figure d-12

figure d-13

Transactional Components ❘ 1195

1196 ❘ aPPendix d ENtERPRisE sERViCEs

 "BankOfMe", "Me")
 MessageBox.Show(String.Format("{0:C} transfered from {1} to {2}",
 CDec(Me.TransferField.Text), "BankOfWrox", "BankOfMe"),
 "Transfer Succeeded",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Transfer failed",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error)
 End Try
End Sub

Code snippet from TestTramsactions

The Transaction attribute
Now it’s time to tell Component Services how the component
should enter a transaction. There are two ways of doing this: via
the Component Services Console or via an attribute in code. To
do it via the Component Services Console, open the Explorer tree
to locate the Transactions component (as shown in Figure D-14).

Right-click on the Transactions.DLL and select Properties. You
can view the available options for the transactions for this class
by going to the Transactions tab. Select one of the available
options; you’ll learn what these all mean in a moment. It’s a little
tiresome to require the system manager to do this every time,
especially if you already know that your component is always
going to have the same transaction characteristics. An alternative
mechanism is available: You can explicitly set up an attribute in
the code for your component.

Attributes are items of declarative information that can be
attached to the elements of code, such as classes, methods, data
members, and properties. Any code that accesses classes that
include attributes can query the values assigned at runtime.
One such attribute is called TransactionAttribute, which,
unsurprisingly, is used for specifying the transaction characteristics of a component class. The value of this
attribute is taken from an enumeration called TransactionOption. Both TransactionAttribute and
TransactionOption are found within the System.EnterpriseServices namespace. The enumeration can
take the following values:

figure d-14

Value descriPTion

Disabled Ignores any transaction in the current context . This is the default .

NotSupported Creates the component in a context with no governing transaction .

Required Shares a transaction if one exists . Creates a new transaction if necessary .

RequiresNew Creates the component with a new transaction, regardless of the state of the current
context .

Supported Shares a transaction if one exists . If it doesn’t, then it creates the component .

The available values are exactly the same as the ones shown in the Transaction tab. This case is a standalone
transaction, so either RequiresNew or Required are equally valid. However, you would most commonly
select RequiresNew to create a component that will participate in an existing transaction or create a new
transaction if needed.

Before changing the component, unregister the current version to avoid any confusion. As described above,
this is done by running the RegSvcs tool on the DLL, including the /u command-line parameter. Now
return to the Transactions project and make the change:

<Assembly: ApplicationName("WroxTransactions")>
<Assembly: ApplicationAccessControl(True)>
<Transaction(TransactionOption.RequiresNew)> _

Public Class BankTransactions
 Inherits ServicedComponent

Code snippet from Transactions

Having made the change, rebuild the Transactions project and then register it as before. Now run the test
application and start the Component Services Console application. Enter 1000 and click the Execute button.
You might be able to see the number of current active transactions briefly go from none to one (depending
on your computer, this may be too fast to see), followed by the number of committed transactions and the
total both increasing by one. That’s it. You’ve implemented your first transaction. If you check the two
databases, the amount in the BankOfWrox Professional Visual Basic account has been reduced to $4,000,
whereas the account in BankOfMe has been increased by $1,000.

invalid Data
What happens if you enter a value that you know is invalid? There are two options here: either try to
transfer more money than there is in the Professional Visual Basic account, or try to transfer more than
the “approved limit.” Run the application again and try to transfer $10. As expected, the transaction will
fail, and no changes will be made to the accounts. Professional Visual Basic still has $4,000, and your
account still has $1,000. This isn’t too much of a big deal, because the invalid condition is spotted before
any database manipulation is carried out. If you check the transaction statistics, the number of aborted
transactions has been incremented this time. You can find these statistics in the Component Services console
under Distributed Transaction Coordinator Local DTC Transaction Statistics.

Now try to transfer $10,000. This time, the first part of the transaction is successful, but the second part
fails. Again the number of aborted transactions is incremented, but what’s happened to the database? Well,
fortunately for everyone concerned, there is still $4,000 in the Professional Visual Basic account, and still
$1,000 in your account. The entire transaction has failed.

When something Goes Wrong
Recall that bit of mindless vandalism that was added to the Deposit function so that it would divide by
zero if the user entered a negative value? Here’s where you get to try it out. Run the application again and
try to transfer $-1. You should receive an error message. It was halfway through a transaction, but when
you look at the transaction statistics, the aborted count has increased by one. More important, if you
check the databases, the Pro VB account still has $4,000, and the other account still has $1,000, so you’re
protected against software failures as well.

oTher asPecTs of TransacTions
Dealing with transactions involves several other topics as well, including just-in-time (JIT) activation and
object pooling.

Just-in-Time
Creating and deleting components takes time. Instead of discarding the component when finished with it,
why not keep it around in case it’s needed again? The mechanism by which this is done is called just-in-time
(JIT) activation, and it’s set by default for all automatic transactional components (it’s unset by default

other aspects of Transactions ❘ 1197

1198 ❘ aPPendix d ENtERPRisE sERViCEs

for all other COM+ components, however). This is another reason why holding state is undesirable within
components—it limits the ability to share them.

All good transactional components are entirely stateless, but real life dictates differently. For example, you
might want to maintain a link to your database, one that would be expensive to set up every time. The JIT
mechanism provides a couple of methods that you can override in the ServicedComponent class in this case.

The method that is invoked when a JIT component is activated is called Activate, and the component that
is invoked when it is deactivated is called, unsurprisingly, Deactivate. In Activate and Deactivate you
put the things that you would normally put in your constructor and deconstructor. JIT can also be activated
by adding the JustInTimeActivation attribute to any class within the ServicedComponent class.

object Pooling
You can, if you want, take this a step further and maintain a pool of objects already constructed and
prepared to be activated whenever required. When an object is no longer required (i.e., it’s deactivated), it
is returned to the pool until the next time it is needed. By retaining objects, you don’t have to continually
create them anew, which reduces your application’s performance costs. You can use the ObjectPooling
attribute within your class to determine how the pool operates:

<Transaction(TransactionOption.RequiresNew), _
ObjectPooling(MinPoolSize:=5, MaxPoolSize:=20, _
 CreationTimeOut:=30)> _
Public Class BankTransactions

queued comPonenTs
The traditional component programming model is very much a synchronous one. Put simply, you invoke a
method and you wait until you get a result back. Unfortunately, many real-world problems are inherently
asynchronous. You can’t always wait for a response to your request before moving on to the next task. A real-
world analogy is the difference between phoning someone and sending an e-mail. Phoning is a synchronous
process; either the phone is answered (a successful transaction) or it isn’t (or you’ve called a wrong number,
another form of unsuccessful transaction). E-mailing someone is asynchronous; you have no control over
how long the e-mail takes to arrive, or when the person will actually look at it. Therefore, in order to tackle
everything that the real world throws at us, you need an asynchronous component model for those scenarios
where it is appropriate.

Why only some scenarios? The synchronous model is quite simple to manage, because the three possible
outcomes of a request are quite straightforward to handle. First, the request can be successful. Second, the
request can fail. Finally, the target of the request can simply not respond at all, in which case it times out.
However, when dealing with asynchronous requests, expect all manner of unusual conditions. For example,
the target system may not currently be operational, so you have to make a decision regarding how long to
wait before it comes back up again. Each outstanding request takes up system resources, so they need to
be managed carefully. You need to be able to determine when the response comes back; you need to make
certain that the recipient only receives a given message once, and so on. You are, in fact, dealing with a
different infrastructure than MTS here, an infrastructure to handle reliable messaging. Microsoft’s product
to tackle this type of problem is Microsoft Message Queuing (MSMQ).

The idea behind reliable messaging is that once you have asked the system to send a message to a given
target, you can effectively stop worrying about it. The system handles the storing and forwarding of
messages to their target. It also handles retries and timeouts, ensuring a message is received only once, and
returning a message to the dead letter queue if all else fails. MSMQ is, in fact, a whole technology in itself,
and can seem quite complex. However, Enterprise Services provides a handy, simple abstraction called
queued components.

Queued components take the sometimes gnarly aspects of working with MSMQ and make them easier to
deal with than the raw queue handling. Instead, you have the concepts of recorders, listeners, and players.

Recorders create messages that are put on a queue. Eventually, a listener receives the message. This could
happen immediately or it could take weeks if the two components are disconnected. Finally, the player does
whatever the message requests. Naturally, this places some restrictions on the kind of component that can
be used. For example, you can ’ t have any output arguments or return values. If you have either of these, the
values can ’ t be set until the action is complete, removing the benefi t of the asynchronous aspects of the call.
However, there are some cool things that you can do, explored in the next section.

 In order to run the queued components examples, you need MSMQ, which comes with
Windows 2000, XP, Vista, and Windows 7. However, you need to install it separately
using the Add Windows Components dialog. (On Windows Vista and Windows 7, this
is the “ Turn Windows Features on or off ” link from the Programs and Features item in
the Control Panel.)

 an example of queued components
 This example creates a very simple logging component that takes a string as its input and writes it out to a
sequential fi le, as well as outputs it in a message box. To keep the example simple, the client and the server
are on the same machine; in a production scenario they would be separate. The benefi t of using queued
components here is that the logging doesn ’ t slow down the main process.

 Create a Class Library project called Queues and add a reference to the System.EnterpriseServices
namespace. You can delete the default Class added to the project. Next, defi ne an interface:

Public Interface IReporter
 Sub Log(ByVal message As String)
End Interface

 Code snippet from Queues

 Notice that the Log method follows the requirements listed earlier. There is no return value, and all
parameters are input only. You need to separate the interface from the implementation because the
implementation, residing on the server, is going to be sitting on another machine somewhere. The client isn ’ t
the slightest bit interested in the details of this; it only needs to know how to interface to it.

 Add a new class, called Reporter, that will implement this interface. As with the transactional component,
you inherit from ServicedComponent , and implement the interface just defi ned. However, notice the
 < InterfaceQueuing() > attribute that indicates to the Component Services runtime that the interface can
be queued (this is the same for the interface):

 < InterfaceQueuing(Interface:="IReporter") > Public Class Reporter
 Inherits ServicedComponent
 Implements IReporter

 Code snippet from Queues

 In the logging method, simply output a message box, open a StreamWriter component to append to the log
fi le, and then close it:

Sub Log(ByVal message As String) Implements IReporter.Log
 MsgBox(strText)
 Using writer As
 New StreamWriter("c:\account.log", True)
 writer.WriteLine(String.Format("{0}: {1}", _
 DateTime.Now, message))
 writer.Close()
 End Using
 End Sub
End Class

 Code snippet from Queues

Queued Components ❘ 1199

1200 ❘ aPPendix d ENtERPRisE sERViCEs

That’s it for the component’s code. To enable queuing, click Show All Files on the Solution Explorer to
see the hidden files for the project. Expand the My Project item and then open the AssemblyInfo.vb file.
Ensure that it has these attributes:

'Enterprise Services attributes
<Assembly: EnterpriseServices.ApplicationAccessControl(False,
 Authentication:=EnterpriseServices.AuthenticationOption.None)>
<Assembly: EnterpriseServices.ApplicationQueuing(Enabled:=True,
 QueueListenerEnabled:=True)>
<Assembly: EnterpriseServices.ApplicationName("WroxQueue")>

Code snippet from Queues

Next, ensure that queuing is correctly enabled for this component. The next line is a special line to enable
message queuing to work correctly in a workgroup environment, by switching off authentication. If
you didn’t do this, you would need to set up an entire domain structure and create specific users for the
queues. (In a production scenario, that’s exactly what you would use, so you would need to remove this
line.) Finally, ensure that the component runs as a server, rather than a library. This was optional for
transactional components, but it’s mandatory for queued components. You’ll soon see why. In addition, add
a strong name file to your project, as you did with the Transactions component.

Consoles again
It’s time to build your Queues component. Once built, register it using RegSvcs just as you did with the
Transactions component. Take a look at the Component Services Console to see how it’s going. Also, look
closely at Figure D-15. It looks fine, but there’s one other console to check out: the Computer Management
Console. Access this either from the system console or by right-clicking the My Computer icon and selecting
Manage from the menu. Tucked away at the bottom is the relevant part. Open Services and Applications
to find it. Component Services has set up some queues for us. There are five queues feeding into the main
one, so the infrastructure is ready. Keep in mind that all this would be running on the server machine in a
production scenario, not the client.

figure d-15

Building the Client
The problem is that all the code you’ve written in this project is built on top of the MSMQ
infrastructure, which is, inevitably, a COM infrastructure. Worse, the current tasks involve marshaling
COM objects into a stream suitable for inserting into a queued
message. For the purposes of this discussion, think of marshaling
as intelligently serializing the contents of a method invocation
on an interface. You do this in such a way that they can then be
deserialized at the other end and turned into a successful invocation
of the same method in a remote implementation of the interface.
You get COM to do this for us by constructing a moniker, which is
basically an intelligent name.

Begin by creating a Windows Application project called TestReporter.
Add a reference to the Reporter component in the usual manner.
Figure D-16 shows the form.

The text box is called MessageField, and the button is called SendButton. Here’s the code:

Imports System.Runtime.InteropServices
Public Class MainForm
 Inherits System.Windows.Forms.Form
 Private Sub SendButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs)
 Handles SendButton.Click

Code snippet from TestReporter

Here’s the crucial section. Note the references to the interface and how the object is instantiated:

 Dim logger As Queues.IReporter
 Try
 logger = _
 CType(Marshal.BindToMoniker("queue:/new:Queues.Reporter"),
 Queues.IReporter)

Code snippet from TestReporter

Once the object is created, you can make the queued call:

logger.Log(Me.MessageField.Text)

Finally, release the reference to the underlying COM object:

 Marshal.ReleaseComObject(logger)
 MessageBox.Show("Message sent")
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Error sending message")
 End Try

Code snippet from TestReporter

It’s not pretty, but you only have to do it once to use it repeatedly.

Queuing invocations
Now try using this application to put a message onto the queue (see Figure D-17). Run the client application
and enter a suitable message, such as “Hello everyone.”

figure d-16

Queued Components ❘ 1201

1202 ❘ aPPendix d ENtERPRisE sERViCEs

You’ve created a message, so that represents the invocation. If you
were able to read the message, you would see the message, typed in
earlier, embedded somewhere in it. (Unfortunately, the console only
allows you to inspect the start of the message, but you should be able
to see the name of the component in there.) Why hasn’t anything
happened? You haven’t actually started your server. Recall that the
component has to run as a server; this is why. The server has to sit
there all the time, serving the incoming queue. Therefore, return to
the Component Services Console, right-click WroxQueue, select Start
from the menu, and you’re off. Lo and behold, there’s the message
box (see Figure D-18).

Now that the message has been delivered, return to the Component
Services Console. Right-clicking over the message queue and selecting
Refresh confirms that the message has indeed been removed from the queue. Look in account.log and
notice that it has been updated as well. Running the application results in the message boxes popping up
right away, as the server is now running and responding to the messages entering the queue.

Transactions with queued components
Why were you instructed to call that file account.log? MSMQ, like SQL Server, is a resource manager,
and it can take part in transactions. This may seem a little counterintuitive at first because how on earth can
anything as asynchronous as MSMQ have anything to do with transactions? The key is that it is reliable.
Anything you put into a queue is guaranteed to come out the other end. If you take a transaction to the
point at which a message is securely in the queue, you definitely have something that can participate. What
happens at the other end of the queue is an entirely separate transaction. Of course, if something goes
wrong there, you may need to look at setting up a compensating transaction coming back the other way to
trigger some kind of rollback.

figure d-17

figure d-18

For the final example, then, you can take the original transactional component and add in a queued element,
so that not only does the transfer of money take place, but that fact is also logged to a remote file. Use
exactly the same queued component as last time.

Begin by making a clone of TestTransactions called TestQueuedTransactions. Add a reference to Queues
and an Imports statement:

Imports System.Runtime.InteropServices

You also need a new private subroutine:

 Private Shared Sub LogTransaction(ByVal amount As Decimal, _
 ByVal sourceBank As String, ByVal sourceAccount As String, _
 ByVal destinationBank As String, ByVal destinationAccount As String)
 Dim logger As Queues.IReporter
 Try
 logger =
 CType(Marshal.BindToMoniker("queue:/new:Queues.Reporter"),
 Queues.IReporter)
 logger.Log(String.Format("{0:c} transfered from {1}:{2} to {3}:{4}",
 amount,
 sourceBank, sourceAccount,
 destinationBank, destinationAccount))
 Marshal.ReleaseComObject(logger)
 MessageBox.Show("Message sent")
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Error sending message")
 End Try
 End Sub

Code snippet from TestQueuedTransactions

This may look similar to the previous queued component example application. Finally, add a call to this
subroutine in the Button_Click event handler:

 Private Sub TransferButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles TransferButton.Click
 Dim txn As New Transactions.BankTransactions
 Try
 txn.TransferMoney(CDec(Me.TransferField.Text),
 "BankOfWrox", "Professional VB",
 "BankOfMe", "Me")
 LogTransaction(CDec(Me.TransferField.Text),
 "BankOfWrox", "Professional VB",
 "BankOfMe", "Me")
 MessageBox.Show(String.Format("{0:C} transfered from {1} to {2}",
 CDec(Me.TransferField.Text), "BankOfWrox", "BankOfMe"),
 "Transfer Succeeded",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information)
 Catch ex As Exception
 MessageBox.Show(ex.Message, "Transfer failed",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error)
 End Try
 End Sub

Code snippet from TestQueuedTransactions

Here, you’ve included a queued component in the transaction. It’s been deliberately placed at the beginning
to determine whether it genuinely takes part in the two-phase committal. If the transaction fails, then you
shouldn’t see any messages come through the queue.

Queued Components ❘ 1203

1204 ❘ aPPendix d ENtERPRisE sERViCEs

You also need to make a small change to the Reporter component, but you must shut it down via the
Component Services Console first. The change is very simple. To ensure that the queued component takes
part in the transaction, it must be marked with the Transaction attribute:

<InterfaceQueuing(Interface:="Reporter.IReporter"),
Transaction(TransactionOption.Required)>
Public Class Reporter

Code snippet from Queues

If you now transfer $500, you’ll see the usual “Transfer
complete” message box; and if you start up the WroxQueue
component, you also see the message box from the queued
component (see Figure D-19).

If you try it again, you see the queued message coming
through first, so you know it’s OK for valid transfers. What
happens if you try to transfer $100? As you know from the
earlier example, this will fail, and indeed, you’ll see the
“Transfer failed” message box from the main component, but not a peep out of the queued component.

summary
This appendix looked at creating applications using the classes of System.EnterpriseServices. You first
examined transactions and their importance in maintaining data integrity when multiple simultaneous
changes may affect your data. Properly applied, transactions can ensure that even with multiple users
editing data, your database always reflects the correct data. You also looked at asynchronous processing
using MSMQ and queued components. Many scenarios, such as logging or other “background” processes,
are better handled using asynchronous code. Queued components make building these asynchronous
handlers much easier. Many other aspects of Enterprise Services were beyond the scope of this appendix,
including role-based security, object constructors, and more.

figure d-19

E
 Programming for the Cloud

 Can you hear it? Those drums beating in the programming jungle: They ’ re getting louder and louder.
All of the major vendors have begun to offer some sort of “ cloud computing ” services, and Microsoft
is no exception.

 This appendix looks at Windows Azure, a new set of tools from Microsoft for creating applications
that run within their cloud. This includes the capability to create highly scalable websites, massively
parallel computation tools, or some combination of the two. It looks at how creating these applications
differs from the way you normally work, and some of the benefi ts of creating applications that run in
the cloud.

 The rise of The cloud
 Cloud computing is very much the latest buzzword in computing, but just about every vendor means
something slightly different when they use it, and they ’ re all basically right. However, a few consistent
concepts emerge when discussing cloud computing:

 The services are provided by one or more computers in a data center. ➤

 You can easily add new servers, typically with either a Web interface or a confi guration option. ➤

These new servers are available within a few minutes of the request.

 Any given server might be servicing requests from multiple cloud applications, without any ➤

interaction between these applications.

 The developer creating the cloud application is usually constrained, especially in matters of ➤

reading and writing data. For example, you cannot directly read and write to the fi le system,
and the choice in databases is limited, as you will see later in this appendix.

 The cost of using the cloud is typically billed based on actual usage, rather than a set rate per ➤

server. This is one of the main points that distinguishes cloud computing from a simple data -
 center - hosted application.

 In the case of Windows Azure, your applications run within a virtual machine on a server running
within one of Microsoft ’ s data centers. These virtual machines provide all the services you need to
run your application. Adding new “ servers ” is simply a matter of creating a new copy of your virtual
machine. This means that a new server can run your application in a matter of minutes, not days
or weeks.

1206 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

cloud scenarios
There are a number of scenarios in which making use of cloud computing can be highly useful, including the
following:

Websites that have highly variable scaling needs ➤

As a means of reducing the maintenance cost of a server farm ➤

Providing a highly scalable parallel processing environment ➤

scalability
Some websites have highly variable traffic patterns. For example, a site that sells a product might have higher
traffic during peak gift-giving seasons (see Figure E-1).

Jan Fab Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Traffic

Server Capacity

figure e-1

One line represents the capacity of a single Web server, in terms of the number of requests it can
respond to. The other line represents incoming traffic. From the graph, you can see that the site will
have difficulty maintaining good server loads at least three times during the year: in February, May, and
December. During these times, the number of people attempting to access the site exceeds the available
server capacity. This would lead to slower response times from the site, which would likely lead to visitors
going elsewhere.

At this point, you have a few alternatives. You could increase the available server capacity by using more
servers. However, this means that you now have the cost of acquiring and maintaining those servers, even
though they will remain idle most of the year. In this case, that would mean you would need four times the
number of servers to meet the December traffic requirements.

As an alternative, you could use Windows Azure to host your Web application. This enables you to easily
add new servers only when they are needed, shutting them down again when they are not. As shown in
Figure E-2, this option gives you a closer fit between your needs and the capacity of the servers.

This is one of the main benefits of using a cloud computing service like Azure — you can easily scale
your application by adding new servers when needed. You only pay for the computer access you use at any
given time.

Cost savings
While computers have become relatively inexpensive commodity items for most companies, they still have
a cost. The first major decision you face when buying a new computer is whether to buy it for your current
needs and capacity or target some future anticipated capacity. In addition to the capital outlay required
to buy the computer, it also has costs associated with maintenance: Someone needs to set up software on
the machine, install patches as necessary, and, most important, back up the computer and restore data as
needed. In a small company, this might all be done by a single individual; in a larger company, by entire
departments. Either way, the initial cost of the computer is not the only cost involved. In addition to these
ongoing expenses, you also will likely need to upgrade the computer(s), adding more expense.

