

TABLE OF CONTENTS
COVER
TITLE PAGE
INTRODUCTION

WHO THIS BOOK IS FOR
WHAT THIS BOOK COVERS
HOW THIS BOOK IS STRUCTURED
WHAT YOU NEED TO USE THIS BOOK
CONVENTIONS
SOURCE CODE
ERRATA
P2P.WROX.COM

PART I: Integrated Development Environment
1 A Quick Tour

GETTING STARTED
THE VISUAL STUDIO IDE
SUMMARY

2 The Solution Explorer, Toolbox, and Properties
THE SOLUTION EXPLORER
THE TOOLBOX
PROPERTIES
SUMMARY

3 Options and Customizations
THE START PAGE
WINDOW LAYOUT
THE EDITOR SPACE
OTHER OPTIONS
IMPORTING AND EXPORTING SETTINGS
SUMMARY

4 The Visual Studio Workspace

Download from finelybook www.finelybook.com

2

THE CODE EDITOR
CODE NAVIGATION
THE COMMAND WINDOW
THE IMMEDIATE WINDOW
THE CLASS VIEW
THE ERROR LIST
THE OBJECT BROWSER
SUMMARY

5 Find and Replace and Help
QUICK FIND/REPLACE
FIND/REPLACE IN FILES
ACCESSING HELP
SUMMARY

PART II: Getting Started
6 Solutions, Projects, and Items

SOLUTION STRUCTURE
SOLUTION FILE FORMAT
SOLUTION PROPERTIES
PROJECT TYPES
PROJECT FILES FORMAT
PROJECT PROPERTIES
C/C++ CODE ANALYSIS TOOL
WEB APPLICATION PROJECT PROPERTIES
WEB SITE PROJECTS
NUGET PACKAGES
SUMMARY

7 IntelliSense and Bookmarks
INTELLISENSE EXPLAINED
JAVASCRIPT INTELLISENSE
XAML INTELLISENSE
INTELLISENSE OPTIONS

Download from finelybook www.finelybook.com

3

EXTENDED INTELLISENSE
BOOKMARKS AND THE BOOKMARK WINDOW
SUMMARY

8 Code Snippets and Refactoring
CODE SNIPPETS REVEALED
ACCESSING REFACTORING SUPPORT
REFACTORING ACTIONS
SUMMARY

9 Server Explorer
SERVER CONNECTIONS
DATA CONNECTIONS
SHAREPOINT CONNECTIONS
SUMMARY

PART III: Digging Deeper
10 Unit Testing

YOUR FIRST TEST CASE
ASSERTING THE FACTS
INITIALIZING AND CLEANING UP
TESTING CONTEXT
LIVE UNIT TESTING
ADVANCED UNIT TESTING
INTELLITEST
SUMMARY

11 Project and Item Templates
CREATING TEMPLATES
EXTENDING TEMPLATES
STARTER KITS
ONLINE TEMPLATES
SUMMARY

12 Managing Your Source Code
SOURCE CONTROL

Download from finelybook www.finelybook.com

4

SUMMARY
PART IV: Desktop Applications

13 Windows Forms Applications
GETTING STARTED
THE WINDOWS FORM
FORM DESIGN PREFERENCES
ADDING AND POSITIONING CONTROLS
CONTAINER CONTROLS
DOCKING AND ANCHORING CONTROLS
SUMMARY

14 Windows Presentation Foundation (WPF)
WHAT IS WPF?
GETTING STARTED WITH WPF
THE WPF DESIGNER AND XAML EDITOR
STYLING YOUR APPLICATION
WINDOWS FORMS INTEROPERABILITY
DEBUGGING WITH THE WPF VISUALIZER
SUMMARY

15 Universal Windows Platform Apps
WHAT IS A WINDOWS APP?
CREATING A WINDOWS APP
WINDOWS RUNTIME COMPONENTS
.NET NATIVE COMPILATION
SUMMARY

PART V: Web Applications
16 ASP.NET Web Forms

WEB APPLICATION VERSUS WEB SITE PROJECTS
CREATING WEB PROJECTS
DESIGNING WEB FORMS
WEB CONTROLS
MASTER PAGES

Download from finelybook www.finelybook.com

5

RICH CLIENT-SIDE DEVELOPMENT
SUMMARY

17 ASP.NET MVC
MODEL VIEW CONTROLLER
GETTING STARTED WITH ASP.NET MVC
CHOOSING A MODEL
CONTROLLERS AND ACTION METHODS
RENDERING A UI WITH VIEWS
ADVANCED MVC
SUMMARY

18 .NET Core
WHAT IS .NET CORE?
WORKING WITH ASP.NET CORE
NUGET PACKAGE MANAGER
BOWER PACKAGE MANAGER
SUMMARY

19 Node.js Development
GETTING STARTED WITH NODE.JS
NODE PACKAGE MANAGER
TASK RUNNER EXPLORER
SUMMARY

20 Python Development
GETTING STARTED WITH PYTHON
COOKIECUTTER EXTENSION
SUMMARY

PART VI: Mobile Applications
21 Mobile Applications Using .NET

USING XAMARIN
CREATING A XAMARIN FORMS PROJECT
DEBUGGING YOUR APPLICATION
SUMMARY

Download from finelybook www.finelybook.com

6

22 Mobile Applications Using JavaScript
WHAT IS APACHE CORDOVA?
CREATING AN APACHE CORDOVA PROJECT
DEBUGGING IN APACHE CORDOVA
SUMMARY

PART VII: Cloud Services
23 Windows Azure

THE WINDOWS AZURE PLATFORM
SQL AZURE
SERVICE FABRIC
AZURE MOBILE APP
AZURE VIRTUAL MACHINES
SUMMARY

24 Synchronization Services
OCCASIONALLY CONNECTED APPLICATIONS
SERVER DIRECT
GETTING STARTED WITH SYNCHRONIZATION
SERVICES
SYNCHRONIZATION SERVICES OVER N-TIERS
SUMMARY

25 SharePoint
SHAREPOINT EXECUTION MODELS
PREPARING THE DEVELOPMENT ENVIRONMENT
CREATING A SHAREPOINT PROJECT
RUNNING YOUR APPLICATION
SUMMARY

PART VIII: Data
26 Visual Database Tools

DATABASE WINDOWS IN VISUAL STUDIO 2017
EDITING DATA
REDGATE DATA TOOLS

Download from finelybook www.finelybook.com

7

SUMMARY
27 The ADO.NET Entity Framework

WHAT IS THE ENTITY FRAMEWORK?
GETTING STARTED
CREATING AN ENTITY MODEL
QUERYING THE ENTITY MODEL
ADVANCED FUNCTIONALITY
SUMMARY

28 Data Warehouses and Lakes
WHAT IS APACHE HADOOP?
DATA LAKE TOOLS FOR VISUAL STUDIO
SUMMARY

29 Data Science and Analytics
WHAT IS R?
R TOOLS FOR VISUAL STUDIO
SUMMARY

PART IX: Debugging
30 Using the Debugging Windows

THE CODE WINDOW
THE BREAKPOINTS WINDOW
THE OUTPUT WINDOW
THE IMMEDIATE WINDOW
THE WATCH WINDOWS
THE CODE EXECUTION WINDOWS
THE MEMORY WINDOWS
THE PARALLEL DEBUGGING WINDOWS
EXCEPTIONS
SUMMARY

31 Debugging with Breakpoints
BREAKPOINTS
TRACEPOINTS

Download from finelybook www.finelybook.com

8

EXECUTION CONTROL
EDIT AND CONTINUE
SUMMARY

PART X: Build And Deployment
32 Upgrading with Visual Studio 2017

UPGRADING FROM RECENT VISUAL STUDIO
VERSIONS
UPGRADING TO .NET FRAMEWORK 4.6.2
SUMMARY

33 Build Customization
GENERAL BUILD OPTIONS
MANUAL DEPENDENCIES
THE VISUAL BASIC COMPILE PAGE
C# BUILD PAGES
MSBUILD
SUMMARY

34 Obfuscation, Application Monitoring, and Management
THE IL DISASSEMBLER
DECOMPILERS
OBFUSCATING YOUR CODE
APPLICATION MONITORING AND MANAGEMENT
SUMMARY

35 Packaging and Deployment
WINDOWS INSTALLER XML TOOLSET
CLICKONCE
SUMMARY

36 Web Application Deployment
WEB DEPLOYMENT
WEB PROJECT INSTALLERS
THE WEB PLATFORM INSTALLER
SUMMARY

Download from finelybook www.finelybook.com

9

37 Continuous Delivery
NOMENCLATURE
CONTINUOUS DELIVERY TOOLS
SUMMARY

PART XI: Visual Studio Editions
38 Visual Studio Enterprise: Code Quality

DEPENDENCY VERIFICATION
EXPLORING CODE WITH CODE MAPS
CODE CLONING
SUMMARY

39 Visual Studio Enterprise: Testing and Debugging
AUTOMATED TESTS
INTELLITRACE
INTELLITEST
SUMMARY

40 Visual Studio Team Services
GETTING STARTED WITH GIT
VERSION CONTROL
WORK ITEM TRACKING
BUILDS
WEB PORTAL
SUMMARY

END USER LICENSE AGREEMENT

List of Tables

Chapter 7
TABLE 7-1: IntelliSense Commands

Chapter 8
TABLE 8-1: Information Panes for Snippets

Chapter 9

Download from finelybook www.finelybook.com

10

TABLE 9-1: Values for DefaultSwitch
Chapter 11

TABLE 11-1: Template Parameters
Chapter 32

TABLE 32-1: Compatible Project Types
Chapter 39

TABLE 39-1: IntelliTrace Data Collection Types

List of Illustrations

Chapter 1
FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 1-4
FIGURE 1-5
FIGURE 1-6
FIGURE 1-7
FIGURE 1-8
FIGURE 1-9
FIGURE 1-10
FIGURE 1-11
FIGURE 1-12
FIGURE 1-13
FIGURE 1-14
FIGURE 1-15

Chapter 2
FIGURE 2-1
FIGURE 2-2

Download from finelybook www.finelybook.com

11

FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 2-6
FIGURE 2-7
FIGURE 2-8
FIGURE 2-9
FIGURE 2-10
FIGURE 2-11
FIGURE 2-12
FIGURE 2-13
FIGURE 2-14
FIGURE 2-15
FIGURE 2-16
FIGURE 2-17
FIGURE 2-18
FIGURE 2-19
FIGURE 2-20
FIGURE 2-21
FIGURE 2-22
FIGURE 2-23
FIGURE 2-24

Chapter 3
FIGURE 3-1
FIGURE 3-2
FIGURE 3-3
FIGURE 3-4
FIGURE 3-5

Download from finelybook www.finelybook.com

12

FIGURE 3-6
FIGURE 3-7
FIGURE 3-8
FIGURE 3-9
FIGURE 3-10
FIGURE 3-11
FIGURE 3-12
FIGURE 3-13
FIGURE 3-14
FIGURE 3-15
FIGURE 3-16
FIGURE 3-17
FIGURE 3-18
FIGURE 3-19
FIGURE 3-20
FIGURE 3-21
FIGURE 3-22
FIGURE 3-23
FIGURE 3-24
FIGURE 3-25

Chapter 4
FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 4-5
FIGURE 4-6
FIGURE 4-7

Download from finelybook www.finelybook.com

13

FIGURE 4-8
FIGURE 4-9
FIGURE 4-10
FIGURE 4-11
FIGURE 4-12
FIGURE 4-13
FIGURE 4-14
FIGURE 4-15
FIGURE 4-16
FIGURE 4-17
FIGURE 4-18
FIGURE 4-19
FIGURE 4-20
FIGURE 4-21
FIGURE 4-22
FIGURE 4-23
FIGURE 4-24
FIGURE 4-25
FIGURE 4-26
FIGURE 4-27
FIGURE 4-28

Chapter 5
FIGURE 5-1
FIGURE 5-2
FIGURE 5-3
FIGURE 5-4
FIGURE 5-5
FIGURE 5-6

Download from finelybook www.finelybook.com

14

FIGURE 5-7
FIGURE 5-8
FIGURE 5-9
FIGURE 5-10
FIGURE 5-11

Chapter 6
FIGURE 6-1
FIGURE 6-2
FIGURE 6-3
FIGURE 6-4
FIGURE 6-5
FIGURE 6-6
FIGURE 6-7
FIGURE 6-8
FIGURE 6-9
FIGURE 6-10
FIGURE 6-11
FIGURE 6-12
FIGURE 6-13
FIGURE 6-14
FIGURE 6-15
FIGURE 6-16
FIGURE 6-17
FIGURE 6-18
FIGURE 6-19
FIGURE 6-20
FIGURE 6-21
FIGURE 6-22

Download from finelybook www.finelybook.com

15

FIGURE 6-23
FIGURE 6-24
FIGURE 6-25
FIGURE 6-26
FIGURE 6-27
FIGURE 6-28
FIGURE 6-29
FIGURE 6-30

Chapter 7
FIGURE 7-1
FIGURE 7-2
FIGURE 7-3
FIGURE 7-4
FIGURE 7-5
FIGURE 7-6
FIGURE 7-7
FIGURE 7-8
FIGURE 7-9
FIGURE 7-10
FIGURE 7-11
FIGURE 7-12
FIGURE 7-13
FIGURE 7-14
FIGURE 7-15
FIGURE 7-16
FIGURE 7-17
FIGURE 7-18
FIGURE 7-19

Download from finelybook www.finelybook.com

16

FIGURE 7-20
FIGURE 7-21
FIGURE 7-22

Chapter 8
FIGURE 8-1
FIGURE 8-2
FIGURE 8-3
FIGURE 8-4
FIGURE 8-5
FIGURE 8-6
FIGURE 8-7
FIGURE 8-8
FIGURE 8-9
FIGURE 8-10
FIGURE 8-11
FIGURE 8-12
FIGURE 8-13
FIGURE 8-14
FIGURE 8-15
FIGURE 8-16
FIGURE 8-17
FIGURE 8-18
FIGURE 8-19
FIGURE 8-20
FIGURE 8-21

Chapter 9
FIGURE 9-1
FIGURE 9-2

Download from finelybook www.finelybook.com

17

FIGURE 9-3
FIGURE 9-4
FIGURE 9-5
FIGURE 9-6
FIGURE 9-7
FIGURE 9-8
FIGURE 9-9
FIGURE 9-10
FIGURE 9-11

Chapter 10
FIGURE 10-1
FIGURE 10-2
FIGURE 10-3
FIGURE 10-4
FIGURE 10-5
FIGURE 10-6
FIGURE 10-7
FIGURE 10-8
FIGURE 10-9
FIGURE 10-10
FIGURE 10-11
FIGURE 10-12
FIGURE 10-13
FIGURE 10-14
FIGURE 10-15

Chapter 11
FIGURE 11-1
FIGURE 11-2

Download from finelybook www.finelybook.com

18

FIGURE 11-3
FIGURE 11-4
FIGURE 11-5
FIGURE 11-6
FIGURE 11-7
FIGURE 11-8
FIGURE 11-9

Chapter 12
FIGURE 12-1
FIGURE 12-2
FIGURE 12-3
FIGURE 12-4
FIGURE 12-5
FIGURE 12-6
FIGURE 12-7
FIGURE 12-8
FIGURE 12-9
FIGURE 12-10

Chapter 13
FIGURE 13-1
FIGURE 13-2
FIGURE 13-3
FIGURE 13-4
FIGURE 13-5
FIGURE 13-6
FIGURE 13-7
FIGURE 13-8
FIGURE 13-9

Download from finelybook www.finelybook.com

19

FIGURE 13-10
FIGURE 13-11
FIGURE 13-12
FIGURE 13-13
FIGURE 13-14
FIGURE 13-15
FIGURE 13-16
FIGURE 13-17
FIGURE 13-18

Chapter 14
FIGURE 14-1
FIGURE 14-2
FIGURE 14-3
FIGURE 14-4
FIGURE 14-5
FIGURE 14-6
FIGURE 14-7
FIGURE 14-8
FIGURE 14-9
FIGURE 14-10
FIGURE 14-11
FIGURE 14-12
FIGURE 14-13
FIGURE 14-14
FIGURE 14-15
FIGURE 14-16
FIGURE 14-17
FIGURE 14-18

Download from finelybook www.finelybook.com

20

FIGURE 14-19
FIGURE 14-20
FIGURE 14-21
FIGURE 14-22
FIGURE 14-23
FIGURE 14-24
FIGURE 14-25
FIGURE 14-26
FIGURE 14-27
FIGURE 14-28
FIGURE 14-29
FIGURE 14-30
FIGURE 14-31
FIGURE 14-32
FIGURE 14-33
FIGURE 14-34

Chapter 15
FIGURE 15-1
FIGURE 15-2
FIGURE 15-3
FIGURE 15-4
FIGURE 15-5
FIGURE 15-6
FIGURE 15-7
FIGURE 15-8
FIGURE 15-9
FIGURE 15-10
FIGURE 15-11

Download from finelybook www.finelybook.com

21

Chapter 16
FIGURE 16-1
FIGURE 16-2
FIGURE 16-3
FIGURE 16-4
FIGURE 16-5
FIGURE 16-6
FIGURE 16-7
FIGURE 16-8
FIGURE 16-9
FIGURE 16-10
FIGURE 16-11
FIGURE 16-12
FIGURE 16-13
FIGURE 16-14
FIGURE 16-15
FIGURE 16-16
FIGURE 16-17
FIGURE 16-18
FIGURE 16-19
FIGURE 16-20
FIGURE 16-21
FIGURE 16-22
FIGURE 16-23
FIGURE 16-24
FIGURE 16-25
FIGURE 16-26
FIGURE 16-27

Download from finelybook www.finelybook.com

22

FIGURE 16-28
FIGURE 16-29
FIGURE 16-30
FIGURE 16-31
FIGURE 16-32
FIGURE 16-33
FIGURE 16-34
FIGURE 16-35
FIGURE 16-36

Chapter 17
FIGURE 17-1
FIGURE 17-2
FIGURE 17-3
FIGURE 17-4
FIGURE 17-5
FIGURE 17-6
FIGURE 17-7
FIGURE 17-8
FIGURE 17-9
FIGURE 17-10
FIGURE 17-11

Chapter 18
FIGURE 18-1
FIGURE 18-2
FIGURE 18-3
FIGURE 18-4
FIGURE 18-5
FIGURE 18-6

Download from finelybook www.finelybook.com

23

FIGURE 18-7
FIGURE 18-8
FIGURE 18-9
FIGURE 18-10
FIGURE 18-11
FIGURE 18-12

Chapter 19
FIGURE 19-1
FIGURE 19-2
FIGURE 19-3
FIGURE 19-4
FIGURE 19-5
FIGURE 19-6
FIGURE 19-7
FIGURE 19-8
FIGURE 19-9
FIGURE 19-10
FIGURE 19-11
FIGURE 19-12

Chapter 20
FIGURE 20-1
FIGURE 20-2
FIGURE 20-3
FIGURE 20-4
FIGURE 20-5
FIGURE 20-6
FIGURE 20-7
FIGURE 20-8

Download from finelybook www.finelybook.com

24

FIGURE 20-9
Chapter 21

FIGURE 21-1
FIGURE 21-2
FIGURE 21-3
FIGURE 21-4
FIGURE 21-5
FIGURE 21-6
FIGURE 21-7
FIGURE 21-8
FIGURE 21-9
FIGURE 21-10
FIGURE 21-11
FIGURE 21-12
FIGURE 21-13
FIGURE 21-14
FIGURE 21-15
FIGURE 21-16
FIGURE 21-17
FIGURE 21-18
FIGURE 21-19
FIGURE 21-20
FIGURE 21-21
FIGURE 21-22
FIGURE 21-23
FIGURE 21-24
FIGURE 21-25

Chapter 22

Download from finelybook www.finelybook.com

25

FIGURE 22-1
FIGURE 22-2
FIGURE 22-3
FIGURE 22-4
FIGURE 22-5
FIGURE 22-6
FIGURE 22-7
FIGURE 22-8
FIGURE 22-9
FIGURE 22-10
FIGURE 22-11
FIGURE 22-12
FIGURE 22-13

Chapter 23
FIGURE 23-1
FIGURE 23-2
FIGURE 23-3
FIGURE 23-4
FIGURE 23-5
FIGURE 23-6
FIGURE 23-7
FIGURE 23-8
FIGURE 23-9
FIGURE 23-10
FIGURE 23-11
FIGURE 23-12
FIGURE 23-13

Chapter 24

Download from finelybook www.finelybook.com

26

FIGURE 24-1
FIGURE 24-2
FIGURE 24-3
FIGURE 24-4

Chapter 25
FIGURE 25-1
FIGURE 25-2
FIGURE 25-3
FIGURE 25-4
FIGURE 25-5
FIGURE 25-6
FIGURE 25-7
FIGURE 25-8
FIGURE 25-9
FIGURE 25-10
FIGURE 25-11
FIGURE 25-12
FIGURE 25-13
FIGURE 25-14

Chapter 26
FIGURE 26-1
FIGURE 26-2
FIGURE 26-3
FIGURE 26-4
FIGURE 26-5
FIGURE 26-6
FIGURE 26-7
FIGURE 26-8

Download from finelybook www.finelybook.com

27

FIGURE 26-9
FIGURE 26-10
FIGURE 26-11
FIGURE 26-12
FIGURE 26-13
FIGURE 26-14
FIGURE 26-15
FIGURE 26-16
FIGURE 26-17
FIGURE 26-18
FIGURE 26-19
FIGURE 26-20
FIGURE 26-21
FIGURE 26-22

Chapter 27
FIGURE 27-1
FIGURE 27-2
FIGURE 27-3
FIGURE 27-4
FIGURE 27-5
FIGURE 27-6
FIGURE 27-7
FIGURE 27-8
FIGURE 27-9
FIGURE 27-10
FIGURE 27-11
FIGURE 27-12
FIGURE 27-13

Download from finelybook www.finelybook.com

28

Chapter 28
FIGURE 28-1
FIGURE 28-2
FIGURE 28-3
FIGURE 28-4
FIGURE 28-5
FIGURE 28-6
FIGURE 28-7
FIGURE 28-8
FIGURE 28-9
FIGURE 28-10
FIGURE 28-11
FIGURE 28-12

Chapter 29
FIGURE 29-1
FIGURE 29-2
FIGURE 29-3
FIGURE 29-4
FIGURE 29-5
FIGURE 29-6
FIGURE 29-7
FIGURE 29-8
FIGURE 29-9
FIGURE 29-10
FIGURE 29-11
FIGURE 29-12
FIGURE 29-13
FIGURE 29-14

Download from finelybook www.finelybook.com

29

FIGURE 29-15
Chapter 30

FIGURE 30-1
FIGURE 30-2
FIGURE 30-3
FIGURE 30-4
FIGURE 30-5
FIGURE 30-6
FIGURE 30-7
FIGURE 30-8
FIGURE 30-9
FIGURE 30-10
FIGURE 30-11
FIGURE 30-12
FIGURE 30-13
FIGURE 30-14
FIGURE 30-15
FIGURE 30-16
FIGURE 30-17
FIGURE 30-18
FIGURE 30-19
FIGURE 30-20
FIGURE 30-21

Chapter 31
FIGURE 31-1
FIGURE 31-2
FIGURE 31-3
FIGURE 31-4

Download from finelybook www.finelybook.com

30

FIGURE 31-5
FIGURE 31-6
FIGURE 31-7
FIGURE 31-8
FIGURE 31-9
FIGURE 31-10
FIGURE 31-11
FIGURE 31-12
FIGURE 31-13
FIGURE 31-14
FIGURE 31-15
FIGURE 31-16

Chapter 32
FIGURE 32-1
FIGURE 32-2

Chapter 33
FIGURE 33-1
FIGURE 33-2
FIGURE 33-3
FIGURE 33-4
FIGURE 33-5
FIGURE 33-6
FIGURE 33-7
FIGURE 33-8
FIGURE 33-9
FIGURE 33-10

Chapter 34
FIGURE 34-1

Download from finelybook www.finelybook.com

31

FIGURE 34-2
FIGURE 34-3
FIGURE 34-4
FIGURE 34-5
FIGURE 34-6
FIGURE 34-7
FIGURE 34-8
FIGURE 34-9
FIGURE 34-10
FIGURE 34-11

Chapter 35
FIGURE 35-1
FIGURE 35-2
FIGURE 35-3
FIGURE 35-4
FIGURE 35-5
FIGURE 35-6
FIGURE 35-7
FIGURE 35-8
FIGURE 35-9
FIGURE 35-10
FIGURE 35-11
FIGURE 35-12

Chapter 36
FIGURE 36-1
FIGURE 36-2
FIGURE 36-3
FIGURE 36-4

Download from finelybook www.finelybook.com

32

FIGURE 36-5
FIGURE 36-6
FIGURE 36-7
FIGURE 36-8
FIGURE 36-9

Chapter 37
FIGURE 37-1
FIGURE 37-2
FIGURE 37-3
FIGURE 37-4
FIGURE 37-5
FIGURE 37-6
FIGURE 37-7
FIGURE 37-8
FIGURE 37-9
FIGURE 37-10

Chapter 38
FIGURE 38-1
FIGURE 38-2
FIGURE 38-3
FIGURE 38-4
FIGURE 38-5
FIGURE 38-6
FIGURE 38-7
FIGURE 38-8
FIGURE 38-9
FIGURE 38-10
FIGURE 38-11

Download from finelybook www.finelybook.com

33

Chapter 39
FIGURE 39-1
FIGURE 39-2
FIGURE 39-3
FIGURE 39-4
FIGURE 39-5
FIGURE 39-6
FIGURE 39-7
FIGURE 39-8
FIGURE 39-9
FIGURE 39-10
FIGURE 39-11
FIGURE 39-12
FIGURE 39-13
FIGURE 39-14

Chapter 40
FIGURE 40-1
FIGURE 40-2
FIGURE 40-3
FIGURE 40-4
FIGURE 40-5
FIGURE 40-6
FIGURE 40-7
FIGURE 40-8
FIGURE 40-9
FIGURE 40-10
FIGURE 40-11
FIGURE 40-12

Download from finelybook www.finelybook.com

34

FIGURE 40-13
FIGURE 40-14

Download from finelybook www.finelybook.com

35

PROFESSIONAL

Visual Studio® 2017

Bruce Johnson

Download from finelybook www.finelybook.com

36

INTRODUCTION

AS A TOOL FOR DEVELOPERS, Visual Studio stands head and
shoulders about its competition. The team responsible for developing
Visual Studio has always put the productivity of people who code for a
living at the top of their priority list. This version continues this
tradition. Visual Studio always incorporates the latest advances in
Microsoft's premier programming languages (Visual Basic and C#), as
well as adding little tidbits of functionality that are a boon to coders.
But at a higher level, Visual Studio 2017 embraces open-source,
mobile development, and cloud computing in a variety of ways. Azure
is continually introducing new features and products and Visual
Studio 2017 integrates seamlessly with them. While, in theory, it is
possible to create any .NET application using tools as simple as
Notepad and a command-line window, the typical developer would
never think to do so. Visual Studio 2017, as was the case with its
predecessors, includes a host of improvements and features that are
aimed at making the life of a developer easier.
Visual Studio 2017 is an enormous product no matter which way you
look at it. It can be intimidating to newcomers and difficult for even
experienced .NET developers to find what they need. And that's where
this book comes in. Professional Visual Studio 2017 looks at every
major aspect of this developer tool, showing you how to harness each
feature and offering advice about how best to utilize the various
components effectively. It shows you the building blocks that make up
Visual Studio 2017, breaking the user interface down into manageable
chunks for you to understand. It then expands on each of these
components with additional details about exactly how they work, both
in isolation and in conjunction with other parts of Visual Studio 2017,
along with tools that are not included in the out-of-the-box product, to
make your development efforts even more efficient.

Download from finelybook www.finelybook.com

37

WHO THIS BOOK IS FOR

Professional Visual Studio 2017 is for developers who are new to
Visual Studio as well as those programmers who have some experience
but want to learn about features they may have previously overlooked.
Even if you are familiar with the way previous versions of Visual
Studio worked, you may want to at least skim over Part I. These
chapters deal with the basic constructs that make up the user
interface. The biggest changes to the building blocks are in the
installation process. It is more granular, meaning that you install only
what you need and if you don't install a component initially, the
installer is only a click or two away. But there are some little additions
in functionality, so while you can get by without Part I, some of the
changes in Visual Studio 2017 can make you a more efficient
developer. And, after all, that's what you're looking to get out of this
book.
If you're just starting out, you'll greatly benefit from the first part,
where basic concepts are explained and you're introduced to the user
interface and how to customize it to suit your own style.

Download from finelybook www.finelybook.com

38

WHAT THIS BOOK COVERS

Microsoft Visual Studio 2017 is arguably the most advanced integrated
development environment (IDE) available for programmers today. It
is based on a long history of programming languages and interfaces
and has been influenced by many different variations on the theme of
development environments.
Visual Studio 2017 does not represent a major departure from recent
versions. Still, regardless of the type of application you're creating,
there are tweaks that have been made—some small, some less so
(.NET Core, for example). Familiarity with the changes helps you
perform your job better. For this reason, as well as to help newcomers
to Visual Studio, this book covers the breadth of the product. Along
the way, you will become more familiar and comfortable with the
interface.
Visual Studio 2017 comes in several versions: Community,
Professional, and Enterprise. The majority of this book deals with the
Professional Edition of Visual Studio 2017, but some chapters utilize
features found only in the Enterprise edition. If you haven't used this
edition before, read through Chapters 38 and 39 for an overview of the
features it offers over and above the Professional Edition.

Download from finelybook www.finelybook.com

39

HOW THIS BOOK IS STRUCTURED

This book is divided into 11 parts:
Integrated Development Environment: This book's first five
chapters are dedicated to familiarizing you with the core aspects of
Visual Studio 2017, from the IDE structure and layout to the
various options and settings you can change to make the user
interface synchronize with your own way of doing things.
Getting Started: In this part, you learn how to take control of
your projects and how to organize them in ways that work with
your own style.
Digging Deeper: Though the many graphical components of
Visual Studio that make a programmer's job easier are discussed in
many places throughout this book, you often need help when
you're in the process of actually writing code. This part deals with
features that support the coding of applications such as
IntelliSense, code refactoring, and creating and running unit tests.
Desktop Applications: Rich client applications have seen quite
a transition within the .NET Framework, moving from Windows
Forms applications to Windows Presentation Foundation (WPF) to
Universal Windows Applications. Each of these gets its own
chapter in this part.
Web Applications: Web applications have seen even more
transitions that Desktop applications. And just like Desktop
applications, each of the three different development styles
(ASP.NET Web Forms, ASP.NET MVC, and .NET Core) gets its
own chapter. And a couple of new kids on the block, Node.js and
Python, are also included in this part.
Mobile Applications: There are two different styles of mobile
application development that are supported with Visual Studio
2017. Through Xamarin, it's possible to create mobile apps using
familiar .NET components. And by using Apache Cordova
(formerly PhoneGap), you can target mobile devices using HTML,
CSS, and JavaScript.

Download from finelybook www.finelybook.com

40

Cloud Services: Visual Studio 2017 supports the cloud in a wide
variety of ways. The chapter on Windows Azure looks at how some
of the newer features of Azure are integrated into Visual Studio.
And the use of synchronization services as a data storage platform
is examined, along with how to create apps for SharePoint.
Data: A large proportion of applications use some form of data
storage. Visual Studio 2017 and the .NET Framework include
strong support for working with databases and other data sources.
This part examines how to the Visual Database Tools, and
ADO.NET Entity Framework to build applications that work with
data. It also shows you how you how to take advantage of a couple
of new functions within Azure to support data warehouse
construction and data analytics.
Debugging: Application debugging is one of the more challenging
tasks developers have to tackle, but correct use of the Visual Studio
2017 debugging features will help you analyze the state of the
application and determine the cause of any bugs. This part
examines the debugging support provided by the IDE.
Build and Deployment: In addition to discussing how to build
your solutions effectively and get applications into the hands of
your end users, this part also deals with the process of upgrading
your projects from previous versions.
Visual Studio Editions: The final part of the book examines the
additional features only available in the Enterprise version of
Visual Studio 2017. In addition, you'll also learn how Visual Studio
Team Services provides an essential tool for managing software
projects.

Though this breakdown of the Visual Studio feature set provides the
most logical and easily understood set of topics, you may need to look
for specific functions that will aid you in a particular activity. To
address this need, references to appropriate chapters are provided
whenever a feature is covered in more detail elsewhere in the book.
As Visual Studio has grown over the years, the size of earlier versions
of this book had grown to the point where it was unwieldy. And there
were even more features with Visual Studio 2017. So to avoid a book
whose size would be pushing 2,000 pages, we took a number of the

Download from finelybook www.finelybook.com

41

chapters from earlier editions of Visual Studio and put them into an
online archive. These chapters contain features that have not been
changed or enhanced in Visual Studio 2017. As such, the instructions
found therein will apply, in general, if you're trying to use them in
Visual Studio 2017. You can find the online archive on www.wrox.com.

Download from finelybook www.finelybook.com

42

http://www.wrox.com

WHAT YOU NEED TO USE THIS BOOK

To use this book effectively, you'll need only one additional item —
Microsoft Visual Studio 2017 Professional Edition. With this software
installed and the information found in this book, you'll be able to get a
handle on how to use Visual Studio 2017 effectively in a very short
period of time. In order to be able to follow along with all of the
examples in the book, you'll want to be sure to install the following
workloads during your Visual Studio 2017 installation (as discussed in
Chapter 1):

Universal Windows Platform
.NET desktop development
ASP.NET and web development
Azure development
Node.js development
Data storage and processing
Data science and analytical applications
Mobile development with .NET
Mobile development with Javascript
.NET code cross-platform development

This book assumes that you are familiar with the traditional
programming model, and it uses both the C# and Visual Basic (VB)
languages to illustrate features within Visual Studio 2017. In addition,
it is assumed that you can understand the code listings without an
explanation of basic programming concepts in either language. If
you're new to programming and want to learn Visual Basic, please take
a look at Beginning Visual Basic 2015 by Bryan Newsome. Similarly, if
you are after a great book on C#, track down Beginning C# 6
Programming with Visual Studio 2015 by Benjamin Perkins, Jacob
Vibe Hammer, and Jon D. Reid.
Some chapters discuss additional products and tools that work in
conjunction with Visual Studio. The following are all available to
download either on a trial basis or for free:

Download from finelybook www.finelybook.com

43

Code Snippet Editor: This is a third-party tool developed for
creating code snippets in VB. The Snippet Editor tool is discussed
in Chapter 8.
SQL Server 2016: The installation of Visual Studio 2017 includes
an install of SQL Server 2016 Express, enabling you to build
applications that use database files. However, for more
comprehensive enterprise solutions, you can use a full SQL Server
2016 instead.
Visual Studio 2017 Enterprise Edition: This more advanced
version of Visual Studio introduces tools for other parts of the
development process such as testing and design. They are
discussed in Chapters 38-39.
Team Foundation Server or Team Foundation Service:
The server product (or the cloud-based equivalent) that provides
application lifecycle management throughout Visual Studio 2017.
This is covered in Chapter 40.
Windows 7, Windows 8, or Windows 10: Visual Studio 2015
is compatible with Windows 7 SP1, and 8.1, and, of course,
Windows 10. It can produce applications that run on Windows XP,
Windows Vista, Windows 7, Windows 8, and Windows 10.

CONVENTIONS

To help you get the most from the text and keep track of what's
happening, we've used a number of conventions throughout the book.

WARNING

Boxes like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

NOTE

Notes, tips, hints, tricks, and asides to the current discussion are
offset and placed in italics like this.

Download from finelybook www.finelybook.com

44

As for styles in the text:
We highlight new terms and important words when we introduce
them.
We show URLs and code within the text like so:
persistence.properties.
We present code in the following way:

We use a monofont type for code examples.
We use bold to emphasize code that is particularly important
in the present context or to show changes from a previous
code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either
to type in all the code manually or to use the source code files that
accompany the book. All the source code used in this book is available
for download at www.wrox.com.
You can also search for the book at www.wrox.com by ISBN (the ISBN
for this book is 978-1-119-40458-3) to find the code. And a complete
list of code downloads for all current Wrox books is available at
www.wrox.com/dynamic/books/download.aspx.

NOTE

Because many books have similar titles, you may find it easiest to
search by ISBN; this book's ISBN is 978-1-119-40458-3.

Alternately, you can go to the main Wrox code download page at
www.wrox.com/dynamic/books/download.aspx to see the code available
for this book and all other Wrox books.
Most of the code on www.wrox.com is compressed in a .ZIP, .RAR
archive, or similar archive format appropriate to the platform. Once
you download the code, just decompress it with your favorite
compression tool.

ERRATA

Download from finelybook www.finelybook.com

45

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

We make every effort to ensure that there are no errors in the text or
in the code. However, no one is perfect, and mistakes do occur. If you
find an error in one of our books, like a spelling mistake or faulty piece
of code, we would be very grateful for your feedback. By sending in
errata you may save another reader hours of frustration and at the
same time you will be helping us provide even higher quality
information.
To find the errata page for this book, go to www.wrox.com and locate the
title using the Search box or one of the title lists. Then, on the Book
Search Results page, click the Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox
editors.

NOTE

a complete book list including links to errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

If you don't spot “your” error on the Errata page, click the Errata Form
link and complete the form to send us the error you have found. We'll
check the information and, if appropriate, post a message to the book's
errata page and fix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com.
The forums are a web-based system for you to post messages relating
to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature
to email you topics of interest of your choosing when new posts are
made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.
At http://p2p.wrox.com you will find a number of different forums that
will help you, not only as you read this book, but also as you develop
your own applications. To join the forums, just follow these steps:
1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

Download from finelybook www.finelybook.com

46

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

3. Complete the required information to join as well as any optional
information you wish to provide and click Submit.

4. You will receive an e-mail with information describing how to
verify your account and complete the joining process.

NOTE

You can read messages in the forums without joining P2P but in
order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages
other users post. You can read messages at any time on the Web. If you
would like to have new messages from a particular forum emailed to
you, click the Subscribe to this Forum icon by the forum name in the
forum listing.
For more information about how to use the Wrox P2P, be sure to read
the P2P FAQs for answers to questions about how the forum software
works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

Download from finelybook www.finelybook.com

47

PART I
Integrated Development Environment

CHAPTER 1: A Quick Tour
CHAPTER 2: The Solution Explorer, Toolbox, and Properties
CHAPTER 3: Options and Customizations
CHAPTER 4: The Visual Studio Workspace
CHAPTER 5: Find and Replace and Help

Download from finelybook www.finelybook.com

48

1
A Quick Tour

WHAT’S IN THIS CHAPTER?

What’s in This Chapter?
Installing and getting started with Visual Studio 2017
Creating and running your first application
Debugging and deploying an application

Ever since software has been developed, there has been a need for
tools to help write, compile, debug, and deploy applications. Microsoft
Visual Studio 2017 is the next iteration in the continual evolution of a
best-of-breed integrated development environment (IDE).
This chapter introduces the Visual Studio 2017 user experience and
shows you how to work with the various menus, toolbars, and
windows. It serves as a quick tour of the IDE, and as such it doesn’t go
into detail about what settings can be changed or how to go about
customizing the layout because these topics are explored in the
following chapters.

GETTING STARTED

Recent versions of Visual Studio have seen incremental improvements
in the installation experience. However, Visual Studio 2017 has pretty
much completely revamped the installation options and workflow. It
has been designed to not only get you up and running quickly, but also
to easily select only those options you need to have installed. This
section walks you through the installation process and getting started
with the IDE.

Installing Visual Studio 2017

Download from finelybook www.finelybook.com

49

The installer for Visual Studio 2017 is what Microsoft calls a “low-
impact installer.” The idea arose as Microsoft compared the footprint
used by Visual Studio 2015 with the kinds of experiences that users
were not only requesting, but also using. As surprising as it might
seem, not every developer needs to have Visual Studio support for
Windows Forms, ASP.NET, WPF, Universal Apps, and C++ out of the
box.
Visual Studio 2015 and earlier versions were optimized so that
pressing F5 to run a program would work out of the box. It wasn’t
expected that you would need to install any other components in order
to get the large majority of .NET applications running. While this was
a definite plus regarding ease of use, it made for a large (some might
say bloated) footprint for Visual Studio.
In Visual Studio 2017, the installation process takes a different point
of view. Instead of automatically installing “everything,” you get to
pick and choose the different components that you want to install. Yes,
you had a little bit of that in the past, but now the number of options
that you have is greatly increased. However, more options doesn’t
necessarily mean a better installation experience. In fact, it’s probably
the opposite, as you try to figure out which of a hundred different
options you need to install to work on your project. To address that
challenge, the Visual Studio 2017 installer uses the concept of
workloads.
When you launch the Visual Studio 2017 installation process (an
application of only a couple of megabytes in size), you’ll see the dialog
in Figure 1-1 appear relatively quickly. Naturally, this is after you have
read (in great detail, of course) and accepted the licensing information
and privacy statements.

Download from finelybook www.finelybook.com

50

FIGURE 1-1

This is the main hub for the installer and the location where the
desired components are specified. There are two modes for identifying
the components. In Figure 1-1, you are looking at the workloads. The
workloads have been divided into five different categories. To include
a workload in the installation, simply click on it, showing a blue
checkbox in the top right corner. You can add any number of the
workloads as part of the installation. The available workloads are:

Universal Windows Platform development: Used if you are
creating applications for the Universal Windows Platform,
regardless of your language of choice.
.NET desktop development: Allows you to create applications,
using either WPF or Windows Forms. This is also where you find
the Console application template.
Desktop development with C++: Used to build classic
Windows-based applications. This option is appropriate if you
expect to be using Visual C++, the Active Template Library (ATL),
or Microsoft Foundation Classes (MFC).
ASP.NET and web development: Adds the components used

Download from finelybook www.finelybook.com

51

to build web applications, including ASP.NET, ASP.NET Core, and
plain old HTML/Javascript/CSS.
Azure development: Includes the Azure SDK, tools, and project
templates that allow you to create Azure-based cloud applications.
Python development: Includes support for cookiecutter, Python
3, and tools that are used to interact with Azure. And, optionally,
you can include other distributions of Python, such as Anaconda.
Node.js development: One of the new tools supported by Visual
Studio 2017, this workload includes the components that allow you
to create network applications using the Node.js platform.
Data storage and processing: Some recent additions to the
Azure platform include Azure Data Lake, Hadoop, and Azure ML
(Machine Learning). This workload includes the templates and
tools to develop applications for this platform, along with the Azure
SQL Server database.
Data science and analytical applications: Brings together
three languages that are also found in other workloads: R, Python,
and F#. These tools can be used to build a wide variety of analytics-
based applications.
Office/SharePoint development: Used to create a wide variety
of Office and SharePoint applications, including Office add-ins,
SharePoint solutions, and Visual Studio Tools for Office (VSTO)
add-ins.
Mobile development with .NET: One of the three technologies
that Visual Studio 2017 supports for mobile development, this
workload allows you to create iOS, Android, or Windows
applications using Xamarin.
Mobile development with JavaScript: Similar concept to the
previous entry, but instead of using Xamarin, your applications are
developed using Tools for Apache Cordova and JavaScript.
Mobile development with C++: And the last of the three
mobile development environments allows you to create iOS,
Android, and Windows applications using C++.
Game development with Unity: Unity is a broadly used and

Download from finelybook www.finelybook.com

52

very flexible cross-platform game development environment. This
workload allows you to create 2D and 3D games using the Unity
framework.
Game development with C++: Supports the creation of games
using C++ along with libraries like DirectX, Unreal, or Cocos2d.
Visual Studio extension development: Lets you create add-
ons and extensions for use in Visual Studio. Included in this are
code analyzers and tool windows that take advantage of the Roslyn
compiler functionality.
Linux development with C++: Windows 10 includes an option
to install an Ubuntu-based Linux Bash shell. This workload
includes the set of tools and libraries that allow you to create
applications that run in Linux using Visual Studio.
.NET Core cross-platform development: .NET Core is a
popular approach to cross-platform development. This workload
allows you to create .NET Core applications, including web
applications.

WORKLOADS USED IN THIS BOOK

In order to work through the examples in the book, there are a
number of workloads that need to be installed. Specifically:

Universal Windows Platform
.NET desktop development
ASP.NET and web development
Azure development
Node.js development
Data storage and processing
Data science and analytical applications
Mobile development with .NET
Mobile development with Javascript
.NET code cross-platform development

Download from finelybook www.finelybook.com

53

The second mode for choosing components is more granular. If you
select the Individual Components link at the top of the installation
screen, the list of components shown in Figure 1-2 appears. From here
you can select any or all of the individual components that you want to
install on your machine.

FIGURE 1-2

NOTE

To see the relationship between the workloads and the more
granular components that are included, simply select a workload.
A list of the components that are included appears in the pane on
the right side of the dialog.

The third installation option you have for Visual Studio is to include
one or more of the supported language packs. Clicking on the
Language Packs link displays the list of language packs that are
available (see Figure 1-3).

Download from finelybook www.finelybook.com

54

FIGURE 1-3

Once you have selected your components (either individually or as
part of a workload), choose the installation location and click on
Install. Now comes the longer part of the process. You’ll see the
progress dialog, an example of which is shown in Figure 1-4.
Depending on which components you already have installed on your
computer, you might be prompted to restart your computer midway
through or at the end of the installation process. When all the
components have been successfully installed, the original dialog
changes slightly (as shown in Figure 1-5). This final dialog is also the
starting point for adding features to Visual Studio in the future.

Download from finelybook www.finelybook.com

55

FIGURE 1-4

FIGURE 1-5

Download from finelybook www.finelybook.com

56

Running Visual Studio 2017

The first time you run Visual Studio 2017, you might be given the
opportunity to sign in. If you had already signed in from within Visual
Studio 2015, you won’t be prompted to log in. Your credentials are
remembered between the versions. However, if you’re new to Visual
Studio, then you’ll be asked to provide a Microsoft Live account.
This behavior is part of an effort to cloud-enable Visual Studio—to
connect Visual Studio settings and functionality to assets that are
available across the Internet. There is no requirement for you to log in.
The login page includes a Not Now, Maybe Later link. Clicking on that
link skips a number of steps and lets you get to Visual Studio quickly.
But there are some decent benefits that can be derived by signing in.

Is Visual Studio Really Cloud Enabled?

The quick answer is “Yes.” A more accurate answer is “Yes, if you want
it to be.” Part of the research work behind creating this feature
involved Microsoft gaining an understanding of how developers
identified themselves to various online functions. In general, most
developers have two or more Microsoft accounts that they use when
they develop. There is a primary identity, which typically maps to the
credentials used by the person while working. Then there are
additional identities used to access external functions, such as Team
Foundation Server, or to publish apps onto the various Microsoft
stores.
To mimic how developers work with these multiple online identities,
Microsoft introduces a hierarchical relationship between these
identities within Visual Studio. When you sign in, the account you
specify is the primary identity for the Visual Studio IDE. It should, in
theory, represent you (that is you, the person). Every place you sign
into Visual Studio with the same credentials, your preferred settings
will follow you. This includes customizations like themes and keyboard
bindings. And a change on one device will automatically flow to the
other devices you are signed into.
To handle the secondary credentials, Visual Studio 2017 contains a
secure credential store. This allows the connections that you have

Download from finelybook www.finelybook.com

57

made to external services to be remembered and used without the
need to provide authentication each time. Naturally, you can manually
sign out from a particular connection and the credentials will be
removed.
As part of the cloud enabling, you see your name (assuming that you
logged in) in the top right of the IDE. If you click on the drop-down
arrow (shown in Figure 1-6), you can see an Account Settings link.
Clicking on that link takes you to a dialog (see Figure 1-7) in which you
can manage the details of your account, including associating Visual
Studio with different accounts.

FIGURE 1-6

Download from finelybook www.finelybook.com

58

FIGURE 1-7

Along with providing a mechanism for editing the basic contact
information for the profile, the dialog includes a list of the Microsoft
Live accounts that have been “remembered” on your current machine.

THE VISUAL STUDIO IDE

The first time you launch Visual Studio 2017 , you will most likely see a
dialog indicating that Visual Studio is configuring the development
environment. When this process is complete, Visual Studio 2017
opens, ready for you to start working, as shown in Figure 1-8.

FIGURE 1-8

You’ll see the Start page in the center of the screen. The bulk of the
page contains links to the most common functions that you’re likely to
perform. For example, there is a list of Recent projects, along with
links that allow you to open existing projects or create a new project.

Download from finelybook www.finelybook.com

59

And in the latter case, the most commonly used templates are
prominently on display. The previous version of the Start page
included a news feed of interest to developers, and that feed is still
present in Visual Studio 2017. And in the top left, there is also a Get
Started section with links to information that is useful to new users of
Visual Studio.
Before you launch into building your first application, you must take a
step back to look at the components that make up the Visual Studio
2017 IDE. Menus and toolbars are positioned along the top of the
environment, and a selection of subwindows, or panes, appears on the
left, right, and bottom of the main window area. In the center is the
main editor space. Whenever you open a code file, an XML document,
a form, or some other file, it appears in this space for editing. With
each file you open, a tab is created so that you can easily switch
between opened files.
On either side of the editor space is a set of tool windows. These areas
provide additional contextual information and functionality. For the
general developer settings, the default layout includes the Solution
Explorer and Properties on the right, and the Server Explorer and
Toolbox on the left. The tool windows on the left are in their collapsed,
or unpinned, state. If you click a tool window’s title, it expands; it
collapses again when it no longer has focus or you move the cursor to
another area of the screen. When a tool window is expanded, you see a
series of three icons at the top right of the window, similar to those
shown in the top right corner of Figure 1-9.

Download from finelybook www.finelybook.com

60

FIGURE 1-9

If you want the tool window to remain in its expanded, or pinned,
state, you can click the middle icon, which looks like a pin. The pin
rotates 90 degrees to indicate that the window is now pinned. Clicking
the third icon, the X, closes the window. If later you want to reopen
this or another tool window, you can select it from the View menu.

NOTE

Some tool windows are not accessible via the View menu; for
example, those having to do with debugging, such as threads and
watch windows. In most cases these windows are available via an
alternative menu item; for the debugging windows, it is the
Debug menu.

When the first icon, the down arrow, is clicked, a context menu opens.
Each item in this list represents a different way to arrange the tool
window. As you would imagine, the Float option enables the tool
window to be placed anywhere on the screen, independent of the main
IDE window. This is useful if you have multiple screens because you
can move the various tool windows onto the additional screen,

Download from finelybook www.finelybook.com

61

allowing the editor space to use the maximum screen real estate.
Selecting the Dock as Tabbed Document option makes the tool
window into an additional tab in the editor space. In Chapter 4, “The
Visual Studio Workspace,” you’ll learn how to effectively manage the
workspace by docking tool windows.

Developing, Building, Debugging, and Deploying
Your First Application

Now that you have seen an overview of the Visual Studio 2017 IDE,
this section walks you through creating a simple application that
demonstrates working with some of these components. This is, of
course, the mandatory “Hello World” sample that every developer
needs to know, and it can be done in either Visual Basic .NET, or C#,
depending on what you feel more comfortable with.
1. Start by selecting File New Project. This opens the New Project

dialog, as shown in Figure 1-10. There is a tree on the left side of
the dialog for grouping templates based on language and
technology. And there is also a search box in the top-right corner.
The right pane of this dialog displays additional information about
the project template you have selected. Lastly, you can select the
version of the .NET Framework that the application will target
using the drop-down at the top of the dialog. Select WPF
Application from the Templates area (this item exists under the
root Visual Basic and Visual C# nodes, or under the subnode
Windows) and set the Name to GettingStarted before selecting
OK. This creates a new WPF application project, which includes a
single startup window and is contained within a Chapter 1 solution,
as shown in the Solution Explorer window of Figure 1-11. This
startup window has automatically opened in the visual designer,
giving you an approximate graphical representation of what the
window will look like when you run the application. The Properties
tool window is collapsed and sits on the right side of the windows.

Download from finelybook www.finelybook.com

62

FIGURE 1-10

Download from finelybook www.finelybook.com

63

FIGURE 1-11

2. Click the collapsed Toolbox window, which appears on the left side
of the screen. This causes the Toolbox to expand. Then click on the
pin icon, which keeps the tool window open. To add controls to the
window in the GettingStarted project, select the appropriate items
from the Toolbox and drag them onto the form. Alternatively, you
can double-click the item, and Visual Studio automatically adds
them to the window.

3. Add a button and textbox to the form so that the layout looks
similar to the one shown in Figure 1-12. Select the textbox, and
select the Properties tool window. (You can press F4 to
automatically open the Properties tool window.) Change the name
of the control (found at the top of the Properties tool window) to
txtSayHello. Repeat for the Button control, naming it
btnSayHello and setting the Content property to Say Hello!

FIGURE 1-12

You can quickly locate a property by typing its name into the

Download from finelybook www.finelybook.com

64

search field located beneath the Name field. In Figure 1-12 Conten
has been entered to reduce the list of Properties so that it’s easier
to locate the Content property.
After you add controls to the window, the tab is updated with an
asterisk (*) after the text to indicate that there are unsaved changes
to that particular item. If you attempt to close this item while
changes are pending, you are asked if you want to save the changes.
When you build the application, any unsaved files are
automatically saved as part of the build process.

NOTE

One thing to be aware of is that some files, such as the solution
file, are modified when you make changes within Visual Studio
2017 without your being given any indication that they have
changed. If you try to exit the application or close the solution,
you are still prompted to save these changes.

4. Deselect all controls (you can click an empty spot on the screen to
do this), and then double-click the button. This not only opens the
code editor with the code-behind file for this form, it also creates
and wires up an event handler for the click event on the button.
Figure 1-13 shows the code window after a single line has been
added to echo the message to the user.

Download from finelybook www.finelybook.com

65

FIGURE 1-13

5. Before you build and execute your application, place the cursor
somewhere on the line containing MessageBox.Show and press F9.
This sets a breakpoint; when you run the application by pressing
F5 and then click the “Say Hello!” button, the execution halts at
this line. Figure 1-14 illustrates this breakpoint being reached. The
data tip, which appears when the mouse hovers over the line,
shows the contents of the txtSayHello.Text property.

Download from finelybook www.finelybook.com

66

FIGURE 1-14

The layout of Visual Studio in Figure 1-14 is significantly different
from the previous screenshots because a number of tool windows
are visible in the lower half of the screen, and command bars are
visible at the top. Also, the status bar at the bottom of the IDE is
orange, as opposed to the blue that appears when in design mode.
When you stop running or debugging your application, Visual
Studio returns to the previous layout. Visual Studio 2017 maintains
two separate layouts: design time and run time. Menus, toolbars,
and various windows have default layouts for when you edit a
project, whereas a different setup is defined for when a project is
executed and debugged. You can modify each of these layouts to
suit your own style, and Visual Studio 2017 remembers them.

6. You need to deploy your application. Whether you build a rich
client application using Windows Forms or WPF, or a web
application using IIS, Azure, Node.js, or any of a number of other
technologies, Visual Studio 2017 has the capability to publish your
application. Double-click the Properties node in Solution Explorer,
and select the Publish node to display the options for publishing

Download from finelybook www.finelybook.com

67

your application, as shown in Figure 1-15. In Figure 1-15, the
publishing folder has been set to a local path (by default, the path
is relative to the directory in which the project is found), but you
can specify a network folder, an Internet Information Services (IIS)
folder, or an FTP site instead. After you specify where you want to
publish to, clicking Publish Now publishes your application to that
location.

FIGURE 1-15

SUMMARY

You’ve seen how the various components of Visual Studio 2017 work
together to build an application. The following list outlines the typical
process of creating a solution:
1. Use the File menu to create a solution.
2. Use the Solution Explorer to locate the window that needs editing,

Download from finelybook www.finelybook.com

68

and double-click the item to show it in the main workspace area.
3. Drag the necessary components onto the window from the

Toolbox.
4. Select the window and each component in turn, and edit the

properties in the Properties window.
5. Double-click the window or a control to access the code behind the

component’s graphical interface.
6. Use the main workspace area to write code and design the

graphical interface, switching between the two via the tabs at the
top of the area.

7. Use the toolbars to start the program.
8. If errors occur, review them in the Error List and Output windows.
9. Save the project using either toolbar or menu commands, and exit

Visual Studio 2017.
In subsequent chapters, you’ll learn how to customize the IDE to more
closely fit your own working style. You’ll also see how Visual Studio
2017 takes a lot of the guesswork out of the application development
process and a number of best practices for working with Visual Studio
2017 that you can reuse as a developer.

Download from finelybook www.finelybook.com

69

2
The Solution Explorer, Toolbox, and
Properties

WHAT’S IN THIS CHAPTER?

Arranging files with the Solution Explorer
Adding projects, items, and references to your solution
Working with the Properties tool window
Including your own properties in the Properties tool window

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
In Chapter 1, “A Quick Tour,” you briefly saw and interacted with a
number of the components that make up the Visual Studio 2017
IDE. Now you get an opportunity to work with three of the most
commonly used tool windows: the Solution Explorer, the Toolbox,
and Properties.
Throughout this and other chapters you see references to keyboard
shortcuts, such as Ctrl+S. In these cases, we assume the use of the
general development settings, as shown in Chapter 1. Other
profiles may have different key combinations. And, as you will see
in upcoming chapters, you can use the Quick Launch area to get to
commands regardless of the development settings that you use.

THE SOLUTION EXPLORER

Download from finelybook www.finelybook.com

70

http://wrox.com
http://www.wrox.com

Most of the time, when you create or open an application, or for that
matter just a single file, Visual Studio 2017 uses the concept of a
solution to tie everything together. Visual Studio 2017 introduces the
concept of a Folder view, which is discussed further later in this
chapter. For most situations (and definitely for most existing projects),
the solution is the root element of a project.
Typically, a solution is made up of one or more projects, each of which
can have multiple items associated with it. In the past these items were
typically just files, but increasingly projects are made up of items that
may consist of multiple files, or in some cases no files at all. Chapter 6,
“Solutions, Projects, and Items,” goes into more detail about projects,
the structure of solutions, and how items are related.
The Solution Explorer tool window (Ctrl+Alt+L) provides a convenient
visual representation of the solution, projects, and items, as shown in
Figure 2-1. In this figure you can see three projects presented in a tree:
a C# Windows Presentation Foundation (WPF) application, a C#
Windows Communication Foundation (WCF) service library, and a
Visual Basic (VB) class library.

Download from finelybook www.finelybook.com

71

FIGURE 2-1

Each project has an icon associated with it that typically indicates the
type of project and the language it is written in. There are some
exceptions to this rule: Some projects, such as SQL Server or Modeling
projects, aren’t tied to a specific language.
One node is particularly noticeable because the font is boldfaced. This
indicates that this project is the startup project — in other words, the
project that is launched when you select Debug Start Debugging or
press F5. To change the startup project, right-click the project you
want to nominate and select Set as StartUp Project. You can also
nominate multiple projects as startup projects via the Solution
Properties dialog, which you can reach by selecting Properties from
the right-click menu of the Solution node.

Download from finelybook www.finelybook.com

72

NOTE

With certain environment settings, the Solution node is not visible
when only a single project exists. A problem with this setting is
that it becomes difficult to access the Solution Properties window.
To get the Solution node to appear, you can either add another
project to the solution or check the Always Show Solution item
from the Projects and Solutions node in the Options dialog,
accessible via Tools Options.

The toolbar across the top of the Solution Explorer gives access to a
number of different functions related to the solution, from the ability
to collapse all the files in the tree to creating a new instance of the
Solution Explorer. For example, the Show All Files icon (see Figure 2-
2) expands the solution listing to display the additional files and
folders.

FIGURE 2-2

In this expanded view you can see all the files and folders contained
under the project structure. Unfortunately, if the file system changes,
the Solution Explorer does not automatically update to reflect these

Download from finelybook www.finelybook.com

73

changes. Use the Refresh button (two buttons to the left of the Show
All Files button) to make sure you see the current list of files and
folders.
The Solution Explorer toolbar is contextually aware, with different
buttons displayed depending on the type of node selected. This is
shown in Figure 2-3. The image on the left shows the toolbar when a
.XAML file is selected. It includes a View Code icon (the fourth from
the right). However, when a different file is selected, as illustrated in
the image on the right, the View Code icon is missing.

FIGURE 2-3

There is another, relatively unusual mechanism for navigating through
the projects and files in a solution. To the left of each item in the tree is
an icon, which when clicked shows a different context menu. Included
in this menu is an option called Scope to This. When the Scope to This
option is clicked, the contents of the Solution Explorer change so that
the selected node in the solution becomes the top level of the tree view.
Figure 2-4 shows the view when Scope to This has been clicked for the
GettingStarted project.

Download from finelybook www.finelybook.com

74

FIGURE 2-4

Along with navigating down the solution using the Scope to This
option, the Solution Explorer also allows for moving backward and
forward through the navigation. At the top left of the Solution
Explorer’s toolbar, there is a left arrow that you can use to navigate up
the hierarchy. So if that arrow were clicked, the full solution would be
displayed, as shown in Figure 2-2. And there is also a right-facing
arrow that, when clicked, navigates forward into the scoped view.
Visual Studio 2017 includes the ability of opening a folder instead
opening a solution. While it is available for any project type, it would
seem to be most relevant to web applications where there is no need to
tie the elements of the project together beyond existing within a single
project. While a similar idea (Web Sites) was included in earlier
versions of Visual Studio (and is still available in Visual Studio 2017),
increased support for build tools like Grunt and Bower has brought the
feature to the forefront.
First, it is possible at any time to switch between the Solution view and
the Folder view for a solution. Figure 2-5 illustrates the difference
between the two views. The fourth button from the left in both views is
used to toggle between views.

Download from finelybook www.finelybook.com

75

FIGURE 2-5

The Solution view is on the left and looks familiar to regular users of
past version of Visual Studio. The Folder view is on the right. What
previously had been a project is now a folder (assuming that is how
you organized your solution in the file system). Files that had been
grouped together in the Solution view (like App.xaml and
App.xaml.cs) now appear as individual files in the Folder view.
Artifacts like the .sln file are now visible in the solution explorer. And
the context menu has changed significantly, with the Folder view
having far fewer choices.
If you have been using Visual Studio for a while, it’s natural to ask
what purpose the Folder View serves. For most projects, the answer is
“not much.” However, as odd as it might sound, the folder structure
that is displayed in the traditional view of the Solution Explorer is
actually a virtual one. That is, the files in the file system don’t need to
follow the folder structure shown in the Solution Explorer. Your files
can be placed in a single folder in the file system but show up within a
folder structure in your project.
For most projects, this is not a big deal. Actually, it’s irrelevant to the
running of your application. The build process is able to figure out

Download from finelybook www.finelybook.com

76

where the files are and compile them into the appropriate assemblies,
and your application runs. However, for certain kinds of projects (and
web applications, including .NET Core, are the leading culprits), the
physical folder structure matters. The Folder View allows you to
quickly and easily see how the files lay out physically.
The rest of this chapter concentrates on the options available in the
Solution view.
In the Solution view in Visual Studio 2017, expanding any source code
node reveals the properties and methods for a given class. And the
context menu for the node contains options targeting the selected
item. When you right-click a class (not the code file, but the actual
class), the context menu includes Base Types, Derived Types, and Is
Used By options. These options change the scope of the Solution
Explorer to the base class, the derived classes, and the classes used by
the selected class, respectively.
As you continue navigating into the properties and methods, the
context menu includes Calls, Is Called By, and Is Used By. These
options scope the Solution Explorer to the classes that call this class,
classes that are called by this class, and classes that are used by this
class, respectively.

Previewing Files

One of the more interesting features of Visual Studio 2017 is the file
preview capability of Solution Explorer. One of the buttons at the top
of the Solution Explorer is Preview Selected Items (shown in Figure 2-
6). When it has been selected, as you navigate through the files in the
Solution Explorer (to “navigate,” the file must be selected either with
the mouse or by using the cursor), the file appears on the Preview tab
(Figure 2-6).

Download from finelybook www.finelybook.com

77

FIGURE 2-6

At this moment, the file has not been modified but is simply open to
look at. You are free to navigate through the file as you would any
other file. However, when you navigate to another file in the Solution
Explorer, the Preview tab is replaced with the new file. In other words,
it is no longer required to have a proliferation of tabs to view the
contents of various files in your solution.
When you decide to stop previewing the file, it automatically moves to
the tabs on the left side of your editor window. You make the choice to
stop previewing either by editing the file directly (by typing, for
example) or by selecting the Open option from the drop-down list on
the right of the Preview tab.

Common Tasks

In addition to providing a convenient way to manage projects and
items, the Solution Explorer has a dynamic context menu that gives
you quick access to some of the most common tasks, such as building
the solution or individual projects, accessing the build configuration

Download from finelybook www.finelybook.com

78

manager, and opening files. Figure 2-7 shows how the context menu
varies depending on which item is selected in the Solution Explorer.

FIGURE 2-7

The first items in the left and center menus relate to building either
the entire solution or the selected project. In most cases, selecting
Build is the most efficient option, because it only builds projects where
one or more of the contained files have changed. However, in some
cases you may need to force a Rebuild, which builds all dependent
projects regardless of their states. If you just want to remove all the
additional files that are created during the build process, you can
invoke Clean. This option can be useful if you want to package your
solution to email it to someone — you wouldn’t want to include all the
temporary or output files that are created by the build.
For most items in the Solution Explorer, the first section of the context
menu is similar to the right menu in Figure 2-7. The default Open and
Open With items allow you to determine how the item will be opened.
This is of particular use when you work with files that have a custom
editor. A common example is a RESX file. By default, Visual Studio
2017 opens this file type using the built-in resource editor, but this
prevents you from making certain changes and doesn’t support all
data types you might want to include. (Chapter 56, “Resource Files,” in

Download from finelybook www.finelybook.com

79

the online archive goes into how you can use your own data types in
resource files.) By using the Open With menu item, you can use the
XML Editor instead.

NOTE

The context menu for the Solution, Project, and Folder nodes
contains the Open Folder in File Explorer item. This enables you
to open File Explorer (Windows Explorer) quickly to the location
of the selected item, saving you the hassle of having to navigate to
where your solution is located, and then find the appropriate
subfolder.

Adding Projects and Items

The most common activities carried out in the Solution Explorer are
the addition, removal, and renaming of projects and items. To add a
new project to an existing solution, select Add New Project from the
context menu off the Solution node. This invokes the dialog in Figure
2-8. Project templates can be sorted and searched from this dialog,
and the pane on the right side displays information about the selected
project, such as the type of project and its description. As well, the
light-weight installer means that a template you’re looking for might
be in a workload that has not already been installed. To relaunch the
installer and add a desired workload, there is an Open Visual Studio
Installer link that will start that process for you. Chapter 11, “Project
and Item Templates,” covers creating your own Project and Item
templates, including setting these properties.

Download from finelybook www.finelybook.com

80

FIGURE 2-8

In the Installed templates hierarchy on the left side of the Add New
Project dialog, the templates are primarily arranged by language
(Azure Data Lake being the exception) and then by technology. There
are also nodes for Recent templates and Online templates. The Online
templates can be sorted and searched in the same way as your
Installed templates.
The other thing you will notice in this dialog is the ability to select
different framework versions through a dropdown at the middle top of
the form. Visual Studio 2017 does not require a migration for most
project types. So if you have existing projects that you don’t want to
have to migrate forward to a more recent version of the .NET
Framework, you can still immediately take advantage of the current
features in Visual Studio 2017. The framework selection is also
included in the search criteria, limiting the list of available project
templates to those that are compatible with the selected .NET
Framework version.

Download from finelybook www.finelybook.com

81

NOTE

When you open your existing Visual Studio 2012, 2013, or 2015
solutions or projects in Visual Studio 2017, they will not
necessarily go through the upgrade wizard. (See Chapter 34,
“Upgrading with Visual Studio 2017,” for more information.) To
be precise, the act of opening a project in Visual Studio 2017
might cause modifications to the project, but it will still be able to
be opened in earlier versions of Visual Studio (in some cases, even
as far back as Visual Studio 2010). This is both important enough
to warrant additional comment. What this means for developers
is that they might be able to use Visual Studio 2017 to modify
“legacy” projects (thus getting the benefits of using the latest
version of the IDE). At the same time, projects that have been
opened in Visual Studio 2017 will still open in Visual Studio 2015,
2013, or 2012. For projects that are from versions earlier than
Visual Studio 2012, the upgrade wizard will be triggered. These
matters are discussed further in Chapter 34.

One of the worst and most poorly understood features in Visual Studio
is the concept of a Web Site project. This is distinct from a Web
Application project, which can be added via the aforementioned Add
New Project dialog. To add a Web Site project, you need to select Add
New Web Site from the context menu off the Solution node. This
displays a dialog similar to the one shown in Figure 2-9, where you can
select the type of web project to be created. In most cases, this simply
determines the type of default item that is to be created in the project.

Download from finelybook www.finelybook.com

82

FIGURE 2-9

NOTE

It is important to note that some of the web projects listed in
Figure 2-9 can also be created by going through the ASP.NET
Web Application options in the Add New Project dialog. However,
understand that they will not generate the same results because
significant differences exist between Web Site projects (created
via the Add New Web Site dialog) and Web Application projects
(created via the Add New Project dialog). The differences between
these project types are covered in detail in Chapter 16, “ASP.NET
Web Forms.”

When you have a project or two in your solution, you need to start
adding items. You do this via the Add context menu item off the
project node in the Solution Explorer. The first submenu, New Item,
launches the Add New Item dialog, as shown in Figure 2-10.

Download from finelybook www.finelybook.com

83

FIGURE 2-10

In addition to listing only those item templates that are relevant to the
project you have selected, the Add New Item dialog enables you to
search the installed templates, as well as go online to look for
templates made available by third parties.
Returning to the Add context menu, you will notice a number of
predefined shortcuts such as User Control and Class. The shortcuts
that appear depend on the type of project to which the item is being
added. These do little more than bypass the stage of locating the
appropriate template within the Add New Item dialog. With just a few
exceptions, the Add New Item dialog is still displayed because you
need to assign a name to the item being created.
It is important to make the distinction that you are adding items
rather than files to the project. Though a lot of the templates contain
only a single file, some, like the Window or User Control, add multiple
files to your project.

Adding References

Each new software development technology that is released promises
better reuse, but few can actually deliver on this promise. One way that

Download from finelybook www.finelybook.com

84

Visual Studio 2017 supports reusable components is via the references
for a project. If you expand the References node for any project, you
can observe a number of .NET Framework libraries, such as System
and System.Core, which need to be included by the compiler to
successfully build the project. Essentially, a reference enables the
compiler to resolve type, property, field, and method names back to
the assembly where they are defined. If you want to reuse a class from
a third-party library, or even your own .NET assembly from another
project, you need to add a reference to it via the Add Reference context
menu item on the project node of the Solution Explorer.
When you launch the Reference Manager dialog, as shown in Figure 2-
11, Visual Studio 2017 interrogates the local computer, the Global
Assembly Cache, and your solution to present a list of known libraries
that can be referenced. This includes both .NET and COM references
that are separated into different lists, as well as projects and recently
used references.

FIGURE 2-11

As in other project-based development environments going back as far
as the first versions of VB, you can add references to projects

Download from finelybook www.finelybook.com

85

contained in your solution, rather than adding the compiled binary
components. The advantage to this model is that it’s easier to debug
into the referenced component and helps ensure you are running the
latest version of all components, but for large solutions this may
become unwieldy.

NOTE

When you have a solution with a large number of projects (large
can be relative to your computer but typically anything more
than 20), you may want to consider having multiple solutions
that reference subsets of the projects. Loads and builds are
actually done in parallel, which helps with their speed. Still,
keeping the number of projects in your solution to a minimum
ensures a nice debugging experience throughout the entire
application. But be warned. The segregation of projects into
different solutions is not nearly as clear-cut as you might initially
imagine. Not because it’s difficult to do (it’s actually easy), but
because you’ll find there are a number of different approaches
that might be the “best,” depending on your goals. For example,
you may want to create different solutions to support build
configurations (see Chapter 33, “Build Customization”) that sbuild
a subset of the projects.

Adding Service References

The other type of reference that the Solution Explorer caters to is
service references. These references were once referred to as Web
references, but since the advent of the WCF there is a more general
Add Service Reference menu item. This invokes the Add Service
Reference dialog, which you can see in Figure 2-12. In this example the
drop-down feature of the Discover button has been used to look for
Services in Solution.

Download from finelybook www.finelybook.com

86

FIGURE 2-12

If any errors are thrown while Visual Studio 2017 attempts to access
the service information, a hyperlink is provided that opens the Add
Service Reference Error dialog. This generally gives you enough
information to resolve the problem.
In the lower-left corner of Figure 2-12 is an Advanced button. The
Service Reference Settings dialog that this launches enables you to
customize which types are defined as part of the service reference. By
default, all the types used by the service are re-created in the client
application unless they are implemented in an assembly that is
referenced by both the service and the application. The Data Type area
of this dialog is used to change this behavior. There is also an Add Web
Reference button in the lower-left corner of the Service Reference
Settings dialog, which enables you to add more traditional .NET Web

Download from finelybook www.finelybook.com

87

service references. This might be important if you have some
limitations or are trying to support intersystem operability. Adding
services to your application is covered in more detail in Chapter 51,
“Windows Communication Foundation (WCF)” in the online archive.

Adding Connected Services

Applications today find themselves more dependent on external
services to provide some common functionality. Although you are
always free to browse to the website of the service provider, download
the client assembly (or read through the documentation for the API),
and implement that required functionality in your application, Visual
Studio 2017 gives you a tool that streamlines the process and reduces
complexity. That tool is invoked by using the Connected Services
option in the Add context menu.

NOTE

If you don’t see the Connected Services option in the Add context
menu, that’s because the project you have selected doesn’t support
any of the available services.

When Connected Services is selected, a pane that looks like the one
shown in Figure 2-13 appears in your editor space.

Download from finelybook www.finelybook.com

88

FIGURE 2-13

There are two choices available to you out of the box, as well as a
relatively easy way to find more. The choices are Cloud Storage with
Azure Storage and Office 365 APIs.
Once you have selected a service, separate dialogs walk through the
steps necessary to add the assemblies, configurations, and supporting
files to your project. The details of what you need to provide vary
widely based on the type of service, so they are beyond the scope of the
book. But, in general, figure that you’ll need to provide credentials for
an account that has access to the service (such as a Microsoft Live
Account for accessing the Azure functionality).
At the bottom of Figure 2-13, there is a Find More Services link.
Clicking on the link reveals the Extensions and Updates dialog, as seen
in Figure 2-14.

FIGURE 2-14

Although you can use the Extensions and Updates dialog to install
many different tools, in this particular instance, you are immediately
placed in the Connected Services section. (See the list on the left side.)
If you want to use any of the other services, select the appropriate
service and click on the Download or Install button that appears.

Download from finelybook www.finelybook.com

89

Adding Analyzers

The compiler that Visual Studio 2017 uses, a rewrite of the compiler
that was used for all versions of Visual Studio up to Visual Studio
2013, enables a plethora of features and functionality to Visual Studio
users. Most importantly, the source of this innovation is no longer
limited to Microsoft. Third parties and open-source groups can
contribute their ideas to the larger community for users.
Whether you were aware of it or not, compilation of .NET is a big part
of what Visual Studio has been doing for years. All the IntelliSense
that you get is the result of a compilation process that is constantly
running in the background, updating the syntax tree so that, for
example, as soon as you add a class to your project, IntelliSense can
show the properties and methods of that class elsewhere in the
solution.
The tools that have been enabled by the compiler change are known as
code analyzers. They can work intimately with your code to identify
problems and offer solutions.
If you want to add an analyzer to one of your projects, there are a
number of options. Within the Solution Explorer, right-click on the
project and select the Add Analyzer option from the context menu.
The dialog shown in Figure 2-15 is displayed.

Download from finelybook www.finelybook.com

90

FIGURE 2-15

The dialog is not particularly compelling in terms of its functionality.
If you had added an analyzer assembly to a project recently, you’ll see
it appear in the list of recently added analyzers that appears by default.
You can also browse to the location of an analyzer assembly that has
already been installed on your computer and include it in your project.

NOTE

Don’t be surprised by the lack of analyzers in Figure 2-15. In
order to appear in this list, the analyzer would have to have been
installed on your machine. And more often than not, analyzers
are added to projects through NuGet. In that case they are not
actually installed locally (by being copied to a project) and
therefore won’t appear in this dialog.

Adding NuGet Packages

NuGet is the go-to location for packages that can be used within your
application. And through different extensions, the way you add NuGet

Download from finelybook www.finelybook.com

91

Packages to your projects has evolved into two separate workflows.
The most conveniently accessible workflow involves using a graphical
interface integrated into Visual Studio 2017. In the Solution Explorer,
right-click on the project to which you are adding the package and
select Manage NuGet Packages from the context menu. This displays
the page shown in Figure 2-16.

FIGURE 2-16

The purpose of the dialog is to allow you to search for the desired
package. Across the top of the page are a number of controls that
impact the details of the packages that are returned. The drop-down
on the top right, labeled Package Source, is used to select the NuGet
repository that will be searched. You can filter the packages based on
whether you have already installed them previously, whether there is
an updated one available, or whether you want to include any
prerelease versions (for example, versions that are in beta) in the list.
Finally, the text box at the top is used to specify the package that you
are looking for. In Figure 2-16, all the packages that contain the word
angular in the title or description are being shown.

Download from finelybook www.finelybook.com

92

Once you have identified the desired package, click on it in the left side
of the page to display specific details on the right side. To install the
package, click on the Install button. By default, this will install the
most recent release. If the package you select has a number of different
versions available, you can choose a specific version from the Version
drop-down box.
When you click the Install button for a product, you will be shown a
list of the files that will be added or updated to your project if you
proceed. It appears in a dialog similar to the one found in Figure 2-17.
Clicking OK will continue with the installation, whereas clicking
Cancel will abort the installation.

FIGURE 2-17

The Dependency Behavior drop-down in Figure 2-16 controls whether
and which dependencies are loaded. In Figure 2-17, there are nine

Download from finelybook www.finelybook.com

93

dependencies that need to be installed, as well as two updates. To
understand the basics of dependency behavior, consider that one of
the updates is jQuery 2.1.1. This is the minimum version of jQuery that
the installed component requires. This installation will use this version
because the Lowest dependency behavior was selected. Other options
include Highest (which would take the highest major version), Highest
Minor (which would take the highest major and minor version), and
Highest Patch (which takes even the patches associated with the most
recent version). You can also simply ignore the dependencies.
There is an option used to handle file conflicts. The choices are to
prompt you when there are different versions of the same file being
installed, to automatically overwrite the existing file with the new file,
and to automatically ignore any files that already exist.
The second option you have to install NuGet packages involves going
through a command window. To launch the window, which is shown
in Figure 2-18, select the Tools NuGet Package Manager Package
Manager Console menu option.

FIGURE 2-18

As soon as the command window is ready, you can enter the specific
NuGet commands that are required to install the desired package. In
Figure 2-18, version 1.6.1 of the angularjs package is being installed.
You can easily install, update, or uninstall any package that you desire
through the command line, although the details of the various
commands are beyond the scope of the book.

THE TOOLBOX

Download from finelybook www.finelybook.com

94

One of the major advantages over many other IDEs that Microsoft has
offered developers is true drag-and-drop placement of elements
during the design of both web and rich client applications. These
elements are available in the Toolbox (Ctrl+Alt+X), a tool window
accessible via the View menu.
The Toolbox window contains all the available components for the
currently active document being shown in the main workspace. These
can be visual components, such as buttons and textboxes; invisible,
service-oriented objects, such as timers and system event logs; or even
designer elements, such as class and interface objects used in the Class
Designer view.

NOTE

An interesting feature of the Toolbox is that you can copy snippets
of code into the Toolbox by simply selecting a region and
dragging it onto the Toolbox. You can rename and reorder your
code snippets, making it useful for presentations or storing
chunks of code you use frequently.

Visual Studio 2017 presents the available components in groups rather
than as one big mess of controls. This default grouping enables you to
more easily locate the controls you need — for example, data-related
components are in their own Data group.
By default, groups are presented in List view (see the left side of Figure
2-19). Each component is represented by its own icon and the name of
the component. If you prefer to guess what some of the more obscure
components are, you can also display the components as a set of icons,
as shown with the All WPF Controls group on the right side of Figure
2-19. You can change the view of each control group individually —
right-click anywhere within the group area and toggle the List View
option in the context menu.

Download from finelybook www.finelybook.com

95

FIGURE 2-19

Regardless of how the components are presented, the way they are
used in a program is usually the same: Click and drag the desired
component onto the design surface of the active document, or double-
click the component’s entry for Visual Studio to automatically add an
instance. Visual components, such as buttons and textboxes, appear in
the design area where they can be repositioned, resized, and otherwise
adjusted via the property grid. Nonvisual components, such as the
Timer control, appear as icons with associated labels in a nonvisual
area below the design area, as shown in Figure 2-20.

Download from finelybook www.finelybook.com

96

FIGURE 2-20

At the top-left side of Figure 2-19 is a group called Reference Library
Controls with a single component, MyControl. Reference_Library is
actually the name of a class library that is defined in the same solution,
and it contains the MyControl control. When you start to build your
own components or controls, instead of your having to manually
create a new tab and go through the process of adding each item to the
Toolbox, Visual Studio 2017 automatically interrogates all the projects
in your solution. If any components or controls are identified
(essentially any class that implements
System.ComponentModel.IComponent or
System.Windows.FrameworkElement for WPF and Silverlight), a new
tab is created for that project and the appropriate items are added with
a default icon and class name (in this case MyControl), as you can see
on the left in Figure 2-19. For components, this is the same icon that
appears in the nonvisual part of the design area when you use the
component.

NOTE

Visual Studio 2017 interrogates all projects in your solution, both
at startup and after build activities. This can take a significant

Download from finelybook www.finelybook.com

97

amount of time if you have a large number of projects. If this is
the case, you should consider disabling this feature by setting the
AutoToolboxPopulate property to false under the Windows Forms
Designer node of the Options dialog (Tools Options).

To customize how your items appear in the Toolbox, you need to add a
16 × 16 pixel bitmap to the same project as your component or control.
Then, select the newly added bitmap from within the Solution
Explorer and navigate to the Properties window. Make sure the Build
property on the bitmap is set to Embedded Resource. Finally, mark
your control class with the ToolboxBitmap attribute:
VB

<ToolboxBitmap(GetType(MyControl), "MyControlIcon.bmp")>
Public Class MyControl

C#

[ToolboxBitmap(typeof(MyControl), "MyControlIcon.bmp")]
public class MyControl

This attribute uses the type reference for MyControl to locate the
appropriate assembly from which to extract the MyControlIcon.bmp
embedded resource. Other overloads of this attribute can use a file
path as the only argument. In this case you don’t even need to add the
bitmap to your project.
Unfortunately, you can’t customize the way the automatically
generated items appear in the Toolbox. However, if you manually add
an item to the Toolbox and select your components (as opposed to
allowing Visual Studio to auto-populate it), you’ll see your custom
icon. And your custom icon will appear in the nonvisual space on the
designer, regardless of how it was added to the Toolbox.

Arranging Components

Having Toolbox items in alphabetical order is a good default because it
enables you to locate items that are unfamiliar. However, if you’re
using only a handful of components and are frustrated by having to
continuously scroll up and down, you can create your own groups of
controls and move existing object types around.

Download from finelybook www.finelybook.com

98

Repositioning an individual component is easy. Locate it in the
Toolbox, and click and drag it to the new location. When you’re happy
with where it is, release the mouse button and the component moves
to the new spot in the list. You can move it to a different group in the
same way — just keep dragging the component up or down the
Toolbox until you have located the right group. These actions work in
both List and Icon views.
If you want to copy the component from one group to another, rather
than move it, hold down the Ctrl key as you drag, and the process
duplicates the control so that it appears in both groups.
Sometimes it’s nice to have your own group to host the controls and
components you use the most. To create a new group in the Toolbox,
right-click anywhere in the Toolbox area and select the Add Tab
command. A new blank tab will be added to the bottom of the Toolbox
with a prompt for you to name it. After you name the tab, you can then
add components to it by following the steps described in this section.
When you first start Visual Studio 2017, the items within each group
are arranged alphabetically. However, after moving items around, you
may find that they’re in a bewildering state and you may decide that
you simply need to start again. All you have to do is right-click
anywhere within the group and choose the Sort Items Alphabetically
command.
By default, controls are added to the Toolbox according to their class
names. This means you end up with some names that are hard to
understand, particularly if you add COM controls to your Toolbox.
Visual Studio 2017 enables you to modify a component’s name to
something more understandable.
To change the name of a component, right-click the component’s entry
in the Toolbox and select the Rename Item command. An edit field
appears inline in place of the original caption, enabling you to name it
however you like, even with special characters.
If you’ve become even more confused, with components in unusual
groups, and you have lost sight of where everything is, you can choose
Reset Toolbox from the same right-click context menu. This restores
all the groups in the Toolbox to their original states, with components
sorted alphabetically and in the groups in which they started.

Download from finelybook www.finelybook.com

99

NOTE

Remember: Selecting Reset Toolbox permanently deletes any of
your own custom-made groups of commands, so be sure you
want to perform this function!

Visual Studio 2017 includes a search function for the Toolbox. At the
top of the Toolbox there is a Search area. As you type characters into
this area, the components in the Toolbox are filtered to match. The
search is implemented so that it finds the characters that have been
typed any place they exist in the name of the control. Because the
search is performed across all the groups, this is a convenient way to
locate controls, provided that you know all or part of the name. Figure
2-21 shows what the Toolbox might look like after “tex” has been
entered into the Search area.

FIGURE 2-21

Adding Components

Sometimes you’ll find that a particular component you need is not
present in the lists displayed in the Toolbox. Most of the main .NET
components (or the WPF components, if you’re building an
application using XAML) are already present, but some are not. For
example, the WebClient class component is not displayed in the
Toolbox by default. Managed applications can also use COM
components in their design. When added to the Toolbox, COM objects
can be used in much the same way as regular .NET or WPF

Download from finelybook www.finelybook.com

100

components, and if coded correctly you can program against them in
precisely the same way using the Properties window and referring to
their methods, properties, and events in code.
To add a component to your Toolbox layout, right-click anywhere
within the group of components you want to add it to and select
Choose Items. After a moment (this process can take a few seconds
because Visual Studio needs to interrogate the .NET cache to
determine all the possible components you can choose from), you are
presented with a list of .NET or WPF components, depending on the
type of project. Figure 2-22 shows the list of WPF components that
would be visible for a project that uses XAML. The process for loading
this form can be slow, which is why developers can be thankful that
Visual Studio 2017 uses a progress bar to indicate the assemblies that
are being loaded.

FIGURE 2-22

Scroll through the list to locate the item you want to add to the

Download from finelybook www.finelybook.com

101

Toolbox and check the corresponding check box. You can add multiple
items at the same time by selecting each of them before clicking the
OK button to apply your changes. You can also remove items from the
Toolbox by deselecting them from the list. Note that this removes the
items from any groups to which they belong, not just from the group
you are currently editing.
If you find it hard to locate the item you need, you can use the Filter
box, which filters the list based on name, namespace, and assembly
name. On rare occasions the item may not be listed at all. This can
happen with nonstandard components, such as ones that you build
yourself or that are not registered in the Global Assembly Cache
(GAC). You can still add them by using the Browse button to locate the
physical file on the computer. After you select and deselect the items
you need, click the OK button to save them to the Toolbox layout.
COM components and Universal Windows components can be added
in the same manner. Simply switch over to the relevant tab in the
dialog window to view the list of available, properly registered COM
components to add. Again, you can use the Browse button to locate
controls that may not appear in the list.

PROPERTIES

One of the most frequently used tool windows built into Visual Studio
2017 is the Properties window (F4), as shown in Figure 2-23. The
Properties window is made up of a property grid and is contextually
aware, displaying only relevant properties of the currently selected
item, whether that item is a node in the Solution Explorer or an
element in the form design area. Each line represents a property with
its name and corresponding value in two columns. The right side of
Figure 2-23 shows the updated property grid for WPF applications,
which includes a preview icon and search capabilities.

Download from finelybook www.finelybook.com

102

FIGURE 2-23

The Properties window is capable of grouping properties or sorting
them alphabetically — you can toggle this layout using the first two
buttons at the top of the Properties window. It has built-in editors for
a range of system types, such as colors, fonts, anchors, and docking,
which are invoked when you click into the value column of the
property to be changed. When a property is selected, as shown in the
center of Figure 2-23, the property name is highlighted, and a
description is presented in the lower region of the property grid.
In the Properties window, read-only properties are indicated in gray
and you cannot modify their values. The value Say Hello! for the Text
property on the center of Figure 2-23 is boldfaced, which indicates
that this is not the default value for this property. Similarly on the
right side of Figure 2-23, the Text property has a filled-in black square
to the right of the value, indicating the value has been specified. If you
inspect the following code that is generated by the designer, you will
notice that a line exists for each property that is boldfaced in the
property grid — adding a line of code for every property on a control
would significantly increase the time to render the form.
VB

Me.btnSayHello.Location = New System.Drawing.Point(12, 12)
Me.btnSayHello.Name = "btnSayHello"
Me.btnSayHello.Size = New System.Drawing.Size(100, 23)
Me.btnSayHello.TabIndex = 0
Me.btnSayHello.Text = "Say Hello!"

Download from finelybook www.finelybook.com

103

Me.btnSayHello.UseVisualStyleBackColor = True

C#

this.btnSayHello.Location = new System.Drawing.Point(12, 12);
this.btnSayHello.Name = "btnSayHello";
this.btnSayHello.Size = new System.Drawing.Size(100, 23);
this.btnSayHello.TabIndex = 0;
this.btnSayHello.Text = "Say Hello!";
this.btnSayHello.UseVisualStyleBackColor = true;

NOTE

For Web and WPF applications, the properties set in the
Properties window are persisted as markup in the .aspx or .xaml
file, respectively. As with the Windows forms designer, only those
values in the Properties window that have been set are persisted
into markup.

In addition to displaying properties for a selected item, the Properties
window also provides a design experience for wiring up event
handlers. The Properties window on the left side of Figure 2-24
illustrates the event view that is accessible via the lightning bolt button
at the top of the Properties window. In this case, you can see that there
is an event handler for the click event. To wire up another event, you
can either select from a list of existing methods via a drop-down list in
the value column, or you can double-click the value column. This
creates a new event-handler method and wires it up to the event. If
you use the first method you notice that only methods that match the
event signature are listed.

Download from finelybook www.finelybook.com

104

FIGURE 2-24

Certain components, such as the DataGridView, expose a number of
commands, or shortcuts, which can be executed via the Properties
window. On the right side of Figure 2-24 you can see two commands
for the DataGridView: Edit Columns and Add Column. When you click
either of these command links, you are presented with a dialog for
performing that action. If the commands are not immediately visible,
right-click the Properties window and select Commands from the
context menu.
If the Properties window has only a small amount of screen real estate,
it can be difficult to scroll through the list of properties. If you right-
click in the property grid, you can uncheck the Command and
Description options to hide these sections of the Properties window.

Extending the Properties Window

You have just seen how Visual Studio 2017 highlights properties that
have changed by boldfacing the value. The question that you need to
ask is, “How does Visual Studio 2017 know what the default value is?”
The answer is that when the Properties window interrogates an object
to determine what properties to display in the property grid, it looks

Download from finelybook www.finelybook.com

105

for a number of design attributes. These attributes can be used to
control which properties are displayed, the editor that is used to edit
the value, and what the default value is. To show how you can use
these attributes on your own components, start with adding a simple
automatic property to your component:
VB

Public Property Description As String

C#

public string Description { get; set; }

The Browsable Attribute

By default, all public properties display in the property grid. However,
you can explicitly control this behavior by adding the Browsable
attribute. If you set it to false the property does not appear in the
property grid:
VB

<System.ComponentModel.Browsable(False)>
Public Property Description As String

C#

[System.ComponentModel.Browsable(false)]
public string Description { get; set; }

DisplayName Attribute

The DisplayName attribute is somewhat self-explanatory; it enables you
to modify the display name of the property. In our case, we can change
the name of the property as it appears in the property grid from
Description to VS2017 Description:
VB

<System.ComponentModel.DisplayName("VS2017 Description")>
Public Property Description As String

C#

[System.ComponentModel.DisplayName("VS2017 Description")]

Download from finelybook www.finelybook.com

106

public string Description { get; set; }

Description

In addition to defining the friendly or display name for the property, it
is also worth providing a description, which appears in the bottom
area of the Properties window when the property is selected. This
ensures that users of your component understand what the property
does:
VB

<System.ComponentModel.Description("My first custom
property")>
Public Property Description As String

C#

[System.ComponentModel.Description("My first custom
property")]
public string Description { get; set; }

Category

By default, any property you expose is placed in the Misc group when
the Properties window is in grouped view. Using the Category

attribute, you can place your property in any of the existing groups,
such as Appearance or Data, or a new group if you specify a group
name that does not yet exist:
VB

<System.ComponentModel.Category("Appearance")>
Public Property Description As String

C#

[System.ComponentModel.Category("Appearance")]
public string Description { get; set; }

DefaultValue

Earlier you saw how Visual Studio 2017 highlights properties that have
changed from their initial or default values. The DefaultValue attribute
is what Visual Studio 2017 looks for to determine the default value for

Download from finelybook www.finelybook.com

107

the property:
VB

Private Const cDefaultDescription As String = "<enter
description>"
<System.ComponentModel.DefaultValue(cDefaultDescription)>
Public Property Description As String = cDefaultDescription

C#

private const string cDefaultDescription = "<enter
description>";
private string mDescription = cDefaultDescription;
[System.ComponentModel.DefaultValue(cDefaultDescription)]
public string Description
{
 get
 {
 return mDescription;
 }
 set
 {
 mDescription = value;
 }
}

In this case, if the value of the Description property is set to "<enter
description>", Visual Studio 2017 removes the line of code that sets
this property. If you modify a property and want to return to the
default value, you can right-click the property in the Properties
window and select Reset from the context menu.

NOTE

The DefaultValue attribute does not set the initial value of your
property. It is recommended that if you specify the DefaultValue
attribute you also set the initial value of your property to the
same value, as done in the preceding code.

AmbientValue

One of the features we all take for granted but that few truly
understand is the concept of ambient properties. Typical examples are

Download from finelybook www.finelybook.com

108

background and foreground colors and fonts. Unless you explicitly set
these via the Properties window, they are inherited — not from their
base classes, but from their parent control. A broader definition of an
ambient property is a property that gets its value from another source.
Like the DefaultValue attribute, the AmbientValue attribute is used to
indicate to Visual Studio 2017 when it should not add code to the
designer file. Unfortunately, with ambient properties you can’t hard-
code a value for the designer to compare the current value to because
it is contingent on the property’s source value. Because of this, when
you define the AmbientValue attribute, this tells the designer that it
needs to look for a function called ShouldSerializePropertyName. For
example, in our case, the designer would look for a method called
ShouldSerializeDescription. This method is called to determine if the
current value of the property should be persisted to the designer code
file:
VB

Private mDescription As String = cDefaultDescription
<System.ComponentModel.AmbientValue(cDefaultDescription)>
Public Property Description As String
 Get
 If Me.mDescription = cDefaultDescription AndAlso
 Me.Parent IsNot Nothing Then
 Return Parent.Text
 End If
 Return mDescription
 End Get
 Set(ByVal value As String)
 mDescription = value
 End Set
End Property

Private Function ShouldSerializeDescription() As Boolean
 If Me.Parent IsNot Nothing Then
 Return Not Me.Description = Me.Parent.Text
 Else
 Return Not Me.Description = cDefaultDescription
 End If
End function

C#

private string mDescription = cDefaultDescription;

Download from finelybook www.finelybook.com

109

[System.ComponentModel.AmbientValue(cDefaultDescription)]
public string Description{
 get{
 if (this.mDescription == cDefaultDescription &&
 this.Parent != null){
 return Parent.Text;
 }
 return mDescription;
 }
 set{
 mDescription = value;
 }
}

private bool ShouldSerializeDescription(){
 if (this.Parent != null){
 return this.Description != this.Parent.Text;
 }
 else{
 return this.Description != cDefaultDescription;
 }
}

When you create a control with this property, the initial value would
be set to the value of the DefaultDescription constant, but in the
designer you would see a value corresponding to the Parent.Text
value. There would also be no line explicitly setting this property in the
designer code file, as reflected in the Properties window by the value
being non-boldfaced. If you change the value of this property to
anything other than the DefaultDescription constant, you’ll see that it
becomes bold and a line is added to the designer code file. If you reset
this property, the underlying value is set back to the value defined by
AmbientValue, but all you’ll see is that it has returned to displaying the
Parent.Text value.

SUMMARY

In this chapter you have seen three of the most common tool windows
in action. Knowing how to manipulate these windows can save you
considerable time during development. However, the true power of
Visual Studio 2017 is exposed when you start to incorporate the
designer experience into your own components. This can be useful

Download from finelybook www.finelybook.com

110

even if your components aren’t going to be used outside your
organization. Making effective use of the designer can improve not
only the efficiency with which your controls are used, but also the
performance of the application you are building.

Download from finelybook www.finelybook.com

111

3
Options and Customizations

WHAT’S IN THIS CHAPTER?

Customizing the Visual Studio 2017 start page
Tweaking options
Controlling window layout

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter
In this chapter you’ll learn how you can customize the IDE to suit
your working style. You’ll also learn how to manipulate tool
windows, optimize the code window for maximum viewing space,
and change fonts and colors to reduce developer fatigue.
As Visual Studio has grown, so too has the number of settings that
you can adjust to optimize your development experience.
Unfortunately, unless you’ve periodically spent time sifting
through the Options dialog (Tools Options), it’s likely that you’ve
overlooked one or two settings that might be important or make
your development life easier. Through the course of this chapter,
you’ll see a number of settings that, hopefully, are worth further
investigation.
The ability to customize your settings is not new to Visual Studio
2017. Nor is the ability to import and export settings. However,
Microsoft’s push to the cloud has had an impact on Visual Studio.
You can automatically synchronize your settings between the cloud
and any instance of Visual Studio that you log in to.

Download from finelybook www.finelybook.com

112

http://wrox.com
http://wrox.com

A number of Visual Studio extensions add their own nodes to the
Options dialog because this provides a one-stop shop for
configuring settings within Visual Studio. Note also that some
developer setting profiles, as selected in Chapter 1, “A Quick Tour,”
show only a reduced list of options. In this case, checking the
Advanced check box shows the complete list of available options.

THE START PAGE

By default, when you open a new instance of Visual Studio 2017, you
see the Start Page. You can adjust this behavior from the Environment
 Startup node of the Options dialog. Other alternatives are to display

the Home Page (which you can set via the Environment Web Browser
node), the last loaded solution, the open or new project dialogs, or no
action at all.
The reason that most developers stick with the Start Page is that it
provides a useful starting point from which to jump to any number of
actions. In Figure 3-1, you can see that there is a link in the middle
column for creating or opening projects and connecting to Visual
Studio Team Services. On the left, there is a list of previously opened
projects, allowing you to quickly open projects that you have recently
been working on. Hovering the mouse over a project displays a
horizontal pin on the right side. Clicking the pin changes its
orientation to vertical to indicate that the project has been pinned to
the Recent Projects list. You can right-click a project and, using a
context menu option, remove the project from the list. If the Start Page
is closed and you want to open it again, you can do so by selecting the
File Start Page menu item.

Download from finelybook www.finelybook.com

113

FIGURE 3-1

On the right of the Start Page is a Developer News feed. In general, the
stories that you’ll see here are related to the various products and tools
that might be of interest to Visual Studio developers.

Customizing the Start Page

In Visual Studio 2017, the Start Page is a Windows Presentation
Foundation (WPF) control hosted within the integrated development
environment (IDE) shell. You can tailor the Start Page to feature
information or actions relevant to you. Rather than modifying the
default Start Page, Visual Studio supports user-specific or custom
Start Pages. This functionality is enabled by creating a Visual Studio
Extension (VSIX) package. The details related to the creation and
deployment of VSIX packages are covered in Chapter 62, “Managed
Extensibility Framework (MEF)” in the online archive.

WINDOW LAYOUT

Download from finelybook www.finelybook.com

114

If you are unfamiliar with Visual Studio, the behavior of the numerous
tool windows may strike you as erratic because they seem to appear in
random locations and then come and go when you move between
writing code (design time) and running code (run time). Actually,
Visual Studio 2017 remembers the locations of tool windows in each of
these modes. This way, you can optimize the way you write and debug
code separately.
The toolbars in Visual Studio that are visible by default, as well as the
buttons contained within them, have been decreasing in number over
the different versions. The simplification was based on a lot of user
feedback (gathered through both questioning and metering) that
identified the buttons that were most commonly used in the previous
toolbars. The buttons that, for whatever reason, didn’t make the cut
can always be added manually. They are just not part of the default set.
And the icons that remain are, for the most part, the ones most
frequently used.
As you open different items from the Solution Explorer, you can see
that the number of toolbars across the top of the screen varies
depending on the type of file being opened. Each toolbar (and, indeed,
each button) has a built-in association to specific file extensions so
that Visual Studio knows to display the toolbar (or enable/disable a
button) when a file with one of those extensions is opened. If you close
a toolbar when a file is open that has a matching file extension, Visual
Studio remembers this when future files with the same extension are
opened.

NOTE

You can reset the association between toolbars and the file
extensions via the Customize dialog (Tools Customize). On the
Commands tab, select the appropriate toolbar, and click the Reset
All button.

Viewing Windows and Toolbars

After a tool window or toolbar has been closed, it can be difficult to
locate it again. Luckily, the most frequently used tool windows are

Download from finelybook www.finelybook.com

115

accessible via the View menu. Other tool windows, mainly related to
debugging, are located under the Debug Windows menu.
All the toolbars available in Visual Studio 2017 are listed under the
View Toolbars menu item. This includes toolbars from third-party
extensions that you have installed. Each toolbar currently visible is
marked with a check beside the appropriate menu item. You can also
access the list of toolbars by right-clicking in any empty space in the
toolbar area at the top of the Visual Studio window.
When a toolbar is visible, you can customize which buttons are
displayed, either via View Toolbars Customize or Tools Customize.
Alternatively, as shown in Figure 3-2, if you select the down arrow at
the end of a toolbar, you see a list of all the buttons available on that
toolbar, from which you can check the buttons you want to appear on
the toolbar.

FIGURE 3-2

Download from finelybook www.finelybook.com

116

Docking

Each tool window has a default position, which it resumes when it is
opened from the View menu. For example, by default View Toolbox
opens the Toolbox docked to the left edge of Visual Studio. When a
tool window is opened and is docked against an edge, it has two states,
pinned and unpinned. As you saw in Chapter 1, you can toggle between
these states by clicking the vertical pin to unpin the tool window or the
horizontal pin to pin the tool window.
As you unpin a tool window, it disappears back against the edge of the
IDE, leaving visible a tag displaying the title of the tool window. To
redisplay the tool window, the default behavior requires that you click
the visible tag. If you would prefer the window to appear when the
mouse hovers over the tag, go into the Options dialog and locate the
Environment Tabs and Windows node. At the bottom, there is an
option named Show Auto-Hidden Windows on Mouse Over. If you
check this, then as you move your mouse over the tab, the hidden
window becomes visible. Most developers accept the default location
of tool windows, but occasionally you may want to adjust where the
tool windows appear. Visual Studio 2017 has a sophisticated system
for controlling the layout of tool windows. In Chapter 1 you saw how
you could use the drop-down, next to the Pin and Close buttons at the
top of the tool window, to make the tool window floating, dockable, or
even part of the main editor space (using the Tabbed Document
option).
When a tool window is dockable, you have a lot of control over where
it is positioned. In Figure 3-3 you can see the Properties window,
which has been dragged away from its default position at the right of
the IDE. To begin dragging, you need to click either the title area at the
top of the tool window or the tab at the bottom of the tool window and
drag the mouse in the direction you want the window to move. If you
click in the title area, you see that all tool windows in that section of
the IDE will also be moved. Clicking the tab results in only the
corresponding tool window moving.

Download from finelybook www.finelybook.com

117

FIGURE 3-3

As you drag the tool window around Visual Studio 2017, you see that
translucent icons appear at different locations around the IDE. These
icons are a useful guide to help you position the tool window exactly
where you want. In Figure 3-4 the Toolbox window has been pinned
against the left side. Now when the Properties window is positioned
over the left icon of the center image, the blue shading again appears
on the inside of the existing tool window. This indicates that the
Properties window will be pinned to the right of the Toolbox window
and visible if this layout is chosen. If the far left icon were selected, the
Properties window would again be pinned to the left of the IDE, but
this time to the left of the Toolbox window.

Download from finelybook www.finelybook.com

118

FIGURE 3-4

Alternatively, if the Properties window is dragged over the Toolbox
window as shown in Figure 3-5, the center image moves over the
existing tool window. This indicates that the Properties window will be
positioned within the existing tool window area. As you drag the
window over the different quadrants, you can see that the blue shading
again indicates where the tool window will be positioned when the
mouse is released. Figure 3-5 indicates that the Properties window
appears below the Toolbox window.

Download from finelybook www.finelybook.com

119

FIGURE 3-5

NOTE

If you have a large screen or multiple screens, it is worth
spending time laying out the tool windows you use frequently.
With multiple screens, using floating tool windows means that
you can position them away from the main editor space,
maximizing the utility of your screen real estate. If you have a
small screen, you may find that you continually have to adjust
which tool windows are visible, so becoming familiar with the
docking and layout options is essential.

Saving the Window Layout

One of the more frustrating user experiences with Visual Studio occurs
when you are using a laptop that is only occasionally connected to a

Download from finelybook www.finelybook.com

120

multi-monitor environment. It’s wonderful that you can position your
tool windows while you are in multi-monitor mode. However, if you
remove the external monitors from your laptop and launch Visual
Studio, all the tool windows reposition themselves so that they are
visible on your single screen. And when you plug back into the multi-
monitors, you need to go through the effort of repositioning the
windows.
Visual Studio 2017 includes the ability to save and recall your Window
Layout — multiple window layouts, to be precise. So you can more
easily adjust to the change from multiple to single monitors and back
again.
To start, get your tool windows laid out the way that you prefer. Then
use the Window Save Window Layout menu option to save the layout.
You are prompted for the name of the layout that you are saving. Now,
regardless of the way the tools windows are rearranged, you can reset
the window layout to your saved arrangement using the Window
Apply Window Layout menu option. The flyout menu for this option
shows a list of the saved layouts from which you can select, as
illustrated in Figure 3-6.

FIGURE 3-6

If you want to manage your saved window layouts, select the Window

Download from finelybook www.finelybook.com

121

Manage Window Layouts menu option. This launches the Manage
Windows Layouts dialog (shown in Figure 3-7), which contains a list of
the saved layouts and allows you to delete or rename the arrangements
that have been saved.

FIGURE 3-7

Finally, if you would like to reset your tool windows to their default
locations, there is the Window Reset Window Layout menu option
ready to assist you in this endeavor.

THE EDITOR SPACE

Like most IDEs, Visual Studio 2017 was built up around the central
code-editing window. Over time, it evolved and became much more
than a simple text editor. Though most developers spend considerable
time writing code in the editor space, an increasing number of
designers are available for performing tasks such as building forms,
adjusting project settings, and editing resources. Regardless of
whether you write code or do form design, you are going to spend a lot
of your time within Visual Studio 2017 in the editor space. Because of

Download from finelybook www.finelybook.com

122

this, you should know how to tweak the settings so that you can work
more efficiently.
Visual Studio 2017 supports the ability to apply a theme to your IDE.
There are three main themes that are available in Visual Studio 2017:
Dark, Light, and Blue. For Light, the color choices are gray and black.
For Dark, the color choices are black and white. Few, if any, gradients
can be found. The only coloration appears in the icons used in the
toolbars and as an accent in the various tool windows. The Blue theme
is intended to resemble the colors that were found in Visual Studio
2012 and earlier.
The default theme is Light, which is what the vast majority of images
in this book were created in. The top image in Figure 3-8 shows the
Dark theme, and the bottom image is the Blue theme.

Download from finelybook www.finelybook.com

123

Download from finelybook www.finelybook.com

124

FIGURE 3-8

You can change the theme through the Options option on the Tools
menu. You can select the color theme from the drop-down that
appears in the Environment node.

Navigating Open Items

After opening multiple items in the editor space, you might notice that
you run out of room across the top and can no longer see the tabs for
all the items you have opened. Of course, you can go back to the
Solution Explorer window and select a specific item. If the item is
already open, it displays without reverting to its saved state. However,
it is still inconvenient to have to find the item in the Solution Explorer.
Luckily, Visual Studio 2017 has a number of shortcuts to access the list
of open items. Like most document-based applications, Visual Studio
has a Windows menu. When you open an item, its title is added to the
bottom section of this menu. To display an open item, just select the
item from the Windows menu or click the generic Windows item,
which displays a modal dialog from which you can select the item you
want.
Another alternative is to use the drop-down menu at the end of the tab
area of the editor space. Figure 3-9 shows the drop-down list of open
items from which you can select the item you want to access.

FIGURE 3-9

The right side of Figure 3-9 is the same as the left side except for the
drop-down icon. This menu also displays a down arrow, but this one
has a line across the top. This line indicates that there are more tabs
than can fit across the top of the editor space.
Another way to navigate through the open items is to press Ctrl+Tab,

Download from finelybook www.finelybook.com

125

which displays a temporary window, as shown in Figure 3-10. It is a
temporary window because when you release the Ctrl key it
disappears. However, while the window is open, you can use the arrow
keys or press Tab to move among the open windows.

FIGURE 3-10

The Ctrl+Tab window is divided into two sections: Active Tool
Windows and Active Files (which actually also contains some items
that don’t correspond to a single file). As the number of either active
files or active tool windows increases, the windows expand vertically
until there are 15 items, at which point an additional column is
formed.

NOTE

If you get to the point where you see multiple columns of active
files, you might consider closing some or all of the unused files.
The more files Visual Studio 2017 has open, the more memory it
uses and the slower it performs. Even in 2017, Visual Studio is still
only a 32-bit application.

If you right-click the tab of an open item, you will see a hidden context
menu that gives you a quick way to do common tasks such as save or

Download from finelybook www.finelybook.com

126

close the file that’s associated with the tab. Several particularly useful
actions are Close All Documents, Close All but This, Copy File Path
and Open Containing Folder. These are self-descriptive; the first closes
all open documents, the second closes all tabs other than the one you
clicked to get the context menu, the third copies the full path for the
select file into the clipboard, and the fourth opens the folder that
contains the file in Windows Explorer. Because all the windows are
dockable, there are also actions to Float or Dock as Tabbed Document,
which are enabled depending on what state the tab is in.

Fonts and Colors

Some of the first things that presenters change in Visual Studio are the
fonts and colors used in the editor space to make the code more
readable. However, it shouldn’t just be presenters who adjust these
settings. Selecting fonts and colors that are easy for you to read and
that aren’t harsh on the eyes can make you more productive and
enable you to code for longer without feeling fatigued. Figure 3-11
shows the Fonts and Colors node of the Options dialog, where you can
make adjustments to the font, size, color, and styling of different
display items.

Download from finelybook www.finelybook.com

127

FIGURE 3-11

To adjust the appearance of a particular text item within Visual Studio
2017, you first need to select the area of the IDE that it applies to. In
Figure 3-11, the Text Editor has been selected and has been used to
determine which items should appear in the Display Items list. When
you find the relevant item in this list, you can make adjustments to the
font and colors.

NOTE

Some items in the Display Items list, such as Plain Text, are
reused by a number of areas within Visual Studio 2017, which can
result in some unpredictable changes when you tweak fonts and
colors.

When choosing a font, remember that proportional fonts are usually
not as effective for writing code as nonproportional fonts (also known
as fixed-width fonts). Fixed-width fonts are distinguished in the list

Download from finelybook www.finelybook.com

128

(the name of the font is bolded) from the variable-width types, so they
are easy to locate.

Visual Guides

When you edit a file, Visual Studio 2017 automatically colors the code
based on the type of file. For example, VB code highlights keywords in
blue, variable names and class references in black, and string literals
in red. In Figure 3-12 you can see that there is a line running up the
left side of the code. This indicates where the code blocks are. You can
click the minus sign to condense the btnSayHello_Click method or the
entire Form1 code block.

FIGURE 3-12

Additional points about visual guides are shown in Figures 3-13 and 3-
14. In Figure 3-13, word wrap has been enabled via the Options dialog.
(See the Text Editor All Languages General node.)

Download from finelybook www.finelybook.com

129

FIGURE 3-13

FIGURE 3-14

Unfortunately, enabling word wrapping can make it hard to work out
which lines have been wrapped. Fortunately, Visual Studio 2017 has
an option (immediately below the check box to enable word wrapping
in the Options dialog) that can display visual glyphs at the end of each
line that indicate a line has been wrapped to the next line (see Figure
3-14). There are also two other visual guides you can use. On the left,
outside the code block markers, you can include line numbers. These
can be enabled via the Line Numbers check box below both the Word

Download from finelybook www.finelybook.com

130

Wrap and Visual Glyphs check boxes. The other guide is the use of
dots that represent space in the code. Unlike the other visual guides,
this one can be enabled via the Edit Advanced View White Space
menu item when the code editor space has focus.

Full-Screen Mode

If you have a number of tool windows and multiple toolbars visible,
you might have noticed that you quickly run out of space for actually
writing code. For this reason, Visual Studio 2017 has a full-screen
mode that you can access via the View Full Screen menu item.
Alternatively, you can press Shift+Alt+Enter to toggle in and out of
full-screen mode. Figure 3-15 shows the top of Visual Studio 2017 in
full-screen mode. As you can see, no toolbars or tool windows are
visible, and the window is completely maximized, even to the
exclusion of the normal Minimize, Restore, and Close buttons. And the
text Full Screen appears in the menu bar. By clicking on the text, you
can toggle out of full-screen mode.

FIGURE 3-15

NOTE

If you use multiple screens, full-screen mode can be particularly
useful. Undock the tool windows and place them on the second
monitor. When the editor window is in full-screen mode, you still
have access to the tool windows, without having to toggle back
and forth. If you undock a code window this will not be set to full
screen.

Tracking Changes

Download from finelybook www.finelybook.com

131

To enhance the experience of editing, Visual Studio 2017 uses line-
level tracking to indicate which lines of code you have modified during
an editing session. When you open a file to begin editing there will be
no line coloring. However, when you begin to edit, you notice that a
yellow (light gray for the Dark theme) mark appears next to the lines
that have been modified. In Figure 3-16 you can see that the
Console.WriteLine line has been modified since this file was last saved.

FIGURE 3-16

When the file is saved, the modified lines change to having a green
(same color in the Dark theme) mark next to them. In Figure 3-17 the
first Console.WriteLine line has changed since the file was opened, but
those changes have been saved to disk. However, the second
Console.WriteLine line has not yet been saved.

FIGURE 3-17

NOTE

If you don’t find tracking changes to be useful, you can disable
this feature by unchecking the Text Editor General Track
Changes node in the Options dialog.

OTHER OPTIONS

You can use many options that haven’t yet been mentioned to tweak
the way Visual Studio operates. The remainder of this chapter presents
some of the more useful options that can help you be more productive.

Download from finelybook www.finelybook.com

132

Keyboard Shortcuts

Visual Studio 2017 ships with many ways to perform the same action.
Menus, toolbars, and various tool windows provide direct access to
many commands, but despite the huge number available, many more
are not accessible through the graphical interface. Instead, these
commands are accessed (along with most of those in the menus and
toolbars) via keyboard shortcuts.
These shortcuts range from the familiar Ctrl+Shift+S to save all
changes, to the obscure Ctrl+Alt+E to display the Exceptions Settings
window. As you might have guessed, you can set your own keyboard
shortcuts and even change the existing ones. Even better, you can filter
the shortcuts to operate only in certain contexts, meaning you can use
the same shortcut differently depending on what you’re doing.
Figure 3-18 shows the Keyboard node in the Environment section of
the Options dialog with the Visual C# 2005 keyboard mapping scheme
selected. If you want to change to use a different keyboard mapping
scheme, simply select it from the drop-down, and press the Reset
button.

Download from finelybook www.finelybook.com

133

FIGURE 3-18

NOTE

The keyboard mapping schemes are stored as VSK files at
C:\Program Files\Microsoft Visual Studio 15.0\Common7\IDE (or
C:\Program Files (x86)\Microsoft Visual Studio

15.0\Common7\IDE if you are using the 64-bit version of Windows).
This is the keyboard mapping file format used in versions of
Visual Studio after Visual Studio 2005. To import keyboard
mappings from Visual Studio 2005, use the Import and Export
Settings wizard described in the “Importing and Exporting
Settings” section later in this chapter; for earlier versions, copy
the appropriate VSK file into the aforementioned folder, and you
can select it from the mapping scheme drop-down the next time
you open the Options dialog.

The listbox in the middle of Figure 3-18 lists every command that is

Download from finelybook www.finelybook.com

134

available in Visual Studio 2017. Unfortunately, this list is quite
extensive and the Options dialog is not resizable, which makes
navigating this list difficult. To make it easier to search for commands,
you can filter the command list using the Show Commands Containing
textbox. In Figure 3-18 the word Build has been used to filter the list
down to all the commands starting with or containing that word. From
this list the Build.BuildSolution command has been selected. Because
there is already a keyboard shortcut assigned to this command, the
Shortcuts for Selected Command drop-down and the Remove button
have been enabled. It is possible to have multiple shortcuts for the
same command, so the drop-down enables you to remove individual
assigned shortcuts.

NOTE

Having multiple shortcuts is useful if you want to keep a default
shortcut — so that other developers feel at home using your setup
— but also add your own personal one.

The remainder of this dialog enables you to assign a new shortcut to
the command you have selected. Simply move to the Press Shortcut
Keys textbox, and as the label suggests, press the appropriate keys. In
Figure 3-18 the keyboard chord Ctrl+Alt+B has been entered, but this
shortcut is already being used by another command, as shown at the
bottom of the dialog window. If you click the Assign button, this
keyboard shortcut will be remapped to the Build.BuildSolution

command.
To restrict a shortcut’s use to only one contextual area of Visual Studio
2017, select the context from the Use New Shortcut In drop-down list.
The currently selected Global option indicates that the shortcut should
be applied across the entire environment, but the list of elements in
the drop-down includes a surprisingly large list of designers and
editors found in Visual Studio.

Quick Launch

The continuing proliferation of commands available in Visual Studio
cannot be fully addressed by programming keyboard shortcuts. Aside

Download from finelybook www.finelybook.com

135

from the sheer number of commands, it is also possible to run out of
reasonable keyboard combinations.
To alleviate this problem, Visual Studio 2017 includes a feature called
Quick Launch. Opened from the top-left portion of the toolbar or by
using the Ctrl+Q shortcut (and shown in Figure 3-19), visually, it looks
like any other search textbox. The difference is that the scope of the
search is every command that exists within Visual Studio. So
regardless of whether the command is in the toolbar, on one of the
menus, or not associated with either, the search box can find it.

FIGURE 3-19

Download from finelybook www.finelybook.com

136

The search box is also a progressive one. As you type characters, the
list of possible matches displays. The matches are placed in up to five
different categories: Most Recently Used, Menus, Options, NuGet
Packages, and Open Documents. Not all the matches are shown in
each category. (The results would be too overwhelming, in some
cases.) If you want to see more results from a particular category, you
can use Ctrl+Q or Ctrl+Shift+Q to navigate back and forth through the
categories, showing more from each category as appropriate.
You can also limit your search to the items in a specific category
directory from the textbox. For example, entering the text @mru font
would display the most recently used items that include the term
“font.” For the other categories, the scoping keywords are @menu,
@opt, and @doc.
The default setting for Quick Launch is to not persist the search terms.
After you move your cursor outside the Quick Launch area, the text
area is cleared. If you want to modify this behavior so that the search
terms are persisted, you can use the Quick Launch node in Tools
Options. Ensuring that the Show Search Results from Previous Search
When Quick Launch Is Activated check box is checked allows your
previous search terms to be preserved the next time you access Quick
Launch.

Projects and Solutions

Several options relate to projects and solutions. The first of these is
perhaps the most helpful — the default locations of your projects. By
default, Visual Studio 2017 uses the standard Documents and Settings
path common to many applications (see Figure 3-20), but this might
not be where you want to keep your development work.

Download from finelybook www.finelybook.com

137

FIGURE 3-20

You can also change the location of template files at this point. If your
organization uses a common network location for corporate project
templates, you can change the default location in Visual Studio 2017 to
point to this remote address rather than map the network drive.
You can adjust a number of other options to change how projects and
solutions are managed in Visual Studio 2017. One of particular interest
is Track Active Item in Solution Explorer. With this option enabled,
the layout of the Solution Explorer changes as you switch among items
to ensure the current item is in focus. This includes expanding (but not
collapsing again) projects and folders, which can be frustrating on a
large solution because you are continually having to collapse projects
so that you can navigate more effectively.
Another option that relates to solutions, but doesn’t appear in Figure
3-20, is to list miscellaneous files in the Solution Explorer. Say you are
working on a solution and you have to inspect an XML document that
isn’t contained in the solution. Visual Studio 2017 will happily open
the file, but you will have to reopen it every time you open the

Download from finelybook www.finelybook.com

138

solution. Alternatively, if you enable Environment Documents Show
Miscellaneous Files in Solution Explorer via the Options dialog, the
file will be temporarily added to the solution. The miscellaneous files
folder to which this file is added is shown in Figure 3-21.

FIGURE 3-21

NOTE

Visual Studio 2017 will automatically manage the list of
miscellaneous files, keeping only the most recent ones, based on
the number of files defined in the Options dialog. You can get
Visual Studio to track up to 256 files in this list, and files will be
evicted based on when they were last accessed.

Build and Run

The Projects and Solutions Build and Run node, shown in Figure 3-
22, can be used to tailor the build behavior of Visual Studio 2017.

Download from finelybook www.finelybook.com

139

FIGURE 3-22

To reduce the amount of time it takes to build your solution, you may
want to increase the maximum number of parallel builds that are
performed. Visual Studio 2017 can build in parallel only those projects
that are not dependent, but if you have a large number of independent
projects, this might yield a noticeable benefit. Be aware that on a
single-core or single-processor machine this may actually increase the
time taken to build your solution.
Figure 3-22 shows that projects will Prompt to Build when they are out
of date, and that if there are build errors, the solution will not launch.
Both these options can increase your productivity, but be warned that
they eliminate dialogs letting you know what’s going on.

NOTE

The last option worth noting in Figure 3-22 is the MSBuild project
build output verbosity. In most cases the Visual Studio 2017 build
output is sufficient for debugging build errors. However, in some

Download from finelybook www.finelybook.com

140

cases, particularly when building ASP.NET projects, you need to
increase verbosity to diagnose a build error. Visual Studio 2017
has the capability to control the log file verbosity independently of
the output.

VB Options

VB programmers have four compiler options that can be configured at
a project or a file level. You can also set the defaults on the Projects
and Solutions VB Defaults node of the Options dialog.
Option Strict enforces good programming practices by making
developers explicitly convert variables to their correct types, rather
than letting the compiler try to guess the proper conversion method.
This results in fewer runtime issues and better performance.

NOTE

We advise strongly that you use Option Strict to ensure that your
code is not implicitly converting variables inadvertently. If you
are not using Option Strict, with all the language features
included in .NET Framework, you may not be making the most
effective use of the language.

IMPORTING AND EXPORTING SETTINGS

When you have the IDE in exactly the configuration you want, you
may want to back up the settings for future use. You can do this by
exporting the IDE settings to a file that can then be used to restore the
settings or even transfer them to a series of Visual Studio 2017
installations so that they all share the same IDE setup.

NOTE

The Environment Import and Export Settings node in the
Options dialog enables you to specify a team settings file. This can
be located on a network share, and Visual Studio 2017 can

Download from finelybook www.finelybook.com

141

automatically apply new settings if the file changes.

To export the current configuration, select Tools Import and Export
Settings to start the Import and Export Settings wizard. The first step
in the wizard is to select the Export option and which settings are to be
backed up during the export procedure.
As shown in Figure 3-23, a variety of grouped options can be exported.
The screenshot shows the Options section expanded, revealing that the
Debugging and Projects settings will be backed up along with the Test
Execution and Performance Tools configurations. As the small
exclamation icon indicates, some settings are not included in the
export by default because they contain information that may infringe
on your privacy. You need to select such sections manually if you want
them to be included in the backup. After you select the settings you
want to export, you can progress through the rest of the wizard, which
might take a few minutes depending on the number of settings being
exported.

Download from finelybook www.finelybook.com

142

FIGURE 3-23

Importing a settings file is just as easy. The same wizard is used, but
you select the Import option on the first screen. Rather than simply
overwriting the current configuration, the wizard enables you to back
up the current setup first.
You can then select from a list of preset configuration files — the same
set of files from which you can choose when you first start Visual
Studio 2017 — or browse to a settings file that you created previously.
When the settings file has been chosen, you can then choose to import
only certain sections of the configuration or import the whole lot.
The wizard excludes some sections by default, such as External Tools
or Command Aliases, so that you don’t inadvertently overwrite
customized settings. Make sure you select these sections if you want to
do a full restore.

Download from finelybook www.finelybook.com

143

NOTE

If you just want to restore the configuration of Visual Studio 2017
to one of the default presets, you can choose the Reset All Settings
option in the opening screen of the wizard, rather than go
through the import process.

Visual Studio provides the ability for team members to share settings.
One of the reasons this facility can be so useful is the result of
seemingly innocuous settings, such as the tab stops and whether tabs
are converted to spaces. When different team members have different
settings, merely editing a file can cause nonfunctional code changes
(for example, the addition or removal of a space at the beginning of a
line has no effect on the functioning on the code). However, when
these code files get checked in to a source code repository, those
changes have the potential to appear as conflicts.
If you are working with a team of developers on the same code base,
it’s a good idea to work from a common settings file. In the
Environment Import and Export Settings option of the Tools
Options menu, there is a Use Team Settings File check box, as shown
in Figure 3-24.

Download from finelybook www.finelybook.com

144

FIGURE 3-24

When this check box is selected, a path to a shared Visual Studio
settings file must be specified. In case you are concerned about losing
any individuality with respect to customizing Visual Studio, only those
settings that are found in the shared settings file are applied. You can
create your own customizations so long as they don’t conflict with the
shared settings.

Synchronized Settings

Like many Microsoft products, Visual Studio 2017 is increasing its
awareness of all things cloud. You can sign in to Visual Studio with a
Microsoft account and your Visual Studio settings will be synchronized
across all of your machines. This synchronization process, although
turned on by default (presuming that you have signed in), does not
apply to every single setting in Visual Studio. The following settings
are synchronized:

Your development settings (that is, the set of options and keyboard

Download from finelybook www.finelybook.com

145

bindings you selected when you launched Visual Studio for the first
time)
The Theme settings on the Environment General options page
All of the settings on the Environment Fonts and Colors options
page
All keyboard shortcuts on the Environment Keyboard options
page
All settings on the Environment Startup options page
All settings on the Text Editor options pages
All user-defined command aliases

It is possible to turn synchronization off altogether, through the
Environment Synchronized Settings option page (see Figure 3-25).
To turn off synchronization completely, make sure that the
Synchronize Settings Across Devices When Signed into Visual Studio
check box is not selected. It’s also possible to segregate the
synchronization of the settings so that they are only shared when you
are logged in to Azure Active Directory and not when you’re logged in
to an on-premise Active Directory domain.

Download from finelybook www.finelybook.com

146

FIGURE 3-25

NOTE

If you are upgrading to Visual Studio 2017, it’s possible that you
will receive a slightly different message when configuring your
synchronized settings. Specifically, a warning message might
appear in the Options dialog box saying “Synchronized settings
on this machine have been disabled because the online collection
of settings is different.” There is also a link to resolve the conflict.
If you choose to resolve the conflict, a dialog appears giving you
three options: copying the settings from the cloud to your
environment (overwriting your local settings), copying the
settings from your environment to the cloud (overwriting your
cloud settings), and not enabling synchronization. With the first
two selections, synchronization is enabled.

Download from finelybook www.finelybook.com

147

SUMMARY

This chapter covered only a core selection of the useful options
available to you as you start to shape the Visual Studio interface to suit
your own programming style; many other options are available. These
numerous options enable you to adjust the way you edit your code,
add controls to your forms, and even select the methods to use when
debugging code.
The settings within the Visual Studio 2017 Options page also enable
you to control how and where applications are created, and even to
customize the keyboard shortcuts you use. What’s more, the options
that you modify on one instance of Visual Studio can be automatically
and seamlessly synchronized across all of the different instances of
Visual Studio that you use.
Throughout the remainder of this book, you can see the Options dialog
revisited according to specific functionality such as compiling,
debugging, and writing macros.

Download from finelybook www.finelybook.com

148

4
The Visual Studio Workspace

WHAT’S IN THIS CHAPTER
Using the code editor
Exploring the core Visual Studio tool windows
Navigating through your code

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
So far you have seen how to get started with Visual Studio 2017
and how to customize the IDE to suit the way that you work. In this
chapter, you’ll learn to take advantage of some of the built-in
commands, shortcuts, gestures, and supporting tool windows that
can help you to write code and design forms.

THE CODE EDITOR

As a developer you’re likely to spend a considerable portion of your
time writing code, which means that knowing how to tweak the layout
of your code and navigating it effectively are particularly important.
The Windows Presentation Foundation (WPF)-based code editor
provides numerous features, including navigating, formatting, using
multiple monitors, creating tab groups, searching, and more.

The Code Editor Window Layout

Download from finelybook www.finelybook.com

149

http://wrox.com
http://www.wrox.com

When you open a code file for editing, you are working in the code
editor window, as shown in Figure 4-1. The core of the code editor
window is the code pane in which the code displays.

FIGURE 4-1

Above the code pane are three drop-down lists that can help you
navigate the code file. Known as the Navigation Bar, it can be turned
on or off through the Text Editor All Language General node of the
Options dialog (Tools Options). Or you can turn it on and off for
individual languages.
The first drop-down lists the projects in which the file can be found.
This capability is present to support the shared file functionality that
Visual Studio offers. The second drop-down contains the different
classes defined in the code file, and the third one lists the members of
the class selected in the second drop-down. These are listed in

Download from finelybook www.finelybook.com

150

alphabetical order, making it easier to find a method or member
definition within the file.

NOTE

The drop-down lists do not apply to every code editor window in
Visual Studio. The appearance of the editor window varies based
on the type of file you are editing. For example, XML files don’t
have the drop-down lists. C#, Visual Basic, and JavaScript do. As
well, if you use a third-party add-in such as ReSharper or
CodeRush, you might have different behaviors and options
available to you.

As you modify the code in the code editor window, lines of code that
you’ve modified since the file has been opened are marked in the left
margin — yellow for unsaved changes and green for those that have
been saved.

