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xix

Preface 

In the year 2000 the first edition of Radar Systems Analysis and Design Using MATLAB®1

was published. It was developed and organized based on my years of teaching graduate level
courses on radar systems analysis and design including advanced topics in radar signal pro-
cessing. At the time, the primary motivation behind the book was to introduce a college-suit-
able comprehensive textbook that provides hands-on experience with MATLAB companion
software. This book very quickly turned into a bestseller, which prompted the publication of its
second edition in the year 2005. The second edition continued in the same vein as its predeces-
sor. It was updated, expanded, and reorganized to include advances in the field and to be more
logical in sequence. New topics were introduced in the body of the text, and much of the MAT-
LAB code was updated and improved upon to reflect the advancements of the latest MATLAB
release.

Since the publication of the first edition, Radar Systems Analysis and Design Using MAT-
LAB filled a void in the market by presenting a comprehensive and self-contained text on radar
systems analysis and design. It was the first book on the market to provide companion MAT-
LAB software to support the theoretical and mathematical discussion found within the pages
of the text. These features were also supported with a detailed solutions manual of all end-of-
chapter problems. This book quickly became the standard adopted by many books published
on the subject; none of which, however, matched the clear presentation nor the transparency
offered by this author, particularly when considering the end-of-chapter solutions manual and
the complete and comprehensive set of MATLAB code, which was made available to all of the
book audience without any restrictions. Users of this book were not only able to reproduce all
plots found in the text, but they also had the ability to change the code by inputting their own
parameters so that they could generate their own specific plots and outputs that met their own
unique academic interest. 

In addition to my academic tenure and experience in teaching the subject at the collegiate
level, I have also taught numerous industry courses and conducted many seminars on the sub-
ject of radar systems. Based on this teaching experience, the following conclusion has become
very evident to me: The need and the demand for a comprehensive textbook / reference book
focused on all aspects of radar systems design and analysis remain very strong. Add to this the

1. All MATLAB® functions and programs provided in this book were developed using MATLAB R2011a version
7.12.0.635 with the Signal Processing Toolbox, on a PC with Windows XP Professional operating system. MAT-
LAB® is a registered trademark of the The MathWorks, Inc. For product information, please contact: The Math-
Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA. Web: www.mathworks.com. 
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fact that many college professors have adopted this book as the primary textbook for their
courses on radar systems. Therefore, my desire to write this third edition was turned into real-
ity and has materialized into this product. 

It is my view that the third edition of Radar Systems Analysis and Design Using MATLAB is
warranted for the following reasons: (1) bring the text to a more modern status to reflect the
current state of the art; (2) incorporate into the new edition much of the feedback this author
has received from professors using this book as a text and from other practicing engineers; (3)
introduce several new topics that have not found much treatment by other authors, and even
when they did, it was not on a level comparable to the comprehensive and exhaustive approach
adopted by this author in the first two editions; (4) add many new end-of chapter problems; (5)
restructure the presentation to be more convenient for users to adopt the text for either three
graduate-level courses, or one senior-level and two graduate-level courses; and (6) take advan-
tage of the new features offered by the latest MATLAB releases.

Note that all MATLAB code provided in this book was designed as an academic standalone
tool and is not adequate for other purposes. The code was written in a way to assist the reader
in gaining better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open loop or a closed loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web-page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

Just like the first and second editions, this third edition provides easy-to-follow mathemati-
cal derivations of all equations and formulas present within the book, resulting in a user
friendly coverage suitable for advanced as well as introductory level college courses. This
third edition provides comprehensive up-to-date coverage of radar systems design and analysis
issues. Users of this book will need only one book instead of several, to gain essential under-
standing of radar design, analysis, and signal processing. This edition contains numerous
graphical plots and supporting artwork. The MATLAB code companion of this edition will
help users evaluate the trade-offs between different radar parameters.

This book is composed of 18 chapters and is divided into 5 parts: Part I, Radar Principles,
Part II, Radar Signals and Signal Processing, Part III, Special Radar Considerations, Part IV,
Radar Detection, and Part V, Radar Special Topics. Part I comprises Chapters 1 and 2. Chapter
1, Definitions and Nomenclature, presents the basic radar definitions and establishes much of
the nomenclature used throughout the text. In Chapter 2, Basic Pulsed and Continuous Wave
(CW) Radar Operations, the radar equation is derived for both pulsed and CW radars, while
other related material such as radar losses and noise are also discussed in details. The radar
equation in the presence of electronic counter measures (ECM) is derived, as well as the
bistatic radar equation. 

Part II comprises Chapters 3 through 7. The main thrust of this part of the book is radar sig-
nals or waveforms and radar signal processing. Chapter 3, Linear Systems and Complex Signal
Representation, contains a top-level discussion of elements of signal theory that are relevant to
radar design and radar signal processing. It is assumed that the reader has sufficient and ade-
quate background in signals and systems as well as in the Fourier transform and its associated
properties. Lowpass and bandpass signals are discussed in the context of radar applications.
Continuous as well as discrete systems are analyzed, and the sampling theorem is presented. 

Chapter 4, The Matched Filter Radar Receiver, is focused on the matched filter. It presents
the unique characteristic of the matched filter and develops a general formula for the output of
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the matched filter that is valid for any waveform. Chapter 5, Ambiguity Function - Analog
Waveforms, and Chapter 6, Ambiguity Function - Discrete Coded Waveforms, analyze the out-
put of the matched filter in the context of the ambiguity function. In Chapter 5 the most com-
mon analog radar waveforms are analyzed; this includes the single unmodulated pulse, Linear
Frequency Modulation (LFM) pulse, unmodulated pulse train, LFM pulse train, stepped fre-
quency waveforms, and nonlinear FM waveforms. Chapter 6 is concerned with discrete coded
waveforms. In this chapter, unmodulated pulse-train codes are analyzed as well as binary
codes, polyphase codes, and frequency codes. Chapter 7, Pulse Compression, contains details
of radar signal processing using pulse compression. The correlation processor and stretch pro-
cessor are presented. High range resolution processing using stepped frequency waveforms is
also analyzed.

Part III comprises three chapters. Chapter 8, Radar Wave propagation, extends the free
space analysis presented in the earlier chapters to include the effect of the atmosphere on radar
performance. Topics such as refraction, diffraction, atmospheric attenuation, surface reflection,
and multipath are discussed in a fair amount of detail. The subject of radar clutter is in Chapter
9, Radar Clutter. Area clutter as well as volume clutter are defined and the radar equation is re-
derived to reflect the importance of clutter, where in this case, the signal to interference ratio
becomes more critical than the signal to noise ratio. A step-by-step mathematical derivation of
clutter RCS is presented, and the statistical models for the clutter backscatter coefficient is also
presented. Chapter 10, Moving Target Indicator (MTI) and Pulse Doppler Radars, discusses
how delay line cancelers can be used to mitigate the impact of clutter within the radar signal
processor. PRF staggering is analyzed in the context of blind speeds and in the context of
resolving range and Doppler ambiguities. Finally, pulsed Doppler radars are briefly analyzed. 

In Part IV, radar detection is discussed and analyzed. The material presented in this part of
the book requires a strong background in random variables and random processes. Therefore,
Chapter 11, Random Variables and Random Processes, presents a review of the subject, and is
written in such a way that it only highlights the major points of the subject. Users of this book
are advised to use this chapter as a means for a quick top-level review of random variables and
random processes. Instructors using this book as a text may assign Chapter 11 as a reading
assignment to their students. Single pulse detection with known and unknown signal parame-
ters is in Chapter 12, Single Pulse Detection. Chapter 13, Detection of Fluctuating Targets,
extends the analysis of Chapter 12 to include target fluctuation where the Swerling target mod-
els are discussed. Detailed discussion of coherent and noncoherent integration in the context of
a square law detector is in this chapter. An overview of CFAR, cumulative probability of detec-
tion, and M-out-of-N detection are also discussed. 

Part V of this book addresses a few specialized topics in radar systems. In Chapter 14, Radar
Cross Section (RCS), the RCS dependency on aspect angle, frequency, and polarization are dis-
cussed. A target scattering matrix is developed. RCS formulas for many simple objects are pre-
sented. Complex object RCS is discussed, and RCS prediction methods are introduced.
Chapter 15, Phased Array Antennas, starts by developing the general array formulation. Linear
arrays and several planar array configurations such as rectangular, circular, rectangular with
circular boundaries, and concentric circular arrays are discussed. Beam steering with and with-
out using a finite number of bits is analyzed. Scan loss is also presented. A concept of a multi-
ple input multiple output radar system developed by this author is discussed and analyzed. In
Chapter 16, Adaptive Signal Processing, the concept behind conventual and adaptive beam-
forming is discussed. Adaptive signal processing using the least mean square algorithm is ana-
lyzed. Adaptive linear arrays and complex weights computation in the context of the least
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mean square algorithm are presented. Finally, this chapter discusses, space time adaptive pro-
cessing. 

Chapter 17, Target Tracking, discusses target tracking radar systems. The first part of this
chapter covers the subject of single target tracking. Topics such as sequential lobing, conical
scan, monopulse, and range tracking are discussed in detail. The second part of this chapter
introduces multiple target tracking techniques. Fixed gain tracking filters such as the  and
the  filters are presented in detail. The concept of the Kalman filter is introduced. Special
cases of the Kalman filter are analyzed in depth and a MATLAB-based simulation of the
Kalamn filter is developed. The last chapter of this book is Chapter 18, Tactical Synthetic
Aperture Radars. The topics of this chapter include: SAR signal processing, SAR design con-
siderations, and the SAR radar equation. Arrays operated in sequential mode are discussed in
this chapter.

This book is written primarily as a graduate-level textbook, although parts of it can be used
as a senior level course on radar systems. A companion solutions manual has been developed
for use by professors that adopt this book as a text. This solutions manual is available through
the publisher. Based on my own teaching experience, the following breakdown can be utilized
by professors using this book as a text:
1. Option I: Chapters 1-4 (with omission of certain advanced sections) can be used as a

senior-level course. Chapters 5-10 and the omitted sections in the previous course can be
used as a first graduate level course. Finally, Chapters 11-18 can be used as a second
advanced graduate-level course.

2. Option II: Chapters 1-4 can be used as an introductory graduate-level course. Chapters 5 10
can be used as a second graduate-level course, while Chapters 11-18 can be used as an
advanced graduate course on the subject.

Bassem R. Mahafza
Huntsville, Alabama

United States of America
November, 2012
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Part I - Radar Principles

Chapter 1

 This chapter presents some basic radar definitions and establishes much of the nomencla-
ture used throughout this text. The word radar is an abbreviation for radio detection and rang-
ing. In most cases, radar systems use modulated waveforms and directive antennas to transmit
electromagnetic energy into a specific volume in space to search for targets. Objects (targets)
within a search volume will reflect portions of the incident energy (radar returns or echoes) in
the direction of the radar. These echoes are then processed by the radar receiver to extract tar-
get information such as range, velocity, angular position, and other target identifying charac-
teristics.

1.1. Radar Systems Classifications and Bands
Radars can be classified as ground-based, airborne, spaceborne, or ship-based radar systems.

They can also be classified into numerous categories based on the specific radar characteris-
tics, such as the frequency band, antenna type, and waveforms utilized. Radar systems using
continuous waveforms, modulated or otherwise, are classified as Continuous Wave (CW)
radars. Alternatively, radar systems using time-limited pulsed waveforms are classified as
Pulsed Radars. Another radar systems classification is concerned with the mission and/or the
functionality of the specific radar. This includes: weather, acquisition and search, tracking,
track-while-scan, fire control, early warning, over-the-horizon, terrain following, and terrain
avoidance radars. Phased array radars utilize phased array antennas, and are often called multi-
function (multimode) radars. A phased array is a composite antenna formed from two or more
basic radiators. Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically. Electronic steering is achieved by controlling the phase of the
electric current feeding the array elements, and thus the name phased arrays is adopted.

Historically, radars were first developed as military tools. It is for this primary reason the
most common radar systems classification is the letter or band designation originally used by
the military during and after World War II. This letter or band designation has also been
adopted as an IEEE (Institute of Electrical and Electronics Engineers) standard. In recent
years, NATO (North Atlantic Treaty Organization) has adopted a new band designation with
easier abecedarian letters. Figure 1.1 shows the spectrum associated with these two letter or
band radar classifications, while Table 1.1 presents the same information in a structured for-
mat.

Definitions and 
Nomenclature 
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High Frequency (HF) and Very High Frequency (VHF) Radars (A- and B-Bands):
These radar bands below 300MHz represent the frontier of radio technology at the time during
the World War II. However, in the modern radar era, these frequencies bands are used for early
warning radars. These radars utilize the electromagnetic waves’ reflection off the ionosphere to
detect targets beyond the horizon, and so they are called Over-the-Horizon Radars (OTHR).
Some examples include the United States (U.S.) Navy Relocatable over-the-horizon Radar
(ROTHR) shown in Fig. 1.2, and the Russian Woodpecker radar shown in Fig. 1.3. By using
these low HF and VHF frequency bands, one can use high-power transmitters. At these fre-
quencies, the electromagnetic wave atmospheric attenuation is small and can be overcome by
using high-power transmitters. Radar angular measurement accuracies are limited in these
bands because lower frequencies require antennas with significant physical size, thus limiting

Table 1.1. Radar systems band or letter classification.

Letter 
designation

Frequency range in 
GHz (IEEE 
Standard)

Frequency range in GHz 
(NATO or New band 

designation)

HF 0.003 - 0.03 A

VHF 0.03 - 0.3 A<0.25; B>0.25

UHF 0.3 - 1.0 B<0.5; C>0.5

L-band 1.0 - 2.0 D

S-band 2.0 - 4.0 E<3.0; F>3.0

C-band 4.0 - 8.0 G<6.0; H>6.0

X-band 8.0 - 12.5 I<10.0; J>10.0

Ku-band 12.5 - 18.0 J

K-band 18.0 - 26.5 J<20.0; K>20.0

Ka-band 26.5 - 40.0 K

V & W or 
Millimeter 

Wave (MMW)

Normally >34.0 L<60.0; M>60.0

 Figure 1.1. Radar systems band or letter classification. 

Mainly military 
radars
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the radar’s angle accuracy and angle resolution. Other communication and broadcasting ser-
vices typically use these frequency bands. Therefore, the available bandwidth for military
radar systems is limited and highly contested throughout the world. Low-frequency systems
can be used for Foliage Penetration (FoPen) applications, as well as in Ground Penetrating
(GPen) applications.

 Figure 1.2. U. S. Navy over-the-horizon Radar. Photograph obtained 
via the Internet (http://www.fas.org/nuke/guide/usa/airdef/an-tps-71.htm).

 Figure 1.3. Russian Woodpecker OTHR radar. Photograph obtained via the 
Internet (http://passingstrangeness.wordpress.com/2010/04/23/the-russian-woodpecker/).
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Ultra High Frequency (UHF) Radars (C-Band): UHF bands are used for very long range
Early Warning Radars (EWR). Some examples include the Ballistic Missile Early Warning
System (BMEWS) search-and-track monopulse radar that operates at  (see Fig. 1.4),
the Perimeter and Acquisition Radar (PAR), which is a very long range multifunction phased
array radar; and the early warning PAVE PAWS multifunction UHF phased array radar. This
frequency band is also used for the detection and tracking of satellites and ballistic missiles
over a long range. In recent years, ultra wideband (UWB) radar applications use all frequencies
in the A- to C-Bands. UWB radars can be used in GPen applications as well as in see-through-
the-wall applications. 

L-Band Radars (D-Band): Radars in the L-band are primarily ground-based and ship-
based systems that are used in long range military and air traffic control search operations for
up to 250 (~500Km) nautical miles. Therefore, due to earth curvature their maximum achiev-
able range is limited when detecting low-altitude targets which can disappear very quickly
below the horizon. The Air Traffic Management (ATM) long-range surveillance radars like the
Air Route Surveillance Radar (ARSR), work in this frequency band. These radar systems are
relatively large and demand sizable footprints. Historically, the designator L-Band was
adopted since the “L” represent with large antenna or long range radars.

S-Band Radars (E- and F-Bands): Most ground- and ship-based medium range radars
operate in the S-band. For example, the Airport Surveillance Radar (ASR) used for air traffic
control, and the ship-based U.S. Navy AEGIS (Fig. 1.5) multifunction phased array are S-band
radars, and the Airborne Warning and Control System (AWACS) shown in Fig. 1.6. The atmo-
spheric attenuation in this band is higher than in the D-Band, and they are also more suscepti-
ble to weather conditions. Radar in this band usually need considerably high transmitting
power as compared to the lower-frequency radars in order to achieve maximum detection
range. Even with the considerable weather susceptibility, the National Weather Service Next
Generation Doppler Weather Radar (NEXRAD) uses an S-band radar, because it can see

245MHz

 Figure 1.4. Fylingdales BMEWS, United Kingdom. Photograph obtained 
via the Internet (http://en.wikipedia.org/wiki/File:Radar_RAF_Fylingdales.jpg).
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beyond a severe storm. Special Airport Surveillance Radars (ASR) used at some civilian air-
ports are also in this band where they can detect aircrafts for up to 60 nautical miles. The des-
ignator S-Band (contrary to L-Band) was adopted since the “S” represents the smaller antennas
or shorter range radars.

 Figure 1.5. U. S. Navy AEGIS. Photograph obtained via the Internet (http://mostlymis-
siledefense.com/2012/08/03/ballistic-missile-defense-the-aegis-spy-1-radar-august-3-2012/).

 

 Figure 1.6. U. S. Air Force AWACS. Photograph obtained via the Internet (http://
www.globalsecurity.org/military/systems/aircraft/e-3-pics.htm).



8                                                                                    Radar Systems Analysis and Design Using MATLAB®

C-Band Radar (G-Band): Many of the mobile military battlefield surveillance, missile-
control and ground surveillance radar systems operate in this band. Most weather radar sys-
tems are also C-band radars. Medium range search and fire control military radars and metric
instrumentation radars are C-band systems. In this band, the size of the antenna allows for
achieving excellent angular accuracies and resolution. Performance of systems operating in
this band suffer severely from bad weather conditions and to counter that, they often employ
antenna feeds with circular polarization.

X- and Ku-Band Radars (I- and J-Bands): In the X-band frequency range (8 to 12GHz)
the relationship between the wave length and size of the antenna is considerably better than in
lower-frequency bands. Radar systems that require fine target detection capabilities and yet
cannot tolerate the atmospheric attenuation of higher-frequency bands are typically X-Band.
The X- and Ku-bands are relatively popular radar frequency bands for military applications
like airborne radars, since the small antenna size provides good performance. Missile guidance
systems use the Ku-Band (I- and J-Bands) because of the convenient antenna size where
weight is a limiting requirement. Space borne or airborne imaging radars used in Synthetic
Aperture Radar (SAR) for military electronic intelligence and civil geographic mapping typi-
cally use these frequency bands. Finally, these frequency bands are also widely used in mari-
time civil and military navigation radars. 

K- and Ka- Band Radars (J- and K-Bands): These high-frequency bands suffer severe
weather and atmospheric attenuation. Therefore, radars utilizing these frequency bands are
limited to short range applications, such as police traffic radars, short range terrain avoidance,
and terrain following radars. Alternatively, the achievable angular accuracies and range resolu-
tion are superior to other bands. In ATM applications these radars are often called Surface
Movement Radar (SMR) or Airport Surface Detection Equipment (ASDE) radars.

Millimeter Wave (MMW) Radars (V- and W-Bands): Radars operating in this frequency
band also suffer from severe high atmospheric attenuation. Radar applications are limited to
very short range of up to a tens of meters. In the W-Band maximum attenuation occurs at about
75GHz and at about 96GHz. Both of these frequencies are used in practice primarily in auto-
motive industry where very small radars (~ 75-76GHz) are used for parking assistants, blind
spot and brake assists. Some radar systems operating at 96 to 98GHz are used as laboratory
experimental or prototype systems.

1.2. Pulsed and Continuous Wave (CW) Radars
When the type of waveform is used as a classifier of radar systems, there are two types of

radars; pulsed and Continuous Wave (CW) radar systems. Continuous wave radars are those
that continuously emit electromagnetic energy, and use separate transmit and receive antennas.
Unmodulated CW radars can accurately measure target radial velocity (Doppler shift) and
angular position. Continuous wave waveforms can be viewed as pure sinewaves of the form

. Spectra of the radar echo from stationary targets and clutter will be concentrated
around . The center frequency for the echoes of a moving target will be shifted by , the
Doppler frequency. Thus, by measuring this frequency difference, CW radars can very accu-
rately extract target radial velocity. Because of the continuous nature of CW emission, range
measurement is not possible without some modifications to the radar operations and wave-
forms. Simply put, target range information cannot be extracted without utilizing some form of
modulation. The primary use of CW radars is in target velocity search and track, and in missile
guidance operations. 

2 f0tcos
f0 fd
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Pulsed radars use a train of pulsed waveforms (mainly with modulation). In this category,
radar systems can be classified on the basis of the Pulse Repetition Frequency (PRF), as low
PRF, medium PRF, and high PRF radars. Low PRF radars are primarily used for ranging where
target velocity (Doppler shift) is not of interest. High PRF radars are mainly used to measure
target velocity. Continuous wave as well as pulsed radars can measure both target range and
radial velocity by utilizing different modulation schemes. The design, operation, and analysis
of CW and pulsed radar systems are found in subsequent chapters of this book.