The argument here for cloud computing is that someone else is managing the actual computer(s), and you
simply provide the software. If you need more capacity, you turn on new servers as needed. These changes
are transparent to users, and can be done rapidly in the case of highly variable needs. Compare that to getting
a new physical computer ready and able to receive requests. Even if you overnight the computer from your
supplier, you still need to configure it, load software, and add it to your network or data center. With cloud
computing, you have a system that is backed up regularly, fully patched, and will likely be upgraded regularly.

Parallel Processing
While most applications that have a user interface spend a lot of time just waiting for input, some
applications do a large amount of processing — for example, an application that accesses a data warehouse
to determine customer shopping trends, or an application that processes video. These applications typically
don’t have sexy UIs, and just spend their time crunching away at numbers.

The traditional solution in this scenario is to have multiple computers process the data. Speeding up the
calculations is a matter of adding a new server to the set. However, as mentioned earlier, this is not just a
simple matter of buying a new server. A number of ongoing costs are involved.

Here, the argument for cloud computing is quite strong. By leveraging the cloud, you gain the benefits of
flexible control over the available computing power, and the costs become more predictable.

The Case against Cloud Computing
While the above cases show scenarios where cloud computing can be useful, there are also arguments
against putting your applications and data into the cloud:

Your data is no longer under your control. With all of your data in the cloud, you are now relying on ➤

the cloud provider to maintain, backup and (at least partly) secure your data. In addition, you must
trust them to not access or share your data.

Jan Fab Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Traffic

Cloud Capacity

figure e-2

The rise of the Cloud ❘ 1207

1208 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

While one of the key benefits of cloud computing is providing multiple points of failure, your ➤

application can still be taken down by failure of the cloud computing vendor. There have been a few
very visible (and lengthy) outages by Amazon, Google and others. Some of these outages have been
caused by relatively trivial factors, such as a technician altering the network routing.

Some developers feel that the development model and constraints that the cloud environment imposes ➤

is too big a change. For example, while working with SQL Azure is mostly like working with SQL
Server, there are some missing features. If your application depends on these features, then obviously
cloud computing is not for you.

While the cost of cloud computing is variable, it may not actually save you money in the long run. As ➤

with many decisions regarding long term costs, you would need to determine this for yourself based
on your required server capacities, the available hardware, and replacement schedules.

aZure
Windows Azure is Microsoft’s cloud platform.
It consists of a number of servers located within
Microsoft data centers (see Figure E-3). The Azure
platform consists of three main components:

The Fabric (also known as the AppFabric, ➤

short for application fabric), which
integrates the servers and creates the base
cloud services

The Storage services, which store the ➤

data to be used by the various parts of
the cloud

The Compute service, which represents ➤

the developer-centric part of the cloud,
hosting the Web and worker roles of their
applications

The following sections look at these three
components in more detail.

The fabric
The servers that represent Azure run software that
creates a consistent environment, called the Azure
Fabric (or AppFabric if you don’t like typing).
This fabric is what turns a normal data center
into a cloud center, and it consists of fabric agents
running on each of the servers in the data center, as
well as multiple controllers that manage the agents
(see Figure E-4). The fabric controllers manage
the virtual machines running on the servers, so
if one of the virtual machines crashes, the fabric
controller starts a new virtual machine to carry on. In addition, the fabric controller provides load balancing
between the various Web roles that might be running a website.

The fabric also includes a number of servers providing data storage. When a request is made to save data, it
is actually written to multiple locations simultaneously. This ensures that the failure of a single component
does not affect the operation of the whole.

Internet

Your Applications

Compute
Storage

AppFabric

Windows Azure

Physical Servers

Users

figure e-3

azure ❘ 1209

figure e-7

As you likely don’t have your very own AppFabric for testing purposes, you might
worry about developing Azure applications. However, a development environment is
installed with the Azure Tools for Visual Studio. This enables you to create and test your
applications within a simulated Azure environment that behaves like the live AppFabric.
You can access this development by clicking the
icon in the notification area of the task bar (see
Figure E-5).

From the icon, you can stop the development
Fabric and Storage services. In addition, you can
view the root URLs used by the three Storage
services (see Figure E-6), as well as the current
applications loaded in the Fabric (see Figure E-7). figure e-6

figure e-5

Fabric ServersFabric Controller

Hosting
Servers

Storage
Servers

Agent

Web
Roles

Worker
Roles

Agent

Storage

figure e-4

1210 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

The Development Fabric window enables you to view the trace logs of the various running Web and worker
roles, as well as view the current settings for these running services.

storage services
The Storage services provide the means of saving data for your cloud applications. Why not just let you use
existing data storage mechanisms? The main problem with allowing you to just write as needed is that your
code is running within multiple virtual machines. If you were allowed to use file I/O and write to the hard
drive, Azure would have to ensure that this data was written consistently across all of the virtual machines
running your application. In addition, it would have to duplicate this data in any new virtual machines that
might start after the data was written. As you can imagine, these would be very difficult problems to solve.

Instead, Windows Azure provides four storage mechanisms for saving data:

Blob storage ➤

Table storage ➤

Queues ➤

SQL Azure ➤

These are actually provided by separate instances within the cloud, and not dependant on your applications.
All of your data is stored multiple times throughout the cloud — for redundancy and reliability — as well as
backed up and maintained.

Blob storage
The simplest form of storage available within Azure is blob storage. As the name implies, blob (Binary
Large Object) storage simply gives you a set of space to store binary information. Blobs are created within
containers, and can be quite large (they have a maximum individual size of 50GB). Each container may hold
multiple blobs, but there is no real hierarchy such as you have on your disk drive.

Blobs are excellent storage when you have video or audio data, or when you want to create your own storage
mechanism (maybe you want to keep a 50GB XML file in the cloud for some reason). You access these blobs
using a REST interface, and with a URL like one of the following:

http://{your account}.blob.core.windows.net/{container}/{blob}
http://127.0.0.1:10000/devstoreaccount1/{container}/{blob}

The first URL scheme is used when accessing the live servers, while the second is used when accessing
storage in the development environment.

WCF Data Services (see Chapter 12) makes working with these URLs (and blob storage) fairly transparent
to the developer.

Table storage
The next form of storage available with Azure is table storage. While the name implies database access, it is
actually much simpler than that. Table storage enables you to create one or more tables for your application.
Each table consists of one or more entities; and each entity has one or more properties, each with a name, a
value, and a type. All of that sounds like a normal database, but the difference is in the details. The primary
differences between a storage table and a database table are as follows:

A storage table is not stored within a relational database. ➤

You cannot use SQL to query a storage table, nor do you use ADO.NET to access it. Instead, you use ➤

WCF Data Services to access them.

Each entity within a table might have different sets of properties. That is, the individual “rows” of ➤

data within a table do not have to match a specific schema.

When you edit an entity, the entire entity is considered altered. That is, changing a single property of ➤

the entity means that the entire entity is considered changed.

azure ❘ 1211

Table storage represents a very flexible data storage mechanism, and it should be considered your first
option for record-like data. It does have some limitations, however. The maximum size of an entity is 1MB;
the maximum number of properties on an entity is 252 (three system properties are added to all entities);
and property names are case sensitive. The available property types are as follows:

 ➤ Binary

 ➤ Boolean

 ➤ DateTime

 ➤ Double

 ➤ Guid

 ➤ Int32

 ➤ Int64

 ➤ String

As mentioned above, three system properties are added to each entity:

 ➤ PartitionKey — This is a key value used to group entities within a table. You could almost view it as
a subcollection within the table or as a sort, as the entities with the same PartitionKey are grouped
logically together within the table. This is a string value, up to 1KB. The developer is responsible for
creating and maintaining these key values.

 ➤ RowKey — Another key value used to uniquely identify an entity within a partition. The developer
is responsible for creating and maintaining these key values. As with PartitionKey, this is a string
value, with a maximum size of 1KB.

 ➤ Timestamp — This is updated whenever the entity is altered.

As with the Blob storage, you can use the ADO.NET Data Services client to access your tables. The URL to
access a given entity would look similar to the following:

http://{your account}.table.core.windows.net/{your table}(PartitionKey='{value}',
RowKey='{value}')
http://127.0.0.1:10002/devstoreaccount1/{your table}(PartitionKey='{value}',
RowKey='{value}')

Again, the first URL scheme is used for the live environment, the second for the development environment.
If your storage needs require more space or you prefer a SQL interface, you should look at SQL Azure for
data storage (see the following section on SQL Azure).

Queues
Unlike blobs and tables, the queue service for Azure is not used to store items directly. Instead, they are used
as a communication mechanism, typically between a Web role and one or more worker roles, or between
two worker roles. Queues work very much like Microsoft Message Queuing (MSMQ), in that you submit
a message at one end, and it is guaranteed to come out the other. However, unlike MSMQ, the messages
are not guaranteed to come out in the same order submitted. Nor are they guaranteed to only be processed
once. Therefore, your processing code should be fairly defensive about making changes multiple times.

The actual message submitted to the queue has very few limitations. It might be a string, a block of data,
or a URL to an item stored in blob or table storage. The only major limitation is that its size must be less
than 8KB.

If you have multiple worker roles (or even multiple instances of worker roles) processing the same queue,
you are probably worried about having a message read by multiple instances. Fortunately, Azure queues
provide a very simple mechanism for preventing this. Once a worker has read a message from the queue,
that message becomes invisible to all other worker roles for 30 seconds. During that time, the worker can do
whatever processing is necessary to use the message. As part of that processing, the worker should delete the
message from the queue to prevent other workers from reading the message after 30 seconds.

1212 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 Just as with blob and table storage, you use the WCF Data Services client to create and access the queues.
The URL schemes used by the queue storage look like the following:

http://{your account}.queue.core.windows.net/{queue}/messages
http://127.0.0.1:10001/devstoreaccount1/{queue}/messages

 sQl azure
 During the initial few preview releases of Windows Azure, the preceding three storage mechanisms were the
only ones available. However, many developers prefer to use SQL databases, so the Azure developers created
SQL Azure. This gives you the familiar programming model, enabling the use of ADO.NET and LINQ to
access your database, while still enabling the scalability of the cloud. Basically, the only disadvantage of
using SQL Azure over the other storage services is that it is an additional cost over just Windows Azure.

 There are a few signifi cant differences between a local SQL Server and SQL Azure, however:

 You do not have access to the physical confi guration of the database. That is, you cannot set where ➤

the fi les are stored or confi gured. In addition, T - SQL commands that take a fi le as a parameter (such
as sp_attach_db) are not available.

 You cannot access backup or restore commands for the databases. ➤

 The SQL Server Profi ler cannot be used with SQL Azure databases. ➤

 SQL Azure does not support CLR user - defi ned types. ➤

 You cannot use ➤ text , ntext or image data types.

 You work with the SQL Azure database just as you would with other SQL Server databases. You can
manipulate your databases using the command - line tool sqlcmd , or with SQL Server Management Studio if
you prefer a graphical user interface.

 In order to use SQL Server Management Studio to access your databases, you must be
running the SQL Server 2008 R2 November 2009 CTP (or later) version of the tools.

 In addition, developers have created a number of
tools to make working with SQL Azure easier. One
of the most useful is the Microsoft Sync Framework
Power Pack for SQL Azure, which (besides having
one of those horridly long names that Microsoft is
becoming known for) allows you to synchronize a
database on your network to one running within
SQL Azure. This uses the same Sync Framework
you saw when working with SQL Server Compact
(see Chapter 12), and enables you to select the
tables you want to synchronize (see Figure E - 8).

 While SQL Azure provides a familiar — and
powerful — alternative to the other storage
mechanisms, keep in mind that it is billed in
addition to the existing services. In addition, you
need to register to request a SQL Azure application
key separately from the Windows Azure account key.

figure e-8

azure ❘ 1213

compute services
In addition to a public interface and data storage, most applications also require some processing. Of
course, this processing can be included in the other two components. However, there are times when you
need longer-running or asynchronous processing in your application. For example, you might need to
perform some analysis of a large block of data, such as sales analysis on a data warehouse, or convert videos
into alternative formats.

Alternately, your application might need to poll an external data source at regular intervals. In these cases,
it’s not a good idea to include this functionality within your user interface. Instead, you can use the Azure
Compute services to perform these operations. This provides highly scalable processing, billed at a rate
based on actual usage (that is, per CPU-hour). It’s like having a highly scalable supercomputer available to
your application.

As described earlier in the Queues section, you communicate with the worker roles via queues. As Compute
services consist entirely of worker roles, you therefore use queues to communicate with your Compute services.
You send the data necessary for computation by adding a message to a queue. The worker role running within
the Compute services retrieves the first available message from a queue and performs whatever processing is
required, then deletes the message to prevent other workers from retrieving it. The worker role can then use the
other storage services to save data as needed.

Windows azure Tools for Visual studio
Before you can create solutions using Windows Azure, you must first install the Windows Azure Tools for
Visual Studio. You can access this install by clicking File ➪ New Project (see Figure E-9). Selecting the
Enable Windows Azure Tools option will send you to the Microsoft Download Center to download
the current version of these tools.

figure e-9

1214 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 Creating a Windows azure Project
 To explore the features available when creating
applications with Windows Azure, create a new project
called CloudToDo .

 Selecting that option brings you to the New Cloud
Service Project dialog (see Figure E - 12). This dialog
enables you to select the initial types of service you
will be creating. Of course, you can add others to your
project later.

 In addition, in order to deploy your applications to
the cloud, you need to obtain a developer key. This
key is also used for all requests for data. Currently,
you get a key by making a request at http://
go.microsoft.com/fwlink/?LinkID=129453 .
However, developing using the Windows Azure Tools
for Visual Studio does not require this key, only when
you are deploying your application to the live servers.

 You need to exit Visual Studio to install the tools.
After you run the installer, you will see the option
enabling you to create an Azure service (see Figure E - 11).

figure e-12

figure e-11

figure e-10

 In order to run the development environment for Windows Azure, you need to run
Visual Studio 2010 as an administrator. Otherwise, you will see the error message
shown in Figure E - 10 when you attempt to run your application. To run Visual Studio
as an administrator in Windows Vista or Windows 7, right - click the icon and select Run
as Administrator. You may be required to enter your user ID and password at this point.

azure ❘ 1215

Currently, you can create five types of service:

 ➤ ASP.NET Web role — This is a standard Web service that will host an ASP.NET application in the
cloud. You would include one of these to provide a visible user interface to your cloud.

 ➤ MVC 2 Web role — This is a Web service that will host an application built using the ASP.NET MVC
Framework.

 ➤ WCF Web role — This is a Web service that includes one or more WCF services. You would include
one of these to provide Web Services in your application.

 ➤ Worker role — This is a nonvisible application that will run within your cloud. Typically, these are
background tasks needed by your Web application, or calculation services. For example, you might have a
worker role to transfer orders to a fulfillment service, or a worker role that processes data to determine trends.

 ➤ CGI Web role — This is a Web service that is designed to run Web applications written in PHP,
Python, Ruby, or other non-ASP.NET languages.

For now, add a single Web role to the application, called ToDoWeb. After adding the Web role, set the name
by clicking the pencil icon. This will be the user interface for the application.

The Web role looks and works exactly like an ASP.NET application: You get an initial default.aspx page,
and it includes a web.config file and the jQuery script libraries. The one difference is the addition of a
WebRole.vb file. This file contains two methods:

 ➤ OnStart — This method overrides the method in the base class RoleEntryPoint. This is called when
the role is initialized within the Azure fabric, and could be thought of as analogous to a constructor.
You can perform any initialization required at this point. The method should return true if the role
is ready to participate in the Azure environment, or false if something prevents it from doing so. For
example, you could connect to your data sources here. If they were not available for some reason, you
could set OnStart to false to prevent the Web role from initializing.

 ➤ RoleEnvironmentChanging — This is an event the Azure environment may call when some change
has been made to the configuration of a running instance. This enables your application to reload the
configuration settings and act accordingly.

After a brief grind or two of your hard drive, you should see something like
Figure E-13 in the Solution Explorer. In addition to the ASP.NET application, you
have the Windows Azure project that consists of the single Web role you added,
and two configuration files.

The two configuration files identify the port that the Web role will listen on, as well
as the size and number of instances that will run. You can edit these files by hand,
but it is much easier to use Visual Studio to edit them. Right-click on ToDoWeb in
the Roles folder and select Properties to configure your Web application. From the
Configuration tab (see Figure E-14) you can set the following:

 ➤ The trust level of the application — Full trust enables all access (with the
obvious exceptions regarding directly accessing the computer). Windows
Azure partial trust works basically like Medium Trust in ASP.NET (see Chapter 34). However, it is
even more restrictive, particularly around accessing environment variables or file IO.

 ➤ The number of instances your application will run — This can be changed later from the Windows
Azure management screens.

 ➤ The “size” of the virtual machine that will run your application — These are basic combinations of
number of CPUs, memory size, and disk space. While they will change as the underlying computers
become more powerful, as of this writing the available sizes map to the following capacities:

figure e-13

Vm siZe cPu cores memory disK sPace

Small 1 1 .7 GB 250 GB

Medium 2 3 .5 GB 500 GB

Large 4 7 GB 1 TB

ExtraLarge 8 15 GB 2 TB

1216 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 ➤ Whether the Web role works using HTTP, HTTPS, or a combination of the two — If your application
receives any secure information from the user, you should use HTTPS. Otherwise, HTTP should be
good enough for most uses.

In addition, you configure the endpoints using the Endpoints tab of the configuration (see Figure E-15). This
tab enables you to define the ports used by the Web role, as well as the certificate to use for HTTPS.

figure e-15figure e-14

figure e-17

You use the Settings tab to define any additional
settings for your project, just as you do for other
projects. However, while you’re working in the
development environment, it is a good idea to
set the application to use the connection strings
appropriate to the development environment,
rather than attempt to access the services deployed
to the cloud. Click the Add Setting button, and
name the new setting DataConnectionString,
and the type ConnectionString. Click the ellipses
on the value property to display the Storage
Connection String dialog (see Figure E-16).

For now, select the first option, “Use development
storage.” As you can probably guess, when it
comes time to deploy this application to the
cloud, you will need to enter your credentials in order to access the services. Once you have saved the
setting, the Settings tab should look like Figure E-17.

figure e-16

azure ❘ 1217

You work with the Web role just as you would any other ASP.NET site. In this case, the application will be
a simple to-do list.

Using Table storage
The application must save the to-do items, along with whether they are completed. Normally, this would be
in a SQL Server database, but here we’ll use the Azure table storage to save that information.

To use table storage, you need to define a class that represents the data to be saved. This class needs to
provide properties for the attributes of your data, along with TimeStamp, PartitionKey, and RowKey
properties. The PartitionKey and RowKey properties are used to uniquely identify each item in the storage,
and the TimeStamp property identifies when the item was last changed. In addition, you need to add a
<DataServiceKey(“PartitionKey”, “RowKey“)> attribute to your class. This is used to identify the key
fields to the Data Services infrastructure.

To avoid all that effort, you can instead simply inherit your class from the provided TableServiceEntity
class. This provides all the changes listed above. The Task class used by the project is kept intentionally
simple:

Imports Microsoft.WindowsAzure.StorageClient

Public Class Task
 Inherits TableServiceEntity

 Public Property Name As String
 Public Property IsComplete As Boolean

 Public Sub New()
 'need to set the PartitionKey and RowKey
 'for each instance
 'normally, you would want to have multiple partitions
 'to spread the data out across servers
 PartitionKey = DateTime.Now.ToString("u")
 'rowkey must be unique within each partition
 'data is sorted based on RowKey
 RowKey = String.Format("{0}-{1}",
 DateTime.Now.Ticks,
 Guid.NewGuid.ToString)

 End Sub

End Class

Code snippet from CloudToDo

As you can see, the Task class will track the name of the task, and a Boolean flag marks whether the
task has been completed. The PartitionKey and RowKey properties are assigned in the constructor
for the class. Here, all the tasks are assigned a partition based on the date they are created. You should
select a PartitionKey so that your entries are distributed across multiple storage nodes. For example,
you might assign the PartitionKey based on the date of entry (as done here), the first letters of the
filename, or an album organizing a collection of photos.

The RowKey acts like the unique index for each partition, so you should select a value that is guaranteed
to be unique. In addition, items are sorted within each partition based on the RowKey. In the preceding
example, the RowKey is assigned based on the system time when the object is created (in ticks), with a GUID
added at the end to ensure uniqueness, even if multiple entries are added simultaneously.

1218 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

The client code will use the Data Services library to access table storage, so you need to add a reference to the
System.Data.Services.Client.dll. This will be used by the data context class to query the table storage:

Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure

Public Class TaskContext
 Inherits TableServiceContext

 Public Sub New(ByVal baseAddress As String,
 ByVal credentials As StorageCredentials)
 MyBase.New(baseAddress, credentials)
 End Sub
 Public Function Tasks() As IQueryable(Of Task)
 Return MyBase.CreateQuery(Of Task)("Tasks")
 End Function
 Public Sub AddTask(ByVal name As String,
 ByVal isComplete As Boolean)
 Dim t As New Task
 With t
 .Name = name
 .IsComplete = isComplete
 End With

 MyBase.AddObject("Tasks", t)
 Try
 MyBase.SaveChanges()
 Catch ex As Exception
 Trace.WriteLine(ex.Message, "Error")
 End Try
 End Sub
End Class

Code snippet from CloudToDo

The TaskContext class is used to access the table storage. It inherits from TableServiceContext, which in
turn inherits from DataServiceContext, adding support for connecting to Azure tables.

When you create a new TableServiceContext class, you must override the constructor to provide an
implementation that takes the URL to the service, and the credentials to use. This information will be
provided when you call the data service. In addition to the constructor, you can provide any data access
methods to be used by your application. Here, there are two methods: one to return all the photos and
another to add a new photo.