Regions

Effective class design usually results in classes that serve a single
purpose and are not overly complex or lengthy. However, there will be
times when you have to implement so many interfaces that your code
file will become unwieldy. In this case, you have a number of options,
such as partitioning the code into multiple files or using regions to
condense the code, thereby making it easier to navigate.
The introduction of partial classes (where the definition of a class can
be split over two or more files) means that at design time you can place
code into different physical files representing a single logical class. The
advantage of using separate files is that you can effectively group all
methods that are related; for example, methods that implement an
interface. The problem with this strategy is that navigating the code
then requires continual switching between code files.
An alternative is to use named code regions to condense sections of
code that are not currently in use. In Figure 4-2 you can see that two
regions are defined, called Constructor and Event Handlers. Clicking
the minus sign next to #region condenses the region into a single line
and clicking the plus sign expands it again.

Download from finelybook www.finelybook.com

151

FIGURE 4-2

NOTE

You don’t need to expand a region to see the code within it. Simply
hover the mouse cursor over the region, and a tooltip displays the
code within it.

Outlining

In addition to regions that you have defined, you have the ability to
auto-outline your code, making it easy to collapse methods,
comments, and class definitions. Auto-outlining is enabled by default,
but if it’s not enabled you can enable it using the Edit Outlining
Start Automatic Outlining menu item. Before you get freaked out, you
won’t see this menu item if automatic outlining is enabled. Instead,
you’ll see a Stop Outlining menu item.
Figure 4-3 shows four condensable regions. One is a defined region
called Constructor; however, there are also three other automatic
regions, outlining the class, the XML comments, and the constructor
method (which has been collapsed). Automatic outlines can be
condensed and expanded in the same way as regions you define
manually.

Download from finelybook www.finelybook.com

152

FIGURE 4-3

The Edit Outlining menu provides a number of commands to help in
toggling outlining, such as collapsing the entire file to just
method/property definitions (Edit Outlining Collapse to
Definitions) and expanding it to display all collapsed code again (Edit
Outlining Toggle All Outlining). The other way to expand and
condense regions is via the keyboard shortcut Ctrl+M, Ctrl+M. This
shortcut toggles between the two layouts.

NOTE

One trick for C# developers is that Ctrl+] enables you to easily
navigate from the beginning of a region, outline, or code block to
the end and back again.

Code Formatting

By default, Visual Studio 2017 assists you in writing readable code by
automatically indenting and aligning. However, it is also configurable
so that you can control how your code is arranged. Common to all
languages is the ability to control what happens when you create a new
line. In Figure 4-4 you can see that there is a Tabs node under the Text
Editor All Languages node of the Options dialog. Setting values here
defines the default value for all languages, which you can then
overwrite for an individual language using the Basic Tabs node (for
VB.NET), C# Tabs, or other language nodes.

Download from finelybook www.finelybook.com

153

FIGURE 4-4

By default, the indenting behavior for both C# and VB.NET is smart
indenting, which will, among other things, automatically add
indentation as you open and close enclosures. Smart indenting is not
available for all languages, in which case block indenting is used.

NOTE

If you are working on a small screen, you might want to reduce
the tab and indent sizes to optimize screen usage. Keeping the tab
and indent sizes the same ensures that you can easily indent your
code with a single tab keypress.

Visual Studio’s Smart Indenting does a good job of automatically
indenting code as it is written or pasted into the code editor, but
occasionally you can come across code that has not been properly
formatted, making it difficult to read. To have Visual Studio reformat
the entire document and set the brace locations and line indentations,

Download from finelybook www.finelybook.com

154

select Edit Advanced Format Document or press Ctrl+K, Ctrl+D. To
reformat just the selected code block, select Edit Advanced Format
Selection or press Ctrl+K, Ctrl+F.
When writing code, to indent an entire block of code one level without
changing each line individually, simply select the block and press Tab.
Each line has a tab inserted at its start. To unindent a block one level,
select it and press Shift+Tab.

NOTE

You may have noticed the Tabify/Untabify Selected Lines
commands under the Edit Advanced menu and wondered how
these differ from the Format Selection command. These
commands simply convert leading spaces in lines to tabs and vice
versa, rather than recalculating the indenting as the Format
Selection command does.

Navigating Forward/Backward

As you move within and between items, Visual Studio 2017 tracks
where you have been, in much the same way that a web browser tracks
the sites you have visited. Using the Navigate Forward and Navigate
Backward items from the View menu, you can easily go back and forth
between the various locations in the project that you have changed.
The keyboard shortcut to navigate backward is Ctrl+−. To navigate
forward again it is Ctrl+Shift+−.

Additional Code Editor Features

The Visual Studio code editor is rich with far more features than we
can cover in depth here. However, here are a few additional features
that you may find useful.

Reference Highlighting

Another great feature is reference highlighting, also known as Code
Lens. All uses of the symbol (such as a method or property) under the
cursor within its scope are highlighted (as shown in Figure 4-5). This

Download from finelybook www.finelybook.com

155

makes it easy to spot where else this symbol is used within your code.
You can easily navigate between the uses by Ctrl+Shift+Up/Down.

FIGURE 4-5

Code Zooming

You can use Ctrl+Mouse Wheel to zoom in and out of your code
(effectively making the text larger or smaller). This feature can be
especially useful when presenting to a group to enable the people at
the back of the audience to see the code being demonstrated. The
bottom-left corner of the code editor also has a drop-down enabling
you to select from some predefined zoom levels.

Word Wrap

You can turn on word wrap in the code editor from the options. Go to
Tools Options, expand the Text Editor node, select the All Languages
subnode, and select the Word Wrap option. You can also choose to
display a return arrow glyph where text has been wrapped by selecting
the Show Visual Glyphs for Word Wrap option below the Word Wrap
option.
You can turn this on for the current project by selecting Edit
Advanced Word Wrap.

Line Numbers

To keep track of where you are in a code file, you may find it useful to
turn on line numbers in the code editor (as shown in Figure 4-6). To
turn line numbers on, go to Tools Options, expand the Text Editor
node, select the All Languages subnode, and select the Line Numbers
option.

Download from finelybook www.finelybook.com

156

FIGURE 4-6

Visual Studio 2017 includes a code editor feature named the Heads Up
Display. In Figure 4-6, notice the small bit of text above the class
declaration and the method signature (2 references and 0 references,
respectively, along with information about how many uncommitted
changes have been made, if this code has been checked into source
control). This text indicates the number of times that the class or
method is referenced elsewhere in the project.
If you click the text, a pop-up window displays (an example is shown
in Figure 4-7) that includes some useful details about the references.
This includes the file names and line numbers where the references
are found.

FIGURE 4-7

If you double-click one of the references, that file opens up in the
editor window and the cursor is placed on the line that references the

Download from finelybook www.finelybook.com

157

method or class. Just hovering your mouse over a reference causes a
pop-up window to display; the window contains not just the line you’re
hovering over, but also the two or three lines before and after it, which
enables you to see a little more detail about the reference without
navigating directly to the file.

Auto Brace Complete

Auto Brace Complete is a popular feature that automatically adds the
closing parenthesis, quote, brace, and bracket for you as you type code
into the editor. The completions themselves are language aware, so
that, for example, comments in C++ will autocomplete, yet the same
keystrokes typed into a C# editor will not.

Split View

Sometimes you want to view two different parts of the same code file
at the same time. Split view enables you to do this by splitting the
active code editor window into two horizontal panes separated by a
splitter bar. These can then be scrolled separately to display different
parts of the same file simultaneously (as shown in Figure 4-8).

Download from finelybook www.finelybook.com

158

FIGURE 4-8

To split a code editor window, select Split from the Window menu.
Alternatively, drag the handle directly above the vertical scrollbar
down to position the splitter bar.
Drag the splitter bar up and down to adjust the size of each pane. To
remove the splitter simply double-click the splitter bar, or select
Remove Split from the Window menu.

Tear Away (Floating) Code Windows

If you have multiple monitors, a great feature is the ability to “tear off”
or float code editor windows (and tool windows) and move them
outside the main Visual Studio IDE window (as shown in Figure 4-9),
including onto another monitor. This allows you to make use of the
extra screen real estate that having multiple monitors provides by
enabling multiple code editor windows to be visible at the same time

Download from finelybook www.finelybook.com

159

over separate monitors. It is also possible to place these floating
windows onto a “raft” so that they can be moved together (as shown in
Figure 4-10). To tear off a window, make sure it has the focus, and
then select Float from the Window menu. Alternatively, right-click the
title bar of the window and select Float from the drop-down menu, or
simply click and drag the tab for that window (effectively tearing it
away from its docked position) and position it where you want it to be
located.

FIGURE 4-9

Download from finelybook www.finelybook.com

160

FIGURE 4-10

You may find halving the code editor window in Split view (discussed
in the previous section) to view different parts of a file at the same
time too much of a limited view, so you might want to use the floating
code windows feature instead to open another code editor window for
the same file, and place it, say, on a different screen (if you have a
multiple monitor setup). The trick to doing this (because double-
clicking the file again in the Solution Explorer simply activates the
existing code editor window instance for that file) is to select New
Window from the Window menu. This opens the file currently being
viewed in another window, which you can then tear away and position
as you please.

Duplicating Solution Explorer

If you work in a multi-monitor environment, a limitation in early
versions of Visual Studio was that only one copy of Solution Explorer
was available. In Visual Studio 2017, this limitation does not exist.
Right-click one of the elements in the Solution Explorer and select
New Solution Explorer View. When clicked, a new floating Solution
Explorer window is created. This window can be moved around, just

Download from finelybook www.finelybook.com

161

like the windows previously described. Figure 4-11 illustrates the
newly created Solution Explorer.

FIGURE 4-11

Creating Tab Groups

If you don’t have the privilege of having more than one monitor, it is
still possible to view more than one code editor window at the same
time. You do this by creating tab groups and tiling these groups to
display at the same time. As their name would indicate, a tab group is
a group of code editor window tabs, with each tab group appearing in a
separate tile. Multiple tab groups can be created, limited only by the
amount of screen real estate they occupy. You can choose to tile the
tab groups vertically or horizontally; you cannot use a mix of the two.
To start this process, you drag a tab below or beside an existing one
and dock it to achieve the same effect. This starts a new tab group and
creates a tile for it (as shown in Figure 4-12).

Download from finelybook www.finelybook.com

162

FIGURE 4-12

You can drag tabs between tab groups or move them between tab
groups using Window Move to Next Tab Group and Window Move
to Previous Tab Group. These options are also available from the drop-
down menu when right-clicking a tab.
To restore the user interface to having a single tab group again, move
the tabs from the new tab groups back into the original one again and
the tiling will be removed.

Download from finelybook www.finelybook.com

163

Advanced Functionality

To be a truly productive developer, it can help to know various
advanced features available in the code editor that are hidden away
but can save you a lot of time. Here are some of the most useful
commands that aren’t immediately obvious within the code editor.

Commenting/Uncommenting a Code Block

Often you need to comment or uncomment a block of code, and you
don’t want to have to add/remove the comment characters to/from the
start of each line, especially when there are many lines in the block. Of
course, in C# you could wrap the block of code between a /* and */ to
comment it out, but this type of comment isn’t available in Visual
Basic, and it can be problematic in C# when commenting out a block
that already contains a comment using this style.
Visual Studio provides a means to comment/uncomment a block of
code easily, by selecting the block and then selecting Edit Advanced
Comment Selection to comment it out, or selecting Edit Advanced
Uncomment Selection to uncomment it.
The easiest way to access these commands (you are likely to use these
often) is via their shortcuts. Press Ctrl+K, Ctrl+C to comment a block
of code, and Ctrl+K, Ctrl+U to uncomment it. The Text Editor toolbar
is another simple means to access these commands.

Block Selection

Also known as box selection, column selection, rectangle selection, or
vertical text selection, block selection is the ability to select text in a
block (as shown in Figure 4-13) instead of the normal behavior of
selecting lines of text (stream selection). To select a block of text, hold
down the Alt key while selecting text with the mouse, or use
Shift+Alt+Arrow with the keyboard. This feature can come in handy
when, for example, you have code lined up and want to remove a
vertical portion of that code (such as a prefix on variable declarations).

Download from finelybook www.finelybook.com

164

FIGURE 4-13

Multiline Editing

Multiline editing extends the abilities of block selection. With block
selection, after selecting a vertical block of text you can only delete,
cut, or copy the block. With multiline editing you can type after
selecting a vertical block of text, which will replace the selected text
with what’s being typed on each line, as shown in Figure 4-14. This can
be handy for changing a group of variables from readonly to const, for
example.

FIGURE 4-14

NOTE

You can also insert text across multiple lines by creating a block
with zero width and simply starting to type.

The Clipboard Ring

Visual Studio keeps track of the last 20 snippets of text that have been
copied or cut to the clipboard. To paste text that was previously copied
to the clipboard but overwritten, instead of the normal Ctrl+V when
pasting, use Ctrl+Shift+V. Pressing V while holding down Ctrl+Shift
cycles through the entries.

Full-Screen View

Download from finelybook www.finelybook.com

165

You can maximize the view for editing the code by selecting View Full
Screen, or using the Shift+Alt+Enter shortcut. This effectively
maximizes the code editor window, hiding the other tool windows and
the toolbars. To return to the normal view, press Shift+Alt+Enter
again, or click the Full-Screen toggle button that has been added to the
end of the menu bar.

Go to Definition

To quickly navigate to the definition of the class, method, or member
under the cursor, right-click and select Go to Definition, or simply
press F12.

Find All References

You can find where a method or property is called by right-clicking its
definition and selecting Find All References from the drop-down
menu, or placing the cursor in the method definition and pressing
Shift+F12. This activates the Find All References window (see Figure
4-15) and displays the locations throughout your solution where that
method or property is referenced.

FIGURE 4-15

The Find All References window has significantly changed in Visual
Studio 2017. Where the references used to be in a flat list, you now
have the ability to see them in a hierarchy. And you can change the
default of Project then Definition by selecting one of the choices in the
Group By combo box at the top center of the window. Or you can

Download from finelybook www.finelybook.com

166

create your own grouping by right-clicking the results and using the
Grouping option in the context menu.
You can then double-click a reference in the results window to
navigate to that result in the code editor window. Or, if you just need
to see a glimpse of the context for the reference, you can hover over
the reference and the code around the reference appears as a tooltip.

CODE NAVIGATION

Microsoft takes the view that Visual Studio is a productivity tool for
developers rather than being only a place where code is edited. For
this reason, there are a large number of features targeted at helping
developers do common tasks faster. Visual Studio 2017 focuses on
helping developers understand and discover code more effectively.
This section goes over these features and how they might best be used.

Peek Definition

As you investigate code, there is frequently a need to quickly check on
an invoked method. When you right-click the method and select Go to
Definition from the context menu, the file containing the method
opens and the method appears in the code editor. However, the file
you were editing is no longer in focus. Although this is definitely not
an insurmountable problem, it is an inconvenience.
The Peek Definition command enables developers to view the
definition of a method without leaving their current editing context.
Right-click the method as before, but select the Peek Definition option
from the context menu. As shown in Figure 4-16, the method
definition is visible, and a blue bar on the left side indicates the
location of the method within the visible code.

Download from finelybook www.finelybook.com

167

FIGURE 4-16

Aside from allowing you to view the code, Peek Definition enables you
to edit the code while you peek at it. And, while you hover over a
method in the peek window, you can right-click and select Peek
Definition to drill down into that method. When you are more than
one level deep, a collection of blue and white circles appears (see
Figure 4-17). Clicking on the circles enables you to easily navigate
backward and forward through the call hierarchy.

Download from finelybook www.finelybook.com

168

FIGURE 4-17

Finally, if you want to promote the peeked file to the main editor
window, there is a Promote to Document icon just to the right of the
file name on the Peek Window tab.

Enhanced Scrollbar

The enhanced scrollbar, with its visual cues that provide information
about the file that you are editing, is a very popular productivity tool.
The visual cues include the location of errors and warnings,
breakpoints, bookmarks, and search results. Figure 4-18 illustrates
some of the different markers on the enhanced scrollbar.

Download from finelybook www.finelybook.com

169

FIGURE 4-18

The scrollbar in Visual Studio 2017 includes the Map mode feature,
which is turned off by default. To enable it, you go to the Text Editor
All Languages Scroll Bars node in the Tools Options dialog box, as
shown in Figure 4-19. This particular node controls Map mode for
every language. However, Map mode can be turned on or off for each
language by going into the Scroll Bars node within the specific
language.

Download from finelybook www.finelybook.com

170

FIGURE 4-19

In the Behavior section, a radio button allows you to toggle between
the Vertical Scrollbar mode and the Map mode. When Map mode is
enabled, you can also configure the preview tooltip and specify the size
of the source code map (which also works out to be how wide the
scrollbar is). Figure 4-20 shows the toolbar with all of these functions
enabled.

Download from finelybook www.finelybook.com

171

FIGURE 4-20

A subtle feature is that Map mode is used wherever the code editor
scrollbar exists. This includes the scroll bar in the Peek Definition
screen.
The source code map is intended to provide a high-level, visual
representation of the code that is being edited. You are not supposed
to be able to make out the code itself — only the shape of the code is
discernible. The intent is for this shape to assist you as you navigate
through the file.
You can also see a preview tip. As you move your mouse up and down
along the scrollbar (not click-dragging the mouse, but just hovering), a
tooltip window appears that shows a preview of the code at the point
where your mouse is (see Figure 4-21).

Download from finelybook www.finelybook.com

172

FIGURE 4-21

The idea behind the preview feature is to enable you to quickly
recognize the code you are looking for without needing to scroll
through the entire code window. Experientially, it works well for
determining if your mouse is hovering over the part of the code you
want to edit next. It is not really useful (nor is it intended to be) if you
are looking for a particular variable or function. There are better ways
to navigate through the code file for that purpose.
The capability to click to scroll is inherent in the preview window. As
you are hovering over the different parts of your code file, you can
change the view of the entire code window by clicking; for example,
instead of moving the scrollbar handle up and down, you can click the
position in the file you want to move to.

Structure Visualizer

On the opposite side of the code editor is the Structure Visualizer. This

Download from finelybook www.finelybook.com

173

was a favorite feature from the Productivity Power Tools (a set of
extensions to Visual Studio designed to improve the productivity of
developers), and it has now been added to Visual Studio 2017. As you
can see in Figure 4-22, there are a couple of faint, dotted vertical lines
to the left of the code and to the right of the region expanders. There is
one line for each level of contextual hierarchy in the code. For
instance, in this example, the leftmost line is the namespace, the
second line is the class and the third line is the method. When you
hover over the line, the definition for all of the elements in the
hierarchy (include any regions) appears as a tool tip. The goal of this
feature is to give you an at-a-glance look at exactly where the code falls
within the namespace/class/method hierarchy.

FIGURE 4-22

Navigate To

The design of the interface for Navigate To is intended to keep you “in

Download from finelybook www.finelybook.com

174

the flow,” that is, among other things, to avoid forcing your hands to
leave the keyboard. When you strike the appropriate keyboard chord
(Ctrl+, is the default, but if that doesn’t work the Edit Navigate menu
option is available), a small window appears in the top-right corner of
the editor window, as shown in Figure 4-23.

FIGURE 4-23

As you start to type, Visual Studio uses a semantic search to display a
list of matches. (In other words, instead of a straight text search,
Visual Studio uses its understanding of the classes and methods in
your code project as a relevancy guide.) Based on previous telemetry,
the first item is the one you most commonly looked for previously, so
it is automatically selected and the corresponding file appears as a
preview. If you select another file (either by using the cursor or the
mouse), that file is displayed in the preview tab. The Escape key closes
the navigation window and puts you back to your original position.
At the top of the NavigateTo dialog is a toolbar that allows you to
perform some basic filtering on the results. For instance, you can
restrict the displayed items to Files, Symbols, Members, or Types. As
well, you can modify the scope of the search so that it is limited to the

Download from finelybook www.finelybook.com

175

current document or includes not just the current solution but also
external dependencies. There is also a gear icon that lets you modify
some settings for the Navigate To functionality. For instance, you can
make the window appear in the top center instead of the top right. And
you can toggle whether the Preview window is used when you click on
an item.

THE COMMAND WINDOW

As you become more familiar with Visual Studio 2017, you will spend
less time looking for functionality and more time using keyboard
shortcuts to navigate and perform actions within the IDE. One of the
tool windows that is often overlooked is the Command window,
accessible via View Other Windows Command Window
(Ctrl+Alt+A). From this window you can execute any existing Visual
Studio command or macro, as well as any additional macros you may
have recorded or written. Figure 4-24 illustrates the use of IntelliSense
to show the list of commands that can be executed from the Command
window. This list includes all macros defined within the current
solution.

FIGURE 4-24

A full list of the Visual Studio commands is available via the
Environment Keyboard node of the Options dialog (Tools Options).
The commands all have a similar syntax based on the area of the IDE
that they are derived from. For example, you can open the debugging
output window (Debug Windows Output) by typing Debug.Output

Download from finelybook www.finelybook.com

176

into the Command window.
The commands fall into three rough groups. Many commands are
shortcuts to either tool windows (which are made visible if they aren’t
already open) or dialogs. For example, File.NewFile opens the new file
dialog. Other commands query information about the current solution
or the debugger. Using Debug.ListThreads lists the current threads, in
contrast to Debug.Threads, which opens the Threads tool window. The
third type includes those commands that perform an action without
displaying a dialog. This would include most macros and a number of
commands that accept arguments. (A full list of these, including the
arguments they accept, is available within the MSDN documentation.)
There is some overlap between these groups: For example, the
Edit.Find command can be executed with or without arguments. If
this command is executed without arguments, the Find and Replace
dialog displays. Alternatively, the following command finds all
instances of the string MyVariable in the current document (/d) and
places a marker in the code window border against the relevant lines
(/m):

>Edit.Find MyVariable /m /d

Although there is IntelliSense within the Command window, you may
find typing a frequently used command somewhat painful. Visual
Studio 2017 has the capability to assign an alias to a particular
command. For example, the alias command can be used to assign an
alias, e?, to the Find command used previously:

>alias e? Edit.Find MyVariable /m /d

With this alias defined you can easily perform this command from
anywhere within the IDE: Press Ctrl+Alt+A to give the Command
window focus, and then type e? to perform the find-and-mark
command.
You will have imported a number of default aliases belonging to the
environment settings when you began working with Visual Studio
2017. You can list these using the alias command with no arguments.
Alternatively, if you want to find out what command a specific alias
references, you can execute the command with the name of the alias.
For example, querying the previously defined alias, e?, would look like

Download from finelybook www.finelybook.com

177

the following:

>alias e?
alias e? Edit.Find SumVals /m /doc

Two additional switches can be used with the alias command. The
/delete switch, along with an alias name, removes a previously
defined alias. If you want to remove all aliases you may have defined
and revert any changes to a predefined alias, you can use the /reset
switch.

THE IMMEDIATE WINDOW

Quite often when you write code or debug your application, you want
to evaluate a simple expression either to test a bit of functionality or to
remind yourself of how something works. This is where the Immediate
window comes in handy. This window enables you to run expressions
as you type them. Figure 4-25 shows a number of statements — from
basic assignment and print operations to more advanced object
creation and manipulation.

FIGURE 4-25

NOTE

In Visual Basic you can’t do explicit variable declaration in the

Download from finelybook www.finelybook.com

178

Immediate window (for example, Dim x as Integer), but instead
you do this implicitly via the assignment operator. The example
shown in Figure 4-25 shows a new customer being created,
assigned to a variable c, and then used in a series of operations.
When using C#, new variables in the Immediate window must be
declared explicitly before they can be assigned a value.

The Immediate window supports a limited form of IntelliSense, and
you can use the arrow keys to track back through the history of
previous commands executed. Variable values can be displayed by
means of the Debug.Print statement. Alternatively, you can use its ?
alias. Neither of these is necessary in C#; simply type the variable’s
name into the window, and press Enter to print its value.
When you execute a command in the Immediate window while in
Design mode, Visual Studio will build the solution before executing the
command. If your solution doesn’t compile, the expression cannot be
evaluated until the compilation errors are resolved. If the command
execute code has an active breakpoint, the command will break there.
This can be useful if you work on a particular method that you want to
test without running the entire application.
You can access the Immediate window via the Debug Windows
Immediate menu or the Ctrl+Alt+I keyboard chord, but if you work
between the Command and Immediate windows, you may want to use
the predefined aliases cmd and immed, respectively.

NOTE

To execute commands in the Immediate window, you need to add
> as a prefix (for example, >cmd to go to the Command window);
otherwise Visual Studio tries to evaluate the command as a
statement. Also, you should be aware that the language used in
the Immediate window is that of the active project. The examples
shown in Figure 4-25 can work only if a Visual Basic project is
currently active.

THE CLASS VIEW

Download from finelybook www.finelybook.com

179

Although the Solution Explorer is probably the most useful tool
window for navigating your solution, it can sometimes be difficult to
locate particular classes and methods. The Class view tool window
provides you with an alternative view of your solution that lists
namespaces, classes, and methods so that you can easily navigate to
them. Figure 4-26 shows a simple Windows application that contains a
single form (MainWindow), which is selected in the class hierarchy. Note
that there are two GettingStarted nodes. The first is the name of the
project (not the assembly as you might expect), and the second is the
namespace that MainWindow belongs to. If you were to expand the
Project References node you would see a list of assemblies that this
project references. Drilling further into each of these would yield a list
of namespaces, followed by the classes contained in the assembly.

FIGURE 4-26

In the lower portion of Figure 4-26, you can see the list of members
that are available for the class MainWindow. Using the right-click
shortcut menu, you can filter this list based on accessibility, sort and
group the list, or use it to navigate to the selected member. For
example, clicking Go to Definition on InitializeComponent() would

Download from finelybook www.finelybook.com

180

take you to the MainWindow.xaml.cs file.
The Class view is useful for navigating to generated members, which
are usually in a file hidden in the default Solution Explorer view (such
as the designer file in the previous example). It can also be a useful
way to navigate to classes that have been added to an existing file —
this would result in multiple classes in the same file, which is not a
recommended practice. Because the file does not have a name that
matches the class name, it becomes hard to navigate to that class using
the Solution Explorer; hence the Class view is a good alternative.

THE ERROR LIST

The Error List window displays compile errors, warnings, and
messages for your solution, as shown in Figure 4-27. You can open the
Error List window by selecting View Error List or by using the
keyboard shortcut Ctrl+\, Ctrl+E. Errors appear in the list as you edit
code and when you compile the project. Double-clicking an error in
the list opens the file and takes you to the line of code that is in error.

FIGURE 4-27

You can filter the entries in the list by toggling the buttons above the
list to select the types of errors (Errors, Warnings, and Messages) you
want to display. As well, you can filter the list by the process that
generated the error or warning. More specifically, some errors are
generated by Intellisense, while others are generated when you build
the project. You can configure the window to show errors from one
source or the other or both.

Download from finelybook www.finelybook.com

181

THE OBJECT BROWSER

Another way to view the classes that make up your application is via
the Object Browser. Unlike most other tool windows, which appear
docked to a side of Visual Studio 2017 by default, the Object Browser
appears in the editor space. To view the Object Browser window, select
View Object Browser, or use the keyboard shortcut Ctrl+Alt+J (or F2,
depending on your keyboard settings). As you can see in Figure 4-28,
at the top of the Object Browser window is a drop-down box that
defines the object browsing scope. This includes a set of predefined
values, such as All Components, different versions of the .NET
Framework, and My Solution, as well as a Custom Component Set.
Here, My Solution is selected and a search string of started has been
entered. The contents of the main window are then all the
namespaces, classes, and members that match the search string.

FIGURE 4-28

In the top right portion of Figure 4-28, you can see the list of members
for the selected class (MainWindow), and in the lower window the full
class definition, which includes its base class and namespace
information. One of the options in the Browse drop-down is a Custom
Component Set. To define what assemblies are included in this set,

Download from finelybook www.finelybook.com

182

you can either click the ellipsis next to the drop-down or select Edit
Custom Component Set from the drop-down itself.

SUMMARY

In this chapter you have seen a number of tool windows that can help
you not only write code but also prototype and try it out. Making
effective use of these windows can dramatically reduce the number of
times you need to run your application to test the code you are writing.
This, in turn, can improve your overall productivity and eliminate idle
time spent waiting for your application to run.

Download from finelybook www.finelybook.com

183

5
Find and Replace and Help

WHAT’S IN THIS CHAPTER?

Using Visual Studio’s various Find and Replace tools
Navigating Visual Studio’s local help system

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
To be a productive developer, you need to navigate your way
around a code base and find what you need quickly. Visual Studio
2017 provides not just one but a number of search functions, each
suited to particular searching tasks. The first part of this chapter
discusses each of these search functions and when and where to
use them.
Visual Studio 2017 is an immensely complex development
environment that encompasses multiple languages based on an
extensive framework of libraries and components. You can find it
almost impossible to know everything about the IDE, let alone
each of the languages or even the full extent of the .NET
Framework. As both the .NET Framework and Visual Studio
evolve, it becomes increasingly difficult to stay abreast of all the
changes; moreover, it is likely that you need to know only a subset
of this knowledge. Of course, you periodically need to obtain more
information on a specific topic. To help you in these situations,
Visual Studio 2017 comes with comprehensive documentation in
the form of the MSDN Library, accessible either online, offline (as
a downloadable book) or through a DVD. The second part of this

Download from finelybook www.finelybook.com

184

http://wrox.com
http://www.wrox.com

chapter walks you through the methods to research documentation
associated with developing projects in Visual Studio 2017.

QUICK FIND/REPLACE

The simplest means to search in Visual Studio 2017 is via the Quick
Find dialog.
The find-and-replace functionality in Visual Studio 2017 is split into
two broad tiers with a shared dialog and similar features: Quick Find
and the associated Quick Replace are for searches that you need to
perform quickly on the document or project currently open in the IDE.
These two tools have limited options to filter and extend the search,
but as you’ll see in a moment, even those options provide a powerful
search engine that goes beyond what you can find in most
applications.

NOTE

This search tool is best suited for when you need to do a simple
text-based search/replace (as opposed to searching for a symbol).

Quick Find

Quick Find is the term that Visual Studio 2017 uses to refer to the
most basic search functionality. By default, it enables you to search for
a simple word or phrase within the current document, but even Quick
Find has additional options that can extend the search beyond the
active module, or even incorporate regular expressions in the search
criteria.

NOTE

While there is an option in Quick Find to allow you to utilize
regular expressions, one feature that is missing is the ability to
easily select from a list of commonly used patterns. The
expectation (and it is based on metrics gathered by Microsoft) is

Download from finelybook www.finelybook.com

185

that the vast majority of quick finds don’t use regular expressions.
Instead, the ability to select from a list of common patterns can be
found in the Find in Files functionality described later in this
chapter.

To start a Find action, press the standard keyboard shortcut Ctrl+F or
select Edit Find and Replace Quick Find. Visual Studio displays the
basic Find window, with the default Quick Find action selected (see
Figure 5-1).

FIGURE 5-1

Type the search criteria into the Find textbox, or select from previous
searches by clicking the drop-down arrow and scrolling through the
list of criteria that have been used. By default, the scope of the search
is restricted to the current document or window you’re editing, unless
you have a number of lines selected, in which case the default scope is
the selection.
As you type each character into the search textbox, the editor moves to
the next match for the text you entered. For example, typing f would
find the first letter f, regardless of whether it is found within a word,
such as in offer, or on its own. Typing an o would then move the
cursor to the first instance of fo—such as form, and so on.
You can change the scope for the search. At the bottom of the dialog,
you’ll see a Scope field. This drop-down list gives you additional
options based on the context of the search itself, including Current
Block, Selection, Current Document, Current Project, Entire Solution,
and All Open Documents (shown in Figure 5-2).

Download from finelybook www.finelybook.com

186

FIGURE 5-2

Find-and-replace actions always wrap around the selected scope
looking for the search terms, stopping only when the find process has
reached the starting point again. As Visual Studio finds each result, it
highlights the match and scrolls the code window so that you can view
it. If the match is already visible in the code window, Visual Studio
does not scroll the code. Instead, it just highlights the new match.
However, if it does need to scroll the window, it attempts to position
the listing so that the match is in the middle of the code editor
window.

NOTE

After you perform the first Quick Find search, you no longer need
the dialog to be visible. You can simply press F3 to repeat the
same search.

If you were comfortable using the Quick Find search box that was in
the Standard toolbar, it is no longer part of the default configuration.
You can still add it to the toolbar, but you need to do so manually.

Quick Replace

Performing a Quick Replace is similar to performing a Quick Find. You
can switch between Quick Find and Quick Replace by clicking the caret
to the left of the search textbox. If you want to go directly to Quick
Replace, you can do so with the keyboard shortcut Ctrl+H or the menu
command Edit Find and Replace Quick Replace. The Quick Replace
options (see Figure 5-2) are the same as those for Quick Find, but with

Download from finelybook www.finelybook.com

187

an additional field where you can specify what text should be used in
the replacement.

NOTE

A simple way to delete recurring values is to use the replace
functionality with nothing specified in the Replacement Term text
area. This enables you to find all occurrences of the search text
and decide if it should be deleted.

The Replacement Term field works in the same way as Find—you can
either type a new replacement string, or with the drop-down list
provided choose any you previously entered.

Find Options

Sometimes you want to specify criteria and filter the search results in
different ways. Click the triangle icon next to search text. A drop-down
expands to show recently used search values (see Figure 5-3).

FIGURE 5-3

Also, below the search text, there are three buttons (shown in Figure 5-
1). These are actually toggle buttons that enable you to refine the
search to be case-sensitive (the left button) or to be an exact match
(the middle button). And you can specify that you are performing a
more advanced search that uses regular expressions (the right button).
If you need a list of commonly used regular expressions, they are not
in the Quick Find. But, as you will see shortly, these are found in the
Find All Files dialog. To use regular expressions in Quick Find, you
need to write them from scratch.

Download from finelybook www.finelybook.com

188

Find and Replace Options

You can further configure the find-and-replace functionality with its
own set of options in the Tools Options dialog. Found in the
Environment group, the Find and Replace options enable you to
enable/disable displaying informational and warning messages, as
well as to indicate whether or not the Find What field should be
automatically filled with the current selection in the editor window.

FIND/REPLACE IN FILES

The Find in Files and Replace in Files commands enable you to
broaden the search beyond the current solution to whole folders and
folder structures, and even to perform mass replacements on any
matches for the given criteria and filters. Additional options are
available to you when using these commands, and search results can
be placed in one of two tool windows, so you can easily navigate them.

NOTE

This search tool is best suited when you need to do a simple text-
based search/replace across files that are not necessarily a part
of your current solution.

Find in Files

The powerful part of the search engine built into Visual Studio is in the
Find in Files command. Rather than restrict yourself to files in the
current solution, Find in Files gives you the ability to search entire
folders (along with all their subfolders), looking for files that contain
the search criteria.
The Find in Files dialog, as shown in Figure 5-4, can be invoked via the
menu command Edit Find. Alternatively, if you have the Quick Find
dialog open, you can switch over to Find in Files mode by clicking the
small drop-down arrow next to Quick Find and choosing Find in Files.
You can also use the keyboard shortcut Ctrl+Shift+F to launch this
dialog.

Download from finelybook www.finelybook.com

189

FIGURE 5-4

Most of the Quick Find options are still available to you, including
regular expressions searching, but instead of choosing a scope from
the project or solution, use the Look In field to specify where the
search is to be performed. Either type the location you want to search
or click the ellipsis to display the Choose Search Folders dialog, as
shown in Figure 5-5.

Download from finelybook www.finelybook.com

190

FIGURE 5-5

You can navigate through the entire filesystem, including networked
drives, and add the folders you want to the search scope. This enables
you to add disparate folder hierarchies to the one single search. Start
by using the Available Folders list on the left to select the folders that
you would like to search. Add them to the Selected Folders list by
clicking the right arrow. Within this list you can adjust the search
order using the up and down arrows. After you add folders to the
search, you can simply click OK to return a semicolon-delimited list of
folders. If you want to save this set of folders for future use, you can
enter a name into the Folder Set drop-down and click Apply.

NOTE

The process to save search folders is less than intuitive, but if you

Download from finelybook www.finelybook.com

191

think of the Apply button as more of a Save button, then you can
make sense of this dialog.

Find Dialog Options

The options for the Find in Files dialog are similar to those for the
Quick Find dialog. Because the search is performed on files that are
not necessarily open within the IDE or are even code files, the Search
Up option is therefore not present. There is an additional filter that
can be used to select only specific file types to search in.
The Look at These File Types drop-down list contains several
extension sets, each associated with a particular language, making it
easy to search for code in Visual Basic, C#, J#, and other languages.
You can type in your own extensions too, so if you work in a non-
Microsoft language, or just want to use the Find in Files feature for
non-development purposes, you can still limit the search results to
those that correspond to the file types you want.
In addition to the Find options are configuration settings for how the
results display. For searching, you can choose one of two results
windows, which enables you to perform a subsequent search without
losing your initial action. The results can be quite lengthy if you show
the full output of the search, but if you’re interested only in finding out
which files contain the information you’re looking for, check the
Display Filenames Only option, and the results window will be
populated with only one line per file.

Regular Expressions

Regular expressions take searching to another level, with the
capability to do complex text matching based on the full RegEx engine
built into the .NET Framework. Although this book doesn’t go into
great detail on the advanced matching capabilities of regular
expressions, it’s worth mentioning the additional help provided by the
Find and Replace dialog if you choose to use them in your search
terms.
Figure 5-6 shows the Expression Builder for building a regular
expression. From here you can easily build your regular expressions

Download from finelybook www.finelybook.com

192

with a menu showing the most commonly used regular expression
phrases and symbols, along with English descriptions of each.

FIGURE 5-6

An example of where using regular expressions might come in handy
is when reversing assignments. For example, if you have this code:
VB

Description = product.Description
Quantity = product.Quantity
SellPrice = product.SellPrice

C#

Description = product.Description;
Quantity = product.Quantity;
SellPrice = product.SellPrice;

Download from finelybook www.finelybook.com

193

and want to reverse the assignments like so:
VB

product.Description = Description
product.Quantity = Quantity
product.SellPrice = SellPrice

C#

product.Description = Description;
product.Quantity = Quantity;
product.SellPrice = SellPrice;

This would be a perfect use for performing a Quick Replace with
regular expressions rather than modifying each line of code manually.
Be sure you select Use Regular Expressions in the Find Options, and
enter the following as the Find What text:
VB

{<.*} = {.*}

C#

{<.*} = {.*};

and the following as the Replace With text:
VB

\2 = \1

C#

\2 = \1;

As a brief explanation, you are searching for two groups (defined by
the curly brackets) separated by an equals sign. The first group is
searching for the first character of a word (<) and then any characters
(.*). The second group is searching for any characters until an end-of-
line character is found in the VB example or a semicolon is found in
the C# example. Then when you do the replace, you are simply
inserting the characters from the second group found in its place, an
equals sign (surrounded by a space on each side), and then the
characters from the first group found (followed by a semicolon in the

Download from finelybook www.finelybook.com

194

C# example). If you aren’t familiar with regular expressions, it may
take some time to get your head around it, but it is a quick-and-easy
way to perform an otherwise rather mundane manual process.

Results Window

When you perform a Find in Files action, results display in one of two
Find Results windows. These appear as open tool windows docked to
the bottom of the IDE workspace. For each line that contains the
search criteria, the results window displays a full line of information,
containing the filename and path, the line number that contained the
match, and the actual line of text itself, so you can instantly see the
context (see Figure 5-7).

FIGURE 5-7

In the top left corner of each results window is a small toolbar, as
shown in Figure 5-7 and magnified in Figure 5-8, for navigation within
the results. These commands are also accessible through a context
menu.

FIGURE 5-8

Simply double-click a specific match to navigate to that line of code.

Replace in Files

Although it’s useful to search a large number of files and find a

Download from finelybook www.finelybook.com

195

number of matches to your search criteria, even better is the Replace
in Files action. Accessed via the keyboard shortcut Ctrl+Shift+H or the
drop-down arrow next to Quick Replace, Replace in Files performs in
much the same way as Find in Files, with all the same options.
The main difference is that you can enable an additional Results
option when you’re replacing files. When you perform a mass
replacement action like this, it can be handy to have a final
confirmation before committing changes. To have this sanity check
available to you, select the Keep Modified Files Open After Replace All
check box (shown at the bottom of Figure 5-9).

FIGURE 5-9

Download from finelybook www.finelybook.com

196

Note that this feature works only when you use Replace All; if you just
click Replace, Visual Studio opens the file containing the next match
and leaves the file open in the IDE anyway.

WARNING

Important: If you leave the Keep Modified Files Open After
Replace All option unchecked and perform a mass replacement on
a large number of files, they will be changed permanently without
your having any recourse to an undo action. Be very sure that
you know what you’re doing.

Regardless of whether or not you have this option checked, after
performing a Replace All action, Visual Studio reports back to you how
many changes were made. If you don’t want to see this dialog box, you
have an option to hide the dialog with future searches.

ACCESSING HELP

You are exposed to a wide range of technologies as a developer. Not
only do they evolve at a rapid pace, but you are also constantly
bombarded with additional new technologies that you must get up to
speed on quickly. It’s impossible to know everything about these
technologies, and being a developer involves constantly learning.
Often, knowing how to find information on using these technologies is
as important a skill as actually implementing them. Luckily, you can
choose from a multitude of information sources on these technologies.
The inclusion of IntelliSense into IDEs over a decade ago was one of
the most useful tools to help developers write code, but it’s rarely a
substitute for a full-blown help system that provides all the ins and
outs of a technology. Visual Studio’s help system provides this support
for developers.
The easiest way to get help for Visual Studio 2017 is to use the same
method you would use for almost every Windows application ever
created: Press the F1 key, the universal shortcut key for help. Visual
Studio 2017’s help system uses Microsoft Help Viewer 2. Rather than
using a special “shell” to host the help and enable you to navigate

Download from finelybook www.finelybook.com

197

around and search it, the help system runs in a browser window. To
support some of the more complex features of the help system such as
the search functionality (when using the offline help), there is a help
listener application that runs in your system tray and serves these
requests. The address in the browser’s address bar points to a local
web server on your machine. The online and offline help modes look
and behave similarly to one another, but this chapter specifically
focuses on the offline help.

NOTE

You may find that you receive a Service Unavailable message
when using the help system. The likely cause of this error is that
the help listener is no longer running in your system tray. Simply
open the help system from within Visual Studio and the help
listener automatically starts again.

The help system in Visual Studio is contextual. This means that if, for
example, the cursor is currently positioned on a XAML tag in a
Windows Store project and you press F1, the help window opens
immediately with a mini-tutorial about what the class is and how to
use it, as shown in Figure 5-10.

FIGURE 5-10

This is incredibly useful because more often than not if you simply

Download from finelybook www.finelybook.com

198

press F1, the help system navigates directly to the help topic that deals
with the problem you’re currently researching.
However, in some situations you want to go directly to the table of
contents within the help system. Visual Studio 2017 enables you to do
this through the View Help menu item in its main Help menu (see
Figure 5-11).

FIGURE 5-11

In addition to the several help links, you also have shortcuts to MSDN
forums and for reporting a bug.

Navigating and Searching the Help System

Navigating through the help system should be familiar because it is
essentially the same as navigating the MSDN documentation on the
web. On the left side of the browser window, you can find links to
pages in the same part of the help system as the page currently viewed.
You can also find links that might be related to the current page.
In the top left of the browser window, you can find a search textbox.
Enter your search query here (in much the same way you would in a
search engine such as Google or Bing). This search is a full text search
of the pages in the help system, and your query does not necessarily
need to appear in the title of the pages. This takes you to the results,
which are again provided in a manner similar to the results from a

Download from finelybook www.finelybook.com

199

search engine. A one-line extract from the page of each result displays
to help you determine if it is the article you are after, and you can click
through to view the corresponding page.

Configuring the Help System

When you first start using the help system, it’s a good idea to configure
it to your needs. To do so, select the Help Set Help Preferences menu.
The menu provides two options: Use Online Help and Use Local Help.
The first option, Use Online Help, sets the help system to use the
MSDN documentation on the web. Now pressing F1 or opening the
help from the Help menu automatically navigates to the appropriate
page in the documentation on MSDN online (for the current context in
Visual Studio). Selecting the Use Local Help option navigates to the
appropriate page in the documentation installed locally (assuming
that the documentation has actually been installed on your machine).
The advantage of the online help over the offline help is that it is
always up to date and won’t consume space on your hard drive
(assuming you don’t install the help content). The disadvantage is that
you must always have an active Internet connection, and at times
(depending on your bandwidth) it may be slower than the offline
version to access. Essentially it is a trade-off, and you must choose the
most appropriate option for your work environment.
With the Use Local Help option selected, using F1 or opening help
from the Help menu launches the Help Viewer. This viewer (refer to
Figure 5-10) provides a user experience roughly the same as the Web
documentation (navigation on the left, body of the content on the
right).
The final option in the Help menu is Add and Remove Local Help
Content, which enables you to remove product documentation sets
from your local disk and free some disk space. The screen shows the
documentation sets currently installed, and you can uninstall a
documentation set by pressing the Remove hyperlink button next to
its name.

SUMMARY

Download from finelybook www.finelybook.com

200

As you’ve seen in this chapter, Visual Studio 2017 comes with a
number of search-and-replace tools, each suited to a particular type of
search task to enable you to navigate and modify your code quickly
and easily.
The help system is a powerful interface to the documentation that
comes with Visual Studio 2017. The ability to switch easily between
online and local documentation ensures that you can balance the
speed of offline searches with the relevance of information found on
the web. And the abstract paragraphs shown in all search results,
regardless of their locations, help reduce the number of times you
might click a false positive.

Download from finelybook www.finelybook.com

201

PART II
Getting Started

CHAPTER 6: Solutions, Projects, and Items
CHAPTER 7: IntelliSense and Bookmarks
CHAPTER 8: Code Snippets and Refactoring
CHAPTER 9: Server Explorer

Download from finelybook www.finelybook.com

202

6
Solutions, Projects, and Items

WHAT’S IN THIS CHAPTER?

Creating and configuring solutions and projects
Controlling how an application is compiled, debugged, and
deployed
Configuring the many project-related properties
Including resources and settings with an application
Enforcing good coding practices with the Code Analysis Tools
Modifying the configuration, packaging, and deployment
options for web applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Other than the simplest applications, such as Hello World, most
applications require more than one source file. This raises a
number of issues, such as how the files will be named, where they
will be located, and whether they can be reused. Within Visual
Studio 2017, the concept of a solution, containing a series of
projects, made up of a series of items, is used to enable developers
to track, manage, and work with their source files. The IDE has a
number of built-in features that aim to simplify this process, while
still allowing developers to get the most out of their applications.
This chapter examines the structure of solutions and projects,
looking at available project types and how they can be configured.

Download from finelybook www.finelybook.com

203

http://wrox.com
http://www.wrox.com

SOLUTION STRUCTURE

Whenever you work within Visual Studio, you have a solution open.
When you edit an ad hoc file, this is a temporary solution that you can
elect to discard when you complete your work. However, the solution
enables you to manage the files that you’re currently working with, so
in most cases saving the solution means that you can return to what
you were doing at a later date without having to locate and reopen the
files on which you were working.

NOTE

A solution should be thought of as a container of related projects.
The projects within a solution do not need to be of the same
language or project type. For example, a single solution could
contain an ASP.NET web application written in Visual Basic, an
F# library, and a C# WPF application. The solution enables you
to open all these projects together in the IDE and manage the
build and deployment configuration for them as a whole.

The most common way to structure applications written within Visual
Studio is to have a single solution containing a number of projects.
Each project can then be made up of a series of both code files and
folders. The main window in which you work with solutions and
projects is the Solution Explorer, as shown in Figure 6-1.

Download from finelybook www.finelybook.com

204

FIGURE 6-1

Within a project, you use folders to organize the source code that have
no application meaning associated with them (with the exception of
web applications, which can have specially named folders that have
specific meaning in this context). Some developers use folder names
that correspond to the namespace to which the classes belong. For
example, if class Person is found within a folder called DataClasses in a
project called FirstProject, the fully qualified name of the class could
be FirstProject.DataClasses.Person.
Solution folders are a useful way to organize the projects in a large
solution. Solution folders are visible only in the Solution Explorer — a
physical folder is not created on the filesystem. Actions such as Build
or Unload can be performed easily on all projects in a solution folder.
Solution folders can also be collapsed or hidden so that you can work
more easily in the Solution Explorer. Projects that are hidden are still
built when you sbuild the solution. Because solution folders do not
map to a physical folder, they can be added, renamed, or deleted at
any time without causing invalid File references or source control
issues.

Download from finelybook www.finelybook.com

205

NOTE

Miscellaneous Files is a special solution folder that you can use to
keep track of other files that have been opened in Visual Studio
but are not part of any projects in the solution. The Miscellaneous
Files solution folder is not visible by default. You can find the
settings to enable it under Tools Options Environment
Documents.

Because the format for the solution file has not changed since Visual
Studio 2012, you can open the same solution file with all subsequent
versions. As you would expect, you can open a file in Visual Studio
2017 that was originally created in Visual Studio 2013. Even better,
you can use Visual Studio 2013 to open a solution file originally
created in Visual Studio 2017.
In addition to tracking which files are contained within an application,
solution and project files can record other information, such as how a
particular file should be compiled, project settings, resources, and
much more. Visual Studio 2017 includes nonmodal dialog for editing
project properties, whereas solution properties still open in a separate
window. As you might expect, the project properties are those
properties pertaining only to the project in question, such as assembly
information and references, whereas solution properties determine the
overall build configurations for the application.

SOLUTION FILE FORMAT

Visual Studio 2017 actually creates two files for a solution, with
extensions .suo and .sln (solution file). The first of these is a rather
uninteresting binary file and hence difficult to edit. It contains user-
specific information — for example, which files were open when the
solution was last closed and the location of breakpoints. This file is
marked as hidden, so it won’t appear in the solution folder using
Windows Explorer unless you enable the option to show hidden files.

WARNING

Download from finelybook www.finelybook.com

206

Occasionally the .suo file becomes corrupted and causes
unexpected behavior when building and editing applications. If
Visual Studio becomes unstable for a particular solution, you
should exit and delete the .suo file. It will be re-created by Visual
Studio the next time the solution is opened.

The .sln solution file contains information about the solution, such as
the list of projects, build configurations, and other settings that are not
project-specific. Unlike many files used by Visual Studio 2017, the
solution file is not an XML document. Instead, it stores information in
blocks, as shown in the following example solution file:

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 15
VisualStudioVersion = 15.0.26014.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") =
"SampleWPFApp",
 "SampleWPFApp\SampleWPFApp.csproj",
 "{F745050D-7E66-46E5-BAE2-9477ECAADCAA}"
EndProject
Global
 GlobalSection(SolutionConfigurationPlatforms) =
preSolution
 Debug|Any CPU = Debug|Any CPU
 Release|Any CPU = Release|Any CPU
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) =
postSolution
 {68F55325-0737-40A4-9695-B953F613E2B6}.Debug|Any
CPU.ActiveCfg =
 Debug|Any CPU
 {68F55325-0737-40A4-9695-B953F613E2B6}.Debug|Any
CPU.Build.0 =
 Debug|Any CPU
 {68F55325-0737-40A4-9695-B953F613E2B6}.Release|Any
CPU.ActiveCfg =
 Release|Any CPU
 {68F55325-0737-40A4-9695-B953F613E2B6}.Release|Any
CPU.Build.0 =
 Release|Any CPU
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection

Download from finelybook www.finelybook.com

207

EndGlobal

In this example, the solution consists of a single project,
SampleWPFApp, and a Global section outlining settings that apply to
the solution. For instance, the solution itself is visible in the Solution
Explorer because the HideSolutionNode setting is FALSE. If you were to
change this value to TRUE, the solution name would not display in
Visual Studio.
Note that the Version stamp shown in the preceding code is 12.00,
which is the same as the version used for Visual Studio 2012, 2013,
2015, and 2017. This is nicely consistent with the idea that the same
solution file can be opened using a previous version of Visual Studio.

SOLUTION PROPERTIES

You can reach the solution Properties dialog by right-clicking the
Solution node in the Solution Explorer and selecting Properties. This
dialog contains two nodes to partition Common and Configuration
properties, as shown in Figure 6-2.

Download from finelybook www.finelybook.com

208

FIGURE 6-2

The following sections describe the Common and Configuration
properties nodes in more detail.

Common Properties

You have three options when defining the startup project for an
application, and they’re somewhat self-explanatory. Selecting Current
Selection starts the project that has current focus in the Solution
Explorer. Single Startup Project ensures that the same project starts
up each time. This is the default selection because most applications
have only a single startup project. You can use the drop-down list to
indicate the single project that you need to start. The last option,
Multiple Startup Projects, allows for multiple projects to be started in
a particular order. This can be useful if you have a client/server
application specified in a single solution and you want them both to be

Download from finelybook www.finelybook.com

209

running. When running multiple projects, it is also relevant to control
the order in which they start up. Use the up and down arrows next to
the project list to control the order in which projects are started.
The Project Dependencies section is used to indicate other projects on
which a specific project is dependent. For the most part, Visual Studio
manages this for you as you add and remove Project references for a
given project. However, sometimes you may want to create
dependencies between projects to ensure that they are built in the
correct order. Visual Studio uses its list of dependencies to determine
the order in which projects should be built. This window prevents you
from inadvertently adding circular references and from removing
necessary project dependencies.
In the Debug Source Files section, you can provide a list of directories
through which Visual Studio can search for source files when
debugging. This is the default list that is searched before the Find
Source dialog displays. You can also list source files that Visual Studio
should not try to locate. If you click Cancel when prompted to locate a
source file, the file will be added to this list.
The Code Analysis Settings section is available only in the Visual
Studio Enterprise edition. This allows you to select the static code
analysis rule set that will be run for each project. Code Analysis is
discussed in more detail later in the chapter.

NOTE

If you have never specified a code analysis run in Visual Studio,
it’s possible that the Solution Properties window won’t have the
Code Analysis Settings section even if you run one of the
appropriate editions. To correct this, run Code Analysis directly
from the menu. When the analysis finishes, this section becomes
visible to you on the solution properties.

Configuration Properties

Both projects and solutions have build configurations associated with
them that determine which items are built and how. It can be
somewhat confusing because there is actually no correlation between a

Download from finelybook www.finelybook.com

210

project configuration, which determines how things are built, and a
solution configuration, which determines which projects are built,
other than they might have the same name. A new solution defines
both Debug and Release (solution) configurations, which correspond
to building all projects within the solution in Debug or Release
(project) configurations.
For example, a new solution configuration called Test can be created,
which consists of two projects: MyClassLibrary and
MyClassLibraryTest. When you build your application in Test
configuration, you want MyClassLibrary to be built in Release mode so
that you’re testing as close to what you would release as possible.
However, to step through your test code, you want to build the test
project in Debug mode.

NOTE

You can switch between configurations and platforms easily via
the Standard toolbar. There is a drop-down available for both the
desired configuration and the platform, enabling a quick change
whenever the need arises.

When you build in Release mode, you don’t want the Test solution to
be built or deployed with your application. In this case, you can specify
in the Test solution configuration that you want the MyClassLibrary
project to be built in Release mode and that the MyClassLibraryTest
project should not be built.
When you select the Configuration Properties node from the Solution
Properties dialog, as shown in Figure 6-3, the Configuration and
Platform drop-down boxes are enabled. The Configuration drop-down
contains each of the available solution configurations (Debug and
Release by default, Active, and All). Similarly, the Platform drop-down
contains each of the available platforms. Whenever these drop-downs
appear and are enabled, you can specify the settings on that page on a
per-configuration and per-platform basis. You can also use the
Configuration Manager button to add additional solution
configurations and platforms.

Download from finelybook www.finelybook.com

211

FIGURE 6-3

When adding solution configurations, there is an option (checked by
default) to create corresponding project configurations for existing
projects (projects will be set to build with this configuration by default
for this new solution configuration), and an option to base the new
configuration on an existing configuration. If the Create Project
Configurations option is checked and the new configuration is based
on an existing configuration, the new project configuration copies the
project configurations specified for the existing configuration.
The other thing you can specify in the solution configuration file is the
type of CPU for which you are building. This is particularly relevant if
you want to deploy to 64-bit architecture machines. The options
available for creating new platform configurations are limited by the
types of CPU available: x86 and x64.
You can reach all these solution settings directly from the right-click
context menu from the Solution node in the Solution Explorer

Download from finelybook www.finelybook.com

212

window. Whereas the Set Startup Projects menu item opens the
Solution Configuration window, the Configuration Manager, Project
Dependencies, and Project Build Order items open the Configuration
Manager and Project Dependencies windows. The Project
Dependencies and Project Build Order menu items will be visible only
if you have more than one project in your solution.
When the Project Build Order item is selected, this opens the Project
Dependencies window and lists the build order, as shown in Figure 6-
4. This tab reveals the order in which projects will be built, according
to the dependencies. This can be useful if you maintain references to
project binary assemblies rather than Project references, and it can be
used to double-check that projects are built in the correct order.

FIGURE 6-4

PROJECT TYPES

Within Visual Studio, the projects for Visual Basic and C# are broadly
classified into different categories. With the exception of Web Site

Download from finelybook www.finelybook.com

213

projects, which are discussed separately later in this chapter, each
project contains a project file (.vbproj or .csproj) that conforms to
the MSBuild schema. Selecting a project template creates a new
project, of a specific project type, and populates it with initial classes
and settings. Following are some of the more common categories of
projects as they are grouped under Visual Studio:

Classic Desktop: The Windows project category is the broadest
category and includes most of the common project types that run
on end-user operating systems. This includes the Windows Forms
executable projects, Console application projects, and Windows
Presentation Foundation (WPF) applications. These project types
create an executable (.exe) assembly that is executed directly by an
end user. The Windows category also includes several types of
library assemblies that can easily be referenced by other projects.
These include both class libraries and control libraries for
Windows Forms and WPF applications. A class library reuses the
familiar DLL extension. The Windows Service project type can also
be found in this category.
Web: The Web category includes the project types that run
ASP.NET. This includes ASP.NET web applications (including
MVC and Web API) and ASP.NET Core Web applications (both
.NET Core and .NET Framework). Adding an ASP.NET web
application starts a wizard session that enables you to create each
of the different types of web projects.
Office/SharePoint: As its name suggests, the Office/SharePoint
category contains templates used to create managed code add-ins
for Microsoft Office products, such as Outlook, Word, or Excel.
These project types use Visual Studio Tools for Office (VSTO) and
are capable of creating add-ins for most products in the Office 2013
and 2016 product suite. It also contains projects that target
SharePoint, such as SharePoint Workflows or Web Parts. Visual
Studio 2017 includes templates for the Office and SharePoint Add-
Ins. These templates enable you to create applications that work
within the App Model introduced with the 2013 versions of these
products.
.NET Core: The .NET Core category contains projects that are

Download from finelybook www.finelybook.com

214

based on the .NET Core library. This is a version of .NET that is
capable of running on Windows, Linux, and MacOS. Here you will
find templates for console applications, a class library, unit test
projects, and ASP.NET applications.
.NET Standard: The .NET Standard template is used to create a
library that conforms to the formal specification for .NET. Probably
the easiest way to think of a .NET Standard project is as the most
recent incarnation of a Portable Class Library (PCL) that can be
executed on a variety of platforms.
Cloud: This section contains templates that are related to cloud
development. While you might automatically assume that this
means Azure (and the Azure templates are in this category), it also
includes ASP.NET templates as well. In the Azure group, there are
a couple of templates that can be used to create Azure components,
such as WebJobs, Mobile Apps, and Resource Groups.
Test: The Test category includes a project type for projects that
contain tests using the MSTest unit testing framework.
WCF: This contains a number of project types for creating
applications that provide Windows Communication Foundation
(WCF) services.
Windows UAP: The Windows Universal App Platform (UAP)
category is new to Visual Studio 2017, although in terms of content,
it is quite similar to the Windows Store category from Visual Studio
2015. There is a requirement that you be running Windows 8.1 or
greater to create a Windows UAP application. If you haven’t
upgraded and you try to create a project, you are redirected to a
page that includes a link to start the upgrade process. When you
are running Windows 8.1, the templates for Windows Store
applications appear under this heading.
Workflow: This contains a number of project types for sequential
and state machine workflow libraries and applications.

The Add New Project dialog box, as shown in Figure 6-5, enables you
to browse and create any of these project types. The target .NET
Framework version is listed in a drop-down selector in the top center
of this dialog box. If a project type is not supported by the selected

Download from finelybook www.finelybook.com

215

.NET Framework version, such as a WPF application under .NET
Framework 2.0, that project type will not display. Also be aware that
the exact list of categories that you see depends a great deal on the
workloads that you have installed. If you expect to see a particular
project template and you can’t find it, it could very well be that the
associated workload hasn’t been installed. There is a link (labelled
Open Visual Studio Installer) at the bottom of the list of categories
that will launch the Visual Studio installer, allowing you to easily add
the workload that you’re looking for.

FIGURE 6-5

PROJECT FILES FORMAT

The project files (.csproj, .vbproj, or .fsproj) are text files in an XML
document format that conforms to the MSBuild schema. The XML
schema files for the latest version of MSBuild are installed with the

Download from finelybook www.finelybook.com

216

.NET Framework, by default in
C:\WINDOWS\Microsoft.NET\Framework\v4.0.30319\MSBuild\Microsoft.Build.Core.xsd

NOTE

To view the project file in XML format, right-click the project and
select Unload Project. Then right-click the project again and select
Edit <project name>. This displays the project file in the XML
editor, complete with IntelliSense.

The project file stores the build and configuration settings that have
been specified for the project and details about all the files that are
included in the project. In some cases, a user-specific project file is
also created (.csproj.user or .vbproj.user), which stores user
preferences such as startup and debugging options. The .user file is
also an XML file that conforms to the MSBuild schema.

PROJECT PROPERTIES

You can reach the project properties by either right-clicking the
Project node in Solution Explorer and then selecting Properties, or by
double-clicking My Project (Properties in C#) just under the Project
node. In contrast to solution properties, the project properties do not
display in a modal dialog. Instead, they appear as an additional tab
alongside your code files. This was done in part to make it easier to
navigate between code files and project properties, but it also makes it
possible to open project properties of multiple projects at the same
time. Figure 6-6 illustrates the project settings for a Visual Basic
Windows Forms project. This section walks you through the vertical
tabs on the project editor for both Visual Basic and C# projects.

Download from finelybook www.finelybook.com

217

FIGURE 6-6

The project properties editor contains a series of vertical tabs that
group the properties. As changes are made to properties in the tabs, a
star is added to the corresponding vertical tab. This functionality is
limited, however, because it does not indicate which fields within the
tab have been modified.

Application

The Application tab, visible in Figure 6-6 for a Visual Basic Windows
Forms project, enables the developer to set the information about the
assembly that will be created when the project is compiled. These

Download from finelybook www.finelybook.com

218

include attributes such as the output type (that is, Windows or Console
Application, Class Library, Windows Service, or a Web Control
Library), application icon, startup object, and the target .NET
Framework version. The Application tab for C# applications, as shown
in Figure 6-7, has a different format, and provides a slightly different
(and reduced) set of options such as the ability to configure the
application manifest directly.

FIGURE 6-7

Assembly Information

Attributes that would otherwise have to be configured by hand in the
AssemblyInfo file contained in the project can also be set via the
Assembly Information button. This information is important because
it shows up when an application is installed and when the properties
of a file are viewed in Windows Explorer. Figure 6-8 (left) shows the
assembly information for a sample application and Figure 6-8 (right)

Download from finelybook www.finelybook.com

219

shows the properties of the compiled executable.

FIGURE 6-8

Each of the properties set in the Assembly Information dialog is
represented by an attribute that is applied to the assembly. This means
that the assembly can be queried in code to retrieve this information.
In Visual Basic, the My.Application.Info namespace provides an easy
way to retrieve this information.

User Account Control Settings

Visual Studio 2017 provides support for developing applications that
work with User Account Control (UAC). This involves generating an
assembly manifest file, which is an XML file that notifies the operating
system if an application requires administrative privileges on startup.
In Visual Basic applications, you can use the View Windows Settings
button on the Application tab to generate and add an assembly
manifest file for UAC to your application. The following code shows
the default manifest file generated by Visual Studio:

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly manifestVersion="1.0" xmlns="urn:schemas-
microsoft-com:asm.v1"

Download from finelybook www.finelybook.com

220

 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity version="1.0.0.0"
name="MyApplication.app"/>
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges xmlns="urn:schemas-microsoft-
com:asm.v3">
 <!-- UAC Manifest Options
 If you want to change the Windows User Account
Control level replace the
 requestedExecutionLevel node with one of the
following.

 <requestedExecutionLevel level="asInvoker"/>
 <requestedExecutionLevel
level="requireAdministrator"/>
 <requestedExecutionLevel level="highestAvailable"/>

 If you want to utilize File and Registry
Virtualization for backward
 compatibility then delete the
requestedExecutionLevel node.
 -->
 <requestedExecutionLevel level="asInvoker"/>
 </requestedPrivileges>
 <applicationRequestMinimum>
 <defaultAssemblyRequest
permissionSetReference="Custom"/>
 <PermissionSet ID="Custom" SameSite="site"/>
 </applicationRequestMinimum>
 </security>
 </trustInfo>
</asmv1:assembly>

If the UAC-requested execution level is changed from the default
asInvoker to require Administrator, Windows presents a UAC prompt
when the application launches. If you have UAC enabled, Visual Studio
2017 also prompts you to restart in Administrator mode if an
application requiring admin rights starts in Debug mode. Figure 6-9
shows the prompt that is shown in Windows allowing you to restart
Visual Studio in Administrator mode.

Download from finelybook www.finelybook.com

221

FIGURE 6-9

If you agree to the restart, Visual Studio not only restarts with
administrative privileges, it also reopens your solution including all
files you had opened. It even remembers the last cursor position.

Application Framework (Visual Basic Only)

Additional application settings are available for Visual Basic Windows
Forms projects because they can use the Application Framework that
is exclusive to Visual Basic. This extends the standard event model to
provide a series of application events and settings that control the
behavior of the application. You can enable the Application
Framework by checking the Enable Application Framework check box.
The following three check boxes control the behavior of the
Application Framework:

Enable XP Visual Styles: XP visual styles are a feature that
significantly improves the look and feel of applications running on
Windows XP or later, because it provides a much smoother
interface through the use of rounded buttons and controls that
dynamically change color as the mouse passes over them. Visual
Basic applications enable XP styles by default and can be disabled
from the Project Settings dialog or controlled from within code
through the EnableVisualStyles method on the Application class.
Make Single Instance Application: Most applications support

Download from finelybook www.finelybook.com

222

multiple instances running concurrently. However, an application
opened more than two or three times may be run only once, with
successive executions simply invoking the original application.
Such an application could be a document editor, whereby
successive executions simply open a different document. This
functionality can be easily added by marking the application as a
single instance.
Save My Settings on Shutdown: Selecting the Save My
Settings on Shutdown option ensures that any changes made to
user-scoped settings will be preserved, saving the settings provided
prior to the application shutting down.

This section also allows you to select an authentication mode for the
application. By default this is set to Windows, which uses the currently
logged-on user. Selecting Application-defined allows you to use a
custom authentication module.
You can also identify a form to be used as a splash screen when the
application first launches and specify the shutdown behavior of the
application.

Compile (Visual Basic Only)

The Compile section of the project settings, as shown in Figure 6-10,
enables the developer to control how and where the project is built.
For example, the output path can be modified so that it points to an
alternative location. This might be important if the output is to be used
elsewhere in the build process.

Download from finelybook www.finelybook.com

223

FIGURE 6-10

The Configuration drop-down selector at the top of the tab page allows
different build settings for the Debug and Release build configuration.
If your dialog is missing the Configuration drop-down selector, you
need to check the Show Advanced Build Configurations property in the
Projects and Solutions node of the Options window, accessible from
the Tools menu. Unfortunately, this property is not checked for some
of the built-in setting profiles — for example, the Visual Basic
Developer profile.
Some Visual Basic–specific properties can be configured in the
Compile pane. Option Explicit determines whether variables that are
used in code must be explicitly defined. Option Strict forces the type of
variables to be defined, rather than it being late-bound. Option
Compare determines whether strings are compared using binary or
text comparison operators. Option Infer specifies whether to allow

Download from finelybook www.finelybook.com

224

local type inference in variable declarations or whether the type must
be explicitly stated.

NOTE

All of these compile options can be controlled at either the Project
or File level. File-level compiler options override Project-level
options.

The Compile pane also defines a number of different compiler options
that can be adjusted to improve the reliability of your code. For
example, unused variables may only warrant a warning, whereas a
path that doesn’t return a value is more serious and should generate a
build error. It is possible to either disable all these warnings or treat all
of them as errors.
Visual Basic developers also have the ability to generate XML
documentation. Of course, because the documentation takes time to
generate, it is recommended that you disable this option for debug
builds. This can speed up the debugging cycle; however, when the
option is turned off, warnings are not given for missing XML
documentation.
The last element of the Compile pane is the Build Events button. Click
this button to view commands that can be executed prior to and after
the build. Because not all builds are successful, the execution of the
post-build event can depend on a successful build. C# projects have a
separate Build Events tab in the project properties pages for
configuring pre- and post-build events.

Build (C# and F# Only)

The Build tab, as shown in Figure 6-11, is the C# equivalent of the
Visual Basic Compile tab. This tab enables the developer to specify the
project’s build configuration settings. For example, the Optimize code
setting can be enabled, which results in assemblies that are smaller,
faster, and more efficient. However, these optimizations typically
increase the build time, and as such are not recommended for the
Debug build.

Download from finelybook www.finelybook.com

225

FIGURE 6-11

On the Build tab, the DEBUG and TRACE compilation constants can be
enabled. Alternatively, you can easily define your own constants by
specifying them in the Conditional compilation symbols textbox. The
value of these constants can be queried from code at compile time. For
example, the DEBUG constant can be queried as follows:
C#

#if(DEBUG)
 MessageBox.Show("The debug constant is defined");
#endif

VB

#If DEBUG Then
 MessageBox.Show("The debug constant is defined")
#End If

The compilation constants are defined on the Advanced Build Settings
dialog, which can be displayed by clicking the Advanced button at the
bottom right of the Build tab.
The Configuration drop-down selector at the top of the tab page allows
different build settings for the Debug and Release build configuration.

Download from finelybook www.finelybook.com

226

You can find more information on the Build options in Chapter 33,
“Build Customization.”

Build Events (C# and F# Only)

The Build Events tab enables you to perform additional actions before
or after the build process. In Figure 6-12, you can see a post-build
event that executes the output of the build to a different location under
the solution folder after every successful build.

Download from finelybook www.finelybook.com

227

FIGURE 6-12

You can use environment variables such as ProgramFiles in your
command lines by enclosing them with the percent character. A

Download from finelybook www.finelybook.com

228

number of macros are also available, such as ProjectName and
SolutionDir. These macros are listed when the Macros buttons on the
Edit Pre-build and Edit Post-build dialog boxes are clicked and can be
injected into the command wherever needed.

Debug

The Debug tab, shown in Figure 6-13, determines how the application
will be executed when run from within Visual Studio 2017. This tab is
not visible for web applications — instead, the Web tab is used to
configure similar options.

FIGURE 6-13

Start Action

When a project is set to start up, this set of radio buttons controls what
actually happens when the application is run within Visual Studio. The

Download from finelybook www.finelybook.com

229

default value is to start the project, which calls the Startup object
specified on the Application tab. The other options are to either run an
executable or launch a specific website.

Start Options

The options that can be specified when running an application are
additional command-line arguments (generally used with an
executable start action) and the initial working directory. You can also
specify to start the application on a remote computer. Of course, this is
possible only when debugging is enabled on the remote machine.

Debugger Engines

Debugging can be extended to include unmanaged code and SQL
Server. With these options checked, it becomes possible to enlist
unmanaged code and SQL Server stored procedures in the debug
process. For example, you can open a stored procedure through the
Server Explorer, set a breakpoint and, while debugging your
application through Visual Studio, the breakpoint will be hit and
execution stopped when the stored procedure is called by your
application.

References (Visual Basic Only)

The References tab enables the developer to reference classes in other
.NET assemblies, projects, and native DLLs. When the project or DLL
has been added to the References list, a class can be accessed either by
its full name, including namespace, or the namespace can be imported
into a code file so that the class can be referenced by just the class
name. Figure 6-14 shows the References tab for a project that has a
reference to a number of framework assemblies.

Download from finelybook www.finelybook.com

230

FIGURE 6-14

NOTE

Having unused references in your project is not generally a
problem. Although some people don’t like it because it makes the
solution “messy,” from a performance perspective, there is no
impact. Assemblies that are not used are not copied to the output
directory.

When an assembly has been added to the Reference list, any public

Download from finelybook www.finelybook.com

231

class contained within that assembly can be referenced within the
project. Where a class is embedded in a namespace (which might be a
nested hierarchy), referencing a class requires the full class name.
Both Visual Basic and C# provide a mechanism for importing
namespaces so that classes can be referenced directly. The References
section allows namespaces to be globally imported for all classes in the
project, without being explicitly imported within the class file.
References to external assemblies can be either File references or
Project references. File references are direct references to an
individual assembly. You can create File references by using the
Browse tab of the Reference Manager dialog box. Project references
are references to a project within the solution. All assemblies that are
output by that project are dynamically added as references. Create
Project references by using the Solution tab of the Reference Manager
dialog box.

WARNING

You should generally not add a File reference to a project that
exists in the same solution. If a project requires a reference to
another project in that solution, a Project reference should be
used.

The advantage of a Project reference is that it creates a dependency
between the projects in the build system. The dependent project will
be built if it has changed since the last time the referencing project was
built. A File reference doesn’t create a build dependency, so it’s
possible to build the referencing project without building the
dependent project. However, this can result in problems with the
referencing project expecting a different version from what is included
in the output.

Resources

You can add or remove Project resources via the Resources tab, as
shown in Figure 6-15. In the example shown, four icons have been
added to this application. Resources can be images, text, icons, files, or

Download from finelybook www.finelybook.com

232

any other serializable class.

FIGURE 6-15

This interface makes working with resource files at design time easy.
Chapter 56, “Resource Files,” in the online archive examines in more
detail how you can use resource files to store application constants and
internationalize your application.

Services

Client application services allow Windows-based applications to use
the authentication, roles, and profile services that were introduced
with Microsoft ASP.NET 2.0. The client services enable multiple web-
and Windows-based applications to centralize user profiles and user-
administration functionality.
Figure 6-16 shows the Services tab, which is used to configure client
application services for Windows applications. When enabling the
services, the URL of the ASP.NET service host must be specified for
each service. This will be stored in the app.config file. The following
client services are supported:

Download from finelybook www.finelybook.com

233

FIGURE 6-16

Authentication: This enables the user’s identity to be verified
using either the native Windows authentication or a custom forms-
based authentication that is provided by the application.
Roles: This obtains the roles an authenticated user has been
assigned. This enables you to allow certain users access to different
parts of the application. For example, additional administrative
functions may be made available to admin users.
Web Settings: This stores per-user application settings on the
server, which allows them to be shared across multiple computers
and applications.

Client application services utilize a provider model for web services
extensibility. The service providers include offline support that uses a
local cache to ensure that it can still operate even when a network

Download from finelybook www.finelybook.com

234

connection is not available.
Client application services are discussed further in Chapter 47, “Client
Application Services,” in the online archive.

Settings

Project settings can be of any type and simply reflect a name/value
pair whose value can be retrieved at run time. Settings can be scoped
to either the application or the user, as shown in Figure 6-17. Settings
are stored internally in the Settings.settings file and the app.config
file. When the application is compiled, this file is renamed according
to the executable generated — for example,
SampleApplication.exe.config.

FIGURE 6-17

Application-scoped settings are read-only at run time and can be
changed only by manually editing the config file. User settings can be
dynamically changed at run time and may have a different value saved
for each user who runs the application. The default values for User
settings are stored in the app.config file, and the per-user settings are
stored in a user.config file under the user’s private data path.
Application and User settings are described in more detail in Chapter
54, “Configuration Files,” in the online archive.

Reference Paths (C# and F# Only)

Download from finelybook www.finelybook.com

235

The Reference Paths tab, as shown in Figure 6-18, is used to specify
additional directories that are searched for referenced assemblies.

FIGURE 6-18

When an assembly reference has been added, Visual Studio resolves
the reference by looking in the following directories in this order:
1. The project directory.
2. Directories specified in this Reference Paths list.
3. Directories displaying files in the Reference Manager dialog box.
4. The obj directory for the project. This is generally only relevant to

COM interop assemblies.

Signing

Figure 6-19 shows the Signing tab, which provides developers with the
capability to determine how assemblies are signed in preparation for
deployment. An assembly can be signed by selecting a key file. A new
key file can be created by selecting <New…> from the file selector
drop-down.

Download from finelybook www.finelybook.com

236

FIGURE 6-19

The ClickOnce deployment model for applications enables an
application to be published to a website where a user can click once to
download and install the application. Because this model is supposed
to support deployment over the Internet, an organization must be able
to sign the deployment package. The Signing tab provides an interface
for specifying the certificate to use to sign the ClickOnce manifests.
Chapter 48, “Assembly Versioning and Signing,” in the online archive
provides more detail on assembly signing and Chapter 35, “Packaging
and Deployment,” discusses ClickOnce deployments.

My Extensions (Visual Basic Only)

The My Extensions tab, as shown in Figure 6-20, enables you to add a
reference to an assembly that extends the Visual Basic My namespace,
using the extension methods feature. Extension methods were initially
introduced to enable LINQ to be shipped without requiring major

Download from finelybook www.finelybook.com

237

changes to the base class library. They allow developers to add new
methods to an existing class, without having to use inheritance to
create a subclass or recompile the original type.

FIGURE 6-20

The My namespace was designed to provide simplified access to
common library methods. For example, My.Application.Log provides
methods to write an entry or exception to a log file using a single line
of code. As such it is the ideal namespace to add custom classes and
methods that provide useful utility functions, global state, or
configuration information, or a service that can be used by multiple
applications.

Security

Applications deployed using the ClickOnce deployment model may be
required to run under limited or partial trust. For example, if a low-
privilege user selects a ClickOnce application from a website across the
Internet, the application needs to run with partial trust as defined by
the Internet zone. This typically means that the application can’t
access the local filesystem, has limited networking capability, and can’t
access other local devices such as printers, databases, and computer
ports.

Download from finelybook www.finelybook.com

238

The Security tab, illustrated in Figure 6-21, allows you to define the
trust level that is required by your application to operate correctly.

FIGURE 6-21

Modifying the permission set that is required for a ClickOnce
application may limit who can download, install, and operate the
application. For the widest audience, specify that an application
should run in partial-trust mode with security set to the defaults for
the Internet zone. Alternatively, specifying that an application requires
full trust ensures that the application has full access to all local
resources but necessarily limits the audience to local administrators.

Publish

The ClickOnce deployment model can be divided into two phases:
initially publishing the application and subsequent updates, and the
download and installation of both the original application and
subsequent revisions. You can deploy an existing application using the
ClickOnce model using the Publish tab, as shown in Figure 6-22.

Download from finelybook www.finelybook.com

239

FIGURE 6-22

If the install mode for a ClickOnce application is set to be available
offline when it is initially downloaded from the website, it will be
installed on the local computer. This places the application in the Start
menu and the Add/Remove Programs list. When the application is run
and a connection to the original website is available, the application
determines whether any updates are available. If there are updates,
users are prompted to determine whether they want the updates to be
installed.
The ClickOnce deployment model is explained more thoroughly in
Chapter 35, “Packaging and Deployment.”

Code Analysis

Most developers who have ever worked in a team have had to work
with an agreed-upon set of coding standards. Organizations typically
use an existing standard or create their own. Unfortunately, standards
are useful only if they can be enforced, and the only way that this can
be effectively done is to use a tool. In the past this had to be done using

Download from finelybook www.finelybook.com

240

an external utility. All editions of Visual Studio 2017 (including the
Community edition) have the capability to carry out static code
analysis from within the IDE.
The Code Analysis tab, as shown in Figure 6-23, can be used to enable
code analysis as part of the build process.

FIGURE 6-23

When the Enable Code Analysis on Build checkbox is checked, then
code analysis will be performed automatically for each build.
Alternatively, you can right-click a project and select Analyze Run
Code Analysis on Solution or Analyze Run Code Analysis on the
current project.
The basic unit of definition in code analysis is a rule. A rule consists of
a specific criterion that needs to be met in order for the rule to pass.
For instance, a rule might be something like “a variable has been
declared but never used” or “the result of an expression is always null.”

Download from finelybook www.finelybook.com

241

These rules can be combined into a collection of rules known as a
ruleset.
In the Code Analysis tab, you specify which ruleset is going to be
applied to your code when code analysis is run. More than 200 built-in
rules are conveniently organized into 11 rulesets. You can even create
your own sets of rules (Add New Item Code Analysis Rule Set) if the
ones provided by Microsoft don’t meet your needs. Beyond that, you
can add custom rules if needed.
Depending on your project, you might want to exclude some particular
rules. To get to the details of a particular ruleset, click on the Open
button to display a pane similar to Figure 6-24.

FIGURE 6-24

Unchecking the checkbox that appears to the left of a rule disables that
rule. The dropdown box on the right controls what happens when a
rule fails to be met, such as whether it’s a warning or a build error.
When you build your application, any errors or warnings associated
with code analysis appear in the Error List. Within that pane, if you
right-click a warning and select Show Error Help, you have a
description of the rule, the cause, the steps on how to fix violations,
and suggestions on when to suppress warnings. Suppressing warnings
is done with
System.Diagnostics.CodeAnalysis.SuppressMessageAttribute, which
can be applied to the offending member or to the assembly as a whole.

Download from finelybook www.finelybook.com

242

You can quickly and easily generate these attributes by selecting one of
the Suppress Message menu options from the right-click menu in the
Errors window.
When you first start with Code Analysis tools, you should turn on all
the rules and either exclude or suppress the warnings as needed. This
is an excellent way to learn best practices. After a couple of iterations,
new code written will be less prone to violating a rule. If you start a
new project, you might want to add a check-in policy, which prevents
code with Analysis warnings from being checked in.

NOTE

Never suppress a warning unless you have a good reason.
Finding these violations again can be quite difficult.

C/C++ CODE ANALYSIS TOOL

This tool is similar to the Managed Code Analysis Tool but works for
unmanaged code. To activate it simply go to your C++ project’s
properties window, look for the Code Analysis node inside the
Configuration Properties, and select Yes for Enable Code Analysis for
C/C++ on Build. Every time you compile your project, the tool
intercepts the process and attempts to analyze each execution path.
It can help you detect crashes that are otherwise time-consuming and
hard to find with other techniques, such as debugging. It can detect
memory leaks, uninitialized variables, pointer management problems,
and buffer over/under runs.

WEB APPLICATION PROJECT PROPERTIES

Due to the unique requirements of web applications, four additional
project property tabs are available to ASP.NET Web Application
projects. These tabs control how web applications run from Visual
Studio as well as the packaging and deployment options.

Web

Download from finelybook www.finelybook.com

243

The Web tab, shown in Figure 6-25, controls how Web Application
projects are launched when executed from within Visual Studio. Visual
Studio ships with a built-in web server suitable for development
purposes. The Web tab enables you to configure the port and virtual
path that this runs under. You may also choose to enable NTLM
authentication.

FIGURE 6-25

NOTE

The Enable Edit and Continue option allows editing of code
behind and standalone class files during a debug session. Editing
of the HTML in an .aspx or .ascx page is allowed regardless of this
setting; however, editing inline code in an .aspx page or an .ascx
file is never allowed.

The debugging options for web applications are explored in Chapter
58, “Debugging Web Applications,” in the online archive.

Download from finelybook www.finelybook.com

244

Package/Publish Web

Application deployment has always been a difficult challenge,
especially for complex web applications. A typical web application is
composed of not only a large number of source files and assemblies,
but also images, stylesheets, and JavaScript files. To complicate
matters further, it may be dependent on a specific configuration of the
IIS web server.
Visual Studio 2017 simplifies this process by allowing you to package a
Web Application project with all the necessary files and settings
contained in a single compressed (.zip) file. Figure 6-26 shows the
packaging and deployment options that are available to an ASP.NET
web application.

FIGURE 6-26

Further discussion on web application deployment is included in
Chapter 36, “Web Application Deployment.”

Package/Publish SQL

All but the simplest of web applications are backed by a database of

Download from finelybook www.finelybook.com

245

some description. For ASP.NET web applications this is typically a
SQL Server database. Visual Studio 2017 includes support for
packaging one or more SQL Server databases. Although the project
properties still include a sheet titled Package/Publish SQL, that page is
not available by default. Instead, the configuration for SQL
deployment appears as part of the Publish Web Wizard.
As illustrated in Figure 6-27, when you create a package you can
specify a connection string for your source database. You can allow
Visual Studio to create SQL scripts for the database schema only or
schema and data. You can also provide custom SQL scripts to be
executed either before or after the auto-generated script.

FIGURE 6-27

Chapter 36 explores the web application deployment options in more
detail.

WEB SITE PROJECTS

The Web Site project functions quite differently from other project
types. Web Site projects do not include a .csproj or .vbproj file, which
means they have a number of limitations for build options, project

Download from finelybook www.finelybook.com

246

resources, and managing references. Instead, Web Site projects use
the folder structure to define the contents of the project. All files
within the folder structure are implicitly part of the project.
Web Site projects provide the advantage of dynamic compilation,
which allows pages to be edited without rebuilding the entire site. The
file can be saved and simply reloaded in the browser. As such, they
enable extremely short code and debug cycles. Microsoft first
introduced Web Site projects with Visual Studio 2005; however, it was
quickly inundated with customer feedback to reintroduce the
Application Project model, which had been provided as an additional
download. By the release of Service Pack 1, Web Application projects
were back within Visual Studio as a native project type.

NOTE

Since Visual Studio 2005, an ongoing debate has been raging
about which is better — Web Site projects or Web Application
projects. Unfortunately, there is no simple answer to this debate.
Each has its own pros and cons, and the decision comes down to
your requirements and your preferred development workflow.
That said, the majority of web projects use the Web Application
template. Unless you have a compelling reason to use a Web Site
project, it is recommended that the Web Application project be
your default choice.

You can find further discussion on Web Site and Web Application
projects in Chapter 16, “ASP.NET Web Forms.”

NUGET PACKAGES

One of the changes that have been slowly creeping into the .NET world
is the reliance on NuGet as the platform for deploying components.
NuGet is an open source platform that allows .NET components, as
well as native components written in C++, to be distributed easily and
automatically to your development platform. And with Visual Studio
2017, that reliance grows to the point where NuGet is used to handle
deploying everything up to and including the .NET Framework.
Fortunately, access to NuGet is available through a couple of

Download from finelybook www.finelybook.com

247

mechanisms within Visual Studio 2017.
As a developer of components, you bundle everything necessary to
install your software into a package (kept in a .nupkg file). Included in
the package are the assemblies that need to be deployed and a
manifest file that describes the contents of the package and what needs
to be changed in the project to support your components (changes to
configuration files, references to be added, and so on).

NuGet Package Manager

There are two main ways to bring a package from NuGet into your
project. Although your preference likely depends on your predilection
for command line versus graphical interfaces, it is expected that the
most common method involves the NuGet Package Manager
integrated into the Solution Explorer. In the Solution Explorer, right-
click on a project and select the Manage NuGet Packages option. The
page shown in Figure 6-28 appears. A similar page can be accessed
through the Tools NuGet Package Manager Manage NuGet Packages
for Solution menu option.

Download from finelybook www.finelybook.com

248

FIGURE 6-28

The elements of the page are designed to help you find the packages
that you need to add to your project. The search box on the right gives
you the ability to search the NuGet repository. The controls on the left
let you choose the repository source. The options available out-of-the-
box are nuget.org, preview.nuget.org (contains preview versions of
components), and Microsoft. As well, you can filter the results of your
search so that only already installed packages and packages with
updates are shown.
Select the package that you want to include in your project. The details
of the package appear in the panel on the right side of the page. The
package can be installed by clicking on the Install button. If you would
like to see the changes that would be made because of installing the
package, click on the Preview button.
The last piece of functionality available on this page is initiated
through the gear icon to the right of the search box. Clicking on the

Download from finelybook www.finelybook.com

249

http://nuget.org
http://nuget.org

gear launches the Options dialog and displays the NuGet Package
Manager pane, as seen in Figure 6-29.

FIGURE 6-29

The main function of the screen shown in Figure 6-29 is to allow you
to configure the NuGet repositories that are searched by the Package
Manager. You can add new repositories by clicking on the plus button
in the top right of the dialog and then updating the Name and Source
fields at the bottom of the page.

Package Manager Console

You access the command-line interface used to manage NuGet
packages through the Tools NuGet Package Manager Package
Manager Console menu option. The screen shown in Figure 6-30
appears.

Download from finelybook www.finelybook.com

250

FIGURE 6-30

The challenge at this point is knowing the various commands that are
available to you to help manage the packages. The most basic is
install-package, which takes the name of the package as a parameter.
A complete list of the commands is well beyond the scope of this book.
As indicated in the description found in Figure 6-30, get-help NuGet
provides a list that is a decent start.

SUMMARY

In this chapter you have seen how a solution and projects can be
configured using the user interfaces provided within Visual Studio
2017. In particular, this chapter showed you how to do the following:

Create and configure solutions and projects.
Control how an application is compiled, debugged, and deployed.
Configure the many project-related properties.
Include resources and settings with an application.
Enforce good coding practices with the Code Analysis Tools.
Modify the configuration, packaging, and deployment options for
web applications.

In subsequent chapters, many of the topics, such as building and
deploying projects and the use of resource files, are examined in more
detail.

Download from finelybook www.finelybook.com

251

7
IntelliSense and Bookmarks

WHAT’S IN THIS CHAPTER?

Improving efficiency with contextual help
Detecting and fixing simple errors
Reducing keystrokes
Generating code
Navigating source code with bookmarks

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
One of the design goals of Visual Studio has always been to
improve the productivity of developers. IntelliSense is one of those
functions that fit perfectly into this category. It has been around for
more than a decade, and it has become so deeply embedded in the
day-to-day world of coders that we pretty much take it for granted.
And yet, from version to version, Microsoft is still able to find
tweaks and improvements that make it even more useful. This
chapter illustrates the many ways in which IntelliSense helps you
write your code. Among the topics covered are detecting and
repairing syntax errors, harnessing contextual information, and
variable name completion. You’ll also learn how to set and use
bookmarks in your code for easier navigation.

INTELLISENSE EXPLAINED

Download from finelybook www.finelybook.com

252

http://wrox.com
http://www.wrox.com

IntelliSense is the general term for automated help and actions in a
Microsoft application. The most commonly encountered aspects of
IntelliSense are those wavy lines you see under words that are not
spelled correctly in Microsoft Word, or the small visual indicators in a
Microsoft Excel spreadsheet that inform you that the contents of the
particular cell do not conform to what was expected.
Even these basic indicators enable you to quickly perform related
actions. Right-clicking a word with red wavy underlining in Word
displays a list of suggested alternatives. Other applications have
similar features.
The good news is that Visual Studio has had similar functionality for a
long time. In fact, the simplest IntelliSense features go back to tools
such as Visual Basic 6. With each release of Visual Studio, Microsoft
has refined the IntelliSense features, making them more context-
sensitive and putting them in more places so that you always have the
information you need right at your fingertips.
In Visual Studio 2017, the IntelliSense name is applied to a number of
different features, from visual feedback for bad code and smart tags
for designing forms to shortcuts that insert whole slabs of code. These
features work together to provide you with deeper insight, efficiency,
and control of your code. Some of Visual Studio’s features, such as
Suggestion mode and Generate From Usage, are designed to support
the alternative style of application development known as test-driven
development (TDD).

General IntelliSense

The simplest feature of IntelliSense gives you immediate feedback
about bad code in your code listings. Figure 7-1 shows one such
example, in which an unknown data type is used to instantiate an
object. Because the data type is unknown where this code appears,
Visual Studio draws a red (C# and C++) or blue (VB) wavy line
underneath to indicate a problem.

Download from finelybook www.finelybook.com

253

FIGURE 7-1

NOTE

You can adjust the formatting of this color feedback in the Fonts
and Colors group of Options.

Hovering the mouse over the offending piece of code displays a tooltip
to explain the problem. In this example the cursor was placed over the
data type, with the resulting tooltip “The type or namespace name
‘Customer’ could not be found.”
Visual Studio looks for this kind of error by continually compiling the
code you write in the background, and checking for anything that can
produce a compilation error. If you were to add the Customer class to
your project, Visual Studio would automatically process this and
remove the IntelliSense marker.
The idea of a smart tag associated with an error is not new. However,
recent versions of Visual Studio have introduced a number of
innovations that improve upon its utility. In Figure 7-1, you’ll see a
light bulb. This is the smart tag indicator, and it is visible (and
therefore usable) in a number of different situations. When it comes to
errors, the light bulb appears when Visual Studio can offer you one or
more corrective courses of action. Clicking on the arrow to the right of
the light bulb displays the available options, as seen in Figure 7-2.

FIGURE 7-2

As you can see, Visual Studio can come up with different ways to

Download from finelybook www.finelybook.com

254

correct the problem of a missing type. The ways are variations of
“create a class of type Customer,” with the difference being the
location and scope of the class. As you move your mouse over the
different choices, the box on the right provides an example of what the
correction will look like. You can even go a step further and click on
the Preview Changes link to see a more detailed description of the
change, including the files that will be affected. Figure 7-3 provides an
example.

FIGURE 7-3

NOTE

The traditional shortcut key used by Microsoft applications to
activate an IntelliSense smart tag has been Shift+Alt+F10, but
Visual Studio 2017 provides the more wrist-friendly Ctrl+.
(period) shortcut for the same action.

Download from finelybook www.finelybook.com

255

The smart tag technology found in Visual Studio is not solely reserved
for the code window, nor does it always involve light bulbs. Visual
Studio 2017 also includes smart tags on visual components when you
edit a form or user control in Design view (see Figure 7-4).

FIGURE 7-4

NOTE

The keyboard shortcuts for opening smart tags also work for
visual controls.

When you select a control that has a smart tag, a small triangle
appears at the top-right corner of the control. Click this button to open
the smart tag Tasks list. Figure 7-4 shows the Tasks list for a standard
TextBox control.

IntelliSense and C++

Visual Studio 2017 includes full IntelliSense support for C++/CLI
(Common Language Infrastructure). C++ has a fair amount of
IntelliSense support itself. C++ developers will appreciate how
functionality such as autocompletion, parameter help, and navigation
work so well in Visual Studio 2017.
All of the topics in the following sections are of as much interest to
C++ developers as they are to VB and C# developers. The underlying
infrastructure provides robust IntelliSense performance, and a wide
array of IntelliSense features are now included. So C++ developers can
rejoice and bask in the warm glow of IntelliSense.

Download from finelybook www.finelybook.com

256

Completing Words and Phrases

The power of IntelliSense in Visual Studio 2017 becomes apparent
almost immediately. As you type, various drop-down lists are
displayed to help you choose valid members, functions, and parameter
types, thus reducing the potential for compilation errors before you
even finish writing your code. When you become familiar with the
IntelliSense behavior, you’ll notice that it can greatly reduce the
amount of code you actually have to write. This can be a significant
savings to developers using more verbose languages such as Visual
Basic.

In Context

In Visual Studio 2017, IntelliSense appears almost as soon as you
begin to type within the code window. Figure 7-5 illustrates the
IntelliSense displayed during the creation of a For loop in Visual Basic.
On the left side of the image, IntelliSense appeared as soon as the f
was entered, and the list of available words progressively shrank as
each subsequent key was pressed. As you can see, the list is made up of
all the alternatives, such as statements, classes, methods, or
properties, that match the letters entered (in this case those containing
the word For).

FIGURE 7-5

At the bottom of the list is a collection of icons that can be used to

Download from finelybook www.finelybook.com

257

reduce the list of alternatives. The icons correspond to different types
of items in the list and match the icon that appears to the left of each
alternative. By clicking on an icon, you toggle on and off the inclusion
of alternatives of that type in the list.
As you continue typing a space (after the For), the IntelliSense list
contracts to show just the next possible keywords (components and
Each). And there is a <new variable> item at the top of the list to
indicate that it’s possible for you to specify a new variable at this
location.

NOTE

The <new variable> item appears only for Visual Basic users.

Although it can be useful that the IntelliSense list is reduced based on
the letters you enter, this feature is a double-edged sword. Quite often
you will be looking for a variable or member but won’t quite remember
what it is called. In this scenario, you might enter the first couple of
letters of a guess and then use the scrollbar to locate the right
alternative. Clearly, this won’t work if the letters you have entered
have already eliminated the alternative. To bring up the full list of
alternatives, simply press the Backspace key with the IntelliSense list
visible. Alternatively, Ctrl+Space lists all of the alternatives if the
IntelliSense list is not visible.
IntelliSense assistance is not limited to members that begin with the
characters you type. The entered characters are considered a word by
IntelliSense. Then, as it looks for matches, it considers words that
appear in the middle of member names. IntelliSense does this by
looking for word boundaries within the member names based on
Pascal casing. Figure 7-6 shows an example in C# where typing
Console.in will find In, InputEncoding, IsInputRedirected,
OpenStandardInput, SetIn, and TreatControlCAsInput but does not find
LargestWindowHeight despite the fact that it contains the substring “in.”

Download from finelybook www.finelybook.com

258

FIGURE 7-6

NOTE

If you know exactly what you are looking for, you can save even
more keystrokes by typing the first character of each word in
uppercase. As an example, if you type System.Console.OSI then
OpenStandardInput will be selected by IntelliSense.

If you find that the IntelliSense information is obscuring other lines of
code, or you simply want to hide the list, you can press Esc.
Alternatively, if you simply want to view what is hidden behind the
IntelliSense list without closing it completely, you can hold down the
Ctrl key. This makes the IntelliSense list translucent, enabling you to
read the code behind it, as shown in Figure 7-7.

FIGURE 7-7

Download from finelybook www.finelybook.com

259

The IntelliSense list is not just for informational purposes. You can
select an item from this list and have Visual Studio actually insert the
full text into the editor window for you. You have a number of ways to
select an item from the list. You can double-click the wanted item with
the mouse; you can use the arrow keys to change which item is
highlighted and then press the Enter or Tab key to insert the text; and
finally, when an item is highlighted in the list, it will automatically be
selected if you enter a commit character. Commit characters are those
that are not normally allowed within member names. Examples
include parentheses, braces, mathematical symbols, and semicolons.

List Members

Because IntelliSense has been around for so long, most developers are
familiar with the member list that appears when you type the name of
an object and immediately follow it by a period. This indicates that you
are going to refer to a member of the object, and Visual Studio
automatically displays a list of members available to you for that
object. If this is the first time you’ve accessed the member list for a
particular object, Visual Studio simply shows the members in
alphabetical order with the top of the list visible. However, if you’ve
used it before, it highlights the last member you accessed to speed up
the process for repetitive coding tasks.

Suggestion Mode

By default, when Visual Studio 2017 shows the IntelliSense member
list, one member is selected, and as you type, the selection is moved to
the item in the list that best matches the characters entered. If you
press Enter, Space, or type one of the commit characters (such as an
open parenthesis), the currently selected member is inserted into the
editor window. This default behavior is known as completion mode.
In most cases completion mode provides the wanted behavior and can
save you a great deal of typing, but it can be problematic for some
activities. One such activity is test-driven development, where
references are frequently made to members that have not yet been
defined. This causes IntelliSense to select members that you didn’t
intend it to and insert text that you do not want.

Download from finelybook www.finelybook.com

260

To avoid this issue you can use the IntelliSense suggestion mode.
When IntelliSense is in suggestion mode, one member in the list will
have focus but will not be selected by default. As you type, IntelliSense
moves the focus indicator to the item that most closely matches the
characters you typed, but it will not automatically select it. Instead, the
characters that you type are added to the top of the IntelliSense list,
and if you type one of the commit characters or press Space or Enter,
the exact string that you typed is inserted into the editor window.
Figure 7-8 shows an example of the problem that suggestion mode is
designed to address. On the left side you can write a test for a new
method called Load on the CustomerData class. The CustomerData class
does not have a method called Load yet, but it does have a method
called LoadAll.

FIGURE 7-8

On the right side of Figure 7-8, you can type Load followed by the open
parenthesis character. IntelliSense incorrectly assumes that you
wanted the LoadAll method and inserts it into the editor.
To avoid this behavior you can turn on suggestion mode by pressing
Ctrl+Alt+Space. Currently when you type Load, it appears at the top of
the IntelliSense list. When you type the open parenthesis character,
you get Load as originally intended (see Figure 7-9).

FIGURE 7-9

NOTE

Download from finelybook www.finelybook.com

261

You can still make a selection from the IntelliSense list by using
the arrow keys. Also, you can select the item that has focus in the
member list by pressing the Tab key.

NOTE

IntelliSense remains in suggestion mode until you press
Ctrl+Alt+Space again to revert back to completion mode.

Stub Completion

In addition to word and phrase completion, the IntelliSense engine
has another feature known as stub completion. This feature can be
seen in Visual Basic when you create a function by writing the
declaration of the function and pressing Enter. Visual Studio
automatically reformats the line, adding the appropriate ByVal

keyword for parameters that don’t explicitly define their contexts, and
also adding an End Function line to enclose the function code. Another
example can be seen when editing an XML document. When you type
the open tag of a new element, Visual Studio automatically puts the
closing tag in for you.
Visual Studio 2017 takes stub completion an extra step by enabling
you to do the same for interface and method overloading. When you
add certain code constructs, such as an interface in a C# class
definition, Visual Studio gives you the opportunity to automatically
generate the code necessary to implement the interface. To show you
how this works, the following steps outline a task in which the
IntelliSense engine generates an interface implementation in a simple
class:
1. Start Visual Studio 2017 and create a C# Windows Forms

Application project. When the IDE has finished generating the
initial code, open Form1.cs in the code editor.

2. At the top of the file, add a using statement to provide a shortcut to
the System.Collections namespace:

 using System.Collections;

Download from finelybook www.finelybook.com

262

3. Add the following line of code to start a new class definition:

 public class MyCollection: IEnumerable

After you type the IEnumerable keyword, Visual Studio adds a red
wiggly line underneath, indicating that there is an error.

4. Hover your mouse pointer over the IEnumerable keyword. In a
moment, a light bulb indicator, along with a message (as shown in
Figure 7-10), appears.

FIGURE 7-10

The information area to the right of the light bulb describes the
error that Visual Studio has detected. The details of this text
depend greatly on the error. For this one, it basically indicates that
you have declared that a class will implement an interface
(IEnumerable) but have not yet implemented all the elements
required by that interface.

5. Click either the drop-down arrow to the right of the light bulb or
the Show Potential Fixes link in the text area. This reveals a list
(see Figure 7-11) of how Visual Studio can fix the error. If you hover
over the options, the text area on the right shows in more detail the
changes that would be made by selecting the fix. In addition, you
can preview the change or make the change across the document,
the project, or the entire solution.

Download from finelybook www.finelybook.com

263

FIGURE 7-11

6. Select the Implement Interface option, and Visual Studio 2017
automatically generates the rest of the code necessary to
implement the minimum interface definition.

The light bulb is not only available while hovering over the source of
the error. If the cursor is positioned on a line that has an error, the
light bulb appears to the left of the code line, as illustrated in Figure 7-
12. Clicking on the light bulb starts the same fixing process that is
described in step 5.

FIGURE 7-12

NOTE

Though generated properties and classes can be used as they are,
when a method stub is generated, the body of the method will
throw a NotImplementedException if it is executed.

Event handlers can also be automatically generated by Visual Studio
2017. The IDE does this much as it performs interface
implementation. When you write the first portion of the statement (for
instance, myBase.OnClick +=), Visual Studio gives you a suggested
completion that you can select simply by pressing Tab.

Generate From Usage

Download from finelybook www.finelybook.com

264

Rather than generating code from a definition that already exists,
sometimes it is more convenient to generate the definition of a code
element from the way you have used it. This is especially true if you
practice test-driven development, where you write tests for classes that
have not been defined yet. It would be convenient to generate the
classes from the tests themselves, and this is the purpose of the
Generate From Usage feature in C# and Visual Basic.
To understand how you might use this in practice, the following steps
outline the creation of a simple Customer class by writing some client
code that uses it, and then generating the class from that usage:
1. Start Visual Studio 2017 and create a C# Console Application

project. When the IDE is ready, open the Program.cs file.
2. Update the Main method with the following code:
C#

Customer c = new Customer
{
 FirstName = "Joe",
 LastName = "Smith"
};

Console.WriteLine(c.FullName);
c.Save();

3. You should see a red wiggly line underneath both instances of the
class name Customer. Right-click one of them, and select Quick
Actions and Refactorings from the context menu. This displays a
set of data similar to what is shown in Figure 7-10. But in this case,
when you click on the drop-down arrow, the options are more
appropriate for creating the Customer class that is missing. Select
the Generate class for ‘Customer’ in ‘YourAppName’ (in new file).
This creates a new class in your project called Customer. If you open
Customer.cs, you’ll see a class declaration that includes the
FirstName and LastName automatic properties. Visual Studio will
then discover that FullName and Save are not members of this class.

4. For the FullName member that does not exist, use the light bulb
functionality to add it to the Customer class. Look at Customer.cs
again, and note that Visual Studio has provided an implementation

Download from finelybook www.finelybook.com

265

for you.
5. You can do the same for the Save method by right-clicking and

selecting the Generate ‘Customer.Save’ option from the Quick
Actions and Refactorings list.

NOTE

When you generate a method stub in this manner, you might
notice that the method is always marked as being internal. The
reason for this has to do with a “best practices” approach that
Microsoft code-generator is taking. Specifically, it is giving the
minimum access required for a method to be invoked from the call
site. An internal method can be called from within the assembly
but is not accessible from outside the assembly. This meets the
security best practice of “least privilege.”

If the undefined code that you want to generate is a type, you have the
option to Generate Class or Generate New Type. If you select Generate
New Type, the Generate Type dialog displays (see Figure 7-13). This
dialog gives you more options to configure your new type, including
class, enumeration, interface, or structure; if the new type should be
public, private, or internal; and where the new type should go.

Download from finelybook www.finelybook.com

266

FIGURE 7-13

Parameter Information

As you create the call to a function, IntelliSense displays the parameter
information as you type. The problem is that parameter information is
shown only if you are actually modifying the function call. Therefore,
you can see this helpful tooltip as you create or change the function
call but not if you are just viewing the code. The result is that
programmers sometimes inadvertently introduce changes into their
code because they intentionally modify function calls so that they can
view the parameter information associated with the calls. And these
changes, while functionally meaningless, can cause conflicts to be
detected by your source control.
Visual Studio 2017 eliminates that potential problem by providing an
easily accessible command to display the information without
modifying the code. The keyboard shortcut Ctrl+Shift+Space displays
the information about the function call, as displayed in Figure 7-14.
You can also access this information through the Edit IntelliSense

Download from finelybook www.finelybook.com

267

Parameter Info menu command.

FIGURE 7-14

In Figure7-14 the PrintGreeting method takes two parameters.
The second parameter is optional and displays in square brackets
with an assignment showing its default value if you don’t provide
one. VB programmers will be familiar with this syntax, and it has
been included in C# ever since version 4.0.

Quick Info

In a similar vein, sometimes you want to see the information about an
object or interface without modifying the code. The Ctrl+K, Ctrl+I
keyboard shortcut or hovering over the object name with the mouse
displays a brief tooltip explaining what the object is and how it was
declared (see Figure 7-15).

FIGURE 7-15

You can also display this tooltip through the Edit IntelliSense Quick
Info menu command.

JAVASCRIPT INTELLISENSE

If you build web applications, you can work in JavaScript to provide a
richer client-side experience for your users. Unlike C# and Visual
Basic, which are compiled languages, JavaScript is an interpreted
language, which means that traditionally the syntax of a JavaScript
program has not been verified until it is loaded into the browser.
Although this can give you a lot of flexibility at run time, it requires

Download from finelybook www.finelybook.com

268

discipline, skill, and a heavy emphasis on testing to avoid a large
number of common mistakes.
In addition to this, while developing JavaScript components for use in
a browser, you must keep track of a number of disparate elements.
This can include the JavaScript language features, HTML DOM
elements, and handwritten and third-party libraries. Luckily Visual
Studio 2017 provides a full IntelliSense experience for JavaScript,
which can help you to keep track of all these elements and warn you of
syntax errors.
As you type JavaScript into the code editor window, Visual Studio lists
keywords, functions, parameters, variables, objects, and properties
just as if you were using C# or Visual Basic. This works for built-in
JavaScript functions and objects as well as those you define in your
own custom scripts and those found in third-party libraries. Visual
Studio can also detect and highlight syntax errors in your JavaScript
code.

NOTE

The keyboard shortcuts for each Visual Studio 2017 install depend
on the settings selected (that is, Visual Basic Developer, Visual C#
Developer, and so on). All the shortcut keys in this chapter are
based on using the General Developer Profile setting.

NOTE

Since Internet Explorer 3.0, Microsoft has maintained its own
dialect of JavaScript called JScript. Technically, the JavaScript
tools in Visual Studio 2017 are designed to work with JScript, so
you sometimes see menu options and window titles containing
this name. In practice, the differences between the two languages
are so minor that the tools work equally well with either one.

The JavaScript IntelliSense Context

To prevent you from accidentally referring to JavaScript elements that

Download from finelybook www.finelybook.com

269

are not available, Visual Studio 2017 builds up an IntelliSense context
based on the location of the JavaScript block that you edit. The context
is made up of the following items:

The current script block. This includes inline script blocks for
.aspx, .ascx, .master, .html, and .htm files.
Any script file imported into the current page via a <script />

element or a ScriptManager control. In this case the imported
script file must have the .js extension.
Any script files that are referenced with a references directive (see
the section “Referencing Another JavaScript File”).
Any references made to XML Web Services.
The items in the Microsoft AJAX Library (if you work in an AJAX-
enabled ASP.NET web application).

Referencing Another JavaScript File

Sometimes one JavaScript file builds upon the base functionality of
another. When this happens they are usually referenced together by
any page using them but have no direct reference explicitly defined.
Because there is no explicit reference, Visual Studio 2017 cannot add
the file with the base functionality to the JavaScript IntelliSense
context, and you won’t get full IntelliSense support. The exception to
this is when you create JavaScript-based Windows Store applications
where all the references are traversed to provide full IntelliSense
context.

NOTE

Visual Studio keeps track of files in the context and updates
JavaScript IntelliSense whenever one of them changes.
Sometimes this update may be pending and the JavaScript
IntelliSense data will be out of date. You can force Visual Studio to
update the JavaScript IntelliSense data by selecting Edit
IntelliSense Update JScript IntelliSense.

To allow Visual Studio to discover the base file and add it to the

Download from finelybook www.finelybook.com

270

context, you can provide a reference to it by using a references
directive. A references directive is a special kind of comment that
provides information about the location of another file. You can use
references directives to make a reference to any of the following:

Other JavaScript files: This includes .js files and JavaScript
embedded in assemblies. It does not include absolute paths, so the
file you reference must be a part of the current project.
Web Service (.asmx) files: These also must be a part of the
current project, and Web Service files in Web Application projects
are not supported.
Pages containing JavaScript: One page may be referred to in
this way. If any page is referenced, no other references can be
made.

Following are some examples of references directives. These must
appear before any other code in your JavaScript file.
JAVASCRIPT

// JavaScript file in current folder
/// <reference path="Toolbox.js"/>

// JavaScript file in parent folder
/// <reference path="../Toolbox.js"/>

// JavaScript file in a path relative to the root folder of
the site
/// <reference path="~/Scripts/Toolbox.js"/>

// JavaScript file embedded in Assembly
/// <reference name="Ajax.js" path="System.Web.Extensions,
..."/>

// Web Service file
/// <reference path="MyService.asmx"/>

// Standard Page
/// <reference path="Default.aspx" />

NOTE

A few restrictions exist on how far references directives will work.

Download from finelybook www.finelybook.com

271

First, references directives that refer to a path outside of the
current project are ignored. Second, references directives are not
recursively evaluated, so only those in the file currently being
edited are used to help build the context. References directives
inside other files in the context are not used.

XAML INTELLISENSE

Since the introduction of XAML, there has been support for
IntelliSense in the editor window. Structurally, XAML is well-formed
XML and, as such, the same capabilities exist for a XAML file as for
any XML file in which Visual Studio is aware of the schema. As a
result, it was fairly easy for developers to enter XAML by hand. The
different elements were readily available, as were the attributes
associated with each element.
Where XAML IntelliSense had issues was in the area of data binding.
The data binding syntax that XAML provides is quite rich, but
IntelliSense was never able to provide the hints that developers had
come to expect. The reason is not hard to fathom — the data context
on which data binding depends is a runtime value. And because
editing is not a runtime value, it is hard to determine the properties
that are exposed on the data context.
In Visual Studio 2017, IntelliSense for data binding is available, with
some caveats. The requirement is that the data context for the XAML
document must be defined from within the document. If you set the
data context from outside the XAML document, which is a common
practice if you are using a Model-View-ViewModel (MVVM) pattern,
then you need to set the design-time data context within the
document. This has no effect on the runtime functionality of your
XAML page, yet still allows IntelliSense to get the necessary
information.
Another issue is how IntelliSense handles data binding in resources,
such as data templates. These data templates can be defined in an
external resource dictionary, which makes it impossible for
IntelliSense to determine what the active data context is. To address
this, you can set the design-time data context for the template in the
external resource dictionary directly. Alternatively, after the design-

Download from finelybook www.finelybook.com

272

time data context is defined in the XAML page, you can use the Go to
Definition command (F12 is the default keystroke to invoke the
command) and Visual Studio automatically does the work to copy the
data context.
The matching options that IntelliSense uses with XAML are mostly the
same as with programming languages. In other words, they support
matching based on Pascal casing (where the beginning of every word
has a capital letter) or word-based substrings (where the typed
characters match a word). However, XAML also includes the idea of
fuzzy matching. As illustrated in Figure 7-16, the element StackPanel is
selected even though the typed characters StakPa are only marginally
close to the correct element.

FIGURE 7-16

INTELLISENSE OPTIONS

Visual Studio 2017 sets up a number of default options for your
experience with IntelliSense, but you can change many of these in the
Options dialog if they don’t suit your own way of doing things. Some of
these items are specific to individual languages.

General Options

The first options to look at are in the Environment section under the
Keyboard group. Every command available in Visual Studio has a

Download from finelybook www.finelybook.com

273

specific entry in the keyboard mapping list (see the Options dialog
shown in Figure 7-17, accessible via Tools Options).

FIGURE 7-17

You can override the predefined keyboard shortcuts or add additional
ones. The commands for the IntelliSense features are shown in Table
7-1.

TABLE 7-1: IntelliSense Commands
COMMAND NAME DEFAULT

SHORTCUT
COMMAND
DESCRIPTION

Edit.QuickInfo Ctrl+K, Ctrl+I Displays the
Quick Info
information
about the
selected item

Edit.CompleteWord Ctrl+Space Attempts to
complete a word

Download from finelybook www.finelybook.com

274

if there is a
single match, or
displays a list to
choose from if
multiple items
match

Edit.ToggleCompletionMode Ctrl+Alt+Space Toggles
IntelliSense
between
suggestion and
completion
modes

Edit.ParameterInfo Ctrl+Shift+Space Displays the
information
about the
parameter list in
a function call

Edit.InsertSnippet Ctrl+K, Ctrl+X Invokes the Code
Snippet Picker
from which you
can select a code
snippet to insert
code
automatically

Edit.GenerateMethod Ctrl+K, Ctrl+M Generates the
full method stub
from a template

Edit.ImplementAbstractClassStubs None Generates the
abstract class
definitions from
a stub

Edit.ImplementInterfaceStubsExplicitly None Generates the
explicit
implementation
of an interface

Download from finelybook www.finelybook.com

275

for a class
definition

Edit.ImplementInterfaceStubsImplicitly None Generates the
implicit
implementation
of an interface
for a class
definition

View.QuickActions Ctrl+. Displays the
Quick Actions
(Light Bulb)
information for
the current
context

Use the techniques discussed in Chapter 3, “Options and
Customizations,” to add additional keyboard shortcuts to any of these
commands.

Statement Completion

You can control how IntelliSense works on a global language scale (see
Figure 7-18) or per individual language. In the General tab of the
language group in the Options dialog, you’ll want to change the
Statement Completion options to control how member lists should be
displayed, if at all.

Download from finelybook www.finelybook.com

276

FIGURE 7-18

C#-Specific Options

Besides the general IDE and language options for IntelliSense, some
languages, such as C#, provide an additional IntelliSense tab in their
own sets of options. Displayed in Figure 7-19, IntelliSense for C# can
be further customized to fine-tune how the IntelliSense features
should be invoked and used.

Download from finelybook www.finelybook.com

277

FIGURE 7-19

First, you can turn off completion lists so that they do not appear
automatically. Some developers prefer this because the member lists
don’t get in the way of their code listings. If the completion list is not
to be automatically displayed, but instead only shown when you
manually invoke it, you can choose what is to be included in the list in
addition to the normal entries, including keywords and code snippet
shortcuts.

EXTENDED INTELLISENSE

In addition to the basic aspects of IntelliSense, Visual Studio 2017 also
implements extended IDE functionality that falls into the IntelliSense
feature set. These features are discussed in detail in Chapters 8, “Code
Snippets and Refactoring,” and Chapter 42, “Documentation with
XML Comments” in the online archive, but this section provides a
quick summary of what’s included in IntelliSense.

Download from finelybook www.finelybook.com

278

Code Snippets

Code snippets are sections of code that can be automatically generated
and pasted into your own code, including associated references and
using statements, with variable phrases marked for easy replacement.
To invoke the Code Snippets dialog, press Ctrl+K, Ctrl+X. Navigate the
hierarchy of snippet folders (shown in Figure 7-20) until you find the
one you need. If you know the shortcut for the snippet, you can simply
type it and press Tab, and Visual Studio invokes the snippet without
displaying the dialog. In Chapter 8, “Code Snippets and Refactoring,”
you’ll see just how powerful code snippets are.

FIGURE 7-20

XML Comments

XML comments are described in Chapter 42, “Documentation with
XML Comments,” in the online archive as a way to provide automated
documentation for your projects and solutions. However, another
advantage to using XML commenting in your program code is that
Visual Studio can use it in its IntelliSense engine to display tooltips
and parameter information beyond the simple variable-type
information you see in normal user-defined classes.

Adding Your Own IntelliSense

Visual Studio 2017 supports different levels of IntelliSense for a wide

Download from finelybook www.finelybook.com

279

variety of languages. The range of support goes from syntax
colorization (that is, keywords and operators in a language appear in a
different color) to understanding syntax and context sufficiently to
support Navigate To functionality. As of this writing, the following
languages (aside from the “mainstream” .NET languages) are
supported for only syntax colorization and autocomplete: Bat, Clojure,
CoffeeScript, CSS, Docker, INI, Jade, Javadoc, JSON, LESS, LUA,
Make, Markdown ++, Objective-C, PowerShell, Python, Rust,
ShaderLab, SQL, and YAML. If you don’t recognize all of those
languages, take solace that you’re not alone.
The next level of IntelliSense support includes the ability to create
code snippets (as described in Chapter 8, “Code Snippets and
Refactoring”). Languages that are supported (again, as of this writing)
are: CMake, Go, Groovy, HTML, Java, Javadoc, JavaScript, Lua, Perl,
PHP, R, Ruby, Shellscript, Swift, and XML. Keep in mind that support
for Code Snippets also includes support for syntax colorization and
autocomplete.
The list of languages supported for Navigate To functionality is much
smaller: C++, C#, Go, Java, JavaScript, PHP, TypeScript, and Visual
Basic.
You can also add your own IntelliSense schemas, normally useful for
XML and HTML editing, by creating a correctly formatted XML file
and installing it into the Common7\Packages\schemas\xml subfolder
inside your Visual Studio installation directory. (The default location is
C:\Program Files\Microsoft Visual Studio 15.0.) An example of this
would be extending IntelliSense support for the XML editor to include
your own schema definitions. The creation of such a schema file is
beyond the scope of this book, but you can find schema files on the
Internet by searching for IntelliSense Schema in Visual Studio.

BOOKMARKS AND THE BOOKMARK WINDOW

Bookmarks in Visual Studio 2017 enable you to mark places in your
code modules so that you can easily return to them later. They are
represented by indicators in the left margin of the code, as shown in
Figure 7-21.

Download from finelybook www.finelybook.com

280

FIGURE 7-21

To toggle between bookmarked and not bookmarked on a line, use the
shortcut Ctrl+K, Ctrl+K. Alternatively, you can use the Edit
Bookmarks Toggle Bookmark menu command to do the same thing.

NOTE

Remember that toggle means just that. If you use this command
on a line already bookmarked, it removes the bookmark.

Figure 7-21 shows a section of the code editor window with two
bookmarks set. The top bookmark is in its normal state, represented
by a dark rectangle. The lower bookmark has been disabled and is
represented by a hatched gray rectangle. Disabling a bookmark
enables you to keep it for later use while excluding it from the normal
bookmark-navigation functions.
To enable or disable a bookmark use the Edit Bookmarks Enable
Bookmark toggle menu command. Use the same command to re-
enable the bookmark. This seems counterintuitive because you
actually want to disable an active bookmark, but for some reason the
menu item isn’t updated based on the cursor context.
Along with the ability to add and remove bookmarks, Visual Studio
provides a Bookmarks tool window, shown in Figure 7-22. You can
display this tool window by pressing Ctrl+K, Ctrl+W or via the View
Bookmark Window menu item. By default, this window is docked to
the bottom of the IDE and shares space with other tool windows, such

Download from finelybook www.finelybook.com

281

as the Task List and Find Results windows.

FIGURE 7-22

NOTE

You may want to set up a shortcut for disabling and enabling
bookmarks if you plan to use them a lot in your code
management. To do so, access the Keyboard Options page in the
Environment group in Options and look for Edit.EnableBookmark.

Figure 7-22 illustrates some useful features of bookmarks in Visual
Studio 2017. The first feature is the ability it gives you to create folders
that can logically group the bookmarks. In the example list, notice that
a folder named Old Bookmarks contains a bookmark named
Bookmark3.
To create a folder of bookmarks, click the New Folder icon in the
toolbar along the top of the Bookmarks window. (It’s the second
button from the left.) This creates an empty folder (using a default
name of Folder1, followed by Folder2, and so on) with the name of the
folder in focus so that you can make it more relevant. You can move
bookmarks into the folder by selecting their entries in the list and
dragging them into the wanted folder. Note that you cannot create a
hierarchy of folders, but it’s unlikely that you’ll want to. Bookmarks
can be renamed in the same way as folders, and for permanent
bookmarks, renaming can be more useful than accepting the default
names of Bookmark1, Bookmark2, and so forth. Folders are not only a
convenient way of grouping bookmarks; they also provide an easy way
for you to enable or disable a number of bookmarks in one go, simply
by using the check box beside the folder name.
To navigate directly to a bookmark, double-click its entry in the
Bookmarks tool window. Alternatively, if you want to cycle through all

Download from finelybook www.finelybook.com

282

the enabled bookmarks defined in the project, use the Previous
Bookmark (Ctrl+K, Ctrl+P) and Next Bookmark (Ctrl+K, Ctrl+N)
commands. You can restrict this navigation to only the bookmarks in a
particular folder by first selecting a bookmark in the folder and then
using the Previous Bookmark in Folder (Ctrl+Shift+K, Ctrl+Shift+P)
and Next Bookmark in Folder (Ctrl+Shift+K, Ctrl+Shift+N)
commands.
The last two icons in the Bookmarks window are Toggle All
Bookmarks, which can be used to disable (or re-enable) all the
bookmarks defined in a project, and Delete, which can be used to
delete a folder or bookmark from the list.

NOTE

Deleting a folder also removes all the bookmarks contained in the
folder. Visual Studio provides a confirmation dialog to safeguard
against accidental loss of bookmarks. Deleting a bookmark is the
same as toggling it off.

Bookmarks can also be controlled via the Bookmarks submenu, which
is found in the Edit main menu. In Visual Studio 2017, bookmarks are
also retained between sessions, making permanent bookmarks a much
more viable option for managing your code organization.
Task lists are customized versions of bookmarks displayed in their
own tool windows. The only connection that still exists between the
two is that there is an Add Task List Shortcut command still in the
Bookmarks menu. Be aware that this does not add the shortcut to the
Bookmarks window but instead to the Shortcuts list in the Task List
window.

SUMMARY

IntelliSense functionality extends beyond the main code window.
Various other windows, such as the Command and Immediate tool
windows, can harness the power of IntelliSense through statement and
parameter completion. Any keywords, or even variables and objects,
known in the current context during a debugging session can be
accessed through the IntelliSense member lists.

Download from finelybook www.finelybook.com

283

IntelliSense in all its forms enhances the Visual Studio experience
beyond most other tools available to you. Constantly monitoring your
keystrokes to give you visual feedback or automatic code completion
and generation, IntelliSense enables you to be extremely effective at
writing code quickly and correctly the first time. In the next chapter
you’ll dive into the details behind code snippets, a powerful addition to
IntelliSense.
In this chapter you’ve also seen how you can set and navigate between
bookmarks in your code. Becoming familiar with using the associated
keystrokes can help you improve your coding efficiency.

Download from finelybook www.finelybook.com

284

8
Code Snippets and Refactoring

WHAT’S IN THIS CHAPTER?

Using code snippets
Creating your own code snippets
Refactoring code

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
One of the advantages of using an integrated development
environment (IDE) over a plain text editor is that it’s designed to
help you be more productive and efficient by enabling you to write
code faster. Two of Visual Studio 2017’s most powerful features
that help increase your productivity are its support for code
snippets and the refactoring tools that it provides.
Code snippets are small chunks of code that can be inserted into an
application’s code base and then customized to meet the
application’s specific requirements. They do not generate full-
blown applications or whole files, unlike project and item
templates. Instead, code snippets are used to insert frequently used
code structures or obscure program code blocks that are not easy
to remember. In the first part of this chapter, you see how using
code snippets can improve your coding efficiency enormously.
This chapter also focuses on Visual Studio 2017’s refactoring tools
— refactoring is the process of reworking code to improve it
without changing its functionality. This might entail simplifying a

Download from finelybook www.finelybook.com

285

http://wrox.com
http://www.wrox.com

method, extracting a commonly used code pattern, or even
optimizing a section of code to make it more efficient.
With Visual Studio 2017, C# and VB have come closer to parity in
terms of the supported refactoring tools. As the built-in
refactorings are discussed in this chapter, there will generally be an
indication of those that are supported in C# only.

CODE SNIPPETS REVEALED

Visual Studio 2017 includes extensive code snippet support that allows
a block of code along with predefined replacement variables to be
inserted into a file, making it easy to customize the inserted code to
suit the task at hand.

Storing Code Blocks in the Toolbox

Before looking at code snippets, this section looks at the simplest
means Visual Studio provides to insert predefined blocks of text into a
file. Much as it can hold controls to be inserted on a form, the Toolbox
can also hold blocks of text (such as code) that can be inserted into a
file. To add a block of code (or other text) to the Toolbox, simply select
the text in the editor and drag it over onto the Toolbox. This creates an
entry for it in the Toolbox with the first line of the code as its name.
You can rename, arrange, and group these entries like any other
element in the Toolbox. To insert the code block, you simply drag it
from the Toolbox (as shown in Figure 8-1) to the desired location in a
file. Or simply double-click the Toolbox entry to insert it at the current
cursor position in the active file.

Download from finelybook www.finelybook.com

286

FIGURE 8-1

NOTE

Many presenters use this simple feature to quickly insert large
code blocks when writing code live in presentations.

This is the simplest form of code snippet behavior in Visual Studio
2017, but with its simplicity comes limited functionality, such as the
lack of ability to modify and share the snippets. Nevertheless, this
method of keeping small sections of code can prove useful in some
scenarios to maintain a series of code blocks for short-term use.

Code Snippets

Code snippets are a much more useful way to insert blocks of code into
a file. Code snippets are defined in individual XML files, each
containing a block of code that programmers may want to insert into
their code. They may also include replaceable parameters, making it
easy to customize the inserted snippet for the current task. They are
integrated with Visual Studio’s IntelliSense, making them easy to find
and insert into a code file.

NOTE

VB code snippets also give you the ability to add assembly

Download from finelybook www.finelybook.com

287

references and insert Imports statements.

Visual Studio 2017 ships with many predefined code snippets for the
two main languages, VB and C#, along with snippets for JavaScript,
HTML, XML, CSS, Testing, Office Development, C++, and SQL Server.
These snippets are arranged hierarchically in a logical fashion so that
you can easily locate the appropriate snippet. Rather than locate the
snippet in the Toolbox, you can use menu commands or keyboard
shortcuts to bring up the main list of groups.
In addition to the predefined code snippets, you can create your own
code snippets and store them in this code snippet library. Because
each snippet is stored in a special XML file, you can even share them
with other developers.
Following are three scopes under which a snippet can be inserted:

Class Declaration: The snippet actually generates an entire
class.
Member Declaration: This snippet scope includes code that
defines members, such as methods, properties, and event handler
routines. This means it should be inserted outside an existing
member.
Member Body: This scope is for snippets that are inserted into
an already defined member, such as a method.

Using Snippets in C#

Insert Snippet is a special kind of IntelliSense that appears inline in
the code editor. Initially, it displays the words Insert Snippet along
with a drop-down list of code snippet groups from which to choose.
After you select the group that contains the snippet you require (using
up and down arrows, followed by the Tab key), it shows you a list of
snippets, and you can simply double-click the one you need.
(Alternatively, pressing Tab or Enter with the required snippet
selected has the same effect.)
To insert a code snippet in C#, simply locate the position where you
want to insert the generated code, and then the easiest way to bring up
the Insert Snippet list is to use the keyboard shortcut combination of
Ctrl+K, Ctrl+X. You have two additional methods to start the Insert

Download from finelybook www.finelybook.com

288

Snippet process. The first is to right-click at the intended insertion
point in the code window and select Insert Snippet from the context
menu that is displayed. The other option is to use the Edit
IntelliSense Insert Snippet menu command.
At this point, Visual Studio brings up the Insert Snippet list, as Figure
8-2 demonstrates. As you scroll through the list and hover the mouse
pointer over each entry, a tooltip displays to indicate what the snippet
does and a shortcut that you can use to insert it.

FIGURE 8-2

To use the shortcut for a code snippet, simply type it into the code
editor (note that it appears in the IntelliSense list) and press the Tab
key twice to insert the snippet at that position.
Figure 8-3 displays the result of selecting the Automatically
Implemented Property snippet. To help you modify the code to fit your
own requirements, the sections you would normally need to change
(the replacement variables) are highlighted, with the first one
conveniently selected.