1.3. Range
Figure 1.7 shows a simplified pulsed radar block diagram. The time control box generates

the synchronization timing signals required throughout the system. A modulated signal is gen-
erated and sent to the antenna by the modulator/transmitter block. Switching the antenna
between the transmitting and receiving modes is controlled by the duplexer. The duplexer
allows one antenna to be used to both transmit and receive. During transmission it directs the
radar electromagnetic energy toward the antenna. Alternatively, on reception, it directs the
received radar echoes to the receiver. The receiver amplifies the radar returns and prepares
them for signal processing. Extraction of target information is performed by the signal proces-
sor block. The target’s range, , is computed by measuring the time delay, ; it takes a pulse
to travel the two-way path between the radar and the target. Since electromagnetic waves travel
at the speed of light, , then 

Eq. (1.1)

where  is in meters and  is in seconds. The factor of  is used to account for the two-
way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illustrated by Fig. 1.8.
The Inter Pulse Period (IPP) is , and the pulse width is . The IPP is often referred to as the
Pulse Repetition Interval (PRI). The inverse of the PRI is the PRF, which is denoted by ,

. Eq. (1.2)

During each PRI the radar radiates energy only for  seconds and listens for target returns for
the rest of the PRI. The radar transmitting duty cycle (factor)  is defined as the ratio

. The radar average transmitted power is

R t

c 3 108m s=

R c t 2=

R t 1 2

T
fr

fr 1 PRI 1 T= =

dt
dt T=

Signal
processor

Time
Control

Transmitter/
Modulator

Signal
processor Receiver

R
Duplexer

 Figure 1.7. A simplified pulsed radar block diagram.
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Eq. (1.3)

where  denotes the radar peak transmitted power. The pulse energy is

. Eq. (1.4)

The range corresponding to the two-way time delay  is known as the radar unambiguous
range, . Consider the case shown in Fig. 1.9. Echo 1 represents the radar return from a target
at range  due to pulse 1. Echo 2 could be interpreted as the return from the same
target due to pulse 2, or it may be the return from a faraway target at range  due to pulse 1
again. In this case,

. Eq. (1.5)

Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is transmitted the
radar must wait a sufficient length of time so that returns from targets at maximum range are
back before the next pulse is emitted. It follows that the maximum unambiguous range must
correspond to half of the PRI,

. Eq. (1.6)

time

time

transmitted pulses

received pulses

IPP
pulse 1

t

pulse 3pulse 2

pulse 1 
echo

pulse 2 
echo

pulse 3 
echo

 Figure 1.8. Train of transmitted and received pulses.
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 Figure 1.9. Illustrating range ambiguity.
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Example: 

A certain airborne pulsed radar has peak power , and uses two PRFs,
 and . What are the required pulse widths for each PRF so that the

average transmitted power is constant and is equal to ? Compute the pulse energy
in each case.

Solution: 

Since  is constant, then both PRFs have the same duty cycle. More precisely,

. 

The pulse repetition intervals are

.

It follows that

.

MATLAB Function “pulse_train.m”

The MATLAB function “pulse_train.m” computes the duty cycle, average transmitted
power, pulse energy, and the pulse repetition frequency; its syntax is as follows:

[dt, pav, ep, prf, ru] = pulse_train(tau, pri, p_peak)

where

Symbol Description Units Status

tau pulse width seconds input

pri PRI seconds input

p_peak peak power watts input

dt duty cycle none output

pav average transmitted power watts output

ep pulse energy joules output

prf PRF Hz output

ru unambiguous range Km output

Pt 10KW=
fr1 10KHz= fr2 30KHz=

1500watts

Pav

dt
1500

10 103
-------------------- 0.15= =

T1
1

10 103
-------------------- 0.1ms= =

T2
1

30 103
-------------------- 0.0333ms= =

1 0.15 T1 15 s= =

2 0.15 T2 5 s= =

Ep1 Pt 1 10 103 15 10 6– 0.15Joules= = =

Ep2 P2 2 10 103 5 10 6– 0.05Joules= = =
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1.4. Range Resolution
Range resolution, denoted as , is a radar metric that describes its ability to detect targets

in close proximity to each other as distinct objects. Radar systems are normally designed to
operate between a minimum range  and maximum range . The distance between

 and  is divided into  range bins (gates), each of width ,

. Eq. (1.7)

Targets separated by at least  will be completely resolved in range, as illustrated in Fig.
1.10. Targets within the same range bin can be resolved in cross range (azimuth) utilizing sig-
nal processing techniques.

Consider two targets located at ranges  and , corresponding to time delays  and ,
respectively. Denote the difference between those two ranges as :

. Eq. (1.8)

Now, try to answer the following question: What is the minimum time, , such that target 1
at  and target 2 at  will appear completely resolved in range (different range bins)? In
other words, what is the minimum ?

First, assume that the two targets are separated by ,  is the pulse width. In this case,
when the pulse trailing edge strikes target 2, the leading edge would have traveled backward a
distance , and the returned pulse would be composed of returns from both targets (i.e., unre-
solved return), as shown in Fig. 1.11a. However, if the two targets are at least  apart, then
as the pulse trailing edge strikes the first target, the leading edge will start to return from target
2, and two distinct returned pulses will be produced, as illustrated by Fig. 1.11b. Thus, 
should be greater or equal to . And since the radar bandwidth  is equal to , then

. Eq. (1.9)
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 Figure 1.10. Resolving targets in range and cross range.
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In general, radar users and designers alike seek to minimize  in order to enhance the
radar performance. As suggested by Eq. (1.9), in order to achieve fine range resolution one
must minimize the pulse width. However, this will reduce the average transmitted power and
increase the operating bandwidth. Achieving fine range resolution while maintaining adequate
average transmitted power can be accomplished by using pulse compression techniques.

Example: 

A radar system has an unambiguous range of 100Km, and a bandwidth 0.5MHz. Compute the
required PRF, PRI, , and .

Solution:

  

  

Using the function “range_resolution” yields   

  

.

incident pulse

reflected pulse

c

3
2
---c

return 
tgt1

tgt1 tgt2

c
4
-----

tgt1 tgt2

c
2
-----

(a)

(b)

reflected pulses

cc

return 
tgt1

return 
tgt2

R2

R2

R1

R1

return 
tgt2

shaded area has returns from both targets

 Figure 1.11. (a) Two unresolved targets. (b) Two resolved targets.
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MATLAB Function “range_resolution.m”

The MATLAB function “range_resolution.m” calculates range resolution; its syntax is as
follows:

[delta_R] = range_resolution(var, indicator)

where

1.5. Doppler Frequency
Radars use Doppler frequency to extract target radial velocity (range rate), as well as to dis-

tinguish between moving and stationary targets or objects such as clutter. The Doppler phe-
nomenon describes the shift in the center frequency of an incident waveform due to the target
motion with respect to the source of radiation. Depending on the direction of the target’s
motion, this frequency shift may be positive or negative. A waveform incident on a target has
equiphase wavefronts separated by , the wavelength. A closing target will cause the reflected
equiphase wavefronts to compress and become closer to each other, resulting in a shorter
wavelength of the reflected waveform. Alternatively, an opening or receding target (moving
away from the radar) will cause the reflected equiphase wavefronts to expand, resulting in a
longer wavelength of the reflected waveform. This is illustrated in Fig. 1.12.

Symbol Description Units Status

var bandwidth

OR

pulsewidth

Hz

OR

seconds

input

delta_R range resolution meters output

reflected
incident

opening target 

closing target

radar

radar

 Figure 1.12. Effect of target motion on the reflected equiphase waveforms.
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Consider a pulse of width  (seconds) incident on a target that is moving toward the radar at
velocity , as shown in Fig. 1.13. Define  as the distance (in meters) that the target moves
into the pulse during the interval , 

 Eq. (1.10)

where  is equal to the time between the pulse leading edge striking the target and the trailing
edge striking the target. Since the pulse is moving at the speed of light and the trailing edge has
moved distance , then

Eq. (1.11)

. Eq. (1.12)

Dividing Eq. (1.12) by Eq. (1.11) yields

Eq. (1.13)

which, after canceling the terms  and  from the left and right side of Eq. (1.13), respec-
tively, one establishes the relationship between the incident and reflected pulses widths as

. Eq. (1.14)

In practice, the factor  is often referred to as the time dilation factor. Notice
that if , then . In a similar fashion, one can compute  for an opening target. In
this case,

. Eq. (1.15)

To derive an expression for Doppler frequency, consider the illustration shown in Fig. 1.14.
It takes  seconds for the leading edge of pulse 2 to travel a distance  to strike the
target. Over the same time interval, the leading edge of pulse 1 travels the same distance .
More precisely, 

Eq. (1.16)
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s c t=

L c=
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 Figure 1.13. Illustrating the impact of target velocity on a single pulse.
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. Eq. (1.17)

Solving for  yields

Eq. (1.18)

. Eq. (1.19)

The reflected pulse spacing is now  and the new PRF is , where

Eq. (1.20)

It follows that the new PRF is related to the original PRF by

. Eq. (1.21)

However, since the number of cycles does not change, the frequency of the reflected signal
will go up by the same factor. Denoting the new frequency by , it follows that

Eq. (1.22)

pulse 1pulse 2
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c
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c
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 Figure 1.14. Illustration of target motion effects on the radar pulses.
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TE: Pulse trailing edge.
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where  is the carrier frequency of the incident signal. The Doppler frequency  is defined as
the difference . More precisely,

, Eq. (1.23)

but since  and , then

. Eq. (1.24)

Eq. (1.24) indicates that the Doppler shift is proportional to the target velocity, and, thus, one
can extract  from range rate and vice versa. 

The result in Eq. (1.24) can also be derived using the following approach: Fig. 1.15 shows a
closing target with velocity . Let  refer to the range at time  (time reference); then the
range to the target at any time  is

. Eq. (1.25)

The signal received by the radar is then given by

Eq. (1.26)

where  is the transmitted signal, and

. Eq. (1.27)

Substituting Eq. (1.27) into Eq. (1.26) and collecting terms yields

Eq. (1.28)

where the constant phase  is

. Eq. (1.29)

Define the compression or scaling factor  by

Eq. (1.30)

Note that for a receding target the scaling factor becomes . Utilizing Eq.
(1.30), one can rewrite Eq. (1.28) as

. Eq. (1.31)

Eq. (1.31) represents a time-compressed version of the return signal from a stationary target
( ). Hence, based on the scaling property of the Fourier transform, the spectrum of the
received signal will be expanded in frequency to a factor of . 

Consider the special case when 

Eq. (1.32)

where  is the radar center frequency in radians per second. The received signal  is then
given by
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. Eq. (1.33)

The Fourier transform of Eq. (1.33) is

, Eq. (1.34)

where for simplicity the effects of the constant phase  have been ignored in Eq. (1.34).
Therefore, the bandpass spectrum of the received signal is now centered at  instead of .
The difference between the two values corresponds to the amount of Doppler shift incurred
due to the target motion,

. Eq. (1.35)

 and  are the Doppler frequency in radians per second and in Hz, respectively. Substitut-
ing the value of  in Eq. (1.35) yields

, Eq. (1.36)

which is the same as Eq. (1.24). It can be shown that for a receding target, the Doppler shift is
. This is illustrated in Fig. 1.16. 

In both Eq. (1.36) and Eq. (1.24) the target radial velocity with respect to the radar is equal to
, but this is not always the case. In fact, the amount of Doppler frequency depends on the tar-

get velocity component in the direction of the radar (radial velocity). Fig. 1.17 shows three tar-
gets all having velocity : target 1 has zero Doppler shift; target 2 has maximum Doppler
frequency as defined in Eq. (1.36). The amount of Doppler frequency of target 3 is

, where  is the radial velocity, and  is the total angle between the
radar line of sight and the target. Thus, a more general expression for  that accounts for the
total angle between the radar and the target is

Eq. (1.37)

and for an opening target

Eq. (1.38)

where . The angles  and  are, respectively, the elevation and azi-
muth angles; see Fig. 1.18.
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Figure 1.16. Spectra of received signal showing Doppler shift.
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 Figure 1.18. Radial velocity is proportional to the azimuth and elevation angles.
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Example: 

Compute the Doppler frequency measured by the radar shown in the figure below.

Solution: 

The relative radial velocity between the radar and the target is . Thus, using Eq.

(1.36), we get

.   

Similarly, if the target were opening the Doppler frequency is

.   

MATLAB Function “doppler_freq.m”

The function “doppler_freq.m” computes Doppler frequency and the associated time dila-
tion factor; its syntax is as follows:

[fd, tdr] = doppler_freq (freq, ang, tv, indicator)

where

1.6. Coherence
A radar is said to be coherent if the phase of any two transmitted pulses is consistent, i.e.,

there is a continuity in the signal phase from one pulse to the next, as illustrated in Fig. 1.19a.
One can view coherence as the radar’s ability to maintain an integer multiple of wavelengths
between the equiphase wavefront from the end of one pulse to the equiphase wavefront at the
beginning of the next pulse, as illustrated by Fig. 1.19b. Coherency can be achieved by using a
STAble Local Oscillator (STALO). A radar is said to be coherent-on-receive or quasi-coherent
if it stores in its memory a record of the phases of all transmitted pulses. In this case, the
receiver phase reference is normally the phase of the most recent transmitted pulse.

Symbol Description Units Status

freq radar operating frequency Hz input

ang aspect angle degrees input

tv target velocity m/sec input

fd Doppler frequency Hz output

tdr time dilation factor ratio none output

vradar = 250 m/sec 

vtarget = 175 m/sec 

line of sight

target

0.03m=

vradar vt etarg+

fd 2 250 175+
0.03

----------------------------- 28.3KHz= =

fd 2250 175–
0.03

------------------------ 5KHz= =
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Coherence also refers to the radar’s ability to accurately measure (extract) the received sig-
nal phase. Since Doppler represents a frequency shift in the received signal, then only coherent
or coherent-on-receive radars can extract Doppler information. This is because the instanta-
neous frequency of a signal is proportional to the time derivative of the signal phase. More pre-
cisely,

Eq. (1.39)

where  is the instantaneous frequency, and  is the signal phase.

 For example, consider the following signal:

Eq. (1.40)

where the scaling factor  is defined in Eq. (1.30), and  is a constant phase. It follows that
the instantaneous frequency of  is

Eq. (1.41)

where . Substituting Eq. (1.30) into Eq. (1.41) yields

Eq. (1.42)

where the relation  is utilized. Note that the second term of the most right-hand side of
Eq. (1.42) is a Doppler shift.

1.7. Decibel Arithmetic 
The decibel (dB) is a logarithmic unit of measurement that represents a ratio of a physical

quantity (such as voltage, power, or antenna gain) to a specific reference quantity of the same

integer multiple of 
pulse n+1 pulse n

distance

(a)

(b)

  Figure 1.19. (a) Phase continuity between consecutive pulses. (b) Maintaining an integer 
multiple of wavelengths between the equiphase wavefronts of any two successive pulses 

guarantees coherency.   

fi
1

2
------

td
d t=

fi t

x t 0t 0–cos=

0
x t

fi f0=

0 2 f0=

fi f0 1 2v
c

------+ f0
2v------+= =

c f=



22                                                                                   Radar Systems Analysis and Design Using MATLAB®

type. The unit dB is named after Alexander Graham Bell, who originated the unit as a measure
of power attenuation in telephone lines. By Bell’s definition, a unit of Bell gain is 

Eq. (1.43)

where the logarithm operation is base 10,  is the output power of a standard telephone line

(almost one mile long), and  is the input power to the line. If voltage (or current) ratios are
used instead of the power ratio, then a unit Bell gain is defined as

. Eq. (1.44)

A decibel, dB, is  of a Bell (the prefix “deci” means ). It follows that a dB is
defined as

. Eq. (1.45)

The inverse dB is computed from the relations

Eq. (1.46)

The decibel nomenclature is widely used by radar designers and users for several reasons,
and perhaps, the most important one is that representing radar-related physical quantities using
dBs drastically reduces the dynamic range that a designer or a user has to use. For example, an
incoming radar signal may be as weak as , which can be expressed in dBs as

. Alternatively, a target may be located at range ,
which can be expressed in dBs as . Another advantage of using dB in radar design and
analysis is to facilitate the arithmetic associated with calculating the different radar parameters.
This is true since multiplication in base-10 arithmetic translates into addition in dB-arithmetic,
and division translates into subtraction. For example,

. Eq. (1.47)

In general,

Eq. (1.48)

. Eq. (1.49)

Other dB ratios that are often used in radar analysis include the dBsm (dB, squared meters).
This definition is very important when referring to target Radar Cross Section (RCS), whose
units are in squared meters. More precisely, a target whose RCS is  can be expressed in
dBsm as . For example, a  target is often referred to as a  target,
and a target with RCS  is equivalent to a . 
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Finally, the units dBm (dB, milliwatt) and dBW (dB, Watt) are power ratios of dBs with ref-
erence to one milliwatt and one Watt, respectively. 

Eq. (1.50)

Eq. (1.51)

To find dBm from dBW, add 30dB, and to find dBW from dBm, subtract 30dB. Other common
dB units include dBz and dBi. dBz is used to measure weather radar reflectivity representing
the amount of returned power received by the radar referenced to . The unit dBi (dB,
isotropic) represents the forward gain of an antenna compared to an ideal isotropic antenna that
emits energy equally in all directions.

 Problems
1.1. (a) Calculate the maximum unambiguous range for a pulsed radar with PRF of 
and . (b) What are the corresponding PRIs?
1.2. For the same radar in Problem 1.1, assume a duty cycle of 30% and peak power of

. Compute the average power and the amount of radiated energy during the first .
1.3. A certain pulsed radar uses pulse width . Compute the corresponding range
resolution.
1.4. An X-band radar uses PRF of . Compute the unambiguous range and the
required bandwidth so that the range resolution is . What is the duty cycle?
1.5. Compute the Doppler shift associated with a closing target with velocity 100, 200, and
350 meters per second. In each case, compute the time dilation factor. Assume that .
1.6. Compute the round-trip delays, minimum PRIs, and corresponding PRFs for targets
located 30Km, 80Km, and 150Km away from the radar.
1.7. Assume an S-band radar, what are the Doppler frequencies for the following target
range rates: 50m/s; 200m/s; and 250m/s.
1.8. Repeat the previous problem for an X-Band radar (9.5GHz).
1.9. A certain L-band radar has center frequency , and PRF . What is
the maximum Doppler shift that can be measured by this radar?
1.10. Starting with a modified version of Eq. (1.25), derive an expression for the Doppler
shift associated with a receding target.
1.11. In reference to Fig. 1.18, compute the Doppler frequency for ,

, and . Assume that .

1.12. A pulsed radar system has a range resolution of . Assuming sinusoid pulses at
, determine the pulse width and the corresponding bandwidth.

1.13. (a) Develop an expression for the minimum PRF of a pulsed radar. (b) Compute 

for a closing target whose velocity is . (c) What is the unambiguous range? Assume
that .
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1.14. A certain radar is tasked with detecting and tracking the moon. Assume that the aver-

age distance to the moon is , and its average radar cross section is

. (a) Compute the delay to the moon. (b) What is required PRF so the range to
the moon is unambiguous. (c) What is the moon’s radar cross section in dBsm.
1.15. An L-band pulsed radar is designed to have an unambiguous range of  and
range resolution . The maximum resolvable Doppler frequency corresponds to

. Compute the maximum required pulse width, the PRF, and the average

transmitted power if .

1.16. A certain target has the following characteristics: its range away from the radar given
in its corresponding x- y- and z- components is . The target velocity
vector is , and . Compute the composite target range and range
rate. If the radar’s operating frequency is 9GHz, what is the corresponding Doppler frequency.
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6.64 1011m2

100Km

R 100m
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25Km 32Km 12Km
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Appendix 1-A: Chapter 1 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “pulse_train.m” Listing
function [dt, prf, pav, ep, ru] = pulse_train (tau, pri, p_peak)
% computes duty cycle, average transmitted power, pulse energy, and pulse repetition frequency
%% Inputs:
    %   tau    == Pulse width in seconds
    %   pri    == Pulse repetition interval in seconds
    %   p_peak == Peak power in Watts
%% Outputs:
    %   dt     == Duty cycle - unitless
    %   prf   == Pulse repetition frequency in Hz
    %   pa    == Average power in Watts
    %   ep    == Pulse energy in Joules
    %   ru    == Unambiguous range in Km
%
c = 3e8; % speed of light
dt = tau / pri;
prf = 1. / pri;
pav = p_peak * dt;
ep = p_peak * tau;
ru = 1.e-3 * c * pri /2.0;
return

MATLAB Function “range_resolution.m” Listing
function [delta_R] = range_resolution (var)
% This function computes radar range resolution in meters
%%   Inputs:
    % var can be either
        % var == Bandwidth in Hz
        % var == Pulse width in seconds
% %  Outputs:
    % delta_R == range resolution in meters   
% Bandwidth may be equal to (1/pulse width)==> indicator = seconds
%
c = 3.e+8; % speed of light
indicator = input ('Enter 1 for var == Bandwidth, OR 2 for var == Pulse width \n');
switch (indicator)
    case 1
        delta_R = c / 2.0 / var; % del_r = c/2B
    case 2
        delta_R = c * var / 2.0; % del_r = c*tau/2
end
return
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MATLAB Function “doppler_freq.m” Listing
function [fd, tdr] = doppler_freq (freq, ang, tv)
% This function computes Doppler frequency and time dilation factor ratio (tau_prime / tau)
% % Inputs:
    % freq  == radar operating frequency in Hz
    % ang == target aspect angle in degrees
    % tv    == target velocity in m/sec
% % Outputs:
    % fd     == Doppler frequency in Hz
    % tdr   == time dilation factor; unitless
%
format long
indicator = input ('Enter 1 for closing target, OR 2 for opening target \n');
c = 3.0e+8;
ang_rad = ang * pi /180.;
lambda = c / freq;
switch (indicator)
    case 1
        fd = 2.0 * tv * cos(ang_rad) / lambda;
        tdr = (c - tv) / (c + tv);
    case 2
        fd = -2.0 * c * tv * cos(and_rad) / lambda;
        tdr = (c + tv) / (c -tv);
end
return
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Part I - Radar Principles

Chapter 2

2.1. The Radar Range Equation
Consider a radar with an isotropic antenna (one that radiates energy equally in all

directions). Since isotropic antennas have spherical radiation patterns, one can define the peak
power density (power per unit area) at any point in space away from the radar as

. Eq. (2.1)

The power density, in , at range  away from the radar (assuming a lossless propa-
gation medium) is

Eq. (2.2)

where  is the peak transmitted power and  is the surface area of a sphere of radius .
Radar systems utilize directional antennas in order to increase the power density in a certain
direction. Directional antennas are usually characterized by the antenna gain  and the
antenna effective aperture . They are related by

 Eq. (2.3)

where  is the radar operating wavelength. The relationship between the antenna’s effective
aperture  and the physical aperture  is

Eq. (2.4)

where  is referred to as the aperture efficiency, and good antennas require . In this
book, unless otherwise noted,  and  are used interchangeably to refer to the antenna’s
aperture, and will assume that antennas have the same gain in the transmitting and receiving
modes. In practice,  is widely accepted. 

