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Preface

In the year 2000 the first edition of Radar Systems Analysis and Design Using MAT. LAB®!
was published. It was developed and organized based on my years of teaching graduate level
courses on radar systems analysis and design including advanced topics in radar signal pro-
cessing. At the time, the primary motivation behind the book was to introduce a college-suit-
able comprehensive textbook that provides hands-on experience with MATLAB companion
software. This book very quickly turned into a bestseller, which prompted the publication of its
second edition in the year 2005. The second edition continued in the same vein as its predeces-
sor. It was updated, expanded, and reorganized to include advances in the field and to be more
logical in sequence. New topics were introduced in the body of the text, and much of the MAT-
LAB code was updated and improved upon to reflect the advancements of the latest MATLAB
release.

Since the publication of the first edition, Radar Systems Analysis and Design Using MAT-
LAB filled a void in the market by presenting a comprehensive and self-contained text on radar
systems analysis and design. It was the first book on the market to provide companion MAT-
LAB software to support the theoretical and mathematical discussion found within the pages
of the text. These features were also supported with a detailed solutions manual of all end-of-
chapter problems. This book quickly became the standard adopted by many books published
on the subject; none of which, however, matched the clear presentation nor the transparency
offered by this author, particularly when considering the end-of-chapter solutions manual and
the complete and comprehensive set of MATLAB code, which was made available to all of the
book audience without any restrictions. Users of this book were not only able to reproduce all
plots found in the text, but they also had the ability to change the code by inputting their own
parameters so that they could generate their own specific plots and outputs that met their own
unique academic interest.

In addition to my academic tenure and experience in teaching the subject at the collegiate
level, I have also taught numerous industry courses and conducted many seminars on the sub-
ject of radar systems. Based on this teaching experience, the following conclusion has become
very evident to me: The need and the demand for a comprehensive textbook / reference book
focused on all aspects of radar systems design and analysis remain very strong. Add to this the

1. All MATLAB® functions and programs provided in this book were developed using MATLAB R2011a version
7.12.0.635 with the Signal Processing Toolbox, on a PC with Windows XP Professional operating system. MAT-
LAB® is a registered trademark of the The MathWorks, Inc. For product information, please contact: The Math-
Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA. Web: www.mathworks.com.
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fact that many college professors have adopted this book as the primary textbook for their
courses on radar systems. Therefore, my desire to write this third edition was turned into real-
ity and has materialized into this product.

It is my view that the third edition of Radar Systems Analysis and Design Using MATLAB is
warranted for the following reasons: (1) bring the text to a more modern status to reflect the
current state of the art; (2) incorporate into the new edition much of the feedback this author
has received from professors using this book as a text and from other practicing engineers; (3)
introduce several new topics that have not found much treatment by other authors, and even
when they did, it was not on a level comparable to the comprehensive and exhaustive approach
adopted by this author in the first two editions; (4) add many new end-of chapter problems; (5)
restructure the presentation to be more convenient for users to adopt the text for either three
graduate-level courses, or one senior-level and two graduate-level courses; and (6) take advan-
tage of the new features offered by the latest MATLAB releases.

Note that all MATLAB code provided in this book was designed as an academic standalone
tool and is not adequate for other purposes. The code was written in a way to assist the reader
in gaining better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open loop or a closed loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web-page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

Just like the first and second editions, this third edition provides easy-to-follow mathemati-
cal derivations of all equations and formulas present within the book, resulting in a user
friendly coverage suitable for advanced as well as introductory level college courses. This
third edition provides comprehensive up-to-date coverage of radar systems design and analysis
issues. Users of this book will need only one book instead of several, to gain essential under-
standing of radar design, analysis, and signal processing. This edition contains numerous
graphical plots and supporting artwork. The MATLAB code companion of this edition will
help users evaluate the trade-offs between different radar parameters.

This book is composed of 18 chapters and is divided into 5 parts: Part I, Radar Principles,
Part II, Radar Signals and Signal Processing, Part III, Special Radar Considerations, Part IV,
Radar Detection, and Part V, Radar Special Topics. Part I comprises Chapters 1 and 2. Chapter
1, Definitions and Nomenclature, presents the basic radar definitions and establishes much of
the nomenclature used throughout the text. In Chapter 2, Basic Pulsed and Continuous Wave
(CW) Radar Operations, the radar equation is derived for both pulsed and CW radars, while
other related material such as radar losses and noise are also discussed in details. The radar
equation in the presence of electronic counter measures (ECM) is derived, as well as the
bistatic radar equation.

Part IT comprises Chapters 3 through 7. The main thrust of this part of the book is radar sig-
nals or waveforms and radar signal processing. Chapter 3, Linear Systems and Complex Signal
Representation, contains a top-level discussion of elements of signal theory that are relevant to
radar design and radar signal processing. It is assumed that the reader has sufficient and ade-
quate background in signals and systems as well as in the Fourier transform and its associated
properties. Lowpass and bandpass signals are discussed in the context of radar applications.
Continuous as well as discrete systems are analyzed, and the sampling theorem is presented.

Chapter 4, The Matched Filter Radar Receiver, is focused on the matched filter. It presents
the unique characteristic of the matched filter and develops a general formula for the output of
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the matched filter that is valid for any waveform. Chapter 5, Ambiguity Function - Analog
Waveforms, and Chapter 6, Ambiguity Function - Discrete Coded Waveforms, analyze the out-
put of the matched filter in the context of the ambiguity function. In Chapter 5 the most com-
mon analog radar waveforms are analyzed; this includes the single unmodulated pulse, Linear
Frequency Modulation (LFM) pulse, unmodulated pulse train, LFM pulse train, stepped fre-
quency waveforms, and nonlinear FM waveforms. Chapter 6 is concerned with discrete coded
waveforms. In this chapter, unmodulated pulse-train codes are analyzed as well as binary
codes, polyphase codes, and frequency codes. Chapter 7, Pulse Compression, contains details
of radar signal processing using pulse compression. The correlation processor and stretch pro-
cessor are presented. High range resolution processing using stepped frequency waveforms is
also analyzed.

Part III comprises three chapters. Chapter 8, Radar Wave propagation, extends the free
space analysis presented in the earlier chapters to include the effect of the atmosphere on radar
performance. Topics such as refraction, diffraction, atmospheric attenuation, surface reflection,
and multipath are discussed in a fair amount of detail. The subject of radar clutter is in Chapter
9, Radar Clutter. Area clutter as well as volume clutter are defined and the radar equation is re-
derived to reflect the importance of clutter, where in this case, the signal to interference ratio
becomes more critical than the signal to noise ratio. A step-by-step mathematical derivation of
clutter RCS is presented, and the statistical models for the clutter backscatter coefficient is also
presented. Chapter 10, Moving Target Indicator (MTI) and Pulse Doppler Radars, discusses
how delay line cancelers can be used to mitigate the impact of clutter within the radar signal
processor. PRF staggering is analyzed in the context of blind speeds and in the context of
resolving range and Doppler ambiguities. Finally, pulsed Doppler radars are briefly analyzed.

In Part IV, radar detection is discussed and analyzed. The material presented in this part of
the book requires a strong background in random variables and random processes. Therefore,
Chapter 11, Random Variables and Random Processes, presents a review of the subject, and is
written in such a way that it only highlights the major points of the subject. Users of this book
are advised to use this chapter as a means for a quick top-level review of random variables and
random processes. Instructors using this book as a text may assign Chapter 11 as a reading
assignment to their students. Single pulse detection with known and unknown signal parame-
ters is in Chapter 12, Single Pulse Detection. Chapter 13, Detection of Fluctuating Targets,
extends the analysis of Chapter 12 to include target fluctuation where the Swerling target mod-
els are discussed. Detailed discussion of coherent and noncoherent integration in the context of
a square law detector is in this chapter. An overview of CFAR, cumulative probability of detec-
tion, and M-out-of-N detection are also discussed.

Part V of this book addresses a few specialized topics in radar systems. In Chapter 14, Radar
Cross Section (RCS), the RCS dependency on aspect angle, frequency, and polarization are dis-
cussed. A target scattering matrix is developed. RCS formulas for many simple objects are pre-
sented. Complex object RCS is discussed, and RCS prediction methods are introduced.
Chapter 15, Phased Array Antennas, starts by developing the general array formulation. Linear
arrays and several planar array configurations such as rectangular, circular, rectangular with
circular boundaries, and concentric circular arrays are discussed. Beam steering with and with-
out using a finite number of bits is analyzed. Scan loss is also presented. A concept of a multi-
ple input multiple output radar system developed by this author is discussed and analyzed. In
Chapter 16, Adaptive Signal Processing, the concept behind conventual and adaptive beam-
forming is discussed. Adaptive signal processing using the least mean square algorithm is ana-
lyzed. Adaptive linear arrays and complex weights computation in the context of the least
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mean square algorithm are presented. Finally, this chapter discusses, space time adaptive pro-
cessing.

Chapter 17, Target Tracking, discusses target tracking radar systems. The first part of this
chapter covers the subject of single target tracking. Topics such as sequential lobing, conical
scan, monopulse, and range tracking are discussed in detail. The second part of this chapter

introduces multiple target tracking techniques. Fixed gain tracking filters such as the a3 and

the afy filters are presented in detail. The concept of the Kalman filter is introduced. Special
cases of the Kalman filter are analyzed in depth and a MATLAB-based simulation of the
Kalamn filter is developed. The last chapter of this book is Chapter 18, Tactical Synthetic
Aperture Radars. The topics of this chapter include: SAR signal processing, SAR design con-
siderations, and the SAR radar equation. Arrays operated in sequential mode are discussed in
this chapter.

This book is written primarily as a graduate-level textbook, although parts of it can be used
as a senior level course on radar systems. A companion solutions manual has been developed
for use by professors that adopt this book as a text. This solutions manual is available through
the publisher. Based on my own teaching experience, the following breakdown can be utilized
by professors using this book as a text:

1. Option I: Chapters 1-4 (with omission of certain advanced sections) can be used as a
senior-level course. Chapters 5-10 and the omitted sections in the previous course can be
used as a first graduate level course. Finally, Chapters 11-18 can be used as a second
advanced graduate-level course.

2. Option II: Chapters 1-4 can be used as an introductory graduate-level course. Chapters 5 10
can be used as a second graduate-level course, while Chapters 11-18 can be used as an
advanced graduate course on the subject.

Bassem R. Mahafza
Huntsville, Alabama
United States of America
November, 2012
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Part I - Radar Principles

Chapter 1

Definitions and
Nomenclature

This chapter presents some basic radar definitions and establishes much of the nomencla-
ture used throughout this text. The word radar is an abbreviation for radio detection and rang-
ing. In most cases, radar systems use modulated waveforms and directive antennas to transmit
electromagnetic energy into a specific volume in space to search for targets. Objects (targets)
within a search volume will reflect portions of the incident energy (radar returns or echoes) in
the direction of the radar. These echoes are then processed by the radar receiver to extract tar-
get information such as range, velocity, angular position, and other target identifying charac-
teristics.

1.1. Radar Systems Classifications and Bands

Radars can be classified as ground-based, airborne, spaceborne, or ship-based radar systems.
They can also be classified into numerous categories based on the specific radar characteris-
tics, such as the frequency band, antenna type, and waveforms utilized. Radar systems using
continuous waveforms, modulated or otherwise, are classified as Continuous Wave (CW)
radars. Alternatively, radar systems using time-limited pulsed waveforms are classified as
Pulsed Radars. Another radar systems classification is concerned with the mission and/or the
functionality of the specific radar. This includes: weather, acquisition and search, tracking,
track-while-scan, fire control, early warning, over-the-horizon, terrain following, and terrain
avoidance radars. Phased array radars utilize phased array antennas, and are often called multi-
function (multimode) radars. A phased array is a composite antenna formed from two or more
basic radiators. Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically. Electronic steering is achieved by controlling the phase of the
electric current feeding the array elements, and thus the name phased arrays is adopted.

Historically, radars were first developed as military tools. It is for this primary reason the
most common radar systems classification is the letter or band designation originally used by
the military during and after World War II. This letter or band designation has also been
adopted as an IEEE (Institute of Electrical and Electronics Engineers) standard. In recent
years, NATO (North Atlantic Treaty Organization) has adopted a new band designation with
easier abecedarian letters. Figure 1.1 shows the spectrum associated with these two letter or
band radar classifications, while Table 1.1 presents the same information in a structured for-
mat.



Radar Systems Analysis and Design Using MAT. LAB®

f[GHz] 0.2.25 0.5 .0 234 6810 20 40 60 110
m §$ | C XK K|V | W
A

| IEII L L
e
7.3

/1[1:111] 150 60 15 3 15 075 05 0.3

Mainly mllltary
radars

Figure 1.1. Radar systems band or letter classification.

Table 1.1. Radar systems band or letter classification.

Frequency range in Frequency range in GHz
Letter GHz (IEEE (NATO or New band
designation Standard) designation)
HF 0.003 - 0.03 A
VHF 0.03-0.3 A<0.25; B>0.25
UHF 0.3-1.0 B<0.5; C>0.5
L-band 1.0-2.0 D
S-band 2.0-4.0 E<3.0; F>3.0
C-band 4.0-8.0 G<6.0; H>6.0
X-band 8.0-12.5 1<10.0; J7>10.0
Ku-band 12.5-18.0 J
K-band 18.0-26.5 J<20.0; K>20.0
Ka-band 26.5-40.0 K
V& Wor Normally >34.0 L<60.0; M>60.0
Millimeter
Wave (MMW)

High Frequency (HF) and Very High Frequency (VHF) Radars (A- and B-Bands):
These radar bands below 300M/Hz represent the frontier of radio technology at the time during
the World War II. However, in the modern radar era, these frequencies bands are used for early
warning radars. These radars utilize the electromagnetic waves’ reflection off the ionosphere to
detect targets beyond the horizon, and so they are called Over-the-Horizon Radars (OTHR).
Some examples include the United States (U.S.) Navy Relocatable over-the-horizon Radar
(ROTHR) shown in Fig. 1.2, and the Russian Woodpecker radar shown in Fig. 1.3. By using
these low HF and VHF frequency bands, one can use high-power transmitters. At these fre-
quencies, the electromagnetic wave atmospheric attenuation is small and can be overcome by
using high-power transmitters. Radar angular measurement accuracies are limited in these
bands because lower frequencies require antennas with significant physical size, thus limiting
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the radar’s angle accuracy and angle resolution. Other communication and broadcasting ser-
vices typically use these frequency bands. Therefore, the available bandwidth for military
radar systems is limited and highly contested throughout the world. Low-frequency systems
can be used for Foliage Penetration (FoPen) applications, as well as in Ground Penetrating
(GPen) applications.

U.S. Navy ROTHR
2.6-km Receiving Array

Figure 1.2. U. S. Navy over-the-horizon Radar. Photograph obtained
via the Internet (hup.//www.fas.org/nuke/guide/usa/airdef/an-tps-71.htm).

Figure 1.3. Russian Woodpecker OTHR radar. Photograph obtained via the
Internet (http./passingstrangeness.wordpress.com/2010/04/23/the-russian-woodpecker/).
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Ultra High Frequency (UHF) Radars (C-Band): UHF bands are used for very long range
Early Warning Radars (EWR). Some examples include the Ballistic Missile Early Warning
System (BMEWS) search-and-track monopulse radar that operates at 245MHz (see Fig. 1.4),
the Perimeter and Acquisition Radar (PAR), which is a very long range multifunction phased
array radar; and the early warning PAVE PAWS multifunction UHF phased array radar. This
frequency band is also used for the detection and tracking of satellites and ballistic missiles
over a long range. In recent years, ultra wideband (UWB) radar applications use all frequencies
in the A- to C-Bands. UWB radars can be used in GPen applications as well as in see-through-
the-wall applications.

Figure 1.4. Fylingdales BMEWS, United Kingdom. Photograph obtained
via the Internet (hup.//en.wikipedia.org/wiki/File:Radar RAF Fylingdales.jpg).

L-Band Radars (D-Band): Radars in the L-band are primarily ground-based and ship-
based systems that are used in long range military and air traffic control search operations for
up to 250 (~500Km) nautical miles. Therefore, due to earth curvature their maximum achiev-
able range is limited when detecting low-altitude targets which can disappear very quickly
below the horizon. The Air Traffic Management (ATM) long-range surveillance radars like the
Air Route Surveillance Radar (ARSR), work in this frequency band. These radar systems are
relatively large and demand sizable footprints. Historically, the designator L-Band was
adopted since the “L” represent with large antenna or long range radars.

S-Band Radars (E- and F-Bands): Most ground- and ship-based medium range radars
operate in the S-band. For example, the Airport Surveillance Radar (ASR) used for air traffic
control, and the ship-based U.S. Navy AEGIS (Fig. 1.5) multifunction phased array are S-band
radars, and the Airborne Warning and Control System (AWACS) shown in Fig. 1.6. The atmo-
spheric attenuation in this band is higher than in the D-Band, and they are also more suscepti-
ble to weather conditions. Radar in this band usually need considerably high transmitting
power as compared to the lower-frequency radars in order to achieve maximum detection
range. Even with the considerable weather susceptibility, the National Weather Service Next
Generation Doppler Weather Radar (NEXRAD) uses an S-band radar, because it can see
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beyond a severe storm. Special Airport Surveillance Radars (ASR) used at some civilian air-
ports are also in this band where they can detect aircrafts for up to 60 nautical miles. The des-
ignator S-Band (contrary to L-Band) was adopted since the “S” represents the smaller antennas
or shorter range radars.

Figure 1.5. U. S. Navy AEGIS. Photograph obtained via the Internet (hup./mostlymis-
siledefense.com/2012/08/03/ballistic-missile-defense-the-aegis-spy-1-radar-august-3-2012/).

Figure 1.6. U. S. Air Force AWACS. Photograph obtained via the Internet (p./
www.globalsecurity.org/military/systems/aircrafi/e-3-pics.htm).
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C-Band Radar (G-Band): Many of the mobile military battlefield surveillance, missile-
control and ground surveillance radar systems operate in this band. Most weather radar sys-
tems are also C-band radars. Medium range search and fire control military radars and metric
instrumentation radars are C-band systems. In this band, the size of the antenna allows for
achieving excellent angular accuracies and resolution. Performance of systems operating in
this band suffer severely from bad weather conditions and to counter that, they often employ
antenna feeds with circular polarization.

X- and Ku-Band Radars (I- and J-Bands): In the X-band frequency range (8 to 12GHz)
the relationship between the wave length and size of the antenna is considerably better than in
lower-frequency bands. Radar systems that require fine target detection capabilities and yet
cannot tolerate the atmospheric attenuation of higher-frequency bands are typically X-Band.
The X- and Ku-bands are relatively popular radar frequency bands for military applications
like airborne radars, since the small antenna size provides good performance. Missile guidance
systems use the Ku-Band (I- and J-Bands) because of the convenient antenna size where
weight is a limiting requirement. Space borne or airborne imaging radars used in Synthetic
Aperture Radar (SAR) for military electronic intelligence and civil geographic mapping typi-
cally use these frequency bands. Finally, these frequency bands are also widely used in mari-
time civil and military navigation radars.

K- and Ka- Band Radars (J- and K-Bands): These high-frequency bands suffer severe
weather and atmospheric attenuation. Therefore, radars utilizing these frequency bands are
limited to short range applications, such as police traffic radars, short range terrain avoidance,
and terrain following radars. Alternatively, the achievable angular accuracies and range resolu-
tion are superior to other bands. In ATM applications these radars are often called Surface
Movement Radar (SMR) or Airport Surface Detection Equipment (ASDE) radars.

Millimeter Wave (MMW) Radars (V- and W-Bands): Radars operating in this frequency
band also suffer from severe high atmospheric attenuation. Radar applications are limited to
very short range of up to a tens of meters. In the W-Band maximum attenuation occurs at about
75GHz and at about 96GHz. Both of these frequencies are used in practice primarily in auto-
motive industry where very small radars (~ 75-76GHz) are used for parking assistants, blind
spot and brake assists. Some radar systems operating at 96 to 98GHz are used as laboratory
experimental or prototype systems.

1.2. Pulsed and Continuous Wave (CW) Radars

When the type of waveform is used as a classifier of radar systems, there are two types of
radars; pulsed and Continuous Wave (CW) radar systems. Continuous wave radars are those
that continuously emit electromagnetic energy, and use separate transmit and receive antennas.
Unmodulated CW radars can accurately measure target radial velocity (Doppler shift) and
angular position. Continuous wave waveforms can be viewed as pure sinewaves of the form
cos2mf,t. Spectra of the radar echo from stationary targets and clutter will be concentrated
around f,. The center frequency for the echoes of a moving target will be shifted by £, the
Doppler frequency. Thus, by measuring this frequency difference, CW radars can very accu-
rately extract target radial velocity. Because of the continuous nature of CW emission, range
measurement is not possible without some modifications to the radar operations and wave-
forms. Simply put, target range information cannot be extracted without utilizing some form of
modulation. The primary use of CW radars is in target velocity search and track, and in missile
guidance operations.
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Pulsed radars use a train of pulsed waveforms (mainly with modulation). In this category,
radar systems can be classified on the basis of the Pulse Repetition Frequency (PRF), as low
PRF, medium PRF, and high PRF radars. Low PRF radars are primarily used for ranging where
target velocity (Doppler shift) is not of interest. High PRF radars are mainly used to measure
target velocity. Continuous wave as well as pulsed radars can measure both target range and
radial velocity by utilizing different modulation schemes. The design, operation, and analysis
of CW and pulsed radar systems are found in subsequent chapters of this book.

1.3. Range

Figure 1.7 shows a simplified pulsed radar block diagram. The time control box generates
the synchronization timing signals required throughout the system. A modulated signal is gen-
erated and sent to the antenna by the modulator/transmitter block. Switching the antenna
between the transmitting and receiving modes is controlled by the duplexer. The duplexer
allows one antenna to be used to both transmit and receive. During transmission it directs the
radar electromagnetic energy toward the antenna. Alternatively, on reception, it directs the
received radar echoes to the receiver. The receiver amplifies the radar returns and prepares
them for signal processing. Extraction of target information is performed by the signal proces-
sor block. The target’s range, R, is computed by measuring the time delay, A¢; it takes a pulse
to travel the two-way path between the radar and the target. Since electromagnetic waves travel
at the speed of light, ¢ = 3 x 10°m /s , then

R = (cAt)/2 Eq. (1.1)

where R is in meters and A¢ is in seconds. The factor of 1/2 is used to account for the two-
way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illustrated by Fig. 1.8.
The Inter Pulse Period (IPP) is 7, and the pulse width is . The IPP is often referred to as the
Pulse Repetition Interval (PRI). The inverse of the PRI is the PRF, which is denoted by f,.,

f.=1/PRI = 1/T. Eq. (1.2)

During each PRI the radar radiates energy only for Tt seconds and listens for target returns for
the rest of the PRI. The radar transmitting duty cycle (factor) d, is defined as the ratio
d, = t/T. The radar average transmitted power is

=54

Transmitter/ wplexer )
Modulator

Signal Y

T T .
processo Receiver
A

Figure 1.7. A simplified pulsed radar block diagram.

Time
Control
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transmitted pulses F—’J
IPP
pulse 1|1:| |_| pulse 2 |_| pulse 3 |_| time
-

At [pulse 1 |_| pulse 2 |_| pulse 3 )
received pulses T| echo echo echo >tlme

Figure 1.8. Train of transmitted and received pulses.

P, = P,xd, Eq. (1.3)
where P, denotes the radar peak transmitted power. The pulse energy is
E,=Pr =P, T=P,/F. Eq. (1.4)

The range corresponding to the two-way time delay 7' is known as the radar unambiguous
range, R, . Consider the case shown in Fig. 1.9. Echo 1 represents the radar return from a target
atrange R, = cAt/2 due to pulse 1. Echo 2 could be interpreted as the return from the same
target due to pulse 2, or it may be the return from a faraway target at range R, due to pulse 1
again. In this case,

R, = cAl or R, = c—(T;At).

2
Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is transmitted the
radar must wait a sufficient length of time so that returns from targets at maximum range are
back before the next pulse is emitted. It follows that the maximum unambiguous range must
correspond to half of the PRI,

Eq. (1.5)

R, = (¢T)/2 = ¢/(2f.). Eq. (1.6)
t=20 _
| t=1/f,
iy PRI =
transmitted pulses |’t | pulse 1 pulse 2 time or range
At |—| |—| )
echol echo2 time or range
received pulses
R = cAt‘
1 — [ —
2 At
- Ru >
- R2 >
Figure 1.9. Illustrating range ambiguity.
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Example:

A certain airborne pulsed radar has peak power P, = 10KW, and uses two PREFs,
f.1 = 10KHz and f,, = 30KHz. What are the required pulse widths for each PRF so that the
average transmitted power is constant and is equal to 1500watts ? Compute the pulse energy
in each case.

Solution:

Since P, is constant, then both PRFs have the same duty cycle. More precisely,

d, = 20— 5.
10 x 10
The pulse repetition intervals are
T ! 0.1
= ; = 0.1ms
10x 10
T, = — b = 0.0333ms
30 x 10

1t follows that
T, = 015x T, = 15us

T, = 0.15xT, = 5us

E, = Pt = 10x10°x 15x 10 ° = 0.15Joules

E

o= Py, = 10x10° x5 x 10°° = 0.05Joules.

MATLAB Function “pulse_train.m”

The MATLAB function “pulse train.m” computes the duty cycle, average transmitted
power, pulse energy, and the pulse repetition frequency; its syntax is as follows:

[dt, pav, ep, prf, ru] = pulse_train(tau, pri, p_peak)

where

Symbol Description Units Status

tau pulse width seconds input

pri PRI seconds input

p_peak peak power watts input

dt duty cycle none output

pav average transmitted power watts output

ep pulse energy Joules output

prf PRF Hz output

ru unambiguous range Km output
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1.4. Range Resolution

Range resolution, denoted as AR, is a radar metric that describes its ability to detect targets
in close proximity to each other as distinct objects. Radar systems are normally designed to
operate between a minimum range R and maximum range R The distance between

min max *

R, . and R, isdivided into M range bins (gates), each of width AR,

min max

M = —max___min Eq. (1.7

AR q. (1.7)

Targets separated by at least AR will be completely resolved in range, as illustrated in Fig.

1.10. Targets within the same range bin can be resolved in cross range (azimuth) utilizing sig-
nal processing techniques.

Consider two targets located at ranges R, and R,, corresponding to time delays #, and ¢,,
respectively. Denote the difference between those two ranges as AR :

tHh—1t
AR = R,—R, = c(le) = c%t. Eq. (1.8)
A | | | | ClL;stcr|2 | | IAR
Cross range Iﬁ | | : | | ‘V’| | |
|| S
. | : Cq;j |1
| I Cluster 1 | q" | | |
Ly 11 (alal
| | | | | | |

R . Cluster 3
-1 g
- Rm ax -

Figure 1.10. Resolving targets in range and cross range.

Now, try to answer the following question: What is the minimum time, 3¢, such that target 1
at R, and target 2 at R, will appear completely resolved in range (different range bins)? In
other words, what is the minimum AR ?

First, assume that the two targets are separated by c¢t/4, t is the pulse width. In this case,
when the pulse trailing edge strikes target 2, the leading edge would have traveled backward a
distance ct, and the returned pulse would be composed of returns from both targets (i.e., unre-
solved return), as shown in Fig. 1.11a. However, if the two targets are at least ¢t/2 apart, then
as the pulse trailing edge strikes the first target, the leading edge will start to return from target
2, and two distinct returned pulses will be produced, as illustrated by Fig. 1.11b. Thus, AR
should be greater or equal to ¢t/2 . And since the radar bandwidth B is equal to 1/t , then

a
[

AR = & = £ Eq. (1.9
> 2B g- (1.9)
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A
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incident pulse T

reflected pulse

A
\i

(b)

reflected pulses return return
tgtl tgt2
cT cT
g > tgtl  tgt2

Figure 1.11. (a) Two unresolved targets. (b) Two resolved targets.

In general, radar users and designers alike seek to minimize AR in order to enhance the
radar performance. As suggested by Eq. (1.9), in order to achieve fine range resolution one
must minimize the pulse width. However, this will reduce the average transmitted power and
increase the operating bandwidth. Achieving fine range resolution while maintaining adequate
average transmitted power can be accomplished by using pulse compression techniques.

Example:

A radar system has an unambiguous range of 100Km, and a bandwidth 0.5MHz. Compute the

required PRF, PRI, AR, and t.

Solution:
3% 10°
pRE = < =310 _ 150082
2R, 2x10
PRI = —— = L~ 0.6667ms
PREF 1500

Using the function “range_resolution” yields

8
AR:—C-:LOGZWOm
2B 2405x10
_2AR _ 2x300
T=="= === =2
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MATLAB Function “range_resolution.m”

The MATLAB function “range resolution.m” calculates range resolution; its syntax is as
follows:

[delta_R] = range_resolution(var, indicator)

where
Symbol Description Units Status
var bandwidth Hz input
OR OR
pulsewidth seconds
delta R range resolution meters output

1.5. Doppler Frequency

Radars use Doppler frequency to extract target radial velocity (range rate), as well as to dis-
tinguish between moving and stationary targets or objects such as clutter. The Doppler phe-
nomenon describes the shift in the center frequency of an incident waveform due to the target
motion with respect to the source of radiation. Depending on the direction of the target’s
motion, this frequency shift may be positive or negative. A waveform incident on a target has
equiphase wavefronts separated by A, the wavelength. A closing target will cause the reflected
equiphase wavefronts to compress and become closer to each other, resulting in a shorter
wavelength of the reflected waveform. Alternatively, an opening or receding target (moving
away from the radar) will cause the reflected equiphase wavefronts to expand, resulting in a
longer wavelength of the reflected waveform. This is illustrated in Fig. 1.12.

A Lr o
/ closing target

7\, /}\/' Vs
/\/ opening target

‘é- A <A I\ I\

radar \ \

——» incident N
reflected - — — -—

Figure 1.12. Effect of target motion on the reflected equiphase waveforms.
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Consider a pulse of width t (seconds) incident on a target that is moving toward the radar at
velocity v, as shown in Fig. 1.13. Define d as the distance (in meters) that the target moves
into the pulse during the interval Af,

d = vAt Eq. (1.10)

where At¢ is equal to the time between the pulse leading edge striking the target and the trailing
edge striking the target. Since the pulse is moving at the speed of light and the trailing edge has
moved distance ¢t —d, then

ctT = cAt+vAt Eq. (1.11)
ct' = cAt—vVvAt. Eq. (1.12)
Dividing Eq. (1.12) by Eq. (1.11) yields

et _ cAt—vAt Eq. (1.13)
cT cAt+ vAt

which, after canceling the terms ¢ and Af¢ from the left and right side of Eq. (1.13), respec-
tively, one establishes the relationship between the incident and reflected pulses widths as

T = ——1. Eq. (1.14)

In practice, the factor (¢ —v)/(c +v) is often referred to as the time dilation factor. Notice

that if v = 0, then " = 1. In a similar fashion, one can compute t’ for an opening target. In
this case,
vtc
T = —1. Eq. (1.15)
c—v

To derive an expression for Doppler frequency, consider the illustration shown in Fig. 1.14.
It takes At seconds for the leading edge of pulse 2 to travel a distance (c¢/f,)—d to strike the
target. Over the same time interval, the leading edge of pulse 1 travels the same distance cAt.
More precisely,

d = vAt Eq. (1.16)
B leadin,
trailing incident pulse edge ¢
edge v q
attime ¢ = ¢ - L=ct >
> : s = cAt ;: g >
| l !
: : s = cAt I !
|
| d =1vAt

L' = ct —>

attime t = t,+ At < >

-~ reflected pulse —
leading trailing
edge edge

Figure 1.13. Illustrating the impact of target velocity on a single pulse.
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et | c/f, .
-
incident pulse 2 pulse 1 =39
TE LE TE LE
ct' cT
- - - D ERA—
pulse 1 has already come back
pulse 2 starts to strike the target pulse 1 pulse 2 =3
LE TE TE LE
s—d = c/f, et 2d
reflected pulse 1 pulse 2 |59
- f— -
LE TE LE TE
LE: Pulse leading edge.
TE: Pulse trailing edge.
Figure 1.14. Illustration of target motion effects on the radar pulses.
c _
S-d=cAt Eq. (1.17)
/e
Solving for At yields
c/
At = Jr Eq. (1.18)
ctv
cv/
d= f’. Eq. (1.19)
ctv
The reflected pulse spacing is now s — d and the new PRF is f,’, where
cv/f,
s—d =< = car— Eq. (1.20)
& crv
It follows that the new PRF is related to the original PRF by
, _ctvy
f== 5 Eq. (1.21)

However, since the number of cycles does not change, the frequency of the reflected signal
will go up by the same factor. Denoting the new frequency by f,’, it follows that

fo' =

ctv
p—_—_

Eq. (1.22)
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where £, is the carrier frequency of the incident signal. The Doppler frequency f; is defined as
the difference f,,’ — f, . More precisely,

/ ctv 2y
Ja =10 —Jfo = p— fo—fo = p— Jo Eq. (1.23)
but since v « ¢ and ¢ = Af,, then
L 2y
fa= = Jo . Eq. (1.24)

Eq. (1.24) indicates that the Doppler shift is proportional to the target velocity, and, thus, one
can extract f, from range rate and vice versa.

The result in Eq. (1.24) can also be derived using the following approach: Fig. 1.15 shows a
closing target with velocity v. Let R, refer to the range at time ¢, (time reference); then the
range to the target at any time ¢ is

R(t) = Ry—v(t—1t,). Eq. (1.25)
The signal received by the radar is then given by
x, (1) = x(t—y(1)) Eq. (1.26)
where x(¢) is the transmitted signal, and
(1) = %(Ro—vﬁ vty) . Eq. (1.27)

Substituting Eq. (1.27) into Eq. (1.26) and collecting terms yields

x,(1) = x((l + Z—V)t— \yo) Eq. (1.28)
c
where the constant phase v, is

2,20,
C C

Vo 0 Eq. (1.29)

Define the compression or scaling factor y by

y=1+2v/¢c) Eq. (1.30)

Note that for a receding target the scaling factor becomes y = 1—(2v/c). Utilizing Eq.
(1.30), one can rewrite Eq. (1.28) as

x,(1) = x(yt—y,). Eq. (1.31)

Eq. (1.31) represents a time-compressed version of the return signal from a stationary target
(v = 0). Hence, based on the scaling property of the Fourier transform, the spectrum of the
received signal will be expanded in frequency to a factor of y.

Consider the special case when
x(t) = y(t)cosmyt Eq. (1.32)

where o, is the radar center frequency in radians per second. The received signal x,(#) is then
given by
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Figure 1.15. Closing target with velocity v.

x,(t) = y(yt—wy)cos(yout — ). Eq. (1.33)
The Fourier transform of Eq. (1.33) is

X(0) = 2%/(}’("; - coo) + Y(E;- + (DOD , Eq. (1.34)

where for simplicity the effects of the constant phase y, have been ignored in Eq. (1.34).
Therefore, the bandpass spectrum of the received signal is now centered at Yo, instead of ©.
The difference between the two values corresponds to the amount of Doppler shift incurred
due to the target motion,

©4=0)— Y0, [y = fo—1/o- Eq. (1.35)

o, and f; are the Doppler frequency in radians per second and in Hz, respectively. Substitut-
ing the value of y in Eq. (1.35) yields

2y 2y
= — = — Eq. (1.
fa - fo 5 q. (1.36)

which is the same as Eq. (1.24). It can be shown that for a receding target, the Doppler shift is
f; = —2v/\ . This is illustrated in Fig. 1.16.

In both Eq. (1.36) and Eq. (1.24) the target radial velocity with respect to the radar is equal to
v, but this is not always the case. In fact, the amount of Doppler frequency depends on the tar-
get velocity component in the direction of the radar (radial velocity). Fig. 1.17 shows three tar-
gets all having velocity v: target 1 has zero Doppler shift; target 2 has maximum Doppler
frequency as defined in Eq. (1.36). The amount of Doppler frequency of target 3 is
f; = 2vcos®/A, where vcosO is the radial velocity, and 0 is the total angle between the
radar line of sight and the target. Thus, a more general expression for f; that accounts for the
total angle between the radar and the target is

2v

fi = 70056 Eq. (1.37)
and for an opening target
f, = %cos@ Eq. (1.38)

where cos® = cos0, cosO,. The angles 6, and 0, are, respectively, the elevation and azi-
muth angles; see Fig. 1.18.
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fd|<7 4>|fd
f e ) g

frequency fo frequency
closing target receding target

Figure 1.16. Spectra of received signal showing Doppler shift.

A *
| NV
v % AN
- — — —
@%@ o %
tgtl tgt2 tgt3

Figure 1.17. Target 1 generates zero Doppler. Target 2 generates
maximum Doppler. Target 3 is in between.

-
L

\J

Figure 1.18. Radial velocity is proportional to the azimuth and elevation angles.
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Example:

Compute the Doppler frequency measured by the radar shown in the figure below.

A = 0.03m
TR Viarget = 175 m/sec
_- -
@%9.—_ - lineofsight @%@ -
—-—"‘-—____ target
—_— T~ o

Vyadar = 250 m/sec T

Solution:

The relative radial velocity between the radar and the target is v, ,, % Viarge- Thus, using Eq.
(1.36), we get

_ (250 +175)
Ja=2 0.03

Similarly, if the target were opening the Doppler frequency is

= 283KH:z.

£, = 23-5—%%)51—7—5 — SKH:.

MATLAB Function “doppler_freq.m”

The function “doppler freq.m” computes Doppler frequency and the associated time dila-
tion factor; its syntax is as follows:

[fd, tdr] = doppler_freq (freq, ang, tv, indicator)

where
Symbol Description Units Status
freq radar operating frequency Hz input
ang aspect angle degrees input
tv target velocity m/sec input
fd Doppler frequency Hz output
tdr time dilation factor ratio v’ /T none output

1.6. Coherence

A radar is said to be coherent if the phase of any two transmitted pulses is consistent, i.e.,
there is a continuity in the signal phase from one pulse to the next, as illustrated in Fig. 1.19a.
One can view coherence as the radar’s ability to maintain an integer multiple of wavelengths
between the equiphase wavefront from the end of one pulse to the equiphase wavefront at the
beginning of the next pulse, as illustrated by Fig. 1.19b. Coherency can be achieved by using a
STAble Local Oscillator (STALO). A radar is said to be coherent-on-receive or quasi-coherent
if it stores in its memory a record of the phases of all transmitted pulses. In this case, the
receiver phase reference is normally the phase of the most recent transmitted pulse.
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AN—M—N—

(@

pulse n+1 pulse n

j >_>_ >_)1A integer multiple of A ;\r >_>_ )j
h “h
- —— a 7\‘ L e e e e e e e = e = = = = _/J 7\‘ —_— -

(b) distance

Figure 1.19. (a) Phase continuity between consecutive pulses. (b) Maintaining an integer
multiple of wavelengths between the equiphase wavefronts of any two successive pulses
guarantees coherency.

Coherence also refers to the radar’s ability to accurately measure (extract) the received sig-
nal phase. Since Doppler represents a frequency shift in the received signal, then only coherent
or coherent-on-receive radars can extract Doppler information. This is because the instanta-
neous frequency of a signal is proportional to the time derivative of the signal phase. More pre-
cisely,

1 d
= — =yl Eq. (1.39
fi = 57 v q. (1.39)
where f; is the instantaneous frequency, and y(¢) is the signal phase.

For example, consider the following signal:

x(t) = cos(ymyt—y,) Eq. (1.40)

where the scaling factor y is defined in Eq. (1.30), and , is a constant phase. It follows that
the instantaneous frequency of x(¢) is

Jfi =/ Eq. (1.41)
where o, = 27f,. Substituting Eq. (1.30) into Eq. (1.41) yields
2 2
f = f0(1 +?") =f0+% Eq. (1.42)

where the relation ¢ = Af is utilized. Note that the second term of the most right-hand side of
Eq. (1.42) is a Doppler shift.

1.7. Decibel Arithmetic

The decibel (dB) is a logarithmic unit of measurement that represents a ratio of a physical
quantity (such as voltage, power, or antenna gain) to a specific reference quantity of the same
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type. The unit dB is named after Alexander Graham Bell, who originated the unit as a measure
of power attenuation in telephone lines. By Bell’s definition, a unit of Bell gain is

PO
log(F) Eq. (1.43)

where the logarithm operation is base 10, P, is the output power of a standard telephone line

(almost one mile long), and P; is the input power to the line. If voltage (or current) ratios are

used instead of the power ratio, then a unit Bell gain is defined as

1 (Vo)z ] (10)2 Eq. (1.44
og Vi or log ]i . q. (1.44)

A decibel, dB, is 1/10 of a Bell (the prefix “deci” means 10" ). It follows that a dB is

defined as

101 (P°j = 101 (Vo)z = 101 (10)2 Eq. (1.45
ogPi— ogVi = og[. q. (1.45)

7

The inverse dB is computed from the relations

Py/P, = 10810

Vo/V, = 109777 Eq. (1.46)
1./ = 10dB/20

0+ T

The decibel nomenclature is widely used by radar designers and users for several reasons,
and perhaps, the most important one is that representing radar-related physical quantities using
dBs drastically reduces the dynamic range that a desi%ner or a user has to use. For example, an
incoming radar signal may be as weak as 1x 10 "F, which can be expressed in dBs as
10log (1 x 1079) = —90dB. Alternatively, a target may be located at range R = 1000Km ,
which can be expressed in dBs as 60dB . Another advantage of using dB in radar design and
analysis is to facilitate the arithmetic associated with calculating the different radar parameters.
This is true since multiplication in base-10 arithmetic translates into addition in dB-arithmetic,
and division translates into subtraction. For example,

2502% = [10log(250) + 10log (0.0001) — 10log (455)]dB = —42.6dB. Eq.(147)
In general,

1010g(14%8) = 10log4 + 10logB — 10logC Eq. (1.48)

10logA? = ¢ x 10logA . Eq. (1.49)

Other dB ratios that are often used in radar analysis include the dBsm (dB, squared meters).
This definition is very important when referring to target Radar Cross Section (RCS), whose
units are in squared meters. More precisely, a target whose RCS is & m” can be expressed in
dBsm as 10log(oc mz). For example, a 10m’ target is often referred to as a 10dBsm target,
and a target with RCS 0.01 m’ is equivalent to a —20dBsm .
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Finally, the units dBm (dB, milliwatt) and dBW (dB, Watt) are power ratios of dBs with ref-
erence to one milliwatt and one Watt, respectively.

_ p )
dBm IOIOg(lm 7 Eq. (1.50)
dBW = 10lo (—P) Eq. (1.51)
g W77 q. (1.

To find dBm from dBW, add 30dB, and to find dBW from dBm, subtract 304B. Other common
dB units include dBz and dBi. dBz is used to measure weather radar reflectivity representing
the amount of returned power received by the radar referenced to mm® m> . The unit dBi (dB,
isotropic) represents the forward gain of an antenna compared to an ideal isotropic antenna that
emits energy equally in all directions.

Problems

1.1. (a)Calculate the maximum unambiguous range for a pulsed radar with PRF of 200Hz
and 750Hz . (b) What are the corresponding PRIs?

1.2. For the same radar in Problem 1.1, assume a duty cycle of 30% and peak power of
SKW . Compute the average power and the amount of radiated energy during the first 20ms .
1.3. A certain pulsed radar uses pulse width © = 1ps. Compute the corresponding range
resolution.

1.4. An X-band radar uses PRF of 3KHz. Compute the unambiguous range and the
required bandwidth so that the range resolution is 30m . What is the duty cycle?

1.5. Compute the Doppler shift associated with a closing target with velocity 100, 200, and
350 meters per second. In each case, compute the time dilation factor. Assume that A = 0.3m .

1.6. Compute the round-trip delays, minimum PRIs, and corresponding PRFs for targets
located 30Km, 80Km, and 150Km away from the radar.

1.7. Assume an S-band radar, what are the Doppler frequencies for the following target
range rates: 50m/s; 200m/s; and 250m/s.

1.8. Repeat the previous problem for an X-Band radar (9.5GHz).
1.9. A certain L-band radar has center frequency 1.5GHz, and PRF f, = 10KHz. What is
the maximum Doppler shift that can be measured by this radar?

1.10. Starting with a modified version of Eq. (1.25), derive an expression for the Doppler
shift associated with a receding target.

1.11. In reference to Fig. 1.18, compute the Doppler frequency for v = 150m/s,
0, = 30°,and 06, = 15°. Assume that A = 0.1m.

1.12. A pulsed radar system has a range resolution of 30cm . Assuming sinusoid pulses at
45KHz , determine the pulse width and the corresponding bandwidth.
1.13. (a) Develop an expression for the minimum PRF of a pulsed radar. (b) Compute f,

for a closing target whose velocity is 400m /s . (c) What is the unambiguous range? Assume
that A = 0.2m.
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1.14. A certainradar is tasked with detecting and tracking the moon. Assume that the aver-
age distance to the moon is 3.844 x 10°m , and its average radar cross section is
6.64x 10" m> . (a) Compute the delay to the moon. (b) What is required PRF so the range to
the moon is unambiguous. (¢) What is the moon’s radar cross section in dBsm.

1.15. An L-band pulsed radar is designed to have an unambiguous range of 100Km and
range resolution AR < 100m . The maximum resolvable Doppler frequency corresponds to

v <350m/sec. Compute the maximum required pulse width, the PRF, and the average

target
transmitted power if P, = 500/ .

1.16. A certain target has the following characteristics: its range away from the radar given
in its corresponding x- y- and z- components is {25Km, 32Km, 12Km} . The target velocity
vector is v, = v, = 0, and v, = —250m/s. Compute the composite target range and range

rate. If the radar’s operating frequency is 9GHz, what is the corresponding Doppler frequency.
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Appendix 1-A: Chapter 1 MATLAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “pulse_train.m” Listing

function [dt, prf, pav, ep, ru] = pulse_train (tau, pri, p_peak)
% computes duty cycle, average transmitted power, pulse energy, and pulse repetition frequency

%% Inputs:
% tau == Pulse width in seconds
% pri == Pulse repetition interval in seconds
% p_peak == Peak power in Watts
%% Outputs:
% dt == Duty cycle - unitless
% prf == Pulse repetition frequency in Hz
% pa == Average power in Watts
% ep == Pulse energy in Joules
% ru == Unambiguous range in Km

%

c = 3e8; % speed of light
dt = tau / pri;
prf=1./pri;

pav =p_peak *dt;

ep = p_peak * tau;
ru=1.e-3*c *pri/2.0;
return

MATLAB Function “range_resolution.m” Listing

function [delta R] = range_resolution (var)
% This function computes radar range resolution in meters
%% Inputs:

% var can be either

% var == Bandwidth in Hz
% var == Pulse width in seconds
% % Outputs:
% delta R == range resolution in meters

% Bandwidth may be equal to (1/pulse width)==> indicator = seconds

%

¢ =3.e+8; % speed of light

indicator = input ("Enter 1 for var == Bandwidth, OR 2 for var == Pulse width \n');
switch (indicator)

case 1
delta R=c/2.0/var; % del r=c/2B
case 2
delta_ R = c *var/2.0; % del_r = c*tau/2
end

return
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MATLAB Function “doppler _freq.m” Listing

function [fd, tdr] = doppler_freq (freq, ang, tv)
% This function computes Doppler frequency and time dilation factor ratio (tau_prime / tau)
% % Inputs:

% freq == radar operating frequency in Hz
% ang == target aspect angle in degrees
% tv == target velocity in m/sec

% % Outputs:
% fd == Doppler frequency in Hz
% tdr == time dilation factor; unitless

%
format long
indicator = input ("Enter 1 for closing target, OR 2 for opening target \n');
¢ = 3.0e+8;
ang_rad = ang * pi /180.;
lambda = ¢ / freq;
switch (indicator)
case 1
fd=2.0*tv *cos(ang rad)/lambda;
tdr =(c-tv)/(c+tv),
case 2
fd=-2.0*c *tv * cos(and _rad) / lambda;
tdr = (c +tv)/(c-tv),
end
return



Part I - Radar Principles

Chapter 2

Basic Pulsed and Continuous
Wave (CW) Radar Operations

2.1. The Radar Range Equation

Consider a radar with an isotropic antenna (one that radiates energy equally in all
directions). Since isotropic antennas have spherical radiation patterns, one can define the peak
power density (power per unit area) at any point in space away from the radar as

p. = Peak transmitted power Watts
b area of a sphere m:

Eq. (2.1)

The power density, in Watts/ m’ ,atrange R away from the radar (assuming a lossless propa-
gation medium) is

P, = P,/(4nR’) Eq. (2.2)

where P, is the peak transmitted power and 4nR’ is the surface area of a sphere of radius R .
Radar systems utilize directional antennas in order to increase the power density in a certain
direction. Directional antennas are usually characterized by the antenna gain G and the
antenna effective aperture 4, . They are related by

G = (4nd,)/\° Eq. (2.3)

where A is the radar operating wavelength. The relationship between the antenna’s effective
aperture 4, and the physical aperture 4 is

A, = p4 Eq. (2.4)
0<p<l1

where p is referred to as the aperture efficiency, and good antennas require p — 1. In this
book, unless otherwise noted, 4 and 4, are used interchangeably to refer to the antenna’s
aperture, and will assume that antennas have the same gain in the transmitting and receiving
modes. In practice, p = 0.7 is widely accepted.

The gain is also related to the antenna’s azimuth and elevation antenna beamwidths by

47
0.0

e~ a

G=K Eq. (2.5)

27
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where K <1 and depends on the physical aperture shape, and the angles 6, and 0, are,
respectively, the antenna’s elevation and azimuth beamwidths in radians. An excellent com-
monly used approximation of Eq. (2.5) is

26000
6.0,

Eq. (2.6)

where in this case the azimuth and elevation beamwidths are given in degrees.

The power density at a distance R away from a radar using a directive antenna of gain G is
then given by
PG
P, = > Eq. (2.7)
4nR

When the radar radiated energy impinges upon a target, the induced surface currents on that
target radiate electromagnetic energy in all directions. The amount of the radiated energy is
proportional to the target size, orientation, physical shape, and material, which are all lumped
together in one target-specific parameter called the Radar Cross Section (RCS) denoted sym-
bolically by the Greek letter o .

The radar cross section is defined as the ratio of the power reflected back to the radar to the
power density incident on the target,

Pr 2
= — Eq. (2.8
o PDm q. (2.8)

where P, is the power reflected from the target. Thus, the total power delivered to the radar
signal processor by its antenna is

~ PGo
" 4nRY
Substituting the value of 4, from Eq. (2.3) into Eq. (2.9) yields

4,. Eq. (2.9)

_PGo

PDr
(4n)’R*

Eq. (2.10)

Let §,,;, denote the minimum detectable signal power by the radar. It follows that the

maximum radar range R, is

o [PGs Ve ]
max = | 5| - q. (2.11)
(47)’S,,,

Eq. (2.11) suggests that in order to double the radar maximum range, one must increase the
peak transmitted power P, sixteen times; or equivalently, one must increase the effective aper-
ture four times.

In practical situations the returned signals received by the radar will be corrupted with noise,
which introduces unwanted voltages at all radar frequencies. Noise is random in nature and can
be characterized by its Power Spectral Density (PSD) function. The noise power N is a

function of the radar operating bandwidth, B . More precisely,



The Radar Range Equation 29

N = Noise PSDxB. Eq. (2.12)

The receiver input noise power is

N, = kT,B Eq. (2.13)

where k = 138 x 10 > Joule/degree Kelvin is Boltzmann’s constant, and T, is the total
effective system noise temperature in degrees Kelvin. It is always desirable that the minimum
detectable signal (S,,,, ) be greater than the noise power. The fidelity of a radar receiver is nor-
mally described by a figure of merit referred to as the noise figure, . The noise figure is
defined as

_ (SNR), _ S/N,
(SNR), S,/N,

Eq. (2.14)

where (SNR); and (SNR), are, respectively, the Signal to Noise Ratios (SNR) at the input
and output of the receiver. The input signal power is S;, and the input noise power immedi-
ately at the antenna terminal is N,. The values S, and N, are, respectively, the output signal
and noise powers.

The receiver effective noise temperature excluding the antenna is
T,=T/(F-1) Eq. (2.15)

where T, = 290K and F is the receiver noise figure. It follows that the total effective system

noise temperature 7, is given by

ry=71,+T7,=T(F-)+T,=T,F-T,+T, Eq. (2.16)
where T, is the antenna temperature.

In many radar applications it is desirable to set the antenna temperature 7, to 7,, and thus,
Eq. (2.16) is reduced to
T,=T,F. Eq. (2.17)

Using Eq. (2.17) in Eq. (2.13) and substituting the result into Eq. (2.14) yields
S; = kT ,BF(SNR), . Eq. (2.18)

Thus, the minimum detectable signal power can be written as

Spin = kT, BF(SNR), . Eq. (2.19)

min

The radar detection threshold is set equal to the minimum output SNR, (SNR), .
Substituting Eq. (2.19) in Eq. (2.11) gives

P G27\.26 1/4
R, = [ — ] Eq. (2.20)
(4n)’kT,BF(SNR), _
or equivalently,
242
P.G™L
(SNR), ! ° —- Eq. (2.21)

(4n)’kT,BFR

max
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In general, radar losses denoted by L reduce the overall SNR, and hence

Pthkzc

(SNR), = —————.
(47)’kT,BFLR

Eq. (2.22)

Although Eq. (2.22) is widely known and used as the Radar Range Equation, it is not quite
correct unless the antenna temperature is equal to 290K . In real-world cases, the antenna
temperature may vary from a few degrees Kelvin to several thousand degrees. However, the
actual error will be small if the radar receiver noise figure is large. In order to accurately
account for the radar antenna temperature, one must use Eq. (2.17) in Eq. (2.22). Thus, the
radar equation is now given by

PG\

(SNR), = ————.
(4n)’kT,BLR

Eq. (2.23)

Example:

Assume a certain C-band radar with the following parameters: Peak power P, = 1.5MW,
operating frequency f, = 5.6GHz, antenna gain G = 45dB, effective temperature

T, = 290K, pulse width © = 0.2usec. The radar threshold is (SNR) . = 20dB- Assume

min
. 2 .

target cross section o = 0.1m". Compute the maximum range.

Solution:

The radar bandwidth is

B-1- L1 _ —swu:
T 02x10°
The wavelength is
8
== 2200 g05am
fo 56x10

From Eq. (2.20) one gets
(RYap = (P,+ G +37+c—(4n)’ ~kT,B—F—(SNR), ),
where, before summing, the dB calculations are carried out for each of the individual parame-

ters on the right-hand side. One can now construct the following table with all parameters
computed in dB:

P, 22 G* kT,B (41‘5)3 F (SNR)OW_” c

61.761 -25.421 90 —-136.987| 32.976 3 20 -10

1t follows that
R* = 61.761 + 90 - 25.352 — 10 — 32.976 + 136.987 — 3 — 20 = 197.420dB
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4 197.420/10
o ) _

R =1 55.208 x 10"%m*

R = 4/55.208 x 10" = 86.199Km .
Thus, the maximum detection range is 86.2Km .

MATLAB Function “radar_eq.m”

The function “radar _eq.m” implements Eq. (2.22); its syntax is as follows:

[snr] = radar_eq (pt, freq, g, sigma, b, nf, loss, range)

where

Symbol Description Units Status
pt peak power Watts input
freq radar center frequency Hz input
g antenna gain dB input
sigma target cross section m’ input
b bandwidth Hz input
nf noise figure dB input
loss radar losses dB input
range target range (can be single value or a vector) Km input
snr SNR (single value or a vector, depending on dB output

the input range)

The function “radar _eq.m” is developed so that it can accept a single value for the input
“range,” or a vector containing many range values. Figure 2.1 shows typical plots generated

using the function “radar_eq.m,” with the following inputs: Peak power P, = 1.5MW,
operating frequency f, = 5.6GHz, antenna gain G = 45dB, radar losses L = 6dB, noise
figure ¥ = 3dB. The radar bandwidth is B = 5MHz. The radar minimum and maximum
detection range are R,;, = 25Kmand R, ,. = 165Km . Figure 2.1 can be reproduced using

MATLAB program “Fig2 I.m” listed in Appendix 2-A.