Download from finelybook www.finelybook.com

289

FIGURE 8-3

When you change the variable sections of the generated code snippet,
Visual Studio 2017 helps you even further. Pressing the Tab key moves
to the next highlighted value, ready for you to override the value with
your own. Shift+Tab navigates backward, so you have an easy way to
access the sections of code that need changing without needing to
manually select the next piece to modify. Some code snippets use the
same variable for multiple pieces of the code snippet logic. This means
changing the value in one place results in it changing in all other
instances.
To hide the highlighting of these snippet variables when you finish,
you can simply continue coding, or press either Enter or Esc.

Using Snippets in VB

Code snippets in VB have additional features beyond what is available
in C#, namely the ability to automatically add references to assemblies
in the project and insert Imports statements into a file that the code
needs to compile.
To use a code snippet, first locate where you want the generated code
to be placed in the program listing, and position the cursor at that
point. You don’t have to worry about the associated references and

Download from finelybook www.finelybook.com

290

Imports statements; they will be placed in the correct location. Then,
as with C# snippets, you can use one of the following methods to
display the Insert Snippet list:

Use the keyboard chord Ctrl+K, Ctrl+X.
Right-click and choose Insert Snippet from the context menu.
Run the Edit IntelliSense Insert Snippet menu command.

VB also has an additional way to show the Insert Snippet List: Simply
type ? and press Tab.
Do so, and then navigate through the hierarchy and insert a snippet
named Draw a Pie Chart. Figure 8-4 demonstrates how you might
navigate through the hierarchy to find the snippet and insert it into
your project.

FIGURE 8-4

You might have noticed in Figure 8-4 that the tooltip text includes the
words Shortcut: drawPie. This text indicates that the selected code
snippet has a text shortcut that you can use to automatically invoke
the code snippet behavior without navigating the code snippet
hierarchy. As with C#, all you need to do is type the shortcut into the
code editor and press the Tab key once for it to be inserted. In VB the
shortcut isn’t case-sensitive, so you can generate this example by
typing drawpie and pressing Tab. Note that shortcuts don’t appear in
IntelliSense in VB as they do in C#.
After inserting the code snippet, if it contains replacement variables,
you can enter their values and then navigate between these by pressing
Tab as described for C#. To hide the highlighting of these snippet
variables when you are done, you can simply continue coding, or right-

Download from finelybook www.finelybook.com

291

click and select Hide Snippet Highlighting. If you want to highlight all
the replacement variables of the code snippets inserted since the file
was opened, right-click and select Show Snippet Highlighting.

Surround With Snippet

The last snippet action, available in C#, is the capability to surround
an existing block of code with a code snippet. For example, to wrap an
existing block with a conditional try-catch block, right-click and select
Surround With, or select the block of code and press Ctrl+K, Ctrl+S.
This displays the Surround With drop-down that contains a list of
surrounding snippets that are available to wrap the selected line of
code, as shown in Figure 8-5.

FIGURE 8-5

Selecting the try snippet results in the following code:
C#

public void MethodXYZ(string name)
{
 try
 {
 MessageBox.Show(name);
 }
 catch (Exception)
 {

Download from finelybook www.finelybook.com

292

 throw;
}

Code Snippets Manager

The Code Snippets Manager is the central library for the code snippets
known to Visual Studio 2017. You can access it via the Tools Code
Snippet Manager menu command or the keyboard shortcut chord
Ctrl+K, Ctrl+B.
When it is initially displayed, the Code Snippets Manager shows the
HTML snippets available, but you can change it to display the snippets
for the language you are using via the Language drop-down list. Figure
8-6 shows how it looks when you’re editing a C# project. The
hierarchical folder structure follows the same set of folders on the PC
by default, but as you add snippet files from different locations and
insert them into the different groups, the new snippets slip into the
appropriate folders.

Download from finelybook www.finelybook.com

293

FIGURE 8-6

If you have an entire folder of snippets to add to the library, such as
when you have a corporate setup and need to import the company-
developed snippets, use the Add button. This brings up a dialog that
you use to browse to the required folder. Folders added in this fashion
appear at the root level of the tree — on the same level as the main
groups of default snippets. However, you can add a folder that
contains subfolders, which will be added as child nodes in the tree.
Removing a folder is just as easy — actually it’s dangerously easy.
Select the root node that you want to remove, and click the Remove
button. Instantly, the node and all child nodes and snippets are
removed from the Snippets Manager without a confirmation window.

Download from finelybook www.finelybook.com

294

If you do this by accident, you should click the Cancel button and open
the dialog again. If you’ve made changes you don’t want to lose, you
can add them back by following the steps explained in the previous
walkthrough, but it can be frustrating trying to locate a default snippet
folder that you inadvertently deleted from the list.

NOTE

The removal of a folder is permanent. There is no undo feature
available to protect you from an inadvertent mistake.

The location for the code snippets installed with Visual Studio 2017 is
deep within the installation folder. By default, the code snippet library
when running on 32-bit Windows is installed in
%programfiles%\Microsoft Visual Studio 15.0\VB\Snippets\1033 for
VB snippets and %programfiles%\Microsoft Visual Studio

15.0\VC#\Snippets\1033 for C#. For 64-bit Windows, replace
%programfiles% with %programfiles(x86)%. You can import individual
snippet files into the library using the Import button. The advantage of
this method over the Add button is that you get the opportunity to
specify the location of each snippet in the library structure.

Creating Snippets

Visual Studio 2017 does not ship with a code snippet creator or editor.
However, Bill McCarthy’s Snippet Editor allows you to create, modify,
and manage your snippets (including support for VB, C#, HTML,
JavaScript, and XML snippets). The Snippet Editor is an open-source
project hosted on CodePlex. With the help of other MVPs, it is also
available in a number of different languages. You can download the
source code for the snippet editor from the Wrox download code
section. This source code is the same as what can be found on
CodePlex, except that a section has been added to the app.config file to
support Visual Studio 2017.
Creating code snippets by manually editing the .snippet XML files can
be a tedious and error-prone process, so the Snippet Editor makes it a
much more pleasant experience. When you start the Snippet Editor,
you can notice a drop-down list in the top left corner. If you select

Download from finelybook www.finelybook.com

295

SnippetEditor.Product.Utility from the list, a tree containing all of the
known snippets appears. By expanding a node you can see a set of
folders similar to those in the code snippet library.

Reviewing Existing Snippets

An excellent feature of the Snippet Editor is the view it offers of the
structure of any snippet file in the system. This means you can browse
the default snippets installed with Visual Studio, which can provide
insight into how to better build your own snippets.
Browse to the snippet you’re interested in, and double-click its entry to
display it in the Editor window. Figure 8-7 shows a simple snippet to
Display a Windows Form. Four main panes contain all the associated
information about the snippet. From top to bottom, these panes are
described in Table 8-1.

Download from finelybook www.finelybook.com

296

FIGURE 8-7

TABLE 8-1: Information Panes for Snippets
PANE FUNCTION

Download from finelybook www.finelybook.com

297

Properties The main properties for the snippet, including title,
shortcut, and description.

Code Defines the code for the snippet, including all Literal and
Object replacement regions.

References If your snippet requires assembly references, this tab
enables you to define them.

Imports Similar to the References tab, this tab enables you to
define any Imports statements required for your snippet
to function correctly.

Browsing through these panes enables you to analyze an existing
snippet for its properties and replacement variables. In Figure 8-7,
there is a single replacement region with an ID of formName and a
default value of Form.
To demonstrate how the Snippet Editor makes creating your own
snippets straightforward, follow this next exercise to create a snippet
that creates three subroutines, including a helper subroutine:
1. Start the Snippet Editor and create a new snippet. To do this, select

a destination folder in the tree, right-click, and select Add New
Snippet from the context menu displayed.

2. When prompted, name the snippet Create A Button Sample and
click OK. Double-click the new entry to open it in the Editor pane.

NOTE

Creating the snippet does not automatically open the new
snippet in the Editor — don’t overwrite the properties of
another snippet by mistake!

3. The first thing you need to do is edit the Title, Description, and
Shortcut fields (see Figure 8-8):

Download from finelybook www.finelybook.com

298

FIGURE 8-8

Title: Create A Button Sample
Description: This snippet produces the code to create a
button and hook an event.

Shortcut: CreateAButton
4. Because this snippet contains member definitions, set the Type to

Member Declaration.
5. In the Editor window, insert the code necessary to create the three

subroutines:
VB

Private Sub CreateButtonHelper
 CreateAButton(controlName, controlText, Me)

Download from finelybook www.finelybook.com

299

End Sub

Private Sub CreateAButton(ByVal ButtonName As String, _
 ByVal ButtonText As String, _
 ByVal Owner As Form)
 Dim MyButton As New Button

 MyButton.Name = ButtonName
 MyButton.Text = ButtonName
 Owner.Controls.Add(MyButton)

 MyButton.Top = 0
 MyButton.Left = 0
 MyButton.Text = ButtonText
 MyButton.Visible = True

 AddHandler MyButton.Click, AddressOf
ButtonClickHandler
End Sub

Private Sub ButtonClickHandler(ByVal sender As
System.Object, _
 ByVal e As
System.EventArgs)
 MessageBox.Show("The " & sender.Name & " button was
clicked")
End Sub

C#

private void CreateButtonHelper()
{
 CreateAButton(controlName, controlText, this);
}

private void CreateAButton(string ButtonName, string
ButtonText,
 Form Owner)
{
 Button MyButton = new Button();

 MyButton.Name = ButtonName;
 MyButton.Text = ButtonName;
 Owner.Controls.Add(MyButton);

 MyButton.Top = 0;
 MyButton.Left = 0;

Download from finelybook www.finelybook.com

300

 MyButton.Text = ButtonText;
 MyButton.Visible = true;

 MyButton.Click += MyButton_Click;
}

private void MyButton_Click(object sender, EventArgs e)
{
 MessageBox.Show("The " + sender.Name + " button was
clicked");
}

6. Your code differs from that shown in Figure 8-8 in that the word
controlName does not appear highlighted. In Figure 8-8, this
argument has been made a replacement region. You can do this by
selecting the entire word, right-clicking, and selecting Add
Replacement (or alternatively, clicking the Add button in the area
below the code window).

7. Change the replacement properties like so:
ID: controlName
Defaults to: "MyButton"
Tooltip: The name of the button

8. Repeat this for controlText:
ID: controlText
Defaults to: "Click Me!"
Tooltip: The text property of the button

Your snippet is finished and ready to use. You can use Visual Studio
2017 to insert the snippet into a code window.

Distributing Code Snippets

If you have created a number of code snippets and want to share them
with your friends and colleagues, the simplest approach is to send the
.snippet files and have them use the Import feature in the Code
Snippet Manager. However, if you are trying to make the process a
little easier (or you have more than a few friends), you can package the
snippet into a Visual Studio installer (.vsi) file and allow them to

Download from finelybook www.finelybook.com

301

automatically install it into their Visual Studio instance.
For our example, consider the following snippet, which has been
placed into the SayHello.snippet file.

<?xml version="1.0" encoding="utf-8"?>
<CodeSnippet Format="1.0.0"

xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">

 <Header>
 <Title>Say Hello</Title>
 <Author>Bruce Johnson</Author>
 <Description>C# snippet for being polite...because I'm
Canadian, after all</Description>
 <HelpUrl>
 </HelpUrl>
 <Shortcut>sayh</Shortcut>
 </Header>
 <Snippet>
 <Code Language="C#">
 <![CDATA[Console.WriteLine("Hello World");]]>
 </Code>
 </Snippet>
</CodeSnippet>

Snippets can easily be distributed using a .vsi file. The simple
structure of a .vsi file makes the process very easy. First, the file itself
is just a .zip file with the extension changed to .vsi. Second, in the file
itself, there is a manifest (which has a .vscontent extension) that
describes what the components of the .vsi file are.
So, to distribute the snippet shown above, create a file called
SayHello.vscontent. The content of the file (which is well-formed
XML) looks like the following.

<VSContent
xmlns="http://schemas.microsoft.com/developer/vscontent/2005">

 <Content>
 <FileName>SayHello.snippet</FileName>
 <DisplayName>Polite C# Code</DisplayName>
 <Description>C# snippet for being polite
</Description>
 <FileContentType>Code Snippet</FileContentType>
 <ContentVersion>2.0</ContentVersion>
 <Attributes>

Download from finelybook www.finelybook.com

302

 <Attribute name="lang" value="c#"/>
 </Attributes>
 </Content>
</VSContent>

After you have saved the snippet, add both the .vscontent file and the
SayHello.snippet file to a .zip file. Then change the extension on that
file to .vsi instead of .zip. The file is ready for you to give to your
friends and colleagues; when they double-click it, the snippet will be
installed into Visual Studio.

ACCESSING REFACTORING SUPPORT

There are a number of ways to invoke the refactoring tools in Visual
Studio 2017, including from the right-click context menu, light bulbs,
and the Edit Refactor menu option. Regardless of your entry point,
the refactoring user experience includes contextual awareness to help
smooth the process. Specifically, the context menu shows only the
items that apply to the currently selected code and the cursor position.
In addition, you can use light bulb as the starting point for any
refactoring, and it is only present when there are refactorings that
apply to the current context. The full list of refactoring actions
available within Visual Studio 2017 includes Rename, Extract Method,
Encapsulate Field, Extract Interface, Promote Local Variable to
Parameter, Remove Parameters, and Reorder Parameters. You can
also use Generate Method Stub and Remove and Sort Usings, which
can be loosely classified as refactoring. And two new refactoring
actions have been added: Inline Temporary Variable and Inline Local.
The good news for VB developers is that Visual Studio 2017 provides
support for all these refactorings. It’s just one more thing you can
attribute to the development of the Roslyn compiler.

REFACTORING ACTIONS

The following sections describe each of the refactoring options and
provide examples of how to use built-in support for both C# and VB
(when appropriate).

Download from finelybook www.finelybook.com

303

Extract Method

One of the best ways to start refactoring a long method is to break it up
into several smaller methods. The Extract Method refactoring action is
invoked by selecting the region of code you want moved out of the
original method and selecting Extract Method from the quick action
options or using the Refactor Extract Method context menu option.
The mechanism for naming your new method utilizes the same
interface that code snippets do. When you select Extract Method, the
method is immediately removed from its current location and padded
to a new method. The name of the method is set to NewMethod, and a
call to the new method replaces the extracted code block in the original
call site. The method name is highlighted, and if you change it (as you
are likely to), the name of the method at the calling site is changed as
well. If there are variables within the block of code to be extracted that
were used earlier in the original method, they automatically appear as
variables in the method signature.
For example, in the following code snippet, if you want to extract the
conditional logic into a separate method, you can select the code,
shown in bold, and choose Refactor Extract Method from the right-
click context menu:
C#

private void button1_Click(object sender, EventArgs e)
{
 string connectionString =
Properties.Settings.Default.ConnectionString;
 if (connectionString == null)
 {
 connectionString = "DefaultConnectionString";
 }
 MessageBox.Show(connectionString);
 /* ... Much longer method ... */
}

The result of the refactor is illustrated in Figure 8-9.

Download from finelybook www.finelybook.com

304

FIGURE 8-9

At this point, the Extract Method refactor is finished, and you are now
in a Rename refactor. In this case, the Rename is related to the name
of the method you just extracted. Your cursor is placed in the name of
the new method. As you change the name, the change is immediately
reflected in both locations. Notice the area in the top right of Figure 8-
9. This area controls the Rename refactor. It contains a couple of
options that are described in the “Rename” section later in this
chapter. But more importantly, it includes an Apply button that must
be clicked to confirm the renaming of the method from NewMethod to
whatever you entered.

Encapsulate Field

Another common task when refactoring is to encapsulate an existing
class variable with a property. This is what the Encapsulate Field
refactoring action does. To invoke this action, select the variable you
want to encapsulate, and then choose Quick Actions and Refactorings
from the context menu. This displays the list of refactoring options, as
shown in Figure 8-10.

Download from finelybook www.finelybook.com

305

FIGURE 8-10

Choose the type of encapsulation you want to use. The difference, as
indicated by the and use property, and but still use field text, is
whether existing references to the public field will continue to use the
private field or use the public property instead. The name of the
created property is generated from the name of the selected variable.

Extract Interface

As a project goes from prototype or early-stage development to a full
implementation or growth phase, it’s often necessary to extract the
core methods for a class into an interface to enable other
implementations or to define a boundary between disjointed systems.
In the past you could do this by copying the entire method to a new file
and removing the method contents, so you were just left with the
interface stub. The Extract Interface refactoring action enables you to
extract an interface based on any number of methods within a class.
When this refactoring action is invoked on a class, the user interface in
Figure 8-11 displays.

FIGURE 8-11

Choose the Extract Interface option and the dialog shown in Figure 8-
12 appears. This enables you to select which methods are included in
the interface. When selected, those methods are added to the new
interface. The new interface is also added to the original class.

Download from finelybook www.finelybook.com

306

FIGURE 8-12

Change Signature

Sometimes it’s necessary to completely reorder parameters or remove
parameters from the method signature. This is often for cosmetic
reasons, but it can also aid readability and is sometimes warranted
when implementing interfaces. Or perhaps the parameter is no longer
needed by the underlying functionality.
When you’re modifying a method signature, one of the challenges is
finding the method calls that are affected. By using the refactoring
function, you can considerably reduce the searching that must be done
for any compilation errors that would occur. This function is also
particularly useful when there are multiple overloads for a method,
and changing the signature may not generate compile errors; in such a
case, runtime errors may occur due to semantic, rather than
syntactical, mistakes.
To access the Change Signature functionality, select the method to be

Download from finelybook www.finelybook.com

307

modified and choose Quick Actions and Refactorings from the context
menu. That displays the interface shown in Figure 8-13.

FIGURE 8-13

Selecting the Change Signature option causes the Change Signature
dialog, as shown in Figure 8-14, to appear. Through this dialog, you
can move parameters up and down in the list according to the order in
which you want them to appear, or you can remove them completely.
When you’re finished, click OK to complete the refactoring.

FIGURE 8-14

Download from finelybook www.finelybook.com

308

Inline and Explaining Variables

These two refactorings provide both sides of a common scenario. That
scenario revolves around the user of temporary, local variables in a
method.
The purpose of the Inline Temporary Variables refactor is best
demonstrated with code. Consider the following method.
C#

public void MethodXYZ(string name)
{
 var data = InternalMethod(2.0);
 var result = AnotherInternalMethod(name, data);
}

The inlining of the temporary variable data results in the parameter
line for AnotherInternalMethod containing the call to InternalMethod
instead of using the data variable. The refactor is accessed through the
Quick Actions and Refactorings option in the right-click context menu
after selecting the variable. The interface is visible in Figure 8-15. The
preview section of Figure 8-15 should give you a decent indication of
what the inlining would look like.

FIGURE 8-15

The Introduce explaining variable refactor goes the other way. In this
case, you select the expression that is used in the method signature.
The Quick Actions and Refactorings option in the context menu
displays the interface (seen in Figure 8-16) that allows you to create an
explaining variable that is placed back into the method signature.

Download from finelybook www.finelybook.com

309

FIGURE 8-16

If the selected expression is a constant, then along with being able to
create a local variable (as a constant), you could also refactor into a
class-level constant variable.

Rename

The Rename refactor is used in a number of other refactorings and as
a standalone method. To trigger the standalone version, select a
variable and then choose Rename from the right-click context menu.
The interface shown in Figure 8-17 appears.

FIGURE 8-17

Now type the new name for the variable and click on the Apply button
to complete the refactor. The options that appear in the right of Figure
8-17 are used to control the areas that are searched for the renaming.
If you select the Include Comments option, then if the variable name
appears in a string, it will be changed to the new variable name. For
the Include Strings option, if the variable name is found in a string, it
will be updated. And if you want to preview the changes, check the

Download from finelybook www.finelybook.com

310

Preview Changes check box before clicking Apply.

Simplify Object Initialization

The ability to set properties of an object at the same time as the object
is created has been available in .NET compilers for a number of years.
As of Visual Studio 2017, there is now a compiler warning (IDE00017)
that is generated if you don’t use object initializers but instead have a
series of property assignments immediately after instantiating an
object. The goal of this refactoring is to simplify the process of fixing
this warning.
With your cursor on the instantiation code, the Lightbulb or Quick
Actions and Refactorings context menu includes a couple of options. If
you choose Object initialization can be simplified, then you see a
preview similar to what is visible in Figure 8-18. Alternatively, you can
select the Suppress IDE00017 option, and the compiler directive that
suppresses the warning will be inserted into your code.

FIGURE 8-18

Inline Variable Declarations

Download from finelybook www.finelybook.com

311

For many, Inline Variable Declarations addresses a pet peeve in C#. If
you use methods like TryParse that include an out parameter, it is
necessary to declare the variable before using it in the method call. An
example of this can be found below:
C#

int parsedValue
if (Int32.TryParse(stringToParse, out parsedValue))
{
 // Do stuff
}

With C# 7, it is now possible to declare the out parameter at the same
time as it is used. And Inline Variable Declarations is used to perform
a refactoring to get to the situation. With your cursor on the variable
name (parsedValue in the example), the Lightbulb includes the Inline
Variable Declarations options, shown in Figure 8-19.

FIGURE 8-19

Use “throw” Expression

The goal of this refactoring is to reduce the amount of code
surrounding null checks. As well, it takes advantage of a new C# 7
features that allow for throw expressions to be executed from within a
null coalescing operator. The code being replaced is a relatively
standard null check, as seen below.
C#

if (value == null)

Download from finelybook www.finelybook.com

312

{
 throw new ArgumentNullException(nameof(value));
}
name = value;

With your cursor on the value parameter, the option to Use ‘throw’
expression appears in the list of possible refactorings. When you hover
your mouse over that option, an interface similar to Figure 8-20
appears.

FIGURE 8-20

The suggested change is to use the null coalescing operator to either
assign value to name or, in the case where value is null, throw an
exception. In other words, the result is the same, but the number of
lines of code has decreased.

Generate Method Stub

As you write code, you may realize that you need to call a method that
you haven’t written yet. For example, the following snippet illustrates
a new method that you need to generate at some later stage:
VB

Private Sub MethodA()
 Dim InputA As String
 Dim InputB As Double
 Dim OutputC As Integer = NewMethodIJustThoughtOf(InputA,
InputB)

Download from finelybook www.finelybook.com

313

End Sub

C#

public void MethodA()
{
 string InputA;
 double InputB;
 int OutputC = NewMethodIJustThoughtOf(InputA, InputB);
}

Of course, the preceding code generates a build error because this
method has not been defined. Using the Generate Method Stub
refactoring action (available as a Quick Actions and Refactorings from
the context menu), you can generate a method stub. As you can see
from the following sample, the method stub is complete with input
parameters and output type:
VB

Private Function NewMethodIJustThoughtOf(ByVal InputA As
String,
 ByVal InputB As
Double) As Integer
 Throw New NotImplementedException
End Function

C#

private int NewMethodIJustThoughtOf(string InputA, double
InputB)
{
 throw new NotImplementedException();
}

Remove and Sort Usings

It’s good practice to maintain a sorted list of Using statements in each
file (in C#), and reference only those namespaces that are actually
required within that file. After a major refactoring of your code, you
may find that you have a number of using directives at the top of your
code file that are no longer used. Rather than going through a process
of trial and error to determine what is and isn’t used, you can use an
operation in Visual Studio to do this for you by right-clicking in the

Download from finelybook www.finelybook.com

314

code editor and choosing Remove and Sort Usings (shown in Figure 8-
21). (In VB, the option is Remove and Sort Imports.) The using
directives, using aliases, and external assembly aliases not used in the
code file are removed. And the entire list is sorted. The using directives
from the System namespace appear first; then the using directives from
other namespaces appear in alphabetical order. If you have aliases
defined for namespaces, these are moved to the bottom of the list, and
if you use external assembly aliases (using the extern keyword in C#),
these are moved to the top of the list.

FIGURE 8-21

NOTE

The default Visual Studio template code files have the using
statements at the top of the file outside the namespace block.
However, if you follow the static code analysis guidelines, these
specify that using statements should be contained within the
namespace block. The Remove and Sort Usings functions handle
either situation based upon the current location of the using
statements in the file and retaining that location.

SUMMARY

Code snippets are a valuable inclusion in the Visual Studio 2017
feature set. You learned in this chapter how to use them and how to
create your own, including variable substitution (and Imports and
reference associations for VB snippets). With this information, you can
create your own library of code snippets from functionality that you
use frequently, saving you time in coding similar constructs later. This
chapter also provided examples of each of the refactoring actions
available within Visual Studio 2017.

Download from finelybook www.finelybook.com

315

9
Server Explorer

WHAT’S IN THIS CHAPTER?

Querying hardware resources and services on local and remote
computers
Using the Server Explorer to easily add code to your
applications that works with computer resources

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
The Server Explorer is one of the few tool windows in Visual Studio
that is not specific to a solution or project. It allows you to explore
and query hardware resources and services on local or remote
computers. You can perform various tasks and activities with these
resources, including adding them to your applications.
The Server Explorer, as shown in Figure 9-1, has four types of
resources to which it can connect out of the box. The first, found
under the Azure node, gives you access to a few of the types of
Azure components that you can create. More details about these
components can be found in Chapter 23, “Windows Azure.” The
second type of resources is under the Data Connections node and
allows you to work with all aspects of data connections, including
the ability to create databases, add and modify tables, build
relationships, and even execute queries. Chapter 26, “Visual
Database Tools,” covers the Data Connections functionality in
detail. The third, under the Servers node, enables you to access
hardware resources and services on a local or remote computer.

Download from finelybook www.finelybook.com

316

http://wrox.com
http://www.wrox.com

This functionality is explored in detail in this chapter. Finally, you
can add a connection to a SharePoint server and browse
SharePoint-specific resources such as Content Types, Lists,
Libraries, and Workflows. The visible connection types depend on
the SDKs that you have installed.

FIGURE 9-1

SERVER CONNECTIONS

The Servers node would be better named Computers because you can
use it to attach to and interrogate any computer to which you have
access, regardless of whether it is a server or a desktop workstation.
Each computer is listed as a separate node under the Servers node.
Below each computer node is a list of the hardware, services, and other
components that belong to that computer. Each of these contains a
number of activities or tasks that can be performed. Several software
vendors have components that extend the functionality provided by
the Server Explorer.
To access Server Explorer, on the View menu, select Server Explorer.
By default, the local computer appears in the Servers list. To add

Download from finelybook www.finelybook.com

317

another computer, right-click the Servers node, and select Add Server
from the context menu.
Entering a computer name or IP address initiates an attempt to
connect to the machine using your credentials. If you do not have
sufficient privileges, you can elect to connect using a different
username by clicking the appropriate link. The link appears to be
disabled, but clicking it does bring up a dialog, as shown in Figure 9-2,
in which you can provide an alternative username and password.

FIGURE 9-2

NOTE

In order to access the resources on any server, you need to
connect to that server with an account that has access to the
desired resources.

Event Logs

The Event Logs node gives you access to the machine event logs. You
can launch the Event Viewer from the right-click context menu.
Alternatively, as shown in Figure 9-3, you can drill into the list of
event logs to view the events for a particular application. Clicking any
of the events displays information about the event in the Properties

Download from finelybook www.finelybook.com

318

window.

FIGURE 9-3

Although the Server Explorer is useful for interrogating a machine
while writing your code, the true power comes with the component
creation you get when you drag a resource node onto a Windows
Form. For example, if you drag the Application node onto a Windows
Form, you get an instance of the System.Diagnostics.EventLog class
added to the nonvisual area of the designer. The same can be done by
right-clicking the log in the Server Explorer and selecting Add to
Designer from the context menu. You can then write an entry to this
event log using the following code:
C#

this.eventLog1.Source = "My Server Explorer App";
this.eventLog1.WriteEntry("Something happened",

System.Diagnostics.EventLogEntryType.Information);

VB

Download from finelybook www.finelybook.com

319

Me.EventLog1.Source = "My Server Explorer App"
Me.EventLog1.WriteEntry("Something happened",

System.Diagnostics.EventLogEntryType.Information)

NOTE

Because the preceding code creates a new Source in the
Application Event Log, it requires administrative rights to
execute. If you run Windows 8 with User Account Control
enabled, you should create an application manifest. This is
discussed in Chapter 6, “Solutions, Projects, and Items.”

After you run this code, you can view the results directly in the Server
Explorer. Click the Refresh button on the Server Explorer toolbar to
ensure that the new Event Source displays under the Application
Event Log node.
For Visual Basic programmers, an alternative to adding an EventLog
class to your code is to use the built-in logging provided by the My
namespace. For example, you can modify the previous code snippet to
write a log entry using the My.Application.Log.WriteEntry method:
VB

My.Application.Log.WriteEntry("Button Clicked",
TraceEventType.Information)

You can also write exception information using the
My.Application.Log.WriteException method, which accepts an
exception and two optional parameters that provide additional
information.
Using the My namespace to write logging information has a number of
additional benefits. In the following configuration file, an
EventLogTraceListener is specified to route log information to the
event log. However, you can specify other trace listeners — for
example, the FileLogTraceListener, which writes information to a log
file by adding it to the SharedListeners and Listeners collections:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.diagnostics>

Download from finelybook www.finelybook.com

320

 <sources>
 <source name="DefaultSource"
switchName="DefaultSwitch">
 <listeners>
 <add name="EventLog"/>
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="DefaultSwitch" value="Information"/>
 </switches>
 <sharedListeners>
 <add name="EventLog"

type="System.Diagnostics.EventLogTraceListener"
 initializeData="ApplicationEventLog"/>
 </sharedListeners>
 </system.diagnostics>
</configuration>

This configuration also specifies a switch called DefaultSwitch. This
switch is associated with the trace information source via the
switchName attribute and defines the minimum event type that will be
sent to the listed listeners. For example, if the value of this switch were
Critical, events with the type Information would not be written to the
event log. The possible values of this switch are shown in Table 9-1.

TABLE 9-1: Values for DefaultSwitch
DEFAULTSWITCH EVENT TYPES WRITTEN TO LOG
Off No events
Critical Critical events
Error Critical and Error events
Warning Critical, Error, and Warning events
Information Critical, Error, Warning, and Information

events
Verbose Critical, Error, Warning, Information, and

Verbose events
ActivityTracing Start, Stop, Suspend, Resume, and Transfer

events

Download from finelybook www.finelybook.com

321

All All events

Note that there are overloads for both WriteEntry and WriteException
that do not require an event type to be specified. In this case the event
type defaults to Information and Error, respectively.

Message Queues

The Message Queues node, expanded in Figure 9-4, gives you access to
the message queues available on your computer. You can use three
types of queues: private, which does not appear when a foreign
computer queries your computer; public, which is visible when
queried by a foreign computer; and system, which is used for unsent
messages and other exception reporting.

FIGURE 9-4

NOTE

To use the Message Queues node, you need to ensure that MSMQ
is installed on your computer. You can do this via Programs and
Features in the Control Panel. Select the Turn Windows Features
On or Off task menu item, and then select the check box to enable
the Microsoft Message Queue (MSMQ) Server feature.

Download from finelybook www.finelybook.com

322

In Figure 9-4, a message queue called samplequeue has been added to
the Private Queues node by selecting Create Queue from the right-click
context menu. After you create a queue, you can create a properly
configured instance of the MessageQueue class by dragging the queue
onto a new Windows Form. To demonstrate the functionality of the
MessageQueue object, add two TextBoxes and a button to the form, laid
out as shown in Figure 9-5. The Send button is wired to use the
MessageQueue object to send the message entered in the first textbox. In
the Load event for the form, a background thread is created that
continually polls the queue to retrieve messages, which can populate
the second textbox:

FIGURE 9-5

C#

public Form1()
{
 InitializeComponent();
 var monitorThread = new
System.Threading.Thread(MonitorMessageQueue);
 monitorThread.IsBackground = true;
 monitorThread.Start();
 this.button1.Click +=new EventHandler(btn_Click);
}

Download from finelybook www.finelybook.com

323

private void btn_Click(object sender, EventArgs e)
{
 this.messageQueue1.Send(this.textBox1.Text);
}

private void MonitorMessageQueue()
{
 var m = default(System.Messaging.Message);
 while (true)
 {
 try
 {
 m = this.messageQueue1.Receive(new TimeSpan(0, 0,
0, 0, 50));
 this.ReceiveMessage((string)m.Body);
 }
 catch (System.Messaging.MessageQueueException ex)
 {
 if (!(ex.MessageQueueErrorCode ==

System.Messaging.MessageQueueErrorCode.IOTimeout))
 {
 throw ex;
 }
 }
 System.Threading.Thread.Sleep(10000);
 }
}

private delegate void MessageDel(string msg);
private void ReceiveMessage(string msg)
{
 if (this.InvokeRequired)
 {
 this.BeginInvoke(new MessageDel(ReceiveMessage),
msg);
 return;
 }
 this.textBox2.Text = msg;
}

VB

Private Sub Form_Load(ByVal sender As Object, ByVal e As
System.EventArgs) _
 Handles Me.Load

Download from finelybook www.finelybook.com

324

 Dim monitorThread As New Threading.Thread(AddressOf
MonitorMessageQueue)
 monitorThread.IsBackground = True
 monitorThread.Start()
End Sub

Private Sub btn_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) _
 Handles Button1.Click
 Me.MessageQueue1.Send(Me.TextBox1.Text)
End Sub

Private Sub MonitorMessageQueue()
 Dim m As Messaging.Message
 While True
 Try
 m = Me.MessageQueue1.Receive(New TimeSpan(0, 0,
0, 0, 50))
 Me.ReceiveMessage(m.Body)
 Catch ex As Messaging.MessageQueueException
 If Not ex.MessageQueueErrorCode = _
 Messaging.MessageQueueErrorCode.IOTimeout
Then
 Throw ex
 End If
 End Try
 Threading.Thread.Sleep(10000)
 End While
End Sub

Private Delegate Sub MessageDel(ByVal msg As String)
Private Sub ReceiveMessage(ByVal msg As String)
 If Me.InvokeRequired Then
 Me.BeginInvoke(New MessageDel(AddressOf
ReceiveMessage), msg)
 Return
 End If
 Me.TextBox2.Text = msg
End Sub

Note in this code snippet that the background thread is never explicitly
closed. Because the thread has the IsBackground property set to True, it
is automatically terminated when the application exits. As with the
previous example, because the message processing is done in a
background thread, you need to switch threads when you update the
user interface using the BeginInvoke method. Putting this all together,

Download from finelybook www.finelybook.com

325

you get a form like the one shown in Figure 9-5.
As messages are sent to the message queue, they appear under the
appropriate queue in Server Explorer. Clicking the message displays
its contents in the Properties window.

Performance Counters

One of the most common things developers forget to consider when
building an application is how it will be maintained and managed. For
example, consider an application that was installed a year ago and has
been operating without any issues. All of a sudden, requests start
taking an unacceptable amount of time. It is clear that the application
is not behaving correctly, but there is no way to determine the cause of
the misbehavior. One strategy to identify where the performance
issues are (or to see them coming before they become a problem) is to
use performance counters. Windows has many built-in performance
counters that you can use to monitor operating system activity, and a
lot of third-party software also installs performance counters so
administrators can identify any rogue behavior.
The Performance Counters node in the Server Explorer tree, expanded
in Figure 9-6, has two primary functions. First, it enables you to view
and retrieve information about the currently installed counters. You
can also create new performance counters, as well as edit or delete
existing counters. Under the Performance Counters node is a list of
categories and under those is a list of counters.

Download from finelybook www.finelybook.com

326

FIGURE 9-6

To edit either the category or the counters, select Edit Category from
the right-click context menu for the category. To add a new category
and associated counters, right-click the Performance Counters node,
and select Create New Category from the context menu. Both of these
operations use the dialog shown in Figure 9-7. Here, a new
performance counter category has been created that will be used to
track a form’s open and close events.

Download from finelybook www.finelybook.com

327

FIGURE 9-7

NOTE

The ability to edit categories is limited to those categories that you
created.

The second function of the Performance Counters section is to provide
an easy way for you to access performance counters via your code. By
dragging a performance counter category onto a form, you gain access
to the ability to read and write to that performance counter. To
continue with this chapter’s example, drag the new My Application
performance counters, Form Open and Form Closed, onto a new

Download from finelybook www.finelybook.com

328

Windows Form. Also add a couple of textboxes and a button so that
you can display the performance counter values. Finally, rename the
performance counters so they have friendly names. This should give
you a form similar to the one shown in Figure 9-8.

FIGURE 9-8

In the properties for the selected performance counter, you can see
that the appropriate counter — in this case, Form Open — has been
selected from the My Application category. There is also a MachineName
property, which is the computer from which you are retrieving the
counter information, and a ReadOnly property, which needs to be set to
False if you want to update the counter. (By default, the ReadOnly
property is set to True.) To complete this form, add the following code
to the Retrieve Counters’ button click event handler:
C#

this.textBox1.Text = this.perfFormOpen.RawValue.ToString();
this.textBox2.Text = this.perfFormClose.RawValue.ToString();

VB

Me.textBox1.Text = Me.perfFormOpen.RawValue
Me.textBox2.Text = Me.perfFormClose.RawValue

Download from finelybook www.finelybook.com

329

You also need to add code to the application to update the
performance counters. For example, you might have the following
code in the Form Load event handlers:
C#

this.perfFormOpen.Increment();

VB

Me.perfFormOpen.Increment()

When you dragged the performance counter onto the form, you may
have noticed a smart tag (small arrow that appears near the top-right
corner when a control is selected) on the performance counter
component that had a single item, Add Installer. When the component
is selected, you can notice the same action at the bottom of the
Properties window. Clicking this action in either place adds an
Installer class to your solution that can be used to install the
performance counter as part of your installation process. Of course, for
this installer to be called, the assembly it belongs to must be added as
a custom action for the deployment project.
To create multiple performance counters, you can simply select each
additional performance counter and click Add Installer. Visual Studio
2017 directs you back to the first installer that was created and has
automatically added the second counter to the CountersCollectionData
collection of the PerformanceCounterInstaller component, as shown in
Figure 9-9.

Download from finelybook www.finelybook.com

330

FIGURE 9-9

You can also add counters in other categories by adding additional
PerformanceCounterInstaller components to the design surface. You
are now ready to deploy your application with the knowledge that you
can use a tool such as PerfMon to monitor how your application
behaves.

Services

The Services node, expanded in Figure 9-10, shows the registered
services for the computer. The icon associated with each service
indicates the state of that service. Possible states are Stopped,
Running, or Paused. The icons are similar to what you find on a DVD
player: the triangle is running, the square is stopped, and the two
rectangles is paused. Selecting a service displays additional
information about the service, such as other service dependencies, in
the Properties window.

Download from finelybook www.finelybook.com

331

FIGURE 9-10

As with other nodes in the Server Explorer, each service can be
dragged onto the design surface of a form. This generates a
ServiceController component in the nonvisual area of the form. By
default, the ServiceName property is set to the service that you dragged
across from the Server Explorer, but this can be changed to access
information and control any service. Similarly, the MachineName

property can be changed to connect to any computer to which you
have access. The following code shows how you can stop a Service
using ServiceController component:
C#

this.serviceController1.Refresh();
if (this.serviceController1.CanStop)
{
 if (this.serviceController1.Status ==

System.ServiceProcess.ServiceControllerStatus.Running)
 {
 this.serviceController1.Stop();
 this.serviceController1.Refresh();
 }
}

Download from finelybook www.finelybook.com

332

VB

Me.ServiceController1.Refresh()
If Me.ServiceController1.CanStop Then
 If Me.ServiceController1.Status = _
 ServiceProcess.ServiceControllerStatus.Running Then
 Me.ServiceController1.Stop()
 Me.ServiceController1.Refresh()
 End If
End If

In addition to the three main states — Running, Paused, or Stopped —
other transition states are ContinuePending, PausePending,
StartPending, and StopPending. If you are about to start a service that
may be dependent on another service that is in one of these transition
states, you can call the WaitForStatus method to ensure that the
service starts properly.

DATA CONNECTIONS

The Data Connections node enables you to connect to a database and
perform a large range of administrative functions. You can connect to
a wide variety of data sources including any edition of SQL Server,
Microsoft Access, Oracle, or a generic ODBC data source. Figure 9-11
shows the Server Explorer connected to a SQL Server database.

Download from finelybook www.finelybook.com

333

FIGURE 9-11

The Server Explorer provides access to the Visual Database, which
allows you to perform a large range of administrative functions on the
connected database. You can create databases; add and modify tables,
views, and stored procedures; manage indexes, execute queries, and
much more. Chapter 26, “Visual Database Tools,” covers aspects of the
Data Connections functionality.

SHAREPOINT CONNECTIONS

One of the useful features of Visual Studio 2017 is the ability to
connect to a Microsoft Office SharePoint Server with the Server
Explorer. This feature allows you to navigate and view many of the
SharePoint resources and components.
The Server Explorer provides only read-only access to SharePoint
resources — you cannot, for example, create or edit a list definition.
Even so, it can be useful to have ready access to this information in
Visual Studio when developing a SharePoint application. As with many
of the components under the Servers node, you can also drag and drop
certain SharePoint resources directly onto the design surface of your
SharePoint project.

Download from finelybook www.finelybook.com

334

SUMMARY

In this chapter, you learned how you can use Server Explorer to
manage and work with computer resources and services. Chapter 26
continues the discussion on the Server Explorer, covering the Data
Connections node in more detail.

Download from finelybook www.finelybook.com

335

PART III
Digging Deeper

CHAPTER 10: Unit Testing
CHAPTER 11: Project and Item Templates
CHAPTER 12: Managing Your Source Code

Download from finelybook www.finelybook.com

336

10
Unit Testing

WHAT’S IN THIS CHAPTER?

Generating a test harness from existing code
Making assertions about the behavior of your code
Executing custom code during test life-cycle events
Creating data-driven tests
Testing private members
Utilizing Live Unit Testing

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Application testing is one of the most important parts of writing
software. Research into the costs of software maintenance have
revealed that a software defect can cost up to 100 times more to fix
if it makes it to a production environment than if it had been
caught during development (from a report by the System Sciences
Institute at IBM). At the same time, a lot of testing involves
repetitive, dull, and error-prone work that must be undertaken
every time you make a change to your code base. The easiest way to
counter this is to produce repeatable automated tests that can be
executed by a computer on demand. This chapter looks at a specific
type of automated testing that focuses on individual components,
or units, of a system. Having a suite of automated unit tests gives
you the power to verify that your individual components all work
as specified even after making radical changes to them.

Download from finelybook www.finelybook.com

337

http://wrox.com
http://www.wrox.com

Visual Studio 2017 has a built-in framework for authoring,
executing, and reporting on test cases. This chapter focuses on
creating, configuring, running, and managing a suite of unit tests
as well as adding support to drive the tests from a set of data.

YOUR FIRST TEST CASE

Writing test cases is not easily automated because the test cases must
mirror the functionality of the software developed. In fact, there are
solid arguments against automating all but the simplest of unit tests.
However, at several steps in the process, code stubs can be generated
by a tool. To illustrate this, start with a straightforward snippet of code
to learn to write test cases that fully exercise the code. Setting the
scene is a Subscription class with a public property called
CurrentStatus, which returns the status of the current subscription as
an enumeration value:
VB

Public Class Subscription
 Public Enum Status
 Temporary
 Financial
 Unfinancial
 Suspended
 End Enum

 Public Property PaidUpTo As Nullable(Of Date)

 Public ReadOnly Property CurrentStatus As Status
 Get
 If Not Me.PaidUpTo.HasValue Then Return
Status.Temporary
 If Me.PaidUpTo > Now Then
 Return Status.Financial
 Else
 If Me.PaidUpTo >= Now.AddMonths(-3) Then
 Return Status.Unfinancial
 Else
 Return Status.Suspended
 End If
 End If
 End Get

Download from finelybook www.finelybook.com

338

 End Property
End Class

C#

public class Subscription
{
 public enum Status
 {
 Temporary,
 Financial,
 Unfinancial,
 Suspended
 }

 public DateTime? PaidUpTo { get; set; }

 public Status CurrentStatus
 {
 get
 {
 if (this.PaidUpTo.HasValue == false)
 return Status.Temporary;
 if (this.PaidUpTo > DateTime.Today)
 return Status.Financial;
 else
 {
 if (this.PaidUpTo >=
DateTime.Today.AddMonths(-3))
 return Status.Unfinancial;
 else
 return Status.Suspended;
 }
 }
 }
}

As you can see from the code snippet, four code paths need to be
tested for the CurrentStatus property. To test this property, you create
a separate SubscriptionTest test class in a new test project, into which
you add a test method that contains the code necessary to instantiate a
Subscription object, set the PaidUpTo property, and check that the
CurrentStatus property contains the correct result. Then you keep
adding test methods until all the code paths through the CurrentStatus
property have been executed and tested.

Download from finelybook www.finelybook.com

339

Visual Studio 2017 includes a tool that can be used to help create unit
tests for existing classes. It creates a test project, along with a number
of methods that run your classes through some basic steps. This is
described in the “IntelliTests” section later in this chapter. However,
even with a tool that helps generate unit tests, you still need to know
what makes a particular method a unit test. Visual Studio provides a
runtime engine that can run the test cases, monitor their progress, and
report on any outcome from the tests. Therefore, all you need to do is
write the code to test the property in question.
To see the basic template of a test class, make sure that the test project
is selected in Solution Explorer and then select Project Add Unit Test.
This creates a test class and a single test method. The Unit Test
template includes just a basic unit test class containing just a single
method, shown in the code sample below. For this example, the test
class has been changed to SubscriptionTest (as opposed to the default
UnitTest1) to indicate the class being tested:
VB

Imports Microsoft.VisualStudio.TestTools.UnitTesting
<TestClass()>
Public Class SubscriptionTest

 <TestMethod()>
 Public Sub TestMethod1()
 End Sub
End Class

C#

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
[TestClass]
public class SubscriptionTest
{

 [TestMethod]
 public void TestMethod1()
 {
 }
}

Although there are a number of techniques that can be used to write

Download from finelybook www.finelybook.com

340

your own unit tests, there are two main ideas that you should keep in
mind. One is that, given a large number of unit tests in a project, it can
quickly become difficult to manage them. To address this issue, it is
suggested that a naming convention be used. As you might expect,
there are many different conventions that can be used, but a popular
one is MethodName_StateUnderTest_ExpectedBehavior. This simple
naming convention ensures that test cases can easily be found and
identified.
A second (and complementary) idea is to approach each test using an
Arrange/Act/Assert paradigm. Start by setting up and initializing the
values used in the test (the Arrange portion). Then execute the method
being tested (Act). Finally, determine the outcome of the test (Assert).
If you follow this approach, you end up with unit tests that look like
the following:
VB

<TestMethod()>
Public Sub
CurrentStatus_NothingPaidUpToDate_TemporaryStatus()
 ' Arrange
 Dim s as New Subscription()
 s.PaidUpTo = Nothing
 ' Act
 Dim actual as Subscription.Status = s.CurrentStatus
 ' Assert
 Assert.Inconclusive()
End Sub

C#

[TestMethod]
public void CurrentStatus_NullPaidUpToDate_TemporaryStatus()
{
 // Arrange
 Subscription s = new Subscription();
 s.PaidUpTo = null;
 // Act
 Subscription.Status actual = s.CurrentStatus;
 //Assert
 Assert.Inconclusive();
}

Before going any further, run this test case to see what happens by

Download from finelybook www.finelybook.com

341

right-clicking in the code window and selecting Run Tests. The result
is the Test Explorer, as shown in Figure 10-1.

FIGURE 10-1

NOTE

The context menu is just one way to select and run a test case.
There is a Test menu that includes a Run submenu that allows for
the execution of all or selected tests. Or you can open the Test
Explorer window directly and run all or selected tests using the
links (refer to Figure 10-1). In addition to each of these methods,
you can also set breakpoints in your code and run test cases in the
debugger by selecting one of the Debug Tests options from the
main toolbar.

Figure 10-1 shows a test case that returns an inconclusive result. The
warning icon (the triangle with the exclamation) indicates that the test
was skipped. In the details for the test result (on the right side of
Figure 10-1), there is a message that indicates that
Assert.Inconclusive failed. Essentially, an inconclusive assertion
indicates either that a test is not complete or that the results should
not be relied upon because changes may have been made that would
make this test invalid. The results show basic information about the
test, the result, and other useful environmental information such as
the computer name and test execution duration.
In creating this unit test, the Assert.Inconclusive statement was
inserted by hand. To complete the unit test, it is necessary to actually

Download from finelybook www.finelybook.com

342

perform the appropriate analysis of the results to ensure that the test
passed. This is accomplished by replacing the Assert.Inconclusive
statement with Assert.AreEqual, as shown in the following code:
VB

<TestMethod()>
 Public Sub
CurrentStatus_NothingPaidUpToDate_TemporaryStatus ()
 Dim target As Subscription = New Subscription
 Dim actual As Subscription.Status
 actual = target.CurrentStatus
 Assert.AreEqual(Subscription.Status.Temporary,
actual, _
 "Subscription.CurrentStatus was not
set correctly.")
 End Sub

C#

[TestMethod()]
public void CurrentStatus_NullPaidUpToDate_TemporaryStatus ()
{
 Subscription target = new Subscription();
 Subscription.Status actual;
 actual = target.CurrentStatus;
 Assert.AreEqual(Subscription.Status.Temporary, actual,
 "Subscription.CurrentStatus was not set
correctly.");
}

Although it is not apparent from the work you have done to this point,
the completed tests are grouped into one of three categories: Failed
Tests, Passed Tests, and Not Run Tests. It is possible to run all the
tests, only the tests from a specific category, repeat the last test run, or
just the tests that you select. The Run link at the top of the Test
Explorer contains a drop-down where you can select the category of
tests to run. To select individual tests to run, click the desired tests
(using the standard Ctrl+click or Shift+Ctrl+click to add tests after the
first one), and then right-click and choose Run Selected Tests. After
you fix the code that caused the tests to fail, click the Run All button to
rerun these test cases and produce a successful result, as shown in
Figure 10-2.

Download from finelybook www.finelybook.com

343

FIGURE 10-2

NOTE

There is one thing to be aware of regarding unit tests. Put simply,
the default behavior for a unit test method is to “pass.” And the
way that you change this behavior is by adding Assert statements
to the method, the idea being that if one of the Assert statements
fail, the unit test is considered to have “failed.” However, when
you manually create a brand new unit test, there are no
assertions present, which means that the unit test doesn’t start out
“failing.” To address this, an Assert.Inconclusive is automatically
placed into unit tests when they are created. For any test,
executing an Assert.Inconclusive means that the test will always
fail. When you remove the Assert.Inconclusive statement, you
are indicating that the test case is complete.

In this example, we have exercised only one code path, and you should
add further test cases that fully exercise the other categories. While
you could add additional assertions to the one test method that you’ve
created, this is not considered to be the best practice for writing unit
tests. The general approach is to have each test method test one and
only one thing. This means that (ideally) there is only one Assert in the
method.
The reason for this is that more granular tests mean that if the test
fails, the cause is usually more readily apparent. Also, keep in mind
that the method does not continue executing past the first failed
Assert. Multiple assertions in a method just make it a little more
difficult to determine the cause of the failure. That having been said, it

Download from finelybook www.finelybook.com

344

is common to have two or three assertions, and there is a parameter
that can be passed into the Assert statement for the message that is
displayed if the test fails.

Identifying Tests Using Attributes

Before going any further with this scenario, take a step back to
consider how testing is carried out within Visual Studio 2017. All test
cases must exist within test classes that reside in a test project. But
what actually distinguishes a method, class, or project as containing
test cases? Starting with the test project, if you look at the underlying
XML project file, you can see that there is virtually no difference
between a test project file and a normal class library project file. In
fact, the only difference appears to be the project type: When this
project is built, it simply outputs a standard .NET class library
assembly. The key difference is that Visual Studio recognizes this as a
test project and automatically analyzes it for any test cases to populate
the various test windows.
Classes and methods used in the testing process are marked with an
appropriate attribute. The attributes are used by the testing engine to
enumerate all the test cases within a particular assembly.

TestClass

All test cases must reside within a test class that is appropriately
marked with the TestClass attribute. Although it may appear that
there is no reason for this attribute other than to align test cases with
the class and member that they are testing, you later see some benefits
associated with grouping test cases using a test class. For testing the
Subscription class, a test class called SubscriptionTest was created
and marked with the TestClass attribute. Because Visual Studio uses
attributes to locate classes that contain test cases, the name of this
class is irrelevant. However, adopting a naming convention, such as
adding the Test suffix to the class being tested, makes it easier to
manage a large number of test cases.

TestMethod

Individual test cases are marked with the TestMethod attribute, which

Download from finelybook www.finelybook.com

345

is used by Visual Studio to enumerate the list of tests that can be
executed. The CurrentStatus_NullPaidUpToDate_TemporaryStatus

method in the SubscriptionTest class is marked with the TestMethod
attribute. Again, the actual name of this method is irrelevant, because
Visual Studio uses only the attributes to find tests. However, the
method name is used in the various test windows when the test cases
are listed, so it is useful for test methods to have meaningful names.
This is especially true when reviewing test results.

Additional Test Attributes

As you have seen, the unit-testing subsystem within Visual Studio uses
attributes to identify test cases. A number of additional properties can
be set to provide further information about a test case. This
information is then accessible either via the Properties window
associated with a test case or within the other test windows. This
section goes through the descriptive attributes that can be applied to a
test method.

Description

Because test cases are listed by the test method name, a number of
tests may have similar names, or names that are not descriptive
enough to indicate what functionality they test. The Description
attribute, which takes a String as its sole argument, can be applied to a
test method to provide additional information about a test case.

Owner

The Owner attribute, which also takes a String argument, is useful for
indicating who owns, wrote, or is currently working on a particular
test case.

Priority

The Priority attribute, which takes an Integer argument, can be
applied to a test case to indicate the relative importance of a test case.
Though the testing framework does not use this attribute, it is useful
for prioritizing test cases when you are determining the order in which

Download from finelybook www.finelybook.com

346

failing, or incomplete, test cases are resolved.

TestCategories

The TestCategory attribute accepts a single String identifying one
user-defined category for the test. Like the Priority attribute, the
TestCategory attribute is essentially ignored by Visual Studio but is
useful for sorting and grouping related items together. A test case may
belong to many categories but must have a separate attribute for each
one.

WorkItems

The WorkItem attribute can be used to link a test case to one or more
work items in a work-item tracking system such as Team Foundation
Server. If you apply one or more WorkItem attributes to a test case, you
can review the test case when making changes to existing
functionality. You can read more about Team Foundation Server in
Chapter 12, “Managing Your Source Code.”

Ignore

You can temporarily prevent a test method from running by applying
the Ignore attribute to it. Test methods with the Ignore attribute will
not be run and will not show up in the results list of a test run.

NOTE

You can apply the Ignore attribute to a test class as well to switch
off all the test methods within it.

Timeout

A test case can fail for any number of reasons. A performance test, for
example, might require a particular functionality to complete within a
specified time frame. Instead of the tester writing complex
multithreading tests that stop the test case when a particular timeout
has been reached, you can apply the Timeout attribute to a test case
with a timeout value in milliseconds, as shown in the following code.

Download from finelybook www.finelybook.com

347

This ensures that the test case fails if that timeout is reached.
VB

<TestMethod()>
<Owner("Mike Minutillo")>
<Description("Tests the functionality of the Current Status
Property")>
<Priority(3)>
<Timeout(10000)>
<TestCategory("Financial")>
Public Sub CurrentStatusTest()
 Dim target As Subscription = New Subscription
 Dim actual As Subscription.Status
 actual = target.CurrentStatus
 Assert.AreEqual(Subscription.Status.Temporary, actual, _
 "Subscription.CurrentStatus was not set
correctly.")
End Sub

C#

[TestMethod()]
[Owner("Mike Minutillo")]
[Description("Tests the functionality of the Current Status
Method")]
[Priority(3)]
[Timeout(10000)]
[TestCategory("Financial")]
public void CurrentStatusTest()
{
 Subscription target = new Subscription();
 Subscription.Status actual;
 actual = target.CurrentStatus;
 Assert.AreEqual(Subscription.Status.Temporary, actual,
 "Subscription.CurrentStatus was not set
correctly.");
}

This snippet augments the original CurrentStatusTest method with
some of these attributes to illustrate their usage. In addition to
providing additional information about what the test case does and
who wrote it, this code assigns the test case a priority of 3 and a
category of "Financial". Lastly, the code indicates that this test case
should fail if it takes more than 10 seconds (10,000 milliseconds) to
execute.

Download from finelybook www.finelybook.com

348

Unit Tests and Code Lens

Unit tests provide some additional advantage beyond the Code Lens
functionality that was described in Chapter 4, “The Visual Studio
Workspace.” Figure 10-3 illustrates the code for a unit test as it
appears in the code editor when the test class is first opened.

FIGURE 10-3

Immediately to the left of the References link is a little blue diamond-
shaped icon. The tool tip for the icon indicates that the test has not
been run. In actuality, it means that the test hasn’t been run for this
session. There is nothing that persists between executions of Visual
Studio to indicate that the test might have been run in the past.
After the test has been executed, the icon changes. What it changes to
depends on the outcome of the test. Figure 10-4 shows the icon when a
test has been skipped (such as when an Assert.Inconclusive is
executed).

FIGURE 10-4

The icon is not just a visual representation of the test’s state. When
you click on the icon you see additional details about the test result, as
shown in Figure 10-5. This is similar to the information displayed in
the Test Explorer (refer to Figure 10-1).

Download from finelybook www.finelybook.com

349

FIGURE 10-5

There are two additional links at the bottom of the details pane. You
can use the Run link to run the test in regular mode, or you can use the
Debug link to run the test in debug mode.
When the test is successful, a green icon displays, as shown in Figure
10-6. The additional details for the test have been updated, although
you can easily run or debug the test again.

FIGURE 10-6

The Code Lens functionality, as it pertains to unit testing, extends
beyond the test class itself. Figure 10-7 contains some of the code that
is being tested by the tests written as part of this chapter.

FIGURE 10-7

You can see in the code two indicators for how unit tests have
performed when calling a particular property or method. The first link,
above the PaidUpTo property, indicates that one unit test has invoked
the PaidUpTo property and that test passed. The indicator above the

Download from finelybook www.finelybook.com

350

CurrentStatus property says that only one of the two unit tests that use
the CurrentStatus property passed. When that indicator is clicked, a
list of the tests, both successful and unsuccessful, appears (as shown in
Figure 10-8).

FIGURE 10-8

ASSERTING THE FACTS

So far, this chapter has examined the structure of the test environment
and how test cases are nested within test classes in a test project. What
remains is to look at the body of the test case and review how test
cases either pass or fail. (When a test case is generated, you saw that
an Assert.Inconclusive statement is added to the end of the test to
indicate that it is incomplete.)
The idea behind unit testing is that you start with the system,
component, or object in a known state, and then run a method, modify
a property, or trigger an event. The testing phase comes at the end,
when you need to validate that the system, component, or object is in
the correct state. Alternatively, you may need to validate that the
correct output was returned from a method or property. You do this by
attempting to assert a particular condition. If this condition is not
true, the testing system reports this result and ends the test case. A
condition is asserted, not surprisingly, via the Assert class. There is
also a StringAssert class and a CollectionAssert class, which provide
additional assertions for dealing with String objects and collections of
objects, respectively.

The Assert Class

The Assert class in the UnitTesting namespace, not to be confused

Download from finelybook www.finelybook.com

351

with the Debug.Assert or Trace.Assert method in the
System.Diagnostics namespace, is the primary class used to make
assertions about a test case. The basic assertion has the following
format:
VB

Assert.IsTrue(variableToTest, "Output message if this fails")

C#

Assert.IsTrue(variableToTest, "Output message if this
fails");

As you can imagine, the first argument is the condition to be tested. If
this is true, the test case continues operation. However, if it fails, the
output message is emitted and the test case exits with a failed result.
This statement has multiple overloads whereby the output message
can be omitted or String formatting parameters supplied. Because
quite often you won’t be testing a single positive condition, several
additional methods simplify making assertions within a test case:

IsFalse: Tests for a negative or false condition
AreEqual: Tests whether two arguments have the same value
AreSame: Tests whether two arguments refer to the same object
IsInstanceOfType: Tests whether an argument is an instance of a
particular type
IsNull: Tests whether an argument is nothing

This list is not exhaustive — several more methods exist, including
negative equivalents of those listed. Also, many of these methods have
overloads that allow them to be invoked in several different ways.

The StringAssert Class

The StringAssert class does not provide any additional functionality
that cannot be achieved with one or more assertions via the Assert
class. However, it not only simplifies the test case code by making it
clear that String assertions are being made; it also reduces the
mundane tasks associated with testing for particular conditions. The
additional assertions are as follows:

Download from finelybook www.finelybook.com

352

Contains: Tests whether a String contains another String
DoesNotMatch: Tests whether a String does not match a regular
expression
EndsWith: Tests whether a String ends with a particular String
Matches: Tests whether a String matches a regular expression
StartsWith: Tests whether a String starts with a particular String

The CollectionAssert Class

Similar to the StringAssert class, CollectionAssert is a helper class
used to make assertions about a collection of items. Some of the
assertions are as follows:

AllItemsAreNotNull: Tests that none of the items in a collection is a
null reference
AllItemsAreUnique: Tests that no duplicate items exist in a
collection
Contains: Tests whether a collection contains a particular object
IsSubsetOf: Tests whether a collection is a subset of another
collection

The ExpectedException Attribute

Sometimes test cases have to execute paths of code that can cause
exceptions to be raised. Though exception coding should be avoided,
conditions exist where this might be appropriate. Instead of writing a
test case that includes a Try-Catch block with an appropriate assertion
to test that an exception was raised, you can mark the test case with an
ExpectedException attribute. For example, change the CurrentStatus
property to throw an exception if the PaidUp date is prior to the date
the subscription opened, which in this case is a constant:
VB

Public Const SubscriptionOpenedOn As Date = #1/1/2000#
Public ReadOnly Property CurrentStatus As Status
 Get
 If Not Me.PaidUpTo.HasValue Then Return

Download from finelybook www.finelybook.com

353

Status.Temporary
 If Me.PaidUpTo > Now Then
 Return Status.Financial
 Else
 If Me.PaidUpTo >= Now.AddMonths(-3) Then
 Return Status.Unfinancial
 ElseIf Me.PaidUpTo > SubscriptionOpenedOn Then
 Return Status.Suspended
 Else
 Throw New ArgumentOutOfRangeException(_
 "Paid up date is not valid as it is before the
subscription opened.")
 End If
 End If
 End Get
End Property

C#

public static readonly DateTime SubscriptionOpenedOn = new
DateTime(2000, 1, 1);
public Status CurrentStatus
{
 get
 {
 if (this.PaidUpTo.HasValue == false)
 return Status.Temporary;
 if (this.PaidUpTo > DateTime.Today)
 return Status.Financial;
 else
 {
 if (this.PaidUpTo >=
DateTime.Today.AddMonths(-3))
 return Status.Unfinancial;
 else if (this.PaidUpTo >= SubscriptionOpenedOn)
 return Status.Suspended;
 else
 throw new ArgumentOutOfRangeException(
 "Paid up date is not valid as it is before the
subscription opened");
 }
 }
}

Using the same procedure as before, you can create a separate test
case for testing this code path, as shown in the following example:
VB

Download from finelybook www.finelybook.com

354

<TestMethod()>
<ExpectedException(GetType(ArgumentOutOfRangeException),
 "Argument exception not raised for invalid PaidUp
date.")>
Public Sub CurrentStatusExceptionTest()
 Dim target As Subscription = New Subscription

 target.PaidUpTo =
Subscription.SubscriptionOpenedOn.AddMonths(-1)

 Dim expected = Subscription.Status.Temporary

 Assert.AreEqual(expected, target.CurrentStatus, _
 "This assertion should never actually be
evaluated")
End Sub

C#

[TestMethod()]
[ExpectedException(typeof(ArgumentOutOfRangeException),
 "Argument Exception not raised for invalid PaidUp date.")]
public void CurrentStatusExceptionTest()
{
 Subscription target = new Subscription();
 target.PaidUpTo =
Subscription.SubscriptionOpenedOn.AddMonths(-1);

 var expected = Subscription.Status.Temporary;

 Assert.AreEqual(expected, target.CurrentStatus,
 "This assertion should never actually be evaluated");
}

The ExpectedException attribute not only catches any exception raised
by the test case, it also ensures that the type of exception matches the
type expected. If no exception is raised by the test case, this attribute
causes the test to fail.

INITIALIZING AND CLEANING UP

There are occasions when you have to write a lot of setup code, code
that is executed whenever you run a test case. For example, when a
unit test uses a database, that database should be returned to its initial
state after each test to ensure that the test cases are completely

Download from finelybook www.finelybook.com

355

repeatable. This is also true for unit tests that modify other resources,
such as the filesystem. Visual Studio provides support for writing
methods that can be used to initialize and clean up around test cases.
(Again, attributes are used to mark the appropriate methods that
should be used to initialize and clean up the test cases.)
The attributes for initializing and cleaning up around test cases are
broken down into three levels: those that apply to individual tests,
those that apply to an entire test class, and those that apply to an
entire test project.

TestInitialize and TestCleanup

As their names suggest, the TestInitialize and TestCleanup attributes
indicate methods that should be run before and after each test case
within a particular test class. These methods are useful for allocating
and subsequently freeing any resources needed by all test cases in the
test class.

ClassInitialize and ClassCleanup

Sometimes, instead of setting up and cleaning up after each test, it can
be easier to ensure that the environment is in the correct state at the
beginning and end of running an entire test class. Test classes are a
useful mechanism for grouping test cases; this is where you put that
knowledge to use. Test cases can be grouped into test classes that
contain one method marked with the ClassInitialize attribute and
another marked with the ClassCleanup attribute. These methods must
both be marked as static, and the one marked with ClassInitialize
must take exactly one parameter that is of type
UnitTesting.TestContext.

AssemblyInitialize and AssemblyCleanup

The final level of initialization and cleanup attributes is at the
assembly, or project, level. Methods intended to initialize the
environment before running an entire test project, and cleaning up
after, can be marked with the AssemblyInitialize and AssemblyCleanup
attributes, respectively. Because these methods apply to any test case

Download from finelybook www.finelybook.com

356

within the test project, only a single method can be marked with each
of these attributes. Like the class-level equivalents, these methods
must both be static, and the one marked with AssemblyInitialize
must take a parameter of type UnitTesting.TestContext.
For both the assembly-level and class-level attributes, it is important
to remember that even if only one test case is run, the methods
marked with these attributes will also be run.

NOTE

It is a good idea to put the methods marked with
AssemblyInitialize and AssemblyCleanup together into their own
test class to make them easy to find. If there is more than one
method marked with either of these attributes, then running any
tests in the project results in a runtime error. Although the error
message is clear (“Cannot define more than one method with the
AssemblyInitialize attribute inside an assembly”), you will need to
search for the AssemblyInitialize attribute to find the different
methods.

TESTING CONTEXT

When you write test cases, the testing engine can assist you in a
number of ways, including by managing sets of data so that you can
run a test case with a range of data and enabling you to output
additional information for the test case to aid in debugging. This
functionality is available through the TestContext object generated
within a test class and passed into the AssemblyInitialize and
ClassInitialize methods. The code shown below illustrates one way
to capture the value of the TextContext object so that you can use it in
your tests.
VB

Private Shared testContextInstance As TestContext
<ClassInitialize> _
Public Shared Sub MyClassInitialize(testContext As
TestContext)

Download from finelybook www.finelybook.com

357

 testContextInstance = testContext
End Sub

C#

private static TestContext testContextInstance;
[ClassInitialize()]
public static void MyClassInitialize(TestContext testContext)
{
 testContextInstance = testContext;
}

Data

The CurrentStatus_NullPaidUpToDate_TemporaryStatus method written
in the first section of this chapter tested only a single path through the
CurrentStatus property. To fully test this property, you could have
written additional methods, each with its own setup and assertions.
However, this process is fairly repetitive and would need to be updated
if you ever changed the structure of the CurrentStatus property. An
alternative is to provide a DataSource for the
CurrentStatus_NullPaidUpToDate_TemporaryStatus method whereby
each row of data tests a different path through the property. To add
appropriate data to this method, use the following process:
1. Create a local database file (an .MDF file) and database table to store

the various test data. (The details on how to do this can be found in
Chapter 26, “Visual Database Tools.”) In this case, create a
database called LoadTest with a table called
Subscription_CurrentStatus. The table has an Identity bigint

column called Id, a nullable datetime column called PaidUp, and
an nvarchar(20) column called Status.

2. Add appropriate data values to the table to cover all paths through
the code. Test values for the CurrentStatus property are shown in
Figure 10-9.

Download from finelybook www.finelybook.com

358

FIGURE 10-9

3. Add a DataSource attribute to the test case. This attribute is used by
the testing engine to load the appropriate data from the specified
table. This data is then exposed to the test case through the
TestContext object.

NOTE

If you are using a LocalDB database or an Excel file, you’ll also
want to add a DeploymentItem attribute. This ensures that the
data source will be copied if the test assembly is deployed to
another location.

4. Add the following property to the test class. This property is used
to access the current TextContext, which in turn gives you access to
the data in the data source.
VB

Private testContextInstance As TestContext
Public Property TestContext() As TestContext
 Get
 Return testContextInstance
 End Get
 Set(ByVal Value As TestContext)
 testContextInstance = Value
 End Set
End Property

C#

Download from finelybook www.finelybook.com

359

private TestContext testContextInstance;
public TestContext TestContext
{
 get { return testContextInstance; }
 set { testContextInstance = value; }
}

5. Modify the test case to access data from the testContextInstance
object, and use the data to drive the test case, which gives you the
following CurrentStatus_NullPaidUpToDate_TemporaryStatus

method:
VB

<DataSource("System.Data.SqlClient", _
 "server=.\\SQLExpress;" & _
 "AttachDBFilename=|DataDirectory|\\LoadTest.mdf;" & _
 "Integrated Security=True", _
 "Subscription_CurrentStatus",
DataAccessMethod.Sequential)> _
<TestMethod()>_
Public Sub
CurrentStatus_NullPaidUpToDate_TemporaryStatus()
 Dim target As Subscription = New Subscription
 If Not
IsDBNull(testContextInstance.DataRow.Item("PaidUp")) Then
 target.PaidUpTo =
CType(testContextInstance.DataRow.Item("PaidUp"), Date)
 End If
 Dim val As Subscription.Status = _
 CType([Enum].Parse(GetType(Subscription.Status), _

CStr(testContextInstance.DataRow.Item("Status"))),
Subscription.Status)

 Assert.AreEqual(val, target.CurrentStatus, _
 "Subscription.CurrentStatus was not set
correctly.")
End Sub

C#

[DataSource("System.Data.SqlClient",
 "server=.\\SQLExpress;" +
 "AttachDBFilename=|DataDirectory|\\LoadTest.mdf;" +
 "Integrated Security=True",
 "Subscription_CurrentStatus",

Download from finelybook www.finelybook.com

360

DataAccessMethod.Sequential)]
 [TestMethod()]
public void
CurrentStatus_NullPaidUpToDate_TemporaryStatus()
{
 var target = new Subscription();
 var date = testContextInstance.DataRow["PaidUp"] as
DateTime?;
 if (date != null)
 {
 target.PaidUpTo = date;
 }

 var val = Enum.Parse(typeof(Subscription.Status),
 testContextInstance.DataRow["Status"] as string);

 Assert.AreEqual(val, target.CurrentStatus,
 "Subscription.CurrentStatus was not set
correctly.");

}

NOTE

This sample code presumes that you have a SQL Server Express
instance running at .\SQLExpress. If the host name for your SQL
Server instance is different, you need to use that host name as the
value for the server attribute in the DataSource connection string.
Also, depending on the identity used to run both SQL Server and
Visual Studio, you may have some permissions issues the first
time you run the test. Specifically, the identity under which SQL
Server is running must have read and write permission to the
LoadTest.mdf file. And the identity under which Visual Studio is
running needs to have administrator rights to the SQL Server
instance (so that LoadTest.mdf can be attached).

When this test case is executed, the
CurrentStatus_NullPaidUpToDate_TemporaryStatus method is executed
four times (once for each row of data in the database table). Each time
it is executed, a DataRow object is retrieved and exposed to the test
method via the TestContext.DataRow property. If the logic within the

Download from finelybook www.finelybook.com

361

CurrentStatus property changes, you can add a new row to the
Subscription_CurrentStatus table to test any code paths that may have
been created.
Before moving on, take one last look at the DataSource attribute that
was applied to the CurrentStatus_NullPaidUpToDate_TemporaryStatus
method. This attribute takes four arguments, the first three of which
are used to determine which DataTable needs to be extracted. The
remaining argument is a DataAccessMethod enumeration, which
determines the order in which rows are returned from the DataTable.
By default, this is Sequential, but it can be changed to Random so the
order is different every time the test is run. This is particularly
important when the data is representative of end user data but does
not have to be processed in any particular order.

NOTE

Data-driven tests are not just limited to database tables; they can
be driven by Excel spreadsheets or even from Comma-Separated
Values (CSV) files.

Writing Test Output

Writing unit tests is all about automating the process of testing an
application. Because of this, these test cases can be executed as part of
a build process, perhaps even on a remote computer. This means that
the normal output windows, such as the console, are not a suitable
place for outputting test-related information. Clearly, you also don’t
want test-related information interspersed throughout the debugging
or trace information being generated by the application. For this
reason, there is a separate channel for writing test-related information
so that it can be viewed alongside the test results.
The TestContext object exposes a WriteLine method that takes a String
and a series of String.Format arguments that can be used to output
information to the results for a particular test. For example, adding the
following line to the CurrentStatusDataTest method generates
additional information with the test results:
VB

Download from finelybook www.finelybook.com

362

testContextInstance.WriteLine("No exceptions thrown for test
id {0}", _
 CInt(Me.TestContext.DataRow.Item(0)))

C#

testContextInstance.WriteLine("No exceptions thrown for test
id {0}",
this.TestContext.DataRow[0]);

NOTE

Although you should use the TestContext.WriteLine method to
capture details about your test executions, the Visual Studio test
tools will collect anything written to the standard error and
standard output streams and add that data to the test results.

After the test run is completed, the Test Explorer window is displayed,
listing all the test cases that were executed in the test run along with
their results. Figure 10-10 shows this run with the completed (and
passing) unit tests.

FIGURE 10-10

LIVE UNIT TESTING

Visual Studio 2017 introduces a new feature related to unit testing.

Download from finelybook www.finelybook.com

363

Called Live Unit Testing, it allows the developer to track the impact
that changes to the code is having on the success or failure of unit tests
in real time. It does this within the context of the code editor. This
takes the idea of catching test failures early to a new level.

NOTE

Live Unit Testing is only available in the Enterprise edition of
Visual Studio 2017, and only for C# and Visual Basic projects.

Live Unit Testing must be started explicitly. Once it is started, it can be
stopped or paused. The rationale behind giving the developer this
control is two-fold. First, it is a separate process that is evaluating the
code that you are changing, determining the unit tests that are
impacted by the code change, and running the unit tests. While the
performance of Live Unit Testing is pretty good, this effort does
introduce additional processes running within your development
environment.
The second reason for making Live Unit Testing explicit concerns
significant refactoring. As you are making large changes in your code
base, you will, in all probability, end up breaking a number of unit
tests. Given that doing so is an expected outcome, having the Live Unit
Testing process running and telling you that tests are broken is not
particularly useful. So you can turn it off while the refactoring is going
on and then restart it once the code base is back to a stable and
working state.
Start Live Unit Testing, using the Test Live Unit Testing Start from
the main menu. This launches the process that monitors your unit
tests. After a few moments, your code editor window will light up with
checkboxes, lines, and Xs (depending on the state of your unit test
coverage). Figure 10-11 illustrates these symbols.

Download from finelybook www.finelybook.com

364

FIGURE 10-11

If you look at the first three lines in Figure 10-11, you’ll see the three
different symbols. The declaration for SubscriptionOpenedOn has the
green checkmark. This indicates that all of the tests that use
SubscriptionOpenedOn pass. The declaration for Subscriber has a blue
line. This means that there are no unit tests for that line of code. And
finally, the PaidUpTo declaration has a red X to the left. That means
that at least one of the unit tests that use PaidUpTo is currently failing.
If you’re curious about how many tests are failing, the Code Lens
information for PaidUpTo shows that one out of two unit tests are
passing. To get even more specific information click on the red X and
the list of unit tests are displayed, as shown in Figure 10-12.

FIGURE 10-12

Clicking on the individual lines in the display will take you to the
actual unit test that is referenced.

ADVANCED UNIT TESTING

Download from finelybook www.finelybook.com

365

Up until this point, you have seen how to write and execute unit tests.
This section examines how you can add custom properties to a test
case, and how you can use the same framework to test private methods
and properties.

Custom Properties

The testing framework provides a number of test attributes that you
can apply to a method to record additional information about a test
case. This information can be edited via the Properties window and
updates the appropriate attributes on the test method. At times you
might want to drive your test methods by specifying your own
properties, which can also be set using the Properties window. To do
this, add TestProperty attributes to the test method. For example, the
following code adds two attributes to the test method to enable you to
specify an arbitrary date and an expected status. This might be
convenient for ad hoc testing using the Test View and Properties
window:
VB

<TestMethod()>
<TestProperty("SpecialDate", "1/1/2008")>
<TestProperty("SpecialStatus", "Suspended")>
Public Sub SpecialCurrentStatusTest()
 Dim target As New Subscription
 target.PaidUpTo =
CType(Me.TestContext.Properties.Item("SpecialDate"), _
 Date)
 Dim val As Subscription.Status = _
 [Enum].Parse(GetType(Subscription.Status), _

CStr(Me.TestContext.Properties.Item("SpecialStatus")))
 Assert.AreEqual(val, target.CurrentStatus, _
 "Correct status not set for Paidup date {0}",
target.PaidUpTo)
End Sub

C#

[TestMethod]
[TestProperty("SpecialDate", "1/1/2008")]
[TestProperty("SpecialStatus", "Suspended")]
public void SpecialCurrentStatusTest()

Download from finelybook www.finelybook.com

366

{
 var target = new Subscription();

 target.PaidUpTo =
this.TestContext.Properties["SpecialDate"] as DateTime?;
 var val = Enum.Parse(typeof(Subscription.Status),
 this.TestContext.Properties["SpecialStatus"] as
string);

 Assert.AreEqual(val, target.CurrentStatus,
 "Correct status not set for Paidup date {0}",
target.PaidUpTo);

}

Testing Private Members

One of the selling points of unit testing is that it is particularly
effective for testing the internals of your class to ensure that they
function correctly. The assumption here is that if each of your
components works in isolation, there is a better chance that they will
work together correctly; and in fact, you can use unit testing to test
classes working together. However, you might wonder how well the
unit-testing framework handles testing private methods.
One of the features of the .NET Framework is the capability to reflect
over any type that has been loaded into memory and to execute any
member regardless of its accessibility. This functionality does come at
a performance cost because the reflection calls obviously include an
additional level of redirection, which can prove costly if done
frequently. Nonetheless, for testing, reflection enables you to call into
the inner workings of a class and not worry about the potential
performance penalties for making those calls.
The other, more significant issue with using reflection to access
nonpublic members of a class is that the code to do so is somewhat
messy. On the Subscription class, let’s set up for the test by returning
to the CurrentStatus property and changing its access from public to
private.
Back in the unit test, modify the body so that it looks like the
following:
VB

Download from finelybook www.finelybook.com

367

<TestMethod(), _
 DeploymentItem("Subscriptions.dll")> _
Public Sub Private CurrentStatusTest()
 ' Arrange
 Dim s = new Subscription()
 s.PaidUpTo = null
 ' Act
 Dim t = s.GetType()
 Dim result As Object
 Result = t.InvokeMember("CurrentStatus",
BindingFlags.GetProperty |
 BindingFlags.Instance |BindingFlags.Public |
BindingFlags.NonPublic, null, s, null)
 ' Assert
 Assert.IsInstanceOfType(result,
GetType(Subscription.Status))
 Assert.AreEqual(Subscription.Status.Temporary,
Cast(result, Subscription.Status))
End Sub

C#

[TestMethod()]
[DeploymentItem("Subscriptions.dll")]
public void Private CurrentStatusTest()
{
 // Arrange
 Subscription s = new Subscription();
 s.PaidUpTo = null;
 // Act
 Type t = s.GetType();
 object result = t.InvokeMember("CurrentStatus",
BindingFlags.GetProperty |
 BindingFlags.Instance |BindingFlags.Public |
BindingFlags.NonPublic, null, s, null);
 // Assert
 Assert.IsInstanceOfType(result,
typeof(Subscription.Status));
 Assert.AreEqual(Subscription.Status.Temporary,
(Subscription.Status)result);
}

As you can see, the preceding example uses reflection, in the form of
the InvokeMember method. Specifically, it retrieves the type (that would
be the Subscription class) and then calls InvokeMember to retrieve (the
GetProperty binding flag) the CurrentStatus property value. The result

Download from finelybook www.finelybook.com

368

is then asserted to be of the type Subscription.Status and equal to
Temporary.

INTELLITEST

Visual Studio 2017 includes a testing feature called IntelliTest. It is an
outgrowth of the Pex project that has been active in Microsoft
Research for a number of years. Although it can be used in a number
of different situations, its strength is in filling in “holes” in unit test
coverage — holes such as when legacy code has no unit tests at all, or
when the unit tests that are already written don’t cover the edge cases
for the class under test.
To provide this functionality, IntelliTest performs an analysis of the
method (or methods) that you indicate should be tested. For each
method, the different paths that can be taken through the code are
identified. Then a unit test is generated for each path by setting precise
values for any parameters required to exercise the path. The goal is to
create a set of unit tests that cover the code as completely as possible.
Create a set of IntelliTests starts by right-clicking on the class to be
tested and selecting Run IntelliTest from the context menu. This
examines the code in the class, generates the appropriate unit tests,
and runs them. To get a sense of what the generated tests look like,
consider the following method, which is added to the Subscription
class described earlier in the chapter.
VB

Private subscribers = New List(Of Person)

Public Sub AddSubscriber(ByVal person As Person, paidToDate
As DateTime?)

 If person.Country <> "US" And person.Country <> "CAN" Then
 Return
 End If

 Dim existingSubscriber As Person = subscribers.Where(_
 Function(p) p == person).FirstOrDefault()

 If existingSubscriber Is Nothing Then
 Subscribers.Add(person)

Download from finelybook www.finelybook.com

369

 End If
End Sub

C#

private List<Person> subscribers = new List<Person>();

public void AddSubscriber(Person person, DateTime?
paidToDate)
{
 if (person.Country != "US" && person.Country != "CAN")
 return;

 var existingSubscriber = subscribers.Where(
 p => p == person).FirstOrDefault();

 if (existingSubscriber == null)
 subscribers.Add(person);
}

An example of the output can be seen in Figure 10-13.

FIGURE 10-13

In Figure 10-13, there were four runs through the routine being
analyzed. Since two of the runs were already covered by unit tests, only
two unit tests were generated by the IntelliTest process. In the
columns next to the target, you can see the values that were provided
as parameters to each of the runs. It is also apparent that one of the
two unit tests failed.
In the toolbar at the top, there are buttons to help you navigate
through the unit tests and the results. The drop-down list contains
each of the methods for which unit tests were generated. The display is
only ever for a single method, so if you had selected a class declaration
prior to executing IntelliTests, you would need to choose a different

Download from finelybook www.finelybook.com

370

method from the list.
To the right of the drop-down list is a button that takes you to the unit
test definition. By default, the unit tests are generated, compiled, and
run from memory. There is no project added to your solution.
However, if you click on the Go to Definition button, a unit test project
is added, and the unit test code file is opened for you to modify. At this
point, if you wish to modify the generated unit test, you are able to do
so, and future executions of the IntelliTest will respect and remember
your changes.
To get a sense of the level of analysis that the IntelliTest process
performed to generate these tests, consider Figure 10-14, which shows
the person parameter value more completely.

FIGURE 10-14

You can see a second view of the generated unit tests in Figure 10-15.
To get to this point, the Events option was selected from the Views
drop-down in the middle of the dialog. This view contains a list of
events that took place when the unit tests were generated. If IntelliTest
had a problem, that event appears with a warning symbol the left. The
first row in Figure 10-15 contains such an event. In this case, the
generation process had to guess how to create a Subscription class.
When you select the row, on the right is the way IntelliTest decided to
address the problem. If you’re happy with the solution, you click on
the Suppress button (to the left of the Warnings in the toolbar) to

Download from finelybook www.finelybook.com

371

disable future warnings. But if you’d like to modify the way the class is
created, click on the Fix button (also to the left of the Warnings in the
toolbar). This adds the factory code used to create the Subscription
class to your unit test project and lets you edit it as necessary.

FIGURE 10-15

If you’re new to writing unit tests or are working with a body of legacy
code that is not currently covered by tests, the functionality of
IntelliTest can be a real boon. Besides helping you generate a decently
comprehensive set of unit tests, it can help you get into the mind-set of
creating your own from scratch. As a minor word of warning, be
careful not to depend on the generated tests. Although they do a very
good job of identifying edge cases, they are not thorough. There will be
pieces of business logic that the generated tests will not cover. So don’t
think of them as a complete set of unit tests. Rather, think of them as a
good starting point for writing more of your own.

SUMMARY

This chapter described how you can use unit testing to ensure the
correct functionality of your code. The unit-testing framework within
Visual Studio is quite comprehensive, enabling you to both document
and manage test cases.
You can fully exercise the testing framework using an appropriate data

Download from finelybook www.finelybook.com

372

source to minimize the repetitive code you need to write. You can also
extend the framework to test all the inner workings of your
application. Finally, you can take advantage of IntelliTests to create
unit tests against existing code, which might not already have the
necessary coverage.

Download from finelybook www.finelybook.com

373

11
Project and Item Templates

WHAT'S IN THIS CHAPTER?
Creating your own item templates
Creating your own project templates
Adding a wizard to your project templates

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book's ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Most development teams build a set of standards that specify how
they build applications. This means that every time you start a new
project or add an item to an existing project, you have to go
through a process to ensure that it conforms to the standard.
Visual Studio 2017 enables you to create templates that can be
reused without having to modify the standard item templates that
ship with Visual Studio 2017. This chapter describes how you can
create simple templates and then extend them with a wizard that
can change how the project is generated using the IWizard
interface.

CREATING TEMPLATES

Two types of templates exist: those that create new project items and
those that create entire projects. Both types of templates essentially
have the same structure, as you'll see later, except that they are placed
in different template folders. The project templates appear in the New

Download from finelybook www.finelybook.com

374

http://wrox.com
http://www.wrox.com

Project dialog, whereas the item templates appear in the Add New
Item dialog.

Item Template

Although you can build a project item template manually, it is much
quicker to create one from an existing project item and make changes
as required. This section begins by looking at an item template — in
this case a ViewModel class that supports the INotifyPropertyChanged
interface.
To begin, create a new class library application (using your language of
choice) called ViewModelTemplate. Rename the Class1.cs file that is
included in the project to ViewModel.cs. Then modify the code in the
file so that it looks like the following.
VB

Imports System.ComponentModel

Namespace ViewModelTemplate
 ''' <summary>
 ''' The $safeitemrootname$ class.
 ''' </summary>
 Public Class ViewModel
 Implements INotifyPropertyChanged

 ''' <summary>
 ''' Raised when a property value changes.
 ''' <summary>
 Public Event PropertyChanged As
PropertyChangedEventHandler _
 Implements INotifyPropertyChanged.PropertyChanged

 ''' <summary>
 ''' Raises the property changed event.
 ''' <summary>
 ''' <param name="propertyName">Name of the property.
</param>
 Private Sub NotifyPropertyChanged(propertyName As
String)
 RaiseEvent PropertyChanged(Me, New
 PropertyChangedEventArgs(propertyName))
 End Sub
 End Class
End Namespace

Download from finelybook www.finelybook.com

375

C#

using System.ComponentModel;

namespace ViewModelTemplate
{
 /// <summary>
 /// The $safeitemrootname$ class.
 /// </summary>
 public class ViewModel : INotifyPropertyChanged
 {
 /// <summary>
 /// Raised when a property value changes.
 /// <summary>
 public event PropertyChangedEventHandler
PropertyChanged;

 /// <summary>
 /// Raises the property changed event.
 /// <summary>
 /// <param name="propertyName">Name of the property.
</param>
 private void NotifyPropertyChanged(string
propertyName)
 {
 var theEvent = PropertyChanged;
 if (theEvent != null)
 theEvent(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}

There is one unusual item to note in this code. In the XML comment
for the class, the name of the class has been replaced by
$safeitemrootnode$. This is a token that will be replaced when Visual
Studio generates the item to add to the project from the template.
Although it's not apparent at the moment, when you export a template
(which you will be doing shortly), the namespace and the class name
will also be replaced with tokens.
To make a template out of the ViewModel class, select the Export
Template item from the Project menu. This starts the Export Template
Wizard, as shown in Figure 11-1. If you have unsaved changes in your
solution, you will be prompted to save before continuing. The first step

Download from finelybook www.finelybook.com

376

is to determine what type of template you want to create. In this case,
select the Item Template radio button and make sure that the project
in which the ViewModel class resides is selected in the drop-down list.

FIGURE 11-1

Click Next. You will be prompted to select the item on which you want
to base the template. In this case, select the ViewModel.cs file. The use
of check boxes is slightly misleading because with item templates you
can select only a single item on which to base the template (selecting a
second item deselects the item already selected). After you make your
selection and click Next, the dialog, as shown in Figure 11-2, enables
you to include any assembly references that you may require. This list
is based on the list of references in the project in which that item

Download from finelybook www.finelybook.com

377

resides.

FIGURE 11-2

NOTE

After selecting an assembly, a warning may display under the list
stating that the selected assembly isn't preinstalled with Visual
Studio and may prevent users from using your template if the
assembly isn't available on their machine. Be aware of this issue,
and only select assemblies that your item needs. Alternatively,
you could create an installer that not only adds the template to
the user's machine, but also installs the necessary assembly.

Download from finelybook www.finelybook.com

378

The final step in the Export Template Wizard is to specify some
properties of the template to be generated, such as the name,
description, and icon that will appear in the Add New Item dialog.
Figure 11-3 shows the final dialog in the wizard. As you can see, there
are two check boxes, one for displaying the output folder upon
completion and one for automatically importing the new template into
Visual Studio 2017.

FIGURE 11-3

By default, exported templates are created in the My Exported

Templates folder under the current user's Documents\Visual Studio

2017 folder. Inside this root folder are a number of folders that contain
user settings about Visual Studio 2017 (as shown in Figure 11-4).

Download from finelybook www.finelybook.com

379

FIGURE 11-4

You can also notice the Templates folder in Figure 11-4. Visual Studio
2017 looks in this folder for additional templates to display when you
create new items. Two subfolders beneath the Templates folder hold
item templates and project templates, respectively. These are divided
further by language. If you check the Automatically Import the
Template into Visual Studio option on the final page of the Export
Template Wizard, the new template will not only be placed in the
output folder but will also be copied to the relevant location
(depending on language and template type) within the Templates
folder. Visual Studio 2017 automatically displays this item template
the next time you display the Add New Item dialog, as shown in Figure
11-5.

Download from finelybook www.finelybook.com

380

FIGURE 11-5

NOTE

If you want an item or project template to appear under an
existing category (or one of your own) in the Add New Item/New
Project dialog (such as the Windows Forms category), simply
create a folder with that name and put the template into it (under
the relevant location as described for that template). The next
time you open the Add New Item/New Project dialog, the
template appears in the category with the corresponding folder
name (or as a new category if a category matching the folder
name doesn't exist).

Project Template

You build a project template the same way you build an item template,

Download from finelybook www.finelybook.com

381

but with one difference. Whereas the item template is based on an
existing item, the project template needs to be based on an entire
project. So, naturally, the starting point is to create a project that
contains the files and references that you want in your template. Once
the project is completed, a template can be generated by following the
same steps you took to generate an item template, with a couple of
exceptions. First, you need to select Project Template when asked
what type of template to generate. And second, there is no step where
you select the items to be included. All items within the project will be
included in the template. After you complete the Export Template
Wizard, the new project template appears in the Add New Project
dialog.

Template Structure

Before examining how to build more complex templates, you need to
understand what the Export Template Wizard produces. If you look in
the My Exported Templates folder, you can see that each template is
exported as a single compressed zip file. The zip file can contain any
number of files or folders, depending on whether they are templates
for single files or full projects. However, the one common element of
all template zip files is that they contain a .vstemplate file. This file is
an XML document that holds the template configuration. The
following code is the .vstemplate file that was exported as a part of
your item template earlier:

<VSTemplate Version="3.0.0"

xmlns="http://schemas.microsoft.com/developer/vstemplate/2005"

 Type="Item">
 <TemplateData>
 <DefaultName>ViewModel Class.cs</DefaultName>
 <Name>ViewModel Class</Name>
 <Description>Create a basic class for use as a view
 model</Description>
 <ProjectType>CSharp</ProjectType>
 <SortOrder>10</SortOrder>
 <Icon>__TemplateIcon.ico</Icon>
 </TemplateData>
 <TemplateContent>

Download from finelybook www.finelybook.com

382

 <References/>
 <ProjectItem SubType=""
TargetFileName="$fileinputname$.cs"
 ReplaceParameters="true">ViewModel.cs</ProjectItem>
 </TemplateContent>
</VSTemplate>

At the top of the file, the VSTemplate node contains a Type attribute that
specifies if this is an item template (Item), a project template
(Project), or a multiple project template (ProjectGroup). The
remainder of the file is divided into TemplateData and TemplateContent.
The TemplateData block includes information about the template, such
as its name, description, and the icon that will be used to represent it
in the New Project dialog, whereas the TemplateContent block defines
the file structure of the template.
In the preceding example, the content contains a References section,
which contains a list of the assemblies that are required by this item.
The files contained in this template are listed by means of the
ProjectItem nodes. Each node contains a TargetFileName attribute that
can be used to specify the name of the file as it will appear in the
project created from this template. For a project template, the
ProjectItem elements are contained within the Project node.

NOTE

You can create templates for a solution that contains multiple
projects. These templates contain a separate .vstemplate file for
each project in the solution. They also have a global .vstemplate
file, which describes the overall template and contains references
to each project's individual .vstemplate files. Creating this file is a
manual process, however, because Visual Studio does not
currently have a function to export a solution template.

For more information on the structure of the .vstemplate file, see the
full schema at %programfiles%\Microsoft Visual Studio
15.0\Xml\Schemas\1033\vstemplate.xsd.

Template Parameters

Both item and project templates support parameter substitution,

Download from finelybook www.finelybook.com

383

which enables replacement of key parameters when a project or item is
created from the template. In some cases these are automatically
inserted. For example, when the ViewModel class was exported as an
item template, the class name was removed and replaced with a
template parameter, as shown here:

public class $safeitemname$

Table 11-1 lists the reserved template parameters that can be used in
any project.

TABLE 11-1: Template Parameters
PARAMETER DESCRIPTION
Clrversion Current version of the common language run

time.
GUID[1-10] A GUID used to replace the project GUID in

a project file. You can specify up to ten
unique GUIDs (for example, GUID1, GUID2,
and so on).

Itemname The name provided by the user in the Add
New Item dialog.

machinename The current computer name (for example,
computer01).

projectname The name provided by the user in the New
Project dialog.

Registeredorganization The Registry key value that stores the
registered organization name.

rootnamespace The root namespace of the current project.
This parameter is used to replace the
namespace in an item being added to a
project.

safeitemname The name provided by the user in the Add
New Item dialog, with all unsafe characters
and spaces removed.

safeprojectname The name provided by the user in the New

Download from finelybook www.finelybook.com

384

Project dialog, with all unsafe characters and
spaces removed.

Time The current time on the local computer.
Userdomain The current user domain.
Username The current username.
webnamespace The name of the current website. This is

used in any web form template to guarantee
unique class names.

Year The current year in the format YYYY.

In addition to the reserved parameters, you can also create your own
custom template parameters. You define these by adding a
<CustomParameters> section to the .vstemplate file, as shown here:

<TemplateContent>
 ...
 <CustomParameters>
 <CustomParameter Name="$timezoneName $" Value="
(GMT+8:00) Perth"/>
 <CustomParameter Name="$timezoneOffset $"
Value="+8"/>
 </CustomParameters>
</TemplateContent>

You can refer to this custom parameter in code as follows:

string tzName = "$timezoneName$";
string tzOffset = "$timezoneOffset$";

When a new item or project containing a custom parameter is created
from a template, Visual Studio automatically performs the template
substitution on both custom and reserved parameters.

Template Locations

By default, custom item and project templates are stored in the user's
personal Documents\Visual Studio 2017\Templates folder, but you can
redirect this to another location (such as a shared directory on a
network so you use the same custom templates as your colleagues) via
the Options dialog. Go to Tools Options, and select the Projects and

Download from finelybook www.finelybook.com

385

Solutions node. You can then select a different location for the custom
templates here.

EXTENDING TEMPLATES

Building templates based on existing items and projects limits what
you can do. It assumes that every project or scenario requires exactly
the same items. Instead of creating multiple templates for each
different scenario (for example, one that has a main form with a black
background and another that has a main form with a white
background), with a bit of user interaction, you can accommodate
multiple scenarios from a single template. Therefore, this section takes
the project template created earlier and tweaks it so users can specify
the background color for the main form.
To add user interaction to a template, you need to implement the
IWizard interface in a class library that is then signed and placed in the
Global Assembly Cache (GAC) on the machine on which the template
will be executed. For this reason, to deploy a template that uses a
wizard, you also need rights to deploy the wizard assembly to the GAC.

Template Project Setup

Before plunging in and implementing the IWizard interface, follow
these steps to set up your solution:
1. Create a new WPF Application project and name it

ExtendedProjectTemplateExample. Add a couple of additional files to
the project, so that you can see that the template works. Make sure
that this solution builds and runs successfully before proceeding.
Any issues with this solution will be harder to detect later because
the error messages that appear when a template is used are
somewhat cryptic.

2. Into this solution add a Class Library project, called
WizardClassLibrary, in which you will place the IWizard

implementation.
3. Add to the WizardClassLibrary a new empty class file called

MyWizard, and a blank Windows Form called ColorPickerForm.

Download from finelybook www.finelybook.com

386

These will be customized later.
4. To access the IWizard interface, add to the Class Library project

EnvDTE.dll and
Microsoft.VisualStudio.TemplateWizardInterface.dll as
references. EnvDTE.dll can be found at %programfiles%\Common

Files\Microsoft Shared\MSEnv\PublicAssemblies while
Microsoft.VisualStudio.TemplateWizardInterface.dll is located at
%programfiles%\Microsoft Visual Studio

2017\Enterprise\Common7\IDE\.

IWizard

The purpose of the WizardClassLibrary, and indeed the reason for the
IWizard interface, is to give you programming hooks into the template
creation process. In your project, you have a form (ColorPickerForm)
and a class (MyWizard). The former is a simple form that you can use to
specify the color of the background of the main form. To this form you
need to add a Color Dialog control, called ColorDialog1, a Panel called
ColorPanel, a Button called PickColorButton (with the text Pick Color),
and a Button called AcceptColorButton (with the text Accept Color).
When completed, the ColorPickerForm should look similar to the one
shown in Figure 11-6.

Download from finelybook www.finelybook.com

387

FIGURE 11-6

The following code can be added to this form. The main logic of this
form is in the event handler for the Pick Color button, which opens the
ColorDialog that is used to select a color:
VB

Public Class ColorPickerForm
 Public ReadOnly Property SelectedColor() As Drawing.Color
 Get
 Return ColorPanel.BackColor
 End Get
 End Property

 Private Sub PickColorButton_Click(ByVal sender As
System.Object, _
 ByVal e As System.EventArgs)
Handles_
 PickColorButton.Click
 ColorDialog1.Color = ColorPanel.BackColor
 If ColorDialog1.ShowDialog() =
Windows.Forms.DialogResult.OK Then
 ColorPanel.BackColor = ColorDialog1.Color
 End If

Download from finelybook www.finelybook.com

388

 End Sub

 Private Sub AcceptColorButton_Click(ByVal sender As
System.Object, _
 ByVal e As System.EventArgs)
Handles _
 AcceptColorButton.Click
 Me.DialogResult = Windows.Forms.DialogResult.OK
 Me.Close()
 End Sub
End Class

C#

using System;
using System.Drawing;
using System.Windows.Forms;

namespace WizardClassLibrary
{
 public partial class ColorPickerForm : Form
 {
 public ColorPickerForm()
 {
 InitializeComponent();

 PickColorButton.Click += PickColorButton_Click;
 AcceptColorButton.Click +=
AcceptColorButton_Click;
 }

 public Color SelectedColor
 {
 get { return ColorPanel.BackColor; }
 }

 private void PickColorButton_Click(object sender,
EventArgs e)
 {
 ColorDialog1.Color = ColorPanel.BackColor;

 if (ColorDialog1.ShowDialog() == DialogResult.OK)
 {
 ColorPanel.BackColor = ColorDialog1.Color;
 }
 }

Download from finelybook www.finelybook.com

389

 private void AcceptColorButton_Click(object sender,
EventArgs e)
 {
 this.DialogResult = DialogResult.OK;
 this.Close();
 }
 }
}

The MyWizard class implements the IWizard interface, which provides a
number of opportunities for user interaction throughout the template
process. Add some code to the RunStarted method, which is called just
after the project-creation process starts. This provides the perfect
opportunity to select and apply a new background color for the main
form:
VB

Imports Microsoft.VisualStudio.TemplateWizard
Imports System.Windows.Forms

Public Class MyWizard
 Implements IWizard

 Public Sub BeforeOpeningFile(ByVal projectItem As
EnvDTE.ProjectItem) _
 Implements
IWizard.BeforeOpeningFile
 End Sub

 Public Sub ProjectFinishedGenerating(ByVal project As
EnvDTE.Project) _
 Implements
IWizard.ProjectFinishedGenerating
 End Sub

 Public Sub ProjectItemFinishedGenerating _
 (ByVal projectItem As
EnvDTE.ProjectItem) _
 Implements
IWizard.ProjectItemFinishedGenerating
 End Sub

 Public Sub RunFinished() Implements IWizard.RunFinished

 End Sub

Download from finelybook www.finelybook.com

390

 Public Sub RunStarted(ByVal automationObject As Object, _
 ByVal replacementsDictionary As _
 Dictionary(Of String, String), _
 ByVal runKind As WizardRunKind, _
 ByVal customParams() As Object) _
 Implements IWizard.RunStarted
 Dim selector As New ColorPickerForm
 If selector.ShowDialog = DialogResult.OK Then
 Dim c As Drawing.Color = selector.SelectedColor
 Dim colorString As String =
"System.Drawing.Color.FromArgb(" & _
 c.R.ToString & "," & _
 c.G.ToString & "," & _
 c.B.ToString & ")"
 replacementsDictionary.Add _
 ("Background=""Silver""", _
 "Background=""" &
colorString & """")
 End If
 End Sub

 Public Function ShouldAddProjectItem(ByVal filePath As
String) As Boolean _
 Implements
IWizard.ShouldAddProjectItem
 Return True
 End Function
End Class

C#

using System;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.VisualStudio.TemplateWizard;

namespace WizardClassLibrary
{
 public class MyWizard : IWizard
 {
 public void BeforeOpeningFile(EnvDTE.ProjectItem
projectItem)
 {
 }

 public void ProjectFinishedGenerating(EnvDTE.Project
project)

Download from finelybook www.finelybook.com

391

 {
 }

 public void
ProjectItemFinishedGenerating(EnvDTE.ProjectItem projectItem)
 {
 }

 public void RunFinished()
 {
 }

 public void RunStarted(object automationObject,
Dictionary<string, string>
 replacementsDictionary, WizardRunKind runKind,
object[] customParams)
 {
 ColorPickerForm selector = new ColorPickerForm();

 if (selector.ShowDialog() == DialogResult.OK)
 {
 Color c = selector.SelectedColor;
 string colorString = "Color.FromArgb(" +
 c.R.ToString() + "," +
 c.G.ToString() + "," +
 c.B.ToString() + ")";
 replacementsDictionary.Add
 ("Background=""Silver""",
 "Background=""" +
colorString + """");
 }
 }

 public bool ShouldAddProjectItem(string filePath)
 {
 return true;
 }
 }
}

In the RunStarted method, you prompt the user to select a new color
and then use that response to add a new entry into the replacements
dictionary. In this case, you replace 'Background=“Silver”' with a
concatenated string made up of the RGB values of the color specified
by the user. The replacements dictionary is used when the files are
created for the new project because they will be searched for the

Download from finelybook www.finelybook.com

392

replacement keys. Upon any instances of these keys being found, they
will be replaced by the appropriate replacement values. In this case,
look for the line specifying that the BackColor is Silver, and replace it
with the new color supplied by the user.
The class library containing the implementation of the IWizard

interface must be a strongly named assembly capable of being placed
into the GAC. To ensure this, use the Signing tab of the Project
Properties dialog to generate a new signing key, as shown in Figure 11-
7.

FIGURE 11-7

After you check the Sign the Assembly check box, there will be no
default value for the key file. To create a new key, select <New . . .>
from the drop-down list. Alternatively, you can use an existing key file
using the <Browse . . .> item in the drop-down list.

Generating the Extended Project Template

Download from finelybook www.finelybook.com

393

You're basing the template for this example on the
ExtendedProjectTemplateExample project, and you need to make
minor changes for the wizard you just built to work correctly. In the
previous section you added an entry in the replacements dictionary,
which searches for instances in which the Background is set to Silver. If
you want the MainWindow to have the Background specified while
using the wizard, you need to ensure that the replacement value is
found. To do this, simply set the Background property of the MainWindow
to Silver. This adds the attribute 'Background=“Silver”' to the Grid
element in the MainWindow.xaml file so that it is found during the
replacement phase.
Now you need to associate the wizard with the project template so that
it is called when creating a new project from this template.
Unfortunately, this is a manual process, but you can automate it after
you make these manual changes upon subsequent rebuilds of the
project. Start by exporting the ExtendedProjectTemplateExample as a
new project template as per the previous instructions. Find the .zip file
for this template in Windows Explorer. Inside the .zip file, locate the
.vstemplate file and edit it. Specifically, add some additional lines
(shown in bold) to the .vstemplate file:

<VSTemplate Version="2.0.0"

xmlns="http://schemas.microsoft.com/developer/vstemplate/2005"
 Type="Project">
 <TemplateData>
 ...
 </TemplateData>
 <TemplateContent>
 ...
 </TemplateContent>
 <WizardExtension>
 <Assembly>WizardClassLibrary, Version=1.0.0.0,
Culture=neutral,
 PublicKeyToken=022e960e5582ca43,
Custom=null</Assembly>

<FullClassName>WizardClassLibrary.MyWizard</FullClassName>
 </WizardExtension>
</VSTemplate>

The <WizardExtension> node added in the sample indicates the class

Download from finelybook www.finelybook.com

394

name of the wizard and the strong-named assembly in which it
resides. You have already signed the wizard assembly, so all you need
to do is determine the PublicKeyToken. The easiest way to do this is to
open the Developer Command Prompt for Visual Studio 2017
(instructions to open this window for various operating systems can be
found at https://msdn.microsoft.com/library/ms229859.aspx) and
navigate to the directory that contains the WizardClassLibrary.dll.
Then execute the sn –T <assemblyName> command. Figure 11-8 shows
the output for this command. The PublicKeyToken value in the
.vstemplate file needs to be replaced with the value you found using
the command prompt.

FIGURE 11-8

At this point, you have a .zip file containing the project template,
along with an assembly that can be used to extend the project creation
process. The biggest challenge comes when you try to give these pieces
to someone else. Unlike the templates from the beginning of the
chapter, which can be deployed by placing a .zip file in the
appropriate directory, this extended template cannot. It needs to have
the WizardLibrary.dll file placed into the GAC, and that requires an
installer. Details about how to create an installer can be found in
Chapter 35, “Packaging and Deployment.”

STARTER KITS

A Starter Kit is essentially the same as a template but differs somewhat
in terms of intent. Whereas project templates create the basic shell of
an application, Starter Kits create an entire sample application with
documentation on how to customize it. Starter Kits appear in the New
Project window in the same way project templates do. Starter Kits can

Download from finelybook www.finelybook.com

395

https://msdn.microsoft.com/library/ms229859.aspx

give you a big head start on a project (if you can find one focused
toward your project type), and you can create your own to share with
others in the same way that you created the project template
previously.

ONLINE TEMPLATES

Visual Studio 2017 integrates nicely with the online Visual Studio
Gallery (http://www.visualstudiogallery.com) enabling you to search
for templates created by other developers that they uploaded to the
gallery for other developers to download and use. You can browse the
gallery and install selected templates from within Visual Studio in two
ways: via the Open Project window and from the Extension Manager.
When you open the New Project window in Visual Studio, you are
looking at the templates installed on your machine; however, you can
browse and search the templates available online by selecting Online
from the sidebar. Visual Studio then enables you to browse the
templates online. When you select a template it will be downloaded
and installed on your machine, and a new project will be created using
it.
Visual Studio 2017 includes the Extensions and Updates window (as
shown in Figure 11-9), which you can get to from Tools Extensions
and Updates. The Extensions and Updates window integrates the
online Visual Studio Gallery into Visual Studio. It also allows you to
browse the Visual Studio Gallery and download and install templates,
as well as controls and tools.

Download from finelybook www.finelybook.com

396

http://www.visualstudiogallery.com

FIGURE 11-9

SUMMARY

This chapter provided an overview of how to create both item and
project templates with Visual Studio 2017. Existing projects or items
can be exported into templates that you can deploy to your colleagues.
Alternatively, you can build a template manually and add a user
interface using the IWizard interface. From what you learned in this
chapter, you can now build a template solution to create a project
template, and build and integrate a wizard interface.

Download from finelybook www.finelybook.com

397

12
Managing Your Source Code

WHAT’S IN THIS CHAPTER?

Working with source control
Creating, adding, and updating code in a source repository

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
If you are building a small application by yourself, it’s easy to
understand how all the pieces fit together and to make changes to
accommodate new or changed requirements. Unfortunately, even
on such a small project, the codebase can easily go from being well
structured and organized to being a mess of variables, methods,
and classes. This problem is amplified if the application is large
and complex, and if it has multiple developers working on it
concurrently.
In this chapter, you’ll learn about how you and your team can use
features of Visual Studio 2017 to write and maintain consistent
code. The first part of this chapter is dedicated to the use of source
control to assist you in tracking changes to your codebase over
time. Use of source control facilitates sharing of code and changes
among team members, but more important, gives you a history of
changes made to an application over time.

SOURCE CONTROL

Download from finelybook www.finelybook.com

398

http://wrox.com
http://www.wrox.com

Many different methodologies for building software applications exist,
and though the theories about team structure, work allocation, design,
and testing often differ, one point that the theories agree on is that
there should be a repository for all source code for an application.
Source control is the process of storing source code (referred to as
checking code in) and accessing it again (referred to as checking code
out) for editing. When we refer to source code, we mean any resources,
configuration files, code files, or even documentation that is required
to build and deploy an application.
Source code repositories vary in structure and interface. A source
control repository not only provides a storage mechanism for your
source code, it also provides versioning of files, branching, and remote
access. And more sophisticated repositories assist with file merging
and conflict resolution. More importantly, a couple of these
sophisticated repositories can be used from within Visual Studio.
Version tracking, including a full history of what changes were made
and by whom, is one of the biggest benefits of using a source control
repository. Although most developers would like to think that they
write perfect code, the reality is that quite often a change might break
something else. Reviewing the history of changes made to a project
makes it possible to identify which change caused the breakage.
Tracking changes to a project can also be used for reporting and
reviewing purposes because each change is date stamped and its
author indicated.

Selecting a Source Control Repository

Visual Studio 2017 does not ship with a source control repository, but
it does include rich support for checking files in and out, as well as
merging and reviewing changes. To make use of a repository from
within Visual Studio 2017, it is necessary to specify which repository to
use. Visual Studio 2017 supports deep integration with Team
Foundation Server (TFS), Microsoft’s premier source control and
project tracking system, along with Git, a leading open source control
system. In addition, Visual Studio supports any source control client
that uses the Source Code Control (SCC) API. Products that use the
SCC API include Microsoft Visual SourceSafe and the free, open

Download from finelybook www.finelybook.com

399

source source-control repositories Subversion and CVS.
To get Visual Studio 2017 to work with a particular source control
provider, you must configure the appropriate information under the
Options item on the Tools menu. The Options window, with the
Source Control tab selected, is shown in Figure 12-1.

FIGURE 12-1

Initially, few settings for source control appear. However, after a
provider has been selected, additional nodes are added to the tree to
control how source control behaves. These options are specific to the
source control provider that has been selected.
Chapter 40, “Visual Studio Team Services,” covers the use of Team
Foundation, which also offers rich integration and functionality as a
source control repository. The remainder of this chapter focuses on the
use of Git, an open-source source control repository, which can be
integrated with Visual Studio 2017.

Environment Settings

Download from finelybook www.finelybook.com

400

After a source control repository has been selected from the plug-in
menu, it is necessary to configure the repository for that machine.
Many source control repositories need some additional settings to
integrate with Visual Studio 2017. These would be found in additional
panes that are part of the Settings form. However, these values are
specific to the plug-in, so making generalized statements about the
details is not feasible. Suffice it to say that the plug-in can provide the
information necessary for you to properly configure it. And, more
important, for integration with Git, there are no additional settings
that need to be provided.

Accessing Source Control

This section walks through the process to add a solution to a Git
repository; however, the same principles apply regardless of the
repository chosen. This process can be applied to any new or existing
solution that is not already under source control. We assume here that
you have access to a Git repository and that it has been selected as the
source control repository within Visual Studio 2017.

Adding the Solution

To begin the process (after you have selected the repository) of adding
a solution to source control, use the Add to Source Control option at
the very bottom right of Visual Studio, as shown in the left image in
Figure 12-2. Alternatively, if you create a new solution, select the Add
To Source Control check box on the New Project dialog to immediately
add your new solution to a source control repository.

FIGURE 12-2

Once the solution has been added, the status bar in Visual Studio
changes to show the status of your project with respect to the
repository. In the image on the right of Figure 12-2, you can see the
root branch (master), the name of the repository, the number of

Download from finelybook www.finelybook.com

401

changes (3), and the number of unpublished commits (currently 0).
Most of the time, you interact with the source control repository
through the Team Explorer window. There are a number of options
available to you, as is apparent from the default view shown in Figure
12-3.

FIGURE 12-3

NOTE

The Source Code Control (SCC) API assumes that the .sln solution
file is located in the same folder or a direct parent folder as the
project files. If you place the .sln solution file in a different folder
hierarchy than the project files, then you should expect some
“interesting” source control maintenance issues.

Solution Explorer

The first difference that you see after adding your solution to source
control is that Visual Studio 2017 adjusts the icons within the Solution

Download from finelybook www.finelybook.com

402

Explorer to indicate their source control status. Figure 12-4 illustrates
three file states. When the solution is initially added to the source
control repository, the files all appear with a little lock icon next to the
file type icon. This indicates that the file has been checked in and is
not currently checked out by anyone. For example, Order.cs and
Properties have this icon.

FIGURE 12-4

When a solution is under source control, all changes are recorded,
including the addition and removal of files. Figure 12-4 illustrates the
addition of Product.cs to the solution. The plus sign next to Product.cs
indicates that this is a new file. The red check mark next to the
CSClassLibrary project signifies that the file has been edited since it
was last checked in.

Changes

In a large application, it can often be difficult to see at a glance which
files have been modified, recently added, or removed from a project.
The Changes window, as shown in Figure 12-5, is useful for seeing
which files are waiting to be committed. If there were files that were
not being tracked by Git, they would be listed at the bottom of the
windows.

Download from finelybook www.finelybook.com

403

FIGURE 12-5

To initiate a commit, fill in the Commit message textbox at the top of
the window and click on the Commit All button. This commits the files
to your local repository. By clicking on the drop-down on the right side
of the Commit All button, you can also commit and push (which
pushes your repository to a remote repository) or commit and sync
(which pulls from a remote repository and pushes your repository to
the same remote repository).
It’s also possible to stage your commits. In Git, a staged commit allows
you to add files to a larger commit in small pieces. And each time you
stage a commit, you can add a different message. As an example, while
in the middle of a refactoring of your code, you notice that there is a
typo in one of the messages. So you fix the typo and stage that single
change (with the appropriate message) and continue on with your
main work. When all of your work is finished, you can bundle it into a
larger commit, but the individual message will be retained.
To stage files, right-click on the desired files and select Stage from the
context menu. This will add the files to a staged section, as seen in
Figure 12-6. Then clicking the Commit Staged button will complete the

Download from finelybook www.finelybook.com

404

staging process.

FIGURE 12-6

Merging Changes

Occasionally, changes might be made to the same file by multiple
developers. In some cases, these changes can be automatically
resolved if they are unrelated, such as the addition of a method to an
existing class. However, when changes are made to the same portion
of the file, there needs to be a process by which the changes can be
mediated to determine the correct code. When this happens, the
Resolve Conflicts screen is used to identify and resolve any conflicts, as
seen in Figure 12-7.

Download from finelybook www.finelybook.com

405

FIGURE 12-7

The files that are in conflict are listed. To resolve the conflict for a
particular file, double-click on it to reveal the additional options visible
in Figure 12-8.

Download from finelybook www.finelybook.com

406

FIGURE 12-8

From here, you have a number of options available for the resolution.
You can take the remote or keep the local version as is. Or you can
click on the Compare Files link to display the differences between the
two files, as seen in Figure 12-9.

FIGURE 12-9

Download from finelybook www.finelybook.com

407

Once the conflict is resolved, the file is moved to the Resolved list at
the bottom of the window.

History

Any time a file is updated in the Git repository, history details for each
version of the file are recorded. Use the View History option on the
right-click shortcut menu from the Solution Explorer to review this
history. Figure 12-10 shows what a brief history of a file would look
like. This dialog enables developers to view previous versions (you can
see that the current file has two previous versions) and look at the
comments related to each commit. The functionality offered on this
screen is dependent on the source control plug-in that is being used.
For Git, these functions are the main ones available on this screen.
However, if you utilize Team Foundation Server as your source control
plug-in, then toolbar items and context menu options on this form
allow you to get the particular version, mark a file as being checked
out, compare different versions of the file, roll the file back to a
previous version (which erases newer versions), and report on the
version history.

FIGURE 12-10

SUMMARY

This chapter demonstrated the rich interface of Visual Studio 2017
when using a source control repository to manage files associated with
an application. Checking files in and out can be done using the
Solution Explorer window, and more advanced functionality is

Download from finelybook www.finelybook.com

408

available via the Changes window.

Download from finelybook www.finelybook.com

409

PART IV
Desktop Applications

CHAPTER 13: Windows Forms Applications
CHAPTER 14: Windows Presentation Foundation (WPF)
CHAPTER 15: Universal Windows Platform Apps

Download from finelybook www.finelybook.com

410

13
Windows Forms Applications

WHAT’S IN THIS CHAPTER?

Creating a new Windows Forms application
Designing the layout of forms and controls using the Visual
Studio designers and control properties
Using container controls and control properties to ensure that
your controls automatically resize when the application resizes

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Since its earliest days, Visual Studio has excelled at providing a
rich visual environment for rapidly developing Windows
applications. From simple drag-and-drop procedures to place
graphical controls onto the form, to setting properties that control
advanced layout and behavior of controls, the designer built into
Visual Studio 2017 provides you with immense power without
having to manually create the UI from code.
This chapter walks you through the rich designer support and
comprehensive set of controls available for you to maximize your
efficiency when creating Windows Forms applications.

GETTING STARTED

The first thing you need to start is to create a new Windows Forms
project. Select the File New Project menu to create the project in a

Download from finelybook www.finelybook.com

411

http://wrox.com
http://www.wrox.com

new solution. If you have an existing solution to which you want to add
a new Windows Forms project, select File Add New Project.
Windows Forms applications can be created with either VB or C#. In
both cases, the Windows Forms Application project template is
available when you open the New Project dialog box and select the
Windows Desktop category within your language of choice, as shown
in Figure 13-1.

FIGURE 13-1

The New Project dialog allows you to select the .NET Framework
version you are targeting. Unlike WPF applications, Windows Forms
projects have been available since version 1.0 of the .NET Framework
and will stay in the list of available projects regardless of which version
of the .NET Framework you select. After entering an appropriate name
for the project, click OK to create the new Windows Forms Application
project.

Download from finelybook www.finelybook.com

412

THE WINDOWS FORM

When you create a Windows application project, Visual Studio 2017
automatically creates a single blank form ready for your user interface
design (see Figure 13-2). You can modify the visual design of a
Windows Form in two common ways: by using the mouse to change
the size or position of the form or a control or by changing the value of
the control’s properties in the Properties window.

FIGURE 13-2

Almost every visual control, including the Windows Form, can be
resized using the mouse. Resize grippers appear when the form or
control has focus in the Design view. For a Windows Form, these are
visible only on the bottom, the right side, and the bottom-right corner.
Use the mouse to grab the gripper, and drag it to the size you want. As
you resize, the dimensions of the form are displayed on the bottom
right of the status bar.
There is a corresponding property for the dimensions and position of
Windows Forms and controls. The Properties window, as shown on
the right side of Figure 13-2, shows the current value of many of the
attributes of the form. This includes the Size property, a compound
property made up of the Height and Width. Click the expand icon to

Download from finelybook www.finelybook.com

413

display the individual properties for any compound properties. You
can set the dimensions of the form in pixels by entering either an
individual value in both the Height and Width properties or a
compound Size value in the format width, height.
The Properties window, as shown in Figure 13-3, displays some of the
available properties for customizing the form’s appearance and
behavior.

FIGURE 13-3

Properties display in one of two views: either grouped together in
categories or in alphabetical order. The view is controlled by the first
two icons in the toolbar of the Properties window. The following two

Download from finelybook www.finelybook.com

414

icons toggle the attribute list between displaying Properties and
Events.
Three categories cover most of the properties that affect the overall
look and feel of a form: Appearance, Layout, and Window Style. Many
of the properties in these categories are also available on Windows
controls.

Appearance Properties

The Appearance category covers the colors, fonts, and form border
style. Many Windows Forms applications leave most of these
properties at their default values. The Text property is one that you
typically change because it controls what displays in the form’s caption
bar.
If the form’s purpose differs from the normal behavior, you may need
a fixed-size window or a special border, as is commonly seen in tool
windows. The FormBorderStyle property controls how this aspect of
your form’s appearance is handled.

Layout Properties

In addition to the Size properties discussed earlier, the Layout
category contains the MaximumSize and MinimumSize properties, which
control how small or large a window can be resized to. The
StartPosition and Location properties can be used to control where
the form displays on the screen. You can use the WindowState property
to initially display the form minimized, maximized, or normally
according to its default size.

Window Style Properties

The Window Style category includes properties that determine what is
shown in the Windows Form’s caption bar, including the maximize
and minimize boxes, help button, and form icon. The ShowInTaskbar
property determines whether the form is listed in the Windows
taskbar. Other notable properties in this category include the TopMost
property, which ensures that the form always appears on top of other
windows, even when it does not have focus, and the Opacity property,

Download from finelybook www.finelybook.com

415

which makes a form semi-transparent.

FORM DESIGN PREFERENCES

You can modify some Visual Studio IDE settings that simplify your
user interface design phase. In the Options dialog (as shown in Figure
13-4), two pages of preferences deal with the Windows Forms
Designer.

FIGURE 13-4

The main settings that affect your design are the layout settings. By
default, Visual Studio 2017 uses a layout mode called SnapLines.
Rather than position visible components on the form via an invisible
grid, SnapLines helps you position them based on the context of
surrounding controls and the form’s own borders. You see how to use
this mode in a moment, but if you prefer the older style of form design
that originated in Visual Basic 6 and was used in the first two versions
of Visual Studio .NET, you can change the LayoutMode property to

Download from finelybook www.finelybook.com

416

SnapToGrid.

NOTE

The SnapToGrid layout mode is still used even if the LayoutMode
is set to SnapLines. SnapLines becomes active only when you are
positioning a control relative to another control. At other times,
SnapToGrid will be active and allow you to position the control
on the grid vertex.

You can use the GridSize property when positioning and sizing
controls on the form. As you move controls around the form, they snap
to specific points based on the values you enter here. Most of the time,
you can find a grid of 8 × 8 (the default) too large for fine-tuning, so
changing this to something such as 4 × 4 might be more appropriate.

NOTE

Both SnapToGrid and SnapLines are aids for designing user
interfaces using the mouse. After the control has been roughly
positioned, you can use the keyboard to fine-tune control
positions by “nudging” the control with the arrow keys.

ShowGrid displays a network of dots on your form’s design surface
when you’re in SnapToGrid mode, so you can more easily see where
the controls will be positioned when you move them. You need to close
the designer and reopen it to see any changes to this setting. Finally,
setting the SnapToGrid property to False deactivates the layout aids
while in SnapToGrid mode and results in pure free-form form design.
While you’re looking at this page of options, you may want to change
the Automatically Open Smart Tags value to False. The default setting
of True pops open the smart tag task list associated with any control
you add to the form, which can be distracting during your initial form
design phase. Smart tags are discussed later in this chapter in the
section titled “Smart Tag Tasks.”
The other page of preferences that you can customize for the Windows
Forms Designer is the Data UI Customization section (see Figure 13-
5). This is used to automatically bind various controls to data types

Download from finelybook www.finelybook.com

417

when connecting to a database.

FIGURE 13-5

As you can see in the screenshot, the String data type is associated
with five commonly used controls, with the TextBox control set as the
default. Whenever a database field that is defined as a String data type
is added to your form, Visual Studio automatically generates a
TextBox control to contain the value.
The other controls marked as associated with the data type
(ComboBox, Label, LinkLabel, and ListBox) can be optionally used
when editing the data source and style.

NOTE

It’s worth reviewing the default controls associated with each
data type at this time to make sure you’re happy with the types
chosen. For instance, all DateTime data type variables will
automatically be represented with a DateTime Picker control, but

Download from finelybook www.finelybook.com

418

you may want it to be bound to a MonthCalendar.

Working with data-bound controls is discussed further in Chapter 53,
“Datasets and Data Binding” in the online archive.

ADDING AND POSITIONING CONTROLS

You can add two types of controls to a Windows Form: graphical
components that actually reside on the form, and components that do
not have a specific visual interface displaying on the form.
You can add graphical controls to your form in one of two ways. The
first method is to locate the control you want to add in the Toolbox
and double-click its entry. Visual Studio 2017 places it in a default
location on the form — the first control will be placed adjacent to the
top and left borders of the form, with subsequent controls placed
down and to the right.

NOTE

If the Toolbox is closed when you end your Visual Studio session,
it won’t be automatically displayed next time the Windows Forms
designer is opened. You can display it again by selecting View
Toolbox from the menu.

The second method is to click and drag the entry in the Toolbox onto
the form. As you drag the control over available space on the form, the
mouse cursor changes to show you where the control will be
positioned. This enables you to directly position the control where you
want it, rather than first adding it to the form and then moving it to
the desired location. Either way, when the control is on the form, you
can move it as many times as you like, so it doesn’t matter how you get
the control onto the form’s design surface.

NOTE

There is actually a third method to add controls to a form: Copy
and paste a control or set of controls from another form. If you
paste multiple controls at once, the relative positioning and

Download from finelybook www.finelybook.com

419

layout of the controls to each other will be preserved. Any
property settings will also be preserved; although the control
names may be changed because they must be unique on each
form.

When you design your form layouts in SnapLines mode (see the
previous section), a variety of guidelines display as you move controls
around in the form layout. These guidelines are recommended best
practice for positioning and sizing markers, so you can easily position
controls in context to each other and the edge of the form.
Figure 13-6 shows a Button control being moved toward the top-left
corner of the form. As it gets near the recommended position, the
control snaps to the exact recommended distance from the top and left
borders, and small blue guidelines display.

FIGURE 13-6

These guidelines work for both positioning and sizing a control,
enabling you to snap to any of the four borders of the form — but
they’re just the tip of the SnapLines iceberg. When additional
components are present on the form, many more guidelines begin to
appear as you move a control around.
In Figure 13-7, you can see a second Button control being moved. The
guideline on the left is the same as previously discussed, indicating the
ideal distance from the left border of the form. However, now
additional guidelines display. The blue vertical line on the left side of
the control confirms that the control is aligned with the left side of the
other Button control already on the form. The other vertical line
indicates the ideal gap between two buttons.

FIGURE 13-7

Download from finelybook www.finelybook.com

420

Vertically Aligning Text Controls

One problem with alignment of controls is that the vertical alignment
of the text displayed within a TextBox is different compared to a Label.
The problem is that the text within each control is at a different
vertical distance from the top border of the control. If you simply align
these different controls according to their borders, the text contained
within these controls would not be aligned.
As shown in Figure 13-8, an additional guideline is available when
lining up controls that have text aspects to them. In this example, the
Cell Phone label is lined up with the textbox containing the actual Cell
Phone value. A line appears and snaps the control in place. You can
still align the label to the top or bottom borders of the textbox by
shifting it slightly and snapping it to their guidelines, but this
guideline takes the often painful guesswork out of lining up text.

FIGURE 13-8

The other guidelines show how the label is horizontally aligned with
the Label controls above it, and it is positioned the recommended
distance from the textbox.

Automatic Positioning of Multiple Controls

Visual Studio 2017 gives you additional tools to automatically format
the appearance of your controls after they are positioned
approximately where you want them. The Format menu, as shown in
Figure 13-9, is normally only accessible when you’re in the Design view

Download from finelybook www.finelybook.com

421

of a form. From here you can have the IDE automatically align, resize,
and position groups of controls, as well as set the order of the controls
in the event that they overlap each other. These commands are also
available via the design toolbar and keyboard shortcuts.

FIGURE 13-9

The form displayed in Figure 13-9 contains several TextBox controls
that originally had differing widths. In most situations, that looks
messy and should be cleaned up by setting them all to the same width
as the widest control. The Format menu provides you with the
capability to automatically resize the controls to the same width, using
the Make Same Size Width command.

NOTE

The commands in the Make Same Size menu use the first control
selected as the template for the dimensions. You can first select the
control to use as the template and then add other controls to the
selection by holding down the Ctrl key and clicking them.

Download from finelybook www.finelybook.com

422

Alternatively, when all controls are the same size, you can simply
ensure they are still selected and resize the group at the same time
with the mouse.

You can perform automatic alignment of multiple controls in the same
way. First, select the item whose border should be used as a base, and
then select all the other elements that should be aligned with it. Next,
select Format Align, and choose which alignment should be
performed. In this example, the Label controls have all been
positioned with their right edges aligned. This could have been done
using the guidelines, but often it’s easier to use this mass alignment
option.
Two other handy functions are the horizontal and vertical spacing
commands. These automatically adjust the spacing between a set of
controls according to the particular option you have selected.