Next, you must initialize the table storage for your application. Open the WebRole.vb class in your project
and update the OnStart method as shown below:

Imports Microsoft.WindowsAzure.Diagnostics
Imports Microsoft.WindowsAzure.ServiceRuntime
Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient

Public Class WebRole
 Inherits RoleEntryPoint
 Private _configName As String
 Private _configSetter As Func(Of String, Boolean)

 Public Overrides Function OnStart() As Boolean

 DiagnosticMonitor.Start("DiagnosticsConnectionString")

AddHandler RoleEnvironment.Changing, AddressOf RoleEnvironmentChanging

azure ❘ 1219

 CloudStorageAccount.SetConfigurationSettingPublisher(
 AddressOf ConfigurationSettingPublisher)

 'loads the account from settings
 Dim account As CloudStorageAccount =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString")
 'creates the tables in table storage
 CloudTableClient.CreateTablesFromModel(GetType(TaskContext),
 account.TableEndpoint.AbsoluteUri,
 account.Credentials)

 Return MyBase.OnStart()

 End Function

 Private Sub ConfigurationSettingPublisher(ByVal configName As String,
 ByVal configSetter As Func(Of String, Boolean))

 ' We have to store these to be used in the RoleEnvironment Changed handler
 _configName = configName
 _configSetter = configSetter

 ' Provide the configSetter with the initial value
 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName))

 AddHandler RoleEnvironment.Changed, AddressOf RoleEnvironmentChanged

 End Sub

 Private Sub RoleEnvironmentChanging(ByVal sender As Object,
 ByVal e As RoleEnvironmentChangingEventArgs)

 ' If a configuration setting is changing
 If (e.Changes.Any(Function(change) TypeOf _
 change Is RoleEnvironmentConfigurationSettingChange)) Then
 ' Set e.Cancel to true to restart this role instance
 e.Cancel = True
 End If

 End Sub

 Private Sub RoleEnvironmentChanged(ByVal anotherSender As Object,
 ByVal arg As RoleEnvironmentChangedEventArgs)

 If (arg.Changes.OfType(Of RoleEnvironmentConfigurationSettingChange)().Any(_
 Function(change As RoleEnvironmentConfigurationSettingChange) _
 change.ConfigurationSettingName = _configName)) Then

 If (_configSetter(
 RoleEnvironment.GetConfigurationSettingValue(_configName))) Then

 RoleEnvironment.RequestRecycle()
 End If
 End If

 End Sub
End Class

Code snippet from CloudToDo

The account is loaded from the DataConnectionString setting you created earlier. At the moment, this
would return UseDevelopmentStorage=true, but once you deploy the application it will include your
application key and account name.

1220 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

The CreateTablesFromModel method creates the tables based on the class you created. It requires that you
pass the type of the data context class you created, along with the target URL, to the table storage service
and your credentials.

At this point, you’re ready to add an interface to the application. In this case, it’s a simple DataGrid, with a
couple of fields to add new tasks:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Default.aspx.vb"
Inherits="ToDoWeb._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Cloud To-Do</title>
 <link href="Site.css" rel="stylesheet" type="text/css" />

</head>
<body>
 <form id="form1" runat="server">
 <div id="page">
 <h1>Cloud To-Do</h1>
 <div id="taskList">
 <asp:GridView ID="TaskGrid" runat="server"
 AutoGenerateColumns="False"
 GridLines="None">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:CheckBoxField DataField="IsComplete" HeaderText="Is Complete" />
 </Columns>
 </asp:GridView></div>

 <div id="taskEntry">
 <p>New task: <asp:TextBox runat="server" id="TaskField" /></p>
 <p><asp:CheckBox runat="server" ID="CompleteField"
 Text="Is complete?" TextAlign="Left" /></p>
 <p style="text-align:right"><asp:LinkButton runat="server"
 ID="SaveButton" Text="Insert" /></p>
 </div>
 <hr />
 <div id="status">
 <asp:Label runat="server" ID="Message" CssClass="message" /></div>
 </div>
 </form>
</body>
</html>

Code snippet from CloudToDo

The TaskGrid will display the current list of tasks, and the bottom portion of the screen has a TextBox,
CheckBox and LinkButton that will be used to define new tasks.

Finally, it’s time to add the code that will bolt the user interface to the functionality of the application.
Right-click on the Default.aspx page in the Solution Explorer, and select View Code to add the Imports
statements and page-level variables to the class:

Imports Microsoft.WindowsAzure.ServiceRuntime
Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure
Imports System.Data.Services.Client

Public Class _Default

azure ❘ 1221

 Inherits System.Web.UI.Page

 Dim account As CloudStorageAccount
 Dim ctx As TaskContext
 Dim statusMessage As String = String.Empty
End Class

Code snippet from CloudToDo

Next, add code to the Page Load event handler that will initialize the TaskContext class:

 Private Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load

 account = CloudStorageAccount.FromConfigurationSetting("DataConnectionString")
 ctx = New TaskContext(account.TableEndpoint.ToString,
 account.Credentials)
 BindGrid()

 End Sub

Code snippet from CloudToDo

The CloudStorageAccount class has a static method that reads the setting you defined earlier to read the
information about accessing your Web and worker roles. This provides all the base credentials and URLs
that the constructor of the TaskContext class uses to communicate with the table storage. In this case, as the
DataConnectionString is set to use the development environment, the TaskContext will access the local
environment.

The BindGrid method retrieves the current tasks and binds them to the DataGrid:

 Private Sub BindGrid()
 Try
 Me.TaskGrid.DataSource = ctx.Tasks
 Me.TaskGrid.DataBind()
 Catch ex As DataServiceRequestException
 statusMessage = ("Unable to connect to the table storage server." &
 ex.Message)
 End Try
 Me.Message.Text = statusMessage
 End Sub

Code snippet from CloudToDo

This code is fairly simple, but it is put here in a separate method to be reused throughout the application.

The code to save the new tasks is as follows:

 Protected Sub SaveButton_Click(ByVal sender As Object,
 ByVal e As EventArgs) Handles SaveButton.Click

 Try
 ctx.AddTask(TaskField.Text, CompleteField.Checked)
 BindGrid()

 Catch ex As DataServiceRequestException
 statusMessage = ("Unable to connect to the table storage server." &
 ex.Message)
 End Try
 Me.Message.Text = statusMessage
 End Sub

Code snippet from CloudToDo

1222 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

The context has already been instantiated, so all
that needs to be done is to call the AddTask method,
passing in the two values. This then calls the Table
storage (via Data Services) to insert the new entry.
To confirm, the DataGrid is rebound to retrieve the
newly added entry.

Build your application, and after a bit of a pause
to start up the website and the development
environment, you should be able to add a few tasks
(see Figure E-18). Note: I added a bit of CSS to jazz
things up a little (see site.css in the sample project).

Working with Table storage is not very different from using Data Services to communicate with other
databases. The basic process is as follows:

 1. Define your entity type. This has to inherit from TableServiceEntity to pick up the needed
 properties and attributes (or you can do it yourself).

 2. Create a data context class to communicate with Table storage to save that entity. This class in herits
from TableServiceContext (which extends the standard DataServiceContext class of Data
Services).

 3. Create the tables within Table storage (obviously, this only needs to be done once).

 4. Use your data context class to create and edit your data.

Using Blob storage
If you were working with a normal ASP.NET page, you would save the data to the local file system on
the Web server (or possibly within your database). As that option is not available with Windows Azure
applications, you will use blob storage to save the files. The mechanics for setting up blob storage are
simpler than the steps you went through to connect to the table storage.
You do not need to create an entity class. You only need to ensure that
you have created the blob container, and that you assign a unique ID to
each blob. In addition to saving the blob itself, you can attach metadata
to the blob. This can provide a place to store additional properties
about it.

Create a new Windows Azure application, called CloudContacts. This
application will enable you to enter some contact information, along
with a photo of the contact. The photo will be saved to blob storage, and
the additional properties added to the metadata for the photo. Include a
single Web role in the project, called ContactWeb.

As you did with the Web role in the CloudToDo application, you should
add a setting for the DataConnectionString to the ContactWeb role
in the CloudContacts project. Right-click on the project in the Solution
Explorer and select Properties to open the project’s property dialog; on the
Settings tab, click Add to add a new setting named DataConnectionString.
Set the type of this property to ConnectionString, and set the value as
Use Development Storage=True. In addition, create a new string setting
called Container, and set the value to the container name you would like
(perhaps something like Contacts).

The user interface for the application consists of a set of controls for
adding new contacts, and a ListView control to display the entries (see
Figure E-19):

figure e-18

figure e-19

azure ❘ 1223

Imports Microsoft.WindowsAzure.StorageClient

Public Class _Default
 Inherits System.Web.UI.Page

 Private store As New BlobStore

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Load
 store.EnsureContainerExists()
 If Not IsPostBack Then
 BindGrid()
 End If
 End Sub

 Private Sub BindGrid()
 ContactList.DataSource = store.GetData()
 ContactList.DataBind()
 End Sub

 Protected Sub SubmitButton_Click(ByVal sender As Object,
 ByVal e As EventArgs) Handles SubmitButton.Click
 If PhotoFile.HasFile Then
 store.SaveContact(Guid.NewGuid().ToString(),
 NameField.Text,
 EmailField.Text,
 PhotoFile.PostedFile.ContentType,
 PhotoFile.FileBytes)

 BindGrid()
 Else
 Message.Text = "No image file"
 End If

 End Sub
End Class

Code snippet from CloudContacts

The code for working with the blob storage will be within the BlobStore class. As shown, this class will
have at least three methods:

 ➤ EnsureContainerExists — Creates the container if it doesn’t already exist, or returns the already
created container

 ➤ GetData — Returns the entries currently stored in the blob container

 ➤ SaveContact — Adds a new entry into the blob container

Here is the code for the BlobStore class:

Imports Microsoft.WindowsAzure
Imports Microsoft.WindowsAzure.StorageClient
Imports Microsoft.WindowsAzure.ServiceRuntime

Public Class BlobStore
 Public Function GetContainer() As CloudBlobContainer
 CloudStorageAccount.SetConfigurationSettingPublisher(
 Function(configName, configSetter) _
 configSetter(RoleEnvironment.GetConfigurationSettingValue(configName)))

 Dim account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString")

1224 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 Dim client = account.CreateCloudBlobClient()

 Return client.GetContainerReference(
 RoleEnvironment.GetConfigurationSettingValue("ContainerName"))
 End Function

 Public Sub EnsureContainerExists()
 Dim container = GetContainer()
 container.CreateIfNotExist()

 Dim permissions = container.GetPermissions()
 permissions.PublicAccess = BlobContainerPublicAccessType.Container
 container.SetPermissions(permissions)
 End Sub

 Public Function GetData() As IEnumerable(Of IListBlobItem)
 Dim options As BlobRequestOptions = New BlobRequestOptions()
 options.BlobListingDetails = BlobListingDetails.All
 options.UseFlatBlobListing = True

 Return GetContainer().ListBlobs(options)
 End Function

 Public Sub SaveContact(ByVal id As String,
 ByVal name As String,
 ByVal email As String,
 ByVal mimeType As String,
 ByVal buffer As Byte())
 ' Create a blob in container and upload image bytes to it
 Dim blob = Me.GetContainer().GetBlobReference(id)

 blob.Properties.ContentType = mimeType

 ' Create some metadata for this image
 Dim metadata = New NameValueCollection()
 metadata("ContactID") = id
 metadata("Name") = name
 metadata("Email") = If([String].IsNullOrEmpty(email), "unknown", email)

 ' Add and commit metadata to blob
 blob.Metadata.Add(metadata)
 blob.UploadByteArray(buffer)
 End Sub
End Class

Code snippet from CloudContacts

The GetContainer method connects to the assigned AppFabric the service is running under. It loads
the account as you did when working with table storage. It then uses that account to create a new
CloudBlobClient. This is the class you use to communicate with blob storage. In this case, you use it to
return the name of the container you configured earlier.

The EnsureContainerExists method uses that GetContainer method to create or return the container.
Permissions are added to allow anyone access to the container. Alternately, you could have restricted access
to just an individual blob, turned security off completely, or assigned shared access permissions to the
container.

The GetData method simply returns an IEnumerable of all the blobs stored in the container. This enables
you to iterate over the contents later.

Finally, the SaveContact method creates a new blob, using a Guid (assigned when you call SaveContact)
as the ID value for the new entry. As shown earlier, additional metadata is created as a simple
NameValueCollection and attached to the new blob entry before saving.

azure ❘ 1225

That is all that is required to communicate with blob storage. You
should be able to run the class now and add a few new contacts (see
Figure E-20).

Working with blob storage is definitely different from working with
a database or even table storage. However, the process is relatively
straightforward:

Create a blob container. ➤

Create new blobs within that container using ➤

GetBlobReference. You can also use this method to retrieve
individual blobs, using the ID you assigned to them.

You can also load (and read) blobs from a stream if it is ➤

more convenient (look for the UploadFromStream and
DownloadToStream methods).

Using a Worker role
So far, you have only been using Web roles in your applications.
These are the roles you will use to create user interfaces for your
cloud applications. However, you likely also need your application to
perform some processing that doesn’t fit into the Web model. It may be some asynchronous processing your
website needs to perform in the background, or it may be only some completely user interface–free number-
crunching that needs to execute. Either way, you add this functionality to your applications using worker
roles. They are the equivalent of code libraries for your cloud applications.

You use queues to communicate with worker roles. The worker role is responsible for periodically polling
the queue for new jobs. Once it has processed a message, it must also delete the message, to prevent other
workers from retrieving it.

To explore the use of queues, you will extend the CloudToDo application to add a worker role to send out
an e-mail when a task has been marked complete.

First, you need to add edit functionality to the application, to enable users to mark a task as complete. Set
the AutoGenerateEditButton property of the GridView to true. In addition, add three methods to the
code-behind page for adding the update functionality:

 Private Sub TaskGrid_RowCancelingEdit(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.GridViewCancelEditEventArgs) _
 Handles TaskGrid.RowCancelingEdit
 TaskGrid.EditIndex = -1
 BindGrid()
 End Sub

 Private Sub TaskGrid_RowEditing(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.GridViewEditEventArgs) _
 Handles TaskGrid.RowEditing
 TaskGrid.EditIndex = e.NewEditIndex
 BindGrid()
 End Sub

 Private Sub TaskGrid_RowUpdating(ByVal sender As Object,
 ByVal e As System.Web.UI.WebControls.GridViewUpdateEventArgs) _
 Handles TaskGrid.RowUpdating
 Try
 Dim id As String
 Dim task As TextBox
 Dim complete As CheckBox

 With TaskGrid.Rows(e.RowIndex)

figure e-20

1226 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 id = .Cells(1).Text
 task = CType(.Cells(2).Controls(0), TextBox)
 complete = CType(.Cells(3).Controls(0), CheckBox)
 End With

 ctx.UpdateTask(id, task.Text, complete.Checked)
 'turn off edit
 TaskGrid.EditIndex = -1
 BindGrid()

 Catch ex As DataServiceRequestException
 statusMessage = ("Unable to connect to the table storage server." &
 ex.Message)
 End Try
 Me.Message.Text = statusMessage
 End Sub

Code snippet from CloudToDoWithQueue

The RowCancelingEdit and RowEditing methods are relatively simple methods used to switch the desired row
of the GridView into or out of edit mode. The bulk of the update is in the RowUpdating method. This is called
when the user clicks the Update link on the row while editing. In this method, the code reads the new values
from the edit controls on the GridView and submits them to a new UpdateTask method that will be created in
a moment. It then sets the GridView not to display the edit functionality and redisplays the current data.

The next step is to add the method to update the data in the table storage:

 Public Sub UpdateTask(ByVal id As String,
 ByVal name As String,
 ByVal isComplete As Boolean)

 Try
 'get existing task by name
 Dim t As Task = (From f In Me.Tasks
 Where f.TaskID = id
 Select f).FirstOrDefault
 'update properties
 With t
 .Name = name
 .IsComplete = isComplete
 End With
 If isComplete Then
 'send to the Worker role
 ProcessTask(t)
 End If

 'save
 MyBase.UpdateObject(t)
 MyBase.SaveChanges()
 Catch ex As Exception
 Trace.WriteLine(ex.Message, "Error")
 End Try
 End Sub

Code snippet from CloudToDoWithQueue

As this code will update an existing task, the first step is to retrieve the current values. This uses LINQ
to query the underlying data service to retrieve the item by ID. You then set the new values and call
UpdateObject to mark it for submission when SaveChanges is called.

The ProcessTask method will add the task to the queue if the task is being marked complete:

azure ❘ 1227

 Private Sub ProcessTask(ByVal t As Task)
 'submits task to the queue for email
 Dim account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString")
 Dim client = account.CreateCloudQueueClient()

 'create or get queue
 Dim queue As CloudQueue = client.GetQueueReference("emailqueue")
 queue.CreateIfNotExist()

 'create message
 Dim msg As New CloudQueueMessage(DumpTask(t))
 queue.AddMessage(msg)

 End Sub

 Code snippet from CloudToDoWithQueue

 The code for communicating with queue storage is similar to that used for blob storage. You get a reference
to the queue, create a new message, and add it to the queue.

 One of the most likely (and perplexing) errors that occurs when using queues in Windows
Azure is related to case: The name of the queue must be all lowercase. If the name of the
queue includes uppercase characters, the code will fail on the call to CreateIfNotExist .
Fortunately, there is a simple solution: Keep away from the Shift key.

 The DumpTask method simply converts the updated task into a string to be added to the queue:

 Private Function DumpTask(ByVal t As Task) As String
 Dim result As New StringBuilder
 result.AppendLine("Task completion notification")
 result.AppendFormat("Task: {0} completed at {1}",
 t.Name,
 DateTime.Now.ToString("r"))

 Return result.ToString
 End Function

 Code snippet from CloudToDoWithQueue

 Now you can turn your attention to the actual worker role. Right - click on the Roles folder in the Solution
Explorer. Select Add ➪ New Worker Role Project and add a new worker role, named EmailWorker .
Visual Studio will add a new project to the solution, and the new role will appear in the folder. Add the
s DataConnectionString property to this new role as you did for the Web roles you created earlier:
right - click on the project and select properties to open the properties dialog. Add a new item (named
 DataConnectionString) on the Settings tab. Set the type of the item to ConnectionString , and the value
set to use the development storage.

 The main part of the code required for the worker role is in the Run method. This is called by the AppFabric
after the role has been initialized. Typically, you will either perform some long task here or periodically poll
a queue to fi nd something to process. Here, you poll the queue for new messages to e - mail:

 Public Overrides Sub Run()

 ' This is a sample implementation for EmailWorker. Replace with your logic.
 Trace.WriteLine("EmailWorker entry point called.", "Information")

 ' initialize the account information

1228 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

 Dim account =
 CloudStorageAccount.FromConfigurationSetting("DataConnectionString")

 ' retrieve a reference to the messages queue
 Dim client As CloudQueueClient = account.CreateCloudQueueClient()
 Dim queue = client.GetQueueReference("emailqueue")

 While (True)
 Thread.Sleep(10000)
 If queue.Exists() Then
 Dim msg = queue.GetMessage()
 If (msg IsNot Nothing) Then
 EmailMessage(msg)
 Trace.TraceInformation(String.Format("Message '{0}' processed.",
 msg.AsString))
 queue.DeleteMessage(msg)
 End If
 End If

 End While

 End Sub

Code snippet from CloudToDoWithQueue

Just as you did on the client side, the first steps are to retrieve the account, and then retrieve an instance of
CloudQueueClient and use that to open the queue. You call GetMessage to retrieve any message added,
process the message, and call DeleteMessage to prevent it from being processed again. Recall that after you
call GetMessage, the message will be invisible to other workers for 30 seconds, so your processing should
take less than this amount of time or you might end up with multiple results.

You can hard-code your settings for the actual e-mail but a better solution is to load them from a secure
location, such as the project’s settings. Right-click the EmailWorker project and open the Properties dialog.
On the Settings tab, add the following properties:

ProPerTy TyPe descriPTion

SmtpServer String The IP address or hostname of your SMTP server . You should be able to get this
from your e-mail administrator or service .

SmtpPort Integer The port on the SMTP server that provides SMTP access . This may be 25 if the
server is not set to use security, or another port if secure . Again, contact your
administrator if you have questions .

UserID String The user account on the SMTP server (if you need to log in)

Password String The password for the user account on the SMTP server (if you need to log in)

Recipient String The e-mail address that will receive the message . Set this to your e-mail account
to receive the notification message .

The EmailMessage method uses these settings to send the message using the SmtpClient class in the
System.Net.Mail namespace:

Private Sub EmailMessage(ByVal message As CloudQueueMessage)
 'create message
 Dim msg As New Mail.MailMessage
 With msg
 .Subject = "Task completion notification"
 .To.Add(My.Settings("Recipient").ToString)
 .Body = message.AsString
 .BodyEncoding = Text.Encoding.ASCII
 .From = New Mail.MailAddress(My.Settings("UserID").ToString)
 End With
 Dim userid As String = My.Settings("UserID").ToString
 Dim pwd As String = My.Settings("Password").ToString

azure ❘ 1229

 Dim host As String = My.Settings("SmtpServer").ToString
 Dim port As Integer = CInt(My.Settings("SmtpPort"))
 Dim smtp As New Mail.SmtpClient(host, port)
 With smtp
 .EnableSsl = True
 .Credentials = New NetworkCredential(userid, pwd)
 Try
 .Send(msg)
 Catch ex As Exception
 Trace.WriteLine(ex.Message, "Error")
 End Try

 End With
End Sub

Code snippet from CloudToDoWithQueue

The AsString method of the CloudQueueMessage class returns the contents of the message. There is also an
AsBytes method if you need to process the message bytes themselves. The remainder of the code creates a new
MailMessage using the settings you created earlier, and
sends the message on to the assigned SMTP server.

You should now be able to run the application and edit an
entry. Mark an entry as complete and save the entry. If the
network guardians are in your favor, you should soon see
the e-mail in your inbox (see Figure E-21).

Working with queue storage is perhaps the simplest
solution of the three storage models. Of course, the items
you write to the queue have less permanence than items in the other two storage mechanisms. Queue storage
really only needs to be used as a communication mechanism, so the messages are more transient. The
process of using queue storage is as follows:

 1. Open the account as you did for the other two storage types.

 2. Use the account to create an instance of CloudQueueClient.

 3. Use that client to create a new queue.

 4. Write messages to the queue.

 5. On the other side, use the client to read the queue.

 6. Process the messages.

 7. Remember to delete the message after processing it.

deploying the service
Once you’ve completed your application, you’re ready to leave the comfortable surroundings of Visual
Studio and the development environment and move your application to the live servers.

Right-click on your project in Visual Studio, and select Publish. This will start your web browser and send
you to the Windows Azure site (http://windows.azure.com). Here you can sign up for the live Windows
Azure services. You will need to sign in with your Live ID to access the site. If this is your first time creating
a project, you need to agree to the terms and set up payments (have a credit card or purchase order handy).