The gain is also related to the antenna’s azimuth and elevation antenna beamwidths by

Eq. (2.5)
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where  and depends on the physical aperture shape, and the angles  and  are,
respectively, the antenna’s elevation and azimuth beamwidths in radians. An excellent com-
monly used approximation of Eq. (2.5) is 

Eq. (2.6)

where in this case the azimuth and elevation beamwidths are given in degrees. 

The power density at a distance  away from a radar using a directive antenna of gain  is
then given by

Eq. (2.7)

When the radar radiated energy impinges upon a target, the induced surface currents on that
target radiate electromagnetic energy in all directions. The amount of the radiated energy is
proportional to the target size, orientation, physical shape, and material, which are all lumped
together in one target-specific parameter called the Radar Cross Section (RCS) denoted sym-
bolically by the Greek letter . 

The radar cross section is defined as the ratio of the power reflected back to the radar to the
power density incident on the target,

Eq. (2.8)

where  is the power reflected from the target. Thus, the total power delivered to the radar
signal processor by its antenna is 

. Eq. (2.9)

Substituting the value of  from Eq. (2.3) into Eq. (2.9) yields

Eq. (2.10)

Let  denote the minimum detectable signal power by the radar. It follows that the

maximum radar range  is

. Eq. (2.11)

Eq. (2.11) suggests that in order to double the radar maximum range, one must increase the
peak transmitted power  sixteen times; or equivalently, one must increase the effective aper-
ture four times.

In practical situations the returned signals received by the radar will be corrupted with noise,
which introduces unwanted voltages at all radar frequencies. Noise is random in nature and can
be characterized by its Power Spectral Density (PSD) function. The noise power  is a
function of the radar operating bandwidth, . More precisely,
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. Eq. (2.12)

The receiver input noise power is

Eq. (2.13)

where  is Boltzmann’s constant, and  is the total
effective system noise temperature in degrees Kelvin. It is always desirable that the minimum
detectable signal ( ) be greater than the noise power. The fidelity of a radar receiver is nor-
mally described by a figure of merit referred to as the noise figure, . The noise figure is
defined as

Eq. (2.14)

where  and  are, respectively, the Signal to Noise Ratios (SNR) at the input
and output of the receiver. The input signal power is , and the input noise power immedi-
ately at the antenna terminal is . The values  and  are, respectively, the output signal
and noise powers.

The receiver effective noise temperature excluding the antenna is 

Eq. (2.15)

where  and  is the receiver noise figure. It follows that the total effective system
noise temperature  is given by

Eq. (2.16)

where  is the antenna temperature. 

In many radar applications it is desirable to set the antenna temperature  to  and thus,
Eq. (2.16) is reduced to 

. Eq. (2.17)

Using Eq. (2.17) in Eq. (2.13) and substituting the result into Eq. (2.14) yields

. Eq. (2.18)

Thus, the minimum detectable signal power can be written as 

. Eq. (2.19)

The radar detection threshold is set equal to the minimum output SNR, .

Substituting Eq. (2.19) in Eq. (2.11) gives

Eq. (2.20)

or equivalently,

. Eq. (2.21)
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Ni kTsB=

k 1.38 10 23– Joule degree Kelvin= Ts
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F
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SNR o
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Si Ni

So No
---------------= =
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Te To F 1–=

T0 290K= F
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Ts Te Ta+ T0 F 1– Ta+ ToF To– Ta+= = =
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Ta T0

Ts ToF=

Si kToBF SNR o=

Smin kToBF SNR omin
=

SNR omin
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4 3kToBF SNR omin
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In general, radar losses denoted by  reduce the overall SNR, and hence 

. Eq. (2.22)

Although Eq. (2.22) is widely known and used as the Radar Range Equation, it is not quite
correct unless the antenna temperature is equal to . In real-world cases, the antenna
temperature may vary from a few degrees Kelvin to several thousand degrees. However, the
actual error will be small if the radar receiver noise figure is large. In order to accurately
account for the radar antenna temperature, one must use Eq. (2.17) in Eq. (2.22). Thus, the
radar equation is now given by

. Eq. (2.23)

Example:

Assume a certain C-band radar with the following parameters: Peak power ,

operating frequency , antenna gain , effective temperature

, pulse width . The radar threshold is . Assume

target cross section . Compute the maximum range.

Solution:

The radar bandwidth is

.

The wavelength is

.

From Eq. (2.20) one gets

where, before summing, the dB calculations are carried out for each of the individual parame-
ters on the right-hand side. One can now construct the following table with all parameters
computed in dB:

It follows that

L

SNR o
PtG

2 2

4 3kToBFLR4
----------------------------------------=

290K

SNR o
PtG

2 2

4 3kTsBLR4
------------------------------------=

Pt 1.5MW=

f0 5.6GHz= G 45dB=

To 290K= 0.2 sec= SNR min 20dB=

0.1m2=

B 1--- 1
0.2 10 6–
------------------------ 5MHz= = =

c
f0
--- 3 108

5.6 109
---------------------- 0.054m= = =

R4
dB Pt G2 2 4 3 kToB F SNR omin

––––+ + + dB=

Pt
2 G2 kToB 4 3 F SNR omin

61.761 25.421– 90 136.987– 32.976 3 20 10–

R4 61.761 90 25.352– 10– 32.976– 136.987 3– 20–+ + 197.420dB= =
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.

Thus, the maximum detection range is . 

MATLAB Function “radar_eq.m”

The function “radar_eq.m” implements Eq. (2.22); its syntax is as follows:

[snr] = radar_eq (pt, freq, g, sigma, b, nf, loss, range)

where

The function “radar_eq.m” is developed so that it can accept a single value for the input
“range,” or a vector containing many range values. Figure 2.1 shows typical plots generated
using the function “radar_eq.m,” with the following inputs: Peak power ,
operating frequency , antenna gain , radar losses , noise
figure . The radar bandwidth is . The radar minimum and maximum
detection range are and . Figure 2.1 can be reproduced using
MATLAB program “Fig2_1.m” listed in Appendix 2-A.

2.2. Low PRF Radar Equation

Consider a pulsed radar with pulse width , PRI , and peak transmitted power . The

average transmitted power is , where  is the transmission duty factor.

One can define the receiving duty factor  as

. Eq. (2.24)

Thus, for low PRF radars ( ) the receiving duty factor is .

Define the “time on target”  (the time that a target is illuminated by the beam) as

Symbol Description Units Status

pt peak power Watts input

freq radar center frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

range target range (can be single value or a vector) Km input

snr SNR (single value or a vector, depending on 
the input range)

dB output

R4 10 197.420 10 55.208 1018m4= =

R 55.208 10184 86.199Km= =

86.2Km

Pt 1.5MW=
f0 5.6GHz= G 45dB= L 6dB=

F 3dB= B 5MHz=
Rmin 25Km= Rmax 165Km=

T Pt

Pav Ptdt= dt T=

dr

dr
T –

T
----------- 1 fr–= =

T » dr 1

Ti
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 Figure 2.1a. SNR versus detection range for three different values of RCS.

 Figure 2.1b. SNR versus detection range for three different values of radar peak 
power.
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Eq. (2.25)

where  is the total number of pulses that strike the target, and  is the radar PRF. Assuming
low PRF, the single pulse radar equation is given by

, Eq. (2.26)

and for  coherently integrated pulses we get

. Eq. (2.27)

Now by using Eq. (2.25) and using , the low PRF radar equation can be written as 

 . Eq. (2.28)

MATLAB Function “lprf_req.m”

The function “lprf_req.m” implements the low PRF radar equation given in Eq. (2.27). For a
given set of input parameters, the function “lprf_req.m” computes (SNR)np. Its syntax is as
follows:

 [snr] = lprf_req(pt, g, freq, sigma, np, b, nf, loss, range)

where

Figure 2.2 shows typical plots generated using the function “lprf_req.m,” with the following
inputs: Peak power , operating frequency , antenna gain

, radar losses , noise figure . The bandwidth is .

The target RCS is . Figure 2.2 can be reproduced using MATLAB program
“Fig2_2.m” listed in Appendix 2-A. 

Symbol Description Units Status

pt peak power W input

g antenna gain dB input

freq frequency Hz input

sigma target cross section m2 input

np number of pulses none input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

range target range (can be single value or a vector) Km input

snr SNR (can be single value or a vector)  dB output

Ti np fr= np Ti fr=

np fr

SNR 1
PtG

2 2

4 3R4kToBFL
----------------------------------------=

np

SNR np

PtG
2 2 np

4 3R4kToBFL
----------------------------------------=

B 1=

SNR np

PtG
2 2 Tifr

4 3R4kToFL
------------------------------------=

Pt 1.5MW= f0 5.6GHz=
G 45dB= L 6dB= F 3dB= B 5MHz=

0.1m2=
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 Figure 2.2a. Typical output generated by the function “lprf_req.m.” 

 Figure 2.2b. Typical outputs generated by the function “lprf_req.m.” 
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2.3.  High PRF Radar Equation
In high PRF radars, the transmitted signal is assumed to be a periodic train of pulses, with

pulse width of  and period . This pulse train can be represented using an exponential
Fourier series, where the central power spectrum line (DC component) for this series contains
most of the signal’s power. Its value is , and it is equal to the square of the transmit duty
factor. Thus, the single pulse radar equation for a high PRF radar is

Eq. (2.29)

where, in this case, one can no longer ignore the receive duty factor, since its value is compara-
ble to the transmit duty factor. In fact, . Additionally, the operating radar band-
width is now matched to the radar integration time (time-on-target), . It follows that

Eq. (2.30)

and finally,

Eq. (2.31)

where  was substituted for . Note that the product  is a “kind of energy” prod-
uct, which indicates that high PRF radars can enhance detection performance by using rela-
tively low power and longer integration time.

2.3.1 MATLAB Function “hprf_req.m”

The function “hprf_req.m” implements Eq. (2.30). Its syntax is as follows:

[snr] = hprf_req (pt, Ti, g, freq, sigma, dt, range, nf, loss)

where

Figure 2.3 shows typical outputs generated by the function “hprf_req.m”. This figure can be
reproduced using MATLAB program “Fig2_3.m” listed in Appendix 2-A.

Symbol Description Units Status

pt peak power W input

Ti time on target seconds input

g antenna gain dB input

freq frequency Hz input

sigma target RCS m2 input

dt duty cycle none input

range target range (can be single value or a vector) Km input

nf noise figure dB input

loss radar losses dB input

snr SNR (can be a single value or a vector)  dB output

T

T 2

SNR
PtG

2 2 dt
2

4 3R4kToBFLdr

----------------------------------------------=

dr dt fr=
B 1 Ti=

SNR
Pt frTiG

2 2

4 3R4kToFL
------------------------------------=

SNR
PavTiG

2 2

4 3R4kToFL
------------------------------------=

Pav Pt fr PavTi
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Example:

Compute the single pulse  for a high PRF radar with the following parameters: peak

power , antenna gain , operating frequency , losses

, noise figure , dwell interval , duty factor . The range

of interest is . Assume target RCS . 

Solution:

From Eq. (2.31) we have

The following table gives all parameters in dB:

The same answer can be obtained by using the function “lprf_req.m” with the following syn-
tax:

hprf_req (100e3, 2, 20, 5.6e9, 0.01, 0.3, 50e3, 5, 8)

 Figure 2.3. Typical output generated by the function “hprf_req.m,” 
using parameters in next example.

SNR

Pt 100KW= G 20dB= f0 5.6GHz=

L 8dB= F 5dB= Ti 2s= dt 0.3=

R 50Km= 0.01m2=

SNR dB Pav G2 2 Ti 4 3 R4– kTo– F– L––+ + + + dB=

Pav
2 Ti kT0 4 3 R4

44.771 25.421– 3.01 203.977– 32.976 187.959 20–

SNR 44.771 40 25.421– 20– 3.01 32.976– 203.977 187.959– 5– 8–+ + + 12.4dB= =
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2.4. Surveillance Radar Equation
The primary job for surveillance radars is to continuously scan a specified volume of space

searching for targets of interest. Once detection is established, target information such as
range, angular position, and possibly target velocity are extracted by the radar signal and data
processors. Depending on the radar design and antenna, different search patterns can be
adopted. A two-dimensional (2-D) fan beam search pattern is shown in Fig. 2.4a. In this case,
the beamwidth is wide enough in elevation to cover the desired search volume along that
coordinate; however, it has to be steered in azimuth. Figure 2.4b shows a stacked beam search
pattern; here the beam has to be steered in azimuth and elevation. This latter kind of search
pattern is normally employed by phased array radars.

Search volumes are normally specified by a search solid angle  in steradians, as illustrated
in Fig. 2.5. Define the radar search volume extent for both azimuth and elevation as  and

. Consequently, the search volume is computed as 

Eq. (2.32)

where both  and  are given in degrees. The radar antenna  beamwidth can be
expressed in terms of its azimuth and elevation beamwidths  and , respectively. It follows
that the antenna solid angle coverage is  and, thus, the number of antenna beam positions

 required to cover a solid angle  is 

. Eq. (2.33)

In order to develop the search radar equation, start with Eq. (2.22), which is repeated here
for convenience, as Eq. (2.34):

. Eq. (2.34)

Using the relations  and , where  is the PRI and  is the pulse width,
yields

A

E

A E 57.296 2 steradians=

A E 3dB
a e

a e
nB

nB

a e 57.296 2
-------------------------------------------=

SNR
PtG

2 2

4 3kToBFLR4
----------------------------------------=

1 B= Pt PavT= T

(a) (b)

azimuth

elevation

 Figure 2.4. (a) 2-D fan search pattern; (b) stacked search pattern.
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. Eq. (2.35)

Define the time it takes the radar to scan a volume defined by the solid angle  as the scan
time . The time on target can then be expressed in terms of  as

. Eq. (2.36)

Assume that during a single scan only one pulse per beam per PRI illuminates the target. It fol-
lows that  and, thus, Eq. (2.35) can be written as 

Eq. (2.37)

Substituting Eqs. (2.3) and (2.5) into Eq. (2.37) and collecting terms yields the search radar
equation (based on a single pulse per beam per PRI) as

. Eq. (2.38)

The quantity  in Eq. (2.38) is known as the power aperture product. In practice, the
power aperture product is widely used to categorize the radar’s ability to fulfill its search
mission. Normally, a power aperture product is computed to meet a predetermined SNR and
radar cross section for a given search volume defined by .

As a special case, assume a radar using a circular aperture (antenna) with diameter . The
3-dB antenna beamwidth  is 

, Eq. (2.39)

and when aperture tapering is used, . Substituting Eq. (2.39) into Eq. (2.33)
and collecting terms yields

search
 volume

antenna
beam width

3dB

 Figure 2.5. A cut in space showing the antenna beam width and the 
search volume.
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. Eq. (2.40)

In this case, the scan time  is related to the time-on-target by 

. Eq. (2.41)

Substitute Eq. (2.41) into Eq. (2.35) to get 

, Eq. (2.42)

and by using Eq. (2.3) in Eq. (2.42) one can define the search radar equation for a circular aper-
ture as

 Eq. (2.43)

where the relation  (aperture area) was used. 

MATLAB Function “power_aperture.m”

The function “power_aperture.m” implements the search radar equation given in Eq. (2.38);
its syntax is as follows:

PAP = power_aperture (snr, tsc, sigma, range, nf, loss, az_angle, el_angle)

where

Plots of the power aperture product versus range and plots of the average power versus
aperture area for three RCS choices are shown in Fig. 2.6, which can be reproduced using the
MATLAB program “Fig2_6.m” listed in Appendix 2-A. In this case, the following radar
parameters were used:

Symbol Description Units Status

snr sensitivity snr dB input

tsc scan time seconds input

sigma target cross section m2 input

range target range Km input

nf noise figure dB input

loss radar losses dB input

az_angle search volume azimuth extent degrees input

el_angle search volume elevation extent degrees input

PAP power aperture product dB output

nB D2 2=

Tsc

Ti
Tsc

nB
-------

Tsc
2

D2
-------------= =

SNR
PavG2 2

4 3R4kToFL
------------------------------------

Tsc
2

D2
-------------=

SNR
PavA

16R4kToLF
-----------------------------

Tsc-------=

A D2 4=

Tsc e a= R nf loss snr

0.1 m2 2.5sec 2 250Km 13dB 15dB
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Example: 
Compute the power aperture product corresponding to the radar that has the following param-
eters: scan time , noise figure , losses , search volume

, range of interest is , and the required SNR is .

Assume that . 

 Figure 2.6a. Power aperture product versus detection range.

 Figure 2.6b. Radar average power versus power aperture product.

Tsc 2s= F 8dB= L 6dB=

7.4 steradians= R 75Km= 20dB

3.162m2=
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Solution:

Note that  corresponds to a search sector that is three fourths of a hemi-
sphere. Because of the three fourths of a hemisphere condition, one concludes that

, and using Eq. (2.32) yields . Using the MATLAB function

“power_aperture.m” with the following syntax: 

PAP = power_aperture(20, 2, 3.162, 75e3, 8, 6, 180, 135)

one computes the power aperture product as 36.7 dB.

Example:

Compute the power aperture product for an X-band radar with the following parameters: sig-
nal-to-noise ratio ; losses ; search volume ; scan time

; noise figure . Assume a  target cross section, and range

. Also, compute the peak transmitted power corresponding to 30% duty factor, if
the antenna gain is 45dB. Assume a circular aperture.

Solution:

The angular coverage is  in both azimuth and elevation. It follows that the solid angle cov-
erage is 

.

The factor  converts angles into solid angles. From Eq. (2.43), one gets

.

It follows that

.

Then the power aperture product is
.

Now, assume the radar wavelength to be , then 

 

.

7.4 steradians=

a 180= e 135=

SNR 15dB= L 8dB= 2=
Tsc 2.5s= F 5dB= 10dBsm–

R 250Km=

2

2 2
57.23 2

-------------------- 29.132dB–= =

360 2 57.23=

SNR dB Pav A Tsc 16 R4– kTo– L– F– ––+ + + dB=

Tsc 16 R4 kTo

10dB– 3.979dB 12.041dB 215.918dB 203.977dB–

15 Pav A 10– 3.979 12.041– 215.918– 203.977 5– 8– 29.133+ + + +=

Pav A+ 38.716dB=

0.03m=

A G 2

4
---------- 3.550dB= =

Pav A– 38.716+ 35.166dB= =

Pav 103.5166 3285.489W= =

Pt
Pav

dt
-------- 3285.489

0.3
---------------------- 10.9512KW= = =
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2.5. Radar Equation with Jamming
Any deliberate electronic effort intended to disturb normal radar operations is usually

referred to as an Electronic Countermeasure (ECM). This includes chaff, radar decoys, radar
RCS alterations (e.g., radio frequency absorbing materials), and of course, radar jamming. 

Jammers can be categorized into two general types: (1) barrage jammers and (2) deceptive
jammers (repeaters). When strong jamming is present, detection capability is determined by
receiver signal-to-noise plus interference ratio rather than SNR. In fact, in most cases,
detection is established based on the signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar operating
bandwidth, consequently lowering the receiver SNR, and, in turn, making it difficult to detect
the desired targets. This is the reason why barrage jammers are often called maskers (since
they mask the target returns). Barrage jammers can be deployed in the main beam or in the
sidelobes of the radar antenna. If a barrage jammer is located in the radar main beam, it can
take advantage of the antenna maximum gain to amplify the broadcasted noise signal.
Alternatively, sidelobe barrage jammers must either use more power, or operate at a much
shorter range than main-beam jammers. Main-beam barrage jammers can be deployed either
onboard the attacking vehicle, or act as an escort to the target. Sidelobe jammers are often
deployed to interfere with a specific radar, and since they do not stay close to the target, they
have a wide variety of standoff deployment options. 

Repeater jammers carry receiving devices onboard in order to analyze the radar’s
transmission, and then send back false target-like signals in order to confuse the radar. There
are two common types of repeater jammers: spot noise repeaters and deceptive repeaters. The
spot noise repeater measures the transmitted radar signal bandwidth and then jams only a
specific range of frequencies. The deceptive repeater sends back altered signals that make the
target appear in some false position (ghosts). These ghosts may appear at different ranges or
angles than the actual target. Furthermore, there may be several ghosts created by a single
jammer. By not having to jam the entire radar bandwidth, repeater jammers are able to make
more efficient use of their jamming power. Radar frequency agility may be the only way
possible to defeat spot noise repeaters.

In general, a jammer is characterized by its operating bandwidth  and Effective Radiated
Power (ERP), which is proportional to the jammer transmitter power . More precisely,

Eq. (2.44)

where  is the jammer antenna gain and  is the total jammer losses. The effect of a jammer
on a radar is measured by the Signal-to-Jammer ratio (S/J). 

2.5.1  Self-Screening Jammers (SSJ)

Self-screening jammers (SSJ), also known as self-protecting jammers and as main-beam
jammers, are a class of ECM systems carried on the platform they are protecting. Escort
jammers (carried on platforms that accompany the attacking vehicles) can also be treated as
SSJs if they appear at the same range as that of the target(s). 

Assume a radar with an antenna gain , wavelength , aperture , bandwidth ,
receiver losses , and peak power . The single pulse power received by the radar from a
target of RCS , at range , is

BJ

PJ

ERP PJGJ LJ=

GJ LJ

G Ar Br

L Pt

R
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Eq. (2.45)

where  is the radar pulse width. The power received by the radar from an SSJ jammer at the
same range is

Eq. (2.46)

where  are, respectively, the jammer’s peak power, antenna gain, operating band-
width, and losses. Using the relation

, Eq. (2.47)

Eq. (2.46) can be written as

. Eq. (2.48)

Note that for jammers to be effective, they require . This is needed in order to compen-
sate for the fact that the jammer bandwidth is usually larger than the operating bandwidth of
the radar. Jammers are normally designed to operate against a wide variety of radar systems
with different bandwidths. 