Tab Order and Layering Controls

Many users find it faster to use the keyboard rather than the mouse
when working with an application, particularly those that require a
large amount of data entry. Therefore it is essential that the cursor
moves from one field to the next in the expected manner when the
user presses the Tab key.
By default, the tab order is the same as the order in which controls
were added to the form. Beginning at zero, each control is given a
value in the TabIndex property. The lower the TabIndex, the earlier the
control is in the tab order.

NOTE

If you set the TabStop property to False, the control will be skipped
over when the Tab key is pressed, and there will be no way for a
user to set its focus without using the mouse. Some controls can
never be given the focus, such as a Label. These controls still have
a TabIndex property; however, they are skipped when the Tab key
is pressed.

Visual Studio provides a handy feature to view and adjust the tab

Download from finelybook www.finelybook.com

423

order of every control on a form. If you select View Tab Order from
the menu, the TabIndex values display in the designer for each control,
as shown in Figure 13-10. In this example the TabIndex values assigned
to the controls are not in order, which would cause the focus to jump
all over the form as the Tab key is pressed.

FIGURE 13-10

You can click each control to establish a new tab order. When you
finish, press the Esc key to hide the tab order from the designer.
If more than one control on a form has the same TabIndex, the z-order
is used to determine which control is next in the tab order. The z-order
is the layering of controls on a form along the form’s z-axis (depth)
and is generally only relevant if controls must be layered on top of
each other. The z-order of a control can be modified using the Bring to
Front and Send to Back commands under the Format Order menu.

Locking Control Design

When you’re happy with your form design, you will want to start
applying changes to the various controls and their properties.
However, in the process of selecting controls on the form, you may
inadvertently move a control from its desired position, particularly if
you’re not using either of the snap layout methods or if you have many
controls that are being aligned with each other.
Fortunately, Visual Studio 2017 provides a solution in the form of the
Lock Controls command, available in the Format menu. When
controls are locked, you can select them to change their properties, but
you cannot use the mouse to move or resize them, or the form itself.

Download from finelybook www.finelybook.com

424

The location of the controls can still be changed via the Properties
grid.
Figure 13-11 shows how small padlock icons display on controls that
are selected while the Lock Controls feature is active.

FIGURE 13-11

NOTE

You can also lock controls on an individual basis by setting the
Locked property of the control to True in the Properties window.

Setting Control Properties

You set the properties on controls using the Properties window, just as
you would for a form’s settings. In addition to simple text value
properties, Visual Studio 2017 has a number of property editor types,
which aid you in setting the values efficiently by restricting them to a
particular subset appropriate to the type of property.
Many advanced properties have a set of subordinate properties that
can be individually accessed by expanding the entry in the Properties
window. Figure 13-12 (left) displays the Properties window for a Label,
with the Font property expanded to show the individual properties
available.

Download from finelybook www.finelybook.com

425

FIGURE 13-12

Many properties also provide extended editors, as is the case for Font
properties. In Figure 13-12 (right), the extended editor button in the
Font property has been selected, causing the Font dialog to appear.
Some of these extended editors invoke full-blown wizards, such as the
Data Connection property on some data-bound components, whereas
others have custom-built inline property editors. An example of this is
the Dock property, for which you can choose a visual representation of
how you want the property docked to the containing component or
form.

Service-Based Components

Two kinds of components can be added to a Windows Form — those
with visual aspects to them and those without. Service-based
components such as timers and dialogs, or extender controls such as
tooltip and error provider components, can all be used to enhance
your application.
Rather than place these components on the form, when you double-
click one in the Toolbox, or drag and drop it onto the design surface,
Visual Studio 2017 creates a tray area below the Design view of the
form and puts the new instance of the component type there, as shown
in Figure 13-13.

Download from finelybook www.finelybook.com

426

FIGURE 13-13

To edit the properties of one of these controls, locate its entry in the
tray area and open the Properties window.

NOTE

In the same way that you can create your own custom visual
controls by inheriting from System.Windows.Forms.Control, you
can create nonvisual service components by inheriting from
System.ComponentModel.Component. In fact, System

ComponentModel.Component is the base class for
System.Windows.Forms.Control.

Smart Tag Tasks

Smart tag technology was introduced in Microsoft Office. It provides
inline shortcuts to a small selection of actions you can perform on a
particular element. In Microsoft Word, this might be a word or phrase,
and in Microsoft Excel it could be a spreadsheet cell. Visual Studio
2017 supports the concept of design-time smart tags for a number of
the controls available to you as a developer.
Whenever a selected control has a smart tag available, a small right-

Download from finelybook www.finelybook.com

427

pointing arrow displays on the top-right corner of the control. Clicking
this smart tag indicator opens up a Tasks menu associated with that
particular control.
Figure 13-14 shows the tasks for a newly added DataGridView control.
The various actions that can be taken usually mirror properties
available to you in the Properties window (such as the Multiline
option for a TextBox control), but sometimes they provide quick
access to more advanced settings for the component.

FIGURE 13-14

The Edit Columns and Add Column commands shown in Figure 13-14
are not listed in the DataGridView’s Properties list, and the Data
Source and Enable settings directly correlate to individual properties.
(For example, Enable Adding is equivalent to the AllowUserToAddRows
property.)

CONTAINER CONTROLS

Several controls, known as container controls, are designed
specifically to help you with your form’s layout and appearance.
Rather than have their own appearance, they hold other controls
within their bounds. When a container houses a set of controls, you no
longer need to move the child controls individually, but instead just
move the container. Using a combination of Dock and Anchor values,
you can have whole sections of your form’s layout automatically
redesign themselves at run time in response to the resizing of the form
and the container controls that hold them.

Download from finelybook www.finelybook.com

428

Panel and SplitContainer

The Panel control is used to group components that are associated
with each other. When placed on a form, it can be sized and positioned
anywhere within the form’s design surface. Because it’s a container
control, clicking within its boundaries selects anything inside it. To
move it, Visual Studio 2017 places a move icon at the top-left corner of
the control. Clicking and dragging this icon enables you to reposition
the Panel.
The SplitContainer control (as shown in Figure 13-15) automatically
creates two Panel controls when added to a form (or another container
control). It divides the space into two sections, each of which you can
control individually. At run time, users can resize the two spaces by
dragging the splitter bar that divides them. SplitContainers can be
either vertical (refer to Figure 13-15) or horizontal, and they can be
contained with other SplitContainer controls to form a complex layout
that can then be easily customized by the end user without you
needing to write any code.

FIGURE 13-15

Download from finelybook www.finelybook.com

429

NOTE

Sometimes it’s hard to select the actual container control when it
contains other components, such as in the case of the
SplitContainer housing the two Panel controls. To gain direct
access to the SplitContainer control, you can either locate it in the
dropdown list in the Properties window, or right-click one of the
Panel controls and choose the Select command that corresponds
to the SplitContainer. This context menu contains a Select
command for every container control in the hierarchy of
containers, right up to the form.

FlowLayoutPanel

The FlowLayoutPanel control enables you to create form designs with
a behavior similar to web browsers. Rather than explicitly position
each control within this particular container control, Visual Studio
simply sets each component you add to the next available space. By
default, the controls flow left to right, and then top to bottom, but you
can use the FlowDirection property to reverse this order in any
configuration depending on the requirements of your application.
Figure 13-16 displays the same form with six button controls housed
within a FlowLayoutPanel container. The FlowLayoutPanel’s Dock
property was set to fill the entire form’s design surface, so as the form
is resized, the container is also automatically sized. As the form gets
wider and there is available space, the controls begin to realign to flow
left to right before descending down the form.

Download from finelybook www.finelybook.com

430

FIGURE 13-16

TableLayoutPanel

An alternative to the previously discussed container controls is the
TableLayoutPanel container. This control works much like a table in
Microsoft Word or in a typical web browser, with each cell acting as an
individual container for a single control.

NOTE

You cannot add multiple controls within a single cell directly. You
can, however, place another container control, such as a Panel,
within the cell, and then place the required components within
that child container.

Placing a control directly into a cell automatically positions the control
in the top-left corner of the table cell. You can use the Dock property to
override this behavior and position it as required. This property is
discussed further in the section “Docking and Anchoring Controls.”
The TableLayoutPanel container enables you to easily create a
structured, formal layout in your form with advanced features, such as
the capability to automatically grow by adding more rows as additional
child controls are added.
Figure 13-17 shows a form with a TableLayoutPanel added to the
design surface. The smart tag tasks were then opened and the Edit
Rows and Columns command executed. As a result, the Column and
Row Styles dialog displays, so you can adjust the individual formatting

Download from finelybook www.finelybook.com

431

options for each column and row. The dialog displays several tips for
designing table layouts in your forms, including spanning multiple
rows and columns and how to align controls within a cell. You can
change the way the cells are sized here as well as add or remove
additional columns and rows.

FIGURE 13-17

DOCKING AND ANCHORING CONTROLS

It’s not enough to design layouts that are nicely aligned according to
the design-time dimensions. At run time, a user will likely resize the
form, and ideally the controls on your form will resize automatically to
fill the modified space. The control properties that have the most
impact on this are Dock and Anchor. Figure 13-18 shows how the
controls on a Windows Form properly resize after you set the correct
Dock and Anchor property values.

Download from finelybook www.finelybook.com

432

FIGURE 13-18

The Dock property controls which borders of the control are bound to
the container. For example, in Figure 13-18 (left), the TreeView control
Dock property has been set to Fill to fill the left panel of a
SplitContainer, effectively docking it to all four borders. Therefore, no
matter how large or small the left side of the SplitContainer is made,
the TreeView control always resizes itself to fill the available space.
The Anchor property defines the edges of the container to which the
control is bound. In Figure 13-18 (left), the two button controls have
been anchored to the bottom-right of the form. When the form is
resized, as shown in Figure 13-18 (right), the button controls maintain
the same distance to the bottom-right of the form. Similarly, the
TextBox control has been anchored to the top, left and right, which
means that it can auto-grow or auto-shrink as the form is resized.

SUMMARY

In this chapter you received a good understanding of how Visual
Studio can help you to quickly design the layout of Windows Forms
applications. The various controls and their properties enable you to
quickly and easily create complex layouts that can respond to user
interaction in a large variety of ways. The techniques you learned in
this chapter are user interface technology independent. So whether
you are creating websites, WPF applications, Windows Store
applications, Windows Phone apps, or Silverlight, the basics are the
same as covered in this chapter.

Download from finelybook www.finelybook.com

433

14
Windows Presentation Foundation
(WPF)

WHAT’S IN THIS CHAPTER?

Learning the basics of XAML
Creating a WPF application
Styling your WPF application
Hosting WPF content in a Windows Forms project
Hosting Windows Forms content in a WPF project
Using the WPF Visualizer

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
When starting a new Windows client application in Visual Studio,
you have two major technologies to choose from — a standard
Windows Forms–based application, or a Windows Presentation
Foundation (WPF)–based application. Both are essentially a
different API for managing the presentation layer for your
application. WPF is extremely powerful and flexible, and was
designed to overcome many of the shortcomings and limitations of
Windows Forms. In many ways you could consider WPF a
successor to Windows Forms. However, WPF’s power and
flexibility comes with a price in the form of a rather steep learning
curve because it does things quite differently than Windows Forms.
This chapter guides you through the process to create a basic WPF

Download from finelybook www.finelybook.com

434

http://wrox.com
http://www.wrox.com

application in Visual Studio 2017. It’s beyond the scope of this
book to cover the WPF framework in any great detail — it would
take an entire book to do so. Instead, what you see is an overview
of Visual Studio 2017’s capabilities to help you rapidly build user
interfaces using XAML.

WHAT IS WPF?

Windows Presentation Foundation is a presentation framework for
Windows. But what makes WPF unique, and why should you consider
using it over Windows Forms? Whereas Windows Forms uses the
raster-based GDI/GDI+ as its rendering engine, WPF instead contains
its own vector-based rendering engine, so it essentially isn’t creating
windows and controls in the standard Windows manner and look.
WPF takes a radical departure from the way things are done in
Windows Forms. In Windows Forms you generally define the user
interface using the visual designer, and in doing so it automatically
creates the code (in the language your project targets) in a .designer
file to define that user interface — so essentially your user interface is
defined and driven in C# or VB code. However, user interfaces in WPF
are actually defined in an XML-based markup language called
Extensible Application Markup Language (generally referred to as
XAML, pronounced “zammel”) specifically designed for this purpose
by Microsoft. XAML is the underlying technology to WPF that gives it
its power and flexibility, enabling the design of much richer user
experiences and more unique user interfaces than was possible in
Windows Forms. Regardless of which language your project targets,
the XAML defining the user interface will be the same. Consequently,
along with the capabilities of the user interface controls there are a
number of supporting concepts on the code side of things, such as the
introduction of dependency properties (properties that can accept an
expression that must be resolved as their value — which is required in
many binding scenarios to support XAML’s advanced binding
capabilities). However, you can find that the code-behind in a WPF
application is much the same as a standard Windows Forms
application — the XAML side of things is where you need to do most of
your learning.

Download from finelybook www.finelybook.com

435

When developing WPF applications, you need to think differently than
the way you think when developing Windows Forms applications. A
core part of your thought processes should be to take full advantage of
XAML’s advanced binding capabilities, with the code-behind no longer
acting as the controller for the user interface but serving it instead.
Instead of the code “pushing” data into the user interface and telling it
what to do, the user interface should ask the code what it should do,
and request (that is, “pull”) data from it. It’s a subtle difference, but it
greatly changes the way in which the presentation layer of your
application will be defined. Think of it as having a user interface that is
in charge. The code can (and should) act as a decision manager, but no
longer provides the muscle.
There are also specific design patterns for how the code and the user
interface elements interact, such as the popular Model-View-
ViewModel (MVVM) pattern, which enables much better unit testing
of the code serving the user interface and maintains a clean separation
between the designer and developer elements of the project. This
results in changing the way you write the code-behind, and ultimately
changes the way you design your application. This clear separation
supports the designer/developer workflow, enabling a designer to
work in Expression Blend on the same part of the project as the
developer (working in Visual Studio) without clashing.
By taking advantage of the flexibility of XAML, WPF enables you to
design unique user interfaces and user experiences. At the heart of this
is WPF’s styling and templating functionality that separates the look of
controls from their behavior. This enables you to alter the appearance
of controls easily by simply defining an alternative “style” on that
particular use without having to modify the control.
Ultimately, you could say that WPF uses a much better way of defining
user interfaces than Windows Forms does, through its use of XAML to
define user interfaces, along with a number of additional supporting
concepts thrown in. The bad news is that the flexibility and power of
XAML comes with a corresponding steep learning curve that takes
some time to climb, even for the experienced developer. If you are a
productive developer in Windows Forms, WPF will no doubt create
considerable frustration for you while you get your head around its
concepts, and it actually requires a change in your developer mindset

Download from finelybook www.finelybook.com

436

to truly get a grasp on it and how things hold together. Many simple
tasks will initially seem a whole lot harder than they should be, and
would have been were you to implement the same functionality or
feature in Windows Forms. However, if you can make it through this
period, you will start to see the benefits and appreciate the possibilities
that WPF and XAML provide. Because Silverlight shares a lot
conceptually with WPF (both being XAML-based, with Silverlight not
quite a subset of WPF, but close), by learning and understanding WPF
you are also learning and understanding how to develop Silverlight
applications.

GETTING STARTED WITH WPF

When you open the New Project dialog, you see WPF Application, and
WPF Browser Application and a number of other built-in project
templates that ship with Visual Studio 2017, as shown in Figure 14-1.

FIGURE 14-1

You can notice that these projects are for the most part a direct

Download from finelybook www.finelybook.com

437

parallel to the Windows Forms equivalent. The exception is the WPF
Browser Application, which generates an XBAP file that uses the
browser as the container for your rich client application (in much the
same way as Silverlight does, except an XBAP application targets the
full .NET Framework, which must be installed on the client machine).
For this example you create a project using the WPF Application
template, but most of the features of Visual Studio 2017 discussed
herein apply equally to the other project types. The project structure
generated should look similar to Figure 14-2.

FIGURE 14-2

Here, you can see that the project structure consists of App.xaml and
MainWindow.xaml, each with a corresponding code-behind file (.cs or
.vb), which you can view if you expand out the relevant project items.
At this stage the App.xaml contains an Application XAML element,
which has a StartupUri attribute used to define which XAML file will
be your initial XAML file to load (by default MainWindow.xaml). For
those familiar with Windows Forms, this is the equivalent of the
startup form. So if you were to change the name of MainWindow.xaml

Download from finelybook www.finelybook.com

438

and its corresponding class to something more meaningful, you would
need to make the following changes:

Change the filename of the .xaml file. The code-behind file will
automatically be renamed accordingly.
Change the class name in the code-behind file, along with its
constructor, and change the value of the x:Class attribute of the
Window element in the .xaml file to reference the new name of the
class (fully qualified with its namespace). Note that the last two
steps are automatically performed if you change the class name in
the code-behind file first and use the smart tag that appears after
doing so to rename the object in all the locations that reference it.
Finally, change the StartupUri attribute of the Application element
in App.xaml to point toward the new name of the .xaml file (because
it is your startup object).

As you can see, a few more changes need to be made when renaming a
file in a WPF project than you would have to do in a standard
Windows Forms project; however, it’s reasonably straightforward
when you know what you are doing. (And using the smart tag reduces
the number of steps required.)
Working around the Visual Studio layout of Figure 14-2, you can see
that the familiar Toolbox tool window attached to the left side of the
screen has been populated with WPF controls that are similar to what
you would be used to when building a Windows Forms application. On
the right side of Figure 14-2 is the Properties tool window. You may
note that it has a similar layout and behavior to the Windows Forms
designer Properties tool window. However, this window in the WPF
designer has additional features for editing WPF windows and
controls. Finally, in the middle of the screen is the main
editor/preview space, which is currently split to show both the visual
layout of the window (above) and the XAML code that defines it
(below).

XAML Fundamentals

If you have some familiarity working with XML (or to some extent
HTML), you should find the syntax of XAML relatively straightforward

Download from finelybook www.finelybook.com

439

because it is XML-based. XAML can have only a single root-level node,
and elements are nested within each other to define the layout and
content of the user interface. Every XAML element maps to a .NET
class, and the attribute names map to properties/events on that class.
Note that element and attribute names are case-sensitive.
Take a look at the default XAML file created for the MainWindow
class:

<Window x:Class="CSWpfApplication.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="300" Width="300">
 <Grid>

 </Grid>
</Window>

Here you have Window as your root node and a Grid element within it.
To make sense of it, think of it in terms of “your window contains a
grid.” The root node maps to its corresponding code-behind class via
the x:Class attribute, and also contains some namespace prefix
declarations (discussed shortly) and some attributes used to set the
value of properties (Title, Height, and Width) of the Window class. The
value of all attributes (regardless of type) should be enclosed within
quotes.
Two namespace prefixes are defined on the root node, both declared
using xmlns (the XML attribute used for declaring namespaces). You
could consider XAML namespace prefix declarations to be somewhat
like the using/Imports statements at the top of a class in C#/VB, but
not quite. These declarations assign a unique prefix to the namespaces
used within the XAML file, with the prefix used to qualify that
namespace when referring to a class within it (that is, specify the
location of the class). Prefixes reduce the verbosity of XAML by letting
you use that prefix rather than including the whole namespace when
referring to a class within it in your XAML file. The prefix is defined
immediately following the colon after xmlns. The first definition
actually doesn’t specify a prefix because it defines your default
namespace (the WPF namespace). However, the second namespace

Download from finelybook www.finelybook.com

440

defines x as its prefix (the XAML namespace). Both definitions map to
URIs rather than specific namespaces — these are consolidated
namespaces (that is, they cover multiple namespaces) and hence
reference the unique URI used to define that consolidation. However,
you don’t need to worry about this concept — leave these definitions as
they are, and simply add your own definitions following them. When
adding your own namespace definitions, they almost always begin
with clr-namespace and reference a CLR namespace and the assembly
that contains it, for example:

xmlns:wpf="clr-
namespace:Microsoft.Windows.Controls;assembly=WPFToolkit"

Prefixes can be anything of your choosing, but it is best to make them
short yet meaningful. Namespaces are generally defined on the root
node in the XAML file. This is not necessary because a namespace
prefix can be defined at any level in a XAML file, but it is generally a
standard practice to keep them together on the root node for
maintainability purposes.
If you want to refer to a control in the code-behind or by binding it to
another control in the XAML file (such as ElementName binding) you
need to give your control a name. Many controls implement the Name
property for this purpose, but you may also find that controls are
assigned a name using the x:Name attribute. This is defined in the
XAML namespace (hence the x: prefix) and can be applied to any
control. If the Name property is implemented (which it will be in most
cases because it is defined on the base classes that most controls
inherit from), it simply maps to this property anyway, and they serve
the same purpose, for example:

 <Button x:Name="OKButton" Content="OK" />

is the same as

 <Button Name="OKButton" Content="OK" />

Either way is technically valid. After one of these properties is set, a
field is generated (in the automatically generated code that you won’t
see) that you can use to refer to that control.

Download from finelybook www.finelybook.com

441

The WPF Controls

WPF contains a rich set of controls to use in your user interfaces,
roughly comparable to the standard controls for Windows Forms.
However, depending on which version of WPF you’re using, you may
have noticed a number of controls (such as the Calendar, DatePicker,
DataGrid, and so on), which are included in the standard controls for
Windows Forms but were not included in the standard controls for
WPF. Instead, you had to turn to the free WPF Toolkit, available on
NuGet, to obtain these controls. Use the Nuget Package Manager
(described in Chapter 6, “Solutions, Projects, and Items”), and search
for WPF Toolkit to install the controls into your project. This toolkit
was developed by Microsoft (and enhanced over time) to help fill this
gap in the original WPF release by providing some of the missing
controls. The goal is to provide a reasonably complete set of controls
out-of-the-box. Of course, you can still use third-party controls where
the standard set doesn’t suffice, but you have a reasonable base to
work from.
Although the controls set for WPF are somewhat comparable to that of
Windows Forms, their properties are quite different from their
counterparts. For example, there is no longer a Text property on many
controls; although you can find a Content property instead. The
Content property is used to assign content to the control (hence its
name). You can for the most part treat this as you would the Text
property for a Windows Forms control and simply assign some text to
this property to be rendered. However, the Content property can
accept any WPF element, allowing almost limitless ability to customize
the layout of a control without necessarily having to create your own
custom control — a powerful feature for designing complex user
interfaces. You may note that many controls don’t have properties to
accomplish what was straightforward in Windows Forms, and you
may find this somewhat confusing. For example, there is no Image
property on the WPF Button control to assign an image to a button as
there is in Windows Forms. This may initially make you think WPF is
limited in its capabilities, but you would be mistaken because this is
where the Content property comes into its own. Because the Content
property can have any WPF control assigned to it to define the content

Download from finelybook www.finelybook.com

442

of its control, you can assign a StackPanel (discussed in the next
section) containing both an Image control and a TextBlock control to
achieve the same effect. Though this may initially appear to be more
work than it would be to achieve the same outcome in Windows
Forms, it does enable you to easily lay out the content of the button in
whatever form you choose (rather than how the control chooses to
implement the layout), and demonstrates the incredible flexibility of
WPF and XAML. The XAML for the button in Figure 14-3 is as follows:

FIGURE 14-3

<Button HorizontalAlignment="Left" VerticalAlignment="Top"
Width="100" Height="30">
 <Button.Content>
 <StackPanel Orientation="Horizontal">
 <Image Source="Resources/FloppyDisk.png"
Width="16" Height="16"/>
 <TextBlock Margin="5,0,0,0" Text="Save"
VerticalAlignment="Center"/>
 </StackPanel>
 </Button.Content>
</Button>

Other notable property name changes from Windows Forms include
the IsEnabled property (which was simply Enabled in Windows Forms)
and the Visibility property (which was Visible in Windows Forms).
Like IsEnabled, you can notice that most Boolean properties are
prefixed with Is (for example, IsTabStop, IsHitTestVisible, and so on),
conforming to a standard naming scheme. The Visibility property,
however, is no longer a boolean value — instead it is an enumeration
that can have the value Visible, Hidden, or Collapsed.

The WPF Layout Controls

Windows Forms development used absolute placement for controls on
its surface (that is, each control had its x and y coordinates explicitly
set); although over time the TableLayoutPanel and FlowLayoutPanel
controls were added, in which you could place controls to provide a
more advanced means of laying out the controls on your form.

Download from finelybook www.finelybook.com

443

However, the concepts around positioning controls in WPF are slightly
different than how controls are positioned in Windows Forms. Along
with controls that provide a specific function (for example, buttons,
TextBoxes, and so on), WPF also has a number of controls used
specifically for defining the layout of your user interface.
Layout controls are invisible controls that handle the positioning of
controls upon their surface. In WPF there isn’t a default surface for
positioning controls as such — the surface you work with is
determined by the layout controls further up the hierarchy, with a
layout control generally used as the element directly below the root
node of each XAML file to define the default layout method for that
XAML file. The most important layout controls in WPF are the Grid,
the Canvas, and the StackPanel, so this section takes a look at each of
those. For example, in the default XAML file created for the
MainWindow class provided earlier, the Grid element was the element
directly below the Window root node, and thus would act as the
default layout surface for that window. Of course, you could change
this to any layout control to suit your requirements, and use additional
layout controls within it if necessary to create additional surfaces that
change the way their containing controls are positioned.
The next section looks at how to lay out your forms using the designer
surface, but look at the XAML to use these controls first.
In WPF, if you want to place controls in your form using absolute
coordinates (similar to the default in Windows Forms) you would use
the Canvas control as a “surface” to place the controls on. Defining a
Canvas control in XAML is straightforward:

<Canvas>

</Canvas>

To place a control (for example, a TextBox control) within this surface
using given x and y coordinates (relative to the location of the top-left
corner of the canvas) you need to introduce the concept of attached
properties within XAML. The TextBox control doesn’t actually have
properties to define its location because its positioning within the
layout control it is contained within is totally dependent on the type of
control. So correspondingly, the properties that the TextBox control

Download from finelybook www.finelybook.com

444

requires to specify its position within the layout control must come
from the layout control itself. (Because it will be handling the
positioning of the controls within it.) This is where attached properties
come in. In a nutshell, attached properties are properties assigned a
value on a control, but the property is actually defined on and belongs
to another control higher up in the hierarchy. When using the
property, the name of the property is qualified by the name of the
control that the property is actually defined on, followed by a period,
and then the name of the property on that control you are using (for
example, Canvas.Left). By setting that value on another control that is
hosted within it (such as your TextBox), the Canvas control is actually
storing that value and will manage that TextBox’s position using that
value. For example, this is the XAML required to place the TextBox at
coordinates 15, 10 using the Left and Top properties defined on the
Canvas control:

<Canvas>
 <TextBox Text="Hello" Canvas.Left="15" Canvas.Top="10"/>
</Canvas>

Although absolute placement is the default for controls in Windows
Forms, best practice in WPF is to actually use the Grid control for
laying out controls. The Canvas control should be used only sparsely
and where necessary, because the Grid control is actually far more
powerful for defining form layouts and is a better choice in most
scenarios. One of the big benefits of the Grid control is that its contents
can automatically resize when its own size is changed. So you can
easily design a form that automatically sizes to fill all the area available
to it — that is, the size and location of the controls within it are
determined dynamically.

NOTE

One of the controls available in the WPF Toolkit is a layout
control called a ViewBox. When a Canvas element is placed inside a
ViewBox, the positioning of the elements on the Canvas will be
dynamically changed based on the size of the ViewBox container.
This is a big deal for people who want absolute positioning but

Download from finelybook www.finelybook.com

445

still want the benefit of dynamic positioning.

The Grid control allows you to divide its area into regions (cells) into
which you can place controls. These cells are created by defining a set
of rows and columns on the grid, and are defined as values on the
RowDefinitions and ColumnDefinitions properties on the grid. The
intersections between rows and columns become the cells that you can
place controls within.
To support defining rows and columns, you need to know how to
define complex values in XAML. Up until now you have been assigning
simple values to controls, which map to either .NET primitive data
types, the name of an enumeration value, or have a type converter to
convert the string value to its corresponding object. These simple
properties had their values applied as attributes within the control
definition element. However, complex values cannot be assigned this
way because they map to objects (which require the value of multiple
properties on the object to be assigned), and must be defined using
property element syntax instead. Because the RowDefinitions and
ColumnDefinitions properties of the Grid control are collections, they
take complex values that need to be defined with property element
syntax. For example, here is a grid that has two rows and three
columns defined using property element syntax:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100"/>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
</Grid>

To set the RowDefinitions property using property element syntax, you
need to create a child element of the Grid to define it. Qualifying it by
adding Grid before the property name indicates that the property
belongs to a control higher in the hierarchy (as with attached
properties), and making the property an element in XAML indicates
you are assigning a complex value to the specified property on the Grid

Download from finelybook www.finelybook.com

446

control.
The RowDefinitions property accepts a collection of RowDefinitions, so
you are instantiating a number of RowDefinition objects that are then
populating that collection. Correspondingly, the ColumnDefinitions
property is assigned a collection of ColumnDefinition objects. To
demonstrate that ColumnDefinition (like RowDefinition) is actually an
object, the Width property of the ColumnDefinition object has been set
on the first two column definitions.
To place a control within a given cell, you again make use of attached
properties, this time telling the container grid which column and row
it should be placed in:

 <CheckBox Grid.Column="0" Grid.Row="1" Content="A check box"
IsChecked="True" />

The StackPanel is another important container control for laying out
controls. It stacks the controls contained within it either horizontally
or vertically (depending on the value of its Orientation property). For
example, if you had two buttons defined within the same grid cell
(without a StackPanel) the grid would position the second button
directly over the first. However, if you put the buttons within a
StackPanel control, it would control the position of the two buttons
within the cell and lay them out next to one another.

<StackPanel Orientation="Horizontal">
 <Button Content="OK" Height="23" Width="75"/>
 <Button Content="Cancel" Height="23" Width="75"
Margin="10,0,0,0"/>
</StackPanel>

THE WPF DESIGNER AND XAML EDITOR

The WPF designer is similar in layout to Windows Form’s designer,
but supports a number of unique features. To take a closer look at
some of these, Figure 14-4 isolates this window, so you can see in more
detail the various components.

Download from finelybook www.finelybook.com

447

FIGURE 14-4

First, you can notice that the window is split into a visual designer at
the top and a code window at the bottom. If you prefer the other way
around, you can simply click the up/down arrows between the Design
and XAML tabs. In Figure 14-4 the second icon on the right side is
highlighted to indicate that the screen is split horizontally. Selecting
the icon to its left instead splits the screen vertically.

Download from finelybook www.finelybook.com

448

NOTE

You will probably find that working in split mode is the best
option when working with the WPF designer because you are
likely to find yourself directly modifying the XAML regularly but
want the ease of use of the designer for general tasks.

If you prefer not to work in split-screen mode, you can double-click
either the Design or XAML tab. This makes the relevant tab fill the
entire editor window, as shown in Figure 14-5, and you can click the
tabs to switch between each view. To return to split-screen mode, you
just need to click the Expand Pane icon, which is the rightmost icon on
the splitter bar.

FIGURE 14-5

The only way to zoom in or out of the design surface is through a
combo box at the bottom left of the designer. Along with having a

Download from finelybook www.finelybook.com

449

number of fixed percentages, there is also the ability to fill all and fit
the selection. The first zooms the designer out far enough so that all
the controls are visible. The second zooms the designer in so that all
the selected item is visible. This can be extremely handy when making
small fiddly adjustments to the layout.

Working with the XAML Editor

Working with the XAML editor is somewhat similar to working with
the HTML editor in Visual Studio. Writing XAML directly is quick and
easy. One neat feature with the XAML editor is the ability to easily
navigate to an event handler after it has been assigned to a control.
Simply right-click the event handler assignment in XAML, and select
the Go To Definition item from the pop-up menu, as shown in Figure
14-6.

FIGURE 14-6

Working with the WPF Designer

Although it is important to familiarize yourself with writing XAML in
the XAML editor, Visual Studio 2017 also has a good designer for
WPF, comparable to the Windows Forms designer, and in some

Download from finelybook www.finelybook.com

450

respects even better. This section takes a look at some of the features
of the WPF designer.
Figure 14-7 shows some of the snap regions, guides, and glyphs added
when you select, move, and resize a control.

FIGURE 14-7

The left image in Figure 14-7 demonstrates the snap regions that
appear when you move a control around the form (or resize it). These
snap regions are similar to snap lines in the Windows Forms designer,
and help you align controls to a standard margin within their
container control, or easily align a control to other controls. Hold
down ALT while you move a control if you don’t want these snap
regions to appear and your control to snap to them.
The right image in Figure 14-7 demonstrates the rulers that appear
when you resize a control. This feature allows you to easily see the new
dimensions of a control as you resize it to help you adjust it to a
particular size.
The right image in Figure 14-7 also contains some anchor points (that
is, the symbols that look like a chain link on the top and left of the
button, and the “broken” chain link on the bottom and right of the
button). These symbols indicate that the button has a margin applied
to it, dictating the placement of the button within its grid cell.
Currently, these symbols indicate that the button has a top and left
margin applied, effectively “anchoring” its top and left sides to the top
and left of the grid containing it. However, it is easy to swap the top
anchor so that the button is anchored by its bottom edge, and swap the
left anchor so that the button is anchored by its right edge instead.
Simply click the top anchor symbol to have the button anchored by its

Download from finelybook www.finelybook.com

451

bottom edge, and click the left anchor symbol to have the button
anchored by its right edge. The anchor symbols swap positions, and
you can simply click them again to return them back to their original
anchor points. You can also anchor both sides (that is, left/right or
top/bottom) of a control such that it stretches as the grid cell it is
hosted within is resized. For example, if the left side of the TextBox is
anchored to the grid cell, you can also anchor its right side by clicking
the small circle to the right of the TextBox. To remove the anchor from
just one side, click the anchor symbol on that side to remove it.
The most important control for laying out your form is the Grid
control. Take a look at some of the special support that the WPF
designer has for working with this control. By default your
MainWindow.xaml file was created with a single grid element without
any rows or columns defined. Before you commence adding elements,
you might want to define some rows and columns, which can be used
to control the layout of the controls within the form. To do this, start
by selecting the grid by clicking in the blank area in the middle of the
window, selecting the relevant node from the Document Outline tool
window, or placing the cursor within the corresponding grid element
in the XAML file itself (when in split view).
When the grid element is selected, a border appears around the top
and left edges of the grid, highlighting both the actual area occupied by
the grid and the relative sizing of each of the rows and columns, as
shown in Figure 14-8. This figure currently shows a grid with two rows
and two columns.

Download from finelybook www.finelybook.com

452

FIGURE 14-8

You can add additional rows or columns by simply clicking at a
location within the border. When added, the row or column markers
can be selected and dragged to get the correct sizing. You will notice
when you are initially placing the markers that there is no information
about the size of the new row/column displayed, which is unfortunate;
however, these will appear after the marker has been created.
When you move the cursor over the size display for a row or column, a
small indicator appears above or to the left of the label. In Figure 14-9,
it’s a lock symbol with a drop-down arrow. By selecting the drop-
down, you can specify whether the row/column should be fixed
(Pixel), a weighted proportion (Star), or determined by its contents
(Auto). Alternatively, there is a drop-down menu that lets you specify
this information, as well as performing some common grid operations.

Download from finelybook www.finelybook.com

453

FIGURE 14-9

NOTE

Weighted proportion is a similar concept to specifying a
percentage of the space available (compared to other columns).
After fixed and auto-sized columns/rows have been allocated
space, columns/rows with weighted proportions will divide up
the remaining available space. This division will be equal, unless
you prefix the asterisk with a numeric multiplier. For example,
say you have a grid with a width of 1000 (pixels) and two
columns. If both have * as their specified width, they each will
have a width of 500 pixels. However, if one has a width of *, and
the other has a width of 3*, then the 1000 pixels will divide into
250 pixel “chunks,” with one chunk allocated to the first column
(thus having a width of 250 pixels), and three chunks allocated to
the second column (thus having a width of 750 pixels).

To delete a row or column, click the row or column, and drag it outside
of the grid area. It will be removed, and the controls in the
surrounding cells will be updated accordingly.

Download from finelybook www.finelybook.com

454

NOTE

When you create a control by dragging and dropping it on a grid
cell, remember to “dock” it to the left and top edges of the grid cell
(by dragging it until it snaps into that position). Otherwise a
margin will be defined on the control to position it within the grid
cell, which is probably not the behavior you want.

For developers the idea of Edit and Continue is that you can make
changes to code while the application is being debugged and those
changes will immediately be incorporated into the current execution.
When that idea is applied to XAML, you have the ability to make
changes to the XAML code for a page while the application is running
and to have those changes immediately appear on the page.
When your application is running, a small toolbar, known as the
Runtime Visual Tools, appears at the middle top, as shown in Figure
14-10.

FIGURE 14-10

To modify a particular element, click on the Enable Selection icon (the
second from the left) and then select to the element to be modified. At
this point, changes you make to the XAML will be reflected in the
application in real-time. If you want to find the element in question,
you can click on the Go To Live Visual Tree icon (the left-most icon).
That will open the Live Visual Tree window (Figure 14-11). From there,
if you right-click on the element, you can select View Source to get to

Download from finelybook www.finelybook.com

455

the actual XAML markup.

FIGURE 14-11

The Properties Tool Window

When you’ve placed a control on your form, you don’t have to return
to the XAML editor to set its property values and assign event
handlers. Like Windows Forms, WPF has a Properties window;
although there are quite a few differences in WPF’s implementation, as
shown in Figure 14-12.

Download from finelybook www.finelybook.com

456

FIGURE 14-12

The Properties tool window for Windows Forms development allows
you to select a control to set the properties via a drop-down control
selector above the properties/events list. However, this drop-down is
missing in WPF’s Properties window. Instead, you must select the
control on the designer, via the Document Outline tool window, or by
placing the cursor within the definition of a control in XAML view.

NOTE

The Properties window can be used while working in both the
XAML editor and the designer. However, if you want to use it
from the XAML editor, the designer must have been loaded (you
may need to switch to designer view and back if you have opened
the file straight into the XAML editor), and if you have invalid

Download from finelybook www.finelybook.com

457

XAML you may find you need to fix the errors first.

The Name property for the control is not within the property list but has
a dedicated TextBox above the property list. If the control doesn’t
already have a name, it assigns the value to its Name property (rather
than x:Name). However, if the x:Name attribute is defined on the control
element and you update its name from the Properties window, it
continues to use and update that attribute.
Controls can have many properties or events, and navigating through
the properties/events lists in Windows Forms to find the one you are
after can be a chore. To make finding a specific property easier for
developers, the WPF Properties window has a search function that
dynamically filters the properties list based on what you type into the
TextBox. Your search string doesn’t need to be the start of the
property/event name, but retains the property/event in the list if any
part of its name contains the search string. Unfortunately, this search
function doesn’t support camel-case searching.
The property list in the WPF designer (like for Windows Forms) can
be displayed in either a Category or alphabetical (Name) order. None
of the properties that are objects (such as Margin) can be expanded to
show/edit their properties (which they do for Windows Forms).
However, if the list displays in the Category order, you can observe a
unique feature of WPF’s property window: category editors. For
example, if you select a Button control and browse down to the Text
category, you find that it has a special editor for the properties in the
Text category to make setting these values a better experience, as
shown in Figure 14-13.

Download from finelybook www.finelybook.com

458

FIGURE 14-13

You may have noticed that each property name has a small square to
its right. This is a feature called property markers. A property marker
indicates what the source for that property’s value is. Placing your
mouse cursor over a square shows a tooltip describing what it means.
The icon changes based on where the value is to be sourced from.
Figure 14-14 demonstrates some of these various icons, which are
described here:

A gray square indicates that the property has no value assigned to
it and will use its default value.
A black square indicates that the property has a local value
assigned to it (that is, has been given a specific value).
A yellow square indicates that the property has a data binding
expression assigned to it. (Data binding is discussed later in the

Download from finelybook www.finelybook.com

459

section “Data Binding Features.”)
A green square indicates that the property has a resource assigned
to it.
A purple square indicates that the property is inheriting its value
from another control further up the hierarchy.

Clicking a property marker icon displays a pop-up menu providing
some advanced options for assigning the value of that property, as
shown in Figure 14-14.

FIGURE 14-14

The Create Data Binding option provides a pop-up editor to select
various binding options to create a data binding expression for that
value. WPF supports numerous binding options, and these and this
window are described further in the next section.

Download from finelybook www.finelybook.com

460

The Custom Expression allows you to directly edit the binding
expression that you would like to use for the property.
The Reset option is available if there is a specific value provided for a
property through data binding, resource assignment, or local values.
When Reset is clicked, all of the binding for this property is removed
and the value reverts to its default.
The Convert to Local Value takes the current value of the property and
assigns it in the control’s attribute directly. It is not set up as a
reusable resource, nor is the value changeable through any data. It is
just a static value defined through an attribute.
The first two Resource options, Local Resource and System Resource,
enable you to select a resource that you’ve created (or is defined by
WPF) and assign it as the value of the selected property. Selecting one
of the options causes the available choices to appear in a fly-away
menu.
Resources are essentially reusable objects and values, similar in
concept to constants in code. The resources are all the resources
available to this property (that is, within scope and of the same type),
grouped by their resource dictionary. Along with the menus, you can
see the resources grouped at the bottom of the category. Figure 14-15
shows a resource of the same type as this property (RedBrushKey) that
is defined within the current XAML file (under the Local grouping)
along with the system-defined resources that meet the same criteria.
(That is, they have the same type.) Because this is a property of type
SolidColorBrush, the window displays all the color brush resources
predefined in WPF for you to choose from.

Download from finelybook www.finelybook.com

461

FIGURE 14-15

Returning to the other options in the menu shown in Figure 14-14, the
Edit Resource option is used to edit a resource that has previously
been assigned to the property’s value. The dialog that gets displayed
depends on the type of property. For instance, a brush property, such
as the one in the example, will display a color picker dialog. Any values
that are edited through this editor will affect any other property that is
bound to the edited resource.
The Convert to New Resource option takes the value of the current
property and turns it into a resource, with options to place the
resource at one of a number of different levels. When selected, a dialog
similar to the one shown in Figure 14-16 appears.

Download from finelybook www.finelybook.com

462

FIGURE 14-16

When a new resource is created, a XAML element is added to some
part of the XAML file (or another XAML file). Along with specifying
the name of the resource, you can also specify the level where it will be
placed. At the bottom of Figure 14-16, you see radio buttons for
Application, This Document, and Resource Dictionary. If Application
is selected, the resource will be added to the App.xaml file. If you
specify This Document, the resource will be created in the current
XAML file. And if you select Resource Dictionary, the resource will be
added to a separate XAML file created specifically to hold resources.
Within this document, you can also select a more detailed level,
starting from the top-level Window element down to the element
whose property you are currently modifying. Regardless of where you
put the resource, it can be reused in other places by referencing the
unique key you give it.
When the resource has been created, the value of the property is
automatically updated to use this resource. For example, using this
option on the Background property of a control that has a value of
#FF8888B7 defines the following resource in Window.Resources with the
name BlueVioletBrushKey:

 <SolidColorBrush
x:Key="BlueVioletBrushKey">#FF8888B7</SolidColorBrush>

The control will reference this resource as such:

 Background="{StaticResource BlueVioletBrushKey}"

You can then apply this resource to other controls using the same
means in XAML, or you can apply it by selecting the control and the
property to apply it to, and using the Apply Resource option on the
property marker menu described previously.
In the designer you can find that (as with Windows Forms) double-
clicking a control automatically creates an event handler for that
control’s default event in the code-behind. You can also create event
handlers for any of the control’s events using the Properties window as
you would in Windows Forms. Clicking the lightning icon in the
Properties window takes you to the Events view, as shown in Figure

Download from finelybook www.finelybook.com

463

14-17. This shows a list of events that the control can raise, and you
can double-click the event to automatically create the appropriate
event handler in the code-behind.

FIGURE 14-17

NOTE

For VB.NET developers, double-clicking the Button control or
creating the event via the Properties window wires up the event
using the Handles syntax. Therefore, the event handler is not
assigned to the event as an attribute. If you use this method to
handle the event, you won’t see the event handler defined in the
XAML for the control, and thus you can’t use the Go To Definition
menu (from Figure 14-6) when in the XAML editor to navigate to
it.

Download from finelybook www.finelybook.com

464

Data Binding Features

Data binding is an important concept in WPF, and is one of its core
strengths. Data binding syntax can be a bit confusing initially, but
Visual Studio 2017 makes creating data bound forms easy in the
designer. Visual Studio 2017 helps with data binding in two ways: with
the Create Data Binding option on a property in the Properties tool
window, and the drag-and-drop data binding support from the Data
Sources window. This section looks at these two options in turn.
In WPF you can bind to objects (which also include datasets,
ADO.NET Entity Framework entities, and so on), resources, and even
properties on other controls. So there are rich binding capabilities in
WPF, and you can bind a property to almost anything you want. Hand-
coding these complex binding expressions in XAML can be quite
daunting, but the Data Binding editor enables you to build these
expressions via a point-and-click interface.
To bind a property on a control, first select the control in the designer,
and find the property you want to bind in the Properties window. Click
the property marker icon, and select the Create Data Binding option.
Figure 14-18 shows the window that appears.

Download from finelybook www.finelybook.com

465

FIGURE 14-18

This window contains a number of options that help you create a
binding: Binding Type, Data Source, Converter, and More Settings.
Generally the first step is to define the Binding Type. This is a drop-
down list that allows you to specify the type of binding that you want
to create. The choices are as follows:

Data Context: Uses the current data context for the element
Data Source: Allows you use an existing data source in your
project
Element Name: Uses a property on an element elsewhere in your
XAML
Relative Source – Find Ancestor: Navigates up the hierarchy
of XAML elements looking for a specific element

Download from finelybook www.finelybook.com

466

Relative Source – Previous data: In a list or items controls,
references the data context used by the previous element in the list
Relative Source – Self: Uses a property on the current element
Relative Source – Templated Parent: Uses a property defined
on the template for the element
Static Resource: Uses a statically defined resource in the XAML
file

Depending on the option selected in the Binding Type, the area
immediately below the combo box changes. For example, if you select
Data Context, you will be presented with a list of the properties visible
on the data context for the element. If you select Element Name, you
see a list of the elements that are in your current XAML page (as
shown in Figure 14-19). The details about what these and the other
binding types do are specific to XAML and therefore not within the
scope of the book. But ultimately, the purpose of the binding type and
the other controls is to allow you to specify not only the type of binding
to use but also the path to the data.

Download from finelybook www.finelybook.com

467

FIGURE 14-19

The Converter section is where any value converter can be specified.
The value converter is a class (one that implements the
IValueConverter interface) that converts data as it moves back and
forth from the data source and the bound property.
Finally, there is the More Settings option. These settings allow you to
configure properties related to the binding that are not directly related
to where the property value is coming from. Figure 14-20 illustrates
these configuration settings.

Download from finelybook www.finelybook.com

468

FIGURE 14-20

As you can see, this binding expression builder makes creating the
binding expression much easier, without requiring you to learn the
data binding syntax. This is a good way to learn the data binding
syntax because you can then see the expression produced in the
XAML.
Now you will look at the drag-and-drop data binding features of Visual
Studio 2017. The first step is to create something to bind to. This can
be an object, a dataset, or an ADO.NET Entity Framework entity,
among many other binding targets. For this example, you create an
object to bind to. Create a new class in your project called
ContactViewModel, and create a number of properties on it such as
FirstName, LastName, Company, Phone, Fax, Mobile, and Email (all strings).

NOTE

The name of your object is called ContactViewModel because it is
acting as your ViewModel object, which pertains to the Model-
View-ViewModel (MVVM) design pattern mentioned earlier. This
design pattern will not be fully fleshed out in this example,
however, to reduce its complexity and save potential confusion.

Now compile your project. (This is important or otherwise the class
won’t appear in the next step.) Return to the designer of your form,
and select Add New Data Source from the Data Sources window

Download from finelybook www.finelybook.com

469

(available through the View Other Windows menu item). Select
Object as your data source type, click Next, and select the
ContactViewModel class from the tree. (You need to expand the nodes
to find it within the namespace hierarchy.) Click the Finish button,
and the Data Sources tool window appears with the ContactViewModel
object listed and its properties below, as shown in Figure 14-21.

FIGURE 14-21

Now you are set to drag and drop either the whole object or individual
properties onto the form, which creates one or more controls to
display its data. By default a DataGrid control is created to display the
data, but if you select the ContactViewModel item, it shows a button
that, when clicked, displays a drop-down menu (as shown in Figure
14-22) allowing you to select between DataGrid, List, and Details.

Download from finelybook www.finelybook.com

470

FIGURE 14-22

The DataGrid option creates a DataGrid control, which has a
column for each property of the object.
The List option creates a List control with a data template
containing fields for each of the properties.
The Details option creates a Grid control with two columns: one for
labels and one for fields. A row will be created for each property on
the object, with a Label control displaying the field name (with
spaces intelligently inserted before capital letters) in the first
column, and a field (whose type depends on the data type of the
property) in the second column.

A resource is created in the Resources property of the window, which
points to the ContactViewModel object that can then be used as the data
context or items source of the controls binding to the object. This can
be deleted at a later stage if you want to set the data source from the
code-behind. The controls also have the required data binding
expressions assigned. The type of controls created on the form to
display the data depend on your selection on the ContactViewModel
item.
The type of control created for each property has a default based upon
the data type of the property, but like the ContactViewModel item, you
can select the property to show a button that, when clicked, displays a
drop-down menu allowing you to select a different control type (as
shown in Figure 14-23). If the type of control isn’t in the list (such as if
you want to use a third-party control), you can use the Customize
option to add it to the list for the corresponding data type. If you don’t
want a field created for that property, select None from the menu.

Download from finelybook www.finelybook.com

471

FIGURE 14-23

For this example, you create a details form, so select Details on the
ContactViewModel item in the Data Sources window. You can change
the control generated for each property if you want, but for now leave
each as a TextBox and have each property generated in the details
form. Now select the ContactViewModel item from the Data Sources
window, and drop it onto your form. A grid will be created along with a
field for each property, as shown in Figure 14-24.

FIGURE 14-24

Unfortunately, there is no way in the Data Sources window to define
the order of the fields in the form, so you need to reorder the controls
in the grid manually (either via the designer or by modifying the

Download from finelybook www.finelybook.com

472

XAML directly).
When you look at the XAML generated, you see that this drag-and-
drop data binding feature can save you a lot of work and make the
process of generating forms a lot faster and easier.

NOTE

If you write user/custom controls that expose properties that may
be assigned a data binding expression, you need to make these
dependency properties. Dependency properties are a special
WPF/Silverlight concept whose values can accept an expression
that needs to be resolved (such as data binding expression).
Dependency properties need to be defined differently than
standard properties. The discussion of these is beyond the scope of
this chapter, but essentially only properties that have been
defined as dependency properties can be assigned a data binding
expression.

STYLING YOUR APPLICATION

Up until now, your application has looked plain — it couldn’t be
considered much plainer if you had designed it in Windows Forms.
The great thing about WPF, however, is that the visual appearance of
the controls is easy to modify, allowing you to completely change the
way they look. You can store commonly used changes to specific
controls as styles (a collection of property values for a control stored
as a resource that can be defined once and applied to multiple
controls), or you can completely redefine the XAML for a control by
creating a control template for it. These resources can be defined in
the Resources property of any control in your layout along with a key,
which can then be used by any controls further down the hierarchy
that refer to it by that key. For example, if you want to define a
resource available for use by any control within your MainWindow
XAML file, you can define it in Window.Resources. Or if you want to use
it throughout the entire application, you can define it in the
Application.Resources property on the Application element in

Download from finelybook www.finelybook.com

473

App.xaml.
Taking it one step further, you can define multiple control
templates/styles in a resource dictionary and use this as a theme. This
theme could be applied across your application to automatically style
the controls in your user interface and provide a unique and consistent
look for your application. This is what this section looks at. Rather
than creating your own themes, you can actually use the themes
available from the WPF Themes project on CodePlex:
http://wpfthemes.codeplex.com.
These themes were initially designed (most by Microsoft) for use in
Silverlight applications but have been converted (where it was
necessary) so they can be used in WPF applications. Use one of these
themes to create a completely different look for your application.

NOTE

If you want to convert your own Silverlight theme to WPF, some
additional information can be found at
https://geonet.esri.com/thread/12098.

Start by creating a new application and adding some different controls
on the form, as shown in Figure 14-25.

FIGURE 14-25

As you can see this looks fairly bland, so try applying a theme and
seeing how you can easily change its look completely. When you

Download from finelybook www.finelybook.com

474

http://wpfthemes.codeplex.com
https://geonet.esri.com/thread/12098

download the WPF Themes project, you see that it contains a solution
with two projects: one providing the themes and a demonstration
project that uses them. You can use the themes slightly differently,
however. Run the sample application and find a theme that you like.
For the purposes of demonstration, choose the Shiny Blue theme. In
the WPF.Themes project under the ShinyBlue folder, find a Theme.xaml
file. Copy this into the root of your own project (making sure to
include it in your project in Visual Studio).
Open up App.xaml and add the following XAML code to
Application.Resources. You might already see it there, having been
added when you included the Theme.xaml file in your project.

<ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Theme.xaml"/>
 </ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

This XAML code simply merges the resources from the theme file into
your application resources, which applies the resources application-
wide and overrides the default styling of the controls in your project
with the corresponding ones defined in the theme file.
One last change to make is to set the background style for your
windows to use the style from the theme file (because this isn’t
automatically assigned). In your Window element add the following
attribute:

 Background="{StaticResource WindowBackgroundBrush}"

Now run your project, and you can find the controls in your form look
completely different, as shown in Figure 14-26.

Download from finelybook www.finelybook.com

475

FIGURE 14-26

To change the theme to a different one, you can simply replace the
Theme.xaml file with another one from the WPF.Themes project and
recompile your project.

NOTE

If you plan to extensively modify the styles and control templates
for your application, you may find it much easier to do so in
Blend for Visual Studio — a tool specifically designed for graphics
designers who work with XAML. Blend for Visual Studio is much
better suited to designing graphics and animations in XAML and
provides a much better designer for doing so than Visual Studio
(which is focused more toward developers). Blend for Visual
Studio can open up Visual Studio solutions and can also view/edit
code and compile projects, although it is best suited to design-
related tasks. This integration of Visual Studio and Blend helps to
support the designer/developer workflow. Both of these tools can
have the same solution/project open at the same time (even on the
same machine), enabling you to quickly switch between them
when necessary. If a file is open in one when you save a change to
a file in the other, a notification dialog appears asking if you
want to reload the file.

Download from finelybook www.finelybook.com

476

WINDOWS FORMS INTEROPERABILITY

Up until now you have seen how you can build a WPF application;
however, the likelihood is that you already have a significant code base
in Windows Forms and are unlikely to immediately migrate it all to
WPF. You may have a significant investment in that code base and not
want to rewrite it all for technology’s sake. To ease this migration path,
Microsoft has enabled WPF and Windows Forms to work together
within the same application. Bidirectional interoperability is
supported by both WPF and Windows Forms applications, with WPF
controls hosted in a Windows Forms application, and Windows Forms
controls hosted in a WPF application. This section looks at how to
implement each of these scenarios.

Hosting a WPF Control in Windows Forms

To begin with, create a new project in your solution to create the WPF
control in. This control (for the purpose of demonstration) is a simple
username and password entry control. From the Add New Project
dialog (see Figure 14-27), select the WPF User Control Library project
template. This already includes the XAML and code-behind files
necessary for a WPF user control. If you examine the XAML of the
control, you can see that it is essentially the same as the original
XAML for the window you started with at the beginning of the chapter
except that the root XAML element is UserControl instead of Window.

Download from finelybook www.finelybook.com

477

FIGURE 14-27

Rename the control to UserLoginControl, and add a grid, two text
blocks, and two TextBoxes (actually, one TextBox and one
PasswordBox) to it, as demonstrated in Figure 14-28.

FIGURE 14-28

In the code-behind add some simple properties to expose the contents
of the TextBoxes publicly (getters and setters):
VB

Public Property UserName As String
 Get
 Return txtUserName.Text

Download from finelybook www.finelybook.com

478

 End Get
 Set(ByVal value As String)
 txtUserName.Text = value
 End Set
End Property

Public Property Password As String
 Get
 Return txtPassword.Password
 End Get
 Set(ByVal value As String)
 txtPassword.Password = value
 End Set
End Property

C#

public string Username
{
 get { return txtUserName.Text; }
 set { txtUserName.Text = value; }
}

public string Password
{
 get { return txtPassword.Password; }
 set { txtPassword.Password = value; }
}

Now that you have your WPF control, build the project and create a
new Windows Forms project to host it in. Create the project and add a
reference to your WPF project that contains the control (using the Add
Reference menu item when right-clicking the References in the
project).
Open the form that will host the WPF control in the designer. Because
the WPF control library you built is in the same solution, your
UserLoginControl control appears in the Toolbox and can simply be
dragged and dropped onto the form to be used. This automatically
adds an ElementHost control (which can host WPF controls) and
references the control as its content.
However, if you need to do this manually, the process is as follows. In
the Toolbox there is a WPF Interoperability tab, under which there is a
single item called the ElementHost. Drag and drop this onto the form,

Download from finelybook www.finelybook.com

479

as shown in Figure 14-29, and you see that there is a smart tag that
prompts you to select the WPF control that you want to host. If the
control doesn’t appear in the drop-down, you may need to build your
solution.

FIGURE 14-29

The control loads into the ElementHost control and is automatically
given a name to refer to it in code (which you can change via the
HostedContentName property).

Hosting a Windows Forms Control in WPF

Now take a look at the opposite scenario — hosting a Windows Forms
control in a WPF application. Create a new project using the Windows
Forms Control Library project template called
WinFormsControlLibrary. Change the name of the User Control item
that is part of the template to UserLoginControl.
Open this item in the designer, and add two Labels and two TextBoxes
to it, as demonstrated in Figure 14-30.

FIGURE 14-30

Download from finelybook www.finelybook.com

480

In the code-behind add some simple properties to expose the contents
of the TextBoxes publicly (getters and setters):
VB

Public Property UserName As String
 Get
 Return txtUserName.Text
 End Get
 Set(ByVal value As String)
 txtUserName.Text = value
 End Set
End Property

Public Property Password As String
 Get
 Return txtPassword.Text
 End Get
 Set(ByVal value As String)
 txtPassword.Text = value
 End Set
End Property

C#

public string Username
{
 get { return txtUserName.Text; }
 set { txtUserName.Text = value; }
}

public string Password
{
 get { return txtPassword.Text; }
 set { txtPassword.Text = value; }
}

Now that you have your Windows Forms control, build the project and
create a new WPF project to host it in. Create the project and add a
reference to your Windows Forms project that contains the control
(using the Add Reference menu item when right-clicking the
References in the project).
Open the form that will host the Windows Forms control in the
designer. Select the WindowsFormsHost control from the Toolbox, and
drag and drop it onto your form. Then modify the WindowsFormsHost

Download from finelybook www.finelybook.com

481

element to host your control by setting the Child property to refer to
the Windows Forms control, which when run renders the control, as
shown in Figure 14-31.

FIGURE 14-31

DEBUGGING WITH THE WPF VISUALIZER

Identifying problems in your XAML/visual tree at run time can be
difficult, but fortunately a feature called the WPF Visualizer is
available in Visual Studio 2017 to help you debug your WPF
application’s visual tree. For example, an element may not be visible
when it should be, may not appear where it should, or may not be
styled correctly. The WPF Visualizer can help you track these sorts of
problems by enabling you to view the visual tree, view the values of the
properties for a selected element, and view where properties get their
styling from.
To open the WPF Visualizer, you must first be in break mode. Using
the Autos, Locals, or Watch tool window, find a variable that contains
a reference to an element in the XAML document to debug. You can
then click the little magnifying glass icon next to a WPF user interface
element listed in the tool window to open the visualizer (as shown in
Figure 14-32). Alternatively, you can place your mouse cursor over a

Download from finelybook www.finelybook.com

482

variable that references a WPF user interface element (to display the
DataTip popup) and click the magnifying glass icon there.

FIGURE 14-32

The WPF Visualizer is shown in Figure 14-33. On the left side of the
window you can see the visual tree for the current XAML document
and the rendering of the selected element in this tree below it. On the
right side is a list of all the properties of the selected element in the
tree, their current values, and other information associated with each
property.

FIGURE 14-33

Because a visual tree can contain thousands of items, finding the one

Download from finelybook www.finelybook.com

483

you are after by traversing the tree can be difficult. If you know the
name or type of the element you are looking for, you can enter this
into the search textbox above the tree and navigate through the
matching entries using the Next and Prev buttons. You can also filter
the property list by entering a part of the property name, value, style,
or type that you are searching for.
If you want to edit the property of a XAML document while you are
debugging the application, you have a couple of choices. First, as
previously mentioned, Visual Studio 2017 supports XAML Edit and
Continue functionality. So you can go straight into the XAML markup,
make the changes, and have them reflected in the runtime
immediately.
Alternately, Visual Studio 2017 includes a Live Property Editor. This
window (shown in Figure 14-34) is available through the Debug menu.
When you select a XAML element (using either the Runtime Tools or
the Live Visual Tree), the current property values of the selected
element appear in this window. While not all of the properties can be
modified (such as properties that are bound to variables or defined in
a resource dictionary), some of the more common ones can.

Download from finelybook www.finelybook.com

484

FIGURE 14-34

The result, for a XAML developer, is that the options available to help
you tweak your user experience interactively have been greatly
enhanced with Visual Studio 2017.

SUMMARY

In this chapter you have seen how you can work with Visual Studio
2017 to build applications with WPF. You’ve learned some of the most
important concepts of XAML, how to use the unique features of the
WPF designer, looked at styling an application, and used the
interoperability capabilities between WPF and Windows Forms.

Download from finelybook www.finelybook.com

485

15
Universal Windows Platform Apps

WHAT’S IN THIS CHAPTER?

The major characteristics and considerations of a Universal
Windows Platform App
Understanding the different Windows Universal templates
The basic structure of a data-bound Universal Windows
Platform App
Utilizing platform contexts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
If you have been paying attention to the Windows development
world in the last few years, you would be hard pressed to avoid the
topic of Windows Universal Platform Apps. Except, of course, it
hasn’t always been called Windows Universal Platform Apps.
Depending on the year, you might recognize it as Metro Apps. Or
Windows Store Apps. Or Portable Class Libraries. The technology
was similar and the packaging changed a little, but under the
cover, all of these technologies shared the same purpose: to allow a
developer to target different platforms using as large a shared code
base as possible.
But what exactly is a Windows Universal Platform App? Or, to use
the shorter term, a Windows App? And more important, what tools
and techniques are available in Visual Studio 2017 to enable you to
create a Windows App? In this chapter you’ll learn the basic

Download from finelybook www.finelybook.com

486

http://wrox.com
http://www.wrox.com

components of Windows Apps, as well as how to create them using
Visual Studio 2017.

WHAT IS A WINDOWS APP?

Officially, a Windows App is an application built on the Universal
Windows Platform (UWP). And UWP is the app platform for Windows
10. By itself, this doesn’t sound overly impressive or different.
However, what it really means is that using a single API set, a single
app package, and a single store, you can deliver your application to all
Windows 10 devices. This includes PCs, tablets, phones, Xbox,
HoloLens, and more. The development goal is to write the application
logic against a single API and use different screen sizes and interaction
models (touch, mouse, keyboard, game controller, and so on) to
handle the separate devices. Users get an experience that is consistent
across all devices, while developers can minimize their code base and
still deliver on a variety of devices.
Also on the developer side is the flexibility that UWP offers in terms of
code platform. You are not forced to use C# and XAML. For example,
you can choose JavaScript, Unity, or C++. All of these are supported
and result in an application that will run on the different devices.
Happiness abounds for all.
When you look at a Windows App, the first visual impression is one of
consistency and elegance. The navigation paradigms are intuitive. The
applications (see Figure 15-1) fill the entire window, providing an
immersive experience for the user.

Download from finelybook www.finelybook.com

487

FIGURE 15-1

From a technology perspective, developers can create Windows Apps
using languages with which they are already familiar. This includes
C#, Visual Basic, JavaScript, and C++. But before getting into the
technical side, look at the traits that make up a Windows App:

Surfacing the content
Snapping
Scaling
Semantic zoom
Tiles
Embracing the cloud

Content before Chrome

The purpose of your application is to surface content. It doesn’t matter
if that information is an RSS feed, pictures coming from your camera,
or data retrieved from your corporate database; what the user cares
about is the content. So when you design a Windows App, focus needs
to be placed on surfacing the content.
One way to accomplish this is to use layout to improve readability.
This typically involves leaving breathing space between the visual

Download from finelybook www.finelybook.com

488

elements. Use typography to create the sense of hierarchy instead of
the typical tree view commonly found in non–Windows Apps. In
general, this is done by arranging the visual elements into a graduated
series. It takes advantage of how the human mind organizes things.
When you look at a screen, you generally notice the big and bold
things first. As a result, the most important visual elements in your
design should also be the biggest and boldest. You also mentally group
elements together if they are visually segregated from other elements.
So if you want to create a two-level hierarchy, you can create a number
of large areas spaced to be obviously independent. Then within the
large area, you can place smaller areas. And if you want, you can add
more levels by embedding additional elements in the already existing
areas.

Snap and Scale

A Windows App is designed to be used in a number of different
configurations. The desktop or laptop configuration that you’re used to
is fine. But it is instructive to consider how your application can
appear in other form factors. For example, Windows App could be
available on a number of tablet devices, including the Surface. While
running on a tablet, your application is going to be moved from
landscape to portrait and back again. Although not every application
needs to be this flexible (games, for example, are typically oriented in
one direction), many can benefit from flowing between the different
orientations.
Along with orientation, you also need to consider screen resolution.
One of the benefits of Windows 10 is that the low end of screen
resolution is 1024 × 768, and you have no more concerns about
needing to support 800 × 640. However, there is still a decent range of
resolutions that you need to consider: Two displays with the same
resolution may not have the same pixel density (that is, pixels per
square centimeters).
Even more important is how the user interface works at lower
resolutions. Windows 10 is designed for touch. On low-resolution
screens, you need to ensure that your touchable controls are still easily
touchable — that is to say, not too small and not too close to other

Download from finelybook www.finelybook.com

489

controls.
One further consideration is the Snap mode. In this mode, the
Windows App is placed (snapped) to the left side of the display. While
in this mode, the application still runs. (And the user can receive
input, see messages, and so on.) However, in the rest of the screen, a
separate application can run, which is conceptually not complicated,
but your application must take advantage of this mode to participate
well with the Windows 10 ecosystem.

Semantic Zoom

One of the common gestures in a touch interface is called the pinch.
You use your thumb and forefinger to make a pinching motion on the
screen to shrink the interface viewed. The opposite gesture (pushing
your thumb and forefinger out) causes the interface to grow in size.
Users of most smartphones are probably quite comfortable with the
gesture and the expected outcome.
When your interface shows a large amount of data, even if it is
pictorial, you can use this gesture to implement a semantic zoom.
Conceptually, this is like a drill down into a report. Start at a high level
of the information displayed. Then as you pinch, the more detailed
view of the information displays. To be fair, it is not necessary that
there be a more/less detailed relationship between the two views —
only that there is a semantic relationship. Although more or less detail
certainly fits into this category, so would a list of locations in a city and
a map showing them as pushpins.

Tiles

Although it might seem trite, even in the world of applications, first
impressions are important. And when you create a Windows App, the
first impression that a user gets comes from your tile. Your tile is the
doorway through which users access your app. Spend the time to make
sure that it is nicely designed. As much as you can in the space
allowed, make your tile attractive and lovable.
But beyond simple appearance, the tiles in Windows 10 are alive.
When pinned to the main menu, your tile can provide information to
users before they go through the front door. For some applications,

Download from finelybook www.finelybook.com

490

this is critical. Would you want to open a weather application to see
what the current temperature is? So think about the information that
your application provides to your users, and decide if some of the
more useful data can be put into a more immediately accessible
location: your tile.

Embracing the Cloud

The cloud is significant because of the way users interact with both
their applications and their data. Specifically, look at some of the
demonstrations of the technology. One of the key selling points is the
ubiquitous nature of the data. Start watching a video on Xbox, pause
it, and then launch the video on your desktop. It remembers where you
were when you paused and continues the video from that point. Create
a document on your Surface tablet while on the commute home. Save
the document, and then when you get home, launch your laptop, and
your document is there, ready to be used. It even remembers where in
the document you were.
All this functionality is made possible by using the cloud as your
backing storage. Windows App interact well with Windows Azure.
Make sure you take advantage of this as you consider the different
storage modes and locations that your application might find useful.

CREATING A WINDOWS APP

It is a good idea to create your Windows App using a language with
which you are already familiar. Fortunately, you can write Windows
Apps in most .NET languages, including Visual Basic and C#. Also,
Visual Studio provides the ability to create Windows Apps using
HTML and JavaScript.
That last combination is aimed at making it easy for web developers to
create Windows Apps. The form of JavaScript used is syntactically the
same as regular JavaScript, but it uses the Windows Runtime (WinRT)
libraries to perform its tasks. This requirement has the unfortunate
side effect of making Windows Apps incompatible with browsers.
There are a number of requirements that must be met in order for you
to create and test a Windows app. The easiest option is to be running

Download from finelybook www.finelybook.com

491

your Visual Studio 2017 environment on Windows 10. This gives you
access to the greatest number of options, including using the simulator
that is described later in this chapter. If you are running on Windows
8.1, then in order to debug your Windows App, you’ll need to deploy it
to a remote machine running Windows 10 or be able to use an
emulator (that is, run Client Hyper-V, the virtualization technology
that was introduced in Windows 8). The simulator is not available in
Windows 8.1.
To create your Windows App, start by creating a new project. Use the
File New Project menu option to launch the New Project dialog. In
the Installed Templates selection, under the language of your choice,
you’ll see a section named Windows Universal (see Figure 15-2).

FIGURE 15-2

There are several Windows App project templates available to you.
The Class Library and Windows Runtime Component templates create
assemblies used by Windows Apps. The Unit Test App and Coded UI
Test Project templates create projects that can unit test Windows App

Download from finelybook www.finelybook.com

492

libraries. The final template, Blank, provides a basic structure upon
which you can build your Windows App. It consists of a single page
with no predefined navigation.
As part of creating a Windows App, you need to specify the Windows
10 version that you want to target and the minimum version that you
support. This information is collected in a dialog (see Figure 15-3) that
appears once you have started to create the project.

FIGURE 15-3

Once you have chosen the target and minimum version, the project
can be created normally. As with most other project templates, a
number of files are created, as shown in Figure 15-4.

Download from finelybook www.finelybook.com

493

FIGURE 15-4

The starting point for the application is the MainPage. You can see this
if you examine the code behind for the App.xaml file. The files included
in the project template are:

App.xaml: Contains the resources (or links to other resource
dictionary files) used by the application. Here you can find fonts,
brushes, control styles, control templates, and the application
name.
MainPage.xaml: Contains the initial page for the application.
Package.appxmanifest: Defines the attributes of the application
that will display in the marketplace.
appname_TemporaryKey.pfx: The key pair used to provide
hashing or encryption for your application.

And you might notice that in Figure 15-4 there is an Assets folder. If
you examine the contents, you’ll see images that are part of the
application. By default, these images are used at various stages of the

Download from finelybook www.finelybook.com

494

application running or when the application is published to the
Windows Store.
But before running the application, a couple of options are available.
You are probably familiar with the Run button that appears on the
Visual Studio toolbar. The Windows Apps are no different; however,
the options available to you do vary slightly.

The Windows Simulator

To the right of the Run button, there is a caption that reads Local
Machine (see Figure 15-5). With this setting, if you run the Windows
App, it is deployed onto the local machine. From a debugging
perspective, this is just fine. All the Visual Studio debugging
functionality is available for you to use in this mode. However,
depending on the machine on which you work, using the local machine
might not be sufficient. If you develop on a desktop or laptop, it might
be difficult to rotate your screen 90 degrees to convert from landscape
to portrait mode. It also might be challenging to perform a pinch-zoom
maneuver using a mouse. To accommodate this situation, Visual
Studio includes a Windows Simulator.

FIGURE 15-5

NOTE

Along with using the Windows Simulator, you also have the
ability to launch your application on a remote machine or a
separate device. Visual Studio has the ability to handle debugging
scenarios (like breakpoints and watches) in these situations. As

Download from finelybook www.finelybook.com

495

well, if you need a different emulator, the Download New
Emulators option takes you to a web page where you can choose
from any of the provided emulators.

When you start the simulator, it appears to load your operating
system. And, just to be clear, the term “appears” is appropriate in the
last sentence. It does not actually load up a clean or new version of
Windows 10. Instead, the simulator establishes a remote desktop
connection to your Windows 10 machine. As a result, you have access
to your current operating system, complete with all the background
services, defaults, and customizations that you have made. When the
desktop is ready to be used, your Windows App is deployed onto the
virtual machine, resulting in a screen similar to the one in Figure 15-6.

FIGURE 15-6

NOTE

A word of warning regarding logging in to the remote desktop. In
order to do so as part of starting up the simulator, you need to

Download from finelybook www.finelybook.com

496

have logged into your Windows using a user ID and password
combination. If you logged in using a PIN or Microsoft Hello (that
is, facial recognition), you will see a message similar to Figure 15-
7. What’s worse, the suggested fix (locking your machine and
logging in with a user ID and password) doesn’t work, at least as
of this writing. Instead, you need to restart your machine and log
in using your user ID.

FIGURE 15-7

On the right side of the simulator, there are a number of icons. These
icons enable you to act on the simulator as if it were a mobile device.
Now consider some of the functionality provided through these icons,
starting at the top.
The top icon on the right (the pushpin) is used to keep the simulator
on top of the other windows on your computer. When pinned, the
simulator will not be covered up by other applications you might have
running. When unpinned, the simulator behaves like any other
window. The remaining icons shown on the right side of the simulator
(as shown in Figure 15-8) are described in the following sections.

Download from finelybook www.finelybook.com

497

FIGURE 15-8

Interaction Mode

The simulator provides for four different interaction modes. This is set
with the first through fourth icons under the pushpin. The purpose of
the interaction mode is to enable you to emulate different gestures
with the use of a mouse.
The top icon (the arrow) sets the interaction mode to mouse mode.
With mouse mode, your interactions with the simulator are what you
would consider “typical.” You click the mouse, and the click is picked
up by the Windows App. The same applies to double-clicks and drags.
However, when the interaction mode is set to one of the touch modes,
the mouse is used to generate touch interactions. When you click on
the finger pointer (the icon under the arrow), a mouse click is
translated into a single touch.

Two-Finger Gestures

Download from finelybook www.finelybook.com

498

The other two touch modes (the two icons under the finger pointer
icon) initiate two-finger gestures. The third icon is sets the interaction
mode to pinch and zoom. This is used, as an example, when
performing a semantic zoom from within your application. And as you
might expect, this would be a difficult gesture to emulate using just a
mouse.
However, if you click the pinch/zoom touch mode icon (the icon that
looks like two diagonal arrows pointing to a dot between them), you
can use the combination of mouse button and mouse wheel to perform
the zoom. Start by clicking the left mouse button at the desired
location. Then rotate the mouse button backward to zoom in and
forward to zoom out.
Another touch gesture requiring two fingers is the rotate. Two fingers
are placed on the surface and then moved in a circular motion. In the
simulator, the icon that resembles an arrow circling around a dot is
used to activate rotate mode. Using the mouse, the technique is similar
to the pinch and zoom. Move the cursor over the desired location (the
center point) and then use the mouse wheel to rotate left or right.

Device Characteristics

Another touch interaction that is difficult to emulate using a laptop is
the orientation. If you try to spin your laptop around, it seems that the
screen’s orientation just won’t change. But the simulator offers two
icons to rotate the simulator. The icons are visually similar. (One is an
arrow that circles in a clockwise direction, and the other is an arrow
that circles in a counter-clockwise direction, as shown in the middle of
Figure 15-8.) They rotate the simulator clockwise and
counterclockwise by 90 degrees. Along with rotating the image of the
application, it also rotates the simulator.

NOTE

The simulator does not respect the AutoRotationPreferences
property of a project. This property can be used to lock the
application so that it displays only in a particular orientation
(like landscape for certain games). However, if your project has
that restriction, it cannot prevent the simulator from rotating and

Download from finelybook www.finelybook.com

499

resizing the image. If you want to test out this functionality, you
need to use an actual device.

Along with orientation, the simulator enables you to change the
resolution of the virtual device. The icon looks like a square (actually
like a flat-screen desktop monitor), and when it is clicked you are
presented with a list of valid screen sizes and resolutions. If you do
change the resolution, it is only a simulated change. The coordinates of
the points of interaction (like a touch) are converted to the coordinates
that would be found if the device had the selected resolution.

Screenshots

There are two icons related to the capturing of screenshots from
within the simulator. This functionality is useful because capturing
images is part of the submission process to the Windows Store.
The Gear icon is used to change the settings for the screenshot. This
includes whether the screenshot will be captured to both a clipboard
and a file or just to the clipboard. As well, the location of the saved
files can be specified.
After the settings have been set, you can capture a screenshot as
required by clicking the icon (it looks like a small camera in Figure 15-
8). This takes the current image from within the simulator and stores
it in the clipboard and file. The resolution of the image is dependent
on the resolution set for the simulator, so be aware that your image
might not be as crisp and clear as you’d like, depending on the
resolution that has been set.

Network Simulation

One of the more important limitations that a developer needs to take
into consideration is how a Windows App works under different and
changing networking conditions. By using the Network Simulation
capabilities of the Simulator, it is possible to test your application
under various networking constraints.
To set the state of the network, click on the Network Simulation icon.
The dialog shown in Figure 15-9 appears.

Download from finelybook www.finelybook.com

500

FIGURE 15-9

The options available in the dialog allow you to specify the network
cost type (unknown, unlimited, fixed, or variable), the data limit status
(under, approaching, or over the data limit), and the roaming state
(roaming or not roaming). When you click on the Set Properties
button, the NetworkStatusChanged event is raised and you can see
what happens to your application.
The code you write to implement a Windows App is pretty much the
same as the code you would write for any other type of project. The
caveat is that, in projects that target a specific platform, you will write
code specific to those platforms. And in the projects that are shared
between different platforms, you will write code that is common across
the platforms.
Keep in mind, however, that the delineation between platform-specific
and shared code is not always so clean cut. It may be necessary for you
to include some platform-specific considerations within your shared
project. To accommodate that, there are a couple of conditional
compilation constants that are available for use. By wrapping the
platform-specific code in the appropriate compilation block (shown
next), you can place the code into a common project that will only be
active when it’s built into the corresponding platform package.

public string SayHello()
{
 var greeting = "Hello from {0}!";

#if WINDOWS_APP
 greeting = string.Format(greeting, "Windows");
#endif

Download from finelybook www.finelybook.com

501

#if WINDOWS_PHONE_APP
 greeting = string.Format(greeting, "Windows Phone");
#endif

 return greeting;
}

WINDOWS RUNTIME COMPONENTS

One of the templates available when you create a Windows App is a
Windows Runtime Component. This template is used to create a DLL
that can export Windows Runtime (WinRT) types. The resulting
assembly can be consumed by any Windows App, regardless of the
language.
At first glance, it would seem that a Class Library and a Windows
Runtime Component are the same thing, or close to it. So why use a
Windows Runtime Component instead of a Class Library? As it turns
out, the difference is relatively subtle and worth a bit more
examination. While both projects produce a DLL, the Class Library is
limited in terms of its potential audience of consumers. A Class
Library DLL requires that the consuming project be .NET, which
eliminates C++ and JavaScript projects as potential users of the
functionality. The Windows Runtime Component doesn’t have this
limitation.
The Windows Runtime Component exports WinRT types that are
consumable by any Windows App project, regardless of the target
device. However, the requirement that the exposed types be WinRT-
compliant restricts some use. For instance, WinRT types must be
sealed and can only inherit from classes in the Windows.UI.Xaml
namespace (classes like Control and UserControl). Public fields are not
allowed, which can make using the component in an MVVM (Model-
View-ViewModel) implementation difficult. For example, the
following code does not compile in a Windows Runtime Component
project:

public abstract class ObservableObject :
INotifyPropertyChanged {
 public event PropertyChangedEventHandler PropertyChanged;

Download from finelybook www.finelybook.com

502

 protected void OnPropertyChanged([CallerMemberName]
string name = null) {
 var pc = PropertyChanged;
 if (pc != null)
 pc(this, new PropertyChangedEventArgs(name));
 }
}

The compilation fails because abstract classes cannot be exported from
a Windows Runtime Component. This is because of the restriction that
published classes must be sealed. You can address this problem by
removing the public keyword from the class declaration. However,
when you do so, the class is no longer useable by any application that
could benefit from the Windows Runtime Component library. And
when you consider that the example is a typical one of a base class in
an MVVM implementation, you can see where the limitations might
become onerous. On the other hand, this code compiles with no
problem in a Class Library project, and it can easily be used by any
application that references the class library DLL.

NOTE

The reference to a Model-View-ViewModel (MVVM) style
application might seem slightly out of place in a discussion about
Visual Studio and Universal Apps. After all, there is no
requirement that an MVVM pattern be used when creating a
Universal App. Although that’s true, the use of the MVVM pattern
is considered a best practice when it comes to applications that
have XAML as the foundation for their visual appearance. So not
being able to use a Windows Runtime Component library as the
ViewModel is a limitation for many Universal App developers.

.NET NATIVE COMPILATION

The compilers used in Visual Studio, whether Roslyn or the older
version, generate intermediate language (IL). When the application
runs, the just-in-time (JIT) compiler translates the IL to native code.
This is how .NET has worked for years, and there are both positives

Download from finelybook www.finelybook.com

503

and negatives to the approach. Included in the .NET Framework (both
past and current) is a tool (NGEN) that can be used to precompile the
IL for your application. This can help to decrease the start-up time for
your application. (The JIT compiler does some work when a .NET
application starts.)
.NET Native is also a precompilation technology, and in that regard it
is similar to NGEN. However, the details make for a different user
experience and might be enticing for developers of Windows Apps.
The biggest difference is the source that is used for the precompilation.
NGEN uses the IL code generated by the .NET compilers. .NET Native
compiles the source code (C# only, at the moment) directly to native
code. As a result, you get the benefit of continuing to work with C# and
take advantage of .NET (including class libraries, garbage collection,
and exception handling). And you can produce applications that have
the superior performance of native code. It’s a win for all involved.
Part of the source for the improved performance comes from how the
natively compiled application interacts with .NET. During the
precompilation process, the parts of the .NET Framework used by the
application are statically linked into the app. This allows the app to
utilize app-local libraries of the .NET Framework. The output from the
precompilation process is a single executable. There are no assemblies
that need to be included in the deployment directory.
For the most part, the development of application for .NET Native is
the same as for an application using JIT and NGEN. However, not
every .NET application can be compiled using the .NET Native tools.
Most of the differences relate to the ability to perform reflection
(which is sometimes used in unexpected places, like serialization) and
complete support for the dynamic keyword.
One of the things that .NET Native compilation does is to minimize the
size of the resulting executable file. To accomplish this, classes and
methods in the .NET Framework that are not invoked by the
application are not included in the executable. All of that is fine and
good until you try to reflect on a method that has been removed or use
the dynamic keyword to access a method that is not accessed any other
way. Fortunately, there is an option in the context menu for the project
that performs a static analysis of the application to determine if it is
capable of being compiled using .NET Native.

Download from finelybook www.finelybook.com

504

Compiling Using .NET Native Tools

The process of compiling your application into .NET Native is
relatively straightforward. To begin with, develop your application
normally. The .NET Native compilation doesn’t take place until your
application is ready to be deployed or published to the Windows Store.
Once your application is ready to go, you need to change two settings.
First, you need to change the target CPU to a specific platform. You
can do this through the Properties for the project or from the toolbar,
as illustrated in Figure 15-10.

FIGURE 15-10

By default, projects are defined to target any CPU. To compile using
.NET Native, you need to specify a particular CPU, whether it’s ARM,
x86, or x64.
Once the application is targeting a CPU, go to the Properties for the
project, as shown in Figure 15-11.

Download from finelybook www.finelybook.com

505

FIGURE 15-11

In the Build tab on the Properties page, there is a checkbox labeled
Compile with the .NET Native tool chain. Ensure that the checkbox is
checked. Once this is done, the next time you build the application, it
will be compiled into .NET Native.
The resulting application produced by the .NET Native tool chain is
written to a directory named ilc.out in the Debug or Release directory
for your project. The files contained in the directory follow:

appName.exe: A stub executable that does nothing but transfer
control to a Main entry point in appName.dll
appName.dll: A Windows DLL that contains your application
code, any third-party libraries, and the code from the .NET
Framework that your application uses
mrt100_app.dll: A runtime that provides .NET services such as
garbage collection

SUMMARY

The idea of creating an environment that makes it easier for

Download from finelybook www.finelybook.com

506

developers to share functionality between different platforms has been
gathering steam in Microsoft. Whether it’s working toward an
operating system kernel that is common across the different platforms
or through Visual Studio functionality, there has been a significant
push toward tooling support for all the Windows platforms (and even
some non-Windows platforms).
In this chapter you learned how to create a Universal Windows App
that takes advantage of this direction using Visual Studio 2017. To
start, you covered the fundamental elements of style that make up a
Windows App and looked at the components that make up the
Universal Windows App project template. Then, you examined the
simulator, considering how you can use it to test some aspects of
Windows 10 that are typically confined to a tablet or phone form
factor.

Download from finelybook www.finelybook.com

507

PART V
Web Applications

CHAPTER 16: ASP.NET Web Forms
CHAPTER 17: ASP.NET MVC
CHAPTER 18: .NET Core
CHAPTER 19: Node.js Development
CHAPTER 20: Python Development

Download from finelybook www.finelybook.com

508

16
ASP.NET Web Forms

WHAT’S IN THIS CHAPTER?

The differences between Web Site and Web Application
projects
Using the HTML and CSS design tools to control the layout of
your web pages
Easily generating highly functional web applications with the
server-side web controls
Adding rich client-side interactions to your web pages with
JavaScript and ASP.NET AJAX

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
When Microsoft released the first version of ASP.NET, one of the
most talked-about features was the capability to create a full-blown
web application in the same way as you would create a Windows
application. The abstractions provided by ASP.NET, coupled with
the rich tooling support in Visual Studio, allowed programmers to
quickly develop feature-rich applications that ran over the web in a
wholly integrated way.
ASP.NET version 2.0, which was released in 2005, was a major
upgrade that included new features such as a provider model for
everything from menu navigation to user authentication, more
than 50 new server controls, a web portal framework, and built-in
website administration, to name but a few. These enhancements

Download from finelybook www.finelybook.com

509

http://wrox.com
http://www.wrox.com

made it even easier to build complex web applications in less time.
The last few versions of ASP.NET and Visual Studio have focused
on improving the client-side development experience. These
include enhancements to the HTML Designer and CSS editing
tools; better IntelliSense and debugging support for JavaScript,
HTML, and JavaScript snippets; and new project templates.
In this chapter you’ll learn how to create ASP.NET web
applications in Visual Studio 2017, as well as look at many of the
features and components that Microsoft has included to make your
web development life a little (and in some cases a lot) easier.

WEB APPLICATION VERSUS WEB SITE PROJECTS

Microsoft provides two basic project types: the Web Site project type
and the Web Application project type. The major differences between
the two project types are fairly significant. The most fundamental
change is that a Web Site project does not contain a Visual Studio
project file (.csproj or .vbproj), whereas a Web Application project
does. As a result, there is no central file that contains a list of all the
files in a Web Site project. Instead, the Visual Studio solution file
contains a reference to the root folder of the Web Site project, and the
content and layout are directly inferred from its files and subfolders. If
you copy a new file into a subfolder of a Web Site project using
Windows Explorer, then that file, by definition, belongs to the project.
In a Web Application project, you must explicitly add all files to the
project from within Visual Studio.
The other major difference is in the way the projects are compiled.
Web Application projects are compiled in much the same way as any
other project under Visual Studio. The code is compiled into a single
assembly that is stored in the \bin directory of the web application. As
with all other Visual Studio projects, you can control the build through
the property pages, name the output assembly, and add pre- and post-
build action rules.
On the other hand, in a Web Site project all the classes that aren’t code
behind or user controls are compiled into one common assembly.
Pages and user controls are then compiled dynamically as needed into
a set of separate assemblies.

Download from finelybook www.finelybook.com

510

The big advantage of more granular assemblies is that the entire
website does not need to be rebuilt every time a page is changed.
Instead, only those assemblies that have changes (or have a down-level
dependency) are recompiled, which can save a significant amount of
time, depending on your preferred method of development.
Microsoft has pledged that it will continue to support both the Web
Site and Web Application project types in all future versions of Visual
Studio.
So which project type should you use? The official position from
Microsoft is “it depends,” which is certainly a pragmatic, although not
particularly useful, position to take. All scenarios are different, and
you should always carefully weigh each alternative in the context of
your requirements and environment. However, the anecdotal evidence
that has emerged from the .NET developer community over the past
few years, and the experience of the authors, is that in most cases the
Web Application project type is the best choice.

NOTE

Unless you are developing a large web project with hundreds of
pages, it is actually not too difficult to migrate from a Web Site
project to a Web Application project and vice versa. So don’t get
too hung up on this decision. Pick one project type and migrate it
later if you run into difficulties.

CREATING WEB PROJECTS

Visual Studio 2017 gives you the ability to create ASP.NET Web
Application and Web Site projects. There are a variety of templates
and more functionality that you can access in doing so. This section
explores what you need to know to be able to create both types of
projects.

Creating a Web Site Project

As mentioned previously, creating a Web Site project in Visual Studio
2017 is slightly different from creating a regular Windows-type

Download from finelybook www.finelybook.com

511

project. With normal Windows applications and services, you pick the
type of project, name the solution, and click OK. Each language has its
own set of project templates, and you have no real options when you
create the project. Web Site project development is different because
you can create the development project in different locations, from the
local filesystem to a variety of FTP and HTTP locations that are
defined in your system setup, including the local Internet Information
Services (IIS) server.
Because of this major difference in creating these projects, Microsoft
has created separate commands and dialogs for Web Site project
templates. Selecting New Web Site from the File New submenu
displays the New Web Site dialog, where you can choose the type of
project template you want to use (see Figure 16-1).

FIGURE 16-1

Most likely, you’ll select the ASP.NET Web Forms Site project
template. This creates a website populated with a starter web
application that ensures that your initial application is structured in a
logical manner. The template creates a project that demonstrates how
to use a master page, menus, the account management controls, CSS,
and the jQuery JavaScript library.
In addition to the ASP.NET Web Forms Site project template, there is
an ASP.NET Empty Web Site project template that creates nothing

Download from finelybook www.finelybook.com

512

more than an empty folder and a reference in a solution file. The
remaining templates, which are for the most part variations on the
Web Site template, are discussed later in this chapter. Regardless of
which type of web project you’re creating, the lower section of the
dialog enables you to choose where to create the project.
By default, Visual Studio expects you to develop the website or service
locally, using the normal filesystem. The default location is under the
Documents/Visual Studio 2017/WebSites folder for the current user,
but you can change this by overtyping the value, selecting an
alternative location from the drop-down list, or clicking the Browse
button. You can also create the web site on a UNC share, if that is your
desire and you have the necessary permissions (such as read and
write) on that share.
The Web Location drop-down list also contains HTTP and FTP as
options. Selecting HTTP or FTP changes the value in the filename
textbox to a blank http:// or ftp:// prefix ready for you to type in the
destination URL. You can either type in a valid location or click the
Browse button to change the intended location of the project.
The Choose Location dialog (shown in Figure 16-2) is shown when you
click the Browse button and enables you to specify where the project
should be stored. Note that this isn’t necessarily where the project will
be deployed because you can specify a different destination for that
when you’re ready to ship, so don’t expect that you are specifying the
ultimate destination here.

Download from finelybook www.finelybook.com

513

FIGURE 16-2

The File System option enables you to browse through the folder
structure known to the system, including the My Network Places
folders, and gives you the option to create subfolders where you need
them. This is the easiest way to specify where you want the web project
files, and the way that makes the files easiest to locate later.

NOTE

Download from finelybook www.finelybook.com

514

Although you can specify where to create the project files, by
default the solution file is created in a new folder under the
Documents/Visual Studio 2017/Projects folder for the current
user. You can move the solution file to a folder of your choice
without affecting the projects.

If you use a local IIS server to debug your Web Site project, you can
select the File System option and browse to your wwwroot folder to
create the website. However, a much better option is to use the local
IIS location type and drill down to your preferred location under the
Default Web Site folders. This interface enables you to browse virtual
directory entries that point to websites that are not physically located
within the wwwroot folder structure but are actually aliases to elsewhere
in the filesystem or network. You can create your application in a new
Web Application folder or create a new virtual directory entry in which
you browse to the physical file location and specify an alias to appear
in the website list. Also, there is a check box at the bottom of the list of
servers and virtual directories labelled Use Secure Sockets Layer that,
when checked, creates your web site on a server that supports HTTPS
connections.
The FTP site location type (refer to Figure 16-2) gives you the option to
log in to a remote FTP site anonymously or with a specified user.
When you click Open, Visual Studio saves the FTP settings for when
you create the project, so be aware that it won’t test whether or not the
settings are correct until it attempts to create the project files and send
them to the specified destination.

NOTE

You can save your project files to any FTP server to which you
have access, even if that FTP site doesn’t have .NET installed.
However, you cannot run the files without .NET, so you can only
use such a site as a file store.

After you choose the intended location for your project, clicking OK
tells Visual Studio 2017 to create the project files and store them in the
desired location. After the web application has finished initializing,
Visual Studio opens the Default.aspx page and populates the Toolbox

Download from finelybook www.finelybook.com

515

with the components available to you for web development.
The Web Site project has only a small subset of the project
configuration options available under the property pages of other
project types, as shown in Figure 16-3. To access these options, right-
click the project and select Property Pages.

FIGURE 16-3

The References property page (refer to Figure 16-3) enables you to
define references to external assemblies or web services. If you add a
binary reference to an assembly that is not in the Global Assembly
Cache (GAC), the assembly is copied to the \bin folder of your web
project along with a .refresh file, which is a small text file that
contains the path to the original location of the assembly. Every time
the website is built, Visual Studio compares the current version of the
assembly in the \bin folder with the version in the original location
and, if necessary, updates it. If you have a large number of external
references, this can slow the compile time considerably. Therefore, it is
recommended that you delete the associated .refresh file for any
assembly references that are unlikely to change frequently.
The Build, Accessibility, and Start Options property pages provide

Download from finelybook www.finelybook.com

516

some control over how the website is built and launched during
debugging. The accessibility validation options are discussed later in
this chapter, and the rest of the settings on those property pages are
reasonably self-explanatory.
The MSBuild Options property page provides a couple of interesting
advanced options for web applications. If you uncheck the Allow This
Precompiled Site to be Updatable option, all the content of the .aspx
and .ascx pages is compiled into the assembly along with the code
behind. This can be useful if you want to protect the user interface of a
website from being modified. Finally, the Use Fixed Naming and
Single Page Assemblies option specifies that each page be compiled
into a separate assembly rather than the default, which is an assembly
per folder.

Creating a Web Application Project

Creating a Web Application project with Visual Studio 2017 is a little
more complex than creating a Web Site project. The number and
variety of projects that are available is definitely higher. As a result,
Microsoft has taken the position that a dialog box provides better
clarity and control for the developer who is creating the application.
To start the process, select File New Project. When you navigate to
the Web node in the Templates tree on the left, you see the dialog that
appears in Figure 16-4.

Download from finelybook www.finelybook.com

517

FIGURE 16-4

The number of templates in this list might be less than you expected.
However, every type of Web Application project can be created from
the ASP.NET Web Application template. The two additional templates,
ASP.NET Core Web Application (.NET Core) and ASP.NET Core Web
Application (.NET Framework), are covered in the Chapter 18, “.NET
Core.”
After selecting the ASP.NET Web Application, providing the necessary
details about the project name and location, and clicking OK, the New
ASP.NET Application dialog appears (Figure 16-5).

Download from finelybook www.finelybook.com

518

FIGURE 16-5

There are several templates from which you can choose. While the
correspondence is not exact, the ASP.NET 4.6.2 templates are similar
to templates found in Visual Studio 2015. They are:

Empty: A completely empty template that allows you to add
whichever items and functionality you want.
Web Forms: Used to create the traditional ASP.NET Web Forms
applications.
MVC: Creates an application that uses the Model-View-Controller
(MVC) pattern.
Web API: Used to build a REST-based application programming
interface (API) that uses HTTP as the underlying protocol. The
difference between this template and MVC is that a Web API
project presumes that there will be no user interface defined.
Single Page Application: Used to create web pages with rich
functionality implemented using HTML5, CSS3, and JavaScript
running on the client side (in the browser).

Download from finelybook www.finelybook.com

519

Azure API App: Creates an application that supports a REST-
based API and will be hosted in Azure and potentially shared from
within the Azure Marketplace.
Azure Mobile App: Used to build an application that acts as the
backend for a mobile application, hosted in Azure.

There are a number of other interesting options to the web application
creation process in Visual Studio 2017, as shown in Figure 16-5. There
are several check boxes that control functionality over and above that
provided in the template. For example, you can create a Web Forms
project that includes Web API references. This increase in flexibility
makes it easier to create just the project you need without having to
figure out which references need to be added later on.
Also, there is the option to create a unit test project that operates in
conjunction with your web application. The unit test project will be
created with the appropriate project references added.
Finally, there is an option in the dialog to allow you to specify the
authentication mechanism that should be used. The default is to use
individual user accounts, but if you click on the Change Authentication
button, the dialog shown in Figure 16-6 appears.

FIGURE 16-6

Here, you can specify whether you want no authentication, Windows
authentication, the Active Directory membership provider (the Work
or School Accounts option), or a custom membership provider (the
Individual User Accounts option). If you’re familiar with

Download from finelybook www.finelybook.com

520

SqlMembershipProvider, it falls into this last category.

NOTE

Not every project template supports changing the authentication
method. As of this writing, Web Forms, MVC, and Web API are
the only ones that do.

When you have set the values to your desired choices, click on OK to
create the project. For the following screens, the text presumes that
you are working with a Web Forms project with the default
authentication scheme.
After you click OK your new Web Application project will be created
with a few more items than the Web Site projects. It includes an
AssemblyInfo file, a References folder, and a My Project item under the
Visual Basic or Properties node under C#.
You can view the project properties pages for a Web Application
project by double-clicking the Properties or My Project item. The
property pages include an additional web tab, as shown in Figure 16-7.

FIGURE 16-7

Download from finelybook www.finelybook.com

521

The options on the web page are all related to debugging an ASP.NET
web application and are covered in Chapter 58, “Debugging Web
Applications,” and Chapter 59, “Advanced Debugging Techniques,”
both of which are in the online archives.

DESIGNING WEB FORMS

One of the strongest features in Visual Studio 2017 for web developers
is the visual design of web applications. The HTML Designer allows
you to change the positioning, padding, and margins in Design view,
using visual layout tools. It also provides a split view that enables you
to simultaneously work on the design and markup of a web form.
Finally, Visual Studio 2017 supports rich CSS editing tools for
designing the layout and styling of web content.

The HTML Designer

The HTML Designer in Visual Studio is one of the main reasons it’s so
easy to develop ASP.NET applications. Because it understands how to
render HTML elements as well as server-side ASP.NET controls, you
can simply drag and drop components from the Toolbox onto the
HTML Designer surface to quickly build up a web user interface. You
can also quickly toggle between viewing the HTML markup and the
visual design of a web page or user control.
The modifications made to the View menu of the IDE are a great
example of what Visual Studio does to contextually provide you with
useful features depending on what you’re doing. When you edit a web
page in Design view, additional menu commands become available for
adjusting how the design surface appears (see Figure 16-8).

Download from finelybook www.finelybook.com

522

FIGURE 16-8

The three submenus at the top of the View menu — Ruler and Grid,
Visual Aids, and Formatting Marks — provide you with a lot of useful
tools to assist with the overall layout of controls and HTML elements
on a web page.
For example, when the Show option is toggled on the Visual Aids
submenu, it draws gray borders around all container controls and
HTML tags such as <table> and <div> so that you can easily see where
each component resides on the form. It also provides color-coded
shading to indicate the margins and padding around HTML elements
and server controls. Likewise, on the Formatting Marks submenu, you
can toggle options to display HTML tag names, line breaks, spaces,
and much more.
The HTML Designer also supports a split view, as shown in Figure 16-
9, which shows your HTML markup and visual design at the same
time. You activate this view by opening a page in design mode and
clicking the Split button on the bottom left of the HTML Designer
window.

Download from finelybook www.finelybook.com

523

FIGURE 16-9

When you select a control or HTML element on the design surface, the
HTML Designer highlights it in the HTML markup. Likewise, if you
move the cursor to a new location in the markup, it highlights the
corresponding element or control on the design surface.
If you make a change to anything on the design surface, that change is
immediately reflected in the HTML markup. However, changes to the
markup are not always shown in the HTML Designer immediately.
Instead, you are presented with an information bar at the top of the
Design view stating that it is out of sync with the Source view (see
Figure 16-10). You can either click the information bar or press
Ctrl+Shift+Y to synchronize the views. Saving your changes to the file
also synchronizes it.

FIGURE 16-10

NOTE

If you have a wide-screen monitor, you can orient the split view
vertically to take advantage of your screen resolution. Select

Download from finelybook www.finelybook.com

524

Tools Options, and then click the HTML Designer node in the tree
view. You can use a number of settings here to configure how the
HTML Designer behaves, including an option called Split Views
Vertically.

Another feature worth pointing out in the HTML Designer is the tag
navigator breadcrumb that appears at the bottom of the design
window. This feature, which is also in the XAML Designer, displays
the hierarchy of the current element or control and all its ancestors.
The breadcrumb displays the type of the control or element and the ID
or CSS class if it has been defined. If the tag path is too long to fit in
the width of the HTML Designer window, the list is truncated, and a
couple of arrow buttons display, so you can scroll through the tag path.
The tag navigator breadcrumb displays the path only from the current
element to its top-level parent. It does not list any elements outside
that path. If you want to see the hierarchy of all the elements in the
current document, you should use the Document Outline window, as
shown in Figure 16-11. Select View Other Windows Document
Outline to display the window. When you select an element or control
in the Document Outline, it is highlighted in the Design and Source
views of the HTML Designer. However, selecting an element in the
HTML Designer does not highlight it in the Document Outline
window.

Download from finelybook www.finelybook.com

525

FIGURE 16-11

NOTE

In some cases, you might need to reopen a form in order to
populate the Document Outline Window.

Positioning Controls and HTML Elements

One of the trickier parts of building web pages is the positioning of
HTML elements. Several attributes can be set that control how an
element is positioned, including whether or not it uses a relative or
absolute position, the float setting, the z-index, and the padding and
margin widths.
Fortunately, you don’t need to learn the exact syntax and names of all
these attributes and manually type them into the markup. As with
most things in Visual Studio, the IDE is there to assist with the
specifics. Begin by selecting the control or element that you want to
position in Design view. Then choose Format Position from the menu
to bring up the Position window, as shown in Figure 16-12.

Download from finelybook www.finelybook.com

526

FIGURE 16-12

After you click OK, the wrapping and positioning style you have
chosen and any values you have entered for location and size are saved
to a style attribute on the HTML element.
If an element has relative or absolute positioning, you can reposition it
in the Design view. Beware, though, of how you drag elements around
the HTML Designer because you may be doing something you didn’t
intend! Whenever you select an element or control in Design view, a
white tag appears at the top-left corner of the element. This displays
the type of element, as well as the ID and class name if they are
defined.
If you want to reposition an element with relative or absolute
positioning, drag it to the new position using the white control tag. If
you drag the element using the control itself, it does not modify the
HTML positioning but instead moves it to a new line of code in the
source.
Figure 16-13 shows a button that has absolute positioning and has
been repositioned 230 px down and 159 px to the right of its original
position. The actual control is shown in its new position, and blue
horizontal and vertical guidelines are displayed, which indicate that
the control is absolutely positioned. The guidelines are shown only
while the element is selected.

FIGURE 16-13

The final layout technique discussed here is setting the padding and
margins of an HTML element. Many web developers are initially
confused about the difference between these display attributes —

Download from finelybook www.finelybook.com

527

which is not helped by the fact that different browsers render elements
with these attributes differently. Though not all HTML elements
display a border, you can generally think of padding as the space
inside the border and margins as the space outside.
If you look closely within the HTML Designer, you may notice some
gray lines extending a short way horizontally and vertically from all
four corners of a control (see Figure 16-14). These are only visible
when the element is selected in the Design view. These are called
margin handles and allow you to set the width of the margins. Hover
the mouse over the handle until it changes to a resize cursor, and then
drag it to increase or decrease the margin width (see Figure 16-14).

FIGURE 16-14

Finally, within the HTML Designer you can set the padding around an
element. If you select an element and then hold down the Shift key, the
margin handles become padding handles. Keeping the Shift key
pressed, you can drag the handles to increase or decrease the padding
width. When you release the Shift key, they revert to margin handles
again. Figure 16-14 shows how an HTML element looks in the HTML
Designer when the margin and padding widths have been set on all
four sides.
At first, this means of setting the margins and padding can feel
counterintuitive because it does not behave consistently. To increase
the top and left margins, you must drag the handlers into the element,
and to increase the top and left padding, you must drag the handlers
away. However, just to confuse things, dragging the bottom and right
handlers away from the element increases both margin and padding
widths.
When you have your HTML layout and positioning the way you want
them, you can follow good practices by using the CSS tools to move the
layout off the page and into an external style sheet. These tools are
discussed in the “CSS Tools” section later in this chapter.

Download from finelybook www.finelybook.com

528

Formatting Controls and HTML Elements

In addition to the Position dialog window discussed in the previous
section, Visual Studio 2017 provides a toolbar and a range of
additional dialog windows that enable you to edit the formatting of
controls and HTML elements on a web page.
The Formatting toolbar, as shown in Figure 16-15, provides easy access
to most of the formatting options. The leftmost drop-down list lets you
control how the formatting options are applied and includes options
for inline styling or CSS rules. The next drop-down list includes all the
common HTML elements that can be applied to text, including the
<h1> through <h6> headers, , , and <blockquote>.

FIGURE 16-15

Most of the other formatting dialog options are also available as
entries on the Format menu. These include options for setting the
foreground and background colors, font, alignment, bullets, and
numbering. These options and any dialogs associated with them are
similar to those available in any word processor or WYSIWYG
interface, and their uses are immediately obvious.
The Insert Table dialog window, as shown in Figure 16-16, provides a
way for you to easily define the layout and design of a new HTML
table. Open it by positioning the cursor on the design surface where
you want the new table to be placed and selecting Table Insert Table.

Download from finelybook www.finelybook.com

529

FIGURE 16-16

A quite useful feature on the Insert Table dialog window is under the
color selector. In addition to the list of Standard Colors, there is also
the Document Colors list, as shown in Figure 16-17. This lists all the
colors that have been applied in some way or another to the current
page, for example as foreground, background, or border colors. This
saves you from having to remember custom RGB values for the color
scheme that you have chosen to apply to a page.

Download from finelybook www.finelybook.com

530

FIGURE 16-17

CSS Tools

Once upon a time, the HTML within a typical web page consisted of a
mishmash of both content and presentation markup. Web pages made
liberal use of HTML tags that defined how the content should be
rendered, such as , <center>, and <big>. These days, designs of
this nature are frowned upon — best practice dictates that HTML
documents should specify only the content of the web page, wrapped
in semantic tags such as <h1>, , and <div>. Elements requiring
special presentation rules should be assigned a class attribute, and all
style information should be stored in external CSS.
Visual Studio 2017 has several features that provide a rich CSS editing
experience in an integrated fashion. As you saw in the previous
section, you can do much of the work of designing the layout and

Download from finelybook www.finelybook.com

531

styling the content in Design view. This is supplemented by the
Manage Styles window, the Apply Styles window, and the CSS
Properties window, which are all accessible from the View menu when
the HTML Designer is open.
The Manage Styles window lists all the CSS styles that are internal,
inline, or in an external CSS file linked through to the current page.
The objective of this tool window is to provide you with an overall view
of the CSS rules for a particular page, and to enable you to edit and
manage those CSS classes.
All the styles are listed in a tree view with the style sheet forming the
top-level nodes, as shown in Figure 16-18. The styles are listed in the
order in which they appear in the style sheet file, and you can drag and
drop to rearrange the styles, or even move styles from one style sheet
to another.

FIGURE 16-18

When you hover over a style, the tooltip shows the CSS properties in
that style. The Options menu drop-down enables you to filter the list of
styles to show only those that are applicable to elements on the current

Download from finelybook www.finelybook.com

532

page or, if you have an element selected in the HTML Designer, only
those that are relevant to the selected element.

NOTE

The selected style preview, which is at the top of the Manage
Styles window, is generally not what will actually be displayed in
the web browser. This is because the preview does not take into
account any CSS inheritance rules that might cause the properties
of the style to be overridden.

Rather than a complex set of icons, the Manage Styles window shows a
check mark if the style is used in the current page. If a style is not
used, then no check box appears.
When you right-click a style in the Manage Styles window, you are
given the option to create a new style from scratch, create a new style
based on the selected style, or modify the selected style. Any of these
three options launch the Modify Style dialog box, as shown in Figure
16-19. This dialog provides an intuitive way to define or modify a CSS
style. Style properties are grouped into familiar categories, such as
Font, Border, and Position, and a useful preview displays toward the
bottom of the window.

Download from finelybook www.finelybook.com

533

FIGURE 16-19

The second of the CSS windows is the Apply Styles window. Though
this has a fair degree of overlap with the Manage Styles window, its
purpose is to enable you to easily apply styles to elements on the web
page. Select View Apply Styles to open the window, which is shown in
Figure 16-20. As in the Manage Styles window, all the available styles
are listed in the window, and you can filter the list to show only the
styles that are applicable to the current page or the currently selected
element. The window uses the same check mark icon to indicate
whether or not the style is being used. You can also hover over a style
to display all the properties in the CSS rule.

Download from finelybook www.finelybook.com

534

FIGURE 16-20

However, the Apply Styles window displays a much more visually
accurate representation of the style than the Manage Styles window. It
includes the font color and weight, background colors or images,
borders, and even text alignment.
When you select an HTML element in the Designer, a blue border in
the Apply Styles window surrounds the styles applied to that element.
Refer to Figure 16-20, where the style is active for the selected
element. When you hover the mouse over any of the styles, a drop-
down button appears over it, providing access to a context menu. This
menu has options for applying that style to the selected element or, if
the style has already been applied, for removing it. Simply clicking the
style also applies it to the current HTML element.
The third of the CSS windows in Visual Studio 2017 is the CSS
Properties window, as shown in Figure 16-21. This displays a property
grid with all the styles used by the HTML element that is currently
selected in the HTML Designer. In addition, the window gives you a
comprehensive list of all the available CSS properties. This enables you

Download from finelybook www.finelybook.com

535

to add properties to an existing style, modify properties that you have
already set, and create new inline styles.

FIGURE 16-21

Rather than display the details of an individual style, as was the case
with the Apply Styles and Manage Styles windows, the CSS Properties
window instead shows a cumulative view of all the styles applicable to
the current element, taking into account the order of precedence for
the styles. At the top of the CSS Properties window is the Applied
Rules section, which lists the CSS styles in the order in which they are
applied. Styles that are lower on this list override the styles above
them.
Selecting a style in the Applied Rules section shows all the CSS
properties for that style in the lower property grid. In Figure 16-21
(left) the h2 CSS rule has been selected, which has a definition for the
font-size CSS property. You can edit these properties or define new
ones directly in this property grid.
The CSS Properties window also has a Summary button, which
displays all the CSS properties applicable to the current element. This

Download from finelybook www.finelybook.com

536

is shown in Figure 16-21 (right). CSS properties that have been
overridden are shown with a strikethrough, and hovering the mouse
over the property displays a tooltip with the reason for the override.
Visual Studio 2017 also includes a Target Rule selector on the
Formatting toolbar, as shown in Figure 16-22, which enables you to
control where style changes you made using the formatting toolbars
and dialog windows are saved. These include the Formatting toolbar
and the dialog windows under the Format menu, such as Font,
Paragraph, Bullets and Numbering, Borders and Shading, and
Position.

FIGURE 16-22

The Target Rule selector has two modes: Automatic and Manual. In
Automatic mode Visual Studio automatically chooses where the new
style is applied. In Manual mode you have full control over where the
resulting CSS properties are created. Visual Studio 2017 defaults to
Manual mode, and any changes to this mode are remembered for the
current user.
The Target Rule selector is populated with a list of styles that have
already been applied to the currently selected element. Inline styles
display with an entry that reads <inline style>. Styles defined inline
in the current page have (Current Page) appended, and styles defined
in an external style sheet have the filename appended.
Finally, in Visual Studio 2017 there is IntelliSense support for CSS in
both the CSS editor and HTML editor. The CSS editor, which is
opened by default when you double-click a CSS file, provides
IntelliSense prompts for all the CSS attributes and valid values, as
shown in Figure 16-23. After the CSS styles are defined, the HTML
editor subsequently detects and displays a list of valid CSS class names
available on the web page when you add the class attribute to a HTML

Download from finelybook www.finelybook.com

537

element.

FIGURE 16-23

Validation Tools

Web browsers are remarkably good at hiding badly formed HTML
code from end users. Invalid syntax that would cause a fatal error if it
were in an XML document, such as out-of-order or missing closing
tags, often renders fine in your favorite web browser. However, if you
view that same malformed HTML code in a different browser, it may
look totally different. This is one good reason to ensure that your
HTML code is standards-compliant.
The first step to validating your standards compliance is to set the
target schema for validation. You can do this from the HTML Source
Editing toolbar, as shown in Figure 16-24.

FIGURE 16-24

Download from finelybook www.finelybook.com

538

Your HTML markup will be validated against the selected schema.
Validation works like a background spell-checker, examining the
markup as it is entered and adding wavy green lines under the
elements or attributes that are not valid based on the current schema.
As shown in Figure 16-25, when you hover over an element marked as
invalid, a tooltip appears showing the reason for the validation failure.
A warning entry is also created in the Error List window.

FIGURE 16-25

Schema validation will go a long way toward helping your web pages
render the same across different browsers. However, it does not
ensure that your site is accessible to everyone. There may be a fairly
large group of people with some sort of physical impairment who find
it extremely difficult to access your site due to the way the HTML
markup has been coded.
The World Health Organization has estimated that approximately 285
million people worldwide are visually impaired (World Health
Organization, 2014). In the United States, around 14 million people
have reported experiencing vision impairment (National Center for
Health Statistics, 2010). That’s a large body of people by anyone’s
estimate, especially given that it doesn’t include those with other
physical impairments.
In addition to reducing the size of your potential user base, if you do
not take accessibilities into account, you may run the risk of being on
the wrong side of a lawsuit. A number of countries have introduced
legislation that requires websites and other forms of communication
to be accessible to people with disabilities.
Fortunately, Visual Studio 2017 includes an accessibility-validation
tool that checks HTML markups for compliance with accessibility
guidelines. The Web Content Accessibility Checker, launched from
Tools Check Accessibility, enables you to check an individual page for
compliance against several accessibility guidelines, including Web
Content Accessibility Guidelines (WCAG) version 1.0 and the
Americans with Disabilities Act Section 508 Guidelines, commonly

Download from finelybook www.finelybook.com

539

referred to as Section 508.
Select the guidelines to check for compliance and click Validate to
begin. After the web page has been checked, any issues display as
errors or warnings in the Error List window, as shown in Figure 16-26.

FIGURE 16-26

WEB CONTROLS

When ASP.NET version 1.0 was first released, a whole new way to
build web applications was enabled for Microsoft developers. Instead
of using HTML elements mingled with a server-side scripting
language, as was the case with languages such as classic ASP, JSP, and
Perl, ASP.NET introduced the concept of feature-rich controls for web
pages that acted in ways similar to their Windows counterparts.
Web controls such as button and textbox components have familiar
properties such as Text, Left, and Width, along with just as
recognizable methods and events such as Click and TextChanged. In
addition to these, ASP.NET 1.0 provided a limited set of web-specific
components, some dealing with data-based information, such as the
DataGrid control, and others providing common web tasks, such as
ErrorProvider to give feedback to users about problems with
information they entered into a web form.
Subsequent versions of ASP.NET introduced more than 50 web server
controls including navigation components, user authentication, and
improved data controls. Third-party vendors have also released
numerous server controls and components that provide even more
advanced functionality.
Unfortunately, there isn’t room in this book to explore all the server
controls available to web applications in much detail. In fact, many of
the components, such as TextBox, Button, and Checkbox, are simply

Download from finelybook www.finelybook.com

540

the web equivalents of the basic user interface controls that you may
well be familiar with already. However, it can be useful to provide an
overview of some of the more specialized and functional server
controls that reside in the ASP.NET web developers’ toolkit.

Navigation Components

ASP.NET includes a simple way to add sitewide navigation to your web
applications with the sitemap provider and associated controls. To
implement sitemap functionality into your projects, you must
manually create the site data by default in a file called Web.sitemap,
and keep it up to date as you add or remove web pages from the site.
Sitemap files can be used as a data source for a number of web
controls, including SiteMapPath, which automatically keeps track of
where you are in the site hierarchy, as well as the Menu and TreeView
controls, which can present a custom subset of the sitemap
information.
After you have your site hierarchy defined in a Web.sitemap file, the
easiest way to use it is to drag and drop a SiteMapPath control onto
your web page design surface (see Figure 16-27). This control
automatically binds to the default sitemap provider, as specified in the
Web.config file, to generate the nodes for display.

FIGURE 16-27

Though the SiteMapPath control displays only the breadcrumb trail
leading directly to the currently viewed page, at times you will want to
display a list of pages in your site. The ASP.NET Menu control can be
used to do this and has modes for both horizontal and vertical viewing
of the information. Likewise, the TreeView control can be bound to a
sitemap and used to render a hierarchical menu of pages in a website.

User Authentication

Perhaps the most significant additions to the web components in

Download from finelybook www.finelybook.com

541

ASP.NET version 2.0 were the new user authentication and login
components. Using these components, you can quickly and easily
create the user-based parts of your web application without having to
worry about how to format them or what controls are necessary.
Every web application has a default data source added to its ASP.NET
configuration when it is first created. The data source is a SQL Server
Express database with a default name pointing to a local filesystem
location. This data source is used as the default location for your user
authentication processing, storing information about users and their
current settings.
The benefit of having this automated data store generated for each
website is that Visual Studio can have an array of user-bound web
components that can automatically save user information without
your needing to write any code.
Before you can sign in as a user on a particular site, you first need to
create a user account. Initially, you can do that in the administration
and configuration of ASP.NET, but you may also want to allow visitors
to the site to create their own user accounts. The CreateUserWizard
component does just that. It consists of two wizard pages with
information about creating an account and indicates when account
creation is successful.
After users have created their accounts, they need to log in to the site,
and the Login control fills this need. Adding the Login component to
your page creates a small form containing User Name and Password
fields, along with the option to remember the login credentials, and a
Log In button (see Figure 16-28).

FIGURE 16-28

The trick to getting this to work correctly is to edit your Web.config file
and change the authentication to Forms. The default authentication
type is Windows, and without the change the website authenticates
you as a Windows user because that’s how you are currently logged in.
Obviously, some web applications require Windows authentication,

Download from finelybook www.finelybook.com

542

but for a simple website that you plan to deploy on the Internet, this is
the only change you need to make for the Login control to work
properly.
You can also use several controls that will detect whether or not the
user has logged on, and display different information to an
authenticated user as opposed to an anonymous user. The LoginStatus
control is a simple bi-state component that displays one set of content
when the site detects that a user is currently logged in, and a different
set of content when there is no logged-in user. The LoginName
component is also simple; it just returns the name of the logged-in
user.
There are also controls that allow end users to manage their own
passwords. The ChangePassword component works with the other
automatic user-based components to enable users to change their
passwords. However, sometimes users forget their passwords, which is
where the PasswordRecovery control comes into play. This
component, shown in Figure 16-29, has three views: UserName,
Question, and Success. The idea is that users first enter their username
so the application can determine and display the security question,
and then wait for an answer. If the answer is correct, the component
moves to the Success page and sends an email to the registered email
address.

FIGURE 16-29

The last component in the Login group on the Toolbox is the
LoginView object. LoginView enables you to create whole sections on
your web page that are visible only under certain conditions related to
who is (or isn’t) logged in. By default, you have two views: the
AnonymousTemplate, which is used when no user is logged in, and the
LoggedInTemplate, used when any user is logged in. Both templates
have an editable area that is initially completely empty.
However, because you can define specialized roles and assign users to

Download from finelybook www.finelybook.com

543

these roles, you can also create templates for each role you have
defined in your site (see Figure 16-30). The Edit RoleGroups
command on the smart-tag Tasks list associated with LoginView
displays the typical collection editor and enables you to build role
groups that can contain one or multiple roles. When the site detects
that the user logs in with a certain role, the display area of the
LoginView component is populated with that particular template’s
content.

FIGURE 16-30

What’s amazing about all these controls is that with only a couple of
manual property changes and a few extra entries in the Web.config file,
you can build a complete user-authentication system into your web
application.

Data Components

Data components were introduced to Microsoft web developers with
the first version of Visual Studio .NET and have evolved to be even
more powerful with each subsequent release of Visual Studio. Each
data control has a smart-tag Tasks list associated with it that enables
you to edit the individual templates for each part of the displayable
area. For example, the DataList has several templates, each of which
can be individually customized (see Figure 16-31).

Download from finelybook www.finelybook.com

544

FIGURE 16-31

Data Source Controls

The data source control architecture in ASP.NET provides a simple
way for UI controls to bind to data. The data source controls that were
released with ASP.NET 2.0 include SqlDataSource and
AccessDataSource for binding to SQL Server or Access databases,
ObjectDataSource for binding to a generic class, XmlDataSource for
binding to XML files, and SiteMapDataSource for the site navigation
tree for the web application.
ASP.NET 3.5 shipped with a LinqDataSource control that enables you
to directly bind UI controls to data sources using Language Integrated
Query (LINQ). The EntityDataSource control, released with ASP.NET
3.5 SP1, supports data binding using the ADO.NET Entity Framework.
These controls provide you with a designer-driven approach that
automatically generates most of the code necessary for interacting
with the data.
All data source controls operate in a similar way. For the purposes of
this discussion, the remainder of this section uses ObjectDataSource
as an example.
Before you can use ObjectDataSource, you must already have a class
that acts as a repository manager created. This class is used to expose
the methods that perform CRUD (Create, Read, Update, Delete)
functions on the objects. Once this class is defined, you can then create
an ObjectDataSource control instance by dragging it from the Toolbox
onto the design surface. To configure the control, launch the Configure
Data Source wizard under the smart tag for the control. Select the data
context class (that would be your repository manager class), and then

Download from finelybook www.finelybook.com

545

choose the methods in the repository manager class that implement
the CRUD functionality (although only the Read method is required).
Figure 16-32 shows the screen within the Configure Data Source
wizard that enables you to choose the data context class. It is then a
simple matter to bind this data source to a UI server control, such as
the ListView control, to provide read-only access to your data.

FIGURE 16-32

Data View Controls

After you specify a data source, it is a simple matter to use one of the
data view controls to display this data. ASP.NET ships with built-in
web controls that render data in different ways, including Chart,
DataList, DetailsView, FormView, GridView, ListView, and Repeater.

Download from finelybook www.finelybook.com

546

The Chart control is used to render data graphically using
visualizations such as a bar chart or line chart and is discussed in
Chapter 50, “Reporting,” in the online archive.
A common complaint about the ASP.NET server controls is that
developers have little control over the HTML markup they generate.
This is especially true of many of the data view controls such as
GridView, which always uses an HTML table to format the data it
outputs, even though in some situations an ordered list would be more
suitable.
The ListView control provides a good solution to the shortcomings of
other data controls in this area. Instead of surrounding the rendered
markup with superfluous <table> or elements, it enables you to
specify the exact HTML output that is rendered. The HTML markup is
defined in the templates that ListView supports:

AlternatingItemTemplate
EditItemTemplate
EmptyDataTemplate
EmptyItemTemplate
GroupSeparatorTemplate
GroupTemplate
InsertItemTemplate
ItemSeparatorTemplate
ItemTemplate
LayoutTemplate
SelectedItemTemplate

The two most useful templates are LayoutTemplate and
ItemTemplate. LayoutTemplate specifies the HTML markup that
surrounds the output, and ItemTemplate specifies the HTML used to
format each record that is bound to the ListView.
When you add a ListView control to the design surface, you can bind it
to a data source and then open the Configure ListView dialog box, as
shown in Figure 16-33, via smart-tag actions. This provides a code-
generation tool that automatically produces HTML code based on a

Download from finelybook www.finelybook.com

547

small number of predefined layouts and styles.

FIGURE 16-33

NOTE

Because you have total control over the HTML markup, the
Configure ListView dialog box does not even attempt to parse any
existing markup. Instead, if you reopen the window, it simply
shows the default layout settings.

Data Helper Controls

The DataPager control is used to split the data that is displayed by a UI
control into multiple pages, which is necessary when you work with
large data sets. It natively supports paging via either a
NumericPagerField object, which lets users select a page number, or a
NextPreviousPagerField object, which lets users navigate to the next

Download from finelybook www.finelybook.com

548

or previous page. As with the ListView control, you can also write your
own custom HTML markup for paging by using the
TemplatePagerField object.
Finally, the QueryExtender control, introduced in ASP.NET version
4.0, provides a way to filter data from an EntityDataSource or
LinqDataSource in a declarative manner. It is particularly useful for
searching scenarios.

MASTER PAGES

A useful feature of web development in Visual Studio is the ability to
create master pages that define sections that can be customized. This
enables you to define a single page design that contains the common
elements that should be shared across your entire site, specify areas
that can house individualized content, and inherit it for each of the
pages on the site.
To add a master page to your Web Application project, use the Add
New Item command from the website menu or from the context menu
in the Solution Explorer. This displays the Add New Item dialog, as
shown in Figure 16-34, which contains a large number of item
templates that can be added to a web application. You’ll notice that
besides Web Forms (.aspx) pages and Web User Controls, you can also
add plain HTML files, style sheets, and other web-related file types. To
add a master page, select the Master Page template, choose a name for
the file, and click Add.

Download from finelybook www.finelybook.com

549

FIGURE 16-34

When a master page is added to your website, it starts out as a
minimal web page template with two empty ContentPlaceHolder
components — one in the body of the web page and one in the head.
This is where the detail information can be placed for each individual
page. You can create the master page as you would any other web form
page, complete with ASP.NET and HTML elements, CSSs, and
theming.
If your design requires additional areas for detail information, you can
either drag a new ContentPlaceHolder control from the Toolbox onto
the page, or switch to Source view and add the following tags where
you need the additional area:

<asp:ContentPlaceHolder id="aUniqueid" runat="server">
</asp:ContentPlaceHolder>

After the design of your master page has been finalized, you can use it
for the detail pages for new web forms in your project.
Unfortunately, the process to add a form that uses a master page is
slightly different depending on whether you use a Web Application or
a Web Site project. For a Web Application project, rather than adding
a new Web Form, you should add a new Web Form using Master Page.
This displays the Select a Master Page dialog box, as shown in Figure

Download from finelybook www.finelybook.com

550

16-35. In a Web Site project, the Add New Item window contains a
check box titled Select Master Page. If you check this, the Select a
Master Page dialog displays.

FIGURE 16-35

Select the master page to be applied to the detail page, and click OK.
The new web form page that is added to the project includes one or
more Content controls, which map to the ContentPlaceHolder controls
on the master page.
It doesn’t take long to see the benefits of master pages and understand
why they have become a popular feature. However, it is even more
useful to create nested master pages.
Working with nested master pages is not much different from working
with normal master pages. To add one, select Nested Master Page
from the Add New Item window. You are prompted to select the
parent master page via the Select a Master Page window (refer to
Figure 16-35). When you subsequently add a new content web page,
any nested master pages are also shown in the Select a Master Page
window.

Download from finelybook www.finelybook.com

551

RICH CLIENT-SIDE DEVELOPMENT

In the past couple of years the software industry has seen a
fundamental shift toward emphasizing the importance of the end user
experience in application development. Nowhere has that been more
apparent than in the development of web applications. Fueled by
technologies such as AJAX and an increased appreciation of
JavaScript, you are expected to provide web applications that
approach the richness of their desktop equivalents.
Microsoft has certainly recognized this and includes a range of tools
and functionality in Visual Studio 2017 that support the creation of
rich client-side interactions. There is integrated debugging and
IntelliSense support for JavaScript and ASP.NET AJAX is shipped
with Visual Studio 2017. These tools make it much easier for you to
design, build, and debug client-side code that provides a much richer
user experience.

Developing with JavaScript

Writing JavaScript client code has long had a reputation for being
difficult, even though the language is quite simple. Because JavaScript
is a dynamic, loosely typed programming language — different from
the strong typing enforced by Visual Basic and C# — JavaScript’s
reputation is even worse in some .NET developer circles.
Thus, one of the most useful features of Visual Studio for web
developers is IntelliSense support for JavaScript. The IntelliSense
begins immediately as you start typing, with prompts for native
JavaScript functions and keywords such as var, alert, and eval.
Furthermore, the JavaScript IntelliSense in Visual Studio 2017
automatically evaluates and infers variable types to provide more
accurate IntelliSense prompts. For example, in Figure 16-36 you can
see that IntelliSense has determined that optSelected is an HTML
object because a call to the document.getElementByID function returns
that type.

Download from finelybook www.finelybook.com

552

FIGURE 16-36

In addition to displaying IntelliSense within web forms, Visual Studio
supports IntelliSense in external JavaScript files. It also provides
IntelliSense help for referenced script files and libraries, such as the
Microsoft AJAX library.
Microsoft has extended the XML commenting system in Visual Studio
to recognize comments on JavaScript functions. IntelliSense detects
these XML code comments and displays the summary, parameters,
and return type information for the function.
Although Visual Studio constantly monitors changes to files in the
project and updates the IntelliSense as they happen, a couple of
limitations could prevent the JavaScript IntelliSense from displaying
information in certain circumstances, including:

A syntax or other error in an external referenced script file.
Invoking a browser-specific function or object. Most web browsers
provide a set of objects that is proprietary to that browser. You can
still use these objects, and many popular JavaScript frameworks
do; however, you won’t get IntelliSense support for them.
Referencing files outside the current project.

One feature of ASP.NET that is a boon to JavaScript developers is the
ClientIDMode property that is available for web server controls. In
earlier versions, the value that was generated for the id attribute on
generated HTML controls made it difficult to reference these controls
in JavaScript. The ClientIDMode property fixes this by defining two

Download from finelybook www.finelybook.com

553

modes (Static and Predictable) for generating these IDs in a simpler
and more predictable way.
The JavaScript IntelliSense support, combined with the client-side
debugging and control over client IDs, significantly enhances the
ability to develop JavaScript code with Visual Studio 2017.