Once you have entered in all the information, you can then return to the Windows Azure page to add
your service(s) to your cloud. During the Publish process, Visual Studio created two files. The first, with
a .cspkg extension, is the Service Package file containing all the DLLs and other components of your
Windows Azure solution. The second, with a .cscfg extension, is the configuration file that describes
to Windows Azure how to deploy your application. This is the file that contains the number of instances to
run and their size, among other settings.

figure e-21

1230 ❘ aPPendix e PRoGRammiNG FoR tHE Cloud

On the Windows Azure website, you can select one of your projects (see Figure E-22) to begin the wizard
that steps you through the process of deploying your application. You define the name of the service (e.g.,
CloudToDo), and select the URL that will be the new home for your shiny new cloud application. The most
important step is to load the two created files (see Figure E-22), and then start the application (see Figure E-23).

figure e-23

figure e-22

As your application needs grow, you can configure the application to add more instances. At the moment,
the user interface for this is a little Spartan (see Figure E-24). Alternately, you can edit the configuration file
using Visual Studio and upload a new copy to affect the deployment.

figure e-24

summary
Not every application is well suited to running in a cloud environment. The additional complexity and
constraints these environments add to your application can make them restrictive and limited. However,
some applications really do benefit from running in a cloud. Applications that involve highly variable server
demands, long-running calculations, or processing all benefit from running within a cloud. In addition,
scenarios with limited IT support will benefit, as you can now rely upon the cloud providers themselves to set
up and maintain your computers. As always, the only way to truly decide whether Windows Azure is a good
solution for your application is to weigh the factors of cost, scalability (and availability), and development time.

summary ❘ 1231

1233

index

symbols

& (ampersand)
concatenation, 80, 130
MaskedTextbox character placeholder, 561

* (asterisk), multiplication operator, 130
\ (backslash)
MaskedTextbox, 561
operator, 130

^ (caret), operator, 130
: (colon)
MaskedTextbox time separator, 560
statements, 10

, (comma), MaskedTextbox thousands
separator, 560

. (decimal placeholder), MaskedTextbox, 560
“” (double quotes), statements, 10
5 (equals sign)

comparison operator, 128–129
statements, 10

. (greater than)
comparison operator, 128–129
MaskedTextbox uppercase operator, 561

.5 (greater than or equal to), comparison
operator, 128–129

,. (inequality), comparison operator, 128–129
, (less than)

comparison operator, 128–129
MaskedTextbox lowercase operator, 561

,5 (less than or equal to), comparison operator,
128–129

-? , ASP.NET SQL Server Setup Wizard, 763
- (minus sign), 130
(number sign), MaskedTextbox, 560
. (period), namespace, 8
1 (plus sign), 130

concatation, 80

? (question mark), MaskedTextbox letter
placeholder, 561

; (semicolon), command line, 10
/ (slash)

division operator, 130
MaskedTextbox date separator, 560

/? (slash, question mark), compiler, 1144
[] (square brackets), 1017
_ (underscore), command line, 10
,, (bit shifting operator), 130
..(bit shifting operator), 130

a

-A all, ASP.NET SQL Server Setup
Wizard, 763

-A p, ASP.NET SQL Server Setup Wizard, 763
Absolute, SizeType, 556
abstract base class, 175–177, 196
abstraction, 67, 184–186

classes, 69
methods, 176

AcceptTcpClient, 962, 963, 968
AcceptVerbs, 803
AccessDataSource, ASP.NET, 735
Account, ServiceProcessInstaller, 986
ACID. See atomicity, consistency,

isolation, durability
Action, SecurityException, 1035
ActionLink, 796
Actions Pane, Word, 856–861
ActivateStateAction, SketchFlow, 676
Activator.CreateInstance,

InvokeMember(), 939
Active Database Objects (ADO), 437
ActiveForm, 548
ActiveX, 511

1234

ActiveX (continued)
assemblies, 1008
COM, 940–944
Windows Forms controls, 576

Activity, WF, 896
Activity library, WF, 883
ActivityXamlServices.Load, 900
Add File Search, Launch Conditions Editor,

1122–1123
Add Reference, 233
Add Resource, 25
Add Server, 57
Add Service Reference, Silverlight, 701
Add Special Folders, 1111–1114
AddHandler, 116–119
Add-In

projects, 60
VSTO, 845

AddInput, InvokeMember(), 938
/addmodule, 1141
AddOwnedForm, Windows Forms, 544
AddPropertyMap, Windows Forms, 609–610
AddRemoveProgramsIcon, 1107
AddToCollection,T., WF, 887, 893
ADO. See Active Database Objects
ADO.NET, 5, 389–421

adding data, 392–393
architecture, 390–391
classes, 395–396
components, 396–398
connection pooling, 418
data providers, 396–397
Data Service, 705–714
DataAdapter, 407
DataReader, 391–392, 396–397, 402–404
DataSet, 396–397, 410–416
DataTable, 413–414
deleting data, 394–395
EF, 438–439, 705
indexing, 414
InsertData(), 392–393
LINQ to SQL, 705
namespaces, 395–396
resource managers, 421
REST, 705
serialization, 414–415

Silverlight, 705–714
stored procedures, 484
transactions, 418–421
updating data, 393–394
versions, 216
XML, 389–390

Advanced Compiler Options, 18, 20
aesM, Parallel.For, 1064
Aggregate, query expression, 429
AggregateException

IsFaulted, 1090
Parallel.ForEach, 1076

Ajax, 772–785
aliasing, namespaces, 239–240
Alignment, ActiveX control, 940
AllItemsAreInstancesOfType, 290
AllItemsAreNotNull, 290
AllItemsAreUnique, 290
AllMessagesField, 963, 971
AllowFullOpen, 567
AllowItemReorder, ToolStrip, 564
AllowTransparency, 636
AllowUserToAddRows, 492
AllowUserToDeleteRows, 492
ALM. See Application Lifecycle Management
AlwaysCreate, 1114
anchoring

Silverlight, 689
Windows Forms, 554

And, 78, 130
AndAlso, 130
annotations

Expression Blend, 671
SketchFlow, 678

AnyCPU, 18
\App_Code, 722
app.config, 25–26, 402, 1010

WCF, 528–529
XML, 25

\App_Data, 722
AppDomain

CurrentDomain, 1014–1015
reflection, 1013

appid, 479
Application, Windows Forms, 543
applications, 45–52

activeX – applications

1235

ASP.NET, 722–723
configuration file, assemblies, 1010
debugging, 46–51
deployment, 215–216, 1102–1103
download cache, 1125
framework, 16, 200–201
inheritance, 200–201
isolation, assemblies, 1008
library caching, Silverlight, 682–683
LOB, 680
.NET, 212–214, 941–944

COM, 932–935
services, 981–1000

IIS, 981
Windows Services, 981–996

Silverlight, 680–682
sockets, 960–962
synchronization, 462
Title, 1107
WCF, 514
WF, 881–882
Windows, Internet deployment, 1124–1133
Windows Forms, 604–610
WPF, 617–666

Application Lifecycle Management (ALM), 61–64
Application Log, 39
ApplicationContext, 243
ApplicationEvents.vb, 16
application-private assemblies, 1004, 1006–1007
applications

console, 21
RAD, 962
remote data entry, 462
remote data mirror, 462
remote database, 462
RIA, 679

application.xaml, 257–258
\App_LocalResources, 723
ApplyMask, 607
\App_themes, 722
\App_WebReferences, 723
App.xaml, 683
AreEqual, 289, 290
AreEquivalent, 290
AreNotEqual, 289, 290
AreNotEquivalent, 290

AreNotSame, 289
AreSame, 289
ArrayList, 316, 956
arrays, 312–315
AS Integer, 20
AS ,type., 19
ASMX Web service. See Simple Object Access

Protocol
AsOrdered(), ParallelEnumerable, 1098
AsParallel(), ParallelEnumerable, 1098
,asp:CommandField., GridView, 742
ASP.NET, 719–749

advanced features, 751–785
Ajax, 772–785
applications, 722–723
Assembly Resource, 722–723
binding, 735–749
compiler, 734
content pages, 755–757
controls, 724–727, 759–761
Copy Web Site, 734
culture, 908–910
deployment, 734–735, 1108–1109
Development Server, 723
encryption, 1036
field validation, 732–733
FTP, 734
global resources, 921–923
GridView, 813
health-monitoring, 721
HTML, 724
JSON, 721
localization, 721

resources, 916–921
master pages, 752–754
membership, 766–770
Menu, 760–761
MVC, 787–806
namespaces, 240
navigation, 758–759
.NET, 618
Page Lifecycle, 729–731
parameters, 742
performance, 720
provider model, 761–766
Publish Web Site, 734–735

application lifecycle Management (alM) – asP.neT

1236

ASP.NET (continued)
resources, 916–923
role management, 766–770
scalability, 720
SharePoint, 807
Silverlight, 682
SiteMapDataSource, 760–761
siteMapNode, 758–760
SQL Server, 720, 763–765
start page, 21
,table., 724
themes, 722
threads, 907
ViewState, 731–732, 1036
Visual Studio, 721–723
Web Forms, 720, 723–735
web.config, 14
XML, 369–373, 758

assemblies
ActiveX, 1008
application isolation, 1008
application-private, 1004
attributes, 218–220
CLR, 1001–1002
configuration files, 1010–1011
culture, 1005–1006
default versions, 1009–1010
deployment, 1006–1008
dynamic loading, 1016–1019
GAC, 215
level scoping, 68
location, 1012
manifest, 213–214, 1002–1004
metadata, 1002, 1007
modifiers, 16
MSIL, 1002
.NET, 213–214
neutral culture, 1006
privatePath, 1012–1013
QFE, 1009, 1010
reflection, 1001–1019
resources, 1002
self-describing components, 1009
shared, 1004, 1007–1008
side-by-side versioning, 1009
strong names, 1004–1005
versions, 1004, 1008–1013

Assembly, 1014, 1017
LoadFrom, 1016–1017
reflection, 1013
System.Reflection, 220

Assembly Company, 16
Assembly Copyright, 16
Assembly Description, 16
.assembly extern, 1006
Assembly File Version, 17
Assembly Information, 16–17
Assembly Resource, ASP.NET, 722–723
Assembly Title, 16
Assembly Trademark, 16
Assembly Version, 16
,assemblyBinding., 1012
AssemblyCulture, 1006
,assemblyIdentity., 1011
AssemblyInfo.vb, 16–17
AsSequential(), 1098
Assert, 288–290

code access permissions, 1026
assertions, TDD, 288–290
Assets tab, Blend Expressions, 669–670
Assign, WF, 887
AssociationSets, 442
AsUnordered(), 1098–1099
AsyncCodeActivity, 896
asynchronous
Command, 404–406
SQLCommand, 404
tasks, 1083

AsyncState, 1080
Atom, 495–496
atomic operations, 1093
atomicity, consistency, isolation, durability

(ACID), 1186–1187
attributes

CLR, 218–220
Source Code Style, 347–348
Test, 295
Windows Forms controls, 579–581
XAML, 259–262

Audio, 246
Audit Failure, 281
Audit Success, 281
Author, 453
AutoCompleteMode, 559–560

asP.neT – autoCompleteMode

1237

AutoGenerateEditButton, 1225
AutoLog, 985, 991
Autos window, 47, 52
AutoScaleDimensions, 31
AutoScaleMode, 31
AutoScroll, 547
AutoSize, 556

B

backing field, 578
BackStyle, 940
base class, 139

abstract, 175–177, 196
creating, 140
fragile-base-class problem, 206–208
inheritance, 198
MustOverride, 196
MyBase, 163
Overridable, 145, 152
subclass, 168
System.Object, 147
virtual methods, 148–151
Windows Forms controls, 584–586

Base Class Library (BCL), .NET, 321
/baseaddress, 1146
basic string (BSTR), 216
basicHttpBinding, 704
BCL. See Base Class Library
BeginExecuteNonQuery, 404
BeginExecuteReader, 404
BeginExecuteXmlReader, 404
behavior
class, 103
classes, 9
inheritance, 139
methods, 70–71, 106
objects, 70–71
references, 74
SketchFlow, 675–676
values, 74
WPF, 626–631

\bin, 46
Binary Large Object (blob), 1210–1211, 1222–1225
BinaryFormatter, 969, 970
BinaryFormatter.Deserialize, 974

BindGrid, 405
binding, 665. See also late binding

ASP.NET, 735–749
COM, 930
early, 97, 930
WPF, 648, 660–665

BindingFlags, 939
BindingNavigator, 610
,bindingRedirect., 1011
bit shifting operators, 130
BitArray, 316
black box recorder. See historical debugging
blob. See Binary Large Object
BlockingCollection(), 1094
Body, 453
body

Parallel.For, 1063
Parallel.ForEach, 1068
ParallelForEachGenerateMD5Hashes, 1070

Boolean, 80–81
primitive data types, 76
ServiceBase, 985
SqlFunctionAttribute, 477
SQLUserDefinedType, 472

Boolean Equals(Object), 217
bootstrapper, 1132
Border, 692
boxing, 319–320
Break, 1073
Break All, 49
breakpoints, 50–51, 270
Browsable, 581
BSTR. See basic string
bubbling, 639
/bugreport, 1146
build configurations, 54–56
build engine, 5
BuildSqlCommand, 407–408
Button

Conversation window, 963
InitializeComponent, 44
Location, 44
Name, 44
resources, 919
System.Windows, 44
ToolStrip, 564
Windows Forms, 923

autoGenerateeditButton – Button

1238

Button (continued)
Windows.Forms, 569–570
WPF, 622

ButtonBrowse, 647
ButtonNext, 641
ButtonPrev, 641
ButtonTest, 41
ButtonText, 74
ByRef, 107
Byte, 73, 76, 85
ByVal, 9, 107

c

C, 216–217
C#, 39
C11, 216, 987
-C, ASP.NET SQL Server Setup Wizard, 763
CA. See Certificate Authority
CAB Project template, 1104
cabinet file, 1104
CalculateDistance, 192–193
Call Stack window, 46, 51
CallExternalMethod, 1170
CallVSTOAssembly, 852
CAML. See Collaborative Application

Markup Language
cancellation tokens, tasks, 1086–1089
CancellationScope, 888
CancellationToken, 1078
CanDeserialize, 346
CanStop, 995
Canvas, 691
Case, 79
CasPol.exe, 1022
Cast, 101
Catch, 98, 269, 270–271, 274–275
Category, 581
CausesValidation, 562
CBool(), 100
CChar(), 100
.cd, 60
CDbl(), 100
CenterParent, 543
CenterScreen, 543
Certificate Authority (CA), 1046

Certificate Trust List (CTL), 1035
Certmgr.exe, 1035
Cert2spec.exe, 1035
chains of inheritance, 157
ChangeConflicts, 427
ChangeCulture, 243
Changed, FileSystemWatcher, 989
ChangePropertyAction, 676
ChangeUICulture, 243
Char, 76, 85
Character, 73, 82
CheckBox, 569
Checked, 564–565
CheckedListBox, 569, 582–584
child class, 139, 198, 954
ChildChangedEventArgs, 600
CInt(), 100
circular references, 222–223
city, 479
Class, 7, 8, 103–105, 425
Console, 11
declaration, 103
implementation, 103
keywords, 103–105
.NET Framework, 72
Shared, 11
Solution Explorer, 104
Table, 425
View, 425

classes. See also base class; subclass
abstraction, 69
ADO.NET, 395–396
attributes, 218–220
behavior, 9
child, 139, 198, 954
components, 134–135
constraints, 336
constructors, 119, 165
creating, 103–120
derived, 139
diagrams, 60–61
fields, 105
generics, 327–332
inheritance, 138
instances, 8

Shared, 19
interfaces, 181

Button – classes. see also base class; subclass

1239

methods, 105–107
native interface, 178
.NET Framework, 159
objects, 68–69, 86–93
parent, 139, 162
partial, 29
shared, 396
state, 9
superclass, 139
System.Xml.Xsl, 368–369
TDD, 302
templates, 105
ToString, 160
TPL, 1061
wrapper, 491

Class Designer, 61, 139
Class View window, 104–105
ClassCleanup, 295
ClassInitialize, 295
ClassKey, 922
Class_Terminate, 225
Clear, 589
ClearCollection,T., 887
ClickOnce deployment, 216, 1103, 1126–1133

directories, 1129
manifest, 1129

Client, TcpClient, 973
ClientBin folder, Silverlight, 682
ClientContext, 831
ClientSize, 31
Clip, 607
Clipboard, 246
ClipToBounds, 631
Clock, 246
Close, 283, 284
cloud computing, 1205–1231

parallelism, 1207
scalability, 1206–1207

Cloud Services, 13
CloudQueueClient, 1228
CloudStorageAccount, 1221
CLR. See Common Language Runtime
CLSID, 930
CObj(), 100
Code, 1172
code access permissions, 1026, 1029–1032
Code Access Security, 1022

Code Analysis, 28, 62–64
Code Editor, 56
code expansion, 35–37
code regions, 32
code snippets, 37–39
CodeAccessSecurityAttribute, 1023
CodeActivity, 896
,codeBase., 1012
code-behind file, 728
/codepage, 1146
Collaborative Application Markup Language

(CAML), 811
Collection, 425
collection, 116
collections

concurrency, 1094–1097
thread-safe, 1094

CollectionAssert, 290
Collections, 315–320
Color, 567
ColorDialog, 567
Column, 425
COM. See Component Object Model
COM Visible, 17
ComboBox, 564, 569, 576
Command

ADO.NET data providers, 396–397
asynchronous, 404–406
SQL, 399

command line, 10, 21
; (semicolon), 10
_ (underscore), 10
debugging, 21

Command window, 57
CommandTimeout, 427
CommentID, 453
Comments, Task List, 56
comments, XML, 42
Common Language Runtime (CLR), 4, 211–252

assemblies, 1001–1002
attributes, 218–220
cross-language integration, 216–221
.dll, 235
exceptions, 267
GC, 221–226
managed heap, 228
memory, 221–231

Class Designer – Common language runtime (Clr)

1240

Common Language Runtime (CLR), (continued)
metadata, 217–218
.NET, 211
permissions, 1026
SQL Server, 470
tasks, 1084
threads, 1080
versions, 214–216
work-stealing queues, 1080

Common Object Request Broker Architecture
(CORBA), 508, 510

common type system (CTS), 217
Compare, 87, 131
CompareOrdinal, 87
comparison operators, 77–79, 128–130
CompensableActivity, 888
CompensatableSequence, 1172
Compensate, 888, 1172
Compile tab, 17
compiler, 1137–1149

Advanced Compiler Options, 18, 20
ASP.NET, 734
JIT, 14, 212–213
Option, 19
projects, 17–21
refactoring, 39
references, 235–236

components
classes, 134–135
COM, 931–932
.NET, 944–948
queues, 1198–1204
transactions, 1187–1197
Visual Studio, 134

Component Object Model (COM)
ActiveX, 940–944
binding, 930, 936–939
components, 931–932
CTS, 217
DCOM, 507, 509–510, 930
.dll, 930, 935–936
GUID, 930, 1193
interfaces, 930
interop, 929–948
legacy components, 931–932
metadata, 217

.NET, 929–948
P/Invoke, 947–948
RegAsm, 946–947
TlbExp, 947
TlbImp.exe, 935–936
Visual Studio, 931
WebBrowser, 976

Component Services Console, 1194–1195
component-based language, 68
components, self-describing, 1009
composite controls, Windows

Forms, 576–577
Compute services, Windows Azure, 1213
Concat, 88
concatenation, 80, 130
concurrency, 64–66, 1055–1057, 1094–1097
ConcurrentBag(), 1094, 1099
ConcurrentDictionary(), 1094
ConcurrentQueue, 1094–1095
ConcurrentStack, 1094, 1096–1097
Condition, 1107, 1114
conditional statements, 76–79
ConditionedActivityGroup, 1172
.config, 14
,/configuration., 1011
configuration files, 1010–1012
Configuration Manager, 55–56
Configure Data Synchronization, 466
ConfigureClient, 964, 967
private _stream field, 972
TcpClient, 973

Confirm, 888
ConnectForm, 965

Conversation window, 963
Listener, 967–978, 975
_mainThreadID, 966

Connection, 396–397, 426, 427
connection pooling, 418
Console, 8, 10–11
console applications, debugging, 21
Constants, String, 90–91
constraints, 329, 334–337

classes, 336
multiple, 336–337
Structure, 336
types, 334–335

Common language runtime (Clr) – constraints

1241

constructors, 164–168
classes, 119, 165
exceptions, 272
inheritance, 164
New, 166
Optional, 166
overloading, 123–124, 166–167
parameters, 164, 166–168
Shared, 128
String, 166

Contacts.aspx, 824
ContainerControl, 586
Contains

CollectionAssert, 290
StringAssert, 289

content pages, ASP.NET, 755–757
content presenter control, 631
ContextMenuStrip, 564–565, 957
ContextUtil, 1190
continuations, tasks, 1092
contravariance, 337–339
Control, Windows Forms, 552, 585
Controller, ASP.NET MVC, 789–792
controls

ActiveX, 940–941
ASP.NET, 724–727, 759–761
composite, Windows Forms, 576–577
content presenter, 631
GAC, 24
Silverlight, 685
SketchFlow, 675
Windows Forms, 552–573, 575–597, 599–616
Windows.Forms, 569–571
WPF, 599–616, 622–625, 645–647

Windows Forms, 601–614
ControlStoryboardAction, 676
ControlToValidate, 732
Conversation window
ConfigureClient, 967
ConnectForm, 963
debugging, 964
sockets, 962–968
TcpClient, 973
TextBox, 963

conversion
data types, 98–103

implicit, 81, 98–99
Copy

code access permissions, 1026
String, 88

Copy Web Site, ASP.NET, 734
CORBA. See Common Object Request Broker

Architecture
core database engine, 5
CorrelationScope, 888
Count, 36, 47
covariance, 337–339
CPU Sampling, 64
Create, 953
Create, Retrieve, Update, and Delete (CRUD), 296,

705, 797–804
Created, 989, 991
CreateDatabase, 427
CreateEventSource, 282
CreateFromCertFile, 1047
CreateInstance, 1017
CreateTableFromModel, 1220
CreationOptions, 1080
Credentials, 953
cross-language integration, 216–221
CRUD. See Create, Retrieve, Update, and Delete
cryptography. See encryption
CryptoStream, 1042
CSng(), 100
CTL. See Certificate Trust List
ctor, 166
ctrl, 9
CTS. See common type system
CType, 101–102, 130
culture

ASP.NET, 908–910
assemblies, 1005–1006
currencies, 913–915
dates, 910–912
invariant, 906
localization, 905–910
neutral, 906–907, 921, 1006
numbers, 913–915
server-side declarations, 908–909
sort, 915–916
specific, 906
threads, 907–908

constructors – culture

1242

culture (continued)
types of, 906–907
Windows Forms, 924

Culture, 243, 918
CultureInfo, 907–908
currencies, 913–915
CurrentCulture, 908
CurrentDomain, 1014–1015
CurrentId, 1080
Cursor, 639
Custom Actions Editor, 1120–1121
Custom activities, WF, 883
Custom Event, 115–116
CustomActivity, 896
customBinding, 704
customization

event handlers, 42
objects, 137–209
partitioners, 1067
WF, 896–899
Windows Forms controls, 576

d

-d ,database., ASP.NET SQL Server Setup
Wizard, 763

DAO. See Data Access Objects
Data, SecurityException, 1035
Data Access Objects (DAO), 437
Data Connections, 57
data contracts, 531–533
data parallelism, 1052
data providers