Substituting Eq. (2.44) into Eq. (2.48) yields

. Eq. (2.49)

Thus, the S/J ratio for an SSJ case is obtained from Eqs. (2.45) and (2.49) as,

 , Eq. (2.50)

and when pulse compression is used, with time-bandwidth-product , then Eq. (2.50) can
be written as

. Eq. (2.51)

The jamming power reaches the radar on a one-way transmission basis, whereas the target
echoes involve two-way transmission. Thus, the jamming power is generally greater than the
target signal power. In other words, the ratio  is less than unity. However, as the target
becomes closer to the radar, there will be a certain range such that the ratio  is equal to
unity. This range is known as the cross-over range. The range window where the ratio  is
sufficiently larger than unity is denoted as the detection range. In order to compute the cross-
over range , set  to unity in Eq. (2.51) and solve for range. It follows that

. Eq. (2.52)
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MATLAB Function “ssj_req.m”

The function “ssj_req.m” implements Eqs. (2.50) and (2.52). The syntax is as follows:

[BR_range] = ssj_req (pt, g, freq, sigma, br, loss, pj, bj, gj, lossj)

where

This function generates data of relative  and  versus range normalized to the cross-over
range, as illustrated in Fig. 2.7a. It also calculates the cross-over range as in Fig 2.7b. Figure
2.7b can be reproduced using MATLAB program “Fig2_7b.m” listed in Appendix 2-A. In this
example, the following parameters were utilized: radar peak power , jammer peak
power , radar operating bandwidth , jammer bandwidth

, radar and jammer losses , target cross section ,
radar antenna gain , jammer antenna gain , and the radar operating
frequency is .

2.5.2.Burn-Through Range

If jamming is employed in the form of Gaussian noise, then the radar receiver has to deal
with the jamming signal the same way it deals with noise power in the radar. Thus, detection,
tracking, and other functions of the radar signal and data processors are no longer dependent
on the SNR. In this case, the S/(J+N) ratio must be calculated. More precisely,

. Eq. (2.53)

The S/(J+N) ratio should be used in place of the SNR when calculating the radar equation
and when computing the probability of detection. Furthermore, S/(J+N) must also be used in
place of the SNR when using coherent or noncoherent pulse integration. The range at which
the radar can detect and perform proper measurements for a given S/(J+N) value is defined as
the burn-through range. It is given by

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

freq radar operating frequency Hz input

sigma target cross section m2 input

br radar operating bandwidth Hz input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

BR_range cross-over range Km output

S J

Pt 50KW=
PJ 200W= Br 667KHz=

BJ 50MHz= L LJ 0.10dB= = 10.m2=
G 35dB= GJ 10dB=

f 5.6GHz=

S
J N+
-------------

PtG Ar 4 2R4L

ERP Ar

4 R2BJ

---------------------- kT0+

------------------------------------------------------------=
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. Eq. (2.54)
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 Figure 2.7a. Target and jammer echo signals using the input parameters defined 
on pp. 42.

 Figure 2.7b. Cross-over range versus jammer and radar peak powers cor-
responding to the example used in generating Fig. 2.7a. 
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MATLAB Function “sir.m”

The MATLAB function “sir.m” implements Eq. (2.53). The syntax is as follows:

[SIR] = sir (pt, g, sigma, freq, tau, loss, R, pj, bj, gj, lossj)

where

The function “sir.m” generates data that can be used to plot the S/(J+N) versus detection
range as shown in Fig. 2.8 using the input parameters defined in the table below. Figure 2.8 can
be reproduced using the MATLAB program “Fig2_8.m” listed in Appendix 2-A.

 

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulse width seconds input

loss radar losses dB input

R range can be single value or a vector Km input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

SIR S/(J+N) dB output

Input Parameter Value

pt 50KW

g 35dB

sigma 10 square meters

freq 5.6GHz

tau 50 micro-seconds

loss 5dB

R linspace(10,400,5000) Km

pj 200Watts

bj 50MHz

gj 10dB

lossj 0.3dB
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MATLAB Function “burn_thru.m”

The MATLAB function “burn_thru.m” implements Eqs. (2.54). It generates plots of the S/
(J+N) versus detection range and plots of the burn-through range versus the jammer ERP. The
syntax is as follows:

[Range] = burn_thru (pt, g, sigma, freq, tau, loss, pj, bj, gj, lossj, sir0, ERP)

where

Symbol Description Units Status

pt radar peak power W input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

tau radar pulse width seconds input

loss radar losses dB input

pj jammer peak power W input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

sir0 desired SIR dB input

ERP desired ERP can be a vector Watts input

Range burn-through range Km output

 Figure 2.8. S/(J+N) versus detection range.   
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Figure 2.9, which can be reproduced using the MATLAB program “Fig2_9.m” listed in
Appendix 2-A, shows some typical outputs generated by this function with the following
inputs:

 

Input Parameter Value

pt 50KW

g 35dB

sigma 10 square meters

freq 5.6GHz

tau 0.5 Millie-seconds

loss 5dB

pj 200watts

bj 500MHz

gj 10dB

lossj 0.3dB

sir0 15dB

ERP linspace(1, 1000, 1000) W

 Figure 2.9. Burn-through range versus ERP. S/(J+N) = 15 dB.
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2.5.3  Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges that are beyond the defense’s
lethal capability. The power received by the radar from an SOJ jammer at range  is 

Eq. (2.55)

where all terms in Eq. (2.55) are the same as those for the SSJ case except for . The gain
term  represents the radar antenna gain in the direction of the jammer and is normally con-
sidered to be the sidelobe gain.

The SOJ radar equation is then computed as

Eq. (2.56)

and when pulse compression is used, with time-bandwidth-product , then Eq. (2.56) can
be written as

. Eq. (2.57)

Again, the cross-over range is that corresponding to ; it is given by

Eq. (2.58)

MATLAB Function “soj_req.m”

The function “soj_req.m” implements Eqs. (2.57) and (2.58). The inputs to the program
“soj_req.m” are the same as in the SSJ case, with two additional inputs: the radar antenna gain
on the jammer  and radar-to-jammer range . Its syntax is as follows:

 [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, pj, bj, gj, lossj, gprime, rangej)

Figure 2.10 shows plots generated using data generated by this function. In this case, the
same input parameters as those in the SSJ case are used, with jammer peak power

, jammer antenna gain , radar antenna gain on the jammer
, and radar-to-jammer range . Figure 2.10 can be reproduced using

MATLAB program “Fig2_10.m” listed in Appendix 2-A. Again if the jamming is employed in
the form of Gaussian noise, then the radar receiver has to deal with the jamming signal the
same way it deals with noise power in the radar. In this case, the S/(J+N) is

. Eq. (2.59)
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2.6. Range Reduction Factor

Consider a radar system whose detection range  in the absence of jamming is governed by

. Eq. (2.60)

The term Range Reduction Factor (RRF) refers to reduction in the radar detection range due to
jamming. More precisely, in the presence of jamming, the effective radar detection range is

. Eq. (2.61)

 In order to compute RRF, consider a radar characterized by Eq. (2.60), and a barrage
jammer whose output power spectral density is  (i.e., Gaussian-like). Then the amount of
jammer power in the radar receiver is

Eq. (2.62)

where  is the jammer effective temperature. It follows that the total jammer plus noise
power in the radar receiver is given by 

. Eq. (2.63)

In this case, the radar detection range is now limited by the receiver signal-to-noise plus inter-
ference ratio rather than SNR. More precisely,

 Figure 2.10. Target and jammer echo signals. 
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. Eq. (2.64)

The amount of reduction in the signal-to-noise plus interference ratio because of the jammer
effect is computed from the difference between Eqs. (2.60) and (2.64). It is expressed (in dB)
by

. Eq. (2.65)

Consequently, the RRF is 

. Eq. (2.66)

2.7.  Bistatic Radar Equation
Radar systems that use the same antenna for both transmitting and receiving are called

monostatic radars. Bistatic radars use transmit and receive antennas that are placed at different
locations. Under this definition CW radars, although they use separate transmit and receive
antennas, are not considered bistatic radars unless the distance between the two antennas is
considerable. Figure 2.11 shows the geometry associated with bistatic radars. The angle, , is
called the bistatic angle. A synchronization link between the transmitter and receiver is
necessary in order to maximize the receiver’s knowledge of the transmitted signal so that it can
extract maximum target information.

The synchronization link may provide the receiver with the following information: (1) the
transmitted frequency in order to compute the Doppler shift, and (2) the transmit time or phase
reference in order to measure the total scattered path ( ). Frequency and phase reference
synchronization can be maintained through line-of-sight communications between the
transmitter and receiver. However, if this is not possible, the receiver may use a stable
reference oscillator for synchronization.
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Figure 2.11. Bistatic radar geometry.
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One major distinction between monostatic and bistatic radar operations has to do with the
measured bistatic target RCS, denoted by . In the case of a small bistatic angle, the bistatic

RCS is similar to the monostatic RCS; but, as the bistatic angle approaches , the bistatic
RCS becomes very large and can be approximated by

Eq. (2.67)

 where  is the wavelength and  is the target projected area.

The bistatic radar equation can be derived in a similar fashion to the monostatic radar
equation. Referring to Fig. 2.11, the power density at the target is

Eq. (2.68)

where  is the peak transmitted power,  is the gain of the transmitting antenna, and  is
the range from the radar transmitter to the target.

The effective power scattered off a target with bistatic RCS  is

Eq. (2.69)

and the power density at the receiver antenna is 

. Eq. (2.70)

 is the range from the target to the receiver. Substituting Eq. (2.68) into Eq. (2.70) yields

. Eq. (2.71)

The total power delivered to the signal processor by a receiver antenna with aperture  is

. Eq. (2.72)

Substituting  for  yields

Eq. (2.73)

where  is the gain of the receive antenna. Finally, when transmitter and receiver losses, 
and , are taken into consideration, the bistatic radar equation can be written as

. Eq. (2.74)

2.8.  Radar Losses
As indicated by the radar equation, the receiver SNR is inversely proportional to the radar

losses. Hence, any increase in radar losses causes a drop in the SNR, thus decreasing the
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probability of detection, since it is a function of the SNR. Often, the principal difference
between a good radar design and a poor radar design is the radar losses. Radar losses include
ohmic (resistance) losses and statistical losses. In this section, a brief summary of radar losses
is presented.

2.8.1  Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna input port, and
between the antenna output port and the receiver front end, respectively. Such losses are often
called plumbing losses. Typically, plumbing losses are on the order of 1 to 2 dB. 

2.8.2  Antenna Pattern Loss and Scan Loss

So far, when using the radar equation, maximum antenna gain was assumed. This is true
only if the target is located along the antenna’s boresight axis. However, as the radar scans
across a target, the antenna gain in the direction of the target is less than maximum, as defined
by the antenna’s radiation pattern. The loss in the SNR due to not having maximum antenna
gain on the target at all times is called the antenna pattern (shape) loss. Once an antenna has
been selected for a given radar, the amount of antenna pattern loss can be mathematically
computed. 

For example, consider a  antenna radiation pattern as shown in Fig. 2.12. It follows
that the average antenna gain over an angular region of  about the boresight axis is

Eq. (2.75)

where  is the aperture radius and  is the wavelength. In practice, Gaussian antenna patterns
are often adopted. In this case, if  denotes the antenna 3dB beam width, then the antenna
gain can be approximated by 

. Eq. (2.76)

If the antenna scanning rate is so fast that the gain on receive is not the same as on transmit,
additional scan loss has to be calculated and added to the beam shape loss. Scan loss can be
computed in a similar fashion to beam shape loss. Phased array radars are often prime candi-
dates for both beam shape and scan losses.

2.8.3  Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects will appear in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency, target range,
and elevation angle. Atmospheric attenuation can be as high as a few dB.

2.8.4 Collapsing Loss

When the number of integrated returned noise pulses is larger than the target returned pulses,
a drop in the SNR occurs. This is called collapsing loss. The collapsing loss factor is defined as
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Eq. (2.77)

where  is the number of pulses containing both signal and noise, while  is the number of
pulses containing noise only. Radars detect targets in azimuth, range, and Doppler. When target
returns are displayed in one coordinate, such as range, noise sources from azimuth cells adja-
cent to the actual target return converge in the target vicinity and cause a drop in the SNR. This
is illustrated in Fig. 2.13.

c
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n m

 Figure 2.12. Normalized (sin x/x) antenna pattern.
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 Figure 2.13. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5 
converge to increase the noise level in cell 3.
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2.8.5 Processing Loss

a. Detector Approximation 

The output voltage signal of a radar receiver that utilizes a linear detector is

 Eq. (2.78)

where  are the in-phase and quadrature components. For a radar using a square law
detector, we have .

Since in real hardware the operations of squares and square roots are time consuming, many
algorithms have been developed for detector approximation. This approximation results in a
loss of signal power, typically 0.5 to 1dB.

b. Constant False Alarm Rate (CFAR) Loss 

In many cases the radar detection threshold is constantly adjusted as a function of the
receiver noise level in order to maintain a constant false alarm rate. For this purpose, Constant
False Alarm Rate (CFAR) processors are utilized in order to keep the number of false alarms
under control in a changing and unknown background of interference. CFAR processing can
cause a loss in the SNR level on the order of 1dB. 

Three different types of CFAR processors are primarily used. They are adaptive threshold
CFAR, nonparametric CFAR, and nonlinear receiver techniques. Adaptive CFAR assumes that
the interference distribution is known and approximates the unknown parameters associated
with these distributions. Nonparametric CFAR processors tend to accommodate unknown
interference distributions. Nonlinear receiver techniques attempt to normalize the root-mean-
square amplitude of the interference.

c. Quantization Loss   

Finite word length (number of bits) and quantization noise cause an increase in the noise
power density at the output of the Analog-to-Digital (A/D) converter. The A/D noise level is

, where  is the quantization level.

d. Range Gate Straddle 

The radar receiver is normally mechanized as a series of contiguous range gates (bins). Each
range bin is implemented as an integrator matched to the transmitted pulse width. Since the
radar receiver acts as a filter that smears (smooths), the received target echoes. The smoothed
target return envelope is normally straddled to cover more than one range gate. 

Typically, three gates are affected; they are called the early, on, and late gates. If a point
target is located exactly at the center of a range gate, then the early and late samples are equal.
However, as the target starts to move into the next gate, the late sample becomes larger while
the early sample gets smaller. In any case, the amplitudes of all three samples should always
roughly add up to the same value. Fig. 2.14 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shape. In practice, triangular
shaped envelopes may be easier and faster to implement.

Since the target is likely to fall anywhere between two adjacent range bins, a loss in the SNR
occurs (per range gate). More specifically, a target’s returned energy is split between three
range bins. Typically, straddle loss of about 2 to 3dB is not unusual.
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Example:

Consider the smoothed target echo voltage shown below. Assume  resistance. Find the
power loss due to range gate straddling over the interval .

Solution: 

The smoothed voltage can be written as

echo envelope

early sample late sample

on-target sample

on-target range
bin

echo envelope

early sample
late sampleon-target sample

on-target range
bin

(a) Target on the center of a range gate

range gates

range gates

(b) Target on the boundary between two range gates

Figure 2.14. Illustration of range gate straddling.

1
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K
v(t)
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.

The power loss due to straddle over the interval  is 

.

The average power loss is then 

and, for example, if , then .

e. Doppler Filter Straddle

Doppler filter straddle is similar to range gate straddle. However, in this case the Doppler
filter spectrum is spread (widened) due to weighting functions. Weighting functions are
normally used to reduce the sidelobe levels. Since the target Doppler frequency can fall
anywhere between two Doppler filters, signal loss occurs. This is illustrated in Fig. 2.15, where
due to weighting, the cross-over frequency  is smaller than the filter cutoff frequency ,
which normally corresponds to the 3dB power point.

f. Other Losses

Other losses may include equipment losses due to aging radar hardware, matched filter loss,
and antenna efficiency loss. Tracking radars suffer from cross-over (squint) loss.

2.9.  Noise Figure
Any signal other than the target returns in the radar receiver is considered to be noise. This

includes interfering signals from outside the radar and thermal noise generated within the
receiver itself. Thermal noise (thermal agitation of electrons) and shot noise (variation in
carrier density of a semiconductor) are the two main internal noise sources within a radar
receiver. 

The power spectral density of thermal noise is given by 

Eq. (2.79)

where  is the absolute value of the frequency in radians per second,  is the temperature of
the conducting medium in degrees Kelvin,  is Boltzman’s constant, and  is Planck’s con-
stant ( ). When the condition  is true, it can be
shown that Eq. (2.79) is approximated by 
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Eq. (2.80)

This approximation is widely accepted, since, in practice, radar systems operate at frequencies
less than ; and, for example, if , then . 

The mean-square noise voltage (noise power) generated across a  resistance is then

Eq. (2.81)

where  is the system bandwidth in hertz.

Any electrical system containing thermal noise and having input resistance  can be
replaced by an equivalent noiseless system with a series combination of a noise equivalent
voltage source and a noiseless input resistor  added at its input. This is illustrated in Fig.

2.16. The amount of noise power that can physically be extracted from  is one fourth the
value computed in Eq. (2.81). Consider a noisy system with power gain , as shown in Fig.
2.17. The noise figure is defined by

. Eq. (2.82)
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than the cutoff frequency.
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Eq. (2.83)

where  and  are, respectively, the noise power at the output and input of the system.

If we define the input and output signal power by  and , respectively, then the power
gain is

. Eq. (2.84)

It follows that

Eq. (2.85)

where

. Eq. (2.86)

Thus, the noise figure is the loss in the signal-to-noise ratio due to the added thermal noise of
the amplifier .

One can also express the noise figure in terms of the system’s effective temperature .
Consider the amplifier shown in Fig. 2.17, and let its effective temperature be . Assume the
input noise temperature is . Thus, the input noise power is 

Eq. (2.87)
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and the output noise power is

Eq. (2.88)

where the first term on the right-hand side of Eq. (2.88) corresponds to the input noise, and the
latter term is due to thermal noise generated inside the system. It follows that the noise figure
can be expressed as

. Eq. (2.89)

Equivalently, we can write 

. Eq. (2.90)

Example: 

An amplifier has a 4dB noise figure; the bandwidth is . Calculate the input sig-
nal power that yields a unity SNR at the output. Assume  and an input resistance of
1ohm.

Solution: 

The input noise power is

.

Assuming a voltage signal, then the input noise mean squared voltage is 

 

.

From the noise figure definition we get

.

Finally,

.

Consider a cascaded system as in Fig. 2.18. Network 1 is defined by noise figure , power
gain , bandwidth , and temperature . Similarly, network 2 is defined by , , ,
and . Assume the input noise has temperature . The output signal power is 

. Eq. (2.91)

The input and output noise powers are, respectively, given by

Eq. (2.92)
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Eq. (2.93)

where the three terms on the right-hand side of Eq. (2.93), respectively, correspond to the input
noise power, thermal noise generated inside network 1, and thermal noise generated inside net-
work 2.

Now, use the relation  along with Eq. (2.91) and Eq. (2.92) to express the
overall output noise power as

. Eq. (2.94)

It follows that the overall noise figure for the cascaded system is 

. Eq. (2.95)

In general, for an n-stage system we get

. Eq. (2.96)

Also, the n-stage system effective temperatures can be computed as 

. Eq. (2.97)

As suggested by Eq. (2.96) and Eq. (2.97), the overall noise figure is mainly dominated by the
first stage. Thus, radar receivers employ low-noise power amplifiers in the first stage in order
to minimize the overall receiver noise figure. However, for radar systems that are built for low
RCS operations, every stage should be included in the analysis.

Example: 

A radar receiver consists of an antenna with cable loss , an RF amplifier with
, and gain , followed by a mixer whose noise figure is 

and conversion loss , and finally, an integrated circuit IF amplifier with 
and gain . Find the overall noise figure.
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Solution: 

From Eq. (2.96)

.

It follows that

.

2.10. Continuous Wave (CW) Radars
As mentioned earlier, in order to avoid interruption of the continuous radar energy emission,

two antennas are used in CW radars, one for transmission and one for reception. Figure 2.19
shows a simplified CW radar block diagram. The appropriate values of the signal frequency at
different locations are noted on the diagram. The individual Narrow Band Filters (NBF) must
be as narrow as possible in bandwidth in order to allow accurate Doppler measurements and
minimize the amount of noise power. In theory, the operating bandwidth of a CW radar is
infinitesimal (since it corresponds to an infinite duration continuous sinewave). However,
systems with infinitesimal bandwidths cannot physically exist, and thus, the bandwidth of CW
radars is assumed to correspond to that of a gated CW waveform.

The NBF bank (Doppler filter bank) can be implemented using a Fast Fourier Transform
(FFT). If the Doppler filter bank is implemented using an FFT of size , and if the
individual NBF bandwidth (FFT bin) is , then the effective radar Doppler bandwidth is

. The reason for the one-half factor is to account for both negative and positive
Doppler shifts. The frequency resolution  is proportional to the inverse of the integration
time. 

 Since range is computed from the radar echoes by measuring a two-way time delay, single
frequency CW radars cannot measure target range. In order for CW radars to be able to
measure target range, the transmit and receive waveforms must have some sort of timing
marks. By comparing the timing marks at transmit and receive, CW radars can extract target
range. The timing mark can be implemented by modulating the transmit waveform, and one
commonly used technique is Linear Frequency Modulation (LFM). Before we discuss LFM
signals, we will first introduce the CW radar equation and briefly address the general
Frequency Modulated (FM) waveforms using sinusoidal modulating signals.

2.10.1  CW Radar Equation
As indicated by Fig. 2.19, the CW radar receiver declares detection at the output of a

particular Doppler bin if that output value passes the detection threshold within the detector
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box. Since the NBF bank is implemented by an FFT, only finite length data sets can be
processed at a time. The length of such blocks is normally referred to as the dwell interval,
integration time, or coherent processing interval. The dwell interval determines the frequency
resolution or the bandwidth of the individual NBFs. More precisely,

. Eq. (2.98)

 is the dwell interval. Therefore, once the maximum resolvable frequency by the NBF
bank is chosen the size of the NBF bank is computed as

. Eq. (2.99)

 is the maximum resolvable frequency by the FFT. The factor  is needed to account for
both positive and negative Doppler shifts. It follows that 

. Eq. (2.100)

The CW radar equation can now be derived. Consider the radar equation developed earlier in
this chapter. That is 
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Figure 2.19. CW radar block diagram. 
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Eq. (2.101)

where , , and  is the peak transmitted power. In CW radars, the average
transmitted power over the dwell interval , and  must be replaced by . Thus, the
CW radar equation can be written as 

Eq. (2.102)

where  and  are the transmit and receive antenna gains, respectively. The factor  is a
loss term associated with the type of window (weighting) used in computing the FFT. 