Working with ASP.NET AJAX

The ASP.NET AJAX framework provides web developers with a
familiar server-control programming approach for building rich client-
side AJAX interactions.
ASP.NET AJAX includes both server-side and client-side components.
A set of server controls, including the popular UpdatePanel and
UpdateProgess controls, can be added to web forms to enable
asynchronous partial-page updates without your needing to make
changes to any existing code on the page. The client-side Microsoft
AJAX Library is a JavaScript framework that can be used in any web
application, such as PHP on Apache, and not just ASP.NET or IIS.
The following walkthrough demonstrates how to enhance an existing
web page by adding the ASP.NET AJAX UpdatePanel control to
perform a partial-page update. In this scenario you have a simple web
form with a DropDownList server control, which has an AutoPostBack
to the server enabled. The web form handles the
DropDownList.SelectedIndexChanged event and saves the value that was
selected in the DropDownList to a TextBox server control on the page.
The code for this page follows:
AJAXSAMPLEFORM.ASPX

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="AjaxSampleForm.aspx.vb"
 Inherits="ASPNetWebApp.AjaxSampleForm" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET AJAX Sample</title>
</head>
<body>
 <form id="form1" runat="server">

Download from finelybook www.finelybook.com

554

 <div>
 Select an option:
 <asp:DropDownList ID="DropDownList1" runat="server"
AutoPostBack="True">
 <asp:ListItem Text="Option 1" Value="Option 1"/>
 <asp:ListItem Text="Option 2" Value="Option 2"/>
 <asp:ListItem Text="Option 3" Value="Option 3"/>
 </asp:DropDownList>

 Option selected:
 <asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>
 </div>
 </form>
</body>
</html>

AJAXSAMPLEFORM.ASPX.VB

Public Partial Class AjaxSampleForm
 Inherits System.Web.UI.Page
 Protected Sub DropDownList1_SelectedIndexChanged(ByVal
sender As Object, _
 ByVal e
As EventArgs) _
 Handles
DropDownList1.SelectedIndexChanged
 System.Threading.Thread.Sleep(2000)
 Me.TextBox1.Text = Me.DropDownList1.SelectedValue
 End Sub
End Class

Notice that in the DropDownList1_SelectedIndexChanged method you
added a statement to sleep for 2 seconds. This exaggerates the server
processing time, thereby making it easier to see the effect of the
changes you will make. When you run this page and change an option
in the drop-down list, the whole page will be refreshed in the browser.
The first AJAX control that you need to add to your web page is a
ScriptManager. This is a nonvisual control that’s central to ASP.NET
AJAX and is responsible for tasks such as sending script libraries and
files to the client and generating any required client proxy classes. You
can have only one ScriptManager control per ASP.NET web page,
which can pose a problem when you use master pages and user
controls. In that case, you should add the ScriptManager to the

Download from finelybook www.finelybook.com

555

topmost parent page and a ScriptManagerProxy control to all child
pages.
After you add the ScriptManager control, you can add any other
ASP.NET AJAX controls. In this case, add an UpdatePanel control to
the web page, as shown in the following code. Notice that TextBox1 is
now contained within the UpdatePanel control.

<%@ Page Language="vb" AutoEventWireup="false"
 CodeBehind="AjaxSampleForm.aspx.vb"
 Inherits="ASPNetWebApp.AjaxSampleForm" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>ASP.NET AJAX Sample</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
 <div>
 Select an option:
 <asp:DropDownList ID="DropDownList1" runat="server"
AutoPostBack="True">
 <asp:ListItem Text="Option 1" Value="Option 1"/>
 <asp:ListItem Text="Option 2" Value="Option 2"/>
 <asp:ListItem Text="Option 3" Value="Option 3"/>
 </asp:DropDownList>

 Option selected:
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger
ControlID="DropDownList1"

EventName="SelectedIndexChanged" />
 </Triggers>
 </asp:UpdatePanel>
 </div>
 </form>
</body>

Download from finelybook www.finelybook.com

556

</html>

The web page now uses AJAX to provide a partial-page update. When
you run this page and change an option in the drop-down list, the
whole page is no longer refreshed. Instead, just the text within the
textbox is updated. In fact, if you run this page you can notice that
AJAX is too good at just updating part of the page. There is no
feedback, and if you didn’t know any better, you would think that
nothing is happening. This is where the UpdateProgress control
becomes useful. You can place an UpdateProgress control on the page,
and when an AJAX request is invoked, the HTML within the
ProgressTemplate section of the control is rendered. The following
code shows an example of an UpdateProgress control for your web
form:

<asp:UpdateProgress ID="UpdateProgress1" runat="server">
 <ProgressTemplate>
 Loading.
 </ProgressTemplate>
</asp:UpdateProgress>

The final server control in ASP.NET AJAX that hasn’t been mentioned
is the Timer control, which enables you to perform asynchronous or
synchronous client-side postbacks at a defined interval. This can be
useful for scenarios such as checking with the server to see if a value
has changed.

SUMMARY

In this chapter you learned how to create ASP.NET applications using
the Web Site and Web Application projects. The power of the HTML
Designer and the CSS tools in Visual Studio 2017 provide you with
great power over the layout and visual design of web pages. The vast
number of web controls included in ASP.NET enables you to quickly
put together highly functional web pages. Through the judicious use of
JavaScript and ASP.NET AJAX, you can provide a rich user experience
in your web applications.
Of course, there’s much more to web development than what is
covered here. Chapters 17 and 18 continue the discussion on building

Download from finelybook www.finelybook.com

557

rich web applications by exploring web technologies from Microsoft:
ASP.NET MVC and .NET Core. Chapter 58 in the online archive
provides detailed information about the tools and techniques available
for effective debugging of web applications. Finally, Chapter 36, “Web
Application Deployment,” walks you through the deployment options
for web applications. If you want more information after this, you
should check out Professional ASP.NET 4.5 in C# and VB (Wrox).
Weighing in at more than 1,400 pages, this is the best and most
comprehensive resource available to web developers who are building
applications on the most recent version of ASP.NET.

Download from finelybook www.finelybook.com

558

17
ASP.NET MVC

WHAT’S IN THIS CHAPTER?

Understanding the Model-View-Controller design pattern
Developing ASP.NET MVC applications
Designing URL routes
Validating user input
Integrating with jQuery

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Although ASP.NET Web Forms has been and continues to be
successful, it is not without criticism. Without strong discipline it is
easy for business logic and data-access concerns to creep into the
user interface, making it hard to test without sitting in front of a
browser. It heavily abstracts away the stateless request/response
nature of the web, which can make it frustrating to debug. It relies
heavily on controls rendering their own HTML markup, which can
make it difficult to precisely control the final output of each page.
As an alternative, the architectural pattern called Model-View-
Controller (MVC) divides the parts of a user interface into three
classifications with well-defined roles. This makes applications
easier to test, evolve, and maintain.
The ASP.NET Framework enables you to build applications based
on the MVC architecture while taking advantage of the .NET
Framework’s extensive set of libraries and language options.

Download from finelybook www.finelybook.com

559

http://wrox.com
http://www.wrox.com

ASP.NET MVC has been developed in an open manner with many
of its features shaped by community feedback. The entire source
code for the framework is available as open source. You can find
the repository for it at https://github.com/aspnet.

NOTE

Microsoft has been careful to state that ASP.NET MVC is not a
replacement for Web Forms. It is simply an alternative way to
build web applications that some people will find preferable.
Microsoft has made it clear that it will continue to support both
ASP.NET Web Forms and ASP.NET MVC.

MODEL VIEW CONTROLLER

In the MVC architecture, applications are separated into the following
components:

Model: The model consists of classes that implement domain-
specific logic for the application. Although the MVC architecture
does not concern itself with the specifics of the data access layer, it
is understood that the model should encapsulate any data access
code. Generally, the model calls separate data access classes
responsible for retrieving and storing information in a database.
View: The views are classes that take the model and render it into
a format where the user can interact with it.
Controller: The controller is responsible for bringing everything
together. A controller processes and responds to events, such as a
user clicking a button. The controller maps these events onto the
model and invokes the appropriate view.

NOTE

You might be surprised to learn that the Model-View-
Controller architectural pattern was first described in 1979 by
Trygve Reenskaug, a researcher working on an

Download from finelybook www.finelybook.com

560

https://github.com/aspnet

implementation of SmallTalk. You can find the slides and notes
to a 2003 presentation given by Professor Reenskaug at
https://heim.ifi.uio.no/~trygver/2003/javazone-

jaoo/MVC_pattern.pdf.

These descriptions aren’t actually helpful until you understand how
they interact together. The request life cycle of an ASP.NET MVC
application normally consists of the following:
1. The user performs an action that triggers an event, such as

entering a URL or clicking a button. This generates a request to the
controller.

2. The controller receives the request and invokes the relevant action
on the model. Often this can cause a change in the model’s state,
although not always.

3. The controller retrieves any necessary data from the model and
invokes the appropriate view, passing it the data from the model.

4. The view renders the data and sends it back to the user.
The most important thing to note here is that both the view and
controller depend on the model. However, the model has no
dependencies, which is one of the key benefits of the architecture. This
separation is what provides better testability and makes it easier to
manage complexity.

NOTE

Different MVC framework implementations have minor
variations in the preceding life cycle. For example, in some cases
the view queries the model for the current state, instead of
receiving it from the controller.

Now that you understand the Model-View-Controller architectural
pattern, you can begin to apply this knowledge to build your first
ASP.NET MVC application.

GETTING STARTED WITH ASP.NET MVC

This section details the creation of a new ASP.NET MVC application

Download from finelybook www.finelybook.com

561

https://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf

and describes some of the standard components. In Visual Studio
2015, there were two different flavors of MVC, each identified by their
version number. That is no longer the case, at least not while going
through the project creation process described in this section. In
Visual Studio 2015, the distinction between the two MVC versions
related to the tools that are used to build the project and to deliver
client-side resources to the browser. The MVC concepts were (and still
are) the same for each of them. But what was ASP.NET MVC in Visual
Studio 2015 eventually became .NET Core, which is described in
Chapter 18, “.NET Core.” As a result, ASP.NET MVC as covered in this
chapter is the “older,” more familiar, slightly less cutting-edge version.
To create a new MVC application, go to File New Project, and select
ASP.NET Web Application from the Web section. After you give a
name to the project and select OK, Visual Studio asks for a number of
setup parameters, such as the project template, the type of project
(Web Forms, MVC, or Web API), and whether or not a unit test project
for the application should be created (shown in Figure 17-1).

FIGURE 17-1

Download from finelybook www.finelybook.com

562

Your first option in defining the MVC project is to select a project
template, such as Empty, MVC, Single Page Application, Web API, or
Azure API App. The choice you make impacts some of the files that are
downloaded. So consider this choice to be just a further refinement of
the project template options available from the New Project dialog.
One of the design elements for ASP.NET projects in Visual Studio 2017
was to eliminate (at least as much as possible) the distinction between
Web Forms, Web API, and MVC development styles. While that
relatively utopian goal has not yet been fully realized, a significant step
has been taken with the inclusion of a number of check boxes
immediately below the list of templates. Where possible, if you can
have different development styles within the same project template,
you will be able to choose which styles to include. Again, limited by the
particular template, more than one style may be included in a single
project.
To add a development style to your template, ensure that the desired
box (or boxes) have been checked prior to clicking on the OK button.
Then, when the project is created, the files that you have chosen to
include in your project will be added automatically. For this example,
ensure that the MVC box has been checked before continuing.
You also have the option to create a unit test project for the
application. Although this is not required, it is highly recommended
because improved testability is one of the key advantages of using the
MVC framework. You can always add a test project later if you want.

NOTE

Visual Studio 2017 can create test projects for MVC applications
using a number of unit testing frameworks. The default choice,
however, is to use the built-in unit testing tools in Visual Studio.

When an ASP.NET MVC application is first created, it generates a
number of files and folders. The MVC application generated from the
project template is a complete application that can be run
immediately.
Figure 17-2 shows the folder structure automatically generated by
Visual Studio and includes the following folders:

Download from finelybook www.finelybook.com

563

FIGURE 17-2

Content: A location to store static content files such as themes
and CSS files.
Controllers: Contains the Controller files. Two sample
controllers called HomeController and AccountController are
created by the project template.
Fonts: A location to store font files.

Download from finelybook www.finelybook.com

564

Models: Contains model files. This is also a good place to store
any data access classes that are encapsulated by the model. The
MVC project template does not create an example model.
Scripts: Contains JavaScript files. By default, this folder contains
script files for JQuery and Microsoft AJAX along with some helper
scripts to integrate with MVC.
Views: Contains the view files. The MVC project template creates
a number of folders and files in the Views folder. The Home
subfolder contains two example view files invoked by the
HomeController. The Shared subfolder contains a master page used
by these views.

Visual Studio also creates a Global.asax file, which is used to configure
the routing rules (more on that later).
Finally, if you elected to create a test project, this is created with a
Controllers folder that contains a unit test stub for the HomeController.
Although it doesn’t do much yet, you can run the MVC application by
pressing F5. Exactly what it does depends on the template that you
select.

CHOOSING A MODEL

The MVC project template does not create a sample model for you.
Actually, the application can run without a model altogether. While in
practice your applications are likely to have a full model, MVC
provides no guidance as to which technology you should use.
This gives you a great deal of flexibility.
The model part of your application is an abstraction of the business
capabilities that the application provides. If you build an application to
process orders or organize a leave schedule, your model should
express these concepts. This is not always easy. It is frequently
tempting to allow some of these details to creep in the View-controller
part of your application.
The examples in this chapter use a simple LINQ-to-SQL model based
on a subset of the AdventureWorksDB sample database as shown in
Figure 17-3. You can download this sample database from
http://msftdbprodsamples.codeplex.com/. The version of the database

Download from finelybook www.finelybook.com

565

http://msftdbprodsamples.codeplex.com/

that you need depends on the version of SQL Server you have access
to. If you’re using the SQL that is included with Visual Studio 2017,
then Adventure Works 2014 is the best choice. Chapter 46, “Language
Integrated Queries (LINQ),” explains how to create a new LINQ-to-
SQL model.

FIGURE 17-3

The next section explains how you can build your own controller,
followed by some interesting views that render a dynamic user
interface.

Download from finelybook www.finelybook.com

566

CONTROLLERS AND ACTION METHODS

A controller is a class that responds to some user action. Usually, this
response involves updating the model in some way, and then
organizing for a view to present content back to the user. Each
controller can listen for and respond to a number of user actions. Each
of these is represented in the code by a normal method referred to as
an action method.
Begin by right-clicking the Controllers folder in the Solution Explorer
and selecting Add Controller to display the Add Scaffold dialog, as
shown in Figure 17-4. This dialog allows you to select the scaffolding
option for the controller. Once you have selected the scaffold, you are
prompted to select a name for your new controller. By convention, the
MVC framework requires that all controller classes have names that
end in “Controller,” so this part is already filled in for you.

FIGURE 17-4

MVC Scaffolding

Scaffolding is a mechanism that is used in a couple of different
technologies throughout .NET. For ASP.NET MVC, scaffolding is used

Download from finelybook www.finelybook.com

567

to create a collection of pages that relate to the type of controller that
you’re adding. If you think of the scaffolding as a template, you’re
close. Typically a template is used to generate a single file from a given
set of parameters. In this particular case, adding a controller using
scaffolding results in a number of different files being added. The
specific files and the functionality that are found therein depend on
the type of scaffolding that is selected.
In Figure 17-4, you’ll notice that the choices fall into three basic
categories. Several of them relate to an MVC 5 controller. The others
relate to a controller based on the ASP.NET Web API 2, both with and
without OData 3. Within each of the groups, there are up to three
different options: an empty controller, a controller that uses the Entity
Framework to perform CRUD (Create/Read/Update/Delete)
operations, and a controller that has the methods to perform CRUD,
but no implementation. The selection of the template should be based
on whether or not you plan on using MVC or the Web API (with or
without OData) and secondarily on how much of the CRUD functions
you would like to be automatically generated.

NOTE

The ASP.NET Web API is a framework that allows a broad range
of clients, from browsers to mobile devices, that consume HTTP
services. On the server side, the Web API assists in the
construction of easily consumable HTTP services. In terms of how
it differs from MVC, in general, the answer can be given in terms
of how it utilizes HTTP. MVC using a REST-based notation to
identify the server-side resources that are retrieved. REST
notations utilize HTTP verbs (GET, PUT, DELETE, and POST) to
perform their operations. The Web API takes advantage of all of
the capabilities of HTTP (including headers, the body, and full
URI addressing) to create a rich and interoperable way to access
resources.

Select an Empty MVC Controller as the template, click Add, and then
give the new controller a name of ProductsController.

Download from finelybook www.finelybook.com

568

NOTE

You can quickly add a controller to your project by using the
Ctrl+M, Ctrl+C shortcut as well.

New controller classes inherit from the System.Web.Mvc.Controller
base class, which performs all the heavy lifting in terms of determining
the relevant method to call for an action and mapping of URL and
POST parameter values. This means that you can concentrate on the
implementation details of your actions, which typically involve
invoking a method on a model class, and then selecting a view to
render.
A newly created controller class will be populated with a default action
method called Index. You can add a new action simply by adding a
public method to the class. If a method is public, it will be visible as an
action on the controller. You can stop a public method from being
exposed as an action by adding the System.Web.Mvc.NonAction attribute
to the method. The following code contains the controller class with
the default action that simply renders the Index view, and a public
method that is not visible as an action:
C#

public class ProductsController : Controller
{
 //
 // GET: /Products/

 public ActionResult Index()
 {
 return View();
 }

 [NonAction]
 public void NotAnAction()
 {
 // This method is not exposed as an action.
 }
}

VB

Download from finelybook www.finelybook.com

569

Public Class ProductsController
 Inherits System.Web.Mvc.Controller

 '
 ' GET: /Products/

 Function Index() As ActionResult
 Return View()
 End Function

 <NonAction()>
 Sub NotAnAction()
 ' This method is not exposed as an action.
 End Sub
End Class

NOTE

The comment that appears above the Index method is a
convention that indicates how the action is triggered. Each action
method is placed at a URL that is a combination of the controller
name and the action method name formatted like
/controller/action. The comment has no control over this
convention but is used to indicate where you can expect to find
this action method. In this case it is saying that the index action is
triggered by executing an HTTP GET request against the URL
/Products/. This is just the name of the controller because an
action named Index is assumed if one is not explicitly stated by
the URL. This convention is revisited in the “Routing” section.

The result of the Index method is an object that derives from the
System.Web.Mvc.ActionResult abstract class. This object is responsible
for determining what happens after the action method returns. A
number of standard classes inherit from ActionResult that allow you
to perform a number of standard tasks, including redirection to
another URL, generating some simple content in a number of different
formats, or in this case, rendering a view.

NOTE

Download from finelybook www.finelybook.com

570

The View method on the Controller base class is a simple method
that creates and configures a System.Web.Mvc.ViewResult object.
This object is responsible for selecting a view and passing it any
information that it needs to render its contents.

It is important to note that Index is just a normal .NET method and
ProductsController is just a normal .NET class. There is nothing
special about either of them. This means that you can easily instantiate
a ProductsController in a test harness, call its Index method, and then
make assertions about the ActionResult object it returns.
Before moving on, update the Index method to retrieve a list of
Products, and pass them on to the view, as shown in the following
code:
C#

public ActionResult Index()
{
 List<Product> products;

 using (var db = new AdventureWorks2014Entities())
 {
 products = db.Products.ToList();
 }

 return View(products);
}

VB

Function Index() As ActionResult
 Dim products As New List(Of Product)

 Using db As New AdventureWorks2014Entities
 products = db.Products.ToList()
 End Using

 Return View(products)
End Function

Now that you have created a model and a controller, all that is needed
is to create the view to display the UI.

RENDERING A UI WITH VIEWS

Download from finelybook www.finelybook.com

571

In the previous section you created an action method that gathers the
complete list of products and passes that list to a view. Each view
belongs to a single controller and is stored in a subfolder in the Views
folder, which is named after the controller that owns it. In addition,
there is a Shared folder, which contains a number of shared views that
are accessible from a number of controllers. When the view engine
looks for a view, it checks the controller-specific area first and then
checks in the shared area.

NOTE

You can specify the full path to a view as the view name if you
need to refer to a view that is not in the normal view engine
search areas.

The look that a particular view has depends greatly on the view engine
that is used. An ASPX view looks similar to a standard ASP.NET Web
Forms Page or Control having either an .aspx or .ascx extension. A
Razor view has some superficial resemblance to an ASPX page, but
syntactically there are significant differences. However, in general,
views contain some mix of HTML markup and code blocks. They can
even have master pages and render some standard controls. However,
a number of important differences exist that need to be highlighted.
First, a view doesn’t have a code behind page. As such, there is
nowhere to add event handlers for any controls that the view renders,
including those that normally happen behind the scenes. Instead, it is
expected that the view will expose ways for the user to trigger action
methods and a controller will respond to those events. Second, instead
of inheriting from System.Web.Page, a view inherits from
System.Web.Mvc.ViewPage. This base class exposes a number of useful
properties and methods that can be used to help render the HTML
output. One of these properties contains a dictionary of objects that
were passed into the view from the controller. Finally, in the markup
you can notice that there is no form control with a runat="server"
attribute. No server form means that there is no View State emitted
with the page. The majority of the ASP.NET server controls must be
placed inside a server-rendered form control. Some controls such as a
Literal or Repeater control work fine outside a form; however, if you

Download from finelybook www.finelybook.com

572

try to use a Button or DropDownList control, your page throws an
exception at run time.
You can create a View in a number of ways, but the easiest is to right-
click the title of the action method and select Add View, which brings
up the Add View dialog, as shown in Figure 17-5.

FIGURE 17-5

NOTE

You can use the shortcut Ctrl+M, Ctrl+V when the cursor is inside
an action method to open the Add View dialog as well.

This dialog contains a number of options. By default, the name is set to
match the name of the action method. If you change this, you need to
change the constructor of the View to include the view name as a
parameter. There are a number of templates available as well. If you
select an option other than empty, you have the ability to strongly type
the view by choosing the model class from the dropdown. For this
example, select the List template and then choose Product

(MVCApplication) from the Model Class dropdown. If you don’t see the

Download from finelybook www.finelybook.com

573

Product class straight away, you might need to build the application
before adding the view. This tells Visual Studio to generate a list page
for Product objects.

NOTE

If you do not opt to create a strongly typed view, it will contain a
dictionary of objects that need to be converted back into their real
types before you can use them. It is recommended to always use
strongly typed views. If you require your views to be weakly
typed and you use C#, you should create a strongly typed view of
the dynamic type and pass it ExpandoObject instances.

When you click Add, the view should be generated and opened in the
main editor window. It will look like this:
HTML

@model IEnumerable<MVCApplication.Product>
@{
 ViewBag.Title = "Index";
 Layout = "~/Views/_ViewStart.cshtml";
}
<h2>Index</h2>
<p>
 @Html.ActionLink("Create New", "Create")
</p>
<table class="table">
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Name)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.ProductNumber)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.MakeFlag)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.FinishedGoodsFlag)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Color)

Download from finelybook www.finelybook.com

574

 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.SafetyStockLevel)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ReorderPoint)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.StandardCost)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ListPrice)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Size)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.SizeUnitMeasureCode)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.WeightUnitMeasureCode)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Weight)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.DaysToManufacture)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ProductLine)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Class)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Style)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.ProductSubcategoryID)
 </th>
 <th>
 @Html.DisplayNameFor(model =>

Download from finelybook www.finelybook.com

575

model.ProductModelID)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.SellStartDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.SellEndDate)
 </th>
 <th>
 @Html.DisplayNameFor(model =>
model.DiscontinuedDate)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.rowguid)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.ModifiedDate)
 </th>
 <th></th>
 </tr>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ProductNumber)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.MakeFlag)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.FinishedGoodsFlag)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Color)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.SafetyStockLevel)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ReorderPoint)
 </td>
 <td>

Download from finelybook www.finelybook.com

576

 @Html.DisplayFor(modelItem => item.StandardCost)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ListPrice)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Size)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.SizeUnitMeasureCode)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.WeightUnitMeasureCode)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Weight)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.DaysToManufacture)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ProductLine)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Class)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Style)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.ProductSubcategoryID)
 </td>
 <td>
 @Html.DisplayFor(modelItem =>
item.ProductModelID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.SellStartDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.SellEndDate)
 </td>
 <td>

Download from finelybook www.finelybook.com

577

 @Html.DisplayFor(modelItem =>
item.DiscontinuedDate)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.rowguid)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.ModifiedDate)
 </td>
 <td>
 @Html.ActionLink("Edit", "Edit", new {
id=item.ProductID })
|
 @Html.ActionLink("Details", "Details", new {
id=item.ProductID })
|
 @Html.ActionLink("Delete", "Delete", new {
id=item.ProductID })
 </td>
 </tr>
}
</table>

This view presents the list of Products in a simple table. The bulk of
the work is done in a loop, which iterates over the list of products and
renders an HTML table row for each one.
HTML

<% foreach (var item in Model) { %>

 <tr>
 <!-- ... -->
 <td><%= Html.Encode(item.ProductID) %></td>
 <td><%= Html.Encode(item.Name) %></td>
 <!-- ... -->
 </tr>

 <% } %>

NOTE

Visual Studio can infer the type of model because you created a
strongly typed view. In the page directive you can see that this
view doesn’t inherit from System.Web.Mvc.Page. Instead, it inherits

Download from finelybook www.finelybook.com

578

from the generic version, which states that the model will be an
IEnumerable collection of Product objects. This in turn exposes a
Model property with that type. You can still pass the wrong type of
item to the view from the controller. In the case of a strongly
typed view, this results in a run-time exception.

Each of the properties of the products is HTML encoded before it is
rendered using the Encode method on the Html helper property. This
prevents common issues with malicious code injected into the
application masquerading as valid user data. ASP.NET MVC can take
advantage of the <%: … %> markup, which uses a colon in the place of
the equals sign in ASP.NET 4 to more easily perform this encoding.
Here is the same snippet again taking advantage of this technique:
HTML

 <% foreach (var item in Model) { %>

 <tr>
 <!-- ... -->
 <td><%: item.ProductID %></td>
 <td><%: item.Name %></td>
 <!-- ... -->
 </tr>

 <% } %>

In addition to the Encode method, one other Html helper method is
used by this view: the ActionLink helper. This method emits a
standard HTML anchor tag designed to trigger the specified action.
Two forms are in use here. The simplest of these is the one designed to
create a new Product record:
HTML

<p>
 <%= Html.ActionLink("Create New", "Create") %>
</p>

The first parameter is the text that will be rendered inside the anchor
tag. This is the text that will be presented to the user. The second
parameter is the name of the action to trigger. Because no controller
has been specified, the current controller is assumed.
The more complex use of ActionLink is used to render the edit and

Download from finelybook www.finelybook.com

579

details links for each product.
HTML

<td>
 <%= Html.ActionLink("Edit", "Edit", new { id=item.ProductID
}) %> |
 <%= Html.ActionLink("Details", "Details", new {
id=item.ProductID })%>
</td>

The first two parameters are the same as before and represent the link
text and the action name, respectively. The third parameter is an
anonymous object that contains data to be passed to the action
method when it is called.
When you run the application and enter /products/ in your address
bar, you will be presented with the page displayed in Figure 17-6.
Trying to click any of the links causes a run-time exception because the
target action does not yet exist.

FIGURE 17-6

NOTE

Download from finelybook www.finelybook.com

580

After you have a view and a controller, you can use the shortcut
Ctrl+M, Ctrl+G to toggle between the two.

ADVANCED MVC

This section provides an overview for some of the more advanced
features of ASP.NET MVC.

Routing

As you were navigating around the MVC site in your web browser, you
might have noticed that the URLs are quite different from a normal
ASP.NET website. They do not contain file extensions and do not
match up with the underlying folder structure. These URLs are
mapped to action methods and controllers with a set of classes that
belong to the routing engine, which is located in the
System.Web.Routing assembly.

NOTE

The routing engine was originally developed as a part of the
ASP.NET MVC project but was released as a standalone library
before MVC shipped. Although it is not described in this book, it is
possible to use the routing engine with ASP.NET Web Forms
projects.

In the previous example you created a simple list view for products.
This list view was based on the standard List template, which renders
the following snippet for each Product in the database being displayed:
HTML

<td>
 <%= Html.ActionLink("Edit", "Edit", new { id=item.ProductID
}) %> |
 <%= Html.ActionLink("Details", "Details", new {
id=item.ProductID })%>
</td>

If you examine the generated HTML markup of the final page, you

Download from finelybook www.finelybook.com

581

should see that this becomes the following:
HTML

<td>
 Edit |
 Details
</td>

These URLs are made up of three parts:
Products is the name of the controller. There is a corresponding
ProductsController in the project.
Edit and Details are the names of action methods on the controller.
The ProductsController will have methods called Edit and Details.
The 2 is a parameter that represents the id of the product.

Each of these components is defined in a route, which is set up in the
Global.asax.cs file (or the Global.asax.vb file for VB) in a method
called RegisterRoutes. When the application first starts, it calls this
method and passes in the System.Web.Routing.RouteTable.Routes

static collection. This collection contains all the routes for the entire
application.
C#

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

 routes.MapRoute(
 name: "Default",
 routeTemplate: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action =
"Index", id =
 UrlParameter.Optional }
);
}

VB

Download from finelybook www.finelybook.com

582

Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")
 routes.MapHttpRoute(_
 "DefaultApi", _
 "api/{controller}/{id}", _
 New { .id = RouteParameter.Optional } _
)

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index",
.id = _
 UrlParameter.Optional } _
)
End Sub

The first method call tells the routing engine that it should ignore all
requests for .axd files. When an incoming URL matches this route, the
engine will completely ignore it and allow other parts of the
application to handle it. This method can be handy if you want to
integrate Web Forms and MVC into a single application. All you need
to do is ask the routing engine to ignore .aspx and .asmx files.
The second method call defines a new Route and adds it to the
collection. This overload of MapRoute method takes three parameters.
The first parameter is a name, which can be used as a handle to this
route later on. The second parameter is a URL template. This
parameter can have normal text along with special tokens inside of
braces. These tokens will be used as placeholders that are filled in
when the route matches a URL. Some tokens are reserved and will be
used by the MVC routing engine to select a controller and execute the
correct action. The final parameter is a dictionary of default values.
You can see that this “Default” route matches any URL in the form
/controller/action/id where the default controller is Home, the
default action is Index, and the id parameter defaults to an empty
string.
When a new HTTP request comes in, each route in the
RouteCollection tries to match the URL against its URL template in
the order that they are added. The first route that can do so fills in any
default values that haven’t been supplied. When these values have all
been collected, a Controller is created and an action method is called.

Download from finelybook www.finelybook.com

583

Routes are also used to generate URLs inside of views. When a helper
needs a URL, it consults each route (in order again) to see if it can
build a URL for the specified controller, action, and parameter values.
The first route to match generates the correct URL. If a route
encounters a parameter value that it doesn’t know about, it becomes a
query string parameter in the generated URL.
The following snippet declares a new route for an online store that
allows for two parameters: a category and a subcategory. Assuming
that this MVC application has been deployed to the root of a web
server, requests for the URL
http://servername/Shop/Accessories/Helmets will go to the List action
on the Products controller with the parameters Category set to
Accessories and Subcategory set to Helmets:
C#

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "ProductsDisplay",
 "Shop/{category}/{subcategory}",
 new {
 controller = "Products",
 action = "List",
 category = "",
 subcategory = ""
 }
);

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);
}

VB

Shared Sub RegisterRoutes(ByVal routes As RouteCollection)
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")

 routes.MapRoute(_
 "ProductsDisplay", _

Download from finelybook www.finelybook.com

584

http://servername/Shop/Accessories/Helmets

 "Shop/{category}/{subcategory}", _
 New With { _
 .controller = "Products", .action = "List", _
 .category = "", .subcategory = "" _
 })

 routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id =
""} _
)
End Sub

NOTE

When a Route in a RouteCollection matches the URL, no other
Route gets the opportunity. Because of this, the order in which
Routes are added to the RouteCollection can be quite important. If
the previous snippet had placed the new route after the Default
one, it would never get to match an incoming request because a
request for /Shop/Accessories/Helmets would be looking for an
Accessories action method on a ShopController with an id of
Helmets. Because there isn’t a ShopController, the whole request
will fail. If your application is not going to the expected controller
action method for a URL, you might want to add a more specific
Route to the RouteCollection before the more general ones or
remove the more general ones altogether while you figure out the
problem.

Finally, you can also add constraints to the Route to prevent it from
matching a URL unless some other condition is met. This can be a
good idea if your parameters are going to be converted into complex
data types, such as date times later, and require a specific format. The
most basic kind of restraint is a string, which is interpreted as a
regular expression that a parameter must match for the route to take
effect. The following route definition uses this technique to ensure that
the zipCode parameter is exactly five digits:
C#

Download from finelybook www.finelybook.com

585

routes.MapRoute(
 "StoreFinder",
 "Stores/Find/{zipCode}",
 new { controller = "StoreFinder", action = "list" },
 new { zipCode = @"^\d{5}$" }
);

VB

routes.MapRoute(_
 "StoreFinder", _
 "Stores/Find/{zipCode}", _
 New With {.controller = "StoreFinder", .action = "list"}, _
 New With {.zipCode = "^\d{5}$"} _
)

The other type of constraint is a class that implements
IRouteConstraint. This interface defines a single method Match that
returns a Boolean value indicating whether or not the incoming
request satisfies the constraint. There is one out-of-the-box
implementation of IRouteConstraint called HttpMethodConstraint. This
constraint can be used to ensure that the correct HTTP method, such
as GET, POST, HEAD, or DELETE, is used. The following route
accepts only HTTP POST requests:
C#

routes.MapRoute(
 "PostOnlyRoute",
 "Post/{action}",
 new { controller = "Post" },
 new { post = new HttpMethodConstraint("POST") }
);

VB

routes.MapRoute(
 "PostOnlyRoute", _
 "Post/{action}", _
 New With {.controller = "Post"}, _
 New With {.post = New HttpMethodConstraint("POST")} _
)

The URL routing classes are powerful and flexible and allow you to
easily create “pretty” URLs. This can aid users navigating around your

Download from finelybook www.finelybook.com

586

site and even improve your site’s ranking with search engines.

Action Method Parameters

All the action methods in previous examples do not accept any input
from outside of the application to perform their tasks; they rely
entirely on the state of the model. In real-world applications this is an
unlikely scenario. The ASP.NET MVC framework makes it easy to
parameterize action methods from a variety of sources.
As mentioned in the previous section, the Default route exposes an id
parameter, which defaults to an empty string. To access the value of
the id parameter from within the action method, you can just add it to
the signature of the method as the following snippet shows:
C#

public ActionResult Details(int id)
{
 using (var db = new ProductsDataContext())
 {
 var product = db.Products.SingleOrDefault(x =>
x.ProductID == id);

 if (product == null)
 return View("NotFound");

 return View(product);
 }
}

VB

Public Function Details(ByVal id As Integer) As ActionResult
 Using db As New ProductsDataContext
 Dim product = db.Products.FirstOrDefault(Function(p As
Product)
 p.ProductID = id)

 Return View(product)
 End Using
End Function

When the MVC framework executes the Details action method, it
searches through the parameters that have been extracted from the

Download from finelybook www.finelybook.com

587

URL by the matching route. These parameters are matched up with
the parameters on the action method by name, and then passed in
when the method is called. As the details method shows, the
framework can convert the type of the parameter on the fly. Action
methods can also retrieve parameters from the query string portion of
the URL and from HTTP POST data using the same technique.

NOTE

If the conversion cannot be made for any reason, an exception is
thrown.

In addition, an action method can accept a parameter of the
FormValues type that aggregates all the HTTP POST data into a single
parameter. If the data in the FormValues collection represents the
properties of an object, you can simply add a parameter of that type,
and a new instance will be created when the action method is called.
The Create action, shown in the following snippet, uses this to
construct a new instance of the Product class, and then saves it:
C#

public ActionResult Create()
{
 return View();
}
[HttpPost]
public ActionResult Create([Bind(Exclude="ProductId")]Product
product)
{
 if (!ModelState.IsValid)
 return View();

 using (var db = new ProductsDataContext())
 {
 db.Products.InsertOnSubmit(product);
 db.SubmitChanges();
 }
 return RedirectToAction("List");
}

VB

<HttpPost()>

Download from finelybook www.finelybook.com

588

Function Create(<Bind(Exclude:="id")> ByVal product As
Product)

 If (Not ModelState.IsValid) Then
 Return View()
 End If

 Using db As New ProductsDataContext
 db.Products.InsertOnSubmit(product)
 db.SubmitChanges()
 End Using
 Return RedirectToAction("List")
End Function

NOTE

There are two Create action methods here. The first one simply
renders the Create view. The second one is marked up with an
HttpPostAttribute, which means that it can be selected only if the
HTTP request uses the POST verb. This is a common practice in
designing ASP.NET MVC websites. In addition to
HttpPostAttribute there are also corresponding attributes for the
GET, PUT, and DELETE verbs.

Model Binders

The process to create the new Product instance is the responsibility of
a model binder. The model binder matches properties in the HTTP
POST data with properties on the type that it is attempting to create.
This works in this example because the template that was used to
generate the Create view renders the HTML INPUT fields with the
correct name as this snippet of the rendered HTML shows:
HTML

<p>
 <label for="ProductID">ProductID:</label>
 <input id="ProductID" name="ProductID" type="text" value=""
/>
</p>
<p>
 <label for="Name">Name:</label>
 <input id="Name" name="Name" type="text" value="" />

Download from finelybook www.finelybook.com

589

</p>

A number of ways exist to control the behavior of a model binder
including the BindAttribute, which is used in the Create method
shown previously. This attribute is used to include or exclude certain
properties and to specify a prefix for the HTTP POST values. This can
be useful if multiple objects in the POST collection need to be bound.
Model binders can also be used from within the action method to
update existing instances of your model classes using the UpdateModel
and TryUpdateModel methods. The chief difference is that
TryUpdateModel returns a boolean value indicating whether or not it
built a successful model, and UpdateModel just throws an exception if it
can’t. The Edit action method shows this technique:
C#

[HttpPost]
public ActionResult Edit(int id, FormCollection formValues)
{
 using (var db = new ProductsDataContext())
 {
 var product = db.Products.SingleOrDefault(x =>
x.ProductID == id);

 if (TryUpdateModel(product))
 {
 db.SubmitChanges();
 return RedirectToAction("Index");
 }
 return View(product);
 }
}

VB

<HttpPost()>
Function Edit(ByVal id As Integer, ByVal formValues As
FormCollection)
 Using db As New ProductsDataContext
 Dim product = db.Products.FirstOrDefault(Function(p As
Product)
 p.ProductID = id)

 If TryUpdateModel(product) Then
 db.SubmitChanges()

Download from finelybook www.finelybook.com

590

 Return RedirectToAction("Index")
 End If
 Return View(product)
 End Using
End Function

Areas

An area is a self-contained part of an MVC application that manages
its own models, controllers, and views. You can even define routes
specific to an area. To create a new area, select Add Area from the
project context menu in the Solution Explorer. The Add Area dialog, as
in Figure 17-7, prompts you to provide a name for your area.

FIGURE 17-7

After you click Add, many new files are added to your project to
support the area. Figure 17-8 shows a project with an area added to it
named Shop.

Download from finelybook www.finelybook.com

591

FIGURE 17-8

In addition to having its own controllers and views, each area has a
class called AreaNameAreaRegistration that inherits from the abstract
base class AreaRegistration. This class contains an abstract property
for the name of your area and an abstract method for integrating your
area with the rest of the application. The default implementation
registers the standard routes.
C#

public class ShopAreaRegistration : AreaRegistration
{
 public override string AreaName
 {
 get
 {
 return "Shop";
 }
 }

 public override void RegisterArea(AreaRegistrationContext
context)
 {

Download from finelybook www.finelybook.com

592

 context.MapRoute(
 "Shop_default",
 "Shop/{controller}/{action}/{id}",
 new { action = "Index", id = "" }
);
 }
}

VB

Public Class ShopAreaRegistration
 Inherits AreaRegistration

 Public Overrides ReadOnly Property AreaName() As String
 Get
 Return "Shop"
 End Get
 End Property

 Public Overrides Sub RegisterArea(ByVal context As
AreaRegistrationContext)
 context.MapRoute(_
 "Shop_default", _
 "Shop/{controller}/{action}/{id}", _
 New With {.action = "Index", .id = ""} _
)
 End Sub
End Class

NOTE

The RegisterArea method of the ShopAreaRegistration class defines
a route in which every URL is prefixed with /Shop/ by convention.
This can be useful while debugging routes but is not necessary as
long as area routes do not clash with any other routes.

To link to a controller that is inside another area, you need to use an
overload of Html.ActionLink that accepts a routeValues parameter. The
object you provide for this parameter must include an area property
set to the name of the area that contains the controller you link to.
C#

<%= Html.ActionLink("Shop", "Index", new { area = "Shop" })
%>

Download from finelybook www.finelybook.com

593

VB

<%= Html.ActionLink("Shop", "Index", New With {.area =
"Shop"})%>

One issue frequently encountered when adding area support to a
project is that the controller factory becomes confused when multiple
controllers have the same name. To avoid this issue you can limit the
namespaces that a route uses to search for a controller to satisfy any
request. The following code snippet limits the namespaces for the
global routes to MvcApplication.Controllers, which do not match any
of the area controllers.
C#

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 null,
 new[] { "MvcApplication.Controllers" }
);

VB

routes.MapRoute(_
 "Default", _
 "{controller}/{action}/{id}", _
 New With {.controller = "Home", .action = "Index", .id =
""}, _
 Nothing, _
 New String() {"MvcApplication.Controllers"} _
)

NOTE

The AreaRegistrationContext automatically includes the area
namespace when you use it to specify routes, so you should need
to supply only namespaces to the global routes.

Validation

In addition to just creating or updating it, a model binder can decide

Download from finelybook www.finelybook.com

594

whether or not the model instance that it operates on is valid. The
results of this decision are found in the ModelState property. Model
binders can pick up some simple validation errors by default, usually
for incorrect types. Figure 17-9 shows the result of attempting to save a
Product when the form is empty. Most of these validation errors are
based on the fact that these properties are non-nullable value types
and require a value.

FIGURE 17-9

The user interface for this error report is provided by the
Html.ValidationSummary call, which is made on the view. This helper
method examines the ModelState, and if it finds any errors, it renders

Download from finelybook www.finelybook.com

595

them as a list along with a header message.
You can add additional validation hints to the properties of the model
class by marking them up using the attributes in the
System.ComponentModel.DataAnnotations assembly. Because the
Product class is created by LINQ to SQL you should not update it
directly. The LINQ to SQL generated classes are defined as partial, so
you can extend them, but there is no easy way to attach meta data to
the generated properties this way. Instead, you need to create a meta
data proxy class with the properties you want to mark up, provide
them with the correct data annotation attributes, and then mark up
the partial class with a MetadataTypeAttribute identifying the proxy
class. The following code snippet shows this technique used to provide
some validation meta data to the Product class:
C#

[MetadataType(typeof(ProductValidationMetadata))]
public partial class Product
{
}
public class ProductValidationMetadata
{
 [Required, StringLength(256)]
 public string Name { get; set; }

 [Range(0, 100)]
 public int DaysToManufacture { get; set; }
}

VB

Imports System.ComponentModel.DataAnnotations

<MetadataType(GetType(ProductMetaData))>
Partial Public Class Product

End Class

Public Class ProductMetaData
 <Required(), StringLength(256)>
 Property Name As String

 <Range(0, 100)>
 Property DaysToManufacture As Integer
End Class

Download from finelybook www.finelybook.com

596

Now, attempting to create a new Product with no name and a negative
Days to Manufacture produces the errors shown in Figure 17-10.

FIGURE 17-10

NOTE

You might notice that along with the error report at the top of the
page, for each field that has a validation error, the textbox is
colored red and has an error message after it. The first effect is
caused by the Html.TextBox helper, which accepts the value of the
property that it is attached to. If it encounters an error in the
model state for its attached property, it adds an input-

validation-error CSS class to the rendered INPUT control. The
default style sheet defines the red background. The second effect is
caused by the Html.ValidationMessage helper. This helper is also
associated with a property and renders the contents of its second
parameter if it detects that its attached property has an error
associated with it.

Partial Views

Download from finelybook www.finelybook.com

597

At times you have large areas of user interface markup that you would
like to reuse. In the ASP.NET MVC framework a reusable section of
view is called a partial view. Partial views act similar to views except
that they have an .ascx extension and inherit from
System.Web.Mvc.ViewUserControl. To create a partial view, check the
Create a Partial View check box on the same Add View dialog that you
use to create other views.
To render a partial view, you can use the Html.RenderPartial method.
The most common overload of this method accepts a view name and a
model object. Just as with a normal view, a partial view can be either
controller-specific or shared. After the partial view has been rendered,
its HTML markup is inserted into the main view. This code snippet
renders a “Form” partial for the current model:
C#

<% Html.RenderPartial("Form", Model); %>

VB

<% Html.RenderPartial("Form", Model) %>

NOTE

You can call a partial view directly from an action using the
normal View method. If you do this, only the HTML rendered by
the partial view will be included in the HTTP response. This can
be useful if you return data to jQuery.

Dynamic Data Templates

Dynamic Data is a feature of ASP.NET Web Forms that enables you to
render UI based on meta data associated with the model. Although
ASP.NET MVC does not integrate directly with Dynamic Data, a
number of features in ASP.NET MVC 4 are similar in spirit. Templates
in ASP.NET MVC 4 can render parts of your model in different ways,
whether they are small and simple such as a single string property or
large and complex like the whole product class. The templates are
exposed by Html helper methods. There are templates for display and

Download from finelybook www.finelybook.com

598

templates for editing purposes.

Display Templates

The Details view created by the Add View dialog contains code to
render each property. Here is the markup for just two of these
properties:
HTML

<p>
 <%= Html.LabelFor(x => x.ProductID) %>
 <%= Html.DisplayFor(x => x.ProductID) %>
</p>
<p>
 <%= Html.LabelFor(x => x.Name) %>
 <%= Html.DisplayFor(x => x.Name) %>
</p>

Notice that the name of the property is not coded into the HTML, but
it’s referenced through a lambda function. This has a number of
immediate advantages. First, the label is now strongly typed. It
updates if you refactor your model class. In addition to this you can
apply a System.ComponentModel.DisplayName attribute to your model
(or to a model meta data proxy) to change the text that displays to the
user. This helps to ensure consistency across the entire application.
The following code snippet shows the Product meta data proxy with a
couple of DisplayNameAttributes, and Figure 17-11 shows the rendered
result:

FIGURE 17-11

C#

Download from finelybook www.finelybook.com

599

public class ProductValidationMetadata
{
 [DisplayName("ID")]
 public int ProductID { get; set; }

 [Required, StringLength(256)]
 [DisplayName("Product Name")]
 public string Name { get; set; }

 [Range(0, 100)]
 public int DaysToManufacture { get; set; }
}

VB

Public Class ProductMetaData
 <DisplayName("ID")>
 Property ProductID As Integer

 <Required(), StringLength(256)> _
 <DisplayName("Product Name")>
 Property Name As String

 <Range(0, 100)>
 Property DaysToManufacture As Integer
End Class

The DisplayFor helper also provides a lot of hidden flexibility. It
selects a template based on the type of the property that it displays.
You can override each of these type-specific views by creating a partial
view named after the type in the Shared\DisplayTemplates folder. You
can also create controller-specific templates by putting them inside a
DisplayTemplates subfolder within the controller-specific Views folder.
Although the display template is selected based on the type of the
property by default, you can override this by either supplying the
name of the template to the DisplayFor helper or applying a
System.ComponentModel.DataAnnotations.UIHintAttribute to the
property. This attribute takes a string that identifies the type of
template to use. When the framework needs to render the display for
the property, it tries to find the display template described by the UI
Hint. If one is not found, it looks for a type-specific template. If a
template still hasn’t been found, the default behavior is executed.
If you simply apply LabelFor and DisplayFor for every property on

Download from finelybook www.finelybook.com

600

your model, you can use the Html.DisplayForModel helper method.
This method renders a label and a display template for each property
on the model class. You can prevent a property from displaying by this
helper by annotating it with a
System.ComponentModel.DataAnnotations.ScaffoldColumnAttribute

passing it the value false.

NOTE

If you want to change the way the DisplayForModel renders, you
can create a type-specific template for it. If you want to change
the way it renders generally, create an Object display template.

A number of built-in display templates are available that you can use
out of the box. Be aware that if you want to customize the behavior of
one of these, you need to re-create it from scratch:

String: No real surprises, just renders the string contents itself.
This template does HTML encode the property value, though.
Html: The same as string but without the HTML encoding. This is
the rawest form of display that you can have. Be careful using this
template because it is a vector for malicious code injection such as
Cross Site Scripting Attacks (XSS).
Email Address: Renders an e-mail address as a mailto: link.
Url: Renders a URL as an HTML anchor.
HiddenInput: Does not render the property at all unless the
ViewData.ModelMetaData.HideSurroundingHtml property is false.
Decimal: Renders the property to two decimal places.
Boolean: Renders a read-only check box for non-nullable values
and a read-only drop-down list with True, False, and Not Set
options for nullable properties.
Object: Renders complex objects and null values.

Edit Templates

It probably comes as no surprise that there are corresponding
EditorFor and EditorForModel Html helpers that handle the way

Download from finelybook www.finelybook.com

601

properties and objects are rendered for edit purposes. Editor
templates can be overridden by supplying partial views in the
EditTemplates folder. Edit Templates can use the same UI hint system
that display templates use. Just as with display templates, you can use
a number of built-in editor templates out of the box:

String: Renders a standard textbox, initially populated with the
value if provided and named after the property. This ensures that it
will be used correctly by the model binder to rebuild the object on
the other side.
Password: The same as string but renders an HTML PASSWORD
input instead of a textbox.
MultilineText: Creates a multiline textbox. There is no way to
specify the number of rows and columns for this textbox here. It is
assumed that you will use CSS to do that.
HiddenInput: Similar to the display template, renders an HTML
HIDDEN input.
Decimal: Similar to the display template but renders a textbox to
edit the value.
Boolean: If the property type is non-nullable, this renders a check
box control. If this template is applied to a nullable property, it
renders a drop-down list containing the same three items as the
display template.
Object: Renders complex editors.

jQuery

jQuery is an open-source JavaScript framework included by default
with the ASP.NET MVC framework. The basic element of jQuery is the
function $(). This function can be passed a JavaScript DOM element
or a string describing elements via a CSS selector. The $() function
returns a jQuery object that exposes a number of functions that affect
the elements contained. Most of these functions also return the same
jQuery object, so these function calls can be chained together. As an
example, the following snippet selects all the H2 tags and adds the
word “section” to the end of each one:

Download from finelybook www.finelybook.com

602

JAVASCRIPT

$("h2").append("section");

To make use of jQuery, you need to create a reference to the jQuery
library found in the /Scripts folder by adding the following to the head
section of your page:
HTML

<script type="text/javascript" src="/Scripts/jquery-
1.3.2.js"></script>

You can use jQuery to make an HTTP request by using the $.get and
$.post methods (or the more flexible $.ajax method that takes a verb
as one of its parameters). These methods accept a URL and can
optionally have a callback function to provide the results to. The
following view renders the time inside two div tags called server and
client, respectively. There is also a button called update, which when
clicked makes a GET request to the /time URL. When it receives the
results, it updates the value displayed in the client div but not the
server one. In addition to this it uses the slideUp and slideDown
functions to animate the client time in the UI.
C#

<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<System.String>" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Index</title>
 <script type="text/javascript" src="/Scripts/jquery-
1.3.2.js"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 $('#updater').click(UpdateNow);
 });
 function UpdateNow() {
 $.get('/time', function (data) {
 $('#clientTime').slideUp('fast', function () {
 $('#clientTime').empty().append(data).slideDown();
 });
 });

Download from finelybook www.finelybook.com

603

 }
 </script>
</head>
<body>
 <div>
 <h2>
 Server</h2>
 <div id="serverTime">
 <%:Model %></div>
 <h2>
 Client</h2>
 <div id="clientTime">
 <%:Model %></div>
 <input type="button" value="Update" id="updater" />
 </div>
</body>
</html>

Here is the action method that controls the previous view. It uses the
IsAjaxRequest extension method to determine if the request has come
from jQuery. If it has, it returns just the time as a string; otherwise it
returns the full view.
C#

public ActionResult Index()
{
 var now = DateTime.Now.ToLongTimeString();
 if (Request.IsAjaxRequest())
 return Content(now);
 return View(now as object);
}

VB

Function Index() As ActionResult
 Dim timeNow = Now.ToString()
 If Request.IsAjaxRequest() Then
 Return Content(timeNow)
 End If
 Return View(CType(timeNow, Object))
End Function

jQuery is a rich client-side programming tool with an extremely active
community and a large number of plug-ins. For more information
about jQuery, including a comprehensive set of tutorials and demos,

Download from finelybook www.finelybook.com

604

see http://jquery.com.

SUMMARY

The ASP.NET MVC framework makes it easy to build highly testable,
loosely coupled web applications that embrace the nature of HTTP.
For many developers, it is the standard for creating new ASP.NET
applications. The framework provides a flexible platform from which
you can take advantage of not only the power of ASP.NET MVC, but
also the tools in the wider web development ecosystem. For more
information about ASP.NET MVC, see http://asp.net/mvc.

Download from finelybook www.finelybook.com

605

http://jquery.com
http://asp.net/mvc

18
.NET Core

WHAT’S IN THIS CHAPTER?

Understanding .NET Core and ASP.NET Core
Using the ASP.NET Core Templates
Taking advantage of the NuGet Package Manager
Delivering static files using the Bower Package Manager

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
The ASP.NET Framework, while still quite solid, has been getting a
little long of tooth recently. Keep in mind that the basic pipeline
found in ASP.NET Web Forms has remained more or less
unchanged since ASP.NET 1.0. Even the ASP.NET MVC framework
is over seven years old (which is 75 years old in Internet years).
Much has changed in that period, and it was becoming difficult to
innovate on that platform.
Even beyond innovation opportunities, some of the tools that were
commonly being used in the web world were not easily integrated
into the Microsoft stack. Open-source tools are the big players in
the web sites of today, and that usually means that a platform
needs to be compatible with them. And, as the final impetus for
change, Microsoft Azure strategy is to be platform agnostic. The
support for Linux platforms is equal to the ability to spin up
Microsoft servers. And the functionality offered through the

Download from finelybook www.finelybook.com

606

http://wrox.com
http://www.wrox.com

various services is accessible through common protocols, whether
it be a REST-based API or shell scripting.
So from this situation, Microsoft created .NET Core. What it is and
why developers should care are common questions, followed
closely by what tooling is available in Visual Studio to help. All of
those questions are addressed in this chapter.

WHAT IS .NET CORE?

This is probably at the heart of the most pressing questions on the
minds of developers. Is it a replacement for the .NET Framework?
Does this mean that .NET is going away? The answers aren’t nearly as
dire as the casual developer might think.
The goal of .NET Core is to provide an execution platform that is
capable of running on multiple operating systems. Applications that
have been written against .NET Core can be executed on Windows
(naturally) but also on macOS and Linux. It is also intended to be used
in embedded scenarios, including the ever present IoT (Internet of
Things). Yes, this might seem like a laundry list of targets, but the idea
is to help developers minimize the changes that need to be made to
their application as they migrate from platform to platform.
Now don’t get to thinking that .NET Core is a full implementation of
the .NET Framework on these other platforms. It’s not. It is an
implementation of the .NET Standard Library on multiple platforms.
The .NET Standard Library defines the set of .NET APIs that are to be
implemented on every platform that supports .NET. It is a subset of
the .NET Framework. As a result, it’s not possible to run every .NET
application on each of those platforms. However, application
compatibility exists for Xamarin (https://xamarin.com) and Mono
(http://www.mono-project.com) on the appropriate platforms.
From a development perspective, .NET Core applications can be
developed in C# and F#, and plans are in the works to support Visual
Basic as well. The SDK and compilers are provided for the different
platforms, so it’s possible to develop applications on the platform for
which they are targeted. For instance, you can create applications for
the Mac on the Mac using Visual Studio Code.
In Visual Studio 2017, there are a number of different templates that

Download from finelybook www.finelybook.com

607

https://xamarin.com
http://www.mono-project.com

are available to create .NET Core applications. They are:
Console Application: Creates a command-line application
Class Library: Creates a library that will be used in other .NET
Core applications
Unit Test Project: Allows for unit testing of your projects using
MSTest
xUnit Test Project: Allows for unit testing of your projects using
xUnit
ASP.NET Core Empty: Creates an empty .NET Core application
that is suitable for serving up a web site
ASP.NET Core Web App: Creates an ASP.NET MVC application
ASP.NET Core Web API: Creates an ASP.NET Web API
application
Solution File: Creates an empty solution

As a brief interlude before getting into the ASP.NET Core application,
you should be aware that much of what can be done with .NET Core
can be done using command-line tools. For example, the following
command line will create a new .NET Core Console application in the
traditional Hello World style:

 dotnet new console -n HelloWorld -o src/HelloWorld

The result, as seen when executed in the Developer Command Prompt
for VS 2017, is as follows.

Content generation time: 99.6688 ms
The template "Console Application" created successfully.

Let’s finish up this Hello World example. Use the following commands
to change the directory to the location of the generated source and see
what it looks like.

cd src/HelloWorld
dir
03/25/2017 11:14 AM <DIR> .
03/25/2017 11:14 AM <DIR> ..
03/25/2017 11:13 AM 170 HelloWorld.csproj
03/25/2017 11:13 AM 180 Program.cs

Download from finelybook www.finelybook.com

608

 2 File(s) 350 bytes
 2 Dir(s) 229,216,518,144 bytes free

The last two steps are to restore the packages necessary to run the
application and to run the application itself. The dotnet restore

command retrieves the needed packages, while dotnet run executes
the code. The result is as follows.

C:\Demo\HelloWorld\src\HelloWorld dotnet restore
 Restoring packages for
C:\Demo\HelloWorld\src\HelloWorld\HelloWorld.csproj...
 Generating MSBuild file C:\Demo\HelloWorld\src\HelloWorld
\obj\
 HelloWorld.csproj.nuget.g.props.
 Generating MSBuild file C:\Demo\HelloWorld\src\HelloWorld
\obj\
 HelloWorld.csproj.nuget.g.targets.
 Writing lock file to disk. Path:
C:\Demo\HelloWorld\src\HelloWorld \src\
 HelloWorld\obj\project.assets.json
 Restore completed in 2.41 sec for
C:\Demo\HelloWorld\src\HelloWorld \src\
 HelloWorld\HelloWorld.csproj.

 NuGet Config files used:
 C:\Users\bruce\AppData\Roaming\NuGet\NuGet.Config
 C:\Program Files
(x86)\NuGet\Config\Microsoft.VisualStudio.Offline.config

 Feeds used:
 https://api.nuget.org/v3/index.json
 C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\

C:\Demo\HelloWorld\src\HelloWorld \src\HelloWorld>dotnet run
Hello World!

WORKING WITH ASP.NET CORE

As much as it might pain you to acknowledge, ASP.NET is old. Really
old. It was first released with .NET 1.0 in 2002. Friendster had 3
million users in 2002 and Facebook didn’t exist. Blockbuster turned
down an opportunity to purchase Netflix. The iPod was a year old and
the iPhone was but an idea. So much has changed, and not just in the
consumer marketplace. The tools and techniques used to build web

Download from finelybook www.finelybook.com

609

applications now are a far cry from .NET 1.0. And even ASP.NET
MVC, a much more flexible development platform, is getting on in
years.
But change for change’s sake is not a good enough reason to consider a
different development and deployment pattern. So let’s consider what
makes an ASP.NET Core application both different and worthwhile.
Architecturally, ASP.NET Core is a more modular framework than
ASP.NET. ASP.NET is based on the System.Web library. And while
there is a lot that is good in System.Web (everything from membership
to cookies to Web Form controls), over time that particular assembly
has become heavy. If you use one of these features, then the entire
System.Web assembly must be included in your project. And in a
world of lightweight and agile options, that is a potential problem.
The idea of modularity in ASP.NET Core applications is accomplished
through packages. .NET Core includes, as the name suggests, just the
core functionality that is likely to be used across different classes of
applications. If you need functionality beyond that core, it can be
made available to your application through the addition of packages
that contain only that functionality. Need access to membership? No
problem. Just add the membership package to your projects. And
that’s all you’ll get. Your application is as small as you need for the
functionality you use and no larger.

project.json versus csproj

ASP.NET Core is not completely new for Visual Studio 2017. Although
only preview tooling was available when Visual Studio 2015 was
released, enhancements were made to the .NET Core tools through a
number of additional releases. This tooling used project.json as the
container for project-related information.
In the abstract, there was nothing wrong with project.json. It was
actually quite easy to understand and was supported within Visual
Studio with IntelliSense capabilities. If you were creating .NET Core
applications from scratch, then there were a lot of benefits that
accrued from using project.json.
However, there were a couple of fatal flaws that eventually resulted in
retiring project.json as the project format of choice. Probably the

Download from finelybook www.finelybook.com

610

most influential was that MSBuild didn’t support it. As well, the
migration of existing, monolithic projects to project.json would
require a large amount of effort and would be fraught with the
potential for errors. Both of these concerns resulted in the csproj
format being selected as the format for future development efforts.
This isn’t a complete loss for people who fell in love with project.json.
Microsoft has made some changes to the csproj format to help with
some of the things that people loved about project.json. Probably the
most useful is the fact that not every single file that is part of the
project needs to be enumerated within the csproj file. Instead,
wildcarding can be used to include files. This greatly helps reduce the
number of merge conflicts that might otherwise occur when you are
working with large teams.

Creating an ASP.NET Core Application

The basic mechanics of creating an ASP.NET Core application will be
familiar to Visual Studio users. Start by selecting the File New
Project menu option. The New Project dialog (shown in Figure 18-1)
appears.

Download from finelybook www.finelybook.com

611

FIGURE 18-1

From the navigation list on the left, select the language of your choice
(so long as your choice is Visual C #), and then select the .NET Core
option to show the list of templates. Choose ASP.NET Core Web
Application (.NET Core).
Alternatively, you can select the Web option from the navigation list
and a list of Web templates. This includes the same ASP.NET Core
Web Application (.NET Core) template, along with an ASP.NET Core
Web Application (.NET Framework) template. The only difference is
the runtime libraries supported by the project. The former uses the
.NET Core runtime, allowing it to be deployed onto Linux or MacOS
machines. The later can only be used on machines that support the
.NET Framework (that is, Windows-based servers).
Regardless of the template that you decide to use, once you have
provided a project name, the dialog shown in Figure 18-2 appears.

Download from finelybook www.finelybook.com

612

FIGURE 18-2

In this dialog, you are selecting from a list of ASP.NET Core templates
that provide slightly different starting points. The Empty project
template creates just that: an empty project. You will need to add all of
the files, both supporting and otherwise, yourself. The Web API and
Web Application project templates provide a reasonable starting point
for creating a Web API or a Web application, respectively.
If you select the Web Application as your starting point, the Change
Authentication button in the lower right of the dialog becomes
enabled. This allows you to configure the new project with the
authentication method that you would like to use. The Change
Authentication dialog (Figure 18-3) appears when you click the button.

Download from finelybook www.finelybook.com

613

FIGURE 18-3

The authentication options that are available are:
No authentication: The project will be created with no
authentication configured and no files related to configuration
included.
Individual User Accounts: The project will be created with the
assumption that you’re using user accounts specific to your project.
This includes the traditional membership provider that ASP.NET
developers have been using for years, as well as third-party
authentication services like Facebook or Microsoft Live.
Work or School Accounts: The project is created assuming that
you’re authenticating against a claims-based authentication service
like Active Directory (either locally hosted or in Azure).
Windows Authentication: The project is created so the current
Windows user will be used to provide authentication and
authorization details. This option should only be used if you are
creating a web application for use on an intranet.

Once you have finished identifying the specific template you want to
use, with any of the additional information that is required, the project
that is created will look similar to what you see in Figure 18-4.

Download from finelybook www.finelybook.com

614

FIGURE 18-4

If this is your first time with an ASP.NET Core application, then there
are a number of differences between this and an ASP.NET MVC
application. And yet, there are also a couple of similarities to make
sure you feel comfortable.
Let’s start with the similarities. You’ll notice that there is a Controllers
folder that contains the controller classes. And the Views folder
contains Razor (that is, the .CSHTML) files for the controllers. The
files in this folder structure include the views that are shared across
the different controllers.
Although the Controllers and Views folders do make up a large portion
of any web application, that is pretty much the end of the similarities

Download from finelybook www.finelybook.com

615

to an ASP.NET MVC application. To start, there is a wwwroot folder.
This folder is actually the directory from which the content of the web
application gets served up, at least during the development process. By
default, there are subfolders called css, images, js, and lib. These
folders contain the files that make up the default web application that
is part of your chosen template.

NOTE

There is no need for you to use the contents of these folders. Nor
do you have to use the folders as they are named. You are free to
modify them as you wish. This is just the default layout that was
part of the template.

There is a Dependencies node that is visible in the Solution Explorer.
This node contains the different dependencies that are required by the
application. With the template, there are three child nodes, one for
each source of the dependency. The Bower node contains a list of the
dependencies served by Bower. A more detailed description appears in
the “Bower Package Manager” section later in this chapter. The NuGet
node contains the list of packages that use the NuGet Package
Manager to be delivered to the build process. More details on the
NuGet functionality is found in the NuGet Package Manager section
later in this chapter. And finally the SDK node contains the SDK files
that are referenced by the application.
Beyond the wwwroot folder and the Dependencies node, there are a
number of different files related to the application:

Appsettings.json: This contains the configuration information
for the web application. To a certain extent, it replaces the
connection string, AppSettings and custom configuration settings
that were previously found in the web.config file.
Bower.json: The ASP.NET Core project templates uses Bower to
deliver static content to the client. This file is used to configure the
packages that are included in the project.
Bundleconfig.json: This is used to configure the bundling and
minification that is performed by the build process.

Download from finelybook www.finelybook.com

616

Program.cs: While this might seem like a surprising file to
appear in a Web application, it is used (as it always has been) as
the starting point for the application. In the case of an ASP.NET
Core application, it defines the process that will host the running
web application and then starts it.
Startup.cs: This contains a class that runs at startup. In general,
the purpose of the class is to pull configuration information from
various sources, but it also has the ability to set up a number of
different pipeline functions.

Also, under the Properties node, there is another configuration file
called launchSettings.json. This file contains information that is used
to set up the running web application. It includes, for example, the
URL (including the port number), the type of authentication that is
being used, and whether a browser should be launched at start.
So you can get a sense of what the Program and Startup classes do, the
following is the code from the default template:

 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()

.UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .UseApplicationInsights()
 .Build();

 host.Run();
 }

As you can see, the code itself is relatively straightforward. It creates
an instance of the WebHostBuilder and then uses a number of its
methods to define the behavior of the host. This includes where to find
the content, which startup class to call, and whether Application
Insights should be included. Once the instance has been configured, it
is launched with a call to the Run method.
The Startup class is a little more wordy, but it also provides
functionality to the web application at runtime, as well as at startup.
The constructor for Startup (shown below) builds the configuration

Download from finelybook www.finelybook.com

617

information.

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional:
false,
 reloadOnChange: true)
 .AddJsonFile($"appsettings.
{env.EnvironmentName}.json",
 optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

Here, you can see that the appsettings.json file that was mentioned
earlier is being loaded, along with any environment-specific
configuration. But alongside building the configuration information,
the Startup class included logging capabilities, features based on
development versus release settings, and MVC routes.

NUGET PACKAGE MANAGER

The ability to include third-party packages in your project is taken as a
given. Without such capabilities, the development effort for practically
any application would be gargantuan. However, including external
assemblies is not without issues. Once you have downloaded the
assembly to your machine, your application works. No problem.
However, what about your colleagues? Do they need to download the
application as well, and make sure that it’s in the same location
relative to the project source code? And what happens when you check
your project in? Do you include the foreign assembly? And how does
the central build engine know where to find the referenced assembly?
As you can see, there are lots of questions, and none of the answers are
very good. Into this maelstrom rides the NuGet Package Manager,
known by most as just NuGet. NuGet is a tool that can be used from
within Visual Studio, from a command line or through a build process.
Its fundamental purpose is to retrieve the packages needed by your
application from a central repository. To put that into the basic
developer workflow, when you build your application, one of the tasks

Download from finelybook www.finelybook.com

618

that takes place is that your machine checks to see if all of the required
assemblies are available. If not, then NuGet goes to the NuGet package
gallery and downloads the missing assemblies to the appropriate place
and continues on with the build. If you go back and look at the list of
questions in the first paragraph, you’ll notice that this process
addresses most of them. This is why NuGet has become so incredibly
popular.
So how do you take advantage of this goodness? Well, the starting
point is found in the Solution Explorer. If you right-click on a project,
you can find a Manage NuGet Packages option. Or if you right-click on
the solution, the context menu contains a Manage NuGet Packages for
Solution option. In both cases, you are taking to the page found in
Figure 18-5.

FIGURE 18-5

The starting point is to show all of the currently installed packages.
They appear in the list on the left. If you select any one of them, the
details about the package appear on the right. On the right side, you
have the ability to uninstall a package by clicking on the Uninstall
button. You can also update a package, presuming that the current
version is different than the installed version. If you’re just interested

Download from finelybook www.finelybook.com

619

in updating all of your packages, there is an Updates link at the top
that changes the list of installed packages to a list of those packages
that actually have updates available.
If you want to install a package, click on the Browse link at the top and
enter the name of the package. Packages that match the entered name
(it is a wildcard search) appear in the list on the left. As before, when
you select a package on the left, the details for the package, including a
list of versions you can install, appear on the right.
One of the nice functions of NuGet is that installing a package makes
sure that the dependencies of the package have already been installed
on your machine. And, if they are not already available, then the
dependencies are installed along with the package. So one way or
another, at the end of the process, the package has everything it needs
to run successfully. For any of the packages that you select, the list of
dependencies is visible on the right. Well, it’s visible if you scroll down.
It’s at the bottom of the details for the selected package (see Figure 18-
6).

Download from finelybook www.finelybook.com

620

FIGURE 18-6

At the beginning of this process, there were two entry points into the
NuGet page: from the project context menu and from the solution
context menu. The difference is a behavior when you select a package
to install or update. Figure 18-7 shows the left side of the NuGet page
when you have chosen the Manage NuGet Packages for Solution
option. At the top of the page, there is a list of the projects that are part
of the solution. You can select one or more projects into which you
want to install the package. Beyond that, the installation,
uninstallation or update flow is the same.

Download from finelybook www.finelybook.com

621

FIGURE 18-7

If a fancy graphical interface is not your style, then there is a
command-line interface that can be used to manage NuGet packages.
Use the Tools NuGet Package Manager Package Manager Console
option to launch the command-line window. An example of the
window is shown in Figure 18-8.

Download from finelybook www.finelybook.com

622

FIGURE 18-8

To install a package, choose the project into which you want to target
from the dropdown at the top. Then use the Install-Package

command, as illustrated in Figure 18-8 to install the package. There
are other commands available, such as Uninstall-Package, as well as
various command-line options to perform updates to packages. Use
the Get-Help command to see the available options for a command (for
example, Get-Help Install-Package shows all of the options available
for Get-Help).
There is one final hidden gem about Visual Studio 2017 and NuGet.
Visual Studio 2017 provides the ability to have Intellisense
recommend the installation of a package based on the syntax of the
code you’re typing. This option is turned off by default (it does take up
a decent amount of memory), so to enable it go to Tools Options to
get to the Options Dialog. Then navigate to Text Editor C# Advanced
(shown in Figure 18-9). There are two choices that control this feature.
Make sure that Suggest usings for types in reference assemblies and
Suggest usings for types in NuGet packages are checked.

Download from finelybook www.finelybook.com

623

FIGURE 18-9

Once these options have been selected, then a couple of new options
are available in certain Quick Action context menus. Consider Figure
18-10, which illustrates the context menu when you enter JObject, the
name of a class that is a part of the common library JSON.Net.

FIGURE 18-10

As the last option in the menu, you will notice an option to Install
package ‘Newtonsoft.Json’. This option includes two additional

Download from finelybook www.finelybook.com

624

choices. The first, when selected, will automatically install the most
recent stable version of JSON.NET. The second choice opens the
NuGet Package Manager, giving you the flexibility to install the
version of your choice.

BOWER PACKAGE MANAGER

Since the previous section talked about a different package manager
(NuGet), a reasonable question could be why we need another. Well,
the reason has got to do with the target for NuGet, which is packages
that are used with .NET. What NuGet doesn’t deliver is packages that
contain only web content, which includes HTML, CSS and JavaScript
files. That is the space into which Bower fits.
Functionally, Bower takes many of the same steps that NuGet does.
When you build your application, Bower checks to make sure that all
of the web files that you need to have are downloaded onto your
machine. It also manages the dependency graph to minimize the
number of times the same file might be used within the different
packages. For instance, if you have two packages that depend on
jQuery, Bower ensures that it is only downloaded a single time.
There are two ways to specify the files that Bower needs to include in
your project. One is to use a graphical user interface, and the other is
to edit the bower.json file to manually indicate which packages you
want to include.
The graphical interface is quite similar to NuGet. To get started, right-
click on a project in Solution Explorer and select Manage Bower
Packages. A screen similar to Figure 18-11 appears.

Download from finelybook www.finelybook.com

625

FIGURE 18-11

Initially (but not shown in Figure 18-11), the Installed tab is displayed
and the dialog shows a list of the packages that have already been
registered with Bower on the left side. If you have used one of the
ASP.NET Core templates, this includes Bootstrap, jQuery, and jQuery
Validation. If you select one of the packages, details about that
package appear on the right side of the page. There are also buttons
that enable you to uninstall or upgrade the package, presuming that a
more recent version is available. A dropdown list shows all of the
available versions.
To add a package to your project, click on the Browse header and enter
the name (or part of the name) of the package you’re interested in. A
list of the matching packages appears. In Figure 18-11, a search for
moment has been performed and the base moment package has been

Download from finelybook www.finelybook.com

626

selected for installation. On the right side, details about moment are
visible, including a dropdown showing the versions and a button that
will install the package. There is also a checkbox that, when selected,
will update the bower.json file. More on this file momentarily (pun
intended).
You can also update packages that have already been installed in your
project to more current versions. To do this, click on the Update
Available header. Now the left side contains those installed packages
where updates are available and, when you select a package, the
details and the button that can be used to update the package appear.
Also, next to the search text box is a checkbox used to indicate that you
are interested in seeing pre-release versions as well as stable or
released versions. By default, only stable versions are displayed.
However, if this checkbox is checked, then the list of available versions
includes both beta and alpha version of the package.
Besides the graphical interface, there is also a manual way to indicate
the packages that you would like to include with your project. This
involves directly editing the bower.json file. The file contains a list of
the dependencies and, as was described earlier, can be updated
through the graphic Bower Package Manager. Following are the
contents of the bower.json file as included in the ASP.NET Core
templates.

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.7",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

As you can see, this is a relatively straightforward JSON file that
contains a list of the dependent packages and the version that the
project requires. Editing it is pretty simple. To add moment, for
example, just add the following line to the list of dependencies.

 "moment": "2.18.1"

Download from finelybook www.finelybook.com

627

If that were all Visual Studio 2017 offered, that would be okay.
However, the bower.json file also includes Intellisense support (see
Figure 18-12).

FIGURE 18-12

When you start typing the name of the package, a list of the packages
that match what you type appears. Once you have selected a package,
the second component shows a list of the matching versions.
One thing to notice in Figure 18-12 is that the contents of the value
after the package name is not just limited to a specific version. If the
version number is prefixed with a caret (^), then any version that
matches the major version is considered acceptable. For example, if
the value is “^2.18.2”, then the latest version with a major version of 2
will be downloaded. If the version number is prefixed with a tilde (~),
then the most recent minor version will be downloaded. For example,
with a value of “~2.18.2”, the latest version that starts with 2.18 will be
downloaded.

SUMMARY

ASP.NET Core provides a platform that allows you to develop web
applications that can be deployed onto a wider variety of machines
than ever before. To help with that deployment, the ASP.NET Core
project templates provide built-in support for some of the more
commonly used web development tools. Visual Studio 2017 has

Download from finelybook www.finelybook.com

628

integrated a number of features to provide an interesting and
productive step forward for those people who are currently taking
advantage of the ecosystem that has built up around the modern web.

Download from finelybook www.finelybook.com

629

19
Node.js Development

Understanding what Node.js is
Creating a Node.js application
Installing packages using Node Package Manager
Working with task runners

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
For many web developers, what is about to be suggested might
seem, well, bizarre. But what if you could take the client-side
programming language that you know and love (JavaScript) and
use it to develop the server side of your web application? That is
exactly what node.js (also known as just Node) enables you to do.
What’s more, Visual Studio 2017 includes a number of features
that are aimed at increasing the productivity of Node developers.
Those features are covered in this chapter.

GETTING STARTED WITH NODE.JS

Node.js (Node) is server-side JavaScript. To people who are used to
seeing JavaScript running in a browser, this might seem a little odd.
But when you get right down to it, JavaScript is just a language. There
is nothing inherent in the language specification to suggest that it
couldn’t be used in a web server.
What makes Node something worth looking at is that it’s light-weight
and performs very well. The performance is the result of, among other

Download from finelybook www.finelybook.com

630

http://wrox.com
http://www.wrox.com

things, some design decisions that distinguish it from other web
servers. Probably the biggest choice was to make the server single-
threaded. Instead of spinning up a new thread for each incoming
request, the requests are handled by one thread, using events to
launch the various parts of the web application as required. This
reduces the memory footprint (every thread, and thus every request,
takes up memory) and allows for an event-driven environment that
takes advantage of non-blocking (otherwise known as asynchronous)
processing. Every connection request fires an event. Data received
when a form is submitted fires an event.
Practically speaking, this means that Node is designed to excel in web
applications where there are a large number of requests that don’t
perform massive amounts of calculations and return small bundles of
data as a result. It never locks up. It can support thousands of
concurrent users. While a “regular” web server that has these
characteristics is nice, Node really shines when it comes to supporting
a RESTful API. And RESTfulness is at the heart of the modern web.
Integration between Node and Visual Studio comes through an open-
source project known as Node.js Tools for Visual Studio (NTVS). It has
been available for a number of years, but with the introduction of
workloads in the installation and update process, you can now include
NTVS in Visual Studio without a separate installation.
Assuming that you have included the Node workload, creating and
executing a Node project is fairly simple. First, launch the New Project
dialog using the File New Project menu option (see Figure 19-1).
Then navigate to the Node project templates through the JavaScript
and Node.js nodes in the treeview.

Download from finelybook www.finelybook.com

631

FIGURE 19-1

There are several project templates that are available. However, they
are just variations on a couple of different themes. First, you can
create either a Node web application or a Node console application.
The difference between the two is pretty much what you’d expect: the
web application services HTTP requests, while the console application
is a command-line application which responds to commands entered
through the keyboard. Or you can create a blank Node application,
which supports minimal “Hello World” functionality, or an Express
Node.js application, which provides a very nice starting point for a
Node web application. Finally, you can choose a template that will run
on your local Node instance or can be published to Azure and run (on
Node, naturally) in an Azure Web Application. There is also a template
that allows you to create a project that uses existing Node files. For
this template, you will be prompted for the location of the existing files
and then be able to select which files you wish to include in the new
project.

Download from finelybook www.finelybook.com

632

For the purposes of this discussion, create a Basic Azure Node.js
Express 4 Application. Once you have provided a name and click OK,
the project is created. There is one additional (and, for most project
templates, relatively unusual) step that needs to be performed. Node
provides the functionality of a web server and listens on port 80 for
incoming requests. For security reasons, Windows doesn’t allow
incoming requests on port 80 without requiring administrator
approval. Therefore, you need to approve that functionality before it
will work. So you will see a warning dialog similar to that shown in
Figure 19-2. Click the Allow access button to allow Node to do its web
request processing thing.

FIGURE 19-2

Now that you have created a Node project (using Express 4), you will
be presented with a project that contains various components. The
Solution Explorer for the project can be seen in Figure 19-3.

Download from finelybook www.finelybook.com

633

FIGURE 19-3

There are a number of folders in the Solution Explorer, most of which
are named in a way that should be fairly familiar to ASP.NET MVC
developers. The contents and purpose of the different folders and
nodes are as follows:

npm: Contains the packages that have been downloaded using

Download from finelybook www.finelybook.com

634

Node Package Manager (otherwise known as npm). Along with the
name of the package is the current version being used. More
information about npm and how is it controlled from within your
project are found in the “Node Package Manager” section later in
this chapter.
bin: Contains the startup scripts for your application. In the
project template, there are both PowerShell scripts and command
files. But the real example of what typically goes into this directory
is found in the www file. Here is the content of the www file from
the project template:

#!/usr/bin/env node
var debug = require('debug')('SampleExpressApp');
var app = require('../app');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() {
 debug('Express server listening on port ' +
server.address().port);
});

This is the JavaScript code that will be executed by Node when you
launch your web application, whether through Visual Studio or
from a command line (the command would be node www).
public: This folder contains the static content for your application.
This includes all of the JavaScript, CSS, and images as well as
anything else you need that isn’t dynamically generated. As you can
see in Figure 19-3, there are three folders (images, javascripts, and
stylesheets) that are included, but you are welcome to add more as
you add different types of files to your project.
routes: This folder contains the code for the default routes (or
endpoints) that are supported by your web application and the
actions that are taken when each endpoint is requested. Here is the
index.js file that defines the default route for your application:

'use strict';
var express = require('express');
var router = express.Router();

Download from finelybook www.finelybook.com

635

/* GET home page. */
router.get('/', function (req, res) {
 res.render('index', { title: 'Express' });
});

module.exports = router;

The code here grabs the router object that is currently defined in
the Express application. It then defines the following rule: for a GET
request on the / path, respond by rendering the index view, using a
title of Express.
views: Contains the views used by your web application. These
files are actually template files that are processed by a template
engine to produce the desired HTML output. The Express 4 project
template in Visual Studio 2017 uses the Pug template, but it’s quite
easy to use a different templating engine that is supported by
Express. Just so you can get started, the following code is the
index.pug file from the project template:

extends layout

block content
 h1= title
 p Welcome to #{title}

First, it includes the layout.pug template, which contains the basic
structure of the HTML page (that is, the HEAD and BODY elements
and the inclusion of the main.css file). Then it injects into the
layout an H1 element consisting of the title variable and a
paragraph that includes the value of the title variable. The value for
the title is defined in the render function shown in the routes
section. The result, when the application is executed, is the web
page shown in Figure 19-4.

Download from finelybook www.finelybook.com

636

FIGURE 19-4

There are a number of additional files that are included in the
project template but are not in a particular folder.
app.js: This is the main file for the Express application. When the
application is launched, this file is executed and within it, it defines
all of the components that make up Express. This includes, for
example, which routing files to use, the templating engine, the
logging engine, how cookies are parsed, how the body of any
request is parsed (URL-encoded JSON is the default), and how to
handle errors (errors are handled differently in the development
and production environments).
package.json: This is, more or less, the configuration file for the
application. It includes basic information, such as the name,
description, version, and author of the application. It also contains
a list of the dependencies, which is used by npm to retrieve the
packages when required.
Web.config/Web.debug.config: These files are not specifically
required by the Node application. However, they are required to

Download from finelybook www.finelybook.com

637

publish your Node application to Azure. They exist in the project as
a result of the fact that the template for Express 4 is set up
specifically to be able to publish to Azure. If you have no plans to
publish to Azure, then these two files can be removed with no ill
effects. The difference between the two config files is that the
debug version allows for remote debugging of the Node application
while is it deployed on Azure. Just think about that magic for just a
moment. You are able to publish your application to Azure, connect
to it from within a debugging session in Visual Studio, set
breakpoints, and step through the server-side code as if it were
running locally. Technology can indeed be a wonderful thing, on
occasion.

When you run your application from within Visual Studio 2017, the
Node web server is launched. You can see the console for Node as a
separate console window, as shown in Figure 19-5.

FIGURE 19-5

The initialization for the Node server is to start listening on port 1337
(not mentioned in the console, but this is the port used for the
“typical” web requests in the example application) and on port 5858
for the debugging requests. It then processes a GET request on the
default page (indicated by the backslash) and a GET request on the
main.css stylesheet. As you continue working with your application,
additional messages will appear in the window.
The ports used by the Node server are completely configurable. This is

Download from finelybook www.finelybook.com

638

done through the project properties, shown in Figure 19-6.

FIGURE 19-6

The project properties are accessible by right-clicking on the project in
the Solution Explorer and selecting the Properties option. There are
many fewer options than ASP.NET Web developers might expect.
There is only one sheet and even the number of fields is relatively
small. You can specify the path to the Node executable on your
machine (it defaults to the value specified in your machine-level Node
configuration), along with any command-line options for Node. You
can specify the startup script (by default, it’s the www file found in the
bin folder) along with any arguments for the script. You can define the
working directory (it defaults to the current directory for the project).
The URL used when launching the browser can be defined, as well as
whether a web browser will even be started when the application is run
through Visual Studio. The two ports (the typical one and the
debugging port) used by Node can be specified. Finally, any
environment variables that Node will require can be defined.

NODE PACKAGE MANAGER

Download from finelybook www.finelybook.com

639

One of the features of Node.js is that dependencies for the web
application are automatically downloaded when needed. In the case of
Visual Studio 2017, “when needed” turns out to be “when the project is
opened.” Behind the scenes, the list of dependencies and the required
version are compared to the current version of the dependent package
that is on your local machine. If there are any differences, they are
downloaded and made available to your application.
The technology behind this is Node Package Manager (npm). There
are two elements to npm. First, there is an on-line repository of over
450,000 different packages. Each package consists of a collection of
files that are required in order to make the package useful to another
application. For example, jQuery is available in the npm repository. If
you install jQuery using npm, then you get the JavaScript files
necessary to utilize jQuery in your application. As well, you get a
minimized version of the same files.
Second, npm is a command-line tool that you use to browse and
search this repository and download packages for inclusion in your
projects. Included with the installation of Visual Studio 2017 is not
only the npm command-line tool, but also integration with Visual
Studio. Visual Studio has options that will utilize the command-line
tool (or, more precisely, the API used by the command-line tool) under
the covers.
The starting point for accessing NPM is, as it is for so many other
tools, the context menu. Specifically, you can right-click on the npm
node in your project from within the Solution Explorer and choose the
Install New npm Packages menu option. That action opens the Install
New npm Packages dialog, shown in Figure 19-7.

Download from finelybook www.finelybook.com

640

FIGURE 19-7

In the text box at the top left of the dialog, enter the name of the
package that you want to install. In Figure 19-7, you can see that the
grunt package has been specified, which resulted in a fairly large
number of packages that match “grunt” appearing on the left. When
you select a particular package, details about that package appear in
the pane on the right.
There is an Install Package button in the right pane. This button is
used to install the package you have selected. But before you do that,
there are a number of options that are available. And the options can
have an impact on how and when the package is available.
The most important of these options is the Dependency type. There
are three choices available in the dropdown, which are Standard,
Developmental, and Optional. There is also a fourth type, Global,
which is only available if you install the package using the command
line.

Download from finelybook www.finelybook.com

641

The distinction between Standard, Developmental, and Optional
relates to when the package needs to be available. For instance, the
Developmental packages are expected to only be available while the
application is under development. An example of a package that fits
into this category would be one that is required to help you run your
unit tests. Once the unit tests have passed, there is no longer any need
for this package, so it won’t be included once the project goes into
production. A Standard package is one that is expected to be available
both during development and once the application is in production.
And an Optional package is one that your application will take
advantage of if it’s available, but if it’s not, then your application will
continue to function.
Each of these options installs a package locally for your project.
Packages installed locally are not automatically available to other
projects running on your machine. Conversely, packages that are
installed globally are available to other Node projects without needing
to be reinstalled. Installing packages globally will be discussed later in
this section.
Below the Development type combo box is a checkbox indicating
whether this package should be included in the package.json file.
While it’s not a requirement to leave this checked, if you don’t, then
the package will be installed as a Standard package. There is no
concept of Developmental or Optional packages without a
package.json file.
The Options section also provies two additional capabilities. You can
specify the version of the package you want to install, either a
particular version or the latest. In addition, there is a textbox where
arguments to the npm command can be included. Once you have
installed the npm package, then the package.json file will be updated
to include your new package (assuming you chose the package.json
option, which you should have).

NOTE

A detailed description of what JSON is falls outside the scope of
this book. If you are unfamiliar with JSON formatted strings or
want to learn more about it, sites such as Tutorials Point

Download from finelybook www.finelybook.com

642

(https://www.tutorialspoint.com/json) are useful.

There are other ways to install new npm packages. One of the easiest is
to directly modify the package.json file. Here is the dependencies
section of a package.json file:

 "dependencies": {
 "body-parser": "^1.15.0",
 "cookie-parser": "^1.4.0",
 "debug": "^2.2.0",
 "express": "^4.14.0",
 "morgan": "^1.7.0",
 "pug": "^2.0.0-beta6",
 "serve-favicon": "^2.3.0
 }

NOTE

There can be two other dependency properties in the package.json
file. Any Developmental dependencies are included in a
devDependencies property. And if you specify any Optional
dependencies, then there will be an optionalDependencies

property containing those packages.

You can see that each of the dependencies under the npm node is
listed, along with the version that is used within the project. To add a
new package, you can simply add to this list. The package.json file
includes Intellisense support, so as you type both the package name
and the version, you can see the options that are available, as shown in
Figure 19-8.

Download from finelybook www.finelybook.com

643

https://www.tutorialspoint.com/json

FIGURE 19-8

When the package.json file is saved, the contents of the npm node in
your project are updated accordingly. The biggest difference between
the previously existing packages and the new packages is that the new
package name doesn’t have a version number. Instead, there is a
(missing) to indicate that the package has not yet been downloaded.
In fact, there are actually three types of nodes in the npm section of
your project, as shown in Figure 19-9. When the package is
downloaded, the name of the package followed by the version number
appears. When a new package is added, the name of the package
indicates that it is missing. And when a package that had previously
been downloaded but is no longer in the list of dependencies in
package.json, the package name includes (not listed in

package.json).

Download from finelybook www.finelybook.com

644

FIGURE 19-9

These two latter cases can be corrected through the context menu. If
you right-click on a missing package (or on the npm node itself), then
an option to Install Missing npm Package(s) is available. Selecting that
option will download the package and the version will appear to the
right of the package name. If the package is no longer in the
package.json file, a right-click on the package will show an Uninstall
npm Package(s) option in the context menu. Choosing that option will
uninstall the package, removing it from the npm node.
There is a third way to install npm packages, which is to use the
command-line interface. Along with supporting all of the dependency
types, the command-line interface also allows you to install a package
globally. To start, right-click on the project or solution in the Solution
Explorer and select the Open Node.js Interactive Window option. This
can also be done through the View Other Windows Node.js
Interactive Window menu option. Figure 19-10 shows what the initial
window looks like.

Download from finelybook www.finelybook.com

645

FIGURE 19-10

As you can see, this looks like a typical command-line shell, and, for
the most part, it is, with the exception that the commands it
understands are Node command. You can see a complete list of the
available commands by using .help, but for our purposes, the
command of interest is .npm.
In order to install a particular package, the command takes the form
as follows:

 .npm install [projectName] packageName <option>

The projectName option is used if your solution has more than one
project in it. You provide the name of the project into which the
package will be installed. The option is used to determine the
dependency mode. The choices are:

--save: Saves the package information in the dependencies section
of package.json.
--save-dev: Saves the package information in the devDependencies
section of package.json.
--save-opt: Saves the package information in the
optionalDependencies section of package.json.
--g: Saves the package information in a local cache where it is
available for any project to use.

It’s that last option that fulfills the global capability described earlier
in this section, which was the fourth option that was otherwise
unavailable in the Install New npm Packages dialog.

Download from finelybook www.finelybook.com

646

TASK RUNNER EXPLORER

As you have seen throughout this chapter, Visual Studio 2017 has a lot
of relatively new features aimed at improving the life of front-end web
developers. Support for tools like Node and npm help increase the
productivity of development environments that are commonly used in
other platforms. To extend this a little further, Visual Studio 2017 also
includes support for Task Runners, like grunt and gulp.
It might not be completely clear from the name what a Task Runner is
used for. When you are creating a web-based application (or even
other kinds of applications, but the Task Runner Explorer is mostly
focused on web applications with a heavy front-end component), there
are a large number of tasks that need to take place prior to
deployment. This would include tasks like minifying the JavaScript
(removing extraneous characters to minimize the file size),
concatenating files, linting the JavaScript code (which checks the
JavaScript for errors), and compiling various extensions (such as the
SASS or LESS extensions for CSS). These are repetitive tasks that,
once the proper commands have been determined, need to be run with
each compilation and deployment.
The goal of a Task Runner is to automate the execution of these
repetitive tasks. In the web front-end world, two of the leading task
runners are known as grunt and gulp. Both of those tools are
supported by the Task Runner Explorer. In this case, support means
that if your project is configured to have either grunt tasks or gulp
tasks, those tasks will be visible through the Task Runner Explorer and
you can manipulate or execute them as described in this section. The
examples in this chapter use grunt, but everything you see done using
grunt could be done using gulp.
In the previous section, you used npm to install grunt into your
projects. In this section, we will use grunt to demonstrate the
functionality of the Task Runner Explorer window.
So that you can follow along, there are a couple of changes that need to
be made to the package.json file, as well as the addition of a file named
gruntfile.js.
To start with, add a devDependencies section to the package.json file. It
should look like the following:

Download from finelybook www.finelybook.com

647

 "devDependencies": {
 "grunt-contrib-uglify": "~2.3.0",
 "grunt-contrib-jshint": "~1.1.0"
 }

Save the changes, then right-click on the npm node in Solution
Explorer, and choose the Install Missing npm Packages option. This
will install the two packages into your project. Just so you know what
you’re getting, the grunt-contrib-uglify package is used to minimize
(uglify is the commonly used term) JavaScript files, and the grunt-
contrib-jshint package is used to perform static code analysis on your
JavaScript files. Once these packages have been installed, you can
move on to the next step.
In the Solution Explorer, right-click on the project and select the Add
New Item context menu option. Then choose JavaScript File from the
list of item templates and give it a name of gruntfile.js. Click Add to
add the file to the project.
The gruntfile.js file is used to define the tasks that grunt is able to
perform. A complete explanation of grunt is beyond the scope of this
book, but a brief overview will help to put the Task Runner into
context. Start by adding the following contents to the newly created
file.

module.exports = function (grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 uglify: {
 options: {
 banner: '/*! <%= pkg.name %> <%=
 grunt.template.today("yyyy-mm-dd") %> */\n'
 },
 build: {
 src: 'src/<%= pkg.name %>.js',
 dest: 'build/<%= pkg.name %>.min.js'
 }
 },
 jshint: {
 all: ['gruntfile.js', 'public/javascripts/*.js']
 }
 });

 // Load the plugins.
 grunt.loadNpmTasks('grunt-contrib-uglify');

Download from finelybook www.finelybook.com

648

 grunt.loadNpmTasks('grunt-contrib-jshint');

 // Default task(s).
 grunt.registerTask('default', ['uglify', 'jshint']);
};

InitConfig initializes the grunt tasks. The parameter to that method is
a JSON object that references the package.json file (so that grunt
knows which packages are available), and a number of different tasks
(uglify and jshint). Within those tasks are subtasks (build and all)
that define parameter values that are specific to what those packages
do. At the bottom of the gruntfile are a couple of statements that load
the tasks that are defined internally in each of the two packages,
followed by defining a default task that is actually a composite of two
other tasks: uglify and jshint.
Once you have created the contents of the file, save it and open the
Task Runner Explorer using the View Other Windows Task Runner
Explorer menu option. Figure 19-11 shows what the Task Runner looks
like with the defined grunt tasks.

FIGURE 19-11

On the left side is a tree containing the various tasks and subtasks.
They have been divided into Tasks and Alias Tasks. The Alias Tasks
are those tasks that have been defined as composites of other tasks
(the default task that is defined in the gruntfile is an alias task). These
tasks can be run in a couple of ways. First, you can double-click on any
task, and it will be executed. The output from the task will appear in
the pane on the right side. You can also right-click on a task and select

Download from finelybook www.finelybook.com

649

Run from the context menu.
Each of these techniques requires the developer to take a positive step
to run the task. That is fine for tasks that are not commonly used, but
for tasks that need to run more frequently, the Task Runner offers one
additional choice: bindings.
A binding allows a particular task to be associated with a particular
function within your project development cycle. There are four
binding types available:

Before Build: Runs tasks prior to the build starting.
After Build: Runs tasks after a successful build.
Clean: Runs tasks after a clean has been performed on the project.
Project Open: Runs tasks when the project is initially opened.

To add a task to one of these bindings, right-click on the task. There is
a Bindings option, with a flyout that includes each of the binding
types. Once the type has been selected, the task appears under the
appropriate binding on the right pane (see Figure 19-12).

FIGURE 19-12

Now that a task is associated with a binding, it will automatically be
invoked when the function within the project is initiated.
There are a couple of other features in the Task Runner Explorer that
might be of interest. First, at the top of the left-hand pane, there is a
dropdown of the projects in the solution. It is possible for different

Download from finelybook www.finelybook.com

650

projects to have different grunt files. You can choose the project (and
therefore the grunt file) that you wish to work with. Also, on the very
left of the window, there are three icons. The top icon is used to
refresh the list of tasks. This is used after you have modified the grunt
file so that the Task Runner becomes aware of any changes. The other
two icons are toggles that specify that a Force (the “F”) or a Verbose
(the “V”) option be used when the task is executed.

SUMMARY

Visual Studio 2017 has included a number of features aimed at making
sure that modern web developers and, in particular, front-end
developers, can become more productive. This is part of the initiative
toward ensuring that Visual Studio supports the needs of all
developers, not just .NET developers. Its embrace of some of the more
common open-source tools might seem unusual for those with a long-
standing distrust of anything Microsoft. The reality is that this is just
one more of the many efforts Microsoft has made to embrace the web
standards that are being globally used.

Download from finelybook www.finelybook.com

651

20
Python Development

WHAT’S IN THIS CHAPTER?

Understanding the basic structure of a Python project
Managing Python environments within Visual Studio
Using Cookiecutter templates to create new projects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
For some developers, the inclusion of Python tooling into Visual
Studio is a non-event. People ask why they should bother with
Python when there’s already support for all of the .NET languages
(C#, VB, F#, C++), along with JavaScript. The answer to this
question is slightly philosophical. Every development language has
niches in which it shines. You wouldn’t want to create a web
application in C++, but how about an operating system? You
wouldn’t want to create a photo editor in C#, what about a
customer relationship management application? Each of these
languages has areas of specialization where they are quite
appropriate and areas where they are not. For Python, one of those
areas of specialty is in scripting. Python can be used to quickly
create simple applications, the language is able to express complex
concepts concisely, and it can be ported to almost every platform
that is available. As well, Python is frequently used by data
scientists in data analytics applications as an alternative to R.
While .NET has supported Python in various forms for a number of

Download from finelybook www.finelybook.com

652

http://wrox.com
http://www.wrox.com

years, Visual Studio introduces a set of tools to help Python
developers as an out-of-the-box experience for the first time. In
this chapter, we look at the tooling that is available as part of the
Python development workload.

GETTING STARTED WITH PYTHON

Python tools are included in two different workloads within Visual
Studio. If you launch the Visual Studio Installer, you can include
Python tools directly through the Web & Cloud Python development
workload. They are also included in the Data science and analytical
applications workload. By default, this workload includes Cookiecutter
template support and Python 3 support for 64-bit systems. Through
the Individual component tab available in the currently selected
workload, you can also include IoT (Internet of Things) support, Azure
support, Anaconda support (version 2 or 3 on 32- and 64-bit systems),
and future Python support (also version 2 or 3 on 32- and 64-bit
systems).
The tools that are included are part of an open-source project known
as Python Tools for Visual Studio (PTVS). It has been available for a
number of years for earlier versions of Visual Studio, but with the new
installation and update process, it’s now possible to include PTVS in
Visual Studio without a separate installation.
Assuming that you have included the Python workload, the creation
and execution of a Python project is relatively straightforward. To
begin, launch the New Project dialog using the File New Project
menu option (see Figure 20-1). Then navigate to the Python project
templates in the treeview.

Download from finelybook www.finelybook.com

653

FIGURE 20-1

You will find that there are a number of different project templates
available to choose from. For example, there are several different
Python Web projects. One of them creates a generic web application,
while the others install a particular Python framework that aims to
make web development easier. Bottle, Djangos, and Flask are the
frameworks that are supported.

Bottle: A simple framework that provides a minimal set of
functionality (request routing, templating, and a simple abstraction
over the Web Services Gateway Interface [WSGI]). Everything else
must be added as part of the development effort. The design goal
for Bottle was to provide a foundation for creating a Web API.

NOTE

The Web Service Gateway Interface (WSGI), is a specification
that allows Web servers and application frameworks to

Download from finelybook www.finelybook.com

654

interact using a common API. Mostly, it defines how a server
or gateway will take an incoming HTTP request and invoke a
framework. If that sounds simple to you, that’s because it is.
Fundamentally, this workflow is the basis for every web site
everywhere. In WSGI, it has been reduced to just a couple of
interactions.

Django: This framework is known as a “batteries included”
framework. It includes all of the functionality that you’ll need to
create a web application. This includes components such as an
Object-Relational Mapping (ORM) manager that is used to provide
data access. You don’t need to include other components into
Django to get a fully functional web application.
Flask: As opposed to Django (and like Bottle), Flask is a
microframework. It includes just the basic functionality and little
else. However, there are a number of extensions available to
provide web server features. For instance, you’ll notice that there
are two Flask templates in Figure 20-1. The second, Flask/Jade,
includes the Jade template engine.

NOTE

There have already been a couple of mentions of templates in the
description of the project types. Put simply, a template is a
mechanism for creating web pages from a simple structure, like
the results from a database query or an object graph. They are
described in more detail in the “Cookiecutter Extension” section
later in this chapter.

Along with the Web Project templates, there are a number of other
Python templates to choose from. For example, there are a number of
IronPython templates. IronPython is an open source Python variant
that was developed mostly in C# and targets the .NET Framework and
Mono. The IronPython templates you can choose from include the
ability to create a WPF application, a Windows Forms application, and
a Silverlight application.
For the purposes of this discussion, create a project using the Bottle

Download from finelybook www.finelybook.com

655

Web Project template. Since the template requires additional
components, you might be prompted to add them as part of the
creation process. Figure 20-2 illustrates the dialog that appears if you
haven’t previously installed the needed components.

FIGURE 20-2

Also be aware that you might be prompted to execute the installation
command using elevated permissions.
The contents of the project depend very much on the template that you
choose. In Figure 20-3 you can see the Solution Explorer for two
Python projects: the Bottle Web Project and the generic Python
Application.

Download from finelybook www.finelybook.com

656

FIGURE 20-3

As you can see, beyond a few nodes (Python Environments,
References, and Search Paths), the two projects look very different.
That is to be expected. Depending on the purpose of the project, the
files and directories will be different. Let’s take a closer look at a
couple of the nodes that are in common.

Python Environments

In Python, an environment is a collection of tools in which you run
your code. It consists of an interpreter, a library (most frequently the
Python Standard Library), and a set of installed packages. These three
components then determine which language constructs and syntax are
valid, the operating system functionality to which you have access, and
the packages that can be made available to you. As well, within Visual
Studio, an environment consists of an Intellisense database
appropriate for the libraries.
As part of the installation of the Python workload, you had a number
of different environments available to install. The ones you chose to
install will impact some of the forms illustrated in the next few figures.

Download from finelybook www.finelybook.com

657

The environments installed through the workload were created as
global environments. These are environments that are available to
every project. It is also possible to install an environment specifically
for a project.
To see the environments that you can choose from, right-click on
Python Environments in the Solution Explorer and select View Python
Environments. The form shown in Figure 20-4 appears.

FIGURE 20-4

At the top, there is a list of all of the installed environments. For each
environment, there is an icon on the right that allows you to open an
interactive window for that environment. The interactive environment
allows you to type and execute Python commands against that
environment. Also, in some cases, there will be an icon that allows you
to refresh the Completion DB. This is the database that is used to

Download from finelybook www.finelybook.com

658

provide Intellisense information.
When you select an environment, the information at the bottom of the
form changes. In Figure 20-4, you are looking at the available options
for the default environment, Python 3.6 64-bit. For other
environments, the specific choices might be different, but the basic
ideas remain the same. You are given links to tools that would be of
use to you, including the interactive window and PowerShell.
If you select Packages from the dropdown list, you can see the installed
packages for the environment. This is the same list that appears in the
environment node in the Solution Explorer. If you select IntelliSense
from the dropdown list, then you can see the libraries that are
included in the Completion DB and you have the option to be able to
refresh it.
It is possible that two different projects installed as a global
environment can have incompatible libraries. That means that you
won’t be able to use them in a project. To address this problem, Visual
Studio provides the ability to create a virtual environment. In a virtual
environment, there are the same components as in a regular Python
environment. The difference is that the packages that are part of the
environment are isolated from both the global environment and any
other virtual environments.
To create a virtual environment, right-click on the Python
Environments node in the Solution Explorer and select Add Virtual
Environment. The dialog shown in Figure 20-5 appears.

Download from finelybook www.finelybook.com

659

FIGURE 20-5

Here, you can provide the name and location of the environment and
specify the base interpreter to be used. Once you provide the
information and click Create, the environment is added to your
project.
At this point, your new environment doesn’t have any packages. This is
addressed (and can be done for any other environment) through the
Solution Explorer. Right-click on the environment and select Install
Python Package. You will be taken to the pane in Figure 20-6.

Download from finelybook www.finelybook.com

660

FIGURE 20-6

Immediately above the list of installed packages, there is a text box
that can be used to search the Python Package Index (PyPI) for
packages. Figure 20-7 shows the results from a search for the Jade
template engine. Clicking on the appropriate link will install the
package in your environment.

Download from finelybook www.finelybook.com

661

FIGURE 20-7

Search Paths

In a typical Python environment, there is a variable named PYTHONPATH
that provides the default search path for modules files. For example, if
the Python command looks like IMPORT <name>, there are a number of
directories that Python searches to find a match. First, the built-in
modules are searched. Then the current folder for the executing code
is checked. Finally, the path defined in PYTHONPATH is scanned.
Visual Studio 2017, however, ignores this environment variable. It
does this specifically because the value is set for the environment
system. This has the potential to raise questions that cannot be
answered automatically. For example, are the reference modules
intended to be used by Python 3.6 or Python 2.7? Are they intended to
override the standard library modules? Is the developer aware that

Download from finelybook www.finelybook.com

662

there actually is a match found in the path? Any of these can cause
problems that are challenging to diagnose.
In Visual Studio, you can define the search paths that are to be used by
your project. This means that you are adding the paths intentionally.
This eliminates a lot of the challenges, because Visual Studio can
assume that you’re aware of whether the references are appropriate for
your project.
To add a search path to your project, right-click on the Search Paths
item in the Solution Explorer and select Add Folder to Search Path.
The standard Open File dialog appears. You choose a directory and it
appears underneath the Search Paths node. Or you can add a .zip file
by choosing the Add Zip Archive to Search Path option from the
context menu.

COOKIECUTTER EXTENSION

The idea behind a template in the Python world is to provide a
mechanism to automatically generate code that is reused frequently
within or across projects. To help support this productivity, Visual
Studio 2017 includes support for the Cookiecutter template extension.
To get started with this workflow, launch the Cookiecutter window
with the View Cookiecutter Explorer option. The pane shown in
Figure 20-8 appears.

Download from finelybook www.finelybook.com

663

FIGURE 20-8

There is a text box at the top that allows you to search for the template
you desire to install. The search results are divided into these groups:

Installed: Templates that have already been installed on your
local machine. Once you use a template from any of the other
groups, it is installed and will appear in this group in the future.
Recommended: A curated (by Microsoft) list of templates,

Download from finelybook www.finelybook.com

664

although it is possible to customize this feed.
GitHub: The results of the search using the provided term on
GitHub. If there are too many results, then there is a Load Mode
link at the bottom of this section to load more results.
Custom: A path to a GitHub repository or a local folder containing
the template.

When you select a template and click Next, the template is cloned to
your local machine and it is ready to go. Once installed locally, you are
presented with a dialog that contains the options for the template.
Figure 20-9 illustrates an example.

FIGURE 20-9

The specific options depend entirely on the template that you choose.
At a minimum you’ll be able to specify the location for the project to be
placed. Click on Create and the template will be used to generate a

Download from finelybook www.finelybook.com

665

Python project.

SUMMARY

Visual Studio 2017 includes a number of features aimed at making
sure that Python developers can be productive. You can manage your
Python environments, manage templates, and develop and debug your
applications. This is part of Microsoft’s push to embrace all types of
developers and to find ways to make Visual Studio a productive
environment for more and diverse groups.

Download from finelybook www.finelybook.com

666

PART VI
Mobile Applications

CHAPTER 21: Mobile Applications Using .NET
CHAPTER 22: Mobile Applications Using JavaScript

Download from finelybook www.finelybook.com

667

21
Mobile Applications Using .NET

WHAT’S IN THIS CHAPTER?

Creating a Xamarin project for cross-platform applications
Segregating UI and business logic concerns
Debugging your app in Android and iOS

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Developing cross-platform applications is a tricky business. It
might sound like a cliché, but there’s a reason why there is no
single, universal way to create applications that run on the iPhone,
iPad, Android, and Windows platforms. In every case, there are
trade-offs that have to be made, choices that will either limit the
functionality that your application has or increase the complexity
of the development effort.
Having painted that rosy picture, Visual Studio 2017 offers a
couple of different approaches to creating mobile applications. In
this chapter, we look at how the cross-platform development
environment of Xamarin is integrated into Visual Studio. In
Chapter 22, “Mobile Applications Using JavaScript,” we look at
how HTML, JavaScript, and Apache Cordova can be used for cross-
platform development.

USING XAMARIN

Download from finelybook www.finelybook.com

668

http://wrox.com
http://www.wrox.com

Xamarin is a tool that is used to create cross-platform applications,
which is to say that it strives to provide the kind of “write-once, run
anywhere” productivity that is the holy grail of mobile development.
Naturally, that goal is not particularly realistic. There are numerous
differences between the platforms that need to be taken into account
when creating applications. But Xamarin tries to minimize the
differences so as to maximize code reuse.
To accomplish this, Xamarin brings several components to the table.

C# compiler: Depending on the platform that you target, the
output from a Xamarin project is native code (for iOS devices) or a
.NET application that can then be integrated with a platform-
specific runtime (Android, Universal Platforms). The result is that
you can write C# code, complete with familiar syntax and libraries
(such as Generics and the Parallel Task Library), and have it
compile to the target platform of your choice.
Mono: For years, Mono has been the cross-platform
implementation of the .NET Framework. Xamarin takes advantage
of Mono to provide the runtime needed for your application on
non-iOS devices.
Integration with Visual Studio: Now that Xamarin is part of
Microsoft, the integration with Visual Studio has become quite
deep. You can add Xamarin as a separate workload. Then, once it
has been installed, you can develop and debug applications using
Android and iPhone emulators. or even on a physical device.

If you’re the type of developer who wants to know all of the nitty, gritty
details, you should be aware that the implementation of your
application will vary significantly between the different platforms. So
while your code will look the same, what happens to it at build, deploy,
and runtime is very different. For iOS devices, your C# code is
compiled to ARM assembly language modules. The .NET Framework
classes that you use are included in your application directly. For
Android, the C# is compiled to Intermediate Language (IL) code and
packaged with Mono. This is similar to what happens when Xamarin is
used to create Windows Phone applications, with the exception of the
Mono part as the .NET runtime is already available.
When it comes to allowing access to the native capabilities of the

Download from finelybook www.finelybook.com

669

individual platforms, Xamarin takes a multi-tiered approach. First,
there are SDKs for each of the platforms that are exposed as
namespaces that can be referenced from C#. For iOS, there are the
CocoaTouch SDK and the UIKit. For Android, Google’s Android SDK
is exposed. For Windows, Windows Forms, WPF, WinRT, and the
Universal Windows Platform (UWP) are available.
But the real power of Xamarin is that, despite all of the differences,
your business logic can be written once and reused, along with access
to services, common functionality, and almost anything that doesn’t
relate to platform-specific features. That’s not quite the holy grail that
developers would hope for, but it’s not bad for practical purposes.

CREATING A XAMARIN FORMS PROJECT

The initial steps for creating a Xamarin project are similar to the steps
used to create any other type of project in Visual Studio. Start by
clicking on the File New Project menu item. Or, if you have an
existing solution, right-click on the solution in the Solution Explorer
and select Add New Project from the context menu. Either one of these
actions takes you to the New Project dialog, where you navigate to
Visual C# Cross-Platform. A list of templates appears in the center of
the dialog, as shown in Figure 21-1.

Download from finelybook www.finelybook.com

670

FIGURE 21-1

There are three Xamarin templates available out of the box. The Cross
Platform App is the one that we’ll choose and is the basis for most
applications that you’ll create. The Class Library creates a sharable
assembly suitable for use in cross-platform applications. The UI Test
App creates a project that allows you to test the user interface for your
applications. Select Cross Platform App, provide the appropriate
name, and click OK to start the project creation process.
When creating a Cross Platform App, there are a number of choices
that you have to make. You’ll find the options in the New Cross
Platform App dialog, shown in Figure 21-2.

Download from finelybook www.finelybook.com

671

FIGURE 21-2

The first choice is between a Blank App and a Master Detail app. The
difference here has to do with the number and functionality of the
pages that are automatically created. The blank app is just that—a
Xamarin application with a minimum number of pages available. The
Master Detail application includes a page that display a list of items, a
page that shows details about a particular item, and navigation
functionality between the pages.
You have to decide which UI Technology you would like your
application to use. The choice is between Xamarin.Forms and Native.
If you select Xamarin.Forms, then your pages are constructed using
Xamarin controls that are designed to more easily work across the
different platforms. So, for the most part, you will only be creating a
single view. If you choose Native, then the UI for each platform will be
developed independently. Generally, the reason to choose Native is if
your application has user interface requirements that are not met by
Xamarin.Forms. Otherwise, you’ll find that using Xamarin.Forms
reduces the amount of code you need to create.
Finally, there is a Code Sharing Strategy. The choice deals with how
you want to share code between different cross-platform projects. If
you select Shared Project, then you will be using a project that is

Download from finelybook www.finelybook.com

672

shared between the different platform projects and use #if compiler
directives if you need to handle platform-specific requirements. The
Portable Class Library (PCL) option creates a portable class library
that targets the different platforms. You will have access to
functionality that is available on all of the platforms, and if you need to
access platform-specific functionality, you will need to use an interface
to a separate, platform-specific assembly.
When you have finished making your choices, click OK to create the
project. The next dialog that you see (shown in Figure 21-3) is an
optional one. It allows you to connect your development machine to a
Mac for the purposes of deploying and debugging your application.
There is a three-screen wizard describing what you need to do on your
Mac in order to allow for the connection. Once the connection has
been made, you will be able to deploy your application to the Mac and
launch a debugging session that includes the typical Visual Studio
debugging experience. However, if you plan on using the iPhone
emulator that is available within Visual Studio, this connection isn’t
required. The dialog will appear every time you open the project,
unless and until you click the Don’t show this again checkbox in the
lower left of the dialog.

Download from finelybook www.finelybook.com

673

FIGURE 21-3

There is a second dialog that appears, although in this case it only
appears when you’re creating the project and not every time you open
the solution. This dialog (Figure 21-4) is used to specify the target
version and the minimum version of the Universal Windows project
that is part of the solution. There is a dropdown for each choice
containing the options that are available on your machine. Select the
versions that you want and click OK to continue.

Download from finelybook www.finelybook.com

674

FIGURE 21-4

Now that you have done all this work, you have successfully created a
cross-platform solution. The contents of the solution can be seen in
the Solution Explorer that is found in Figure 21-5.
There are four projects that are part of the solution. The project called
XamarinApp is the common project between the platform specific
projects. The other projects each relate to a different platform, as you
can see from the names. (XamarinApp.Android, XamarinApp.iOS, and
XamarinApp.UWP are for the Android, iOS, and Universal Windows
platforms respectively.)

Download from finelybook www.finelybook.com

675

FIGURE 21-5

DEBUGGING YOUR APPLICATION

To run the application on a specific platform, set the startup project to
be the project associated with the desired platform. The next step in
debugging depends on which platform you’re targeting.

Universal Windows Platform

For UWP, you have two choices. The first option is to deploy the
application to your local machine. Right-click on the project in
Solution Explorer and select Deploy from the context menu. This
builds the application and installs it on your local machine. Now when
you go to debug your application, make sure that the dropdown to the
right of the Run button on the toolbar has Local Machine selected.
With that option selected, when the Run button is pushed, the
deployed instance of your application is launched and the Visual

Download from finelybook www.finelybook.com

676

Studio debugger is attached to that process. In other words, you run
your application locally and debug it normally through Visual Studio.
The second option is to debug your application through the simulator.
Now, instead of actually deploying your application to your machine,
you run your application within a simulator. In the dropdown to the
right of the Run button on the tool bar, select Simulator. Then start
the debug session for your application. See “The Windows Simulator”
section in Chapter 15, “Universal Windows Platform Apps,” for details
on the debugging experience for the Universal Windows Platform.

Android

The debugging experience for the Android version of your application
involves an emulator. You actually have a variety of emulators
available to you. When you select the Android app in the dropdown on
the toolbar, the dropdown immediately to the right is changed to
include the list of available emulators for your machine (see Figure 21-
6).

FIGURE 21-6

Select the emulator you wish to use. The default set includes x86 and
ARM chipsets that target tablets and phones for several emulators. See
the “Managing the Emulator” section later in this chapter for details
on how you can add support for different emulators.
Once you have selected the emulator and clicked the Run button (or
started a debug session through the Solution Explorer), a number of
things start happening. First, your application is built locally. Then the
emulator is started. If your machine has a camera, then you are given
the option to have the emulator capture the camera input as its own.
Figure 21-7 shows the dialog that appears. Choose the source that you

Download from finelybook www.finelybook.com

677

want to use and click OK to continue.

FIGURE 21-7

After a short delay, the emulator will start up. It loads up the Android
apps (according to the message—yours is pretty much the only app)
and then launches your application. Figure 21-8 shows the emulator
running with the application from the project template.

Download from finelybook www.finelybook.com

678

FIGURE 21-8

As you can see from Figure 21-8, the bulk of the visual interface for the
emulator consists of your application. You can interact with the
application using your mouse (or your finger if you have a touch
screen). In this way, you can test the basic functionality of your app.
However, on the right side of the emulator, several icons provide
additional functionality, such as emulating different network states,

Download from finelybook www.finelybook.com

679

geographic locations, and device rotation.
Starting from the top, there are the following icons available:

Power button: Turns the phone off or on. It does not stop the
emulator from running.
Volume Up: Turns the volume on the phone higher.
Volume Down: Turns the volume on the phone lower.
Rotate Left: Rotates the emulator 90 degrees to the left.
Rotate Right: Rotates the emulator 90 degrees to the right.
Take Screenshot: Takes a screenshot of what is current on the
emulator and saves it to a local directory. The actual directory that
is used can be configured through the settings for the emulator.
Zoom: Allows you to zoom in and out.
Back: Emulates the clicking of the Back button.
Home: Emulates the clicking of the Home button.
Overview: Emulates the clicking of the Overview button.
Settings: The ellipsis takes you to a separate dialog that is used to
configure a relatively large body of settings. This dialog is discussed
in the next section.

Settings Dialog

The Android emulator has a number of settings that allow you to test
your application’s response to real-world scenarios that would be
difficult or impossible (or prohibitively costly in the case of
geolocation) to duplicate in the real world. This section covers the
different options that are available and how they can be used to
improve the quality of your application.
The Location tab of the Extended Controls dialog shown in Figure 21-9
illustrates the options available to you to configure where the emulator
thinks that it is.

Download from finelybook www.finelybook.com

680

FIGURE 21-9

The top half of the dialog is used to set the current location of the
phone. There are two coordinate systems that are available. With the
decimal system, you specify the longitude and latitude as a positive or
negative number of degrees between 180 and –180 with the decimal
portion of the number indicating positions between degree points.
With the sexigesimal system (yes, that’s a real word—look it up), you
specify the latitude and longitude in degrees/minutes/seconds. In
both cases, the altitude can be specified as a decimal number
representing the number of meters above sea level. When you have
provided all of the details, click on the Send button to pass the
information along to the phone.
The lower half of the dialog allows you to use files with a GPX (GPS
Exchange) format (for routes) or a KML (Keyhole Markup Language)
format (for multiple placemarks) to provide location information over

Download from finelybook www.finelybook.com

681

time.

NOTE

The choice between GPX and KML depends on what source of
data you have and how you plan on using it. KML is generally
used to annotate maps. GPX is information that is extracted from
a GPS device. Typically, the GPX format contains more
information (times, routes, waypoints) and can be converted into
KML. The reverse conversion is not possible.

The lower right of the dialog has a Load Options button that launches
a File Open dialog where you can pick the file you wish to you. Once
you open a file, the contents are loaded into the list of waypoints. To
help make this clearer, the following is an example of the contents of a
GPX file.

<?xml version="1.0"?>
<gpx version="1.1" creator="gpxgenerator.com">
<wpt lat="43.43786397458495" lon="-79.76182408296154">
 <ele>151.00</ele>
 <time>2017-04-22T16:49:11Z</time>
</wpt>
<wpt lat="43.43459190666763" lon="-79.76482815705822">
 <ele>148.00</ele>
 <time>2017-04-22T16:52:50Z</time>
</wpt>
<wpt lat="43.434178990286796" lon="-79.76192064248607">
 <ele>145.00</ele>
 <time>2017-04-22T16:55:08Z</time>
</wpt>
<wpt lat="43.43269375344166" lon="-79.75939486008428">
 <ele>144.34</ele>
 <time>2017-04-22T16:57:23Z</time>
</wpt>
<wpt lat="43.43277166432048" lon="-79.75805375574055">
 <ele>143.07</ele>
 <time>2017-04-22T16:58:27Z</time>
</wpt>
<wpt lat="43.43789408450277" lon="-79.7617391107633">
 <ele>151.04</ele>
 <time>2017-04-22T17:05:41Z</time>
</wpt>
</gpx>

Download from finelybook www.finelybook.com

682

You can see from this data that each waypoint consists of a GPS
location (latitude and longitude), an elevation, and a time. This
information, once loaded into the dialog, can be played back into the
emulator so that it thinks that the phone is moving around.
Another scenario that is difficult to test on a physical device is the
differences in cellular networks and coverages. The Cellular tab in the
Extended Controls dialog (Figure 21-10) shows the options that are
available.

FIGURE 21-10

There are four different attributes of cellular service that can be
configured through this dialog.

Network type: The type of cellular network that the emulator is
connected to. Options include GSM, HSCSD, GPRS, EDGE, UMTS,
HSDPA, LTE, and Full.

Download from finelybook www.finelybook.com

683

Signal strength: Emulates the level of the cellular signal that the
emulator has access to. The dropdown contains a range of values
from None and Poor to Great.
Voice status: Specifies the type of voice access that the phone
has. Options include Home, Roaming, Searching, Denied
(emergency calls only), and Unregistered (off).
Data status: Identifies the type of data access that the phone has.
Choices are Home, Roaming, Searching, Denied, and Unregistered
(off).

The Battery tab in the Extended Controls dialog allows you to simulate
different conditions related to the battery. Figure 21-11 illustrates
some of the choices.

FIGURE 21-11

Through the slider bar in the top left of the pane, you can emulate

Download from finelybook www.finelybook.com

684

different battery levels, from 0 to 100% charged. The dropdown in the
top right controls whether there is an AC adapter connected to the
phone. The battery health dropdown provides an array of choices that
indicate the state of the battery itself. The options include Good,
Failed, Dead, Overvoltage, Overheated, and Unknown. Finally, you can
set the Battery status to a variety of different values: Charging,
Discharging, Full, Not charging, and Unknown.
The Phone tab of the dialog (see Figure 21-12) allows you to interact
with the phone through text messages or phone calls.

FIGURE 21-12

At the top of the pane, you can enter a phone number. If you click on
the Call Device button, you initiate a phone call to the emulator. The
emulator reacts as if a phone call is coming in. Once the phone call has
been answered, the Hold Call button is enabled, allowing you to place
the incoming call on hold. Also, the Call Device button’s label is

Download from finelybook www.finelybook.com

685

changed to End Call. Clicking on the button while it is in that state
ends the current call.
To send an SMS message to the phone, enter the text of the message
into the text box on the pane and click on the Send Message button.
The emulator will show the text notification window, just as you would
expect.
There is a Directional Pad tab that displays a directional pad in the
pane on the right. Not every device supports such a pad, so this pane is
not available on every device. However, if it is supported, then you can
use the pad to manipulate the pointer on the device.
The Fingerprint tab allows you to emulate touching the fingerprint
sensor (see Figure 21-13).

FIGURE 21-13

There is a dropdown list containing 10 different fingers. Select the
finger than you want and click on the Touch Sensor button to have the

Download from finelybook www.finelybook.com

686

emulator “touched” by the selected finger.
The Virtual sensors tab of the Extended Controls dialog provides a
useful mechanism for testing your application under various physical
positions of the emulator. Yes, the idea of the emulator having physical
positions is strange. But Figure 21-14 illustrates the control that you
have.

FIGURE 21-14

On the right side of the pane, there are several buttons that can be
used to flip the emulator into different orientations. Below the
buttons, you can see the values associated with the two sensors (the
accelerometer and the magnetometer), along with the detected
position.
On the left side of the pane, there are two modes for controlling the
physical position. When the Rotate option is selected, you can control
the yaw, pitch, and roll of the device. A visual representation of the

Download from finelybook www.finelybook.com

687

position of the device appears in the top half of the pane. When the
Move option is selected, you can control the X and Y position of the
device. Again, the top portion represents the device’s position in the X-
Y plane. Also, the Resulting Values section of the pane displays the
information that is provided by the virtual sensors to the emulator
(and to your app).
Finally, the Settings tab (Figure 21-15) gives you a place to configure
some elements of the emulator.

FIGURE 21-15

As mentioned earlier, this is where you can specify the directory into
which the screenshots will be placed.

Managing the Emulator

There are a variety of tools available in Visual Studio 2017 to help you

Download from finelybook www.finelybook.com

688

manage the different Android emulators. The tools range from
capturing logging information from the emulator to allowing you to
create new emulators or change the specifications of existing
emulators.
When you were going through the debugging process, the dropdown
list associated with the Run button contained a list of the supported
devices. You can manage that list through the Android Virtual Device
(AVD) Manager. By default, it is available as a toolbar button
immediately to the right of the run button (the tooltip on the button is
actually Open Android Emulator Manager [AVD]) or through the
Tools Android Android Emulator Manager menu option. Figure 21-
16 shows the device manager for the default Visual Studio 2017
installation.

FIGURE 21-16

Down the right side, there are several buttons that allow you to create
new emulator images, as well as modify those that already exist. If you
select the first entry and click on Edit, you will get a screen that looks
like Figure 21-17.

Download from finelybook www.finelybook.com

689

FIGURE 21-17

At the top, you can specify some basic details about the machine being
emulated. This includes the APIs implemented on the default
machine, the type of CPU being used, and the size of any SD card on
the machine. Toward the bottom is a grid that contains the hardware
that is supported by the emulator. This includes support for a
directional pad, accelerometers, GPS, battery, and temperature. You
can easily create different devices with different capabilities to
thoroughly test your application under different hardware scenarios.

Managing the SDK

When you are building your Android application, one of the choices
that you have to make is which SDK to target. This might initially seem
like an abstract consideration. What is really being asked is which

Download from finelybook www.finelybook.com

690

version of Android you would like to support. If you right-click on your
Android project from within Solution Explorer and choose Properties,
you will get to the Properties pages for the project (see Figure 21-18).

FIGURE 21-18

The Minimum Android to target dropdown contains a list of the SDKs
that are available on your current device. Choose the SDK against
which you want to build your application, and you’re ready to go.
As time goes on, however, Android is bound to introduce additional
SDKs. Visual Studio 2017 provides a mechanism to manage the SDKs
that are available to you through the Android SDK Manager (Figure
21-19).

Download from finelybook www.finelybook.com

691

FIGURE 21-19

This dialog is accessible through the Tools Android Android SDK
Manager menu option. Here, a complete list of the available packages
is displayed. The list itself is updated as soon as the dialog is opened.
And you have the ability to add or remove packages by checking or
unchecking them. Below the list are a few checkboxes that are used to
filter the packages that are displayed so that they only contain
packages that are not installed on your machine or have updates
(Updates/New), ones that are already installed (Installed), and ones
that have been marked as being obsolete (Obsolete). Once you have
made the desired changes, click on the Install packages or Delete
packages button in the bottom right of the dialog to complete your
changes.

Device Log

While you are running your application, in fact while you are running
almost any application, there comes a time when you want to be able

Download from finelybook www.finelybook.com

692

to send messages to some sort of a log. Although that is quite
reasonable while you are running your Windows Forms application on
your local machine, imagine the challenges associated with doing so
while running your mobile application remote on a smartphone.
Fortunately, Android offers a solution and Visual Studio 2017
integrates that solution in the IDE. The solution is something called
logcat (so called because that is the command line that displays the
log file).
From a coding perspective, sending a message to logcat is quite
straightforward. The following code does exactly that:

Android.Util.Log.Info("My App", "An interesting message");

The Log class also has Warn and Error methods to do the same thing,
with different levels of severity.
In order to view the messages coming from a device, Visual Studio
2017 includes the Android Device Log. This dialog is available through
the Tools Android Device Log menu option. Figure 21-20 illustrates
the device log for a running emulator.

Download from finelybook www.finelybook.com

693

FIGURE 21-20

In a dropdown at the top, you can select the specific device to retrieve
the logcat from. If you are running an emulator (or more than one), it
appears in the dropdown, as do any attached Android devices.
As you can see, the log itself is relatively simple. There is a list of
messages, the ability to search through them, and the ability to pause
or stop the logging process if you need to.

iOS

The debugging experience for iOS is relatively similar to the Android
experience. Probably the biggest difference is that you can’t build the
iOS project locally on your Windows machine. You need to have a Mac

Download from finelybook www.finelybook.com

694

device that has both Xamarin Studio and XCode installed on it in
order to build the code. You can download and install XCode from
https://developer.apple.com/xcode (be warned that you need to have
an Apple ID to do so), or you can install it from the Mac App Store. As
well, your Mac device needs to be connected remotely to your
computer in order to initiate the build process.
The starting point occurs when the iOS project is opened. You are
prompted to connect to a Mac device. Initially, there is a wizard that
walks you through the steps necessary to allow remote access from
your machine to the Mac. However, through a checkbox in the lower
right corner, you can arrange to not be bothered with the wizard again.
What is necessary, however, is to actually connect to the Mac.
When the project opens, you are presented with the dialog shown in
Figure 21-21. Choose the device that you will use as your build
platform and click Connect. To give credit where credit is due, I was
lucky enough to have a son (Kyle) who was willing to let me borrow his
Mac for this demonstration.