2.2. Low PRF Radar Equation

Consider a pulsed radar with pulse width ©, PRI T, and peak transmitted power P,. The
average transmitted power is P,, = P,d,, where d, = t/T 1is the transmission duty factor.

One can define the receiving duty factor d, as

d = T}T =1-1f. Eq. (2.24)

Thus, for low PRF radars (7 » 1) the receiving duty factor is d, = 1.

Define the “time on target” 7 (the time that a target is illuminated by the beam) as
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Figure 2.1a. SNR versus detection range for three different values of RCS.
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Figure 2.1b. SNR versus detection range for three different values of radar peak
power.
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T, = np/fr =n, =T, f Eq. (2.25)

where 1), is the total number of pulses that strike the target, and f,. is the radar PRF. Assuming
low PREF, the single pulse radar equation is given by

2,2
PG\
(SNR), = ;4—6, Eq. (2.26)
(41)°R*kT,BFL
and for n,, coherently integrated pulses we get
2,2
PG\
(SNR),, = L ro N Eq. (2.27)

" (4n)’R'kT,BFL
Now by using Eq. (2.25) and using B = 1/7, the low PRF radar equation can be written as

2,2
P,G"\cT,
(SNR), :’—G‘frr

’ — ) Eq. (2.28)
(4n)’R°kT,FL

MATLAB Function “Iprf req.m”

The function “Iprf req.m” implements the low PRF radar equation given in Eq. (2.27). Fora
given set of input parameters, the function “Iprf req.m” computes (SNR),,. Its syntax is as
follows:

[snr] = Iprf req(pt, g, freq, sigma, np, b, nf, loss, range)

where
Symbol Description Units Status
pt peak power w input
g antenna gain dB input
freq frequency Hz input
sigma target cross section m? input
np number of pulses none input
b bandwidth Hz input
nf noise figure dB input
loss radar losses dB input
range target range (can be single value or a vector) Km input
snr SNR (can be single value or a vector) dB output

Figure 2.2 shows typical plots generated using the function “Iprf req.m,”” with the following
inputs: Peak power P, = 1.5SMW, operating frequency f, = 5.6GHz, antenna gain

G = 45dB, radar losses L = 6dB, noise figure ' = 3dB. The bandwidth is B = SMHz.

The target RCS is ¢ = 0.1m". Figure 2.2 can be reproduced using MATLAB program
“Fig2 2.m” listed in Appendix 2-A.
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Figure 2.2a. Typical output generated by the function “Iprf req.m.”
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Figure 2.2b. Typical outputs generated by the function “Iprf req.m.”
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2.3. High PRF Radar Equation

In high PRF radars, the transmitted signal is assumed to be a periodic train of pulses, with
pulse width of t and period 7. This pulse train can be represented using an exponential
Fourier series, where the central power spectrum line (DC component) for this series contains

most of the signal’s power. Its value is (t/T )2 , and it is equal to the square of the transmit duty
factor. Thus, the single pulse radar equation for a high PRF radar is
P,G'\od
SNR = — Eq. (2.29)
(4n)" R kT ,BFLd,

where, in this case, one can no longer ignore the receive duty factor, since its value is compara-
ble to the transmit duty factor. In fact, d.~ d, = tf,. Additionally, the operating radar band-
width is now matched to the radar integration time (time-on-target), B = 1/7T;. It follows that

PtTfrT‘GZKZG
SNR = + Eq. (2.30)
(4n)’R°kT,FL
and finally,
242
P T.G"\
SNR = %G Eq. (2.31)
(4n)’ RkT,FL

where P, was substituted for P,tf,. Note that the product P,,T; is a “kind of energy” prod-

av=i
uct, which indicates that high PRF radars can enhance detection performance by using rela-

tively low power and longer integration time.

2.3.1 MATLAB Function “hprf req.m”

The function “hprf req.m” implements Eq. (2.30). Its syntax is as follows:

[snr] = hprf req (pt, Ti, g, freq, sigma, dt, range, nf, loss)

where
Symbol Description Units Status
pt peak power w input
Ti time on target seconds input
g antenna gain dB input
freq frequency Hz input
sigma target RCS m? input
dt duty cycle none input
range target range (can be single value or a vector) Km input
nf noise figure dB input
loss radar losses dB input
snr SNR (can be a single value or a vector) dB output

Figure 2.3 shows typical outputs generated by the function “prf req.m”. This figure can be
reproduced using MATLAB program “Fig2 3.m” listed in Appendix 2-A.
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Figure 2.3. Typical output generated by the function “hprf req.m,”
using parameters in next example.

Example:

Compute the single pulse SNR for a high PRF radar with the following parameters: peak
power P, = 100KW, antenna gain G = 20dB, operating frequency f, = 5.6GHz, losses

L = 8dB, noise figure F = 5dB, dwell interval T; = 2s, duty factor d, = 0.3. The range
of interestis R = 50Km . Assume target RCS ¢ = 0.01m".

Solution:

From Eq. (2.31) we have

(SNR)3 = (P, + G+ 3+ +T,—(4n) —~ R —kT,~F L),

The following table gives all parameters in dB:

P Az T; kT, (4m)’ R c

av 1

44771 | -25.421| 3.01 -203.977| 32.976 | 187.959| -20

SNR = 44771 +40 —25.421 —20+ 3.01 —32.976 + 203.977 — 187.959 -5—-8 = 12.4dB

The same answer can be obtained by using the function “Iprf req.m” with the following syn-
tax:

hprf req (100e3, 2, 20, 5.6¢9, 0.01, 0.3, 50e3, 5, 8)
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2.4. Surveillance Radar Equation

The primary job for surveillance radars is to continuously scan a specified volume of space
searching for targets of interest. Once detection is established, target information such as
range, angular position, and possibly target velocity are extracted by the radar signal and data
processors. Depending on the radar design and antenna, different search patterns can be
adopted. A two-dimensional (2-D) fan beam search pattern is shown in Fig. 2.4a. In this case,
the beamwidth is wide enough in elevation to cover the desired search volume along that
coordinate; however, it has to be steered in azimuth. Figure 2.4b shows a stacked beam search
pattern; here the beam has to be steered in azimuth and elevation. This latter kind of search
pattern is normally employed by phased array radars.

Search volumes are normally specified by a search solid angle Q in steradians, as illustrated

in Fig. 2.5. Define the radar search volume extent for both azimuth and elevation as ®, and

©®, . Consequently, the search volume is computed as

Q = (0,0,)/(57.296)° steradians Eq. (2.32)

where both ®, and ©, are given in degrees. The radar antenna 3dB beamwidth can be
expressed in terms of its azimuth and elevation beamwidths 0, and 6, , respectively. It follows
that the antenna solid angle coverage is 6,0, and, thus, the number of antenna beam positions
ny required to cover a solid angle Q is

Q

np, = —mmmm/,
(0,0,)/(57.296)

Eq. (2.33)

In order to develop the search radar equation, start with Eq. (2.22), which is repeated here
for convenience, as Eq. (2.34):

P.G'\'o

SNR = ﬁ.
(47)’kT,BFLR

Eq. (2.34)

Using the relations © = 1/B and P, = P, T/t ,where T isthe PRI and 7 is the pulse width,
yields

elevation

azimuth
(a) (b)

Figure 2.4. (a) 2-D fan search pattern; (b) stacked search pattern.
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antenna
beam width

search
volume

Figure 2.5. A cut in space showing the antenna beam width and the
search volume.

T Paszkzcr
SNR = = ———

- - Eq. (2.35)
T (4n)’kT,FLR

Define the time it takes the radar to scan a volume defined by the solid angle Q as the scan
time T, . The time on target can then be expressed in terms of T, as

TSC TSC
P = == 5040 Eq. (2.36)
B

Assume that during a single scan only one pulse per beam per PRI illuminates the target. It fol-
lows that 7, = T and, thus, Eq. (2.35) can be written as

P,G'\o T,
SNR = —&——— %9 9 Eq. (2.37)
(4n)’ kT, FLR* € ¢

Substituting Eqgs. (2.3) and (2.5) into Eq. (2.37) and collecting terms yields the search radar
equation (based on a single pulse per beam per PRI) as

P o T
SNR = _Pado T Eq. (2.38)

AnkT,FLR* @
The quantity P, .4 in Eq. (2.38) is known as the power aperture product. In practice, the

power aperture product is widely used to categorize the radar’s ability to fulfill its search
mission. Normally, a power aperture product is computed to meet a predetermined SNR and

radar cross section for a given search volume defined by Q.

As a special case, assume a radar using a circular aperture (antenna) with diameter D . The

3-dB antenna beamwidth 6, is
A
0308~ 55 Eq. (2.39)

and when aperture tapering is used, 0,,, = 1.25A1/D . Substituting Eq. (2.39) into Eq. (2.33)
and collecting terms yields
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ny, = (D°/3%) Q. Eq. (2.40)

In this case, the scan time 7, is related to the time-on-target by

T T2
T, = = S Eq. (2.41)
np D°Q

Substitute Eq. (2.41) into Eq. (2.35) to get

PG\ T\

SNR = — —,
(4n)’R*T,FL D*Q

Eq. (2.42)

and by using Eq. (2.3) in Eq. (2.42) one can define the search radar equation for a circular aper-
ture as

.....f.‘f.‘.’.é_(.y_._ TSC Eq. (2.43)

SNR = y —
16R kT, LF Q

where the relation 4 = nD’/4 (aperture area) was used.

MATLAB Function “power_aperture.m”

The function “power _aperture.m” implements the search radar equation given in Eq. (2.38);
its syntax is as follows:

PAP = power_aperture (snr, tsc, sigma, range, nf, loss, az_angle, el_angle)

where

Symbol Description Units Status
snr sensitivity snr dB input
tsc scan time seconds input
sigma target cross section m’ input
range target range Km input
nf noise figure dB input
loss radar losses dB input
az_angle search volume azimuth extent degrees input
el _angle search volume elevation extent degrees input
PAP power aperture product dB output

Plots of the power aperture product versus range and plots of the average power versus
aperture area for three RCS choices are shown in Fig. 2.6, which can be reproduced using the
MATLAB program “Fig2 6.m” listed in Appendix 2-A. In this case, the following radar
parameters were used:

c T 6,=20 R nfxloss snr

sc e a

01 m2 | 2.5sec | 2° | 250Km | 13dB | 15dB
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Figure 2.6a. Power aperture product versus detection range.
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Figure 2.6b. Radar average power versus power aperture product.

Example:

Compute the power aperture product corresponding to the radar that has the following param-
eters: scan time T,. = 2s, noise figure F = 8dB, losses L = 6dB, search volume

Q = 7.4 steradians, range of interest is R = 75Km, and the required SNR is 20dB.
Assume that 6 = 3.162m" .
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Solution:

Note that QQ = 7.4 steradians corresponds to a search sector that is three fourths of a hemi-
sphere. Because of the three fourths of a hemisphere condition, one concludes that
0, = 180°, and using Eq. (2.32) yields 0, = 135°. Using the MATLAB function

“power_aperture.m” with the following syntax:

e

PAP = power_aperture(20, 2, 3.162, 75e3, 8, 6, 180, 135)
one computes the power aperture product as 36.7 dB.
Example:

Compute the power aperture product for an X-band radar with the following parameters: sig-

nal-to-noise ratio SNR = 15dB; losses L = 8dB; search volume Q = 2°; scan time
T,, = 2.5s; noise figure F' = 5dB. Assume a —10dBsm target cross section, and range

R = 250Km . Also, compute the peak transmitted power corresponding to 30% duty factor, if
the antenna gain is 45dB. Assume a circular aperture.

Solution:

The angular coverage is 2° in both azimuth and elevation. It follows that the solid angle cov-
erage is

2x2
(57.23)°

Q= = -29.132dB.

The factor 360/2n = 57.23 converts angles into solid angles. From Eq. (2.43), one gets
(SNR),3 = (P, +A+c+T,,—16—R'—kT,~L—F- Q).

G T,, 16 7 kT,

sc o

-10dB 3.979dB | 12.041dB | 215.918dB| -203.977dB

1t follows that
15 =P, +4-10+3.979 -12.041 - 215918 +203.977 - 5 -8 + 29.133.
Then the power aperture product is

P, +A4 = 38716dB .

Now, assume the radar wavelength to be . = 0.03m, then

2
4 =9 _ 355048
4r

P, = —A+38716 = 35.166dB

p = 103.5166

av

= 3285.4890W

P
p, = —w = 3285489 _ 4 9515k,
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2.5. Radar Equation with Jamming

Any deliberate electronic effort intended to disturb normal radar operations is usually
referred to as an Electronic Countermeasure (ECM). This includes chaff, radar decoys, radar
RCS alterations (e.g., radio frequency absorbing materials), and of course, radar jamming.

Jammers can be categorized into two general types: (1) barrage jammers and (2) deceptive
jammers (repeaters). When strong jamming is present, detection capability is determined by
receiver signal-to-noise plus interference ratio rather than SNR. In fact, in most cases,
detection is established based on the signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar operating
bandwidth, consequently lowering the receiver SNR, and, in turn, making it difficult to detect
the desired targets. This is the reason why barrage jammers are often called maskers (since
they mask the target returns). Barrage jammers can be deployed in the main beam or in the
sidelobes of the radar antenna. If a barrage jammer is located in the radar main beam, it can
take advantage of the antenna maximum gain to amplify the broadcasted noise signal.
Alternatively, sidelobe barrage jammers must either use more power, or operate at a much
shorter range than main-beam jammers. Main-beam barrage jammers can be deployed either
onboard the attacking vehicle, or act as an escort to the target. Sidelobe jammers are often
deployed to interfere with a specific radar, and since they do not stay close to the target, they
have a wide variety of standoff deployment options.

Repeater jammers carry receiving devices onboard in order to analyze the radar’s
transmission, and then send back false target-like signals in order to confuse the radar. There
are two common types of repeater jammers: spot noise repeaters and deceptive repeaters. The
spot noise repeater measures the transmitted radar signal bandwidth and then jams only a
specific range of frequencies. The deceptive repeater sends back altered signals that make the
target appear in some false position (ghosts). These ghosts may appear at different ranges or
angles than the actual target. Furthermore, there may be several ghosts created by a single
jammer. By not having to jam the entire radar bandwidth, repeater jammers are able to make
more efficient use of their jamming power. Radar frequency agility may be the only way
possible to defeat spot noise repeaters.

In general, a jammer is characterized by its operating bandwidth B, and Effective Radiated
Power (ERP), which is proportional to the jammer transmitter power P ;. More precisely,
ERP = (P,G))/L, Eq. (2.44)

where G is the jammer antenna gain and L is the total jammer losses. The effect of a jammer
on a radar is measured by the Signal-to-Jammer ratio (S/J).

2.5.1 Self-Screening Jammers (SSJ)

Self-screening jammers (SSJ), also known as self-protecting jammers and as main-beam
jammers, are a class of ECM systems carried on the platform they are protecting. Escort
jammers (carried on platforms that accompany the attacking vehicles) can also be treated as
SSJs if they appear at the same range as that of the target(s).

Assume a radar with an antenna gain G, wavelength A, aperture A4,, bandwidth B,,
receiver losses L, and peak power P,. The single pulse power received by the radar from a

target of RCS o, at range R, is



Radar Equation with Jamming 43

_ Pthkzct
(4n)’R'L

S Eq. (2.45)

where t is the radar pulse width. The power received by the radar from an SSJ jammer at the
same range is
P,G, A,

J = — Eq. (2.46)
4TER2 B,L,

where P, G, B, L, are, respectively, the jammer’s peak power, antenna gain, operating band-
width, and losses. Using the relation

A, = \'G/4n, Eq. (2.47)
Eq. (2.46) can be written as
P,G, ?
J=—= LG 1 Eq. (2.48)
4%R 4n B,L,

Note that for jammers to be effective, they require B, > B, . This is needed in order to compen-
sate for the fact that the jammer bandwidth is usually larger than the operating bandwidth of
the radar. Jammers are normally designed to operate against a wide variety of radar systems
with different bandwidths.

Substituting Eq. (2.44) into Eq. (2.48) yields

J = ERP - 2G 5 ! Eq. (2.49)
(4n)’R* By
Thus, the S/J ratio for an SSJ case is obtained from Egs. (2.45) and (2.49) as,
P1GoB
S _ _4teos, - Eq. (2.50)
J (ERP)(4m)R’L

and when pulse compression is used, with time-bandwidth-product G, then Eq. (2.50) can
be written as
P,GoB,G
S = k) ’;C . Eq. (2.51)
J (ERP)(4m)R’B,L

The jamming power reaches the radar on a one-way transmission basis, whereas the target
echoes involve two-way transmission. Thus, the jamming power is generally greater than the

target signal power. In other words, the ratio S/J is less than unity. However, as the target
becomes closer to the radar, there will be a certain range such that the ratio S/J is equal to
unity. This range is known as the cross-over range. The range window where the ratio S/.J is
sufficiently larger than unity is denoted as the detection range. In order to compute the cross-

over range R, , set S/J to unity in Eq. (2.51) and solve for range. It follows that

co?’

P,GoB, \!/2
)) Eq. (2.52)

(Ro)sss = (4nB,L(ERP



44 Radar Systems Analysis and Design Using MAT. LAB®

MATLAB Function “ssj_req.m”

The function “ssj req.m” implements Eqs. (2.50) and (2.52). The syntax is as follows:

[BR _range| = ssj_req (pt, g, freq, sigma, br, loss, pj, bj, gj, lossj)

where
Symbol Description Units Status
pt radar peak power w input
g radar antenna gain dB input
freq radar operating frequency Hz input
sigma target cross section m? input
br radar operating bandwidth Hz input
loss radar losses dB input
)2 Jjammer peak power w input
bj Jjammer bandwidth Hz input
g/ Jjammer antenna gain dB input
lossj Jjammer losses dB input
BR range cross-over range Km output

This function generates data of relative S and J versus range normalized to the cross-over
range, as illustrated in Fig. 2.7a. It also calculates the cross-over range as in Fig 2.7b. Figure
2.7b can be reproduced using MATLAB program “Fig2 7b.m” listed in Appendix 2-A. In this
example, the following parameters were utilized: radar peak power P, = 50K W, jammer peak
power P; = 2000, radar operating bandwidth B, = 667KHz, jammer bandwidth
B, = 50MHz,radar and jammer losses L = L, = 0.10dB, target cross section ¢ = 10.m2,
radar antenna gain G = 3548, jammer antenna gain G, = 10dB, and the radar operating
frequency is /' = 5.6GHz.

2.5.2.Burn-Through Range

If jamming is employed in the form of Gaussian noise, then the radar receiver has to deal
with the jamming signal the same way it deals with noise power in the radar. Thus, detection,
tracking, and other functions of the radar signal and data processors are no longer dependent
on the SNR. In this case, the S/(J+N) ratio must be calculated. More precisely,

s (P,God,1)/((4n)’R'L)

J+N ERP)A
(s___;_r+kfo
4nR’B,

Eq. (2.53)

The S/(J+N) ratio should be used in place of the SNR when calculating the radar equation
and when computing the probability of detection. Furthermore, S/(J+N) must also be used in
place of the SNR when using coherent or noncoherent pulse integration. The range at which
the radar can detect and perform proper measurements for a given S/(J+N) value is defined as
the burn-through range. It is given by
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Figure 2.7a. Target and jammer echo signals using the input parameters defined

on pp. 42.
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Figure 2.7b. Cross-over range versus jammer and radar peak powers cor-

responding to the example used in generating Fig. 2.7a.
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MATLAB Function “sir.m”
The MATLAB function “sirm” implements Eq. (2.53). The syntax is as follows:

[SIR] = sir (pt, g, sigma, freq, tau, loss, R, pj, bj, gj, lossj)

where

Symbol Description Units Status
pt radar peak power w input

g radar antenna gain dB input
sigma target cross section m? input
freq radar operating frequency Hz input
tau radar pulse width seconds input
loss radar losses dB input
R range can be single value or a vector Km input

V2 Jjammer peak power w input

bj Jjammer bandwidth Hz input

g/ Jjammer antenna gain dB input
lossj Jjammer losses dB input
SIR S/(J+N) dB output

The function “sirm” generates data that can be used to plot the S/(J+N) versus detection
range as shown in Fig. 2.8 using the input parameters defined in the table below. Figure 2.8 can
be reproduced using the MATLAB program “Fig2 8.m” listed in Appendix 2-A.

Input Parameter Value
pt S0KwW
g 35dB
sigma 10 square meters
freq 5.6GHz
tau 50 micro-seconds
loss 5dB
R linspace(10,400,5000) Km
V2 200Watts
bj 50MHz
g 10dB
lossj 0.3dB
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Figure 2.8. S/(J+N) versus detection range.
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MATLAB Function “burn_thru.m”

The MATLAB function “burn_thru.m” implements Egs. (2.54). It generates plots of the S/
(J+N) versus detection range and plots of the burn-through range versus the jammer ERP. The

syntax is as follows:

where

[Range] = burn_thru (pt, g, sigma, freq, tau, loss, pj, bj, gj, lossj, sir0, ERP)

Symbol Description Units Status
pt radar peak power w input

g radar antenna gain dB input
sigma target cross section m? input
freq radar operating frequency Hz input
tau radar pulse width seconds input
loss radar losses dB input
V2 Jjammer peak power w input
bj Jjammer bandwidth Hz input
g/ Jjammer antenna gain dB input
lossj Jjammer losses dB input
sirQ desired SIR dB input
ERP desired ERP can be a vector Watts input
Range burn-through range Km output
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Figure 2.9, which can be reproduced using the MATLAB program “Fig2 9.m” listed in
Appendix 2-A, shows some typical outputs generated by this function with the following
inputs:

Input Parameter Value
pt S0KW
g 35dB
sigma 10 square meters
freq 5.6GHz
tau 0.5 Millie-seconds
loss 5dB
o 200watts
bj 500MHz
g 10dB
lossj 0.3dB
sir0 15dB
ERP linspace(1, 1000, 1000) W
e .f .f T T T

280

- 1
z =

Bumthrough range in Km
=

I
o 5 10 15 20 o5 !
Jammer ERP in dB

Figure 2.9. Burn-through range versus ERP. S/(J+N) =15 dB.
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2.5.3 Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges that are beyond the defense’s
lethal capability. The power received by the radar from an SOJ jammer at range R is

_ PG, 2’6 1 _ ERP VG 1

J
4nR3 4t B,L, 47:R3 4n B,

Eq. (2.55)

where all terms in Eq. (2.55) are the same as those for the SSJ case except for G'. The gain
term G' represents the radar antenna gain in the direction of the jammer and is normally con-
sidered to be the sidelobe gain.

The SOJ radar equation is then computed as

252
P1G R,6B
S _ _._.I.:r_._..ig...{r Eq. (2.56)
J 4n(ERP)G'R'L

and when pulse compression is used, with time-bandwidth-product G, then Eq. (2.56) can
be written as

s PGRoB,Gp.

2 = il Eq. (2.57)
J 4n(ERP)G'R'B,L
Again, the cross-over range is that corresponding to S = J; it is given by
) 1/4
_ [P,G"R;6B,Gpc
(Reodsor = | gn(ERPYG'B L Fa. (258)

MATLAB Function “soj_req.m”

The function “soj req.m” implements Eqs. (2.57) and (2.58). The inputs to the program
“soj req.m” are the same as in the SSJ case, with two additional inputs: the radar antenna gain

on the jammer G' and radar-to-jammer range R . Its syntax is as follows:

[BR _range] = soj req (pt, g, sigma, b, freq, loss, range, pj, bj, gj, lossj, gprime, rangej)

Figure 2.10 shows plots generated using data generated by this function. In this case, the
same input parameters as those in the SSJ case are used, with jammer peak power
P, = 5000/, jammer antenna gain G, = 30dB, radar antenna gain on the jammer
G' = 10dB, and radar-to-jammer range R; = 22.2Km . Figure 2.10 can be reproduced using
MATLAB program “Fig2 10.m” listed in Appendix 2-A. Again if the jamming is employed in
the form of Gaussian noise, then the radar receiver has to deal with the jamming signal the
same way it deals with noise power in the radar. In this case, the S/(J+N) is

(PthArt)
S _ (47)°R'L
J+N  ((ERP)A,G '
((__.__22.___ + kT,
4nR;B,

Eq. (2.59)
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Figure 2.10. Target and jammer echo signals.

2.6. Range Reduction Factor

Consider a radar system whose detection range R in the absence of jamming is governed by

PG\

(SNR), = — 22—~
(4n)’kT,B,LR*

Eq. (2.60)

The term Range Reduction Factor (RRF) refers to reduction in the radar detection range due to
jamming. More precisely, in the presence of jamming, the effective radar detection range is

R; =R x RRF. Eq. (2.61)

In order to compute RRF, consider a radar characterized by Eq. (2.60), and a barrage
jammer whose output power spectral density is J, (i.e., Gaussian-like). Then the amount of

jammer power in the radar receiver is

J = kT,B, Eq. (2.62)

where T is the jammer effective temperature. It follows that the total jammer plus noise
power in the radar receiver is given by

N;+J = kT B, +kT,B,. Eq. (2.63)

In this case, the radar detection range is now limited by the receiver signal-to-noise plus inter-
ference ratio rather than SNR. More precisely,
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S PG\
(I+N) = 5 < Eq. (2.64)
(47)’k(T,+ T,)B,LR

The amount of reduction in the signal-to-noise plus interference ratio because of the jammer
effect is computed from the difference between Egs. (2.60) and (2.64). It is expressed (in dB)
by

T
Y = 10.0 x log(l + .T;/) ) Eq. (2.65)

s

Consequently, the RRF is

-Y
RRF = 10%. Eq. (2.66)

2.7. Bistatic Radar Equation

Radar systems that use the same antenna for both transmitting and receiving are called
monostatic radars. Bistatic radars use transmit and receive antennas that are placed at different
locations. Under this definition CW radars, although they use separate transmit and receive
antennas, are not considered bistatic radars unless the distance between the two antennas is
considerable. Figure 2.11 shows the geometry associated with bistatic radars. The angle, B, is
called the bistatic angle. A synchronization link between the transmitter and receiver is
necessary in order to maximize the receiver’s knowledge of the transmitted signal so that it can
extract maximum target information.

§ transmitter receiver

A

\J

Figure 2.11. Bistatic radar geometry.

The synchronization link may provide the receiver with the following information: (1) the
transmitted frequency in order to compute the Doppler shift, and (2) the transmit time or phase

reference in order to measure the total scattered path (R, + R, ). Frequency and phase reference
synchronization can be maintained through line-of-sight communications between the

transmitter and receiver. However, if this is not possible, the receiver may use a stable
reference oscillator for synchronization.
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One major distinction between monostatic and bistatic radar operations has to do with the
measured bistatic target RCS, denoted by . In the case of a small bistatic angle, the bistatic

RCS is similar to the monostatic RCS; but, as the bistatic angle approaches 180°, the bistatic
RCS becomes very large and can be approximated by

oy~ (4nd;)/0 Eq. (2.67)

m

where A is the wavelength and 4, is the target projected area.

The bistatic radar equation can be derived in a similar fashion to the monostatic radar
equation. Referring to Fig. 2.11, the power density at the target is

P, = (P,G,)/(4nR}) Eq. (2.68)
where P, is the peak transmitted power, G, is the gain of the transmitting antenna, and R, is
the range from the radar transmitter to the target.

The effective power scattered off a target with bistatic RCS o is
P' = Pyoy, Eq. (2.69)
and the power density at the receiver antenna is
P’ Ppog

s = = Eq. (2.70)
4nR,  4nR

I

Prefl =

R, is the range from the target to the receiver. Substituting Eq. (2.68) into Eq. (2.70) yields

P.G
Py = el Eq. (2.71)
(41)’R’R

The total power delivered to the signal processor by a receiver antenna with aperture 4, is

P, = PiGopd, Eq. (2.72)
P 4n)RR A
tohr
Substituting (G,.kz/ 4m) for 4, yields
2
P - P,G,G, A oy Eq. (2.73)
P an) R A
o

where G, is the gain of the receive antenna. Finally, when transmitter and receiver losses, L,
and L, , are taken into consideration, the bistatic radar equation can be written as

P,G,G )\
p,, = 2 05 Eq. (2.74)

(4n)’R°R’L,L,

2.8. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely proportional to the radar
losses. Hence, any increase in radar losses causes a drop in the SNR, thus decreasing the
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probability of detection, since it is a function of the SNR. Often, the principal difference
between a good radar design and a poor radar design is the radar losses. Radar losses include
ohmic (resistance) losses and statistical losses. In this section, a brief summary of radar losses
is presented.

2.8.1 Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna input port, and
between the antenna output port and the receiver front end, respectively. Such losses are often
called plumbing losses. Typically, plumbing losses are on the order of 1 to 2 dB.

2.8.2 Antenna Pattern Loss and Scan Loss

So far, when using the radar equation, maximum antenna gain was assumed. This is true
only if the target is located along the antenna’s boresight axis. However, as the radar scans
across a target, the antenna gain in the direction of the target is less than maximum, as defined
by the antenna’s radiation pattern. The loss in the SNR due to not having maximum antenna
gain on the target at all times is called the antenna pattern (shape) loss. Once an antenna has
been selected for a given radar, the amount of antenna pattern loss can be mathematically
computed.

For example, consider a sinx/x antenna radiation pattern as shown in Fig. 2.12. It follows
that the average antenna gain over an angular region of £6/2 about the boresight axis is
2n2
nr\“0
G zlf(—-—-)—-— Eq. (2.75
av }\‘ 36 q ( )
where r is the aperture radius and A is the wavelength. In practice, Gaussian antenna patterns

are often adopted. In this case, if 0,,, denotes the antenna 3dB beam width, then the antenna
gain can be approximated by

2
G(0) = exp(—MZ—@J . Eq. (2.76)
3dB

If the antenna scanning rate is so fast that the gain on receive is not the same as on transmit,
additional scan loss has to be calculated and added to the beam shape loss. Scan loss can be
computed in a similar fashion to beam shape loss. Phased array radars are often prime candi-
dates for both beam shape and scan losses.

2.8.3 Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects will appear in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency, target range,
and elevation angle. Atmospheric attenuation can be as high as a few dB.

2.8.4 Collapsing Loss

When the number of integrated returned noise pulses is larger than the target returned pulses,
a drop in the SNR occurs. This is called collapsing loss. The collapsing loss factor is defined as
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Eq. (2.77)

where 7 is the number of pulses containing both signal and noise, while m is the number of
pulses containing noise only. Radars detect targets in azimuth, range, and Doppler. When target
returns are displayed in one coordinate, such as range, noise sources from azimuth cells adja-
cent to the actual target return converge in the target vicinity and cause a drop in the SNR. This
is illustrated in Fig. 2.13.
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Figure 2.12. Normalized (sin x/x) antenna pattern.

Figure 2.13. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5
converge to increase the noise level in cell 3.
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2.8.5 Processing Loss
a. Detector Approximation

The output voltage signal of a radar receiver that utilizes a linear detector is

(1) = V() +vg(t) Eq. (2.78)

where (v, vy) are the in-phase and quadrature components. For a radar using a square law
2 2 2
detector, we have v (1) = v (1) +vy(?).

Since in real hardware the operations of squares and square roots are time consuming, many
algorithms have been developed for detector approximation. This approximation results in a
loss of signal power, typically 0.5 to 1dB.

b. Constant False Alarm Rate (CFAR) Loss

In many cases the radar detection threshold is constantly adjusted as a function of the
receiver noise level in order to maintain a constant false alarm rate. For this purpose, Constant
False Alarm Rate (CFAR) processors are utilized in order to keep the number of false alarms
under control in a changing and unknown background of interference. CFAR processing can
cause a loss in the SNR level on the order of 1dB.

Three different types of CFAR processors are primarily used. They are adaptive threshold
CFAR, nonparametric CFAR, and nonlinear receiver techniques. Adaptive CFAR assumes that
the interference distribution is known and approximates the unknown parameters associated
with these distributions. Nonparametric CFAR processors tend to accommodate unknown
interference distributions. Nonlinear receiver techniques attempt to normalize the root-mean-
square amplitude of the interference.

c. Quantization Loss

Finite word length (number of bits) and quantization noise cause an increase in the noise
power density at the output of the Analog-to-Digital (A/D) converter. The A/D noise level is

qZ/ 12, where ¢ is the quantization level.
d. Range Gate Straddle

The radar receiver is normally mechanized as a series of contiguous range gates (bins). Each
range bin is implemented as an integrator matched to the transmitted pulse width. Since the
radar receiver acts as a filter that smears (smooths), the received target echoes. The smoothed
target return envelope is normally straddled to cover more than one range gate.

Typically, three gates are affected; they are called the early, on, and late gates. If a point
target is located exactly at the center of a range gate, then the early and late samples are equal.
However, as the target starts to move into the next gate, the late sample becomes larger while
the early sample gets smaller. In any case, the amplitudes of all three samples should always
roughly add up to the same value. Fig. 2.14 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shape. In practice, triangular
shaped envelopes may be easier and faster to implement.

Since the target is likely to fall anywhere between two adjacent range bins, a loss in the SNR
occurs (per range gate). More specifically, a target’s returned energy is split between three
range bins. Typically, straddle loss of about 2 to 3dB is not unusual.
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(b) Target on the boundary between two range gates

Figure 2.14. Illustration of range gate straddling.

Example:

Consider the smoothed target echo voltage shown below. Assume 1Q resistance. Find the

power loss due to range gate straddling over the interval {0, T} .

V()

time

Solution:

The smoothed voltage can be written as
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K+(K:1)t <0
v(t) =
Kf(Kjl)t >0

The power loss due to straddle over the interval {0, t} is

2 2
L =X = l—Z(E—ﬂ)t+(K+l) £

$ K2 Kt Kt
The average power loss is then
/2
_ 2 2
Lszg.[(l_z(KJrl)H(KJrl) t2) dt=1—K+1+(K+l)
T Kt Kt 2K 12K

0

and, for example, if K = 15, then Ly = 2.5dB..

e. Doppler Filter Straddle

Doppler filter straddle is similar to range gate straddle. However, in this case the Doppler
filter spectrum is spread (widened) due to weighting functions. Weighting functions are
normally used to reduce the sidelobe levels. Since the target Doppler frequency can fall
anywhere between two Doppler filters, signal loss occurs. This is illustrated in Fig. 2.15, where

due to weighting, the cross-over frequency f,, is smaller than the filter cutoff frequency f,,

which normally corresponds to the 3dB power point.
f- Other Losses

Other losses may include equipment losses due to aging radar hardware, matched filter loss,
and antenna efficiency loss. Tracking radars suffer from cross-over (squint) loss.

2.9. Noise Figure

Any signal other than the target returns in the radar receiver is considered to be noise. This
includes interfering signals from outside the radar and thermal noise generated within the
receiver itself. Thermal noise (thermal agitation of electrons) and shot noise (variation in
carrier density of a semiconductor) are the two main internal noise sources within a radar
receiver.

The power spectral density of thermal noise is given by

5,(0) = ——Lalh
n[exp(%} — l}

where || is the absolute value of the frequency in radians per second, T is the temperature of
the conducting medium in degrees Kelvin, k is Boltzman’s constant, and / is Planck’s con-
stant (h = 6.625 x 10°* Joule s). When the condition |o| « 2nkT/h is true, it can be
shown that Eq. (2.79) is approximated by

Eq. (2.79)
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Figure 2.15. Due to windowing, the cross-over frequency may become smaller
than the cutoff frequency.

S, (®)=2kT Eq. (2.80)

This approximation is widely accepted, since, in practice, radar systems operate at frequencies
less than 100G Hz ; and, for example, if 7 = 290K, then 2nkT/h ~ 6000GHz .

The mean-square noise voltage (noise power) generated across a 1ohm resistance is then

2nB
(n) = 2Ln I 2T deo = 4kTB Eq. (2.81)
—-2nB

where B is the system bandwidth in hertz.

Any electrical system containing thermal noise and having input resistance R;, can be
replaced by an equivalent noiseless system with a series combination of a noise equivalent
voltage source and a noiseless input resistor R;, added at its input. This is illustrated in Fig.

2.16. The amount of noise power that can physically be extracted from <n2> is one fourth the
value computed in Eq. (2.81). Consider a noisy system with power gain 4, as shown in Fig.
2.17. The noise figure is defined by

F.. =10 lo : total noise power out
noise power out due to R

- Eq. (2.82)
in

More precisely,



Noise Figure 59

R.

in .
noiseless

(n°y = 4kTBR,, system

Figure 2.16. Noiseless system with an input noise voltage source.

in

(nHE

Figure 2.17. Noisy amplifier replaced by its noiseless equivalent
and an input voltage source in series with a resistor.

N
Fu5 = 10 log—= Eq. (2.83)

N; 4,

where N, and N, are, respectively, the noise power at the output and input of the system.

If we define the input and output signal power by S; and S, respectively, then the power

gain is
S
A, = 2. Eq. (2.84
P Si q. ( )
It follows that
F,, = 101 (S[/Ni) = (S’) (S") Eq. (2.85
a5 o8 Sa/No - Nl dBi No dB q.( . )
where
& - €. 20
—| >|=] . q. (2.
Nl dB Na dB

Thus, the noise figure is the loss in the signal-to-noise ratio due to the added thermal noise of
the amplifier ((SNR), = (SNR),—F in dB).

One can also express the noise figure in terms of the system’s effective temperature T, .
Consider the amplifier shown in Fig. 2.17, and let its effective temperature be 7, . Assume the

input noise temperature is 7, . Thus, the input noise power is

N, = kT,B Eq. (2.87)
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and the output noise power is
N, = kT,B A,+kT,B A, Eq. (2.88)

where the first term on the right-hand side of Eq. (2.88) corresponds to the input noise, and the
latter term is due to thermal noise generated inside the system. It follows that the noise figure
can be expressed as

_ ONBY _ S gy LT L Eq. (2.89)
(SNR), _ kT,B » TS 7 q. (2.
Equivalently, we can write
T, = (F-1T,. Eq. (2.90)

Example:

An amplifier has a 4dB noise figure; the bandwidth is B = 500KHz . Calculate the input sig-
nal power that yields a unity SNR at the output. Assume T, = 290K and an input resistance of
lohm.

Solution:
The input noise power is
kT,B = 138 x 10> x290 x 500 x 10° = 2.0 x 10" "W

Assuming a voltage signal, then the input noise mean squared voltage is

(n}y = kT,B = 20x10 " v

F=10"=251.

From the noise figure definition we get

Si _ (So),
J_\Z_FN =F

(s = F(n)y = 2.51x2.0x10 "7 = 502x10 " 17,
Finally,

J(sDy = 70.852nv.

Consider a cascaded system as in Fig. 2.18. Network 1 is defined by noise figure /', power
gain G, , bandwidth B, and temperature T, . Similarly, network 2 is defined by F,, G,, B,
and T,, . Assume the input noise has temperature 7|,. The output signal power is

S, = S,G,G,. Eq. (2.91)
The input and output noise powers are, respectively, given by

N, = kT,B Eq. (2.92)
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network 1 network 2
S, S,
" T.:GiF, > TG, F——>
N, N,

Figure 2.18. Cascaded linear system.

N, = kTyBG,G,+ kT, BG,G, + kT,,BG, Eq. (2.93)

where the three terms on the right-hand side of Eq. (2.93), respectively, correspond to the input
noise power, thermal noise generated inside network 1, and thermal noise generated inside net-
work 2.

Now, use the relation 7, = (F—1)T, along with Eq. (2.91) and Eq. (2.92) to express the

e

overall output noise power as
N, = F\N,G,G,+ (F,—1)N,G,. Eq. (2.94)

It follows that the overall noise figure for the cascaded system is

S./N; F,—1
F = (Si/ND) - _ F+—2—. Eq. (2.95)
(S,/N,) G,
In general, for an n-stage system we get
F,—-1 F;—1 F,—1
F=F+ + ++ ) Eq. (2.96)
G, G,G, GGGy - - -G,
Also, the n-stage system effective temperatures can be computed as
TeZ Te3 Ten
T,=T, +2+ o+ : Eq. (2.97)
G, GG, GGGy - - -G,

As suggested by Eq. (2.96) and Eq. (2.97), the overall noise figure is mainly dominated by the
first stage. Thus, radar receivers employ low-noise power amplifiers in the first stage in order
to minimize the overall receiver noise figure. However, for radar systems that are built for low
RCS operations, every stage should be included in the analysis.

Example:

A radar receiver consists of an antenna with cable loss L = 1dB = F|, an RF amplifier with
F, = 6dB, and gain G, = 20dB, followed by a mixer whose noise figure is Fy, = 10dB
and conversion loss L = 8dB, and finally, an integrated circuit IF amplifier with F, = 6dB
and gain G, = 60dB . Find the overall noise figure.
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Solution:

From Eq. (2.96)

G, |G, |G |G, |F F, | F, |F,

—1dB | 20dB | -8dB | 60dB | 1dB 6dB 10dB | 6dB
0.7943| 100 0.1585| 10° 1.2589| 3.9811| 10 3.9811

1t follows that
F = 12589+

39811 -1, 10-1 39811-1
0.7943 100 x 0.7943  0.158 x 100 x 0.7943

F = 10log(5.3628) = 7.294dB .

= 5.3629

2.10. Continuous Wave (CW) Radars

As mentioned earlier, in order to avoid interruption of the continuous radar energy emission,
two antennas are used in CW radars, one for transmission and one for reception. Figure 2.19
shows a simplified CW radar block diagram. The appropriate values of the signal frequency at
different locations are noted on the diagram. The individual Narrow Band Filters (NBF) must
be as narrow as possible in bandwidth in order to allow accurate Doppler measurements and
minimize the amount of noise power. In theory, the operating bandwidth of a CW radar is
infinitesimal (since it corresponds to an infinite duration continuous sinewave). However,
systems with infinitesimal bandwidths cannot physically exist, and thus, the bandwidth of CW
radars is assumed to correspond to that of a gated CW waveform.

The NBF bank (Doppler filter bank) can be implemented using a Fast Fourier Transform
(FFT). If the Doppler filter bank is implemented using an FFT of size Ngp;, and if the

individual NBF bandwidth (FFT bin) is Af, then the effective radar Doppler bandwidth is
NpprAf/2 . The reason for the one-half factor is to account for both negative and positive

Doppler shifts. The frequency resolution Af is proportional to the inverse of the integration
time.

Since range is computed from the radar echoes by measuring a two-way time delay, single
frequency CW radars cannot measure target range. In order for CW radars to be able to
measure target range, the transmit and receive waveforms must have some sort of timing
marks. By comparing the timing marks at transmit and receive, CW radars can extract target
range. The timing mark can be implemented by modulating the transmit waveform, and one
commonly used technique is Linear Frequency Modulation (LFM). Before we discuss LFM
signals, we will first introduce the CW radar equation and briefly address the general
Frequency Modulated (FM) waveforms using sinusoidal modulating signals.

2.10.1 CW Radar Equation

As indicated by Fig. 2.19, the CW radar receiver declares detection at the output of a
particular Doppler bin if that output value passes the detection threshold within the detector
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box. Since the NBF bank is implemented by an FFT, only finite length data sets can be
processed at a time. The length of such blocks is normally referred to as the dwell interval,
integration time, or coherent processing interval. The dwell interval determines the frequency
resolution or the bandwidth of the individual NBFs. More precisely,

Af = I/TDWQU' Eq. (2.98)

Tpenr 18 the dwell interval. Therefore, once the maximum resolvable frequency by the NBF
bank is chosen the size of the NBF bank is computed as

Nppr = 2B/Af. Eq. (2.99)

B is the maximum resolvable frequency by the FFT. The factor 2 is needed to account for
both positive and negative Doppler shifts. It follows that

Tpyenn = Nppr/2B. Eq. (2.100)

The CW radar equation can now be derived. Consider the radar equation developed earlier in
this chapter. That is
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Figure 2.19. CW radar block diagram.
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242
P, TG A
SNR = —-—413—-2——-3- Eq. (2.101)
(4n)’R'kT,FL

where P,, = (t/T)P,, ©/T,and P, is the peak transmitted power. In CW radars, the average
transmitted power over the dwell interval P, and 7 must be replaced by T}, . Thus, the
CW radar equation can be written as

2
_ PCWTDwelthGr}\‘ c
SNR = (4Tc)3R4kT il Eq. (2.102)
o

win

where G, and G, are the transmit and receive antenna gains, respectively. The factor L, isa
loss term associated with the type of window (weighting) used in computing the FFT.

2.10.2 Frequency Modulation

The discussion presented in this section will be restricted to sinusoidal modulating signals.
In this case, the general formula for an FM waveform can be expressed by

t
x(t) = Acos 2nf0t+k/jcos2nfmudu . Eq. (2.103)
0

/o 1s the radar operating frequency (carrier frequency), cos2nf, ¢t is the modulating signal,

A is a constant, and k, = 27mAf,, . ., where Af,, .. is the peak frequency deviation. The
phase is given by
t
y(r) = 2nf0t+2nA];eakIcos2nfmudu = 2nfyt+ Psin2nf, ¢ Eq. (2.104)

0

where [ is the FM modulation index given by

B = A__z___f eak Eq. (2.105)

I

Let x,(¢) be the received radar signal from a target at range R . It follows that

x,(t) = A,cos(2nfy(t—At) + Bsin2nf, (t — At)) Eq. (2.106)
where the delay At is

At = (2R)/c. Eq. (2.107)
c is the speed of light. CW radar receivers utilize phase detectors in order to extract target
range from the instantaneous frequency, as illustrated in Fig. 2.20. A good measurement of the
phase detector output y(¢) implies a good measurement of Az, and hence range.
Consider the FM waveform x(#) given by

x(t) = Acos(2nfyt + Bsin2nf,t) Eq. (2.108)
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x,(1) y(t) = K cosmw,, At

|

phase
detector

Figure 2.20. Extracting range from an FM signal return. K, is a constant.

which can be written as

janfyr jBsin2nf,t
e

x(t) = ARe{e } Eq. (2.109)

where Re{ } denotes the real part. Since the signal exp(jBsin2nf,,t) is periodic with period
T = 1/f, 1t can be expressed using the complex exponential Fourier series as

0
Bsin2nf ¢ in2mf,t
ejﬁﬁm ol _ Z Cne’]” o Eq. (2.110)

n=—-0
where the Fourier series coefficients C,, are given by
T
T
= %Ie’ﬁsm Ml IR gy Eq. (2.111)
T

-7

Make the change of variable u = 2mf, ¢, and recognize that the Bessel function of the first
kind of order n is

J,(B) = ﬁjeﬂww*m) du. Eq. (2.112)
—T

Thus, the Fourier series coefficients are C, = J,(B), and consequently Eq. (2.110) can now
be written as

iBsin2mnf in2nf, t
SPSn2t Z J.(B)e" ol | Eq. (2.113)
n = -0

which is known as the Bessel-Jacobi equation. Figure 2.21 shows a plot of Bessel functions of
the first kind for n = 0, 1, 2, 3.

The total power in the signal s(¢) is
| 21 2
P =34 z VaB)" = 347 Eq. (2.114)

n=-mw

Substituting Eq. (2.113) into Eq. (2.109) yields
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Figure 2.21. Plot of Bessel functions of order 0, 1, 2, and 3.

x(t) = ARel ™™ z J,pye" L Eq. (2.115)
Expanding Eq. (2.115) yields
x(t) = 4 Z J,(B)cos(2nfy + n2nf,)t. Eq. (2.116)

n= -0

Finally, since J,(B) = J_,(B) for n odd and J,(B) = —J_,(B) for n even one can rewrite
Eq. (2.116) as

x(t) = A{Jy(B)cos2nfyt +J,(B)[cos(2nf, + 2mf,, )t — cos(2nfy—2mf,, )] Eq. (2.117)
+J,(B)[cos(2nfy + 4nf,,)t + cos(2nfy—4nf,, )]
+J5(B)[cos(2nf, + 67f,,)t — cos(2mf,—OTf,,)t]
+J4(B)[cos((2nf, + 8nf,, )t + cos(2nf,—8nf,)t)] + ...}

which can be rewritten as

o0

x(t) = A Jy(B)cos2rfyt + Z J,(B)[cos(2nf, + 2nmnf, )t + Eq. (10.117b)

n=even

0

cos(2nfy—2nnf, )t] + z J,(B)[cos(2nfy + 2gnf, )t — cos(2nfy—2qnf,, )]

q = odd
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The spectrum of x(¢) is composed of pairs of spectral lines centered at f,, as sketched in
Fig. 2.22. The spacing between adjacent spectral lines is f,, . The central spectral line has an
amplitude equal to 4J,(P) , while the amplitude of the nth spectral line is AJ,(B) .

As indicated by Eq. (2.117) the bandwidth of FM signals is infinite. However, the
magnitudes of spectral lines of the higher orders are small, and thus the bandwidth can be
approximated using Carson’s rule,

B~2(B+1)f, Eq. (2.118)

When B is small, only J,(B) and J,(p) have significant values. Thus, we may approximate
Eq. (2.117) by

x(t) = A{Jy(B)cos2nfyt + J,(B)[cos(2nfy + 2xf,,)t — cos(2nfy—2nf,)t]} . Eq.(2.119)
Finally, for small B, the Bessel functions can be approximated by

Jo(B) =1 Eq. (2.120)

J(B)=P/2. Eq. (2.121)

Thus, Eq. (2.119) may be approximated by

x(t)= A{cos2nf0t + %B[cos(%tfo +2nf,)t— COS(2TCf0—2TCfm)t]}. Eq. (2.122)

- fo >=fm’< »‘fm

p=1 p=

Figure 2.22. Amplitude line spectra sketch for FM signal.

Example:
If the modulation index is B = 0.5, give an expression for the signal s(t).
Solution:

From Bessel function tables we get J,(0.5) = 0.9385 and J,(0.5) = 0.2423; then using
Eq. (2.119) we get

x() ~ A{(0.9385)cos2nfyt + (0.2423)[ cos(27f, + 27f,, )t — cos (2nfy—27f, )t]} .
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Example:

Consider an FM transmitter with output signal s(t) = 100cos(20007t+ ¢@(t)). The
frequency deviation is 4Hz, and the modulating waveform is x(t) = 10cos16nt. Determine

the FM signal bandwidth. How many spectral lines will pass through a bandpass filter whose
bandwidth is 58 Hz centered at 1000Hz ?

Solution:

The peak frequency deviation is Af,,,, = 4x 10 = 40Hz. It follows that

'3: Afgeak: f"__(_) =5,
S 8

Using Eq. (2.118) we get
B=2(B+1)f, =2x(5+1)x8 = 96Hz

However, only seven spectral lines pass through the bandpass filter as illustrated in the figure
shown below.

a =
amplitude/100 IQN :m

frequency

976

984 —

992
1000
1008
1024

2.10.3 Linear Frequency Modulated CW Radar

Continuous Wave radars may use LFM waveforms so that both range and Doppler
information can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus, periodicity in the modulation is normally
utilized. Figure 2.23 shows a sketch of a triangular LFM waveform. The modulation does not
need to be triangular; it may be sinusoidal, sawtoothed, or some other form. The dashed line in
Fig. 2.23 represents the return waveform from a stationary target at range R. The beat
frequency f, is also sketched in Fig. 2.23. It is defined as the difference (due to heterodyning)

between the transmitted and received signals. The time delay A¢ is a measure of target range;
that is,

At = (2R)/c. Eq. (2.123)
In practice, the modulating frequency f,, is selected such that
1
-1 Eq. (2.124
fn =5 ; q. (2.124)

The rate of frequency change, £, is
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Figure 2.23. Transmitted and received triangular LFM signals and beat
frequency for stationary target.

p=AM oA 2 Af Eq. (2.125)

f, = Atf == f. Eq. (2.126)
Equation (2.126) can be rearranged as

. C
f= 37 1 Eq. (2.127)
Equating Egs. (2.125) and (2.127) and solving for f; yields

f» = (4Rf,,AN/c. Eq. (2.128)

Now consider the case when Doppler is present (i.e., non-stationary target). The
corresponding triangular LFM transmitted and received waveforms are sketched in Fig. 2.24,
along with the corresponding beat frequency. As previously noted the beat frequency is
defined as

fb = freceived 7ftransmitted . Eq. (2.129)

When the target is not stationary, the received signal will contain a Doppler shift term in
addition to the frequency shift due to the time delay A¢. In this case, the Doppler shift term

subtracts from the beat frequency during the positive portion of the slope. Alternatively, the
two terms add up during the negative portion of the slope. Denote the beat frequency during

the positive (up) and negative (down) portions of the slope, respectively, as f;, and f;,. It
follows that
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Figure 2.24. Transmitted and received LFM signals and beat frequency, for a
moving target.

fou = =f-=2 Eq. (2.130)
where R is the range rate or the target radial velocity as seen by the radar. The first term of the
right-hand side of Eq. (2.130) is due to the range delay defined by Eq. (2.123), while the sec-
ond term is due to the target Doppler. Similarly,

2R, .
foa = ?f+% . Eq. (2.131)

Range is computed by adding Eq. (2.130) and Eq. (2.131). More precisely,

c
R = =(fpu t/pa) - Eq. (2.132)
47 bu " Jbd
The range rate is computed by subtracting Eq. (2.131) from Eq. (2.130),
Y
R = 3ba=Tou)- Eq. (2.133)

As indicated by Eqgs. (2.132) and (2.133), CW radars utilizing triangular LFM can extract
both range and range rate information. In practice, the maximum time delay A¢,,,. is normally

selected as

= 0.1¢,. Eq. (2.134)

R == = == Eq. (2.135)

and the maximum unambiguous range will correspond to a shift equal to 2¢,.
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2.10.4 Multiple Frequency CW Radar

Continuous wave radars do not have to use LFM waveforms in order to obtain good range
measurements. Multiple frequency schemes allow CW radars to compute very adequate range
measurements without using frequency modulation. In order to illustrate this concept, first
consider a CW radar with the following waveform

x(t) = Asin2nfyt. Eq. (2.136)
The received signal from a target at range R is
x.(6)= A,sin(2nfyt— o) Eq. (2.137)

where the phase ¢ is equal to

¢ = 2nfy(2R/c). Eq. (2.138)

Solving for R we obtain
R=<0 -~ Eq. (2.139
T I, At a. (2439)

Clearly, the maximum unambiguous range occurs when ¢ is maximum, i.e., @ = 2m.
Therefore, even for relatively large radar wavelengths, R is limited to impractical small
values. Next, consider a radar with two CW signals, denoted by x,(#) and x,(f). More

precisely,
x,(t) = A,sin2nf,t Eq. (2.140)
x,(t) = A,sin2mfyt. Eq. (2.141)
The received signals from a moving target are

xX,,(f) = 4, sin(2nf -0, Eq. (2.142)

Xy, (1) = A,,sin(27fsi—¢,) Eq. (2.143)

where ¢, = (4nfiR)/c and @, = (4nf,R)/c. After heterodyning (mixing) with the carrier
frequency, the phase difference between the two received signals is

4nR 47 R
P2=01 = A0 = —=(f,-fi) = — A Eq. (2.144)

Again R is maximum when A = 2m; it follows that the maximum unambiguous range is
now

R = ¢/2Af Eq. (2.145)

and since Af« c, the range computed by Eq. (2.145) is much greater than that computed by
Eq. (2.139), thus, indicating an increase in the unambiguous range when using more than one
frequency.
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2.11. MATLAB Program “range_calc.m”

The program “range _calc.m” solves the radar range equation of the form

R =

Eq. (2.146)

1
{ Paf.T,.G,G\c )
(4n)’kT,FL(SNR)

where P, is peak transmitted power, T is pulse width, f, is PRF, G, and G, are respectively
the transmitting and receiving antenna gain, A is wavelength, ¢ is target cross section, k is
Boltzman’s constant, T, is 290 kelvin, F is system noise figure, L is total system losses, and
(SNR), is the minimum SNR required for detection.