2.10.2 Frequency Modulation 

The discussion presented in this section will be restricted to sinusoidal modulating signals.
In this case, the general formula for an FM waveform can be expressed by

. Eq. (2.103)

 is the radar operating frequency (carrier frequency),  is the modulating signal,
 is a constant, and , where  is the peak frequency deviation. The

phase is given by 

Eq. (2.104)

where  is the FM modulation index given by

. Eq. (2.105)

Let  be the received radar signal from a target at range . It follows that

Eq. (2.106)

where the delay  is 

. Eq. (2.107)

 is the speed of light. CW radar receivers utilize phase detectors in order to extract target
range from the instantaneous frequency, as illustrated in Fig. 2.20. A good measurement of the
phase detector output  implies a good measurement of , and hence range.

Consider the FM waveform  given by

Eq. (2.108)
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which can be written as

Eq. (2.109)

where  denotes the real part. Since the signal  is periodic with period
, it can be expressed using the complex exponential Fourier series as

Eq. (2.110)

where the Fourier series coefficients  are given by

. Eq. (2.111)

Make the change of variable , and recognize that the Bessel function of the first
kind of order  is

. Eq. (2.112)

Thus, the Fourier series coefficients are , and consequently Eq. (2.110) can now
be written as 

. Eq. (2.113)

which is known as the Bessel-Jacobi equation. Figure 2.21 shows a plot of Bessel functions of
the first kind for . 

The total power in the signal  is

. Eq. (2.114)

Substituting Eq. (2.113) into Eq. (2.109) yields
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 Figure 2.20. Extracting range from an FM signal return. K1 is a constant.
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. Eq. (2.115)

Expanding Eq. (2.115) yields

. Eq. (2.116)

Finally, since  for  odd and  for  even one can rewrite
Eq. (2.116) as

Eq. (2.117)

which can be rewritten as

Eq. (10.117b)
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Figure 2.21. Plot of Bessel functions of order 0, 1, 2, and 3.
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The spectrum of  is composed of pairs of spectral lines centered at , as sketched in
Fig. 2.22. The spacing between adjacent spectral lines is . The central spectral line has an
amplitude equal to , while the amplitude of the  spectral line is .

As indicated by Eq. (2.117) the bandwidth of FM signals is infinite. However, the
magnitudes of spectral lines of the higher orders are small, and thus the bandwidth can be
approximated using Carson’s rule,

Eq. (2.118)

When  is small, only  and  have significant values. Thus, we may approximate
Eq. (2.117) by

. Eq. (2.119)

Finally, for small , the Bessel functions can be approximated by

Eq. (2.120)

. Eq. (2.121)

Thus, Eq. (2.119) may be approximated by

. Eq. (2.122)

Example:

If the modulation index is , give an expression for the signal .

Solution: 

From Bessel function tables we get  and ; then using

Eq. (2.119) we get

.
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Figure 2.22. Amplitude line spectra sketch for FM signal.
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Example:

Consider an FM transmitter with output signal . The
frequency deviation is , and the modulating waveform is . Determine
the FM signal bandwidth. How many spectral lines will pass through a bandpass filter whose
bandwidth is  centered at ?

Solution: 

The peak frequency deviation is . It follows that 

.

Using Eq. (2.118) we get

However, only seven spectral lines pass through the bandpass filter as illustrated in the figure
shown below.

2.10.3  Linear Frequency Modulated CW Radar

Continuous Wave radars may use LFM waveforms so that both range and Doppler
information can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus, periodicity in the modulation is normally
utilized. Figure 2.23 shows a sketch of a triangular LFM waveform. The modulation does not
need to be triangular; it may be sinusoidal, sawtoothed, or some other form. The dashed line in
Fig. 2.23 represents the return waveform from a stationary target at range . The beat
frequency  is also sketched in Fig. 2.23. It is defined as the difference (due to heterodyning)

between the transmitted and received signals. The time delay  is a measure of target range;
that is, 

. Eq. (2.123)

In practice, the modulating frequency  is selected such that 

. Eq. (2.124)
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Eq. (2.125)

where  is the peak frequency deviation. The beat frequency  is given by 

. Eq. (2.126)

Equation (2.126) can be rearranged as

. Eq. (2.127)

Equating Eqs. (2.125) and (2.127) and solving for  yields 

. Eq. (2.128)

Now consider the case when Doppler is present (i.e., non-stationary target). The
corresponding triangular LFM transmitted and received waveforms are sketched in Fig. 2.24,
along with the corresponding beat frequency. As previously noted the beat frequency is
defined as

. Eq. (2.129)

When the target is not stationary, the received signal will contain a Doppler shift term in
addition to the frequency shift due to the time delay . In this case, the Doppler shift term
subtracts from the beat frequency during the positive portion of the slope. Alternatively, the
two terms add up during the negative portion of the slope. Denote the beat frequency during
the positive (up) and negative (down) portions of the slope, respectively, as  and . It
follows that
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 Figure 2.23. Transmitted and received triangular LFM signals and beat 
frequency for stationary target.
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Eq. (2.130)

where  is the range rate or the target radial velocity as seen by the radar. The first term of the
right-hand side of Eq. (2.130) is due to the range delay defined by Eq. (2.123), while the sec-
ond term is due to the target Doppler. Similarly, 

. Eq. (2.131)

Range is computed by adding Eq. (2.130) and Eq. (2.131). More precisely,

. Eq. (2.132)

The range rate is computed by subtracting Eq. (2.131) from Eq. (2.130),

. Eq. (2.133)

As indicated by Eqs. (2.132) and (2.133), CW radars utilizing triangular LFM can extract
both range and range rate information. In practice, the maximum time delay  is normally
selected as

. Eq. (2.134)

Thus, the maximum range is given by

Eq. (2.135)

and the maximum unambiguous range will correspond to a shift equal to .
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 Figure 2.24. Transmitted and received LFM signals and beat frequency, for a 
moving target.
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2.10.4  Multiple Frequency CW Radar

Continuous wave radars do not have to use LFM waveforms in order to obtain good range
measurements. Multiple frequency schemes allow CW radars to compute very adequate range
measurements without using frequency modulation. In order to illustrate this concept, first
consider a CW radar with the following waveform

. Eq. (2.136)

The received signal from a target at range  is 

 Eq. (2.137)

where the phase  is equal to

. Eq. (2.138)

Solving for  we obtain

. Eq. (2.139)

Clearly, the maximum unambiguous range occurs when  is maximum, i.e., .
Therefore, even for relatively large radar wavelengths,  is limited to impractical small
values. Next, consider a radar with two CW signals, denoted by  and . More
precisely,

Eq. (2.140)

. Eq. (2.141)

The received signals from a moving target are

Eq. (2.142)

Eq. (2.143)

where  and . After heterodyning (mixing) with the carrier
frequency, the phase difference between the two received signals is

. Eq. (2.144)

Again  is maximum when ; it follows that the maximum unambiguous range is
now

Eq. (2.145)

and since , the range computed by Eq. (2.145) is much greater than that computed by
Eq. (2.139), thus, indicating an increase in the unambiguous range when using more than one
frequency.
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2.11. MATLAB Program “range_calc.m”
The program “range_calc.m” solves the radar range equation of the form

Eq. (2.146)

where  is peak transmitted power,  is pulse width,  is PRF,  and  are respectively
the transmitting and receiving antenna gain,  is wavelength,  is target cross section,  is
Boltzman’s constant,  is  kelvin,  is system noise figure,  is total system losses, and

 is the minimum SNR required for detection. 

One can choose either CW or pulsed radars. In the case of CW radars, the term  is
replaced within the code by the average CW power . Additionally, the term  refers to
the dwell interval. Alternatively, in the case of pulse radars  denotes the time on target. The
plot inside Fig. 2.25 shows an example of the SNR versus the detection range for a pulse radar
using the parameters shown in the figure. A MATLAB-based Graphical User Interface (GUI)
(see Fig. 2.25) is utilized in inputting and editing all input parameters. The outputs include the
maximum detection range versus minimum SNR plots.
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 Figure 2.25. GUI work space associated with the program “range_calc.m.”
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Problems
2.1. Compute the aperture size for an X-band antenna at . Assume antenna

gain .
2.2. An L-band radar (1500MHz) uses an antenna whose gain is . Compute the
aperture size. If the radar duty cycle is  and the average power is , compute the

power density at range .
2.3. For the radar described in Problem 2.2, assume the minimum detectable signal is

. Compute the radar maximum range for .
2.4. Consider an L-band radar with the following specifications: operating frequency

, bandwidth , and antenna gain . Compute the peak
power, the pulse width, and the minimum detectable signal for this radar. Assume target RCS

, the single pulse SNR is , noise figure , temperature
, and maximum range .

2.5. Repeat the example in Section 2.1 with , , and .

2.6. Show that the DC component is the dominant spectral line for high PRF waveforms.
2.7. Repeat the example in Section 2.3 with , , ,

, , and .

2.8. Consider a low PRF C-band radar operating at . The antenna has a cir-

cular aperture with radius . The peak power is  and the pulse width is

. The PRF is , and the effective temperature is . Assume

radar losses  and target RCS . (a) Calculate the radar’s unambiguous
range; (b) calculate the range  that corresponds to ; (c) calculate the SNR at

.

2.9. The atmospheric attenuation can be included in the radar equation as another loss term.
Consider an X-band radar whose detection range at  includes a  atmo-
spheric loss. Calculate the corresponding detection range with no atmospheric attenuation. 
2.10. Let the maximum unambiguous range for a low PRF radar be . (a) Calculate the

SNR at  and . (b) If a target with  exists at

, what should the target RCS be at  so that the radar has the
same signal strength from both targets. 
2.11. A Millie-Meter Wave (MMW) radar has the following specifications: operating fre-
quency , PRF , pulse width , peak power ,

noise figure , circular antenna with diameter , antenna gain

, target RCS , system losses , radar scan time , radar

angular coverage , and atmospheric attenuation . Compute the following: (a)

f0 9GHz=

G 10 20 30dB=
G 30dB=

dt 0.2= 25KW

R 50Km=

5dBm 1.0 10.0 20.0m2=

f0 1500MHz= B 5MHz= G 5000=

10m2= 15.4dB F 5dB=
T0 290K= Rmax 150Km=

Pt 1MW= G 40dB= 0.5m2=

L 5dB= F 10dB= T 500K=
Ti 1.5s= dt 0.25= R 75Km=

f0 5000MHz=

2m Pt 1MW=

2 s= fr 250Hz= T0 600K=

L 15dB= 10m2=
R0 SNR 0dB=

R 0.75R0=

20Km 0.25dB Km

Rmax

1 2 Rmax 3 4 Rmax 10m2=

R 1 2 Rmax= R 3 4 Rmax=

f0 94GHz= fr 15KHz= 0.05ms= Pt 10W=

F 5dB= D 0.254m=

G 30dB= 1m2= L 8dB= Tsc 3s=

200 3dB Km



74                                                                                   Radar Systems Analysis and Design Using MATLAB®

wavelength ; (b) range resolution ; (c) bandwidth ; (d) the SNR as a function of range;
(e) the range for which ; (f) antenna beam width; (g) antenna scan rate; (h) time
on target; (i) the effective maximum range when atmospheric attenuation is considered.

2.12. Repeat the second example in Section 2.4 with , , and
.

2.13. Using Eq. (2.53), compute (as a function of ) the cross-over range for the radar

in Problem 2.11. Assume , , and .

2.14. Compute (as a function of ) the cross-over range for the radar in Problem 2.11.

Assume , , and . Assume  and . 
2.15. A certain radar is subject to interference from an SSJ jammer. Assume the following
parameters: radar peak power , radar antenna gain , radar pulse width

, radar losses , jammer power , jammer antenna gain
, jammer bandwidth , and jammer losses . Compute the

cross-over range for a  target.
2.16. A certain radar has losses of 6dB and a receiver noise figure of 8dB. It has the
requirement to detect targets within a search sector that is 360 degrees in azimuth and from 5 to
65 degrees in elevation. It must cover the search sector in 2 seconds. The RCS of the targets of
interest is 5dBsm and the radar requires 20dB of signal-to-noise ratio to declare a detection.
The required detection range of the radar is 75Km. What is the average power aperture   that
the radar must have to satisfy the above search requirements
2.17. Using Fig. 2.11 derive an expression for . Assume 100% synchronization between
the transmitter and receiver. 
2.18. A radar with antenna gain  is subject to a repeater jammer whose antenna gain is

. The repeater illuminates the radar with three fourths of the incident power on the jammer.
(a) Find an expression for the ratio between the power received by the jammer and the power

received by the radar; (b) what is this ratio when  and ?
2.19. An X-band airborne radar transmitter and an air-to-air missile receiver act as a
bistatic radar system. The transmitter guides the missile toward its target by continuously illu-
minating the target with a CW signal. The transmitter has the following specifications: peak
power ; antenna gain ; operating frequency . The mis-
sile receiver has the following characteristics: aperture ; bandwidth

; noise figure ; and losses . Assume that the bistatic RCS is
. Assume ; . Compute the SNR at the missile.

2.20. Repeat the previous problem when there is  atmospheric attenuation.
2.21. Consider an antenna with a  pattern. Let , where  is the
antenna radius,  is the wavelength, and  is the off-boresight angle. Derive Eq. (2.75). Hint:
Assume small , and expand  as an infinite series.
2.22. Compute the amount of antenna pattern loss for a phased array antenna whose two-

way pattern is approximated by  where  is the 
beam width. Assume circular symmetry.
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2.23. A certain radar has a range gate size of . Due to range gate straddle, the enve-
lope of a received pulse can be approximated by a triangular spread over three range bins. A
target is detected in range bin 90. You need to find the exact target position with respect to the
center of the range cell. (a) Develop an algorithm to determine the position of a target with
respect to the center of the cell; (b) assuming that the early, on, and late measurements are,
respectively, equal to , , and , compute the exact target position.
2.24. Compute the amount of Doppler filter straddle loss for the filter defined by

 Assume half-power frequency  and cross-over frequency

.

2.25. A radar has the following parameters: Peak power ; total losses

; operating frequency ; PRF ; duty cycle ; circular

antenna with diameter ; effective aperture is  of physical aperture; noise figure
. (a) Derive the various parameters needed in the radar equation; (b) What is the

unambiguous range? (c) Plot the SNR versus range (1Km to the radar unambiguous range) for
a 5dBsm target. (d) If the minimum SNR required for detection is 14dB, what is the detection
range for a 6dBsm target? What is the detection range if the SNR threshold requirement is
raised to 18dB?
2.26. A radar has the following parameters: Peak power ; total losses

; operating frequency ; noise figure  pulse width

; PRF ; antenna beamwidth  and . (a) What is the
antenna gain? (b) What is the effective aperture if the aperture efficiency is 60%? (c) Given a

14 dB threshold detection, what is the detection range for a target whose RCS is ?
2.27. A certain radar has losses of 5dB and a receiver noise figure of 10dB. This radar has
a detection coverage requirement that extends over 3/4 of a hemisphere and must complete it in
3 seconds. The base line target RCS is 6dBsm and the minimum SNR is 15dB. The radar detec-
tion range is less than 80Km. What is the average power aperture product for this radar so that
it can satisfy its mission?
2.28. A monostatic radar has the following parameters: Transmit power 100Kw, transmit
losses 2dB, operating Frequency 7GHz, PRF 2000Hz, pulse width 10 sec, antenna beamwidth
2  Az  X  4  El, receive losses 3dB, and receiver noise figure 12dB. Assume that the radar uses
pulses that employ 10MHz of linear frequency modulation and uses a processor that is matched
to the transmitted pulse. (a) What is the antenna gain? (b) What is the effective aperture if the
aperture efficiency is 50%? (c) What is the effective radiated power of the radar, in dBm? (d)
Given a detection threshold of 13dB, what is the detection range for a target with a radar cross-
section of 6dBsm?
2.29. A radar generates 100KW of power and has 1dB of loss between the power tube and
the antenna. The radar is monostatic with a single antenna that has a gain of 38dB. The radar is
operating at 5GHz. What is the power at the receive antenna output for the following targets:

(a) A  RCS target at a range of 30Km. (b) A 10dBsm target at a range of 50 Km.
Assume that: the total radar losses of 1dB. 
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2.30. A source with equivalent temperature  is followed by three amplifiers
with specifications shown in the table below. 

(a) Compute the noise figure for the three cascaded amplifiers. (b) Compute the effective tem-
perature for the three cascaded amplifiers. (c) Compute the overall system noise figure.

2.31. A radar has the following receiver components. They are arranged in the order
shown below

(a) What is the receiver noise figure through the RF amp and referenced to the input of the
waveguide (the first component after the antenna)? (b) What is the noise figure of the receiver
through the IF amp and referenced to the input of the RF amp? (c) What is the effective noise
temperature of the receiver through the IF amp and referenced to the input of the waveguide?
(d) Suppose you want to determine how internal noise and sky noise contribute to noise power
at various points in the receiver. Specifically, how does the noise power at the output of each
component as a function of the effective noise temperature of the antenna, Tant, and noise
bandwidth, B.  Derive four equations that will allow us to easily perform the computations. All
of your equations should be of the form  where K1 and K2 are constants.
Provide a table with the four sets of values for K1 and K2.

2.32. Prove that

 .

2.33. Show that . Hint: You may utilize the relation

 

Amplifier F, dB G, dB Te 

1 You must compute 12 350

2 10 22

3 15 35

Receiver Stages
Stage # Component Gain, dB Noise Figure, dB

1 Waveguide -2 2

2 RF Amp 28 5

3 1st Mixer -3 15

4 IF Amp 100 30

To 290K=

P B K1Tant K2+=

Jn z

n –=

1=

J n– z 1– nJn z=

Jn z 1--- z ysin ny–cos yd

0

=
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2.34. In a multiple-frequency CW radar, the transmitted waveform consists of two contin-
uous sine waves of frequencies  and . Compute the maximum
unambiguous detection range.
2.35. Consider a radar system using linear frequency modulation. Compute the range that

corresponds to . Assume a beat frequency . 

2.36. A certain radar using linear frequency modulation has a modulation frequency
, and frequency sweep . Calculate the average beat frequency dif-

ferences that correspond to range increments of  and  meters.
2.37. A CW radar uses linear frequency modulation to determine both range and range
rate. The radar wavelength is , and the frequency sweep is . Let

. (a) Calculate the mean Doppler shift; (b) compute  and  corresponding to a

target at range , which is approaching the radar with radial velocity of .
2.38. In Chapter 1 we developed an expression for the Doppler shift associated with a CW
radar (i.e., , where the plus sign is used for closing targets and the negative sign is
used for receding targets). CW radars can use the system shown in Fig. P.2.34 to determine
whether the target is closing or receding. Assuming that the emitted signal is  and the

received signal is , show that the direction of the target can be deter-

mined by checking the phase shift difference in the outputs  and .

f1 105KHz= f2 115KHz=

f· 20 10MHz= fb 1200Hz=

fm 300Hz= f 50MHz=

10 15
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 Figure P.2.34
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Appendix 2-A: Chapter 2 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “radar_eq.m” Listing
function [snr] = radar_eq(pt, freq, g, sigma, b, nf, loss, range)
% This function implements Eq. (2.22) of textbook
%% Inputs:
        % pt      == input peak power in Watts
        % freq     == radar operating frequency in Hz
        % g         == antenna gain in dB
        % sigma == radar cross section in meter squared    
        % b         == radar bandwidth in Hz
        % nf        == noise Figure in dB
    % loss     == total radar losses in dB
        % range  == range to target (single value or vector) in Km% % Outputs:
        % snr       == SNR in dB     
%
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
to_db = 10*log10(290); % noise temp. in dB
b_db = 10*log10(b); % bandwidth in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (2.22)
num = p_peak + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + to_db + b_db + nf + loss + range_pwr4_db;
snr = num - den;
return

MATLAB Program “Fig2_1.m” Listing
% Use this program to reproduce Fig. 2.1 of text.
clc
close all
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %noise figure in dB
loss = 6.0; % radar losses in dB
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range = linspace(25e3,165e3,1000); % range to target from 25 Km 165 Km, 1000 points
snr1 = radar_eq(pt, freq, g, sigma, b, nf, loss, range);
snr2 = radar_eq(pt, freq, g, sigma/10, b, nf, loss, range);
snr3 = radar_eq(pt, freq, g, sigma*10, b, nf, loss, range);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:','linewidth',1.5)
grid
legend('\sigma = 0 dBsm','\sigma = -10dBsm','\sigma = -20 dBsm')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
snr1 = radar_eq(pt, freq, g, sigma, b, nf, loss, range);
snr2 = radar_eq(pt*.4, freq, g, sigma, b, nf, loss, range);
snr3 = radar_eq(pt*1.8, freq, g, sigma, b, nf, loss, range);
figure (2)
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:','linewidth',1.5)
grid
legend('Pt = 2.16 MW','Pt = 1.5 MW','Pt = 0.6 MW')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');

MATLAB Function “lprf_req.m” Listing
function [snr] = lprf_req(pt, g, freq, sigma, np, b, nf, loss, range)
% This program implements Eq. (2.27) of textbook
%% Inputs:
        % pt       == input peak power in Watts
        % freq    == radar operating frequency in Hz
        % g        == antenna gain in dB
        % sigma  == radar cross section in meter squared
        % b == radar bandwidth in Hz
        % nf         == noise Figure in dB
        % np        == number of pulses
        % loss      == total radar losses in dB
        % range   == range to target (single value or vector) in Km
%% Outputs:
        % snr       == SNR in dB     
% 
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
to_db = 10*log10(290); % noise temp. in dB
b_db = 10*log10(b); % bandwidth in dB
np_db = 10.*log10(np); % number of pulses in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (1.68)
num = p_peak + g + g + lambda_sqdb + sigmadb + np_db;
den = four_pi_cub + k_db + to_db + b_db + nf + loss + range_pwr4_db;
snr = num - den;