Download from finelybook www.finelybook.com

695

https://developer.apple.com/xcode

FIGURE 21-21

As part of the connection process, you will be prompted for a set of
credentials. The credentials you provide need to have been given
remote access permissions on the Mac. Once the permissions have
been validated, the connection process then checks to make sure that
you have XCode installed on the Mac. If you don’t, then you’ll see a
message similar to that shown in Figure 21-22. As well, a dialog will
appear on your Mac showing the XCode license and giving you an
opportunity to install it (presuming it’s not already installed).

Download from finelybook www.finelybook.com

696

FIGURE 21-22

Once you have reached the point where you’ve connected to the Mac
machine, when you launch your application from within Visual Studio,
the code is sent to the Mac system for building. The result is then
deployed to either a remote device or an iOS Simulator. If you deploy
to a device, you have the ability to debug your application in the
manner of any other remote device. If you choose to use a simulator,
then the Simulator window, similar to what you see in Figure 21-23,
appears.

Download from finelybook www.finelybook.com

697

FIGURE 21-23

Download from finelybook www.finelybook.com

698

The buttons that you use to provide additional input to your
application (aside from using the mouse on the central portion of the
simulator itself) appear along the top. The purposes of the buttons are
as follows:

Home: Simulates clicking on the Home button on the device.
Lock: Locks the screen on the emulator. The lock can be cleared
by swiping the screen.
Screenshot: Saves an image of the current screen to disk.
Rotate Left: Rotates the simulator 90 degrees to the left.
Settings: Displays a screen that is used to configure the keyboard
and location for the device. You can see the Settings screen in
Figure 21-24.

Download from finelybook www.finelybook.com

699

Download from finelybook www.finelybook.com

700

FIGURE 21-24

There are additional options available by right-clicking on the
simulator. Figure 21-25 illustrates these options.

FIGURE 21-25

The first four options are the same as the first four items in the bar at
the top of the simulator. The other options are as follows:

Rotate Right: Rotates the simulator 90 degrees to the right.
Shake Gesture: Emulates the shake gesture on the device.
Toggle In-Call Status Bar: Turns the status bar that appears
while you are in a call on and off.
Simulate Memory Warning: Raises a memory warning on the
device that will be interpreted by the application.
Toggle Keyboard: Either exposes or hides the soft keyboard on
the simulator.
Reboot: Powers the simulator off and then on again.

Download from finelybook www.finelybook.com

701

Settings: Displays the Settings screen seen in Figure 21-24.

SUMMARY

There is no question that one of the lures of Xamarin is to allow C#
developers to create applications that work on Windows, Android, and
iOS with a single body of code. While the reality is that some platform-
specific development is required, Xamarin definitely help to increase
the possibility of code reuse. In this chapter, we skimmed the surface
of Xamarin’s capabilities while examining the debugging experience of
these projects as you move from platform to platform.

Download from finelybook www.finelybook.com

702

22
Mobile Applications Using JavaScript

WHAT’S IN THIS CHAPTER?

The major characteristics of Apache Cordova
Understanding the structure of an Apache Cordova project
Configuring and debugging Apache Cordova applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
In Chapter 21, “Mobile Applications Using .NET,” you learned
about how to use Visual Studio 2017 to create mobile applications
using .NET languages. But not every developer wants to use C# to
create mobile applications, not to mention the fact that many
developers are much more comfortable in the web front-end world
of HTML, CSS, and JavaScript. Restricting mobile development to
the .NET platform would block these developers from taking part.
For developers who fit into that last category, Apache Cordova is
one of the most commonly used frameworks to jump the gap
between web development and mobile development. In this
chapter, we examine the support that Visual Studio 2017 has for
programmers working in the Cordova development space.

WHAT IS APACHE CORDOVA?

While Apache Cordova doesn’t have an exceptionally long history, it
has quickly become a mainstay in the world of mobile development. It

Download from finelybook www.finelybook.com

703

http://wrox.com
http://www.wrox.com

was originally conceived as a way to eliminate the vast and disparate
number of ways there were to create smartphone apps in the late
2000s. Depending on your platform, you might need to know C#,
Objective-C, or Java, and you needed to be aware of the different UI
paradigms that were also platform-specific. As an idea that arose out
of a Code Camp, PhoneGap became a single unified platform that
enabled developers to target all of the major phone operating systems
while developing applications in a common environment, that being
HTML, CSS, and JavaScript. The company that originally created
PhoneGap (Nitobi Inc.) was acquired by Apache in 2011, and the
source code was contributed to the Apache Software Foundation, a
non-profit community of open source developers and the project
renamed Apache Cordova.
Architecturally, Cordova uses HTML5 and CSS to render views and
JavaScript for logic. Native device functionality, such as the camera,
GPS, or accelerometer, are exposed through HTML5, presuming, of
course, that the device’s browser supports the necessary HTML5
elements. Fortunately, for the vast majority of modern phones, this is
not a significant issue. Android devices, iPhones, Windows Phones,
and BlackBerrys support all of the major feature categories.
Visual Studio 2017 supports Apache Cordova through a workload
known as Tools for Apache Cordova or TACO. This workload is
available through the main installation pane, or it can be added after
the fact through the New/Add Project dialog, seen in Figure 22-1. If
you click on the Open Visual Studio Installer link, the installer opens
and you can select the Mobile Development with JavaScript workload.

Download from finelybook www.finelybook.com

704

FIGURE 22-1

Upon installation, a number of tools and components are added to
your system. First, both Node.js and the Node Package Manager
(npm) are installed. More details about Node can be found in Chapter
19, “Node.js Development.” Git for Windows is installed on the
assumption that Cordova developers are familiar with using Git as a
source control repository. On the Android side, a number of SDKs and
build tools are included to facilitate the building and testing of your
project on an Android device. Along the same lines, a number of
Android device definitions can be optionally included. When they are
available, you can launch your application in one of these emulators.

CREATING AN APACHE CORDOVA PROJECT

The steps in creating an Apache Cordova project starts with the New
Project dialog (seen in Figure 22-1). It can be accessed through the File

Download from finelybook www.finelybook.com

705

 New Project menu option. Finding the Cordova template is not easy
if you just navigate through the tree views on the left. It is found in the
JavaScript node and then the Mobile Apps node. The only option is the
Blank App (Apache Cordova) that is used to create a basic, simple web
site using Cordova. Select the template, provide a name and a solution,
and click OK.
If you have not created a Node.js application on your machine before,
then you will be prompted to unblock a port so that Node can listen for
requests. The prompt will look like the one shown in Figure 22-2. Click
Allow Access so that Node will work for your application.

FIGURE 22-2

After a few moments, your project will be ready to go. The layout of the
project can be seen in the Solution Explorer that is found in Figure 22-
3. The next few sections talk about the main components of the
Cordova project.

Download from finelybook www.finelybook.com

706

FIGURE 22-3

Merges Folder

As you can see in Figure 22-3, the merges folder contains subfolders
for each of the target mobile platforms (Android, iOS, and Windows.
Each of these folders contains content that is specific to the
corresponding platform. That is what the merges folder is for—to

Download from finelybook www.finelybook.com

707

provide a location where you can put assets that are dependent on the
platform on which the application is executing.
Any content found in the folders is copied during the pre-build or
prepare process. As a specific example, any content that is found in
the merges/android folder is copied to the web application folder used
by the Android project. This copying takes place after the base web
application has been copied. The same flow takes place for both the
iOS and Windows folders.
You’ll notice that both the Android and Windows folders contain a
platformOverrides.js file. There is also a jscompat.js file. The purpose
of platformOverrides is to load the jscompat file into a <script> tag on
the page. The jscompat file is intended to provide consistent support
for newer features on older browsers. This functionality is known
generically as a polyfill. For Android devices, the bind() functionality
is added. For Windows, it adds a polyfill library known as safeHTML.

Plugins Folder

Plugins are used to access the capabilities of a native device from
within Cordova that aren’t already available to simple web
applications. Basically, a plugin is a library that is developed to work
across the different platforms and that exposes the desired native
functionality to JavaScript. If necessary, the plugin will update the
platform manifest (the file that lets the platform know that what
functions need to be turned on for the app).
While you are certainly free to add plugins manually, you are more
likely to use the interface that is provided through the config.xml file.
This interface is described in the “Additional Files and Folders”
section later in this chapter.

www Folder

As the name suggests, the www folder contains the web application
content that will (eventually) be packaged into the native mobile
application. It is expected that developers will spend most of their
effort working with the assets in this folder.
The default entry point for the application is the index.html file. It is
loaded automatically when the Cordova application is launched.

Download from finelybook www.finelybook.com

708

There are a number of subfolders underneath www. They are:
css: Contains the CSS files associated with the application. There
is a file in the folder as part of the project template. It is the
standard CSS file for the default application.
images: Contains any image files used by the application. There is
already a file (cordova.png) in the folder. It is the Cordova logo that
displays in the center of the initial screen in the application
template.
scripts: Contains the JavaScript files used by the web application.
The folder contains an index.js file, which is bootstrap code that
initializes the Cordova application. This includes registering
handlers for the deviceReady, onPause, and onResume events. Also
in the folder is an empty platformOverrides.js file. This file will be
replaced by the file found in the merges directory, based on the
target platform.

Additional Files and Folders

There are a number of other folders and files that are part of the
Cordova project template.

res Folder: Contains static files that are not part of the web
application. These are files that are used with the native part of the
application, such as the icon that will appear on the device,
certificates used for deployment and signing, and screenshots that
are part of the store package.
bower.json: The configuration file for the Bower Package
Manager. Information about Bower and the format of this file can
be found in the “Bower Package Manager” section of Chapter 18,
“.NET Core.”
build.json: The configuration file used by both the Android and
iOS build processes. The project template includes a properly
formatted file with the necessary values left black. The important
portion of the file is as follows.

"android": {
 "release": {

Download from finelybook www.finelybook.com

709

 "keystore": "",
 "storePassword": "",
 "alias": "",
 "password" : "",
 "keystoreType": ""
 }
}

Values must be provided for the empty strings that are in the file.
One of the more common ways to produce these values is to use a
Java command-line tool called keytool. This tool creates a keystore
file, along with information about you and your organization. The
keystore file is then used to sign your package. The information
about this file is also placed into the ant.package file found
underneath the android subfolder of the res folder.
package.json: The configuration file for the Node Package
Manager (npm). This file isn’t used by Cordova projects at the
moment. However, it is expected that it will eventually replace the
config.xml file in a future version of Apache Cordova.
config.xml_ The current project configuration file for Cordova. It
contains information that is used for the native portion of the
application, including attributes such as the application name, the
included plugins, and the security settings.

While it might appear from the name that config.xml file is just an
XML file, Visual Studio 2017 includes an editor so that changes are
more easily made. When you double click on config.xml in Solution
Explorer, you are presented with the editor pane shown in Figure 22-
4.

Download from finelybook www.finelybook.com

710

FIGURE 22-4

The Common tab includes the basic information about your
application. This includes the name, the author, the description, the
version number, and the name of the package. The start page for your
application (by default it’s index.html) is defined here. As well, you can
limit the domains to which the application has access. By default, your
application can access any domain (as indicated by the asterisk), but
from a security perspective, that is not a good idea. The preferred
approach is to block everything and then define a list of domains that
can be accessed (known as a whitelist). As a result, it is considered
good practice to come up with a list of domains that you need to access
before publishing your application.
The Toolset tab (see Figure 22-5) is used to configure the version of
Cordova that you plan on using.

Download from finelybook www.finelybook.com

711

FIGURE 22-5

The dropdown list contains the different toolset versions that are
available on your machine. Also, there is a choice called Global
Cordova version. If you select this toolset, then you are responsible for
defining the Cordova version manually within your project. More
specifically, any changes to the Cordova version would be made
through the Cordova Command Line Interface.
The Plugins tab (see Figure 22-6) is used to define the different
plugins that are required by your application.

FIGURE 22-6

Download from finelybook www.finelybook.com

712

When the tab is first viewed, the Core section is displayed. This list
contains all of the plugins that are considered most likely to be used by
your application. As you can see, there are plugins for the camera,
geolocation, notifications, and the status bar to name just a few. In
general, you’ll find that any plugin you are likely to need is in this list.
To add a plugin to your application, select it from the list and click on
the Add button.
The second section, Custom, is used to add a plugin that is not found
in the core list. There are three possible ways to add a custom plugin.
If the plugin has already been installed on your machine, you can enter
the Plugin ID and click on the button with the arrow. If you have
developed the plugin on your machine, select the Local radio button
and enter (or navigate to) the directory where the plugin can be found.
Finally, if the plugin is available through Git, then select the Git radio
button and enter the name of the repository hosting the plugin.
The third section, Installed, contains a list of the plugins that are
already part of your application. The default project template includes
a whitelist plugin that is used to define the domains with which your
application is allowed to communicate. To remove a previously added
plugin, select it from the list and click on the Remove button.
The other tabs in the config.xml file allow you to define specific
settings for the individual platforms. Figure 22-7 illustrates the
options for the Windows platform.

FIGURE 22-7

The values that are available to be entered in this form are quite

Download from finelybook www.finelybook.com

713

simple: the display name, the package name, the version, and the
version of Windows that is being targeted.
The Android tab (Figure 22-8) has a few more values that can be
provided.

FIGURE 22-8

The top half of the tab is used to define the API that the application
requires. This includes the minimum and maximum API version,
along with the target (that is, the ideal) version. There is also a version
number for your application. And there is no requirement that the
Android version be the same as the Windows or iOS versions.
The lower half of the tab contains some more subtle options:

Keep Running: Determines whether the JavaScript timers will
continue running when the application is paused (that is, sent to
the background). If your application is doing some polling against
a URL on a regular interval and you’d like to have that polling
continue even after the user has moved on to another application,
then this value would need to be set to Yes.
Launch Mode: To understand the details of launch mode, you
need to be familiar with the concept of a task within Android.
When a user first launches an application, an activity instance is
created and associated with a task. Only one task can be in the
foreground at a time. A long press of the Home button shows a list

Download from finelybook www.finelybook.com

714

of the current tasks, and you can select one to bring to the
foreground. This mode is really used to determine what happens to
subsequent requests for an activity instance. The choices are the
following:

standard: Multiple activity instances can be created, and they
all run in the same task.
singleTop: Multiple activity instances can be created and they
all run in the same task. However, if a particular type of activity
instance is currently at the top of a task (that is, is currently
running in the foreground), then a request for the same type of
activity will not create a new instance.
singleInstance: One activity instance is associated with each
task. So you can’t have multiple activity instances residing
within one task.
singleTask: One activity instance is associated with each task.
However, a second request for the same type of activity is
routed to an existing task.

Show Title: Determines whether the title of the application
appears in the browser.
In-App Browser Storage: Indicates whether the application
uses browser storage as part of its functionality.

The iOS tab (Figure 22-9) has the same type of simplicity that the
Windows tab has.

FIGURE 22-9

Download from finelybook www.finelybook.com

715

The Target Device can be iPhone, iPad, or Universal, where Universal
means that the application is expected to be on both iPhone and iPad
devices. The Target iOS Version is the version of the operating system
that the application is targeting. You can specify whether the Web
Storage Backup is in the cloud, is local, or doesn’t occur at all. Finally,
the incremental rendering of the application can be suppressed. This
means that the web content will not be rendered as it arrives. Instead,
the current content remains in place until all of the new content has
been received.

DEBUGGING IN APACHE CORDOVA

The debugging experience associated with Apache Cordova is similar
to most web applications. You can set breakpoints, see intermediate
values, and change the values of variables at run time. From within
Visual Studio, you have a number of options available to launch and
debug your application. If you have a local device handy, then Visual
Studio 2017 allows you to connect the device to your development
environment and deploy and debug your application directly. There
are also a number of Android emulators available. They can be
installed through the Visual Studio Installer. For more details about
the Android emulator, see the “Android” section of Chapter 21. The
final choice involves using a simulator. It is this third option that is
discussed in the rest of the chapter. To use a simulator, start by
choosing the target platform from the dropdown, as shown in Figure
22-10.

FIGURE 22-10

Now for each of these options, you have a number of different choices
available to you. Figure 22-11 shows three of the sets.

Download from finelybook www.finelybook.com

716

FIGURE 22-11

In general, you’ll find the choices divided into two broad categories.
First, there are a group of options allowing you to Simulate your
application in a browser. These options include the device that is being
simulated. When this choice is selected, your application is launched
within Cordova Simulate. For the uninitiated, Cordova Simulate is an
open-source replacement for the Ripple simulator. If you used
Cordova Tools in Visual Studio 2015, the Ripple simulator was used.
When you launch your application, a Chrome browser is started and
your application is displayed within a web page. You can interact with
the user interface for your application through the browser.
Along with running the application through Chrome, Visual Studio
2017 also includes a couple of pages used to change the target device
while you are running. Figure 22-12 shows the Cordova Plugin
Simulation page.

Download from finelybook www.finelybook.com

717

FIGURE 22-12

There are a number of different sections on this page and each of them
can be expanded and collapsed as needed. There is a Geolocation
section that is used to provide GPS information to your device. You
can set the current location by setting a point on a map or by entering
the latitude and longitude directly. You can also define the altitude of
the device, as well as the accuracy for both the location and the
altitude. There is also an option to load a GPX file so that navigation
through a number of different locations and times can be simulated.
There is an Events section that can be used to emulate device buttons.
The simulator in Chrome doesn’t include any framing that shows the
device buttons. So instead, you choose the desired function from the
Events to File dropdown. Then click the Fire Event button to send the
event to the simulator.
The is also a Device section where you can view details about your
device. As you add plugins to your project, those plugins may or may

Download from finelybook www.finelybook.com

718

not implement a custom interface that can be used during simulation.
If they do, you’ll see that interface in this page.
Along with the Plugins Simulation page, there is a DOM Explorer page
(Figure 22-13).

FIGURE 22-13

If you have used the Developer tools inside of the Edge browser, this
page might look familiar to you. On the left is the HTML that is
currently rendered within the simulator. On the right are the
attributes associated with the currently selected element. The Styles
and Computed tabs are used to see not only the current values for
different style attributes, but also to help you figure out why they are
what they are. And if you have ever worked with CSS, you’ll
understand that the “why” is sometimes the most challenging part.
Along with style information, the Layout tab shows the current
dimensions of the element’s box model.
There are two ways to identify the element that you’re working with. In
the toolbar at the top, there are two icons. The leftmost icon turns on
Select Element mode. The elements in your application (as rendered in
Chrome) can be selected with a mouse, and the DOM in the left pane
will change so that the selected item is visible. The second icon on the
toolbar turns on element highlighting. Now, when you select an
element in the DOM tree, the corresponding visual element becomes

Download from finelybook www.finelybook.com

719

highlighted in Chrome.

SUMMARY

The ability to create mobile, cross-platform applications using Web
technologies is a compelling one. Apache Cordova has gone a long way
toward making that a reality. The Apache Cordova Tools for Visual
Studio are a very productive addition to Visual Studio and will go a
long way to help developers take advantage of Cordova.
In this chapter you learned not only how to create an Apache Cordova
application, but also how to configure and debug it. This focuses on
using Cordova Simulate to test your application on different platforms.

Download from finelybook www.finelybook.com

720

PART VII
Cloud Services

CHAPTER 23: Windows Azure
CHAPTER 24: Synchronization Services
CHAPTER 25: SharePoint

Download from finelybook www.finelybook.com

721

23
Windows Azure

WHAT’S IN THIS CHAPTER?

Understanding Windows Azure
Building, testing, and deploying applications using Windows
Azure
Storing data in Windows Azure tables, blobs, and queues
Using SQL Azure from your application
Understanding the Service Fabric

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Originally, Microsoft’s approach to cloud computing was the same
as its approach to desktop, mobile, and server computing, offering
a development platform on top of which both ISVs and Microsoft
could build great software. But the release of Azure added a
number of features to the platform, features that moved it from
being “just” a development platform to an environment that
enables it to become an important part of any company’s cloud
computing strategy.
A formal definition of cloud computing is challenging to give. More
precisely, it’s challenging to reach an agreement on a definition. It
seems as if there are as many different definitions as there are
vendors. For the purpose of this book, consider “the cloud” to be
any service or server accessible through the Internet that can
provide functionality to devices running both on-premises (within

Download from finelybook www.finelybook.com

722

http://wrox.com
http://www.wrox.com

a typical corporate infrastructure) and in the cloud. This covers
almost any scenario from a single, standalone web server to a
completely virtualized infrastructure.
This chapter covers the Windows Azure Platform, SQL Azure, and
the Azure Service Fabric (a newer version of the product formerly
known as AppFabric). The Windows Azure Platform hosts your
web application, enabling you to dynamically vary the number of
concurrent instances running. It also provides storage services in
the form of tables, blobs, and queues. SQL Azure provides a true
database service hosted in the cloud. Finally, you can use the
Service Fabric to simplify the process of exposing services within
your organization. This chapter also discusses some of the features
of Windows Azure that might impact some of the choices that you
make for development and deployment.

THE WINDOWS AZURE PLATFORM

As with most Microsoft technologies, starting with the Windows Azure
platform is as easy as creating a new application, building it, and then
running it. You notice that there is a node in the New Project dialog
titled Cloud, which has a project template called Azure Cloud Service,
as shown in Figure 23-1. If you don’t see the Cloud node, it is likely
because you haven’t installed the Azure workload. Click on the Open
Visual Studio Installer link found at the bottom of the treeview on the
left to launch the Visual Studio Installer and add the workload before
continuing.

Download from finelybook www.finelybook.com

723

FIGURE 23-1

After selecting the Cloud Service project template, you are prompted
to add one or more roles to your application. An Azure project can be
broken into different roles based on the type of work they are going to
do and whether they accept user input. Simply put, web roles can
accept user input via an inbound connection (for example, HTTPS on
port 443), whereas worker roles cannot. A typical scenario would
consist of a web role used to accept data. This may be a website or a
web service of some description. The web role would hand off the data,
for example, via a queue, to a worker role, which would then carry out
any processing to be done. This separation means that the two tiers
can be scaled out independently, improving the elasticity of the
application.
In Figure 23-2, both an ASP.NET web role and a worker role have
been added to the cloud services solution by selecting the role and
clicking the right arrow button. Notice that, new to Visual Studio 2017,
there are a number of Node.js roles that are available for your
selection. Selecting a role and clicking the edit symbol (which becomes
visible once the role has been selected) allows you to rename the role

Download from finelybook www.finelybook.com

724

before clicking OK to complete the creation of your application.

FIGURE 23-2

Because the web role you create is ultimately an ASP.NET project, the
next dialog allows you to select the type of project. This dialog is
discussed in detail in the “Creating a Web Application Project” section
of Chapter 16, “ASP.NET Web Forms.”
As you can see in Figure 23-3, the application created consists of a
project for each role selected (Cloud Front and Cloud Service,
respectively) and an additional project, FirstCloudApplication, that
defines the list of roles and other information about your Azure
application.

Download from finelybook www.finelybook.com

725

FIGURE 23-3

The Cloud Front project is essentially just an ASP.NET MVC project. If
you right-click this project and select Set as Startup Project, you can
run this project as with any normal ASP.NET project. On the other
hand, the Cloud Service project is simply a class library with a single
class, WorkerRole, which contains the entry point for the worker.
To run your Azure application, make sure the FirstCloudApplication
project is set as the Startup Project, and then press F5 to start
debugging. If this is your first time running an Azure application, you
can notice a dialog appears that initializes the Development Storage.
This process takes 1–2 minutes to complete; when done you can see
that two icons have been added to the Windows taskbar. The first icon
enables you to control the Compute and Storage Emulator services.
These services mirror the table, blob, and queue storage (the Storage
Emulator), and the computational functionality (the Compute
Emulator) available in the Azure platform. The second icon is the IIS
Express instance that provides a hosting environment in which you
can run, debug, and test your application.
After the Development Storage has been initialized, you should notice
that the default page of the Cloud Front project launches within the

Download from finelybook www.finelybook.com

726

browser. Although you see only a single browser instance; multiple
instances of the web role are all running in the Compute Emulator.

The Compute Emulator

In the FirstCloudApplication project are three files that define
attributes about your Azure application. The first,
ServiceDefinition.csdef, defines the structure and attributes of the
roles that make up your application. For example, if one of your roles
needs to write to the file system, you can stipulate a LocalStorage
property, giving the role restricted access to a small amount of disk
space in which to read and write temporary files. This file also defines
any settings that the roles require at run time. Defining settings is a
great way to make your roles more adaptable at run time without
needing to rebuild and publish them.
The second and third files relate to the run-time configuration of the
roles. The names of the files have the same basic structure
(ServiceConfiguration.location.cscfg file) and define the run-time
configuration of the roles. The location component of the filename
determines when a particular configuration file should be used. Use
the local instance when you debug your application. Use the cloud
instance when you publish your application to Windows Azure. If you
consider these to be similar to the debug and release versions of the
web.config file, you are correct.
If you right-click the Emulator icon on the Windows taskbar and select
Show Compute Emulator UI, you can see a hierarchical representation
of the running applications within the emulator, as shown in Figure
23-4. As you drill-down into the deployments, you can see the
FirstCloudApplication and then the two roles, Cloud Front and Cloud
Service.

Download from finelybook www.finelybook.com

727

FIGURE 23-4

Within each of the roles, you can see the running (green dot)
instances. In the right pane you can see the log output for each of the
running instances. Clicking the title bar on any of the instances toggles
that instance to display in the full pane. The icon in the top-right
corner of each instance indicates the logging level. You can adjust this
by right-clicking the title and selecting the wanted value from the
Logging Level menu item.

Communicating between Roles

So far you have a web role with no content and a worker role that
doesn’t do anything. You can add content to the web role by creating
an MVC application as you would for any non-Azure application.
You can pass data between web and worker roles by writing to table
(structured data), blob (single binary objects), or queue (messages)
storage. You work with this storage within the Azure platform via its
REST interface. However, as .NET developers, this is not a pleasant or

Download from finelybook www.finelybook.com

728

efficient coding experience. Luckily, the Azure team has put together a
wrapper for this functionality that makes it easy for your application to
use Windows Azure storage. If you look at the references for both the
web and worker role projects, you can see a reference for
Microsoft.WindowsAzure.StorageClient.dll, which contains the
wrapper classes and methods that you can use from your application.
For example, consider the following code, which places a simple string
into a queue:
C#

 var storageAccountSetting =

CloudConfigurationManager.GetSetting("DataConnectionString");
 var storageAccount =
CloudStorageAccount.Parse(storageAccountSetting);

 // create queue to communicate with worker role
 var queueStorage =
storageAccount.CreateCloudQueueClient();
 var queue = queueStorage.GetQueueReference("sample");
 queue.CreateIfNotExists();
 queue.AddMessage(new CloudQueueMessage("Message to
worker"));

VB

 ' read account configuration settings
 Dim StorageAccountSetting = _

CloudConfigurationManager.GetSetting("DataConnectionString")
 Dim StorageAccount =
CloudStorageAccount.Parse(StorageAccountSetting)

 ' create queue to communicate with worker role
 Dim queueStorage = storageAccount.CreateCloudQueueClient()
 Dim queue = queueStorage.GetQueueReference("sample)
 queue.CreateIfNotExists()
 queue.AddMessage(New CloudQueueMessage("Message to
worker"))

Now, to process this message after it has been added to the queue, you
need to update the worker role to pop messages off the queue and
carry out the appropriate actions. The following code retrieves the next
message on the queue, and simply writes the response out to the log,

Download from finelybook www.finelybook.com

729

before deleting the message off the queue. If you don’t delete the
message from the queue, it is pushed back onto the queue after a
configurable timeout to ensure all messages are handled at least once,
even if a worker role dies mid-processing. This code replaces all the
code in the WorkerRole file in the Cloud Service application.
C#

public override void Run(){
 DiagnosticMonitor.Start("DiagnosticsConnectionString");

 Microsoft.WindowsAzure.CloudStorageAccount.
 SetConfigurationSettingPublisher((configName,
configSetter) =>{

configSetter(Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.

 GetConfigurationSettingValue(configName));
 });

 Trace.TraceInformation("Worker entry point called");

 // read account configuration settings
 var storageAccount = CloudStorageAccount.

FromConfigurationSetting("DataConnectionString");

 // create queue to communicate with web role
 var queueStorage =
storageAccount.CreateCloudQueueClient();
 var queue = queueStorage.GetQueueReference("sample");
 queue.CreateIfNotExist();
 Trace.TraceInformation("Cloud Service entry point
called");
 while (true){
 try{
 // Pop the next message off the queue
 CloudQueueMessage msg = queue.GetMessage();
 if (msg != null){
 // Parse the message contents as a job detail
 string jd = msg.AsString;
 Trace.TraceInformation("Processed {0}", jd);
 // Delete the message from the queue
 queue.DeleteMessage(msg);
 }
 else{

Download from finelybook www.finelybook.com

730

 Thread.Sleep(10000);
 }
 Trace.TraceInformation("Working");
 }
 catch (Exception ex){
 Trace.TraceError(ex.Message);
 }
 }
}

VB

Public Overrides Sub Run()
 DiagnosticMonitor.Start("Diagnostics.ConnectionString")

 CloudStorageAccount.SetConfigurationSettingPublisher(
 Function(configName, configSetter)
 configSetter(RoleEnvironment.

GetConfigurationSettingValue(configName)))
 Trace.TraceInformation("Worker entry point called")

 ' read account configuration settings
 Dim storageAccount = CloudStorageAccount.

FromConfigurationSetting("DataConnectionString")
 ' create queue to communicate with web role
 Dim queueStorage =
storageAccount.CreateCloudQueueClient()
 queue = queueStorage.GetQueueReference("sample")
 queue.CreateIfNotExist()
 Trace.TraceInformation("Cloud Service entry point
called.")
 Do While (True)
 Try
 ' Pop the next message off the queue
 Dim msg As CloudQueueMessage = queue.GetMessage()
 If (msg IsNot Nothing) Then
 ' Parse the message contents as a job detail
 Dim jd As String = msg.AsString
 Trace.TraceInformation("Processed {0}", jd)
 ' Delete the message from the queue
 queue.DeleteMessage(msg)
 Else
 Thread.Sleep(10000)
 End If

Download from finelybook www.finelybook.com

731

 Trace.TraceInformation("Working")
 Catch ex As StorageClientException
 Trace.TraceError(ex.Message)
 End Try
 Loop
End Function

This code overrides the Run method. This method loads configuration
values and sets up local variables for working with Windows Azure
storage. It then starts an infinite while loop that processes messages
off the queue.
Naturally, this is just one way to move information between the web
and worker roles. It has been provided just to give you an idea of the
concepts that need to go into your application design. There are many
other choices, and it will be up to you to choose the one most
appropriate for your situation.

Application Deployment

After you build your Azure application using the Emulators, you must
deploy it to the Windows Azure Platform. Before doing so you need to
provision your Windows Azure account with both a hosting and a
storage service. In Visual Studio 2017, you can do this through the
Server Explorer. Access the Server Explorer through the View Server
Explorer menu options. At the top of the Server Explorer window (see
Figure 23-5), the second button from the right is used to connect to
your Azure subscription. Click on the button and provide the
appropriate credentials to connect to Azure.

Download from finelybook www.finelybook.com

732

FIGURE 23-5

The FirstCloudApplication requires both web and storage roles, so
right-click on the Cloud Service node and select Create Cloud Service.
You see the dialog shown in Figure 23-6. Specify the name for the
service (it will become the header for the URL), the data center in
which your application will run, and, if you have more than one
available, the subscription used to pay for any charges you accrue.
Click on Create to complete the creation of the new service.

FIGURE 23-6

Download from finelybook www.finelybook.com

733

In the Solution Explorer, right-click the FirstCloudApplication project,
and select Publish. This process starts by building your application
and generates a deployment package and a configuration file. It also
publishes those elements directly to Azure. The initial dialog in this
process is shown in Figure 23-7.

FIGURE 23-7

The next step in publishing your application involves specifying the
settings. Click Next in the Publish dialog to display Figure 23-8.

Download from finelybook www.finelybook.com

734

FIGURE 23-8

Through this dialog, the Cloud Service into which this project will be
placed is specified, along with the environment (either Staging or
Production), the build configuration (dependent on the configurations
you have set up in your project), and the service configuration (either
Cloud or Local). You can also enable Remote Desktop for the roles that
you are deploying, and you can enable web deployment. Remote
Desktop capabilities enable you to connect to the desktop of one of
your roles so that you can troubleshoot issues or configure the role in
ways that are not available through the configuration files.
After you specify the settings to match your requirements, click Next
to display a screen that allows you to send diagnostic information to
Application Insights. If you wish to do so, you’ll also need to identify
the Application Insights resource that is the target of the information.
Once you finish with Application Insights, you are presented with a
summary screen. Click the Publish button to begin the deployment.

Download from finelybook www.finelybook.com

735

After the project is built, the Microsoft Azure Activity Log window
(Figure 23-9) appears. Through the windows, which are automatically
refreshed on a frequent basis, you can track the status of the
deployment. After a period of time (which might span 10–15 minutes),
you see that your application is deployed.

FIGURE 23-9

SQL AZURE

In addition to Azure table, blob, and queue storage, the Windows
Azure Platform offers true relational data hosting in the form of SQL
Azure. You can think of each SQL Azure database as being a hosted
instance of a SQL Server database running in high-availability mode.
This means that at any point in time there are three synchronized
instances of your database. If one of these instances fails, a new
instance is immediately brought online, and the data is synchronized
to ensure the availability of your data.
Although the Server Explorer allows you to see the databases that have
been created in Azure and you can define the elements in the database
through the SQL Server Object Explorer, there is no mechanism that
allows you to create a SQL Azure database directly from within Visual
Studio 2017. So sign into the Windows Azure portal
(http://manage.windowsazure.com).

NOTE

This section’s instructions assume that you’re working with the
newest version of the Azure Portal. If you’re using the old Azure
Portal, all of the described features are available, but the steps
you follow will be different.

Click the New icon at the top left of the page. Then click the Database

Download from finelybook www.finelybook.com

736

http://manage.windowsazure.com

node and notice that SQL Database is one of the options. When you
select it, the resulting pane gives you the options to specify the name
and location of the database. (Figure 23-10 illustrates a set of options.)
After creating a database, you can retrieve the connection string that
you need to connect to the database by selecting the database and
clicking the Show database connection strings link, as shown in Figure
23-11.

Download from finelybook www.finelybook.com

737

FIGURE 23-10

Download from finelybook www.finelybook.com

738

FIGURE 23-11

You have a number of ways to interact with a SQL Azure database.
Because SQL Azure is based on SQL Server, graphical tools, such as
SQL Server Management Studio and the Server Explorer in Visual
Studio 2017, are the obvious choices.
From your application you can connect to SQL Azure using the
connection string retrieved from the Windows Azure portal page. The
list of connection strings includes versions for not only ADO.NET, but
also JDBC and PHP.

SERVICE FABRIC

One of the leading trends in developing enterprise-level applications is
the use of microservices. The general idea behind microservices is to
divide application functionality into small, independent pieces and
then use different tools to stitch the services together into larger
applications.

Download from finelybook www.finelybook.com

739

Yes, this brief description sounds like a number of other application
decomposition approaches used over the past decade or longer. And
there is a similarity, at least at a conceptual level, between
microservices and a service-oriented architecture (SOA). Probably the
main difference is that the underlying technology is much lighter
weight (JSON vs XML/WSDL) and more capable of scaling easily. In
other words, microservices are actually able to deliver on some of the
promise of SOA.
The purpose of Service Fabric is to allow you to deploy and manage
microservices across a cluster of machines. These microservices can be
independently scaled up or down as your application demands. And
updates to one microservice don’t require any of the other
microservices to change.
While it’s possible to roll your own microservice environment, by
using the Service Fabric programming model, you can get to a
deployed application much more quickly. And there are a number of
different project templates that are available in Visual Studio 2017 to
help. To start, use the File New Project menu option to display the
New Project dialog. Then choose the Cloud node on the left and
Service Fabric Application from the list of templates in the center pane
(Figure 23-12).

Download from finelybook www.finelybook.com

740

FIGURE 23-12

When you provide a name for your project and click on OK, a second
dialog appears allowing you to choose from a number of different
service applications (see Figure 23-13):

Download from finelybook www.finelybook.com

741

FIGURE 23-13

Stateless Service: A service where there is no state maintained
between calls. Any state that is present during the call is entirely
disposed of before the next call.
Stateful Service: A service where some portion of the state of the
service is maintained between different calls.
Actor Service: An actor, in this context, is an independent unit of
computation functionality that operates within a single-threaded
environment. An actor service implements an actor.
Stateless Web API: A service that implements a Web API
endpoint that doesn’t maintain state.
Guest Executable: A service that runs a single executable. Unlike
the other services mentioned up to this point, it is not necessary
that the service exposes an endpoint.

Download from finelybook www.finelybook.com

742

Guest Container (Preview): A service that runs a single
executable within a container.
ASP.NET Core: A service that hosts an ASP.NET Core
application.

AZURE MOBILE APP

Windows Azure Mobile App is an interesting combination of
functionality. When you create a mobile app from scratch, it is a
prebuilt, pre-configured website and database that exposes a REST-
based API against which data can be created, updated, and retrieved.
Beyond that basic set of functionality, there are some additional
features that make a compelling use case for mobile applications
(phone and tablets), which require a centralized data store. This
includes a client-side library supported on iOS, Android and Windows
Phone/Store, simple server-side validation (coded using node.js), full
customized API support (using a Visual Studio MVC project template),
and integrated authentication support. In other words, a lot of
functionality is easily integrated into your application, regardless of
the platform on which it is running.

AZURE VIRTUAL MACHINES

The Windows Azure websites and Cloud Services that have already
been covered fall into the Platform as a Service (PaaS) model of
development. If you are just starting to build your application, these
are very useful alternatives that are available to you. And although you
can convert existing applications into this model, the level of effort
involved can vary from almost zero to significant re-architecting. Not
only that, there are many examples of applications that cannot be
migrated into a PaaS environment.
To address this latter category, Windows Azure provides support for
an Infrastructure as a Service (IaaS) model. One of the main
components of this model is Windows Azure Virtual Machines. This is,
as you might expect, a virtual machine that can support a wide variety
of applications. This includes not only Windows-based applications,
but also applications hosted in Linux. Access to the virtual machine is

Download from finelybook www.finelybook.com

743

through a remote connection, and you are the administrator,
configuring or installing as you want.
Along with providing a bare machine and operating system, the
Windows Azure Portal also provides a gallery of Visual Machine types.
For example, there are a number of different Linux distributions and
SQL Server boxes, and it is anticipated that, over time, additional
server offerings such as SharePoint will appear on the portal. And
Microsoft has enabled other companies such as RightScale and SUSE
to provide Virtual Machine configuration and management services
simplifying the deployment of different Virtual Machine instances.

Connectivity

To support the IaaS model, Windows Azure enables a number of
different forms of connectivity. When thinking about the types of
connectivity that are being defined, it’s useful to think about what
needs to be connected within a computing infrastructure (which,
ultimately, is what Azure is implementing). Connectivity can take the
form of publicly and privately available endpoints. As well, the
endpoints can expose different types of functionality, including load
balancing and port forwarding (and the more typical serving of web
pages).

Endpoints

Windows Azure endpoints are conceptually the same as the endpoints
that have been available in WCF. They are IP addresses and ports
exposed to other services or even to the public Internet. In the
Windows Azure world, a Load Balancer can be associated with each
endpoint so that the service behind the endpoint becomes scalable.
Cloud Services defines two types of public input endpoints: a simple
input endpoint and an instance input endpoint. As well, there is an
internal endpoint available only to Windows Azure services. The
difference between the simple input and the instance input endpoints
relates to how the load balancer handles traffic. For simple input
endpoints, a round-robin algorithm is used to ensure an evenly shared
flow of requests. An instance input endpoint has traffic directed to a
specific instance (such as a single Worker role). Typically, instance

Download from finelybook www.finelybook.com

744

input endpoints are used to allow intraservice traffic within a cloud
service.
For Virtual Machines, there are also two types of public endpoints
(and they serve a different purpose than the Cloud Service endpoints).
Load-balanced endpoints use a round-robin load balancing algorithm
to direct traffic. Port forwarded endpoints use a mapping algorithm to
redirect traffic from one port or endpoint to another.

Virtual Network

The inclusion of Virtual Machines into the Windows Azure world
introduced the need to include those machines into a corporate
network. With Virtual Network technology, it is possible to seamlessly
extend a corporate network to include a Virtual Machine without
increasing the security surface.
Windows Azure supports two types of VPN connectivity. The Virtual
Network solution is a hardware-based, site-to-site VPN capability.
This enables you to create a hybrid infrastructure that supports both
on-premise services and Windows Azure–hosted services. To set up a
Virtual Network within your environment, hardware within the
corporate network might need to be modified.
The second option is named Windows Azure Connect. Unlike Virtual
Network, this is a software-based VPN enabling developers to create
connections between on-premise machines and Azure-based services.
The software agent required to establish this connection is available
only for Windows, which might limit the environments in which it can
be used.
Along with the connectivity options, Windows Azure includes a
number of other services designed to include the types of workloads
that can be supported.

Windows Azure Traffic Manager: Provides load-balancing
capability for public HTTP endpoints exposed by Azure services.
There is support for three different types of traffic distribution:
geographical (traffic is directed to the server with the minimum
latency from the current location); active-passive failover (traffic is
sent to a backup service when the active service fails); and round-
robin load balancing.

Download from finelybook www.finelybook.com

745

Windows Azure Service Bus: Provides a mechanism that
enables Azure services to communicate with one another. There
are two different styles of service bus communication that are
supported. With Relayed Messaging, the service and client both
connect to a service bus endpoint. The Service Bus links these
connections together, enabling two-way communication between
the components. In Brokered Messaging, communication is
enabled through a publish/subscribe model with durable message
store. This is probably better recognized as a message queue
model.

SUMMARY

In this chapter you learned about the Windows Azure Platform and
how it represents Microsoft’s entry into the cloud computing space.
Using Visual Studio 2017, you can adapt an existing, or create a new,
application or service for hosting in the cloud. The local Compute and
Storage Emulators provide a great local testing solution, which means
when you publish your application to Windows Azure, you can be
confident that it will work without major issues.
Even if you don’t want to migrate your entire application into the
cloud, you can use SQL Azure and the Service Fabric offerings to host
your data, address connectivity challenges, or handle scalability and
reliability issues.

Download from finelybook www.finelybook.com

746

24
Synchronization Services

WHAT’S IN THIS CHAPTER?

What an occasionally connected application is and why you
would build an application that way
Wiring up Synchronization Services to build an occasionally
connected application
Separating Synchronization Services across multiple tiers
Performing both single and bidirectional synchronization

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Application design includes many extremes, ranging from
standalone applications that don’t share data to public web
applications in which everyone connects to the same data store. A
variety of peer-to-peer applications exist in which information is
shared between nodes but no central data store exists. In the
enterprise space, terms such as Software as a Service (SaaS) and
Software and Services (S+S) reflect a hybrid model where data and
services are combined within a rich application.
For the majority of business applications, the web model has
become the default choice. It provides user interface functionality
that is close to what you get in a rich client application with a
deployment model that is easier to provide updates through. And it
becomes possible to rationalize the data into a single central
repository. Still, there is a drawback . . . the need to be connected

Download from finelybook www.finelybook.com

747

http://wrox.com
http://www.wrox.com

to a network.
Of course, this is a problem that rich client applications can have as
well. And it’s one that even a cloud-based strategy is not sufficient
to address. An alternative strategy is to synchronize a portion of
the data repository to the client machine and to make local data
requests. This not only improves performance (because all the data
requests happen locally), but it also reduces the load on the server.
In this chapter, you discover how building applications that are
occasionally connected can help you deliver rich and responsive
applications using the various synchronization services offered by
Microsoft.

OCCASIONALLY CONNECTED APPLICATIONS

An occasionally connected application is one that can continue to
operate regardless of connectivity status. You have a number of
different ways to access data when the application is offline. Passive
systems simply cache data that is accessed from the server so that
when the connection is lost at least a subset of the information is
available. Unfortunately, this strategy means that a limited set of data
is available and is only suitable for scenarios in which there is an
unstable or unreliable connection, rather than completely
disconnected applications. In the latter case, an active system that
synchronizes data to the local system is required. The Microsoft
Synchronization Services for ADO.NET (Sync Services) is a
synchronization framework that dramatically simplifies the problem of
synchronizing data from any server to the local system.

SERVER DIRECT

To become familiar with the Sync Services, you can use a simple
database that consists of a single table that tracks customers. You can
create this using the Server Explorer within Visual Studio 2017. Right-
click the Data Connections node, and from the shortcut menu, select
Create New SQL Server Database. Figure 24-1 shows the Create New
SQL Server Database dialog in which you can specify a server and a
name for the new database.

Download from finelybook www.finelybook.com

748

FIGURE 24-1

When you enter CRM into the name field and click OK, a database with
the name CRM is added to the local SQL Server instance, and a data
connection is added to the Data Connections node in the Server
Explorer. From the Tables node, under the newly created data
connection, select Add New Table from the right-click shortcut menu,
and create columns for CustomerId (primary key), Name, Email, and
Phone so that the table matches what is shown in Figure 24-2.

Download from finelybook www.finelybook.com

749

FIGURE 24-2

Now that you have a simple database to work with, it’s time to create a
new WPF Application. In this case the application is titled QuickCRM,
and in the Solution Explorer tool window of Figure 24-3, you can see
the MainWindow and two additional forms, ServerForm and
LocalForm, have been added.

FIGURE 24-3

MainWindow has two buttons (refer to the editor area of Figure 24-3)

Download from finelybook www.finelybook.com

750

and has the following code to launch the appropriate forms:
VB

Public Class MainWindow
 Private Sub ServerButton_Click(ByVal sender As
System.Object,
 ByVal e As
System.RoutedEventArgs) _
 Handles ServerButton.Click
 My.Forms.ServerForm.Show()
 End Sub

 Private Sub LocalButton_Click(ByVal sender As
System.Object,
 ByVal e As
System.RoutedEventArgs) _
 Handles LocalButton.Click
 My.Forms.LocalForm.Show()
 End Sub
End Class

C#

public partial class MainWindow : Window {
 public MainWindow(){
 InitializeComponent();
 }

 private void ServerButton_Click(object sender,
RoutedEventArgs e){
 (new ServerForm()).ShowDialog();
 }
 private void LocalButton_Click(object sender,
RoutedEventArgs e){
 (new LocalForm()).ShowDialog();
 }
}

Before looking at how you can use Sync Services to work with local
data, take a look at how you might have built an always-connected, or
server-bound, version. Open the Data Sources window, click on the
Add New Data Source button, and step through the Data Source
Configuration Wizard, selecting the DataSet option, followed by the
CRM database created earlier, saving the connection string to the
application configuration file, and adding the Customer table to the

Download from finelybook www.finelybook.com

751

CRMDataSet.
Open the ServerForm designer by double-clicking it in the Solution
Explorer tool window. In the Data Sources tool window, use the drop-
down on the Customer node to select Details. Then from the
CustomerId node, select None. Dragging the Customer node across
onto the design surface of the ServerForm adds the appropriate
controls so that you can bind data to the Customer table of the dataset.
It also contains the code to populate that dataset, so that you can
navigate backward and forward through the database. To actually
perform the navigation, a couple of buttons need to be added to the
page, so that it appears as shown in Figure 24-4.

Download from finelybook www.finelybook.com

752

FIGURE 24-4

The functionality of the Next and Previous buttons is implemented in
the Click event handler for those buttons. Add the following code to
the code-behind file and make sure that the Click event is connected to
it from within XAML.
VB

Private Sub Previous_Click(ByVal sender As Object,
 ByVal e As RoutedEventArgs) _
 Dim customerViewSource As
System.Windows.Data.CollectionViewSource = _
 CType(Me.FindResource("customerViewSource"), _
 System.Windows.Data.CollectionViewSource)
 If (customerViewSource.View.CurrentPosition > 0) Then
 customerViewSource.View.MoveCurrentToPrevious()
 End If

End Sub

Private Sub Previous_Click(ByVal sender As Object,
 ByVal e As RoutedEventArgs) _
 Dim cRMDataSet As Quick_CRM.CRMDataSet = _
 CType(Me.FindResource("cRMDataSet"),
Quick_CRM.CRMDataSet)
 Dim customerViewSource As
System.Windows.Data.CollectionViewSource = _
 CType(Me.FindResource("customerViewSource"), _
 System.Windows.Data.CollectionViewSource)
 If (customerViewSource.View.CurrentPosition <
 cRMDataSet.Customer.Count - 1) Then
 customerViewSource.View.MoveCurrentToNext()
 End If

End Sub

C#

private void Previous_Click(object sender, RoutedEventArgs e)
 System.Windows.Data.CollectionViewSource
customerViewSource =
 ((System.Windows.Data.CollectionViewSource)
 (this.FindResource("customerViewSource")));
 if (customerViewSource.View.CurrentPosition > 0)
 customerViewSource.View.MoveCurrentToPrevious();
}

Download from finelybook www.finelybook.com

753

private void Next_Click(object sender, RoutedEventArgs e)
{
 Quick_CRM.CRMDataSet cRMDataSet =
 ((Quick_CRM.CRMDataSet)
(this.FindResource("cRMDataSet")));
 System.Windows.Data.CollectionViewSource
customerViewSource =
 ((System.Windows.Data.CollectionViewSource)
 (this.FindResource("customerViewSource")));
 if (customerViewSource.View.CurrentPosition <
cRMDataSet.Customer.Count - 1)
 customerViewSource.View.MoveCurrentToNext();
}

This completes the part of the application that connects directly to the
database to access the data. You can run the application and verify that
you can access data while the database is online. If the database goes
offline or the connection is lost, an exception is raised by the
application when you attempt to retrieve from the database.

GETTING STARTED WITH SYNCHRONIZATION SERVICES

Underlying the ability to synchronize data between a local and remote
database is the Sync Framework. For Visual Studio 2017, version 2.1 of
the Sync Framework is the one to work with, and to use the
synchronization functionality that we’re discussing in this chapter, you
need to make sure that it has been installed. It is available through
NuGet.
To start, add a LocalDB to your project. Use the Add New Item dialog
(right-click the project in Solution Explorer, and select Add New
Item). In the dialog, navigate to the Data folder, and select the Service-
Based Database template. For this example, give it the name
LocalCRM.mdf. Then, in the Data Sources window, add a new Data
Source. The Data Source Configuration Wizard is launched. Choose a
Database, then select Dataset, set the data connection to point to
LocalCRM.mdf, accept the default connection string (which should be
called LocalCRMConnectionString), and save the string in the
configuration file. On the final screen of the wizard, a message
indicates that the database doesn’t contain any objects. Have no fear.

Download from finelybook www.finelybook.com

754

You’ll be adding objects soon enough.
For this example, you need to add a form that displays the data that is
stored on the client. While the LocalForm form is in design mode, drag
the Customer node from the CRMDataSet data source onto the form.
This action creates a connection to the server database, which is
addressed momentarily.
Part of the process of a synchronized application is to get the data in
sync. To do this, the databases need to be provisioned with a number
of different elements. These elements enable change tracking to be
managed on the tables, making it easier to keep the data on the two
sides synchronized. This provisioning is done programmatically. And
conveniently, it enables the database schemas to be kept in sync as
well. Start by opening the MainWindow and adding a Load event
handler to the form. In the Load event, you need to perform three
steps. First, provision the server. Second, provision the client. And
finally synchronize the data.
One of the key concepts with the Sync Framework is scope. By adding
one or more tables to the scope, you can arrange for all the updates for
the tables to be included in a single transaction. This sounds simple
and straightforward, but there is a bit of a wrinkle. If you are
performing a large number of updates, keeping them all in one
transaction can have a negative impact on performance. So there is a
setting (BatchSize on the synchronization provider object) that
controls how many updates are kept in each transaction. If you want to
batch your updates, set the BatchSize property to a nonzero value.
Start by provisioning the server. Add the following code to the Load
event handler for the MainWindow form.
VB

Dim scopeName = "CRMScope"
Dim serverConn = New
SqlConnection(Settings.Default.CRMConnectionString)
Dim clientConn = New
SqlConnection(Settings.Default.LocalCRMConnectionString)
Dim serverProvision = New
SqlSyncScopeProvisioning(serverConn)
If Not serverProvision.ScopeExists(scopeName) Then
 Dim serverScopeDesc = New
DbSyncScopeDescription(scopeName)
 Dim serverTableDesc =

Download from finelybook www.finelybook.com

755

SqlSyncDescriptionBuilder.GetDescriptionForTable("Customer",
_
 serverConn)
 serverScopeDesc.Tables.Add(serverTableDesc)

serverProvision.PopulateFromScopeDescription(serverScopeDesc)
 serverProvision.Apply()
End If

C#

var scopeName = "CRMScope";
var serverConn = new
SqlConnection(Settings.Default.CRMConnectionString);
var clientConn = new
SqlConnection(Settings.Default.LocalCRMConnectionString);
var serverProvision = new
SqlSyncScopeProvisioning(serverConn);
if (!serverProvision.ScopeExists(scopeName))
{
 var serverScopeDesc = new
DbSyncScopeDescription(scopeName);
 var serverTableDesc =

SqlSyncDescriptionBuilder.GetDescriptionForTable("Customer",
 serverConn);
 serverScopeDesc.Tables.Add(serverTableDesc);

serverProvision.PopulateFromScopeDescription(serverScopeDesc);

 serverProvision.Apply();
}

In this code, you can see the basic provisioning steps. The first step is
to create the scope-provisioning object using a connection to the
server database. Then, if the named scope has not already been added,
create a new instance of the scope, add the wanted tables to the scope,
and then apply the provisioning functionality.
The scope information is maintained beyond the running of the
application. In other words, if you create a scope the first time the
application runs, that scope still exists the next time the application
runs. This has two side effects. First, it means that you should
uniquely name your scopes so that there is no inadvertent collision
with other applications. Second, you can’t add a new table to a scope

Download from finelybook www.finelybook.com

756

and have that table be provisioned properly (at least not without
performing additional configuration).
For the second step, do the same thing with the client provisioning:
VB

Dim clientProvision = New
SqlSyncScopeProvisioning(clientConn)
If Not clientProvision.ScopeExists(scopeName) Then
 Dim serverScopeDesc = New
DbSyncScopeDescription(scopeName)
 Dim serverTableDesc =

SqlSyncDescriptionBuilder.GetDescriptionForTable("Customer",
_
 clientConn)
 clientScopeDesc.Tables.Add(clientTableDesc)

clientProvision.PopulateFromScopeDescription(slientScopeDesc)
 clientProvision.Apply()
End If

C#

var clientProvision = new
SqlSyncScopeProvisioning(clientConn);
if (!clientProvision.ScopeExists(scopeName))
{
 var clientScopeDesc = new
DbSyncScopeDescription(scopeName);
 var clientTableDesc =

SqlSyncDescriptionBuilder.GetDescriptionForTable("Customer",
 clientConn);
 clientScopeDesc.Tables.Add(clientTableDesc);

clientProvision.PopulateFromScopeDescription(clientScopeDesc);

 clientProvision.Apply();
}

The third step is to perform the synchronization. The Sync Framework
2.1 includes a SyncOrchestrator (as opposed to the SyncAgent in the
previous versions) to manage the synchronization process. Add the
following code below the two provisioning blocks:
VB

Download from finelybook www.finelybook.com

757

Dim syncOrchestrator = New SyncOrchestrator()
Dim localProvider = New SqlSyncProvider(scopeName,
clientConn)
Dim remoteProvider = New SqlSyncProvider(scopeName,
serverConn)
syncOrchestrator.LocalProvider = localProvider
syncOrchestrator.RemoteProvider = remoteProvider
syncOrchestrator.Direction = SyncDirectionOrder.Download

Dim syncStats = syncOrchestrator.Synchronize()

C#

var syncOrchestrator = new SyncOrchestrator();
var localProvider = new SqlSyncProvider(scopeName,
clientConn);
var remoteProvider = new SqlSyncProvider(scopeName,
serverConn);
syncOrchestrator.LocalProvider = localProvider;
syncOrchestrator.RemoteProvider = remoteProvider;
syncOrchestrator.Direction = SyncDirectionOrder.Download;

var syncStats = syncOrchestrator.Synchronize();

This is the data and schema synchronization step. There is a provider
object created for each end of the synchronization. One of the
additions with Sync Framework 2.1 is support for SQL Azure as being
one of the endpoints.
The final addition is a small piece of code added to the Load method
for the LocalForm. If you recall, you dragged the Customer node from
the CRMDataSet data source, which is linked to the CRM database.
You need to change that to link to the local CRM storage. So in the
Load method, prior to the fill, the connection string for the table
adapter is changed to point to the local CRM. When finished, the Load
method should look like the following:
VB

Private Sub LocalForm_Load(ByVal sender As System.Object, _
 ByVal e As
System.Windows.RoutedEventArgs) _
 Handles LocalForm.Load
 Me.customerTableAdapter.Connection.ConnectionString = _

QuickCRM.Properties.Settings.Default.LocalCRMConnectionString

Download from finelybook www.finelybook.com

758

 Me.customerTableAdapter.Fill(this.cRMDataSet.Customer)
End Sub

C#

private void LocalForm_Load(object sender, RoutedEventArgs e)
{
 this.customerTableAdapter.Connection.ConnectionString =

QuickCRM.Properties.Settings.Default.LocalCRMConnectionString;

 this.customerTableAdapter.Fill(this.cRMDataSet.Customer);
}

At this point, you can run the application. After a brief pause (while
the provisioning is taking place), the MainWindow displays. Click the
Server Data button to display the Server form. Modify a number of
records in the database. Close the form and click the Local Data
button. The modified data is visible.
Close the Local form and click the Server Data button again. In the
Server form, change the existing ones. When you finish, close the form
and reopen the Local form. Your changes are not there; however, when
you click the button that you added to the toolbar (which basically
performs a refresh), the new and changed data becomes visible.

NOTE

If you receive a SyncException indicating that a COM class was
not registered when the Synchronize method is executed, there
can be a couple of causes. First, if you’re running on a 64-bit
platform, make sure that the 64-bit version of the Sync
Framework has been installed. Also, if you attempt to create an
application for a 32-bit machine while running on a 64-bit
platform, make sure that the 32-bit version of the Sync
Framework has been installed.

SYNCHRONIZATION SERVICES OVER N-TIERS

So far, the entire synchronization process is conducted within the
client application with a direct connection to the server. One of the

Download from finelybook www.finelybook.com

759

objectives of an occasionally connected application is to synchronize
data over any connection, regardless of whether it is a corporate
intranet or the public Internet. Unfortunately, with the current
application you need to expose your SQL Server so that the application
can connect to it. This is clearly a security vulnerability, which you can
solve by taking a more distributed approach. Sync Services has been
designed with this in mind, enabling the server components to be
isolated into a service that can be called during synchronization.
Sync Services supports separating the synchronization process so that
the communication to either of the endpoints can be implemented in a
custom provider. From the perspective of an N-Tier application, the
actual implementation of the provider could be done through a WCF
service (for example) instead of a direct database connection. To do
this, you need to create a WCF service that implements the four
methods that makes up Sync Service, as shown in the following
IServiceCRMCacheSyncContract interface:
VB

<ServiceContractAttribute()> _
Public Interface IServiceCRMCacheSyncContract
 <OperationContract()> _
 Function ApplyChanges(ByVal groupMetadata As
SyncKnowledge, _
 ByVal dataSet As DataSet, _
 ByVal syncSession As SyncSession)
As SyncContext
 <OperationContract()> _
 Function GetChanges(ByVal groupMetadata As SyncKnowledge,
_
 ByVal syncSession As SyncSession) As
SyncContext
 <OperationContract()> _
 Function GetSchema(ByVal tableNames As Collection(Of
String), _
 ByVal syncSession As SyncSession) As
SyncSchema
 <OperationContract()> _
 Function GetServerInfo(ByVal syncSession As SyncSession)
As SyncServerInfo
End Interface

Now, create a custom provider class derived from the SyncProvider

Download from finelybook www.finelybook.com

760

base class. In your custom class, you override some of the methods
from the base class and call the corresponding methods through the
WCF service proxy.
After the class has been constructed, you can set the Remote Provider
on the Sync Orchestrator to be a new instance of the custom
SyncProvider class. Now, when you call Synchronize, Sync Services
uses the Remote Provider to call the methods on the WCF Service. The
WCF Service in turn communicates with the server database carrying
out the synchronization logic.

SUMMARY

In this chapter you have seen how to use the Microsoft Sync
Framework to build an occasionally connected application. Although
you have other considerations when building such an application, such
as how to detect network connectivity, you have seen how to perform
synchronization of both the data and the schema, and how to separate
the client and server components into different application tiers. With
this knowledge, you can begin to work with this technology to build
richer applications that can continue to work regardless of where they
are used.

Download from finelybook www.finelybook.com

761

25
SharePoint

WHAT’S IN THIS CHAPTER?

Setting up a development environment for SharePoint
Creating SharePoint projects
Running SharePoint applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
SharePoint, one of Microsoft’s strongest product lines, is a
collection of related products and technologies that broadly service
the areas of document and content management, web-based
collaboration, and search. SharePoint is also a flexible application
hosting platform, which enables you to develop and deploy
everything from individual Web Parts to full-blown web
applications. This chapter discusses some of the great features that
you can expect.
From a development perspective, SharePoint supports two
different application models. The legacy model involves directly
working with the basic building blocks of SharePoint, which makes
it possible to create and manipulate lists and items
programmatically. But there is a second model, the App Model,
that increases the choices available to developers. You can access
the same building blocks of SharePoint (albeit through a different
interface), but your application can be hosted outside of
SharePoint.

Download from finelybook www.finelybook.com

762

http://wrox.com
http://www.wrox.com

Before you get into what’s available in Visual Studio 2017 to
support SharePoint development, the chapter spends a little time
looking at the options. Then the choices you have to make within
Visual Studio will be placed into the appropriate context.

SHAREPOINT EXECUTION MODELS

When it comes to creating a SharePoint application, there is one
fundamental question that needs to be addressed: Where will my code
run? There are three possible answers, and the requirements of your
application determine the correct choice and the version of SharePoint
that you wish to target.

Farm Solution

Also known as a managed solution, a farm solution is deployed on the
server side of your SharePoint environment. In other words, the
compiled assemblies and other resources are installed onto the
SharePoint server. When the application runs, it executes in the
SharePoint worker process itself (w3wp.exe). This gives your
application access to the complete SharePoint application
programming interface (API).
The deployment itself can take one of two forms. With the full-trust
execution model, the assembly is installed into the global assembly
cache (GAC) on the SharePoint server. For a partial-trust execution
model, the assembly is placed into the bin folder within the SharePoint
server’s IIS file structure. In both cases, installation is performed on
the server itself.
A number of administrators are uneasy about the fact that the
assembly is deployed on the server and your application runs within
SharePoint. As a result of the tight integration with SharePoint, it is
possible for a poorly developed application to seriously (and
negatively) affect the entire SharePoint farm. As a result, some
companies ban farm solutions.

Sandbox Solution

Download from finelybook www.finelybook.com

763

The sandbox solution was introduced as an answer to the concerns
that administrators had with the farm solution. Its biggest benefit is
that, rather than deploying into the GAC or the bin folder on the
server, it is deployed into a specialized library inside SharePoint. As a
starting point, this means that no executable code needs to be
deployed onto the SharePoint server. This also means that you no
longer need to have administrator rights to SharePoint in order to
deploy an application. The solution is deployed into a site collection,
and therefore administrative rights on the site collection are sufficient.
However, this mode of application development was deprecated as of
SharePoint 2016. The reason is that the introduction of the third
mode, the App Model, provided the benefits of the Sandbox Solution
(no deployment into the GAC, the application doesn’t have to be
executed on the SharePoint Server itself) while avoiding the
limitations (only a subset of SharePoint functionality is available). So
while Visual Studio does include sandbox solution templates for
SharePoint 2013, the recommendation is to utilize the third mode, the
App Model, in place of the sandbox solution.

App Model

SharePoint 2016 (and SharePoint 2013, for that matter) includes the
App Model. As an execution model, it is significantly different from the
models supported in earlier versions of SharePoint. The biggest
change is that none of the code in the application is deployed onto the
SharePoint server. Instead, you create a separate Web application,
hosted on its own server. That application is then incorporated into
the SharePoint server pages so that it appears to be part of the
SharePoint site.
At the heart of the App Model are a couple of object models that are
used by SharePoint Apps to communicate with SharePoint. There is a
JavaScript version (known as the Client Side Object Model or CSOM)
and a server-side version (that would run on the server that hosts your
web application, not on the SparePoint server). Both of these models
use a REST-based API that is exposed by SharePoint to access any
SharePoint data or functionality.
But if the application doesn’t run inside of the SharePoint server,

Download from finelybook www.finelybook.com

764

where does it run? The choice belongs to the developer, and there are
two hosting scenarios from which you can select:

SharePoint-Hosted: The application is hosted in its own site
collection on the SharePoint server. Although it might seem that
this violates the idea that code is not installed on the server, this
type of hosting comes with a limit on what the app can do. Any
business logic must run in the context of the browser client. As a
rule, this means that the business logic is written in JavaScript. The
application can create and use SharePoint lists and libraries, but
access to those elements must be initiated from the client.
Provider-Hosted: The application is hosted on a separate web
server — separate from the SharePoint server, that is. As a matter
of fact, a provider-hosted app can be run on any web server
technology that is available. There is no requirement that the
application be written in ASP.NET or even in .NET. A PHP
application works just as well. The reason is that the business logic
can be implemented either in JavaScript or in the server-side code
of the application. Access to SharePoint data is achieved through
CSOM code in JavaScript or by using the REST-based API.

The rest of this chapter runs through the SharePoint development
tools in Visual Studio 2017 and demonstrates how to build and deploy
SharePoint solutions for the different execution models.

PREPARING THE DEVELOPMENT ENVIRONMENT

If you plan to develop for SharePoint 2016, you need access to
SharePoint running either on a Windows server or in the cloud (that
is, SharePoint Online). If you are developing for SharePoint 2013, you
have the option of using SharePoint Foundation, a free, reasonably
functionally complete version of SharePoint that runs on a non-
Windows Server. This option is not available with SharePoint 2016.

SHAREPOINT SERVER VERSUS SHAREPOINT
FOUNDATION

Download from finelybook www.finelybook.com

765

SharePoint 2013 comes in two editions: SharePoint Server and
SharePoint Foundation. SharePoint Foundation is the free version
of SharePoint targeted at smaller organizations or deployments. It
includes support for Web Parts and web-based applications,
document management, and web collaboration functionality such
as blogs, wikis, calendars, and discussions.
SharePoint Server, on the other hand, is aimed at large enterprises
and advanced deployment scenarios. It has a cost for the server
product as well as requiring a client access license (CAL) for each
user. SharePoint Server includes all the features of SharePoint
Foundation as well as providing multiple SharePoint sites,
enhanced navigation, indexed search, access to back-end data,
personalization, and Single Sign-On.

As of SharePoint 2016, there is no longer a Foundation version of
SharePoint available. Instead, Microsoft recommends one of two
different approaches to setting up a development environment:

For farm solutions, you need to be working on the same platform
as a working SharePoint server. This means you need a Windows
Server environment. This can be a virtual machine created in
Windows Azure or running on Hyper-V on your local machine. But
you need to have the appropriate version of SharePoint Server
installed and working, along with Visual Studio.
For App Model solutions, you need to have access to a running
instance of SharePoint. This can be a server running somewhere
within your network or a SharePoint Online site.

Since many developers have access to a SharePoint Online site
through an MSDN Subscription or an Office 365 Developer license, the
rest of this chapter will focus on SharePoint development using the
App Model.
There are a number of different ways to create a SharePoint Online
site suitable for development. In general, you can do one of the
following:

Sign up for a free, one-year Office 365 Developer license through
the Office 365 Developer Program
(http://dev.office.com/devprogram).

Download from finelybook www.finelybook.com

766

http://dev.office.com/devprogram

Get a 30-day free trial
(https://portal.microsoftonline.com/Signup/MainSignUp.aspx?
OfferId=6881A1CB-F4EB-4db3-9F18-

388898DAF510&DL=DEVELOPERPACK).
Buy an Office 365 subscription
(https://portal.microsoftonline.com/Signup/MainSignUp.aspx?
OfferId=C69E7747-2566-4897-8CBA-

B998ED3BAB88&DL=DEVELOPERPACK).
Once you have your subscription, you need to assign the SharePoint
Online license to yourself and create a site. You will be adding a link to
your application under development to this site, so it’s a good idea to
make this site exclusive for your development efforts. It is considered
a best practice to only install applications from the SharePoint Store
onto production SharePoint Online instances.
Once you have the SharePoint site created, there is one additional step
that needs to be performed. The previously noted best practice is
actually the default setting for SharePoint Online. There is no
mechanism in the Administrative interface that allows you to set up
sideloading. Sideloading is the process by which external applications
can be added to a SharePoint Online site. So in order to test your
application from within SharePoint Online, you need to run the
following PowerShell script:

$programFiles = [environment]::getfolderpath("programfiles")
add-type -Path $programFiles'\SharePoint Online Management
Shell\Microsoft.Online.SharePoint.PowerShell\Microsoft.SharePoint.Client.dll'

Write-Host 'To enable SharePoint app sideLoading, enter Site
Url, username and
password'

$siteurl = Read-Host 'Site Url'
$username = Read-Host "User Name"
$password = Read-Host -AsSecureString 'Password'

if ($siteurl -eq “)
{
 $siteurl = 'https://mysite.sharepoint.com/sites/SiteName'
 $username = 'myuserid@mysite.onmicrosoft.com'
 $password = ConvertTo-SecureString -String 'MyPassword1'
 -AsPlainText -Force

Download from finelybook www.finelybook.com

767

https://portal.microsoftonline.com/Signup/MainSignUp.aspx?OfferId=6881A1CB-F4EB-4db3-9F18-388898DAF510&DL=DEVELOPERPACK
https://portal.microsoftonline.com/Signup/MainSignUp.aspx?OfferId=C69E7747-2566-4897-8CBA-B998ED3BAB88&DL=DEVELOPERPACK

}
$outfilepath = $siteurl -replace ':', '_' -replace '/', '_'

try
{
 [Microsoft.SharePoint.Client.ClientContext]$cc = New-
Object
Microsoft.SharePoint.Client.ClientContext($siteurl)

[Microsoft.SharePoint.Client.SharePointOnlineCredentials]$spocreds
 = New-Object
Microsoft.SharePoint.Client.SharePointOnlineCredentials($username,
 $password)

 $cc.Credentials = $spocreds
 Write-Host -ForegroundColor Yellow 'SideLoading feature is
not enabled on the
site:' $siteurl
 $site = $cc.Site;

 $sideLoadingGuid = new-object System.Guid "AE3A1339-61F5-
4f8f-81A7-ABD2DA956A7D"
 $site.Features.Add($sideLoadingGuid, $true,
[Microsoft.SharePoint.Client.FeatureDefinitionScope]::None);
 $cc.ExecuteQuery();
 Write-Host -ForegroundColor Green 'SideLoading feature
enabled on site' $siteurl

 #Activate the Developer Site feature
}
catch
{
 Write-Host -ForegroundColor Red 'Error encountered when
trying to enable
SideLoading feature' $siteurl, ':' $Error[0].ToString();
}

Credit belongs to Microsoft MVP Colin Phillips for posting this script
on his blog.
Note that one of the requirements is for the
Microsoft.SharePoint.Client DLL. If you already have it on your
device, you can change the script (specifically at line 2) to reference
your path. Otherwise, you can install the SharePoint Online
Management Shell (http://www.microsoft.com/en-

ca/download/details.aspx?id=35588), which will place the DLL in the

Download from finelybook www.finelybook.com

768

http://www.microsoft.com/en-ca/download/details.aspx?id=35588

location indicated by the script. Once the script has run successfully,
then you are ready to use your SharePoint Online site as a
development target.

CREATING A SHAREPOINT PROJECT

To create a SharePoint solution in Visual Studio 2017, select File New
 Project. Filter the project types by selecting Visual C# or Visual Basic

followed by Office/SharePoint. Now you need to make a choice
regarding the execution model for your application. Templates for
both farm solutions and SharePoint Add-Ins are available (see Figure
25-1).

FIGURE 25-1

From the farm solutions perspective, a number of SharePoint project
templates for SharePoint 2010, 2013, and 2016 ship with Visual Studio
2017. While the decision of the execution model is important, beyond
that, it doesn’t really matter which template you select. Most of the

Download from finelybook www.finelybook.com

769

SharePoint components that can be created with these project
templates can also be created as individual items in an existing
SharePoint solution.
For the App Model, there is really only a single project template to use,
that being SharePoint Add-In. For this reason, select it, provide a
project and solution name, and click OK to start the creation process.
The first step in the creation process is to specify the target SharePoint
site and where you’d like to host your application. Figure 25-2 shows
the dialog in question.

FIGURE 25-2

The first text box is the URL for the SharePoint site that is used for
debugging your add-in. There is also a link that takes you to a URL
that describes different options that help you deploy and test a
SharePoint add-in (or an Office add-in for that matter). Below that
link you get to choose the hosting model that you will use for your add-
in. The two choices, Provider-hosted and SharePoint-hosted, are
described in the “App Model” section earlier in this chapter.

Download from finelybook www.finelybook.com

770

Once you provide that information and click the Next button, you can
choose the SharePoint version that you wish to target (Figure 25-3).

FIGURE 25-3

Since the App Model was only introduced in SharePoint 2013, the only
choices you have are SharePoint 2013, SharePoint 2016, and
SharePoint Online. Keep in mind that this is just the earliest version
that your application will support. A SharePoint 2013 app can run in
SharePoint 2016 with no issues.
The next dialog gives you the opportunity to decide which type of web
application you will use to implement your SharePoint add-in. As you
can see in Figure 25-4, the choices are ASP.NET Web Forms and
ASP.NET MVC Web applications.

Download from finelybook www.finelybook.com

771

FIGURE 25-4

A SharePoint Add-In solution contains two projects. The larger of the
two is a web application that is your implementation of the add-in. It
can be any web application, although the project template has just the
two choices. It is also possible to remove the web project that is part of
the initial solution and replace it with a different one after the solution
is created.
The second project is used to connect your web application with
SharePoint. It contains a configuration file, an image that will be used
in the SharePoint site to represent your application, and a manifest
file. More details about the contents of the manifest file are found later
in this section.
The next step in the solution creation process involves configuring
authentication (see Figure 25-5).

Download from finelybook www.finelybook.com

772

FIGURE 25-5

Here your choice depends on the target for your deployment. For the
first option, you will be using Azure Access Control Service. This
means that you will be expected to log into your SharePoint site and
your application with the same credentials. Once you have logged into
your SharePoint site, your credentials will automatically be available
to your application for further authorization functionality (such as
assigning roles).
The second choice is to use a certificate. This option is used if your
SharePoint server is on-premises. You will be required to provide the
location of the certification and any password necessary to install it.
Once you finish configuring authentication, the SharePoint Add-in
solution is created. Figure 25-6 illustrates what the solution looks like
with an ASP.NET MVC application as the implementation project.

Download from finelybook www.finelybook.com

773

FIGURE 25-6

As you can see, there are two projects. The second project is the web
application. You can find more details about the two types of web
applications in Chapter 16, “ASP.NET Web Forms,” and Chapter 17,
“ASP.NET MVC.” It is the first project that is of interest to SharePoint
developers.
The first project is the SharePoint Add-in project. It is used to connect
the web application to a SharePoint site by providing information that
is used when the Add-in is added to SharePoint. There are three files
in the project. The app.config file is a standard configuration file. If
you look at the details, you’ll find that it contains minimal information
about WebGrease and Newtonsoft.Json dependencies.

Download from finelybook www.finelybook.com

774

There is also an AppIcon.png file. This is an image file that is
associated with your application in the SharePoint site once it has
been deployed.
The final file, AppManifest.xml, contains most of the information that
connects your web application to SharePoint. It also has a designer to
help you organize the information. If you double-click on the file,
you’ll see a designer similar to the one that appears in Figure 25-7.

FIGURE 25-7

This first tab contains general information about the SharePoint Add-
in. This includes the title, name, and version number. The difference
between the name and title relates to where the information appears.
The title appears at the top of the browser window for the application.
The name appears within SharePoint to indicate the application to the
user.
The icon property defines the image that is displayed, along with the
name, in SharePoint. The Start page is the URL to the first page
displayed to the user when the application is launched. There is a
query string property allowing you to specify additional parameters to
the page. At a minimum, you should include the {StandardTokens}

Download from finelybook www.finelybook.com

775

value that is visible in Figure 25-7. This ensures that sufficient
information is provided for your application to communicate with the
SharePoint server. Finally, you can specify the hosting type. This is a
dropdown value that allows you to change between Provider-hosted
and SharePoint-hosted.
The second tab, labelled Permissions and shown in Figure 25-8, is
used to identify the permissions that are required by your application
with respect to the SharePoint site.

FIGURE 25-8

A SharePoint add-in has the ability to interact with SharePoint’s
functionality and elements. In this dialog, you can specify the different
permissions that are required by your application. Each permission
has three components. First is the scope. This is one of the different
SharePoint entities seen in Figure 25-8. Once you have selected the

Download from finelybook www.finelybook.com

776

scope, you can add the other two pieces. The Permission is chosen
from a list, and the choices that appear in the list are based on the
selected scope. For instance, if you choose List as the scope, then you
can select from Read, Write, Manage, and FullControl. If you select
Workflow, then the only permission is Elevate. Finally, there is the
properties component. This is a collection of name/value pairs, and
again, the set of values is dependent on the context of the scope. For
instance, the List scope would expect to have the name of the list as
one of the properties.
You can define more than one permission for your application. When
your application is loaded into SharePoint, the user who is installing it
will be asked to give these permissions to the application. If they
choose to not give permissions to your app, then the app won’t be
installed. That is, the permission list is an all or nothing condition for
installation.
The Prerequisites tab (Figure 25-9) is used to define the set of services
that your application requires in the SharePoint environment in order
to function.

Download from finelybook www.finelybook.com

777

FIGURE 25-9

There are two sets of prerequisites. The Autohosting prerequisites are
needed if you have selected SharePoint-hosted as the deployment
option. You can ensure that your application has access to a database
and a web site through these prerequisites. If you chose Provider-
hosted, then you are responsible for setting any requirements on your
own.

NOTE

To avoid confusion, there is a difference between the SharePoint-
hosted deployment option and an option that was available in
SharePoint 2013 called Autohosted. An Autohosted deployment
would automatically create an Azure Web site, deploy your web

Download from finelybook www.finelybook.com

778

application into it, and link it up with your SharePoint
environment. For a number of reasons, this deployment model
never made it out of preview. However, this is not the same as the
Autohosting prerequisites for the SharePoint-hosted deployment
that is discussed in this section.

The second set of prerequisites is used to define the services that must
be available on the SharePoint server. The list of possible choices is
visible in Figure 25-9. You can identify more than one capability, and
for each, you can provide the minimum version that is needed.
Figure 25-10 shows the Supported Locales tab. It is used to define the
localizations that are supported and to map a particular resource file
to each one. On the left, you choose the locale from the dropdown.
Then you can create the resource file that is associated with that locale
on the right. When you select a locale, it will automatically create the
resource file named using the standard locale code by default, but you
can change it if you’d like.

Download from finelybook www.finelybook.com

779

FIGURE 25-10

The last tab, Remote Endpoints (Figure 25-11), is used to define any
remote endpoints that need to be accessed by your application. By
default, when your application runs within the context of SharePoint,
it can only communicate with the server. In other words, you can’t
make an AJAX call to a completely different URL. This tab lets you
define the endpoints that your application will be allowed to
communicate with. Specify the URL in the top text box and click Add.
This places the URL into the second box and, when deployed, your app
will be able to make requests to it.

Download from finelybook www.finelybook.com

780

FIGURE 25-11

RUNNING YOUR APPLICATION

When it comes to being able to run and debug your SharePoint Add-in,
it’s important to be aware that, ultimately, the Add-in is just a Web
application. As such, you are able to execute, test, and debug it as you
would any other Web application. The only thing to remember is that
in order to run within the context of SharePoint, you actually need to
run both the Web application and the SharePoint application. In the
Solution Explorer, right-click on the solution and choose Set StartUp
Projects. In the dialog that appears, you should see that both of the
projects in your solution have been set to start when you run the
application. Setting the Action for the Web application to Start is
necessary to debug your application. Setting the Action for the
SharePoint application (the one with the AppManfect.xml file) to Start
is necessary to load your application in to SharePoint.
When you run your application, you will be presented with a number

Download from finelybook www.finelybook.com

781

of different warning dialogs. First, you will be asked to install a self-
signed Localhost certificate (see Figure 25-12). This certificate is
required to run your web site in HTTPS, something that SharePoint
demands.

FIGURE 25-12

NOTE

You might notice that the certificate shown in Figure 25-12 has a
valid date from 2016. You may or may not see something similar
on your machine. If you have used a self-signed certificate
associated with localhost in the past, then it will just be reused for
this project. If you have never used a self-signed certificate on
your machine before, one gets created for you as part of the initial
running of the application.

Then you get a warning confirming that what you just selected is really
what you want to do. An example is found in Figure 25-13.

Download from finelybook www.finelybook.com

782

FIGURE 25-13

Next up is your credentials for the SharePoint site. Once they have
been successfully entered, you will be taken to the SharePoint site and
be prompted to allow your application to have access to SharePoint
(Figure 25-14).

Download from finelybook www.finelybook.com

783

FIGURE 25-14

This is the point where you are installing your application into
SharePoint. It has already confirmed that the SharePoint site has all of
the required capabilities. This dialog will also include a list of the
permissions that your application demands. If you click on Trust It,
then the application is installed and ready to go.

SUMMARY

In this chapter you learned how to build solutions for Microsoft
SharePoint 2016 and SharePoint Online. The development tools in
Visual Studio 2017 enable you to easily develop SharePoint Add-ins.
Through the web application that is the implementation of the add-in,
you have access to the components and functionality that SharePoint
provides.
This chapter just scratched the surface of what is possible with
SharePoint development. If you are interested in diving deeper into

Download from finelybook www.finelybook.com

784

this topic, visit the SharePoint Developer Center at
https://msdn.microsoft.com/en-us/library/office/jj162979.aspx.

Download from finelybook www.finelybook.com

785

https://msdn.microsoft.com/en-us/library/office/jj162979.aspx

PART VIII
Data

CHAPTER 26: Visual Database Tools
CHAPTER 27: The ADO.NET Entity Framework
CHAPTER 28: Data Warehouses and Lakes
CHAPTER 29: Data Science and Analytics

Download from finelybook www.finelybook.com

786

26
Visual Database Tools

WHAT’S IN THIS CHAPTER?

Understanding the data-oriented tool windows within Visual
Studio 2017
Creating and designing databases
Managing database changes using ReadyRoll
Searching through your SQL databases

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Database connectivity is essential in almost every application you
create, regardless of whether it’s a Windows-based program or a
website or service. When Visual Studio .NET was first introduced,
it provided developers with a great set of options to navigate to the
database files on their filesystems and local servers, with the Server
Explorer, data controls, and data-bound components. The
underlying .NET Framework included ADO.NET, a retooled
database engine more suited to the way applications are built
today.
Visual Studio includes tools and functionality to give you more
direct access to the data in your application. One way it does this is
by providing tools to assist with designing tables and managing
your SQL Server objects. This chapter looks at how you can create,
manage, and consume data using the various tool windows
provided in Visual Studio 2017, which can be collectively referred

Download from finelybook www.finelybook.com

787

http://wrox.com
http://www.wrox.com

to as the Visual Database Tools.

DATABASE WINDOWS IN VISUAL STUDIO 2017

A number of windows specifically deal with databases and their
components. From the Data Sources window that shows project-
related data files and the Data Connections node in the Server
Explorer, to the Database Diagram Editor and the visual designer for
database schemas, you can find most of what you need directly within
the IDE. It’s unlikely that you need to venture outside of Visual Studio
to work with your data.
Figure 26-1 shows Visual Studio 2017 in the process of a database-
editing session. Notice how the windows, toolbars, and menus all
update to match the particular context of editing a database table. In
the main area is the list of columns belonging to the table. Below the
column list is the SQL statement that can be used to create the table.
The normal Properties tool window contains the properties for the
current table. The next few pages take a look at each of these windows
and describe their purposes so that you can use them effectively.

FIGURE 26-1

Server Explorer

Download from finelybook www.finelybook.com

788

You can use the Server Explorer to navigate the components that make
up your system (or indeed the components of any server to which you
can connect). One useful component of this tool window is the Data
Connections node. Through this node, Visual Studio 2017 provides a
significant subset of the functionality available through other
products, such as SQL Server Management Studio, for creating and
modifying databases.
Figure 26-1 shows the Server Explorer window with an active database
connection (AdventureWorks2014.dbo). The database icon displays
whether you are actively connected to the database and contains a
number of child nodes dealing with the typical components of a
modern database, such as Tables, Views, and Stored Procedures.
Expanding these nodes lists the specific database components along
with their details. For example, the Tables node contains a node for
the Department table, which in turn has nodes for each of the columns,
such as DepartmentID, Name, and GroupName. Selecting any of these
nodes enables you to quickly view the properties within the Properties
tool window. This is the default database view; you can switch to either
Object Type or Schema view by selecting Change View, followed by the
view to change to, from the right-click context menu off the database
node. Each of these views simply groups the information about the
database into a different hierarchy. The Schemas view groups the
elements into Schemas, Assemblies and System-supplied objects.
To add a new database connection to the Server Explorer window,
click the Connect to Database button at the top of the Server Explorer
or right-click the Data Connections root node, and select the Add
Connection command from the context menu.
If this is the first time you have added a connection, Visual Studio asks
you what type of data source you are connecting to. Visual Studio 2017
comes packaged with a number of Data Source connectors, including
Access, SQL Server, and Oracle, as well as a generic ODBC driver. It
also includes a data source connector for a Microsoft SQL Server
Database.
The Database File option borrows from the easy deployment model of
its lesser cousin, Microsoft Access. With SQL Server Database File, you
can create a flat file for an individual database. This means you don’t
need to attach it to a SQL Server instance. This flexibility makes it

Download from finelybook www.finelybook.com

789

highly portable; you simply deliver the .mdf file containing the
database along with your application.
After you choose the data source type to use, the Add Connection
dialog appears. Figure 26-2 shows this dialog for a SQL Server
Database File connection with the settings appropriate to that data
source type.

FIGURE 26-2

NOTE

If you have previously defined a data connection in Visual Studio
and chosen the Always Use This Selection check box in the Change
Data Source dialog, then you are taken directly to the Add
Connection dialog. In that case, Figure 26-2 is the dialog that
appears when you click the Change button.

Download from finelybook www.finelybook.com

790

The Change button takes you to the Data Sources page, enabling you
to select a different type of database connection for your Visual Studio
session. Creating a SQL Server Database File is very straightforward.
Just type or browse to the location where you want the file and specify
the database name for a new database. If you want to connect to an
existing database, use the Browse button to locate it on the filesystem.
Generally, the only other task you need to perform is to specify
whether your SQL Server configuration uses Windows or SQL Server
Authentication. As part of theinstallation of Visual Studio 2017, you
have an option to install SQL Server 2016 Express, which uses
Windows Authentication as its base authentication model.

NOTE

The Test Connection button displays an error message if you try
to connect to a new database file. This is because it doesn’t exist
until you click OK, so there’s nothing to connect to!

This dialog will be slightly different for different connection types. But
regardless of the type, when you click OK, Visual Studio attempts to
connect to the database. If successful, it adds it to the Data
Connections node, including the child nodes for the main data types in
the database. Alternatively, if the database doesn’t exist, Visual Studio
prompts you by asking if it should go ahead and create it. You can also
create a new database by selecting Create New SQL Server Database
from the right-click menu off the Data Connections node in the Server
Explorer.

Table Editing

The easiest way to edit a table in the database is to double-click its
entry in the Server Explorer. An editing window (Figure 26-3) then
displays in the main workspace, consisting of three components. The
left side of the top section is where you specify each field name, data
type, and important information such as length of text fields, the
default value for new rows, and whether the field is nullable. On the
right side of the top section are additional table attributes. These
include the keys, the indices, any constraints or foreign keys that are

Download from finelybook www.finelybook.com

791

defined, and any triggers.

FIGURE 26-3

The lower half of the table editing workspace contains the SQL
statement that, when executed, will create the table.
Right-clicking on one of the elements on the right gives you access to a
set of commands that you can perform against the table (shown in
Figure 26-3). Depending on which heading you right-click, the context
menu allows you to add keys, indices, constraints, foreign keys, and
triggers.
For any of the columns in the table, the Properties window contains
additional information beyond what is shown in the workspace. The
column properties area enables you to specify all the available
properties for the particular Data Source type. For example, Figure 26-
4 shows the Properties window for a field, DepartmentID, which has
been defined with an identity clause automatically increased by 1 for
each new record added to the table.

Download from finelybook www.finelybook.com

792

FIGURE 26-4

Relationship Editing

Most databases likely to be used by your .NET solutions are relational
in nature, which means you connect tables together by defining
relationships. To create a relationship, open one of the tables that will
be part of the relationship, and right-click the Foreign Keys header at
the right of the workspace. This creates a new entry in the list, along
with a new fragment in the SQL statement (found at the bottom of the
workspace). Unfortunately, this information is just a placeholder. In
order to specify the details of the foreign key relationship, you need to
modify the properties for the SQL fragment that was added, as shown
in Figure 26-5.

Download from finelybook www.finelybook.com

793

FIGURE 26-5

Views, Stored Procedures, and Functions

To create and modify views, stored procedures, and functions, Visual
Studio 2017 uses a text editor, as shown in Figure 26-6. Because there
is no IntelliSense to help you create your procedure and function
definitions, Visual Studio doesn’t allow you to save your code if it
detects an error.

Download from finelybook www.finelybook.com

794

FIGURE 26-6

To help you write and debug your stored procedures and functions,
there are snippets available to be placed in your SQL statements. The
right-click context menu includes an Insert Snippet option that has
snippets for creating a stored procedure, a view, a user-defined type,
and a wide variety of other SQL artifacts. The context menu also
includes options to execute the entire stored procedure or function.
A word of warning about executing the SQL for existing artifacts:
When you double-click to look at the definition, the SQL that is
displayed is the SQL that would be used to create the artifact. That is
to say that double-clicking on a view will display the CREATE VIEW SQL
statement. If you execute that statement, you will attempt to create a
view that already exists, resulting in a number of error statements. If
you’re attempting to modify the artifact, you need to change the
statement to the ALTER version.

Download from finelybook www.finelybook.com

795

The Data Sources Window

The Data Sources window contains any active data sources known to
the project, such as data sets (as opposed to the Data Connections in
the Server Explorer, which are known to Visual Studio overall). To
display the Data Sources tool window, use the View Other Windows
Show Data Sources menu command.
The Data Sources window has two main views, depending on the
active document in the workspace area of the IDE. When you edit
code, the Data Sources window displays tables and fields with icons
representing their types. This aids you as you write code because you
can quickly reference the type without looking at the table definition.
When you edit a form in Design view, however, the Data Sources view
changes to display the tables and fields with icons representing their
current default control types (initially set in the Data UI
Customization page of Options). Figure 26-7 shows that the text fields
use TextBox controls, whereas the ModifiedDate field uses a
DateTimePicker control. The icons for the tables indicate that all tables
will be inserted as DataGridView components by default as shown in
the drop-down list.

FIGURE 26-7

Download from finelybook www.finelybook.com

796

SQL Server Object Explorer

If you are a regular developer of database applications in Visual
Studio, odds are good that you’re familiar with the SQL Server
Management Studio (SSMS). The reason for the familiarity is that
there are tasks that need to be performed that don’t fit into the Server
Explorer functionality. To alleviate some of the need to utilize SQL
Server Management Studio, Visual Studio 2017 includes the SQL
Server Object Explorer. Through this information, some of the
functionality not found in the Server Explorer can be found in an
interface that is somewhat reminiscent of SSMS. To launch the SQL
Server Object Explorer, use the View SQL Server Object Explorer
option.
To start working against an existing SQL Server instance, you need to
add it to the Explorer. Right-click the SQL Server node, or click the
Add SQL Server button (second from the left). The dialog that appears
is the standard one that appears when connecting to SSMS. You need
to provide the server name and instance, along with the authentication
method that you want to use. Clicking the Connect button establishes
the connection.
When the connection has been made, three nodes underneath the
server appear. These are the Databases, Security items, and Server
Objects that are part of that instance (see Figure 26-8).

Download from finelybook www.finelybook.com

797

FIGURE 26-8

Under the Security and Server Objects nodes, a number of subfolders
are available. These subfolders contain various server-level artifacts.
These include logins, server roles, linked servers, triggers, and so on
that are defined on the server. For each of the subfolders, you can add
or modify the entities that are presented. For example, if you right-
click the EndPoints node, the context menu provides the option to add
either a TCP- or HTTP-based endpoint. When the Add option is
selected, T-SQL code is generated and placed into a freshly opened
designer tab. The T-SQL code, when executed, creates the artifact. Of
course, you must modify the T-SQL so that when it is executed the
results will be as wanted.
The Databases node also contains subfolders. The difference is that
here each subfolder represents a database on the SQL Server instance.
As you expand a database node, additional folders containing Tables,
Views, Synonyms, Programmability items, Server Broker storage
elements, and Security appear. For most of these items, the process to

Download from finelybook www.finelybook.com

798

create or edit is commonplace. Right-clicking the subfolder and
selecting the Add New option generates the SQL statement needed to
create the selected item. (Naturally, you need to change a couple of
values.) Or you could right-click on an existing item and select the
View Properties or other similarly named menu options. This displays
the T-SQL code that would alter the selected item. You can then
change the appropriate values and execute the statement by clicking
the Update button (see Figure 26-9).

FIGURE 26-9

EDITING DATA

Visual Studio 2017 also has the capability to view and edit the data
contained in your database tables. To edit the information, right-click
on the table you want to view in the Server Explorer and select the
Show Table Data option from the context menu. You see a tabular
representation of the data in the table, as shown in Figure 26-10,
enabling you to edit it to contain whatever default or test data you
need to include. As you edit information, the table editor displays
indicators next to fields that have changed.

Download from finelybook www.finelybook.com

799

FIGURE 26-10

You can also show the diagram, criteria, and SQL panes associated
with the table data you’re editing by right-clicking anywhere in the
table and choosing the appropriate command from the Pane submenu.
This can be useful for customizing the SQL statement used to retrieve
the data, for example, to filter the table for specific values or just to
retrieve the first 50 rows.

REDGATE DATA TOOLS

As part of an attempt to improve the integration between Visual Studio
and database artifacts, Microsoft partnered with Redgate to include
three different tools in Visual Studio 2017.

ReadyRoll Core: Provides source control and deployment
assistance to SQL Server artifacts.
SQL Prompt Core: Provides code completion for SQL. Think of
it as IntelliSense for SQL statements and you’re pretty close.
SQL Search: Allows you to search for SQL objects within and
across databases.

Download from finelybook www.finelybook.com

800

Each of these is covered in more detail in the subsequent sections.

ReadyRoll Core

One of the most common tasks for developers is making changes to a
database. That’s a task that is fraught with challenges. Some
developers make the changes directly against the database. This makes
it challenging to track which changes have been made and to
propagate those changes to QA or production systems. Other
developers spend a great deal of effort maintaining migration scripts,
for both data and schema, to handle the changes that are made to the
database during development.
The purpose of ReadyRoll Core is to make the lives of both of these
types of developers easier. It provides a mechanism for generating and
maintaining the scripts necessary to deploy, migrate, and update
databases, both at the data and the schema level.
The starting point is a new SQL Server project. Use File New Project
to open the New Project dialog. On the left, navigate to the SQL Server
node. You should see two project templates, as shown in Figure 26-11.

Download from finelybook www.finelybook.com

801

FIGURE 26-11

The first template, SQL Server Database Project, is the legacy
template. There is also a ReadyRoll SQL Server Database Project
available. Provide an appropriate project and solution name and click
OK to create the project.

NOTE

If you don’t see the ReadyRoll project in the list, then use the
Visual Studio Installer to install the ReadyRoll components. You
can find them in the list of Individual Components in the Visual
Studio Installer. See Chapter 1, “A Quick Tour,” for more details.

The project that is created can be seen in the Solution Explorer in
Figure 26-12.

FIGURE 26-12

The project itself consists mostly of three folders: Migrations, Post-
Deployment, and Pre-Deployment. Into each of these folders you will
place (or generate) SQL scripts that will be executed at various points
in the process. The Pre- and Post-Deployment scripts will be executed
before and after the database deployment, respectively. The Migration
scripts are run between those two, as they form the actual deployment.
Once the project has been created, the next step is to connect it to a

Download from finelybook www.finelybook.com

802

database. To be fair, if you are creating a new database as part of your
application, you can also connect to an empty database. But for this
example, open the ReadyRoll pane by using View ReadyRoll. There
are three steps that need to be taken to get started, and the pane
indicates where you are. The pane shown in Figure 26-13 is what the
pane looks like after you have created a project and connected to a
database.

FIGURE 26-13

When you connect your project to a database, you get a dialog that
allows you to create a connection. You can select a recently used
connection (and that is recently used across all of the projects that you
have opened, not just the database project). Or you can work with
databases that have been defined in any of three different zones.
Figure 26-14 shows the dialog that is used to choose databases in the
different zones: local (on your machine), network (within your current
network), or Azure.

Download from finelybook www.finelybook.com

803

FIGURE 26-14

In this dialog, you are presented with a list of database servers. Once
you select the desired server, the fields in the lower half of the form are
used to define the connection. This includes the specific database, the
authentication mode, and any required credentials. There is a button
that allows you to test the connection to make sure your information is
correct. When you are finished, clicking on OK links the selected

Download from finelybook www.finelybook.com

804

database to the database project.
Once you have connected to an existing database, you can use the
Import Database button (as seen in Figure 26-13) to create the initial
scripts. After a few minutes (the actual time depends on the number of
objects in the database), the ReadyRoll pane looks similar to Figure
26-15.

FIGURE 26-15

You can see from the messages in the body of the pane that a single
table (Customer) was created. It also indicates that a migration script
was placed into the project. You can double-click on the script to see
what was actually created.
Across the top of the ReadyRoll pane, there are a number of controls
aimed at giving you access to commonly needed functionality. On the
left is a dropdown list containing the database projects that are in your
current solution. Changing the project allows you to target your
commands at different projects.
Depending on exactly what is displayed on the pane, you might see a
Home icon to the right of the list of database projects. It can be seen in
Figure 26-15. When clicked, the ReadyRoll pane looks like to Figure
26-16.

Download from finelybook www.finelybook.com

805

FIGURE 26-16

The next two controls will be covered in a few moments. They are used
to import changes made to the database into the database project. The
last two icons are used to open the target database in SQL Server
Management Studio (SSMS) and to modify the connection for the
target database.
Now that the connection to the database has been made, you are free
to modify the database as you need to. You can use the SQL Object
Explorer built into Visual Studio. You can also use SSMS. How you
change the database is not important. When you are finished making
the changes (for this example, an address column was added to the
Customer table), come back to the ReadyRoll pane and click on the
icon that refreshes the list of database object changes (the circular
arrows in Figure 26-16). The result is shown in Figure 26-17.

FIGURE 26-17

You can see that the change that you made is included in the pane.
When you click on the Import and generate script link, a SQL script is

Download from finelybook www.finelybook.com

806

created and placed in the project in the Migration folder. You can
repeat this process as often as you need to modify the database.
When it comes time to publish your database project, at the moment,
the process is a little clunky. If you right-click on the database project,
you’ll notice a Publish option. However, when you click on it, you see a
message box saying that the database can’t be published through
Visual Studio. Instead, there is a command line that can be used to
publish the database, and one of the buttons on the dialog generates
that command for the current project and puts it on the clipboard.

SQL Prompt Core

The goal of SQL Prompt Core is to introduce some of the productivity
of IntelliSense into writing SQL commands. To start, open up a new
SQL query window using Tools SQL Server New Query. The window
opens and you are prompted for a connection against which you will
be writing the query. Once you have the connection, you are ready to
start writing.
Presuming that you are working against the CRM database, type
SELECT * FROM. Add a space after the FROM and you will see something
like Figure 26-18.

Download from finelybook www.finelybook.com

807

FIGURE 26-18

Here you can choose any one of the available objects. This is precisely
the kind of help that you expect when editing code files.
Beyond this basic functionality, there are other options available. In
Figure 26-19, there is a relatively normal SQL query.

Download from finelybook www.finelybook.com

808

FIGURE 26-19

When the cursor is just to the right of the asterisk, using the Tab key
will automatically replace the asterisk with the list of fields for the
current table. If you don’t want to choose all of the columns, use
Ctrl+Space to open the list of items and click on the Column Selector
tab. What you see resembles Figure 26-20.

Download from finelybook www.finelybook.com

809

FIGURE 26-20

One final feature in SQL Prompt Core is the ability to suggest (and
autocomplete) JOIN statements in your query. As you start to type the
ON clause, the foreign key relationships in the tables are evaluated and
the possible JOINs are presented to you.

SQL Search

When you are making changes to your database, it is frequently useful
to be able to search either within a database or even across multiple
databases for particular elements. In Visual Studio 2017, this
functionality is available through the Tools SQL Search option.
Figure 26-21 shows this window.

FIGURE 26-21

In the bar along the top of the window, you can select the databases
that are to be scanned through a dropdown. Place a checkmark beside
the database to include and click on OK. Then enter a value into the
search box on the right and all of the selected databases are searched.
Figure 26-22 illustrates a set of results.

Download from finelybook www.finelybook.com

810

FIGURE 26-22

In some cases, there is contextual information available about the
result. If that’s the case (and there is a column in the results called
Detail that contains the context), then selecting the item causes the
context to be displayed in the lower half of the pane.

SUMMARY

With the variety of tools and windows available in Visual Studio 2017,
you can easily create and maintain databases without leaving the IDE.
You can manipulate data and define database schemas visually using
the Properties tool window with the Schema Designer view.
More importantly for developers who are frequently manipulating
databases, Visual Studio 2017 includes a number of tools aimed at
helping manage and deploy databases in a real-world production
environment.

Download from finelybook www.finelybook.com

811

27
The ADO.NET Entity Framework

WHAT’S IN THIS CHAPTER?

Understanding the Entity Framework
Creating an Entity Framework model
Querying Entity Framework models

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
One of the core requirements in business applications (and many
other types of applications) is the ability to store and retrieve data
in a database. However, that’s easier said than done because the
relational schema of a database does not blend well with the object
hierarchies that you prefer to work with in code. To create and
populate these object hierarchies required a lot of code to be
written to transfer data from a data reader into a developer-
friendly object model, which was then usually difficult to maintain.
It was such a source of constant frustration that many developers
turned to writing code generators or various other tools that
automatically created the code to access a database based on its
structure. However, code generators usually created a 1:1 mapping
between the database structure and the object model, which was
hardly ideal either, leading to a problem called “object relational
impedance mismatch,” where how data was stored in the database
did not necessarily have a direct relationship with how developers
wanted to model the data as objects. This led to the concept of

Download from finelybook www.finelybook.com

812

http://wrox.com
http://www.wrox.com

Object Relational Mapping (ORM), where an ideal object model
could be designed for working with data in code, which could then
be mapped to the schema of a database. When the mapping is
complete, an ORM framework should take over the burden of
translating between the object model and the database, leaving
developers to focus on actually solving the business problem
(rather than focusing on the technological issues of working with
data).
To many developers, ORM frameworks are the Holy Grail for
working with data in a database as objects, and there’s no shortage
of debate over the strengths and pitfalls of the various ORM
frameworks that are available. You won’t delve into these
arguments in this chapter, but simply look at how to use the
ADO.NET Entity Framework — Microsoft’s ORM framework.
This chapter takes you through the process of creating an Entity
Framework model of a database, and how to use it to query and
update the database. The Entity Framework is a huge topic, with
entire books devoted to its use. Therefore, it would be impossible
to go through all its features, so this chapter focuses on discussing
some of its core features and how to start and create a basic entity
model.
The Entity Framework model you create in this chapter will be
used in a number of subsequent chapters where database access is
required in the samples.

WHAT IS THE ENTITY FRAMEWORK?

Essentially, the Entity Framework is an ORM framework. Object
Relational Mapping enables you to create a conceptual object model,
map it to the database, and the ORM framework can take care of
translating your queries over the object model to queries against the
database, returning the data as the objects that you’ve defined in your
model.
Here are some of the important concepts involved in the Entity
Framework and some of the terms used throughout this chapter:

Entity Model: The entity model you create using the Entity

Download from finelybook www.finelybook.com

813

Framework consists of three parts:
Conceptual model: Represents the object model, including
the entities, their properties, and the associations between them
Store model: Represents the database structure, including the
tables/views/stored procedures, columns, foreign keys, and so
on
Mapping: Provides the glue between the store model and the
conceptual model (that is, between the database and the object
model), by mapping one to the other

Each of these parts is maintained by the Entity Framework as XML
using a domain-specific language (DSL).
Entity: Entities are essentially just objects (with properties) to
which a database model is mapped.
Entity Set: An entity set is a collection of a given entity. You can
think of it as an entity being a row in a database, and an entity set
being the table.
Association: Associations define relationships between entities in
your entity model and are conceptually the same as relationships in
a database. Associations are used to traverse the data in your entity
model between entities.
Mapping: Mapping is the core concept of ORM. It’s essentially the
translation layer from a relational schema in a database to objects
in code.

GETTING STARTED

To demonstrate some of the various features in the Entity Framework,
the example in this section uses the AdventureWorks2014 sample
database developed by Microsoft as one of the sample databases for
SQL Server.
The AdventureWorks2014 database is available for download from
https://github.com/Microsoft/sql-server-

samples/releases/tag/adventureworks2014.
Adventure Works Cycles is a fictional bicycle sales chain, and the
AdventureWorks2014 database is used to store and access its product

Download from finelybook www.finelybook.com

814

https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks2014

sales data.
Follow the instructions from the CodePlex website detailing how to
install the database from the downloaded script in a SQL Server
instance (SQL Server Express Edition is sufficient) that is on or can be
accessed by your development machine.
Now you will move on to create a project that contains an Entity
Framework model of this database. Start by opening the New Project
dialog and creating a new project. The sample project you create in
this chapter uses the WPF project template. You can display data in a
WPF DataGrid control defined in the MainWindow.xaml file named
dgEntityFrameworkData.
Now that you have a project that can host and query an Entity
Framework model, it’s time to create that model.

CREATING AN ENTITY MODEL

You have two ways of going about creating an entity model. The usual
means to do so is to create the model based on the structure of an
existing database; however, with the Entity Framework it is also
possible to start with a blank model and have the Entity Framework
generate a database structure from it.
The sample project uses the first method to create an entity model
based on the AdventureWorks2014 database’s structure.

The Entity Data Model Wizard

Open the Add New Item dialog for your project, navigate to the Data
category, and select ADO.NET Entity Data Model as the item template
(as shown in Figure 27-1). Call it AdventureWorks2014Model.edmx.

Download from finelybook www.finelybook.com

815

FIGURE 27-1

This starts the Entity Data Model Wizard that can help you start
building an Entity Framework model.
As the first step, the dialog in Figure 27-2 enables you to select
whether you want to automatically create a model from a database,
start with an empty model, start with an empty model for code-first
design, or create a code-first model using an existing database.

Download from finelybook www.finelybook.com

816

FIGURE 27-2

NOTE

The idea behind the code-first approach to database design is to
allow you to start the process by creating the classes. These
classes should be focused on providing the attributes that your
application requires. Then, as the classes are created, the
database design is modified to match your class model (along
with any necessary configuration). This approach is common
when you are using a Domain Driven Design methodology.

The empty model option is useful when you want to create your model

Download from finelybook www.finelybook.com

817

from scratch, and either mapping it manually to a given database or
letting the Entity Framework create a database based on your model.
However, you can create an entity model from the
AdventureWorks2014 database, so for the purpose of this example use
the EF Designer from Database option, and get the wizard to help you
create the entity model from the database.
Moving to the next step, you now need to create a connection to the
database (as shown in Figure 27-3). You can find the most recent
database connection you’ve created in the drop-down list, but if it’s not
there (for example, if this is the first time you’ve created a connection
to this database) you need to create a new connection. To do so, click
the New Connection button, and go through the standard procedure to
select the SQL Server instance, authentication credentials, and finally,
the database.

Download from finelybook www.finelybook.com

818

FIGURE 27-3

If you use a username and password as your authentication details,
you can choose not to include those in the connection string
(containing the details required to connect to the database) when it is
saved because this string is saved in plain text that would enable
anyone who sees it to have access to the database. In this case you
would have to provide these credentials to the model before querying
it for it to create a connection to the database. If you don’t select the
check box to save the connection settings in the App.config file, you
also need to pass the model the details on how to connect to the
database before you can query it.
Next, the wizard asks you which version of Entity Framework to use.
The choices presented include, by default, version 6.0 and 5.0. The
reason to include version 5.0 (and to allow you to have older versions
as well) is to support existing applications that have not yet upgraded
to version 6.0. Keep the default of version 6.0 and click Next.
In the next step, the wizard connects to the database and retrieves its
structure (that is, its tables, views, and stored procedures), which
displays in a tree for you to select the elements to be included in your
model (see Figure 27-4).

Download from finelybook www.finelybook.com

819

FIGURE 27-4

Other options that can be specified on this screen include:
Pluralize or singularize generated object names: This
option (when selected) intelligently takes the name of the
table/view/stored procedure and pluralizes or singularizes the
name based on how that name is used in the model. (Collections
use the plural form, entities use the singular form, and so on.)
Include foreign key columns in the model: The Entity
Framework supports two mechanisms for indicating foreign key
columns. One is to create a relationship and hide the column from
the entity, instead representing it through a relationship property.
The other is to explicitly define the foreign key in the entity. If you
wish to use the explicit definition, select this option to include it in
your entities.

Download from finelybook www.finelybook.com

820

Import selected stored procedures and functions into the
entity model: While the entity data store supports the inclusion
of stored procedures and functions, they need to be imported as
functions in order to be accessible through the model. If you select
this option, the stored procedures and functions that you choose in
this dialog will automatically be imported into the model.
Model Namespace: This enables you to specify the namespace in
which all the classes related to the model will be created. By
default, the model exists in its own namespace (which defaults to
the name of the model entered in the Add New Item dialog) rather
than the default namespace of the project to avoid conflict with
existing classes with the same names in the project.

Select all the tables in the database to be included in the model.
Clicking the Finish button in this screen creates an Entity Framework
model that maps to the database. You might get prompted with a
security warning about running a text template. The reason is that the
generation of the classes used by Entity Framework is accomplished
through a T4 Template. Visual Studio will prompt you for
confirmation before running a template unless you have previously
disabled that warning. See Chapter 43, “Code Generation with T4,” in
the online archive for more information about T4 Templates.
Once generated, you can view the model in the Entity Framework
designer, adjust it per your requirements, and tidy it up as per your
tastes (or standards) to make it ideal for querying in your code.

The Entity Framework Designer

After the Entity Framework model has been generated, it opens in the
Entity Framework designer, as shown in Figure 27-5.

Download from finelybook www.finelybook.com

821

FIGURE 27-5

The designer has automatically laid out the entities that were created
by the wizard, showing the associations it has created between them.
You can move entities around on the designer surface, and the
designer automatically moves the association lines and tries to keep
them neatly laid out. Entities automatically snap to a grid, which you
can view by right-clicking the designer surface and selecting Grid
Show Grid from the context menu. You can disable the snapping by
right-clicking the designer surface and unchecking Grid Snap to Grid
from the context menu to have finer control over the diagram layout,
but entities line up better (and hence make the diagram neater) by
leaving the snapping on.
As you move entities around (or add additional entities to) the
diagram, you may find it gets a little messy, with association lines
going in all directions to avoid getting “tangled.” To get the designer to
automatically lay out the entities neatly again according to its own
algorithms, you can right-click the designer surface and select
Diagram Layout Diagram from the context menu.
Entity Framework models can quickly become large and difficult to

Download from finelybook www.finelybook.com

822

navigate in the Entity Framework designer. Luckily, the designer has a
few tools to make navigating it a little easier. The designer enables you
to zoom in and out using the zoom buttons in its bottom-right corner
(below the vertical scrollbar — see Figure 27-6). The button
sandwiched between these zoom in/out buttons zooms to 100% when
clicked.

FIGURE 27-6

To zoom to a predefined percentage, right-click the designer surface,
and select one of the options in the Zoom menu. In this menu you can
also find a Zoom to Fit option (to fit the entire entity model within the
visible portion of the designer), and a Custom option that pops up a
dialog enabling you to type a specific zoom level.
In addition, selecting an entity in the Properties tool window (from the
drop-down object selector) automatically selects that entity in the
designer and brings it into view; right-clicking the entity in the Model
Browser tool window (described shortly) and selecting the Show in
Designer menu item does the same. These make it easy to navigate to a
particular entity in the designer, so you can make any modifications as
required.
You can minimize the space taken by entities by clicking the icon in
the top-right corner of the entity. Alternatively, you can roll up the
Properties/Navigation Properties groupings by clicking the +/– icons
to their left. Figure 27-7 shows an entity in its normal expanded state,
with the Properties/Navigation Properties groupings rolled up, and
completely rolled up.

Download from finelybook www.finelybook.com

823

FIGURE 27-7

You can expand all the collapsed entities at one time by right-clicking
the designer surface and selecting Diagram Expand All from the
context menu. Alternatively, you can collapse all the entities in the
diagram by right-clicking the designer surface and selecting Diagram
Collapse All from the context menu.
A visual representation of an entity model (as provided by the Entity
Framework designer) can serve a useful purpose in the design
documentation for your application. The designer provides a means to
save the model layout to an image file to help in this respect. Right-
click anywhere on the designer surface, and select Diagram Export as
Image from the context menu. This pops up the Save As dialog for you
to select where to save the image. It defaults to saving as a bitmap
(.bmp); if you open the Save As Type drop-down list, you can see that it
can also save to JPEG, GIF, PNG, and TIFF. PNG is probably the best
choice for quality and file size.
It can often be useful (especially when saving a diagram for
documentation) to display the property types against each property for
an entity in the designer. You can turn this on by right-clicking the
designer surface and selecting Scalar Property Format Display Name
and Type from the context menu. You can return to displaying just the

Download from finelybook www.finelybook.com

824

property name by selecting the Scalar Property Format Display Name
item from the right-click context menu.
As with most designers in Visual Studio, the Toolbox and Properties
tool windows are integral parts of working with the designer. The
Toolbox (as shown in Figure 27-8) contains three controls: Entity,
Association, and Inheritance. How to use these controls with the
designer is covered shortly. The Properties tool window displays the
properties of the selected items in the designer (an entity, association,
or inheritance), enabling you to modify their values as required.

FIGURE 27-8

In addition to the Toolbox and Properties tool windows, the Entity
Framework designer also incorporates two other tool windows specific
to it — the Model Browser tool window and the Mapping Details tool
window — for working with the data.
The Model Browser tool window (as shown in Figure 27-9) enables
you to browse the hierarchy of both the conceptual entity model of the
database and its storage model. Clicking an element in the Store model
hierarchy shows its properties in the Properties tool window; however,
these can’t be modified (because this is an entity modeling tool, not a
database modeling tool). The only changes you can make to the Store
model is to delete tables, views, and stored procedures (which won’t
modify the underlying database). Clicking elements in the Conceptual
model hierarchy also shows their properties in the Properties tool
window (which can be modified), and its mappings display in the
Mapping Details tool window. Right-clicking an entity in the hierarchy
and selecting the Show in Designer menu item from the context menu
brings the selected entity/association into view in the designer.

Download from finelybook www.finelybook.com

825

FIGURE 27-9

The second picture in Figure 27-9 demonstrates the searching
functionality available in the Model Browser tool window. Because
your entity model can get quite large, it can be difficult to find exactly
what you are after. Therefore, a good search function is important.
Type your search term in the search textbox at the top of the window,
and press Enter. In this example the search term was SalesOrder,
which highlighted all the names in the hierarchy (including entities,
associations, properties, and so on) that contained the search term.
The vertical scrollbar has the places in the hierarchy (which has been
expanded) highlighted where the search terms have been found,
making it easy to see where the results were found throughout the
hierarchy. The number of results is shown just below the search
textbox, next to which are an up arrow and a down arrow to enable
you to navigate through the results. When you finish searching, you
can click the cross icon next to these to return the window to normal.
The Mapping Details tool window (as shown in Figure 27-10) enables
you to modify the mapping between the conceptual model and the
storage model for an entity. Selecting an entity in the designer, the
Model Browser tool window, or the Properties tool window shows the
mappings in this tool window between the properties of the entity to
columns in the database. You have two ways to map the properties of
an entity to the database: either via tables and views, or via functions

Download from finelybook www.finelybook.com

826

(that is, stored procedures). On the left side of the tool window are two
icons, enabling you to swap the view between mapping to tables and
views, to mapping to functions. However, focus here just on the
features of mapping entity properties to tables and views.

FIGURE 27-10

The table/view mapping has a hierarchy (under the Column column)
showing the tables mapped to the entity, with its columns underneath
it. To these columns you can map properties on your entity (under the
Value/Property column) by clicking in the cell, opening the drop-down
list that appears, and selecting a property from the list.
A single entity may map to more than one database table/view
(bringing two or more tables/views into a single entity). To add
another table/view to the hierarchy to map to your entity, click in the
bottom row where it says <Add a Table or View> and select a
table/view from the drop-down list. When you add a table to the
Mapping Details tool window for mapping to an entity, it
automatically matches columns with the same name to properties on
the entities and creates a mapping between them. Delete a table from
the hierarchy by selecting its row and pressing the Delete key.
Conditions are a powerful feature of the Entity Framework that enable
you to selectively choose which table you want to map an entity to at
run time based on one or more conditions that you specify. For

Download from finelybook www.finelybook.com

827

example, say you have a single entity in your model called Product that
maps to a table called Products in the database. However, you have
additional extended properties on your entity that map to one of two
tables based on the value of the ProductType property on the entity — if
the product is of a particular type, it maps the columns to one table, if
it’s another type, it maps the columns to the other table. You can do
this by adding a condition to the table mapping. In the Mapping
Details window, click in the row directly below a table to selectively
map where it says <Add a Condition>. Open the drop-down list that
appears, which contains all the properties on the entity. Select the
property to base your condition on (in the given example it would be
the ProductType property), select an operator, and enter a value to
compare the property to. Note that there are only two operators:
Equals (=) and Is. You can add additional conditions as necessary to
determine if the table should be used as the source of the data for the
given properties.

NOTE

A number of advanced features are available in the Entity
Framework but not available in the Entity Framework designer
(such as working with the store schema, annotations, referencing
other models, and so on). However, these actions can be
performed by modifying the schema files (which are XML files)
directly.

Creating/Modifying Entities

The Entity Data Model Wizard gave you a good starting point by
building an entity model for you. In some cases this may be good
enough, and you can start writing the code to query it, but you can
now take the opportunity to go through the created model and modify
its design as per your requirements.
Because the Entity Framework provides you with a conceptual model
to design and work with, you are no longer limited to having a 1:1
relationship between the database schema and an object model in
code, so the changes you make in the entity model won’t affect the

Download from finelybook www.finelybook.com

828

database in any way. So you may want to delete properties from
entities, change their names, and so on, and it will have no effect on
the database. In addition, because any changes you make are in the
conceptual model, updating the model from the database will not
affect the conceptual model (only the storage model), so your changes
won’t be lost.

Changing Property Names

Often you might work with databases that have tables and columns
containing prefixes or suffixes, over/under use of capitalization, or
even names that no longer match their actual function. This is where
the use of an ORM like the Entity Framework can demonstrate its
power because you can change all these in the conceptual layer of the
entity model to make the model nice to work with in code (with more
meaningful and standardized names for the entities and associations)
without needing to modify the underlying database schema. Luckily,
the tables and columns in the AdventureWorks2014 database have
reasonably friendly names, but if you wanted to change the names, it
would simply be a case of double-clicking the property in the designer
(or selecting it and pressing F2), which changes the name display to a
textbox enabling you to make the change. Alternatively, you can select
the property in the designer, the Model Browser tool window, or the
Properties tool window, and update the Name property in the
Properties tool window.

Adding Properties to an Entity

Now look at the process of adding properties to an entity. Three types
of properties exist:

Scalar properties: Properties with a primitive type, such as
string, integer, Boolean, and so on.
Complex properties: A grouping of scalar properties in a
manner similar to a structure in code. Grouping properties
together in this manner can make your entity model a lot more
readable and manageable.
Navigation properties: Used to navigate across associations.

Download from finelybook www.finelybook.com

829

For example, the SalesOrderHeader entity contains a navigation
property called SalesOrderDetails that enables you to navigate to a
collection of the SalesOrderDetail entities related to the current
SalesOrderHeader entity. Creating an association between two
entities automatically creates the required navigation properties.

The easiest way to try this is to delete a property from an existing
entity and add it back again manually. Delete a property from an
entity. (Select it in the designer and press the Delete key.) To add it
back again, right-click the entity, and select Add Scalar Property from
the context menu. Alternatively, a much easier and less frustrating way
when you are creating a lot of properties is to simply select a property
or the Properties header and press the Insert key on your keyboard. A
new property will be added to the entity, with the name displayed in a
textbox for you to change as required.
The next step is to set the type of the property; you need to move over
to the Properties tool window to set it. The default type is string, but
you can change this to the required type by setting its Type property.
Properties that you want to designate as entity keys (that is, properties
used to uniquely identify the entity) need their Entity Key property set
to True. The property in the designer will have a picture of a little key
added to its icon, making it easy to identify which properties are used
to uniquely identify the entity.
You can set numerous other properties on a property, including
assigning a default value, a maximum length (for strings), and whether
or not it’s nullable. You can also assign the scope of the getter and
setter for the property (public, private, and so on), useful for, say, a
property that will be mapped to a column with a calculated value in
the database where you don’t want the consuming application to
attempt to set the value (by making the setter private).
The final task is to map the property to the store model. You do this as
described earlier using the Mapping Details tool window.

Creating Complex Types

Though you can create a complex type from scratch, the easiest way to
create a complex type is to refactor an entity by selecting the scalar
properties on the entity to be included in the complex type and having
the designer create the complex type from those properties. Follow

Download from finelybook www.finelybook.com

830

these instructions to move the name-related properties on the Person
entity to a complex type:
1. Select the name-related properties on the Person entity

(FirstName, LastName, MiddleName, NameStyle, Suffix, Title) by
selecting the first property, and while holding down the Ctrl key
selecting the other properties (so they are all selected at the same
time).

2. Right-click one of the selected properties, and select the Refactor
Move To New Complex Type menu item.

3. In the Model Browser will be the new complex type that it created,
with its name displayed in a textbox for you to name to something
more meaningful. For this example, simply call it PersonName.

4. The Entity Framework designer will have created a complex type,
added the selected properties to it, removed the selected properties
from the entity, and added the complex type that it just created as a
new property on the entity in their place. However, this property
will just have ComplexProperty as its name, so you need to rename
it to something more meaningful. Select the property in the
designer, press F2, and enter Name in the textbox.

You will now find that by grouping the properties together in this way,
the entity will be easier to work with in both the designer and in code.

Creating an Entity

So far you’ve been modifying existing entities as they were created by
the Entity Data Model Wizard. However, now take a look at the
process to create an entity from scratch and then mapping it to a
table/view/stored procedure in your storage model. Most of these
aspects have already been covered, but walk through the required
steps to get an entity configured from scratch.
You have two ways to manually create entities. The first is to right-
click the designer surface and select Add New Entity from the context
menu. That pops up the dialog shown in Figure 27-11, which helps you
set up the initial configuration of the entity. When you enter a name
for the entity in the Entity Name field, you’ll notice that the Entity Set
field automatically updates to the plural form of the entity name

Download from finelybook www.finelybook.com

831

(although you can change this entity set name to something else if
required). The Base Type drop-down list enables you to select an
existing entity in your entity model that this entity inherits from
(discussed shortly). There is also a section enabling you to specify the
name and type of a property to automatically create on the entity and
set as an entity key.

FIGURE 27-11

The other way to create an entity is to drag and drop the Entity
component from the Toolbox onto the designer surface. However, it
doesn’t bring up the dialog from the previous method, instead opting
to immediately create an entity with a default name, entity set name,
and entity key property. You then have to use the designer to modify

Download from finelybook www.finelybook.com

832

its configuration to suit your needs.
The steps needed to finish configuring the entity are as follows:
1. If required, create an inheritance relationship by specifying that

the entity should inherit from a base entity.
2. Create the required properties on the entity, setting at least one as

an entity key.
3. Using the Mapping Details tool window, map these properties to

the storage schema.
4. Create any associations with other entities in the model.
5. Validate your model to ensure that the entity is mapped correctly.

NOTE

All entities must have an entity key that can be used to uniquely
identify the entity. Entity keys are conceptually the same as a
primary key in a database.

You aren’t limited to mapping to a single database table/view per
entity. This is one of the benefits of building a conceptual model of the
database — you may have related data spread across a number of
database tables, but through having a conceptual entity model layer in
the Entity Framework, you can bring those different sources together
into a single entity to make working with the data a lot easier in code.

NOTE

Make sure you don’t focus too much on the structure of the
database when you create your entity model — the advantage of
designing a conceptual model is that it enables you to design the
model based on how you plan to use it in code. Therefore, focus on
designing your entity model, and then you can look at how it
maps to the database.

Creating/Modifying Entity Associations

Download from finelybook www.finelybook.com

833

You have two ways of creating an association between two entities.
The first is to right-click the header of one of the entities and select
Add New Association from the context menu. This displays the dialog
shown in Figure 27-12.

FIGURE 27-12

This dialog includes:
Association Name: Give the association a name. This becomes
the name of the foreign key constraint in the database if you update
the database from the model.
Endpoints: These specify the entities at each end of the

Download from finelybook www.finelybook.com

834

association, the type of relationship (one-to-one, one-to-many, and
so on), and the name of the navigation properties that it creates on
both entities to navigate from one entity to the other over the
association.
Add Foreign Key Properties to the Entity: This enables you
to create a property on the “foreign” entity that acts as a foreign key
and map to the entity key property over the association. If you’ve
already added the property that will form the foreign key on the
associated entity, you should uncheck this check box.

The other way to create an association is to click the Association
component in the Toolbox, click one entity to form an end on the
association, and then click another entity to form the other end of the
association. (If it is a one-to-many relationship, select the “one” entity
first.) Using this method gives the association a default name, creates
the navigation properties on both entities, and assumes a one-to-many
relationship. It will not create a foreign key property on the “foreign”
entity. You can then modify this association as required using the
Properties tool window.

NOTE

You cannot use the association component in a drag-and-drop
fashion from the Toolbox.

Despite having created the association, you aren’t done yet unless you
used the first method and selected the option to create a foreign key
property for the association. Now you need to map the property that
acts as the foreign key on one entity to the entity key property on the
other. The entity whose primary key is one endpoint in the association
is known, but you have to tell the Entity Framework explicitly which
property to use as the foreign key property. You can do this by
selecting the association in the designer and using the Mapping
Details tool window to map the properties.
When this is done, you may want to define a referential constraint for
the association, which you can assign by clicking the association in the
designer and finding the Referential Constraint property in the
Properties tool window.

Download from finelybook www.finelybook.com

835

Entity Inheritance

In the same way that classes can inherit from other classes (a
fundamental object-oriented concept), so can entities inherit from
other entities. You have a number of ways to specify that one entity
should inherit from another, but the most straightforward method is
to select an entity in the designer, find its Base Type property in the
Properties tool window, and select the entity from the drop-down list
that this entity should inherit from.

Validating an Entity Model

At times your entity model may be invalid (such as when a property on
an entity has not been mapped to the storage model, or its type cannot
be converted from/to the mapped column’s data type in the database);
however, despite having an invalid entity model your project can still
compile.
You can run a check to see if your model is valid by right-clicking the
designer surface and selecting the Validate menu item from the
context menu. This checks for any errors in your model and displays
them in the Error List tool window.
You can also set the Validate On Build property for the conceptual
model to True (click an empty space on the designer surface, and then
you can find the property in the Properties tool window), which
automatically validates the model each time you compile the project.
However, again, an invalid model will not stop the project from
successfully compiling.

Updating an Entity Model with Database Changes

The structure of databases tends to be updated frequently throughout
the development of projects, so you need a way to update your model
based on the changes in the database. To do so, right-click the
designer surface, and select the Update Model from Database menu
item. This opens the Update Wizard (as shown in Figure 27-13) that
obtains the schema from the database, compares it to the current
storage model, and extracts the differences. These differences display
in the tabs in the wizard. The Add tab contains database objects that

Download from finelybook www.finelybook.com

836

aren’t in your storage model, the Refresh tab contains database objects
that are different in the database from their corresponding storage
model objects, and the Delete tab contains database objects that are in
the storage model but no longer in the database.

FIGURE 27-13

Select the items from these three tabs that you want to add, refresh, or
delete, and click the Finish button to have your entity model updated
accordingly.

QUERYING THE ENTITY MODEL

Now that you’ve created your entity model, you no doubt want to put it

Download from finelybook www.finelybook.com

837

to the test by querying it, working with and modifying the data
returned, and saving changes back to the database. The Entity
Framework provides a number of ways to query your entity model,
including LINQ to Entities, Entity SQL, and query builder methods.
However, this chapter focuses specifically on querying the model with
LINQ to Entities.

LINQ to Entities Overview

Details about LINQ can be found in Chapter 46, “Language Integrated
Queries (LINQ),” in the online archive. That chapter specifically
focuses on the use of LINQ to Objects, LINQ to SQL, and LINQ to
XML; however, the Entity Framework has extended LINQ with its own
implementation called LINQ to Entities. LINQ to Entities enables you
to write strongly typed LINQ queries against your entity model and
have it return the data as objects (entities). LINQ to Entities handles
the mapping of your LINQ query against the conceptual entity model
to a SQL query against the underlying database schema. This is an
extraordinarily powerful feature of the Entity Framework, abstracting
away the need to write SQL to work with data in a database.