One can choose either CW or pulsed radars. In the case of CW radars, the term P,tf, is
replaced within the code by the average CW power P, . Additionally, the term 7 refers to
the dwell interval. Alternatively, in the case of pulse radars T; denotes the time on target. The
plot inside Fig. 2.25 shows an example of the SNR versus the detection range for a pulse radar
using the parameters shown in the figure. A MATLAB-based Graphical User Interface (GUI)
(see Fig. 2.25) is utilized in inputting and editing all input parameters. The outputs include the
maximum detection range versus minimum SNR plots.

40 T T T T T T T T T Radar Type
! ! ! ! ! i
; Fulsed
Qutput Desired
ShR - dB
fun] Range - Km
=
=
s
&
Go
it
50 i i i i i i i i i
0 100 200 300 400 500 w00 70O 800 900 1000
Range in Km
Ti - m =ec 10 Poawne -0 1000
peak power - YW 1500 Gt - dB 20 noise figure - dE 7
tau - mzec 2 frequency - Hz 5 Feg loszes - dB 15
PRF - Hz 10 RCS - m square 1 (MR - db 15
Gt -dB 20 To - Kelving 300 range - Km 250
Figure 2.25. GUI work space associated with the program “range_calc.m.”




Problems 73

Problems

2.1. Compute the aperture size for an X-band antenna at f, = 9GHz. Assume antenna
gain G = 10, 20, 30dB.

2.2. An L-band radar (1500MHz) uses an antenna whose gain is G = 304B . Compute the
aperture size. If the radar duty cycle is d, = 0.2 and the average power is 25KW, compute the

power density at range R = 50Km .
2.3. For the radar described in Problem 2.2, assume the minimum detectable signal is

S5dBm . Compute the radar maximum range for ¢ = 1.0, 10.0, 20.0m2 .
2.4. Consider an L-band radar with the following specifications: operating frequency
fo = 1500MHz, bandwidth B = 5MHz, and antenna gain G = 5000. Compute the peak

power, the pulse width, and the minimum detectable signal for this radar. Assume target RCS

c = 10m2, the single pulse SNR is 15.4dB, noise figure F = 5dB, temperature
T, = 290K, and maximum range R,,,, = 150Km.

2.5. Repeat the example in Section 2.1 with P, = 1MW, G = 40dB,and ¢ = 0.5m".
2.6. Show that the DC component is the dominant spectral line for high PRF waveforms.
2.7. Repeat the example in Section 2.3 with L = 5dB, F = 10dB, T = 500K,
T, =15s,d, = 025,and R = 75Km.

2.

8. Consider a low PRF C-band radar operating at f, = 5000M/Hz . The antenna has a cir-
cular aperture with radius 2m . The peak power is P, = 1MW and the pulse width is
v = 2us. The PRF is f, = 250Hz, and the effective temperature is 7;, = 600K . Assume

radar losses L = 15dB and target RCS ¢ = 10m>. (a) Calculate the radar’s unambiguous
range; (b) calculate the range R,, that corresponds to SNR = 0dB ; (c) calculate the SNR at
R = 0.75R,.

2.9. The atmospheric attenuation can be included in the radar equation as another loss term.
Consider an X-band radar whose detection range at 20Km includes a 0.25dB/Km atmo-
spheric loss. Calculate the corresponding detection range with no atmospheric attenuation.

2.10. Letthe maximum unambiguous range for a low PRF radar be R . (a) Calculate the

max

SNR at (1/2)R,,. and (3/4)R (b) If a target with o = 10m° exists at

R = (1/2)R what should the target RCS be at R = (3/4)R

same signal strength from both targets.
2.11. A Millie-Meter Wave (MMW) radar has the following specifications: operating fre-
quency f, = 94GHz,PRF f, = 15KHz, pulse width t© = 0.05ms, peak power P, = 10W,

max

so that the radar has the

max > max

noise figure F = 5dB, circular antenna with diameter D = 0.254m, antenna gain
G = 30dB, target RCS ¢ = 1m? , system losses L = 8dB, radar scan time T, = 3s, radar

angular coverage 200°, and atmospheric attenuation 3dB/Km . Compute the following: (a)
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wavelength A ; (b) range resolution AR ; (¢) bandwidth B ; (d) the SNR as a function of range;

(e) the range for which SNR = 15dB ; (f) antenna beam width; (g) antenna scan rate; (h) time
on target; (i) the effective maximum range when atmospheric attenuation is considered.

2.12. Repeat the second example in Section 2.4 with Q = 4° o = lmz, and

R = 400Km .

2.13. Using Eq. (2.53), compute (as a function of B,/ B ) the cross-over range for the radar
in Problem 2.11. Assume P, = 100W, G, = 10dB,and L, = 2dB.

2.14. Compute (as a function of B,/ B) the cross-over range for the radar in Problem 2.11.
Assume P, = 200W, G, = 15dB,and L, = 2dB . Assume G' = 12dB and R, = 25Km .

2.15. A certain radar is subject to interference from an SSJ jammer. Assume the following
parameters: radar peak power P, = 55KW , radar antenna gain G = 30dB , radar pulse width
Tt = 2us, radar losses L = 10d4B, jammer power P, = 150/, jammer antenna gain
G, = 12dB, jammer bandwidth B; = 50MHz, and jammer losses L, = 1dB . Compute the
cross-over range for a 5m’” target.

2.16. A certain radar has losses of 6dB and a receiver noise figure of 8dB. It has the
requirement to detect targets within a search sector that is 360 degrees in azimuth and from 5 to
65 degrees in elevation. It must cover the search sector in 2 seconds. The RCS of the targets of
interest is SdBsm and the radar requires 20dB of signal-to-noise ratio to declare a detection.
The required detection range of the radar is 75Km. What is the average power aperture that
the radar must have to satisfy the above search requirements

2.17. Using Fig. 2.11 derive an expression for R, . Assume 100% synchronization between
the transmitter and receiver.

2.18. A radar with antenna gain G is subject to a repeater jammer whose antenna gain is
G, . The repeater illuminates the radar with three fourths of the incident power on the jammer.

(a) Find an expression for the ratio between the power received by the jammer and the power
received by the radar; (b) what is this ratio when G = G, = 200 and R/A = 10°?

2.19. An X-band airborne radar transmitter and an air-to-air missile receiver act as a
bistatic radar system. The transmitter guides the missile toward its target by continuously illu-
minating the target with a CW signal. The transmitter has the following specifications: peak
power P, = 4KW; antenna gain G, = 25dB ; operating frequency f, = 9.5GHz . The mis-
sile receiver has the following characteristics: aperture A, = 0.01 m’; bandwidth
B = 750Hz ; noise figure F' = 7dB ; and losses L, = 2dB . Assume that the bistatic RCS is
Gy = 3m”. Assume R, = 35Km; R, = 17Km . Compute the SNR at the missile.

2.20. Repeat the previous problem when there is 0.1dB/Km atmospheric attenuation.
2.21. Consider an antenna with a sinx/x pattern. Let x = (wrsin0)/A, where r is the
antenna radius, A is the wavelength, and 6 is the off-boresight angle. Derive Eq. (2.75). Hint:
Assume small x, and expand sinx/x as an infinite series.

2.22. Compute the amount of antenna pattern loss for a phased array antenna whose two-

4
way pattern is approximated by f(y) = [exp(—21n2(y/63d3)2)] where 0,,; is the 3dB
beam width. Assume circular symmetry.
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2.23. A certain radar has a range gate size of 30m . Due to range gate straddle, the enve-
lope of a received pulse can be approximated by a triangular spread over three range bins. A
target is detected in range bin 90. You need to find the exact target position with respect to the
center of the range cell. (a) Develop an algorithm to determine the position of a target with
respect to the center of the cell; (b) assuming that the early, on, and late measurements are,

respectively, equal to 4/6, 5/6, and 1/6, compute the exact target position.
2.24. Compute the amount of Doppler filter straddle loss for the filter defined by
1
H(f) =
1+d° ]2
f. = 350Hz.

Assume half-power frequency f;,; = 500Hz and cross-over frequency

2.25. A radar has the following parameters: Peak power P, = 65KW; total losses
L = 5dB; operating frequency f, = 8 GHz; PRF f, = 4KHz; duty cycle d, = 0.3 ; circular
antenna with diameter D = 1m ; effective aperture is 0.7 of physical aperture; noise figure

F = 8dB. (a) Derive the various parameters needed in the radar equation; (b) What is the
unambiguous range? (c) Plot the SNR versus range (1Km to the radar unambiguous range) for
a 5dBsm target. (d) If the minimum SNR required for detection is 14dB, what is the detection
range for a 6dBsm target? What is the detection range if the SNR threshold requirement is
raised to 18dB?

2.26. A radar has the following parameters: Peak power P, = S0KW; total losses
L = 5dB; operating frequency f, = 5.6GHz; noise figure F = 10dB pulse width
v = 10us; PRF f, = 2KHz; antenna beamwidth 6,, = 1° and 0, = 5°. (a) What is the
antenna gain? (b) What is the effective aperture if the aperture efficiency is 60%? (c¢) Given a

14 dB threshold detection, what is the detection range for a target whose RCS is ¢ = 1m*?

2.27. A certain radar has losses of 5dB and a receiver noise figure of 10dB. This radar has
a detection coverage requirement that extends over 3/4 of a hemisphere and must complete it in
3 seconds. The base line target RCS is 6dBsm and the minimum SNR is 15dB. The radar detec-
tion range is less than 80Km. What is the average power aperture product for this radar so that
it can satisfy its mission?

2.28. A monostatic radar has the following parameters: Transmit power 100Kw, transmit
losses 2dB, operating Frequency 7GHz, PRF 2000Hz, pulse width 10usec, antenna beamwidth
2° Az X 4° El, receive losses 3dB, and receiver noise figure 12dB. Assume that the radar uses
pulses that employ 10MHz of linear frequency modulation and uses a processor that is matched
to the transmitted pulse. (a) What is the antenna gain? (b) What is the effective aperture if the
aperture efficiency is 50%? (c) What is the effective radiated power of the radar, in dBm? (d)
Given a detection threshold of 13dB, what is the detection range for a target with a radar cross-
section of 6dBsm?

2.29. A radar generates 100KW of power and has 1dB of loss between the power tube and
the antenna. The radar is monostatic with a single antenna that has a gain of 384B. The radar is
operating at 5GHz. What is the power at the receive antenna output for the following targets:

(a) A 1m® RCS target at a range of 30Km. (b) A 10dBsm target at a range of 50 Km.
Assume that: the total radar losses of 1dB.
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2.30. A source with equivalent temperature 7, = 290K is followed by three amplifiers

with specifications shown in the table below.

Amplifier F, dB G, dB Te
1 You must compute 12 350
2 10 22
3 15 35

(a) Compute the noise figure for the three cascaded amplifiers. (b) Compute the effective tem-
perature for the three cascaded amplifiers. (¢) Compute the overall system noise figure.

2.31. A radar has the following receiver components. They are arranged in the order
shown below

Receiver Stages
Stage # Component Gain, dB Noise Figure, dB
1 Waveguide -2 2
2 RF Amp 28 5
3 15t Mixer -3 15
4 IF Amp 100 30

(a) What is the receiver noise figure through the RF amp and referenced to the input of the
waveguide (the first component after the antenna)? (b) What is the noise figure of the receiver
through the IF amp and referenced to the input of the RF amp? (c) What is the effective noise
temperature of the receiver through the IF amp and referenced to the input of the waveguide?
(d) Suppose you want to determine how internal noise and sky noise contribute to noise power
at various points in the receiver. Specifically, how does the noise power at the output of each
component as a function of the effective noise temperature of the antenna, 7, and noise
bandwidth, B. Derive four equations that will allow us to easily perform the computations. All
of your equations should be of the form P = B(K,T,,,+ K,) where K| and K, are constants.
Provide a table with the four sets of values for Ky and X,.

2.32. Prove that

IRICRRE

n=-w

2.33. ShowthatJ (z) = (~1)"J,(z). Hint: You may utilize the relation

J,(z) = %J.cos(zsiny —ny)dy

0
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2.34. Ina multiple-frequency CW radar, the transmitted waveform consists of two contin-
uous sine waves of frequencies f; = 105KHz and f, = 115KHz. Compute the maximum
unambiguous detection range.

2.35. Consider a radar system using linear frequency modulation. Compute the range that
corresponds to f = 20, 10MHz . Assume a beat frequency f, = 1200Hz.

2.36. A certain radar using linear frequency modulation has a modulation frequency
f,» = 300Hz, and frequency sweep Af = 50MHz . Calculate the average beat frequency dif-
ferences that correspond to range increments of 10 and 15 meters.

2.37. A CW radar uses linear frequency modulation to determine both range and range
rate. The radar wavelength is A = 3c¢m, and the frequency sweep is Af = 200KHz. Let
t, = 20ms . (a) Calculate the mean Doppler shift; (b) compute f;,, and f;; corresponding to a
target at range R = 350Km , which is approaching the radar with radial velocity of 250m /s .

2.38. InChapter 1 we developed an expression for the Doppler shift associated with a CW
radar (i.e., f; = *2v/\, where the plus sign is used for closing targets and the negative sign is
used for receding targets). CW radars can use the system shown in Fig. P.2.34 to determine
whether the target is closing or receding. Assuming that the emitted signal is 4 cosm,¢ and the

received signal is k4 cos((®,E ;)¢ + @), show that the direction of the target can be deter-

mined by checking the phase shift difference in the outputs y,(¢) and y,(¢).

) o
transmitter
transmitting
antenna \
90°
phas

i

receiving mixer )| ( t )
antenna A

[ mger V2 ( t)
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Appendix 2-A: Chapter 2 MATLAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “radar_eq.m” Listing

function [snr] = radar_eq(pt, freq, g, sigma, b, nf, loss, range)
% This function implements Eq. (2.22) of textbook

%% Inputs:

% pt == input peak power in Watts
% freq == radar operating frequency in Hz
%g == antenna gain in dB
% sigma == radar cross section in meter squared
% b == radar bandwidth in Hz
% nf == noise Figure in dB

% loss == total radar losses in dB
% range == range to target (single value or vector) in Km% % Outputs:
% snr ==SNR in dB

%

¢ =3.0e+8; % speed of light

lambda = c / freq; % wavelength

p_peak = 10*logl0(pt); % convert peak power to dB

lambda_sqdb = 10*log10(lambda™2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB

Sfour_pi_cub = 10*logl0((4.0 * pi)"3); % (4pi)"3 in dB

k_db = 10*logl0(1.38¢-23); % Boltzman's constant in dB

to_db = 10*log10(290); % noise temp. in dB

b _db = 10*logl0(b); % bandwidth in dB

range_pwrd_db = 10*logl0(range.”4); % vector of target range™4 in dB
% Implement Equation (2.22)

num = p _peak + g + g + lambda_sqdb + sigmadb,

den = four pi cub +k db +to db+ b _db + nf + loss + range pwr4_db;
snr = num - den;

return

MATLAB Program “Fig2 1.m” Listing

% Use this program to reproduce Fig. 2.1 of text.
cle

close all

clear all

pt = 1.5e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz
g =45.0; % antenna gain in dB

sigma = 0.1; % radar cross section in m squared
b = 5.0e+6, % radar operating bandwidth in Hz
nf'= 3.0; %noise figure in dB

loss = 6.0; % radar losses in dB
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range = linspace(25e3,165¢3,1000); % range to target from 25 Km 165 Km, 1000 points
snrl = radar_eq(pt, freq, g, sigma, b, nf, loss, range);

snr2 = radar_eq(pt, freq, g, sigma/10, b, nf, loss, range);

snr3 = radar_eq(pt, freq, g, sigma*10, b, nf, loss, range);

% plot SNR versus range

Jigure(1)

rangekm = range ./ 1000;

plot(rangekm,snr3,'k',rangekm,snr1,'k -.",rangekm,snr2,'k:", 'linewidth’,1.5)
grid

legend("\sigma = 0 dBsm',"\sigma = -10dBsm’,"\sigma = -20 dBsm')
xlabel ("Detection range - Km');

ylabel ('SNR - dB');

snrl = radar_eq(pt, freq, g, sigma, b, nf, loss, range);

snr2 = radar_eq(pt*.4, freq, g, sigma, b, nf, loss, range);

snr3 = radar_eq(pt*1.8, freq, g, sigma, b, nf, loss, range);

figure (2)

plot(rangekm,snr3,'k",rangekm,snrl,'k -.", rangekm,snr2,'k:", linewidth',1.5)
grid

legend("Pt = 2.16 MW','Pt = 1.5 MW'",'Pt = 0.6 MW")

xlabel ("Detection range - Km');

vlabel ('SNR - dB’);

MATLAB Function “lprf req.m” Listing

function [snr] = Iprf req(pt, g, freq, sigma, np, b, nf, loss, range)
% This program implements Eq. (2.27) of textbook

%% Inputs:
% pt == input peak power in Watts
% freq == radar operating frequency in Hz
%g == antenna gain in dB
% sigma == radar cross section in meter squared
%b == radar bandwidth in Hz
% nf == noise Figure in dB
% np == number of pulses
% loss == total radar losses in dB
% range == range to target (single value or vector) in Km
%% Outputs:
% snr == SNR in dB
%

c = 3.0e+8; % speed of light

lambda = c / freq; % wavelength

p_peak = 10*logl0(pt); % convert peak power to dB

lambda_sqdb = 10*log10(lambda”2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB

four _pi_cub = 10*logl0((4.0 * pi)"3); % (4pi)"3 in dB

k_db = 10*log10(1.38¢-23); % Boltzman's constant in dB

to_db = 10*log10(290); % noise temp. in dB

b_db = 10*logl0(b); % bandwidth in dB

np_db = 10.*logl0(np); % number of pulses in dB

range _pwr4_db = 10*logl0(range.™4); % vector of target range™4 in dB
% Implement Equation (1.68)

num = p_peak + g + g + lambda_sqdb + sigmadb + np_db;

den = four pi_cub +k db +to db+ b db + nf+ loss + range pwr4_db;
snr = num - den;
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return

MATLAB Program “Fig2 2.m” Listing

% Use this program to reproduce Fig. 2.2 of text.

cle

close all

clear all

pt = 1.5e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g =45.0; % antenna gain in dB

sigma = 0.1; % radar cross section in m squared

b = 5.0e+6, % radar operating bandwidth in Hz

nf' = 3.0, %noise figure in dB

loss = 6.0; % radar losses in dB

np=1;

range = linspace(25e3,225e3,1000); % range to target from 5 Km 225 Km, 1000 points
snrl = Iprf req(pt, g, freq, sigma, np, b, nf, loss, range);
snr2 = Iprf req(pt, g, freq, sigma, 5*np, b, nf, loss, range);
snr3 = Iprf req(pt, g, freq, sigma, 10*np, b, nf; loss, range),
% plot SNR versus range

figure(1)

rangekm = range ./ 1000,
plot(rangekm,snr3,'k',rangekm,snr1,'k -.",rangekm,snr2,'k:", 'linewidth’,1.5)
grid

legend('np = 10"'np = 5"'np = 1)

xlabel ("Detection range - Km');

vlabel ('SNR - dB’);

np = linspace(1,500,500);

range = 150e3;

snrl = Iprf req(pt, g, freq, sigma, np, b, nf, loss, range);
snr2 = Iprf req(pt, g, freq, 10*sigma, np, b, nf; loss, range),
JSigure (2)

plot(np,snr2, 'k’ np,snrl,'k -.", 'linewidth',1.5)

grid

legend('Baseline’,"\sigma = 0 dBsm’)

xlabel ("No. of pulses');

vlabel ('SNR - dB');

MATLAB Function “hprf req.m” Listing

function [snr] = hprf req (pt, Ti, g, freq, sigma, dt, range, nf, loss)
% This program implements Eq. (2.31)of textbook

%% Inputs:
% pt == input peak power in Watts
% freq == radar operating frequency in Hz
%g == antenna gain in dB
% sigma == radar cross section in meter squared
% Ti == time on target in seconds
% nf == noise Figure in dB
% dt == duty cycle
% loss == total radar losses in dB
% range == range to target (single value or vector) in Km
%% Outputs:

% snr == SNR in dB
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c = 3.0e+8; % speed of light

lambda = c / freq,; % wavelength

pav = 10*logl0(pt*dt); % compute average power in dB

Ti db = 10*logl0(Ti); % time on target in dB

lambda_sqdb = 10*logl0(lambda™2); % compute wavelength square in dB
sigmadb = 10*log10(sigma),; % convert sigma to dB

Sfour_pi_cub = 10*logl0((4.0 * pi)"3); % (4pi)"3 in dB

k_db = 10*log10(1.38¢-23); % Boltzman's constant in dB

to_db = 10*log10(290); % noise temp. in dB

range pwr4_db = 10*logl0(range.™4); % vector of target range™4 in dB
% Implement Equation (1.72)

num = pav + Ti_db + g + g + lambda_sqdb + sigmadb;

den = four pi_cub + k db + to_db + nf + loss + range pwr4_db;

snr = num - den;

return

MATLAB Program “Fig2 3.m” Listing

% Use this program to reproduce Fig. 2.3 of text.

cle

close all

clear all

pt =10e03; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g = 20; % antenna gain in dB

sigma = 0.01; % radar cross section in m squared

b = 5.0e+6, % radar operating bandwidth in Hz

nf'= 3.0; %noise figure in dB

loss = 8.0; % radar losses in dB

Ti = 2; % time on target in seconds

dt =.05; % 5% duty cycle

range = linspace(10e3,225e3,1000); % range to target from 10 Km 225 Km, 1000 points
snrl = hprf req (pt, Ti, g, freq, sigma, .05, range, nf, loss),
snr2 = hprf req (pt, Ti, g, freq, sigma, .1, range, nf; loss);
snr3 = hprf req (pt, Ti, g, freq, sigma, .2, range, nf; loss);
% plot SNR versus range

figure(1)

rangekm = range ./ 1000;
plot(rangekm,snr3,’k',rangekm,snr2,'k -.",rangekm,snrl,'k:", 'linewidth’ 1.5)
grid on

legend('dt = 20%','dt = 10%",'dt = 5%')

xlabel ("Detection range - Km');

ylabel ('SNR - dB');

MATLAB Function “power_aperture.m” Listing

function PAP = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el_angle)
% This function implements Eq. (2.38) of textbook

%% Inputs:
% snr ==SNR in dB
% tsc == scan time in seconds
% sigma == radar cross section in meter squared

% range == range to target in Km
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% nf == noise Figure in dB

% loss == total radar losses in dB

% az_angle == azimuth search extent in degrees

% el_angle == elevation search extent in degrees
%% Outputs:

% PAP == power aperture product in dB

%

Tsc = 10*logl0(tsc); % convert Tsc into dB

Sigma = 10*log10(sigma); % convert sigma to dB

Sfour_pi = 10*log10(4.0 * pi); % (4pi) in dB

k_db = 10*logl0(1.38¢-23); % Boltzman's constant in dB

To = 10*log10(290),; % noise temp. in dB

range_pwr4d_db = 10*logl0(range."4); % target range™4 in dB

omega = (az_angle/57.296) * (el_angle / 57.296); % compute search volume in steraradians
Omega = 10*logl0(omega); % search volume in dB

% implement Eq. (1.79)

PAP = snr + four pi +k db + To + nf + loss + range_pwr4_db + Omega - Sigma - Tsc;,
return

MATLAB Program “Fig2 6.m” Listing

% Use this program to reproduce Fig. 2.6 of text.

cle

close all

clear all

tsc = 2.5; % Scan time i s2.5 seconds

sigma = 0.1; % radar cross section in m squared

te = 900.0; % effective noise temperature in Kelvins

snr = 15; % desired SNR in dB

nf'= 6.0; %noise figure in dB

loss = 7.0; % radar losses in dB

az_angle = 2; % search volume azimuth extent in degrees

el _angle = 2; %serach volume elevation extent in degrees

range = linspace(20e3,250e3,1000); % range to target from 20 Km 250 Km, 1000 points
papl = power_aperture(snr,tsc,sigma/10,range,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el _angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,nf,loss,az_angle,el _angle);
% plot power aperture prodcut versus range

% generate Figure 2.6a

figure(1)

rangekm = range ./ 1000;

plot(rangekm,pap1,'k', rangekm,pap2,'k -.", rangekm,pap3,'k:", 'linewidth', 1.5)
grid

legend("\sigma = -20 dBsm',"\sigma = -10dBsm',"\sigma = 0 dBsm’)

xlabel ("Detection range in Km');

vlabel ('"Power aperture product in dB’);

% generate Figure 2.6b

lambda = 0.03; % wavelength in meters

G = 45; % antenna gain in dB

ae = linspace(1,25,1000), % aperture size 1 to 25 meter squared, 1000 points
Ae = 10*logl0(ae),

range = 250e3; % rnage of interset is 250 Km

papl = power_aperture(snr,tsc,sigma/l0,range,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el _angle);
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pap3 = power_aperture(snr,tsc,sigma*10,range,nf,loss,az_angle,el_angle);

Pavl =papl - Ae;

Pav2 = pap?2 - Ae;

Pav3 = pap3 - Ae;

Jigure(2)

plot(ae,Pavl, 'k’ ae,Pav2,'k -.",ae,Pav3,'k:" 'linewidth’ 1.5)
grid

xlabel('Aperture size in square meters')

ylabel("Pav in dB’)

legend("\sigma = -20 dBsm',"\sigma = -10dBsm’,"\sigma = 0dBsm')

MATLAB Program “ssj_req.m” Listing
function [BR_range] = ssj_req (pt, g, freq, sigma, br, loss, ...
pi. bj. gj. loss))
% This function implements Eq.s (2.50) and Eq. (2.52). It also generates
% plot 2.7a
% % Inputs

% pt == radar peak power in Watts
%g == radar antenna gain in dB
% freq == radar operating frequency in Hz
% sigma == target RCS in squared meters
% br == radar bandwidth in Hz
% loss == radar losses in dB
% pj == jammer power in Watts
% bj == jammer bandwidth in Hz
% gj == jammer antenna gain in dB
% loosj == jammer losses in dB

%% Outputs
% BR _range == cross over range in Km

%

¢ = 3.0e+8;

lambda = c / freq;

lambda_db = 10*logl0(lambda”2);

if (loss == 0.0)
loss = 0.000001;

end

if (lossj == 0.0)
lossj =0.000001;

end

sigmadb =10*logl0(sigma);

pt_db = 10%*logl0(pt);

b_db = 10*logl0(br);

bj _db = 10*logl0(bj);

pj_db = 10%*logl0(pj);

factor = 10*log10(4.0 *pi);

BR range = sqrt((pt * (10"(g/10)) * sigma * bj * (10"(lossj/10))) / ...
(4.0 * pi * pj * (107(gj/10)) * br * (10™(loss/10)))) / 1000.0

s at br=pt db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.* 10*logl0(BR_range) - loss

index =0;
forran_var =.1:10:10000
index = index + 1;
ran_db = 10*log10(ran_var * 1000.0);

ssj(index) = pj db + gj + lambda_db + g+ b _db - 2.0 * factor - 2.0 *ran_db - bj db - lossj +s_at br;
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s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.* ran_db - loss + s_at _br ;
end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.");
axis([-1 1000 -90 40])
xlabel ('Range normalized to cross-over range’);
legend('Target echo','SSJ’)
ylabel ('Relative signal or jamming amplitude - dB');
grid

MATLAB Program “Fig2 7b.m” Listing

% This program produces Fig 2.7 of text

cle;

clear all

close all

pt =50.0e+3; % peak power in Watts

g=350; % antenna gain in dB

freq = 5.6e+9; % radar operating frequency in Hz

sigma = 10.0; % radar cross section in m squared

b =667.0e+3; % radar operating bandwidth in Hz

loss = 0.1000;, % radar losses in dB

rangej = 50.0; % range to jammer in Km

pj =200.0;, % jammer peak power in Watts

bj = 50.0e+6; % jammer operating bandwidth in Hz

g/ =10.0; % jammer antenna gain in dB

lossj = .10, % jammer losses in dB

[/BR _range] = ssj req (pt, g, freq, sigma, b, loss, ...
i bj, g, lossj);

pj_var =1:1:1000;

BR pj = sqrt((pt * (10"(g/10)) * sigma * bj * (10"(lossj/10))) ...
/(4.0 * pi . *pj var * (10(gj/10)) * b * (10"(loss/10)))) ./ 1000;

pt var =1000:100:10e6;

BR_pt = sqrt((pt_var * (10~(g/10)) * sigma * bj * (10"(lossj/10))) ...
/(4.0 * pi . * pj * (10N(gj/10)) * b * (10"(loss/10)))) ./ 1000;

figure (2)

subplot (2,1,1)

semilogx (BR _pj,'k’)

xlabel (‘Jammer peak power - Watts');

vlabel ('Cross-over range - Km')

grid

subplot (2,1,2)

semilogx (BR_pt,'k")

xlabel ('Radar peak power - KW')

vlabel ('Cross-over range - Km')

grid

MATLAB Function “sir.m” Listing

function [SIR] = sir (pt, g, sigma, freq, tau, loss, R, pj, bj, gj, lossj);
% This function implements Eq. (2.53) of textbook
% % Inputs

% pt == radar peak power in Watts

%g == radar antenna gain in dB
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% freq == radar operating frequency in Hz
% tau == radar pulse width in seconds
% loss == radar losses in dB
%R == target range in Km, can be single value or vector
% pj == jammer power in Watts
% bj == jammer bandwidth in Hz
% g == jammer antenna gain in dB
% loosj == jammer losses in dB
%% Outputs
% SIR == S/(J+N) in dB
%
¢ = 3.0e+8;
k=138e-23;

%R = linspace(rmin, rmax, 1000);
range = R .* 1000;

lambda = c / freq;

g =10"(gi/10);

G =10"g/10);

ERPI =pj * gj /lossj;

ERP _db = 10*loglO(ERPI1),

Ar = lambda *lambda * G / 4 /pi;
numl = pt * tau * G * sigma * Ar;
demol = 4"2 * pi*2 * loss . * range.™;
demo?2 =4 * pi * bj .* range.”2;
num2 = ERP1 * Ar;

valll = numl ./ demol;

val2l = num?2 ./demo2;
sir=valll ./ (val2l + k * 290),
SIR = 10%*log10(sir);

end

MATLAB Program “Fig2 8.m” Listing

% This program generates Fig. 2.8 of text
cle

clear all

close all

R = linspace(10,400,5000);

[SIR] = sir (50e3, 35, 10, 5.6e9, 50e-6, 5, R, 200, 50e6, 10, .3);
Jigure (1)

plot (R, SIR,'k")

xlabel ("Detection range in Km');

ylabel ('S/(J+N) in dB')

grid

MATLAB Function “burn_thru.m” Listing

function [Range] = burn_thru (pt, g, sigma, freq, tau, loss, pj, bj, gj, lossj,sir0,ERP);

% This function implements Eq. (254) of textbook
% % Inputs

% pt == radar peak power in Watts

%g == radar antenna gain in dB

% freq == radar operating frequency in Hz
% tau == radar pulse width in seconds

% loss == radar losses in dB
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% pj == jammer power in Watts
% bj == jammer bandwidth in Hz
% gj == jammer antenna gain in dB
% loosj == jammer losses in dB
% sir0 == desired SIR in dB
% ERP == desired jammer ERP, single value or vector in Watts
%% Outputs
% Range == burn through range in Km
%
¢ = 3.0e+8;
k=138e-23;

sirQ) = 10"(sir0/10);

lambda = c / freq;

g = 10(g/10);

G =10"g/10);

Ar = lambda *lambda * G / 4 /pi;
num32 = ERP . * Ar;

demo3 = 8 *pi * bj * k * 290;
demo4 = 4"2 * pi*2 * k * 290 * s5ir(;
vall = (num32 ./ demo3).”2;

val2 = (pt * tau * G * sigma * Ar)/(4"2 * pi*2 * loss * sir0 * k * 290);
val3 = sqrt(vall + val2);

val4 = (ERP .* Ar) ./ demo3;

Range = sqrt(val3 - val4) ./ 1000;
end

MATLAB Program “Fig2 9.m” Listing

% This program generates Fig. 2.9 of text
cle

clear all

close all

ERP = linspace(1,1000,1000),

[Range] = burn_thru (50e3, 35, 10, 5.6e9, 0.5¢e-3, 5, 200,500e6, 10, 0.3, 15,ERP);
Jigure (1)

plot (10*logl O(ERP), Range,'k’)

xlabel (" Jammer ERP in dB’)

ylabel ('Burnthrough range in Km')

grid

MATLAB Function “soj_req.m” Listing
function [BR_range] = soj req (pt, g sigma, b, freq, loss, range, ...

pJ, bj.gj, lossj, gprime, rangej)
% This function implements Eqs. (257) and (2.58) of textbook

%% Inputs
% pt == radar peak power in Watts
%g == radar antenna gain in dB
% sigma == target RCS in sdBsm
% freq == radar operating frequency in Hz
% tau == radar pulse width in seconds
% loss == radar losses in dB
% range == range to target in Km
% pj == jammer power in Watts

% bj == jammer bandwidth in Hz
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% g == jammer antenna gain in dB
% loosj == jammer losses in dB
% gprime == jammer antenna gain
% rangej == range to jammer in Km
%% Outputs
% BR_Range == burn through range in Km
%
¢ = 3.0e+8;

lambda = c / freq;

lambda_db = 10*log10(lambda”2);

if (loss == 0.0)
loss = 0.000001;

end

if (lossj == 0.0)
lossj =0.000001;

end

sigmadb = 10*log10(sigma),

range_db = 10*logl0(range * 1000.);

rangej db = 10*logl0(rangej * 1000.);

pt_db = 10*logl0(pt);

b_db = 10*logl0(b);

bj_db = 10*log10(bj);

pj_db = 10*logl0(pj);

factor = 10*log10(4.0 *pi);

BR _range = ((pt * 10°2.0%g/10) * sigma * bj * 10"(lossj/10) * ...
(rangej)™2) / (4.0 * pi * pj * 10"(gj/10) * 10™(gprime/10) * ...
b * 10%(loss/10)))".25 / 1000.

end

MATLAB Program “Fig2 10.m” Listing

% This program generates Fig. 2.10 of text

cle

clear all

close all

pt =5.0e+3; pt db = 10*logl0(pt);

g=350;

freq = 5.6e+9; lambda = 3e8 /freq;

lambda_db = 10*log10(lambda”2);

sigma =10 ;

b =667.0e+3; b _db=10*logl0(b),

range = 20*1852; range _db = 10*logl0(range * 1000.);

gprime = 10.0; sigmadb = 10*logl0(sigma);

loss = 0.01;

rangej = 12*1852; rangej db = 10*logl0(rangej * 1000.);

pj =5.0e+3; pj_db = 10*logl0(pj),

bj = 50.0e+6, bj_db = 10*logl0(bj);

gj = 30.0;

lossj =0.3;

factor = 10*log10(4.0 *pi);

[/BR _range] = soj req (pt, g, sigma, b, freq, loss, range, pj, bj,gj, lossj, gprime, rangej)
soj _req (pt, g, sigma, b, freq, loss, range, pj, bj,gj, lossj, gprime, rangej)
s_at br=pt db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.0 * 10*logl O(BR_range) - loss
index =0,
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forran_var = .1:1:1000;
index = index + 1;
ran_db = 10*log10(ran_var * 1000.0);
s(index) = pt db + 2.0 * g + lambda_db + sigmadb - ...
3.0 * factor - 4.0 * ran_db - loss +s_at_br,
soj(index) =s_at br-s_at br;
end
ranvar = .1:1:1000;
Yranvar = ranvar ./BR_range;
semilogx (ranvar,s,'k',ranvar,soj,'k-.","linewidth',1.5);
xlabel ('Range normalized to cross-over range’);
legend('Target echo','SOJ")
ylabel ('Relative signal or jamming amplitude - dB’);
grid

MATLAB Function “range_calc.m” Listing

function [output_par] = range_calc (pt, tau, fr, time_ti, gt, gr, freq, ...
sigma, te, nf, loss, snro, pcw, range, radar_type, out_option)
c = 3.0et+8;
lambda = ¢ / freq;
if (radar_type == 0)
pav = pcw;
else
% Compute the duty cycle
dt = tau * 0.001 * fr;
pav = pt *dt;
end
pav_db =10.0 * loglO(pav);
lambda_sqdb = 10.0 * log10(lambda”2);
sigmadb = 10.0 * log10(sigma);
for_pi_cub = 10.0 * logl0((4.0 * pi)"3);
k_db=10.0 *logl0(1.38¢-23);
te db =10.0 * logl0(te);
ti_db=10.0 * loglO(time_ti);
range_db = 10.0 * loglO(range * 1000.0),
if (out_option == ()
%compute SNR
snr_out = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
for pi cub -k db-te db-nf-loss-4.0*range db
index = 0;
for range var = 10:10:1000
index = index + 1;
rangevar_db = 10.0 * logl0(range var * 1000.0);
snr(index) = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
for pi_cub -k db-te db-nf-loss - 4.0 * rangevar_db;
end
var = 10:10:1000;
plot(var,snr,'k'")
xlabel ('Range in Km');
ylabel ('SNR in dB');
grid
else
range4 = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
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for pi_cub -k db-te db - nf- loss - snro;
range = 10.0"(range4/40.) / 1000.0
index = 0;
for snr_var =-20:1:60
index = index + 1;
rangedb = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
for pi_cub -k db-te db-nf-loss -snr_var,
range(index) = 10.0Nrangedb/40.) / 1000.0;
end
var = -20:1:60;
plot(var,range,'k’)
xlabel ("Minimum SNR required for detection in dB');
viabel ("Maximum detection range in Km');
grid
end
return
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Part II - Radar Signals and Signal Processing

Chapter 3

Linear Systems and Complex
Signal Representation

In this chapter a top-level overview of elements of signal theory that are relevant to radar
signal processing is presented. It is assumed that the reader has sufficient and adequate back-
ground in signals and systems as well as in Fourier transform and its associated properties.

3.1. Signal Classifications

In general, electrical signals can represent either current or voltage and may be classified
into two main categories: energy signals and power signals. Energy signals can be determinis-
tic or random, while power signals can be periodic or random. A signal is said to be random if
it is a function of a random parameter (such as random phase or random amplitude). Addition-
ally, signals may be divided into lowpass or bandpass signals. Signals that contain very low
frequencies (close to DC) are called lowpass signals; otherwise they are referred to as band-
pass signals. Through modulation, lowpass signals can be mapped into bandpass signals.

The average power P for the current or voltage signal x(¢) over the interval (¢, ¢,) across
a 1Q resistor is

153

J.|x(t)|2 dt. Eq. (3.1)

a1

1
L=t

P =

The signal x(#) is said to be a power signal over a very large interval 7' = ¢, —¢, , if and only
if it has finite power and satisfies the relation:

T/2
0< lim + J' x()* dt <o, Eq. (3.2)
T— o T
-T/2

Using Parseval’s theorem, the energy £ dissipated by the current or voltage signal x(¢) across
a 1Q resistor, over the interval (¢, t,), is

153
E = le(t)|2 dt. Eq. (3.3)

4

93
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The signal x(#) is said to be an energy signal if and only if it has finite energy,

E = jlx(t)l2 dt <o, Eq. (3.4)

A signal x(7) is said to be periodic with period 7 if and only if

x(t) = x(t+nT) for all t Eq. (3.5)
where n is an integer.
Example:

Classify each of the following signals as an energy signal, a power signal, or neither. All sig-
nals are defined over the interval (—oo <t <) : x,(¢) = cost+ cos2t, x,(t) = exp(faztz).

Solution:
7/2
le = % I (cost+ coszt)zdt =1= power signal.
-T/2

Note that since the cosine function is periodic, the limit is not necessary.

—a’f 2 20’7 Jn 1 |n .
E, :J-(eat)dIZZIe dt=2 :—J: = energy signal
2 220 ON2
—0 0

3.2. The Fourier Transform
The Fourier Transform (FT) of the signal x(7) is
Fix(£)} = X(0) = _[x(t)e*f"” dt Eq. (3.6)

—00

Fix(1)} = X(f) = J‘x(t)e*ﬂ“ﬂ dt Eq. (3.7)
and the Inverse Fourier Transform (IFT) is
Fl{X(0)} = x(1) = %J‘X(m)e’m do Eq. (3.8)

—00

FUX(N) = x(¢) = IX(f)ejz“f’ df Eq. (3.9)
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where, in general, ¢ represents time, while ® = 2nf and f represent frequency in radians per
second and Hertz, respectively. In this book, we will use both notations for the transform, as
appropriate (i.e., X(®) or X(f)).

3.3. Systems Classification

Any system can mathematically be represented as a transformation (mapping) of an input
signal into an output signal. This transformation or mapping relationship between the input
signal x(¢) and the corresponding output signal y(#) can be written as

(1) = flx(2); (-o<t<o)]. Eq. (3.10)

The relationship described in Eq. (3.10) can be linear or nonlinear, time invariant or time vary-
ing, causal or noncausal, and stable or nonstable systems. When the input signal is unit impulse
(Dirac delta function) 3(t), the output signal is referred to as the system’s impulse response

h(t).

3.3.1. Linear and Nonlinear Systems

A system is said to be linear if superposition holds true. More specifically, if

(1) = flx, ()]
Eq. (3.11)
yo(t) = flxy(0)]
then for a linear system
flax,(t) + bx,(¢)] = ay,(t) + by,(1) Eq. (3.12)

for any constants (a, b) . If the relationship in Eq. (3.12) is not true, the system is said to be
nonlinear.

3.3.2. Time Invariant and Time Varying Systems

A system is said to be time invariant (or shift invariant) if a time shift at its input produces
the same time shift at its output. That is if
(1) = flx(1)] Eq. (3.13)
then
Y(t—ty) = flx(t—ty) ;-0 <ty< o, Eq. (3.14)
If the above relationship is not true, the system is called a time varying system.

Any Linear Time Invariant (LTI) system can be described using the convolution integral
between the input signal and the system’s impulse response, as

(1) = Ix(t—u)h(u) du=x®h Eq. (3.15)

where the operator ® is used to symbolically describe the convolution integral. In the fre-
quency domain, convolution translates into multiplication. That is



96 Radar Systems Analysis and Design Using MAT. LAB®

Y(f) = X(NH(/). Eq. (3.16)
H(f) is the FT for 4(¢) and it is referred to as the system transfer function.

3.3.3. Stable and Nonstable Systems

A system is said to be stable if every bounded input signal produces a bounded output signal.
From Eq. (3.15)

(o) = Ix(t—u)h(u) dul < J'|x(t—u)||h(u)| du . Eq. (3.17)

If the input signal is bounded, then there is some finite constant K such that

x(H)| <K<, Eq. (3.18)
Therefore,
y(t)SK.[ |h(u)| du Eq. (3.19)
which can be finite if and only if h
J |h(u)| du<o. Eq. (3.20)

—00

Thus, the requirement for stability is that the impulse response must be absolutely integrable.
Otherwise, the system is said to be unstable.

3.3.4. Causal and Noncausal Systems

A causal (or physically realizable) system is one whose output signal does not begin before
the input signal is applied. Thus, the following relationship is true when the system is causal:

Y(ty) = fIx(1);t < tyli—0 < t, ty <. Eq. (3.21)

A system that does not satisfy Eq. (3.21) is said to be noncausal which means it cannot exist in
the real-world.

3.4. Signal Representation Using the Fourier Series

A set of functions S = {o¢,(¢) ; n=1,...,N} is said to be orthogonal over the interval
(¢, t,) if and only if

153 153

N B (O\dt = 0 i=j
Jorwe,d = Jowerwa =1 Eq. (3:22)

i
41 41
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where the asterisk indicates complex conjugation and A; are constants. If A, = 1 for all i,
then the set S is said to be an orthonormal set. An electrical signal x(#) can be expressed over
the interval (7, t,) as a weighted sum of a set of orthogonal functions as

N
x(t) = Zan)n(l‘) Eq. (3.23)
n=1

where X, are, in general, complex constants and the orthogonal functions ¢, () are called
basis functions. If the integral-square error over the interval (¢,,¢,) is equal to zero as N
approaches infinity, i.e.,

t N 2
A}l_r)noo x(1) — ZXn(pn(t) dt =0 Eq. (3.24)

4 n=1

then the set S = {¢,(7)} is said to be complete, and Eq. (3.23) becomes an equality. The con-
stants X, are computed as

5} 53

X, = Ix(t)@n*(t)dt / I|@n(t)|2dt . Eq. (3.25)

2l 4]

Let the signal x(#) be periodic with period 7', and let the complete orthogonal set S' be

j2nnt
S = {e Tog= —oo,oo}. Eq. (3.26)

Then the complex exponential Fourier series of x(¢) is

/2nnt
x(t) = Z . Eq. (3.27)
Applying Eq. (3.25) yields
1 172 —j2nnt
X, =7 J. x(te | dt. Eq. (3.28)
-1/2
The FT of Eq. (3.27) is given by
X(0) = 2= z X 6( 27”’) Eq. (3.29)

n=

where 6( ) is delta function. When the 51gnal x(t) is real, we can compute its trigonometric
Fourier series from Eq. (3.27) as

x(1) = ay+ Z a cos( m) + ibnsin(MTM) Eq. (3.30)

n=1 n=1
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a, = X, Eq. (3.31)
7/2
_1 (2nnt)
a, zj(t)cos T dt Eq. (3.32)
-1/2
7/2
_1 . (Znnt)
by = 7 J' x(0)sin( =) dr Eq. (3.33)
-1/2

The coefficients a, are all zeros when the signal x(#) is an odd function of time. Alternatively,
when the signal is an even function of time, then all b, are equal to zero.

Consider the periodic energy signal defined in Eq. (3.30). The total energy associated with
this signal is then given by

to+ T

2 7
1 2 ao (an b@
T_[|X()| 7 E 513 q. (3.34)

t, n=1

3.5. Convolution and Correlation Integrals
The convolution p,,(#) between the signals x(#) and 4(¢) is defined by

o0

pa(t) = x(t)® (1) = J.x(r)h(tfr)dr Eq. (3.35)

where t is a dummy variable. Convolution is commutative, associative, and distributive. More
precisely,
x() ® h(t) = h(t) ® x(t)
X()® (h(t) @ g(1) = (x(1) ® h(1)) ® g(1) = x(1) ® (h(1) ® g(1))

For the convolution integral to be finite at least one of the two signals must be an energy sig-
nal. The convolution between two signals can be computed using the FT:

pui(t) = F{X(0)H(®)} . Eq. (3.37)

Eq. (3.36)

Consider an LTI system with impulse response /(¢) and input signal x(¢). It follows that the
output signal y(#) is equal to the convolution between the input signal and the system impulse
response,

(1) = ‘[x(r)h(tfr)dt = ‘[h(r)x(tfr)dr. Eq. (3.38)

The cross-correlation function between the signals x(#) and g(#) is

0 o0

R (1) = jx*(r)g(t+r)d‘c = R¥g(-1) = Ig*('r)x(t+t)dr. Eq. (3.39)

—00 —00
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Again, at least one of the two signals should be an energy signal for the correlation integral to
be finite. The cross-correlation function measures the similarity between the two signals. The
peak value of R, (#) and its spread around this peak are an indication of how good this simi-
larity is. This similarity is measured by a factor called the correlation coefficient, denoted by
C,, - For example, consider the signals x(#) and g(7), the correlation coefficient is

© 2
Ix(t) 2 (t)di
C, — —= - = C,,, Eq. (3.40)
[ eolat [ le(oas

clearly the correlation coefficient is limited to 0 < C,, = C,, <1, with C,, = 0 indicating no
similarity while C,, = 1 indicates 100% similarity between the signals x(7) and g(7).

The cross-correlation integral can be computed as

|
R (1) = F {X*(0)G(o)}, Eq. (3.41)
When x(¢) = g(¢), we get the autocorrelation integral,
R.(t) = I *()x(t+ 1)dt, Eq. (3.42)

—00

Note that the autocorrelation function is denoted by R (#) rather than R (7). When the sig-
nals x(¢) and g(¢) are power signals, the correlation integral becomes infinite, and thus time
averaging must be included. More precisely,

T/2
Ry, (1) = Thinw lT J. x*(1)g(t+1)dr, Eq. (3.43)

-T/2

3.5.1. Energy and Power Spectrum Densities

Consider an energy signal x(¢). From Parseval’s theorem, the total energy associated with
this signal is

E - I|x(t)|2dt = %nj‘ IX(0)*do, Eq. (3.44)

When x(#) is a voltage signal, the amount of energy dissipated by this signal when applied
across a network of resistance R is

_1 24 = L 2
E RI |x(2)|"dt 27TR.[IX((D)I do, Eq. (3.45)

— —00

Alternatively, when x(7) is a current signal, we get
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E = RI x(£)dt = %I 1X(0)do . Eq. (3.46)

The quantity ||X ((o)|2d(o represents the amount of energy spread per unit frequency across a
1Q resistor; therefore, the Energy Spectrum Density (ESD) function for the energy signal
x(¢) is defined as

ESD = |X(0)*. Eq. (3.47)
The ESD at the output of an LTI system when x(¢) is at its input is

Y(0)* = [X(0)*|H(o) Eq. (3.48)

where H(w) is the FT of the system impulse response, 4(¢) . It follows that the energy present
at the output of the system is

1 2 2
E, = 5 j 1X(0)|H (o) do . Eq. (3.49)
Example:
The voltage signal x(t) = eiSt; t>0 is applied to the input of a lowpass LTI system. The

system bandwidth is SHz, and its input resistance is 5Q. If H(®w) = 1 over the interval
(101 < ® < 107m) and zero elsewhere, compute the energy at the output.

Solution:

From Eq. (2.49) one computes

107
_ 1 2 2
E, = 5= _[ X ()| H () do .

o= -107
Using Fourier transform tables and substituting R = 5 yields

107

Ey:—-l-—J. 21 do .
St w425
0

Completing the integration yields

_ 1 _
E, = 25Tt[atanh(21t)— atanh(0)] = 0.01799 Joules.

Note that an infinite bandwidth would give E,, = 0.02, only 11% larger.
The total power associated with a power signal g(¢) is
7/2
P=lim 1 I (o) dt . Eq. (3.50)
T— o T
-T/2

The Power Spectrum Density (PSD) function for the signal g(#) is S,(®), where
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T/2
. 1 2 1
= = = = . .(3.51
P = lim Tj g (1)) dt ZnISg(m)dw Eq. (3.51)
-T/2 —o0
It can be shown that
2
Sy(®) = lim 1G(o)l* Eq. (3.52)
T—> o T

Let the signals x(¢) and g(¢) be two periodic signals with period 7. The complex exponen-
tial Fourier series expansions for those signals are, respectively, given by

2nnt
x(t) = z X, e T Eq. (3.53)
R
ant
g(t) = z G, M Eq. (3.54)

The power cross-correlation function I_Rgx(t) was given in Eq. (3.43) and is repeated here as
Eq. (3.55),

T/2
Roa(t) = 1T j g ()x(t+ )t . Eq. (3.55)
-T/2

Note that since both signals are periodic the limit is no longer necessary in Eq. (3.55). Substi-
tuting Egs. (3.53) and (2.54) into Eq. (3.55), collecting terms, and using the definition of
orthogonality, yields

2nnt
Re(1) = z G, *X, N Eq. (3.56)

When x(¢) = g(¢), Eq. (3.56) becomes the power autocorrelation function,

2nnl Znnt
R.(t) = Z |X| |X0| +22 |X| Eq. (3.57)

n= n=1

The power spectrum and cross-power spectrum density functions are then computed as the
FT of Egs. (3.57) and (3.56), respectively. More precisely,

0

S(o) = 2n Z X, 8( 2’;“) Eq. (3.58a)

n=-m

o0

Seu(®) = 27 Z Gn*XnS(m—z’;n). Eq. (3.58b)

h = -0
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The line (or discrete) power spectrum is defined as the plot of |Xn|2 versus n , where the lines

0

are Af = 1/T apart. The DC power is | X, *, and the total power is z ‘Xn|2.

n=-wn

Consider a signal x(¢) and its FT X(f). The corresponding autocorrelation function and
power spectrum density are, respectively, R.(¢) and S,(f). A few very useful relations that
will be utilized often in this book include

x(0) = }X(ﬁdf Eq. (3.59)

}x(t)dt = X(0) Eq. (3.60)

R(0) = }W)th - }IXO‘)Izdf= 5.(0) Ea. (3.61)
}|1_€x(t)|2dt = ]leml“df. Eq. (3.62)

Note that Eq. (3.60) or Eq. (3.61) represents the total DC power (in the case of a power signal)
or voltage (in the case of an energy signal). Equation (3.62) represents the signal’s total power
(for power signals) or total energy (for energy signals).

3.6. Bandpass Signals

Signals that contain significant frequency composition at a low frequency band including
DC are called lowpass (LP) signals. Signals that have significant frequency composition
around some frequency away from the origin are called bandpass (BP) signals. A real BP sig-
nal x(#) can be represented mathematically by

x(t) = r(t)cos(2mnfyt + ¢.(2)) Eq. (3.63)

where r(¢) is the amplitude modulation or envelope, ¢ (¢) is the phase modulation, f, is the
carrier frequency, and both »(¢) and ¢,(#) have frequency components significantly smaller
than f, . The frequency modulation is

14

) = 5= 5

o.(7) Eq. (3.64)

and the instantaneous frequency is

() = 517; %(27Tfot+ 0,(0)) = fot /(D). Eq. (3.65)
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If the signal bandwidth is B and f, is very large compared to B, then the signal x(¢) is
referred to as a narrow bandpass signal.

Bandpass signals can also be represented by two lowpass signals known as the quadrature
components; in this case Eq. (3.63) can be rewritten as

x(1) = x[(t)cos2mnfyt —x (1) sin2mfyt Eq. (3.66)

where x,() and x,(¢) are real LP signals referred to as the quadrature components and are
given, respectively, by

x/(1) = r(t)cos ¢, (1)

. ) Eq. (3.67)
xo(1) = r(1)sing,(7)
3.6.1. The Analytic Signal (Pre-Envelope)
Given a real-valued signal x(?), its Hilbert transform is
= ¥ = L[xw
H{x()} = 5(1) = J' 2 Eq. (3.68)

—00

Observation of Eq. (3.68) indicates that the Hilbert transform is computed as the convolution
between the signals x(¢) and i(z) = 1/(=nt). More precisely,
x(1) = x(1) ® L Eq. (3.69)
Tt
The Fourier transform of %(z) is

FT{h(1)} = FT{%} = H(o) = ¢ *san(o) Eq. (3.70)

where the function sgn(®) is given by

1 ;>0
sgn(m) = ﬁ =10, 0=0 . Eq. (3.71)
-1 ; <0

Thus, the effect of the Hilbert transform is to introduce a phase shift of ©/2 on the spectra of
x(¢) . It follows that,

FT{x(t)} = j((w) = X(o)—jsgn(o)X(o). Eq. (3.72)

The analytic signal y(#) corresponding to the real signal x(¢) is obtained by canceling the
negative frequency contents of X(®). Then, by definition

2X(®) ;0>0
Y(o) =< X(o) o =0 Eq. (3.73)
0 w<0
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or equivalently,
P(o) = X(o)(1+sgn(o)). Eq. (3.74)

It follows that
w(t) = FT ' {¥(0)} = x(t)+jx(t). Eq. (3.75)

The analytic signal is often referred to as the pre-envelope of x(z) because the envelope of
x(t) can be obtained by simply taking the modulus of (7).