80                                                                                   Radar Systems Analysis and Design Using MATLAB®

return

MATLAB Program “Fig2_2.m” Listing
% Use this program to reproduce Fig. 2.2 of text.
clc
close all
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %noise figure in dB
loss = 6.0; % radar losses in dB
np = 1;
range = linspace(25e3,225e3,1000); % range to target from 5 Km 225 Km, 1000 points
snr1 = lprf_req(pt, g, freq, sigma, np, b, nf, loss, range);
snr2 = lprf_req(pt, g, freq, sigma, 5*np, b, nf, loss, range);
snr3 = lprf_req(pt, g, freq, sigma, 10*np, b, nf, loss, range);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:','linewidth',1.5)
grid
legend('np = 10','np = 5','np = 1')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
np = linspace(1,500,500);
range = 150e3;
snr1 = lprf_req(pt, g, freq, sigma, np, b, nf, loss, range);
snr2 = lprf_req(pt, g, freq, 10*sigma, np, b, nf, loss, range);
figure (2)
plot(np,snr2,'k',np,snr1,'k -.','linewidth',1.5)
grid
legend('Baseline','\sigma = 0 dBsm')
xlabel ('No. of pulses');
ylabel ('SNR - dB'); 

MATLAB Function “hprf_req.m” Listing
function [snr] = hprf_req (pt, Ti, g, freq, sigma, dt, range, nf, loss)
% This program implements Eq. (2.31)of textbook
%% Inputs:
        % pt        == input peak power in Watts
        % freq     == radar operating frequency in Hz
        % g         == antenna gain in dB
        % sigma  == radar cross section in meter squared
        % Ti       == time on target in seconds
        % nf        == noise Figure in dB
        % dt        == duty cycle
        % loss     == total radar losses in dB
        % range  == range to target (single value or vector) in Km
%% Outputs:
        % snr       == SNR in dB     
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% 
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
pav = 10*log10(pt*dt); % compute average power in dB
Ti_db = 10*log10(Ti); % time on target in dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
to_db = 10*log10(290); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % vector of target range^4 in dB
% Implement Equation (1.72)
num = pav + Ti_db + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + to_db + nf + loss + range_pwr4_db;
snr = num - den;
return

MATLAB Program “Fig2_3.m” Listing
% Use this program to reproduce Fig. 2.3 of text.
clc
close all
clear all
pt = 10e03; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 20; % antenna gain in dB
sigma = 0.01; % radar cross section in m squared
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %noise figure in dB
loss = 8.0; % radar losses in dB
Ti = 2; % time on target in seconds
dt = .05; % 5% duty cycle
range = linspace(10e3,225e3,1000); % range to target from 10 Km 225 Km, 1000 points
snr1 = hprf_req (pt, Ti, g, freq, sigma, .05, range, nf, loss);
snr2 = hprf_req (pt, Ti, g, freq, sigma, .1, range, nf, loss);
snr3 = hprf_req (pt, Ti, g, freq, sigma, .2, range, nf, loss);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snr2,'k -.',rangekm,snr1,'k:','linewidth',1.5)
grid on
legend('dt = 20%','dt = 10%','dt = 5%')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');

MATLAB Function “power_aperture.m” Listing
function PAP = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el_angle)
% This function implements Eq. (2.38) of textbook
%% Inputs:
        % snr == SNR in dB
        % tsc        == scan time in seconds
        % sigma    == radar cross section in meter squared
        % range == range to target in Km
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        % nf          == noise Figure in dB
        % loss       == total radar losses in dB
        % az_angle    == azimuth search extent in degrees
        % el_angle     == elevation search extent in degrees
%% Outputs:
        % PAP      == power aperture product in dB      
% 
Tsc = 10*log10(tsc); % convert Tsc into dB
Sigma = 10*log10(sigma); % convert sigma to dB
four_pi = 10*log10(4.0 * pi); % (4pi) in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
To = 10*log10(290); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % target range^4 in dB
omega = (az_angle/57.296) * (el_angle / 57.296); % compute search volume in steraradians
Omega = 10*log10(omega); % search volume in dB
% implement Eq. (1.79)
PAP = snr + four_pi + k_db + To + nf + loss + range_pwr4_db + Omega - Sigma - Tsc;
return

MATLAB Program “Fig2_6.m” Listing
% Use this program to reproduce Fig. 2.6 of text.
clc
close all
clear all
tsc = 2.5; % Scan time i s2.5 seconds
sigma = 0.1; % radar cross section in m squared
te = 900.0; % effective noise temperature in Kelvins
snr = 15; % desired SNR in dB
nf = 6.0; %noise figure in dB
loss = 7.0; % radar losses in dB
az_angle = 2; % search volume azimuth extent in degrees
el_angle = 2; %serach volume elevation extent in degrees
range = linspace(20e3,250e3,1000); % range to target from 20 Km 250 Km, 1000 points
pap1 = power_aperture(snr,tsc,sigma/10,range,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el_angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,nf,loss,az_angle,el_angle);
% plot power aperture prodcut versus range
% generate Figure 2.6a
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,pap1,'k',rangekm,pap2,'k -.',rangekm,pap3,'k:','linewidth',1.5)
grid
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0 dBsm')
xlabel ('Detection range in Km');
ylabel ('Power aperture product in dB');
% generate Figure 2.6b
lambda = 0.03; % wavelength in meters
G = 45; % antenna gain in dB
ae = linspace(1,25,1000);% aperture size 1 to 25 meter squared, 1000 points
Ae = 10*log10(ae);
range = 250e3; % rnage of interset is 250 Km
pap1 = power_aperture(snr,tsc,sigma/10,range,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,nf,loss,az_angle,el_angle);
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pap3 = power_aperture(snr,tsc,sigma*10,range,nf,loss,az_angle,el_angle);
Pav1 = pap1 - Ae;
Pav2 = pap2 - Ae;
Pav3 = pap3 - Ae;
figure(2)
plot(ae,Pav1,'k',ae,Pav2,'k -.',ae,Pav3,'k:','linewidth',1.5)
grid
xlabel('Aperture size in square meters')
ylabel('Pav in dB')
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0dBsm')

MATLAB Program “ssj_req.m” Listing
function [BR_range] = ssj_req (pt, g, freq, sigma, br, loss, ...
   pj, bj, gj, lossj)
% This function implements Eq.s (2.50) and Eq. (2.52). It also generates
% plot 2.7a
% % Inputs
        % pt    == radar peak power in Watts
        % g       == radar antenna gain in dB
        % freq   == radar operating frequency in Hz
        % sigma == target RCS in squared meters
        % br      == radar bandwidth in Hz
        % loss   == radar losses in dB
        % pj       == jammer power in Watts
        % bj       == jammer bandwidth in Hz
        % gj       == jammer antenna gain in dB
        % loosj   == jammer losses in dB
%% Outputs
        % BR_range  == cross over range in Km
 %       
c = 3.0e+8;
lambda = c / freq;
lambda_db = 10*log10(lambda^2);
if (loss == 0.0)
   loss = 0.000001;
end
if (lossj == 0.0)
   lossj =0.000001;
end
sigmadb =10*log10(sigma);
pt_db = 10*log10(pt);
b_db = 10*log10(br);
bj_db = 10*log10(bj);
pj_db = 10*log10(pj);
factor = 10*log10(4.0 *pi);
BR_range = sqrt((pt * (10^(g/10)) * sigma * bj * (10^(lossj/10))) / ...
   (4.0 * pi * pj * (10^(gj/10)) * br *  (10^(loss/10)))) / 1000.0  
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.* 10*log10(BR_range) - loss 
index =0;
for ran_var = .1:10:10000
   index = index + 1;
   ran_db = 10*log10(ran_var * 1000.0);
   ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - 2.0 * ran_db - bj_db - lossj + s_at_br ;
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   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.* ran_db - loss + s_at_br ;
end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.');
axis([.1 1000 -90 40])
xlabel ('Range normalized to cross-over range');
legend('Target echo','SSJ')
ylabel ('Relative signal or jamming amplitude - dB');
grid

MATLAB Program “Fig2_7b.m” Listing
% This program produces Fig 2.7 of text
clc;
clear all
close all
pt = 50.0e+3;    % peak power in Watts
g = 35.0;       % antenna gain in dB
freq = 5.6e+9;  % radar operating frequency in Hz
sigma = 10.0 ;    % radar cross section in m squared
b = 667.0e+3;    % radar operating bandwidth in Hz
loss = 0.1000;     % radar losses in dB
rangej = 50.0; % range to jammer in Km
pj = 200.0;    % jammer peak power in Watts
bj = 50.0e+6;  % jammer operating bandwidth in Hz
gj = 10.0;       % jammer antenna gain in dB
lossj = .10;    % jammer losses in dB
[BR_range] = ssj_req (pt, g, freq, sigma, b, loss, ...
   pj, bj, gj, lossj);
pj_var = 1:1:1000;
BR_pj = sqrt((pt * (10^(g/10)) * sigma * bj * (10^(lossj/10))) ...
   ./ (4.0 * pi .* pj_var * (10^(gj/10)) * b * (10^(loss/10)))) ./ 1000;
pt_var = 1000:100:10e6;
BR_pt = sqrt((pt_var * (10^(g/10)) * sigma * bj * (10^(lossj/10))) ...
   ./ (4.0 * pi .* pj * (10^(gj/10)) * b * (10^(loss/10)))) ./ 1000;
figure (2)
subplot (2,1,1)
semilogx (BR_pj,'k')
xlabel ('Jammer peak power - Watts');
ylabel ('Cross-over range - Km')
grid
subplot (2,1,2)
semilogx (BR_pt,'k')
xlabel ('Radar peak power - KW')
ylabel ('Cross-over range - Km')
grid

MATLAB Function “sir.m” Listing
function [SIR] = sir (pt, g, sigma, freq, tau, loss, R, pj, bj, gj, lossj);
% This function implements Eq. (2.53) of textbook
% % Inputs
        % pt    == radar peak power in Watts
        % g       == radar antenna gain in dB
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        % freq   == radar operating frequency in Hz
        % tau   == radar pulse width in seconds
        % loss   == radar losses in dB
        % R       == target range in Km, can be single value or vector
        % pj     == jammer power in Watts
        % bj     == jammer bandwidth in Hz
        % gj    == jammer antenna gain in dB
        % loosj == jammer losses in dB
%% Outputs
        % SIR  == S/(J+N) in dB
%
c = 3.0e+8;
k = 1.38e-23;
%R = linspace(rmin, rmax, 1000);
range = R .* 1000;
lambda = c / freq;
gj = 10^(gj/10);
G = 10^(g/10);
ERP1 = pj * gj / lossj;
ERP_db = 10*log10(ERP1);
Ar = lambda *lambda * G / 4 /pi;
num1 = pt * tau * G * sigma * Ar;
demo1 = 4^2 * pi^2 * loss .* range.^4;
demo2 = 4 * pi * bj .* range.^2;
num2 = ERP1 * Ar;
val11 = num1 ./ demo1;
val21 = num2 ./demo2; 
sir = val11 ./ (val21 + k * 290);
SIR = 10*log10(sir);
end

MATLAB Program “Fig2_8.m” Listing
% This program generates Fig. 2.8 of text
clc
clear all
close all
R = linspace(10,400,5000);
[SIR] = sir (50e3, 35, 10, 5.6e9, 50e-6, 5, R, 200, 50e6, 10, .3);
figure (1)
plot (R, SIR,'k')
xlabel ('Detection range in Km');
ylabel ('S/(J+N) in dB')
grid

MATLAB Function “burn_thru.m” Listing
function [Range] = burn_thru (pt, g, sigma, freq, tau, loss, pj, bj, gj, lossj,sir0,ERP);
% This function implements Eq. (254) of textbook
% % Inputs
        % pt     == radar peak power in Watts
        % g        == radar antenna gain in dB
        % freq    == radar operating frequency in Hz
        % tau    == radar pulse width in seconds
        % loss    == radar losses in dB



86                                                                                   Radar Systems Analysis and Design Using MATLAB®

        % pj      == jammer power in Watts
        % bj      == jammer bandwidth in Hz
        % gj      == jammer antenna gain in dB
        % loosj == jammer losses in dB
        % sir0  == desired SIR in dB
        % ERP  == desired jammer ERP, single value or vector in Watts
%% Outputs
        % Range == burn through range in Km
%
c = 3.0e+8;
k = 1.38e-23;
sir0 = 10^(sir0/10);
lambda = c / freq;
gj = 10^(gj/10);
G = 10^(g/10);
Ar = lambda *lambda * G / 4 /pi;
num32 = ERP .* Ar;
demo3 = 8 *pi * bj * k * 290;
demo4 = 4^2 * pi^2 * k * 290 * sir0;
val1 = (num32 ./ demo3).^2;
val2 = (pt * tau * G * sigma * Ar)/(4^2 * pi^2 * loss * sir0 * k * 290);
val3 = sqrt(val1 + val2);
val4 = (ERP .* Ar) ./ demo3;
Range = sqrt(val3 - val4) ./ 1000;
end

MATLAB Program “Fig2_9.m” Listing
% This program generates Fig. 2.9 of text
clc
clear all
close all
ERP = linspace(1,1000,1000);
[Range] = burn_thru (50e3, 35, 10, 5.6e9, 0.5e-3, 5, 200,500e6, 10, 0.3, 15,ERP);
figure (1)
plot (10*log10(ERP), Range,'k')
xlabel (' Jammer ERP in dB')
ylabel ('Burnthrough range in Km')
grid

MATLAB Function “soj_req.m” Listing
function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...
   pj, bj,gj, lossj, gprime, rangej)
% This function implements Eqs. (257) and (2.58) of textbook
%% Inputs
        % pt    == radar peak power in Watts
        % g       == radar antenna gain in dB
        % sigma  == target RCS in sdBsm 
        % freq     == radar operating frequency in Hz
        % tau     == radar pulse width in seconds
        % loss    == radar losses in dB
        % range  == range to target in Km
        % pj      == jammer power in Watts
        % bj      == jammer bandwidth in Hz
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        % gj      == jammer antenna gain in dB
        % loosj   == jammer losses in dB
        % gprime  == jammer antenna gain
        % rangej   == range to jammer in Km
%% Outputs
        % BR_Range  == burn through range in Km
%
c = 3.0e+8;
lambda = c / freq;
lambda_db = 10*log10(lambda^2);
if (loss == 0.0)
   loss = 0.000001;
end
if (lossj == 0.0)
   lossj =0.000001;
end
sigmadb = 10*log10(sigma);
range_db = 10*log10(range * 1000.);
rangej_db = 10*log10(rangej * 1000.);
pt_db = 10*log10(pt);
b_db = 10*log10(b);
bj_db = 10*log10(bj);
pj_db = 10*log10(pj);
factor = 10*log10(4.0 *pi);
BR_range = ((pt * 10^(2.0*g/10) * sigma * bj * 10^(lossj/10) * ...
   (rangej)^2) / (4.0 * pi * pj * 10^(gj/10) * 10^(gprime/10) * ...
   b * 10^(loss/10)))^.25 / 1000. 
end

MATLAB Program “Fig2_10.m” Listing
% This program generates Fig. 2.10 of text
clc
clear all
close all
pt = 5.0e+3; pt_db = 10*log10(pt);
g = 35.0;       
freq = 5.6e+9;  lambda = 3e8 / freq;
lambda_db = 10*log10(lambda^2);
sigma = 10 ;  
b = 667.0e+3;  b_db = 10*log10(b);
range = 20*1852;    range_db = 10*log10(range * 1000.);
gprime = 10.0;   sigmadb = 10*log10(sigma);
loss = 0.01;    
rangej = 12*1852; rangej_db = 10*log10(rangej * 1000.);
pj = 5.0e+3;   pj_db = 10*log10(pj);  
bj = 50.0e+6;  bj_db = 10*log10(bj);
gj = 30.0;  
lossj =0.3;
factor = 10*log10(4.0 *pi);
[BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, pj, bj,gj, lossj, gprime, rangej)
 soj_req (pt, g, sigma, b, freq, loss, range, pj, bj,gj, lossj, gprime, rangej)
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - 3.0 * factor - 4.0 * 10*log10(BR_range) - loss  
index =0;
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for ran_var = .1:1:1000;
   index = index + 1;
   ran_db = 10*log10(ran_var * 1000.0);
   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.0 * ran_db - loss + s_at_br;
   soj(index) = s_at_br - s_at_br;
end
 ranvar = .1:1:1000;
%ranvar = ranvar ./BR_range;
semilogx (ranvar,s,'k',ranvar,soj,'k-.','linewidth',1.5);
xlabel ('Range normalized to cross-over range');
legend('Target echo','SOJ')
ylabel ('Relative signal or jamming amplitude - dB');
grid

MATLAB Function “range_calc.m” Listing 
function [output_par] = range_calc (pt, tau, fr, time_ti, gt, gr, freq, ...
   sigma, te, nf, loss, snro, pcw, range, radar_type, out_option)
c = 3.0e+8;
lambda = c / freq;
if (radar_type == 0)
   pav = pcw;
else
   % Compute the duty cycle
   dt = tau * 0.001 * fr;
   pav = pt * dt;
end
pav_db = 10.0 * log10(pav);
   lambda_sqdb = 10.0 * log10(lambda^2);
   sigmadb = 10.0 * log10(sigma);
   for_pi_cub = 10.0 * log10((4.0 * pi)^3);

  k_db = 10.0 * log10(1.38e-23);
  te_db = 10.0 * log10(te);
  ti_db = 10.0 * log10(time_ti);
  range_db = 10.0 * log10(range * 1000.0);
if (out_option == 0)
    %compute SNR
    snr_out = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
    for_pi_cub - k_db - te_db - nf - loss - 4.0 * range_db
   index = 0;
   for range_var = 10:10:1000
      index = index + 1;
      rangevar_db = 10.0 * log10(range_var * 1000.0);
      snr(index) = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
         for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
   end
   var = 10:10:1000;
   plot(var,snr,'k')
   xlabel ('Range in Km');
   ylabel ('SNR in dB');
   grid
else
  range4 = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
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     for_pi_cub - k_db - te_db - nf - loss - snro;
  range = 10.0^(range4/40.) / 1000.0
  index = 0;
  for snr_var = -20:1:60
     index = index + 1;
     rangedb = pav_db + gt + gr + lambda_sqdb + sigmadb + ti_db - ...
        for_pi_cub - k_db - te_db - nf - loss - snr_var;
     range(index) = 10.0^(rangedb/40.) / 1000.0;
  end
  var = -20:1:60;
  plot(var,range,'k')
  xlabel ('Minimum SNR required for detection in dB');
  ylabel ('Maximum detection range in Km');
  grid
end
return
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Part II - Radar Signals and Signal Processing

Chapter 3

In this chapter a top-level overview of elements of signal theory that are relevant to radar
signal processing is presented. It is assumed that the reader has sufficient and adequate back-
ground in signals and systems as well as in Fourier transform and its associated properties.    

3.1. Signal Classifications
In general, electrical signals can represent either current or voltage and may be classified

into two main categories: energy signals and power signals. Energy signals can be determinis-
tic or random, while power signals can be periodic or random. A signal is said to be random if
it is a function of a random parameter (such as random phase or random amplitude). Addition-
ally, signals may be divided into lowpass or bandpass signals. Signals that contain very low
frequencies (close to DC) are called lowpass signals; otherwise they are referred to as band-
pass signals. Through modulation, lowpass signals can be mapped into bandpass signals. 

The average power  for the current or voltage signal  over the interval  across
a  resistor is 

. Eq. (3.1)

The signal  is said to be a power signal over a very large interval , if and only
if it has finite power and satisfies the relation:

. Eq. (3.2)

Using Parseval’s theorem, the energy  dissipated by the current or voltage signal  across
a  resistor, over the interval , is 

. Eq. (3.3)

P x t t1 t2
1

P 1
t2 t1–
-------------- x t 2 td

t1

t2

=

x t T t2 t1–=

0 1
T
--- x t 2 td

T– 2

T 2

T
lim

E x t
1 t1 t2

E x t 2 td

t1

t2

=

Linear Systems and Complex 
Signal Representation



94                                                                                   Radar Systems Analysis and Design Using MATLAB®

The signal  is said to be an energy signal if and only if it has finite energy,

. Eq. (3.4)

A signal  is said to be periodic with period  if and only if 

Eq. (3.5)

where  is an integer.

Example:

Classify each of the following signals as an energy signal, a power signal, or neither. All sig-
nals are defined over the interval : , .

Solution:

.  

Note that since the cosine function is periodic, the limit is not necessary.

 

3.2. The Fourier Transform
The Fourier Transform (FT) of the signal  is

Eq. (3.6)

Eq. (3.7)

and the Inverse Fourier Transform (IFT) is

Eq. (3.8)

Eq. (3.9)

x t

E x t 2 td

–

=

x t T

x t x t nT+= for all t

n

– t x1 t tcos 2tcos+= x2 t 2t2–exp=

Px1

1
T
--- tcos 2tcos+ 2 td

T 2–

T 2

1= = power signal

Ex2
e

2t2– 2
td

–

2 e 2 2t2–

0

dt 2
2 2
-------------- 1---

2
---= = = = energy signal

x t

F x t X x t e j t– td

–

= =

F x t X f x t e j2 f t– td

–

= =

F 1– X x t 1
2
------ X ej t d

–

= =

F 1– X f x t X f ej2 ft fd

–

= =



Systems Classification 95                                                                                                                                                                                                                                                                         

where, in general,  represents time, while  and  represent frequency in radians per
second and Hertz, respectively. In this book, we will use both notations for the transform, as
appropriate (i.e.,  or ).

3.3. Systems Classification
Any system can mathematically be represented as a transformation (mapping) of an input

signal into an output signal. This transformation or mapping relationship between the input
signal  and the corresponding output signal  can be written as

. Eq. (3.10)

The relationship described in Eq. (3.10) can be linear or nonlinear, time invariant or time vary-
ing, causal or noncausal, and stable or nonstable systems. When the input signal is unit impulse
(Dirac delta function) , the output signal is referred to as the system’s impulse response

.