ADO.NET, 396–397
.NET, 398–410

SQL Server, 409
OLE DB.NET, 409–410

Data Services (DS), WCF, 458, 495, 497–501
ADO.NET, 705–714
client library, 501–505

data types, 72–76
C, 216
conversion, 98–103
decimal, 82–85
delegates, 131–132
operators, 128

primitives, 75–76
properties, 108
references, 73–75, 86–93
unsigned, 82
values, 73–75, 79–86

Data window, Expression Blend, 673
DataAccess, 477
DataAdapter

ADO.NET, 396–397, 407
Fill, 406
.NET Framework, 406
objects, 406–409

Database, 425
DatabaseExists, 427
DataConnectionString, 1219
DataContext, 426–428
Database, 425

DataException, 269
DataGridView, 492, 610
DataProtectionPermission, 1023
DataProtectionPermissionAttribute, 1023
DataReader

ADO.NET, 391–392, 396–397, 402–404
DataSet, 403, 415–416
DataTable, 415–416
ExecuteReader, 403
Read, 403

DataRelationCollection, 410–411
DataSet

ADO.NET, 396–397, 410–416
creating, 411–413
DataReader, 403, 415–416
indexing, 414
Merge, 416
metadata, 410
objects, 410–416
serialization, 414–415

DataSource, 813
DataTable, 408–409

ADO.NET, 413–414
DataReader, 415–416
independence, 416
indexing, 414
objects, 413–414
serialization, 414–415

DataTableCollection, 410
DataTemplate, 662

culture – DataTemplate

1243

Date

Double, 85
primitive data types, 76

dates, culture, 910–912
DateTime, 85
DateTimePicker

Windows.Forms, 569
WPF, 610

.dbml, 423
DBNull, 92–93, 322
DCOM. See Distributed COM
deadlock, 1093
Debug, Configuration, 54–55
Debug, 21–22, 283–284
/debug[1:2], 1142
debugging, 18, 267–285

applications, 46–51
breakpoints, 50–51
command line, 21
console applications, 21
Conversation window, 964
directories, 21
.dll, 51
historical, 47, 267–268
Interop Forms Toolkit, 1157–1158
Parallel Stacks, 1083–1085
Parallel Tasks, 1083–1085
projects, 21–22
remote, 22
SQL Server, 22
Visual Studio, 998
Windows Services, 988, 998–1000

Decimal, 76, 84–85
decimal data types, 82–85
declaration
Class, 103
delegates, 131
objects, 95–96

declarative programming, 253–265
DeclaringType, 220
DecryptActivity, 897–899
deep copy, 75
Default, 112
default interface, 68
default interop assembly, 935–936
default versions, assemblies, 1009–1010

Default.aspx, 919–921
Default.aspx.resx, 919
DefaultLocation, 1114
DefaultValue, 580
DeferredLoadingEnabled, 427
/define, 1143
Delay, 887, 892, 1173
delay signing, 1005
/delaysign[1:2], 1146
Delegate, 131, 133
delegates, 130–134
BindGrid, 405
data types, 131–132
declaration, 131
Invoke, 966
IsMainThread, 966–977
methods, 132–134

DELETE, 501
Delete, 282
DeleteCommand, 742
Deleted, 989
DeleteDatabase, 427
DeleteEventSource, 282
,DeleteParameters., 742
Delphi, 962
Demand, 1026
Demanded, 1035
Deny, 1026
DenySetInstance, 1035
Dependencies, 1107
dependency properties, 648–656
DependencyObject, 661
DependencyPropertyKey, 661
,dependentAssembly., 1012
deployment, 1101–1135

application-private assemblies, 1006–1007
applications, 215–216, 1102–1103
ASP.NET, 734–735, 1108–1109
assemblies, 1006–1008
ClickOnce, 216, 1103, 1126–1133
IIS, 1133–1134
Interop Forms Toolkit, 1157
.NET, 1102
no-touch, 1125–1126
shared assemblies, 1007–1008
SharePoint, 808

Date – deployment

1244

deployment (continued)
Visual Studio, 1103–1109
Windows Azure, 1229–1231
XCOPY, 1102
zero-impact, 1008

Deployment, My.Application, 243
dereferencing, 97, 120
derived class, 139
Description, 581, 759
Deserialize, 970
design surface, Expression Blend, 670–671
DetectedDependencies, 1108
DialogResult, 549–550
dialogs

User Interface Editor, 1119–1120
Windows Forms, 566–567

digital rights management (DRM), 680
Digital Signature Algorithm (DSA), 1043–1044
Dim, 7, 8
DIME. See Direct Internet Message Encapsulation
Direct Internet Message Encapsulation

(DIME), 515
DirectCast, 101, 102
directories

ClickOnce, 1129
debugging, 21

,disconnect., 974, 975
DisplayName, 986
DisplayPrincipalIdentity(), 1033
Distance, 494
DistanceTo, 190, 196
Distinct, 429
Distributed Applet-Based Massively Parallel

Processing, 511
Distributed COM (DCOM), 507, 509–510, 930
Distributed Object Invocation, 511
.dll. See dynamic link library
DNS. See Domain Naming System
Do Until, 318–319
Do While, 318–319
/doc[1:2], 1140
docking, Windows Forms, 553–554
DockPadding, 554
Document Object Model (DOM), 348, 359–363
Document/Workbook, VSTO, 845
.docx, 849
DoesNotContain, 290

DoesNotMatch, 289
DOM. See Document Object Model
Domain Naming System (DNS), 951
DomainUpDown, 569
DoOtherStuff, 176–177
DoSomething, 98, 176–177, 178
DoSomethingElse, 178
DoSort, 133
Dotfuscator Community Edition, 221
Double, 76, 84, 85
DoWhile, 887, 892
DragDelta, 639–640
DragDeltaEventArgs, 640
DragDrop, 568–569
DragMove, 637
DragOver, 639
DragStarted, 639
DRM. See digital rights management
DS. See Data Services
DSA. See Digital Signature Algorithm
dynamic code analysis, 64
dynamic link library (.dll), 12, 213

CLR, 235
COM, 930

Visual Studio, 935–936
debugging, 51
EF, ADO.NET, 438–439, 705
.NET, 235, 1001
references, 23
SQL Server Compact, 458

dynamic loading, assemblies, 1016–1019

e

-E, ASP.NET SQL Server Setup Wizard, 763
early binding, 97, 930
Edit and Continue, Advanced compile options, 18
EF. See Entity Framework
ElementHost, 600, 607
Elements.xml, 833
EllipseMask, 607
ElseIf, 77
EmailMessage, 1228–1229
embedding, Windows Forms controls, 595–597
Empty, 87
empty tags, 342

deployment – empty tags

1245

EnableRaisingEvents, 989
encapsulation, 67–68, 70, 187–189
Name, 71
Protected, 169

Encapsulation, 190, 192, 196
EncryptActivity, 896–899
encryption, 1036–1049

ASP.NET, 1036
.NET Web Services, 1022
PKCS, 1043–1044
SSL, 1047–1049
strong names, 1193–1194
symmetric key, 1040–1043
X.509 certificates, 1046–1047

End stage, User Interface Editor, 1119
EndsWith, 289
EnsureContainerExists, 1224
Enterprise Services, .NET, 949, 1185–1204
/entity, 499
/entity(KEY), 499
/entity(multiple keys), 499
Entity Data Model, 439
Entity Framework (EF), 437–456

objects, 446–452
tables, 448–452
Visual Studio, 440, 452–454
WCF DS, 497

Entity Set Name, 453
EntityDataSource, 735
/entity(KEY)/field, 499
EntityObject, 442
/entity(KEY)/related, 499
EntityType, 442
EntrySystem.Net.Dns, 965
EntryWritten, 282
Enum, 143–144
EnvironmentPermission, 1023
EnvironmentPermissionAttribute, 1024
Equals, 88, 1026
Equals(), 328
Error, 558
errors. See also exceptions

logging, 280
runtime, 988
sockets, 974
trappable, 102

Windows Services, 988
Error List, 57
ErrorMessage, 732
ErrorProvider, 558, 610
/errorreport, 1146
Err.Raise, 279–280
events, 112–113
AddHandler, 117–119
ASP.NET Web Forms, 728–729
Custom Event, 115–116
EventLog, 282
inheritance, 170–171
interfaces, 179
raising, 114–117

subclass, 171–173
Shared, 127–128
Windows Forms controls, 581–582
WithEvents, 116–117

event handlers, 113–114
customization, 42
IDE, 41
WPF, 625–626
XAML, 625

Event Logs, 57, 280–281
security, 281

EventArgs, 113
EventDriven, 1172
EventLog, 281, 282
FileSystemWatcher, 990–991

evidence, 1026
Excel, 864–871
Exception, 269, 1080, 1090
exceptions

CLR, 267
constructors, 272
handling, 267–285, 358–359
.NET, 268–269
Parallel.ForEach, 1075–1076
properties, 268–269, 275
tasks, 1089–1090

Exclude, 1107
.exe, 12, 1001
ExecuteAndSend, 485
ExecuteCommand, 427, 994, 997
ExecuteNonQuery, 394–395
ExecuteQuery, 427, 831

enableraisingevents – executeQuery

1246

ExecuteReader, 393, 403
ExecuteScalar, 393, 1191
execution path, 254
Exists, 282
ExistsInCollection,T., 887
Exit Try, 273–274
$expand, 500
explicit conversion, 98–103
explicit dereferencing, 120
Expression, 886, 922
Expression Blend, 667–678

Objects and Timeline, 671–672
projects, 669
Properties window, 673
Resources window, 673
States window, 672–673
Toolbox, 669–670
WPF, 617

ExtendedProperties, 411
extender providers, Windows Forms, 557–559
Extensible Application Markup Language (XAML),

253–265, 612
event handlers, 625
IntelliSense, 626
.NET, 1029
.NET Framework, 259
resources, 637
WF, 882, 899–900, 1165
WPF, 255–258, 602–604, 617–666

Extensible Markup Language (XML), 22, 341–387
ADO.NET, 389–390
app.config, 25
ASP.NET, 369–373, 758
comments, 42
DOM, 360–363
HTML, 342
lambdas, 385–387
LINQ, 375, 380–382
LINQ to XML

RSS feeds, 381–382
WF, 891

literals, 91–92, 379–380
parsers, 348–349
requestedExecutionLevel, 1033
serialization, 343–348
SGML, 509

SQL Server, 468–470
storage model, 442–443
stream-based documents, 348

XmlReader, 351–359
XmlWriter, 349–351

T-SQL, 471
visualizers, 49
Web Services, 507–538

Extensible Stylesheet Language (XSL), 342

f

Fabric, Windows Azure, 1208–1210
Factory, 1081
Fail, 284, 289
FailedAssemblyInfo, 1035
farms, SharePoint, 808, 818–819
FaultHandler, 1172
Feedback, SketchFlow Player, 677–678
fields

classes, 105
objects, 71–72
types, 214

@,file., 1148
file search, Launch Conditions Editor, 1122–1123
File System Editor, 1111–1114
File Transfer Protocol (FTP), 509, 734, 949
File Types Editor, 1117
/filealign, 1146
FileDialogPermission, 1024
FileDialogPermissionAttribute, 1024
FileIOPermission, 1024, 1030
FileIOPermissionAttribute, 1024
FileName, NotifyFilter, 990
Filename, 566
FileSystem, 246
FileSystemWatcher, 989–991
FileWatcherService, 990, 992
OnCustomCommand, 997
Windows Services, 988–998

Fill, 406
FillColor, 940
FillRowMethodName, 477
FillStyle, 940
Filter

FileWatcherService, 990

executereader – filter

1247

OpenFileDialog/SaveFileDialog, 566
query expression, 429

$filter, 500
FilterIndex, 566
Finalize, 225–226
Finally, 269, 270–271
firewalls, 952–953
FirstPermissionThatFailed, 1035
Fixed3D, 544
FixedDialog, 544
FixedPitchOnly, 567
FixedSingle, 544
FixedToolWindow, 544
Flowchart, WF, 889
flowchart workflows, 883–884
FlowDecision, 889
FlowLayoutPanel, 555–556, 587–588
FlowSwitch, 889
FluidMoveBehavior, 676
Flush, 283, 284
Folder, 1108
Font, 567
FontDialog, 567
For, 95
For Each, 317–318
For Next, 317–318
FOR XML, 468
FOR XML AUTO, 469
FOR XML EXPLICIT, 469
FOR XML RAW, 469
ForAll(), 1098–1099
for-each, 364
ForEach,T., 887, 893, 894
foreign keys, 441
Form, 8
forms. See also Web Forms; Windows Forms

modeless, 549
MouseMove, 962
properties, projects, 31–39
reusing, 52–54

Form Designer, 28–30, 142
Format, 472
FormBorderStyle, Windows Forms, 544
fragile-base-class problem, 206–208
FrameworkPropertyMetadata, 661
Friend, 68–71, 105

fields, 71, 105
interfaces, 179
methods, 105
MyBase, 162
variables, 169

fromInclusive, Parallel.For, 1063
FromXml, 1026
FTP. See File Transfer Protocol
Function, 7
Long, 9
methods, 106
parameters, 93
reflection, 1016
Return, 9
values, 9

functions, 314
one-way, 1037
pure virtual, 176
SQL Server, 476–482
T-SQL, 471

Function GetOutput() as Double, 931
functions, 7
fx button, Expression Blend, 671

g

GAC. See global assembly cache
GacIdentityPermission, 1024
GacIdentityPermissionAttribute, 1024
gacutil.exe, 1007–1008
garbage collector (GC)

CLR, 221–226
generations, 229–231
objects, 119–120

GC. See garbage collector
GDI. See Graphics Device Interface
GDI1, 591–595
generalization, 139
GenerateAESKeys, 1057–1061
Parallel.For, 1062–1067
Parallel.ForEach, 1069–1072

GenerateMD5Hashes, 1057–1061
Parallel.For, 1063
Parallel.ForEach, 1069–1072

generics, 320–339
classes, 327–332

$filter – generics

1248

generics (continued)
creating, 327–339
interfaces, 333
late binding, 337
methods, 326–327, 333–334
.NET Framework, 320
objects, 1017
Structure, 332
types, 322–333

Geocode, 479
GET, 958
GetAssembly, 1014
GetBaseException, 269, 278–279
GetChangeSet, 427
GetCommand, 427
GetContainer, 1224
GetEnvironmentVariable, 243
GetEventLogs, 282
GetExecutingAssembly, 1014
GetHashCode(), 328
GetHost, 965
GetLayoutClip, 631
GetMembers, 1015
GetProperties, 1015
GetRequestStream, 953
GetResponse, 953
GetStream, 961
GetTable, 427
GetType, 141, 328

dynamic loading, 1017
types, 1015

global assembly cache (GAC), 215, 826
assemblies, 215
controls, 24
.NET, 1007
QFE, 1010
shared assemblies, 1007–1008
strong names, 1007

global resources, ASP.NET, 921–923
global scope, 95
globally unique identifier (GUID), 185

COM, 930, 1193
SharePoint Feature, 811

GoogleClient, 956
GoToStateAction, 676
GrantedSet, 1035

graphical user interface (GUI), 618, 764–765
Graphics Device Interface (GDI), 591
GreaterThan, 132
Grid, 686–690
gridlines, Expression Blend, 671
GridView, 742, 813, 1225
Group, 429
GroupBox, 556–557
GUI. See graphical user interface
GUID. See globally unique identifier
Guid, 17

h

HandleExternalMethod, 1171
HandleInitiateConnectionException, 965–966
Handles, 182
hardware threads, 1053, 1078–1079
hashing algorithms, 1036–1049
Hashtable, 116, 316
Headers, 953
health-monitoring, ASP.NET, 721
heaps, 74, 228
HelloCustomerService, 536–537
HelloWorldComplete, 702
/help, 1145
HelpLink, 268, 279, 1035
HelpProvider, 558, 610
HelpText, 986
hexString, 1064
hierarchy

inheritance, 205–206
WPF, 632
XML, 360

high-definition video, 680
highestAvailable, 1034
historical debugging, 47, 267–268
HKEY_CURRENT_USER, 1116
Host process, WF, 882
HostProtectionAttribute, 1024
hotspots, 1057–1059
HScrollBar, 569
HTML, 11, 618

ASP.NET, 724
parsers, 976
Windows Forms, 976–979

generics – HTMl

1249

XML, 342
XSLT, 364–365

HTTP. See Hypertext Transfer Protocol
HttpContext, 831
HttpWebRequest, 954, 955
HWnd, 614–615
HyperlinkAction, 676
Hypertext Transfer Protocol (HTTP), 495, 501,

508–509, 511, 949–951
ports, 960

HyperThreading, 1078

i

IAbstractBaseClass, 177
Id, Task, 1081
IDbConnection, 416
IDE. See Integrated Development Environment
Identity, 1029
identity permissions, 1026–1027
IDisposable, 224, 226–228
Listener, 975

IEnumerable, 1071–1072
IETF. See Internet Engineering Task Force
If, 77–78, 887, 893
If Then, 77, 95
IfElse, 1171
IIS. See Internet Information Services
IL. See Microsoft Intermediate Language
IL Disassembler (.ildasm.exe), 221, 1003
.ildasm.exe. See IL Disassembler
Image, Windows Forms menus, 564–565
image formats, .NET Framework, 976
ImageList, 569, 610
ImageRotator, 645, 664
ImageURI, 660–661
Immediate window, debugging, 52
immutability, String, 89–90
imperative language, 254
imperative methods, 106
implementation. See behavior
Implements, 181, 182, 192
implicit conversion, 81, 98–99
implicit layer, 632
import

namespaces, 238–239

registry, 1116
Imports

Inherits, 141
IShared, 195

/imports, 1143–1144
InArgument(), 896
IncludeSubdirectories, 990
indexing, ADO.NET, 414
Info, 243, 246
inheritance, 68, 138–177, 198–208

base class, 198
behavior, 139
classes, 138
generics, classes, 331–332
is-a relationship, 198
methods overrides, 145
multilevel, 157–159
multiple, 157
polymorphism, 150, 189, 196–197
secondary interfaces, 183–184
shadowing, 162
shared events, 175
single-level, 205
System.Object, 72, 141
visual, 30
Windows Forms, 547, 576–584

Inherits, 135, 141–143
InitialDirectory, 566
InitializeComponent, 31, 44
InitializeCorrelation, 888
InitiateConnection, 965, 968
InitiateConnectionThreadEntryPoint, 965
InnerException, 268, 276–279
Exception, 1090
Parallel.ForEach, 1076
SecurityException, 1035

InOutArgument(), 896
InsertCommand, 742
InsertData(), 392–393
,Insertparameters., 742
installation modes, User Interface Editor, 1118
Installer, 985–986
InstallUtil.exe, 992
instance variables. See fields
instances, 7

classes, Shared, 19

HTTP. see Hypertext – instances

1250

instances (continued)
classes, New, 8
Me, 9
objects, 8, 68–69, 95–96

Me, 159
Static, 11
Windows Forms, 551

Instrumentation, 64–66
Int16, 81
Int32, 75, 81
Int64, 75, 81
Int32 GetHashCode(), 217
Integer, 73, 75, 76, 81–82
Parallel.For, 1064
SQLUserDefinedType, 472
String, 36

Integrated Development Environment (IDE), 4
event handlers, 41
IntelliSense, 34
late binding, 191–192
New, 165
SQL Server Compact, 459
ToolTip, 42
Windows Forms controls, 580
XSLT, 363

IntegrationExceptionEventArgs, 600
IntelliSense, 33–35, 123

TDD, 302
VSTO, 852
WCF, 531
XAML, 626

IntelliTrace, 47
Interface, 177, 179
interfaces

classes, 181
COM, 930
default, 68
events, 179
Friend, 179
generics, 333
GUI, 618, 764–765
Implements, 181
localization, 905
methods, 179, 181
modules, 179
multiple, 68, 157, 177–184, 201

polymorphism, 191–193

reflection, 194–196
native, 68, 178
objects, 69–70, 177–178
primary, 68
properties, 181
Public, 179, 181
secondary, 178–184
Service Control Manager, 983
System.Xml.Xsl, 368–369
WCF, 517–518
WPF, 633–641

Internet Engineering Task Force (IETF), 1047
Internet Explorer, 976
Internet Information Services (IIS), 723, 981
ServiceController, 996
SharePoint, 807
Web Deployment Tool, 1133–1134

Internet Protocol (IP), 951
TCP/IP, 508, 951, 960

Interop Forms Toolkit, 1153–1159
interrogative methods, 106
Intersect, 1026
InvalidOperationException, 269
invariant culture, 906
Invoke, 966, 1052–1057
InvokeMember(), 938–939
InvokeMethod, 887, 892–893
InvokeWebService, 1171
InvokeWorkflow, 1171
IP. See Internet Protocol
IPrintableObject, 202–205
is-a relationship, 139, 198
IsByteOrdered, 472
IsCanceled, 1081
IsCompleted, 1074, 1081
IsDBNull, 92–93
IsDeterministic, 477
IsFalse, 130, 289
IsFaulted, 1081, 1090
IsFixedLength, 472
IShared, 192, 195
IsInstanceOfType, 289
IsMainThread, 966–977
IsMdiContainer, 547
IsNetworkDeployed, 243
IsNotInstanceOfType, 289
IsNotSubsetOf, 290

instances – isnotsubsetof

1251

IsNull, 289
IsNullorEmpty, 88
IsolatedStorageFilePermission, 1024
IsolatedStorageFilePermissionAttr, 1024
IsolatedStoragePermission, 1024
System.Security.Permission, 1024

IsPrecise, 477
IsSubsetOf, 290, 1026
IsTrue, 130, 289
ItemTemplate, 664
iterative statements, 317–319
IXsltContextFunction, 368
IXsltContextVariable, 368

J

Java, 510
Java Object Serialization, 510
JavaScript, 827
JavaScript Object Notation (JSON), 495–496, 721
JIT. See just-in-time
Join, 429
joins, LINQ to SQL, 430–431
JSON. See JavaScript Object Notation
just-in-time (JIT)

compiler, 14, 212–213
transactions, 1197–1198

K

key pair, public-private, 1004
Keyboard, 246
/keycontainer, 1146
KeyContainerPermission, 1024
KeyContainerPermissionAccess, System