3.6.2. Pre-Envelope and Complex Envelope of Bandpass Signals
The Hilbert transform for the bandpass signal defined in Eq. (3.66) is
xpp(1) = x,(£)sin2mft + x () cOS2Tfyt . Eq. (3.76)

The subscript BP is used to indicate that x(#) is a bandpass signal. The corresponding band-
pass analytic signal (pre-envelope) is then given by

Wep(t) = xpp(2) +jxpp(t) Eq. (3.77)

using Eq. (3.66) and Eq. (3.76) into Eq. (3.77) and collecting terms yields

J2nfot

J2mfor _ ~
= xpp(t)e

Wep(t) = [x/(1) +jxp(t)]e Eq. (3.78)

The signal Xzp(7) = x,(¢) + Jxo(t) is the complex envelope of xzp(7) . Thus, the envelope
signal and associated phase deviation are given by

a(t) = |xgp(t)| = [x,(2) +jxo(D] = |wgp(?)] Eq. (3.79)

0(t) = arg(xpp(t)) = Lxpp(t). Eq. (3.80)

In the remainder of this text, unless it is indicated to be otherwise, all signals will be consid-
ered to be bandpass signals and consequently the subscript BP will not be used. More specifi-
cally, a bandpass signal x(#) and its corresponding pre-envelope (analytic signal) and complex
envelope will shown as

x(#) = x/(t)cos2nfyt —xp(8)sin2mfot Eq. (3.81)
() = x(0)+ja(n =50 Eq. (3.62)
xX(1) = x/(t) +jxp(2). Eq. (3.83)

Obtaining the complex envelope for any bandpass signal requires extraction of the quadra-
ture components. Figure 3.1 shows how the quadrature components can be extracted from a
bandpass signal. First, the bandpass signal is split into two parts; one part is multiplied by
2cos2mfyt and the other is multiplied by —2sin2nf,¢. From the figure, the two signals z,(¢)
and z,(?) are,

z,(1) = 2x1(t)(cos27tf0t)2 = 2x (1) cos(2mfyr) sin(27fy 1) Eq. (3.84)

z,(t) = —2x,(t)cos(2nfyt)sin(2nfyt) + 2xQ(t)(sin2nf0t)2. Eq. (3.85)

Utilizing the appropriate trigonometry identities and after lowpass filtering the quadrature
components are extracted.
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2cos2nfyt

x(1) = x(t)cos2nfyt —x (1) sin2mfyt

-
-

Local
Oscillator

—2sin2nf,t
I 0 xo(1)
LP Filt

Figure 3.1. Extraction of quadrature components.

Example:

Extract the quadrature components, frequency modulation, instantaneous frequency, ana-
Iytic signal, and complex envelope for the signals:

(@ x(1) = Recz@ cos(2cfyt) ; (b) (1) = Rect@ cos(2mfyt + %ﬁ)_
Solution:
(a) The quadrature components are extracted as described in Fig. 3.1. Define
z,(t) = x(t) x 2cos(2mfyt), z,(¢) = x(¢) x (=2)sin(2mfyt),

then

z(1) = Rect(g cos(2mfyt) x 2cos(2mfyt) = Rect(@ cos(0) + Rect(g cos(4nfyt)

2,(t) = Recz@ cos(27fy1) x (~2)sin(27fyt) = Recz@ sin(O)—Rect@ sin(47f ) .
Thus, the output of the LPF’s are
t
x,(t) = Rect(;) ; xp() = 0.

From Eq. (3.64) and Eq. (3.65) we get
fu() =0 s SO = fo-

Finally the complex envelope and the analytic signal are given by

(1) = x(0) +jxglt) = x,(1) = Recz@

v(t) = J?(t)ejzmt = Rect(geﬂml
(b)
z(t) = Rect(g cos(2nf0t+ %tz) x 2cos(2mfyt)

which can be rewritten as
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z(t) = RectG_) cos(%f) +Rect(t) cos(4nf0 + @tz)

and
z,(t) = Rect(t) cos(2nf0t+—t) x (=2)sin(27fyt),
which can be rewritten as
z,(t) = Rect(t) sm(TETB 2) Rect(t) sm(4nf0t + @tz)

Thus, the outputs of the LPFs are
x,(t) = Rect(t) cos(nB 2) 3 xp(t) = Rect(t) sm(TCTB 2)

From Eq. (3.64) and Eq.(3.65) we get

) =55 p0 = £+ 8

The complex envelope is

(1) = x,(t) +jxg(t) = Rect(g cos(%?tz) +jRect(9 sin(%tz),

which can be written as
)
~ t
x(t) = Rect(—)e !
T

Finally, the analytic signal is

(B

w(t) = 0™ = Re cz(’) [

j(anfyr+ @ﬁ)

tZ)eﬂnfot = Rect(z)e(
T

3.7. Spectra of a Few Common Radar Signals

The spectrum of a given signal describes the spread of its energy in the frequency domain.
An energy signal (finite energy) can be characterized by its Energy Spectrum Density (ESD)
function, while a power signal (finite power) is characterized by the Power Spectrum Density
(PSD) function. The units of the ESD are Joules/Hertz and the PSD has units Watts/Hertz.
3.7.1. Continuous Wave Signal

Consider a Continuous Wave (CW) waveform given by

x,(t) = cos2nfyt. Eq. (3.86)

The FT of x,(?) is
() = 3180~ 1) + 3+ /)] - Eq. (387

5( ) is the Dirac delta function. As indicated by the amplitude spectrum shown in Fig. 3.2, the
signal x,(#) has infinitesimal bandwidth, located at +f;, .
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cos2nfyt
- —
frequency
o 0 Jo
Figure 3.2. Continuous sine wave and its amplitude spectrum.
3.7.2. Finite Duration Pulse Signal
Consider the time-domain signal x,(#) given by
xX,(1) = x, (t)Rect(TiU) = Rect(%ﬂ) cos2mf,t Eq. (3.88)
t 1 _Lo <t< To
Rect(T—() = 2 2 Eq. (3.89)
0 otherwise
The Fourier transform of the Rect function is
FT{Rect(fﬂ) } = 1,Sinc(fty) Eq. (3.90)
where
Sinc(u) = STU) Eq. (3.91)
U
It follows that the FT is
. 1 .
X0 = XD @ 1Sinc(frg) = F[8(/=/o) +8(f+fo)] ® 1Sinc(fry) Eq. (3.92)
which can be written as
T
X(f) = SHSincl(f~fo)tol + Sinel(f+ /o)l } Eq. (3.93)

The amplitude spectrum of x,(¢) is shown in Fig. 3.3. It is made up of two Sinc functions, as
defined in Eq. (3.93), centered at £f, .
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]

0

—fo—(1/710) —fot(1/10) Jo—(1/1) fot(1/7))
l T l T l } i '
o 0 Jo frequency

Figure 3.3. Finite duration pulse and its amplitude spectrum.

3.7.3. Periodic Pulse Signal

In this case, consider the coherent gated CW waveform x,(¢) given by

L ”7) . Eq. (3.94)
To

The signal x4(¢) is periodic, with period T (recall that f, = 1/T is the PRF), of course the

o0 0

xX;3(1) = Z xl(t)Rect(t;nT) = cos2mf,t Z Rect(
0

n= -0 n= -0

condition f, « f;, is assumed. The FT of the signal x;(¢) is

0

X5() = X,(H®FT z Rect( TOTJ = Eq. (3.95)

n=-mw

0

[8(f f) +8(f+f)]®FT: ZRect(

n=-wn

)

The complex exponential Fourier series of the summation inside Eq. (3.95) is

To

z Rect( T) z X, e Eq. (3.96)

n=-0n n=-0n

where the Fourier series coefficients X, are given by (see Eq. 3.28)

1 ¢ To . nt,
= ?FT{Rect(—O)} = —Sznc(f'ro)‘ = —Slnc( ) . Eq. (3.97)
T T -1 T
ST

_n
f*}
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It follows that

0

P
Ty Xell= (T—]‘J) > Sinc(nf,z,)3(~nf,) Eq. (3.98)

n=-0n n=-—ow

where the relation f, = 1/7 was used. Substituting Eq. (3.98) into Eq. (3.95) yields the FT of
x5(¢). That is

o0

X0) = FHS(—f) + 3¢+ )1 ® 3 Sinc(nf,5)8(f~nf,). Eq. (3.99)

n=-w

The amplitude spectrum of x,(¢) has two parts centered at +f,, . The spectrum of the summa-
tion part is an infinite number of delta functions repeated every f, , where the nth line is modu-
lated in amplitude with the value corresponding to Sinc(nf.t). Therefore, the overall
spectrum consists of an infinite number of lines separated by f, and have sinu/u envelope
that corresponds to X, . This is illustrated in Fig. 3.4, for the positive portion of the spectrum
only.

3.7.4. Finite Duration Pulse Train Signal

Define the function x,(#) as
N-1

x (1) = cos(2nf0t)ZRect(t_nT) = cos2nfyt x g(1) Eq. (3.100)

To

n=0

frequency

~
A1 1y
=

I 1

p
NI M T
0 NN/ fO L/

Jo= (/) fo+(1/7)

Figure 3.4. Coherent pulse train of infinite length and its associated
amplitude spectrum (only positive portion of spectrum is shown).
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where
N-1
g(t) = Rect(t 1_'”) : Eq. (3.101)
n=0 ’
The amplitude spectrum of the signal x,(¢) is
Xy(f) = 360) @ 18/ fo) +3(/+1,)] Eq. (3.102)

where G(f) is the FT of g(#). This means that the amplitude spectrum of the signal x,(¢) is
equal to replicas of G(f) centered at £f,,. Given this conclusion, one can then focus on com-

puting G(f) .
The signal g(¢) can be written as (see top portion of Fig. 3.5)

0

_ t—n
g(t) = Z gl(l)Rect( TOTJ Eq. (3.103)
n=-m
where
t
=R (—) . Eq. (3.104
g1(0) ect NT g (3.104)
r = = 2" a2 2 - - - —=—-—"—== - —7¥F7 = = . A
|
|
4—T>‘
= (N-1)T >
h T, = NT "

frequency

Figure 3.5. Coherent pulse train of finite length and corresponding
amplitude spectrum.
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It follows that the FT of Eq. (3.103) can be computed using analysis similar to that which led
to Eq. (3.99). More precisely,

o0

G() = T—T-E)Gl(f)@) S Sinc(nf,5)8(~nf,) Eq. (3.105)

and the FT of g,(¢) is
G,(f) = FT{Rect(%)} = T, Sinc(fT,) . Eq. (3.106)

Using these results, the FT of x,(#) can be written as

o0

Tz‘
X, (N = Z—TTO Sinc(fT,) ® Z Sinc(nf,1y)8(f—nf,) | ® [8(f—fy) + 8(f+/y)]. Eq.(3.107)

n=-w

Therefore, the overall spectrum of x,(¢) consists of a two equal positive and negative por-
tions, centered at xf, . Each portion is made up of N Sinc(f7T,) functions repeated every f,
with envelope corresponding to Sinc(nf,t,). This is illustrated in Fig. 3.5; only the positive
portion of the spectrum is shown.

3.7.5. Linear Frequency Modulation (LFM) Signal

Frequency or phase modulated signals can be used to achieve much wider operating band-
widths. Linear Frequency Modulation (LFM) is very commonly used in most modern radar
systems. In this case, the frequency is swept linearly across the pulse width, either upward (up-
chirp) or downward (down-chirp). Figure 3.6 shows a typical example of an LFM waveform.
The pulse width is 7, and the bandwidth is B .

The LFM up-chirp instantaneous phase can be expressed by

To
9

o(1) = 2n(f0t+§ﬁ) SN Eq. (3.108)

where f, is the radar center frequency, and p = B/t is the LFM coefficient. Thus, the
instantaneous frequency is

(Y i

1 d To
(1) = o Ed)(t) = fotut - srs-z—. Eq. (3.109)

Similarly, the down-chirp instantaneous phase and frequency are given, respectively, by

o) = Zﬂ(fot — %tz) - %‘)StS%O Eq. (3.110)
1 T T
fr) = 7 %d)(t) = fy — ut - Eosrszo. Eq. (3.111)

A typical LFM waveform can be expressed by
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x,(t) = Rect(r— e Eq. (3.112)

to) j2n(/(')t+ %zz)

where Rect(t/1,) denotes a rectangular pulse of width t,. Remember that the signal x,(7) is
the analytic signal for the LMF waveform. It follows that

X (1) = 2™ Eq. (3.113)
x(1) = Rect@e’““’z. Eq. (3.114)

The spectrum of the signal x,(¢) is determined from its complex envelope x(¢) . The com-
plex exponential term in Eq. (3.114) introduces a frequency shift about the center frequency
f, . Taking the FT of x(¢) yields

frequency A A frequency
up-chirp down-chirp

time B o time

Up-chirp LFM

.........................................................

Dowin-chirp LFR

___________________________________________

R I I I I I
-1 0% 08 07 OB 05 04 03 D2 01 0
time in microseconds

Figure 3.6. Typical LFM waveforms.
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B

2

~ . 2 . . 2 .
X(f) = IRect(Tiﬂ)dn”t g = Ief““‘ 7™

_lo

2

Let u' = np = nB/1,, and perform the change of variable

= B [ e

Thus, Eq. (3.115) can be written as

2
~ . 2 , . 2
X = /L o/ J'elrrz ZIn
2u’
—,
-,

%2
~ . 2 ' .2 .2
XU) _ TC/ ef/(nf) /u J'e/nz /2 dZ*J.E?]nZ/Z dz
N2u
0

0
! N7 \2 w2 B/2
2 T2 n/ N2 B/

The Fresnel integrals, denoted by C(z) and S(z), are defined by

z z

2

C(z) = Icos(%uz)do and S(z) = J.sin(%)do.

0 0

Fresnel integrals can be approximated by

1,1 . (n 2)
~ -t — = .
C(z) 5 7TZsm 52 ;znl

<11 (E 2) :
S(z) = 3 TrZcos 52 ;z»l.

Eq. (3.115)

Eq. (3.116)

Eq. (3.117)

Eq. (3.118)

Eq. (3.119)

Eq. (3.120)

Eq. (3.121)

Eq. (3.122)

Eq. (3.123)

Note that C(—z) = —C(z) and S(-z) = —S(z). Figure 3.7 shows a plot of both C(z) and
S(z) for 0<z<4.0. Using Eq. (3.121) into Eq. (3.118) and performing the integration yield

R = [FE OO ] SE) S

Eq. (3.124)

Figure 3.8 shows typical plots for the LFM real part, imaginary part, and amplitude spec-
trum. The square-like spectrum shown in Fig. 3.8c is widely known as the Fresnel spectrum.
Figure 3.8 can be reproduced using MATLAB program “Fig3 8.m” listed in Appendix 3-A.
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Figure 3.7. Fresnel integrals.
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Figure 3.8a. Typical LFM waveform, real part.
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T =10 Microsecond, B =200 MHz
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Figure 3.8b. Typical LFM waveform, imaginary part.
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Figure 3.8c. Typical spectrum for an LFM waveform; Fresnel spectrum.
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3.8. Signal Bandwidth and Duration

The signal bandwidth is the range of frequency over which the signal has a nonzero spec-
trum. In general, any signal can be defined using its duration (time domain) and bandwidth
(frequency domain). A signal is said to be band-limited if it has finite bandwidth. Signals that
have finite durations (time-limited) will have infinite bandwidths, while band-limited signals
have infinite durations. The extreme case is a continuous sine-wave, whose bandwidth is infin-
itesimal.

Radar signal processing can be performed in either the time domain or frequency domain. In
either case, the radar signal processor assumes signals to be of finite duration (time-limited)
and finite bandwidth (band-limited). The trouble with this assumption is that time-limited and
band-limited signals cannot simultaneously exist. That is, a signal cannot have finite duration
and have finite bandwidth. Because of this, it is customary to assume that radar signals are
essentially limited in time and frequency.

Essentially time-limited signals are considered to be very small outside a certain finite time
duration. If the FT of a signal is very small outside a certain finite frequency bandwidth, the
signal is called an essentially band-limited signal. A signal x(¢) over the time interval
{T,,T,} issaid to be essentially time-limited relative to some very small signal level ¢ if and
only if

T, ©
Jlx(t)lzdtz (1 —a)I x(¢)*dt Eq. (3.125)
T, —0

where the interval t, = 7,— T, is called the effective duration. The effective duration is
defined as

© 2

_[ (o) dt

—00

T, = = Eq. (3.126)

I |x(t)|4dt

Similarly, a signal x(#) over the frequency interval {B, B,} is said to be essentially band-
limited relative to some small signal level n if and only if

BZ o0
I|X(ﬁ|2df2 (1-n) | IxX(lPar Eq. (3.127)
B, o

where X(f) is the FT of x(#) and the band B, = B, — B, is called the effective bandwidth.
The effective bandwidth is defined as

2

B, = .[IX(f)lzdf / '[IX(ﬁl“df. Eq. (3.128)
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Different, but equivalent, definitions for the effective bandwidth and effective duration can be
found in the literature. In this book, the definitions cited in Burdic! are adopted. The quantity
B,t, is referred to as the time bandwidth product. In later chapters, it will be clear that large
time bandwidth products are desirable in radar applications since they provide better pulse
compression ratios (or compression gain).

Range resolution is defined as the reciprocal of the effective bandwidth. In Chapter 1, prior
to introducing the concept of effective duration, the bandwidth was computed as the reciprocal
of the pulse width, an approximation that is widely used and accepted, even though it is not
quite 100% accurate. This is true since using one value or the other for the bandwidth does not
make much difference in the overall calculation of the SNR when using the radar equation.
Doppler resolution is computed as the reciprocal of the effective duration.

3.8.1. Effective Bandwidth and Duration Calculation

A few examples for computing the effective bandwidth and duration of most common radar
signals are presented in this section.

Single Pulse

The single pulse was analyzed in the previous section. Consider the single pulse waveform
given by

x(t) = Rect(i L gl Eq. (3.129)

T ) 2 4
The effective bandwidth for this signal can be computed using Eq. (3.128). For this purpose,
the denominator of Eq. (3.128) is

o0

0 0 3
2
le(f)I“dfz J.|Rx(r)|4dr = I|10Sinc(fto)|4df: '§T2 Eq. (3.130)
and its numerator is computed utilizing Eq. (3.61) as
0 2
JIX(ﬁlzdf = [R,(0)]° = . Eq. (3.131)

Note that this value represents the square of the signal total energy. Therefore, the effective
bandwidth is

o) 2
[Ixorar
o () 3

B, = = == Eq. (3.132)

. -
[ 1xotar &

—0

1. Burdic, W. S., Radar Signal Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1968.
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The effective duration for the signal x,(¢) is

2

[ Ixoldr
T, = 7:
I (o) dr
/2 2
J' (1)2dr
2
T = L = E =1
€ T0/2 Ty 0
J' (1Y'dr
—T9/2

Finite Duration Pulse Train Signal

Eq. (3.133)

Eq. (3.134)

Eq. (3.135)

The finite duration train signal was defined in the previous section; its complex envelope is

given by

o0

x(t) = Rect(ﬁ) Z Rect(t_rnr) .
0

n= -0

The corresponding FT is

0

X = Tt—;OSinc(fT,)(@ Z Sinc(nf,t))d(f—nf,).

n= -0
The total energy for this signal is

T
[ orar = 22,

—00

It can be shown (see Problem 3.19) that

o0

—00

It follows that the effective bandwidth is

fiota [t~ (0 Fow

Eq. (3.136)

Eq. (3.137)

Eq. (3.138)

Eq. (3.139)
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( ! 0)2
B T’ (__32 (_3 ) (3.
. ) ) 0) Eq. (3.140)

& B

The result of Eq. (3.140) clearly indicates that the effective bandwidth of the pulse train
decreases as the length of the train is increased. This should intuitively make a lot of sense,
since the bandwidth is inversely proportional to signal duration. Of course, when 7, = T (i.e.,
single pulse case) Eq. (3.140) becomes identical to Eq. (3.132); note that in this case the factor
3/4 would not have been present in Eq. (3.140).

The effective duration of this signal can be computed using Eq. (3.126). Again, the numera-
tor of Eq. (3.126) represents the square of the total signal energy given in Eq. (3.44). In this
case, the denominator of Eq. (3.126) is equal to unity (see Problem 3.20). Thus, the effective
duration is

_ Tx,

T Eq. (3.141
e T q. (3.141)

and the time bandwidth product of this waveform is

-(30)(X (ﬁ) _9
BeTe~(477~> 2%) T 3 Eq. (3.142)

LFM Signal

In this case, the LFM complex envelope can be written as
_ t ‘urrtz
x(t) = Rect - e Eq. (3.143)

where u = B/t and B is the LFM bandwidth. Make a change of variables n’ = wp, then
the modulus of the FT of this signal can be approximated as

XN = 5 Rect(;—{) : Eq. (3.144)

The FT of the autocorrelation function is equal to the square of the modulus of the signal FT,
ie.,

- 2. i
FT{R ()} = |X())| u,Rect(M,TO). Eq. (3.145)

Therefore,
2

'[IX(ﬂlzdf ~ T, Eq. (3.146)

0

also
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4. T
I|XU)| df = _;I’_ Eq. (3.147)
Then the effective bandwidth is
1:2 'T
B,~—~ =220, Eq. (3.148)
T T
The effective duration is
00 2 T0/2 2
j x(0)|d I (1)2dt
2
—0 —1,/2 T
T, = =2 - 1:2/2 = I-L; =1,. Eq. (3.149)
.[|x(t)|4dt I (1)'ar
—0 —T0/2

And the time bandwidth product for LFM waveforms is computed as

B~y =20 = TE0 - 70 - e Eq. (3.150)

3.9. Discrete Time Systems and Signals

Advances in computer hardware and in digital technologies completely revolutionized radar
systems signal and data processing techniques. Virtually all modern radar systems use some
form of a digital representation (signal samples) of their received signals for the purposes of
signal and data processing. These samples of a time-limited signal are nothing more than a
finite set of numbers (thought of as a vector) that represents discrete values of the continuous
time domain signal. These samples are typically obtained by using Analog-to-Digital (A/D)
conversion devices. Since in the digital world the radar receiver is now concerned with pro-
cessing a set of finite numbers, its impulse response will also compose a set of finite numbers.
Consequently, the radar receiver is now referred to as a discrete system. All input/output signal
relationships are now carried out using discrete time samples. It must also be noted that just as
in the case of continuous time-domain systems, the discrete systems of interest to radar appli-
cations must also be causal, stable, and linear time invariant.

Consider a continuous lowpass signal that is essentially time-limited with duration t and
band-limited with bandwidth B . This signal (as will be shown in the next section) can be com-
pletely represented by a set of {218} samples. Since a finite set of discrete values (samples) is
used to represent the signal, it is common to represent this signal by a finite dimensional vector
of the same size. This vector is denoted by x, or simply by the sequence x[n],

x=x[n] = [x(0) x(1) ..x(N-2) x(N- 1]’ Eq. (3.151)

where the superscript ¢ denotes transpose operation. The value N is at least 2tB for a real
lowpass essentially limited signal x(#) of duration t and bandwidth B . If, however, the signal
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is complex, then N is at least 1B and the components of the vector x are complex. The sam-
ples defined in Eq. (3.151) can be obtained from pulse-to-pulse samples at a fixed range (i.e.,
delay) of the radar echo signal. The PRF is denoted by £, and the total observation interval is
T,; then N would be equal to 7f, . Define the radar receiver transfer function as the discrete
sequence /[n] and the input signal sequence as x[#n] ; then the output sequence y[n] is given
by the convolution sum

M-1

y[n] = Z h(m)x(n—m) Eq. (3.152)

m=0

where {h[n] = [(0) h(1) ...h(M—2) h(M—1)]; M<N}.

3.9.1. Sampling Theorem
Lowpass Sampling Theorem

In general, it is required to determine the necessary condition such that a signal can be fully
reconstructed from its samples by filtering, or data processing in general. The answer to this
question lies in the sampling theorem, which may be stated as follows: let the signal x(¢) be
real-valued, essentially band-limited by the bandwidth B; this signal can be fully recon-
structed from its samples if the time interval between samples is no greater than 1/(2B) . Fig-
ure 3.9 illustrates the sampling process concept. The sampling signal p(#) is periodic with
period T, which is called the sampling interval.

The Fourier series expansion of p(¢) and the sampled signal x (¢) expressed using this Fou-
rier series definition are, respectively, given by

p() = % Pe " Eq. (3.153)
n=-mn

x,(t) = p(t) - x(1) Eq. (3.154)

0 2nnt

JT
x,(t) = Z x(t)Pe . Eq. (3.155)

Taking the FT of Eq. (3.155) yields
x(1) x,(1) Pyx(1)

LPF >

X(w) = 0 for |o|>2nB

p(1)

Figure 3.9. Concept of sampling.
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X,(0) = Z P, X(co—zTﬂ) = PX(®) + Z P, X((,,,ZTﬁ) Eq. (3.156)

n#0

where X(w) is the FT of x(¢) . Therefore, we conclude that the spectral density, X (®), con-
sists of replicas of X(w) spaced (2n/7) apart and scaled by the Fourier series coefficients
P, . A lowpass filter (LPF) of bandwidth B can then be used to recover the original signal

x(1).

When the sampling rate is increased (i.e., T, decreases), the replicas of X(®) move farther
apart. Alternatively, when the sampling rate is decreased (i.e., T increases), the replicas get
closer to one another. The value of T such that the replicas are tangent to one another defines
the minimum required sampling rate so that x(#) can be recovered from its samples by using

an LPF. It follows that

27 1
—=2n(2B)=>T. = —. Eq. (3.157
7 n(2B) s = 55 q. (3.157)

N
The sampling rate defined by Eq. (3.157) is known as the Nyquist sampling rate. When
T,>(1/2B), the replicas of X(w) overlap, and thus x(¢) cannot be recovered cleanly from
its samples. This is known as aliasing. In practice, ideal LPF cannot be implemented; hence,
practical systems tend to oversample in order to avoid aliasing.
Example: -
Assume that the sampling signal p(t) is given by p(t) = z 8(t—nTy).

Compute an expression for X (). n=-ow
Solution:

The signal p(t) is called the Comb function, with exponential Fourier series

® nnt

2_
(1) = %;e g

1t follows that

®© nnt

22—

0=y x(z)Tle I

s
n=-w

Taking the Fourier transform of this equation yields

_2n X( 3 27m)
X,(o) T, Z ® )
It is desired to develop a general expression from which any lowpass signal can be recovered

from its samples, provided that Eq. (3.157) is satisfied. In order to do that, let x(#) and x(7)
be the desired lowpass signal and its corresponding samples, respectively. Then an expression
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for x(¢) in terms of its samples can be derived as follows: First, obtain X(®) by filtering the
signal X (o) using an ideal LPF whose transfer function is

= 0

H(o) = TSReCt(MB) ) Eq. (3.158)

Thus,
X(0) = Ho)X,(0) = TSRect(émiB)Xs(co) . Eq. (3.159)

The signal x(#) is now obtained from the inverse FT of Eq. (3.159) as
x(t) = FT’I{X(Q))} = FTI{TSReCl‘(A‘%B)XS(CO)} = 2BT Sinc(2nBt) ® x,(t) .Eq. (3.160)
The sampled signal x(¢) can be represented using an ideal sampling signal

p(t)= ZS(t—nTS) Eq. (3.161)

thus,
x,(t) = Zx(n T)8(t—nT,). Eq. (3.162)

n

Substituting Eq. (3.62) into Eq. (3.160) yields an expression for the signal x(¢) in terms of its
samples
1

x(1) = 2BTSZx(nTS) Sinc(2nB(t-T,)) ;T Sz—é Eq. (3.163)

n

Bandpass Sampling Theorem

It was established in Section 3.6 that any bandpass signal can be expressed using the quadra-
ture components. It follows that it is sufficient to construct the bandpass signal x(#) from sam-
ples of the quadrature components {x,(¢), xo(f)}. Let the signal x(z) be essentially band-
limited with bandwidth B, then each of the lowpass signals x,(7) and x,(7) are also band-lim-
ited each with bandwidth B/2 . Hence, if either of these lowpass signal sis sampled at a rate
1. < 1/B, then the Nyquist criterion is not violated. Assume that both quadrature components
are sampled synchronously, that is

0

x,(t) = BT, Z x/(nT,) Sinc(nB(t—nT,)) Eq. (3.164)
xo(t) = BT, Z xo(nT) Sinc(nB(t—nT))) Eq. (3.165)

where if the Nyquist rate is satisfied, then BT, = 1 (unity time bandwidth product). Substitut-
ing Eq. (3.164) and Eq. (3.165) into Eq. (3.66) yields
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x(t) = BT, Z [x,(nT)cos2nfyt —xo(nTy)sin2nfot] Sinc(nB(i—nT))), Eqg.(3.166a)

n=-w

x(0) = Ret BT, " [x/(nT) +jug(nT)1e ™" Sine(rB(t-nT,) Eq. (3.166b)

n=-w

where, of course, 7, <1/B is assumed. This leads to the conclusion that if the total period
over which the signal x(¢) is sampled is T}, then 2BT,, samples are required, BT, samples
for x,(r) and BT, samples for x, (7).

3.9.2. The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time-domain sequence
into a new domain known as the z-domain. It is defined as

Z{x(n)} = X(z) = z x(n)z " Eq. (3.167)

n=-wn

where z = r¢® , and for most cases, » = 1. It follows that Eq. (3.167) can be rewritten as

X(") = > x(n)e”". Eq. (3.168)

In the z-domain, the region over which X(z) is finite is called the Region of Convergence
(ROC).

Example:
Show that Z{nx(n)} = fzdiX(z).
z
Solution:
Starting with the definition of the Z-transform,
X(z) = z x(n)z ".
Taking the derivative, with respect to z, of the above equation yields

o0

%X(z) = z x(n)(—n)zfnf1

n=-w
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= (7271) Z nx(n)z ".

1t follows that
Z{nx(n)} = (—z)%X(z).

A discrete LTI system has a transfer function H(z) that describes how the system operates
on its input sequence x(n) in order to produce the output sequence y(n). The output sequence
y(n) is computed from the discrete convolution between the sequences x(#n) and A(n):

y(n) = Z x(m)h(n—m). Eq. (3.169)

However, since practical systems require the sequence x(n) and i(n) to be of finite length,
we can rewrite Eq. (3.169) as

N
y(n) =" x(m)h(n—m). Eq. (3.170)
m=0
N denotes the input sequence length. The Z-transform of Eq. (3.170) is
Y(z) = X(2)H(z) Eq. (3.171)

and the discrete system transfer function is

H(z) = )% . Eq. (3.172)

Finally, the transfer function H(z) can be written as

)| eAH(e/‘”)

HE@)| .= |1 Eq. (3.173)

where ‘H (ej Cl))| is the amplitude response, and LH(ej “) is the phase response.

3.9.3. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that transforms a discrete
sequence, usually from the time domain into the frequency domain, in order to explicitly deter-
mine the spectral information for the sequence. The time-domain sequence can be real or com-
plex. The DFT has finite length N and is periodic with period equal to N . The discrete Fourier
transform pairs for the finite sequence x(n) are defined by

N-1 _2mnk

X(k) = Zx(n)e N s k=0,..,N-1 Eq. (3.174)

n=0
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N-1 2nnk

Jk
x(n) = ]%/ZX(k)e v =0, . N-1. Eq. (3.475)
k=0

The Fast Fourier Transform (FFT) is not a new kind of transform different from the DFT.
Instead, it is an algorithm used to compute the DFT more efficiently. There are numerous FFT
algorithms that can be found in the literature. In this book we will interchangeably use the DFT
and the FFT to mean the same thing. Furthermore, we will assume a radix-2 FFT algorithm,
where the FFT size is equal to N = 2" for some integer m .

3.9.4. Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numerical approxima-
tion for the Fourier transform. The input signals must be truncated to a finite duration (denoted
by T') before they are sampled. This is necessary so that a finite length sequence is generated
prior to signal processing. Unfortunately, this truncation process may cause some serious prob-
lems.

To demonstrate this difficulty, consider the time-domain signal x(#) = sin2nf,¢. The spec-
trum of x(#) consists of two spectral lines at +f,. Now, when x(¢) is truncated to length T
seconds and sampled at arate 7, = 7/N, where N is the number of desired samples, we pro-
duce the sequence {x(n); n=20,1,...,.N—1}.

The spectrum of x(n) would still be composed of the same spectral lines if 7 is an integer
multiple of 7, and if the DFT frequency resolution Af is an integer multiple of f,. Unfortu-
nately, those two conditions are rarely met, and as a consequence, the spectrum of x(n)
spreads over several lines (normally the spread may extend up to three lines). This is known as
spectral leakage. Since f;, is normally unknown, this discontinuity caused by an arbitrary
choice of T cannot be avoided. Windowing techniques can be used to mitigate the effect of
this discontinuity by applying smaller weights to samples close to the edges.

A truncated sequence x(n) can be viewed as one period of some periodic sequence with
period N . The discrete Fourier series expansion of x(n) is
N-1 2nnk

j2mnk
x(n) = ZXke N Eq. (3.176)
k=0

It can be shown that the coefficients X, are given by

2nnk
-

N-1
_ 1 _1
X, = Nz x(n)e NX(k) Eq. (3.177)
n=20
where X(k) is the DFT of x(n) . Therefore, the Discrete Power Spectrum (DPS) for the band-
limited sequence x(n) is the plot of |X, k|2 versus &, where the lines are Af apart,

P, = #lX(O)lz Eq. (3.178)
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Po= X XV -R) k=12 Eq. (3.479)
N
Py, = ]'\]1-2|X(N/2)|2- Eq. (3.180)

Before proceeding to the next section, we will show how to select the FFT parameters. For
this purpose, consider a band-limited signal x(#) with bandwidth B . If the signal is not band-
limited, an LPF can be used to eliminate frequencies greater than B . In order to satisfy the
sampling theorem, one must choose a sampling frequency f, = 1/T,, such that

f.>2B. Eq. (3.181)

The truncated sequence duration 7' and the total number of samples N are related by

T = NT, Eq. (3.182)
or equivalently,
f.=N/T. Eq. (3.183)
It follows that
f. = AT[Z 2B Eq. (3.184)

and the frequency resolution is

ANf= — === =>— Eq. (3.185
/ NI, N T~ N a. (3.185)

3.9.5. Windowing Techniques

Truncation of the sequence x(n) can be accomplished by computing the product
x,,(n) = x(n)w(n) Eq. (3.186)
where
,n=20,1,..., N-1
w(n) = Sn) " Eq. (3.187)
0 otherwise

where f{(n) < 1. The finite sequence w(n) is called a windowing sequence, or simply a win-
dow. The windowing process should not impact the phase response of the truncated sequence.
Consequently, the sequence w(n) must retain linear phase. This can be accomplished by mak-
ing the window symmetrical with respect to its central point.

If f(n) = 1 for all n, we have what is known as the rectangular window. It leads to the
Gibbs phenomenon, which manifests itself as an overshoot and a ripple before and after a dis-
continuity. Figure 3.10 shows the amplitude spectrum of a rectangular window. Note that the
first sidelobe is at —13.46dB below the main lobe. Windows that place smaller weights on the
samples near the edges will have less overshoot at the discontinuity points (lower sidelobes);
hence, they are more desirable than a rectangular window. However, reduction of the sidelobes
is offset by a widening of the main lobe. Therefore, the proper choice of a windowing sequence
is a continuous trade-off between sidelobe reduction and mainlobe widening. Table 3.1 gives a
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summary of some commonly used windows with the corresponding impact on main beam wid-
ening and peak reduction.

The multiplication process defined in Eq. (3.186) is equivalent to cyclic convolution in the
frequency domain. It follows that X (k) is a smeared (distorted) version of X(k). To mini-
mize this distortion, we would seek windows that have a narrow main lobe and small side-
lobes. Additionally, using a window other than a rectangular window reduces the power by a
factor P, , where

N-1 N-1

_ 1 2.\ _ 2

Py = 5> wim = Y Wk Eq. (3.188)
n=20 k=0

It follows that the DPS for the sequence x,,(n) is now given by

Py = 1 - |X(0)/? Eq. (3.189)
w
w1 2 2 CE = N
Py = —{X(B)I" + I X(N-K)|"} s k=1,2,..,2-1 Eq. (3.190)
PN 2
Py = “‘1“2|X(1\’/2)|2 Eq. (3.191)
P N

w

where P, is defined in Eq. (3.188). Table 3.2 lists the mathematical expressions for some
common windows. Figures 3.11 through 3.13 show the frequency domain characteristics for
these windows. These plots can be reproduced using the following MATLAB code. Figures
3.11 through 3.13 can be reproduced using the MATLAB program “Fig3 10 13.m” listed in
Appendix 3-A.

i
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Figure 3.10. Normalized amplitude spectrum for rectangular window.
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TABLE 3.1. Common Windows

Null-to-Null Beamwidth Rectangular Peak

Window Window is the Reference Reduction

Rectangular 1 1

Hamming 2 0.73
Hanning 2 0.664
Blackman 6 0.577
Kaiser (B = 6) 2.76 0.683
Kaiser (B = 3) 1.75 0.882

TABLE 3.2. Some Common Windows. n = 0, N— 1

First Side- | Main Lobe

Window Expression lobe Width
Rectangular | yp(5) = 1 ~13.46dB 1
Hamming -41dB 2

w(n) = 0.5470.46005( 2””)
N-1
Hanning 2nn ) -32dB 2
w(n) = 0.5[1—cos(N71 J
Kaiser 2 —46dB
oy — LB /N WP |5
1o(P) p=an |/
B=2n

1 is the zero-order modified Bessel function
of the first kind

3.9.6. Decimation and Interpolation
Decimation

Typically, radar systems use many signals for different functions, such as search, track, and
discrimination, to name a few. All signals are assumed to be essentially limited; however, since
these signals have different functions, they do not have the same time and bandwidth durations
(7, B). Earlier in this chapter, it was established that the number of samples required to suffi-
ciently recover any signal from its samples is N > 2tB . Therefore, it is important to use an A/
D with a high enough sampling rate to account for the largest possible number of samples
required. As a result, it is often the case that some radar signals are sampled at a much higher
rate than actually needed.

The process for decreasing the number of samples for a given sequence is called decimation.
This is because the original data set has been reduced (decimated) in number. The process that
increases the number of data samples is referred to as interpolation. The typical implementa-
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tion for either operation is to alter the sampling rate, without violating the Nyquist sampling
rate, of the input sequence. In decimation, the sampling rate is decreased by increasing the time
steps between successive samples. More precisely, if the ¢, is the original sampling interval
and ¢, is the decimated sampling interval, then

D T T T T T
I [ [ R T R
B e e e oy
= ' ' ' ' '
E:
= : : : : !
T ] N P R S R S
= ! ! ! ! !
g . . . . |
= ' ' ' : :
B A .
-SD—'""-- E- -- Bl --é | -- E- " " -9 -l =B 4F - - -

-60

1 1 1 1
500 1000 1500 2000 2500
Sample number

Figure 3.11. Normalized amplitude spectrum for Hamming window.

20*og10iamplitude)

| |
a0 100 150 200 250
Sample number

Figure 3.12. Normalized amplitude spectrum for Hanning window.
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Figure 3.13. Normalized amplitude spectrum for Kaiser window.

t, = Dt,. Eq. (3.192)

D is the decimation ratio and it is greater than unity. If D is an integer, then decimation effec-
tively decreases the original sequence by discarding (D — 1) samples of D samples. This is
illustrated in Fig. 3.14 for D = 3.

When D is not an integer, it is then necessary to first perform interpolation to determine new
values for the new sequence. For example, if D = 2.2, then four out of every five samples in
the decimated sequence are between samples in the original sequence and must be found by
interpolation. This is illustrated in Fig. 3.15 for D = 2.2 . In this example,

—>
' I

t, = 3t

]

t, |+—

Figure 3.14. Decimation with D = 3. Every sample of the decimated
sequence coincides with every third sample of the original sequence.

’ | ‘ | original sequence

| decimated sequence
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' original sequence

: Ch, =221,

decimated sequence

Figure 3.15. Decimation with D = 2.2 . Every fifth sample of the
decimated sequence coincides with a sample in the original sequence.

(rz =22t = 1—51—11) = 5t, = 11¢,. Eq. (3.193)

which indicates that there are five samples in the decimated sequence for every eleven samples
of the original sequence. Additionally, every fifth sample in the decimated sequence is equal to
every eleventh sample of the original sequence.

Interpolation

Suppose that a signal x(#) whose duration is 7' seconds has been sampled at a sampling rate
¢, to obtain a sequence

x = x[n] = {x(nt;),n=0,1,...,N, -1} Eq. (3.194)

in this case, N, = T/t . Suppose you want to interpolate between the samples of x[#n] to gen-
erate a new sequence of size N, and sampling interval ¢, , where ¢, = ¢,/k. This effectively
corresponds to a new sampling frequency f,, = kf,; where f;; = 1/¢;. A more efficient
interpolation can be performed using the FFT, as will be described in the rest of this section.

Denote the FFT of the sequences x,[n] and x,[n] by X,[/] and X,[/]. Assume that the
signal x(¢) is essentially band-limited with bandwidth B = MAf where M is an integer and
Af = 1/T. It follows that in order not to violate the sampling theorem

MAf<f,/2<f/2. Eq. (3.195)
It is clear that the coefficients of X,[/] and X,[/] are zero for all |/| > M . More precisely,
X=0171=M+1,M+2,..,N,-3
. Eq. (3.196)
X =01=M+1,M+2,..,N,-3

Therefore, one can easily obtain the new sequence X,[/] from X,[/] by adding zeros in
between the negative and positive frequencies from
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N,—(2M+1) to N,—(2M+1) Eq. (3.197)

and the sequence x,[n] is simply generated by computing the inverse DFT of the sequence
X,[/] . Interpolation can also be applied to the frequency domain sequence. For this purpose,
one can simply zero pad the time-domain sequence to the desired size and then take the DFT of
the newly interpolated sequence.

Problems

3.1. Classify each of the following signals as an energy signal, a power signal, or neither.
(a) exp(0.5¢) (¢20),

(b) exp(—0.5¢7) (¢20),

(c) cost+ cos2t (—o<t<o),

@ e (a>0).

3.2. A definition for the instantaneous frequency was given in Eq. (3.65). A more general

definition is f;(t) = 2‘17[1”1{5‘, ln\u(t)} where Im {.}, indicates imaginary part and (¢) is the

analytic signal. Using this definition, calculate the instantaneous frequency for

x(t) = Rect(g cos(21tf0t+ E%tz) .
3.3. Consider the two bandpass signals x(¢) = r(¢)cos(2nfyt+ ¢,(f)) and
h(t) = r,(t)cos(2nfyt + ¢,(?)) . Derive an expression for the complex envelope for the signal
s(t) = x(t)+h(r).
3.4. Consider the bandpass signal x(¢#) whose complex envelope is equal to
x(1) = x, (1) + JXo(t) . Derive an expression for the autocorrelation function and the power

spectrum density for x(#) and x(¢). Assume that the signal x(#) is the input to an LTI filter

whose impulse response is /(¢) ; give an expression for the output’s autocorrelation and power
spectrum density.
3.5. Find the autocorrelation integral of the pulse train

y(t) = Rect(t/T) —Rect(% +Rect(t —TZTJ .
3.6. Compute the discrete  convolution  y(n) = x(m)e h(m)  where
{x(k),k=-1,0,1,2} =[-1.9,0.5,1.2,1.5] {h(k),k=0,1,2} = [-2.1,1.2,0.8].
3.7. Define {x,(n)=1,-1,1} and {xg(n)=1,1,-1}. (a) Compute the discrete correla-

tions: R, , RXQ, Rx,xQ’ and RxQx,~ (b) A certain radar transmits the signal
s(2) = x[(t)cos2nfyt —xp(f)sin2nfyr. Assume that the autocorrelation s(#) is equal to
(1) = y(t)cos2nfyt —yo(t)sin2mnfys . Compute and sketch y,(7) and y, (7).

3.8. Compute the energy associated with the signal x(¢) = ARect(t/7).
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3.9. (a) Prove that ¢,(#) and ¢,(#), shown in the figure below, are orthogonal over the
interval (-2 <7<2). (b) Express the signal x(¢) = ¢ as a weighted sum of ¢,(#) and ¢,(?)

over the same time interval.

Ao (D) A 9y(0)

1 2 -1L Jl
-1 -1

\J

3.10. A periodic signal x,(7) is formed by repeating the pulse x(¢) = 2A((¢—3)/5)
every 10 seconds. (a) What is the Fourier transform of x(¢) ? (b) Compute the complex Fourier

series of x,() . (¢) Give an expression for the autocorrelation function Rxp(t) and the power

spectrum density S, () .
3.11. If the Fourier series is x(f) = z X,&*™T define y(f) = x(t—1,). Compute

an expression for the complex Fourier series expansion of y(¢).
3.12. Derive Eq. (3.52).

3.13. Show that (a) R.(~t) = R.*(¢), (b) If x(¢) = f(t)+m, and y(t) = g(t)+m,,
show that ny(t) = m,;m, , where the average values for f(¢) and g(¢) are zeroes.

3.14. Whatis the power spectral density for the signal x(#) = Acos(2nfyt+6,)?

2.15. A certain radar system uses linear frequency modulated waveforms of the form

t 1‘2
= - + =
x(?) Rect(r) cos (wot n 2)

What are the quadrature components? Give an expression for both the modulation and instan-
taneous frequencies.

3.16. Consider the signal x(z) = ReCt(t/T)COS((DOthl‘Z/Z‘E) and let T = 15us and

B = 10MHz. What are the quadrature components?
3.17. Determine the quadrature components for the signal

Wo\ 2 .
h(t) = 50)—((—0—)6 sin(w,¢) for t>0.
3.18. If x(t) = x,(t)—2x,(t—5) +x,(t—10), determine the autocorrelation functions

R, (1) and R, (1) when x,(1) = exp(~1*/2).
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3.19. Derive Eq. (3.139).
3.20. Prove that the effective duration of a finite pulse train is equal to (7,t,)/ T, where

T, is the pulse width, T is the PRI, and T, is as defined in Fig. 3.5.

3.21. Write an expression for the autocorrelation function R, (#), where

5
»(1) = ZYnRect("z”S) and {Y,} = {0.8,1,1,1,08}.

n=1

Give an expression for the density function S, (®).

3.22. An LTI system has impulse response A(t) = {0 20
<

exp(-2t) t= 0}

(a) Find the autocorrelation function R,(t). (b) Assume the input of this system is
x(t) = 3cos(100¢). What is the output?

3.23. Compute the Z-transform for

(@) x,(n) = ~u(n),

(b) x5(n) = (fT)!uen).

3.24. (a) Write an expression for the FT of x(¢#) = Rect(t/3). (b) Assume that you want
to compute the modulus of the FT using a DFT of size 5/2 with a sampling interval of / sec-
ond. Evaluate the modulus at frequency (80/512)Hz . Compare your answer to the theoretical
value and compute the error.

2.25. InFig. 3.9, let

p(t) = i ARect(t_TnT)

n=-w

Give an expression for X (o).

3.26. Generate 572 samples of the signal x(z) = 2.Oefstsin(41tt) , using a sampling inter-
val equal to 0.002 . Compute the resultant spectrum and then truncate the spectrum at 15Hz.
Generate the time-domain sequence for the truncated spectrum. Determine the sampling rate of
the new sequence.

3.27. Assume that a time-domain sequence generated by using a sampling interval equal to
0.01 is given by x(k) = {0,2,5,12,5,3,3,—-1, 1,0} . Decimate this sequence so that the
sampling interval is 0.02.

3.28. Write a MATLAB program to decimate any sequence of finite length and demon-
strate it using the previous problem.
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3.29. You are given a sequence of samples {x(kT), k = —o, ..., 0} where the sampling
interval T corresponds to twice the Nyquist rate. Give an expression to compute the samples
of x(¢) at a new sampling rate correspondingto 7" = 0.7T.

3.30. A certain band-limited signal has bandwidth B = 20KHz. Find the FFT size
required so that the frequency resolution is Af = 50Hz. Assume radix 2 FFT and a record
length of 1 second.

3.31. Assume that a certain sequence is determined by its FFT. If the record length is 2ms

and the sampling frequency is f, = 10KHz, find N.
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Appendix 3-A: Chapter 3 MATALAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig3_6.m” Listing

% Generates Figure 3.6 of text

close all

clear all

LFM BW = 15e6;

tau = le-6;

ts = le-9; % 1000 samples per PW

beta = LFM BW/tau;

t=0:ts: +tau;

S = exp(j*pi*beta*(t."2));

figure

subplot(2,1,1), plot(t*1e6,imag(S), linewidth' 1.5), grid
ylabel("Up-chirp LFM')

% The matched filter for S(t) is S*(-t)

t=-tau: ts: 0;

Smf = exp(-j *pi*beta*(t."2));

subplot(2,1,2), plot(t*1e6,imag(Smf), linewidth',1.5), grid
xlabel('time in microseconds’)

viabel("Down-chirp LFM')

MATLAB Program “Fig3 8.m” Listing

% use this program to reproduce Fig. 3.8 of text
cle
clear all
close all
%
nscat = 2; %two point scatterers
taup = 10e-6, % 100 microsecond uncompressed pulse
b = 40.0e6; % 50 MHz bandwdith
rrec = 50 ; % 50 meter processing window
scat_range = [15 25] ; % scattterers are 15 and 25 meters into window
scat res = [12]; % RCS 1 m"2 and 2m”2
winid = 0; %no window used
%function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B _product <5 )
fprintf("FEFFEEREREEEE Time Bandwidth product is TOO SMALL ***¥# ¥4k xkkk %)
Sfprintf("\n Change b and or taup')
return
end
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% speed of light
c=3.e8;
% number of samples
n = fix(2 * taup * b);
% initialize input, output and replica vectors
x(nscat,1:n) = 0.;
y(Im) =0.;
replica(l:n) = 0.;
% determine proper window
if( winid == 0.)
win(l:n) = 1.;
end
if(winid == 1.);
win = hamming(n)';
end
if( winid == 2.)
win = kaiser(n,pi)';
end
if(winid == 3.)
win = chebwin(n,60)';
end
% check to ensure that scatterers are within recieve window
index = find(scat_range > rrec);
if (index ~= 0)
'Error. Receive window is too large; or scatterers fall outside window
return
end
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t."2);
Sigure(1)
plot(treal(replica))
vilabel('Real (part) of replica’)
xlabel('Time in seconds’)
grid
Jigure(2)
plot(timag(replica))
vlabel('Imaginary (part) of replica’)
xlabel('Time in seconds’)
grid
Jigure(3)
sampling interval = 1/2.5/b;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit,freqlimit,n);
plot(freq,fftshift(abs(ffi(replica))));
ylabel('Spectrum of replica’)
xlabel('Frequency in Hz')
grid
forj = 1:1:nscat
range = scat_range(j) ;;
X@,:) = scat_res(j) . * exp(i * pi * (b/taup) .* (t +(2*range/c)).”2) ;
y=x(.:) +y;
end

’
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MATLAB Program “Fig3 10 13.m” Listing

%Use this program to reproduce Figures 3.10 through 3.13 of textbook.
clear all; close all

eps = 0.001;

N=32;

win_rect (1:N) = 1;

win_ham = hamming(N);

win_han = hanning(N),

win_kaiser = kaiser(N, pi),

win_kaiser2 = kaiser(N, 5);

Yrect = abs(ffi(win_rect, 256));

Yrectn = Yrect ./ max(Yrect);

Yham = abs(fft(win_ham, 2562));

Yhamn = Yham ./ max(Yham),

Yhan = abs(fft(win_han, 256));

Yhann = Yhan ./ max(Yhan),

YK = abs(fft(win_kaiser, 256));

YKn = YK ./ max(YK),

YK2 = abs(ffi(win_kaiser2, 256)),

YKn2 = YK2 ./ max(YK2),

figure (1)

plot(20*log10(Yrectn+eps),'k")
xlabel('Sample number')
viabel('20*log10(amplitude)’)

axis tight; grid on

figure(2)

plot(20*log10(Yhamn + eps),'k")
xlabel('Sample number')
vlabel('20*log10(amplitude)’)

grid on; axis tight

Jigure (3)

plot(20*log10(Yhann+eps),'k")
xlabel('Sample number'); ylabel('20*log10(amplitude)’); grid
axis tight

Sigure(4)

plot(20*log10(YKn+eps),'k")

grid on; hold on
plot(20*log10(YKn2+eps), 'k--')
xlabel('Sample number'); ylabel("20*log10(amplitude)’)
legend('Kaiser par. = \pi','Kaiser par. =5')
axis tight; hold off
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Appendix 3-B: Fourier Transform Pairs

x(1) X(w)
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Appendix 3-C: Z-Transform Pairs

x(n); n=0 X(2) ROC; |z| > R
d(n) 1 0
1 oz 1
z—1
n z 1
(z-1)°
e 2zt 1) 1
(z-1)’
a" _Z_ lal
z—a
na" az lal
(z-a)’
4 a/z 0
n!
(n+1)a" e lal
(z-a)’
sinnoT zsin®w T 1
7 ~2zcosoT+ 1
cosnoT z(z—cos®T) 1
Z2zcosoT+ 1
a'sinnoT azsinoT 1
7 2azcosoT+a |al
a'cosnoT 2(z—a’cosoT) 1
7 2azcosoT+a ld
n(n—1) z !
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Part II - Radar Signals and Signal Processing

Chapter 4

The Matched Filter
Radar Receiver

4.1. The Matched Filter SNR

The topic of matched filtering is central to almost all radar systems. In this chapter the focus
is the matched filter. The unique characteristic of the matched filter is that it produces the max-
imum achievable instantaneous SNR at its output when a signal plus noise (Gaussian noise is
assumed in the analysis presented in this book) are present at its input. Maximizing the SNR is
key in all radar applications, as was described in Chapter 2 in the context of the radar equation,
and as will be discussed in a subsequent chapter in the context of target detection.

It is important to use a radar receiver which can be modeled as an LTI system that maxi-
mizes the signal’s SNR at its output. For this purpose, the basic radar receiver of interest is
often referred to as the matched filter receiver. The matched filter is an optimum filter in the
sense of SNR because the SNR at its output is maximized at some delay ¢, that corresponds to
the true target range R, (i.e., t, = (2R,)/c). Figure 4.1 shows a simplified block diagram for
the radar receiver of interest.

In order to derive the general expression for the transfer function and the impulse response
of this optimum filter, adopt the following notation: /(#) is the optimum filter impulse
response, H(f) is the optimum filter transfer function, x(#) is the input signal, X(f) is the FT
of the input signal, x,(¢) is the output signal, X, (f) is the FT of the output signal, n,(¢) is the
input noise signal, N,(f) is the input noise PSD (not necessarily white), n,(¢) is the out noise
signal, and N, (f) is the output noise PSD. As one would expect, the impulse response of this
optimum filter will take on distinct forms depending on the noise characteristics, i.e., white
versus non-white noise.

The optimum filter input or received signal (the words input and received will be used inter-
changeably in this book) can then be represented by

x; (1) = x(t—ty) +ny() Eq. (4.1)

where ¢, is an unknown time delay proportional to the target range. The optimum filter output
signal is

y(t) =x,(t—ty) +n,(1) Eq. (4.2)

where

143
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Figure 4.1. Simplified block diagram of the radar receiver

n,(t) = n;(t) ® h(¢) Eq. (4.3)
x, (1) =x(t—1)) ® h(1). Eq. (4.4)
The operator ( ® ) indicates convolution. The FT of Eq. (4.4) is

j2mft,

X, () = X(HH(NHe

Integrating the right-hand side of Eq. (4.5) over all possible frequencies yields the signal out-
put at time ¢, as

Eq. (4.5)

Jj2mft,

x,(ty) = J' X(OH(HET™" af. Eq. (4.6)

From Parseval’s theorem the modulus square of Eq. (4.6) is the total signal energy, £, .