3.3.1. Linear and Nonlinear Systems

A system is said to be linear if superposition holds true. More specifically, if

Eq. (3.11)

then for a linear system

Eq. (3.12)

for any constants . If the relationship in Eq. (3.12) is not true, the system is said to be
nonlinear.

3.3.2. Time Invariant and Time Varying Systems

A system is said to be time invariant (or shift invariant) if a time shift at its input produces
the same time shift at its output. That is if 

Eq. (3.13)

then
, Eq. (3.14)

If the above relationship is not true, the system is called a time varying system.

Any Linear Time Invariant (LTI) system can be described using the convolution integral
between the input signal and the system’s impulse response, as 

Eq. (3.15)

where the operator  is used to symbolically describe the convolution integral. In the fre-
quency domain, convolution translates into multiplication. That is 
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. Eq. (3.16)

 is the FT for  and it is referred to as the system transfer function.

3.3.3. Stable and Nonstable Systems

A system is said to be stable if every bounded input signal produces a bounded output signal.
From Eq. (3.15) 

. Eq. (3.17)

If the input signal is bounded, then there is some finite constant  such that

. Eq. (3.18)

Therefore, 

Eq. (3.19)

which can be finite if and only if 

. Eq. (3.20)

Thus, the requirement for stability is that the impulse response must be absolutely integrable.
Otherwise, the system is said to be unstable.

3.3.4. Causal and Noncausal Systems

A causal (or physically realizable) system is one whose output signal does not begin before
the input signal is applied. Thus, the following relationship is true when the system is causal: 

. Eq. (3.21)

A system that does not satisfy Eq. (3.21) is said to be noncausal which means it cannot exist in
the real-world.

3.4.  Signal Representation Using the Fourier Series
A set of functions  is said to be orthogonal over the interval

 if and only if 

Eq. (3.22)
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where the asterisk indicates complex conjugation and  are constants. If  for all ,
then the set  is said to be an orthonormal set. An electrical signal  can be expressed over
the interval  as a weighted sum of a set of orthogonal functions as 

Eq. (3.23)

where  are, in general, complex constants and the orthogonal functions  are called
basis functions. If the integral-square error over the interval  is equal to zero as 
approaches infinity, i.e., 

Eq. (3.24)

then the set  is said to be complete, and Eq. (3.23) becomes an equality. The con-
stants  are computed as

. Eq. (3.25)

Let the signal  be periodic with period , and let the complete orthogonal set  be 

. Eq. (3.26)

Then the complex exponential Fourier series of  is

. Eq. (3.27)

Applying Eq. (3.25) yields

. Eq. (3.28)

The FT of Eq. (3.27) is given by

Eq. (3.29)

where  is delta function. When the signal  is real, we can compute its trigonometric
Fourier series from Eq. (3.27) as 

Eq. (3.30)
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Eq. (3.31)

Eq. (3.32)

. Eq. (3.33)

The coefficients  are all zeros when the signal  is an odd function of time. Alternatively,
when the signal is an even function of time, then all  are equal to zero. 

Consider the periodic energy signal defined in Eq. (3.30). The total energy associated with
this signal is then given by

. Eq. (3.34)

3.5. Convolution and Correlation Integrals
The convolution  between the signals  and  is defined by

Eq. (3.35)

where  is a dummy variable. Convolution is commutative, associative, and distributive. More
precisely,

. Eq. (3.36)

For the convolution integral to be finite at least one of the two signals must be an energy sig-
nal. The convolution between two signals can be computed using the FT:

. Eq. (3.37)

Consider an LTI system with impulse response  and input signal . It follows that the
output signal  is equal to the convolution between the input signal and the system impulse
response, 

. Eq. (3.38)

The cross-correlation function between the signals  and  is

. Eq. (3.39)
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Again, at least one of the two signals should be an energy signal for the correlation integral to
be finite. The cross-correlation function measures the similarity between the two signals. The
peak value of  and its spread around this peak are an indication of how good this simi-
larity is. This similarity is measured by a factor called the correlation coefficient, denoted by

. For example, consider the signals  and , the correlation coefficient is 

, Eq. (3.40)

clearly the correlation coefficient is limited to , with  indicating no
similarity while  indicates 100% similarity between the signals  and .

The cross-correlation integral can be computed as

, Eq. (3.41)

When , we get the autocorrelation integral, 

, Eq. (3.42)

Note that the autocorrelation function is denoted by  rather than . When the sig-
nals  and  are power signals, the correlation integral becomes infinite, and thus time
averaging must be included. More precisely,

, Eq. (3.43)

3.5.1. Energy and Power Spectrum Densities 

Consider an energy signal . From Parseval’s theorem, the total energy associated with
this signal is

, Eq. (3.44)

When  is a voltage signal, the amount of energy dissipated by this signal when applied
across a network of resistance  is

, Eq. (3.45)
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. Eq. (3.46)

The quantity  represents the amount of energy spread per unit frequency across a
 resistor; therefore, the Energy Spectrum Density (ESD) function for the energy signal
 is defined as

. Eq. (3.47)

The ESD at the output of an LTI system when  is at its input is

Eq. (3.48)

where  is the FT of the system impulse response, . It follows that the energy present
at the output of the system is 

. Eq. (3.49)

Example: 

The voltage signal  is applied to the input of a lowpass LTI system. The
system bandwidth is , and its input resistance is . If  over the interval

 and zero elsewhere, compute the energy at the output.

Solution: 
From Eq. (2.49) one computes

.  

Using Fourier transform tables and substituting  yields

.  

Completing the integration yields

.  

Note that an infinite bandwidth would give , only 11% larger.

The total power associated with a power signal  is

. Eq. (3.50)
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. Eq. (3.51)

It can be shown that 

. Eq. (3.52)

Let the signals  and  be two periodic signals with period . The complex exponen-
tial Fourier series expansions for those signals are, respectively, given by

Eq. (3.53)

. Eq. (3.54)

The power cross-correlation function  was given in Eq. (3.43) and is repeated here as
Eq. (3.55),

. Eq. (3.55)

Note that since both signals are periodic the limit is no longer necessary in Eq. (3.55). Substi-
tuting Eqs. (3.53) and (2.54) into Eq. (3.55), collecting terms, and using the definition of
orthogonality, yields

. Eq. (3.56)

When , Eq. (3.56) becomes the power autocorrelation function,

. Eq. (3.57)

The power spectrum and cross-power spectrum density functions are then computed as the
FT of Eqs. (3.57) and (3.56), respectively. More precisely,

Eq. (3.58a)

. Eq. (3.58b)
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The line (or discrete) power spectrum is defined as the plot of  versus , where the lines

are  apart. The DC power is , and the total power is .

Consider a signal  and its FT . The corresponding autocorrelation function and
power spectrum density are, respectively,  and . A few very useful relations that
will be utilized often in this book include

Eq. (3.59)

Eq. (3.60)

 Eq. (3.61)

. Eq. (3.62)

Note that Eq. (3.60) or Eq. (3.61) represents the total DC power (in the case of a power signal)
or voltage (in the case of an energy signal). Equation (3.62) represents the signal’s total power
(for power signals) or total energy (for energy signals).

3.6. Bandpass Signals
Signals that contain significant frequency composition at a low frequency band including

DC are called lowpass (LP) signals. Signals that have significant frequency composition
around some frequency away from the origin are called bandpass (BP) signals. A real BP sig-
nal  can be represented mathematically by

Eq. (3.63)

where  is the amplitude modulation or envelope,  is the phase modulation,  is the
carrier frequency, and both  and  have frequency components significantly smaller
than . The frequency modulation is

Eq. (3.64)

and the instantaneous frequency is

. Eq. (3.65)
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If the signal bandwidth is  and  is very large compared to , then the signal  is
referred to as a narrow bandpass signal. 

Bandpass signals can also be represented by two lowpass signals known as the quadrature
components; in this case Eq. (3.63) can be rewritten as

Eq. (3.66)

where  and  are real LP signals referred to as the quadrature components and are
given, respectively, by

. Eq. (3.67)

3.6.1. The Analytic Signal (Pre-Envelope) 

Given a real-valued signal , its Hilbert transform is

 Eq. (3.68)

Observation of Eq. (3.68) indicates that the Hilbert transform is computed as the convolution
between the signals  and . More precisely,

. Eq. (3.69)

The Fourier transform of  is 

Eq. (3.70)

where the function  is given by

. Eq. (3.71)

Thus, the effect of the Hilbert transform is to introduce a phase shift of  on the spectra of
. It follows that,

. Eq. (3.72)

The analytic signal  corresponding to the real signal  is obtained by canceling the
negative frequency contents of . Then, by definition

Eq. (3.73)
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or equivalently,
. Eq. (3.74)

It follows that

. Eq. (3.75)

The analytic signal is often referred to as the pre-envelope of  because the envelope of
 can be obtained by simply taking the modulus of . 

3.6.2. Pre-Envelope and Complex Envelope of Bandpass Signals

The Hilbert transform for the bandpass signal defined in Eq. (3.66) is 

. Eq. (3.76)

The subscript  is used to indicate that  is a bandpass signal. The corresponding band-
pass analytic signal (pre-envelope) is then given by 

Eq. (3.77)

using Eq. (3.66) and Eq. (3.76) into Eq. (3.77) and collecting terms yields

. Eq. (3.78)

The signal  is the complex envelope of . Thus, the envelope
signal and associated phase deviation are given by

Eq. (3.79)

. Eq. (3.80)

In the remainder of this text, unless it is indicated to be otherwise, all signals will be consid-
ered to be bandpass signals and consequently the subscript  will not be used. More specifi-
cally, a bandpass signal  and its corresponding pre-envelope (analytic signal) and complex
envelope will shown as

Eq. (3.81)

Eq. (3.82)

. Eq. (3.83)

Obtaining the complex envelope for any bandpass signal requires extraction of the quadra-
ture components. Figure 3.1 shows how the quadrature components can be extracted from a
bandpass signal. First, the bandpass signal is split into two parts; one part is multiplied by

 and the other is multiplied by . From the figure, the two signals 
and  are,

Eq. (3.84)

. Eq. (3.85)

Utilizing the appropriate trigonometry identities and after lowpass filtering the quadrature
components are extracted. 
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Example: 

Extract the quadrature components, frequency modulation, instantaneous frequency, ana-
lytic signal, and complex envelope for the signals:

(a) ; (b) .

Solution: 

(a) The quadrature components are extracted as described in Fig. 3.1. Define

 , , 

then 

 

.

Thus, the output of the LPFs are

.

From Eq. (3.64) and Eq. (3.65) we get

.

Finally the complex envelope and the analytic signal are given by

(b) 

which can be rewritten as

LP Filter

LP Filter

2 2 f0tcos
x t xI t 2 f0tcos xQ t 2 f0tsin–=

2 2 f0tsin–
xQ t

xI t

Figure 3.1. Extraction of quadrature components.
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and

,

which can be rewritten as

.

Thus, the outputs of the LPFs are

.

From Eq. (3.64) and Eq.(3.65) we get

.

The complex envelope is 

,

which can be written as

.

Finally, the analytic signal is 

.

3.7. Spectra of a Few Common Radar Signals 
The spectrum of a given signal describes the spread of its energy in the frequency domain.

An energy signal (finite energy) can be characterized by its Energy Spectrum Density (ESD)
function, while a power signal (finite power) is characterized by the Power Spectrum Density
(PSD) function. The units of the ESD are Joules/Hertz and the PSD has units Watts/Hertz.

3.7.1. Continuous Wave Signal

Consider a Continuous Wave (CW) waveform given by

. Eq. (3.86)

The FT of  is 

. Eq. (3.87)

 is the Dirac delta function. As indicated by the amplitude spectrum shown in Fig. 3.2, the
signal  has infinitesimal bandwidth, located at .
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3.7.2. Finite Duration Pulse Signal

Consider the time-domain signal  given by

Eq. (3.88)

. Eq. (3.89)

The Fourier transform of the  function is

Eq. (3.90)

where 

. Eq. (3.91)

It follows that the FT is 

, Eq. (3.92)

which can be written as

. Eq. (3.93)

The amplitude spectrum of  is shown in Fig. 3.3. It is made up of two  functions, as
defined in Eq. (3.93), centered at . 

frequency
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 Figure 3.2. Continuous sine wave and its amplitude spectrum.
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3.7.3. Periodic Pulse Signal

In this case, consider the coherent gated CW waveform  given by

. Eq. (3.94)

The signal  is periodic, with period  (recall that  is the PRF), of course the

condition  is assumed. The FT of the signal  is 

Eq. (3.95)

The complex exponential Fourier series of the summation inside Eq. (3.95) is

Eq. (3.96)

where the Fourier series coefficients  are given by (see Eq. 3.28)

. Eq. (3.97)
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 Figure 3.3. Finite duration pulse and its amplitude spectrum.
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It follows that

Eq. (3.98)

where the relation  was used. Substituting Eq. (3.98) into Eq. (3.95) yields the FT of
. That is

. Eq. (3.99)

The amplitude spectrum of  has two parts centered at . The spectrum of the summa-
tion part is an infinite number of delta functions repeated every , where the nth line is modu-
lated in amplitude with the value corresponding to . Therefore, the overall
spectrum consists of an infinite number of lines separated by  and have  envelope
that corresponds to . This is illustrated in Fig. 3.4, for the positive portion of the spectrum
only. 

3.7.4. Finite Duration Pulse Train Signal

Define the function  as 

Eq. (3.100)
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amplitude spectrum (only positive portion of spectrum is shown).
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where 

. Eq. (3.101)

The amplitude spectrum of the signal  is 

Eq. (3.102)

where  is the FT of . This means that the amplitude spectrum of the signal  is
equal to replicas of  centered at . Given this conclusion, one can then focus on com-
puting . 

The signal  can be written as (see top portion of Fig. 3.5)

Eq. (3.103)

where

. Eq. (3.104)
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It follows that the FT of Eq. (3.103) can be computed using analysis similar to that which led
to Eq. (3.99). More precisely, 

Eq. (3.105)

and the FT of  is

. Eq. (3.106)

Using these results, the FT of  can be written as

. Eq. (3.107)

Therefore, the overall spectrum of  consists of a two equal positive and negative por-
tions, centered at . Each portion is made up of   functions repeated every 
with envelope corresponding to . This is illustrated in Fig. 3.5; only the positive
portion of the spectrum is shown. 

3.7.5. Linear Frequency Modulation (LFM) Signal

Frequency or phase modulated signals can be used to achieve much wider operating band-
widths. Linear Frequency Modulation (LFM) is very commonly used in most modern radar
systems. In this case, the frequency is swept linearly across the pulse width, either upward (up-
chirp) or downward (down-chirp). Figure 3.6 shows a typical example of an LFM waveform.
The pulse width is , and the bandwidth is .

 The LFM up-chirp instantaneous phase can be expressed by

, Eq. (3.108)

where  is the radar center frequency, and  is the LFM coefficient. Thus, the
instantaneous frequency is 

. Eq. (3.109)

Similarly, the down-chirp instantaneous phase and frequency are given, respectively, by

Eq. (3.110)

. Eq. (3.111)
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Eq. (3.112)

where  denotes a rectangular pulse of width . Remember that the signal  is
the analytic signal for the LMF waveform. It follows that 

Eq. (3.113)

. Eq. (3.114)

The spectrum of the signal  is determined from its complex envelope . The com-
plex exponential term in Eq. (3.114) introduces a frequency shift about the center frequency

. Taking the FT of  yields
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Figure 3.6. Typical LFM waveforms. 
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. Eq. (3.115)

Let , and perform the change of variable

. Eq. (3.116)

Thus, Eq. (3.115) can be written as

Eq. (3.117)

Eq. (3.118)

Eq. (3.119)

. Eq. (3.120)

The Fresnel integrals, denoted by  and , are defined by

 and . Eq. (3.121)

Fresnel integrals can be approximated by 

Eq. (3.122)

. Eq. (3.123)

Note that  and . Figure 3.7 shows a plot of both  and
 for . Using Eq. (3.121) into Eq. (3.118) and performing the integration yield

. Eq. (3.124)

Figure 3.8 shows typical plots for the LFM real part, imaginary part, and amplitude spec-
trum. The square-like spectrum shown in Fig. 3.8c is widely known as the Fresnel spectrum.
Figure 3.8 can be reproduced using MATLAB program “Fig3_8.m” listed in Appendix 3-A.
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 Figure 3.7. Fresnel integrals. 

 Figure 3.8a. Typical LFM waveform, real part.
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 Figure 3.8b. Typical LFM waveform, imaginary part.

 Figure 3.8c. Typical spectrum for an LFM waveform; Fresnel spectrum.
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3.8. Signal Bandwidth and Duration
The signal bandwidth is the range of frequency over which the signal has a nonzero spec-

trum. In general, any signal can be defined using its duration (time domain) and bandwidth
(frequency domain). A signal is said to be band-limited if it has finite bandwidth. Signals that
have finite durations (time-limited) will have infinite bandwidths, while band-limited signals
have infinite durations. The extreme case is a continuous sine-wave, whose bandwidth is infin-
itesimal.

Radar signal processing can be performed in either the time domain or frequency domain. In
either case, the radar signal processor assumes signals to be of finite duration (time-limited)
and finite bandwidth (band-limited). The trouble with this assumption is that time-limited and
band-limited signals cannot simultaneously exist. That is, a signal cannot have finite duration
and have finite bandwidth. Because of this, it is customary to assume that radar signals are
essentially limited in time and frequency. 

Essentially time-limited signals are considered to be very small outside a certain finite time
duration. If the FT of a signal is very small outside a certain finite frequency bandwidth, the
signal is called an essentially band-limited signal. A signal  over the time interval

 is said to be essentially time-limited relative to some very small signal level  if and
only if

Eq. (3.125)

where the interval  is called the effective duration. The effective duration is
defined as

. Eq. (3.126)

Similarly, a signal  over the frequency interval  is said to be essentially band-
limited relative to some small signal level  if and only if

Eq. (3.127)

where  is the FT of  and the band  is called the effective bandwidth.
The effective bandwidth is defined as

. Eq. (3.128)
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Different, but equivalent, definitions for the effective bandwidth and effective duration can be
found in the literature. In this book, the definitions cited in Burdic1 are adopted. The quantity

 is referred to as the time bandwidth product. In later chapters, it will be clear that large
time bandwidth products are desirable in radar applications since they provide better pulse
compression ratios (or compression gain). 

Range resolution is defined as the reciprocal of the effective bandwidth. In Chapter 1, prior
to introducing the concept of effective duration, the bandwidth was computed as the reciprocal
of the pulse width, an approximation that is widely used and accepted, even though it is not
quite 100% accurate. This is true since using one value or the other for the bandwidth does not
make much difference in the overall calculation of the SNR when using the radar equation.
Doppler resolution is computed as the reciprocal of the effective duration. 

3.8.1. Effective Bandwidth and Duration Calculation

A few examples for computing the effective bandwidth and duration of most common radar
signals are presented in this section. 

Single Pulse

The single pulse was analyzed in the previous section. Consider the single pulse waveform
given by

. Eq. (3.129)

The effective bandwidth for this signal can be computed using Eq. (3.128). For this purpose,
the denominator of Eq. (3.128) is

Eq. (3.130)

and its numerator is computed utilizing Eq. (3.61) as 

. Eq. (3.131)

Note that this value represents the square of the signal total energy. Therefore, the effective
bandwidth is

. Eq. (3.132)

1. Burdic, W. S., Radar Signal Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1968.
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The effective duration for the signal  is

 Eq. (3.133)

 . Eq. (3.134)

Finally, the time bandwidth product for this signal is 

. Eq. (3.135)

Finite Duration Pulse Train Signal

The finite duration train signal was defined in the previous section; its complex envelope is
given by

. Eq. (3.136)

The corresponding FT is

 . Eq. (3.137)

The total energy for this signal is

. Eq. (3.138)

It can be shown (see Problem 3.19) that 

. Eq. (3.139)
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. Eq. (3.140)

The result of Eq. (3.140) clearly indicates that the effective bandwidth of the pulse train
decreases as the length of the train is increased. This should intuitively make a lot of sense,
since the bandwidth is inversely proportional to signal duration. Of course, when  (i.e.,
single pulse case) Eq. (3.140) becomes identical to Eq. (3.132); note that in this case the factor

 would not have been present in Eq. (3.140).

The effective duration of this signal can be computed using Eq. (3.126). Again, the numera-
tor of Eq. (3.126) represents the square of the total signal energy given in Eq. (3.44). In this
case, the denominator of Eq. (3.126) is equal to unity (see Problem 3.20). Thus, the effective
duration is

Eq. (3.141)

and the time bandwidth product of this waveform is

. Eq. (3.142)

LFM Signal

In this case, the LFM complex envelope can be written as

Eq. (3.143)

where  and  is the LFM bandwidth. Make a change of variables , then
the modulus of the FT of this signal can be approximated as 

. Eq. (3.144)

The FT of the autocorrelation function is equal to the square of the modulus of the signal FT,
i.e.,

. Eq. (3.145)

Therefore, 

Eq. (3.146)
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. Eq. (3.147)

Then the effective bandwidth is

. Eq. (3.148)

The effective duration is

 . Eq. (3.149)

And the time bandwidth product for LFM waveforms is computed as

. Eq. (3.150)

3.9. Discrete Time Systems and Signals
Advances in computer hardware and in digital technologies completely revolutionized radar

systems signal and data processing techniques. Virtually all modern radar systems use some
form of a digital representation (signal samples) of their received signals for the purposes of
signal and data processing. These samples of a time-limited signal are nothing more than a
finite set of numbers (thought of as a vector) that represents discrete values of the continuous
time domain signal. These samples are typically obtained by using Analog-to-Digital (A/D)
conversion devices. Since in the digital world the radar receiver is now concerned with pro-
cessing a set of finite numbers, its impulse response will also compose a set of finite numbers.
Consequently, the radar receiver is now referred to as a discrete system. All input/output signal
relationships are now carried out using discrete time samples. It must also be noted that just as
in the case of continuous time-domain systems, the discrete systems of interest to radar appli-
cations must also be causal, stable, and linear time invariant. 