Getting an Object Context

To connect to your entity model, you need to create an instance of the
object context in your entity model. So that the object context is
disposed of when you finish, use a using block to maintain the lifetime
of the variable:
VB

Using context As New AdventureWorks2014Entities()
 'Queries go here
End Using

C#

using (AdventureWorks2014Entities context = new
AdventureWorks2014Entities())
{
 // Queries go here
}

Download from finelybook www.finelybook.com

838

NOTE

Any queries placed within the scope of the using block for the
object context aren’t necessarily executed while the object context
is in scope. As detailed in the “Debugging and Execution” section
of Chapter 46, “Language Integrated Queries (LINQ),” in the
online archive, the execution of LINQ queries is deferred until the
results are iterated. (That is, the query is not run against the
database until the code needs to use its results.) This means that if
the variable containing the context has gone out of scope before
you are actually using the results, the query will fail. Therefore,
ensure that you have requested the results of the query before
letting the context variable go out of scope.

If you need to specify the connection to the database (such as if you
need to pass in user credentials or use a custom connection string
rather than what’s in the App.config file) you can do so by passing the
connection string to the constructor of the object context (in this case
AdventureWorks2014Entities).

NOTE

The connection string passed into the constructor is not quite the
same as a connection string passed into the typical database
connection object. In the case of the Entity Framework, the
connection string includes a description of where to find the meta
data for the entities.

CRUD Operations

It would be hard to argue against the most important database queries
being the CRUD (Create/Read/Update/Delete) operations. Read
operations return data from the database, whereas the
Create/Update/Delete operations make changes to the database.
Create some LINQ to Entities queries to demonstrate retrieving some
data from the database (as entities), modify these entities, and then
save the changes back to the database.

Download from finelybook www.finelybook.com

839

NOTE

While you get up to speed on writing LINQ to Entities queries, you
may find LINQPad to be a useful tool, providing a “scratchpad”
where you can write queries against an entity model and have
them executed immediately so that you can test your query. You
can get LINQPad from http://www.linqpad.net.

Data Retrieval

Just like SQL, LINQ to Entity queries consist of selects, where clauses,
order by clauses, and group by clauses. Take a look at some examples
of these. The results of the queries can be assigned to the ItemsSource
property of the DataGrid control created earlier in the MainWindow.xaml
file, enabling you to visualize the results:
VB

dgEntityFrameworkData.ItemsSource = qry

C#

dgEntityFrameworkData.ItemsSource = qry;

There are actually a number of ways to query the entity model within
LINQ to Entities, but you can just focus on one method here. Assume
that the query is between the using block demonstrated previously,
with the variable containing the instance of the object context simply
called context.
To return the entire collection of customers in the database, you can
write a select query like so:
VB

Dim qry = From c In context.Customers
 Select c

C#

var qry = from c in context.Customers
 select c;

Download from finelybook www.finelybook.com

840

http://www.linqpad.net

You can filter the results with a where clause, which can even include
functions/properties such as StartsWith, Length, and so on. This
example returns all the customers whose last name starts with A:
VB

Dim qry = From c In context.Customers
 Where c.Name.LastName.StartsWith("A")
 Select c

C#

var qry = from c in context.Customers
 where c.Name.LastName.StartsWith("A")
 select c;

You can order the results with an order by clause — in this example
you order the results by the customer’s last name:
VB

Dim qry = From c In context.Customers
 Order By c.Name.LastName Ascending
 Select c

C#

var qry = from c in context.Customers
 orderby c.Name.LastName ascending
 select c;

You can group and aggregate the results with a group by clause — in
this example you group the results by the salesperson, returning the
number of sales per salesperson. Note that instead of returning a
Customer entity you request that LINQ to Entities returns an
implicitly typed variable containing the salesperson and his sales
count:
VB

Dim qry = From c In context.Customers
 Group c By salesperson = c.SalesPerson Into
grouping = Group
 Select New With
 {
 .SalesPerson = salesperson,
 .SalesCount = grouping.Count()

Download from finelybook www.finelybook.com

841

 }

C#

var qry = from c in context.Customers
 group c by c.SalesPerson into grouping
 select new
 {
 SalesPerson = grouping.Key,
 SalesCount = grouping.Count()
 };

NOTE

It can be useful to monitor the SQL queries generated and
executed by the Entity Framework to ensure that the interaction
between the entity model and the database is what you’d expect.
For example, you may find that because an association is being
lazy loaded, traversing the entity hierarchy across this
association in a loop actually makes repeated and excessive trips
to the database. Therefore, if you have SQL Server Standard or
higher, you can use the SQL Profiler to monitor the queries being
made to the database and adjust your LINQ queries if necessary.

Saving Data

The Entity Framework employs change tracking — where you make
changes to data in the model, it tracks the data that has changed, and
when you request that the changes are saved back to the database, it
commits the changes to the database as a batch. This commit is via the
SaveChanges() method on the object context:
VB

context.SaveChanges()

C#

context.SaveChanges();

A number of ways to update data exists (for different scenarios), but
for purposes of simplicity, this example takes simple straightforward

Download from finelybook www.finelybook.com

842

approaches.

Update Operations
Assume you want to modify the name of a customer (with an ID of 1),
which you’ve retrieved like so:
VB

Dim qry = From c In context.Customers
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

C#

var qry = from c in context.Customers
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

All you need to do is modify the name properties on the customer
entity you’ve retrieved. The Entity Framework automatically tracks
that this customer has changed, and then calls the SaveChanges()
method on the object context:
VB

customer.Name.FirstName = "Chris"
customer.Name.LastName = "Anderson"

context.SaveChanges()

C#

customer.Name.FirstName = "Chris";
customer.Name.LastName = "Anderson";

context.SaveChanges();

Create Operations
To add a new entity to an entity set, simply create an instance of the
entity, assign values to its properties, add the new entity to the related
collection on the data context, and then save the changes:

Download from finelybook www.finelybook.com

843

VB

Customer customer = new Customer()
customer.Name.FirstName = "Chris"
customer.Name.LastName = "Anderson"
customer.Name.Title = "Mr."
customer.PasswordHash = "*****"
customer.PasswordSalt = "*****"
customer.ModifiedDate = DateTime.Now
context.Customers.AddObject(customer)

context.SaveChanges()

C#

Customer customer = new Customer();
customer.Name.FirstName = "Chris";
customer.Name.LastName = "Anderson";
customer.Name.Title = "Mr.";
customer.PasswordHash = "*****";
customer.PasswordSalt = "*****";
customer.ModifiedDate = DateTime.Now;
context.Customers.AddObject(customer);

context.SaveChanges();

After the changes are saved back to the database your entity can now
have the primary key that was automatically generated for the row by
the database assigned to its CustomerID property.

Delete Operations
To delete an entity, simply use the DeleteObject() method on its
containing entity set:
VB

context.Customers.DeleteObject(customer)

C#

context.Customers.DeleteObject(customer);

Navigating Entity Associations

Of course, working with data rarely involves the use of a single

Download from finelybook www.finelybook.com

844

table/entity, which is where the navigation properties used by
associations are useful indeed. A customer can have one or more
addresses, which is modeled in your entity model by the Customer
entity having an association with the CustomerAddress entity (a one-
to-many relationship), which then has an association with the Address
entity (a many-to-one relationship). The navigation properties for
these associations make it easy to obtain the addresses for a customer.
Start by using the query from earlier to return a customer entity:
VB

Dim qry = From c In context.Customers
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

C#

var qry = from c in context.Customers
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

You can enumerate and work with the addresses for the entity via the
navigation properties like so:
VB

For Each customerAddress As CustomerAddress In
customer.CustomerAddresses
 Dim address As Address = customerAddress.Address
 'Do something with the address entity
Next customerAddress

C#

foreach (CustomerAddress customerAddress in
customer.CustomerAddresses)
{
 Address address = customerAddress.Address;
 // Do something with the address entity
}

Note how you navigate through the CustomerAddress entity to get to

Download from finelybook www.finelybook.com

845

the Address entity for the customer. Because of these associations
there’s no need for joins in the Entity Framework.
However, there is an issue here with what you’re doing. At the
beginning of the loop, a database query will made to retrieve the
customer addresses for the current customer. Then, for each address
in the loop, an additional database query will be made to retrieve the
information associated with the Address entity! This is known as lazy
loading — where the entity model requests data only from the
database when it actually needs it. This can have some advantages in
certain situations; however, in this scenario it results in a lot of calls to
the database, increasing the load on the database server, reducing the
performance of your application, and reducing your application’s
scalability. If you then did this for a number of customer entities in a
loop, that would add even more strain to the system. So it’s definitely
not an ideal scenario as is.
Instead, you can request from the entity model when querying for the
customer entity that it eagerly loads its associated CustomerAddress
entities and their Address entities. This requests all the data in one
database query, thus removing all the aforementioned issues, because
when navigating through these associations the entity model now has
the entities in memory and does not have to go back to the database to
retrieve them. The way to request that the model does this is to use the
Include method, specifying the path (as a string) of the navigation
properties (dot notation) to the associated entities whose data you also
want to retrieve from the database at the same time as the actual
entities being queried:
VB

Dim qry = From c In context.Customers
 .Include("CustomerAddresses")

.Include("CustomerAddresses.Address")
 Where c.CustomerID = 1
 Select c

Dim customer As Customer = qry.FirstOrDefault()

C#

var qry = from c in context.Customers

Download from finelybook www.finelybook.com

846

 .Include("CustomerAddresses")

.Include("CustomerAddresses.Address")
 where c.CustomerID == 1
 select c;

Customer customer = qry.FirstOrDefault();

ADVANCED FUNCTIONALITY

There’s too much functionality available in the Entity Framework to
discuss in detail, but here’s an overview of some of the more notable
advanced features available that you can investigate further if you
want.

Updating a Database from an Entity Model

It’s possible with the Entity Framework to create an entity model from
scratch, and then have the Entity Framework create a database
according to your model. Alternatively, you can start with an existing
database, but then get the Entity Framework to update the structure of
your database based on the new entities/properties/associations that
you’ve added to your entity model. To update the structure of the
database based on additions to your model, you can use the Generate
Database Wizard by right-clicking the designer surface and selecting
the Generate Database from Model menu item.

Adding Business Logic to Entities

Though you are fundamentally building a data model with the Entity
Framework rather than business objects, you can add business logic to
your entities. The entities generated by the Entity Framework are
partial classes, enabling to you extend them and add your own code.
This code may respond to various events on the entity, or it may add
methods to your entity that the client application can use to perform
specific tasks or actions.
For example, you might want to have the Product entity in your
AdventureWorks2014 entity model automatically assign the value of
the SellEndDate property when the SellStartDate property is set (only

Download from finelybook www.finelybook.com

847

if the SellEndDate property does not have a value). Alternatively, you
may have some validation logic or business logic that you want to
execute when the entity is being saved.
Each property on the entity has two partial methods that you can
extend: a Changing method (before the property is changed) and a
Changed method (after the property is changed). You can extend these
partial methods in your partial class to respond accordingly to the
value of a property being changed.

Plain Old CLR Objects (POCO)

One of the big complaints with the first version of the Entity
Framework was that your entities had to inherit from EntityObject (or
implement a set of given interfaces), meaning that they had a
dependency on the Entity Framework — which made them unfriendly
for use in projects where test-driven development (TDD) and domain-
driven design (DDD) practices were employed. In addition, many
developers wanted their classes to be persistence ignorant — that is,
contain no logic or awareness of how they were persisted.
By default, the entities generated from the Entity Model Data Wizard
in the Entity Framework v6 still inherit from EntityObject, but you
now have the ability to use your own classes that do not need to inherit
from EntityObject or implement any Entity Framework interfaces,
and whose design is completely under your control. These types of
classes are often termed Plain Old CLR Objects, or POCO for short.

Entity Framework Core

A lot of work has been invested into making .NET applications (or a
subset of .NET applications, actually) work across different platforms.
As part of this effort, Microsoft released Entity Framework Core for
use in .NET Core applications. This is a lightweight, cross-platform
version of Entity Framework 6.0. There is some missing functionality,
but the vast majority of features carry across.
If you are thinking about upgrading from Entity Framework Core to
Entity Framework 6.0, you might want to reconsider. Although the
name (“Entity Framework”) and the classes are the same, the
namespace is different. And, in reality, they are different products

Download from finelybook www.finelybook.com

848

even if they fulfill the same function. In fact, it’s possible to use both
Entity Framework and Entity Framework Core in the same project.
From that standpoint, any move from one version to the other could
reasonably be considered to be a port and not an upgrade.

SUMMARY

In this chapter you learned that the Entity Framework is an Object
Relational Mapper (ORM) that enables you to create a conceptual
model of your database to interact with databases in a more
productive and maintainable manner. You then learned how to create
an entity model and how to write queries against it in code.

Download from finelybook www.finelybook.com

849

28
Data Warehouses and Lakes

WHAT’S IN THIS CHAPTER?

Understanding the ideas behind Apache Hadoop and
HDInsight
Executing Hive queries and Pig job against a Hadoop cluster
Examining the performance of Hadoop jobs

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
In an industry where buzzwords abound, “big data” is currently
sitting at the pinnacle of hype. One would think it was a cure for
cancer, the eradication of poverty, and the latest cat video all rolled
up into one. Even if you’re skeptical about the hype, there is bound
to be a nugget of potential usefulness in the technology. With
Visual Studio 2017 and some recent additions to Windows Azure,
now is the time to not only look at what big data really is, but also
to consider the tools that are available to help with it. In this
chapter, we discuss some of the basic ideas of Apache Hadoop,
along with an examination of the tools that Visual Studio 2017
brings.

WHAT IS APACHE HADOOP?

You’re definitely not the first person to ask that question, and you
won’t be the last. If you’re developing in the Microsoft space, it’s quite

Download from finelybook www.finelybook.com

850

http://wrox.com
http://www.wrox.com

likely that you’re also asking about HDInsight. Fortunately, those two
questions are related. HDInsight is the cloud-based implementation of
Hadoop found in Azure. So a discussion of Hadoop is also a discussion
about HDInsight.
An understanding of Hadoop is rooted in an understanding of two
core concepts: the Hadoop Distributed File System and MapReduce.
Once you understand these, you can consider additional components,
HDInsight, and Azure Data Lakes.

Hadoop Distributed File System

As you might expect from something with the word “big” in its name,
big data is expected to work with large volumes of data. That data
could be structured (such as containing well-defined columns of data,
similar to a database or a log file) or unstructured (like a Facebook or
Twitter feed). But regardless of its form, there is a large quantity of
data, and that data will need to be stored.
The Hadoop Distributed File System (HDFS) is designed to
accommodate this need. It is designed to allow a file or files to be
placed on a number of different servers. So, if you had 10 million files
that you needed to store, but each server could only store 500,000,
you could use HDFS to place those files on more than 20 different
servers. Alternatively, if you had a single file that was 20 terabytes in
size and each server could only store 500GB, HDFS would allow you to
distribute that file across more than 40 different servers.
At this level, the functionality of HDFS is not that different from any
other distributed file system. However, one of HDFS’s strengths is that
it was designed to be fault tolerant. The reason for this design choice is
that one of the architectural goals for HDFS was to be able to run on
commodity hardware. When working with large clusters, the term
“commodity hardware” is frequently synonymous with “unreliable,”
which is to say that there is a non-zero and non-trivial possibility that
any node in the cluster might fail at any time. So HDFS was
constructed to allow for the failure of any node to be quickly detected
and automatically recovered from.

MapReduce

Download from finelybook www.finelybook.com

851

The idea behind MapReduce is almost breathtaking in its simplicity. If
you consider what most data-driven applications look like, there is a
client portion and a server portion. The server portion might also
include a web server (if the application is web-based), but there will be
a database server used someplace in the architecture. When the client
part of the application needs some data, it makes a request to the
server. The data is then transported, generally across a network, from
the server to the client.
Now consider how problematic that architecture can be if you need
access to large files. Even with a 10 Gigabit ethernet network, a 10TB
file would take more than two hours to transfer. That does not bode
well for the response time of a traditional data-driven application.
MapReduce inverts this architecture. It works on the premise that
when working with a large database, it is cheaper to move
computation than it is to move data. MapReduce gives developers a
framework to map their computational functionality onto the same
nodes as the data. Then, when the computation is complete, only the
results are sent back to a central location (reduced) for further
processing.

Additional Components

Hadoop doesn’t just stop with these HDFS and MapReduce. To create
a fully supported production environment, there are a number of other
elements that need to be considered. These include the following.

YARN: A platform that is responsible for scheduling jobs and
managing resources used in the Hadoop environment.
Hive: A data warehouse that is built on top of Hadoop. Because of
the structure of Hadoop, ad hoc queries are supported particularly
well. Hive helps to provide the capability to query large datasets in
an interface that is similar to SQL.
HBase: A NOSQL implementation that has been built on top of
HDFS. While this is not a replacement for a classic SQL database,
there is another component, Trafodion, that aims to provide an
ODBC (Open DataBase Connectivity) interface to HBase.
Storm: Allows the data in HDFS to be processed in real time, as

Download from finelybook www.finelybook.com

852

opposed to the batch processing that is implemented within
MapReduce.

Naturally, there are even more components available, depending on
the kind of functionality that you need. Hadoop is a very popular
open-source project with a large and active user community.

HDInsight

HDInsight is a cloud distribution of the Hadoop technology stack.
Specifically, it consists of HDFS, YARN, and MapReduce. However, to
make it easier to get started in Hadoop, Azure has a number of
different pre-configured clusters from which you can choose:

Hadoop: The basic combination of HDFS, YARN, and
MapReduce. This is your choice if you wish to utilize the standard
Hadoop platform.
HBase: Includes the HBase component to allow for NOSQL
support for the underlying data.
Hive: Adds support for interactive querying of the underlying
dataset using the Hive component.
Kafka: Similar to Storm, in that it provides the ability to process
Hadoop data as a stream, it includes message broker functionality,
which allows publish and subscribe capabilities against a stream.
R Server: Adds the R Server on each of the nodes to support R-
based analytics of the data. For more information on the R
language and its use, see Chapter 29, “Data Science and Analytics.”
Spark: Adds the Spark component that provides support for in-
memory processing of the data to improve performance.
Storm: Includes the Storm component to the Hadoop
implementation to allow for real-time processing of the data
stream.

As you can see, the choices that you have are quite varied. One of the
guarantees that Azure brings is that features are added on a regular
basis. New options are always emerging.

Azure Data Lakes

Download from finelybook www.finelybook.com

853

The Azure Data Lake offering also fits into the Hadoop picture. As a
quick definition, a data lake is a repository capable of containing any
type of data, regardless of its size or structure. It can handle a large file
or many small files. Along with this unlimited storage capability, the
Azure Data Lake is designed to handle a high volume of small writes at
a low level of latency. From a practical perspective, if you have a
system that is generating a large volume of data quickly (such as an
Internet of Things [IoT] network of devices), then it can be written to
the data lake without slowing down the rest of the system or falling
behind on the ingestion.
At an implementation level, Azure Data Lake is an HDFS, which
means that you can use it as the storage for a Hadoop cluster. But it
can also be used to support other analytic applications, like R-
Enterprise (from Revolution) or Cloudera.

DATA LAKE TOOLS FOR VISUAL STUDIO

Your HDInsight and Data Lake deployments in Azure can be managed
and used through Visual Studio 2017. To do this, you can install the
Data Storage and Processing workload using the Visual Studio
Installer. This workload includes the SDKs needed to connect to your
HDInsight and Data Lake resources. As well, it adds a number of
templates to Visual Studio that help facilitate the creation of projects
that utilize those resources.
In order to demonstrate some of these templates, you need to have an
HDInsight deployment within your Azure account. For most people,
this means creating one. Keep in mind that while the creation of an
HDInsight cluster is very simple, it is not cheap to keep up and
running. This is not the same as a simple web application, which can
be accessed for a few dollars a month or less. A basic HDInsight
cluster includes 6 servers using 40 cores, at an hourly cost that quickly
adds up. So be warned. Information on how to create a generic
HDInsight cluster can be found at https://docs.microsoft.com/en-
us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters.
Details about your HDInsight clusters are available through the Server
Explorer, as shown in Figure 28-1.

Download from finelybook www.finelybook.com

854

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters

FIGURE 28-1

Underneath your Azure node in Server Explorer, you will see an
HDInsight node. Expanding this node displays all of the HDInsight
deployments in your subscription. Each of those deployments can be
further expanded to show the database, storage, and log files
associated with the cluster.
The management capabilities through Server Explorer are relatively
limited. For example, you can’t create an HDInsight cluster through
Server Explorer, although you can connect to an existing one if you
know the connection URL, storage name, key, and administrator
credentials for the cluster. This process is launched by right-clicking
on the HDInsight node and choosing the Add a HDInsight Cluster
option from the context menu.
If you right-click on an existing cluster, you have a number of choices.
From a management perspective, you can choose to manage your
cluster through the Azure Portal by selecting the Manage Cluster in
Azure Portal option. You can run a Hive query or view the jobs that are
currently running in the cluster.

Download from finelybook www.finelybook.com

855

For an individual Hive database, you have the option to be able to
create a table through Server Explorer. Right-click on the database
and select the Create a table menu option. The script designer shown
in Figure 28-2 appears.

FIGURE 28-2

This designer is used to create HQL (Hive Query Language)
statements that create tables within Hive. As you can see from the
lower portion of the screen, the syntax for HQL is similar to T-SQL.
The top portion of the screen gives you a visual reference for some of
the options, but if you have the skill set, you can always write the HQL
directly. At the top, you can define the columns and data types that
appear in the table, give the table a name, and indicate whether the
table will be external (stored as a file in the file system) or just kept in
the database. Under the advanced settings, you can choose the file
format (the choice is a text file), and specify the field (or column),
collection (or row), and map key delimiters.
When you create a new table, it appears in the list of tables for the
database. If you right-click on any of those tables, you can view the
first 100 rows of the table in a grid, as seen in Figure 28-3.

Download from finelybook www.finelybook.com

856

FIGURE 28-3

Creating a Hive Application

The Data Analytics and Processing workload includes a number of
project templates for you to use. Use the File New Project to open
the New Project dialog. Then navigate on the left side to Azure Data
Lake HIVE (HDInsight). You should see the dialog that appears in
Figure 28-4.

Download from finelybook www.finelybook.com

857

FIGURE 28-4

There is a Hive Sample template for you to play with, but for this
example, choose Hive Application. Give the project a name and
location and click OK.
The resulting project is quite spartan, as you can see from Figure 28-5.
There is nothing more than an HQL file, which also opens by default.

Download from finelybook www.finelybook.com

858

FIGURE 28-5

The HQL file is where the work is done. For the most part, the Hive
project is really a container for scripts that you wish to run against a
particular HDInsight cluster. Add the following script to the Script.Hql
file:

set hive.execution.engine=tez;
DROP TABLE log4jLogs;
CREATE EXTERNAL TABLE log4jLogs (t1 string, t2 string, t3
string,
 t4 string, t5 string, t6 string, t7 string)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ' '
 STORED AS TEXTFILE LOCATION '/example/data/';
SELECT t4 AS sev, COUNT(*) AS count FROM log4jLogs
 WHERE t4 = '[ERROR]' AND
 INPUT__FILE__NAME LIKE '%.log'
 GROUP BY t4;

This script will be used to demonstrate the basic execution of a Hive
query and to see the different output that is available. The
functionality of the query is relatively simple. First, it drops a table
called log4jLogs. Next it creates an external table of the same name.
This table is defined with a number of string columns where each
column is delimited by a space. The source for this table is text files
found in /example/data/. This directory is included with the generic
HDInsight cluster, and it contains a file called sample.log which is

Download from finelybook www.finelybook.com

859

generated by log4j, a Java logging engine.
Just so that it’s clear, the creation of the external data adds the
metadata for the table into HDInsight, and that metadata contains a
reference to the source link. The external table is not modified as part
of this process. Correspondingly, the DROP TABLE statement only
deletes the metadata. The underlying files remain untouched.
To submit the query for execution, you can simply click on the Submit
button. This submits the statements as a batch to HDInsight for
execution. The particular cluster to which the job is submitted can be
changed by selecting the desired target from the dropdown to the right
of the Submit button.
If the query is a little more complex, then instead of just clicking on
Submit, you can click on the dropdown to the right of Submit. This
exposes the Advanced option, which gives you more choices to provide
with the submission. The dialog that is shown in Figure 28-6
illustrates the available options.

FIGURE 28-6

You can specify the name of the script that is provided to HDInsight,
the command-line arguments, a set of key/value pairs that can be

Download from finelybook www.finelybook.com

860

accessed by the script, and a directory into which status information
for the job will be placed.
When the job is submitted, the Job Summary screen appears, similar
to what is shown in Figure 28-7.

FIGURE 28-7

As the job is running, the state of the job will change from initializing
to running to completed. Once completed, you have access to a
number of different output options. First, to see the results from
executing the batch, click on the Job Output link at the bottom. The
results for the sample query are shown in Figure 28-8. To be clear
(since the word “ERROR” appears in the output), the original query

Download from finelybook www.finelybook.com

861

was designed to parse the log file and count the number of times the
string [ERROR] appears as the fourth word in any line within any file
that has an extension of .log. You can download these results by
clicking on the Download File button.

FIGURE 28-8

The Job Query link in Figure 28-7 takes you to the batch of statements
that were executed as part of this job. The Job Log link shows the log
generated when the batch was executing. And the View Yarn Logs link
will generate the YARN logs and store them in the storage account
associated with your HDInsight cluster.

Creating a Pig Application

What you find as you create different HDInsight applications is that
the basic flow is the same. What changes is the language that is used to
define the job that is executed within HDInsight. The Apache Pig
application is a good example, albeit with just enough extras to be
worth looking at even if you’re only writing Hive queries.
The creation of the project is pretty much the same as the Hive
application. The difference is that instead of choosing Hive Hive
Application in the New Project dialog, you select Pig Pig Application.
The resulting project is just as barren, but instead of a script.hql file,
a script.pig file is generated. Add the following code to the file:

LOGS = LOAD 'wasbs:///example/data/sample.log';
LEVELS = foreach LOGS generate
 REGEX_EXTRACT($0, '(TRACE|DEBUG|INFO|WARN|ERROR|FATAL)',

Download from finelybook www.finelybook.com

862

1)
 as LOGLEVEL;
FILTEREDLEVELS = FILTER LEVELS by LOGLEVEL is not null;
GROUPEDLEVELS = GROUP FILTEREDLEVELS by LOGLEVEL;
FREQUENCIES = foreach GROUPEDLEVELS generate group as
LOGLEVEL,
 COUNT(FILTEREDLEVELS.LOGLEVEL) as COUNT;
RESULT = order FREQUENCIES by COUNT desc;
DUMP RESULT;

The language used in this application is (I kid you not) Pig Latin. The
above script loads the sample.log file from storage. It then transforms
the contents of the log file, extracting the log levels, removing levels
that are null, and then grouping and counting the number of log
entries for each level. When you are finished with this script, submit it
to HDInsight for execution. The Job Summary screen appears. When
complete, you can use the links at the bottom of the screen to view the
logs and the output. However, compared to Figure 28-7, there is a
significant addition to the Job Summary, as seen in Figure 28-9.

FIGURE 28-9

On the right side of the screen, once the job has completed, a visual
representation appears of the steps that were part of the job. On the

Download from finelybook www.finelybook.com

863

top is a flow chart with each of the stages in the job. At the bottom is
the script for the job. One of the cooler features is found in the middle.
There is a Job Playback section that allows you to see the steps that are
being executed in real time.
The fact that the Job Playback is in real time gives you a sense of how
long each of the stages takes. The color of each stage changes as it is
executed and then completed. The idea is that, unlike a simple sample
job, actual Pig jobs can take a long time to run. Determining where the
bottlenecks are is a big part of the development process. So, Visual
Studio provides some tools to help with this.
By hovering over a stage, the tooltip shows details about the execution
of the stage, including the name, the state, the time taken in the stage,
how much memory was used, and how many records were processed
(see Figure 28-10).

Download from finelybook www.finelybook.com

864

FIGURE 28-10

This goes a long way toward determining which stage is acting like a
performance hog (pun intended). But you can get even more detailed
information about a stage. Simply click on the Task Execution Detail
link that is in the top right corner. The pane shown in Figure 28-11
appears.

Download from finelybook www.finelybook.com

865

FIGURE 28-11

In this page, you can start to see where your Pig application is being
parallelized. Each of the scopes that appears in Figure 28-9 is shown
in the Gantt chart view in the top right of Figure 28-11. You can filter
the tasks down using the Smart Query section on the left. These
options allow you to focus on failed tasks in your process, the most I/O
intensive (for both reading and writing), and the tasks that had the
worst throughput. Below the Gantt chart is a list of the scopes, along
with information about the time, memory, and I/O used. This allows
you to quickly identify the scopes that are taking the most processing
time and see if there are ways to optimize your application.
Information about previously executed HDInsight jobs is available
through the Server Explorer. Right-click on the HDInsight cluster and
choose the View Jobs menu option. A pane similar to the one in Figure
28-12 displays.

Download from finelybook www.finelybook.com

866

FIGURE 28-12

The screen originally contains just a list of previously executed jobs of
all types. That is to say, the list is does not consist of just Hive or Pig
batches, but any batch job that was submitted. When you click on any
of the jobs, the Job Summary information appears on the right side of
the pane. This includes the execution graph, complete with the ability
to play back the job and to drill into the details of the job’s execution.

SUMMARY

In this chapter you learned about Apache Hadoop and how it can be
used to process large quantities of both structured and unstructured
data. As well, through the Data Lake Tools for Visual Studio, you are
able to create projects that create different types of applications that
will run on Hadoop or HDInsight. Some of the visualizations that help
developers optimize the HDInsight jobs were also covered.

Download from finelybook www.finelybook.com

867

29
Data Science and Analytics

WHAT’S IN THIS CHAPTER?

Understanding the basic functionality of R
Working with R Interactive Window to execute commands
Creating and manipulating plot windows

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
All developers know that applications need data, and a large
number know how to manipulate data to perform the standard
operations that applications require. Although that’s working with
data, it’s not data science. The goal of data science is to analyze
data, particularly the large volumes produced as “big data.” To do
that, data scientists need to have skills in statistical methods, data
analysis, and working with data at scale.
One of the leading languages used by data analysts is R. R was
specifically designed to be used to manipulate and analyze data,
and it has deep and powerful integration with data visualizations.
When you get right down to it, producing data visualizations helps
you convert “data” to “information,” which is one of the most
important aspects of analyzing data.
Visual Studio 2017 includes a Data Science and Analysis workload
that includes the project template and tools to help you take
advantage of R. In this chapter, we have a brief overview of what R
can do and then examine the tools that have been provided to help

Download from finelybook www.finelybook.com

868

http://wrox.com
http://www.wrox.com

with it.

WHAT IS R?

Just because it’s way too much fun to not start this way, R is a
language derived from S. Created at Bell Laboratories in the 1970s, S is
a language used by data scientists to perform statistical operations on
datasets. (The “S” is for “Statistics.”) R is a different implementation of
S, but sufficiently derivative so that most S programs can be compiled
and run in the R environment. And an “environment” is really the best
way to describe how R is used. In general, the R environment provides
the following:

An effective mechanism for accessing data. R has libraries that
allow you to integrate with most common database formats.
A collection of operations that are used to work with arrays and
matrices.
The ability to generate graphical representations of data to a
number of different devices, including on-screen and hardcopy.
A programming language that includes the basics, such as loops,
conditionals, recursive functions, and I/O.

The best way to get a sense of R in general and R Tools for Visual
Studio in particular is to try it out. To do so, you need to make sure
that the Data Science and Analytics workload has been installed into
your instance of Visual Studio. This workload includes all of the
libraries needed by R, as well as both Python and F#.

R TOOLS FOR VISUAL STUDIO

Developing in R is intended to be an interactive process. You run
commands against an R engine, view the results, make adjustments,
and try again. The workflow in R Tools is designed to facilitate this
type of flow. To start, create an R project. Use File New Project to
display the New Project dialog (Figure 29-1).

Download from finelybook www.finelybook.com

869

FIGURE 29-1

Navigate to the R node on the left side and choose the R Project
template. Provide a name for your project and click OK. It takes little
time to create a solution, as seen in Figure 29-2.

FIGURE 29-2

There are three files in the newly created project.
.Rhistory: Contains the command history for your project. As you

Download from finelybook www.finelybook.com

870

type commands, this file gets updated, and when you close your
project, the file is saved. By doing so, you have your command
history available to you the next time you open your project.
projectname.rproj: The basic settings file for your project. This
can be edited manually to change things like the version number,
what happens to your workspaces and command history when you
save the project, and some other settings related to how code is
formatted within the editor window. Figure 29-3 shows the default
settings when you create an R project.

FIGURE 29-3

script.R: An empty file waiting for you to put R script into it.
Unlike many development efforts in Visual Studio, the starting point
for working with R is not the Solution Explorer. Instead, it starts with
the R Interactive window (see Figure 29-4).

Download from finelybook www.finelybook.com

871

FIGURE 29-4

You activate the R-Interactive window with Ctrl+2 or by using the R
Tools Windows Interactive menu option.
This window is known as a REPL (Read-Eval-Print Loop). You type
commands into the window, each command is evaluated, and the
results printed to the window. The commands are cumulative, so that
if you use one command to create a function, that function will be
available to subsequent commands.
The syntax for R might seem a little odd to C#/VB.NET developers.

Download from finelybook www.finelybook.com

872

This is because R is a functional programming language. Most things
that you do within the language are invoked by calling a function. To
demonstrate, as well as to show some of the functionality provided by
R Tools for Visual Studio, we’ll create the prototypical Hello World
application.
To get started, double-click on the script.R file in the Solution
Explorer. This opens up an editor for your R script. Type in the
following lines of code:

say_hello <- function(name, extra) {
 print(paste("Hello ", name, "!", sep = ""))
}

This code creates a function and assigns it to say_hello. There are a
number of items to take note of in this short snippet. First, the <- is
the assignment operator. If you are used to working with C# or Visual
Basic, this would typically be the equal sign. And the R editor window
is nice enough to recognize that your fingers might actually type =
without thinking. It will automatically convert your = into <- on your
behalf.
The rest of the snippet is relatively straightforward. The print function
is used to send output to the current window. The paste function is
used to concatenate strings. You can see that not only are positional
parameters allowed, but also named parameters. The sep parameter
allows you to define the character that appears between each of the
parameters passed into paste.
Now that the code has been written, it needs to be executed. This
involves moving the code to the R Interactive window. Although you
could cut and paste the code, the editor window offers a faster way.
Select all three lines in the window and use Ctrl+Enter. This copies the
code to the interactive window and executes it.
Now that the code has been executed, there is a say_hello function
available to you. It is available through IntelliSense in the script editor
(see Figure 29-5) or in the Interactive window.

Download from finelybook www.finelybook.com

873

FIGURE 29-5

To invoke the function, enter the following into the Interactive
window:

say_hello("gentle reader")

The results can be seen in Figure 29-6.

FIGURE 29-6

Debugging an R Script

R Tools for Visual Studio provide many of the features that you expect
from a development language in Visual Studio. Through your
interactions with the editor window and the interactive window, you
have already seen syntax coloration and IntelliSense support. It is also

Download from finelybook www.finelybook.com

874

possible to debug your R application through Visual Studio.
To start, go to the script.R editor window and select the paste
function. Push the F9 function button to insert a breakpoint at this
location. This sets a breakpoint on this line, but you can set the
breakpoint using any of the other techniques available through Visual
Studio. As well, you can set Conditions or Actions on the breakpoint.
Once you have the breakpoint configured as you wish, it’s a two-step
process to launch the script in debug mode. First, you need to attach a
debugger. Click on the Attach debugger button that is at the top of the
Interactive window (visible in Figure 29-6). This initializes the
debugging process for your scripts.
Next, you need to mark the script for debugging. Right-click in the
editor window and select Source R Script from the context menu. This
causes a debug_source command to be executed in the interactive
window. You will see something resembling the following code (it will
have your own path to the script.R file) appear in the interactive
window.

rtvs::debug_source("C:/Users/bruce/Source/Repos/Professional
Visual
Studio 2017/Chapter 29/R Sample Project/script.R", encoding =
"Windows-1252")

This command marks each of the functions found in the script for
debugging. After sourcing the script, you can execute the say_hello
command. The function will be executed as before, but the breakpoint
will be hit, as you can see in Figure 29-7.

Download from finelybook www.finelybook.com

875

FIGURE 29-7

R Tools for Visual Studio includes many of the debugging features that
you would expect, including things like tooltips that display the
current value. You can see an example in Figure 29-7 where the
current value of name is displayed. This is true even when the value
passed into the method is a set of data. Execute the following
command in the interactive window:

say_hello("gentle reader", mtcars)

The mtcars variable is a built-in data collection. It contains 1974 Motor
Trend data on fuel consumption and a number of other attributes on
more than 30 automobiles. When the command is executed, you will
again hit the breakpoint that you previously defined. When you hover
over the extra parameter, Figure 29-8 is the result.

FIGURE 29-8

Download from finelybook www.finelybook.com

876

Tooltips are not the only way to explore a variable while debugging R
scripts. You can open the Variable Explorer using Ctrl+8 or R Tools
Windows Variable Explorer menu option. When at the breakpoint,
you should see the window that appears in Figure 29-9.

FIGURE 29-9

For simple variables, you can see the current value. For more
complicated variables, like the data set, you can expand and view the
hierarchy of values and objects. However, data sets also expose two
additional methods for viewing the data. When you click the icon at
the extreme right of the extra row, it opens Excel and loads the data
into a spreadsheet. Another option is to click on the magnifying glass
icon to display the details in a separate window, as shown in Figure
29-10.

Download from finelybook www.finelybook.com

877

FIGURE 29-10

When the Variable Explorer opened, the scope was set to the current
method by default. You can change the scope if there are different
variables you want to explore. Above the list of variables and their
values, there is a dropdown list. This list contains all of the packages
that have been installed as well as a scope called .GlobalEnv. This
scope contains all of the variables and functions defined at the
command-line level. So if you choose .GlobalEnv, you will see the
say_hello function.

Workspaces

The idea behind a workspace is to allow you to change where your
scripts are running, while maintaining a comparable user experience
regardless of where the execution takes place. From a practical
perspective, it is likely that you will be developing your R scripts
against a subset of the actual data. At some point, you will need to run
your script against real data. Workspaces allow you to both define and
quickly switch between workspaces.
Figure 29-11 shows a Workspaces window. You can display it using
Ctrl+9 or the R Tools Windows Workspaces menu option.

Download from finelybook www.finelybook.com

878

FIGURE 29-11

You can see three separate workspaces have been defined. The
Microsoft R Client is the engine that is defined by default when the
Data Science and Analytic workload is installed. On this machine, the
CRAN 3.4.0 engine has been installed and a workspace has been
created that points to the CRAN server. As well, a workspace has been
defined against a remote instance of an R Server that is running in
Azure.
To define a new workspace, click on the Add link. A section is
displayed within the Workspaces window, as seen in Figure 29-12.

Download from finelybook www.finelybook.com

879

FIGURE 29-12

Provide a name for your entry and either a URL or a path to the R
Server executables. For remote entries, you’ll need to provide a URL. If
you have installed different versions of R locally, then a path is
sufficient.
The R Interactive window works against the currently active
workspace. This is denoted by a green checkmark in the icon to the left
of the name. Currently the Microsoft R Client is the active workspace.
To change the workspace, click on the right-pointing arrow icon. This
not only changes the workspace, but causes messages indicating the
details about the new instance to be displayed. From that point
forward, any executed commands will be run on the remote server.

Plotting Windows

One of the strengths of R is its ability to visualize data. Along with
some built-in functionality, there are a number of libraries that are
available to facilitate this capability. A frequently used one is called
ggplot. But to get you started, let’s look at the basic plotting
functionality. Execute the following command in the interactive
window:

plot(mtcars@mpg)

Download from finelybook www.finelybook.com

880

This generates a plot of the mpg column (for Miles per Gallon) in the
mtcars dataset. The result can be seen in Figure 29-13.

FIGURE 29-13

A second dimension can be added to this plot by executing a slightly
different command:

plot(mtcars$mpg,mtcars@disp)

The result, seen in Figure 29-14, maps the miles per gallon against the
engine displacement.

Download from finelybook www.finelybook.com

881

FIGURE 29-14

Naturally, there are R functions that will let you generate line graphs,
add labels and legends, and change colors for the various elements.
But that gets more into the realm of R and out of the realm of Visual
Studio. In the plot window, you do have a number of options available
to you.
The first couple of icons allow you to manipulate plot windows. The
first icon lets you create a new plot window. The plot command sends
its output to the currently active plot window. Creating a plot window
starts a new window and makes it the active one. The second icon is

Download from finelybook www.finelybook.com

882

used to activate that plot window, making it the target for the
interactive window’s commands.
The next three icons are used to work with the plot history. The first
icon launches the Plot History window (Figure 29-15).

FIGURE 29-15

These are the most recently created plots. You can zoom in or out on
the plots or show them in the window using the Show Plot icon or by
clicking the Shot Plot option in the context menu.
Back in the plot window, to the right of the Plot History icon, there are
two arrows that let you navigate back and forth through the plot

Download from finelybook www.finelybook.com

883

history.
The next four icons let you convert the plot to a different format. It can
be saved as an image (.png) or an Adobe Acrobat (.pdf) file. It can also
be copied to the clipboard as a bitmap (.bmp) or a Windows Metafile
(.wpf).
The last two icons let you remove the last plot that you added to the
plot window or to just clear all of the plots from the window. Once the
plots have been cleared, they are also removed from the Plot History
window.

SUMMARY

If analyzing data is in the list of tasks you need to do regularly (or
you’re supporting people who do so), then the R language is an
incredibly useful tool. With the extensibility provided by Visual Studio,
R Tools for Visual Studio has been integrated into the development
environment quite seamlessly. In this chapter, we looked at some of
the ways that Visual Studio can help increase the productivity of a data
analyst who is working with R, both while using the tool and while
creating an R Project.

Download from finelybook www.finelybook.com

884

PART IX
Debugging

CHAPTER 30: Using the Debugging Windows
CHAPTER 31: Debugging with Breakpoints

Download from finelybook www.finelybook.com

885

30
Using the Debugging Windows

WHAT’S IN THIS CHAPTER?

Learning basic debugging concepts in Visual Studio, including
breakpoints and DataTips
Understanding the debugging windows in Visual Studio

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Debugging an application is one of the more challenging tasks
developers must tackle, but correct use of the Visual Studio 2017
debugging windows can help you analyze the state of the
application and determine the cause of any bugs. This chapter
examines the numerous windows available in Visual Studio 2017 to
support you in building and debugging applications.

THE CODE WINDOW

The most important window for debugging purposes is the code
window. With the capability to set breakpoints and step through code,
this window is the starting point for almost all debugging activities.
Figure 30-1 shows a simple snippet of code with both a breakpoint
(red dot) and the current execution point (yellow arrow) visible.

Download from finelybook www.finelybook.com

886

http://wrox.com
http://www.wrox.com

FIGURE 30-1

Breakpoints

The first stage in debugging an application is usually to identify the
area causing the error by setting a breakpoint and gradually stepping
through the code. Chapter 31, “Debugging with Breakpoints,” covers in
detail setting breakpoints and working with the current execution
point. Breakpoints are marked in the code window with a red dot in
the margin of the page and a colored highlighting of the code itself.
When a breakpoint is encountered within a running application, the
current execution point is marked with a yellow arrow in the margin,
and the actual code is also highlighted in yellow. This marker can be
dragged forward and backward to control the order of execution.
However, you should do this judiciously because it can impact the
behavior of the application.

DataTips

After hitting a breakpoint, the application is paused, or is in Debug
Mode. In this mode, you can retrieve information about current
variables simply by hovering your mouse over the variable name.
Figure 30-1 shows that the value of the name variable is currently “Kyle
Johnson.” This debugging tooltip is commonly referred to as a
DataTip, and you can use it not only to view the values of simple types,
such as strings and integers, but also to drill down and inspect more
complex object types, such as those made up of multiple nested
classes.

NOTE

DataTips are used to both query and edit the value of a variable.

Download from finelybook www.finelybook.com

887

In Chapter 57, “DataTips, Debug Proxies, and Visualizers,” in the
online archive, you’ll learn how the layout of this DataTip can be
customized using type proxies and type visualizers.

THE BREAKPOINTS WINDOW

When debugging a complex issue, you can set numerous breakpoints
to isolate the problem. Unfortunately, this has two side effects. One,
the execution of the application is hampered because you have to
continually press F5 to resume execution. Two, and more significantly,
the execution of the application is slowed considerably by the presence
of conditional breakpoints, which enable you to specify an expression
that is executed to determine if the application should be paused. The
more complex the breakpoint conditions are, the slower the
application will run. Because these breakpoints can be scattered
through multiple source files, it becomes difficult to locate and remove
breakpoints that are no longer required.
The Breakpoints window, as shown in Figure 30-2, is accessible via
Debug Windows Breakpoints and provides a useful summary of all
the breakpoints currently set within the application. Using this
window, breakpoints can easily be navigated to, disabled, and
removed.

FIGURE 30-2

Two currently active breakpoints are in the Customer.cs file (refer to
Figure 30-2). The first is a regular breakpoint with no conditions. The
second breakpoint has a condition whereby the application will break
only if the order.OrderTotal property has a value less than 1000.
The Breakpoints window, like most other debugging windows, is made
up of two regions: the toolbar and the breakpoint list. Several
functions are available on the toolbar in Visual Studio 2017, including

Download from finelybook www.finelybook.com

888

search, import, and export of breakpoints. These functions are
explained further in Chapter 31, “Debugging with Breakpoints.”
Each item in the breakpoint list is represented by a check box that
indicates whether or not the breakpoint is enabled, an icon and
breakpoint descriptor, and any number of columns that show
properties of the breakpoint. The columns can be adjusted using the
Columns drop-down from the toolbar. You can set additional
breakpoint properties by right-clicking the appropriate breakpoint and
choosing the desired option from the context menu.

THE OUTPUT WINDOW

One of the first debugging windows you encounter when you run your
application is the Output window. By default, the Output window
appears every time you build your application and shows the build
progress. Figure 30-3 shows the successful build of a sample solution.
The final line of the Output window indicates a summary of the build,
which in this case indicates one successfully built project. In the
output there is also a summary of the warnings and errors
encountered during the build. In this case there were no errors or
warnings. Although the Output window can be useful if for some
reason the build fails unexpectedly, most of the time the errors and
warnings are reported in the Error List.

FIGURE 30-3

The Output window has a secondary role as the standard output while
the application runs. You can use the drop-down on the left of the
toolbar to toggle between output sources. Figure 30-3 shows the
output of the build, but as you perform other activities in Visual
Studio, additional entries are created in the drop-down list. For
example, when you run your application in Debug mode, Visual Studio
creates an entry called Debug, which displays any messages that either

Download from finelybook www.finelybook.com

889

the run time or your code has emitted using Debug.Write or
Debug.WriteLine. Likewise, a Refactor entry is created to show the
results of any recent refactoring operation that was performed.

NOTE

The output from external tools such as .bat and .com files that are
executed through Visual Studio (as External Tools) is normally
displayed in the Command window. The output from these tools
can also be displayed in the Output window by setting the Use
Output Window option in the Tools External Tools dialog box.

The other icons on the toolbar, in order from left to right, enable you
to navigate to the source of a build message, go to the previous
message, go to the next message, clear the window contents, and
toggle word wrapping for the Output window.

THE IMMEDIATE WINDOW

Often when you write code or debug your application, you want to
evaluate a simple expression either to test a bit of functionality or to
remind yourself of how something works. This is where the Immediate
window (Debug Windows Immediate) comes in handy. This window
enables you to run expressions as you type them. Figure 30-4 shows a
number of statements — from basic assignment and print operations
to more advanced object creation and manipulation.

Download from finelybook www.finelybook.com

890

FIGURE 30-4

A Customer object is created in a C# project within the Immediate
window (refer to Figure 30-4). Within a Visual Basic project, you can’t
do explicit variable declaration (for example, Dim x as Integer).
Instead it is done implicitly using the assignment operator.
One of the more useful features of the Immediate window is that you
can use it while you write code. When you create objects in the
Immediate window at design time, it invokes the constructor and
creates an instance of that object without running the rest of your
application.
If you invoke a method or property that contains an active breakpoint,
Visual Studio changes to Debug mode and breaks at the breakpoint.
This is especially useful if you work on a particular method that you
want to test without running the entire application.
The Immediate window supports a limited form of IntelliSense, and
you can use the arrow keys to track back through the history of
previous commands executed.

Download from finelybook www.finelybook.com

891

NOTE

IntelliSense is supported only in the Immediate window when
running in Debug mode, not during design-time debugging.

The Immediate window also enables you to execute Visual Studio
commands. To submit a command, you must enter a greater than
symbol (>) at the start of the line. There is an extremely large set of
commands available; almost any action that can be performed within
Visual Studio is accessible as a command. Fortunately, IntelliSense
makes navigating this list of available commands more manageable.
There is also a set of approximately 100 predefined aliases for
commands. One of the more well-known aliases is ?, which is a
shortcut for the Debug.Print command that prints out the value of a
variable. You can see the full list of predefined aliases by entering
>alias, as shown in Figure 30-5.

Download from finelybook www.finelybook.com

892

FIGURE 30-5

THE WATCH WINDOWS

Earlier in this chapter you saw how to use DataTips in the code
window to examine the content of a variable by hovering the mouse
over a variable name. When the structure of the object is more
complex, it becomes difficult to navigate the values using just the
DataTip. Visual Studio 2017 has a series of Watch windows that
display variables, providing an easy-to-use interface for drilling down
into the structure.

QuickWatch

The QuickWatch window (Debug QuickWatch) is a modal dialog that
you can launch by right-clicking the code window. Whatever you select
in the code window is inserted into the Expression field of the dialog,
as shown in Figure 30-6, where a myCustomer object is visible. Previous
expressions you have evaluated appear in the drop-down associated
with the Expression field.

Download from finelybook www.finelybook.com

893

FIGURE 30-6

The layout of the Value tree in the QuickWatch window is similar to
the DataTip. Each row shows the variable name, the current value, and
the type of object. The value of the variable can be adjusted by typing
in the Value column.
Use the Add Watch button to add the current expression to one of the
Watch windows. These are variables to be continuously watched.

Watch Windows 1–4

Unlike the QuickWatch window, which is modal and shows a variable
value at a particular execution point, you can use the Watch windows
to monitor a variable value as you step through your code. Although
there are four Watch windows, a single window is sufficient in most
cases. Having four separate windows means that you can have

Download from finelybook www.finelybook.com

894

different sets of variables in the different windows, which might be
useful if you work through a more complex issue that involves multiple
classes.
Figure 30-7 shows a myOrder and myCustomer class in a Watch window
(Debug Windows Watch 1 to Watch 4). Similar to both the
QuickWatch window and the DataTips discussed previously, you can
use the user interface to drill down into more complex data types.

FIGURE 30-7

Additional variables to be watched can be added either by typing into
the Name column on an empty line or by right-clicking the variable in
the code window and selecting Add Watch from the context menu.

Autos and Locals

The Autos and Locals windows are two special Watch windows in
which the variables are automatically added by the debugger. The
Autos window (Debug Windows Autos) contains variables that are
used in the current, preceding, and future lines of code. Similarly, the
Locals window (Debug Windows Locals) shows all variables used in
the current method. Other than being automatically generated, these
windows behave the same as the Watch windows.

THE CODE EXECUTION WINDOWS

In addition to inspecting the contents of variables during a debugging
session, it is essential that you carefully evaluate the logic of your code

Download from finelybook www.finelybook.com

895

to ensure that everything executes in the order that you expect. Visual
Studio 2017 has a group of debugger windows that show exactly what
was loaded and being executed at the time you paused the program
execution. This allows you to better understand the run-time behavior
of your source code and quickly track down logic errors.

Call Stack

As applications grow in complexity, it is quite common for the
execution path to become difficult to follow. The use of deep
inheritance trees and interfaces can often obscure the execution path.
This is where the call stack is useful. Each path of execution must have
a finite number of entries on the stack (unless a cyclic pattern
emerges, in which case a stack overflow is inevitable). The stack can be
viewed using the Call Stack window (Debug Windows Call Stack), as
shown in Figure 30-8.

FIGURE 30-8

Using the Call Stack window, it is easy to navigate up the execution
path to determine from where the current executing method is being
called. You can do this by clicking any of the rows in the call stack,
which are known as frames. Other options available from the call
stack, using the right-click context menu, enable viewing the
disassembler for a particular stack frame, setting breakpoints, and
varying what information displays.

Threads

Most applications use multiple threads at some point. In particular for

Download from finelybook www.finelybook.com

896

Windows applications, you need to run time-consuming tasks on a
thread separate from the main application for the user interface to
always appear responsive. Of course, concurrent execution of threads
makes debugging more difficult, especially when the threads access
the same classes and methods.
Figure 30-9 shows the Threads window (Debug Windows Threads),
which lists all the active threads for a particular application. Notice
that in addition to the threads created in the code, the debugger has
created additional background threads. For simplicity, the threads
used by this application, including the main user interface thread,
have been given names so that they can easily be distinguished.

FIGURE 30-9

The Threads window shows an arrow next to the thread currently
viewed in the code window. To navigate to another thread, simply
double-click that thread to bring the current location of that thread
into view in the code window and update the call stack to reflect the
new thread.
In Break mode, all threads of an application are paused. However,
when you step through your code with the debugger, the next
statement to be executed may or may not be on the same thread you
are interested in. If you are interested only in the execution path of a
single thread, and the execution of other threads can be suspended,
right-click the thread in the Threads window, and select Freeze from
the context menu. To resume the suspended thread, select Thaw from
the same menu.
Debugging multithreaded applications is explained further in Chapter
59, “Advanced Debugging Techniques” in the on-line archive.

Download from finelybook www.finelybook.com

897

Modules

The Modules window (Debug Windows Modules), as shown in
Figure 30-10, displays a list of assemblies referenced by the running
application. Those assemblies that make up the application can also
have debugging symbols loaded, which means that they can be
debugged without dropping into the disassembler. This window is
particularly useful if you want to find the version of an assembly
currently loaded and where it has been loaded from.

FIGURE 30-10

The symbols have been loaded for the CSDebugApplication.exe

application (refer to Figure 30-10). The other assembly has been
skipped because they contain no user code and are optimized. If an
appropriate symbol file is available, you can load it for an assembly via
the Load Symbols option from the right-click context menu.

Processes

Building multitier applications can be quite complex, and you often
need to have all the tiers running. To do this, Visual Studio 2017 can
start multiple projects at the same stage, enabling true end-to-end
debugging. Alternatively, you can attach to other processes to debug
running applications. Each time Visual Studio attaches to a process,
that process is added to the list in the Processes window (Debug
Windows Processes). Figure 30-11 shows the Processes window for a
solution containing two Windows applications and a web application.
The web application actually has two processes associated with it, one
for the server-side code (iisexpress.exe) and one for the client-side
code (iexplore.exe).

Download from finelybook www.finelybook.com

898

FIGURE 30-11

The toolbar at the top of the Processes window enables you to detach
or terminate a process that is currently attached or attach to another
process.

THE MEMORY WINDOWS

The next three windows are typically used for low-level debugging
when all other alternatives have been exhausted. Stepping into
memory locations, using a disassembler, or looking at Registry values
requires a lot of background knowledge and patience to analyze and
make use of the information presented. Only in rare cases while
developing managed code would you be required to perform
debugging at such a low level.

Memory Windows 1–4

You can use the four Memory windows to view the raw contents of
memory at a particular address. Whereas the Watch, Autos, and Locals
windows provide a way to look at the content of variables, which are
stored at specific locations in memory, the Memory window shows you
the big picture of what is stored in memory.
Each of the four Memory windows (Debug Windows Memory 1 to
Memory 4) can examine different memory addresses to simplify
debugging your application. Figure 30-12 shows an example of the
information that displays when using this window. You can use the
scrollbar on the right of the window to navigate forward or backward
through the memory addresses to view information contained in
neighboring addresses. If you’re trying to find the address of a
particular variable, simply type that variable into the Address section
at the top of the window. The address of the variable replaces the

Download from finelybook www.finelybook.com

899

variable name in the Address section and the body of the window
shows the memory around that address.

FIGURE 30-12

Disassembly

Interesting debates arise periodically over the relative performance of
two different code blocks. Occasionally this discussion devolves to
talking about which MSIL instructions are used, and why one code
block is faster because it generates one fewer instruction. Clearly, if
you call that code block millions of times, disassembly might give your
application a significant benefit. However, more often than not, a bit
of high-level refactoring saves more time and involves less arguing.
Figure 30-13 shows the Disassembly window (Debug Windows
Disassembly) where a new GUID is created and then assigned to a
variable. You can see MSIL instructions that make up this action.

Download from finelybook www.finelybook.com

900

FIGURE 30-13

A breakpoint has been set on the call to the constructor, and the
execution point is at this breakpoint (refer to Figure 30-13). While still
in this window, you can step through the lines of MSIL and review
what instructions are executed.

Registers

Using the Disassembly window to step through MSIL instructions can
become difficult to follow as different information is loaded, moved,
and compared using a series of registers. The Registers window
(Debug Windows Registers), as shown in Figure 30-14, enables the

Download from finelybook www.finelybook.com

901

contents of the various registers to be monitored. Changes in a register
value are highlighted in red, making it easy to see what happens as
each line steps through in the Disassembly window.

FIGURE 30-14

THE PARALLEL DEBUGGING WINDOWS

Nowadays it is almost impossible to purchase a new computer that has
a single processor. The trend to include multiple CPUs, which has
been necessary due to physical limitations that have been reached in
CPU architecture, will certainly continue into the future as the primary
way for hardware vendors to release faster computers.
Unfortunately, software that has not been written to explicitly run on
multiple CPUs does not run faster on a multi-core machine. This is a
problem for many users who have been conditioned over the past
couple of decades to expect their applications to run faster when they
upgrade to newer hardware.
The solution is to ensure that your applications can execute different
code paths concurrently on multiple CPUs. The traditional approach is
to develop software using multiple threads or processes.
Unfortunately, writing and debugging multithreaded applications is
difficult and error-prone, even for an experienced developer.
Visual Studio 2017 and .NET Framework (since version 4.6) include a
number of features aimed to simplify the act of writing such software.
The Task Parallel Library (TPL) is a set of extensions to the .NET
Framework to provide this functionality. The TPL includes language
constructs, such as the Parallel.For and Parallel.ForEach loops, and

Download from finelybook www.finelybook.com

902

collections specifically designed for concurrent access, including
ConcurrentDictionary and ConcurrentQueue.
In the System.Threading.Tasks namespace are several classes that
greatly simplify the effort involved in writing multithreaded and
asynchronous code. The Task class is similar to a thread; however, it is
more lightweight and therefore performs much better at run time.
Writing parallel applications is only one part of the overall
development life cycle — you also need effective tools for debugging
parallel applications. To that end Visual Studio 2017 includes two
debugging windows aimed specifically at parallel debugging — the
Parallel Stacks window and the Parallel Tasks window.

Parallel Stacks

You can use the Call Stack window to view the execution path of the
current line of code when debugging. One of the limitations of this
window is that you can see only a single call stack at a time. To see the
call stack of other threads, you must use the Threads window or Debug
Location toolbar to switch the debugger to a different thread.
The Parallel Stacks window (Debug Windows Parallel Stacks), as
shown in Figure 30-15, is one of the more useful windows for
debugging multithreaded and parallelized applications. It provides not
just a way to view multiple call stacks at once but also provides a
graphical visualization of the code execution, including showing how
multiple threads are tied together and the execution paths that they
share.

Download from finelybook www.finelybook.com

903

FIGURE 30-15

The Parallel Stacks window in Figure 30-15 shows an application
currently executing multiple threads. The call graph is read from
bottom to top. The Main thread appears in one box (bottom left), and
the other threads are grouped together in different boxes. The reason
for these threads being grouped is because they share the same call
stack. For example, at the current breakpoint, there are four threads
that share a call stack that starts
with_ThreadPoolWaitCallback.PerformWaitCallback and ends (at the

Download from finelybook www.finelybook.com

904

top) with FuncC. Of those four threads, one continues on to execute
FuncD and FuncE. Another executes FuncF, FuncG, and FuncH. The last
two threads start with executing FuncI and FuncJ before splitting their
call stack into FuncK on one hand and a Task.Wait on the other. You
can see how visualizing all the call stacks at once provides a much
better understanding of the state of the application as a whole and
what has led to this state, rather than just the history of an individual
thread.
A number of other icons are used on this screen. The execution point
of the current thread is shown with a yellow arrow. This is against
FuncE in a box on the center left side of the diagram (refer to Figure
30-15). Each box that the current thread has progressed through as
part of its execution path is highlighted in blue. The wavy lines (also
known as the cloth thread icon) shown against the calls to FuncK and
FuncH in the top-right boxes indicates that these are the current
execution points of a noncurrent thread.
You can hover over the thread count label at the top of each box to see
the Thread IDs of the applicable threads. You can also right-click any
entry in a call stack to access various functions such as navigating to
the applicable line of source code in the code editor or switching the
visualization to a different thread.
If you work with an application that uses numerous threads or tasks,
or has a deep call stack, you may find that the Parallel Stacks call
graph visualization does not fit into one window. In this case a
thumbnail view appears in the bottom-right corner of the window,
which enables you to easily pan around the visualization. You can see
this in Figure 30-16.

Download from finelybook www.finelybook.com

905

FIGURE 30-16

Parallel Tasks

At the beginning of this section, the Task Parallel Library was
introduced, which includes the Task class found in
System.Threading.Tasks and the Parallel.For loops. The Tasks
window (Debug Windows Tasks), as shown in Figure 30-17, assists
you in debugging applications that use these features by displaying a
list with the state of all the current tasks.

Download from finelybook www.finelybook.com

906

FIGURE 30-17

The application that has been paused has created a variety of tasks
that are running, deadlocked, or in a waiting state. You can click the
flag icon to flag one or more tasks for easier tracking.

NOTE

Parallel.For, Parallel.ForEach, and the Parallel LINQ library
(PLINQ) use the System.Threading.Tasks.Task class as part of
their underlying implementation.

EXCEPTIONS

Visual Studio 2017 has a sophisticated exception handler that provides
you with a lot of useful information. Figure 30-18 shows the Exception
Assistant screen that appears when an exception is raised. In addition
to providing more information, it also displays a series of actions. The
list of possible actions varies depending on the type of exception being
thrown. Common options include the ability to view details of the
exception, to copy it to the clipboard, and to open exception settings.

Download from finelybook www.finelybook.com

907

FIGURE 30-18

If you select the View Details action item from the exception, you are
presented with a modal dialog that provides a breakdown of the
exception that was raised. Figure 30-19 shows the attributes of the
exception, including the Stack Trace, which can be viewed by using the
Text Visualizer associated with the property value.

Download from finelybook www.finelybook.com

908

FIGURE 30-19

Of course, at times exceptions are used to control the execution path in
an application. For example, some user input may not adhere to a
particular formatting constraint, and instead of using a Regular
Expression to determine whether or not it matches, a parse operation
has been attempted on the string. When this fails, it raises an
exception, which can easily be trapped without stopping the entire
application.
By default, all exceptions are trapped by the debugger because they are
assumed to be exceptions to the norm that shouldn’t have happened.
In special cases, such as invalid user input, it may be important to
ignore specific types of exceptions. This can be done via the Exceptions
window, accessible from the Debug menu.

Download from finelybook www.finelybook.com

909

Figure 30-20 shows the Exception Settings window (Debug
Exception Settings), which lists all the exception types that exist in the
.NET Framework. Each exception has two debugging options. The
debugger can be set to break when an exception is thrown, regardless
of whether or not it is handled. If the Just My Code option has been
enabled (which is defined across all of the projects in your solution in
Tools Options, then Debugging General), checking the check box
causes the debugger to break (that is, pause execution) any time that
exception is not handled within a user code region. More information
on Just My Code is provided in Chapter 57, “DataTips, Debug Proxies,
and Visualizers,” in the online archive.

FIGURE 30-20

Unfortunately, the Exception Settings window doesn’t pick up any
custom exception types that you may have created, but you can add
them manually. Select one of the top-level categories (such as
Common Language Runtime Exceptions). This enables the plus icon in
the toolbar. You need to provide the full class name, including the
namespace; otherwise, the debugger cannot break on handled
exceptions. Clearly, unhandled exceptions can still cause the
application to crash.
One of the additions to exception handling in Visual Studio 2017 is the
ability to add conditions when handling exceptions will cause a
breakpoint to be hit. If you right-click on the exception and select the
Edit Conditions option in the context menu, you’ll see the dialog

Download from finelybook www.finelybook.com

910

shown in Figure 30-21 appear.

FIGURE 30-21

Here you can specify which modules the breakpoint functionality is
used in. The only condition you can add is to select the module names
to be considered. It is possible, however, to use an asterisk (*) as a wild
card when specifying the module name in the condition.

SUMMARY

This chapter has described each of the debugging windows in detail so
that you can optimize your debugging experience. Although the
number of windows can seem somewhat overwhelming at first, they
each perform an isolated task or provide access to a specific piece of
information about the running application. You can easily learn to
navigate between them, returning to those that provide the most
relevant information for you.

Download from finelybook www.finelybook.com

911

31
Debugging with Breakpoints

WHAT’S IN THIS CHAPTER?

Using breakpoints, conditional breakpoints, and tracepoints to
pause code execution
Controlling the program execution during debug by stepping
through code
Modifying your code while it runs using the Edit and Continue
feature

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Long gone are the days when debugging an application involved
adding superfluous output statements to track down where an
application was failing. Visual Studio 2017 provides a rich,
interactive debugging experience that includes breakpoints,
tracepoints, and the Edit and Continue feature. This chapter covers
how you can use these features to debug your application.

BREAKPOINTS

A breakpoint is used to pause, or break, an application at a particular
point of execution. An application that has been paused is in Break
mode, causing a number of the Visual Studio 2017 windows to become
active. For example, you can use the Watch window to view variable
values. Figure 31-1 shows a breakpoint added to the constructor of the

Download from finelybook www.finelybook.com

912

http://wrox.com
http://www.wrox.com

Customer class. The application breaks on this line if the Customer class
constructor is called.

FIGURE 31-1

Setting a Breakpoint

You can set breakpoints either through the Debug menu, using the
Toggle Breakpoint item from the right-click context menu, or by using
the keyboard shortcut F9. The Visual Studio 2017 code editor also
provides a shortcut for setting a breakpoint using a single mouse-click
in the margin. An application can be paused only on a line of executing
code. This means that a breakpoint set on either a comment or a
variable declaration is repositioned to the next line of executable code
when the application is run.

Simple Breakpoints

You can set a breakpoint on a line of code by placing the cursor on that
line and enabling a breakpoint using any of the following methods:

Selecting Toggle Breakpoint from the Debug menu
Pressing F9
Clicking once in the margin of the code window with the mouse

Once a breakpoint has been set for a line, additional details for the
breakpoint can be specified through Settings. You can access Settings
by right-clicking the content menu or hovering your mouse over the
breakpoint icon in the margin and clicking on the gear image (see
Figure 31-1). Both actions cause the Settings subwindow to appear (see
Figure 31-2). In this window, you can see that the breakpoint is set at
line 13 of the Customer.cs file. There is also a character number that
indicates the character position in the line where the breakpoint is set.
This is only really useful when multiple statements appear on a single

Download from finelybook www.finelybook.com

913

line. Clicking on the link where that information appears changes the
interface to allow for modification of the line and character position,
as shown in Figure 31-3.

FIGURE 31-2

FIGURE 31-3

Function Breakpoints

Another type of breakpoint that you can set is a function breakpoint.
The usual way to set a breakpoint on a function is to select the function
signature and either press F9 or use the mouse to create a breakpoint.
In the case of multiple overloads, this requires you to locate all the
overloads and add the appropriate breakpoints (unless, of course, your
intent is to set a breakpoint within one specific overload). Setting a
function breakpoint enables you to set a breakpoint on one or more
functions by specifying the function name.
To set a function breakpoint, from the New Breakpoint item on the
Debug menu, select Function Breakpoint. This loads the New Function
Breakpoint dialog, as shown in Figure 31-4, in which you can specify
the name of the function on which to break.

Download from finelybook www.finelybook.com

914

FIGURE 31-4

When setting a function breakpoint, you can specify either the exact
overload you want to set the breakpoint on or just the function name.
In Figure 31-4, the overload with a single float parameter has been
selected. Unlike a full method signature, which requires a parameter
name, to select a particular function overload, you should provide only
the parameter type. If you omit the parameter information and there
are multiple overloads, a breakpoint is set in every method.

Adding Break Conditions

Though breakpoints are useful for pausing an application at a given
point to review variables and watch application flow, if you are looking
for a particular scenario, it may be necessary to break only when
certain conditions are valid. Breakpoints can be tailored to search for
particular conditions, to break after a number of iterations, or even to
be filtered based on process or machine name.

Condition

A breakpoint condition can be specified through the Breakpoint
Settings subwindow. Select Settings from the right-click context menu
for the breakpoint to display the subwindow, as shown in Figure 31-5.
When the Conditions checkbox is checked, you can specify the
condition that must be met before execution halts when the
breakpoint is reached. If the condition evaluates to false, the
application continues past the breakpoint without breaking.

Download from finelybook www.finelybook.com

915

FIGURE 31-5

In Figure 31-5, which is for a breakpoint set within the Order class, the
condition specifies that the order total must be greater than 1,000. As
with most debugging windows, the Condition field provides rich
IntelliSense support to aid writing valid conditions. If an invalid
condition is specified, the debugger throws an appropriate error
message and the application breaks the first time the breakpoint is
reached.
Sometimes it is more relevant to know when the value of this
condition changes rather than when it is true. The When Changed
option available in the middle drop-down in the Breakpoint Settings
subwindow breaks the application when the value of the condition
changes. If this option is selected, the application does not break the
first time the breakpoint is hit because there is no previous status to
compare against.
You can specify multiple conditions for a single breakpoint through
the Breakpoint Settings subwindow. You do this by clicking on the Add
condition link below the first drop-down box. However, you can only
specify a condition of each type once. For example, Figure 31-6
illustrates the Breakpoint Settings subwindow with a second condition
added. Note that in the visible drop-down, Conditional Expression is
not a valid choice. (It was already used for the first condition.)

Download from finelybook www.finelybook.com

916

FIGURE 31-6

NOTE

Using multiple breakpoints with complex conditions can
significantly slow down the execution of your application, so it is
recommended that you remove breakpoints that are no longer
relevant in order to speed up the running of your application.

Hit Count

Though it’s perhaps not as useful as breakpoint conditions, it is also
possible to break after a particular number of iterations through a
breakpoint. This is defined through the Conditions in the Breakpoint
Settings subwindow. Choose Hit Count from the condition type drop-
down, as illustrated in Figure 31-7.

FIGURE 31-7

Every time the application runs, the hit count is reset to zero and can
be manually reset using the Reset link. The hit count is unique to each
breakpoint. The hit count condition (selected from the middle drop-
down) can be one of three options:

Is Equal To (=): Break if the hit count is equal to the value
specified.
Multiple Of: Break if the hit count is a multiple of the value
specified.

 Is Greater Than or Equal To (>=): Break if the hit count is
greater than or equal to the value specified.

Download from finelybook www.finelybook.com

917

Filter

A single solution may contain multiple applications that need to be
run at the same time. When the application runs, the debugger can
attach to all these processes, enabling them to be debugged. By
default, when a breakpoint is reached, all the processes break. You can
control this behavior from the Debugging (General) node in the
Options window, accessible from the Options item on the Tools menu.
Unchecking the Break All Processes When One Process Breaks check
box enables processes to be debugged individually.
If a breakpoint is set in a class library used by more than one process,
each process breaks when it reaches that breakpoint. Because you
might be interested in debugging only one of these processes, you can
place a filter on the breakpoint that limits it to the process you are
interested in. If you debug applications on multiple machines, you also
can specify a machine name filter.
Filtering can be useful for a multithreaded application for which you
want to limit the breakpoints to a particular thread. Although the
breakpoint is triggered only when a thread matches the filter criteria,
all threads still pause. Figure 31-8 shows the Filter condition in the
Breakpoint Settings subwindow, along with the possible filter
conditions.

FIGURE 31-8

Working with Breakpoints

You often need to adjust a breakpoint because it might be in the wrong
location or no longer relevant. In most cases it is easiest to remove the
breakpoint, but in some cases — for example, when you have a
complex breakpoint condition — it might be preferable to adjust the

Download from finelybook www.finelybook.com

918

existing breakpoint.

Deleting Breakpoints

To remove a breakpoint that is no longer required, select it, either in
the code editor or in the Breakpoints window (accessed through the
Debug Windows Breakpoints menu option and shown in Figure 31-
9), and remove it using the Toggle Breakpoint item from the Debug
menu. Alternatively, the Delete Breakpoint item from the right-click
context menu or the Delete Breakpoint icon from the Breakpoints
window toolbar can remove the breakpoint. As you might expect, any
configuration regarding the deleted breakpoint (such as conditions,
filters, and so on) is lost.

FIGURE 31-9

Disabling Breakpoints

Instead of deleting a breakpoint, simply disabling the breakpoint can
be useful when you have a breakpoint condition set or you track a hit
count. To disable a breakpoint, select it either in the code editor or in
the Breakpoints window, and disable it using the Disable Breakpoint
item from the right-click context menu. Or, from the code editor,
hover over the breakpoint in the margin and then click on the Disable
Breakpoint icon (the one on the right) that appears. Alternatively, you
can uncheck the check box against the breakpoint in the Breakpoints
window. Figure 31-10 shows how a disabled breakpoint would appear
in the code window.

Download from finelybook www.finelybook.com

919

FIGURE 31-10

Labeling Breakpoints

Visual Studio 2017 includes the capability to assign a label to a
breakpoint. This is particularly useful if you want to group a set of
related breakpoints together. When labeled, you can search for and
perform a bulk action on all breakpoints with a specific label.
To assign a label to a breakpoint, right-click the breakpoint, and
choose Edit Labels. This displays the Edit Breakpoint Labels dialog, as
shown in Figure 31-11, where you can attach one or more labels to the
breakpoint.

FIGURE 31-11

After you have labeled your breakpoints, you can perform bulk actions
on them by opening the Breakpoints window (Debug Windows
Breakpoints). This window, as shown in Figure 31-12, enables you to
filter the list by typing a value in the Search box and pressing Enter.
Once you do so, only those breakpoints that contain the search value
are displayed. Each column in the window is included in this search,
including the label. You can then select one of the actions from the
toolbar, such as Enable or Disable All Breakpoints Matching the
Current Search Criteria.

Download from finelybook www.finelybook.com

920

FIGURE 31-12

NOTE

By default, the search will be performed across all columns shown
in the Breakpoints window. You can limit the search to specific
columns by changing the Columns drop-down from All Visible to
a specific column.

Import and Export of Breakpoints

Another debugging feature provided by Visual Studio 2017 is the
import and export of breakpoints. This feature enables you to back up
and restore breakpoints, and share them among developers.
Export of breakpoints is performed from the Breakpoints window
(Debug Windows Breakpoints). If you want to export only a subset
of your breakpoints, first filter the list by entering a search criterion.
When the list of breakpoints that you want to export displays, click the
Export All Breakpoints Matching the Current Search Criteria button
from the toolbar.
Import of breakpoints can also be performed from the Breakpoints
window by clicking the appropriate button on the toolbar.

TRACEPOINTS

A tracepoint differs from a breakpoint in that it triggers an additional
action when it is hit. For purposes such as applying filters, conditions,
and hit counts, a tracepoint can be thought of as a breakpoint.
Tracepoints can be compared to using either Debug or Trace statements
in your code, but tracepoints can be dynamically set as the application

Download from finelybook www.finelybook.com

921

is being debugged and will not affect your code.
You can create tracepoints from an existing breakpoint using the
Breakpoint Settings subwindow. In the subwindow, click on the
Actions checkbox to show the details, as found in Figure 31-13.

FIGURE 31-13

The result of hitting a tracepoint is to display a message in the Output
window. In the text box for the tracepoint, enter the message that you
want displayed. There are a number of variables that can be used to
display the current state. These variables are prefixed by a dollar sign
($) and are available through IntelliSense. Figure 31-13 includes the
available variables. They are:

$ADDRESS: The current instructions
$CALLER: The name of the function that called the current method
$CALLSTACK: The current call stack
$FUNCTION: The name of the current function
$PID: The current process ID
$PNAME: The name of the current process
$TID: The current thread ID
$TNAME: The name of the current thread

By default, after a tracepoint action has been defined, the Continue
Execution check box will be checked, so the application will not break
at this point. Unchecking this option causes the application to break at
the tracepoint as if it were a breakpoint. The message will be printed
prior to the application breaking.

Download from finelybook www.finelybook.com

922

After you set a tracepoint, the code window changes the appearance of
that line of code to indicate that a tracepoint has been set. This is
shown in the top left corner of Figure 31-13, where the tracepoint
appears with a red diamond in the margin.
If the Continue Execution check box is unchecked, the visual
appearance of the tracepoint becomes the same as that of a
breakpoint. The rationale for this behavior is that the diamond-shaped
visual cue indicates that the debugger will not stop at the tracepoint,
rather than indicating that there are actions associated with the
tracepoint.

EXECUTION CONTROL

After reaching a breakpoint, it is often useful to step through code and
review both variable values and program execution. Visual Studio 2017
not only enables you to step through your code, but it also permits you
to adjust the execution point to backtrack or even repeat operations.
The line of code about to be executed is highlighted, and an arrow
displays on the left, as shown in Figure 31-14.

FIGURE 31-14

Stepping through Code

The first step to manipulate the execution point is simply to step
through code in the expected order of execution. You can use three
sizes of increments to step the debugger forward. It is important to
remember that when stepping through code it is actually being run, so
variable values may change as you progress through the application.

Stepping Over (F10)

Download from finelybook www.finelybook.com

923

Stepping Over is fully executing the line that currently has focus and
progressing to the next line in the current code block. If the end of the
code block has been reached, Stepping Over returns to the calling code
block.

Stepping Into (F11)

Stepping Into behaves the same as Stepping Over when the line is a
simple operator, such as a numeric operation or a cast. When the line
is more complex, Stepping Into steps through all user code. For
example, in the following code snippet, pressing F10 through the
TestMethod steps through only the lines of code within TestMethod.
Pressing F11 steps through TestMethod until the MethodA call is made,
and then the debugger steps through MethodA before returning to
TestMethod:
C#

public void TestMethod()
{
 int x = 5 + 5;
 MethodA();
}

private void MethodA()
{
 Console.WriteLine("Method A being executed");
}

Stepping Out (Shift+F11)

If you step into a long method by accident, it is quite often convenient
to step back out of that method without having to either step over
every line in that method or set a breakpoint at the end of the method.
Stepping Out moves the cursor out of the current method to where it
was called. Considering the previous snippet, if you entered MethodA,
pressing Shift+F11 would immediately return the cursor to the end of
TestMethod.

Step Filtering

One useful feature is the ability to automatically step over properties
and operators. In many cases, public properties are simply wrappers

Download from finelybook www.finelybook.com

924

for a private member variable, and as a result there is little to be
gained from stepping into them while debugging. This debugger
option is especially useful if you call a method that passes a number of
properties as parameters, such as the method call listed here:
C#

printShippingLabel(cust.name, shipTo.street, shipTo.city,
shipTo.state,
shipTo.zipCode);

With the Step Over Properties and Operators option enabled, the
debugger steps directly into the first line of the printShippingLabel
method if you press F11. If you need to, you can manually step into a
specific property by right-clicking the code editor window and
selecting Step Into Specific. This displays a submenu with each of the
available properties listed, as shown in Figure 31-15.

FIGURE 31-15

The Step Over Properties and Operators option is enabled by default.
You can enable or disable it during debugging by right-clicking
anywhere in the code editor window and selecting it from the context
menu or from the Options dialog window. (Select Tools Options, and
then from the tree view on the left side, select Debugging).

Run to Cursor

A frequently used mechanism to move through your code while
debugging is the Run to Cursor function. While you have stopped at a
breakpoint, you can place your cursor anyplace else in the code, right-

Download from finelybook www.finelybook.com

925

click, and select Run to Cursor from the context menu. The execution
of your application will then continue until it reaches the line of code
that had been selected, where it will stop. Consider it to be Step
In/Over on steroids.
There are a couple things to note about Run to Cursor functionality. If
you click on a line of code that doesn’t get hit during execution, the
application will continue running, even to termination if that’s how the
flow of control works. If the application hits a line of code that requires
user input before continuing, the breakpoint at your cursor will still be
hit after the input has been provided. And if, while running to your
cursor, a different breakpoint is hit, then execution will still stop at
your cursor.
Visual Studio 2017 introduced an easier way to invoke the Run to
Cursor functionality. Called Run to Click, it reduces the friction
associated with Run to Cursor. As you can see in Figure 31-16, there is
a green arrow to the left of the beginning of the code. When you click
on that arrow, it runs the application, stopping on the current line as a
breakpoint. In other words, it’s the Run to Cursor function (complete
with the same notes and caveats), but instead of needing to use the
context menu, it’s just a click away.

FIGURE 31-16

Moving the Execution Point

As you become familiar with stepping in and out of functions, you will
find that you are occasionally overzealous and accidentally step over
the method call you are interested in. In this case, what you need to do
is go back and review the last action. Though you can’t actually unwind
the code and change the application back to its previous state, you can
move the execution point so that the method is reevaluated.
To move the current execution point, select and drag the yellow arrow
next to the current line of execution (refer to Figure 31-14) forward or
backward in the current method. Use this functionality with care
because it can result in unintended behavior and variable values.

Download from finelybook www.finelybook.com

926

EDIT AND CONTINUE

One of the most useful features of Visual Studio 2017 debugging is
Edit and Continue. Both C# and Visual Basic have support for Edit
and Continue, enabling you to make changes to your application on
the fly. Whenever your application is paused, you can make changes to
your code and then resume execution. The new or modified code is
dynamically added to your application with the changes taking
immediate effect.

Rude Edits

At this point, you are likely wondering whether any limitations exist
on the changes that you can make. The answer is yes, and there are
quite a few types of rude edits, which refer to any code change that
requires the application to be stopped and rebuilt. A full list of rude
edits is available from the Visual Studio 2017 help resource under the
Edit and Continue topic, and they include the following:

Making changes to the current, or active, statement
Making changes to the list of global symbols — such as new types
or methods — or changing the signatures of methods, events, or
properties
Making changes to attributes

Stop Applying Changes

When changes are made to the source code while the application is
paused, Visual Studio must integrate, or apply, the changes into the
running application. Depending on the type or complexity of the
changes made, this could take some time. If you want to cancel this
action, you can select Stop Applying Code Changes from the Debug
menu.

SUMMARY

Most developers who use Visual Studio 2017 use breakpoints to track
down issues with their applications. In this chapter, you learned how

Download from finelybook www.finelybook.com

927

to optimize the use of breakpoints to reduce the amount of time spent
locating the issue. You also saw how to use tracepoints to generate
output (for those cases when breakpoints impact your application’s
flow).
Visual Studio provides other tools to ease the debugging process in the
book’s online archive examines how to work with data tips and utilize
custom proxy types and visualizers while in a debugging session. As
always, the goal is to reduce the time spent wading through
unnecessary lines of code.

Download from finelybook www.finelybook.com

928

PART X
Build And Deployment

CHAPTER 32: Upgrading with Visual Studio 2017
CHAPTER 33: Build Customization
CHAPTER 34: Obfuscation, Application Monitoring, and
Management
CHAPTER 35: Packaging and Deployment
CHAPTER 36: Web Application Deployment
CHAPTER 37: Continuous Deployment

Download from finelybook www.finelybook.com

929

32
Upgrading with Visual Studio 2017

WHAT’S IN THIS CHAPTER?

Taking advantage of the IDE when working on older projects
Updating projects to use the latest run time and libraries

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
The days of needing to migrate every developer to the latest
version of Visual Studio before the first person can use it are now,
more or less, behind us. There are two reasons for this. The first is
multitargeting, which is a geeky way of saying that you can compile
applications in Visual Studio 2017 so that they can run on a wide
range of .NET Frameworks, including older versions. Also,
Microsoft has stabilized on a solution and project file format, so
opening a solution in Visual Studio 2017 does not (usually) keep it
from being opened by earlier versions of Visual Studio. This goes
as far back as even Visual Studio 2013 or 2012. As the “usually”
suggests, there are exceptions to this. But now the main roadblock
to upgrading is not so much about Visual Studio as it is the tooling
that comes with it. Many projects upgrade just fine. But some
tools, such as SQL Server Data Tools, are automatically upgraded
with the installation, and compatibility with earlier versions is not
guaranteed.
In this chapter, you see how easy it is to migrate existing .NET
applications into Visual Studio 2017. This is done in two parts:
upgrading to Visual Studio 2017 and then upgrading the .NET

Download from finelybook www.finelybook.com

930

http://wrox.com
http://www.wrox.com

Framework version the application makes use of to 4.6.2.

UPGRADING FROM RECENT VISUAL STUDIO VERSIONS

The process of upgrading projects from Visual Studio 2015 to 2017 is
as simple as an upgrade process can be. And in some cases, you can
even upgrade your projects from Visual Studio 2013, 2012, and 2010
SP1 with little effort. For most types of projects, there is little to no
upgrade process. You can simply open your project using Visual Studio
2017 and start using the IDE. And saving the project from within
Visual Studio 2017 does not keep people using these older versions
from being able to open and work the projects as before. In other
words, by all appearances, there doesn’t seem to actually be an
upgrade process for many projects.
Still, as seamless as the upgrade process might seem most of the time,
not every single project fits into that category. As a result, when a
project from Visual Studio 2015 is opened in Visual Studio 2017, it is
placed into one of three categories:

Changes required — Some modifications of the project and
assets are required to open the project in Visual Studio 2017. After
the changes have been made, the project can still be opened in
earlier versions of Visual Studio (that is, 2015, 2013, and 2012).
Update required — Some modifications of the projects and
assets are required. After the changes have been made, the project
may not be opened from Visual Studio 2015 or earlier.
Unsupported projects —Projects that fall into this category
cannot be opened from Visual Studio 2017.

With most projects (Table 32-1 outlines the exceptions), round-trip
compatibility is a reality. You can create projects in Visual Studio
2015, open the projects in Visual Studio 2017, and then open them
again in Visual Studio 2015 or even Visual Studio 2013. Of course,
there are some limitations to this process. For example, the changes
that you make to your project can’t use features specific to Visual
Studio 2017, for example, changing your project to target .NET 4.6.2.
But beyond that fairly reasonable sort of restriction, backward
compatibility exists. And, in many cases, it’s exactly the same with

Download from finelybook www.finelybook.com

931

Visual Studio 2012 or Visual Studio 2010 SP1 — with the caveat that
each of the opened projects will fall into the categories mentioned
earlier.

TABLE 32-1: Compatible Project Types
PROJECT
TYPE

COMPATIBILITY ISSUES

.NET Core
Projects

.NET Core projects created in Visual Studio 2015 used a
preview version of the tooling that included an .xproj
file. Opening the project in Visual Studio 2017 creates a
.csproj file (you are prompted to upgrade). While the
.xproj file remains, it is not updated if you add files to
your project in Visual Studio 2017. And since Visual
Studio 2015 doesn’t support .csproj files, you won’t be
able to open the updated project in that version.

ASP.NET
MVC 5,
ASP.NET
MVC 4

If the project uses Application Insights, you will be
required to authenticate once for each version of Visual
Studio. But after the credentials have been provided,
you won’t be required to log in again. And you cannot
create MVC 4 projects in Visual Studio 2017.

ASP.NET
MVC 3

Visual Studio 2017 does not support ASP.NET MVC 3.
To open the project in Visual Studio 2017, you need to
convert your project to ASP.NET MVC 4.

ASP.NET
MVC 2

Visual Studio 2017 doesn’t support ASP.NET MVC 2. To
open the project in Visual Studio 2017, you need to
convert your project to ASP.NET MVC 4. This is actually
a two-step process that involves first converting to
ASP.NET MVC 3 and then converting to ASP.NET MVC
4. By using these two steps, you can take advantage of
the automatic conversion tools that are available.

ASP.NET
Web Forms

None

BizTalk BizTalk projects (either 2010 or 2013) are not supported
out-of-the-box in Visual Studio 2017.

Blend None

Download from finelybook www.finelybook.com

932

Coded UI
Test

None

F# None. However, to enable F# features in Visual Studio
2017, you need to upgrade your application to version
4.1 of F#.

LightSwitch LightSwitch is not supported in Visual Studio 2017.
Modeling None. However, there are some differences in the

menus. Modeling projects are now referred to as
Dependency Validation projects. And UML diagrams
are no longer supported. When you edit the files, they
are opened as XML files.

Office 2007
VSTO

This requires a one-way upgrade to Visual Studio 2017.

Office 2010
VSTO

None, as long as the project targets .NET Framework 4
or later. Otherwise, it requires a one-way upgrade.

Rich
Internet
Applications

None, although the templates used to create these
projects have been removed. However, you can open
and modify existing applications.

SharePoint
2007

The project must be upgraded to SharePoint 2013 or
SharePoint 2016 before it can be opened in Visual
Studio 2017.

SharePoint
2010

The project must be upgraded to SharePoint 2013 or
SharePoint 2016 before it can be opened in Visual
Studio 2017.

SharePoint
2013

None

SharePoint
2016

SharePoint Add-In projects created using the Office
Developer Tools Preview 2 cannot be opened in Visual
Studio 2017. The workaround is to open the .csproj or
.vbproj files and change MinimumVisualStudioVersion
from 12.0 to 12.2.

Silverlight
5, 4, or 3

Silverlight projects are not supported in Visual Studio
2017.

Download from finelybook www.finelybook.com

933

SQL Server
Express
LocalDB

The database file must be upgraded to SQL Server 2012.
Database files that are not upgraded cannot be accessed
through the LocalDB functionality but are still available
through SQL Server Express.

SQL Server
2008 R2
Express

None

SQL Server
Report
Project

You need to install the Microsoft Report Projects for
Visual Studio extension from the Visual Studio Gallery.

Visual C++ Projects created in Visual Studio 2015 will open with no
problem, but if the project was created in earlier
versions of Visual Studio, it’s possible that an upgrade of
the project or targeting a more recent toolset might be
required.

WCF None
Windows
Azure Tools

Start by installing the Azure SDK for .NET. Then, if your
project requires updating, it will be done automatically
when you open it.

Windows
Forms

None

Windows
Phone 7.1,
8, 8.1

These projects are not supported in Visual Studio 2017.

Windows
Store 8, 8.1

These projects are not supported in Visual Studio 2017.

Windows
Workflow

None

WPF None

To start with, let’s go through the various project types that are
backward compatible. This would be projects that fit into the first two
categories previously listed. One of the assumptions made with this
compatibility is that Visual Studio is allowed to automatically upgrade

Download from finelybook www.finelybook.com

934

the project. The automatic upgrade process is initiated by simply
opening the project in Visual Studio.
Naturally, you’re left with a list of project types that are no longer
supported by Visual Studio 2017. This includes the following project
types:

Front Page Websites
LightSwitch
MSI/Setup Projects
Silverlight
Visual Studio Macros
Windows Mobile
Windows Phone
Windows Store

UPGRADING TO .NET FRAMEWORK 4.6.2

After you migrate your application across to Visual Studio 2017 and
tidy up your build environment, you should consider the upgrade path
to .NET Framework 4.6.2. With the last few upgrades (actually, since
the base of .NET stabilized at version 2.0), there have not been many
breaking changes. The same is true for .NET 4.6.2, which means that
the upgrade from any version should be relatively painless.
In most cases, upgrading your application is just a matter of changing
the Target Framework project property. Figure 32-1 shows the project
properties dialog for a C# Console Application project. On the
Application tab there is a drop-down that lists the different target
frameworks available for you to select.

Download from finelybook www.finelybook.com

935

FIGURE 32-1

NOTE

For VB projects, this drop-down list is in the Advanced Compile
Options dialog box, which you can access from the Compile tab in
the project properties designer.

One of the additions to .NET with versions 3.5 and 4.0 was the concept
of a Client Profile. If you have had the joy of downloading and
installing the full version of the .NET Framework, you can appreciate
the size of the code base. However, not all of the code base is valuable
to every single type of project. For example, .NET includes classes
related to the processing of incoming requests to generate HTML in a
website. This type of class is not likely to be used if you create an
application that runs on a standalone client computer. For this reason,
Visual Studio 2017 enables you to target your applications to a subset

Download from finelybook www.finelybook.com

936

of the .NET Framework known as the Client Profile. Refer to the drop-
down in Figure 32-1 to see the available options.
The Client Profile was discontinued in .NET Framework 4.5. The
optimization of the download package for .NET, along with additional
deployment alternatives, has led to the decision that there is no need
to provide both the full package and the client profile. As a result, after
.NET 4.0, the only choices available in the drop-down are the full .NET
versions.
As soon as you select a new framework version, the dialog in Figure
32-2 appears. If you select Yes, all pending changes to the project will
be saved and the project will be closed, updated, and reopened with
the new target framework version. It is recommended that you
immediately attempt a rebuild to ensure that the application still
compiles.

FIGURE 32-2

SUMMARY

In this chapter, you have seen how you can upgrade existing .NET
applications to Visual Studio 2017 and version 4.6.2 of the framework.
Using the latest toolset and framework version clearly has some
advantages in performance, functionality, and usability. However,
don’t overlook the limitations that using the latest .NET Framework

Download from finelybook www.finelybook.com

937

might impose. If your target market still uses old operating systems,
such as Windows 2000, you may want to stay on version 2.0 of the
framework because this is supported on these platforms. Visual Studio
2017 enables you to have the best of both worlds, only upgrading when
you want to.

Download from finelybook www.finelybook.com

938

33
Build Customization

WHAT’S IN THIS CHAPTER?

Customizing the build environment
Performing actions at the beginning and the end of the build
Creating custom MSBuild scripts

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Although you can build most of your projects using the default
compilation options set up by Visual Studio 2017, occasionally you
need to modify some aspect of the build process to achieve what
you want. This chapter looks at the various build options available
to you in both Visual Basic and C#, outlining what the different
settings do so that you can customize them to suit your
requirements.
In addition, you learn how Visual Studio 2017 uses the MSBuild
engine to perform its compilations and how you can get under the
hood of the configuration files that control the compilation of your
projects.

GENERAL BUILD OPTIONS

Before you start on a project, you can modify some settings in the
Options pages for Visual Studio 2017. These options apply to every
project and solution that you open in the IDE and as such can be used

Download from finelybook www.finelybook.com

939

http://wrox.com
http://www.wrox.com

to customize your general experience for compiling your projects.
The first port of call for professional Visual Basic developers should be
the General page of the Projects and Solutions group. By default, the
Visual Basic development settings of the IDE hide some of the build
options from view, so the only way to show them is to activate the
Show Advanced Build Configurations option.
When this is active, the IDE displays the Build Configuration options
in the My Project pages, and the Build Configuration Manager menu
command also becomes accessible. Other language environments
don’t need to do this because these options are activated on startup.
(Although you can certainly turn them off if you don’t want them
cluttering your menus and pages.)
Two other options on this page relate to building your projects. One
enables Visual Studio to automatically show the Output window when
you start a build, and the other enables Visual Studio to automatically
show the Error window if compilation errors occur during the build
process. By default, all language configurations have both of these
options turned on.
The Build and Run options page (as shown in Figure 33-1) in the
Projects and Solutions group has more options available to you to
customize the way your builds take place.

Download from finelybook www.finelybook.com

940

FIGURE 33-1

It’s unclear from this page, but some of these options affect only C#
projects, so it’s worth running through each option, what it does, and
what languages it affects:

Maximum Number of Parallel Project Builds: This controls
how many simultaneous build processes can be active at any one
time (assuming the solution being compiled has multiple projects).
This number should be set to match the number of processors on
your build machine.
Only Build Startup Projects and Dependencies on Run:
This option builds only the part of the solution directly connected
to the startup projects. This means that any projects that are not
dependencies for the startup projects are excluded from the default
build process. This option is active by default, so if you have a
solution that has multiple projects called by the startup projects
through late-bound calls or other similar means, they will not be
built automatically. You can either deactivate this option or

Download from finelybook www.finelybook.com

941

manually build those projects separately.
On Run, When Projects Are Out of Date: This option gives
you three choices for out-of-date projects (projects that have
changed since the last build). The default is Always Build, which
forces the build process to occur whenever you run the application.
The Never Build option always uses the previous build of out-of-
date projects, and the Prompt to Build gives you an option to build
for each out-of-date project. Note that this applies only to the Run
command, and if you force a build through the Build menu,
projects are rebuilt according to the other settings in the build
configuration and on this Options page.
On Run, When Build or Deployment Errors Occur: This
controls the action to take when errors occur during the build
process. Despite official documentation to the contrary, this option
does indeed affect the behavior of builds in Visual Basic and C#.
Your options here are the default Prompt to Launch, which
displays a dialog prompting you for which action to take; Do Not
Launch, which does not start the solution and returns to design
time; and Launch Old Version, which ignores compilation errors
and runs the last successful build of the project.
The option to launch an old version enables you to ignore errors in
subordinate projects and still run your application; but because it
doesn’t warn you that errors occurred, you run the risk of getting
confused about what version of the project is active.
When you use the Prompt to Launch option, if you subsequently
check the Do Not Show This Dialog Again option in the prompt
dialog, this setting is updated to either Do Not Launch or Launch
Old Version, depending on whether you choose to continue.

NOTE

It is recommended that you set the On Run, When Build or
Deployment Errors Occur property to Do Not Launch because
this can improve the efficiency with which you write and
debug code — one fewer window to dismiss!

Download from finelybook www.finelybook.com

942

For New Solutions Use the Currently Selected Project as
the Startup Project: This option is useful when you build a
solution with multiple projects. When the solution is being built,
the Visual Studio build process assumes that the currently selected
project is the startup project and determines all dependencies and
the starting point for execution from there.
MSBuild Project Build Output Verbosity: Visual Studio 2017
uses the MSBuild engine for its compilation. MSBuild produces its
own set of compilation outputs, reporting on the state of each
project as it’s built. You have the option to control how much of
this output is reported to you:

By default, the MSBuild verbosity is set to Minimal, which
produces only a small amount of information about each
project, but you can turn it off completely by setting this option
to Quiet, or expand on the information you get by choosing one
of the more detailed verbosity settings.
MSBuild output is sent to the Output window, which is
accessible via View Other Windows Output (under some
environmental setups this will be View Output). If you can’t
see your build output, make sure you have set the Show Output
From option to Build (see Figure 33-2).

FIGURE 33-2

MSBuild Project Build Log File Verbosity: When Visual
Studio builds a C++ project, it generates a text-based log file of
MSBuild activities as well as the normal information that goes to
the Output window. The amount of information that goes into this
text file can be controlled independently using this option. One way
to take advantage of this is to have more detailed information go
into the log file and leave the Output window set to Minimal, which
streamlines the normal development experience but gives you

Download from finelybook www.finelybook.com

943

access to more detailed information when things go wrong. If you
do not want Visual Studio to produce this separate log file, you can
turn it off using the Projects and Solutions VC++ Project Settings
Build Logging setting.

It’s also worth taking a look at the other Options pages in the Projects
and Solutions category because they control the default Visual Basic
compilation options (Option Explicit, Option Strict, Option Compare,
and Option Infer), and other C++-specific options relating to build. Of
note for C++ developers is the capability to specify PATH variables for
the different component types of their projects, such as executables
and include files, for different platform builds, and whether to log the
build output (see the preceding list).

MANUAL DEPENDENCIES

Visual Studio 2017 can detect interproject dependencies between
projects that reference each other. This is then used to determine the
order in which projects are built. Unfortunately, in some
circumstances Visual Studio can’t determine these dependencies, such
as when you have custom steps in the build process. Luckily, you can
manually define project dependencies to indicate how projects are
related to each other. You can access the dialog shown in Figure 33-3
by selecting either the Project Project Dependencies or Project Build
Order menu commands.

Download from finelybook www.finelybook.com

944

FIGURE 33-3

NOTE

These menu commands are available only when you have a
solution with multiple projects in the IDE.

You first select the project that is dependent on others from the drop-
down, and then check the projects it depends on in the bottom list.
Any dependencies that are automatically detected by Visual Studio
2017 will already be marked in this list. You can use the Build Order
tab to confirm the order in which the projects will be built.

THE VISUAL BASIC COMPILE PAGE

Visual Basic projects have an additional set of options that control how
the build process occurs. To access the compile options for a specific
project, open My Project by double-clicking its entry in the Solution

Download from finelybook www.finelybook.com

945

Explorer. When the project Options page displays, navigate to the
Compile page from the list on the left side (see Figure 33-4).

FIGURE 33-4

The Build Output Path option controls where the executable version
(application or DLL) of your project is stored. For Visual Basic, the
default setting is the bin\Debug\ or bin\Release\ directory (depending
on the current configuration), but you can change this by browsing to
the wanted location.

NOTE

You should enable the Treat All Warnings as Errors option
because this can, in most cases, encourage you to write better, less
error-prone code.

You should be aware of two additional sets of hidden options. The
Build Events button at the bottom of the Compile page is available to
Visual Basic developers who want to run actions or scripts before or
after the build has been performed. They are discussed in a moment.

Download from finelybook www.finelybook.com

946

The other button is labeled Advanced Compile Options.

Advanced Compiler Settings

Clicking the Advanced Compile Options button displays the Advanced
Compiler Settings dialog (see Figure 33-5) in which you can fine-tune
the build process for the selected project, with settings divided into
two broad groups: Optimizations and Compilation Constants.

FIGURE 33-5

Optimizations

The settings in the Optimizations group control how the compilation is
performed to make the build output or the build process itself faster or
to minimize the output size. Normally, you can leave these options
alone, but if you do require tweaks to your compilation, here’s a
summary of what each option does:

Remove Integer Overflow Checks: By default, your code is

Download from finelybook www.finelybook.com

947

checked for any instance of a possible integer overflow, which can
be a potential cause for memory leaks. Deactivating this option
removes those checks, resulting in a faster-running executable at
the expense of safety.
Enable Optimizations: Optimizing the build may result in faster
execution and/or a smaller executable with the penalty being that
it takes marginally longer to build.
DLL Base Address: This option enables you to specify the base
address of the DLL in hexadecimal format. This option is disabled
when the project type will not produce a DLL.
Generate Debug Info: This controls when debug information
will be generated into your application output. By default, this
option is set to full (for Debug configurations), which enables you
to attach a debugger to a running application. You can also turn
debugging information off completely or set the option to pdb-only
(the default for Release configurations) to generate only the
Program DataBase (PDB) debugging information. The latter means
that you can still debug the application when it is started from
within Visual Studio 2017 but you can see only the disassembler if
you try to attach to a running application.

Compilation Constants

You can use compilation constants to control what information is
included in the build output and even what code is compiled. The
Compilation Constants options control the following:

Define DEBUG Constant and Define TRACE Constant:
Enable debug and trace information to be included in the compiled
application based on the DEBUG and TRACE flags, respectively. From a
functional perspective, if the DEBUG constant is not present, then the
compiler excludes calls to any of the methods on the Debug class
from the finished application. Similarly, if the TRACE constant is not
present, then calls to methods on the Trace class are not included
in the compiled application.
Custom Constants: If your application build process requires
custom constants, you can specify them here in the form

Download from finelybook www.finelybook.com

948

ConstantName="Value". If you have multiple constants, they should
be delimited by commas.

The last option doesn’t fall under compilation constants, but it does
enable you to further customize the way the project builds.

Generate Serialization Assemblies: By default, this option is
set to Auto, which enables the build process to determine whether
serialization assemblies are needed, but you can change it to On or
Off if you want to hard-code the behavior.

NOTE

Serialization assemblies are created using the Sgen.exe

command-line tool. This tool generates an assembly that contains
an XmlSerializer for serializing (and deserializing) a specific
type. Normally these assemblies are generated at run time the
first time an XmlSerializer is used. Pre-generating them at
compile time can improve the performance of the first use.
Serialization assemblies are named TypeName .XmlSerializers.dll.
See the documentation of Sgen.exe for more info.

Build Events

You can perform additional actions before or after the build process by
adding them to an events list. Click the Build Events button on the My
Project Compile page to display the Build Events dialog. Figure 33-6
shows a post-build event that executes the project output after every
successful build.

Download from finelybook www.finelybook.com

949

FIGURE 33-6

Each action you want to perform should be on a separate line, and can
be added directly into either the Pre-Build Event Command Line text
area or the Post-Build Event Command Line text area, or you can use

Download from finelybook www.finelybook.com

950

the Edit Pre-Build and Edit Post-Build buttons to access the known
predefined aliases that you can use in the actions.

NOTE

If your pre- or post-build event actions are batch files, you must
prefix them with a call statement. For example, if you want to call
archive_previous_build.bat before every build, you need to enter
call archive_previous_build.bat into the Pre-Build Event
Command Line text box. In addition to this, encase any paths that
contain spaces in double-quotes. This applies even if the path with
spaces comes from one of the built-in macros.

As shown in Figure 33-7, the Event Command Line dialog includes a
list of macros you can use in the creation of your actions. The current
value displays for each macro so that you know what text will be
included if you use it.

FIGURE 33-7

In this sample, the developer has created a command line of

Download from finelybook www.finelybook.com

951

$(TargetDir)$(TargetFileName)$(TargetExt), assuming that it would
execute the built application when finished. However, analyzing the
values of each of the macros, it’s easy to see that the extension will be
included twice, which can be amended quickly by either simply
removing the $(TargetExt) macro or replacing the entire expression
with the $(TargetPath) macro.
At the bottom of the Build Events dialog (see Figure 33-6), there is an
option to specify the conditions under which the Post-Build Event will
be executed. The valid options follow:

Always: This option runs the Post-Build Event script even if the
build fails. Remember that there is no guarantee when this event
fires that Visual Studio has produced any files, so your post-build
script should handle this scenario.
On Successful Build: This is the default option. It causes the
Post-Build Event script to be run whenever the build is considered
to be successful. Note that this means that it will run even if your
project is up to date (and therefore is not rebuilt).
When the Build Updates the Project Output: This option is
similar to On Successful Build, except that it fires only the Post-
Build Event script when the project output files have changed. This
is a great option for keeping a local cache of archived builds of your
projects because it means you copy only a file into the archive if it
has changed since the last build.

There are no filter options for determining if the Pre-Build Event will
be executed.

C# BUILD PAGES

C# provides its own set of build options. In general, the options are the
same as those available to a Visual Basic project, but in a different
location because C# programmers are more likely to tweak the output
than Visual Basic developers, who are typically more interested in
rapid development than in fine-tuning performance. Or so says the
common wisdom.
Instead of a single Compile page in the project property pages, C# has
a Build page and a Build Events page. The Build Events page acts in

Download from finelybook www.finelybook.com

952

exactly the same way as the Build Events dialog in Visual Basic, so
refer to the previous discussion for information on that page.
As you can see in Figure 33-8, many of the options on the Build page
have direct correlations to settings found in the Compile page or in the
Advanced Compiler Settings area of Visual Basic. Some settings, such
as Define DEBUG Constant and Define TRACE Constant, are identical to
their Visual Basic counterparts.

FIGURE 33-8

However, some are renamed to fit in with a C++-based vocabulary; for
example, Optimize Code is equivalent to Enable Optimizations. As
with the Visual Basic compile settings, you can determine how
warnings are treated, and you can specify a warning level.
Clicking the Advanced button on the Build page invokes the Advanced
Build Settings dialog, as shown in Figure 33-9, which includes settings
that are not accessible to Visual Basic developers. These settings give
you tight control over how the build will be performed, including
information on the internal errors that occur during the compilation
process and what debug information is to be generated.

Download from finelybook www.finelybook.com

953

FIGURE 33-9

These settings are mostly self-explanatory, so the following list is a
quick summary of what effect each one has on the build:

Language Version: Specifies which version of the C# language
to use. The default is to use the current version. In Visual Studio
2017, along with five versions of C#, the other options are ISO-1
and ISO-2, which restricts the language features to those defined in
the corresponding ISO standard.
Internal Compiler Error Reporting: If errors occur during the
compilation (not compilation errors, but errors with the
compilation process itself), you can have information sent to
Microsoft so that it can add it to its revision of the compiler code.
The default setting is Prompt, which asks you whether you want to
send the information to Microsoft. Other values include None,
which won’t send the information; Send, to automatically send the
error information; and Queue, which adds the details to a queue to
be sent later.
Check for Arithmetic Overflow/Underflow: Checks for
overflow errors that can cause unsafe execution. Underflow errors
occur when the precision of the number is too fine for the system.
Debugging Information: Identical to the Visual Basic Generate
debug info setting.
File Alignment: Used to set the section boundaries in the output
file, and enables you to control the internal layout of the compiled

Download from finelybook www.finelybook.com

954

output. The values are measured in bytes.
Library Base Address: Identical to the Visual Basic DLL Base
Address setting.

Using these settings for your projects enables you to closely control
how the build process performs. However, you have another option
with Visual Studio 2017, which is to edit the build scripts directly. This
is made possible because Visual Studio 2017 uses MSBuild for its
compilations.

MSBUILD

Visual Studio 2017 uses MSBuild as its compilation engine. MSBuild
uses XML-based configuration files to identify the layout of a build
project, including all the settings discussed earlier in this chapter, as
well as what files should be included in the actual compilation.
Visual Studio uses MSBuild configuration files as its project definition
files. This enables the MSBuild engine to be used automatically when
compiling your applications within the IDE because the same settings
file is used for both your project definition in the IDE and the build
process.

How Visual Studio Uses MSBuild

As mentioned, the contents of Visual Studio 2017 project files are
based on the MSBuild XML Schema and can be edited directly in
Visual Studio, so you can customize how the project is loaded and
compiled.
However, to edit the project file you need to effectively remove the
project’s active status from the Solution Explorer. Right-click the
project you want to edit in the Solution Explorer, and choose the
Unload Project command from the bottom of the context menu that
displays.
The project will be collapsed in the Solution Explorer and marked as
unavailable. In addition, any open files that belong to the project will
be closed while it is unloaded from the solution. Right-click the project
entry again, and an additional menu command will be available to edit
the project file (see Figure 33-10).

Download from finelybook www.finelybook.com

955

FIGURE 33-10

The XML-based project file will be correspondingly opened in the
XML editor of Visual Studio 2017, enabling you to collapse and expand
nodes. The following code is a sample MSBuild project file for an
empty C# project:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="15.0"
xmlns="http://schemas.microsoft.com/developer/msbuild
 /2003">
 <Import
Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)
 \Microsoft.Common.props"
Condition="Exists('$(MSBuildExtensionsPath)
 \$(MSBuildToolsVersion)\Microsoft.Common.props')"/>
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == “
">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == “
">AnyCPU</Platform>
 <ProjectGuid>3f95e678-9ec2-48f0-909b-
f282642f5fbe</ProjectGuid>
 <OutputType>Library</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>CustomizedBuild</RootNamespace>
 <AssemblyName>CustomizedBuild</AssemblyName>
 <TargetFrameworkVersion>v4.6.2</TargetFrameworkVersion>
 <FileAlignment>512</FileAlignment>
 </PropertyGroup>

Download from finelybook www.finelybook.com

956

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)'
== 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)'
== 'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="System"/>
 <Reference Include="System.Core"/>
 <Reference Include="System.Xml.Linq"/>
 <Reference Include="System.Data.DataSetExtensions"/>
 <Reference Include="Microsoft.CSharp"/>
 <Reference Include="System.Data"/>
 <Reference Include="System.Net.Http"/>
 <Reference Include="System.Xml"/>
 </ItemGroup>
 <ItemGroup>
 <Compile Include="Class1.cs"/>
 <Compile Include="Properties\AssemblyInfo.cs"/>
 </ItemGroup>
 <Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets"/>
 </Project>

The XML contains the information about the build. Most of these
nodes directly relate to settings you saw earlier in the Compile and
Build pages but also include any Framework namespaces that are
required. The first PropertyGroup element contains project properties
that apply to all build configurations. This is followed by two
conditional elements that define properties for each of the two build
configurations, Debug and Release. The remaining elements are for
project references and project-wide namespace imports.

Download from finelybook www.finelybook.com

957

When the project includes additional files, such as forms and user
controls, each one is defined in the project file with its own set of
nodes. For example, the following code shows the additional XML that
is included in a standard Windows Application project, identifying the
Form, its designer code file, and the additional application files
required for a Windows-based application:

<ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
 <Compile Include="Form1.Designer.cs">
 <DependentUpon>Form1.cs</DependentUpon>
 </Compile>
 <Compile Include="Program.cs"/>
 <Compile Include="Properties\AssemblyInfo.cs"/>
 <EmbeddedResource Include="Properties\Resources.resx">
 <Generator>ResXFileCodeGenerator</Generator>
 <LastGenOutput>Resources.Designer.cs</LastGenOutput>
 <SubType>Designer</SubType>
 </EmbeddedResource>
 <Compile Include="Properties\Resources.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Resources.resx</DependentUpon>
 </Compile>
 <None Include="Properties\Settings.settings">
 <Generator>SettingsSingleFileGenerator</Generator>
 <LastGenOutput>Settings.Designer.cs</LastGenOutput>
 </None>
 <Compile Include="Properties\Settings.Designer.cs">
 <AutoGen>True</AutoGen>
 <DependentUpon>Settings.settings</DependentUpon>
 <DesignTimeSharedInput>True</DesignTimeSharedInput>
 </Compile>
</ItemGroup>

You can also include additional tasks in the build process in the Target
nodes for BeforeBuild and AfterBuild events. However, these actions
will not appear in the Visual Studio 2017 Build Events dialog discussed
earlier. The alternative is to use a PropertyGroup node that includes
PreBuildEvent and PostBuildEvent entries. For instance, if you wanted
to execute the application after it was successfully built, you could
include the following XML block immediately before the closing
</Project> tag:

Download from finelybook www.finelybook.com

958

<PropertyGroup>
 <PostBuildEvent>"$(TargetDir)$(TargetFileName)"
</PostBuildEvent>
</PropertyGroup>

When you finish editing the project file’s XML, you need to re-enable
it in the solution by right-clicking the project’s entry in the Solution
Explorer and selecting the Reload Project command. If you still have
the project file open, Visual Studio asks if you want to close it to
proceed.

The MSBuild Schema

An extended discussion on the MSBuild engine is beyond the scope of
this book. However, it’s useful to understand the different components
that make up the MSBuild project file so that you can look at and
update your own projects.
Four major elements form the basis of the project file: items,
properties, targets, and tasks. Brought together, you can use these
four node types to create a configuration file that describes a project in
full, as shown in the previous sample C# project file.

Items

Items are those elements that define inputs to the build system and
project. They are defined as children of an ItemGroup node, and the
most common item is the Compile node used to inform MSBuild that
the specified file is to be included in the compilation. The following
snippet from a project file shows an Item element defined for the
Form1.cs file of a Windows Application project:

<ItemGroup>
 <Compile Include="Form1.cs">
 <SubType>Form</SubType>
 </Compile>
</ItemGroup>

Properties

PropertyGroup nodes are used to contain any properties defined to the
project. Properties are typically key/value pairings. They can contain

Download from finelybook www.finelybook.com

959

only a single value and are used to store the project settings you can
access in the Build and Compile pages in the IDE.
PropertyGroup nodes can be optionally included by specifying a
Condition attribute, as shown in the following sample code:

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' ==
'Release|x86' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
</PropertyGroup>

This XML defines a PropertyGroup that will be included only in the
build if the project is being built as a Release for the x86 platform.
Each of the six property nodes within the PropertyGroup uses the name
of the property as the name of the node.

Targets

Target elements enable you to arrange tasks (discussed more in the
“Assembly Versioning via MSBuild Tasks” section) into a sequence.
Each Target element should have a Name attribute to identify it, and it
can be called directly, thus enabling you to provide multiple entry
points into the build process. The following snippet defines a Target
with a name of BeforeBuild:

<Target Name="BeforeBuild">
</Target>

Tasks

Tasks define actions that MSBuild can execute under certain
conditions. You can define your own tasks or take advantage of the
many built-in tasks, such as Copy. Shown in the following snippet, Copy
can copy one or more files from one location to another:

<Target Name="CopyFiles">
 <Copy
 SourceFiles="@(MySourceFiles)"
 DestinationFolder="\\PDSERVER01\SourceBackup\"

Download from finelybook www.finelybook.com

960

 />
</Target>

Assembly Versioning via MSBuild Tasks

One aspect of most automated build systems is planning application
versioning. In this section, you see how you can customize the build
process for your project so that it can accept an external version
number. This version number will be used to update the AssemblyInfo
file, which will subsequently affect the assembly version. Start by
looking at the AssemblyInfo.cs file, which typically contains assembly
version information such as the following:

[Assembly: AssemblyVersion("1.0.0.0")]

What the build customization needs to do is replace the default version
number with a number supplied as part of the build process. To do
this, use an external MSBuild library entitled MSBuildTasks, which is
a project on GitHub (https://github.com/loresoft/msbuildtasks).
The specific package is available on NuGet and can be installed into
your project by running the Install-Package MSBuildTasks command
from the Package Manager Console window.
This package includes a FileUpdate task that you can use to match on a
regular expression. Before you can use this task, you need to import
the MSBuildTasks Targets file.

<Project ToolsVersion="15.0" DefaultTargets="Build"
xmlsn="]http://schemas.microsoft.com/developer/msbuild/2003]>
</line><line xml:id="c33-line-0106"><![CDATA[
 <!-- Required Import to use MSBuild Community Tasks -->
<PropertyGroup>

<MSBuildCommunityTasksPath>$(SolutionDir)\.build</MSBuildCommunityTasksPath>

</PropertyGroup>
<Import
Project="$(MSBuildCommunityTasksPath)\MSBuild.Community.Tasks.Targets"
 />
 . . .

Because you want to update the AssemblyInfo file before the build, you
could add a call to the FileUpdate task in the BeforeBuild target. This

Download from finelybook www.finelybook.com

961

https://github.com/loresoft/msbuildtasks

would make it harder to maintain and debug later. A much better
approach is to create a new target for the FileUpdate task and then
make the BeforeBuild target depend upon it, as follows:

<Import
Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets"/>
<Target Name="BeforeBuild"
DependsOnTargets="UpdateAssemblyInfo">
</Target>
<Target Name="UpdateAssemblyInfo">
 <Message Text="Build Version: $(BuildVersion)" />
 <FileUpdate Files="Properties\AssemblyInfo.cs"
 Regex="\d+\.\d+\.\d+\.\d+"
 ReplacementText="$(BuildVersion)" />
</Target>

Here you can use a property called $(BuildVersion), which doesn’t yet
exist. If you run MSBuild against this project now, it can replace the
version numbers in your AssemblyInfo file with a blank string.
Unfortunately, this does not compile. You could simply define this
property with some default value like this:

 <PropertyGroup>
 <BuildVersion>0.0.0.0</BuildVersion>
 <Configuration Condition=" '$(Configuration)' == “
">Debug</Configuration>

This works, but it means that when building your project in Visual
Studio 2017 it will always have the same version. Luckily, the
MSBuildTasks library has another task called Version, which can
generate a version number for you. Here is the code:

<Target Name="BeforeBuild"
DependsOnTargets="GetVersion;UpdateAssemblyInfo">
</Target>
. . .
<Target Name="GetVersion" Condition=" $(BuildVersion) == “">
 <Version BuildType="Automatic" RevisionType="Automatic"
Major="1" Minor="3" >
 <Output TaskParameter="Major" PropertyName="Major" />
 <Output TaskParameter="Minor" PropertyName="Minor" />
 <Output TaskParameter="Build" PropertyName="Build" />
 <Output TaskParameter="Revision" PropertyName="Revision"
/>
 </Version>

Download from finelybook www.finelybook.com

962

 <CreateProperty
Value="$(Major).$(Minor).$(Build).$(Revision)">
 <Output TaskParameter="Value" PropertyName="BuildVersion"
/>
 </CreateProperty>
</Target>

The new GetVersion target will be executed only if $(BuildVersion) is
not specified. It calls into the Version task from MSBuildTasks, which
sets the major version number to 1 and the minor version number to 3.
(You could, of course, configure these instead of hard-coding them.)
The Build and Revision numbers are automatically generated
according to a simple algorithm. These components of the version are
then put together in a CreateProperty task, which comes with
MSBuild, to create the full $(BuildVersion) that you need. Finally, this
task has been added to the list of targets that BeforeBuild depends on.
Now when you build the project in Visual Studio 2017, you will get an
automatically generated version number as per usual. In your
automated build process, you can specify the version number as an
argument to the MSBuild call, for example:

MSBuild CustomizedBuild.csproj /p:BuildVersion=2.4.3154.9001

SUMMARY

You can customize the default build behavior with an enormous range
of options in Visual Studio 2017 because of the power and flexibility of
the MSBuild engine. Within the project file you can include additional
actions to perform both before and after the build has taken place, as
well as include additional files in the compilation.

Download from finelybook www.finelybook.com

963

34
Obfuscation, Application Monitoring,
and Management

WHAT’S IN THIS CHAPTER?

Exploring the features of Dotfuscator and Analytics–
Community Edition, a free post-build hardening tool that ships
with Visual Studio
Understanding how obfuscation can be used to prevent your
assemblies from being easily decompiled
Using tamper defense to protect your application assemblies
from unauthorized modification

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
If you’ve peeked under the covers at the details of how .NET
assemblies are executed, you will have picked up on the fact that
instead of compiling to machine language (and regardless of the
programming language used), all .NET source code is compiled
into the Microsoft Intermediary Language (MSIL, or just IL, for
short). The IL is then just-in-time compiled when it is required for
execution. This two-stage approach has a number of significant
advantages, such as enabling you to dynamically query an
assembly for type and method information, using reflection.
However, this is a double-edged sword because this same flexibility
means that once-hidden algorithms and business logic can easily
be reverse-engineered and modified, legally or otherwise. This

Download from finelybook www.finelybook.com

964

http://wrox.com
http://www.wrox.com

chapter introduces tools and techniques that help to protect your
source code from prying eyes and monitor the execution of your
applications.

THE IL DISASSEMBLER

Before looking at how you can protect your code from other people
and monitor its behavior “in the wild,” it is important to consider how
you can build better applications in the first place. A useful tool for
this is the Microsoft .NET Framework IL Disassembler, or ILDasm.
You can execute ILDasm by launching the Developer command
prompt. If you are running Windows 8 or 10, enter command prompt
into the Search text box (for Windows 8, you need to use the Search
charm to display the text box). In Windows 7, you can find the
developer command prompt at All Programs Microsoft Visual Studio
2017 Visual Studio Tools Visual Studio Command Prompt. Once the
command prompt is running, enter ILDasm to launch the
Disassembler. In Figure 34-1, a small class library has been opened
using this tool, and you can immediately see the namespace and class
information contained within this assembly.

FIGURE 34-1

To compare the IL that is generated, the original source code for the
MathematicalGenius class is as follows:
C#

namespace ObfuscationSample

Download from finelybook www.finelybook.com

965

{
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age,
Int32 height)
 {
 return (age * height) + DateTime.Now.DayOfYear;
 }
 }
}

VB

Namespace ObfuscationSample
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age
As Integer, _
 ByVal height
As Integer) As Integer
 Return (age * height) + Today.DayOfWeek
 End Function
 End Class
End Namespace

Double-clicking the GenerateMagicNumber method in ILDasm opens up
an additional window that shows the IL for that method. Figure 34-2
shows the IL for the GenerateMagicNumber method, which represents
your super-secret, patent-pending algorithm. In actual fact, anyone
who is prepared to spend a couple of hours learning how to interpret
MSIL could quickly work out that the method simply multiplies the
two int32 parameters, age and height, and then adds the current day
of the year to the result.

Download from finelybook www.finelybook.com

966

FIGURE 34-2

If you haven’t spent any time understanding how to read MSIL, a
decompiler can convert this IL back into one or more .NET languages.

DECOMPILERS

One of the most widely used decompilers is JustDecompile from
Telerik (available for download at
http://www.telerik.com/products/decompiler.aspx). JustDecompile
can be used to decompile any .NET assembly into C# or Visual Basic.
In Figure 34-3, the same assembly that you just accessed using
ILDasm is opened in JustDecompile.

Download from finelybook www.finelybook.com

967

http://www.telerik.com/products/decompiler.aspx

FIGURE 34-3

In the pane on the left of Figure 34-3, you can see the namespaces,
type, and method information in a layout similar to ILDasm. Double-
clicking a method opens the Disassembler pane on the right, which
displays the contents of that method in the language specified in the
toolbar. In this case, you can see the C# code that generates the magic
number, which is almost identical to the original code.

NOTE

When using JustDecompile, you may notice that some of the .NET
Framework base class library assemblies are listed, such as
System, System.Data, and System.Web. Because obfuscation has
not been applied to these assemblies, they can be decompiled just
as easily using JustDecompile. However, Microsoft has moved
large portions of the actual .NET Framework (a subset known as
the CoreCLR) into open source, which means you can browse the
original source code of these assemblies including the inline
comments.

If the generation of the magic number were a real secret on which your

Download from finelybook www.finelybook.com

968

organization depended in order to make money, the ability to
decompile this application would pose a significant risk. This
capability should affect not only how you deliver your code, but also
how you might design your application. Obfuscation, discussed in the
next section, is one possible approach to mitigating (but not
completely eliminating) this risk.

OBFUSCATING YOUR CODE

So far, this chapter has highlighted the need for better protection for
the logic embedded in your applications. Obfuscation is the art of
renaming symbols and modifying code paths in an assembly so that
the logic is unintelligible and can’t be easily understood if decompiled.
Numerous products can obfuscate your code, each using its own tricks
to make the output less likely to be understood. Visual Studio 2017
ships with the Community Edition of Dotfuscator and Analytics from
PreEmptive Solutions, which this chapter uses as an example of how
you can apply obfuscation to your code.

NOTE

Obfuscation does not prevent your code from being decompiled; it
simply makes it more difficult for a programmer to understand
the source code if it is decompiled. Using obfuscation also has
some consequences that need to be considered if you need to use
reflection or strong-name your application.

Dotfuscator and Analytics

Although Dotfuscator can be launched from the Tools menu within
Visual Studio 2017, it is a separate product with its own licensing. The
Community Edition (CE) contains only a subset of the functionality of
the commercial edition of the product, the Dotfuscator Suite. If you
are serious about trying to hide the functionality embedded in your
application, you should consider upgrading. You can find more
information on the commercial version of Dotfuscator at
http://www.preemptive.com/products/dotfuscator/compare-editions.

Download from finelybook www.finelybook.com

969

http://www.preemptive.com/products/dotfuscator/compare-editions

Dotfuscator CE uses its own project format to keep track of which
assemblies you are obfuscating and any options that you specify. After
starting Dotfuscator from the Tools menu, it opens with a new
unsaved project. Select the Inputs node in the navigation tree, and
then click the button with the plus sign under the Inputs listing to add
the .NET assemblies that you want to obfuscate. Figure 34-4 shows a
new Dotfuscator project into which has been added the assembly for
the application from earlier in this chapter.

FIGURE 34-4

NOTE

Unlike other build activities that are typically executed based on
source files, obfuscation is a post-build activity that works with
an already compiled set of assemblies. Dotfuscator takes an
existing set of assemblies, applies the obfuscation algorithms to
the IL, and generates a set of new assemblies.

Download from finelybook www.finelybook.com

970

On the right side of the interface, make sure that Library mode is
unchecked. Then you can select Build Project from the Build menu, or
click the Build button (fourth from the left) on the toolbar, to
obfuscate this application. If you have saved the Dotfuscator project,
the obfuscated assemblies will be added to a Dotfuscated folder under
the folder where the project was saved. If the project has not been
saved, the output is written to c:\Dotfuscated.
If you open the generated assembly using JustDecompile, as shown in
Figure 34-5, you can see that the GenerateMagicNumber method has
been renamed, along with the input parameters. In addition, the
namespace hierarchy has been removed, and classes have been
renamed. Although this is a rather simple example, you can see how
numerous methods with similar, nonintuitive names could cause
confusion and make the source code difficult to understand when
decompiled.

FIGURE 34-5

NOTE

The free version of Dotfuscator obfuscates assemblies by only

Download from finelybook www.finelybook.com

971

renaming classes, variables, and functions. The commercial
version employs several additional methods to obfuscate
assemblies, such as modifying the control flow of the assembly
and performing string encryption. In some cases, control flow
actually triggers an unrecoverable exception inside decompilers,
effectively preventing automated decompilation.

The previous example obfuscated the public method of a class, which
is fine if the method will be called only from assemblies obfuscated
along with the one containing the class definition. However, if this
were a class library or API that will be referenced by other
unobfuscated applications, you would see a list of classes that have no
apparent structure, relationship, or even naming convention. This
would make working with this assembly difficult. Luckily, Dotfuscator
enables you to control what is renamed during obfuscation. Before
going ahead, you need to refactor the code slightly to pull the
functionality out of the public method. If you didn’t do this and you
excluded this method from being renamed, your secret algorithm
would not be obfuscated. By separating the logic into another method,
you can obfuscate that while keeping the public interface unchanged.
The refactored code would look like the following:
C#

namespace ObfuscationSample
{
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age,
Int32 height)
 {
 return SecretGenerateMagicNumber(age, height);
 }

 private static Int32 SecretGenerateMagicNumber(Int32
age, Int32 height)
 {
 return (age * height) + DateTime.Now.DayOfYear;
 }
 }
}

VB

Download from finelybook www.finelybook.com

972

Namespace ObfuscationSample
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age
As Integer, _
 ByVal height
As Integer) As Integer
 Return SecretGenerateMagicNumber(age, height)
 End Function

 Private Shared Function
SecretGenerateMagicNumber(ByVal age As Integer, _
 ByVal height
As Integer) As Integer
 Return (age * height) + Today.DayOfWeek
 End Function
 End Class
End Namespace

After rebuilding the application, you need to reopen the Dotfuscator
project by selecting it from the Recent Projects list. You have several
different ways to selectively apply obfuscation to an assembly. First,
you can enable Library mode on specific assemblies by selecting the
appropriate check box on the Inputs screen (see Figure 34-4). This has
the effect of keeping the namespace, class name, and all public
properties and methods intact, while renaming all private methods
and variables. Second, you can manually select which elements should
not be renamed from within Dotfuscator. To do this, open the
Renaming item from the navigation tree, as shown in Figure 34-6.

Download from finelybook www.finelybook.com

973

FIGURE 34-6

The Renaming dialog opens on the Exclusions tab where you can see
the familiar tree view of your assembly with the attributes,
namespaces, types, and methods listed. As the name of the tab
suggests, this tree enables you to exclude certain elements from being
renamed. The GenerateMagicNumber method (refer to Figure 34-6), as
well as the class that it is contained in, is excluded. (Otherwise, you
would have ended up with something like b.GenerateMagicNumber,
where b is the renamed class.) In addition to explicitly choosing which
elements will be excluded, you can also define custom rules that can
include regular expressions.
After you build the Dotfuscator project, click the Results item in the
navigation tree. This screen shows the actions that Dotfuscator
performed during obfuscation. The new name of each class, property,
and method displays as a subnode under each renamed element in the
tree. You can see that the MathematicalGenius class and the
GenerateMagicNumber method have not been renamed, as shown in
Figure 34-7.