The total noise power at the output of the filter is calculated using Parseval’s theorem as

N, = [NOHOP 4. Eq. (47)

00

Since the output signal power at time ¢, is equal to the modulus square of Eq. (4.6), then the
instantaneous SNR at time ¢, is

J2nft,

I XOHNE™ ar
SNR(t,) = =2— = Es . Eq. (4.8)

[NOIHOP @ [NHEOP o

Equation (4.8) is the general form of the optimum SNR at the output of the matched filter. Of
course, when the noise is white, a simpler formula will result.

Remember Schawrz’s inequality, which has the form
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o 2
[xoxm ar|
— < J-|X20’)|2 df. Eq. (4.9)
[rof e

00

The equal sign in Eq. (4.9) applies when X,(f) = KX,*(f) for some arbitrary constant K.
Apply Schawrz’s inequality to Eq. (4.8) with the following assumptions

le = H(f) /Nl(f) Eq. (4.10)
J2mft,
Xz(f) = m——— . Eq. (4.11)

NN

It follows that the SNR is maximized when

—j27ft,
X*(f)e '
H =K ———— Eq. (4.12
V) NG q. (4.12)
An alternative way of writing Eq. (4.12) is
jonfy _ KIX(f)
X(HH = Eq. (4.13
(NH(f)e N q. (4.13)
The optimum filter impulse response is computed using inverse FT integral
~ —J2mfty
Ed .
h(t) = J-K X—Q———Ne(f) & ar. Eq. (4.14)

4.1.1. White Noise Case
A special case of great interest to radar systems is when the input noise is band-limited white
noise with PSD given by
N _ Mo
() = > Eq. (4.15)

T, 1s a constant. The transfer function for this optimum filter is then given by

—j2mfty

H(f) = X*(f)e Eq. (4.16)
where the constant K was set equal to n,/2 . It follows that

—j2mfty

h(t) = J.[X*(j)e 1 & ar Eq. (4.17)

0

which can be written as
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h(t) = x*(ty—1) . Eq. (4.18)

Observation of Eq. (4.18) indicates that the impulse response of the optimum filter is
matched to the input signal, and thus, the term matched filter is used for this special case.
Under these conditions, the maximum instantaneous SNR at the output of the matched filter is

e 2
-
J'X(f)H(f)e’ o ar
SNR(t,) = = . Eq. (4.19)
3
2

Again, from Parseval’s theorem the numerator in Eq. (4.19) is equal to the input signal energy,
E . ; consequently one can write the output peak instantaneous SNR as

2F
SNR(t,) = —=. Eq. (4.20)

No

Note that Eq. (4.20) is unitless since the units for 1, are in watts per hertz (or joules). Finally,
one can draw the conclusion that the peak instantaneous SNR depends only on the signal
energy and input noise power, and is independent of the waveform utilized by the radar.

As indicated by Eq. (4.18), the impulse response /(¢) may not be causal if the value for ¢,
is less than the signal duration. Thus, an additional time delay term t,> T is added to ensure
causality, where T is the signal duration. Thus, a realizable matched filter response is given by

¥(rgtty—t >0,t1y2>T
h(t) = [x (To*fo=1) o=t Eq. (4.21)
0 <0
The transfer function for this casual filter is
_ —j2nft ;. _ i2nft 5. —J2nf(ty+ 1)

H(f) = J.x*(‘to-irto—t)e dt = Ix*(t+1:0+t0)eJ dt = X*(f)e . Eq. (4.22)

Substituting the right-hand side of Eq. (4.22) into Eq. (4.6) yields
x,(1y) = j X(HXH(fye 0 S g _[ XHlPe ™ ar, Eq. (4.23)

which has a maximum value when 7. This result leads to the following conclusion: The peak
value of the matched filter output is obtained by sampling its output at times equal to the filter
delay after the start of the input signal, and the minimum value for t,, is equal to the signal
duration 7.

Example:

Compute the maximum instantaneous SNR at2 the output of a linear filter whose impulse
response is matched to the signal x(t) = exp(—t /2T).
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Solution:

The signal energy is
2
E, = J-|x(t)|2dt = J.eH Tat = JrT joules .

1t follows that the maximum instantaneous SNR is

SNR = =T = 24T

No No

2

where 1/ 2 is the input noise power spectrum density.

4.1.2. The Replica

Again, consider a radar system that uses a finite duration energy signal x(¢), and assume
that a matched filter receiver is utilized. From Eq. (4.1), the input signal can be written as,

x; (1) = x(t—ty) +nt). Eq. (4.24)

The matched filter output y(#) can be expressed by the convolution integral between the fil-
ter’s impulse response and x;(¢) :

(1) = Ixi(u)h(t—u)du. Eq. (4.25)
Substituting Eq. (4.21) into Eq. (4.25) yields
(1) = _[xi(u)X*(tfroftoJru)du = R .(t—Ty) Eq. (4.26)

where T, = 1o+, and R,.(t—T,) is a cross-correlation between x,(r) and x(T,—-1).
Therefore, the matched filter output can be computed from the cross-correlation between the
radar received signal and a delayed replica of the transmitted waveform. If the input signal is
the same as the transmitted signal, the output of the matched filter would be the autocorrelation
function of the received (or transmitted) signal. In practice, replicas of the transmitted wave-
forms are normally computed and stored in memory for use by the radar signal processor when
needed.

4.3. General Formula for the Output of the Matched Filter

Two cases are analyzed; the first is when a stationary target is present. The second case is
concerned with a moving target whose velocity is constant. Assume the range to the target is

R(t) = Ry—v(t—t,) Eq. (4.27)



148 Radar Systems Analysis and Design Using MAT] LAB®

where v is the target radial velocity (i.e., the target velocity component on the radar line of
sight.) The initial detection range R,, is given by

_ 2R,
c

t Eq. (4.28)

where ¢ is the speed of light and ¢, is the round trip delay it takes a certain radar pulse to
travel from the radar to the target at range R, and back.
The general expression for the radar bandpass signal is

x(#) = x/(t)cos2nfyt —xp(8)sin2mfyt Eq. (4.29)
which can be written using its pre-envelope (analytic signal) as

x(1) = Re{w(n)} = Re{i(né ™" Eq. (4.30)
where Re{ } indicates “the real part of.” Again, x(¢) is the complex envelope.
4.2.1. Stationary Target Case

In this case, the received radar return is given by

x,(1) = x(t—ZTRO) — x(t—1ty) = Re{i(t—1,)é """ | Eq. (4.31)

It follows that the received (or input) analytic signal is,

—j2mfoty ej2nfbt

vi(1) = {x(t—1ty)e ) Eq. (4.32)
and by inspection the received (or input) complex envelope is,
~ ~ —j2n
(1) = ¥(t—t19)e 7. Eq. (4.33)

Observation of Eq. (4.33) clearly indicates that the received complex envelope is more than
just a delayed version of the transmitted complex envelope. It actually contains an additional
phase shift ¢, which represents the phase corresponding to the two-way optical length for the
target range. That is,

_ _ Ry 2n
0y = 2mfyty = 2mfy2— = ~5-2R, Eq. (4.34)
where A is the radar wavelength and is equal to c¢/f; . Since a very small change in range can
produce significant change in this phase term, this phase is often treated as a random variable
with uniform probability density function over the interval {0, 2w} . Furthermore, the radar
signal processor will first attempt to remove (correct for) this phase term through a process
known as phase unwrapping.

Substituting Eq. (4.33) into Eq. (4.25) provides the output of the matched filter. It is given by

0

(1) = J.fcl-(u)h(tf w)du Eq. (4.35)

—00
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where the impulse response /(¢) is in Eq. (4.18). It follows that

o0

J27foto~

(1) = I Fu—ty)e R (-t + u)du. Eq. (4.36)
Make the following change of variables:
z=u—ty=>dz = du. Eq. (4.37)

Therefore, the output of the matched filter when a stationary target is present is computed from
Eq (4.36) as

0

V(1) = eijzmloji(z)i*(tfz)dz _ e—j2nfbt0_

R.(1). Eq. (4.38)
R.(¢) is the autocorrelation function for the signal x(¢) (i.e., the transmitted waveform).
4.2.2. Moving Target Case

In this case, the received signal is not only delayed in time by ¢, but also has a Doppler fre-
quency shift f,; corresponding to the target velocity, where

£, =2vfu/c = 2v/(0) . Eq. (4.39)

The pre-envelope of the received signal can be written as

j2nf0(t—&2)
y(1) = W(,_ZB_(_Q) = i(t—g—@-——(t—)>e . Eq. (4.40)
C C

Substituting Eq. (4.27) into Eq. (4.40) yields

2R0+2_W,2V_t0)

-(. 2R 2vig) Pl T B
yi(1) = X(I*T()Jrz?wf%))e Eq. (4.41)
Collecting terms yields
2 2y 2l B2
y(1) = Sc(t(l + -l’) fto(l + lDe cc T Eq. (4.42)
¢ ¢
Define the scaling factor y as
y =1+ 2 ) Eq. (4.43)
¢
then Eq. (4.42) can be written as
./Z’Tfo(t* R, 2u ﬁ’)
yi(1) = X(y(t—t9))e c0 0 Eq. (4.44)

Since ¢ » v, the following approximation can be used
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x(y(t—ty)) = x(t—1,) . Eq. (4.45)
It follows that Eq. (4.44) can now be rewritten as
2vt,
/2nfot j2T[fO B janO B —2nfy— -
vi(1) = x(t—1ty)é e e . Eq. (4.46)
Recognizing that f; = (2vf,)/c and ¢, = (2R,)/c, the received pre-envelope signal is

J2n(fo +f)(t—1y)

j2 t 271fot, j2 t j27f )t
JARI TN JERIL TR _ %t )e Eq. (4.47)

Vi) = 7t 15)¢
or

]ZTrfdt —J2n(fot )t J2Tfot

yi(t) = {x(1-1ty)e ye . Eq. (4.48)

Then by inspection the complex envelope of the received signal is

~ 2 t i2 + £ )t
X(0) = x(1—1)€ it g TG0l Eq. (4.49)

Finally, it is concluded that the complex envelope of the received signal when the target is
moving at a constant velocity v is a delayed (by ¢, ) version of the complex envelope signal of
the stationary target case except that:

1. an additional phase shift term corresponding to the target’s Doppler frequency is present,
and

2. the phase shift term (—2mf,t,) is present.

The output of the matched filter was defined in Eq. (4.25). Substituting Eq. (4.49) into Eq.
(4.25) yields

0

(o) = [Fu-n)e

—00

J2nfu jzn(ﬂ)+fd)’0~*(t Z +u) du . Eq. (4.50)

Applying the change of variables given in Eq. (4.37) and collecting terms provide

—2mfot, Jj2nfyz /27‘fd’oe*/27‘fdto

y(t) = e .[ x(2)X*(t-z)e dz . Eq. (4.51)

—00

Observation of Eq. (4.51) shows that the output is a function of both ¢ and f;. Thus, it is
more appropriate to rewrite the output of the matched filter as a two-dimensional function of
both variables. That is,

0

J2nf 4z

wefy = e [ MRz Eq. (4.52)

—00

It is customary but not necessary to set £, = 0. Note that if the causal impulse response is
used (i.e., Eq. (4.21)), the same analysis will hold true. However, in this case, the phase term is
equal to exp(—2nf,T,), instead of exp(—j2mnfyt,), where T\, = 1, +1¢,.
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4.3. Waveform Resolution and Ambiguity

As indicated by Eq. (4.20), the radar sensitivity (in the case of white additive noise) depends
only on the total energy of the received signal and is independent of the shape of the specific
waveform. This leads to the following question: If the radar sensitivity is independent of the
waveform, what is the best choice for the transmitted waveform? The answer depends on many
factors; however, the most important consideration lies in the waveform’s range and Doppler
resolution characteristics, which can be determined from the output of the matched fitter.

As discussed in Chapter 1, range resolution implies separation between distinct targets in
range. Alternatively, Doppler resolution implies separation between distinct targets in fre-
quency. Thus, ambiguity and accuracy of this separation are closely associated terms.

4.3.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated in range by dis-
tance AR . What is the smallest value of AR so that the returned signal is interpreted by the
radar as two distinct targets? In order to answer this question, assume that the radar transmitted
bandpass pulse is denoted by x(¢),

x(t) = r(t)cos(2mfyt + ¢(1)) Eq. (4.53)

where f,, is the carrier frequency, r(¢) is the amplitude modulation, and ¢(#) is the phase
modulation. The signal x(#) can then be expressed as the real part of the pre-envelope signal
y(t), where

w(r) = r(t)ej(zn/az—¢(r)) _ ;C(t)eZthOt Eq. (454
and the complex envelope is
X(0) = r(t)e??. Eq. (4.55)
It follows that
x(t) = Re{y(t)}. Eq. (4.56)

The returns from two close targets are, respectively, given by
x,(8) = w(t—1p) Eq. (4.57)

X, (1) = y(t—15-1) Eq. (4.58)

where t is the difference in delay between the two target returns. One can assume that the ref-
erence time is 1, and thus without any loss of generality, one may set t, = 0. It follows that
the two targets are distinguishable by how large or small the delay t can be.

In order to measure the difference in range between the two targets, consider the integral
square error between y(¢) and y(z— 7). Denoting this error as si , it follows that

e = [ -0l ar, Eq. (4.59)

00

which can be written as
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ex = [ Wl di+ [lwG=ol" di- [ {0+ y*(Ow(i-7) di} . Eq. (460

Using Eq. (4.54) into Eq. (4.60) yields

ey = 2!|i(t)|2 dt—2Re J-\y*(t)w(z—r) dt! = Eq. (4.61)

2J'|5c(t)|2 di—2Re eff“°TJ'i*(t)i(t7r) dt

—00 —00

This squared error is minimum when the second portion of Eq. (4.61) is positive and maxi-
mum. Note that the first term in the right-hand side of Eq. (4.61) represents the total signal
energy, and is assumed to be constant. The second term is a varying function of t with its fluc-
tuation tied to the carrier frequency. The integral inside the rightmost side of this equation is
defined as the range ambiguity function,

o0

xx(T) = jfc*(t)i(tfr) dt. Eq. (4.62)

—00

This range ambiguity function is equivalent to the integral given in Eq. (4.38) with ¢, = 0.
Comparison between Eq. (4.62) and Eq. (4.38) indicates that the output of the matched filter
and the range ambiguity function have the same envelope (in this case the Doppler shift £ is
set to zero). This indicates that the matched filter, in addition to providing the maximum
instantaneous SNR at its output, also preserves the signal range resolution properties. The
value of y z(t) that minimizes the squared error in Eq. (4.61) occurs when t = 0.

Target resolvability in range is measured by the squared magnitude ]x R(r)]2 . It follows that
if ‘x R(r)| = yx(0) for some nonzero value of t, then the two targets are indistinguishable.
Alternatively, if ‘x R(r)| # 1 z(0) for some nonzero value of 7, then the two targets may be dis-
tinguishable (resolvable). As a consequence, the most desirable shape for y,(t) is a very
sharp peak (thumb tack shape) centered at t = 0 and falling very quickly away from the peak.
The minimum range resolution corresponding to a time duration t, or effective bandwidth B,
is

AR = —<£ = — Eq. (4.63)

The effective time duration and the effective bandwidth for any waveform were defined in
Chapter 3 and are repeated here as Eq. (4.64) and Eq. (4.65), respectively

2

T, = jli(z)lzdt /.[ %(e)[*dt Eq. (4.64)
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0 2
[1x0l ar

B e Eq. (4.65)
S 4
[l ar
4.3.2. Doppler Resolution

The Doppler shift corresponding to the target radial velocity is

2 2vf
fd=_v=_o

Eq. (4.66
% . q. (4.66)

where v is the target radial velocity, A is the wavelength, f, is the frequency, and c is the
speed of light.
The FT of the pre-envelope is

o0

¥(f) = J.\y(t)e*ﬂ”f’ dt. Eq. (4.67)

—00

Due to the Doppler shift associated with the target, the received signal spectrum will be shifted
by f,. In other words, the received spectrum can be represented by W (f—f,) . In order to dis-
tinguish between the two targets located at the same range but having different velocities, one
may use the integral square error. More precisely,

g = I|‘{’(f)—‘110‘—fd)|2 df. Eq. (4.68)

00

Using similar analysis as that which led to Eq. (4.61), one should maximize

Re I WP (1) dft. Eq. (4.69)

00

Taking the FT of the pre-envelope (analytic signal) defined in Eq. (4.54) yields

Y(f) = X2nf-2nf,). Eq. (4.70)
Thus,

ji(*(znf)ir(mf—znfd) df = j)}*(znf—2nﬁ))5((2nf—znf0—2nfd) df.  Eq.(@&71)

The complex frequency correlation function is then defined as
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L) = j X*nHX2nf-2nf,) df = J' Fo)”* P g Eq. (4.72)

The velocity resolution (Doppler resolution) is by definition

Av = (cAf)/(2fy) Eq. (4.73)

where Af; is the minimum resolvable Doppler difference between the Doppler frequencies
corresponding to two moving targets, i.e., Af; = f; —f., , where f;, and f,, are the two indi-

vidual Doppler frequencies for targets 1 and 2, respectively. The Doppler resolution Af; is
equal to the inverse of the total effective duration of the waveform. Thus,

[lvalay  [Eora

1

of, = = - == _ 1
) T,

Eq. (4.74)

J' RO

4.3.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair of variables
(7, f;). For this purpose, assume that the pre-envelope of the transmitted waveform is

w(t) = 3™, Eq. (4.75)
Then the delayed and Doppler-shifted signal is
w(t—1) = ¥(1—1)e THIND. Eq. (4.76)
Computing the integral square error between Eq. (4.75) and Eq. (4.76) yields
2 _ 2
g = jlw(t)—w(t—r)l dt Eq. (4.77a)
e =2 j \w(6)|*dt - 2Re J- wE(t) - y(t—1)dt Eq. (4.77b)
which can be written as
e =2 J. 5 di—2Rel TN I O (t—v)d ™ ar Eq. (4.78)

—00 00
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Again, in order to maximize this squared error for t # 0, one must minimize the last term of
Eq. (4.78). Define the combined range and Doppler correlation function as

o0

(0 f) = J' (-1 " ar Eq. (4.79)

—00

In order to achieve the most range and Doppler resolution, the modulus square of this func-
tion must be minimized at T# 0 and f;# 0. Note that except for a phase term, the output of
the matched filter derived in Eq. (4.52) is identical to that given in Eq. (4.79). This means that
the output of the matched filter exhibits maximum instantaneous SNR as well as the most
achievable range and Doppler resolutions. The modulus square of Eq. (4.79) is often referred
to as the ambiguity function:

0 2

(w /) = J.i(t)i*(t—r)ejzwdt . Eq. (4.80)

—00

The ambiguity function is often used by radar designers and analysts to determine the good-
ness of a given radar waveform, where this goodness is measured by its range and Doppler res-
olutions. Remember that since the matched filter is used, maximum SNR is guaranteed.

4.4. Range and Doppler Uncertainty

The formula derived in Eq. (4.79) represents the output of the matched filter when the signal
at its input comprises target returns only and has no noise components, an assumption that can-
not be true in practical situations. In general, the input at the matched filter contains both target
and noise returns. The noise signal is assumed to be an additive random process that is uncor-
related with the target and has a band-limited white spectrum. Referring to Eq. (4.79), a peak at
the output of the matched filter at (1, f;,) represents a target whose delay (range) corresponds
to T, and Doppler frequency equal to f,, . Therefore, measuring the targets’ exact range and
Doppler frequency is determined from measuring peak locations occurring in the two-dimen-
sional space (7, f;). This last statement, however, is correct only if noise is not present at the
input of the matched filter. When noise is present and because noise is random, it will generate
ambiguity (uncertainty) about the exact location of the ambiguity function peaks in the (7, f};)
space.

4.4.1. Range Uncertainty

Consider the received signal complex envelope (assuming stationary target); that is,

x(1) = x(t—ty) +n(t) = x~r(t)+r~z(t) Eq. (4.81)

where )~c,(t) is the target return signal complex envelope, n(¢) is the noise signal complex
envelope, and ¢, = 2R/c, where R is the target range. The integral squared error between the
total received signal (target plus noise) and a shifted (delayed by t ) transmitted waveform is
Tmax
g = j %(1—1) - %,(0)| dr. Eq. (4.82)
0
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7 corresponds to maximum range under consideration. Expanding this squared error yields
max

T, T, T,

e =2 j G de+2 J' 7(0)* di—2Re J-)Nc*(tfr);c,(t)dt Eq. (4.83)

0 0 0

which can be written as

T, T,

max max

¢ = E,+E,—2Re J. )~c*(t—1:)x~,.(t)dt+ J. x*(t—t)n(t)dt ;. Eq. (4.84)

0 0

This expression is minimum at some t that makes the integral term inside Eq. (4.88) maxi-
mum and positive. More precisely, the following correlation functions must be maximized

Tmu)c

R (0) = [ #(-vF0d Eq. (4.85)
0
Tmax

R, (1) = I x*(t—1)n(t)dt . Eq. (4.86)

0

Therefore, Eq. (4.84) can be written as
¢ = E-2Re{R, (1) + R, (1)} . Eq. (4.87)

Expanding {R, .(t)} using Taylor series expansion about the point t = ¢, leads to

rr 2 e 3
R xrx(tO)(T - tO) L R xr)c(to)(‘t - tO)
2! 3!

R, (v) = R, (1) +R', (t)(x—19) + + ... Eq. (4.88)
where R', R"", and R'"" respectively, indicate the first, second, and third derivatives of R,
with respect to T. Remember that since the real part of the correlation function is an even func-
tion, then all of its odd number derivatives are equal to zero. Now, by approximating Eq. (4.88)
using the first three terms (where the second and fourth terms are equal to zero) one gets

a 2
R xrx(tO)(T - tO)

5 Eq. (4.89)

Re{Rx,x(T)} ~ erx(tO) +

There is some value 1, close to the exact target range, 7, , that will minimize the expression
in Eq. (4.87). To find this minimum value, differentiate the quantity Re{R, (1) + R, (1)}
with respect to t and set the result equal to zero to find 1, . More specifically,

d d
Re{ERx,x(T)JFCERM(T)} = Re{R', (1) * R, (1)} = 0. Eq. (4.90)

The derivative of the Re{R, (1)} can be found from Eq. (4.89) as
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d _d R (t)(t—1)))
Re{d_'cerX(T)} = a(Rx,x(to)JrTZ] = R", (t)(t—1,). Eq. (4.91)

Substituting the result of Eq. (4.91) into Eq. (4.90), collecting terms, and solving for t, , yield

_ _Re{R,nx(Tl)}
R”x,,x(tO) .

The value (1, —¢,) represent the amount of target range error measurement. It is more mean-
ingful, since noise is random, to compute this error in terms of the standard deviation of its rms
value. Hence, the standard deviation for range measurement error is

Re{R', (1))},
o, = (T, 1), = = (;) ) Eq. (4.93)
x,x\*0

By using the differentiation property of the Fourier transform and Parseval’s theorem the
denominator of Eq. (4.93) can be determined by

(t,—tp) Eq. (4.92)

R", (1)) = (271)2_|-f2 XNl df. Eq. (4.94)

00

Next, from relations developed in Chapter 3, one can write the FT of R, (t) as

FT{R, (1)} = X*(ﬂ%o Eq. (4.95)

where 1n,/2 is the noise power spectrum density value (white noise). From the Fourier trans-
form properties, the FT of the derivative of R, (1) is

FT{R', (1)} = U’an)(X*(f)%)) — (218, (f) . Eq. (4.96)

The rms value for R', () is by definition

T,

ax

j R, (%) dr, Eq. (4.97)
0

(R (D}, = [lim =
Trlmx Tmax

which can be rewritten using Parseval’s theorem as

max

(R (D, = | [ IFTIR () . Eq. (4.98)
0
Substituting Eq. (4.96) into Eq. (4.98) yields

T,

max

(RO = [0 [ £ X0 ar. Eq. (499

0
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Finally, the standard deviation for range measurement error can be written as

NN/ 2

o, = Eq. (4.100)
en’ [ xfar
Define the bandwidth rms value, Bfms ,as
em’ [ xpPar
B, = = . Eq. (4.101)

[Ixorar

It follows that Eq. (4.100) can now be written as

2 2
o, = Mo/ _ AMe/2 1 , Eq. (4.102)
* 5 Brms Ex Brmsfxlex/nO

—00

which leads to the conclusion that the uncertainty in range measurement is inversely propor-
tional to the rms bandwidth and the square root of the ratio of signal energy to the noise power
density (square root of the SNR).

4.4.2. Doppler Uncertainty

For this purpose, assume that the target range is completely known. In the next section the
case where both target range and target Doppler are not known will be analyzed. Denote the
signal transmitted by the radar as x(¢) and the received signal (target plus noise) as x,(¢) . The
integral square difference between the two returns can be written as

Frnas
g = I IX(—£) - X0 df Eq. (4.103)

0

where X(f) is the FT of x(¢), X,.(f) is the FT of x,(¢), and f,,
target Doppler. Again expand Eq. (4.103) to get

is the maximum anticipated

ax

Smax Snax S
e = I'XU)|2 daf+ _[ X" df-2Re J-|X*(f*fc)XrO’)|2 afy. Eq. (4.104)
0 0 0

Minimizing the error squared in Eq. (4.104) requires maximizing the value
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Fu
Re _[ L (f—£)X.00|” df.
0

Conducting similar analysis as that performed in the previous section, the duration rms,

T value can be defined as

rms >

2n)’ I £ x(o) dt

T = —- . Eq. (4.105)
[ Ixoldr
The standard deviation in the Doppler measurement can be derived as
_ 1
o= ———— Eq. (4.106)

- TrmsAIzEx/nO -

Comparison of Eq. (4.106) and Eq. (4.102) indicates that the error in estimating Doppler is
inversely proportional to the signal duration, while the error in estimating range is inversely
proportional to the signal bandwidth. Therefore, and as expected, larger bandwidths minimize
the range measurement errors and longer integration periods minimize the Doppler measure-
ment errors.

4.4.3. Range-Doppler Coupling

In the previous two sections, range estimate error and Doppler estimate error were derived
by assuming that they are uncoupled estimates. In other words, range error was derived assum-
ing a stationary target, while Doppler error was derived assuming a completely known target
range. In this section a more general formula for the combined range and Doppler errors is
derived.

The analytic signal for this case was derived in Section 4.2 and was given in Eq. (4.47),
which is repeated here as Eq. (4.107) for easy reference:

~ 2nfot —j2nfoty J2Tfyt —j2mf it ~ i21(fy +f)(t—1ty)
\Vl'(t) _ x(t—to)ej Tfoej n/ooej Tffde] Tfylo _ x(t—to)e] n(fotfa 0

One can assume with any loss of generality that 7, = 0, thus, Eq. (4.107) can be expressed as

Eq. (4.107)

~ ) . i2
vi(1) = x, ()& T = ()00 Eq. (4.108)
where the complex envelope signal, x,(7), can be expressed as
3.0 = 1. Eq. (4.109)

Range Error Estimate

From the analysis performed in the previous section, the estimate for the range error is deter-
mined by maximizing the function



160 Radar Systems Analysis and Design Using MAT] LAB®

Re{R, (t.f) + R, (1)}. Eq. (4.110)

It follows that for some fixed value f,, , there is a value 1, close to #, = 0 that will maximize
Eq. (4.110); that is,

Re{R', (v, fy) TR, (T))} = 0. Eq. (4.111)

Again, the Taylor series expansion of R . about t = 0 is

o , R”xrx(osfdl)‘tz
Ro(5f) = Rey Ry (0 fy) + R (0. fy)(0) + —2= b Eq. (4112)
Thus,
Re{%erx(r,fd)} ~Re{R', (0,f;)+ R”xrx(O,fdl)r} . Eq. (4.113)

Substituting Eq. (4.113) into Eq. (4.111) and solving for t, yields

_ Re{R'nx(Tl)+R’x,_x(09fd1)}
T = . Eq. (4.114)

Re{R”xrx(O’fdl)}

The value of R", (0, f) is not much different from R", (0, 0); thus,

i Re{R’nx(Tl)+R’x,‘x(03fd1)} Eq. (4.115)
1 Ruxrx(O’ O) . q. (4.

To evaluate the term R’ (0, f;;;) , start with the definition of R, (7, f,),

0

R, (t.f9) = J.r(tfr)e*ﬂp(tfr)r(t)

—00

i H+2 t
ej(cp() Ty )dt. Eq. (4.116)

Compute the derivative of Eq. (4.116) with respect to t

o0

Jle(t) —o(t—1) +2nf,t]

R (5 fp) = = [ {F(t=0r0—0 (1= Drt-nrn} x ¢

—00

Evaluating Eq. (4.117)at t = 0 and f; = f;, gives

dt . Eq. (4.117)

R (0, fy) = —I (- ()0 x €07 ar Eq. (4.118)

00

The exponential term in Eq. (4.118) can be approximated using small angle approximation as

ej[2nf41t] = cos(2nfy 1) +jsin(2nf, 1) = 1 +2nf,,t. Eq. (4.119)

Next, substitute Eq. (4.119) into Eq. (4.118), collect terms, and compute its real part to get
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Re{R', (0, [y)} = - J-r’(t)r(t)dthnfdl-[t(p’(t)rz(t)dt. Eq. (4.120)

The first integral is evaluated (using FT properties and Parseval’s theorem) as

jr’(t)r(t)dt = (j2m) Ifd|R(ﬁ|2df. Eq. (4.121)

—00 00

Remember that since the envelope function () is a real lowpass signal, its Fourier transform
is an even function; thus, Eq. (4.121) is equal to zero. Using this result, Eq. (4.120) becomes

0

Re(R', (0.f,)} = —2nfd1_[t<p'(z)r2(t)dt. Eq. (4.122)

Substitute Eq. (4.122) into Eq. (4.115) to get

o0

Re{R', (1))} —27f,, j 10" () (1)dt

T, = Eq. (4.123)

R (0.0)

Equation (4.123) provides a measure for the degree of coupling between range and Doppler
estimates. Clearly, if ¢(7) = 0= ¢'(¢) = 0, then there is zero coupling between the two esti-
mates. Define the range-Doppler coupling constant as

2n '[ 1" ()%, (1) dt
PirpCc = —— . Eq. (4.124)

[ [ (ofai

—00

Doppler Error Estimate

Applying similar analysis as that performed in the preceding section to the spectral cross
correlation function yields an expression for the range-Doppler coupling term. It is given by

~ 2
2 [ 1 o' (Xl o
PrrDC = —=2 Eq. (4.125)

o0

[l ar

—00

where ®@(f) is the FT of o(?).
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It can be shown that Eq. (4.124) and Eq. (4.125) are equal. Given this result, the subscripts t
and f; in Eq. (4.124) and Eq. (4.125) are dropped and the range-Doppler term is simply
referred to as pzpc -

4.4.4. Range-Doppler Coupling in LFM Signals
Referring to Eq. (4.108) and Eq. (4.109), the phase for an LFM signal can be expressed as

o(t) = n't Eq. (4.126)

where n' = (nB)/t,, B is the LFM bandwidth, and 1, is the pulse width. Substituting Eq.
(4.126) into Eq. (4.124) yields

4nu’jt2|5c,(t)|2dt
2
PRDC = =2 = nge Eq. (4.127)

J. 1%, ()| dt

00

where 1, is the effective duration. Thus,

2
/2
& = (1120 )+ff,1p§Dc_ Eq. (4.128)
B2E, B,
Similarly,
2 2
?f (7120/2)+flpzzac Eq. (4.129)
Y2, T,

where f;; and ¢, are constants. Since estimates of range or Doppler when noise is present can-
not be 100% exact, it is better to replace these constants with their equivalent mean-squared
errors. That is, let

2 2 2
fn = o , £ =0 Eq. (4.130)

where o is as in Eq. (4.128) and o, is in Eq. (4.129). Thus, Eq. (4.128) can be written as

2
2 _ (y/2) n pRDC((nO/z) i P?wcci]

S Eq. (4.131)
®we  p2E, B \t2E
which can be algebraically manipulated to get
/2
2 _ (/2 I . Eq. (4.132)

TrRDC

2 2 2 2
B2E, (1-(prpc/B,t,))

Using similar analysis,
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> _ (y/2) 1
G -

; } Eq. (4.133)
Jarp 2 2
M R2E, (1 (prpe/Bit,)

These results lead to the conclusion that one can estimate target range and Doppler simultane-
ously only when the product of the rms bandwidth and rms duration is very large (i.e., very
large time bandwidth products). This is the reason radars using LFM waveforms cannot esti-
mate target Doppler accurately unless very large time bandwidth products are utilized. Often,
the LFM waveforms are referred to as “Doppler insensitive” waveforms.

4.5. Target Parameter Estimation

Target parameters of interest to radar applications include, but are not limited to, target range
(delay), amplitude, phase, Doppler, and angular location (azimuth and elevation). Target infor-
mation (parameters) is typically embedded in the return signal’s amplitude and phase. Differ-
ent classes of waveforms are used by the radar signal and data processors to extract different
target parameters more efficiently than others. Since radar echoes typically comprise signal
plus additive noise, most if not all the target information is governed by the statistics of the
input noise, whose statistical parameters most likely are not known but can be estimated. Thus,
statistical estimates of the target parameters (amplitude, phase, delay, Doppler, etc.) are utilized
instead of the actual corresponding measurements. The general form of the radar signal can be
expressed in the following form

x(t) = Ar(t—ty)cos[2n(fy + ) (t—ty) + d(t—1,) + dp] Eq. (4.134)

where 4 is the signal amplitude, »(¢) is the envelope lowpass signal, ¢, is some constant
phase, £, is the carrier frequency, and ¢, and f, are the target delay and Doppler, respectively.
The analysis in this section closely follows Melsa and Cohen'.

4.5.1. What Is an Estimator?

In the case of radar systems, it always safe to assume, due to the central limit theorem, that
the input noise is always Gaussian with mainly unknown parameters. Furthermore, one can
assume that this noise is band-limited white noise. Consequently, the primary question that
needs to be answered is as follows: Given that the probability density function of the observa-
tion is known (Gaussian in this case) and given a finite number of independent measurements,
can one determine an estimate of a given parameter (such as range, Doppler, amplitude, or
phase)?

Let fy(x;0) be the pdf of a random variable X with an unknown parameter 0 . Define the
values {x,,x,, ...,Xxy} as N observed independent values of the variable X . Define the func-
tion or estimator O(x,, x,, ..., X)) as an estimate of the unknown parameter 6. The bias of
estimation is defined as

E[0-0] = b Eq. (4.135)

where E[ ] represents the “expected value of.” The estimator 0 is referred to as an unbiased
estimator if and only if

1. Melsa, J. L. Cohen, D. L., Decision and Estimation Theory, McGraw-Hill, New York, 1978.
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E[0] = 6. Eq. (4.136)

One of the most popular and common measures of the quality or effectiveness of an estima-
tor is the Mean Square Deviation (MSD) referred to symbolically as A2(9) . For an unbiased
estimator

A*(0) = Gz Eq. (4.137)
where cg is the estimator variance. It can be shown that the Cramer-Rao bound for this MSD
is given by

s*(0) 20>, () = ! . Eq. (4.138)

0

N[ (Logt7x:0}) futxs0)

The efficiency of this unbiased estimator is defined by

Gii(0)

(0) =
#0) 5(0)

Eq. (4.139)

When €(0) = 1, the unbiased estimator is called an efficient estimate.

Consider an essentially time-limited signal x(¢) with effective duration t,, and assume a
band-limited white noise with PSD 1,,/2 . In this case, Eq. (4.139) is equivalent to

1

52(6,) > 7 Eq. (4.140)

Tl%) (a%x(z))z dt
0

where 0; is the estimate for the i parameter of interest and 7. is the pulse repetition interval
for the pulsed sequence. In the next two sections, estimates of the target amplitude and phase
are derived. It must be noted that since these estimates represent independent random vari-
ables, they are referred to as uncoupled estimates; that is, the computation of one estimate does
not depend on a priori knowledge of the other estimates.

4.5.2. Amplitude Estimation

The signal amplitude 4 in Eq. (4.134) is the parameter of interest, in this case. Taking the
partial derivative of Eq. (4.134) with respect to 4 and squaring the result yields

2
(Z0) = (=) cos 2n(fy +£i) (e 1) + 4t 1) + 1) £q. (4141)
Thus,
NT, NT,
J. (%x(t))z dt = I (x(¢))* dt = NE, Eq. (4.142)

0 0
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where E. is the signal energy (from Parseval’s theorem). Substituting Eq. (4.142) into Eq.
(4.140) and collecting terms yields the variance for the amplitude estimate as

2> 1 _ 1
42 .
2 NE, N SNR
Mo
In this case Eq. (4.20) used in Eq. (4.143) and SNR is the signal to noise ratio of the signal at
the output of the matched filter. This clearly indicates that the signal amplitude estimate is
improved as the SNR is increased.

Eq. (4.143)

4.5.3. Phase Estimation

In this case, it is desired to compute the best estimate for the signal phase ¢, . Again taking
the partial derivative of the signal in Eq. (4.134) with respect to ¢, and squaring the result
yield

(%x(t))z = (=r(t—ty)sin[2m(fy + £)(t — 1) + &t — 1) + by]). Eq. (4.144)
0
It follows that
NT, NT,
I (a%ox(t))z dt = j (x(t))" dt = NE,. Eq. (4.145)
0 0

Thus, the variance of the phase estimate is

Eq. (4.146)

Problems

4.1. Compute tlzle frequency response for the filter matched to the signal
_ -,

@ (1) = ew(55);

(b) x(¢t) = u(t)exp(—at) where o is a positive constant.

4.2 . Repeat the example in Section 4.1 using x(¢) = u(t)exp(—at).

4.3. An closed form expression for the SNR at the output of the matched filter when the
input noise is white was developed in Section 4.1.1. Derive an equivalent formula for the non-
white noise case.

4.4. A radar system uses LFM waveforms. The received signal is of the form
s.(t) = As(t—t)+n(¢), where t is a time delay that depends on range,

s(t) = Rect(t/t")cos(2nfyt—d(t)), and ¢(¢) = —nBf' /1. Assume that the radar band-

width is B = 5MHz, and the pulse width is t/ = Sus. (a) Give the quadrature components

of the matched filter response that is matched to s(¢) . (b) Write an expression for the output of
the matched filter. (c) Compute the increase in SNR produced by the matched filter.
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4.5. (a) Write an expression for the ambiguity function of an LFM waveform, where
T’ = 6.4us and the compression ratio is 32. (b) Give an expression for the matched filter
impulse response.

4.6. (a) Write an expression for the ambiguity function of an LFM signal with bandwidth
B = 10MHz, pulse width " = 1us, and wavelength A = 1cm . (b) Plot the zero Doppler
cut of the ambiguity function. (c) Assume a target moving toward the radar with radial velocity
v, = 100m/s. What is the Doppler shift associated with this target? (d) Plot the ambiguity
function for the Doppler cut in part (c). (¢) Assume that three pulses are transmitted with PRF
f,. = 2000Hz . Repeat part (b).

4.7. (a) Give an expression for the ambiguity function for a pulse train consisting of 4
pulses, where the pulse width is ©" = lus and the pulse repetition interval is 7 = 10pus .
Assume a wavelength of A = lem . (b) Sketch the ambiguity function contour.

4 .8. Hyperbolic frequency modulation (HFM) is better than LFM for high radial velocities.
The HFM phase is

2
o) = in(1+220)
M

Mg

where p, is an HFM coefficient and o is a constant. (a) Give an expression for the instanta-
neous frequency of an HFM pulse of duration t’;, . (b) Show that HFM can be approximated by
LFM. Express the LFM coefficient p; in terms of p, and in terms of B and t’.

4.9. Consider a sonar system with range resolution AR = 4cm . (a) A sinusoidal pulse at
frequency f, = 100KHz is transmitted. What is the pulse width, and what is the bandwidth?
(b) By using an up-chirp LFM, centered at f;, one can increase the pulse width for the same
range resolution. If you want to increase the transmitted energy by a factor of 20, give an
expression for the transmitted pulse. (c) Give an expression for the causal filter matched to the
LFM pulse in part b.

4.10. A pulse train y(z) is given by

2
(1) = 3 wmx(t=ne)
n=0
where x(¢) = exp(—tZ/ 2) is a single pulse of duration t’ and the weighting sequence is
{w(n)} = {0.5,1,0.7} . Find and sketch the correlations R, , R,,, and R .
4.11. Repeat the previous problem for x(7) = exp(—tz/Z)cos2nf0t.
4.12. Show that

J-tx*(t)x’(t) dt = fJ.fX*(f)X’(f) df

where X(f), is the FT of x(¢#) and x'(¢) is its derivative with respect to time. The function
X'(f) is the derivative of X(f) with respect to frequency.
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4.13. Using the range-Doppler coupling definition given in Eq. (4.125), develope an
expression for the range-Doppler coupling for the following cases: (a) Linear FM pulse with a
Gaussian envelope, and (b) parabolic FM signal.






Part II - Radar Signals and Signal Processing

Chapter 5

Ambiguity Function -
Analog Waveforms

5.1. Introduction

The radar ambiguity function represents the modulus of the matched filter output, and it
describes the interference caused by the range and/or Doppler shift of a target when compared
to a reference target of equal RCS. The ambiguity function evaluated at (7, f;) = (0,0) is
equal to the matched filter output that is perfectly matched to the signal reflected from the tar-
get of interest. In other words, returns from the nominal target are located at the origin of the
ambiguity function. Thus, the ambiguity function at nonzero t and f; represents returns from
some range and Doppler different from those for the nominal target.

The formula for the output of the matched filter was derived in Chapter 4, and it is, assuming
a moving target with Doppler frequency f;,

x(t.fa) = Ii(t)i*(t—r)ejznfdtdt. Eq. (5.1)
The modulus square of Eq. (5.1) is referred to as the ambiguity function. That is,
® 2
2 ~ o~ J2mfyt
bl - - . q. .
Ix(t.fo|” = Ix(t)x*(t 1)é dt, Eq. (5.2)

The radar ambiguity function is normally used by radar designers as a means of studying dif-
ferent waveforms. It can provide insight about how different radar waveforms may be suitable
for the various radar applications. It is also used to determine the range and Doppler resolu-
tions for a specific radar waveform. The three-dimensional (3-D) plot of the ambiguity func-
tion versus frequency and time delay is called the radar ambiguity diagram.

Denote E, as the energy of the signal x(),

E, = J' I%(¢) dt . Eq. (5.3)

The following list includes the properties for the radar ambiguity function:

169
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1) Tzhe maximum value for the ambiguity function occurs at (1, f;) = (0,0) and is equal to
4E. ",

X

max{|7(v)*} = (0;0)]° = E,)’ Eq. (5.4)

(e < 1 (0;0)]. Eq. (5.5)

2) The ambiguity function is symmetric,

2 2
(Dl = oAl Eq. (5.6)

3) The total volume under the ambiguity function is constant,
[l @ ar, = . Eq. (5.7)

4) If the function X(f) is the Fourier transform of the signal x(#), then by using Parseval’s the-
orem we get

) = UX*(/‘)XO”ffd)e”z"ﬁdf g Eq. (5.8)

5) Suppose that ‘x(r;fd)]z is the ambiguity function for the signal x(¢). Adding a quadratic
phase modulation term to x(z) yields

300 = H(0d™ Eq. (5.9)

where i is a constant. It follows that the ambiguity function for the signal X, () is given by

() = (s + no)|. Eq. (5.10)

5.2. Examples of the Ambiguity Function

The ideal radar ambiguity function is represented by a spike of infinitesimal width that peaks
at the origin and is zero everywhere else, as illustrated in Fig. 5.1. An ideal ambiguity function
provides perfect resolution between neighboring targets regardless of how close they may be to
each other. Unfortunately, an ideal ambiguity function cannot physwally exist because the
ambiguity functlon must have a finite peak value equal to (2E, ) and a finite volume also
equal to (2E, ) Clearly, the ideal ambiguity function cannot meet those conditions.

5.2.1. Single Pulse Ambiguity Function

The complex envelope of a single pulse is x(¢) defined by

x(t) = -—-—Rect( to) Eq. (5.11)

Jro
From Eq. (5.1) we have

o0

w(fp) = [FHoF-0)d

—00

2l gy Eq. (5.12)
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(el £

(0,0)

Figure 5.1. Ideal ambiguity function.

Substituting Eq. (5.11) into Eq. (5.12) and performing the integration yields

sin(nfy(ty— |1]))
f(To— |t])

2 i ?
ln(tfp|” = ( ——) 7| <. Eq. (5.13)

To

MATLAB Function “single_pulse_ambg.m”

The MATLAB function “single pulse_ambg.m” implements Eq. (5.13). The syntax is as
follows:

single _pulse _ambg [taup]

where faup is the pulse width. Figures 5.2 a and b show 3-D and contour plots of single pulse
ambiguity functions. This figure can be reproduced using MATLAB program “Figd 2.m”
listed in Appendix 5-A. The ambiguity function cut along the time-delay axis t is obtained by
setting f;, = 0. More precisely,

2
[x(t;0)| = (1 - |_‘_c_|) It <7 Eq. (5.14)
To

Note that the time autocorrelation function of the signal x(#) is equal to % (t;0). Similarly, the
cut along the Doppler axis is

sinmtyf)|2

TTofy

Figures 5.3 and 5.4, respectively, show the plots of the uncertainty function cuts defined by
Eqgs. (5.14) and (5.15). Since the zero Doppler cut along the time-delay axis extends between
-1, and T, close targets will be unambiguous if they are at least t, seconds apart.

(0" = Eq. (5.15)

The zero time cut along the Doppler frequency axis has a (sinx/ x)2 shape. It extends from
—oo to oo. The first null occurs at f;, = +1/1,. Hence, it is possible to detect two targets that
are shifted by 1/t,, without any ambiguity. Thus, a single pulse range and Doppler resolu-
tions are limited by the pulse width t,, . Fine range resolution requires that a very short pulse be
used. Unfortunately, using very short pulses requires very large operating bandwidths and may
limit the radar average transmitted power to impractical values.
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Armnbiguity function

0

0

Doppler in H
opplerin Az Delay in seconds

Figure 5.2a. Single pulse 3-D ambiguity plot. Pulse width is 3 seconds.

(1] S — e .

Dapplerin Hz

Delay in seconds

Figure 5.2b. Contour plot corresponding to Fig. 5.2a.
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amplitude

=
_‘L'O TO T

Figure 5.3. Zero Doppler ambiguity function cut along the time-delay axis.

Ambiguity - Volts

Frequency - Hz

Figure 5.4. Ambiguity function of a single frequency pulse (zero delay).
The pulse width is 3 seconds.

5.2.2. LFM Ambiguity Function
Consider the LFM complex envelope signal defined by

~ 1 t jnut
x(t) = —=Rect| —]| e . Eq. (5.16)

oo T
In order to compute the ambiguity function for the LFM complex envelope, we will first con-
sider the case when 0<rt<1t,. In this case the integration limits are from —t,/2 to

(t9/2) — 1. Substituting Eq. (5.16) into Eq. (5.1) yields

. . 2 s . 2 i2
x(Tify) = %J‘Rect(f)Rect(tT—T)e’““’ eI S Eq. (5.17)
0 0

It follows that
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-1
2

J’ J2m(uT + /)t
e

L2
—jTpuT

1)) = £ dt. Eq. (5.18)

To
—,

2

Finishing the integration process in Eq. (5.18) yields

sin(nro(ur +fd)(1 — TQ)

x(tfy) = ejmfd(l X 0<t<T1,. Eq. (5.19)
TTo(UT +fd)(1 - l)

Ty

Similar analysis for the case when —t, <t <0 can be carried out, where, in this case, the
integration limits are from (—t,/2) — 1 to 1,/2 . The same result can be obtained by using the
symmetry property of the ambiguity function (|y(-t,~f,)| = |x(t,f,)|)- It follows that an
expression for y(t;f;) thatis valid for any t is given by

sin(mo(LLT +fd)( - Lﬂ))

intf, 0
wif) =€ "’(1 —|1_1| w It <1, Eq. (5.20)
vyt +fd)(1 - l)
To
and the LFM ambiguity function is
i [<))|?
sin{ T (pt + )| 1 -
2 _ It To
Ix(tifp|” = | 1-= It <1,. Eq. (5.21)

to TTo(pt +fd)( - %)

Again the time autocorrelation function is equal to yx(t, 0). The reader can verify that the
ambiguity function for a down-chirp LFM waveform is given by

sin(mo(ur ffd)(l — LT—'D ’
ef = |(1-1 w0 il <1, 5
x| ( To) TTo(Ut —fd)( _%) e o

Incidentally, either Eq. (5.21) or (5.22) can be obtained from Eq. (5.13) by applying property 5
from Section 5.1.

Figures 5.5 a and b show 3-D and contour plots for the LFM uncertainty and ambiguity func-
tions for 1, = 1 second and B = 5Hz for a down-chirp pulse. This figure can be reproduced
using MATLAB program “Fig5 5.m,” listed in Appendix 5-A.

The up-chirp ambiguity function cut along the time-delay axis t is

. 7U >
(1200 = (1m)sm(nurro(l :OD

%o nurro( - m)
To

It <. Eq. (5.23)
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MATLAB Function “lfm_ambg.m” Listing

The function “Ifin_ambg.m” implements Eq. (5.21). The syntax is as follows:

Ifm_ambg [taup, b, up_down]

where
Symbol Description Units Status
taup pulse width seconds input
b bandwidth Hz input
up_down up_down = 1 for up-chirp none input
up_down = -1 for down-chirp
_ 08
T
£
<02
0

Doppler in Hz

0

bandwidth is 5Hz.

Figure 5.5a. Down-chirp LFM 3-D ambiguity plot. Pulse width is 1 second, and

Note that the LFM ambiguity function cut along the Doppler frequency axis is similar to that
of the single pulse. This should not be surprising since the pulse shape has not changed (only
frequency modulation was added). However, the cut along the time-delay axis changes signifi-
cantly. It is now much narrower compared to the unmodulated pulse cut. In this case, the first

null occurs at

T~ 1/B.

Eq. (5.24)

Figure 5.6 shows a plot for a cut in the uncertainty function corresponding to Eq. (5.23). This

figure can be reproduced using MATLAB program “Fig5 6.m,” listed in Appendix 5-A.
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Dapplerin Hz

Delay in seconds

Figure 5.5b. Contour plot corresponding to Fig. 5.5a.

Arnhiguity in dB

Delay in seconds

Figure 5.6. Zero Doppler ambiguity of an LFM pulse (t, = 1, b = 20).

Equation (5.24) indicates that the effective pulse width (compressed pulse width) of the
matched filter output is completely determined by the radar bandwidth. It follows that the LFM
ambiguity function cut along the time-delay axis is narrower than that of the unmodulated
pulse by a factor
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To

VT3

= 1,B Eq. (5.25)

& is referred to as the compression ratio (also called the time-bandwidth product and compres-
sion gain). All three names can be used interchangeably to mean the same thing. As indicated
by Eq. (5.25), the compression ratio also increases as the radar bandwidth is increased.

Example:

Compute the range resolution before and after pulse compression corresponding to an LFM
waveform with the following specifications: Bandwidth B = 1GHz and pulse width
Ty = 10ms.

Solution:
The range resolution before pulse compression is

8 -3
ARunc()m = Ci] = 3x10 x10x10 = 1.5x 106 meters .
’ 2 2

Using Eq. (5.24) yields

D
T, = =1 ns
9
1x10
€T, 3x10°x1x10°
AR,y = —— = =15 cm.
P 2 2

5.2.3. Coherent Pulse Train Ambiguity Function

Figure 5.7 shows a plot of a coherent pulse train. The pulse width is denoted as t, and the
PRI is 7. The number of pulses in the train is N ; hence, the train’s length is (N—1)7T sec-
onds. A normalized individual pulse x(¢) is defined by

~ 1 t
x, (1) = —Rect(—a) . Eq. (5.26)
Ju o T
When coherency is maintained between the consecutive pulses, then an expression for the nor-
malized train is

N-1
~ 1 ~
t) = — t—iT). Eq. (5.27
x(1) J]_\,le( iT) a. (5.27)
i=0
To
«
(N-1)T
Figure 5.7. Coherent pulse train (N=5).
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The output of the matched filter is
r(tify) = Ifc(t)fc*(t— r)e‘iznf"tdt. Eq. (5.28)
Substituting Eq. (5.27) into Eq. (5.28) and interchanging the summations and integration yield
N-1 N-1 =
oy o L S RO N )
(i) NZ Z J-xl(t iT) x*(t—jT—r1)e dt. Eq. (5.29)
i=0 j=0 -

Making the change of variable ¢, = ¢ —iT yields

N-1 N-1 o

1 2T - - o 2t
ww) = 53 ES [R) B -l G-pThe an . Eas0)

i=0 j=0 -

The integral inside Eq. (5.30) represents the output of the matched filter for a single pulse, and
is denoted by 7y, . It follows that

N-1 N-1
1 2nf,iT ..
w(tfy) = NZ é ZXI[T—(l—j)T;fd]. Eq. (5.31)
i=0 j=0

When the relation ¢ = i—j is used, then the following relation is true:

N N 0 N-1-lq] N-1 N-1-lq]
Z Z = z z + Z Z . Eq. (5.32)
i=0 m=0 g=-(N=1) i=0 g, joi g a=1 =0 g i=jsq

Substituting Eq. (5.32) into Eq. (5.31) gives

0 N-1-lql
oy - L . j2mfyiT
() =5 D yuG-aTf) Y e Eq. (5.33)
g=—(N-1) i=0
N-1 N-1-I4
1 J2nf,qT Jj2nfyT
+X,Z e 11(t—qTfy) Z e
q=1 j=0

Setting z = exp(j2nf,T), and using the relation

N-1-|q|
N-lql

Z ZJ = 1+ Eq. (5.34)

—Z
j=0
yields
N-1-lq|
jnfit  [nfN—1-lgn)] sin[nfy(N—1—[q)T]
2 ¢ - ¢ sin(xf, 1)

Eq. (5.35)

i=0
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Using Eq. (5.35) in Eq. (5.31) yields two complementary sums for positive and negative ¢ .
Both sums can be combined as

N-1

1
x(tfa) = N z x1(t—qTify)e
g=—(N-1)
The second part of the right-hand side of Eq. (5.36) is the impact of the train on the ambiguity

function, while the first part is primarily responsible for its shape details (according to the
pulse type being used).