.Security.Permission, 1024
KeyContainerPermissionAccessEntry, System

.Security.Permission, 1024
KeyContainerPermissionAttribute, 1024
keyed hash algorithms, 1038
/keyfile, 1147
KeyOutput, 1108
keywords, 7–10
With, 142
[] (square brackets), 1017

Assembly, 1017
Class, 103–105
code expansion, 35
exception handling, 269–279
Implements, 181
Inherits, 141–143
Interface, 177, 179
Me, 159–162
MustInherit, 175–176
MustOverride, 176
My, 242–250
MyBase, 147–148, 159, 162–163
MyClass, 163–164
Nothing, 322
Overloads, 143
Overridable, 145
Overrides, 146–147
Preserve, 315
primitive data types, 75
Shadows, 152–153
Tab key, 35
Throw, 271–273

l

Label

Windows Forms, 923
Windows.Forms, 569
WPF, 622

LabelText, 922
lambdas

LINQ, 135
XML, 385–387

Language Integrated Query (LINQ), 22
/langversion, 1144
LastWrite, 990
late binding

COM, 930, 936–939
generics, 337
IDE, 191–192
objects, 97–98
performance, 191
polymorphism, 190–191
ProgID, 936
System.Reflection, 193

Launch Conditions Editor, 1122–1124

isnull – launch Conditions editor

1252

layout
Silverlight, 686–692
WPF, 631–633

LayoutClip, 631
LayoutExceptionEventArgs, 600
/libpath, 1147
libraries. See also dynamic link library; Task

Parallel Library
references, 22–23
SharePoint, 808
Silverlight Class Library, 682
snippet, 37
WF Activity library, 883

Like, 130
LimitedCheckedListBox, 582–584
line numbering, 33
line-of-business (LOB), 680, 846
/link, 1141
LinkLabel, 569, 610, 978
/linkresource, 1141–1142
LINQ

EF, 443–445
lambdas, 135
objects, 425–428
Option Infer, 20
PLINQ, 1097–1099
strongly typed objects, 425
XDocument, 380–381
XML, 375, 380–382

LINQ to SQL, 421–435
ADO.NET, 705
grouping items, 431–432
joins, 430–431
O/R Designer, 423
query expressions, 428–430
updating database, 433–435

LINQ to XML
RSS feeds, 381–382
WF, 891

LinqDataSource, 735, 743–746
ListBox

binding, 665
ItemTemplate, 664
UserControl, 587–588
Windows.Forms, 569
XMLDataProvider, 662

Listen, 1171
Listener

ConnectForm, 967–978, 975
IDisposable, 975
System.Net.Sockets.TcpListener, 961
System.Threading.Thread, 961

lists, SharePoint, 808
ListSelector, 587
ListView, 569
literals
MaskedTextbox, 561
XML, 91–92, 379–380

Load, 9, 366, 661
load-balancing, TPL, 1070
LoadFile, 1014
LoadFrom, 1014, 1016–1017
LoadOptions, 427
LOB. See line-of-business
local, 101
Local Database Cache, Sync Framework, 464
.locale, 1006
Localizable, 924
localization, 905–927

ASP.NET, 721
culture, 905–910
interfaces, 905
.NET Framework, 905
regions, 905–910
resources, 905

ASP.NET, 916–921
Locals, 46, 47

debugging, 51–52
LocalService account, Service Control

Manager, 983
LocalSystem account, Service Control Manager, 983
Location, 44
location, 479, 494
lock constructors, 1093
locking, 1093
Log, 244, 282, 428
LogEvent, 274–275
logical cores, 1053, 1070
Long, 9, 73
Integer, 81–82
Parallel.For, 1064
primitive data types, 75, 76

layout – long

1253

loops
parallelism, 1062–1076
statements, 76–79

LowestBreakIteration.HasValue, 1074

m

machine configuration file, assemblies, 1010
machine.config, 1010
Macro Editor, 59
Macro Explorer, 59
Macro Settings, Word/Excel Trust Center, 849
Macros, 58–60
Main

console applications, 10
Sub, 10

/main, 1147
main threads, 1083
MainPage.xaml, 684–685
_mainThreadID, 966
Makecert.exe, 1035
managed heap, 228
manifest

assemblies, 213–214, 1002–1004
ClickOnce, 1129
Feature, 811

Manual, 543
Mapping, 428
Mapping Details, Visual Studio, 446
mapping schema language (MSL), 443
Margin, 555–556
markup extensions, XAML, 260–261
MaskedTextbox, 560–561, 610
,% Masteer %., 754
master pages, ASP.NET, 752–754
Matches, 289
MaxByteSize, 472
maximum degree of parallelism, 1076–1077
MaximumSize, 552–553
MaxLength, 492
MaxValue, 100
MbUnit, 306
mc:Ignorable, 647
m_Count, 36
mCounter, 125

MD5. See Message-Digest algorithm 5
MD5CryptoServiceProvider, 1040
MDI. See Multiple Document Interface
MDIParent, 548
Me, 8

instances, 9
keyword, 159–162
object instance, 159
references, 162
ToString, 160

MediaPermission, 1024
MediaPermissionAttribute, 1024
member variables. See fields
membership, ASP.NET, 766–770
memory, CLR, 221–231
Menu, 760–761
menus, 12

Windows Forms, 564–566
runtime, 565–566

MenuStrip, 564–565
Merge, 416
Merge Module Project template, 1105
merge replication, 464
Message, 268, 276
message, 969
sockets, 969–973
ToString, 969–970
username, 969

message, 969
Message Transmission Optimization Mechanism

(MTOM), 515
MessageBox, 42, 52
Message-Digest algorithm 5 (MD5), 1036,

1039–1040
MessageField, 963
metadata

assemblies, 1002, 1007
CLR, 217–218
COM, 217
DataSet, 410
.NET, 218
SOA, 514
Type, 220

meta:resourcekey, 919
Method, 425, 953, 1035
methods, 7

loops – methods

1254

methods (continued)
abstraction, 176
Assert, 289
attributes, 218–220
behavior, 70–71
classes, 105–107
CollectionAssert, 290
DataContext, 427
delegates, 132–134
EventLog, 282
Function, 106
generics, 326–327, 333–334
imperative, 106
implementation, 106
inheritance overrides, 145
interfaces, 179, 181
interrogative, 106
non-virtual, 152
overloading, 121–124

inheritance, 143–145
parameters, 107, 121
Private, 107
reflection, 1015
RMI, 508, 510
scope, 106–107
shadowing, 162
Shared, 125–126

overloading, 174
signatures, 122

polymorphism, 189–198
shadowing, 162
virtual methods, 148

StreamWriter, 283
StringAssert, 289
templates, 42
TPL, 1061
types, 214
values, 9, 106
virtual, 148–151

Overrides, 152
signatures, 148

Microsoft Clustering Services, 1185
Microsoft Intermediate Language (MSIL), 14,

212, 1002
Microsoft Message Queuing (MSMQ), 507,

1185, 1198
Microsoft Minimum Recommended Rules, 63–64

Microsoft Office SharePoint Server (MOSS), 846
Microsoft Paint, 25
Microsoft Transaction Server (MTS), 508, 1185
MinimumSize, 552–553
MinimumSplashScreenDisplayTime, 244
MissingMemberException, 98
modeless forms, 549
ModelState, 803
Model-View-Controller (MVC), 787–806
Model-View-ViewModel (MVVM), 699, 714–718
Module, 8, 10–11
/moduleassemblyname, 1147
modules
.ildasm.exe, 221
interfaces, 179
.NET, 212–213

MonthCalendar, 570, 610
Moq, 306
MOSS. See Microsoft Office SharePoint Server
Mouse, 246
MouseDragElementBehavior, 676
MouseMove, 962
MSDN Express Edition, 5
MSIL. See Microsoft Intermediate Language
MSL. See mapping schema language
MSMQ. See Microsoft Message Queuing
MTOM. See Message Transmission Optimization

Mechanism
MTS. See Microsoft Transaction Server
multidimensional arrays, 313–314
multilevel inheritance, 157–159
MultiLine, 52
multiple constraints, 336–337
Multiple Document Interface (MDI), 547–549
multiple inheritance, 157
multiple interfaces, 68, 157, 177–184, 201

polymorphism, 191–193
reflection, polymorphism, 194–196

multiple objects, 448–450
multiple tables, 450–452
MustInherit

keyword, 175–176
Public, 176

MustOverride

base class, 196
keyword, 176

mValue, 328

methods – mValue

1255

MVC. See Model-View-Controller
MVVM. See Model-View-ViewModel
My, 26, 242–250
My Extensions, 28
My.Application, 243–246
MyBase

base class, 163
keyword, 147–148, 159, 162–163
parent class, 162
subclass, 163

MyBase.New, 166
MyClass, 163–164
My.Computer, 246–249
My.Forms, 249
myInteger, 100
My.Resources, 249
My.User, 250
My.WebServices, 250

n

Name

Button, 44
custom folder options, 1114
encapsulation, 71
InitializeComponent, 31
My.Computer, 246
Web Services, 492

(Name), 41
Namespace, 7, 241
namespace, 8
namespaces

ADO.NET, 395–396
aliasing, 239–240
ASP.NET, 240
assemblies, 213
Collections, 315–320
commons, 236–238
creating, 240–242
extending, 250–252
import, 238–239
Inherits, 141
.NET Framework, 231–242
references, 234–236
System, 8
System.Net, 953–960

System.Security.Cryptography, 1040
System.Security.Permissions, 1021
System.Windows.Forms, 541
WCF, 533
XmlDataSource, 373

National Institute of Standards and Technology
(NIST), 1043

Native, 472
Native Image Generator (Ngen.exe), 213
native interface, 68, 178
NativeActivity, 896
Navigate, 978
NavigateBackAction, 676
NavigateForwardAction, 676
NavigateToScreenAction, 676
navigation

ASP.NET, 758–759
EF, 441

Nested Collection, 425
.NET, 108–109. See also ASP.NET

applications, 212–214, 941–944
COM, 932–935

assemblies, 213–214
BCL, 321
CLR, 211
COM, 929–948
components, 944–948
data providers, 398–410

SQL Server, 409
deployment, 1102
.dll, 235, 1001
Enterprise Services, 949, 1185–1204
exceptions, 268–269
.exe, 1001
GAC, 1007
metadata, 218
modules, 212–213
MSIL, 212
object models, 827
RDBMS, 398
references, 73–75, 214
SDK, security, 1034–1035
serialization, 969
sort, 915–916
SQL Server, 473
types, 214
values, 73–75, 214

MVC. See Model-View-Controller – .neT

1256

.NET, 108–109. See also ASP.NET (continued)
VSTO, 843
Web Services, encryption, 1022
XAML, 1029

.NET Framework, 4, 8, 231–242
Class, 72
classes, 159
DataAdapter, 406
generics, 320
image formats, 976
inheritance, 200–201
localization, 905
multiple inheritance, 157
My, 242–250
reflection, 193
Reflection API, 220–221
RegAsm, 946–947
RFC, 906
security, 1021–1049
System.Object, 159
versions, 12–13, 25, 1103
Windows API Code Pack, 948
Windows Forms, 541

controls, 576
Windows Services, 984–987
WPF, 617
X.509, 1046
XAML, 259

.NET Memory Allocation, 64

.NET Remoting, 949
/netcf, 1147
NetTopBinding, 520
Network, My.Computer, 247
Network News Transfer Protocol (NNTP), 949
networks, 949–979

addresses, 951
firewalls, 952–953
names, 951
ports, 952
protocols, 949–951
sockets, 960–976
System.Net, 953–960
WebClient, 958–960
WebRequest, 953–960
WebResponse, 953–960

NetworkService account, Service Control
Manager, 983

NetworkStream, 963
neutral culture, 906–907, 921, 1006
NeutralResourcesLanguageAttribute, 17
New, 7, 8, 164, 166

IDE, 165
New Project, 12–14
NewDataSet, 413
Ngen.exe. See Native Image Generator
NIST. See National Institute of Standards and

Technology
NNTP. See Network News Transfer Protocol
/noconfig, 1145
/nologo, 1145
nondeterministic finalization, 224
None, 544
non-virtual methods, 152
/nostdlib, 1147
Nothing, 8, 93, 322
NotifyFilter, 990
NotifyIcon, 570, 610
no-touch deployment, 1125–1126
/nowarn, 1143
NTFS, 1022
nullable types, 322
NUM_AES_KEYS, 1064
NumericUpDown, 570, 576
NUnit, 306

o

OBA. See Office Business Application
obfuscator, 221
obj, 190
Object, 86–87
Delegate, 133
DistanceTo, 190
Option Strict, 190
ShowDistance, 191

objects, 67–136
behavior, 70–71
classes, 68–69, 86–93
customization, 137–209
DataAdapter, 406–409
DataSet, 410–416
DataTable, 413–414
declaration, 95–96

.neT – objects

1257

dereferencing, 97
early binding, 97
EF, 446–452
fields, 71–72
GC, 119–120
generics, 1017
instances, 8, 68–69, 95–96

Me, 159
interface, 69–70, 177–178
late binding, 97–98
LINQ, 425–428
models, 6

JavaScript, 827
.NET, 827
SharePoint, 827–833
Silverlight, 827

multiple tables, 450–452
parameter passing, 93–94
Parent Class, 72
references, 96–97
secondary interfaces, 179
virtual methods, 149

Object Request Brokers (ORBs), 508
ObjectContext, EF, 445–446
ObjectDataSource

ASP.NET, 735
binding, 746–749

ObjectPooling, 1198
Object-Relational Mapping (ORM), 438
object.Resources, 640
Objects and Timeline, Expression Blend, 671–672
ObjectTrackingEnabled, 428
Office Business Application (OBA), 843, 846–847
OFR. See Outlook form regions
OLE DB.NET, 409–410
OleDbConnection, 398
On Error, 279
On_Click, 41
OnContinue, 985
OnCustomCommand, 997
OnCustomcommand, 985
one-way functions, 1037
OnPause, 985
OnPowerEvent, 985
OnSessionChange, 985
OnShutdown, 985
OnStart, 984, 990

OnStop

FileSystemWatcher, 990
ServiceBase, 984

Opacity, 545–546
Open Geospatial Consortium, 494
OpenFileDialog, 566
OpenForms, 244
OPENXML, 468
,OperationContract., 514–515
Operator, 128–130
/opotioninfer[1:2], 1144
/optimize[1:2], 1142
Option, 19
Option Compare, compiler settings, 18–19
Option Explicit, compiler settings, 18–19
Option Infer, compiler settings, 18–20
Option Strict

compiler settings, 18–20
implicit conversion, 81
late binding, 97
Object, 190

Optional, 93, 122–123, 166
/optioncompare, 1144
/optionexplicit[1:2], 1144
/optionstrict[1:2], 1144
Or, 78, 130
O/R Designer, LINQ to SQL, 423
ORBs. See Object Request Brokers
Order, 429, 1098–1099
$orderby, 500
Orders, 895
OrElse, 130
Orientation, Silverlight, 690
ORM. See Object-Relational Mapping
/out, 1140
Out of the Browser, Silverlight, 694–695
OutArgument(), 896
Outlook form regions (OFR), 871–880
Outlook Web Access (OWA), 618
OutOfMemoryException, 269
Output window, debugging, 51
Outputs, 1108
overloading

constructors, 123–124, 166–167
IntelliSense, 123
methods, 121–124

inheritance, 143–145

object request Brokers – overloading

1258

overloading (continued)
New, 166
Operator, 128–130
overrides, 150–151
parameters, 122–123
Shared methods, 174

Overloads, 121, 151
keyword, 143
Shared methods, 174

Overridable

base class, 145, 152, 196
IDisposable, 227
keyword, 145

overrides
overloading, 150–151
ToString, 160

Overrides, 151
IDisposable, 227
keyword, 146–147
non-virtual methods, 152
subclass, 153
virtual methods, 152

OWA. See Outlook Web Access
OwnedForms, 545
Owner, 544–545

P

-P ,password., 763
Padding, 555–556
PadLeft, 88–89
PadRight, 88–89
@Page, 918
,% Page %., 754
Page Lifecycle, ASP.NET, 729–731
PageSetup-Dialog, 567
Panel, 556–557
ParalellPartitionGenerateAESKeys,

1070–1071
Parallel, 887, 1052–1057, 1172
Parallel LINQ (PLINQ), 1097–1099
Parallel Stacks, 1083–1085
Parallel Tasks, 1083–1085
ParallelEnumerable, 1098
Parallel.For, 1052, 1062–1067
Parallel.ForEach, 1052, 1067–1072

exceptions, 1075–1076
ParallelForEachGenerateMD5Hashes,

1070–1071
ParallelForEach,T., 887
Parallel.Invoke, 1052–1057
parallelism, 1051–1099

cloud computing, 1207
concurrency, 1055–1057
loops, 1062–1076
maximum degree of, 1076–1077
scalability, 1076–1078
tasks, 1051–1057, 1082–1090

ParallelLoopResult, 1064, 1068, 1074
ParallelLoopState, 1073–1074
ParallelOptions, 1077–1078
ParallelPartitionGenerateMD5Hashes,

1070–1071
ParamArray, 94
parameters

ASP.NET, 742
constructors, 119, 164, 166–168
Geocode, 479
InvokeMember(), 938–939
methods, 107, 121
Optional, 122–123
overloading, 122–123
passing, objects, 93–94
properties, 109–111
reflection, 1016

parent class, 139, 162
Parent Class, 72
Parse, 100–101, 473
ParseResponse, 955
parsers

DOM, 359
HTML, 976
XML, 348–349

partial classes, 29
Partition, 429
partitioners, customization, 1067
Password, 1228
Path, 989
PeopleSoft, 846
Percent, 556
performance

ASP.NET, 720
IEnumerable, 1072

overloading – performance

1259

late binding, 191
tools, 64–66

Performance Wizard, 64
Permanent, 1108
permissions

assemblies, 213
CLR, 1026
code access, 1026, 1029–1032
identity, 1026–1027
roles, 1027–1029
security, 1023
System.Security.Permissions, 1023–1029
Visual Studio, 478

PermissionSetAttribute, 1024
PermissionState, 1035
PermissionType, 1035
PermitOnly, 1026
PermitOnlySetInstance, 1036
Permview.exe, 1022
Persist, 888
Peverify.exe, 1035
physical cores, 1078–1079
PIA. See Primary Interop Assembly
Pick, 887
PickBranch, 887
PictureBox, 570
P/Invoke, 947–948
pipelining, 1052
PKCS. See Public Key Cryptographic System
/platform, 1147–1148
PlaySketchFlowAnimationAction, 676
PLINQ. See Parallel LINQ
Point, 74
Policy, 1171
Poly, 192
polymorphism, 68, 149, 189–198

abstract base class, 196
inheritance, 150, 189, 196–197
late binding, 190–191
multiple interfaces, 191–196
reflection, 193–196
System.Object, 72

ports
HTTP, 960
networks, 952
sockets, 960

Ports, 247

POST, 501, 958
PostID, 453
Power Packs Tools, 1151–1163
App_GlobalResources, 722–723
PresentationCore, 604
PresentationFramework, 604
Preserve, 315
primary interface, 68
Primary Interop Assembly (PIA), 844–845
Primary Output Project Item, 1107–1108
primitives

data types, 75–76
synchronization, 1093

Principal, 1029
PrincipalPermission, 1024, 1027
PrincipalPermissionAttribute, 1024
principals, 1027
PrintDialog, 567
PrintDocument, 567, 610
PrintPreviewDialog, 567
Private, 68, 69

fields, 71, 105
methods, 105, 107
subclass, 168

private _stream field, 972
privatePath, 1012–1013
,probing., 1012
procedural language, 254
ProcessConnection, 967
ProcessOutboundConnection, 965, 968
ProcessRequest, 956
ProgID, 215, 930, 936
Progress stage, User Interface Editor, 1119
ProgressBar, 570
Project, 429
projects

Add-In, 60
compiler, 17–21
Configuration Manager, 55–56
debugging, 21–22
Expression Blend, 669
properties, 15–16

forms, 31–39
references, 22–24
resources, 24–25
settings, 25–28
Silverlight, 680–682

Performance Wizard – projects

1260

projects (continued)
templates, 11–14, 1104–1105
Visual Studio, 1103–1109
VSTO, 845–846
Windows Azure, 1215–1217

properties
attributes, 218–220
data types, 108
DataContext, 427–428
Default, 112
dependency, 648–656
EventLog, 282
exceptions, 268–269, 275
extender providers, 558
forms, projects, 31–39
interfaces, 181
parameters, 109–111
ReadOnly, 111
reflection, 1015
scope, 108
Shared, 126–127
types, 214
Windows Forms controls, 578
WriteOnly, 111–112

Property, 425, 1114
PropertyChangedCallback, 661
PropertyGrid, 610
PropertyMap, 601, 609–610
PropertyMappingExceptionEventArgs, 601
PropertyTranslator, 601
Protected, 68, 69, 105

encapsulation, 169
MyBase, 162
scope, 168–170
ServiceBase, 985
variables, 169–170

Protected Friend, 105
protocols. See also specific protocols

networks, 949–951
sockets, 969

prototypes, 189
provider model, ASP.NET, 761–766
Proxy, 953
Public, 68, 69–70, 71, 105

interfaces, 179, 181
MustInherit, 176

MyBase, 162
subclass, 168
variables, 169

public key, assemblies, 213
Public Key Cryptographic System (PKCS),

1043–1044
.publickeytoken, 1006
public-private key pair, 1004
Publish

project property tab, 28
Solution Configurations, 45

Publish Web Site, ASP.NET, 734–735
PublishDate, 453
PublisherIdentityPermission, 1024
System.Security.Permission, 1024

pure virtual function, 176
PUT, 501

q

QFE. See Quick Fix Engineering
query expressions, LINQ to SQL, 428–430
Queue, 316
queues

components, 1198–1204
Windows Azure, 1211–1212
work-stealing, 1080

Quick Fix Engineering (QFE), 215, 1009, 1010
/quiet, 1145

r

_R all, 763
-R p, 763
race conditions, 1094
RAD. See rapid application development
RadioButton, 570
RaiseEvent, 116, 172
rapid application development (RAD), 962
raster graphics, 619
RDA. See Remote Data Access
RDBMS. See Relational Database Management