Download from finelybook www.finelybook.com

974

FIGURE 34-7

The SecretGenerateMagicNumber method has been renamed to a, as
indicated by the subnode with the Dotfuscator icon.

Obfuscation Attributes

In the previous example you saw how to choose which types and
methods to obfuscate within Dotfuscator. Of course, if you were to
start using a different obfuscating product, you must configure it to
exclude the public members. It would be more convenient to annotate
your code with attributes indicating whether a symbol should be
obfuscated. You can do this by using the Obfuscation and
ObfuscationAssemblyAttribute attributes from the System.Reflection
namespace.
The default behavior in Dotfuscator is to override exclusions specified
in the project with the settings specified by any obfuscation attributes.

Download from finelybook www.finelybook.com

975

Refer to Figure 34-4 to see a series of check boxes for each assembly
added to the project, of which one is Honor Obfuscation Attributes.
You can change the default behavior so that any exclusions set within
the project take precedence by unchecking the Honor Obfuscation
Attributes option on a per-assembly basis.

ObfuscationAssemblyAttribute

The ObfuscationAssemblyAttribute attribute can be applied to an
assembly to control whether it should be treated as a class library or as
a private assembly. The distinction is that with a class library it is
expected that other assemblies will be referencing the public types and
methods it exposes. As such, the obfuscation tool needs to ensure that
these symbols are not renamed. Alternatively, as a private assembly,
every symbol can be potentially renamed. The following is the syntax
for ObfuscationAssemblyAttribute:
C#

[assembly: ObfuscateAssemblyAttribute(false,
StripAfterObfuscation=true)]

VB

<Assembly: ObfuscateAssemblyAttribute(False,
StripAfterObfuscation:=True)>

The two arguments that this attribute takes indicate whether it is a
private assembly and whether to strip the attribute off after
obfuscation. The preceding snippet indicates that this is not a private
assembly and that public symbols should not be renamed. In addition,
the snippet indicates that the obfuscation attribute should be stripped
off after obfuscation — after all, the less information available to
anyone wanting to decompile the assembly, the better.
Adding this attribute to the AssemblyInfo.cs or AssemblyInfo.vb file
automatically preserves the names of all public symbols in the
ObfuscationSample application. This means that you can remove the
exclusion you created earlier for the GenerateMagicNumber method.

ObfuscationAttribute

The downside of the ObfuscationAssemblyAttribute attribute is that it

Download from finelybook www.finelybook.com

976

exposes all the public types and methods regardless of whether they
existed for internal use only. On the other hand, the
ObfuscationAttribute attribute can be applied to individual types and
methods, so it provides a much finer level of control over what is
obfuscated. To illustrate the use of this attribute, refactor the example
to include an additional public method, EvaluatePerson, and place the
logic into another class, HiddenGenius:
C#

namespace ObfuscationSample
{

[System.Reflection.ObfuscationAttribute(ApplyToMembers=true,
Exclude=true)]
 public class MathematicalGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age,
Int32 height)
 {
 return HiddenGenius.GenerateMagicNumber(age,
height);
 }

 public static Boolean EvaluatePerson(Int32 age, Int32
height)
 {
 return HiddenGenius.EvaluatePerson(age, height);
 }
 }

[System.Reflection.ObfuscationAttribute(ApplyToMembers=false,
Exclude=true)]
 public class HiddenGenius
 {
 public static Int32 GenerateMagicNumber(Int32 age,
Int32 height)
 {
 return (age * height) + DateTime.Now.DayOfYear;
 }

[System.Reflection.ObfuscationAttribute(Exclude=true)]
 public static Boolean EvaluatePerson(Int32 age, Int32

Download from finelybook www.finelybook.com

977

height)
 {
 return GenerateMagicNumber(age, height) > 6000;
 }
 }
}

VB

Namespace ObfuscationSample

<System.Reflection.ObfuscationAttribute(ApplyToMembers:=True,Exclude:=True)>
 _
 Public Class MathematicalGenius
 Public Shared Function GenerateMagicNumber(ByVal age
As Integer, _
 ByVal height
As Integer) As Integer
 Return HiddenGenius.GenerateMagicNumber(age,
height)
 End Function

 Public Shared Function EvaluatePerson(ByVal age As
Integer, _
 ByVal height
As Integer) As Boolean
 Return HiddenGenius.EvaluatePerson(age, height)
 End Function
 End Class

<System.Reflection.ObfuscationAttribute(ApplyToMembers:=False,Exclude:=True)>
 _
 Public Class HiddenGenius
 Public Shared Function GenerateMagicNumber(ByVal age
As Integer, _
 ByVal height
As Integer) As Integer
 Return (age * height) + Today.DayOfWeek
 End Function

<System.Reflection.ObfuscationAttribute(Exclude:=True)> _
 Public Shared Function EvaluatePerson(ByVal age As
Integer, _
 ByVal height
As Integer) As Boolean

Download from finelybook www.finelybook.com

978

 Return GenerateMagicNumber(age, height) > 6000
 End Function
 End Class
End Namespace

In this example, the MathematicalGenius class is the class that you
want to expose outside of this library. As such, you want to exclude
this class and all its methods from being obfuscated. You do this by
applying the ObfuscationAttribute attribute with both the Exclude and
ApplyToMembers parameters set to True.
The second class, HiddenGenius, has mixed obfuscation. As a result of
some squabbling among the developers who wrote this class, the
EvaluatePerson method needs to be exposed, but all other methods in
this class should be obfuscated. Again, the ObfuscationAttribute
attribute is applied to the class so that the class does not get
obfuscated. However, this time you want the default behavior to be
such that symbols contained in the class are obfuscated, so the
ApplyToMembers parameter is set to False. In addition, the Obfuscation
attribute is applied to the EvaluatePerson method so that it will still be
accessible.

Words of Caution

In a couple of places it is worth considering what can happen when
obfuscation — or more precisely, renaming — occurs, and how it can
affect the workings of the application.

Reflection

The .NET Framework provides a rich reflection model through which
types can be queried and instantiated dynamically. Unfortunately,
some of the reflection methods use string lookups for type and
member names. Clearly, the use of renaming obfuscation prevents
these lookups from working, and the only solution is not to mangle
any symbols that may be invoked using reflection. Note that control
flow obfuscation does not have this particular undesirable side-effect.
Dotfuscator’s smart obfuscation feature attempts to automatically
determine a limited set of symbols to exclude based on how the
application uses reflection. For example, say that you use the field

Download from finelybook www.finelybook.com

979

names of an enum type. Smart obfuscation can detect the reflection
call used to retrieve the enum’s field name and then automatically
exclude the enum fields from renaming.

Strongly Named Assemblies

One of the purposes behind giving an assembly a strong name is that it
prevents the assembly from being tampered with. Unfortunately,
obfuscating relies on taking an existing assembly and modifying the
names and code flow before generating a new assembly. This would
mean that the assembly no longer has a valid strong name. To allow
obfuscation to occur, you need to delay signing of your assembly by
checking the Delay Sign Only check box on the Signing tab of the
Project Properties window, as shown in Figure 34-8.

FIGURE 34-8

After building the assembly, you can then obfuscate it in the normal
way. The only difference is that after obfuscating you need to sign the
obfuscated assembly, which you can do manually using the Strong

Download from finelybook www.finelybook.com

980

Name utility, as shown in this example:

sn -R ObfuscationSample.exe ObfuscationKey.snk

NOTE

The Strong Name utility is not included in the default path, so you
need to either run this from a Visual Studio Command Prompt
(Start All Programs Microsoft Visual Studio 2017 Visual
Studio Tools) or enter the full path to sn.exe.

Debugging with Delayed Signing

As displayed on the Project Properties window, checking the Delay
Sign Only box prevents the application from being able to be run or
debugged. This is because the assembly will fail the strong-name
verification process. To enable debugging for an application with
delayed signing, you can register the appropriate assemblies for
verification skipping. This is also done using the Strong Name utility.
For example, the following code skips verification for the
ObfuscationSample.exe application:

sn -Vr ObfuscationSample.exe

Similarly, the following reactivates verification for this application:

sn -Vu ObfuscationSample.exe

This is a pain for you to do every time you build an application, so you
can add the following lines to the post-build events for the application:

"$(DevEnvDir)..\..\..\Microsoft SDKs\Windows\v7.0A\bin\NETFX
4.0 Tools\sn.exe" -Vr
"$(TargetPath)"
"$(DevEnvDir)..\..\..\Microsoft SDKs\Windows\v7.0A\bin\NETFX
4.0 Tools\sn.exe" -Vr
"$(TargetDir)$(TargetName).vshost$(TargetExt)"

WARNING

Download from finelybook www.finelybook.com

981

Depending on your environment, you may need to modify the
post-build event to ensure that the correct path to sn.exe is
specified.

The first line skips verification for the compiled application. However,
Visual Studio uses an additional vshost file to bootstrap the
application when it executes. This also needs to be registered to skip
verification when launching a debugging session.

APPLICATION MONITORING AND MANAGEMENT

The version of Dotfuscator that ships with Visual Studio 2017 has a lot
of functionality for adding run-time monitoring and management
functionality to your applications. As with obfuscation, these
capabilities are injected into your application as a post-build step,
which means you typically don’t need to modify your source code in
any way to take advantage of them.
The application monitoring and management capabilities include

Tamper Defense: Exits your application and optionally notifies
you if it has been modified in an unauthorized manner.
Application Expiry: Configure an expiration date for your
application, after which it will no longer run.
Application Usage Tracking: Instrument your code to track
usage, including specific features within your application.

Only the Tamper Defense functionality is discussed in this book (in the
“Tamper Defense” section later in this chapter). A different technique
for tracking application feature usage is discussed in the “Application
Instrumentation and Analytics” section, also later in this chapter.
Although you can use the Honor Instrumentation Attributes check box
to turn on and off the injection of the instrumentation code (visible in
Figure 34-4), the default behavior is to have instrumentation enabled.
Specifying the functionality to be injected into your application is
accomplished by adding Dotfuscator attributes — either as a custom
attribute within your source code or through the Dotfuscator UI.

Tamper Defense

Download from finelybook www.finelybook.com

982

Tamper defense provides a way for you to detect when your
applications have been modified in an unauthorized manner. Whereas
obfuscation is a preventative control designed to reduce the risks that
stem from unauthorized reverse engineering, tamper defense is a
detective control designed to reduce the risks that stem from
unauthorized modification of your managed assemblies. The pairing of
preventative and detective controls is a widely accepted risk
management pattern, for example, fire prevention and detection.
Tamper defense is applied on a per-method basis, and tamper
detection is performed at run time when a protected method is
invoked.
To add tamper defense to your application, select the Analytics node
under the Configuration Options portion of the navigation menu and
then select the Attributes tab. You see a tree that contains the
assemblies you have added to the Dotfuscator project with a hierarchy
of the classes and methods that each assembly contains. Navigate to
the HiddenGenius.GenerateMagicNumber function, right-click it, and
select Add Attribute. This displays the list of available Dotfuscator
attributes, as shown in Figure 34-9.

FIGURE 34-9

Select the InsertTamperCheckAttribute attribute, and click OK. The
attribute is added to the selected method. You can now build the
Dotfuscator project to inject the tamper defense functionality into your
application.
To help you test the tamper defense functionality, Dotfuscator ships

Download from finelybook www.finelybook.com

983

with a simple utility that simulates tampering of an assembly. Called
TamperTester, you can find this utility in the same directory in which
Dotfuscator is installed (by default at C:\Program Files\Microsoft
Visual Studio 15.0\PreEmptive Solutions\Dotfuscator and Analytics

Community Edition). This should be run from the command line with
the name of the assembly and the output folder as arguments:

tampertester ObfuscationSample.exe c:\tamperedapps

WARNING

Make sure you run the TamperTester utility against the
assemblies that were generated by Dotfuscator and not the
original assemblies built by Visual Studio.

By default, your application immediately exits if the method has been
tampered with. You can optionally configure Dotfuscator to generate a
notification message to an endpoint of your choosing. The commercial
edition of Dotfuscator includes two primary extensions to the CE
version; it enables you to add a custom handler to be executed when
tampering is detected, supporting a custom real-time tamper defense
in lieu of the default exit behavior; and PreEmptive Solutions offers a
notification service that accepts tamper alerts and automatically
notifies your organization as an incident response.

Application Instrumentation and Analytics

As a developer, the goal is to build an application that meets your
users’ needs while reducing any issues that might be encountered. To
meet this aim, it is important to be able to gain an understanding of
what your users are experiencing, both good and bad, in your
application. That’s where analytics come into play. Analytics are
capable of providing a full view of your application. This includes not
only any exceptions or other unexpected behavior, but also which
parts of the application are being used.
For analytics to be useful, there needs to be a mechanism to both
capture and report on them. As part of the Azure platform, Microsoft
provides the Application Insights platform. Application Insights is not

Download from finelybook www.finelybook.com

984

new; it was part of Visual Studio Online. Now it has been integrated
into Azure and is available through the Azure portal.
For your application to participate, you need to instrument your
application appropriately. Fortunately, Visual Studio 2017 includes a
couple of tools to make this easier.
Depending on the type of project that you created, the Application
Insights SDK is automatically included in your reference list. For
existing projects (and, in general, Application Insights is anticipated to
be used with web or UWP applications), you can add the Application
Insights SDK by selecting Add Application Insights from the context
menu for the project from within Solution Explorer. Once the SDK is
available, you’ll need to configure Application Insights. Again, through
the context menu in the project, select Configure Application Insights.
This shows a screen similar to what you see in Figure 34-10.

Download from finelybook www.finelybook.com

985

FIGURE 34-10

One you have logged in to your Azure subscription, there are two
additional options available to you. If your account is associated with
multiple Azure subscriptions, select the subscription you want used for
this project. Also, you can specify the resource to which the
Application Insights telemetry should be sent. If you are creating a
new resource, clicking the Configure Settings link reveals the dialog
that appears in Figure 34-11. Through this, you can specify the
Resource Group (which corresponds to the region in which the
telemetry will be gathered), the name of the resource, and the region
in which the service will be hosted.

Download from finelybook www.finelybook.com

986

FIGURE 34-11

If you look at the difference that adding Application Insights to your
project made, you’ll find that it’s not significant. There is a
configuration file (called ApplicationInsights.config) that contains
information about the telemetry modules and the classes that are used
to generate the data. It also includes the secret key that is used to
communicate with your Azure account.
The second addition is dependent on the type of application that you
created. In the example, it was an ASP.NET MVC Web application. To
allow for telemetry to be sent, a small JavaScript script is added to the
_Layout.cshml file. This script instantiates an appInsights object and
invokes the tracePageView method. This sends a page view event to the
Application Insights resource.
For different types of applications, the mechanism for sending the
telemetry details will change. The ApplicationInsights.config file is
consistent across the different projects. However, whereas ASP.NET
web applications have an obvious place to put the tracePageView call,
that is not the case with a Universal Windows Platform application.
Instead, these applications create a property named TelemetryClient
at the Application level. Then you can instrument your application
with calls to the TrackPageView, TrackEvent, or other methods to push
different metrics from your application to the Application Insights
resource.

Download from finelybook www.finelybook.com

987

SUMMARY

This chapter introduced two tools — ILDasm and JustDecompile —
which demonstrated how easy it is to reverse-engineer .NET
assemblies and learn their inner workings. You also learned how to
use Dotfuscator and Application Insights to do the following:

Protect your intellectual property using obfuscation
Harden your applications against modification using tamper
defense
Add telemetry to your application

Download from finelybook www.finelybook.com

988

35
Packaging and Deployment

WHAT’S IN THIS CHAPTER?

Creating installers for your projects
Customizing the installation process
Installing Windows Services
Deploying projects over the web with ClickOnce
Updating ClickOnce projects

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
One area of software development that is often overlooked is how
to deploy the application. Building an installer can transform your
application from an amateur utility to a professional tool. This
chapter looks at how you can build a Windows Installer for just
about any type of .NET application.
The installation tool discussed in this chapter is the Windows
Installer XML (WiX) Toolset. This toolset, which is available
through the Extensions and Updates dialog, enables you to specify
the contents and functionality of the installation package through
XML files. And although the idea of using XML files might initially
sound daunting, it provides all the functionality that had been part
of Visual Studio setup projects in earlier versions of Visual Studio.
In fact, it provides even more functionality. And although the
toolset is tightly integrated into Visual Studio, it is also available
through a command-line interface, making it quite suitable to use

Download from finelybook www.finelybook.com

989

http://wrox.com
http://www.wrox.com

in a build process.
The output from WiX is, ultimately, a Windows Installer package
that can be delivered to someone who wants to install your
application. Typically, this is an .MSI (Microsoft Installer) file,
although WiX also supports patch files (.MSP), installation modules
(.MSM), and transforms (.MST). Be aware that not every .NET
application can be installed using a Windows Installer.
Applications delivered through the Windows Store, for example, fit
into this category, as do ClickOnce applications (covered in the
ClickOnce section in this chapter). Also, you can’t deploy web
applications to Azure using MSI. The deployment of web
application, both to Azure and using WiX, is covered in Chapter
36, “Web Application Deployment.”

WINDOWS INSTALLER XML TOOLSET

WiX is a toolkit that consists of a number of different components,
each with its own purpose. And because geeks like to find humor in
naming, the components are named after elements related to candles.
(WiX is pronounced “wicks” as in “the candle has four wicks.”) The
components are:

Candle: The compiler that converts XML documents to object
files that contain symbols and/or references to symbols.
Light: The linker that takes one or more object files and resolves
the symbols references. The output for Light also typically includes
the packaged MSI or MSM file.
Lit: A tool that can combine multiple object files (such as are
produced by Candle) into a new object file that can then be
processed by Light.
Dark: A decompiler that examines existing MSI and MSM files
and generates the XML documents that represent the installation
package.
Tallow/Heat: Tallow generates a WiX file list code by walking a
directory tree. The fragment of XML produced is suitable for
incorporation with other WiX source files by Candle. Heat is a

Download from finelybook www.finelybook.com

990

more recent tool that performs a similar task, albeit in a more
general manner.
Pyro: A tool used to create Patch files (.msp files) without the need
for the Windows Installer SDK.
Burn: A tool that acts as a bootstrapper/installer chainer. The
basic idea is to allow packages to specify dependencies, and the
Burn coordinates the installation of the prerequisites prior to the
installation of the main package.

To start creating a WiX package, you need to get the toolkit installed
into your development environment. You can install the WiX Toolset
by navigating to Tools Extensions and Updates. Then enter WiX
Toolset in the search box in the top right corner of the dialog that
appears. When the WiX Toolset Visual Studio 2017 Extension appears
in the central section, click on the Download button to start the
installation. You’ll need to restart Visual Studio to complete the
process. As well as the Extension, which includes the project
templates, you’ll need to install the Wix Build Tools. You can find the
current installation files for Wix at http://wixtoolset.org/releases.

Building an Installer

To build an installer with Visual Studio 2017, you need to add an
additional project to the application that you want to deploy. Figure
35-1 shows the available setup and deployment project templates
included with WiX. Either the setup project or the bootstrapper
project can be used for most standalone applications. This includes
ASP.NET applications or web services. The difference between the two is
the format of the output, with the bootstrapper project producing an
.EXE file, while the setup project creates an .MSI file. If you want to
build an installer that will be integrated into a larger installer, you may
want to build a merge module. Alternatively, you can use the Setup
Library project to create an installer component—a wixlib—a piece of
installation functionality that you might use in multiple installation
packages, in a manner similar to the way you use assemblies in
multiple applications.

Download from finelybook www.finelybook.com

991

http://wixtoolset.org/releases

FIGURE 35-1

Upon creation of the project, a single file appears in the designer. To
be fair, the setup project does contain other files, but the Product.wxs
file is the starting point and the heart of the installation package. So
begin by taking a look at the contents. Figure 35-2 shows the default
file.

Download from finelybook www.finelybook.com

992

FIGURE 35-2

You can notice that the file is divided into three main elements:
Product: This section describes the fundamental information
about the installation. This includes the manufacturer, the
components that are to be included, the media that is to be used,
and other details used to create the MSI or MSM file.
Directory Fragment: This section describes the layout of the
folders placed onto the target machine. You might notice that the
default appears to be organized in a hierarchical manner. This is
not a coincidence but a function of the declarative nature of WiX.
The hierarchy in this fragment represents the hierarchy of the
directory created on the target file system.
Component Group Fragment: This section describes the
features to be installed. The component group defines the files that
make up a feature. Through a yet-to-be-seen fragment, the files in
the component group are mapped onto the directory structure.
And in the Product fragment, the component groups that make up
the product are identified.

To start, consider the Product element. As already mentioned, this
element describes the piece of software being installed. In the Product

Download from finelybook www.finelybook.com

993

element, there are a number of attributes that should be defined — or
at least modified from the default.
There are two GUIDs related to the Products. The Id attribute is used
to uniquely identify your package. The WiX product enables you to
specify an asterisk as a GUID value, in which case the GUID is
generated as part of the compilation process. For the Product, you
should take advantage of this because each installation will be
different and therefore will need a unique identifier.
The second GUID is the UpgradeCode. This value is used if you create
an upgrade installation package — in other words, for the installation
package for the second or subsequent versions of your product. Every
upgrade needs to reference the upgrade code, so unlike the Id
attribute, this value will be the same for every version of your product.
As such, you should set the attribute value to a GUID that you
generate.
The other four attributes that should be set relate more to the user
interface and experience of the installation process. The Name attribute
is the name of the product. This is the value that appears when you
look at the Program and Features portion of Control Panel. The
Language attribute is the culture identifier for this installation. The
default value of 1033 is U.S. English. The Version attribute is the
version of the product that is installed and is in the typical format for a
version number. Finally, the Manufacturer attribute defines the
organization producing the product.
The Product element has a number of subelements that provide
additional details about the installation. The MajorUpgrade element can
determine the action that should be taken when an application is
upgraded to a more recent version. Possible actions include
uninstalling the old version and installing the new one, replacing the
files or a custom action.
The purpose of the MediaTemplate element indicates the size and
format of the media onto which the installation package will be placed.
In fact, through WiX you can specify into which media component
(such as a DVD disc) that a particular file will be placed. The default
MediaTemplate, however, is usually sufficient because it includes the
values that create a single file.
The remaining element in the Product describes the feature (or

Download from finelybook www.finelybook.com

994

features) included in the installation package. A feature in WiX
parlance is a collection of deployment items intended to be installed as
an atomic unit. It could be as simple as one file per feature, or there
could be multiple files in a single feature. But regardless, from the
user’s perspective, the feature is the level at which the user has the
choice to install or not to install. As such, there can be one or more
Feature elements in the Product.
The example shown in Figure 35-2 has only a single feature. The
attributes are, for the most part, fairly typical. The Id is a unique
textual identifier for the feature. The Title is the name given to the
feature. It appears in the installation user interface, so it should be
user-friendly. The Level is used to nest Features one within the other.
For a given feature, you specify the ComponentGroups that are related to
it. The ComponentGroup indicates a particular block of installation
elements. It can be a single assembly or a configuration file; it can be a
collection of files of different type. But the important aspect to the
declaration is that the Id for the ComponentGroup must match a
ComponentGroup defined in one of the subsequent fragments.
The next major component to a WiX file is the Directory fragment.
First, notice that it’s not actually a second-level XML element (that is,
at the same level as the Product). Instead, it’s a subelement of a
fragment. This arrangement is done to allow Directory fragments to
be placed in different packages and still be easily combined by the
linker when the installation file is constructed.
The contents of the Directory fragment are intended to mimic the file
system that will exist on the target system after the installation is
complete. Referring to Figure 35-2, you can see that there is a three-
level nesting that has been defined. Each level has an Id associated
with it. The Id can be meaningful, as is the case here. But ultimately,
you have the ability to map the placement of individual files into
specific directories by referencing the Id. The Name attribute is
optional; however if you plan to create directories where none already
exist, as is the case with the INSTALLFOLDER element, it should be
included. In the example, the default value for the directory created
under Program Files is the name of the project.
The final fragment (refer to Figure 35-2) is a ComponentGroup, which
contains a reference to the individual files that make up the group. The

Download from finelybook www.finelybook.com

995

Id for the group is important because it must match an Id specified in
the ComponentGroupRef back when the Features were being listed. The
ComponentGroup element has a Directory attribute; the value of this
attribute specifies the directory where the files in the group will be
placed. The value must match one of the Ids of a Directory element in
the Directory fragment.

Using Heat to Create Fragments

WiX provides a tool that examines various types of artifacts and
creates WiX fragments based on which it finds. The tool is known as
Heat. And fortunately, one of the artifact types that it understands is
Visual Studio project files.
Heat is a useful tool. However, it is a command-line utility and, as
such, you need to take a simple step to integrate it into Visual Studio.
Specifically, it needs to be placed into your External Tools collection.
To access the collection, select Tools External Tools from the menu.
The dialog shown in Figure 35-3 appears.

Download from finelybook www.finelybook.com

996

FIGURE 35-3

To add a new command, click the Add button. For the new tool,
specify a name of Harvest Project. The command (which, not
surprisingly, is implemented in heat.exe) is found in the WiX Toolset
v3.11 directory underneath Program Files, or Program Files (x86) if
you’re running on a 64-bit machine. The Arguments value is where the
magic takes place. There are a number of parameters that need to be
defined. And you can use the project tokens as well. Set the Argument
value to the following.

project "$(ProjectFileName)" -pog Binaries -ag -template
fragment -out $(TargetName).wxs

Finally, set the Initial Directory value to $(ProjectDir). This enables
the utility to find the needed files starting at the project’s root. Make
sure that Use Output Window is checked; then a final click on the OK
button completes the creation process.

Download from finelybook www.finelybook.com

997

Now that the Heat command is available, you can put it to use. First,
in Solution Explorer, make sure that the file within the project being
harvested is selected. Then use the Tools Harvest Project menu
option to scan the current project. If all goes well, the Output window
should look something like Figure 35-4. Yes, it looks like nothing
happened. But in the absence of any error messages, the scan was
successful.

FIGURE 35-4

The result from harvesting your project in this manner is a .wxs file.
More precisely, it is a .wxs file that has the same name as your project.
You can locate it in the same directory as your project file. To view that
file in Visual Studio, use the Show All Files button in the Solution
Explorer. You’ll notice that a .wxs file is now visible. Double-click it to
open the file. The results should appear similar to Figure 35-5, which
is generated from a simple “Hello World” style WPF application
named WpfSampleApp.

FIGURE 35-5

Download from finelybook www.finelybook.com

998

The contents of these WiX fragments complete the installation
packaging story. There are two fragments visible. The first contains a
DirectoryRef element. The purpose of this element is to enable
multiple components to be placed into the same directory in the target
machine.
Inside the DirectoryRef are two Component elements. Each component
represents a file. The first component is the executable for the project.
The second component is the configuration file. The Source attribute
indicates the components.
The second fragment is the ComponentGroup previously discussed. The
difference is that the ComponentGroup in Figure 35-2 had no files. This
one does. In particular, the files contained in this ComponentGroup (as
represented by the ComponentRef elements) refer to the files’ identity in
the DirectoryRef element. The Id attribute in the ComponentRef

matches the Id in the Component in the DirectoryRef.
This constant indirection might seem quite convoluted. And to a
certain extent it is. But it enables a great deal of flexibility. By defining
a directory reference and including components within it, you can
place files from different components into the same physical directory
with a minimum of effort.
The Heat-generated fragments need to be incorporated into the setup
project to be included in the installation package. To accomplish this,
copy the two fragments and paste them into the Product.wxs file from
the setup project. In doing so, delete the existing ComponentGroup
fragment.
Now the two components need to be referenced in the Product.wxs file.
This is done in two steps. First, in the Feature element in the Product,
set the ComponentGroupRef Id to be the Id of the ComponentGroup in the
Heat-generated fragments. In the example, that would be
WpfSampleApp.Binaries. This includes the components as part of the
feature being installed.
Second, in the DirectoryRef element in the Heat-generated fragment,
set the Id to INSTALLFOLDER. This links the components (and the files)
into the target directory when the installation is performed. These
changes should result in a Product.wxs file that looks like Figure 35-6.

Download from finelybook www.finelybook.com

999

FIGURE 35-6

There is one more step that needs to be done before the setup project
can be built. You might notice that in the fragment generated by Heat,
there were two references to $(var.WpfSampleApp.TargetDir). This is a
preprocessor variable that will be resolved when the setup project is

Download from finelybook www.finelybook.com

1000

built. However, as it currently stands, the variable is unrecognized. To
change that, you need to add a reference to the WpfSampleApp project
to the WiX project. Right-click on the WiX project in Solution Explorer
and select Add Reference. In the Add Reference dialog that appears,
select the Project tab and double-click on the WpfSampleApp. Then
click OK to complete the process.
Now the project can be built. The output from the build process (that
is, the .MSI file) can be found in the bin\Debug directory. If you execute
this file (by double-clicking on it in Windows Explorer, for example),
you’ll see a standard set of installation screens. And the result will be a
file placed into your Program Files directory named
WpfSampleApp.Setup. To remove this, you need to use the Programs
And Features application within Control Panel to uninstall the
application. In other words, you have created a full-fledged installation
of your application.
As you might expect, a large number of customizations can be done to
the installation, both in terms of its functionality and its appearance. If
you are interested in the details and capabilities, visit the WiX home
page at http://wixtoolset.org. There, you can find not only the full
documentation, but also links to tutorials and even the complete
source code.

The Service Installer

You can create an installer for a Windows Service the same way you
would create an installer for a Windows application. However, a
Windows Service installer not only needs to install the files into the
appropriate location, but it also needs to register the service so it
appears in the services list.
The WiX Toolset provides a mechanism for doing this. It is the
ServiceInstall and ServiceControl elements that describe what you
want to happen when the service is installed. The XML related to these
components can be seen next:

<Component Id='ServiceExeComponent'
 Guid='YOURGUID-D752-4C4F-942A-657B02AE8325'
 SharedDllRefCount='no' KeyPath='no'
 NeverOverwrite='no' Permanent='no' Transitive='no'
 Win64='no' Location='either'>

Download from finelybook www.finelybook.com

1001

http://wixtoolset.org

 <File Id='ServiceExeFile' Name='ServiceExe.exe'
Source='ServiceExe.exe'
 ReadOnly='no' Compressed='yes' KeyPath='yes' Vital='yes'
 Hidden='no' System='no'
 Checksum='no' PatchAdded='no'/>
 <ServiceInstall Id='MyServiceInstall' DisplayName='My Test
Service'
 Name='MyServiceExeName' ErrorControl='normal'
Start='auto'
 Account='Local System' Type='ownProcess'
 Vital='yes' Interactive='no'/>
 <ServiceControl Id='MyServiceControl'
Name='MyServiceExeName'
 Start='install' Stop='uninstall' Remove='uninstall'/>
</Component>

The File element is similar in purpose to the WiX fragments
illustrated in Figure 35-6. In this case, it identifies that file that
implements the service that is being installed. The most important
element is KeyPath. It needs to be set to yes, whereas the KeyPath in the
Component needs to be set to no.
The ServiceInstall element contains information about the service.
This includes the name that appears in the service control applet
(DisplayName) and the “real” name of the service (the Name attribute). If
you have created installers for services in earlier versions of Visual
Studio, you might be recosting the Account and Interactive attributes
as being related to the account under which the service will run and
whether the service will interact with the desktop.
The ServiceControl element describes what should happen to the
service when it is installed. The three attributes in ServiceControl that
matter are Start, Stop, and Remove. The values of these attributes
determine what should happen when the service in installed or
removed. The values previously shown would have the service start
when it is installed, and both stopped and removed when the service is
uninstalled.

CLICKONCE

Using a Windows installer is a sensible approach for any application
development. However, deploying an installer to thousands of
machines, and then potentially having to update them, is a daunting

Download from finelybook www.finelybook.com

1002

task. Although management products help reduce the burden
associated with application deployment, web applications often
replace rich Windows applications because they can be dynamically
updated, affecting all users of the system. ClickOnce enables you to
build self-updating Windows applications. This section shows you how
to use Visual Studio 2017 to build applications that can be deployed
and updated using ClickOnce.

One Click to Deploy

To demonstrate the functionality of ClickOnce deployment, this
section uses the same application used to build the Windows Installer,
WpfSampleApp, which simply displays an empty form. To deploy this
application using ClickOnce, select the Publish option from the right-
click context menu of the project. This opens the Publish Wizard,
which guides you through the initial configuration of ClickOnce for
your project.
The first step in the Publish Wizard enables you to select a location to
deploy to. You can choose to deploy to a local website, an FTP location,
a file share, or even a local folder on your machine. Clicking Browse
opens the Open Web Site dialog, which assists you in specifying the
publishing location.
The next step asks you to specify where the users are expecting to
install the application from. The default option is for users to install
from a CD or DVD-ROM disc. More commonly, you want to install
from a file share on a corporate intranet or a website on the Internet.
Note that the location you publish to and the location the users install
from can be different. This can be useful while testing new releases.
The contents of the final step change depending on the installation
option selected. If your application is installed from a CD or DVD-
ROM, this step asks if the application should automatically check for
updates. If this option is enabled, you must provide a location for the
application to check. In the case that your users will be installing from
a file share or website, it is assumed that the application will update
from the location that it was originally installed from. Instead, the
final question relates to whether the application will be available
offline. If the offline option is selected, an application shortcut is

Download from finelybook www.finelybook.com

1003

added to the Start menu, and the application can be removed in the
Add/Remove Programs dialog in the operating system. The user can
run the application even if the original installation location is no
longer available. If the application is only available online, no shortcut
is created, and the users must visit the install location every time they
want to run the application.
The last screen in the wizard enables you to verify the configuration
before publishing the application. After the application has been
published, you can run the Setup.exe bootstrap file that is produced to
install the application. If you install from a website, you get a
publish.htm file generated as well. This file, shown in Figure 35-7, uses
some JavaScript to detect a few dependencies and provides a Run
button that launches the Setup.exe.

FIGURE 35-7

Download from finelybook www.finelybook.com

1004

Clicking the Run button at this location displays a dialog prompting
you to run or save Setup.exe. Selecting Run (or running Setup.exe
from a different kind of install) shows the Launching Application
dialog, as shown in Figure 35-8, while components of your application
are retrieved from the installation location.

FIGURE 35-8

After information about the application has been downloaded, a
security warning launches, as shown in Figure 35-9. In this case, the
security warning is raised because although the deployment manifest
has been signed, it has been signed with a certificate that is not known
on the machine on which it is installed.

FIGURE 35-9

Download from finelybook www.finelybook.com

1005

NOTE

The deployment manifest of a ClickOnce application is an XML
file that describes the application to be deployed along with a
reference to the current version. Although it is not required, each
deployment manifest can be signed by the publisher to provide the
manifest with a strong name. This prevents the manifest from
being tampered with after it is deployed.

Three options are available for signing the deployment manifest. By
default, Visual Studio 2017 creates a test certificate to sign the
manifest, which has the format application name_TemporaryKey.pfx

and is automatically added to the solution. (This happens when the
application is first published using the Publish Now button.) Though
this certificate can be used during development, it is not
recommended for deployment. The other alternatives are to purchase
a third-party certificate, from a company such as VeriSign, or to use
the certificate server within Windows Server to create an internal
certificate.
The advantage of getting a certificate from a well-known certificate
authority is that it can automatically be verified by any machine. Using
either the test certificate or an internal certificate requires installation
of that certificate in the appropriate certificate store. Figure 35-10
shows the Signing tab of the Project Properties window, where you can
see that the ClickOnce manifest is signed with a certificate that has
been generated on the local computer. An existing certificate can be
used by selecting it from the store or from a file. Alternatively, another
test certificate can be created.

Download from finelybook www.finelybook.com

1006

FIGURE 35-10

If you want your application to install with a known publisher, you
need to add the test certificate into the root certificate store on the
machine on which you install the product. Because this also happens
to be the deployment machine, you can do this by clicking More
Details. This opens a dialog that outlines the certificate details,
including the fact that it can’t be authenticated. (If you use the
certificate created by default by Visual Studio 2017, you need to use
the Select from File button to reselect the generated certificate and
then use the More Details button. There seems to be an issue here, in
that the details window does not show the Install Certificate button
without this additional step.) Clicking Install Certificate enables you to
specify that the certificate should be installed into the Trusted Root
Certification Authorities store. This is not the default certificate store,
so you need to browse for it. Because this is a test certificate, you can
ignore the warning that is given, but remember that you should not
use this certificate in production. Now when you publish your
application and try to install it, you see that the dialog includes the

Download from finelybook www.finelybook.com

1007

publisher. You are still warned that additional security permissions
need to be granted to this application for it to execute.
ClickOnce deployment manifests are rated on four security
dimensions. You’ve just seen how you can specify a well-known
publisher, critical for safe installation of an application. By default,
ClickOnce publishes applications as full trust applications, giving them
maximum control over the local computer. This is unusual because in
most other cases Microsoft has adopted a security-first approach. To
run with full trust, the application requires additional security
permissions, which might be exploited. The Sample Application will be
available online and offline; and though this isn’t a major security risk,
it does modify the local file system. Lastly, the location from which the
application is installed is almost as important as the publisher in
determining how dangerous the application might be. In this case, the
application was published within the local network, so it is unlikely to
be a security threat.
Ideally, you would like to bypass the Application Install dialog and
have the application automatically be granted appropriate
permissions. You can do this by adding the certificate to the Trusted
Publishers store. Even for well-known certificate authorities, for the
application to install automatically, the certificate needs to be added to
this store. With this completed, you see only the progress dialog as the
application is downloaded, rather than the security prompt.
When installed, the application can be launched either by returning to
the installation URL or by selecting the shortcut from the newly
created Start Menu folder with the same name as the application.

One Click to Update

At some point in the future, you might make a change to your
application — for example, you might add a button to the simple form
you created previously. ClickOnce supports a powerful update process
that enables you to publish the new version of your application in the
same way you did previously, and existing versions can be upgraded
the next time they are online. As long as you are content with the
current set of options, the update process is just the Publish process.
When using the Publish Wizard to update an existing application, all

Download from finelybook www.finelybook.com

1008

the values previously used to publish the application are preconfigured
for you.
You can check the settings in the Publish tab of the Project Properties
designer (Figure 35-11). The designer shows the publish location, the
installation location, and the install mode of the application. There is
also a setting for the Publish Version. This value is not shown in the
Publish Wizard, but by default this version starts at 1.0.0.0 and
increments the right-most number every time the application is
published.

FIGURE 35-11

Along the right are a number of buttons that bring up more advanced
options, most of which are not exposed by the wizard. The Application
Updates dialog (Figure 35-12) enables you to configure how frequently
the application updates itself. In Figure 35-12, the application checks
for an update once every seven days, and that check occurs after it has
started. You can also specify a minimum required version, which can
prevent older clients from executing until they are updated.

Download from finelybook www.finelybook.com

1009

FIGURE 35-12

With this change, now when you publish a new version of your
application, any existing users will be prompted to update their
application to the most recent version.
One of the most powerful features of ClickOnce deployment is that it
tracks a previous version of the application that was installed. This
means that at any stage, not only can it do a clean uninstall, but it can
also roll back to the earlier version. The application can be rolled back
or uninstalled from the Programs and Features list from the Control
Panel.

NOTE

For users to receive an update, they do need to contact the
original deployment URL when the application performs the
check for a new version (for example, when the application
starts). You can also force all users to upgrade to a particular
version (that is, they won’t get prompted) by specifying the
minimum required version in the Application Updates dialog
(Figure 35-12).

Download from finelybook www.finelybook.com

1010

SUMMARY

This chapter walked you through the details of building installers for
various types of applications. Building a good-quality installer can
make a significant difference in how professional your application
appears. ClickOnce also offers an important alternative for those who
want to deploy their application to a large audience.

Download from finelybook www.finelybook.com

1011

36
Web Application Deployment

WHAT’S IN THIS CHAPTER?

Publishing website and web projects
Publishing database scripts with web applications
Creating web application packages for deployment with the
Web Deployment tool
Keeping machines up to date with the Web Platform Installer
Extending the Web Platform Installer to include your own
applications

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
In Chapter 35, “Packaging and Deployment,” you saw how to
deploy your Windows application using either an installer or
ClickOnce. But how do you deploy web applications? This chapter
walks you through deploying website and web application projects.
It also covers packaging web applications for remote deployment
with the Web Deployment tool and integrating with the Web
Platform Installer.
One of the most important aspects of building your application is
to think about how you will package it so that it can be deployed.
Though a large proportion of web applications are only for internal
release, where a simple copy script might be sufficient, if you do
want to make your web application available for others to purchase
and use, you need to focus on making the deployment process as

Download from finelybook www.finelybook.com

1012

http://wrox.com
http://www.wrox.com

simple as possible.

WEB DEPLOYMENT

Web application projects are quite different from Web Site projects,
yet the tool used to deploy them is the same. Visual Studio 2017
includes the capability to deploy both types with the Web Deployment
tool, which is used to easily import and export IIS applications along
with their dependencies — such as IIS meta data and databases —
from the command line, IIS management console, PowerShell
cmdlets, or directly from Visual Studio. It also provides the ability to
manage several versions of configuration data for different
environments in a clean manner without duplication.
Even more, if you are deploying ASP.NET 5 applications, the
deployment can include everything your application needs to run, up
to and including the .NET Framework.

Publishing a Web Application

The quickest way to deploy a Web project is to simply publish it
directly from Visual Studio. Select the Publish item from the right-
click context menu in Solution Explorer to display the Publish dialog.
Each time you do a deployment you do so against a particular profile,
which encapsulates the target environment settings. A Web
Application project maintains a collection of profiles, which enable
you to deploy the one web application to a number of target
environments and keep the settings for each separate.
If this is the first time you have run the Publish dialog in your project,
you need to specify the publish target (see Figure 36-1).

Download from finelybook www.finelybook.com

1013

FIGURE 36-1

There are several options available to you initially. In the cloud, you
can publish to either Microsoft Azure App Service or a Microsoft Azure
Virtual Machine. You can import a previously created set of publishing
settings (in the form of a .publishsettings file). Or you can publish to
IIS, an FTP site, or a folder.
For the purpose of following along with this chapter, select the IIS,
FTP, etc. target. You will then go to the Connection tab in the Publish
dialog (shown in Figure 36-2).

Download from finelybook www.finelybook.com

1014

FIGURE 36-2

The Connection tab in this wizard enables you to define the connection
to the deployment target. Several options for Publish Method
determine what you see in the lower part of the dialog window: Web
Deploy, Web Deploy Package, FTP, and File System. The File System
option enables you to enter the target location (a directory in the
filesystem) for the web application to be published. The FTP option
offers the same but also enables you to enter FTP credentials. The Web
Deploy option enables you to specify the service URL and the
destination URL as well as the site/application combination that is the
target of the publication. If necessary, credentials can be provided. The
Web Deploy Package option takes what would normally be deployed
through a Web Deploy and packages it into a Zip file. So instead of
needing to identify the target system, you can just specify the path to
the file that will be created.

Download from finelybook www.finelybook.com

1015

The Settings tab enables you to configure some additional settings for
the deployment. Again, the publish methods break the contents of this
step into two categories. Both categories enable you to specify the
configuration (by default, Debug and Release) that will be deployed. In
addition, there are check boxes that can remove all the files from the
target that are not deployed, precompile the application, and exclude
any files in the App_Data folder. Not all options are available for all
publishing methods. Finally, the Web Deploy and Web Deploy
Package include a section that enables a database to be deployed with
the web application (Figure 36-3).

FIGURE 36-3

When you deploy a database, the Publish Wizard examines your
development environment and identifies any databases that might be
part of the application. These become choices that you can make in the

Download from finelybook www.finelybook.com

1016

drop-down list. Alternatively, you can specify the database connection
manually. Also, there are check boxes that enable you to update the
web.config file with the new connection information and to update the
schema of an existing database with the deploying database.
If you use the Web Deploy Package option, it packages all the
necessary files, along with all the metadata required to install and
configure your application package, into a single Zip file. This Zip file
can then be installed via the IIS 7.0/8.0 management interface, the
command line, PowerShell cmdlets, or directly from Visual Studio.
The final step in this process is to click on the Save button. This
actually performs two actions. First, it saves the publish profile in your
project. Second, it performs the publication. Depending on the type of
publication, you might need to log into Visual Studio with
Administrator privileges. This is the case when performing a Web
Deploy.

Publishing to Azure

Visual Studio 2017 has a number of features that allow you to more
easily integrate your development with Microsoft Azure. The
publishing process is one of those areas in which a large number of
formerly manual steps have been combined into a seamless process.
To publish your web application to Azure, start by selecting Microsoft
Azure App Service as your publish target. You’ll also need to specify
whether you’re going to create a new App Service or deploy to an
existing one. This is done through the radio buttons visible in Figure
36-4.

Download from finelybook www.finelybook.com

1017

FIGURE 36-4

Whether you choose to create a new service or use an existing one, you
will need to indicate your Azure account. In the top right corner of
Figures 36-5 and 36-6, there is a dropdown list containing the
Microsoft Accounts that Visual Studio is aware of. You can select the
account associated with the Azure subscription you want to use and
provide credentials (indicated by the Reenter your credentials link in
Figure 36-5).

Download from finelybook www.finelybook.com

1018

FIGURE 36-5

Download from finelybook www.finelybook.com

1019

FIGURE 36-6

To use an existing App Service, you will need to provide the
information shown in Figure 36-5.
Select the subscription in which your existing app service is located.
The list of previously defined app services appears in the box at the
bottom. Select the desired app service and click OK.
When you create a new app service, additional information is required.
Figure 36-6 illustrates the type of information that you must provide.
As part of the creation process, you need to select a name for your
website that is unique. It is entered into the Web App Name field and
immediately checked for validity. Other options in the dialog include
the subscription under which the web app is created (if you have more
than one subscription associated with your account), the region in
which the web app will be created, and the App Service Plan. The App
Service Plan value is used to specify the size of the app service that you
want to create. “Size” in this case identifies the number of cores, the

Download from finelybook www.finelybook.com

1020

available RAM, and some additional features (like the number of
staging areas and whether automatic scaling is supported). The best
option depends on the amount of traffic you expect, the pattern of that
traffic (steady vs in bursts), and the management features that you
need. Clicking on the New button opens a dialog (Figure 36-7) that lets
you specify the size.

FIGURE 36-7

The Create App Service Plan dialog includes a Services tab, the
contents of which appear in Figure 36-8.

Download from finelybook www.finelybook.com

1021

FIGURE 36-8

This tab is used to define additional services that are part of your
application and the app service. Initially, there is the App Service plan
that you specified in Figure 36-6. That appears in the lower list of
Figure 36-8. For this example, it is all that you need to include.
However, if your application requires it, you can add more Azure
resources to your deployment. The top list in Figure 36-8 shows SQL
Database as an option. If you click on the plus sign to the right of that
entry, you will be prompted for the information that Azure needs to
create a SQL Database resource. That resource is then associated with
your deployment.
Clicking on the Create button causes the web app to be created in
Azure. When you’re finished, you’re returned to the Connection tab
described in this chapter’s “Publishing a Web Application” section.
The difference is that all the details related to your new web app have
been filled in and you’re ready to move to the Settings tab. Once the

Download from finelybook www.finelybook.com

1022

rest of the details of the publication have been provided, clicking on
the Publish button causes the output for your web application project
to be promoted to Azure and your web app to be ready to accept
requests.

WEB PROJECT INSTALLERS

In addition to using the Publish Wizard tool, you can create a standard
Windows Installer package to manage a web application or website
deployment. You do this using the same Windows Installer Toolkit
(WiX) component covered in Chapter 35, “Packaging and
Deployment.” But moving files onto the target machine is not
sufficient for a web project. The installation needs to create a virtual
directory as well. Fortunately, WiX supports this functionality.
Consider the .wxs file shown here:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"

xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">
 <Product Id="381ED4A8-90AA-49F5-9F63-CD128B33895C"
Name="Sample Web App"
 Language="1033" Version="1.0.0.0"
Manufacturer="Professional Visual Studio 2017"
 UpgradeCode="A8E5F094-C6B0-46E5-91A1-CC5A8C65079D">
 <Package InstallerVersion="200" Compressed="yes"/>
 <Media Id="1" Cabinet="SampleWebApp.cab"
EmbedCab="yes"/>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="WebApplicationFolder"
Name="MyWebApp">
 <Component Id="ProductComponent"
Guid="80b0ee2a-a102-46ec-a456-33a23eb0588e">
 <File Id="Default.aspx" Name="Default.aspx"
 Source="..\SampleWebApp\Default.aspx"
DiskId="1"/>
 <File Id="Default.aspx.cs"
Name="Default.aspx.cs"
 Source="..\SampleApp\Default.aspx.cs"
DiskId="1"/>
 <iis:WebVirtualDir Id="SampleWebApp"
Alias="SampleWebApp"

Download from finelybook www.finelybook.com

1023

 Directory="WebApplicationFolder"
WebSite="DefaultWebSite">
 <iis:WebApplication
Id="SampleWebApplication" Name="Sample"/>
 </iis:WebVirtualDir>
 </Component>
 </Directory>
 </Directory>
 </Directory>
 <iis:WebSite Id='DefaultWebSite' Description='Default
Web Site'
 Directory='WebApplicationFolder'>
 <iis:WebAddress Id="AllUnassigned" Port="80"/>
 </iis:WebSite>
 <Feature Id="ProductFeature" Title="Sample Web
Application" Level="1">
 <ComponentRef Id="ProductComponent"/>
 </Feature>
 </Product>
</Wix>

Several elements are unique to web installation. First, notice that the
WiX element contains a namespace with a prefix of iis. This
namespace contains the elements processed to create the virtual
directory. You also need to add a reference in your setup project to the
WixIIsExtension assembly in the WiX Toolkit directory.
The second difference is in the Component placed inside the Directory
hierarchy. The WebVirtualDir element is used to create a virtual
directory. Specifically, the directory named WebApplicationFolder is
created, with the directory added to the default website for the server.
In the WebVirtualDir element, the WebApplication directs the installer
to make the just-created virtual directory a web application.
Finally, notice the WebSite element. This tells the installer to utilize (or
create, if necessary) the default website when accessing the
WebApplicationFolder directory. The WebAddress element sets the
application to listen on port 80 on all unassigned endpoints.

THE WEB PLATFORM INSTALLER

Web applications tend to rely on a large number of technologies and
tools to function correctly both during development and in production.
Even after your environment is correctly set up for a single

Download from finelybook www.finelybook.com

1024

application, relationships and dependencies between applications
need to be understood and managed. Finally, there are always new
tools, libraries, and applications available on the Internet, which you
can build on when creating your own projects. As your environment
becomes more complex, it can be quite a challenge to keep everything
working correctly and up to date.
The Microsoft Web Platform Installer, as shown in Figure 36-9, is a
simple tool designed to manage the software that you have installed on
your web servers and development machine.

FIGURE 36-9

After you download the Web Platform Installer from
http://www.microsoft.com/web, you can run it as many times as you
like. It can detect which components you already have on your
machine, and you can add and remove components with the click of a
button. It can even take care of dependencies between components
and install everything you need.
The Web Platform Installer can manage components beyond just the

Download from finelybook www.finelybook.com

1025

http://www.microsoft.com/web

Web Platform. Also available is a collection of applications from the
Microsoft Web Application Gallery at
http://www.microsoft.com/web/gallery. These applications are filed
under various categories under the Web Applications tab. Just like the
components in the Web Platform, these applications can have their
own prerequisites and the Web Platform Installer can ensure they are
installed.
If you are already packaging your web application for deployment with
the Web Deploy Package option from the Publish dialog, it is ready to
be distributed using the Web Platform Installer. You can get your
application added to the Web Application Gallery by filling in a simple
form on the Microsoft Web portal. After your application is approved,
it shows up ready to be installed on any machine with the Web
Platform Installer on it.

Extending the Web Platform Installer

It is quite easy to have your application included in the Web
Application Gallery to make it available to a large audience. There are
some scenarios in which you would like to take advantage of the Web
Platform Installer but do not want to make your application publicly
available. This might be because your application is used privately
within your company or because your application is not yet ready for
release and you want to test the deployment procedure.
The Web Platform Installer relies on atom feeds to ensure that the list
of components and products that it installs are always kept up to date.
Each entry in these feeds corresponds to an application or component
in the user interface of the Web Platform Installer. The Web Platform
and Web Application tabs each come from different feeds at
http://www.microsoft.com/web/webpi/5.0/WebProductList.xml and
http://www.microsoft.com/web/webpi/5.0/WebApplicationList.xml,
respectively. In addition to these two feeds, each installation of the
Web Platform Installer can specify additional feeds that reference
more components.
Here is a sample feed for a simple timesheets web application:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

Download from finelybook www.finelybook.com

1026

http://www.microsoft.com/web/gallery
http://www.microsoft.com/web/webpi/5.0/WebProductList.xml
http://www.microsoft.com/web/webpi/5.0/WebApplicationList.xml

 <webpiFile version="4.2.0.0"/>
 <title>Adventure Works Product WebPI Feed</title>
 <link
href="#http://www.professionalvisualstudio.com/SampleProductFeed.xml"/>

 <updated>2015-02-10T08:29:14Z</updated>
 <author>
 <name>Adventure Works</name>
 <uri>http://www.professionalvisualstudio.com</uri>
 </author>

<id>http://www.professionalvisualstudio.com/SampleProductFeed.xml</id>

 <entry>
 <productId>TimeSheets</productId>
 <title resourceName="Entry_AppGallerySIR_Title">Adventure
Works Timesheets</title>
 <summary resourceName="Entry_AppGallerySIR_Summary">
 The Adventure Works corporate Timesheeting
system</summary>
 <longSummary
resourceName="Entry_AppGallerySIR_LongSummary">
 The Adventure Works corporate Timesheeting
system</longSummary>
 <productFamily resourceName="TestTools">Human
Resources</productFamily>
 <version>1.0.0</version>
 <images>
 <icon>c:\AdventureWorksIcon.png</icon>
 </images>
 <author>
 <name>Adventure Works IT</name>
 <uri>http://www.professionalvisualstudio.com</uri>
 </author>
 <published>2015-02-10T18:26:31Z</published>

 <discoveryHint>
 <or>
 <discoveryHint>
 <registry>

<keyPath>HKEY_LOCAL_MACHINE\SOFTWARE\AdventureWorks\Timesheets</keyPath>

 <valueName>Version</valueName>
 <valueValue>1.0.0</valueValue>
 </registry>
 </discoveryHint>

Download from finelybook www.finelybook.com

1027

 <discoveryHint>
 <file>

<filePath>%ProgramFiles%\AdventureWorks\Timesheets.exe</filePath>

 </file>
 </discoveryHint>
 </or>
 </discoveryHint>
 <dependency>
 <productId>IISManagementConsole</productId>
 </dependency>
 <installers>
 <installer>
 <id>1</id>
 <languageId>en</languageId>
 <architectures>
 <x86/>
 <x64/>
 </architectures>
 <osList>
 <os>
 <!-- the product is supported on Vista/Windows
Server SP1 + -->
 <minimumVersion>
 <osMajorVersion>6</osMajorVersion>
 <osMinorVersion>0</osMinorVersion>
 <spMajorVersion>0</spMajorVersion>
 </minimumVersion>
 <osTypes>
 <Server/>
 <HomePremium/>
 <Ultimate/>
 <Enterprise/>
 <Business/>
 </osTypes>
 </os>
 </osList>

<eulaURL>http://www.professionalvisualstudio.com/eula.html</eulaURL>

 <installerFile>
 <!-- size in KBs -->
 <fileSize>1024</fileSize>

<installerURL>http://www.professionalvisualstudio.com/Timesheets_x86.msi

Download from finelybook www.finelybook.com

1028

 </installerURL>

<sha1>111222FFF000BBB444555EEEAAA777888999DDDD</sha1>
 </installerFile>
 <installCommands>
 <msiInstall>
 <msi>%InstallerFile%</msi>
 </msiInstall>
 </installCommands>
 </installer>
 </installers>
 </entry>
 <tabs>
 <tab>
 <groupTab>
 <id>AdventureWorksHRTab</id>
 <name>Adventure Works Human Resources</name>
 <description>Adventure Works HR Apps</description>
 <groupingId>HRProductFamilyGrouping</groupingId>
 </groupTab>
 </tab>
 </tabs>
 <groupings>
 <grouping>
 <id>HRProductFamilyGrouping</id>
 <attribute>productFamily</attribute>
 <include>
 <item>Human Resources</item>
 </include>
 </grouping>
 </groupings>
</feed>

The first part specifies some standard information about the feed,
including the date it was last updated and author information. This is
all useful if the feed is consumed using a normal feed reader.
Following this is a single entry node containing information about the
application. The Web Platform Installer can use the value of productId
to refer to the application in other places, including being listed as a
dependency for other components.
The discoveryHint node determines if this application is already
installed. The sample application can be detected by looking for a
specific Registry key value or by looking for a specific application by
name. If either one of these items is found, the Web Platform Installer

Download from finelybook www.finelybook.com

1029

considers this application to be already installed. In addition to these
two kinds of hints, you can use an msiProductCode hint to detect
applications installed via Microsoft Installer (MSI).
The sample timesheets application has a dependency on the IIS
Management Console. Each component that your application relies
upon can be specified by its productId. If it is not already installed on
the target machine, the Web Platform Installer installs it for you. In
addition to dependencies, you can specify incompatibilities for your
application, which can prevent both applications from installing at
once.
The last component of the application entry is the installers element.
There should be one installer element for each installer that you
want to make available, and they should all have different identifiers.
Each installer can be targeted at a specific range of languages,
operating systems, and CPU architectures. If the target environment
doesn’t fall into this range, the installer will not be shown. Each
installer should specify an installer file, which will be downloaded to a
local cache before the specified installCommands are executed against
it.

NOTE

An installer file requires a size and a SHA1 hash so that the Web
Platform Installer can verify that the file has been downloaded
correctly. Microsoft provides a tool called File Checksum Integrity
Verifier (fciv.exe), which can be used to generate the hash. You
can download this tool from http://download.microsoft.com.

The final two elements relate to what displays in the Web Platform
Installer user interface. Each tab element adds to the list of tabs on the
left. In the example, you add a tab based on a grouping of products,
which is defined in the groupings element based on the productFamily
attribute.
To add this feed to a Web Platform Installer instance, click the Options
link to bring up the Options page. Enter the URL to the atom feed into
the textbox, and click the Add Feed button. When you click OK the
Web Platform Installer refreshes all the feeds and reloads all the
applications including any custom installations that you have defined

Download from finelybook www.finelybook.com

1030

http://download.microsoft.com

in your feed.

SUMMARY

This chapter showed you how to use a number of the features of Visual
Studio 2017 to package your web applications and get them ready for
deployment. The Web Deployment tool makes deployment to a
number of environments and machines quick and painless. The
Windows Installer Toolkit provides a mechanism to perform a typical
installation of a web application. Finally, the Web Platform Installer
provides you with an easy way to reach a large number of potential
customers or to manage your own suite of enterprise applications.

Download from finelybook www.finelybook.com

1031

37
Continuous Delivery

WHAT’S IN THIS CHAPTER?

Understanding some of the terminology related to Continuous
Delivery
How to configure Continuous Delivery for your solution
Take advantage of the Continuous Delivery Tools for Visual
Studio

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
In Chapter 36, “Web Application Deployment,” you saw a number
of different ways that Web applications can be deployed quickly
and painlessly. Certainly, the technology involved in automating
the deployment of Web applications has come a long way over the
past few years. In fact, it has gotten to the point where it is quite
possible to provision a server, deploy an application, run tests, and
then decommission the server using nothing but scripts.
While this sounds nice, it is actually a major component of a rising
practice within the software development world: Continuous
Delivery (CD). In this chapter, we look at the tooling available
through Visual Studio 2017 and Team Foundation Services to help
support this endeavor.

NOMENCLATURE

Download from finelybook www.finelybook.com

1032

http://wrox.com
http://www.wrox.com

The world of Continuous Delivery introduces a number of terms that
you either might not be familiar with or might only know in a different
context. So it’s worthwhile to take a few minutes to define some of
these terms, just to make sure that you understand their meaning in
the context of continuous delivery.

Continuous Delivery

Continuous Delivery is a process that allows you to get all types of
software changes (including bug fixes, new features, and experimental
development) into production in a fast, safe and sustainable way.
One of the fundamental ideas is that it shouldn’t take a long period of
time for a piece of software to get into production. This means that
instead of spending weeks designing a set of features, months
developing them, and finally releasing them into production, the cycle
from start to finish is greatly shortened. You might even have multiple
deployments to production every single day. The time from “hey, I
think this might be a good idea” to being able to deliver it to the client
could be measured in hours and days instead of not weeks and
months.
Exactly how this is accomplished depends on the environments
involved. A common practice is to set up a release pipeline. This is a
series of successful environments that support progressively longer
and more rigorous integration, load, and user acceptance testing.
For example, you might have a development environment, a QA
environment, and a production environment. Each of these
environments should be identical (ideally) or at least similar enough
that moving the application from one environment to the other is
painless. The starting point for a release is triggered by continuous
integration (see the next section), and there is automation that moves
the release from environment to environment depending on the
successful completion of a suite of tests.
A release pipeline is not the sole measure of whether you’re
performing continuous delivery. Depending you your needs, you might
utilize techniques like features flags, deployment rings, and
infrastructure as code. Each of these is aimed at solving the same
problem: being able to move code to production safely and quickly.

Download from finelybook www.finelybook.com

1033

Continuous Integration

Continuous delivery is triggered by continuous integration. And
continuous integration (CI) is the process of automating the building
and testing of the source code every time a team member commits a
change to version control.
The idea behind CI is twofold. First, consider that development is a
relatively solo occupation. You write code, fix bugs, and tweak design.
Then you need to merge your results into the main code base so that
others can use it or it can be deployed. However, if you want days or
weeks to integrate your changes into the code base, the effort can be
extraordinary, not to mention fraught with the possibility of
introducing new, and as yet undiscovered, bugs.
Continuous integration is triggered the moment you commit your
changes. It starts by building the entire application. Then, if
successful, it runs the code through a series of tests. This not only
ensures that your changes haven’t accidentally clashed with someone
else’s changes, it also makes sure that there are no regression bugs
that have been accidentally introduced.

DevOps

As a term, DevOps has grown in significance in the past five years. It is
now part of the zeitgeist for thought leaders in the development world.
But getting any significant agreement on exactly what is meant by
DevOps is difficult. Part of the reason for this difficulty is because
DevOps isn’t really a “thing.” It’s more of a process and the tools that
are used to support that process. And that process is to enable
continuous delivery.
Consider for a moment the genesis of the term. It’s a contraction of
“Development” and “Operations.” The idea is to suggest that the
greatest level of success is achieved by taking two formerly
independent groups and joining them for the greater glory. To be
frank, developers frequently don’t think about what it’s going to take
to deploy and monitor their applications, and operations staff is
frequently seen as imposing unrealistic restrictions on what would
otherwise be awesome and world-changing applications. Combining

Download from finelybook www.finelybook.com

1034

development and operations together helps ensure that development
and operations staff cooperate more productively.
A common approach to the DevOps process is to take advantage of
something developed to help fighter pilots—the OODA Loop. OODA
stands for Observe, Orient, Decide, Act. In the world of software, this
means that, as part of your development and deployment cycle, you
observe the current demands, results and requirements, identify what
you can do about them (the “orient” phase), decide on the best course
of action to take, and then act on that decision. This loop repeats itself
for every delivery.
Ultimately, DevOps is the ability to quickly deliver on business value,
determine the success or failure of that delivery, and then correct or
continue in that direction. The speed with which you can perform this
loop is your cycle time. The goal is to find ways to shorten this cycle
time. To accomplish this, you take steps like implementing smaller
features, using more automation, ensuring the quality of the product
produced by your release pipeline, and improving the telemetry of
your application.
Two of those items (smaller features and more automation) are
determined by corporate culture and choices. The use of telemetry is
covered in Chapter 34, “Obfuscation, Application Monitoring, and
Management,” specifically in the “Application Instrumentation and
Analytics” section. In this chapter, we look at some of the tools
available in Visual Studio to help with the release pipeline.

CONTINUOUS DELIVERY TOOLS

In keeping with the philosophy of trying to minimize the footprint of
Visual Studio (and because not every project benefits from continuous
delivery), the tooling for continuous delivery is available through a
separate extension. To install the Continuous Delivery Tools, open the
Extensions and Updates dialog (Tools Extensions and Updates. Then
select the Online node in the tree view on the left and enter
“Continuous” into the search text box on the right (see Figure 37-1).

Download from finelybook www.finelybook.com

1035

FIGURE 37-1

You should see the Continuous Delivery Tools for Visual Studio at or
near the top of the results. Click on the Download button to start the
installation process. Along with needing to accept the licensing
conditions, you will need to restart Visual Studio for the installation to
complete.

Setting Up Continuous Delivery

For each repository and branch that you want to participate in
continuous delivery, you will need to set up a pipeline. For our
example, we will be working with an ASP.NET Single Page Application
project that has a single branch (master) and has been committed to a
Git repository in Team Services. But the steps that are described in
this section apply to any ASP.NET application, including ASP.NET
Core.
To start, choose the Configure Continuous Delivery option from the
Build menu. This launches the Configure Continuous Delivery dialog,
as seen in Figure 37-2.

Download from finelybook www.finelybook.com

1036

FIGURE 37-2

The top portion of the dialog is used to identify the repository and
branch. The repository is provided automatically based on the current
solution’s repository and can’t be changed. The branch is a dropdown
list of all of the branches defined within that repository. The lower
portion of the dialog allows you to define the Azure resource that is
going to be used to manage the pipeline. The Subscription dropdown
contains a list of all of the subscriptions associated with the user ID
found in the top right of the dialog. Naturally, if you change that user
ID, the list of subscriptions is likely to change as well. Below the
subscription is a dropdown containing all of the currently defined
continuous delivery services. By default, a new service is created with
some default settings, but you can change those values by clicking on
the Edit link, causing Figure 37-3 to be displayed.

Download from finelybook www.finelybook.com

1037

FIGURE 37-3

Here you can define the name of the service (useful for being able to
know what functionality the service is related to as you manage it
through the Azure portal), the location in which the service will be
created, the resource group into which the service will be placed, the
name of the app service plan, and the pricing tier that you will use for
the service. The different tiers provide different build speeds,
depending on the complexity of the projects being built.
When all of this information is configured to suit your needs, click on
the OK button on the Configure Continuous Delivery dialog to start the
creation of the pipeline. You will see output similar to what is shown in
Figure 37-4 if your creation process is successful. The most common
reason for failure, at least in my experience, is that the creation
process doesn’t like it if your repository contains any spaces it in. So
take that into consideration as you name your repository.

Download from finelybook www.finelybook.com

1038

FIGURE 37-4

Heads Up Code Analysis

One of the main tenets of continuous integration and continuous
delivery is to deliver information about the quality of the build and
release pipeline to the appropriate people as quickly as possible. A
second and even more important tenet is to take steps to ensure that
the quality of the codebase is maintained with each commit. One of the
tools that the Continuous Delivery Tools provides to assist with both of
these is Heads Up Code Analysis.
You can find the Heads Up Code Analysis data on the Changes tab
within the Team Explorer (see Figure 37-5).

Download from finelybook www.finelybook.com

1039

FIGURE 37-5

You’ll notice that there is a Build & Code Analysis Results section.
Here you will find information related to the most recent build or code
analysis run. If there are build errors or warnings, you’ll see the
information in the Errors and Warnings label. If the build is
completely clean and you have configured code analysis to run
automatically, then the warnings and messages associated with that
analysis will appear. Alternatively, you can run the code analysis
portion manually by clicking on the Refresh Analytics link. If you click
on the View Issues link, you are taken to the Error List where detailed
information about the items can be found.
The rules that are used in the code analysis process are defined
separately from this page. You access the configuration details through
the Analyze Configure Code Analysis menu. There you can set up the
code analysis properties for either the current project or the entire
solution. Figure 37-6 shows the form used for the entire solution.

Download from finelybook www.finelybook.com

1040

FIGURE 37-6

Each of the projects in the solution appears on the form. Next to each
project you can identify the rule set that is used when code analysis is
performed. Figure 37-6 shows the rules that are available out of the
box. But you can install additional rule sets through the Extensions
and Updates dialog, or you can create your own custom rule sets built
to fit the needs of your organization.

Automatic Build Notifications

One of the things that happened when you configured Continuous
Delivery is that you defined a default build for your project. The build
performs a compilation of all of the projects in your solution and is
automatically triggered every time you commit your code to source
control. Not only does the build compile your solution, but if you have
associated your project with an Azure App Service, it will
automatically deploy the compiled and tested application to Azure.
When the build is completed, again believing that getting information
to you quickly is important, a popup message appears at the bottom of
the Visual Studio IDE (see Figure 37-7).

Download from finelybook www.finelybook.com

1041

FIGURE 37-7

This popup contains the name of the build, who requested the build,
and the ultimate state of the build (that is, whether it succeeded or
failed). You’ll also notice the icon that appears in the status bar at the
bottom. At the moment, there is a green checkmark. This indicates
that the last build for this solution was successful. If the last build had
failed, then a red “X” appears. The purpose is to let you know what the
state of the code in source control is at that moment. This matters
because the typical rhythm for a developer is to finish coding a feature,
run the unit tests locally to make sure everything passes, get the latest
version of the solution from source control (performing any merges
that are required), run the tests again, and then commit their changes.
If the current state of the build is red (otherwise known as “broken”),
then you won’t be able to retrieve the latest version of the source code
and successfully run your tests, and your code won’t compile either.
From that same icon, you have a couple of options available to you.
You can configure continuous delivery (usually used only if you
haven’t already configured it in the past) or you can go to the details of
the last build. Choosing that second option takes you to the web page
that contains the result of the build, as seen in Figure 37-8.

Download from finelybook www.finelybook.com

1042

FIGURE 37-8

If you’re interested in viewing or modifying the build that is
performed, it is accessible through a couple of paths, but, ultimately,
you need to be on the Team Services web site. In Figure 37-8, there is
an Edit Build Definition link that can be used, or if you are within
Visual Studio, go to the Team Explorer window and get to the Builds
tab (Figure 37-9).

Download from finelybook www.finelybook.com

1043

FIGURE 37-9

At the bottom of the window, there is a list of defined builds for this
repository. Right-click on the desired build and select the Edit Build
Definition option. This launches the Team Services web site and takes
you to the build definition (Figure 37-10).

Download from finelybook www.finelybook.com

1044

FIGURE 37-10

SUMMARY

This chapter defined some of the more common terms related to
continuous integration and delivery. As well, it showed you how to
configure continuous delivery for your project and described the tools
that are available to you to help keep you informed of the status of
your project and the build and release pipeline without needing to
leave Visual Studio 2017.

Download from finelybook www.finelybook.com

1045

PART XI
Visual Studio Editions

CHAPTER 38: Visual Studio Enterprise: Code Quality
CHAPTER 39: Visual Studio Enterprise: Testing and Debugging
CHAPTER 40: Visual Studio Team Services

Download from finelybook www.finelybook.com

1046

38
Visual Studio Enterprise: Code
Quality

WHAT'S IN THIS CHAPTER?
Creating models of your solution
Enforcing application architecture
Exploring existing architectures

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Visual Studio 2017 was released with three separate editions, given
names that are by now quite familiar to developers. Visual Studio
2017 Community and Visual Studio 2017 Professional are
functionally almost identical. The only significant difference is that
the Professional edition supports the CodeLens feature and the
Community edition doesn’t. That isn’t to say that you can ignore
Professional and just use the “free” version. While functionally
quite similar, the license for the two products is very different.
Without going into details (because, honestly, Microsoft licensing
is complicated enough that they offer courses in it), Community
can only be used on projects related to open source, academic
research, in a learning environment, or if your company doesn’t
cross thresholds related to a specific number of developers, a
number of PCs, or annual revenue.
The third Visual Studio 2017 edition is known as the Enterprise
edition. In this edition, there are a number of features that have

Download from finelybook www.finelybook.com

1047

http://wrox.com
http://www.wrox.com

been added to Visual Studio. In general, the features fall into two
categories—measuring and managing code and application quality,
and improving the unit testing and debugging experiences. In both
case, the added features are aimed at scenarios that would be more
likely to be found in an “enterprise” (as opposed to a smaller
organization). The next two chapters will look at these different
groups of features, starting with those related to code quality in
this chapter.

DEPENDENCY VERIFICATION

A model in software terms is an abstract representation of some
process or object. You create models to better understand and
communicate to others the way different parts of the application are
intended to work. In earlier versions of Visual Studio, you would
include artifacts like UML diagrams in your modeling projects.
However, in Visual Studio 2017, support for UML diagrams has been
removed, due at least in part because the usage levels of that feature
were low in comparison to the effort involved in keeping it in line with
changes to how Visual Studio is constructed.
So while in Visual Studio 2017 there is still a modeling project, its
contents and purpose have significantly changed. Now it is used to
support dependency verification, including the newly added Live
Dependency Verification feature. To start this process, use the New
Project menu option to launch the New Project dialog (Figure 38-1).

Download from finelybook www.finelybook.com

1048

FIGURE 38-1

You can find modeling projects on their own node in the New Project
dialog. Once you have created a project, you can see (Figure 38-2
shows the Solution Explorer) that there isn’t much to the project.

FIGURE 38-2

Download from finelybook www.finelybook.com

1049

The element that was created with the project is the Layer Diagram,
which will be used to perform the dependency validation for the entire
solution. If you double-click on the artifact, you will see a designer
appear, as shown in Figure 38-3.

FIGURE 38-3

Figure 38-3 also includes the Toolbox for the designer. The purpose of
the Layer Diagram is to allow you to specify the high-level structure of
a software solution. It identifies the different areas or layers of your
application and defines the relationships between them.
Each layer is a logical group of classes that commonly share a technical
responsibility, such as being used for data access or presentation.
From within the designer, you can drag each layer onto the design
surface and configure it with a name. You can draw directed or
bidirectional dependency links between layers. A layer depends on
another layer if any of its components have a direct reference to any of
the components in the layer it depends on. If there is not an explicit

Download from finelybook www.finelybook.com

1050

dependency, it is assumed that no components match this description.
Figure 38-4 illustrates a simple Layer Diagram.

FIGURE 38-4

Layers can be nested inside one another. Specifically, the layers on the
right side of Figure 38-4 have been nested in that manner. The reason
for doing this is to make changes to the diagram easier. If you need to
make changes in the future, the associations “follow” as you move the
layers around.
After you create a Layer Diagram, you can use it to discover
communications between layers in your compiled application and to
verify that these links match the design. More specifically, you can
associate projects with the different layers. Then, as part of the build
or even as part of your coding, you will be notified if what you are
doing doesn’t fit within the previously defined layers.
Before you do this, you need to associate projects with each layer. And
you need to add a component to the project that allows it to participate
in Live Dependency Validation. As you add projects to your solution,
you will see a warning appear in the Solution Explorer (see Figure 38-

Download from finelybook www.finelybook.com

1051

5).

FIGURE 38-5

Projects that are part of the live validation need to have the
Microsoft.DependencyValidation.Analyzers Nuget package installed.
Clicking on the Update button will automatically add the package to
the new project. Once the package has been added to the solution,
other projects that you add will get the Nuget package.
To associate a project with a layer, drag the project from the Solution
Explorer onto the layer. Or you can drag your project directly onto the
surface to create a new layer. Or you can drag a folder. Or even a class.
Regardless of what element you drag, entries are added to the Layer
Explorer tool window (Figure 38-6), and a number inside each layer is
updated to reflect the number of artifacts associated with it.

Download from finelybook www.finelybook.com

1052

FIGURE 38-6

After the Layer Diagram has assemblies associated with it, you can fill
in any missing dependencies by selecting Generate Dependencies from
the design surface context menu. This analyzes the associated
assemblies, builds the project if necessary, and fills in any missing
dependencies. Note that the tool won’t ever delete unused
dependencies.

NOTE

Not all artifacts that can be linked to a Layer Diagram support
validation. The Layer Explorer window has a Supports
Validation column, which can help you determine if you have
linked artifacts for which this is true.

When your Layer Diagram contains all the layers and only the
dependencies that you would expect, you can verify that your
application matches the design specified by the Layer Diagram. To do
this, you can select Validate from the design surface context menu.
The tool analyzes your solution structure and any violations found
appear as build errors, as shown in Figure 38-7. Double-clicking one of
these errors takes you to the location of the error.

FIGURE 38-7

Beyond placing errors into the Error List dialog, Live Dependency
Validation actually marks the errors in code, and the information for
the error is directly available right at the source, as can be seen in
Figure 38-8.

Download from finelybook www.finelybook.com

1053

FIGURE 38-8

In order to make Dependency Validation even more useful, it is
possible to specify additional constraints on the classes that are part of
a layer. Select a layer in the design surface and then open the
Properties window (see Figure 38-9).

FIGURE 38-9

You will notice three properties associated with the layer that allow
you to configure the namespaces which are or are not allowed within
the layer. Each property is a semicolon-separated list of namespaces.
The purpose of the Allowed Namespace Names and Disallowed
Namespace Names is relatively self-evident. If a class is in one of those
lists, it either can or can’t be used within the code in that layer. The
Unreferencable Namespaces item contains a list of namespaces that
not only can’t be used within the layer, but can’t be referenced by any
of the assemblies used in the namespace.

EXPLORING CODE WITH CODE MAPS

Many advanced features in Visual Studio are designed to help you
understand and navigate the structure of an existing code base.

Download from finelybook www.finelybook.com

1054

Dependency Graphs give you a high-level view of the relationships
between various types of components within your project. The Code
Map window enables you to deep dive into different areas while still
leaving a trail of breadcrumbs to help you understand where you are.
One of the hardest aspects of navigating a new code base is
understanding where you are in relation to everything else. The Code
Map window (Figure 38-10) enables you to navigate through the class
usage relationships with single clicks, displaying a node graph that
eases the process of figuring out where you are in the code base.

FIGURE 38-10

Download from finelybook www.finelybook.com

1055

The Code Map shown in Figure 38-10 was generated by using the
Architecture Generate Code Map For Solution menu option. Once the
application has been built, Visual Studio examines the code and
diagrams the links between the top-level assemblies.
The generated diagram is actually a Dependency Graph. A
Dependency Graph enables you to visualize the dependencies between
items at different levels of focus.
Five basic options specify the way a Dependency Graph is arranged
based on the direction of arrows: top to bottom, left to right, bottom to
top, and right to left. The fifth option is the Quick Clusters layout,
which attempts to arrange the items so that they are closest to the
things they connect to. You can change the layout by using the Layout
drop-down at the top of the diagram’s design surface.
When you click on one of the nodes, it expands so that you can see
contained elements. By continuing down through the hierarchy, you
can view all the elements, including their accessibility.
While you are editing your code, Visual Studio makes it easy to jump
into the code map. From within the text editor, right-click on a method
name and select the Code Map Show on Code Map option. This takes
you to the Code Map diagram and expands the appropriate nodes so
that you can see the method definition, along with both the callers
(where the method is called from) and the callees (other methods that
are called from within the selected method).

CODE CLONING

The goal of code cloning is to help you find sections of code that are
similar, with an eye toward refactoring. There are two ways to
approach code cloning. The first is to select a fragment of code and
then use the Code Clone function to search for similar fragments. The
other is to allow Code Clone to search through the code for you, again
looking for similar fragments.
To work from a fragment, select the block of code in the text editor and
then choose the Find Matching Clones in Solution option from the
context menu. To search the entire solution, use the Analyze Analyze
Solution for Code Clones menu option. Regardless of which option you
choose, the result will be a window similar to Figure 38-11.

Download from finelybook www.finelybook.com

1056

FIGURE 38-11

In Figure 38-11, you can see that the matches have been grouped by
strength. There are one strong match and three medium matches. You
can expand the matches to see the files involved, and you can hover
over the line to see the underlying code. Double-clicking on a line
takes you to the line in the text editor.

SUMMARY

Dependency Validation provides a great way for you to communicate
the design of your application clearly, unambiguously, and effectively.
The ability to verify that your application meets the architecture as
designed by the Layer Diagram can be a useful sanity check to ensure
project quality standards remain high and architectural decisions are
not abandoned after the project is underway. And with Live
Dependency Validation, you can go a step further and ensure that the
solution won’t even build when the design is violated.
Getting up to speed with an existing code base can be hard. Using
Dependency Graphs is an easy way to identify the relationships
between various parts of your application. The Code Map window
enables you to rapidly move through the connections between
components in the system to find the items you want. Finally, the
ability to navigate to the Code Map directly from an existing method
enables you to quickly grasp the fundamentals of how a method
interacts with other methods and classes within the application.

Download from finelybook www.finelybook.com

1057

39
Visual Studio Enterprise: Testing
and Debugging

WHAT’S IN THIS CHAPTER?

Creating different tests for web and Windows applications
Viewing memory usage within a .NET application
Generating unit tests for legacy code

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
You can test an application in many ways. Chapter 10, “Unit
Testing,” introduced the concept of unit tests, which are small
executable pieces of code that verify a particular aspect of behavior
for a single method or class. This chapter examines the advanced
tools built into Visual Studio that are available for other testing
tasks, including testing web applications.

NOTE

Visual Studio also contains a product called Test Manager. This
tool is designed for testers to interact directly with Team
Foundation Servers and manage test plans, suites, and cases. Test
Manager is available with the Enterprise edition of Visual Studio
and as a part of a separate pack called Test Elements. If you are a
tester, or spend a great deal of time working on the testing aspect

Download from finelybook www.finelybook.com

1058

http://wrox.com
http://www.wrox.com

of development projects, then Test Manager is worth a look.
Although it is beyond the scope of this book, Test Manager’s
numerous tools can not only make your life easier, but it can
make capturing and conveying exception conditions to the
development team seamless.

AUTOMATED TESTS

An automated test is a piece of code that verifies the behavior of your
application without any user input or control. After the system has
been asked to run an automated test, it can be left unattended until it
completes.
The starting point for creating a new automated test is a testing
project. The mechanics of creating a test project were covered in
Chapter 10, but for the upcoming examples it’s useful to create a Web
Performance and Load Test project. To add a new test to an existing
project, use the Add New Item option from the Solution’s context
menu. There is a Test node in the Add New Item dialog with the
different test templates displayed on the right side. Alternatively (and
probably more convenient), the context menu also includes options to
add a Unit Test, a Load Test, a Web Performance Test, a Coded UI
Test, an Ordered Test, or a Generic Test (see Figure 39-1).

Download from finelybook www.finelybook.com

1059

FIGURE 39-1

Web Performance Tests

This type of automated test simulates web requests and enables you to
inspect the responses and evaluate different conditions to determine if
the test passes. When you create a new Web Performance Test,
Internet Explorer opens ready to start navigating. If this is your first
performance test, you might get prompted to enable the Web Test
Recorder add-on. With the Web Test Recorder enabled, as shown in
Figure 39-2, navigate to and around your site as if you were a normal
user. That includes entering any data that is needed. (The actual
values that are used can be modified programmatically each time the
web test is executed.) When done, simply click Stop. This opens the
Web Test Designer, as shown in Figure 39-3. From there you can
customize your test, adding validation and extraction rules, context

Download from finelybook www.finelybook.com

1060

parameters, comments, data sources, calls to other Web Performance
Tests, or insert transactions. You can also specify response time goals
for requests.

FIGURE 39-2

FIGURE 39-3

Download from finelybook www.finelybook.com

1061

You often need to run the same set of tests against different web
servers; to do this, configure which server the test runs against as a
context parameter. From the Web Test Designer, you can right-click
the main node and select Parameterize Web Servers. Visual Studio
inspects the URLs in each request and determines the context
parameters it needs to create.
You can link your requests using the output from one of them as input
for the next; to do this, add extraction rules to a specific request. You
can extract from fields, attributes, HTTP headers, hidden fields, and
text, or even use regular expressions. The result of an extraction sets a
context parameter, which you can then use, for example, as a form or
query string parameter in further requests. You can add a product and
then search for it using the ID in another request.
You can add form and query string parameters from the context menu
of a request. By selecting a form or query string parameter from the
properties window, you can set its value to a context parameter or bind
it to a data source.
No test framework would be complete without validations. When you
record a test, a Response URL Validation Rule is added asserting that
the response URL is the same as the recorded response URL. This is
not enough for most scenarios. From the context menu at the Web
Performance Test or for an individual request, you can add validation
rules. You can check that a form field or attribute has a certain value or
that a particular tag is included, find some text, or ascertain that the
request doesn’t take more than a specified length of time.
You can run a Web Performance Test directly from the Web Test
Designer. After a test is run, you can see its details by double-clicking
it in the Test Results window. To open this window, from the Test
Windows menu, select Test Results. There you can see each request’s
status, total time, and bytes. When you select a request, you’ll see the
details of the selected request and received response, values of the
context parameters, validations and extraction rules, and a web
browser–like view displaying the web page.
If you need additional flexibility, you can code the Web Performance
Tests using .NET and the Web Testing Framework. The best way to
learn how to use the framework and start coding your test is by
generating code for a recorded Web Performance Test. You have this

Download from finelybook www.finelybook.com

1062

option (Generate Code) in the Web Test context menu.

NOTE

Although Visual Studio provides support for some ASP.NET-
specific features, you can use Web Performance Tests for sites
built using other technologies.

Load Tests

Whereas web and load testing are meant to test functional
requirements, Load Tests can run a set of tests repeatedly, so you can
see how your application performs. When you create a new Load Test,
you are presented with a wizard that guides you through the necessary
steps.
The first choice you face is which infrastructure to use to drive your
load tests. Visual Studio Team Services provides the capability to run
load tests on web sites using Azure. Alternatively, you might have the
requisite servers available within your own corporate environment.
Keep in mind that in order to effectively run a load test, you are going
to need a number of machines available to you. These machines will
generate the requests that are then sent to your web site. There are
limits to how many users a single machine can effectively replicate, so
if you want to run tests that simulate thousands of users, you are going
to need a fairly large number of machines.
Once you have identified the infrastructure that the test will be using,
you need to create a scenario. The scenario includes how long the test
will last, how long you want to run the tests to warm up the target
application, and whether you want to use think times. When you
recorded the Web Performance Tests, the time you took between each
request was also recorded and can be used as the think time. It can be
edited for each web request in the properties window, or you can have
the load test vary the think times based on the recorded think times.

NOTE

The warm-up time for a load test allows the target application to

Download from finelybook www.finelybook.com

1063

connect to data sources, retrieve cached information, or perform
other initialization steps that would impact performance when
the application is starting up, but not once the application has
been running for a while.

As part of the scenario, you’ll define the load pattern; for example, a
constant load of 100 users or a load increasing by 10 every 10 seconds
until you get to 200 users. The next steps, Test, Browser, and Network
Mix, define how tests will be run by virtual users, specify which
browsers will be used to run the tests, and determine the kinds of
network that will be simulated. In the Test Mix step you can add
Generic, Ordered, and Web Performance Tests.
In the Counter Sets step, you’ll add the computers that you want to
monitor and the performance counters you are interested in. For
example, you can monitor your Database Server and IIS. In the last
step, Run Settings, you can specify the test duration or test iterations,
how often samples will be taken for performance counters, a test
description, how many identical errors will be recorded, and the
validation level. We defined a validation level for each Validation Rule
in our Web Performance Tests. Because evaluation of these rules can
be expensive, in Load Tests only rules with a level equal to or below
the specified validation level will be evaluated.
When you click Finish, you are presented with the Load Test Designer,
as shown in Figure 39-4. There you can add scenarios, counter sets, or
new run settings.

Download from finelybook www.finelybook.com

1064

FIGURE 39-4

When you run the tests, you’ll see the Load Test Monitor; by default it
shows the Performance view. This shows a graph of various
performance metrics over the life of the text (illustrated in Figure 39-
5). At the bottom is a list of the metrics. They can be added or removed
from the graph visualization by using the check box on the left of each
item. Above the graph, you click on the Details link to change to a view
that shows details about the performance metrics. To the right of the
title, there is a link that allows you to download the report.

Download from finelybook www.finelybook.com

1065

FIGURE 39-5

Once the report has been downloaded, the link changes to View
Report. A click on that link displays the screen shown in Figure 39-6.
Here you can use buttons on the toolbar to toggle between a Summary
or Tables view, export to Excel or CSV, and add analysis notes. In the
Graphs view at the bottom, you have a legends pane. There you can
select/deselect the counters that you want to include in the graphs. In
the Tables view, you can see the Requests, Errors, Pages, SQL Trace,
Tests, Thresholds, and Transactions.

Download from finelybook www.finelybook.com

1066

FIGURE 39-6

One thing to be aware of if you are using the Team Services
infrastructure to run your load tests is the costs. Every user has a
limited number of test minutes per month. That number will cover
some simple usage scenarios. However for more complex scenarios or
longer tests, you can purchase additional minutes. And when you
compare the cost to other cloud-based services, not to mention what
the alternative of purchasing the servers and running them in-house
would cost, the result is quite reasonable.
It is not required that the load tests work only with HTTP or HTTPS
endpoints. The cloud-based tests can run against any endpoint that is
accessible over the Internet. This does mean that you might not be
able to perform a load test against an internal-only website. To handle
that situation, you need to turn to Test Load Agents.

Test Load Agent

For performing load testing on websites that are local to your
corporate network, you can install one or more Test Load Agents.
These agents allow you to distribute the work of request generation
and submission across different machines. Each agent can simulate

Download from finelybook www.finelybook.com

1067

approximately 1,000 users per processor. This product requires a
separate installation and requires one controller and at least one
agent. To configure the environment, select the Manage Test
Controllers button on the toolbar for the Load Test designer. There
you can select a controller and add agents.

Coded UI Tests

Sometimes the best way to test an application is to drive it from the
outside as a user would. When you create a new Coded UI Test, it
starts the Coded UI Test Builder (Figure 39-7). When you click the
Start Recording button, the Coded UI Test Builder tracks all the
actions that you take with the mouse and keyboard.

FIGURE 39-7

Open your application, and use it to get into the state that you’d like to
test; then click the Generate Code button. This prompts you to name
your recorded method, which will be saved in the test project as a part
of the UI Map. This map is a description of actions and assertions that
you can use to automate and test your application.

NOTE

Each test project contains a single UI Map, which all the Coded UI
Tests share.

When your application is in the wanted state, you can create assertions
about different parts of the user interface. To do this, drag the
crosshair icon from the Coded UI Test Builder over the part of the UI
that you want to make an assertion about. When you release the
mouse button, the Add Assertions dialog displays, as in Figure 39-8.

Download from finelybook www.finelybook.com

1068

FIGURE 39-8

On the left is a collapsible panel showing the UI control map, which
displays the hierarchy of all controls that have been identified so far.
On the right is a list of properties that the Coded UI Test Builder has
identified along with their values. To make an assertion about one of
these properties, you can right-click it and select Add Assertion. Each
assertion has a comparator and a comparison value to be tested
against.

Generic Tests

Not every kind of test is covered in Team System. This is why
Microsoft included the concept of Generic Tests, so you can easily use
custom tests and also the rest of the features such as Test Results,
Assign Work Items, and Publish Test Results.
To configure a Generic Test, you need to specify an existing program
and optionally specify its command-line arguments, additional files to
deploy, and environment variables. The external application can
communicate the test result back to Team System in two ways. One is
with the Error Level, where a value of 0 indicates success and anything
else is considered a failure. The other is to return an XML file that
conforms to the SummaryResult.xsd schema located in Visual Studio’s
installation path. In MSDN you can find information about this

Download from finelybook www.finelybook.com

1069

schema and how to report detailed errors using XML.

Ordered Tests

Use Ordered Tests when you need to group tests and run them as a
whole, or if tests have dependencies on each other and need to be run
in a particular order. It’s a good practice to create atomic Unit Tests in
order to run them in isolation with repeatable results. It isn’t
recommended to use Ordered Tests just to deal with dependencies
between Unit Tests. A good reason for creating Ordered Tests is to
create a performance session for more than one test.
In the Ordered Test Editor, you have a list of the available tests that
you can add to the Ordered Test; the same test can be added more
than once. You can also choose to continue after a failure. When the
test is run, it executes each of the selected tests in the specified order.

INTELLITRACE

One of the banes of a professional developer’s existence is the “no
repro” bug. This is a bug that a tester has found while exploring the
application. Yet when the bug description is passed back to the
development team, the team cannot reproduce it. So the bug goes back
and forth with neither side able to identify the difference between the
two systems that would seem to be the root of the issue.
With IntelliTrace, the tester can capture a detailed view of exactly what
was happening in the application when the bug occurred. This
information is then provided to the developer, who can actually step
through the application and see the values of the variables as if they
had attached to the running process. From the perspective of one who
has dealt with this situation many times, there is little question that
IntelliTrace is a valuable tool to add to the developer’s toolbox.
The default configuration for IntelliTrace is to collect information at
specific, predefined points within the .NET Framework. The actual
points depend on the type of application or library involved. Windows
Forms apps would be focused on user interface events such as key
presses and button clicks. ASP.NET applications are concerned with
requests. (Note that this does not include client-side events.)

Download from finelybook www.finelybook.com

1070

ADO.NET gathers events on command executions. If the defaults are
not to your liking, use the IntelliTrace Events options page
(IntelliTrace IntelliTrace Events page from the Tools Options menu
option).
When one of these points of interest is hit, the debugger collects the
desired values for the event. It also gathers generally useful
information such as the call stack and the current active threads. The
information is saved to an IntelliTrace log.
In Visual Studio 2017, IntelliTrace is now part of the Diagnostic Tools
window, which is available through the Debug Show Diagnostic Tools
menu option. Figure 39-9 illustrates the Diagnostic Tools window with
the Events tab selected.

Download from finelybook www.finelybook.com

1071

FIGURE 39-9

Download from finelybook www.finelybook.com

1072

Each of the events tracked by IntelliTrace gets its own line at the
bottom of the screen. It is also represented by a diamond in the event
timeline at the top of the screen. That way you have not only
information about the event, but also when it happened. From Figure
39-9 you can see that sometime after the web application started,
something was clicked to trigger a request for the Account/Register
page, followed (after some exceptions) by a post to Account/Register,
and then the execution hit a breakpoint.
Clicking on an event reveals some additional details about it. In
addition, in some cases, you will see an Activate Historical Debugging
link. Clicking on that link takes you to the line of source code that
generated the event. While in the source, you have access to the values
of the variables as they were at the time of the event.
Visual Studio 2017 supports the ability for log files to be captured on a
production server that does not have Visual Studio installed on it. A
CAB file named IntelliTraceCollection.cab contains the necessary
assemblies. The CAB file is unpacked on the production machine, and
then, using a number of PowerShell commands, the IntelliTrace
collector can be turned on. Now the events and calls are collected into
an .iTrace file. When finished, the file can be sent to a development
machine. Using Visual Studio to open the file causes the Diagnostic
Tools window to appear.
The range of data that can be collected is quite varied. Table 39-1 lists
the types of data that can be collected by IntelliTrace, along with the
source for the data.

TABLE 39-1: IntelliTrace Data Collection Types
TYPE CONTENTS SOURCE
Performance Function calls that exceeded

a configured threshold for
performance

Operations Manager for
ASP.NET, System Center
2016, Microsoft
Monitoring Agent

Exception
Data

The full call stack for any
exception raised

All sources

System Info The specifications and
settings on the system on

All Sources

Download from finelybook www.finelybook.com

1073

which the log is captured
Threads
List

The threads that were used
during the execution

All Sources

Test Data The test steps and the
results that were recorded
for each

Test Manager

Modules The modules that were
loaded during execution, in
the order in which they were
loaded

All Sources

WARNING

The files generated by IntelliTrace can get large. And if
IntelliTrace capturing is turned on, the files are created each time
you run a debugging session. In that situation, you can have
multiple gigabytes of tracing information that accumulate on
your development machine. So it’s a good idea to keep IntelliTrace
turned off until you need it.

At the top of Figure 39-9, the Events timeline is visible. The timeline
illustrates a visual history of the events recorded by IntelliTrace,
including breakpoints, stepping through calls, and breaking exceptions
(as opposed to those that were caught and handled). There are three
rows in the timeline. The top line (with the pause icon to the left)
shows the elapsed time for the debugging run. The middle line (with
the diamond icon on the left) shows events that would typically appear
in the Output window during the debugging process. This includes any
debug messages that have been included in your application. The
bottom line (with the lightbulb icon to the left) shows the IntelliTrace
events that occur.
In the second row, the color of the diamonds indicates the source of
the event. Red is a breakpoint being hit, yellow is when a step runs to
completion, blue is for a Break All, and black is for anything that is
otherwise uncategorized.
The range of time in the timeline is automatically updated as you hit

Download from finelybook www.finelybook.com

1074

breakpoints and step through your application. The intent is to keep
the events filtered to a reasonably sized subset based on your current
actions. In addition, the list of events below the timeline is filtered
based on the timeline range at the top.

Diagnostic Tools

Visual Studio 2017 include a Diagnostic Tools window through which
you can collect and view information about memory usage and CPU
utilization that your application generates. The Diagnostic Tools
window is activated through the Debug Windows Show Diagnostic
Tools menu option. You can turn on or off the collection of this
information through the Select Tools button in the Diagnostic Tools
window, as seen in Figure 39-10.

FIGURE 39-10

When Memory Usage or CPU Usage has been selected, a graph of the
usage over time appears below the Debugger Events timeline, as
shown in Figure 39-11.

Download from finelybook www.finelybook.com

1075

FIGURE 39-11

As you change the timeline range for the diagnostics window, the view
of the Memory Usage and CPU Usage graphs is modified as well. This
allows you to drill into a more detailed look at the timing of your
usage.
Below the timeline, the Memory Usage tab is used to access details
about your memory usage. There is an icon that allows you to take a
snapshot of the memory at any time you would like. Each snapshot
places a row in the tab, as seen in Figure 39-12.

Download from finelybook www.finelybook.com

1076

FIGURE 39-12

As Figure 39-12 shows, memory increased by more than 64MB in the
113 seconds between the snapshots. And the number of objects
increased by almost 3,100. To get more details about either the change
in allocated memory or the entirety of the memory being used, click on
the number of bytes. This shows a list of the types that were added
between the snapshots, including the number of bytes of memory
allocated to each type. You can see an example in Figure 39-13.

FIGURE 39-13

If desired, you can go deeper into the analysis process. By double-
clicking on a type, a map of the instances of that type is displayed. You

Download from finelybook www.finelybook.com

1077

can drill down further into the line of code that actually created a
particular instance. In other words, your ability to track and trace
memory issues in Visual Studio has never been greater.

INTELLITEST

While there is little question that creating unit tests for your code
while you write it is the most effective way to generate them, the
reality for most developers is that they will spend at least part of the
time working on code that hasn’t been written that way. As a result,
there are probably large blocks of code in your application that are not
covered by tests. It would take a great deal of effort, which
management frequently sees as unnecessary, to go back and write the
tests. To help address these problems, Visual Studio 2017 includes a
tool called IntelliTest.
IntelliTest examines your source code and uses it to create a set of unit
tests and test data based on the structure of your code. The goal is to
ensure that every statement in your code is covered by at least one unit
test.
To get started, open up one of your code files, locate a method for
which you would like to generate unit tests, and then right-click to
reveal the context menu. Then select IntelliTest Run IntelliTest. After
a few moments, a window similar to the one shown in Figure 39-14
appears.

FIGURE 39-14

In Figure 39-14, you can see that paths that were examined by
IntelliTest. For each path, if you select it, the right side of the window
contains the unit test that would be generated to cover the code. At the

Download from finelybook www.finelybook.com

1078

moment, this exploration hasn’t been converted into an actual suite of
unit tests. To do this, click on the Save button in the toolbar in Figure
39-14. The process of saving the unit test will create a unit test project
if one doesn’t already exist. It will then add the unit tests to a class that
is named based on the class and method against which you ran the
IntelliTest.

SUMMARY

In this chapter you saw the different features included in Visual Studio
2017 to support testing and debugging your application. You started
with Web Performance Tests, which enable you to reproduce a set of
requests, and then you continued with Load Tests, which help to
simulate several users executing your tests simultaneously to stress
your application. You also looked at automating your application with
Coded UI Tests, which help to test the ways in which your user can
interact with your system. Generic Tests can be used to wrap existing
tests that use other mechanisms, and Ordered Tests can help you run a
set of tests sequentially. You then learned how to automatically
generate unit tests to cover code that didn’t already test in place using
IntelliTest.

Download from finelybook www.finelybook.com

1079

40
Visual Studio Team Services

WHAT’S IN THIS CHAPTER?

Visualizing source code repository changes
Managing project tasks
Creating and executing build configurations

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter can be found at
www.wrox.com by searching for this book’s ISBN number (978-1-119-
40458-3). The code and any related support files are located in
their own folder for this chapter.
Software projects are notoriously complex; few are delivered
successfully on time, within budget, and up to the wanted quality
levels. As software projects increase and require larger teams, the
processes involved to manage them are more complicated, and not
just for the manager, but also for the developers, the testers, the
architects, and the customer. Over time there have been many
approaches to solving software project management problems,
including quality models such as CMMI, methodologies such as
RUP, or Agile Practices, Scrum, and Continuous Integration.
Clearly a tool that helps support all the pieces necessary to ensure
more successful software projects is (or should be) on the wish list
of every development manager.
The most basic requirement for a software project, even for the
smallest one-person project, is to have a source control repository.
For bigger projects, more sophisticated features are needed, such
as labeling, shelving, branching, and merging. Project activities
need to be created, prioritized, assigned, and tracked, and at the

Download from finelybook www.finelybook.com

1080

http://wrox.com
http://www.wrox.com

end of the day (or better yet, even before every change is checked
in to your repository) you need to ensure that everything builds
and all tests pass. To make this process smoother and improve
team communication, a way to report to project managers or peer
developers is also required.
Microsoft provides software that enables you to do all of this in the
form of Team Foundation Server (TFS). In this chapter, you’ll see
how version control works, how it integrates with work item
tracking, and how each change can be verified to ensure it works
before it is checked in. You’ll also learn how project managers can
see reports to get a better understanding of the project status and
how they can work using Excel and Project to manage work items.
The team can interact using the project’s portal in SharePoint, and
different stakeholders can get the information they need through
the report server or configure it to get their reports directly by
email.
There are two available forms of TFS. You can install TFS 2017
onto one or more servers that are under the direct control of the
organization. This is the on-premise form of TFS. As well,
Microsoft has a cloud-based version of TFS known as Visual Studio
Team Services (VSTS, previously known as Visual Studio Online or
VSO). This version has many of the same functions and features as
the on-premise version. The biggest difference is that VSTS does
not expose the same number of extensibility points. However, the
pace of change in VSTS is quite rapid, and in many cases features
that eventually will be found in TFS are implemented and available
in VSTS months beforehand.
Because Visual Studio Team Services is accessible to most readers,
the examples in this chapter use VSTS.

GETTING STARTED WITH GIT

Initially, TFS supported a version control system known as Team
Foundation Version Control (TFVC). This is a centralized version
control system where each developer has a single version of each file
and historical information for the file is maintained on the server.
When you branch a file, that process takes place on the server.

Download from finelybook www.finelybook.com

1081

Although this system works, it is hobbled by the fact that in order to
perform relatively common version control operations (like checking
history), you need to be connected to the server.
Git, on the other hand, is an open-source, distributed version control
system. Each developer gets a copy of the source code on their
machine and can commit changes or view history without
communicating with the server. Branches in Git are much more
lightweight and, again, are done without talking to the server. At some
point, when the developer is ready, the local branches can be merged
and published to the server.

NOTE

Git as a version control system has a life outside of the Visual
Studio ecosystem. It is widely used in other development
environments and languages. Also, even though there is a
similarity (intentionally) in names, Git is not the same thing as
GitHub. Where Git is a version control system, GitHub is a service
that hosts Git repositories. In other words, GitHub is a service for
projects that utilize Git.

Over time, VSTS has greatly increased its support for Git, to the point
where Git repositories are the default version control system for new
projects. This is not to say that TFVC is no longer available. It is. But
unless you have a specific need to choose TFVC, you’re better off
sticking with Git, safe in the knowledge that you can always add TFVC
should the need for it arise later in a project. For the examples in the
rest of this chapter, we’ll be using Git as the version control system,
and we’ll be using a Single Page Web application.
The starting point for using Git comes in two locations within Visual
Studio 2017. When you are creating a project, there is an option in the
New Project dialog (circled in Figure 40-1) to create a Git repository at
the same time as the project.

Download from finelybook www.finelybook.com

1082

FIGURE 40-1

Alternatively, you can add an existing project to source control
through a control found at the bottom right of the main IDE (circled in
Figure 40-2).

Download from finelybook www.finelybook.com

1083

FIGURE 40-2

In the latter case, you might get the Team Explorer presented to you
with an option to push your project to Team Services, GitHub, or a
remote repository. There’s no need to make that choice right now
unless you want to. The presumption made in this workflow is that
you’ve been working on your project for a little while and might want
to publish it to a remote repository for safekeeping.
The Team Explorer window in the heart of version control within
Visual Studio 2017 is designed to allow the developer to focus on the
most common tasks related to version control, but also drill into these
tasks to quickly get to the functionality required. Figure 40-3
illustrates the initial view of this window.

Download from finelybook www.finelybook.com

1084

FIGURE 40-3

At this point, you are working solely with a local Git repository. As
such, the choices you have are limited to those functions that are
related to local development effort. However, to take advantage of
Team Services, you need to connect to a Team Services project. To do
this, click on the electrical plug icon in the tool bar. This changes the
Team Explorer window to the one seen in Figure 40-4.

Download from finelybook www.finelybook.com

1085

FIGURE 40-4

Here you can see your local Git repositories, along with the projects
that are available in the Team Services or GitHub accounts that you’ve
created. If you don’t see your Team Services or GitHub account in the
list, click on the Manage Connections link. Through that option, you
can connect to Team Services or GitHub. Once you have establishing a
connection to a remote repository, the number of options you have
changes. Figure 40-5 shows the Team Explorer Home view after you
have connected to an existing Team Services project.

Download from finelybook www.finelybook.com

1086

FIGURE 40-5

VERSION CONTROL

The version control functionality associated with Team Explorer
revolves around a number of very commonly used functions:
committing, branching, and syncing. In this section, we look at these
functions and how they are implemented through Team Explorer.

Committing

As part of its commitment to being lightweight, Git does not
automatically make snapshots of your code as you edit your project.

Download from finelybook www.finelybook.com

1087

Instead, you are required to manually inform Git about the specific
changes that need to be saved by committing them to your repository.
A commit actually consists of the following information:

A snapshot of the files saved in the commit. Git actually includes all
of the files in your repository in the snapshot. This makes moving
from branch to branch very fast.
A reference to the parent commit. This is the commit (or commits,
in the case of a merge) that immediately preceded the current
commit.
A comment that describes the changes in the commit. You, the
person making the commit, are responsible for writing the
comment.

Before files can be committed, they must first be staged. This lets Git
know which updates you want to include in the next commit. Although
it might seem odd that the process of staging files is manual, the
benefit is that you can selectively add some files to a commit while
excluding others.
Visual Studio 2017 helps make the staging process as painless as
possible. If you click on the Changes option in the Home view, you will
get to a screen similar to the one shown in Figure 40-6.

Download from finelybook www.finelybook.com

1088

FIGURE 40-6

At the bottom of Figure 40-6, you can see that the changes (which are
automatically tracked by Visual Studio) have been grouped into Staged
and Unstaged collections. All of the changes start off as unstaged. You
can moved them to a staged state by right-clicking on the file (or a
selection of many files) and choosing the Stage option. To stage all of
the files that have been changed, click on the plus sign to the right of
the heading. Similarly, you can unstage files using the Unstage option
in the context menu or the minus sign at the right of the heading.
Once all of the files have been staged or unstaged appropriately, you
enter the commit message into the text box at the top of the window
and click on the Commit button. This last action commits your
changes to the local repository.

Branching

Download from finelybook www.finelybook.com

1089

Technically speaking, a Git branch is just a reference that keeps track
of the exact history of a set of commits. As described in the previous
section, committing causes a block of changes to be snapshotted. That
snapshot actually takes place within the context of a branch. There is a
default branch (typically called the master), but you can create as
many branches as you would like. When you perform a commit, you
are actually adding your changes to the current branch.
To create a branch in Team Explorer, go to the Branches pane (click on
Branches from the Home view). As shown in Figure 40-7, there is a list
of your local repositories at the bottom of the window, along with a list
of the current branches.

FIGURE 40-7

Right-click on branch that you wish to use as the base for the next
branch and choose the New Local Branch from… option. This reveals a
text box where you can specify the name of the branch (shown at the

Download from finelybook www.finelybook.com

1090

top of Figure 40-7). Provide a name for the new branch and click on
the Create Branch button to create the new branch.
Switching between branches is a quick way to move between two
different branches. In Git parlance, switching branches is performed
using a checkout command. Right-click on the branch you wish to
move to and select Checkout from the context menu. Your project is
then loaded with the files from the new branch.
You see a number of other options available at the top of the Branches
window. This includes the ability to merge and rebase branches. While
getting into the details of what these functions do (they are relatively
sophisticated Git features), be aware that should you need them, the
options are available from within Team Explorer.

Syncing

All of the work done to this point has been within your local Git
repository. At some point, you are likely to want to move your local
commits back to the central repository. This is accomplished through
the Sync option from the Team Explorer Home view.
When it comes to syncing with a remote repository, there are generally
three steps that need to take place. First, you fetch any incoming
commits. These are changes that have been made to the remote
repository since the last time you synced. As part of the fetch process,
you might be asked to merge the changes into your code. This happens
if some of the remote changes impacted the same files that you have
modified. The process of merging is greatly facilitated by the tooling
within Visual Studio. Once the merge has been performed, it’s
incumbent on you to recompile and retest your application with these
new updates in place. Then, finally, you push your changes back to the
remote repository.
In the Team Explorer window, all of these actions take place within the
Sync window, seen in Figure 40-8.

Download from finelybook www.finelybook.com

1091

FIGURE 40-8

In the top portion of the window, a list of the incoming commits is
visible. The Fetch link is available to bring those commits into your
local repository. You would then need to merge them into your branch.
The Pull link performs a pull, which is the equivalent of a fetch
followed by a merge.
Once you are satisfied that any remote changes have been
incorporated into your application, you use the Push link in the
Outgoing Commits section to push your changes back to the remote
repository.

WORK ITEM TRACKING

Team Services enables you to manage activities using work items. As
you see in the following sections, you can search for work items using
work item queries and manage them using Visual Studio, Excel, or
Project. Different types of work items are defined by your process
template. A process template defines the building blocks of work item
tracking in Team Services.

Download from finelybook www.finelybook.com

1092

NOTE

Team Services supports hierarchical work items. As a result, you
can create subtasks and parent tasks. You can also create
predecessor and successor links between work items, which
enables you to manage task dependencies. These work item links
even synchronize with Microsoft Excel and Microsoft Project,
providing even greater flexibility for managing work items.

Work Item Queries

As you can see from the list of queries shown in Figure 40-9, you can
look for different work items using the work item queries from Team
Explorer. The Scrum process template includes a number of different
team queries, grouped into different folders. As you might expect, the
number of queries available out of the box is different for the other
process templates.

Download from finelybook www.finelybook.com

1093

FIGURE 40-9

NOTE

There is a folder of queries called Workbook Queries in the
SharePoint portal, created when a new team project is added to a
local TFS server. These are used to support some of the Excel
workbook reports found in the Documents area.

Most of the time the standard queries are sufficient, but you have the
option to create new ones. If you have sufficient permissions (such as,
if you’re a project administrator) you can add new team queries to
make them available to everyone with access to this project. If you
have permission to modify the process template, you can add new
team queries, so projects created with the edited templates include
them. Changes in the templates don’t apply to team projects already
created. If you don’t have permission to publish a publicly available

Download from finelybook www.finelybook.com

1094

query, you still have the ability to create a personal query that will be
visible to just you.

NOTE

When you create the same queries over and over from one project
to another, you should add those to your process templates. Over
time, there will be less need to create custom queries.

To create a new query, click the New Query link (refer to Figure 40-9).
Alternatively, you can right-click the My Queries node and select New
Query.
Now you can visually design your query. In this case (as shown in
Figure 40-10) you care only about the work items of the selected
project, assigned to the current user and under Iteration 1. You specify
this using the @Me and @Project variables. You can also specify which
columns you want visible in the grid and sorting options by using the
Column Options link just above the query results section. After all the
criteria and columns have been set up, run the new query to see a
sublist of the work items.

FIGURE 40-10

In Team Services, queries can take advantage of the hierarchical work
item structure to show work items that are directly related, enabling
you to see the impact of cutting a feature or the required tasks
necessary to complete a feature. You can also show query results in a

Download from finelybook www.finelybook.com

1095

flat list, a list of work items and their direct links, or a tree of work
items. Each of these is identified by a small icon that appears next to
the query in the Team Explorer. And you can change the layout by
using a drop-down control (refer to Figure 40-10 with the default
value of Flat List). Also, you can create folder structures for your work
item queries, and each query or folder can be secured separately.

NOTE

Although a folder of work item queries can be secured, there is
nothing stopping unauthorized users from duplicating the
queries.

Work Item Types

In the default team project template, you have seven types of work
items: bug, task, user story, epic, feature, issue, and test case. Each
work item has different fields depending on its type. For example, a
bug has test information and a system info field, whereas a task
contains effort information about estimated, remaining, and
completed hours. Other project templates have different, albeit
similar, work item types. All these fields are customizable at either a
template or team-project level.

Adding Work Items

The basic way to add work items is via the Team New Work Item
menu option and selecting the work item type you want to add, or with
the New Work Item link in the Team Explorer (refer to Figure 40-9).
Regardless of how it is created, you get the Work Item entry screen
(Figure 40-11). Through this screen, all the information related to the
work item can be entered or modified. Along with basic description
information, each work item can be related to many other TFS
artifacts through links. Team Services (and TFS 2017) understands
several different types of links, including Parent, Child, Predecessor,
and Successor. To add a link, click the Links tab (the third tab from the
left on the right side of the window), and click the Add Link button.

Download from finelybook www.finelybook.com

1096

FIGURE 40-11

Work Item State

During your normal daily activity, you’ll work on tasks described by
work items assigned to you. Each work item is described by a simple
state machine that determines the allowed next states for any given
state. This state machine is a part of the work item definition and is
determined by the process template. Whenever a new state is selected,
you can provide a reason for the state transition. The reason field
enables you to differentiate between the bugs that are active because
they are new and those that are active because they have reoccurred.

BUILDS

Team Foundation Build, a part of both Team Services and TFS, has the
capability to get the latest version of a solution from source Control,
build the projects as configured, run tests, perform other tasks, and
finally report the results and leave the output in a shared folder. When
you create a repository, a default build is created as well. You can see

Download from finelybook www.finelybook.com

1097

that build, along with the results of previous builds, in the Builds
window (Figure 40-12), available from the Home view of Team
Explorer.

FIGURE 40-12

To create a new build definition, click the New Build Definition link.
This opens a web page in Team Services (Figure 40-13) through which
you can define the new build as required.

Download from finelybook www.finelybook.com

1098

FIGURE 40-13

While it is possible to define a build so that it starts whenever a
commit is performed to the remote repository, you can also start a
build manually. To do so, right-click on the desired build and select
Queue New Build in the context menu. After the build is queued, you
can open it by double-clicking it in the My Builds list. This opens the
Build Report (shown in Figure 40-14).

Download from finelybook www.finelybook.com

1099

FIGURE 40-14

The screen shows the current activity in near real-time, as well as
information on previous build statuses and durations. It also provides
links to a number of other areas and activities related to this build.

WEB PORTAL

The last few features that have been discussed involved defining and
running processes through a web site. That web site is Team Services,
and the specific functionality is available through the Web Portal for
your repository. This portal provides a central location for all of the
artifacts associated with your project. This includes source code, work
items, build definitions, build results, and test information. In other
words, it’s a nice, convenient, one-stop location for all of what you
need to develop your application.

SUMMARY

In this chapter, you saw how Visual Studio and Visual Studio Team
Services can help you get the work done by integrating version control

Download from finelybook www.finelybook.com

1100

using Git, work item tracking and management, build definitions, and
build execution. All of these features can be managed either through
Visual Studio 2017 or through the Team Services web site, making for
a relatively seamless blending of project management functionality.

Download from finelybook www.finelybook.com

1101

Professional Visual Studio® 2017
Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-40458-3

ISBN: 978-1-119-40460-6 (ebk)

ISBN: 978-1-119-40459-0 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111
River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author
make no representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice
and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that
an organization or Web site is referred to in this work as a citation and/or a
potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or
recommendations it may make. Further, readers should be aware that Internet
Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our
Customer Care Department within the United States at (877) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Download from finelybook www.finelybook.com

1102

http://www.wiley.com
http://www.wiley.com/go/permissions

Wiley publishes in a variety of print and electronic formats and by print-on-
demand. Some material included with standard print versions of this book may not
be included in e-books or in print-on-demand. If this book refers to media such as
a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2017953997

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to
Programmer, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Visual Studio is a
registered trademark of Microsoft Corporation. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc., is not associated with
any product or vendor mentioned in this book.

Download from finelybook www.finelybook.com

1103

http://booksupport.wiley.com
http://www.wiley.com

I'd like to thank my four children, Kyle, Cameron, Gillian, and Curtis,
for their love and support. All the kids are teenagers now, so they
were quite happy to leave me alone to write as much as I needed. And
this time around, some of them can drive. As a result, leaving me
alone was even less demanding on them than it has been for past
books. They are my loves and my life would be much less rich without
them.

Download from finelybook www.finelybook.com

1104

ABOUT THE AUTHOR

BRUCE JOHNSON is a partner at ObjectSharp Consulting and a 30-
year veteran of the computer industry. The first third of his career was
spent doing “real work,” otherwise known as coding in the UNIX
world. But for 20 years, he has been working on projects that are at the
leading edge of Windows technology, from rich client applications to
web applications and APIs, with a sprinkling of database and front-
end development thrown in for good measure.
As well as having fun with building systems, Bruce has spoken
hundreds of times at conferences and user groups throughout North
America. He has been a Microsoft Certified Trainer (MCT) and the co-
president of the Metro Toronto .NET User Group. He has also written
columns and articles for numerous magazines. For all of this activity,
Bruce was also a Microsoft MVP for more than ten years. At the
moment, he's already working on the outline for his next book.
Because why not?

ABOUT THE TECHNICAL EDITOR

JOHN MUELLER is a freelance author and technical editor. He has
writing in his blood, having produced 104 books and more than 600
articles to date. The topics range from networking to artificial
intelligence to database management to heads-down programming
and beyond. Some of his current works include a book about machine
learning, a couple of Python books, and a book about MATLAB. He
has also written AWS for Admins for Dummies, which provides
administrators with a great place to start with AWS, and AWS for
Developers for Dummies, the counterpart for developers. His
technical editing skills have helped more than 70 authors refine the
content of their manuscripts. John has always been interested in
development and has written about a wide variety of languages,
including a highly successful C++ book. Be sure to read John's blog at
http://blog.johnmuellerbooks.com. You can reach John on the

Download from finelybook www.finelybook.com

1105

http://blog.johnmuellerbooks.com

Internet at John@JohnMuellerBooks.com.

Download from finelybook www.finelybook.com

1106

mailto:John@JohnMuellerBooks.com

CREDITS

SENIOR ACQUISITIONS EDITOR
Kenyon Brown
PROJECT EDITOR
Kelly Talbot
TECHNICAL EDITOR
John Mueller
PRODUCTION EDITOR
Athiyappan Lalith Kumar
COPY EDITOR
Kelly Talbot Editing Services
MANAGER OF CONTENT DEVELOPMENT AND
ASSEMBLY
Mary Beth Wakefield
PRODUCTION MANAGER
Kathleen Wisor
MARKETING MANAGER
Christie Hilbrich
EXECUTIVE EDITOR
Jim Minatel
PROJECT COORDINATOR, COVER
Brent Savage
PROOFREADER
Nancy Bell
INDEXER
Nancy Guenther
COVER DESIGNER
Wiley
COVER IMAGE
©frantic00/Shutterstock

Download from finelybook www.finelybook.com

1107

ACKNOWLEDGMENTS

TO THE OUTSIDE, it might look like the writing of a book is an
individual effort. It's not. Not even close. There is no way that this
book could have come to fruition without the efforts and assistance of
a number of people. The fact that the book is clear, accurate, and
useful is because of the contributions of my editor, my technical editor,
my copy editor, and the proofreader. And I haven't even gotten to
those who are responsible for the production of the final copies. I'm
incredibly grateful for everyone's help and have enjoyed working with
these very talented people. It's makes the process a lot more enjoyable.
I would especially like to thank everyone at Wrox who has helped me
through this process. In particular, thanks go out to Kelly Talbot. This
is, if I'm not mistaken, the third or fourth book on which I have
worked with Kelly. As always, his attention to detail has prevented a
very large number of mistakes. But, more than that, he is not only
patient, but diligent in ensuring that I meet my deadlines. Thanks also
go to John Mueller, who not only made sure that the technical
mistakes I made in my first draft were cleaned up before publication,
but also provided some great suggestions that helped me clarify my
writing. Finally, thanks to Nancy Bell, who had to slog through what I
wrote and convert it to grammatically correct prose. The efforts of all
of these individuals are what make the book possible and, hopefully, a
success.

Download from finelybook www.finelybook.com

1108

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

Download from finelybook www.finelybook.com

1109

http://www.wiley.com/go/eula

	TITLE PAGE
	INTRODUCTION
	WHO THIS BOOK IS FOR
	WHAT THIS BOOK COVERS
	HOW THIS BOOK IS STRUCTURED
	WHAT YOU NEED TO USE THIS BOOK
	CONVENTIONS
	SOURCE CODE
	ERRATA
	P2P.WROX.COM

	PART I: Integrated Development Environment
	1 A Quick Tour
	GETTING STARTED
	THE VISUAL STUDIO IDE
	SUMMARY

	2 The Solution Explorer, Toolbox, and Properties
	THE SOLUTION EXPLORER
	THE TOOLBOX
	PROPERTIES
	SUMMARY

	3 Options and Customizations
	THE START PAGE
	WINDOW LAYOUT
	THE EDITOR SPACE
	OTHER OPTIONS
	IMPORTING AND EXPORTING SETTINGS
	SUMMARY

	4 The Visual Studio Workspace
	THE CODE EDITOR
	CODE NAVIGATION
	THE COMMAND WINDOW
	THE IMMEDIATE WINDOW
	THE CLASS VIEW
	THE ERROR LIST
	THE OBJECT BROWSER
	SUMMARY

	5 Find and Replace and Help
	QUICK FIND/REPLACE
	FIND/REPLACE IN FILES
	ACCESSING HELP
	SUMMARY

	PART II: Getting Started
	6 Solutions, Projects, and Items
	SOLUTION STRUCTURE
	SOLUTION FILE FORMAT
	SOLUTION PROPERTIES
	PROJECT TYPES
	PROJECT FILES FORMAT
	PROJECT PROPERTIES
	C/C++ CODE ANALYSIS TOOL
	WEB APPLICATION PROJECT PROPERTIES
	WEB SITE PROJECTS
	NUGET PACKAGES
	SUMMARY

	7 IntelliSense and Bookmarks
	INTELLISENSE EXPLAINED
	JAVASCRIPT INTELLISENSE
	XAML INTELLISENSE
	INTELLISENSE OPTIONS
	EXTENDED INTELLISENSE
	BOOKMARKS AND THE BOOKMARK WINDOW
	SUMMARY

	8 Code Snippets and Refactoring
	CODE SNIPPETS REVEALED
	ACCESSING REFACTORING SUPPORT
	REFACTORING ACTIONS
	SUMMARY

	9 Server Explorer
	SERVER CONNECTIONS
	DATA CONNECTIONS
	SHAREPOINT CONNECTIONS
	SUMMARY

	PART III: Digging Deeper
	10 Unit Testing
	YOUR FIRST TEST CASE
	ASSERTING THE FACTS
	INITIALIZING AND CLEANING UP
	TESTING CONTEXT
	LIVE UNIT TESTING
	ADVANCED UNIT TESTING
	INTELLITEST
	SUMMARY

	11 Project and Item Templates
	CREATING TEMPLATES
	EXTENDING TEMPLATES
	STARTER KITS
	ONLINE TEMPLATES
	SUMMARY

	12 Managing Your Source Code
	SOURCE CONTROL
	SUMMARY

	PART IV: Desktop Applications
	13 Windows Forms Applications
	GETTING STARTED
	THE WINDOWS FORM
	FORM DESIGN PREFERENCES
	ADDING AND POSITIONING CONTROLS
	CONTAINER CONTROLS
	DOCKING AND ANCHORING CONTROLS
	SUMMARY

	14 Windows Presentation Foundation (WPF)
	WHAT IS WPF?
	GETTING STARTED WITH WPF
	THE WPF DESIGNER AND XAML EDITOR
	STYLING YOUR APPLICATION
	WINDOWS FORMS INTEROPERABILITY
	DEBUGGING WITH THE WPF VISUALIZER
	SUMMARY

	15 Universal Windows Platform Apps
	WHAT IS A WINDOWS APP?
	CREATING A WINDOWS APP
	WINDOWS RUNTIME COMPONENTS
	.NET NATIVE COMPILATION
	SUMMARY

	PART V: Web Applications
	16 ASP.NET Web Forms
	WEB APPLICATION VERSUS WEB SITE PROJECTS
	CREATING WEB PROJECTS
	DESIGNING WEB FORMS
	WEB CONTROLS
	MASTER PAGES
	RICH CLIENT-SIDE DEVELOPMENT
	SUMMARY

	17 ASP.NET MVC
	MODEL VIEW CONTROLLER
	GETTING STARTED WITH ASP.NET MVC
	CHOOSING A MODEL
	CONTROLLERS AND ACTION METHODS
	RENDERING A UI WITH VIEWS
	ADVANCED MVC
	SUMMARY

	18 .NET Core
	WHAT IS .NET CORE?
	WORKING WITH ASP.NET CORE
	NUGET PACKAGE MANAGER
	BOWER PACKAGE MANAGER
	SUMMARY

	19 Node.js Development
	GETTING STARTED WITH NODE.JS
	NODE PACKAGE MANAGER
	TASK RUNNER EXPLORER
	SUMMARY

	20 Python Development
	GETTING STARTED WITH PYTHON
	COOKIECUTTER EXTENSION
	SUMMARY

	PART VI: Mobile Applications
	21 Mobile Applications Using .NET
	USING XAMARIN
	CREATING A XAMARIN FORMS PROJECT
	DEBUGGING YOUR APPLICATION
	SUMMARY

	22 Mobile Applications Using JavaScript
	WHAT IS APACHE CORDOVA?
	CREATING AN APACHE CORDOVA PROJECT
	DEBUGGING IN APACHE CORDOVA
	SUMMARY

	PART VII: Cloud Services
	23 Windows Azure
	THE WINDOWS AZURE PLATFORM
	SQL AZURE
	SERVICE FABRIC
	AZURE MOBILE APP
	AZURE VIRTUAL MACHINES
	SUMMARY

	24 Synchronization Services
	OCCASIONALLY CONNECTED APPLICATIONS
	SERVER DIRECT
	GETTING STARTED WITH SYNCHRONIZATION SERVICES
	SYNCHRONIZATION SERVICES OVER N-TIERS
	SUMMARY

	25 SharePoint
	SHAREPOINT EXECUTION MODELS
	PREPARING THE DEVELOPMENT ENVIRONMENT
	CREATING A SHAREPOINT PROJECT
	RUNNING YOUR APPLICATION
	SUMMARY

	PART VIII: Data
	26 Visual Database Tools
	DATABASE WINDOWS IN VISUAL STUDIO 2017
	EDITING DATA
	REDGATE DATA TOOLS
	SUMMARY

	27 The ADO.NET Entity Framework
	WHAT IS THE ENTITY FRAMEWORK?
	GETTING STARTED
	CREATING AN ENTITY MODEL
	QUERYING THE ENTITY MODEL
	ADVANCED FUNCTIONALITY
	SUMMARY

	28 Data Warehouses and Lakes
	WHAT IS APACHE HADOOP?
	DATA LAKE TOOLS FOR VISUAL STUDIO
	SUMMARY

	29 Data Science and Analytics
	WHAT IS R?
	R TOOLS FOR VISUAL STUDIO
	SUMMARY

	PART IX: Debugging
	30 Using the Debugging Windows
	THE CODE WINDOW
	THE BREAKPOINTS WINDOW
	THE OUTPUT WINDOW
	THE IMMEDIATE WINDOW
	THE WATCH WINDOWS
	THE CODE EXECUTION WINDOWS
	THE MEMORY WINDOWS
	THE PARALLEL DEBUGGING WINDOWS
	EXCEPTIONS
	SUMMARY

	31 Debugging with Breakpoints
	BREAKPOINTS
	TRACEPOINTS
	EXECUTION CONTROL
	EDIT AND CONTINUE
	SUMMARY

	PART X: Build And Deployment
	32 Upgrading with Visual Studio 2017
	UPGRADING FROM RECENT VISUAL STUDIO VERSIONS
	UPGRADING TO .NET FRAMEWORK 4.6.2
	SUMMARY

	33 Build Customization
	GENERAL BUILD OPTIONS
	MANUAL DEPENDENCIES
	THE VISUAL BASIC COMPILE PAGE
	C# BUILD PAGES
	MSBUILD
	SUMMARY

	34 Obfuscation, Application Monitoring, and Management
	THE IL DISASSEMBLER
	DECOMPILERS
	OBFUSCATING YOUR CODE
	APPLICATION MONITORING AND MANAGEMENT
	SUMMARY

	35 Packaging and Deployment
	WINDOWS INSTALLER XML TOOLSET
	CLICKONCE
	SUMMARY

	36 Web Application Deployment
	WEB DEPLOYMENT
	WEB PROJECT INSTALLERS
	THE WEB PLATFORM INSTALLER
	SUMMARY

	37 Continuous Delivery
	NOMENCLATURE
	CONTINUOUS DELIVERY TOOLS
	SUMMARY

	PART XI: Visual Studio Editions
	38 Visual Studio Enterprise: Code Quality
	DEPENDENCY VERIFICATION
	EXPLORING CODE WITH CODE MAPS
	CODE CLONING
	SUMMARY

	39 Visual Studio Enterprise: Testing and Debugging
	AUTOMATED TESTS
	INTELLITRACE
	INTELLITEST
	SUMMARY

	40 Visual Studio Team Services
	GETTING STARTED WITH GIT
	VERSION CONTROL
	WORK ITEM TRACKING
	BUILDS
	WEB PORTAL
	SUMMARY

	END USER LICENSE AGREEMENT