UnfyN—1+gyrysin[1f,(N —|g|) T]
sin(nf,;T)

Eq. (5.36)

Finally, the ambiguity function associated with the coherent pulse train is computed as the
modulus square of Eq. (5.36). For 1, < T//2, the ambiguity function reduces to

N-1
aehl =5 Y luG-aTy)

g=-(N-1)

Sin[n.fd(Nf |q|)T] |‘E| <NT. Eq. (5.37)
sin(nf,;T)

Within the region |1] <1, = ¢ = 0, Eq. (5.37) can be written as

sin[nf;NT]

Nsin(nf,;T)

Thus, the ambiguity function for a coherent pulse train is the superposition of the individual
pulse’s ambiguity functions. The ambiguity function cuts along the time-delay and the Doppler
axes are, respectively, given by

st <t Eq. (5.38)

|X(T§fd)| = |X1(T§fd)|

N-1 2
x(0:0)* = Z (1_%)(1_&;5111) ; lt—qTl <7 Eq. (5.39)
g=—(N-1) ’
o2 _ | 1sin(wfyte) sin(nfyNT)|2
20| = ‘N e sG] Eq. (5.40)

MATLAB Function “tarin_ambg.m”

The function “train_ambg.m” implements Eq. (5.37). The syntax is as follows:

train_ambg [taup, n, pri]

where
Symbol Description Units Status
taup pulse width seconds input
n number of pulses in train none input
pri pulse repetition interval seconds input

Figures 5.8a and 5.8b show the 3-D ambiguity plot and the corresponding contour plot for
N=5,1 =04, and T = 1. This plot can be reproduced using MATLAB program
“Fig5 8.m,” listed in Appendix 5-A. Figures 5.8c and 5.8d, respectively, show sketches of the
zero Doppler and zero delay cuts in the ambiguity function. The ambiguity function peaks
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along the frequency axis are located at multiple integers of the frequency f = 1/7. Alterna-
tively, the peaks are at multiple integers of 7' along the delay axis. The width of the ambiguity
function peaks along the delay axis are 2t,. The peak width along the Doppler axis is

1/(N-1DT.

Arnhiguity function

Dapplerin Hz

Figure 5.8a. Three-dimensional ambiguity plot for a five-pulse equal amplitude
coherent train. Pulse width is 0.4 seconds; and PRI is 1 second, N=5.

Daoppler in Hz

15

0.5 -

0.5 -

-1.5

4
b

o

o

e
<

Delay in seconds

Figure 5.8b. Contour plot corresponding to Fig. 5.8a.
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delay
| <—>| >
271, T
Figure 5.8c. Zero Doppler cut corresponding to Fig. 5.8a.
—1/7 /7,
i - ; >
: 0 1/T ' frequency

Figure 5.8d. Zero delay cut corresponding to Fig. 5.8a.

5.2.4. Pulse Train Ambiguity Function with LFM

In this case, the signal is as given in the previous section except for the LFM modulation
within each pulse. This is illustrated in Fig. 5.9. Again, let the pulse width be denoted by 7,
and the PRI by 7. The number of pulses in the train is N ; hence, the train’s length is (N —1)T
seconds. A normalized individual pulse X, () is defined by
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RER

(N- DT

<

Figure 5.9. LFM pulse train (N=5).

/nétz
x (1) = LRect(i)e 0 Eq. (5.41)
Ju
where B is the LFM bandwidth.
The signal is now given by
N-1
~ 1 ~
x(t) = —=N"x,(t—iT). Eq. (5.42)
m
i=0
Utilizing property 5 of Section 5.1 and Eq. (5.37) yields the following ambiguity function
N-1
_ B \||sin[nfy(N—lgD)T]
x(tf)| = % (‘t—qT;f + -—1:) ¢ ;T <NT Eq. (5.43)
| ) z ’ : ¢ 1 Nsin(nf;T)
g=-(N-1)

where y, is the ambiguity function of the single pulse. Note that the shape of the ambiguity
function is unchanged from the case of the unmodulated train along the delay axis. This should
be expected since only a phase modulation has been added, which will impact the shape only
along the frequency axis.

MATLAB Function “train_ambg lfm.m”

The function “train_ambg_Ilfm.m”" implements Eq. (5.43). The syntax is as follows:

x = train_ambg Ilfm(taup, n, pri, bw)

where
Symbol Description Units Status
taup pulse width seconds input
n number of pulses in train none input
pri pulse repetition interval seconds input
bw the LFM bandwidth Hz input
X array of bimodality function none output
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Note that this function will generate identical results to the function “train_ambg.m” when
the value of “bw” is set to zero. In this case, Egs. (4.43) and (4.35) are identical. Figures 5.10 a
and b show the ambiguity plot and its associated contour plot for the same example listed in
the previous section except, in this case, LFM modulation is added and N = 3 pulses. This
figure can be reproduced using MATLAB program “Fig5 10.m,” listed in Appendix 5-A.

LFM pulse train, Br =40, N =3 pulses

Arnbiguity function

Figure 5.10a. Three-dimensional ambiguity plot for an LFM pulse train.

LFM pulse train, Bt =40, N = 3 pulses

Doppler in Hz

Delay in seconds

Figure 5.10b. Contour plot corresponding to Fig. 5.10a.
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Understanding the difference between the ambiguity diagrams for a coherent pulse train and
an LFM pulse train can be done with the help of Fig. 5.11a and Fig. 5.11b. In both figures a
train of three pulses is used; in both cases the pulse width is 1, = 0.4 sec and the period is
T = lsec. In the case of the LFM pulse train, each pulse has LFM modulation with
Bt, = 20. Locations of the ambiguity peaks along the delay and Doppler axes are the same in
both cases. This is true because peaks along the delay axis are 7' seconds apart and peaks along
the Doppler axis are 1/7 apart; in both cases 7' is unchanged. Additionally, the width of the
ambiguity peaks along the Doppler axis are the same in both cases, because this value depends
only on the pulse train length, which is the same in both cases (i.e., (N—1)T).

The width of the ambiguity peaks along the delay axis are significantly different, however.
In the case of the coherent pulse train, this width is approximately equal to twice the pulse
width. Alternatively, this value is much smaller in the case of the LFM pulse train. This clearly
leads to the expected conclusion that the addition of LFM modulation significantly enhances
the range resolution. Finally, the presence of the LFM modulation introduces a slope change in
the ambiguity diagram; again a result that is also expected.

________ —

DO f

R

______

Doppler - Hz

I I I I
-1 0.5 1] 0.5
Delay - seconds

Figure 5.11a. Contour plot for the ambiguity function of a coherent pulse train.

N=351=04T=1

5.3. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) is a class of radar waveforms that are used in
extremely wide bandwidth applications where very large time bandwidth product (or compres-
sion ratio as defined in Eq. (5.25) is required. One may think of SFW as a special case of an
extremely wide bandwidth LFM waveform. For this purpose, consider an LFM signal whose
bandwidth is B, and whose pulse width is 7, and refer to it as the primary LFM. Divide this
long pulse into N subpulses, each of width 7, to generate a sequence of pulses whose PRI is
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denoted by 7. It follows that 7, = (n—1)T. One reason SFW is favored over an extremely
wideband LFM is that it may be very difficult to maintain the LFM slope when the time band-
width product is large. By using SFW, the same equivalent bandwidth can be achieved; how-
ever, phase errors are minimized since the LFM is chirped over a much shorter duration.

Define the beginning frequency for each subpulse as that value measured from the primary
LFM at the leading edge of each subpulse, as illustrated in Fig. 5.12. That is

fi=fotiAf; i=0,N-1 Eq. (5.44)

where Af is the frequency step from one subpulse to another. The set of n subpulses is often
referred to as a burst. Each subpulse can have its own LFM modulation. To this end, assume
that the subpulse LFM modulation corresponds to an LFM slope of p = B/1,,.

The complex envelope of a single subpulse with LFM modulation is

. 2
X, = LRect(ig) ™ Eq. (5.45)

«/T_o T

Of course if the subpulses do not have any LFM modulation, then the same equation holds true
by setting p = 0. The overall complex envelope of the whole burst is

N-1

x(t) = —Jl—]_:[Zil(t— iT). Eq. (5.46)
i=0

Doppler - Hz

Delay - seconds

Figure 5.11b. Contour plot for the ambiguity function of a coherent pulse train.
N =3; Bty=20; T =1
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, [
primary :
LFM slope [
1 IB
It
|
|
1YW :
| Sy
To
T
- T,
- =|

Figure 5.12. Example of stepped frequency waveform burst; N = 5.

The ambiguity function of the matched filter corresponding to Eq. (5.46) can be obtained
from that of the coherent pulse train developed in Section 5.2.3 along with property 5 of the
ambiguity function. The details are fairly straightforward and are left to the reader as an exer-
cise. The result is (see Problem 5.2)

N-1
x(vf)] = Z ‘Xl(f—qT;(fﬁgTD‘ x Eq. (5.47)
g=-(N-1) ’
Sin[n(fﬁ A_Tfl-)(N_ |q|)TJ Jtl <NT
Nsin(n(fd + A%['r) T)

where y, is the ambiguity function of the single pulse. Unlike the case in Eq. (5.43), the sec-
ond part of the right-hand side of Eq. (5.47) is now modified according to property 5 of Section
5.1. This is true since each subpulse has its own beginning frequency derived from the primary
LFM slope.

5.4. Nonlinear FM

As clearly shown by Fig. 5.6, the output of the matched filter corresponding to an LFM pulse
has sidelobe levels similar to those of the |sin(x)/x|” signal, that is, 13.4dB below the main
beam peak. In many radar applications, these sidelobe levels are considered too high and may
present serious problems for detection particularly in the presence of nearby interfering targets
or other noise sources. Therefore, in most radar applications, sidelobe reduction of the output
of the matched filter is always required. This sidelobe reduction can be accomplished using
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windowing techniques as described in Chapter 3. However, windowing techniques reduce the
sidelobe levels at the expense of reducing of the SNR and widening the main beam (i.e., loss of
resolution), which are considered to be undesirable features in many radar applications.

These effects can be mitigated by using non-linear FM (NLFM) instead of LFM waveforms.
In this case, the LFM waveform spectrum is shaped according to a specific predetermined fre-
quency function. Effectively, in NLFM, the rate of change of the LFM waveform phase is var-
ied so that less time is spent on the edges of the bandwidth, as illustrated in Fig. 5.13. The
concept of NLFM can be better analyzed and understood in the context of the stationary phase.

5.4.1. The Concept of Stationary Phase
Consider the following bandpass signal
x(2) = x/(t)cos(2nfot + §(2)) —xo(£)sin(27fyt + ¢ (1)), Eq. (5.48)
where ¢(7) is the frequency modulation. The corresponding analytic signal (pre-envelope) is
w() = M0 = 10?0 Eq. (5.49)
where x(¢) is the complex envelope and is given by

X(1) = r(t)d*”, Eq. (5.50)

The lowpass signal r(¢) represents the envelope of the transmitted signal; it is given by

r(t) = Jxj(0) +xp(0) Eq. (5.51)
It follows that the FT of the signal x(¢) can then be written as

X() = [rne" " ar, Eq. (552

—00

frequency A

p time

bandwidth

\

pulse width

Figure 5.13. An illustration showing frequency versus time for an
LFM waveform (solid line) and a NLFM (dashed line).
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X(o) = [X(0) " Eq. (5.53)

where |X(w)| is the modulus of the FT and ®(w) is the corresponding phase frequency
response. It is clear that the integrand is an oscillating function of time varying at a rate of

d
E[mt—cb(t)] ) Eq. (5.54)

Most contribution to the FT spectrum occurs when this rate of change is minimal. More specif-
ically, it occurs when

c%[oot—(l)(t)] =0=>0-¢'(t) =0 . Eq. (5.55)

The expression in Eq. (5.55) is parametric since it relates two independent variables. Thus,
for each value o, there is only one specific ¢'(z,) that satisfies Eq. (5.55). Thus, the time
when this phase term is stationary will be different for different values of ®, . Expanding the
phase term in Eq. (5.55) about an incremental value #, using Taylor series expansion yields

¢ (2,)
2!

@, -0(1) = ®,t,~d(1,) + (©,~¢" (1)1~ 1,)~ (t—1,)" + ... Eq. (5.56)

An acceptable approximation of Eq. (5.56) is obtained by using the first three terms, provided
that the difference (z—1¢,) is very small. Now, using the right-hand side of Eq. (5.55) into Eq.
(5.56) and terminating the expansion at the first three terms yields

"' (%)
2!

o,—0(1) = o,1,-4(t,)- (t—1,)". Eq. (5.57)

By substituting Eq. (5.57) into Eq. (5.52) and using the fact that »(¢) is relatively constant
(slow varying) when compared to the rate at which the carrier signal is varying, gives

+

t, "
fj(wntﬁb(tn)—d) ;t”)(t—tn)z)
X(w,) = r(t,) J- e dt Eq. (5.58)

t

n

where 7, * and t, represent infinitesimal changes about ¢, . Equation (5.58) can be written
as

+

)
X(@,) = r(t,)d " | ), Eq. (5.59)
.-
Consider the changes of variables
t—t,=h=dt = dr Eq. (5.60)

[0t =1 y=dh = A/d%t)dy. Eq. (5.61)

Using these changes of variables leads to
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24/n 2Jm r(2,) JConnet, ))I

X(o,) = Eq. (5.62)
lq)!l(t
where
rr Z
Yo = [0 i”)|. Eq. (5.63)

The integral in Eq. (5.62) is of the form of a Fresnel integral, which has an upper limit approx-
imated by

exp(s5)
a Eq. (5.64)
. q. (5.
2
Substituting Eq. (5.64) into Eq. (5.62) yields
T (i) o+ )
X(o,) = %e . Eq. (5.65)
r l,n
Thus, for all possible values of ®
X(0)] * 21 (1) = |X(0)| = _f2m (1) Eq. (5.66)

L0/ Jo (@)
The subscript ¢ was used to indicate the dependency of ® on time.

Using a similar approach that led to Eq. (5.66), an expression for x(z,) can be obtained.
From Eq. (5.53), the signal x(¢)

X(1) = ﬁJ‘|X(m)| PTGy Eq. (5.67)

—00

The phase term ®(®) is (using Eq. (5.65))
O(0) = fmtf¢(t)+1—:. Eq. (5.68)

Differentiating with respect to o yields

d%d)(co) - 4{?)[(07—(1)@)} - D'(w). Eq. (5.69)

Using the stationary phase relation in Eq. (5.55) (i.e., ®—¢'(¢#) = 0) yields
O'(w) = —t Eq. (5.70)

and
() = 4L Eq. (5.71)
do



190 Radar Systems Analysis and Design Using MAT] LAB®

Define the signal group time-delay function as
Ty(w) = -0'(0), Eq. (5.72)

then the signal instantaneous frequency is the inverse of the T, (®) . Figure 5.14 shows a draw-
ing illustrating this inverse relationship between the NLFM frequency modulation and the cor-
responding group time-delay function.

f Ty

Figure 5.14. Matched filter time delay and frequency modulation for a
NLFM waveform.

Comparison of Eq. (5.67) and Eq. (5.52) indicates that both equations have similar form.
Thus, if one substitutes X(®)/2n for r(z), ®(w) for ¢(z), o for ¢, and —¢ for » in Eq.
(5.52), a similar expression to that in Eq. (5.65) can be derived. That is,

1 X))
27]@" ()]

HA Eq. (5.73)

The subscript ® was used to indicate the dependency of ¢ on frequency. However, from Eq.
(5.60)
kol = I = ). Eq. (5.74)

It follows that Eq. (5.73) can be rewritten as

2
1 [X(o)| = r(t) = M Eq. (5.75)

21|D" (o)) 271|d"" (o)

Substituting Eq. (5.71) into Eq. (5.75) yields a general relationship for any ¢

P (t,) =

F(t) dt = ZLTCIX(m)Izdo), Eq. (5.76)

Clearly, the functions r(¢), ¢(¢), X(®), and ®(w) are related to each other as Fourier trans-
form pairs, as given by

(1) = %J‘ 1X(0) T go Eq. (5.77)

—00
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X(0)| 7 = Ir(t) 7O gy Eq. (5.78)

They are also related using Parseval’s theorem by

[ a- zin [lxoor a Eq. (5.79)
or
J-VZ(C) dg = ZLTCJ.lX(K)I2 dh . Eq. (5.80)

The formula for the output of the matched filter was derived earlier and is repeated here as
Eq. (5.81)

x(t.f) = J.a}(z)i*(t—r)em/;’tdz. Eq. (5.81)

Substituting the right-hand side of Eq. (5.50) into Eq. (5.81) yields

0

J2nfyt

2t fp) = [ (e=ve

—00

dt . Eq. (5.82)

It follows that the zero Doppler and zero delay cuts of the ambiguity function can be written as

_ __1__ 2 joT
x(1,0) = 27TJ‘I)((m)l ¢ do Eq. (5.83)

x(0,/,) = _[|V(t)|2 . Eq. (5.84)

0

These two equations imply that the shape of the ambiguity function cuts are controlled by
selecting different functions X and r (related as defined in Eq. (5.76)). In other words, the
ambiguity function main beam and its delay axis sidelobes can be controlled (shaped) by the
specific choices of these two functions; hence, the term spectrum shaping is used. Using this
concept of spectrum shaping, one can control the frequency modulation of an LFM (see Fig.
5.13) to produce an ambiguity function with the desired sidelobe levels.

5.4.2. Frequency Modulated Waveform Spectrum Shaping

One class of FM waveforms which takes advantage of the stationary phase principles to con-
trol (shape) the spectrum is



n B
|X(co;n)|2 = (cosn(g—w)) ol < 7" Eq. (5.85)

where the value n is an integer greater than zero. It can be easily shown using direct integra-
tion and by utilizing Eq. (5.85) that

-~ T . (no

n=1= Tgl((o) = Esm(b)—) Eq. (5.86)
n=2=T,(o)= T|:2+Lsin(2n—-®)i| Eq. (5.87)

g B, 2n \B, 4
n=3=T,(0)= r sin(@) Kcos@)2 + 2} Eq. (5.88)

& 4 B, B,
1 . 2t , 2 o) . To

— 42 Tyy(0) = T 2+ L2804 2 ((0512) jp 12 5.

n = Toy(0) {34 2Tcsm B, n cos B, sin B, Eq. (5.89)

Figure 5.15 shows a plot for Eq. (5.86) through Eq. (5.89). These plots assume 7 = 1 and
the x-axis is normalized, with respect to B . This figure can be reproduced using the MATLAB
program “Fig5 15.m,” listed in Appendix 5-A.

The Doppler mismatch (i.e., a peak of the ambiguity function at a delay value other than
zero) is proportional to the amount of Doppler frequency f,;. Hence, an error in measuring tar-
get range is always expected when LFM waveforms are used. To achieve sidelobe levels for
the output of the matched filter that do not exceed a predetermined level, use this class of
NLFM waveforms

Group delay function

Figure 5.15. Group time delay of Eq. (5.85).
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|X((D;I’l;k)|2 =k+(1 —k)(cosn(g—w))n ol < % . Eq. (5.90)

For example, using the combination n = 2, k = 0.08 yields sidelobe levels less than
—40dB .

5.5. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given waveform, the
corresponding ambiguity diagram is normally used to determine the waveform properties such
as the target resolution capability, measurements (time and frequency) accuracy, and its
response to clutter. The ambiguity diagram contours are cuts in the 3-D ambiguity plot at some
value, O, such that O < |y (0, 0)|2. The resulting plots are ellipses (see Problem 5.11). The
width of a given ellipse along the delay axis is proportional to the signal effective duration, t,,
defined in Chapter 2. Alternatively, the width of an ellipse along the Doppler axis is propor-
tional to the signal effective bandwidth, B, .

Figure 5.16 shows a sketch of typical ambiguity contour plots associated with a single
unmodulated pulse. As illustrated in Fig. 5.16, narrow pulses provide better range accuracy
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse than it is for a
short one. This trade-off between range and Doppler measurements comes from the uncer-
tainty associated with the time-bandwidth product of a single sinusoidal pulse, where the prod-
uct of uncertainty in time (range) and uncertainty in frequency (Doppler) cannot be much
smaller than unity (see Problem 5.12). Figure 5.17 shows the ambiguity contour plot associ-
ated with an LFM waveform. The slope is an indication of the LFM modulation. The values
O., Oy, Owrpc»> and O pe were derived in Chapter 4 and were respectively given in Eq.
(4.107), Eq. (4.111), Eq. (4.136), and Eq. (4.137).

Doppler Doppler
A A

\ A
~B, Delay

) R

A
‘y \

-— >
~T, ~ T
Long Pulse Short Pulse

Figure 5.16. Ambiguity contour plot associated with a sinusoid modulated gated
CW pulse.
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Doppler

Figure 5.17. Ambiguity contour plot for an up-chirp LFM waveform.

5.6. Interpretation of Range-Doppler Coupling in LFM Signals

An expression of the range-Doppler for LFM signals was derived in Chapter 4. Range-Dop-
pler coupling affects the radar’s ability to compute target range and Doppler estimates. An
interpretation of this term in the context of the ambiguity function can be explained further
with the help of Eq. (5.20). Observation of this equation indicates that the ambiguity function
for the LFM pulse has a peak value, notat t = 0, but rather at

B/t)t+f;=0=>1 = —f,(1,/B) Eq. (5.91)

This Doppler mismatch (i.e., a peak of the ambiguity function at a delay value other than zero)
is proportional to the amount of Doppler frequency f,. Hence, an error in measuring target
range is always expected when LFM waveforms are used.

Most radar systems using LFM waveforms will correct for the effect of range-Doppler cou-
pling by repeating the measurement with an LFM waveform of the opposite slope and averag-
ing the two measurements. This way, the range measurement error is negated and the true
target range is extracted from the averaged value. However, some radar systems, particularly
those used for long-range surveillance applications, may actually take advantage of range-
Doppler coupling effect; and here is how it works: Typically, radars during the search mode
utilize very wide range bins which may contain many targets with different distinct Doppler
frequencies. It follows that the output of the matched filter has several targets that have equal
delay but different Doppler mismatches.

All targets with Doppler mismatches greater than 1/t are significantly attenuated by the
ambiguity function (because of the sharp decaying slope of the ambiguity function along the
Doppler axis), and thus will most likely go undetected along the Doppler axis. The combined
target complex within that range bin is then detected by the LFM as if all targets had a Doppler
mismatch corresponding to the target whose Doppler mismatch is less than or equal to 1/71,.
Thus, all targets within that wide range bin are detected as one narrowband target. Because of
this range-Doppler coupling, LFM waveforms are often referred to as Doppler intolerant
(insensitive) waveforms.
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Problems

5.1. From Eq. (5.15) one can deduce that the transfer function of the matched filter is given
by H(f) = sin((wtyf)/(nTyf)) . Show that

1

21,

jH(f) df =

1

21,

1
21,

5.2. Prove Eq. (5.5) through Eq. (5.10).
5.3. Derive an expression for the ambiguity function of a Gaussian pulse defined by
2

(f) = ——ex ——} 0<t<T

€Xp
Jo Vifn [202

where T is the pulsewidth and o is a constant.
5.4. Write a MATLAB program that computes and plots the 3-D and the contour plots for
the results in Problem 5.3.

5.5. Derive an expression for the ambiguity function of a V-LFM waveform, illustrated in
figure below. In this case, the overall complex envelope is

x(1) = Xx,(t) +x,() ~T<t<T
where
~ 1 2
x,(t) = Eexp[—ut ] —T<t<0
and
x,(t) = ! exp[pt’] 0<t<T
2 I — s
J2T
frequency
x,(2) L - 3y — -
| | B - B
l’l’ = -
| | r
i | time
| |
HLH I

5. 6. Using the stationary phase concept, find the instantaneous frequency for the waveform
whose envelope and complex spectrum are, respectively, given by
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r(t) = Texp[ (2]5) } 0<t<T

and

2 2
X()| = — ( f) } .
5.7. Using the stationary phase concept, ﬁnd the instantaneous frequency for the waveform
whose envelope and complex spectrum are respectively given by

t
r(t) = —Rect( u) ; O<t<r,
Jro

and

X(w)| =

J—A/l +(20/B)’

5.8. Write a MATLAB program to compute the ambiguity function for the parabolic FM
waveform. Your code must be able to produce 3-D and contour plots of the resulting ambiguity
function.

5.9. Write a detailed MATLAB code to compute the ambiguity function for an SFW wave-
form. Your code must be able to produce 3-D and contour plots of the resulting ambiguity
function.

5.10. Prove that cuts in the ambiguity function are always defined by an ellipse. Hint:
Approximate the ambiguity function using a Taylor series expansion about the values
(t,f;) = (0,0); use only the first three terms in the Taylor series expansion.

5.11. The radar uncertainty principle establishes a lower bound for the time bandwidth
product. More specifically, if the radar effective duration is t, and its effective bandwidth is
B,, show that Bitﬁ(l—pfwc) >’ , where pgpc is the range-Doppler coupling coefficient
defined in Chapter 4.
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Appendix 5-A: Chapter 5 MATLAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “single pulse ambg.m” Listing

function [x] = single_pulse_ambg (taup)
% Computes the ambiguity of a single pulse

% % Inputs

% taup == pulsewidth in seconds
%%O0utputs

% x == ambiguity surface array
eps = 0.000001;
i=0;

del = 2*taup/150;
for tau = -taup:del:taup
i=i+1;
j=0
fd = linspace(-5/taup,5/taup,151),
vall = 1. - abs(tau) / taup;
val2 = pi * taup .* (1.0 - abs(tau) / taup) . * fd;
x(:,i) = abs(vall .* sin(val2+eps)./(val2+eps));
end

MATLAB Program “Fig5 2.m” Listing

% Use this program to reproduce Fig. 5.2 of text
close all;

clear all;

eps = 0.000001;

taup = 3;

[x] = single pulse_ambg (taup),

taux = linspace(-taup,taup, size(x,1));

fdy = linspace(-5/taup+eps,5/taup-eps, size(x,1));
mesh(taux,fdy,x);

xlabel ("Delay in seconds’);

ylabel ('Doppler in Hz');

zlabel ("Ambiguity function’)

Jigure(2)

contour(taux,fdy,x);

xlabel ("Delay in seconds’);

vlabel ('Doppler in Hz'); grid

MATLAB Program “Fig5 4.m” Listing

% Use this program to reproduce Fig 5.4 of text
close all
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clear all

eps = 0.0001;

taup = 3.;

fd =-10./taup:.001:10./taup;
uncer = abs( sinc(taup . * fd));
figure(2)

plot (fd, uncer,'k’, linewidth’ 1);
xlabel ("Frequency - Hz')
viabel ('Ambiguity - Volts')
grid

MATLAB Function “lfm_ambg.m” Listing

function x = lfm_ambg(taup, b, up_down)
% Implements Eq. (5.21) of textbook

%% Inputs
% taup == pulsewidth in seconds
% b == bandwidth in Hz
% up_down == ] to indicate an up-chirp LFM
% up_down == -] to indicate an down-chirp LFM
%% Output
% x == ambiguity matrix
eps = 0.000001;
i=0;

mu = up_down * b /taup;
del = 2*taup/200;
for tau = -1. *taup.del:taup
i=i+1;
j=0;
fd = linspace(-1.5%b,1.5%b,201);
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 *val3;
x(:,i) = abs(vall .* (sin(val+eps)./(val+eps)))."2;
end
end

MATLAB Program “Fig5 5.m” Listing

% Use this program to reproduce Fig. 5.5 of text
close all

clear all

eps = 0.0001;

taup = 1.;

b=5;

up_down =-1.;

x = lfm_ambg(taup, b, up_down);

taux = linspace(-1.*taup,taup,size(x,1));
fdy = linspace(-1.5%b,1.5%b,size(x,1));
figure(1)

mesh(taux,fdy,sqrt(x))

xlabel ("Delay in seconds’)

ylabel ('Doppler in Hz')
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zlabel ("Ambiguity function’)
axis tight

figure(2)
contour(taux,fdy,sqrt(x))
xlabel ("Delay in seconds’)
ylabel ('Doppler in Hz')

MATLAB Program “Fig5_6.m” Listing

% Use this program to reproduce Fig. 5.6 of text
close all
clear all
eps = 0.001;
taup = 1;
b=20.;
up _down =1.;
taux = -1.5*taup:.01:1.5*taup;
fd=0.;
mu =up_down *b /2. /taup;
ii=0.,
Sfor tau = -1.5%taup:.01:1.5*taup
=i+l
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 *val3;
x(ii) = abs(vall * (sin(val+eps)/(val+eps))),
end
figure(1)
plot(taux,10*log10(x+eps))
grid
xlabel ("Delay in seconds’)
vilabel ('Ambiguity in dB')
axis tight

MATLAB Function “train_ambg.m” Listing

function x = train_ambg(taup, n, pri)
% This function implements Eq. (5.37) of textbook

% % Inputs

% taup == pulse width in seconds

%n == number of pulses in train

% pri == pulse repetition interval in seconds
%% Outputs

% x == ambiguity matrix

if (taup >= pri/2)

'ERROR. Pulse width must be less than the PRI/2.’

return
end
eps = 1.0e-6;
bw = I/taup;
q=-(m-1):1:n-1;
offset = 0:0.031:pri;
[0, S] = meshgrid(q, offset);
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O = reshape(Q, 1, length(q)*length(offset)),
S = reshape(S, 1, length(q)*length(offset));
tau = (-taup * ones(1,length(S))) +S

fd =-bw:0.011:bw;

[T, F] = meshgrid(tau, fd),

0O = repmat(Q, length(fd), 1),

S = repmat(S, length(fd), 1);

N =n *ones(size(T));

vall = 1.0-(abs(T))/taup;

val2 = pi*taup*F. *vall;

val3 = abs(vall.*sin(val2+eps)./(val2+eps)),
val4d = abs(sin(pi*F. *(N-abs(Q)) *pri+eps)./sin(pi *F *pri+eps)),
x =val3.*val4./N;

[rows, cols] = size(x);

x = reshape(x, 1, rows*cols);

T = reshape(T, 1, rows*cols);

indx = find(abs(T) > taup);

x(indx) = 0.0;
x = reshape(x, rows, cols);
return

MATLAB Program “Fig5 8.m” Listing

% Use this program to reproduce Fig. 5.8 of text
clear all

close all

taup = .4,

pri=1;

n=235;

X = train_ambg(taup, n, pri);

figure(1)

time = linspace(-(n-1) *pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-1/taup, 1/taup, size(x,1));
%mesh(time, doppler, x);

mesh(time, doppler, x); %shading interp,
xlabel('Delay in seconds’);

ylabel('Doppler in Hz');

zlabel('Ambiguity function’);

axis tight;

figure(2)

contour(time, doppler, (x));

%osurf(time, doppler, x); shading interp,; view(0,90);
xlabel('Delay in seconds’);

yvilabel('Doppler in Hz');

grid;

axis tight;

MATLAB Program “Fig5 9.m” Listing

% Use this program to reproduce Fig. 5.9 of textbook
close all

clear all

LFM BW = 20;

time = linspace(0,1,3000);
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S = zeros(1,3000);

tau = .3;

index = find(time<=tau),

ts = tau / 3000; % 1000 samples per PW
beta = LFM _BW/tau;

S(index) = exp(j *pi*beta*(time(index).”2));
SS = repmat(S,1,5),

figure

timet = linspace(0,5,5*3000);
plot(timet,imag(SS), linewidth',1.5), grid
ylabel("Up chirp LFM)

MATLAB Function “train_ambg Ilfm.m” Listing

function x = train_ambg_lfm(taup, n, pri, bw)
% This function implemenst Eq. (5.43) of textbook

%% Inputs
% taup == pulsewidth in seconds
% n == number of pulses in train
% pri == pulse repetition interval in seconds
% bw == the LFM bandwidth in Hz
%%Outputs
% x == array of bimodality function

if (taup >= pri/2)
'ERROR. Pulse width must be less than the PRI/2.’
return

end

eps = 1.0e-6;

q=-(mn-1):1:n-1;

offset = 0:0.033:pri;

[0, S] = meshgrid(q, offset);

O = reshape(Q, 1, length(q)*length(offset)),

S = reshape(S, 1, length(q)*length(offset));

tau = (-taup * ones(1,length(S))) + S ;

fd =-bw:0.033:bw;

[T, F] = meshgrid(tau, fd),

O = repmat(Q, length(fd), 1),

S = repmat(S, length(fd), 1),

N = n *ones(size(T)),

vall = 1.0-(abs(T))/taup;

val2 = pi*taup *(F+T*(bw/taup)). *vall;

val3 = abs(vall.*sin(val2+eps)./(val2+eps));

val4 = abs(sin(pi*F.*(N-abs(Q)) *pri+eps)./sin(pi*F *pri+eps));

x = val3.*val4./N;

[rows, cols] = size(x);

x = reshape(x, 1, rows*cols);
T = reshape(T, 1, rows*cols);
indx = find(abs(T) > taup);
x(indx) = 0.0;

x = reshape(x, rows, cols);

return
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MATLAB Program “Fig5 10.m” Listing

% Use this program to reproduce Fig. 5.10 of the textbook.
clear all

close all

taup = 0.4;

pri=1;

n=3;

bw = 10;

x = train_ambg lfm(taup, n, pri, bw);

Sigure(1)

time = linspace(-(n-1) *pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-bw,bw, size(x,1));

Y%mesh(time, doppler, x);

surf{time, doppler, x); shading interp;
xlabel('Delay in seconds’);

ylabel('Doppler in Hz');

zlabel('Ambiguity function’);

axis tight;

title("LFM pulse train, B\tau = 40, N = 3 pulses’)
figure(2)

contour(time, doppler, (x));

Ysurf(time, doppler, x); shading interp; view(0,90);
xlabel('Delay in seconds’);

vlabel('Doppler in Hz');

grid;

axis tight;

title("LFM pulse train, B\tau = 40, N = 3 pulses’)

MATLAB Program “Fig5 15.m” Listing

% Use this program to reproduce Fig. 5.15

clear all;

close all;

delw = linspace(-.5,.5,75);

T1 =.5 *sin(pi. *delw);

T2 = delw + (1/2/pi) . * sin(2*pi. *delw),

T3 = .25 .* (sin(pi. *delw)) . * ((cos(pi. *delw)).”2 + 2);
T4 = delw + (1/2/pi) . * sin(2*pi. *delw) + (2/3/pi) . * (cos(pi. *delw))."3 . * sin(delw);
JSigure (1)

plot(delw,T1,'k*" delw,T2,'k:",delw,T3,'k." delw,T4,'k’");
grid

vlabel('Group delay function'),; xlabel("\omega/B’)
legend('n=1''"n=2"'n=3"'n=4')



Part II - Radar Signals and Signal Processing

Chapter 6

Ambiguity Function -

Discrete Coded Waveforms

The concepts of resolution and ambiguity were introduced in Chapter 4. The relationship
between the waveform resolution (range and Doppler) and its corresponding ambiguity func-
tion was discussed and analyzed. It was determined that the goodness of a given waveform is
based on its range and Doppler resolutions, which can be analyzed in the context of the ambi-
guity function. For this purpose, a few common analog radar waveforms were analyzed in
Chapter 5. In this chapter, another type of radar waveform based on discrete codes is analyzed.
This topic has been and continues to be a major research thrust area for many radar scientists,
designers, and engineers. Discrete coded waveforms are more effective in improving range
characteristics than Doppler (velocity) characteristics. Furthermore, in some radar applica-
tions, discrete coded waveforms are heavily favored because of their inherent anti-jamming
capabilities. In this chapter, a quick overview of discrete coded waveforms is presented. Three
classes of discrete codes are analyzed. They are unmodulated pulse-train codes (uniform and
staggered), phase-modulated (binary or polyphase) codes, and frequency modulated codes.

6.1. Discrete Code Signal Representation
The general form for a discrete coded signal can be written as

N N

. ) . 0
x(t) = eijtZun(t) - eijtZPn(t)ej(w"tJr W) Eq. (6.1)

n=1 n=1

where o, is the carrier frequency in radians, (®,, 0,) are constants, N is the code length
(number of bits in the code), and the signal P, () is given by

P,(1) = anRect(TiO). Eq. (6.2)

The constant a,, is either (1) or (0), and

t 1 ; O<it<ry
Rect(r—o) = Eq. (6.3)

0 ; elsewhere .

Using this notation, the discrete code can be described through the sequence

203
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Uln] = {u, ,n=1,2,...,,N} Eq. (6.4)

which, in general, is a complex sequence depending on the values of ®, and 0,,. The sequence
Uln] is called the code, and for convenience it will be denoted by U

In general, the output of the matched filter is

0

25 f) =[x+ ve ™ ar, Eq. (65
Substituting Eq. (6.1) into Eq. (6.5) yields
N N 0

1wt = 3 Y [urour e ar, Eq. (66)

n=1 k=1 -

Depending on the choice of combination for a,, ®,, and 0, , different class of codes can be
generated. To this end, pulse-train codes are generated when

0,=0,=0 ; and a, = 1,0r 0, Eq. (6.7)
Binary phase codes and polyphase codes are generated when
®0,=0 ; and a, =1, Eq. (6.8)

Finally, frequency codes are generated when

06,=0 ; and a, = 1l,0r 0, Eq. (6.9)

6.2. Pulse-Train Codes

The idea behind this class of code is to divide a relatively long pulse of length 7}, into N
subpulses, each being a rectangular pulse with pulse width t, and amplitude of 1 or 0. It fol-
lows that the code U is the sequence of 1s and 0s. More precisely, the signal representing this
class of code can be written as

N N

_ Joot _ Joot r
x(t) = e ZPn(t) e ZanRect(To) Eq. (6.10)

n=1 n=1

One way to generate a train-pulse class code can be by setting

1 n—1=0 modulu ¢q
a, = Eq. (6.11)
0 n—1#0 modulu q
where ¢ is a positive integer that divides evenly into N — 1. That is,
M-1=(N-1)/q Eq. (6.12)

where M is the number of 1s in the code. For example, when N = 21 and ¢ = 5, then
M = 5, and the resulting code is
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(U} = {10000 10000 10000 10000 1}. Eq. (6.13)

This is illustrated in Fig. 6.1. In previous chapters this code would have been represented by
the following continuous time domain signal

4
Jogt t—m
) = R t( 7) Eq. (6.14
x(1) = ey Rec - q. (6.14)
m=0

where the period is T = 57,. Using this analogy yields

— Eq. (6.15
Vo1 q. (6.15)
and Eq. (6.10) can now be written as
s
x(t) = ejmotZRect MU Eq. (6.16)
Ty '
m=1

In Chapter 5 an expression for the ambiguity function for a coherent train of pulses was
derived. Comparison of Eq. (6.16) and Eq. (5.27) show that the two equations are equivalent
when the condition in Eq. (6.15) is true except for some constants. It follows that the ambiguity
function for the signal defined in Eq. (6.16) is

|X(T;fd)| _ Z Sin[ﬁfd([M— |k|]]l771L1)} Sin|:7'tfd(‘fo —|t— %DJ | co 617
k=M sin (ch dMTf 1) Tfy

The zero Doppler and zero delay cuts of the ambiguity function are derived from Eq. (6.17).
They are given by

[ ag s Pl e d o o
ﬂoooomoooomoooomooooﬂ
s i

| |
r

>
I M:qTO '

Figure 6.1. Generating a pulse-train code of length N = 21 bits.
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ol
Ix(t;0)] = Mr, z [17%} 17--}]\-/[-:—1— Eq. (6.18)
k=M 0
T
sin[and —r_ } .
[x(0:/)] = Z (Mf 1) sin(/4%)| Eq. (6.19)
T, 4T

k=-M sin (thdm)

Figure 6.2a shows the three-dimensional ambiguity plot for the code shown in Fig. 6.1, while
Fig. 6.2b shows the corresponding contour plot. This figure can be reproduced using MAT-
LAB program “Fig6 2.m,” listed in Appendix 6-A.

A cartoon showing contour cuts of the ambiguity function for a pulse-train code is shown in
Fig. 6.2¢. Clearly, the width of the ambiguity function main lobe (i.e., resolution) is directly
tied to the code length. As one would expect, longer codes will produce a narrower main lobe
and thus have better resolution than shorter ones. Further observation of Fig. 6.2 shows that
this ambiguity function has a strong grating lobe structure along with high sidelobe levels. The
presence of such strong lobing structure limits the effectiveness of the code and will cause
detection ambiguities. These lobes are a direct result from the uniform equal spacing between
the 1s within a code (i.e., periodicity of the code). These lobes can be significantly reduced by
getting rid of the periodic structure of the code, i.c., placing the pulses at nonuniform spacing.
This is called code staggering (PRF staggering).

ambiguity function

frequency

delay

Figure 6.2a. Ambiguity function for the pulse-train code shown in Fig. 6.1.
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frequency

Figure 6.2b. Contour plot corresponding to Fig. 6.2a.
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Figure 6.2c. Illustration of the ambiguity contour plot for a pulse-train code.
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For example, consider a pulse-train code of length N = 21. A staggered train-pulse code
can then be obtained by using the following sequence a,

{a,} =1 n=1,46,12,1521. Eq. (6.20)
Thus, the resulting code is

{U} = {100101000001001000001 } . Eq. (6.21)

Figure 6.3 shows the ambiguity plot corresponding to this code. As indicated by Fig. 6.3, the
ambiguity function corresponding to a staggered pulse-train code approaches a thumbtack
shape. The choice of the optimum staggered code has been researched extensively by numer-
ous people. Resnick! defined the optimum staggered pulse-train code as that whose ambiguity
function has absolutely uniform sidelobe levels that are equal to unity. Other researchers have
introduced different definitions for optimum staggering, none of which is necessarily better
than the others, except when considered for the particular application being analyzed by the
respective researcher. Figure 6.3 can be reproduced using MATLAB program “Fig6 3.m,”
listed in Appendix 6-A.

ambiguity function

freguency

delay

Figure 6.3a. Ambiguity function for the pulse-train code in Eq. (6.21).

1. Resnick, J. B., High Resolution Waveforms Suitable for a Multiple Target Environment, MS thesis,
MIT, Cambridge, MA, June 1962.
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frequency

Figure 6.3b. Contour plot corresponding to Fig. 6.3a.

6.3. Phase Coding

The signal corresponding to this class of code is obtained from Eq. (6.1) by letting @, = 0.
It follows that

N N
A A N
x(t) = e’m‘”z u,(t) = e’“’"tZPn(t)e’ " Eq. (6.22)
n=1 n=1

Two subclasses of phase codes are analyzed. They are binary phase codes and polyphase
codes.

6.3.1. Binary Phase Codes

In this case, the phase 0, is set equal to either (0) or (m), and hence, the term binary is
used. For this purpose, define the coefficient D, as
Jo,
D =¢é " =+l. Eq. (6.23)

n

The ambiguity function for this class of code is derived by substituting Eq. (6.22) into Eq.
(6.5). The resulting ambiguity function is given by
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N-k
XO(T’ﬂfd)anDnJrke

x(tify) = ":le(kH) 0<t<Nt, Eq. (6.24)

Xo(To—1"s/2) z D,D, e

n=1

—2nfy(n—1)1, n

—2nfynt,

where
0<t'<1
T = kgt Eq. (6.25)
k=0,1,2,...,N
To—T'
Yol fy) = I exp(—j2nf,t)dt 0<t'<1y. Eq. (6.26)

0

The corresponding zero Doppler cut is then given by

Nk N—lk+1]
x(t;0) = 10(17%) Z DD, .+t Z DD, i1 Eq. (6.27)
n=1 n=1
and when t/ = 0 then
N- Ik
1 (k;0) = 1, Z D,D, .- Eq. (6.28)
n=1

Barker Code

Barker code is one of the most commonly known codes from the binary phase code class. In
this case, a long pulse of width 7, is divided into N smaller pulses; each is of width
Ty = T,/N. Then, the phase of each subpulse is chosen as either 0 or 7 radians relative to
some code. It is customary to characterize a subpulse that has 0 phase (amplitude of +1 volt)
as either “1” or “+.” Alternatively, a subpulse with phase equal to © (amplitude of -1 volt) is
characterized by either “0” or “-.” Barker code is optimum in accordance with the definition
set by Resnick. Figure 6.4 illustrates this concept for a Barker code of length seven. A Barker
code of length N is denoted as B, . There are only seven known Barker codes that share this
unique property; they are listed in Table 6.1. Note that B, and B, have complementary forms
that have the same characteristics.

In general, the autocorrelation function (which is an approximation for the matched filter
output) for a B, Barker code will be 2Nt wide. The main lobe is 21, wide; the peak value is
equal to N. There are (N — 1)/2 sidelobes on either side of the main lobe; this is illustrated in
Fig. 6.5 for a B, . Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code is —22.3dB , which may not be suffi-
cient for the desired radar application. However, Barker codes can be combined to generate
much longer codes. In this case, a B, code can be used within a B code (M within N) to
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generate a code of length MN. The compression ratio for the combined B,y code is equal to
MN . As an example, a combined Bs, is given by

By, = {11101, 11101, 00010, 11101} Eq. (6.29)

and is illustrated in Fig. 6.6. Unfortunately, the sidelobes of a combined Barker code autocorre-
lation function are no longer equal to unity. Some sidelobes of a combined Barker code auto-
correlation function can be reduced to zero if the matched filter is followed by a linear
transversal filter with impulse response given by

N

h(t) = Z B,S(t—2kt,) Eq. (6.30)
k=-N

where N is the filter’s order, the coefficients B, (B, = PB_;) are to be determined, &( ) is the
delta function, and T, is the Barker code subpulse width. A filter of order N produces N zero
sidelobes on either side of the main lobe. The main lobe amplitude and width do not change, as
illustrated in Fig. 6.7.

Figure 6.4. Binary phase code of length 7.

TABLE 6.1. Barker codes

Code Code Side Lode
Symbol Length Code Elements Reduction (dB)
B, 2 +- 6.0
++
B, 3 ++- 9.5
B, 4 ++-+ 12.0
+4++-
B, 5 +++-+ 14.0
B, 7 +++--+- 16.9
B, 11 ++to-t-t- 20.8
By 13 F+ 22.3




212 Radar Systems Analysis and Design Using MAT] LAB®
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J|+|+|+|+I+I—I—I+I+I—|+l —|+}_
B 137, = T, i
13
1
~131, -1, T, 137,

Figure 6.5. Barker code of length 13, and its corresponding auto-
correlation function.

+ + : +
By LI LM L LIL
T - b - He oo o ko E -

Figure 6.6. A combined 55, Barker code.

In order to illustrate this approach, consider the case where the input to the matched filter is
B,,,and assume N = 4. The autocorrelation for a B, is

R, = {-1,0,-1,0,-1,0,-1,0,-1,0, 11, . Eq. (6.31)
0,-1,0,-1,0,-1,0,-1,0,-1}

The output of the transversal filter is the discrete convolution between its impulse response and
the sequence R,. At this point we need to compute the coefficients 3, that guarantee the
desired filter output (i.e., unchanged main lobe and four zero sidelobe levels).
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filter

B N\N\AAAAAAAAA
N matched transversal ~— -
filter; order N

Figure 6.7. A linear transversal filter of order N can be used to produce N zero
sidelobes in the autocorrelation function (N = 4).

Performing the discrete convolution as defined in Eq. (6.30) and collecting equal terms
(Bx = B_;) yield the following set of five linearly independent equations:

11 -2 -2 -2 -2[[Bo| [11
110 -2 -2 —1||By 0
-1 =210 =2 -1 [32 =10 Eq. (6.32)
~1-2 -1 11 1| [p, 0
~1-1-1-111 B 0
Solving Eq. (6.32) yields
Po|  [1.1342
By 0.2046
[32 = 10.2046]| - Eq. (6.33)
B, 0.1731
B, 0.1560

Note that setting the first equation equal to 11 and all other equations to 0 and then solving
for B, guarantees that the main peak remains unchanged, and that the next four sidelobes are
zeros. So far we have assumed that coded pulses have rectangular shapes. Using other pulses
of other shapes, such as Gaussian, may produce better sidelobe reduction and a larger compres-

sion ratio.

Figure 6.8 shows the output of this function when B 5 is used as an input. Figure 6.9 is sim-
ilar to Fig. 6.8, except in this case B, is used as an input. Figure 6.10 shows the ambiguity
function, the zero Doppler cut, and the contour plot for the combined Barker code defined in

Fig. 6.6.

Figures 6.8 through 6.10 can be reproduced using the MATALB program “Fig6 8 10.m,”
listed in Appendix 6-A.
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frequency

Figure 6.8c. Contour plot corresponding to Fig. 6.8a.

ambiguity function

frequency

delay

Figure 6.9a. Ambiguity function for B, Barker code.
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Figure 6.9b. Zero Doppler cut for the B, ambiguity function.
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Figure 6.9c. Contour plot corresponding to Fig. 6.9a.
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frequency

Figure 6.10c. Contour plot corresponding to Fig. 6.10a.

Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length Sequences
(MLS) codes. These codes are called pseudo-random because the statistics associated with
their occurrence are similar to those associated with the coin-toss sequences. Maximum length
sequences are periodic. The MLS codes have the following distinctive properties:

1. The number of ones per period is one more than the number of minus ones.

2. Half the runs (consecutive states of the same kind) are of length one and one fourth are of
length two.

3. Every maximal length sequence has the “shift and add” property. This means that, if a max-
imal length sequence is added (modulo 2) to a shifted version of itself, then the resulting
sequence is a shifted version of the original sequence.

4. Every n-tuple of the code appears once and only once in one period of the sequence.

5. The correlation function is periodic and is given by

L n=0,+L, +2L, ...
o(n) = . Eq. (6.34)
-1 elsewhere

Figure 6.11 shows a typical sketch for an MLS autocorrelation function. Clearly these codes
have the advantage that the compression ratio becomes very large as the period is increased.
Additionally, adjacent peaks (grating lobes) become farther apart.
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Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to use linear shift
registers. When the binary sequence generated using a shift register implementation is periodic
and has maximal length, it is referred to as an MLS binary sequence with period L, where

L=2"-1. Eq. (6.35)

n is the number of stages in the shift register generator. A linear shift register generator basi-
cally consists of a shift register with modulo-two adders added to it. The adders can be con-
nected to various stages of the register, as illustrated in Fig. 6.12 for n = 4 (i.e., L = 15).
Note that the shift register initial state cannot be 0.

The feedback connections associated with a shift register generator determine whether the
output sequence will be maximal. For a given size shift register, only a few feedback connec-
tions lead to maximal sequence outputs. In order to illustrate this concept, consider the two 5-
stage shift register generators shown in Fig. 6.13. The shift register generator shown in Fig.
6.13 a generates a maximal length sequence, as clearly depicted by its state diagram. However,
the shift register generator shown in Fig. 6.13 b produces three non-maximal length sequences
(depending on the initial state).

Given an n-stage shift register generator, one would be interested in knowing how many
feedback connections will yield maximal length sequences. Zierler! showed that the number of
maximal length sequences possible for a given n-stage linear shift register generator is

L
L [0l o ™

Figure 6.11. Typical autocorrelation of an MLS code of length L.

—y—
—_
&)
w
N
be
=3
3
=S

Figure 6.12. Circuit for generating an MLS sequence of length . = 15.

1. Zierler, N., Several Binary-Sequence Generators, MIT Technical Report No. 95, Sept. 1955.
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Figure 6.13. (a) A 5-stage shift register generator. (b) Non-maximal length
S-stage shift register generator.

N, =22 - Eq. (6.36)
n

¢ is the Euler’s totient (Euler’s phi) function and is defined by
(p;i—1)
(k) = k —_— Eq. (6.37)
H D

where p, are the prime factors of k. Note that when p; has multiples, only one of them is
used. Also note that when k is a prime number, the Euler’s phi function is

o) = k—1. Eq. (6.38)

For example, a 3-stage shift register generator will produce
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3
_o2 -1 _o() _7-1_
N, = @ = = =2, Eq. (6.39
L 3 3 3 q. ( )

and a 6-stage shift register,

_e(2°—1) _e(63) _63_ (3-1) (71-1) _
Mo 6 6 6 < 3 7 6, Eq. (6.40)

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback connections corre-
spond to #n, k, m, etc . This maximal length shift register can be described using its characteris-
tic polynomial defined by

L+ Eq. (6.41)

where the additions are modulo 2. Therefore, if the characteristic polynomial for an n-stage
shift register is known, one can easily determine the register feedback connections and conse-
quently deduce the corresponding maximal length sequence. For example, consider a 6-stage
shift register whose characteristic polynomial is

PR Eq. (6.42)

It follows that the shift register which generates a maximal length sequence is shown in Fig.
6.14.

One of the most important issues associated with generating a maximal length sequence
using a linear shift register is determining the characteristic polynomial. This has been and
continues to be a subject of research for many radar engineers and designers. It has been shown
that polynomials which are both irreducible (not factorable) and primitive will produce maxi-
mal length shift register generators.

output

1]2]3]4]5]6

Figure 6.14. Linear shift register whose characteristic polynomial is x6 + x5 +1.

A polynomial of degree n is irreducible if it is not divisible by any polynomial of degree less
than n. It follows that all irreducible polynomials must have an odd number of terms. Conse-
quently, only linear shift register generators with an even number of feedback connections can
produce maximal length sequences. An irreducible polynomial is primitive if and only if it
divides x" — 1 for no value of n less than 2" — 1. Figure 6.15 shows the output of this function
for

udl=[1-1-1-1-11-11-1111-111-1-1-111111-1-111-11-1-1].
Figure 6.16 is similar to Fig. 6.15, except in this case the input maximal length sequence is

uls=[1-1-1-11111-11-111-1-1].
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Figure 6.15a. Ambiguity function corresponding to a 31-bit PRN code.
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Figure 6.15b. Zero Doppler cut corresponding to Fig. 6.15a.
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Figure 6.16b. Zero Doppler cut corresponding to Fig. 6.16a.
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6.3.2. Polyphase Codes

The signal corresponding to polyphase codes is that given in Eq. (6.22) and the correspond-
ing ambiguity function was given in Eq. (6.24). The only exception is that the phase 0, is no
longer restricted to (0, ©). Hence, the coefficient D, are no longer equal to =1 but can be
complex depending on the value of 6, . Polyphase Barker codes have been investigated by
many scientists, and much is well documented in the literature. In this chapter the discussion
will be limited to Frank codes.

Frank Codes

In this case, a single pulse of width 7, is divided into N equal groups; each group is subse-
quently divided into other N subpulses each of width 1. Therefore, the total number of sub-
pulses within each pulse is N and the compression ratio is & = N . As previously, the phase
within each subpulse is held constant with respect to some CW reference signal.

A Frank code of N subpulses is referred to as an N-phase Frank code. The first step in com-
puting a Frank code is to divide 360° by N and define the result as the fundamental phase
increment A . More precisely,

= 360°/N. Eq. (6.43)

Note that the size of the fundamental phase increment decreases as the number of groups is
increased, and because of phase stability, this may degrade the performance of very long Frank
codes. For N-phase Frank code the phase of each subpulse is computed from

0 0 0 0 0
0 1 2 3 N-1
0 2 4 6 ...2(N-1)

A@ Eq. (6.44)

0 (N-1)2(N—1)3(N-1) ... (N—1)*

where each row represents a group, and a column represents the subpulses for that group. For
example, a 4-phase Frank code has N = 4, and the fundamental phase increment is
= (360°/4) = 90°. It follows that

0 0 0 0 11 11
0 90° 180°270° | | 1 j —1 - Eq. (6.45)
0 180° 0 180° 1-11 -1
0 270° 180° 90° 1 -1
Therefore, a Frank code of 16 elements is given by
c=f11111,;-1—-51-11-11--1/}. Eq. (6.46)

A plot of the ambiguity function for /', is shown in Fig. 6.17. Note the thumbtack shape of
the ambiguity function. This plot can be reproduced using MATLAB program “Fig6 17.m,”
listed in Appendix 6-A. The phase increments within each row represent a step-wise approxi-
mation of an up-chirp LFM waveform. The phase increments for subsequent rows increase lin-
early versus time. Thus, the corresponding LFM chirp slopes also increase linearly for
subsequent rows. This is illustrated in Fig. 6.18, for F 4.
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Figure 6.17a. Ambiguity plot for Frank code F', .
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Figure 6.17b. Contour plot corresponding to Fig. 6.17a.
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Figure 6.17c. Zero Doppler cut corresponding to Fig. 6.17a.
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Figure 6.18. Stepwise approximation of an up-chirp waveform, using a Frank
code of 16 elements.
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6.4. Frequency Codes

Frequency codes are derived from Eq. (6.1) under the condition stated in Eq. (6.9) (i.e.,
0,=0; and a, = 1,or 0). The Stepped Frequency Waveform (SFW) discussed in the pre-
vious chapter is considered to be a code under this class of discrete coded waveforms. The
ambiguity function was derived in Chapter 5 for SFW. In this chapter the focus is on another
type of frequency codes that is called the Costas frequency code.