System
RDO. See Remote Data Objects
Read

projects – read

1261

DataReader, 403
Shared Console, 11

ReadEndElement(), 356
ReadOnly, 111, 492, 1108
ReadStartElement(String), 356
real-time operating systems (RTOS), 1057
Receive, 888
ReceiveAndSendReply, 888
ReceiveInboundConnection, 968
ReceiveThreadEntryPoint, 974
Recipient, 1228
Record Temporary Macro, 58
/recurse, 1141
redgate.com, 221
ReDim, 314–315
refactoring, compiler, 39
/reference, 1141
ReferenceEquals(), 328
references

behavior, 74
circular, 222–223
compiler, 235–236
data types, 73–75, 86–93
.dll, 23
libraries, 22–23
Me, 162
namespaces, 234–236
.NET, 73–75, 214
objects, 96–97
projects, 22–24
Solution Explorer, 235

reflection
assemblies, 1001–1019
Function, 1016
GetProperties, 1015
methods, 1015
multiple interfaces, polymorphism, 194–196
parameters, 1016
polymorphism, 193–194
properties, 1015
Sub, 1016
Type, 1015–1016

Reflection API, .NET Framework, 220–221
ReflectionPermission, 1025
ReflectionPermissionAttribute, 1025
Reflector for .NET, 221

Refresh

DataContext, 427
ServiceController, 994

RefType, 74–75
RefusedSet, 1036
RegAsm, 946–947
Region, 546
#Region, 32
regions, localization, 905–910
Register, 1108
RegisterAttached, 661
RegisterRoutes, 796–797
registry

import, 1116
values, 1115–1116
Windows, 14

Registry, 247
Registry Editor, 1115–1116
RegistryPermission, 1025
RegistryPermissionAttribute, 1025
Relational Database Management System,

.NET, 398
Relationship, 425
Remote Data Access (RDA), 464
remote data entry applications, 462
remote data mirror applications, 462
Remote Data Objects (RDO), 437
remote database applications, 462
Remote Debugging, 22
remote method invocation (RMI), 508, 510
remote procedure calls (RPCs), 509
RemoveElementAction, 676
RemoveFromCollection,T., 887
RemoveHandler, 116
/removeintchecks[1:2], 1142–1143
Renamed, 989
Replicator, 1171
REpresentational State Transfer (REST), 495, 705
Request for Comments (RFC), 906, 951
requestedExecutionLevel, 1033
requestedPrivileges, 1033
requireAdministrator, 1033
/resource, 1142
resources

ASP.NET, 916–923
assemblies, 1002

readendelement() – resources

1262

resources (continued)
Button, 919
localization, 905

ASP.NET, 916–921
managers

ADO.NET, 421
Enterprise Services, 1187

projects, 24–25
styles, 658–660
Text, 919
ToolTip, 919
Windows Forms, 923–927
WPF, 640–641
XAML, 637

ResourceKey, 922
ResourcePermissionBase, 1025
ResourcePermissionBaseEntry, 1025
resources, global, ASP.NET, 921–923
Resources folder, Visual Studio, 637
Resources window, Expression Blend, 673
REST. See REpresentational State Transfer
RestoreDirectory, 566
result(), 1064
ResumeLayout, 31
.resx, 916, 923
Rethrow, 888
Return, 7, 9
RevertAll, 1026
RevertAssert, 1026
RevertDeny, 1026
RevertPermitOnly, 1026
ReviewAppErrors, 37, 39
RFC. See Request for Comments
RhinoMocks, 306
RIA. See rich internet application
rich internet application (RIA), 679
RichTextBox, 570
Rivest, Ronald, 1039
Rivest, Shamir and Aldeman (RSA), 1040–1046
RMI. See remote method invocation
Roeder, Lutz, 221
roles

ASP.NET, 766–770
permissions, 1027–1029

Roles, 759
/rootnamespace, 1144

RootWeb, 829
round-trip engineering, 6
RowCancelingEdit, 1226
RowEditing, 1226
RPCs. See remote procedure calls
RSA. See Rivest, Shamir and Aldeman
RSS feeds, 11, 381–382
RTOS. See real-time operating systems
runtime. See also Common Language Runtime

errors, 988
Windows Forms, 550–551
Windows Forms controls, 572–573
Windows Forms menus, 565–566

,runtime., 1011–1012
Runtime services, WF, 883

s

-S ,server., 763
sandboxed solution, SharePoint, 819–820
SAP, 846
SaveContact, 1224
SaveFileDialog, 566
SaveMySettingsOnExit, 244
scaffolding, 797–804
scalability

ASP.NET, 720
cloud computing, 1206–1207
Parallel.For, 1065–1067
parallelism, 1076–1078

scope
methods, 106–107
properties, 108
variables, 94–95

Screen, 247
ScrollableControl, 586
ScrollViewer, 691–692
.SDF, 458
/sdkpath, 1148
secondary interfaces, 178–184
Secure Hash Algorithm (SHA), 1036, 1039
Secure SocketsLayer (SSL), 1047–1049
security, 28, 1023. See also encryption; permissions

assemblies, 213
Event Logs, 281
.NET Framework, 1021–1049

resources – security

1263

.NET SDK, 1034–1035
types of, 1022
WS-Security, 515

Security Identifier (SID), 1027
Security Log, 281
SecurityAttribute, 1025
SecurityException, 1035–1036
SecurityPermission, 1025
SecurityPermissionAttribute, 1025
Select, 35, 79
SelectCommand, 406
SelectedIndexChanged, 835
SelectedItems, 589
self-describing components, assemblies, 1009
semantic encapsulation, 70
Send, 486, 888
Send(SqlDataRecord), 485
Send(String), 485
SendAndReceiveReply, 888
SendButton, 963
sender, 49
SendMessage, 971
SendResultsEnd, 485–486
SendResultsRow, 485–486
SendResultsStart, 485–486
Sequence, 887, 1172
sequential workflows, 883, 1166
serialization

ADO.NET, 414–415
.NET, 969
XML, 343–348

Serialize, 344–345
Server Explorer, 57, 994
,Service Contract., 514–515
Service Control Manager, 982–984, 987–988,

992, 994, 996
Service Reference, WCF, 523–527
ServiceBase, 984–985, 991
ServiceController

IIS, 996
Service Control Manager, 994, 996
ServiceType, 987
Windows Services, 986, 994–996

ServiceHost, 521
ServiceInstaller, 985–986
ServiceMetadataBehavior, 521

ServiceName, 986, 995
service-oriented architecture (SOA), 508, 513–523
ServiceProcessInstaller, 985–986
ServiceType, 987, 995
Set, 109, 429
SetFocusOnError, 732
Setup, build configurations, 56
Setup Project template, 1105
Setup Wizard, 1105
SGML. See Standard Generalized Markup

Language
SHA. See Secure Hash Algorithm
shadowing, 151–156, 162

arbitrary elements, 155–156
Shared methods, 174–175

Shadows, 152–153
shallow copy, 75, 93
Shape, 940
Shared, 11, 19

constructors, 128
events, 127–128
methods, 125–126, 173–175

overloading, 174
shadowing, 174–175

properties, 126–127
variables, 124–125

shared assemblies, 1004
configuration files, 1011
deployment, 1007–1008
GAC, 1007–1008

shared class, 396
shared events, 175
SharePoint, 807–839

ASP.NET, 807
deployment, 808
development environment, 809
farms, 808, 818–819
Feature, 809–817
GridView, 813
IIS, 807
libraries, 808
lists, 808
New Project, 13
object models, 827–833
sandboxed solution, 819–820
site collections, 808, 809–810

security identifier – sharePoint

1264

SharePoint (continued)
Solution Framework, 817–820
SQL Server, 846
templates, 62
TFS, 62
Visual Studio, 821–827
Web Parts, 833–838
Workflow, 13

SharePoint Connections, 57
SharePoint Foundation, 808
SharePoint Management Shell, 818
SharePoint Server, 808
Sheldon, Bill, 5
Short, 75, 76, 81–82
shortcuts, File System Editor, 1114
ShouldSerialize, 580
Show, 549
ShowColor, 567
ShowDialog, 549, 566, 567
ShowDistance, 191, 195, 196
ShowEffects, 567
ShowMessage, 971
SID. See Security Identifier
side-by-side versioning, 215, 1009
signaling, 1093
signing, 28

strong names, 1004–1005
Silverlight, 253, 679–695

Add Service Reference, 701
ADO.NET, 705–714
App.xaml, 683
ASP.NET, 682
ClientBin folder, 682
controls, 685
DRM, 680
HelloWorldComplete, 701–702
high-definition video, 680
MVVM, 714–718
New Project, 13
object models, 827
Out of the Browser, 694–695
projects, 680–682
Smooth Streaming, 680
SOAP, 700–702
WCF, 702–705
Web Services, 699–718

WPF, 645
Silverlight Application Class, 693
Silverlight Child Window, 694
Silverlight Class Library, 682
Silverlight Navigation Application, 681
Silverlight Page, 693–694
Silverlight Resource Dictionary, 694
Silverlight User Control, 693
Simple Mail Transfer Protocol (SMTP), 509,

950, 969
Simple Object Access Protocol (SOAP), 491,

700–702, 704
WCF, 514
Web Services, 511

Single, 76, 83–84
single-level inheritance, 205
SiteMapDataSource, 735, 760–761
siteMapNode, 758–760
Size, 44
Sizeable, 544
SizeableToolWindow, 544
SizeType, 556
SketchFlow, 667–668, 674–678
SketchFlow Map, 674–675
SketchFlow Player, 676–678
$skip, 500
smart-client deployment, 216
Smooth Streaming, Silverlight, 680
SMTP. See Simple Mail Transfer Protocol
SmtpPort, 1228
SmtpServer, 1228
Sn.exe, 1035
Snippet Editor, 39
snippet library, 37
SOA. See service-oriented architecture
SOAP. See Simple Object Access Protocol
SoapFormatter, 969
Socket, 973
sockets

applications, 960–962
Conversation window, 962–968
errors, 974
Message, 969–973
networks, 960–976
ports, 960
protocols, 969

sharePoint – sockets

1265

SMTP, 969
SSL, 1047–1049
TCP/IP, 960
TcpListener, 962
threads, 961, 963

Solution Configurations, 45
Solution Explorer, 14–15, 104, 235
Solution Framework, 817–820
SolutionID, 817
sort

culture, 915–916
.NET, 915–916
routines, 130–131

SortedList, 316
Source, 268, 277–278, 282, 1036
source, 1068, 1070
Source Code Style attributes, XML, 347–348
SourceExists, 282
SourceItems, 589
SourceListBox, 587–588
spaghetti code, 205
SPContext, 831
SPDataSource, 813
specific culture, 906
SplashScreen, 244
Split, 89
SplitButton, 564
SplitContainer, 554–555
Splitter, 554
SPSite, 829
SPWeb, 829
SQL, 399, 400. See also LINQ to SQL;

Transact-SQL
templates, 57
Windows Azure, 1212

SQL cache invalidation, 720
SQL Management Studio, 479
SQL Server, 5, 457–505

ASP.NET, 720, 763–765
CLR, 470
debugging, 22
functions, 476–482
.NET, 473

data providers, 409
SharePoint, 846
stored procedures, 483–489

T-SQL, 470–471
UDT, 471–483
Web Services, 489–494
XML, 468–470

SqlCommand, 406–407
asynchronous, 404
ExecuteReader, 403
SqlDataReader, 488

SqlConnection, 398–399, 416
SqlDataAdapter, 406
SqlDataReader, 401–402, 486, 488
SqlDataRecord, 486
SqlDataSource, 735–743
-sqlexportonly ,filename., 763
SQLFunction, 476–482
SQLFunctionAttribute, 477
SqlMetaData, 486
SqlPipe, 485–486
SQLUserDefinedType, 471–483
SSL. See Secure SocketsLayer
Stack, Collections, 316
StackPanel, 662, 690–691
stacks, 74
StackTrace, 268, 277–278
Standard Generalized Markup Language,

XML, 509
Standard Toolbar, 45
Start, 994
Start Debugging, 49
Start stage, User Interface Editor, 1119
StartsWith, 289
StartType, 986
,startup., 1011
state, 254
State, 1172
state, 479
state machine workflows, 1166–1167
StateFinalization, 1172
StateInitialization, 1172
statements, 10

conditional, 76–79
iterative, 317–319
loops, 76–79
ReDim, 314–315

States window, Expression Blend, 672–673
Static, 11

solution Configurations – static

1266

StaticResources, 641
Status, 995, 1081
STDistance, 494
Step-In, 49–50
Step-Out, 50
Step-Over, 50
Stop

ParallelLoopState, 1073
ServiceController, 994

Stop Debugging, 49
storage model, XML, 442–443
Storage services, Windows Azure, 1210–1212
Storeadm.exe, 1035
Stored Procedure, 425
stored procedures, 399–402

ADO.NET, 484
app.config, 402
calling, 401–402
SQL, 400
SQL Server, 483–489
SQL to LINQ, 432–433
T-SQL, 401, 458, 471
Visual Studio, 400–401

StorePermission, 1025
StorePermissionAttribute, 1025
stream-based XML documents, 348
XmlReader, 351–359
XmlWriter, 349–351

StreamWriter, 283
street, Geocode, 479
String, 87–88
Constants, 90–91
constructors, 166
immutability, 89–90
Integer, 36
primitive data types, 75, 76
SqlFunctionAttribute, 477
SQLUserDefinedType, 472
Windows Services, 998

String ToString(), 217
StringAssert, 289
String.Format, 92
String.Split, 89
strMyString, 90
strNothing, 93
strong names, 1027

assemblies, 1004–1005
encryption, 1193–1194
GAC, 1007

strongly typed
objects, LINQ, 425
settings, 26
ShowDistance, 196
variables, 190

StrongNameIdentityPermission, 1025
StrongNameIdentityPermissionAttri, System

.Security.Permission, 1025
StrongNamePublicKeyBlob, 1025
Structure, 332, 336
stylesheet, 363
Sub, 7
ButtonText, 74
Load, 9
Main, 10
parameters, 93
reflection, 1016
Return, 9

Sub AddInput(InputValue as Double), 931
Sub DoCalculation(), 931
Sub Main, 543
Sub Reset(), 931
Sub Sorting, 915
Sub TestFileIOPermission(), 1033
subclass, 139

base class, 168
creating, 141–143
MyBase, 163
Overrides, 153
Private, 168
Public, 168
raising events, 171–173
shadowing, 162
virtual methods, 148–151

SubmitChanges, 427
subs, 7
SubString, 88
subtract, 86
superclass, 139
Suspend, 1173
SuspendLayout, 31
Switch,T., 888
symmetric key encryption, 1040–1043

staticresources – symmetric key encryption

1267

Sync Framework, 464–468
synchronization

primitives, 1093
SQL Server Compact, 462–468

syntax, 7–10
build engine, 5
XAML, 258–262

System, 8
Collections, 315
Exception, 269
referenced libraries, 22

System.Activities.XamlIntegration, 900
System.AggregateException, 1089–1090
System.Collections, 237
System.Collections.Concurrent, 1068
System.Collections.Generic, 237
System.Collections.Queue, 970
System.ComponentModel.Component, 135, 226
System.Configuration.Install.Inst, Windows

Services, 984
System.Core, 22
System.Data, 22, 237, 269, 395
SystemDataAccess, 477
System.Data.Common, 395
System.Data.DataSetExtensions, 22
System.Data.EntityClient, 396
System.Data.Linq, 396
System.Data.Odbc, 396
System.Data.OleDb, 396
System.Data.Services, 396
System.Data.SqlClient, 396
System.Deployment, 22
System.Diagnostics, 237
System.Drawing, 22, 237, 591
System.Drawing.Graphics, 591–592
System.EnterpriseServices, 237
System.Environment.ProcessorCount, 1070
System.IO, 237
System.Linq, 237
System.Net

networks, 953–960
WebClient, 958–960

System.Net.IPEndPoint, 965
System.Net.Sockets.Socket, 973
System.Net.Sockets.TcpListener, 961
System.Net.TcpClient, 960

System.Net.TcpListener, 960
System.Object, 9, 72, 132, 328

base class, 147
CTS, 217
inheritance, 141
.NET Framework, 159

System.Reflection, 1013
Assembly, 220
AssemblyCulture, 1006
late binding, 193

System.Runtime.Serialization.Formatters, 969
Systems.Collections.Concurrent, 1094
System.Security.Cryptography, 1040
System.Security.Cryptography

.AssymetricAlgorithm, 1043
System.Security.Cryptography

.HashAlgorithm, 1038
System.Security.Permissions,

1021, 1023–1029
System.ServiceModel, 521
System.ServiceProcess.ServiceBase, 984
System.ServiceProcess.ServiceInst, 984
System.ServiceProcess.ServiceProc, 984
System.Text, 237
System.Text.StringBuilder, 74–75
System.Threading, 237
System.Threading.ReaderWriterLock, 970
System.Threading.Tasks.Parallel, 1052
System.Threading.Tasks.Task, 1080–1081
System.Threading.Thread, 961
System.Transaction, 418–421
System.Web, 237
System.Web.Services, 237
System.Windows, 44
System.Windows.Forms, 22, 237, 541, 627
System.Windows.Forms.Form, 44
System.Windows.Forms.MessageBox, 42
System.Workflow.Activities, 1170–1173
System.XML, 22, 269
System.Xml, 341, 348
System.XML.Linq, 22
System.Xml.Linq, 342
System.Xml.Schema, 341
System.Xml.Serialization, 343–348
System.Xml.XPath, 341
System.Xml.Xsl, 342

sync framework – system.Xml.Xsl

1268

T

Tab key, 35
TabControl, 570
TabIndex, 44
Table, 425
,table., 724
tables

EF, 448–452
multiple objects, 448–450
Windows Azure storage, 1210–1211, 1217–1222

Table(TEntity), 428
TableDefinition, 477
TableLayoutPanel, 556, 587–588
TableServiceContext, 1218
/target, 1140
Target Framework, Windows Forms, 954
TargetListBox, 587–588
TargetSite, 268, 276–279
Task, 1085–1086
tasks, 1079–1099

asynchronous, 1083
cancellation tokens, 1086–1089
CLR, 1084
continuations, 1092
exceptions, 1089–1090
life cycle, 1081–1082
parallelism, 1051–1057, 1082–1090
threads, 1080
values, 1090–1092

Task List, 56–57
Task Parallel Library (TPL), 1052

classes, 1061
hardware threads, 1079
load-balancing, 1070
methods, 1061
System.Collections.Concurrent, 1068

TaskContext, 1218
TaskCreationOptions, 1092
TaskGrid, 1220
TaskScheduler, 1078
TaskStatus.Canceled, 1082
TaskStatus.Created, 1082
TaskStatus.Faulted, 1082
TaskStatus.RanToCompletion, 1082
TaskStatus.WaitingForActivation, 1082
TaskStatus.WaitingToRun, 1082

Task.WaitAll, 1085–1086
TcpClient, 973
BinaryFormatter, 970
ConnectForm, 968
Conversation window, 963, 973
Deserialize, 970
GetStream, 961
Socket, 973

TCP/IP, 508, 951, 960
TcpListener, 962, 968
TDD. See test-driven development
Team Explorer, 62
Team Foundation Server (TFS), 61–62
Team Project Collections, 62
tear-away tabs, 32
template, XSLT, 363
templates. See also classes

methods, 42
projects, 11–14, 1104–1105
SharePoint, 62
SQL, 57
SQL Database, 57
VSTO, 845

Terminate, 1173
TerminateWorkflow, 888, 893
Test

attributes, 295
query expression, 429

Test Results window, 291
Test View window, 290
TestCleanup, 295
test-driven development (TDD),

287–307
assertions, 288–290
classes, 302
IntelliSense, 302
tools, 290–291

TestInitialize, Test, 295
Text, 44

ASP.NET, 732
resources, 919
Run Code, 41
TextBox, 54
Web Services, 492

Text Editor, 33
TextBox, 52, 142

Conversation window, 963

Tab key – TextBox

1269

System.Net, 957
Text, 54
ToolStrip, 564
Web Services, 492
Windows Forms, 923
Windows.Forms, 570
WPF, 622

TextBoxRounding, 609
TFS. See Team Foundation Server
themes, ASP.NET, 722
theOrder, 895
third-parties

TDD, 306–307
Windows Forms controls, 576

ThreadEntryPoint, 961
threads

ASP.NET, 907
CLR, 1080
culture, 907–908
hardware, 1053, 1078–1079
InitiateConnection, 968
main, 1083
sockets, 961, 963
tasks, 1080
Windows Forms, 907, 962
WithEvents, 117

thread-safe collections, 1094
Thread.Sleep, 319
Throw, 269–270, 271–273

WF, 888, 1173
Timeout, 953
TimeOutException, 1075
Timer, 570
Timespan, 86
Title, 453

applications, 1107
siteMapNode, 759

TlbExp, 947
TlbImp.exe. See Type Library Import
TLS. See Transport Layer Security
Today, 85
TODO, 56
toExclusive, 1063
Toolbar, 562–564
Toolbox, 40

Expression Blend, 669–670
Visual Studio, 639

Windows Forms, 595
WPF, 645

ToolStrip, 562–564
ToolTip

IDE, 42
resources, 919
Windows Forms, 557

$top, 500
TopMost, 544
ToString, 72, 80, 100, 269, 328

classes, 160
Me, 160
Message, 969–970
overrides, 160
UDT, 473

TPL. See Task Parallel Library
Trace, 21–22
trace files, 283–284
Track Changes, 33
TrackBar, 570
TransactedReceiveScope, 888
Transaction, 426–427, 428
transactions

ADO.NET, 418–421
components, 1187–1197
Enterprise Services, 1185–1198
JIT, 1197–1198
queued components, 1202–1204

TransactionScope, 888
Transact-SQL (T-SQL), 254, 457–458

functions, 471
SQL Server, 470–471
stored procedures, 401, 458, 471
Web Services, 471
XML, 471

Transform, 366
Transitive, 1114
Translate, 427
TransparencyKey, 546
Transport Layer Security (TLS), 1047
trappable errors, 102
TreeView, 570
trickle-feed, 1125
Try, 269, 270–271
Catch, 274–275

TryCast, 103
TryCatch, 888, 974

TextBoxrounding – TryCatch

1270

Try-Catch, 101
Try...Catch, 279
TryParse, 100–101
T-SQL. See Transact-SQL
Type

GetMembers, 1015
metadata, 220
reflection, 1013, 1015–1016

types. See also data types; user-defined types
constraints, 334–335
generics, 322–326

creating, 327–333
GetType, 1015
.NET, 214
nullable, 322

Type GetType(), 217
Type Library Import (TlbImp.exe), 935–936
TypeDescriptorPermission, 1025
TypeLoadException, 1012
TypeMock, 306

u

-U ,login., 763
UAC. See User Access Control
UBound, 314
UDT. See user-defined types
uiAccess, 1034
UICulture, 244, 918
UInt16, 81, 82
UInt32, 81, 82
UInt64, 81, 82
UIPermission, 1025
UIPermissionAttribute, 1025
UML. See Unified Modeling Language
Unattended Execution, 217
Unified Modeling Language (UML), 139, 452
Union, 1026
Universal Coordinated Time, 85
unmanaged code, 22
unsigned data types, 82
UpdateCommand, 742
UpdateModel, 803
,UpdateParameters., 742
UriChanged, 661
Url