6.4.1. Costas Codes

Construction of Costas codes can be understood in the context of SFW. In SFW, a relatively
long pulse of length 7, is divided into N subpulses, each of width t, (7, = Nt,). Each
group of N subpulses is called a burst. Within each burst the frequency is increased by Af
from one subpulse to the next. The overall burst bandwidth is NAf. More precisely,

T =T,/N Eq. (6.47)
and the frequency for the ith subpulse is
fi=fotidfs i= 1N Eq. (6.48)

where f,, is a constant frequency and f, » Af". It follows that the time-bandwidth product of
this waveform is

MT, = N°. Eq. (6.49)

Costas! signals (or codes) are similar to SFW, except that the frequencies for the subpulses
are selected in a random fashion, according to some predetermined rule or logic. For this pur-
pose, consider the N x N matrix shown in Fig. 6.19 b. In this case, the rows are indexed from
i =1,2,...,N and the columns are indexed from j = 0, 1,2, ..., (N—1). The rows are used
to denote the subpulses and the columns are used to denote the frequency. A dot indicates the
frequency value assigned to the associated subpulse. In this fashion, Fig. 6.19 a shows the fre-
quency assignment associated with an SFW. Alternatively, the frequency assignments in Fig.
6.19b are chosen randomly. For a matrix of size N x N, there are a total of N! possible ways
of assigning the dots (i.e., N! possible codes).

The sequences of dot assignments for which the corresponding ambiguity function
approaches an ideal or a thumbtack response are called Costas codes. A near thumbtack
response was obtained by Costas using the following logic: There is only one frequency per
time slot (row) and per frequency slot (column). Therefore, for an N x N matrix, the number
of possible Costas codes is drastically less than N!. For example, there are N, = 4 possible
Costas codes for N = 3, and N, = 40 possible codes for N = 5. It can be shown that the
code density, defined as the ratio N,/ N!, gets significantly smaller as N becomes larger.

There are numerous analytical ways to generate Costas codes. In this section we will
describe two of these methods. First, let ¢ be an odd prime number, and choose the number of
subpulses as

N=gqg-1. Eq. (6.50)

1. Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Doppler Ambi-
guity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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Figure 6.19. Frequency assignment for a burst of N subpulses. (a) SFW (stepped
LFM); (b) Costas code of length Nc = 10.

Define y as the primitive root of ¢ . A primitive root of ¢ (an odd prime number) is defined as
v such that the powers v, v, v, ..., yqfl modulo ¢ generate every integer from 1 to ¢ — 1.

In the first method, for an N x N matrix, label the rows and columns, respectively, as

i=0,1,2..,(q-2)

) Eq. (6.51
j= 132,3,,(‘]_1) ( )
Place a dot in the location (7, ) corresponding to f; if and only if
i= (y)/ (modulo q). Eq. (6.52)

In the next method, Costas code is first obtained from the logic described above; then by delet-
ing the first row and first column from the matrix a new code is generated. This method pro-
duces a Costas code of length N = ¢ —2.

Define the normalized complex envelope of the Costas signal as

N-1
1
x() = — N "x/(t-It,) Eq. (6.53)
'_Nroz 1 0
1=0
exp (j2mft 0<t<t
x,(1) = ( pU2n/i1) 0 ) Eq. (6.54)
0 elsewhere
Costas showed that the output of the matched filter is
N-1 N-1
1 .
x(tfa) = ]'\',Z exp (j2nlf 1)y Pyt fo) + Z Q) (t—(=q)T0: f2) Eq. (6.55)
1=0 ¢=0

g+l
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D, (. fy) = (TOJI-')W exp(—jB —j2nf,1) , Il <, Eq. (6.56)
T O

a = n(f;—/f, —f) (vt Eq. (6.57)

B= n(](l*fq —fo(te+ll). Eq. (6.58)

Three-dimensional plots of the ambiguity function of Costas signals show the near thumb-
tack response of the ambiguity function. All side-lobes, except for a few around the origin,
have amplitude 1/N. Few sidelobes close to the origin have amplitude 2/N, which is typical
of Costas codes. The compression ratio of a Costas code is approximately N .

6.5. Ambiguity Plots for Discrete Coded Waveforms

Plots of the ambiguity function for a given code and the corresponding cuts along zero delay
and zero Doppler provide a strong indication about the code’s characteristics in range and Dop-
pler. Earlier, it was stated that the goodness of a given code is measured by its range and Dop-
pler resolution characteristics. Therefore, plotting the ambiguity function of a given code is a
key part of the design and analysis of radar waveforms. Unfortunately, some of the formulas
for the ambiguity function are rather complicated and fairly difficult to code by the nonexpert
programmer. In this section, a numerical technique for plotting the ambiguity function of any
code is presented. This technique takes advantage of the computation power of MATLAB by
exploiting one of the properties of the ambiguity function. Three-dimensional plots are built
successively from cuts of the ambiguity function as different Doppler mismatches.

For this purpose, consider the ambiguity function property given in Eq. (5.8) and repeated
here as Eq. (6.59)

It 2 _ . 3 —ianfr . |2
2w = | [ xy-roe ™ ar Eq. (659)

where X(f) is the Fourier transform of the signal x(7) . Using Eq. (6.59), one can compute the
ambiguity function by first computing the FT of the signal under consideration, delaying it by
some value f;, and then taking the inverse FT. When the signal under consideration is a dis-
crete coded waveform then the Fast Fourier transform is utilized. From this one can compute
plots of the ambiguity function using the following technique:

1. Determine the code U under consideration. Note that U may have complex values in
accordance with the class of code being considered.

2. Extend the length of the code to the next power of 2 by zero padding (see Chapter 2 for
details on interpolation).

3. For better display utilize an FFT whose size is 8 times or higher than the power integer of 2

computed in step 2.

Compute the FFT of the extended sequence.

Generate vectors of frequency mismatches and delay cuts.

Calculate the value of X(f—f,) using vector notation.

N o a ks

Compute and store the vector resulting from the point-by-point multiplication

X*NX(f~1) -
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8. Compute the inverse FFT of the product in step 7 for each delay value and store in a two-
dimensional (2-D) array.

9. Plot the amplitude square of the resulting 2-D array to generate the ambiguity plot for the
specific code under consideration.

An implementation of this algorithm is in MATLAB function “ambiguity code.m,” listed in
Appendix 6-A.

Problems
6.1. Show that the zero Doppler cut for the ambiguity function of an arbitrary phase coded
pulse with a pulse width 7, is given by  Y(f) = |sinc(f1:p)|2 .

6.2. Consider the 7-bit Barker code, designated by the sequence x(n). (a) Compute and
plot the autocorrelation of this code. (b) A radar uses binary phase-coded pulses of the form
s(t) = r(t)cos(2nfyt), where r(t) = x(0), for 0<t<At,

r(t) = x(n), for nAt<t<(n+1)At, and r(¢t) = 0, for t>7At. Assume Af = 0.5us.
(a) Give an expression for the autocorrelation of the signal s(¢), and for the output of the
matched filter when the input is s(#— 10Az). (b) Compute the time bandwidth product, the
increase in the peak SNR, and the compression ratio.

6.3. (a) Perform the discrete convolution between the sequence R,; defined in Eq. (6.31),
and the transversal filter impulse response; and (b) sketch the corresponding transversal filter
output.

6.4 . Repeat the previous problem for N = 13 and & = 6. Use a Barker code of length 13.
6.5. Develop a Barker code of length 35. Consider both B,s and By, .

6.6. The smallest positive primitive root of ¢ = 11 is y = 2; for N = 10, generate the
corresponding Costas matrix.

6.7. Compute the discrete autocorrelation for an F'|, Frank code.
6.8. Generate a Frank code of length 8, i.e., Fy.

6.9. Using the MATLAB program developed in this chapter, plot the matched filter output
for a 3-, 4-, and 5-bit Barker code.
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Appendix 6-A: Chapter 6 MATLAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Figb_2.m” Listing

% Use to reproduce Fig 6.2 of textbook

cle

close all

clear all

uinput =[100001000010000100001];
[ambig] = ambiguity code(uinput),

freq = linspace(-6,6, size(ambig,1));

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FF'T purposes
n = ceil(log(samp_num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot figuiures chap6 ( ambig, delay, freq)

MATLAB Function “plot_figures chap6.m” Listing

function plot_figures chap6( ambig, delay, freq)
% This function is used to plot figures in Chapter 6
%

mesh(delay,freq,(ambig ./ max(max(ambig))))

view (-30,55);

axis tight

viabel('frequency’)

xlabel('delay’)

zlabel('ambiguity function’)

JSigure(2)

Nhalf = (size(ambig,1)-1)/2
plot(delay,ambig(Nhalf+1,:)/(max(max(ambig))),'k’)
xlabel('delay’)

ylabel('normalized ambiguity cut for f=0')

grid

axis tight

JSigure(3)

contour(delay,freq,(ambig ./ max(max(ambig))))
axis tight
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vilabel('frequency’)
xlabel('delay')
grid

end

MATLAB Program “Figé 3.m” Listing

% Use to reproduce Fig 6.3 of textbook

cle

close all

clear all
uinput=[100101000001001000001];
[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig,1));

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot_figures _chap6 ( ambig, delay, freq)

MATLAB Program “Fig6 8 10.m” Listing

% Use to reproduce Figs 6.8 trhough 6.10 of textbook
cle

close all

clear all

% Figure 8

winput=[11111-1-111-11-11];

[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig,1));

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot_figures _chap6 ( ambig, delay, freq)

%

winput =[111-1-11-1];

[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig, 1)),

N = size(uinput,2);
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% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FF'T purposes
n = ceil(log(samp _num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot figures chap6 ( ambig, delay, freq)

%
winput=[111-11111-11-1-1-11-1111-11];
[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig,1));

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot_figures _chap6 ( ambig, delay, freq)

MATLAB Program “Fig6 15 16.m” Listing

% Use to reproduce Figs 6.15 and 6.16 of textbook
cle

close all

clear all

% Figure 15

winput =[1-1-1-1-11-11-1111-111-1-1-111111-1-111-11-1-1};
[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig,1));

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot_figures _chap6 ( ambig, delay, freq)

%Figure 6.16

winput =[1-1-1-11111-11-111-1-1];
[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig,1));
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N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FF'T purposes
n = ceil(log(samp_num) / log(2)),

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot figures chap6 ( ambig, delay, freq)

MATLAB Program “Fig6_17.m” Listing

% Use to reproduce Figs 6.17 text

cle

close all

clear all

winput=[11111i-1-i1-11-11-i-1i];

[ambig] = ambiguity code(uinput);

freq = linspace(-6,6, size(ambig, 1)),

N = size(uinput,2);

% set code length to tau

tau = N;

code = uinput;

samp_num = size(code,2) * 10;

% compute the next power integer of 2 for FF'T purposes
n = ceil(log(samp_num) / log(2));

% compute FFT size, nfft

nfft = 2"n;

% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);

plot figures chap6 ( ambig, delay, freq)

MATLAB Function “ambiguity code.m” Listing
function [ambig] = ambiguity code(uinput)
% Compute and plot the ambiguity function for any give code u
% Compute the ambiguity function by utilizing the FFT
% through combining multiple range cuts
N = size(uinput,2);
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
n = ceil(log(samp _num) / log(2)),
nfft = 2"n;
u(l:nfft) = 0;
j=0
for index = 1:10:samp_num
index;
j =it
u(index:index+10-1) = code(j);
end
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% set-up the array v

Vv =u

delay = linspace(0,5*tau,nfft);

freq del = 12/ tau /100;

Jj=0;

vift = ffi(v.nift);

for freq = -6/tau:freq del:6/tau;
j=j+l;

exf = exp(sqrt(-1) * 2. * pi * freq .* delay);

u_times_exf=u.* exf;

ufft = fft(u_times_exf,nfft);

prod = ufft . * conj(vfft);

ambig(j.:) = ffishift(abs(iffi(prod))));

end



Part II - Radar Signals and Signal Processing

Chapter 7

Pulse Compression

Range resolution for a given radar can be significantly improved by using very short pulses.
Unfortunately, utilizing short pulses decreases the average transmitted power, hence reducing
the SNR. Since the average transmitted power is directly linked to the receiver SNR, it is often
desirable to increase the pulse width (i.e., the average transmitted power) while simultaneously
maintaining adequate range resolution. This can be made possible by using pulse compression
techniques and the matched filter receiver. Pulse compression allows us to achieve the average
transmitted power of a relatively long pulse, while obtaining the range resolution correspond-
ing to a short pulse. In this chapter, two pulse compression techniques are discussed. The first
technique is known as correlation processing, which is predominantly used for narrowband
and some medium-band radar operations. The second technique is called stretch processing
and is normally used for extremely wideband radar operations.

7.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the matched filter
receiver bandwidth be denoted as B . Then the noise power available within the matched filter
bandwidth is given by

N, = 2B(n,/2) Eq. (7.1)

where the factor of two is used to account for both negative and positive frequency bands, as
illustrated in Fig. 7.1. The average input signal power over a pulse duration T, is

S, =E./1,. Eq. (7.2)
E . is the signal energy. Consequently, the matched filter input SNR is given by
(SNR); = §;/N; = E/(n,B1,) . Eq. (7.3)
The output peak instantaneous SNR to the input SNR ratio, at a specific time ¢, is

SNR(t) _ 2B
(SNR), .

Eq. (7.4)

The quantity Bt is referred to as the time-bandwidth product for a given waveform or its cor-
responding matched filter. The factor Bt, by which the output SNR is increased over that at
the input is called the matched filter gain, or simply the compression gain.

237
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In general, the time-bandwidth product of an unmodulated pulse approaches unity. The time-
bandwidth product of a pulse can be made much greater than unity by using frequency or phase
modulation. If the radar receiver transfer function is perfectly matched to that of the input
waveform, then the compression gain is equal to Bt . Clearly, the compression gain becomes
smaller than Bt as the spectrum of the matched filter deviates from that of the input signal.

A noise PSD
B B
No/2
frequency
Lo
0
Figure 7.1. Input noise power spectrum.
7.2. Radar Equation with Pulse Compression
The radar equation for a pulsed radar can be written as
2,2
Pt,G" A
SNR = % Eq. (7.5)
(4n) R kT FL

where P, is peak power, T, is pulse width, G is antenna gain, ¢ is target RCS, R is range, k
is Boltzmann’s constant, 7, is 290 degrees Kelvin, F is noise figure, and L is total radar
losses.

Pulse compression radars transmit relatively long pulses (with modulation) and process the
radar echo into very short pulses (compressed). One can view the transmitted pulse as being
composed of a series of very short subpulses (duty is 100%), where the width of each subpulse
is equal to the desired compressed pulse width. Denote the compressed pulse width as ...
Thus, for an individual subpulse, Eq. (7.5) can be written as

2,2
Pt .G\
(SNR), = % ) Eq. (7.6)
© (4n)’ RkT,FL
The SNR for the uncompressed pulse is then derived from Eq. (7.6) as
2,2
Pty = G\
SNR = (%o = 1pTe) ° Eq. (7.7)

(4n)’R*KT,FL

where np is the number of subpulses. Equation (7.7) is denoted as the radar equation with
pulse compression.

Observation of Eq. (7.5) and Eq. (7.7) indicates the following (note that both equations have
the same form): For a given set of radar parameters, and as long as the transmitted pulse
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remains unchanged, the SNR is also unchanged regardless of the signal bandwidth. More pre-
cisely, when pulse compression is used, the detection range is maintained while the range reso-
lution is drastically improved by keeping the pulse width unchanged and by increasing the
bandwidth. Remember that range resolution is proportional to the inverse of the signal band-
width:

AR = ¢/2B. Eq. (7.8)

7.3. Basic Principle of Pulse Compression

For this purpose, consider a long pulse with LFM modulation and assume a matched filter
receiver. The output of the matched filter (along the delay axis, i.e., range) is an order of mag-
nitude narrower than that at its input. More precisely, the matched filter output is compressed
by a factor § = Brt,, where 1, is the pulse width and B is the bandwidth. Thus, by using long
pulses and wideband LFM modulation, large compression ratios can be achieved.

Figure 7.2 illustrates the ideal LFM pulse compression process. Part (a) shows the envelope
of a pulse, part (b) shows the frequency modulation (in this case it is an upchirp LFM) with
bandwidth B = f, —f; . Part (c) shows the matched filter time-delay characteristic while part
(d) shows the compressed pulse envelope. Finally, part (¢) shows the matched filter input/out-
put waveforms.

(2)

- »
. =

To

(b)

At

(©

MK o)

—— | Matched Filter -— g

At—t,

Figure 7.2. Ideal LFM pulse compression.
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Figure 7.3 illustrates the advantage of pulse compression using a more realistic LFM wave-
form. In this example, two targets with RCS, ¢, = 1m® and G, = 05 m? , are detected. The
two targets are not separated enough in time to be resolved. Figure 7.3a shows the composite
echo signal from those targets. Clearly, the target returns overlap, and thus they are not
resolved. However, after pulse compression, the two pulses are completely separated and are
resolved as two distinct targets. In fact, when using LFM, returns from neighboring targets are
resolved as long as they are separated in time by T, the compressed pulse width.

Uncompressed echo

Relative delay in seconds A"

Figure 7.3a. Composite echo signal for two unresolved targets.

Gompressed echo

[s] 5 10 15 20 25 a0 25 A0 45 80
Target relative position in meters

Figure 7.3b. Composite echo signal corresponding to Fig. 7.3a after
pulse compression.
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7.4. Correlation Processor

Radar operations (search, track, etc.) are usually carried out over a specified range window,
referred to as the receive window, and defined by the difference between the radar maximum
and minimum range. Returns from all targets within the receive window are collected and
passed through matched filter circuitry to perform pulse compression. One implementation of
such analog processors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often performed digi-
tally using the FFT. This digital implementation is called Fast Convolution Processing (FCP)
and can be implemented at the base band. The fast convolution process is illustrated in Fig. 7.4.

Since the matched filter is a linear time invariant system, its output can be described mathe-
matically by the convolution between its input and its impulse response,

y(6)= x(1) @ h(2) Eq. (7.9)

where x(#) is the input signal, 4(¢) is the matched filter impulse response (replica), and the
( ® ) operator symbolically represents convolution. From the Fourier transform properties,

FFT{x(£)® h(t)} = X(f)- H(f), Eq. (7.10)

and when both signals are sampled properly, the compressed signal y(¢) can be computed
from

y = FFT '{X - H} Eq. (7.11)

where FFT ' is the inverse FFT. When using pulse compression, it is desirable to use modula-
tion schemes that can accomplish a maximum pulse compression ratio and can significantly
reduce the sidelobe levels of the compressed waveform. For the LFM case, the first sidelobe is
approximately 13.4dB below the main peak, and for most radar applications this may not be
sufficient. In practice, high sidelobe levels are not preferable because noise and/or jammers
located at the sidelobes may interfere with target returns in the main lobe.

Weighting functions (windows) can be used on the compressed pulse spectrum in order to
reduce the sidelobe levels. The cost associated with such an approach is a loss in the main lobe
resolution, and a reduction in the peak value (i.e., loss in the SNR). Weighting the time domain
transmitted or received signal instead of the compressed pulse spectrum will theoretically
achieve the same goal. However, this approach is rarely used, since amplitude modulating the
transmitted waveform introduces extra burdens on the transmitter.

input matched filter
signal FFT »| multiplier »| Inv. FFT —ou‘rp;ut
x(1) X() T X-H (1)
H(f)

FFT of

stored

reelica

Figure 7.4. Computing the matched filter output using an FFT.
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Consider a radar system that utilizes a correlation processor receiver (i.e., matched filter).
The receive window in meters is defined by

Riee = Ry =Ryin Eq. (7.12)

where R,,,. and R,,;,, respectively, define the maximum and minimum range over which the
radar performs detection. Typically, R,,. is limited to the extent of the target complex. The
normalized complex transmitted signal has the form

x(f) = exp(jZﬂ:(fOH- %tzD 0<t<t,. Eq. (7.13)

T, 1s the pulse width, p = B/1,, and B is the bandwidth.

The radar echo signal is similar to the transmitted one with the exception of a time delay and
an amplitude change that correspond to the target RCS. Consider a target at range R, . The
echo received by the radar from this target is

x(f) = alexp(j2n(f0(t—t1)+%(t—t1)2)) Eq. (7.14)

where a, is proportional to target RCS, antenna gain, and range attenuation. The time delay
t, is given by

t, = 2R,/c. Eq. (7.15)

The first step of the processing consists of removing the frequency f, . This is accomplished
by mixing x,(7) with a reference signal whose phase is 27f;¢ . The phase of the resultant sig-
nal, after lowpass filtering, is then given by

b(1) = 2n( Ao, + Br- 1)) Eq. (7.16)

and the instantaneous frequency is

_ 1 d _ .\ _ B[, 2R
fi(t) = 7 aq)(t) u(t—1,) To(t —C-) Eq. (7.17)
The quadrature components are
(n(t)] _ (cosq)(t)) Eq. (7.18)
xp(1) sing(r) o

Sampling the quadrature components is performed next. The number of samples, N, must be
chosen so that foldover (ambiguity) in the spectrum is avoided. For this purpose, the sampling
frequency, f; (based on the Nyquist sampling rate), must be

f.>2B Eq. (7.19)
and the sampling interval is

At<1/2B. Eq. (7.20)
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Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the frequency resolution
of the FFT is

Af = 1/1,. Eq. (7.21)

The minimum required number of samples is

1
N=——=—. Eq. (7.22
AA: At a.(7.22)
Equating Eqs. (7.20) and (7.22) yields
N>2Br,. Eq. (7.23)

Consequently, a total of 2Bt real samples, or Bt, complex samples, is sufficient to com-
pletely describe an LFM waveform of duration t, and bandwidth B . For example, an LFM
signal of duration t, =20 ps and bandwidth B = 5 MHz requires 200 real samples to
determine the input signal (100 samples for the [-channel and 100 samples for the Q-channel).

For better implementation of the FFT, N is extended to the next power of two, by zero pad-
ding. Thus, the total number of samples, for some positive integer 7 , is

Nppp = 2"2N. Eq. (7.24)

The final steps of the FCP processing include (1) taking the FFT of the sampled sequence, (2)
multiplying the frequency domain sequence of the signal with the FFT of the matched filter
impulse response, and (3) performing the inverse FFT of the composite frequency domain
sequence in order to generate the time domain compressed pulse. Of course, weighting,
antenna gain, and range attenuation compensation must also be performed.

Assume that M targets at ranges R, , R, , and so forth are within the receive window. From
superposition, the phase of the down-converted signal is

M

o=y 2n(ff0tm + %(tf tm)z) . Eq. (7.25)

m=1

The times {¢,, = (2R,,/c); m=1,2,...,M} represent the two-way time delays, where ¢,
coincides with the start of the receive window.

MATLAB Function “matched_filter.m”

The function “matched_filterm” performs fast convolution processing. The user can access
this function either by a MATLAB function call or by executing the MATLAB program
“matched_filter _gui.m,” which utilizes a MATLAB-based GUI. The work space associated
with this program is shown in Fig. 7.5. The outputs for this function include plots of the com-
pressed and uncompressed signals as well as the replica used in the pulse compression process.
This function utilizes the function “power_integer 2.m.” Its syntax is as follows:

[y] = matched_filter(nscat, rrec, taup, b, scat_range, scat_rcs, win)
where
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Symbol Description Units Status
nscat number of point scatterers within the received window none input
rrec receive window size m input
taup uncompressed pulse width seconds input
b chirp bandwidth Hz input
scat_range | scatterers’ relative range (within the receive window) m input
scat_rcs vector of scatterers’ RCS m? input
win 0 = no window, 1 = Hamming; 2 = Kaiser with none input
parameter pi; and 3 = Chebychev sidelobes at -60dB
¥y normalized compressed output volts output
Initialization Start Quit
number of
scatterers
receive window
in meters
uncompressed pulse 0.005¢-3
width
bandwidth 100e6
in Hz
scatterers relative range [ISNUEIRI
in meters
scatterers RCS (112
inm"2
winid 2
0.1,2, 0r3
Figure 7.5. GUI workspace associated with the function “matched filter gui.m.”
As an example, consider the case where
# Tar- Riec Pulse Band- Targets Target Window
gets Width width Range RCS Type
3 200m | 0.005ms | 100e6 Hz | [3070120] m | 1] []m? Hamming
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Note that the compressed pulsed range resolution is AR = 1.5m . Figure 7.6a and Fig. 7.6b
shows the real part and the amplitude spectrum of the replica used for this example. Figure
7.7a shows the uncompressed echo, while Fig. 7.7b shows the compressed MF output. Note
that the scatterer amplitude attenuation is also a function of the inverse of the scatterer’s range
within the receive window. Figure 7.7c is similar to Fig. 7.7b except in this case the first and
second scatterers are less than 1.5 meters apart (they are at 70 and 71 meters).

Real (part) of replica

i
u]
Time in seconds . 10-3

Figure 7.6a. Real part of replica.

Bl : : : : :

Spectrurn of replica

Frequency in Hz it

Figure 7.6b. Replica spectrum.
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Figure 7.7a. Uncompressed echo signal. Scatterers are not resolved.
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Figure 7.7b. Compressed signal of three scatterers. All scatterers are
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Figure 7.7c. Compressed signal of three scatterers. The two scatterers at
70m and 71m are not resolved.

7.5. Stretch Processor

Stretch processing, also known as active correlation, is normally used to process extremely
high-bandwidth LFM waveforms. This processing technique consists of the following steps:
First, the radar returns are mixed with a replica (reference signal) of the transmitted waveform.
This is followed by Low Pass Filtering (LPF) and coherent detection. Next, Analog-to-Digital
(A/D) conversion is performed; and finally, a bank of Narrow-Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch processing effec-
tively converts time delay into frequency. All returns from the same range bin produce the
same constant frequency.

7.5.1. Single LFM Pulse

Figure 7.8 shows a block diagram for a stretch processing receiver. The reference signal is
an LFM waveform that has the same LFM slope as the transmitted LFM signal. It exists over
the duration of the radar “receive-window,” which is computed from the difference between
the radar maximum and minimum range. Denote the start frequency of the reference chirp as
f,.. Consider the case when the radar receives returns from a few close (in time or range) tar-
gets, as illustrated in Fig. 7.8. Mixing with the reference signal and performing lowpass filter-
ing are effectively equivalent to subtracting the return frequency chirp from the reference
signal. Thus, the LPF output consists of constant tones corresponding to the targets’ positions.
The normalized transmitted signal can be expressed by
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T,..=receive window

%—) 1 2 3
%
g
<
LO I frequency
Y coherent -
4'4% mixerl—»‘ LPF detection »-| sidelobe FFT
& A/D weighting
"—
frequency fl = fr _f 0
, return 3 — _
f{é | return 2 f2 fr fO + ”’At
. fl | return 1

f3 = f.—Jfot2pAt

I | ¢ time

Figure 7.8. Stretch processing block diagram.

x(t) = cos(2n(fot+ %tZD 0<r<1, Eq. (7.26)

where @ = B/1 is the LFM coefficient and f, is the chirp start frequency. Assume a point
scatterer at range R, . The signal received by the radar is

x(t) = acos[zn(fo(z—tlﬁ%(r—tl)zﬂ Eq. (7.27)

where a is proportional to target RCS, antenna gain, and range attenuation. The time delay ¢,
is

t, = 2R,/c. Eq. (7.28)
The reference signal is
X,of() = 2cos(2n(f,.z + %zz)) 0<(<T,,. Eq. (7.29)
The receive window in seconds is
T, = 2Ry = Riin) _ 2Rree ) Eq. (7.30)
c c

It is customary to let f, = f, . The output of the mixer is the product of the received and refer-
ence signals. After lowpass filtering, the signal is
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xo(t) = acos(2mfyt, +2mpt t— Tcu(tl)z) . Eq. (7.31)

Substituting Eq. (7.28) into Eq. (7.31) and collecting terms yields

4nBR, 2R, 2nBR,
t) = cos ( )t+—(2 — ﬂ, Eq. (7.32
w0 = a cos| (=) i+ = om - T 0.(7:32)

and since 1, » 2R,/ ¢, Eq. (7.32) is approximated by

; (4TEBR1)Z+4TER1 Ea. (733
xo(t)=a cos[ o " fo] q. (7.33)
The instantaneous frequency is
1 d (41'CBR1 4nR, ) 2BR,
X = e =+ = A7
Jinst = 57 4 t o)) ; Eq. (7.34)

€Ty c Ty

which clearly indicates that target range is proportional to the instantaneous frequency. There-
fore, proper sampling of the LPF output and taking the FFT of the sampled sequence lead to
the following conclusion: a peak at some frequency f, indicates the presence of a target at
range

R, = ficty/2B. Eq. (7.35)

Assume M close targets at ranges R, R,, and so forth (R, <R, < ... <R,,). From super-
position, the total signal is

M

(=3 am(t)cos[ZTc(fO(t—tm) + %‘(r—tm)zﬂ Eq. (7.36)

m=1
where {a,,(t); m=1,2,...,M} are proportional to the targets’ cross sections, antenna gain,
and range. The times {¢,, = (2R,,/c); m =1, 2, ..., M} represent the two-way time delays,
where ¢, coincides with the start of the receive window. Using Eq. (7.32), the overall signal at
the output of the LPF can then be described by

M

4nBR 2R 2nBR
x (1) = Zamcos[( — ’”)H "1(2nf07 = ’"ﬂ. Eq. (7.37)

0 c CcTy

m=1

Hence, target returns appear as constant frequency tones that can be resolved using the FFT.
Consequently, determining the proper sampling rate and FFT size is very critical. The rest of
this section presents a methodology for computing the proper FFT parameters required for
stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is 7, and the
chirp bandwidth is B. Since stretch processing is normally used in extreme bandwidth cases
(i.e., very large B), the receive window over which radar returns will be processed is typically
limited to from a few meters to possibly less than 100 meters. The compressed pulse range res-
olution is computed from Eq. (7.8). Declare the FFT size to be N and its frequency resolution
to be Af. The frequency resolution can be computed using the following procedure: Consider
two adjacent point scatterers at ranges R, and R,. The minimum frequency separation, Af,
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between those scatterers so that they are resolved can be computed from Eq. (7.34). More pre-
cisely,

2B 2B
Af=hH-f = P

O(szRl) = ;;(—)AR. Eq. (7.38)
Substituting Eq. (7.8) into Eq. (7.38) yields
Af == — =~ Eq. (7.39)

The maximum frequency resolvable by the FFT is limited to the region £NAf/2 . Thus, the
maximum resolvable frequency is

M> 2B(Rmax*Rmin) _ 2BR;«@C

> = = Eq. (7.40)
Using Egs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yields
N>2BT,,.. Eq. (7.41)
For better implementation of the FFT, choose an FFT of size
Nepp2N = 2" Eq. (7.42)
where 7 is a nonzero positive integer. The sampling interval is then given by
Af = LN T, = S Eq. (7.43)
TNppr " MNppr

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of the stretch processing
described in this section. The user can access this function either by a MATLAB function call
or by executing the MATLAB program “stretch_gui.m,” which utilizes MATLAB-based GUI
and is shown in Fig. 7.9.

The outputs of this function are the complex array y containing pulsed compressed signal
samples. The syntax for this function is as follows:

[y] = stretch (nscat, taup, f0, b, scat_range, rrec, scat_rcs, win)

where
Symbol Description Units Status
nscat number of point scatterers within the receive window none input
taup uncompressed pulse width seconds input
10 chirp start frequency Hz input
b chirp bandwidth Hz input
scat_range vector of scatterers’ range m input
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number of
scatterers

receive window
in meters

uncompressed pulse
width

bandwidth
in Hz

scatterers relative range 254

in meters

scatterers RCS
in m"2

[111]

winid
0.1.2 or3

center frequency 1e9

REEEEKE

in HA

Figure 7.9. GUI workspace associated with the function “stretch _gui.m.’

Symbol Description Units Status
rrec range receive window m input
scat_rcs vector of scatterers’ RCS m? input
win 0 = no window, 1 = Hamming,; 2 = Kaiser with none input
parameter pi; 3 = Chebychev sidelobes at -60dB
y compressed output volts output
Initialization | Start | Quit

i

As an example, consider the case where

# Targets 3
Pulse Width 10ms
Center Frequency 5.6GHz
Bandwidth IGHz
Receive Window 30m
Relative Target’s Range [2510]m
Target’s RCS [1, 1, 2]m?
Window 2 (Kaiser)
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Note that the compressed pulse range resolution, without using a window, is AR = 0.15m .
Figure 7.10a and Fig. 7.10b, respectively, show the uncompressed and compressed echo sig-
nals corresponding to this example. Figure 7.11 is similar to Fig. 7.10 except in this case two of

the scatterers are less than 15 cm apart (i.e., unresolved targets at R, ,;,,iv. = [3,3.1]m).

Uncompressed echo

A I I I I I I I I I
0 0001 0002 0003 0004 0005 0006 0007 0008 0009 001
Relative delay in seconds

Figure 7.10a. Uncompressed echo signal. Three targets are unresolved.
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Compressed echo
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Relative range in meters

Figure 7.10b. Compressed echo signal. Three targets are
resolved.
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Figure 7.11a. Uncompressed echo signal. Three targets.
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Figure 7.11b. Compressed echo signal of three targets; the two targets at
3m and 3.1m are not resolved.




254 Radar Systems Analysis and Design Using MAT] LAB®

7.5.2. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) are used in extremely wideband radar applications
where a very large time-bandwidth product is required. Generation of SFW was discussed in
Chapter 5. For this purpose, consider an LFM signal whose bandwidth is B; and whose pulse
width is T, and refer to it as the primary LFM. Divide this long pulse into N subpulses, each
of width 7, to generate a sequence of pulses whose PRI is denoted by 7. It follows that
T, = (n—1)T. Define the beginning frequency for each subpulse as that value measured from
the primary LFM at the leading edge of each subpulse, as illustrated in Fig. 7.12. That is

fi=foTiAf; i=0,N~1 Eq. (7.44)

where Af is the frequency step from one subpulse to another. The set of n subpulses is often
referred to as a burst. Each subpulse can have its own LFM modulation. To this end, assume
that each subpulse is of width t, and bandwidth B, then the LFM slope of each pulse is

n==. Eq. (7.45)

The SEFW operation and processing involve the following steps:

1. A series of N narrowband LFM pulses is transmitted. The chirp beginning frequency from
pulse to pulse is stepped by a fixed frequency step Af, as defined in Eq. (7.44). Each group
of N pulses is referred to as a burst.

2. The LFM slope (quadratic phase term) is first removed from the received signal, as
described in Fig. 7.10. The reference slope must be equal to the combined primary LFM
and single subpulse slopes. Thus, the received signal is reduced to a series of subpulses.

3. These subpulses are then sampled at a rate that coincides with the center of each pulse,
sampling rate equivalent to (1/7).

4. The quadrature components for each burst are collected and stored.

. I
primary o ' :
LFM slope ™ Af |
| ! IB
[
[
|
W I
2l _f() Y
To
- = T >

Figure 7.12. Example of stepped frequency waveform burst; N = 5.
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5. Spectral weighting (to reduce the range sidelobe levels) is applied to the quadrature compo-
nents. Corrections for target velocity, phase, and amplitude variations are applied.

6. The IDFT of the weighted quadrature components of each burst is calculated to synthesize
a range profile for that burst. The process is repeated for M bursts to obtain consecutive
high resolution range profiles.

Within a burst, the transmitted waveform for the i step can be described as

jan(fie+ B
Rec,(f) +57) iTStSiT—H:O)
elsewhere

Eq. (7.46)

x;(t) = A/T)

0
where C; are constants. The received signal from a target located at range R, is then given by
J2a{f= ) -5 =8|
x,(t) = C/e , iTHA()<t<iT+t,+ A1) Eq. (7.47)
where C," are constant and the round-trip delay A(?) is given by

R,—vt
At = L — Eq. (7.48
(1) 7 q. (7.48)

where ¢ is the speed of light and v is the target radial velocity.
In order to remove the quadratic phase term, mixing is first performed with the reference sig-

nal given by

_/2n(f,t+ fzftz)

yi(t) = e ; iT<t<iT+r1,. Eq. (7.49)

Next lowpass filtering is performed to extract the quadrature components. More precisely, the
quadrature components are given by

(xl(t)j (Aicosd)i(t)j
= , Eq. (7.50)
xo(1) A;sing,(1)
where A, are constants, and
2R
o,(1) = 2 f( 0 2”) Eq. (7.51)
c
where now f; = Af. For each pulse, the quadrature components are then sampled at
T, 2R,
t; = iT+ZL+2, Eq. (7.52)
2 c

T, is the time delay associated with the range that corresponds to the start of the range profile.

The quadrature components can then be expressed in complex form as

X = 4", Eq. (7.53)
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Equation (7.53) represents samples of the target reflectivity, due to a single burst, in the fre-
quency domain. This information can then be transformed into a series of range delay reflec-
tivity (i.e., range profile) values by using the IDFT. It follows that

ZX ex (2“1’) S 0<I<N-1. Eq. (7.54)
i=0

Substituting Eq. (7.51) and Eq. (7.53) into (7.54) and collecting terms yields

N-1

1 (288 _ g (2R 2013
NZA" exp{] 2nf; - : Eq. (7.55)
i=0

By normalizing with respect to N and by assuming that 4, = 1 and that the target is station-
ary (i.e., v = 0), then Eq. (7.55) can be written as

N-1
_ 2ty 2Ry
H, Zexp{]( ~ 2 f } Eq. (7.56)
i=0
Using f; = iAf inside Eq. (7.56) yields

N-1

2ni( 2NRyAf
H, = Zexp{jw(— CO +l)}, Eq. (7.57)
i=0
which can be simplified to
_ sinnC ( -1 27[(;)
H, il exp 1—2 N Eq. (7.58)
sin—=2
N
where
—2NR,A
¢ = —°f+l_ Eq. (7.59)
c
Finally, the synthesized range profile is
|H) = [$inng) Eq. (7.60)
. TCC
sin —=
N

Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth. Assuming an
SFW with N steps and step size Af,, the corresponding range resolution is equal to

AR = £ Eq. (7.61
INAS 9. (7.61)
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Range ambiguity associated with an SFW can be determined by examining the phase term
that corresponds to a point scatterer located at range R, . More precisely,

2R,
o.(1) = 275/’,-7. Eq. (7.62)
It follows that
an(f. . —f)R 4R
A _ dnlien SRy _ dnRy Eq. (7.63)
Af (fi1 1) ¢ c
or equivalently,
_Adc
R, Afan Eq. (7.64)

It is clear from Eq. (7.64) that range ambiguity exists for A¢ = A + 2N . Therefore,

_AQ+2Nm ¢
Af  4rn

= Ry+ N(—c—) Eq. (7.65)

Ry 2AP

and the unambiguous range window is

C

R = —. Eq. (7.66
YN q. (7.66)

A range profile synthesized using a particular SFW represents the relative range reflectivity
for all scatterers within the unambiguous range window, with respect to the absolute range that
corresponds to the burst time delay. Additionally, if a specific target extent is larger than R,
then all scatterers falling outside the unambiguous range window will fold over and appear in
the synthesized profile. This foldover problem is identical to the spectral foldover that occurs
when using a Fast Fourier Transform (FFT) to resolve certain signal frequency contents. For
example, consider an FFT with frequency resolution Af = 50Hz and size NFFT = 64 . In
this case, this FFT can resolve frequency tones between —1600Hz and 1600Hz. When this
FFT is used to resolve the frequency content of a sine-wave tone equal to 1800Hz, foldover
occurs and a spectral line at the fourth FFT bin (i.e., 200Hz ) appears. Therefore, in order to
avoid foldover in the synthesized range profile, the frequency step Af must be

Af<c/2E Eq. (7.67)
where E is the target extent in meters.
Additionally, the pulse width must be large enough to contain the whole target extent. Thus,
Af<1/7, Eq. (7.68)
and in practice,
Af<1/21,. Eq. (7.69)

This is necessary in order to reduce the amount of contamination of the synthesized range pro-
file caused by the clutter surrounding the target under consideration.
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MATLAB Function “SFW.m”

The function “SFW.m” computes and plots the range profile for a specific SFW. This func-
tion utilizes an Inverse Fast Fourier Transform (IFFT) of a size equal to twice the number of
steps. A Hamming window of the same size is also assumed. The syntax is as follows:

[hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, r0, winid)

where
Symbol Description Units Status
nscat number of scatterers that make up the target none input
scat_range vector containing range to individual scatterers m input
scat_res vector containing RCS of individual scatterers mz input
n number of steps none input
deltaf frequency step Hz input
prf PRF of SFW Hz input
v target velocity m/sec input
r0 profile starting range meters input
winid number>(0 for Hamming window none input
number < 0 for no window
hl range profile dB output
For example, assume that the range profile starts at R, = 900m and that
# Targets Pulse Width N Af T v
3 100 sec 64 10MHz | 100KHz 0.0
In this case,
3x10° 3x10°

AR = = 0.235m,and R, = = 15m.

2% 64 x 10 x 10° 2%x10x 10°

Thus, scatterers that are more than 0.235 meters apart will appear as distinct peaks in the syn-
thesized range profile. Assume two cases; in the first case, [scat_range] = [908, 910, 912]
meters, and in the second case, [scat_range] = [908, 910, 910.2] meters. In both cases, let
[scat_rcs] = [100, 10, 1] meters squared. Figure 7.13 shows the synthesized range profiles
generated using the function “SWFEm” and the first case when the Hamming window is not
used. Figure 7.14 is similar to Fig. 7.13, except in this case the Hamming window is used. Fig-
ure 7.15 shows the synthesized range profile that corresponds to the second case (Hamming
window is used). Note that all three scatterers were resolved in Fig. 7.13 and Fig. 7.14; how-
ever, the last two scatterers are not resolved in Fig. 7.15, because they are separated by less
than AR.

Next, consider another case where [scat_range] = [908, 912, 916] meters. Figure 7.16
shows the corresponding range profile. In this case, foldover occurs, and the last scatterer
appears at the lower portion of the synthesized range profile. Also, consider the case where
[scat_range] = [908, 910, 923] meters. Figure 7.17 shows the corresponding range profile. In
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this case, ambiguity is associated with the first and third scatterers since they are separated by
15m. Both appear at the same range bin.
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Figure 7.13. Synthetic range profile for three resolved scatterers. No window.
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Figure 7.14. Synthetic range profile for three scatterers. Hamming window.
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Figure 7.15. Synthetic range profile for three scatterers. Two are unresolved.
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Figure 7.17. Synthetic range profile for three scatterers. The first and third
scatterers appear in the same FFT bin.

7.5.3. Effect of Target Velocity

The range profile defined in Eq. (7.60) is obtained by assuming that the target under exami-
nation is stationary. The effect of target velocity on the synthesized range profile can be deter-
mined by starting with Eq. (7.55) and assuming that v # 0 . Performing similar analysis as that
of the stationary target case yields a range profile given by

ZA exp{]zll’_ 2 f[z_R_ZV( T+ +2Rﬂ}. Eq. (7.70)
c 2 ¢

The additional phase term present in Eq. (7.70) distorts the synthesized range profile. In order
to illustrate this distortion, consider the SFW described in the previous section, and assume the
three scatterers of the first case. Also, assume that v = 200m /s . Figure 7.18 shows the syn-
thesized range profile for this case. Comparisons of Figs. 7.13 and 7.18 clearly show the distor-
tion effects caused by the uncompensated target velocity. Figure 7.19 is similar to Fig. 7.18
except in this case, v = —200m/s. Note in either case, the targets have moved from their
expected positions (to the left or right) by Disp = 2 xn xv/PRF (1.28 m).

This distortion can be eliminated by multiplying the complex received data at each pulse by
the phase term

Do = exp( j27’l:f|: (zTJr E’Jr Zf)D ) Eq. (7.71)

v and R are, respectively, estimates of the target velocity and range.
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Figure 7.18. Illustration of range profile distortion due to target velocity.
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Figure 7.19. Illustration of range profile distortion due to target velocity.
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This process of modifying the phase of the quadrature components is often referred to as
“phase rotation.” In practice, when good estimates of v and R are not available, then the
effects of target velocity are reduced by using frequency hopping between the consecutive
pulses within the SFW. In this case, the frequency of each individual pulse is chosen according
to a predetermined code. Waveforms of this type are often called Frequency Coded Waveforms
(FCW). Costas waveforms or signals are a good example of this type of waveform.

Figure 7.20 shows a synthesized range profile for a moving target whose RCS is ¢ = 10m*
and v = 10m/s. The initial target range is at R = 912m . All other parameters are as before.
This figure can be reproduced using the following MATLAB code.

---------------------------

T
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Figure 7.20. Synthesized range profile for a moving target (4 seconds long).

Problems
7.1. Starting with Eq. (7.17) derive Eq. (7.21).

7.2. Using MATLAB, generate a baseband (complex-valued) LFM waveform having a
time duration of 10us and bandwidth of 200M Hz using a sampling step of 1ns . Plot the real
part, imaginary part, and the modulus of the FFT of this waveform.

7.3 . Compress the waveform developed in Problem 7.3 using the “xcorr” function. Gener-
ate the magnitude-squared signal using the MATLAB command “y. *conj(y).” Plot the result-
ing compressed pulse and verify that the half power points correspond to the inverse
bandwidth (i.e., Sns, or 5 samples).

7.4 . The Synthetic Aperture Radar (SAR) ambiguity function can be approximated by
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_ sinkxsinNry
~ x sin ry

where x is the variable for the range-compressed axis, y is the azimuth-compressed axis, and k&
and r are related to the SAR range and azimuth resolutions. (a) Generate the x-axis from —40m
to 40m using a sampling interval of 0.1m . Assume k& = 1. Plot the magnitude of this range
profile. (b) Generate the y-axis from —40m to 40m using a sampling interval of 0.1m.
Assume » = 0.00015 and N = 1000 . Plot the magnitude of this azimuth profile. (c) Use the
findings in (a) and (b) to generate the two-dimensional ambiguity surface plot.

7.5. Derive Eq. (7.60).

7.6. Reproduce Fig. 7.19 for v = 10, 50, 100,150,250 m/s. Compare your outputs.
What are your conclusions?

7.7. Using MATLAB, generate the waterfall plot corresponding to Fig.7.20.
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Appendix 7-A: Chapter 7 MATLAB Code Listings

The MATLAB code provided in this chapter was designed as an academic standalone tool
and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig7 3.m” Listing

% use this program to reproduce Fig. 7.3 of text

cle

clear all

close all

nscat = 2; %two point scatterers

taup = 10e-6; % 100 microsecond uncompressed pulse

b = 50.0e6; % 50 MHz bandwidth

rrec = 50 ; % 50 meter processing window

scat_range = [15 25] ; % scatterers are 15 and 25 meters into window
scat res =[12]; % RCS 1 m"2 and 2m”2

winid = 0; %no window used

[v] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid),

MATLAB Function “matched_filter.m” Listing

function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
% This function implements the matched filter processor

%% Inputs
% nscat == number of point scatterers within the received window
% rrec == receive window size in m
% taup == uncompressed pulse width in seconds
%b == chirp bandwidth in Hz
% scat_range == scatterers’ relative range in m
% scat_rcs == vector of scatterers’ RCS in meter squared
% win == () = no window; 1 = Hamming, 2 = Kaiser with parameter pi ...
and 3 = Chebychev side-lobes at -60dB
%% Output
%y == normalized compressed output
%
eps = 1.0e-16;

% time bandwidth product

time_B_product = b * taup;

if(time_B_product <5 )
fprintf("FFFFFRFEREREEE Time Bandwidth product is TOO SMALL ***¥¥¥%¥kxk4%%1)
fprintf("\n Change b and or taup')
return

end

%

% speed of light

c=3.e8;
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% number of samples
n = fix(5 * taup *b);
% initialize input, output, and replica vectors
x(nscat,1:n) = 0.;
y(l:n) =0.;
replica(l:n) = 0.;
% determine proper window
if( winid == 0.)
win(l:n) = 1.;
end
if(winid == 1.);
win = hamming(n)';
end
if( winid == 2.)
win = kaiser(n,pi)';
end
if(winid == 3.)
win = chebwin(n,60)';
end
% check to ensure that scatterers are within recieve window
index = find(scat_range > rrec);
if (index ~= 0)
'Error. Receive window is too large, or scatterers fall outside window'
return
end
%
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t."2);
figure(1)
subplot(2,1,1)
plot(treal(replica))
viabel('Real (part) of replica’)
xlabel('Time in seconds’)
grid
subplot(2,1,2)
sampling_interval = taup / n;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit, freqlimit,n);
plot(freq, ffishifi(abs(fft(replica)))),
viabel("Spectrum of replica’)
xlabel('Frequency in Hz')
grid
forj = 1:1:nscat
range = scat_range(j) ;
x(j,:) = scat_rcs(j) . * exp(i * pi * (b/taup) . * (t +(2*range/c))."2) ;
y=xG.)
end
%
figure(2)
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y=y.*win;

plot(treal(y),’k’)

xlabel ('Relative delay in seconds’)
viabel ("Uncompressed echo')

grid

out =xcorr(replica, y);

out = out ./ n;

s =taup *c/2;

Npoints = ceil(rrec * n /s);

dist =linspace(0, rrec, Npoints);

delr = ¢/2/b;
Sigure(3)

plot(dist,abs(out(n:n+Npoints-1)),'k’)
xlabel ('Target relative position in meters’')
viabel ("Compressed echo’)

grid

return

MATLAB Function “power_integer 2.m” Listing
function n = power _integer 2 (x)
m=20.
forj=1:30
m=m-+1.;
delta = x - 2.”"m;
if(delta < 0.)
n=m;
return
else
end
end
return

MATLAB Function “stretch.m” Listing

function [y] = stretch(nscat, taup, f0, b, scat range, rrec, scat_rcs, winid)
% This function implements the stretch processor

%% Inputs
% nscat == number of point scatterers within the receive window
% taup == uncompressed pulse width in seconds
% f0 == chirp start frequency in Hz
%b == chirp bandwidth in Hz
% scat_range == vector of scatterers’ range in m
% rrec == range receive window in m
% scat_rcs == vector of scatterers’ RCS in m"2
% win == () = no window; 1 = Hamming; 2 = Kaiser with parameter pi ...
3 = Chebychev side-lobes at -60dB
%% Outputs
%y == compressed output in volts
%

eps = 1.0e-16;
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htau = taup / 2.;
c=3.e8;
trec = 2. *rrec/c;
n = fix(2. * trec *b);
m = power_integer 2(n);
nfft = 2."m;
x(nscat,1:n) = 0.;
y(l:n) =0.;
if( winid == 0.)
win(l:n) = 1.;
win =win';
else
iffwinid == 1.)
win = hamming(n),
else
if( winid == 2.)
win = kaiser(n,pi),
else
if(winid == 3.)
win = chebwin(n,60);
end
end
end
end
deltar =c/2./b;
max_rrec = deltar * nffi / 2.;
maxr = max(scat_range),
if(rrec > max_rrec | maxr >= rrec )

'Error. Receive window is too large, or scatterers fall outside window'

return
end
t = linspace(0,taup,n);
forj =1:1:nscat

range = scat_range(j); % + rmin,

psil =4. *pi *range *f0/c - ...

4. * pi * b *range * range / ¢ / ¢/ taup;
psi2 = (2%4. * pi * b * range /¢ / taup) . * t;

x(j,:) = scat_rcs(j) . * exp(i * psil +i.% psi2);

Y=y +x(,2);
end
%
figure(1)
plot(treal(y),’k’")
xlabel ('Relative delay in seconds’)
vilabel ("Uncompressed echo’)
grid
ywin =y . *win';
yift = fit(vn) ./ n;
out= fftshifi(abs(yfft)),
figure(2)
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delinc = rrec/ n;

%dist = linspace(-delinc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out,'k")

xlabel ('Relative range in meters’)

viabel ("Compressed echo’)

axis auto

grid

MATLAB Function “SFW.m?” Listing

function [hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote, winid)

% Range or Time domain Profile

% Range_Profile returns the Range or Time domain plot of a simulated

% HRR SFWF returning from a predetermined number of targets with a predetermined
% RCS for each target.

%% Inputs
% nscat == number of scatterers that make up the target
% scat_range == vector containing range to individual scatterers m
% scat_rcs == vector containing RCS of individual scatterers m"2
% n == number of steps
% deltaf == frequency step in Hz
% prf == PRF of SFW in Hz
% v == target velocity m/sec
% r0 == profile starting range im m
% winid == number>(0 for Hamming window,; umber < 0 no window
%% Output
% hl == range profile dB
%

c=3.0e8; % speed of light (m/s)
num_pulses = n;
SNR_dB = 40;
nfft = 256;
% carrier_freq = 9.5¢9; %Hz (10GHz)
freq_step = deltaf; %Hz (10MHz)
V =v; % radial velocity (m/s) -- (+)=towards radar (-)=away
PRI =1./prf; % (s)
if (nfft > 2*num_pulses)
num_pulses = nfft/2;
else
end
%
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase tgt = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses, 1),
10 freq domain = zeros((2*num_pulses),1);
Weighted 1 freq domain = zeros((num_pulses),1);
Weighted Q freq domain = zeros((num_pulses),1);
Weighted 1Q time domain = zeros((2*num_pulses),1);
Weighted 1Q freq domain = zeros((2*num_pulses),1);
abs Weighted IQ time_domain = zeros((2*num_pulses),1);
dB _abs Weighted 10 time domain = zeros((2*num_pulses),1);
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taur = 2. * rnote / ¢;
for jscat = I:nscat
ii=0;
fori = 1:num_pulses
ii = ii+1;
rec_freq = ((i-1)*freq_step);
Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * cos(-2*pi*rec_freq*...
(2. %scat_range(jscat)/c - 2*(V/c)*((i-1) *PRI + taur/2 + 2*scat_range(jscat)/c)));
Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat)) *sin(-2*pi*rec_freq*...
(2*scat_range(jscat)/c - 2*(V/c)*((i-1) *PRI + taur/2 + 2*scat_range(jscat)/c)));
end
end
if(winid >= ()
window(1:num_pulses) = hamming(num_pulses);
else
window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted 1 freq domain(1:num_pulses) = Inphase(1:num_pulses).* window';
Weighted Q freq domain(l:num_pulses) = Quadrature(1:num_pulses).* window';
Weighted 10 freq domain(1:num_pulses)= Weighted I freq domain + ...
Weighted Q freq domain*j;
Weighted 1Q freq domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted 1Q time domain = (iffi(Weighted 1Q freq domain));
abs Weighted IQ time domain = (abs(Weighted 1Q time domain));
dB _abs Weighted 1Q time_domain =
20.0*logl0(abs_Weighted 1Q time _domain)+SNR_dB;
% calculate the unambiguous range window size
Ru = ¢ /2/deltaf;
hl =dB _abs Weighted 1Q time_domain,
numb = 2*num_pulses,
delx_meter = Ru / numb;
xmeter = 0.:delx_meter:Ru-delx_meter,
plot(xmeter, dB_abs Weighted IQ time domain,’k’)
xlabel ('Relative distance in meters’)
vlabel ('Range profile in dB')
grid

MATLAB Program “Fig7 20.m” Listing

% Use this program to reproduce Fig 7.20 of text
cle;

clear all;

close all;

nscat = 1;
scat_range = 912;
scat_res = 10;
n=64;

deltaf = 10e6;
prf=10e3;
v=10;

rnote = 900,
winid = 1;
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count = 0;
for time = 0:.05:3
count = count +1;
hl = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote, winid);
array(count,:) = transpose(hl),
hi(1:end) = 0;
scat_range = scat range -2 *n *v/prf;
end
Jigure (1)
numb = 2*256,% this number matches that used in hrr_profile.
delx_meter = 15 / numb;
xmeter = 0:delx_meter:15-delx _meter,
imagesc(xmeter, 0:0.05:4,array)
vilabel ('Time in seconds')
xlabel('Relative distance in meters')
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Part III - Special Radar Considerations

Chapter 8

Radar Wave Propagation

8.1. The Earth’s Impact on the Radar Equation

So far in this book, all analysis presented implicitly assumed that the radar electromagnetic
waves travel as if they were in free space. Simply put, all analysis presented did not account
for the effects of the earth’s atmosphere nor the effects of the earth’s surface. Despite the fact
that “free space analysis” may be adequate to provide a general understanding of radar sys-
tems, it is only an approximation. In order to accurately predict radar performance, one must
modify free space analysis to include the effects of the earth and its atmosphere. These modifi-
cations should account for ground reflections from the surface of the earth, diffraction of elec-
tromagnetic waves, bending or refraction of radar waves due to the earth’s atmosphere,
Doppler errors, rotation of the polarization plane, time delays, dispersion effects, and attenua-
tion or absorption of radar energy by the gases constituting the atmosphere.

The earth’s impact on the radar equation manifests itself by introducing an additional power
term in the radar equation. This term is referred to as the pattern propagation factor and is
symbolically denoted by F,. The propagation factor can actually introduce constructive as
well as destructive interference onto the SNR depending on the radar frequency and the geom-
etry under consideration. In general, the pattern propagation factor is defined as

F,= |E/E,| Eq. (8.1)
where E is the electric field in the medium and E, is the free space electric field. In this case,
the radar equation is now given by

PG’V 4

SNR = .
(4n)’kT,BFLR* *

Eq. (8.2)

8.2. Earth’s Atmosphere

The earth’s atmosphere compromises several layers, as illustrated in Fig. 8.1. The first layer,
which extends in altitude to about 30Km, is known as the troposphere. Electromagnetic waves
refract (bend downward) as they travel in the troposphere. The troposphere refractive effect is
related to its dielectric constant, which is a function of the pressure, temperature, water vapor,
and gaseous content. Additionally, due to gases and water vapor in the atmosphere, radar
energy suffers a loss. This loss is known as the atmospheric attenuation. Atmospheric attenua-

275
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tion increases significantly in the presence of rain, fog, dust, and clouds. The region above the
troposphere (altitude from 30 to 85Km) behaves like free space, and thus little refraction
occurs in this region. This region is known as the interference zone.

The ionosphere extends from about 85Km to about 1000Km. It has very low gas density
compared to the troposphere. It contains a significant amount of ionized free electrons. The
ionization is primarily caused by the sun’s ultraviolet and X-rays. This presence of free elec-
trons in the ionosphere affects electromagnetic wave propagation in different ways. These
effects include refraction, absorption, noise emission, and polarization rotation. The degree of
degradation depends heavily on the frequency of the incident waves. For example, frequen-
cies lower than about 4 to 6MHz are completely reflected from the lower region of the iono-
sphere. Frequencies higher than 30MHz may penetrate the ionosphere with some level of
attenuation. In general, as the frequency is increased, most of the ionosphere’s effects become
less prominent. The region below the horizon, close to the earth’s surface, is called the diffrac-
tion region. Diffraction is a term used to describe the bending of radar waves around physical
objects. In this region, two types of diffraction are common.

In free space, electromagnetic waves travel in straight lines. However, in the presence of the
earth’s atmosphere, they bend (refract), as illustrated in Fig. 8.2. Refraction is a term used to
describe the deviation of radar wave propagation from straight lines. The deviation from
straight line propagation is caused by the variation of the index of refraction. The index of
refraction is defined as

n=c/v Eq. (8.3)
where ¢ is the velocity of electromagnetic waves in free space and v is the wave group veloc-
ity in the medium. In the troposphere, the index of refraction decreases uniformly with altitude,
while in the ionosphere the index of refraction is minimum at the level of maximum electron
density. Alternatively, the interference zone acts like free space and in it the index of refraction
is unity.

earth surface

diffraction

diffraction zone

zone

Figure 8.1. Earth’s atmosphere geometry.
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refracted ray path

free space ray path

horizon

earth’s surface

Figure 8.2. Bending of radio waves due to the variation in the
atmosphere index of refraction.

In order to effectively study the effects of the atmosphere on the propagation of radar waves,
it is necessary to have accurate knowledge of the height variation of the index of refraction in
the troposphere and the ionosphere. The index of refraction is a function of the geographic
location on the earth, weather, time of day or night, and the season of the year. Therefore, ana-
lyzing the atmospheric propagation effects under all parametric conditions becomes an over-
whelming task. Typically, this problem is simplified by analyzing atmospheric models that are
representative of an average of atmospheric conditions.

In most applications, including radars, one can assume a well-mixed atmosphere condition,
where the index of refraction decreases in a smooth monotonic fashion with height. The rate of
change of the earth’s index of refraction n with altitude % is normally referred to as the refrac-
tivity gradient, dn/dh . As a result of the negative rate of change in dn/dh, electromagnetic
waves travel at slightly higher velocities in the upper troposphere than in the lower part. As a
result of this, waves traveling horizontally in the troposphere gradually bend downward. In
general, since the rate of change in the refractivity index is very slight, waves do not curve
downward appreciably unless they travel very long distances through the atmosphere.

Refraction affects radar waves in two different ways depending on height. For targets that
have altitudes typically above 100 meters, the effect of refraction is illustrated in Fig. 8.3. In
this case, refraction imposes limitations on the radar’s capability to measure target position,
and introduces an error in measuring the elevation angle. In a well-mixed atmosphere and very
low altitudes (less than 100m), the refractivity gradient close to the earth’s surface is almost
constant. However, temperature changes and humidity lapses close to the earth’s surface may
cause serious changes in the refractivity profile. When the refractivity index becomes large
enough, electromagnetic waves bend around the curve of the earth. Consequently, the radar’s
range to the horizon is extended. This phenomenon is called ducting, and is illustrated in Fig.
8.4. Ducting can be serious over the sea surface, particularly during a hot summer.

8.3. Atmospheric Models

The amount of bending electromagnetic waves experience due to refraction has a lot to do
with the medium propagation index of refraction », defined in Eq. (8.3). Because the index of
refraction is not constant as one rises in altitude, it is necessary to analyze the formulas for the
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index of refraction as a function of height or altitude. Over the last several decades, this topic
has been a subject of study by many scientists and physicists; thus, open source references on
the subject are abundant in the literature. However, due to differences in notation used as well
as the application being studied, it is rather difficult to sift through all available information in
a timely and productive manner, particularly for the non-experts in the field. In this chapter, the
subject is analyzed in the context of radar wave propagation in the atmosphere. In order to sim-
plify the presentation of the theory, the index of refraction is first analyzed in the troposphere,
then the ionosphere.

‘i';-:.'? apparent
,’ " target location

refracted
radar wave

/

true target
location

angular
error

J§ to center
of earth

Figure 8.3. Refraction high-altitude effect on electromagnetic waves.

straight line

/ radar waves

refracted
radar waves

Figure 8.4. Refraction low-altitude effect on electromagnetic waves.
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8.3.1. Index of Refraction in the Troposphere

As mentioned earlier, the index of refraction is a function of water vapor, air temperature,
and air pressure in the medium, which all vary as a function of height. Because the rate of
change of the index of refraction as a function of height is so small, it is very common to intro-
duce a new quantity referred to as refractivity N, where

N=m-1)1x10°, Eq. (8.4)

Using this notation, refractivity in the troposphere is given by

N = KI(P+
T

K,P
T

W) Eq. (8.5)

where T is the air temperature of the medium in degrees Kelvin, P is the total air pressure in
millibars, P, is the partial pressure of water vapor in millibars, and K, K, are constants. The
first term of Eq. (8.5) (i.e., (K,P)/T) applies to all frequencies, while the second term (i.e.,
(K \K,P,)/ T’ ) is applicable to radio frequencies only. Experts in the field differ on the exact
values for K, K, based on their relevant applications. However, for most radar applications
K, can be assumed to be 77.6° Kelvin/millibar and K, is 4810° Kelvin. Therefore, Eq. (8.5)
can now be written as,

N

4810P,,
= —7—7—'§(P+ ”). Eq. (8.6)

T

The lowest values of N occur in dry areas where both P and P,, are low. In the United States,
the surface value of N, denoted by Ny> varies between 285 and 345 in the winter, and from
275 to 385 in the summer. Note that Eq. (8.6) is valid for heights up to 4 < 50Km .

If the values for T', P, and P,, are known everywhere and at all times, then N can be com-
puted everywhere. However, knowing these variables everywhere and at all times is a very
daunting task. Therefore, approximations are made for N, where the assumption that pressure
and water vapor tend to decrease with height in a well-mixed atmosphere is taken into consid-
eration. On average, the refractivity will decrease exponentially from N, in accordance with
the following relation,

N = Nge " Eq. (8.7)

where £ is the altitude in Km and ¢, is a constant (in Km'' ) related to refractivity by

d
U

e Eq. (8.8)
0

In general, ¢, can be computed from Eq. (8.7) using two different altitudes, for example,
N| 1Km
C, = fln(—-—]-\-]-;)-—-) . Eqg. (8.9)

The International Telecommunication Union (ITU) has established that for an average atmo-
sphere, N, = 315 and ¢, = 0.1360Km ", while in the United States these average values are

givenby Ny, = 313 and ¢, = 0.1439Km ' . Table 8.1 lists a few values for these variables.
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Table 8.1. Published Values for the Parameters in Eq. (8.7).

N, ¢, (hin Km) ¢, (hinfee)
200 0.1184 3,609 x 10
250 0.1256 3.820 % 10
301 0.1396 4256 % 10
313 0.1439 4385 x 10
350 0.1593 4857 x 10
400 0.1867 5601 x 10°°
450 0.2233 6.805 x 10

8.3.2. Index of Refraction in the lonosphere

Unlike the troposphere, refraction in the ionosphere occurs because of the high electron den-
sity (ionization) inside the ionosphere and not due to water vapor or other variables. The aver-
age electron density as a function of height is given by the Chapman function as

l—z—e"
2
Po = Pax” € Eq. (8.10)
where p, is the electron density in electrons per cubic meters, p,,,, is the maximum electron
density along the propagation path, and z is the normalized altitude or normalized height. The
normalized height is given by

n Eq. (8.11)

where £, is the height of maximum electron density and the height scale  is given by

_ AT
mg
where & is Boltzmann’s constant, 7 is the temperature in degrees Kelvin, m is the mean

molecular mass of an air particle, and g is the gravitational constant. Table 8.2 shows some
representative values for H, £, and the corresponding values for p,, . .

H Eq. (8.12)

Table 8.2. Representative Values for /7, s, and p,,,. .

h,,—Km H-Km Pmax—electrorz/cm3
100 10 15 10°
200 3 3.0 % 10°
300 70 12,5 % 10°
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Electrons in the ionosphere travel in spiral paths along the earth’s magnetic field lines at an
angular rate @, given by

o’ = P€ Eq. (8.13)
7 meg,

where Q is the charge of an electron (1.6022 x 10719Columbs) and g, is the permittivity of
free space (8.8542 x 10 *Columbs/m ). The index of refraction is given by

n= |1 f(%’)z Eq. (8.14)

where ® = 27f is the radar wave frequency in radians and f is the frequency in hertz. Substi-
tuting Eq. (813) into Eq. (8.14) and collecting terms yields

/ 80.6 40.3
n= |l1- fzpezl fzpe. Eq. (8.15)

Note that Eq. (8.15) is valid for 2> 50Km and the refractivity is given by
40.3p, % 10°

fZ

8.3.3. Mathematical Model for Computing Refraction

N=~ Eq. (8.16)

Consider the geometry shown in Fig 8.5. The different variables shown in this figure are
defined as follows: R is the range to the target in free space, R, is the actual refracted range to
the target, 7, is the earth’s radius and is equal to 6375 Km, r is the distance from the center of
earth to the target, / is the target height above the earth’s surface, B, is the elevation angle of
the free space range ray, P, is the elevation angle of the actual refracted range ray, 3 is the tar-
get elevation angle, the rest of the variables are as defined in the figure. From the geometry, ds
and dr are related by the relationships

(ds)* = (dr)’ +17(d0)’ Eq. (8.17)
sinf = dr. Eq. (8.18)
ds

Hence,

cosP = /1 - (Z—Qz . Eq. (8.19)

From Eq. (8.3), the time it takes a radar wave to travel from point », to r, is given by
&)
_ 1
t = E.[n dr. Eq. (8.20)
ry

In radar applications, this time represents the time difference between the time it takes the
wave to travel from its source to the target using the refracted and the free space rays. From the
law of sines,



282 Radar Systems Analysis and Design Using MAT] LAB®

refracted ray path

dr

-—

initial ray path )
_____horizontal at target

refracted ray

free space ray

horizontal at radar

earth surface

center of earth

Figure 8.5. Bending of radio waves due to the variation in the atmosphere
index of refraction.

. (T _ ) +h . _ 7o +h .
sm(z + ﬁfj - sinf = B, = acos( sm@) Eq. (8.21)
and the free space range using the law of cosines is given by
R = Jﬁzﬁ(Vo+h)2*2ro(r0+h)cos9. Eq. (8.22)

Clearly the range error due to refraction is the difference between the apparent range R, and
the free space range R, which is defined in Eq. (8.22). More precisely,

SR = R,~R. Eq. (8.23)

Calculating the error in Eq. (8.23) can be a cumbersome task; it requires minimizing the
integral defined in Eq. (8.20) using Fermat’s principle. This process is well documented in the
literature and only the results are shown here. One can easily show (see Problem 8.3) that

2
sinp = /1—(’%:5[30) Eq. (8.24)
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where n, and n are, respectively, the medium indices of refraction at the radar and at the tar-
get. From Eq. (8.20) the apparent range is

R, = Indr. Eq. (8.25)

Substituting Eqgs. (8.18) and (8.24) into Eq. (8.25) and collecting terms yields

I

1 n’rdr
R _ J' Eq. (8.26
a|traposphere norOCOSBO ( nr 2 q. ( )
; e | ]
0 norocosﬁq)
_ 1 I rdr Eq. (8.27)

R, | .
a|mnosphere nOFOCOSBO ( nr )
)
"o norocosﬁo)

Eq. (8.26) is used to calculate R, in the troposphere while Eq. (8.27) is used in the ionosphere.
Recall that Eq. (8.4) should be used for n in Eq. (8.26) while Eq. (8.15) should be used for n
in Eq. (8.27).

8.3.4. Stratified Atmospheric Refraction Model

In this section, an excellent approximation method for calculating the range measurement
errors and the time-delay errors experienced by radar waves due to refraction is presented. This
method is referred to as the stratified atmospheric model, and is capable of producing very
accurate theoretical estimates of the propagation errors. The basic assumption for this
approach is that the atmosphere is stratified into M spherical layers, each is of thickness
{h,; m=1,..,M} and a constant refractive index {n,; m =1,...,M}, as illustrated in
Fig. 8.6. In this figure, B, is the apparent elevation angle and f3,,, is the true elevation angle.
The free space path is denoted by R,;,, while the refracted path comprises the sum of
{R|,R,, ...,R),} . From the figure,

rm:ra+zhj m o= 1527---5M Eq(828)
Jj=1

where 7, is the actual radius of the earth.

Using the law of sines, the angle of incidence o, is given by

sino,;  sin(n/2+P,)
ro r ’

Eq. (8.29)

Using Snell’s law for spherically symmetrical surfaces, the angle f3,,, ; that the ray makes
with the horizon in layer (m+1) is given by

Myl COSP = Ry s 1y (1 1)COS B 4 1) om=0,1,..,M-1. Eq. (8.30)

Consequently,
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index of refraction at
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center of earth

Figure 8.6. Atmosphere stratification.

nr
Bms1y = acos[L cosBmJ am=0,1.. ,M-1. Eq. (8.31)
Bim+ Y (m+ 1)

Recall from Fig. 8.6 that 3, and B, are defined to be one in the same, and so are n, and n, .
From Eq. (8.29), one can write the general expression for the angle of incidence. More pre-
cisely,

-1 _
o, = asin e cosf,, m=1,2 ..M. Eq. (8.32)

Applying the law of sines of the direct path R, yields

rm
Rom

m
B,, = acos sin ZO/ m=1,2,... M Eq. (8.33)
=1

where
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m

Rim = ri+r,2n—2rormcos zej om = 1,2, ..M Eq. (8.34)
V=1
0, = g_gm_am m = 1,2, .., M. Eq. (8.35)

The refraction angle error is measured as the difference between the apparent and true eleva-
tion angles. Thus, it is given by

In this notation, B, = B,; thus, when m = 1, then
R, = Ry; and AB, = 0. Eq. (8.37)

Furthermore, when 3, = 90°,

M
R,y = Z h,, . Eq. (8.38)

m=1

Now, in order to determine the time-delay error due to refraction, refer again to Fig. 8.6. The
time it takes an electromagnetic wave to travel through a given layer, {R,; m =1,2, ..., M},
is defined as {z,; m=1,2, ..., M} where

tw = R,/ v, Eq. (8.39)
and where v, is the phase velocity in the mth layer and is defined by

Vo, = c/n,. Eq. (8.40)

It follows that the total time of travel of the refracted wave in a stratified atmosphere is

M

1
ty = EZ"-’RJ" Eq. (8.41)

Jj=1

The free space travel time of an unrefracted wave is denoted by ¢,,,,
toy = Roy/c. Eq. (8.42)

Therefore, the range error resulting from refraction at the m¢h is 8R,, and is given by

m

SR = Z”’jRj*Rom m=1,2,... M. Eq. (8.43)

m
j=1

By using the law of cosines, one computes R, as

2
m

R, = r(2m71)+r,2n—2rmr(m71)cosem sm = 1,2, ..., M. Eq. (8.44)
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The results stated in Eqgs. (8.41) and (8.43) are valid only in the troposphere. In the iono-
sphere, which is a dispersive medium, the index of refraction is also a function of frequency. In
this case, the group velocity must be used when estimating the range errors of radar measure-
ments. The group velocity is

Vv = nc. Eq. (8.45)
Thus, the total time of travel in the medium is now given by
M
IR,
t.o= = . Eq. (8.46
r=-> " a. (8.46)
Jj=1
Finally, the range error at the mth in the ionosphere is
m
R.
SR, = Z—Z—Rom m = 1,2,.., M. Eq. (8.47)
”/

j=1

MATLAB Function “refraction.m”

The MATLAB function “refraction.m” computes the apparent range, range error, and the
time delay due to refraction. It implements the analysis presented in the previous two sections.
Its syntax is as follows:

[deltaR, Rm, Rt] = refraction(Rmax, el, H, No, Ce, pmax, hm, f)

where

Symbol Description Units Status
Rmax maximum down range Km input
el initial radar ray elevation angle degrees input
No surface refractivity none input
Ce constant K™ input
pmax maximum electron density C input
hm height at which maximum electron density occurs Km input
f radar operating center frequency Hz input
deltaR array of range measurement error Km output
Rm stratified range (apparent range) Km output
Rt time delay incurred sec output

Figure 8.7 shows a plot for the total range error incurred versus range due to refraction at
f = 9.5GHz for a few elevation angles. This figure can be reproduced using MATLAB pro-
gram “Fig8 7.m,” listed in Appendix 8-A.
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Figure 8.7. Refraction range error versus radar-to-target range.

8.4. Four-Third Earth Model

A very common way of dealing with refraction is to replace the actual earth with an imagi-
nary earth whose effective radius is », = kr,, where r is the actual earth radius, and & is

1

k= —m8M8 ——— . Eq. (8.48
1+ ro(dn/dh) a (849)

When the refractivity gradient is assumed to be constant with altitude and is equal to 39 x 107
per meter, then &k = 4/3 . Using an effective earth radius », = (4/3)r, produces what is
known as the four-third earth model. In general, choosing

r, = ro(1+637x 10’3(dn/dh)) Eq. (8.49)

produces a propagation model where waves travel in straight lines. Selecting the correct value
for k depends heavily on the region’s meteorological conditions. At low altitudes (typically
less than 10Km) when using the 4/3 earth model, one can assume that radar waves (beams)
travel in straight lines and do not refract. This is illustrated in Fig. 8.8.

8.4.1. Target Height Equation

Using ray tracing (geometric optics), an integral-relating range-to-target height with the eleva-
tion angle as a parameter can be derived and calculated. However, such computations are com-
plex and numerically intensive. Thus, in practice, radar systems deal with refraction in two
different ways, depending on height. For altitudes higher than 3Km, actual target heights are
estimated from look-up tables or from charts of target height versus range for different eleva-
tion angles.
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radar

refracted beam

unrefracted beam

earth’s surface

solid line ==> actual earth
dotted line ==> 4/3 earth

Figure 8.8. Geometry for 4/3 earth.

Blake! derives the height-finding equation for the 4/3 earth (see Fig. 8.9); it is

h = h,+6076Rsin6® + 0.6625R(cos0)’

where & and 4, are in feet and R is nautical miles.

Eq. (8.50)

The distance to the horizon for a radar located at height /4, can be calculated with the help

of Fig. 8.10. For the right-angle triangle OBA we get

ry, = m/(roJrhr)z*r(Z)

Eqg. (8.51)

where 7, is the distance to the horizon. By expanding Eq. (8.51) and collecting terms, one can

derive the expression for the distance to the horizon as

Finally, since 7, » &, Eq. (8.52) is approximated by

and when refraction is accounted for, Eq. (8.53) becomes

ry = 2rogh,+h. Eq. (8.52)
r,= . J2roh,, Eq. (8.53)
ry= J2r.h,. Eq. (8.54)

1. Blake, L. V., Radar Range-Performance Analysis, Artech House, 1986.
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Figure 8.9. Measuring target height for 4/3 earth.

Figure 8.10. Measuring the distance to the horizon.

8.5. Ground Reflection

When radar waves are reflected from the earth’s surface, they suffer a loss in amplitude and
a change in phase. Three factors that contribute to these changes that are the overall ground
reflection coefficient are the reflection coefficient for a flat surface, the divergence factor due
to earth’s curvature, and the surface roughness.

8.5.1. Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, on the surface dielectric
coefficient, and on the radar grazing angle. The vertical polarization and the horizontal polar-
ization reflection coefficients are
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. 2
r - esiny, — /& —(cosy,)

. Eq. (8.55)
esiny, + [e — (coswg)2
siny_ — .Je — (cos )2

r, = Ve Ve Eq. (8.56)

S}

h
siny, + ,/& — (cosy,)

where v, is the grazing angle (incident angle) and ¢ is the complex dielectric constant of the
surface, and are given by

e =¢—je" = ¢ —j60ho Eq. (8.57)

where A is the wavelength and ¢ the medium conductivity in mhos/meter. Typical values of
¢' and ¢" can be found tabulated in the literature. Tables 8.3 through 8.5 show some typical
values for the electromagnetic properties of soil, lake water, and seawater.

Note that when vy, = 90° one gets

r= oo eodel

Eq. (8.58)
d 1 + /\/E &+ /\/E v
while when the grazing angle is very small (\y, ~ 0), one has
r,=-1=r0, Eq. (8.59)

MATLAB Function “ref _coef-m”

The function “ref coef-m” calculates the horizontal and vertical magnitude and phase
response of the reflection coefficient. The syntax is as follows

[rh,rv] = ref_coef (psi, epsp, epspp)

where

Symbol Description Status

psi grazing angle in degrees (can be a vector or input

a scalar)

epsp g input

epspp g input
rh horizontal reflection coefficient complex vector output
v vertical reflection coefficient complex vector output

Fig. 8.11 shows the corresponding magnitude plots for I', and I',, while Fig. 8.12 shows
the phase plots for seawater at 28°C where €' = 65 and €" = 30.7 at the X-band. The plots
shown in these figures show the general typical behavior of the reflection coefficient. Figures
8.13 and 8.14 show the magnitudes of the horizontal and vertical reflection coefficients as a
function of grazing angle for four soils at 8GHz.
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Table 8.3. Electromagnetic properties of soil.

Moisture content by volume
Frequency 03% 10% 20% 30%
GI'IZ 1] " ! " ! " ! ”
& & & & & & & &
0.3 29 0.071 6.0 0.45 10.5 0.75 16.7 1.2
3.0 29 0.027 6.0 0.40 10.5 1.1 16.7 2.0
8.0 2.8 0.032 5.8 0.87 10.3 2.5 153 4.1
14.0 2.8 0.350 5.6 1.14 94 37 12.6 6.3
24 2.6 0.030 49 1.15 7.7 4.8 9.6 85
Table 8.4. Electromagnetic properties of lake water.
F Temperature
requency S 1ne e
GHz 'T—OC” 7:—10C” T—20C"
£ & € £ P £
0.1 85.9 68.4 83.0 91.8 79.1 115.2
1.0 84.9 15.66 82.5 15.12 78.8 15.84
2.0 82.1 20.7 81.1 16.2 78.1 14.4
3.0 77.9 26.4 78.9 20.6 76.9 16.2
4.0 72.6 31.5 75.9 24.8 75.3 19.4
6.0 61.1 39.0 68.7 33.0 71.0 24.9
8.0 50.3 40.5 60.7 36.0 65.9 29.3
Table 8.5. Electromagnetic properties of sea water.
F Temperature
requency s s — one
GHz 'T—OC” 7:—106:' T—ZO C”
& & & & & &
0.1 77.8 522 75.6 684 72.5 864
1.0 77.0 59.4 75.2 73.8 72.3 90.0
2.0 74.0 41.4 74.0 45.0 71.6 50.4
3.0 71.0 38.4 72.1 38.4 70.5 40.2
4.0 66.5 39.6 69.5 36.9 69.1 36.0
6.0 56.5 42.0 63.2 39.0 65.4 36.0
8.0 47.0 42.8 56.2 40.5 60.8 36.0

Observation of Figs. 8.11 and 8.12 yields the following conclusions: (1) The magnitude of
the reflection coefficient with horizontal polarization is equal to unity at very small grazing
angles and it decreases monotonically as the angle is increased. (2) The magnitude of the verti-
cal polarization has a well-defined minimum. The angle that corresponds to this condition is
called Brewster’s polarization angle. For this reason, airborne radars in the look-down mode
utilize mainly vertical polarization to significantly reduce the terrain bounce reflections. (3)
For horizontal polarization, the phase is almost © ; however, for vertical polarization, the phase
changes to zero around the Brewster’s angle. (4) For very small angles (less than 2°), both
IT';| and |T",| are nearly one; T, and £T", are nearly m. Thus, little difference in the propa-
gation of horizontally or vertically polarized waves exists at low grazing angles.
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8 11 _12.m,” listed

Figures 8.11 and 8.12 can be reproduced using MATLAB program “Fig
in Appendix 8-A. Alternatively, Figs. 8.13 and 8.14 can be reproduced using MATLAB pro-

gram “Fig8 13 14.m,” listed in Appendix 8-A.
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Figure 8.11. Reflection coefficient magnitude.
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Figure 8.12. Reflection coefficient phase.
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The overall reflection coefficient is also affected by the round earth divergence factor, D .

When an electromagnetic wave is incident on a round earth surface, the reflected wave

8.5.2. Divergence
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diverges because of the earth’s curvature. This is illustrated in Fig. 8.15. Due to divergence, the
reflected energy is defocused, and the radar power density is reduced. The divergence factor
can be derived using geometrical considerations.

The divergence factor can be expressed as

D= r, rosiny,
[(2ryry/ cosy,) +rrsiny, (1 +h,/r)(1+h,/r,)

Eq. (8.60)

where all the parameters in Eq. (8.60) are defined in Fig. 8.16. Since the grazing v, is always
small when the divergence D is very large, the following approximation is adequate in almost
most radar cases of interest,

1) 5 Eq. (8.61)

flat earth

N ot
et

Figure 8.15.1llustration of divergence. Solid line: Ray perimeter for
spherical earth. Dashed line: Ray perimeter for flat earth.

)

effective earth
radius is r,

to earth center

Figure 8.16. Definition of variables in Eq. (8.60).
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MATLAB Function “divergence.m”

The MATLAB function “divergence.m” calculates the divergence using Eq. (8.60). The syn-
tax is as follows:

D =divergence (r1, r2, hr, ht, psi)

where

Symbol Description Status

psi grazing angle in degrees (can be vector or scalar) input

rl ground range between radar and specular point in Km input

r2 ground range between specular point and target in Km input

hr radar height in meters input

ht target height in meters input
D divergence output

8.5.3. Rough Surface Reflection

In addition to divergence, surface roughness also affects the reflection coefficient. Surface
roughness is given by
1 2
72(2nh,msmw )

S =e * Eq. (8.62)

where £, is the rms surface height irregularity. Another form for the rough surface reflection
coefficient that is more consistent with experimental results is given by

S, = e Iy(2) Eq. (8.63)

r

2nth, siny )2
z = Z(M) Eq. (8.64)

A

where /, is the modified Bessel function of order zero.

MATLAB Function “surf rough.m”

The MATLAB function “surf rough.m” calculates the surface roughness reflection coeffi-
cient as defined in Eq. (8.62). The syntax is as follows:

Sr = surf _rough (hrms, freq, psi)

where
Symbol Description Status
hrms surface rms roughness value in meters input
freq frequency in Hz input
psi grazing angle in degrees input
Sr surface roughness coefficient output
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Figure 8.17 shows a plot of the rough surface reflection coefficient versus fy/;;.h,,,;siny, . The
solid line uses Eq. (8.62) while the dashed line uses Eq. (8.63). This figure can be reproduced
using MATLAB program “Fig8 17.m,” listed in Appendix 8-A.

8.5.4. Total Reflection Coefficient

In general, rays reflected from rough surfaces undergo changes in phase and amplitude,
which results in the diffused (noncoherent) portion of the reflected signal. Combining the
effects of smooth surface reflection coefficient, divergence, the rough surface reflection coeffi-
cient, one can express the total reflection coefficient I', as

T, =T DS, Eq. (8.65)

where I', ) is the horizontal or vertical smooth surface reflection coefficient, D is diver-
gence, and S, is the rough surface reflection coefficient.

0 20 40 a0 a0 oo 1200 1400 180 180 20O

fMthrmS sin Wg

Figure 8.17. Reflection coefficient as a function /. h,,, SIny, .

8.6. The Pattern Propagation Factor

In general, the pattern propagation factor is a term used to describe the wave propagation
when free space conditions are not met. This factor is defined separately for the transmitting
and receiving paths. The propagation factor also accounts for the radar antenna pattern effects.
The basic definition of the propagation factor is

F, = |E/E,

, Eq. (8.66)

where E is the electric field in the medium and E, is the free space electric field.
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Near the surface of the earth, multipath propagation effects dominate the formation of the
propagation factor. In this section, a general expression for the propagation factor due to mul-
tipath will be developed. In this sense, the propagation factor describes the constructive/
destructive interference of the electromagnetic waves diffracted from the earth’s surface
(which can be either flat or curved). The subsequent sections derive the specific forms of the
propagation factor due to flat and curved earth.

Consider the geometry shown in Fig. 8.18. The radar is located at height 4, . The target is at
range R, and is located at a height /,. The grazing angle is y, . The radar energy emanating
from its antenna will reach the target via two paths: the “direct path” 4B and the “indirect
path” ACB . The lengths of the paths AB and ACB are normally very close to one another,
and thus the difference between the two paths is very small. Denote the direct path as R, the
indirect path as R;, and the difference as AR = R,—R,. It follows that the phase difference
between the two paths is given by

AD = %AR Eq. (8.67)

where A is the radar wavelength.

The indirect signal amplitude arriving at the target is less than the signal amplitude arriving
via the direct path. This is because the antenna gain in the direction of the indirect path is less
than that along the direct path, and because the signal reflected from the earth’s surface at point
C is modified in amplitude and phase in accordance with the earth’s reflection coefficient, I".
The earth reflection coefficient is given by

r=pd’ Eq. (8.68)

where p is less than unity and ¢ describes the phase shift induced on the indirect path signal
due to surface roughness.

flat earth

curved earth

Figure 8.18. Geometry for multipath propagation.
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The direct signal (in volts) arriving at the target via the direct path can be written as

2R

T d

E, =" Eq. (8.69)
where the time harmonic term exp(jo,¢) represents the signal’s time dependency, and the
exponential term exp(j(2n/A)R,) represents the signal spatial phase. The indirect signal at
the target is

oot 7R
P10} i
E =pd® "¢ Eq. (8.70)
where pexp(jo) is the surface reflection coefficient. Therefore, the overall signal arriving at
the target is

E=FE,+E =¢ 1+ pe Eq. (8.71)

gt jz—k—an j(<p + zk-—“(RﬁRd))
e .
Due to reflections from the earth’s surface, the overall signal strength is then modified at the
target by the ratio of the signal strength in the presence of earth to the signal strength at the tar-
get in free space. By using Eqgs. (8.69) and (8.71) into Eq. (8.66) the propagation factor is com-
puted as

F, = Ea | = |1 +pd?™, Eq. (8.72)
E,+E,
which can be rewritten as
— o
F, = it +pé | Eq. (8.73)

where oo = A® + ¢ . Using Euler’s identity (ej * = cosa +jsina ), Eq. (8.73) can be written
as

F, = «/1+p2+2pcosa. Eq. (8.74)

It follows that the signal power at the target is modified by the factor FIZ) . By using reciprocjiwt},
the signal power at the radar is computed by multiplying the radar equation by the factor F .
In the following two sections we will develop exact expressions for the propagation factor for
flat and curved earth.

The propagation factor for free space and no multipath is £, = 1. Denote the radar detec-
tion range in free space (i.e., F,, = 1)as R, . It follows that the detection range in the presence
of the atmosphere and multipath interference is

R F
R=-"r Eq. (8.75)

(L )1/4

where L, is the two-way atmospheric loss at range R . Atmospheric attenuation will be dis-
cussed in a later section. Thus, for the purpose of illustrating the effect of multipath interfer-
ence on the propagation factor, assume that L, = 1. In this case, Eq. (8.75) is modified to

R = RyF,. Eq. (8.76)
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Figure 8.19 shows the general effects of multipath interference on the propagation factor.
Note that, due to the presence of surface reflections, the antenna elevation coverage is trans-
formed into a lobed pattern structure. The lobe widths are directly proportional to A, and
inversely proportional to /,. A target located at a maxima will be detected at twice its free
space range. Alternatively, at other angles, the detection range will be less than that in free
space.

90

Propagation factor

Normalized range R/Ro

Figure 8.19. Vertical lobe structure due to the reflecting surface as a
function of the elevation angle.

8.6.1. Flat Earth

Using the geometry of Fig. 8.18, the direct and indirect paths are computed as

R, = JR*+(h,—0,) Eq. (8.77)
R, = JR*+(h,+h) . Eq. (8.78)

Egs. (8.77) and (8.78) can be approximated using the truncated binomial series expansion as

2
h —h,
R ,~R+ % Eq. (8.79)
(h,+h,)’

This approximation is valid for low grazing angles, where R » h,, h,.. It follows that

2h.h
AR = R,— R~ 1; - Eq. (8.81)
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Substituting Eq. (8.81) into Eq. (8.67) yields the phase difference due to multipath propagation
between the two signals (direct and indirect) arriving at the target. More precisely,

21 47Ththr
AD = —ARx ———. Eq. (8.82
0y R q. (8.82)
At this point, assume a smooth surface with reflection coefficient I' = —1. This assumption

means that waves reflected from the surface suffer no amplitude loss, and that the induced sur-
face phase shift is equal to 180°. Using Eq. (8.67) and Eq. (8.74) along with these assump-
tions yields
F} = 2-2cosA® = 4(sin(AD/2))’. Eq. (8.83)
Substituting Eq. (8.82) into Eq. (8.83) yields
2 . 21th.h 2
F:4( —”) Eq. (8.84
B sin—— q. (8.84)

By using reciprocity, the expression for the propagation factor at the radar is then given by

2mh,h\*
Fy = 16(sin T;Jé ’) . Eq. (8.85)

Fine;‘gy, the signal power at the radar is computed by multiplying the radar equation by the fac-

tor P

242
PG 2k oyt
p =20 16(sin “1; ) .

Eq. (8.86)
(4n)’R*

Since the sine function varies between 0 and 1, the signal power will then vary between 0
and 16 . Therefore, the fourth power relation between signal power and the target range results
in varying the target range from 0 to twice the actual range in free space. In addition to that,
the field strength at the radar will now have holes that correspond to the nulls of the propaga-
tion factor.

The nulls of the propagation factor occur when the sine is equal to zero. More precisely,

by n Eq. (8.87)
R 4=
where n = {0, 1, 2, ... }. The maxima occur at
by +1 Eq. (8.88)
—_ = n . . (0.
WR d

The target heights that produce nulls in the propagation factor are
{h,=n(AR/2h,);n=0,1,2,...}, and the peaks are produced from target heights

{h,=n(AR/4h);n=1,2, ...} . Therefore, due to the presence of surface reflections, the

antenna elevation coverage is transformed into a lobed pattern structure as illustrated by Fig.
8.19. A target located at a maxima will be detected at twice its free space range. Alternatively,
at other angles, the detection range will be less than that in free space. At angles defined by Eq.
(8.87), there would be no measurable target returns.
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For small angles, Eq. (8.86) can be approximated by

4nP,G’o 4
Przw (hh,)", Eq. (8.89)

thus, the received signal power varies as the eighth power of the range instead of the fourth
power. Also, the factor GA is now replaced by G/A .

8.6.2. Spherical Earth

In order to model the effects of multipath propagation on radar performance more accurately,
we need to remove the flat earth condition and account for the earth’s curvature. When consid-
ering round earth, electromagnetic waves travel in curved paths because of the atmospheric
refraction. And as mentioned earlier, the most commonly used approach to mitigating the
effects of atmospheric refraction is to replace the actual earth by an imaginary earth such that
electromagnetic waves travel in straight lines. The effective radius of the imaginary earth is

r, = kr Eq. (8.90)

where k is a constant and r,, is the actual earth radius. Using the geometry in Fig. 8.20, the
direct and indirect path difference is

AR = R, +R,—R,. Eq. (8.91)

o ® earth’s center

Figure 8.20. Geometry associated with multipath propagation over round earth.
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The propagation factor is computed by using AR from Eq. (8.91) in Eq. (8.67) and substituting
the result in Eq. (8.74). To compute (R, , R, , and R;), the following cubic equation must first
be solved for 7, :

27 =3 + (P = 2r,(h, + h))ry +2r b = 0. Eq. (8.92)
The solution is
_r -
= - = Eq. (8.93
1T 5 psing q. (8.93)
where
p = 2 lr (h,+h,)+ r—z Eq. (8.94)
J3 4
. (2r,p(h,—h,)
E = asm(—3) . Eq. (8.95)
Next, we solve for R, , R,, and R,. From Fig. 8.20,
O, =r/1,; O,=1,/1, Eq. (8.96)
o =r/r,. Eq. (8.97)
Using the law of cosines to the triangles ABO and BOC yields
- J 2 2
R, = Jro+(r,+h) =2r,(r,+h,)cosd, Eq. (8.98)
2 2
Ry = fr2+ (ry+ h)>—2r,(r, + h)coso, Eq. (8.99)
Egs. (8.98) and (8.99) can be written in the following simpler forms:
R, = K>+ 4r(r,+ h)(sin(9,/2))" Eq. (8.100)
Ry = JH2+4r,(r,+ h)(sin(4,/2))’ Eq. (8.101)
Using the law of cosines on the triangle AOC yields
n 2
R, - J(h, Ch) A+ )+ h,)(sin(d)le)zD . Eq. (8.102)
Additionally
AV (r ARV R
r = r,acos et hy) +(reth) —Ry . Eq. (8.103)
2(re + hr)(re + ht)

Substituting Eqgs. (8.100) through (8.102) directly into Eq. (8.91) may not be conducive to
numerical accuracy. A more suitable form for the computation of AR is then derived. The
detailed derivation is in Blake (1986). The results are listed below. For better numerical accu-
racy, use the following expression to compute AR :
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_ 4R Ry(siny,)’

AR Eq. (8.104)
R, +R,+R,
where
— . 2rehr+h37R? . (hr Rl)
Y= asin W ~ asin E_QZ . Eq. (8.105)

8.6.3. MATLAB Program “multipath.m”

The MATLAB program “multipath.m” calculates the two-way propagation factor using the
4/3 earth model for spherical earth. It assumes a known free space radar-to-target range. It can
be easily modified to assume a known true spherical earth ground range between the radar and
the target. Additionally, this program generates three types of plots. They are: (1) The propaga-
tion factor as a function of range, (2) the free space relative signal level versus range, and (3)
the relative signal level with multipath effects included. This program uses the equations pre-
sented in the previous few sections.

This program includes the effects of divergence D and the total surface reflection coeffi-
cient I, . Adding the effects of the radar antenna pattern on the signal level is left to the reader
as an exercise. Finally, it can also be easily modified to plot the propagation factor versus tar-
get height at a fixed target range.

Using this program, Fig. 8.21 presents a plot for the propagation factor loss versus range
using f = 3GHz; h, = 30.48m ;and h, = 60.96m . In this case, the target reference range is

at R, = 185.2Km . Divergence effects are not included; neither is the reflection coefficient.
More precisely, D = I', = 1.

Figure 8.22 shows the relative signal level with and without multipath losses. Note that mul-
tipath losses affect the signal level by introducing numerous nulls in the signal level. These
nulls will typically cause the radar to lose track of targets passing through such nulls. Figures
8.23 and 8.24 are similar to Figs. 8.21 and 8.22, except these new figures account for diver-
gence. All plots assume vertical polarization.

8.7. Diffraction

Diffraction is a term used to describe the phenomenon of electromagnetic waves bending
around obstacles. It is of major importance to radar systems operating at very low altitudes.
Hills and ridges diffract radio energy and make it possible to perform detection in regions that
are physically shadowed. In practice, experimental data measurements provide the dominant
source of information available on this phenomenon. Some theoretical analyses of diffraction
are also available. However, in these cases many assumptions are made, and perhaps the most
important assumption is that obstacles are chosen to be perfect conductors.

The problem of propagation over a knife edge on a plane can be described with the help of
Fig. 8.25. The target and radar heights are denoted, respectively, by /, and 4, . The edge height
is &, . Denote the distance by which the radar rays clear (or do not clear) the tip of the edge by
4. As a matter of notation, d is assumed to be positive when the direct rays clear the edge, and
is negative otherwise. Because the ground reflection occurs on both sides of the edge, the prop-
agation factor is composed of four distinct rays, as illustrated in Fig. 8.26.
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Figure 8.26. Four ray formation.

The analysis that led to creating the multipath model described in the previous section
applies only to ground reflections from the intermediate region, as illustrated in Fig. 8.27. The
effects of ground reflection below the radar horizon are governed by another physical phenom-
enon referred to as diffraction. The diffraction model requires calculations of the Airy function
and its roots. For this purpose, the numerical approximation presented in Shatz and Polychro-
nopoulos1 is adopted. This numerical algorithm, described by Shatz and Polychronopoulos, is
very accurate and its implementation using MATLAB is straightforward.

Define the following parameters,
ht
x=2, y=2L = Eq. (8.106)
ho

where £, is the radar altitude, #, is target altitude, R is range to the target, &, and r, are nor-
malizing factors given by

hy = %(rexz/nz)l/3 Eq. (8.107)

1. Shatz, M. P., and Polychronopoulos, G. H., An Algorithm for Evaluation of Radar Propagation in the
Spherical Earth Diffraction Region. /EEE Transactions on Antenna and Propagation, Vol. 38, August
1990, pp. 1249-1252.
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tangent ray to the
radar’s horizon

diffraction region

Figure 8.27. Diffraction region.

2~ 1/3
/%

Fo = (%) . Eq. (8.108)

A is the wavelength and r, is the effective earth radius. Let 4,(uz) denote the Airy function
defined by

0

3
A(u) = }Jcos(% + uq) dq . Eq. (8.109)
0
The general expression for the propagation factor in the diffraction region is equal to

0

F = 2Jn—xz £, (0 expl(€™ Oa,x] Eq. (8.110)

n=1

where (x, y, t) are defined in Eq. (8.106) and
i Eq. (8.111)

where a, is the n' root of the Airy function and 4,’ is the first derivative of the Airy function.
Shatz and Polychronopoulos showed that Eq. (8.110) can be approximated by

0

Z(an+yejn/3):4\i(an+tejn/3)

. 2A/Ec A . Eq. (8.112)
Z dn/3Ai,(an) e/n/3Ai,(an)
n=1
exp[%(ﬁ +j)anx— %(an +yejn/3)3/2 _ é(an N tejn/3)3/2i|
where
2 32
A(u) = A(wye” . S

Shatz and Polychronopoulos showed that the sum in Eq. (8.112) represents accurate compu-
tation of the propagation factor within the diffraction region.
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MATLAB Function “diffraction.m”

The MATLAB function “diffraction.m” implements Eq. (8.112) where the sum is termi-
nated at n < 1500 for accurate computation. It utilizes Shatz’s model to calculate the propaga-
tion factor in the diffraction region. For this purpose, another MATLAB function called
“airyzol.m” was used to compute the roots of the Airy function and the roots of its first deriv-
ative. The syntax for the function “diffraction.m” is as follows

F =diffraction(freq, hr, ht, R, nt);

where
Symbol Description Status
freq radar operating frequency Hz
hr radar height meters
ht target height meters
R range over which to calculate the propagation factor Km
nt number of data point is the series given in Eq. (1.186) none
F propagation factor in diffraction region dB

Figure 8.28 (after Shatz) shows a typical output generated by this program for 4, = 1000m ,
h, = 8000m , and frequency = 167MHz . Figure 8.29 is similar to Fig. 8.28 except in this
case the following parameters are used: /4, = 3000m, A, = 200m , and
frequency = 428 MHz . Figure 8.30 shows a plot for the propagation factor using the same
parameters in Fig. 8.29; however, in this figure, both intermediate and diffraction regions are
shown. These figures can be reproduced using the MATLAB code listed in Appendix 8-A.

frequency = 167 MHz; hr = 8000 m; ht= 1000 m
1D T T T T T T T T T

One way propagation factor in JdB

-7
400 420 440 450 480 500 520 540 560 550 BOO
Range in Km

Figure 8.28. Propagation factor in the diffraction region.
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frequency = 428 MHz, hr = 3000 m; ht = 2000 m
10 T T

One way propagation factor - dB

60
200 250 300 350
Range - l<m

Figure 8.29. Propagation factor in the diffraction region.

frequency = 428 MHz, hr = 3000 m; ht = 2000 m

QUM - Intermediate region H
i : : —mene Diffraction region

Propagation factor in dB
IS
=
T

e
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Fange inkKm

Figure 8.30. Propagation factor.
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8.8. Atmospheric Attenuation

Radar electromagnetic waves travel in free space without suffering any energy loss. How-
ever, due to gases (mainly oxygen) and water vapor present along the radar wave propagation
path, a loss in radar energy occurs. This loss is known as atmospheric attenuation. Most of this
lost radar energy is normally absorbed by gases and water vapor and transformed into heat,
while a small portion of this lost energy is used in molecular transformation of the atmosphere
particles. This section will analyze atmospheric attenuation in the context of most radar appli-
cation within the atmosphere.

8.8.1. Atmospheric Absorption

The atmospheric absorption due to oxygen is given by the Van Vieck! equation as

Yo = 28.809

2
P_v{ [(1.704Pv,)/(JT)] Eq. (8.114)
v2+[

r (1704 x 10"2Pv ) /(DT
[(1.704Pv,)/(JT)]
(vo— V) + [(1.704 x 10"2Pv,) /(JD)T
[(1.704Pv,)/(JT)] }
(vo+v)> +[(1.704 x 10 2Pv,) /(JT)T’

+

+

where v, is the total oxygen absorption in dB/Km ; v is the wave number (reciprocal of the
wavelength) in em’! , Vq 1s the resonance wave number for oxygen and is equal to 2cm71, v,

is a constant related to the non-resonance part of absorption in em’! , V, is a constant related
to the resonance part of absorption in em’! , P is the atmospheric pressure in millibars, and T
is the atmospheric temperature in degrees Kelvin.

Using data derived from his experiments, Van Vleck suggested using equal values for both
v, and v,; more specifically, he recommended using v, = v, = 0.02¢m . However, a
decade later after Van Vleck’s work, Bean and Abbott> using more advanced experimentations
determined more accurate values for both constants. They found that v, = 0.018¢cm™ ' and
v, = 0.05¢m . Nonetheless, for most radar applications one can use Van Vleck’s values

without losing much accuracy. The relationship between v, and v, is rather complicated and
has dependencies on pressure and temperature.

Equation (8.114) can be approximated by (see Problem 8.16)

2
P 1 0.5v,
Yo = 104909 —v { H1+ } Eq. (8.115)
¢ { 2 [1+2.904 x 1092271 V2 22,

where A is the radar wavelength. Note that water vapor absorption is negligible below 3GHz .

1. Van Vleck, J. H., The Absorption of Microwaves by Oxygen, Physical Review, Vol. 71:413, 1947.

2. Bean, B. R., and Abbott, R., Oxygen and Water-Vapor Absorption of Radio Waves in the Atmo-
spheric, J. Appl. Phys. 30:1417, 1959.
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The Van Vleck! equation for water vapor absorption for frequencies over 3GHz is given by

[1.689 x 10 *Pv;/(JT)]
(v, —v)> +[1.689 x 10 2Pvs/(JT)]°
[(1.689 x 10 °Pv3)/(JT)] }+
(v, + V) + [(1 659 x 10 2Pvy) /(DT
73Pw

2
—3pwPV
= 1.012 x 10 T { + Eq. (8.116)

3.471 x 10 [(1689><10 *Pv,)/(JT)]

where all variables are as defined before in Eq. (8.114) except for: vy, is the water vapor
absorptlon in dB/Km, p, is the water vapor density in m ~, v, is a constant equal to
0.742cm” , V5 is a constant related to water vapor resonance at 22.2GHz, and v, is a con-
stant related to water vapor resonance above 22.2GHz. Van Vleck suggested using
vy = v, = O0.lcm B Wthh was later updated by Bean and Abbott to the more accurate val-
ues of at v; = O.lcm and v, = 0. 3em . Equation (8.116) can be approximated by (see

Problem 8.17)

P2
v, = 1.852x3.165 x loﬁp”’/z{ 1 — . Eq.(817)
T3 (1—07427\.) +2.853 x 10 KPT7
+ 1 2.2 1+¥}
(1+07427\,) +2.853 x 10 XPT7 A

The atmospheric temperature for altitudes less than 12Km is given by

T = 288 —6.5h Eq. (8.118)

where T is the temperature in degrees Kelvin and % is the altitude in Km. Assuming that air
pressure at sea level is /015 millibars, then the air pressure in millibars at any altitude for up to
12Km is given by

P = 1015(1 —0.02257h)° > Eq. (8.119)

Using Egs. (8.118) and (8.119), one can construct Table 8.6, which shows some representative
data for air pressure, atmospheric pressure, and their corresponding water vapor density.

Table 8.6. Sample Atmospheric Data.

Water vapor
T - degrees 3
h—Km P - millibars Kelvin density - g/m
0.0 1015.0 288.0 6.18
0.7620 925.86 282.89 4.93
1.5240 843.18 277.79 3.74

1. Van Vleck, J. H., The Absorption of Microwaves by Uncondensed Water Vapor, Physical Review, Vol.
71:425, 1947.
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Table 8.6. Sample Atmospheric Data.

Water vapor
T - degrees 3
h—Km P - millibars Kelvin density - g/m
3.0480 695.73 267.58 2.01
6.0960 463.10 247.16 0.34
9.1440 297.91 226.74 0.05
12.1920 184.04 206.31 <0.01

MATLAB Function “atmo_absorp.m”

The MATLAB function “atmo_absorp.m” implements Eqgs. (8.115) and (8.117). It syntax is

as follows:
[gammaO02, gammaH20] = atmo_absorp (height, Wvd, freq)
where

Symbol Description Units Status

height altitude array Km input

Wvd Water vapor density array o/m"3 input

freq radar frequency Hz input
gammaQ?2 oxygen absorption dB output
gammaH20 water vapor absorption dB output

Figure 8.31 shows the total atmospheric absorption in dB and the attenuation due to oxygen
alone versus range using the data in Table 8.6. This figure can be reproduced using the MAT-
LAB program “Fig8 31.m,” listed in Appendix 8-A.

8.8.2. Atmospheric Attenuation Plots

To compute the total atmospheric attenuation experienced by a radar, one must first compute
the two-way total absorption along the radar wave path, from the radar to the target and back.
Then, the total atmospheric attenuation is computed from the integral of y,,,, = v, *v,, along
the ray path. Clearly, v,,,, is not only a function of pressure, temperature, water vapor, and fre-
quency, but it is also a function of the radar waves path and its initial elevation angle. More
specifically, one would expect the radar wave ray to go through more atmosphere at lower ele-
vation angles, and thus experience more atmospheric attenuation. The total two-way atmo-
spheric attenuation at range R; using the elevation angle  and the wavelength A as
parameters is then given by

R,

Katm(Ri;ﬁa )“) = ZJ.Yatm(Ri;ﬁa 7\') dR

0

Eq. (8.120)

where the factor 2 is used to account for the two-way loss or attenuation. The computation of
Eq. (8.120) is complex. In this book, the computational power of MATLAB is utilized to gen-

erate plots of k,,,, versus range using the algorithm described in the next paragraph.
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Figure 8.31. Atmospheric absorption versus altitude.

In the previous section, atmospheric absorption was computed and plotted versus target
height. To calculate the same absorption versus range, consider the geometry shown in Fig.
8.32. Using the law of sines, one can compute the angle o, then using the law of cosines, one
can compute the range R . The MATLAB function “absorption_range.m” is then used to gen-
erate data for plotting absorption versus range. Finally, the two-way atmospheric attenuation
given in Eq. (8.120) is computed using numerical integration. Simply put, once the plot of
absorption versus range is generated (see Fig. 8.33), the atmospheric attenuation is equal to the

area under the curve.

Using the law of sines,

o = asin(

where the angle 0 is

and from the law of cosines,

R = «/(”3 + (Fo+h)2—2r0(r0+h)cose).

Eq. (8.121)

Eq. (8.122)

Eq. (8.123)
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horizontal at radar

earth surface
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Figure 8.32. Geometry of radar wave propagation path.

MATLAB Function “absorption_range.m”

The MATLAB function “absorption_range.m” is a modified version of the function
“atmo_absorp.m.” In this case, the function will use Eqgs. (81.21) to (8.123) to also return the
total atmospheric absorption versus range. Its syntax is as follows:

[gammaO2, gammaH2O0,range| = absorption_range (height, Wvd, freq,beta)

where

Symbol Description Units Status

height altitude array Km input

Wvd Water vapor density array o/m”3 input

freq radar frequency Hz input

beta radar wave ray path elevation angle degrees input
gammaQ?2 oxygen absorption versus target height dB output
gammaH20 | water vapor absorption versus target height daB output

range range array Km output

Figure 8.33 shows plots of total atmospheric absorption versus range using the same atmo-
spheric data used to generate Fig. 8.31. This figure can be reproduced using MATLAB pro-
gram “Fig8 33.m,” listed in Appendix 8-A.
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Figure 8.33. Atmospheric absorption rate as a function of range.

MATLAB Function “atmospheric_attn.m”

The MATLAB function “atmospheric_attn.m” uses, Riemann sums method to compute the
area under the curves in Fig. 8.33. It also uses data generated using the function

“absorption_range.m” to compute the two-way atmospheric attenuation along the radar wave
ray path. Its syntax is as follows:

[Attn, ran