SecurityException, 1036
siteMapNode, 759

UrlEncode, 955
UrlIdentityPermission, 1025
UrlIdentityPermissionAttribute, 1025
UseDevelopmentStorage, 1219
User Access Control (UAC), 1028, 1032–1036
View Windows Settings, 15–16
Visual Studio, 1033

User account, Service Control Manager, 983
User Interface Editor, 1118–1120

dialogs, 1119–1120
installation modes, 1118

User Tasks, Task List, 56
UserControl, 585–590

WPF, 647
UserDefined, 472
user-defined types (UDT)
Parse, 473
SQL Server, 471–483
ToString, 473

UserID, 1228
username, 969
UsernameField, 963
user-specific settings, 26
UseVisualStyleBackColor, 44
UseWaitCursor, 553
Using, 224
UtcNow, 85
/utf8output[1:2], 1148

V

Validating, Windows Forms, 561–562
ValidationErrors, 895
ValidationMessage, 803
ValidationMethodName, 472
ValidationSummary, 803
$value, 500
%value, 955
value-of, 364
values

behavior, 74
data types, 73–75, 79–86
Function, 9
methods, 9, 106

Try-Catch – values

1271

.NET, 73–75, 214
Optional, 93
registry, 1115–1116
tasks, 1090–1092

ValueType(), 74
ValueType, 328
VariableName, 35–36
variables
For, 95
Dim, 8
Friend, 169
If Then, 95
New, 8
Nothing, 8
Protected scope, 169–170
Public, 169
scope, 94–95
Shared, 124–125
strongly typed, 190
virtual methods, 149

.vb, 103
VBA. See Visual Basic for Applications
vbc.exe.config, 1137–1139
vbCRLF, 80
vbc.rsp, 1148–1149
/vbruntime[1:2], 1148
vector graphics, 619
.ver, 1006
/verbose, 1145
versions

ADO.NET, 216
assemblies, 1004, 1008–1013
CLR, 214–216
.NET Framework, 12–13, 25, 1103
side-by-side, 215
TFS, 62

View
ASP.NET MVC, 793–796
MVVM, 717
Other Windows, 57

View, 425
View Application Events, 16
View Windows Settings, 15–16
ViewData, 793
ViewState, 731–732, 1036
virtual methods, 148–151

methods signatures, 148
Overrides, 152

Visual Basic for Applications (VBA), 843, 847–852
Visual Basic Migration Wizard, 75
visual inheritance, 30
Visual InterDev, 57
Visual Source Safe (VSS), 61
Visual Studio

ASP.NET, 721–723
Class Designer, 139
COM, 931

.dll, 935–936
components, 134
debugging, 998
deployment, 1103–1109
editions, 6–7, 305–306
EF, 440, 452–454
Expression Blend, 669
global resources, 922
Mapping Details, 446
permissions, 478
projects, 1103–1109
Resources folder, 637
SharePoint, 821–827
stored procedures, 400–401
Toolbox, 639
UAC, 1033
VSTO, 844
WCF, 516
Windows Azure, 1213–1231
Windows Forms, 954
Windows Forms controls, 578–578
XSLT, 363

Visual Studio Extensions for Windows SharePoint
Services (VSeWSS), 821

Visual Studio Tools for Office (VSTO),
6–7, 13, 843–880

Add-In, 845
Document/Workbook, 845
Excel, 864–871
IntelliSense, 852
.NET, 843
Office automation, 844
OFR, 871–880
PIA, 844–845
projects, 845–846

ValueType() – Visual studio Tools for office (VsTo)

1272

Visual Studio Tools for Office (VSTO) (continued)
templates, 845
VBA, 847–852
Visual Studio, 844
Word, 852–864

Visual Web Developer 2010 Express Edition, 5
visualizers, 49
VisualWebPart1UserControl.ascx, 833
VisualWebPart.vb, 833
VisualWebPart1.webpart, 833
Vital, 1108
VScrollBar, 570
VSeWSS. See Visual Studio Extensions for Windows

SharePoint Services
VSS. See Visual Source Safe
VSTO. See Visual Studio Tools for Office

W

-W, ASP.NET SQL Server Setup Wizard, 763
WaitAll, 1085–1086
/warnaserror[1:2], 1143
WAS. See Windows Process

Application Service
Watch window, 46

debugging, 52
WCF. See Windows Communication Foundation
Web Deployment Tool, IIS, 1133–1134
Web Forms

ASP.NET, 720, 723–735
events, 728–729

components, 134
Web Parts, 13, 833–838
Web Service Enhancements (WSE), 507
Web Services, 949

IIS, 981
.NET, encryption, 1022
Silverlight, 699–718
SOAP, 511
SQL Server, 489–494
Textbox, 492
T-SQL, 471
XML, 507–538

Web Setup Project template, 1105
WebBrowser

COM, 976

LinkLabel, 978
Navigate, 978
Windows.Forms, 570

WebBrowserPermission, System.Security
.Permission, 1025

WebBrowserPermissionAttribute, 1025
WebClient, 958–960
web.config, 14
WebRequest

child class, 954
networks, 953–960

WebResponse, 953–960
WebServiceFault, 1171
WebServiceInput, 1171
WebServiceOutput, 1171
WF. See Windows Workflow Foundation
Where, 429
While, 318–319

WF, 888, 1171
window handles, Windows Forms, 614–615
Windows

applications, Internet deployment, 1124–1133
New Project, 13
registry, 14

Windows 7
UAC, 1032
Windows Services, 982

Windows API Code Pack, .NET Framework, 948
Windows Azure, 1205–1231

Compute services, 1213
deployment, 1229–1231
Fabric, 1208–1210
projects, 1215–1217
SQL, 1212
Storage services, 1210–1212
Visual Studio, 1213–1231

Windows Communication Foundation
(WCF), 14, 516–537, 949

app.config, 528–529
applications, 514
consumer, 523, 534–536
customBinding, 704
DS, 458, 495, 497–501

client library, 501–505
host, 533–534
IIS, 981
IntelliSense, 531

Visual studio Tools for office (VsTo) – Windows Communication foundation

1273

interfaces, 517–518
namespaces, 533
New Project, 14
Service Reference, 523–527
Silverlight, 702–705
SOAP, 514
Visual Studio, 516

Windows Forms, 541–574
AddOwnedForm, 544
AddPropertyMap, 609–610
advanced, 575–597
anchoring, 554
Application, 543
applications, 604–610
AutoCompleteMode, 559–560
AutoScroll, 547
Button, 923
CausesValidation, 562
CheckedListBox, 582–584
ColorDialog, 567
components, 134
composite controls, 576–577
ContextMenuStrip, 564–565
Control, 552, 585
controls, 552–573, 575–597, 599–616

ActiveX, 576
attributes, 579–581
base class, 584–586
Browsable, 581
building, 591–595
Category, 581
ComboBox, 576
customization, 576
Description, 581
embedding, 595–597
events, 581–582
IDE, 580
inheritance, 576–584
.NET Framework, 576
NumericUpDown, 576
properties, 578
runtime, 572–573
third-parties, 576
WPF, 610–614

culture, 924
DialogResult, 549–550
dialogs, 566–567

docking, 553–554
DragDrop, 568–569
ErrorProvider, 558
extender providers, 557–559
FlowLayoutPanel, 555–556
FontDialog, 567
FormBorderStyle, 544
GDI1, 592–595
GroupBox, 556–557
HelpProvider, 558
HTML, 976–979
HWnd, 614–615
inheritance, 547
instances, 551
Label, 923
LimitedCheckedListBox, 582–584
Localizable, 924
Margin, 555–556
MaskedTextbox, 560–561
MaximumSize, 552–553
menus, 564–566

runtime, 565–566
MenuStrip, 564–565
MinimumSize, 552–553
.NET Framework, 541
Opacity, 545–546
OpenFileDialog, 566
OwnedForms, 545
Owner, 544–545
Padding, 555–556
PageSetup-Dialog, 567
Panel, 556–557
PrintDialog, 567
PrintDocument, 567
PrintPreviewDialog, 567
PropertyMap, 609–610
Region, 546
resources, 923–927
.resx, 923
runtime, 550–551
SaveFileDialog, 566
ShowDialog, 549
SizeType, 556
SplitContainer, 554–555
Splitter, 554
Sub Main, 543
TableLayoutPanel, 556

Windows forms – Windows forms

1274

Windows Forms (continued)
Target Framework, 954
TextBox, 923
threads, 907, 962
Toolbar, 562–564
Toolbox, 595
ToolStrip, 562–564
ToolTip, 557
TopMost, 544
TransparencyKey, 546
UserControl, 585–590
UseWaitCursor, 553
Validating, 561–562
Visual Studio, 954
window handles, 614–615
WPF, 541

controls, 601–610
Windows Installer, 1102–1103
Windows Presentation Foundation (WPF), 253

applications, 617–666
behavior, 626–631
binding, 648, 660–665
Button, 622
buttons, 641–645
controls, 599–616, 622–625, 645–647

Windows Forms, 601–610
dependency properties, 648–656
event handlers, 625–626
Expression Blend, 617
hierarchy, 632
interfaces, 633–641
Label, 622
layout, 631–633
.NET Framework, 617
resources, 640–641
Silverlight, 645
styles, 658–660
System.Windows.Forms, 627
target, 12
TextBox, 622
Toolbox, 645
UserControl, 647
Windows Forms, 541

controls, 601–614
Windows.Forms.Integration, 627
XAML, 255–258, 602–604, 617–666

Windows Process Application Service (WAS), 981
Windows Server 2008, 982
Windows Server AppFabric, 883
Windows Services

application services, 981–996
C11, 987
debugging, 988, 998–1000
errors, 988
FileWatcherService, 988–998
Installer, 985–986
.NET Framework, 984–987
Server Explorer, 994
Service Control Manager, 982–984
ServiceBase, 984–985
ServiceController, 986, 994–996
ServiceInstaller, 985–986
ServiceProcessInstaller, 985–986
String, 998
uninstalling, 992

Windows Vista
UAC, 1032
Windows Services, 982

Windows Workflow Foundation (WF), 14, 253,
881–903, 1165–1183

Activity library, 883
applications, 881–882
Custom activities, 883
customization, 896–899
dynamically loading, 899–900
Host process, 882
LINQ to XML, 891
Runtime services, 883
Workflow, 883
Workflow invoker, 883
WorkflowDesigner, 900–903
XAML, 882, 899–900, 1165

Windows XP, 982
WindowsBase, 604
WindowsDefaultBounds, 543
WindowsDefaultLocation, 543
Windows.Forms, 569–571
WindowsFormsHost, 601, 614
WindowsFormsIntegration, 604
Windows.Forms.Integration, 627
Windows.Forms.Integration.dll, 600–601
WindowStyle, 636

Windows forms – Windowstyle

1275

winForm, 8
WinFormInteropCtrl, 614
/win32icon, 1142
/win32resource, 1142
With, 142
WithCancellation, 1098
WithDegreeOfParallelism, 1098
WithEvents, 44, 114

events, 116–117
threads, 117

WithExecutionMode, 1098
WithMergeOptions, 1098
WM_NCHITTEST, 962
WM_PAINT, 962
Word

Actions Pane, 856–861
VSTO, 852–864

Word/Excel Trust Center, Macro Settings, 849
Workflow

New Project, 14
SharePoint, 13
WF, 883
XAML, 262–264

workflows. See also Windows Workflow
Foundation

flowchart, 883–884
sequential, 883, 1166
state machine, 1166–1167

Workflow invoker, WF, 883
WorkflowDesigner, 900–903
work-stealing queues, CLR, 1080
WPF. See Windows Presentation Foundation
wrapper classes, 491
Write

Debug, 284
Shared Console, 11
StreamWriter, 283

WriteEntry, 282
WriteIf, 284
WriteLine

Debug, 284
StreamWriter, 283
WF, 886, 887, 893, 894, 899

WriteLineIf, 284
WriteOnly, 111–112
WS-*, 514–515

WS-AtomicTransaction, 516
WS-Coordination, 516
WSDL, 491, 522–523
HelloCustomerService, 536–537

WSE. See Web Service Enhancements
WS-ReliableMessaging, 515
WS-SecureConversation, 515
WS-Security, 515

x

x:, 258
X.509 certificates, 1046–1047
XAML. See Extensible Application Markup

Language
XAMLpad, 255
.xap, 682
x:Array, 261
XAttribute, 378
x:Class, 259
x:ClassModifier, 259
x:Code, 262
XCopy, 24, 1102
XDocument, 375

LINQ, 380–381
XElement, 375–376
x:FieldModifier, 260
x:Key, 260, 640–641
XML. See Extensible Markup Language
Xml, server control, 373–374
.xml, 346
XML Path (XPath), 341
XmlAttribute, 359
XMLDataProvider, 662
XmlDataSource

ASP.NET, 735
namespaces, 373

XmlDocument, 359
XmlElement, 359
XmlException, 269
XmlNameTable, 349
XmlNode, 359
XmlReader, 349, 469

exception handling, 358–359
stream-based XML documents, 351–359

XmlReaderSettings, 355–356

winform – Xmlreadersettings

1276

XmlResolver, 349, 365
XmlSerializer, 344–346
XmlWriter, 348, 349–351
x:Name, 260
XNamespace, 376–378
x:Null, 261
Xor, 130
XPath. See XML Path
x:Reference, 261
x:Shared, 260
XSL. See Extensible Stylesheet Language
.xsl, 363
XSL Transformations (XSLT), 342, 360–369

HTML, 364–365
IDE, 363
Visual Studio, 363

XSLT. See XSL Transformations
XsltArgumentList, 369

XsltCompileException, 369
XsltContext, 369
XsltException, 369
x:Static, 261
x:Subclass, 260
x:Type, 261
x:TypeArguments, 260
xUnit.net, 306
x:XData, 262

Z

zero-impact deployment, 1008
zip, Geocode, 479
Zone, 1036
ZoneIdentityPermission, 1025
ZoneIdentityPermissionAttribute, 1025
Zoom button, 671

Xmlresolver – Zoom button

	Professional Visual Basic 2010 and .NET 4
	Contents
	Part I: Language Constructs and Environment
	Chapter 1: Visual Studio 2010
	Visual Studio 2010: Express through Ultimate
	Visual Basic Keywords and Syntax
	Project ProVB_VS2010
	Enhancing a Sample Application
	Useful Features of Visual Studio 2010
	Summary

	Chapter 2: Objects and Visual Basic
	Object-Oriented Terminology
	Working With Visual Basic Types
	Commands: Conditional
	Value Types (Structures)
	Reference Types (Classes)
	Parameter Passing
	Variable Scope
	Working with Objects
	Data Type Conversions
	Creating Classes
	Advanced Concepts
	Summary

	Chapter 3: Custom Objects
	Inheritance
	Multiple Interfaces
	Abstraction
	Encapsulation
	Polymorphism
	Inheritance
	Summary

	Chapter 4: The common language runtime
	Elements of a .NET Application
	Versioning and Deployment
	Cross-Language Integration
	IL Disassembler
	Memory Management
	Namespaces
	Creating Your Own Namespaces
	The My Keyword
	Extending the My Namespace
	Summary

	Chapter 5: Declarative Programming with Visual Basic
	Declarative Programming and Visual Basic
	Using XAML to Create a Window
	XAML Syntax
	Using XAML to Declare a Workflow
	Summary

	Chapter 6: Exception Handling and Debugging
	New in Visual Studio 2010 Team System: Historical Debugging
	Notes on Compatibility with VB6
	Exceptions in .NET
	Structured Exception-Handling Keywords
	Interoperability with VB6-Style Error Handling
	Error Logging
	Summary

	Chapter 7: Test-Driven Development
	When and How to Test
	TDD Tools in Visual Studio
	UnitTesting Walk-Through
	Other Visual Studio Editions
	Third Party Testing Frameworks
	Summary

	Part II: Business Objects and Data Access
	Chapter 8: Arrays, Collections, and Generics
	Arrays
	Collections
	Generics
	Creating Generics
	Summary

	Chapter 9: Using XML with Visual Basic
	An Introduction to XML
	XML Serialization
	System.Xml Document Support
	XML Stream-Style Parsers
	XSL Transformations
	XML in ASP.NET
	LINQ to XML
	LINQ Helper XML Objects
	Visual Basic and XML Literals
	Using LINQ to Query XML Documents
	Working with the XML Document
	Lambda Expressions in Visual Basic
	Summary

	Chapter 10: ADO.NET and LINQ
	ADO.NET Architecture
	Basic ADO.NET Features
	.NET Data Providers
	The DataSet Component
	Working with the Common Provider Model
	Connection Pooling in ADO.NET
	Transactions and System.Transactions
	LINQ to SQL
	LINQ to SQL and Visual Basic
	How Objects Map to LINQ Objects
	Querying the Database
	Stored Procedures
	Updating the Database
	Summary

	Chapter 11: Data Access with the Entity Framework
	Object-Relational Mapping
	Entity Framework Architecture
	Mapping Objects to Entities
	Generating the Database from a Model
	Summary

	Chapter 12: Working with SQL Server
	SQL Server Compact
	SQL Server’s Built-in XML Features
	CLR Integration in SQL Server
	WCF Data Services
	Summary

	Chapter 13: Services (XML/WCF)
	Introduction to Services
	The Larger Move to SOA
	Building a WCF Service
	Building a WCF Consumer
	Working with Data Contracts
	Namespaces
	Summary

	Part III: Smart Client Applications
	Chapter 14: Windows Forms
	The System.Windows.Forms Namespace
	Using Forms
	Controls
	Other Handy Programming Tips
	Summary

	Chapter 15: Advanced Windows Forms
	Packaging Logic in Visual Controls
	Custom Controls in Windows Forms
	Inheriting from an Existing Control
	The Control and UserControl Base Classes
	A Composite UserControl
	Building a Control from Scratch
	Attaching an Icon for the Toolbox
	Embedding Controls in Other Controls
	Summary

	Chapter 16: User Controls Combining WPF and Windows Forms
	The Integration Library
	Hosting WPF Controls in Windows Forms
	Hosting Windows Forms Controls in WPF
	Integration Limitations
	Summary

	Chapter 17: WPF Desktop Applications
	What, Where, Why, How — WPF Strategy
	Raster Graphics and Vector Graphics
	Should Your Next Windows Project Use WPF?
	Creating a WPF Application
	Summary

	Chapter 18: Expression Blend 3
	Getting to Know Blend
	SketchFlow
	Summary

	Chapter 19: Silverlight
	What Is Silverlight?
	Starting a Silverlight Project
	Silverlight Solution
	Controls
	Adding Items to the Silverlight Project
	Silverlight Out of the Browser
	Summary

	Part IV: Internet Applications
	Chapter 20: Silverlight and Services
	Services and Silverlight
	Model-View-ViewModel
	Summary

	Chapter 21: Working with ASP.NET
	The History of ASP.NET
	Key Features of ASP.NET
	Visual Studio Support for ASP.NET
	Building ASP.NET Applications Using Web Forms
	Data-Driven Applications
	Summary

	Chapter 22: ASP.NET Advanced Features
	Master Pages
	Navigation
	Working with the ASP.NET Provider Model
	Membership and Role Management
	Profile Properties
	Microsoft Ajax (ASP.NET AJAX)
	Summary

	Chapter 23: ASP.NET MVC
	Model-View-Controller and ASP.NET
	Building an ASP.NET MVC Application
	Summary

	Chapter 24: SharePoint 2010 Development
	Introduction
	Features and the Solutions Framework
	Visual Studio Tools for SharePoint Development
	The SharePoint 2010 Object Models
	Building Web Parts
	Summary

	Part V: Libraries and Specialized Topics
	Chapter 25: Visual Studio Tools for Office
	Examining the VSTO Releases
	Office Business Application Architecture
	Working with Both VBA and VSTO
	Creating a Document Template (Word)
	Creating an Office Add-In (Excel)
	Outlook Form Regions
	Summary

	Chapter 26: Windows Workflow Foundation
	Workflow in Applications
	Building Workflows
	Rehosting the Workflow Designer
	Summary

	Chapter 27: Localization
	Cultures and Regions
	Translating Values and Behaviors
	ASP.NET Resource Files
	Resource Files in Windows Forms
	Summary

	Chapter 28: COM-Interop
	Understanding COM
	COM and .NET in Practice
	ActiveX Controls
	Using .NET Components in the COM World
	P/Invoke
	Summary

	Chapter 29: Network Programming
	Protocols, Addresses, and Ports
	The System.Net Namespace
	Sockets
	Using Internet Explorer in Your Applications
	Summary

	Chapter 30: Application Services
	Using IIS for Application Services
	Windows Services
	Characteristics of a Windows Service
	Interacting with Windows Services
	Creating a Windows Service
	Creating a Windows Service in Visual Basic
	Creating a File Watcher Service
	Communicating with the Service
	Custom Commands
	Passing Strings to a Service
	Debugging the Service
	Summary

	Chapter 31: Assemblies and Reflection
	Assemblies
	The Manifest
	Assemblies and Deployment
	Versioning Issues
	Basics of Reflection
	Dynamic Loading of Assemblies
	Summary

	Chapter 32: Security in the .NET Framework
	Security Concepts and Definitions
	Permissions in the System.Security.Permissions Namespace
	Managing Code Access Permission Sets
	User Access Control
	Defining Your Application UAC Settings
	Encryption Basics
	Summary

	Chapter 33: Parallel Programming Using Tasks and Threads
	Launching Parallel Tasks
	Transforming Sequential Code to Parallel Code
	Parallelizing Loops
	Specifying the Desired Degree of Parallelism
	Creating and Managing Tasks
	Summary

	Chapter 34: Deployment
	Application Deployment
	Choosing a Framework Version
	Visual Studio Deployment Projects
	Modifying the Deployment Project
	Internet Deployment of Windows Applications
	IIS Web Deployment Tool
	Summary

	Appendices
	Appendix A: The Visual Basic Compiler
	The vbc.exe.config File
	Simple Steps to Compilation
	Compiler Options
	Looking at the vbc.rsp File

	Appendix B: Visual Basic Power Packs Tools
	Visual Basic Power Packs
	Using the Interop Forms Toolkit 2.1
	Using the Power Packs 3.0 Tools
	Summary

	Appendix C: Workflow 2008 Specifics
	Building Workflows
	Using Workflows with Other Applications
	Summary

	Appendix D: Enterprise Services
	Transactions
	Transactional Components
	Other Aspects of Transactions
	Queued Components
	Summary

	Appendix E: Programming for the Cloud
	The Rise of the Cloud
	Azure
	Summary

	Index