Consider a continuous lowpass signal that is essentially time-limited with duration  and
band-limited with bandwidth . This signal (as will be shown in the next section) can be com-
pletely represented by a set of  samples. Since a finite set of discrete values (samples) is
used to represent the signal, it is common to represent this signal by a finite dimensional vector
of the same size. This vector is denoted by , or simply by the sequence ,

Eq. (3.151)

where the superscript  denotes transpose operation. The value  is at least  for a real
lowpass essentially limited signal  of duration  and bandwidth . If, however, the signal
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is complex, then  is at least  and the components of the vector  are complex. The sam-
ples defined in Eq. (3.151) can be obtained from pulse-to-pulse samples at a fixed range (i.e.,
delay) of the radar echo signal. The PRF is denoted by  and the total observation interval is

; then  would be equal to . Define the radar receiver transfer function as the discrete
sequence  and the input signal sequence as ; then the output sequence  is given
by the convolution sum

Eq. (3.152)

where .

3.9.1. Sampling Theorem

Lowpass Sampling Theorem

In general, it is required to determine the necessary condition such that a signal can be fully
reconstructed from its samples by filtering, or data processing in general. The answer to this
question lies in the sampling theorem, which may be stated as follows: let the signal  be
real-valued, essentially band-limited by the bandwidth ; this signal can be fully recon-
structed from its samples if the time interval between samples is no greater than . Fig-
ure 3.9 illustrates the sampling process concept. The sampling signal  is periodic with
period , which is called the sampling interval.

The Fourier series expansion of  and the sampled signal  expressed using this Fou-
rier series definition are, respectively, given by 

Eq. (3.153)

Eq. (3.154)

. Eq. (3.155)

Taking the FT of Eq. (3.155) yields
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Figure 3.9. Concept of sampling.



122                                                                                   Radar Systems Analysis and Design Using MATLAB®

 Eq. (3.156)

where  is the FT of . Therefore, we conclude that the spectral density, , con-
sists of replicas of  spaced  apart and scaled by the Fourier series coefficients

. A lowpass filter (LPF) of bandwidth  can then be used to recover the original signal
.

When the sampling rate is increased (i.e.,  decreases), the replicas of  move farther
apart. Alternatively, when the sampling rate is decreased (i.e.,  increases), the replicas get
closer to one another. The value of  such that the replicas are tangent to one another defines
the minimum required sampling rate so that  can be recovered from its samples by using
an LPF. It follows that

. Eq. (3.157)

The sampling rate defined by Eq. (3.157) is known as the Nyquist sampling rate. When
, the replicas of  overlap, and thus  cannot be recovered cleanly from

its samples. This is known as aliasing. In practice, ideal LPF cannot be implemented; hence,
practical systems tend to oversample in order to avoid aliasing.

Example: 

Assume that the sampling signal  is given by .

Compute an expression for .

Solution: 

The signal  is called the Comb function, with exponential Fourier series 

.

It follows that

.

Taking the Fourier transform of this equation yields

.

It is desired to develop a general expression from which any lowpass signal can be recovered
from its samples, provided that Eq. (3.157) is satisfied. In order to do that, let  and 
be the desired lowpass signal and its corresponding samples, respectively. Then an expression
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for  in terms of its samples can be derived as follows: First, obtain  by filtering the
signal  using an ideal LPF whose transfer function is

. Eq. (3.158)

Thus,

. Eq. (3.159)

The signal  is now obtained from the inverse FT of Eq. (3.159) as

.Eq. (3.160)

The sampled signal  can be represented using an ideal sampling signal 

Eq. (3.161)

thus, 

. Eq. (3.162)

Substituting Eq. (3.62) into Eq. (3.160) yields an expression for the signal  in terms of its
samples 

Eq. (3.163)

Bandpass Sampling Theorem

It was established in Section 3.6 that any bandpass signal can be expressed using the quadra-
ture components. It follows that it is sufficient to construct the bandpass signal  from sam-
ples of the quadrature components . Let the signal  be essentially band-
limited with bandwidth , then each of the lowpass signals  and  are also band-lim-
ited each with bandwidth . Hence, if either of these lowpass signal sis sampled at a rate

, then the Nyquist criterion is not violated. Assume that both quadrature components
are sampled synchronously, that is

Eq. (3.164)

Eq. (3.165)

where if the Nyquist rate is satisfied, then  (unity time bandwidth product). Substitut-
ing Eq. (3.164) and Eq. (3.165) into Eq. (3.66) yields
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Eq. (3.166a)

Eq. (3.166b)

where, of course,  is assumed. This leads to the conclusion that if the total period
over which the signal  is sampled is , then  samples are required,  samples
for  and  samples for . 

3.9.2.  The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time-domain sequence
into a new domain known as the z-domain. It is defined as

Eq. (3.167)

where , and for most cases, . It follows that Eq. (3.167) can be rewritten as

. Eq. (3.168)

In the z-domain, the region over which  is finite is called the Region of Convergence
(ROC). 

Example: 

Show that .

Solution: 

Starting with the definition of the Z-transform,

.

Taking the derivative, with respect to z, of the above equation yields
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.

It follows that

.

A discrete LTI system has a transfer function  that describes how the system operates
on its input sequence  in order to produce the output sequence . The output sequence

 is computed from the discrete convolution between the sequences  and :

. Eq. (3.169)

However, since practical systems require the sequence  and  to be of finite length,
we can rewrite Eq. (3.169) as

. Eq. (3.170)

 denotes the input sequence length. The Z-transform of Eq. (3.170) is

Eq. (3.171)

and the discrete system transfer function is

. Eq. (3.172)

Finally, the transfer function  can be written as

Eq. (3.173)

where  is the amplitude response, and  is the phase response.

3.9.3.  The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that transforms a discrete
sequence, usually from the time domain into the frequency domain, in order to explicitly deter-
mine the spectral information for the sequence. The time-domain sequence can be real or com-
plex. The DFT has finite length  and is periodic with period equal to . The discrete Fourier
transform pairs for the finite sequence  are defined by 

Eq. (3.174)

z 1–– nx n z n–

n –=

=

Z nx n z–
zd

d X z=

H z
x n y n

y n x n h n

y n x m h n m–

m –=

=

x n h n

y n x m h n m–

m 0=

N

=

N

Y z X z H z=

H z Y z
X z
-----------=

H z

H z
z ej=

H ej e H ej

=

H ej H ej

N N
x n

X k x n e
j2 nk

N
-------------–

n 0=

N 1–

= k; 0 N 1–=



126                                                                                   Radar Systems Analysis and Design Using MATLAB®

. Eq. (3.175)

The Fast Fourier Transform (FFT) is not a new kind of transform different from the DFT.
Instead, it is an algorithm used to compute the DFT more efficiently. There are numerous FFT
algorithms that can be found in the literature. In this book we will interchangeably use the DFT
and the FFT to mean the same thing. Furthermore, we will assume a radix-2 FFT algorithm,
where the FFT size is equal to  for some integer . 

3.9.4.  Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numerical approxima-
tion for the Fourier transform. The input signals must be truncated to a finite duration (denoted
by ) before they are sampled. This is necessary so that a finite length sequence is generated
prior to signal processing. Unfortunately, this truncation process may cause some serious prob-
lems. 

To demonstrate this difficulty, consider the time-domain signal . The spec-
trum of  consists of two spectral lines at . Now, when  is truncated to length 
seconds and sampled at a rate , where  is the number of desired samples, we pro-
duce the sequence . 

The spectrum of  would still be composed of the same spectral lines if  is an integer
multiple of  and if the DFT frequency resolution  is an integer multiple of . Unfortu-
nately, those two conditions are rarely met, and as a consequence, the spectrum of 
spreads over several lines (normally the spread may extend up to three lines). This is known as
spectral leakage. Since  is normally unknown, this discontinuity caused by an arbitrary
choice of  cannot be avoided. Windowing techniques can be used to mitigate the effect of
this discontinuity by applying smaller weights to samples close to the edges.

A truncated sequence  can be viewed as one period of some periodic sequence with
period . The discrete Fourier series expansion of  is 

. Eq. (3.176)

It can be shown that the coefficients  are given by

Eq. (3.177)

where  is the DFT of . Therefore, the Discrete Power Spectrum (DPS) for the band-
limited sequence  is the plot of  versus , where the lines are  apart,

Eq. (3.178)
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 Eq. (3.179)

. Eq. (3.180)

Before proceeding to the next section, we will show how to select the FFT parameters. For
this purpose, consider a band-limited signal  with bandwidth . If the signal is not band-
limited, an LPF can be used to eliminate frequencies greater than . In order to satisfy the
sampling theorem, one must choose a sampling frequency , such that

.   Eq. (3.181)

The truncated sequence duration  and the total number of samples  are related by
Eq. (3.182)

or equivalently,
. Eq. (3.183)

It follows that

 Eq. (3.184)

and the frequency resolution is

. Eq. (3.185)

3.9.5.  Windowing Techniques

Truncation of the sequence  can be accomplished by computing the product

Eq. (3.186)

where 

Eq. (3.187)

where . The finite sequence  is called a windowing sequence, or simply a win-
dow. The windowing process should not impact the phase response of the truncated sequence.
Consequently, the sequence  must retain linear phase. This can be accomplished by mak-
ing the window symmetrical with respect to its central point. 

If  for all , we have what is known as the rectangular window. It leads to the
Gibbs phenomenon, which manifests itself as an overshoot and a ripple before and after a dis-
continuity. Figure 3.10 shows the amplitude spectrum of a rectangular window. Note that the
first sidelobe is at  below the main lobe. Windows that place smaller weights on the
samples near the edges will have less overshoot at the discontinuity points (lower sidelobes);
hence, they are more desirable than a rectangular window. However, reduction of the sidelobes
is offset by a widening of the main lobe. Therefore, the proper choice of a windowing sequence
is a continuous trade-off between sidelobe reduction and mainlobe widening. Table 3.1 gives a
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summary of some commonly used windows with the corresponding impact on main beam wid-
ening and peak reduction.

The multiplication process defined in Eq. (3.186) is equivalent to cyclic convolution in the
frequency domain. It follows that  is a smeared (distorted) version of . To mini-
mize this distortion, we would seek windows that have a narrow main lobe and small side-
lobes. Additionally, using a window other than a rectangular window reduces the power by a
factor , where

. Eq. (3.188)

It follows that the DPS for the sequence  is now given by

Eq. (3.189)

Eq. (3.190)

Eq. (3.191)

where  is defined in Eq. (3.188). Table 3.2 lists the mathematical expressions for some
common windows. Figures 3.11 through 3.13 show the frequency domain characteristics for
these windows. These plots can be reproduced using the following MATLAB code. Figures
3.11 through 3.13 can be reproduced using the MATLAB program “Fig3_10_13.m” listed in
Appendix 3-A.
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Figure 3.10. Normalized amplitude spectrum for rectangular window. 
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TABLE 3.2. Some Common Windows. 

3.9.6. Decimation and Interpolation 

Decimation

Typically, radar systems use many signals for different functions, such as search, track, and
discrimination, to name a few. All signals are assumed to be essentially limited; however, since
these signals have different functions, they do not have the same time and bandwidth durations
( ). Earlier in this chapter, it was established that the number of samples required to suffi-
ciently recover any signal from its samples is . Therefore, it is important to use an A/
D with a high enough sampling rate to account for the largest possible number of samples
required. As a result, it is often the case that some radar signals are sampled at a much higher
rate than actually needed. 

The process for decreasing the number of samples for a given sequence is called decimation.
This is because the original data set has been reduced (decimated) in number. The process that
increases the number of data samples is referred to as interpolation. The typical implementa-

TABLE 3.1. Common Windows

Window
Null-to-Null Beamwidth Rectangular 

Window is the Reference 
Peak 

Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser ( 2.76 0.683

Kaiser ( 1.75 0.882
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tion for either operation is to alter the sampling rate, without violating the Nyquist sampling
rate, of the input sequence. In decimation, the sampling rate is decreased by increasing the time
steps between successive samples. More precisely, if the  is the original sampling interval
and  is the decimated sampling interval, then

t1
t2

Figure 3.11. Normalized amplitude spectrum for Hamming window. 

Figure 3.12. Normalized amplitude spectrum for Hanning window. 
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. Eq. (3.192)

 is the decimation ratio and it is greater than unity. If  is an integer, then decimation effec-
tively decreases the original sequence by discarding  samples of  samples. This is
illustrated in Fig. 3.14 for .

When  is not an integer, it is then necessary to first perform interpolation to determine new
values for the new sequence. For example, if , then four out of every five samples in
the decimated sequence are between samples in the original sequence and must be found by
interpolation. This is illustrated in Fig. 3.15 for . In this example, 

Figure 3.13. Normalized amplitude spectrum for Kaiser window.

t2 Dt1=

D D
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t1
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t2 3t1=

 Figure 3.14. Decimation with . Every sample of the decimated 
sequence coincides with every third sample of the original sequence. 

D 3=



132                                                                                   Radar Systems Analysis and Design Using MATLAB®

. Eq. (3.193)

which indicates that there are five samples in the decimated sequence for every eleven samples
of the original sequence. Additionally, every fifth sample in the decimated sequence is equal to
every eleventh sample of the original sequence.

Interpolation

Suppose that a signal  whose duration is  seconds has been sampled at a sampling rate
 to obtain a sequence

Eq. (3.194)

in this case, . Suppose you want to interpolate between the samples of  to gen-
erate a new sequence of size  and sampling interval , where . This effectively
corresponds to a new sampling frequency  where . A more efficient
interpolation can be performed using the FFT, as will be described in the rest of this section.

Denote the FFT of the sequences  and  by  and . Assume that the
signal  is essentially band-limited with bandwidth  where  is an integer and

. It follows that in order not to violate the sampling theorem 

. Eq. (3.195)

It is clear that the coefficients of  and  are zero for all . More precisely,

. Eq. (3.196)

Therefore, one can easily obtain the new sequence  from  by adding zeros in
between the negative and positive frequencies from

original sequence

decimated sequence

t2 2.2t1=

 Figure 3.15. Decimation with . Every fifth sample of the 
decimated sequence coincides with a sample in the original sequence. 
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Eq. (3.197)

and the sequence  is simply generated by computing the inverse DFT of the sequence
. Interpolation can also be applied to the frequency domain sequence. For this purpose,

one can simply zero pad the time-domain sequence to the desired size and then take the DFT of
the newly interpolated sequence. 

Problems
3.1. Classify each of the following signals as an energy signal, a power signal, or neither. 

(a) ,

(b) ,

(c) ,

(d) .

3.2. A definition for the instantaneous frequency was given in Eq. (3.65). A more general

definition is  where Im {.}, indicates imaginary part and  is the

analytic signal. Using this definition, calculate the instantaneous frequency for 

.

3.3. Consider the two bandpass signals  and

. Derive an expression for the complex envelope for the signal

.
3.4. Consider the bandpass signal  whose complex envelope is equal to

. Derive an expression for the autocorrelation function and the power

spectrum density for  and . Assume that the signal  is the input to an LTI filter
whose impulse response is ; give an expression for the output’s autocorrelation and power
spectrum density.
3.5. Find the autocorrelation integral of the pulse train

.

3.6. Compute the discrete convolution  where
 .

3.7. Define  and . (a) Compute the discrete correla-

tions: , , , and . (b) A certain radar transmits the signal

. Assume that the autocorrelation  is equal to

. Compute and sketch  and .

3.8. Compute the energy associated with the signal .
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3.9. (a) Prove that  and , shown in the figure below, are orthogonal over the

interval . (b) Express the signal  as a weighted sum of  and 
over the same time interval.

3.10. A periodic signal  is formed by repeating the pulse 

every 10 seconds. (a) What is the Fourier transform of ? (b) Compute the complex Fourier

series of . (c) Give an expression for the autocorrelation function  and the power

spectrum density .

3.11. If the Fourier series is  , define . Compute

an expression for the complex Fourier series expansion of .
3.12. Derive Eq. (3.52).

3.13. Show that (a) , (b) If  and ,

show that , where the average values for  and  are zeroes.

3.14. What is the power spectral density for the signal   ?

2.15. A certain radar system uses linear frequency modulated waveforms of the form

 

What are the quadrature components? Give an expression for both the modulation and instan-
taneous frequencies.

3.16. Consider the signal  and let  and

. What are the quadrature components?
3.17. Determine the quadrature components for the signal

 for .

3.18. If , determine the autocorrelation functions

 and  when .
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3.19. Derive Eq. (3.139).
3.20. Prove that the effective duration of a finite pulse train is equal to , where

 is the pulse width,  is the PRI, and  is as defined in Fig. 3.5.

3.21. Write an expression for the autocorrelation function , where 

 and . 

Give an expression for the density function .

3.22. An LTI system has impulse response .

(a) Find the autocorrelation function . (b) Assume the input of this system is
. What is the output?

3.23. Compute the Z-transform for 

(a) ,

(b) .

3.24. (a) Write an expression for the FT of . (b) Assume that you want
to compute the modulus of the FT using a DFT of size 512 with a sampling interval of 1 sec-
ond. Evaluate the modulus at frequency . Compare your answer to the theoretical
value and compute the error.
2.25. In Fig. 3.9, let 

Give an expression for .

3.26. Generate 512 samples of the signal , using a sampling inter-
val equal to . Compute the resultant spectrum and then truncate the spectrum at 15Hz.
Generate the time-domain sequence for the truncated spectrum. Determine the sampling rate of
the new sequence.
3.27. Assume that a time-domain sequence generated by using a sampling interval equal to
0.01 is given by . Decimate this sequence so that the
sampling interval is 0.02. 
3.28. Write a MATLAB program to decimate any sequence of finite length and demon-
strate it using the previous problem. 
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3.29. You are given a sequence of samples  where the sampling
interval  corresponds to twice the Nyquist rate. Give an expression to compute the samples
of  at a new sampling rate corresponding to . 
3.30. A certain band-limited signal has bandwidth . Find the FFT size
required so that the frequency resolution is . Assume radix 2 FFT and a record
length of 1 second.
3.31. Assume that a certain sequence is determined by its FFT. If the record length is 
and the sampling frequency is , find .

x kT k –=
T

x t T 0.7T=
B 20KHz=

f 50Hz=

2ms

fs 10KHz= N
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Appendix 3-A: Chapter 3 MATALAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig3_6.m” Listing
% Generates Figure 3.6 of text
close all
clear all
LFM_BW = 15e6;
tau = 1e-6;
ts = 1e-9; % 1000 samples per PW
beta = LFM_BW/tau;
t = 0: ts: +tau;
S = exp(j*pi*beta*(t.^2));
figure
subplot(2,1,1), plot(t*1e6,imag(S),'linewidth',1.5), grid
ylabel('Up-chirp LFM')
% The matched filter for S(t) is S*(-t)
t = -tau: ts: 0;
Smf = exp(-j*pi*beta*(t.^2));
subplot(2,1,2), plot(t*1e6,imag(Smf),'linewidth',1.5), grid
xlabel('time in microseconds')
ylabel('Down-chirp LFM')

MATLAB Program “Fig3_8.m” Listing
% use this program to reproduce Fig. 3.8 of text
clc
clear all
close all
%
nscat = 2; %two point scatterers
taup = 10e-6; % 100 microsecond uncompressed pulse
b = 40.0e6; % 50 MHz bandwdith
rrec = 50 ; % 50 meter processing window
scat_range = [15 25] ; % scattterers are 15 and 25 meters into window
scat_rcs = [1 2]; % RCS 1 m^2 and 2m^2
winid = 0; %no window used
%function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B_product < 5 )
    fprintf('************ Time Bandwidth product is TOO SMALL ***************')
    fprintf('\n Change b and or taup')
  return
end
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% speed of light
c = 3.e8; 
% number of samples
n = fix(2 * taup * b);
% initialize input, output and replica vectors
x(nscat,1:n) = 0.;
y(1:n) = 0.;
replica(1:n) = 0.;
% determine proper window
if( winid == 0.)
   win(1:n) = 1.;
end
if(winid == 1.);
    win = hamming(n)';
end
if( winid == 2.)
    win = kaiser(n,pi)';
end
if(winid == 3.)
    win = chebwin(n,60)';
end
% check to ensure that scatterers are within recieve window
index = find(scat_range > rrec);
if (index ~= 0)
    'Error. Receive window is too large; or scatterers fall outside window'
  return
end
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t.^2);
figure(1)
plot(t,real(replica))
ylabel('Real (part) of replica')
xlabel('Time in seconds')
grid
figure(2)
plot(t,imag(replica))
ylabel('Imaginary (part) of replica')
xlabel('Time in seconds')
grid
figure(3)
sampling_interval = 1 / 2.5 /b;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit,freqlimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel('Spectrum of replica')
xlabel('Frequency in Hz')
grid
 for j = 1:1:nscat
    range = scat_range(j) ;;
    x(j,:) = scat_rcs(j) .* exp(i * pi * (b/taup) .* (t +(2*range/c)).^2) ;
    y = x(j,:)  + y;
end
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MATLAB Program “Fig3_10_13.m” Listing
%Use this program to reproduce Figures 3.10 through 3.13 of textbook.
clear all; close all
eps = 0.001;
N = 32;
win_rect (1:N) = 1;
win_ham = hamming(N);
win_han = hanning(N);
win_kaiser = kaiser(N, pi);
win_kaiser2 = kaiser(N, 5);
Yrect = abs(fft(win_rect, 256));
Yrectn = Yrect ./ max(Yrect);
Yham = abs(fft(win_ham, 2562));
Yhamn = Yham ./ max(Yham);
Yhan = abs(fft(win_han, 256));
Yhann = Yhan ./ max(Yhan);
YK = abs(fft(win_kaiser, 256));
YKn = YK ./ max(YK);
YK2 = abs(fft(win_kaiser2, 256));
YKn2 = YK2 ./ max(YK2);
figure (1)
plot(20*log10(Yrectn+eps),'k')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
axis tight; grid on
figure(2) 
plot(20*log10(Yhamn + eps),'k')
xlabel('Sample number')
ylabel('20*log10(amplitude)')
grid on; axis tight
figure (3)
plot(20*log10(Yhann+eps),'k')
xlabel('Sample number'); ylabel('20*log10(amplitude)'); grid
axis tight
figure(4)
plot(20*log10(YKn+eps),'k')
grid on; hold on 
plot(20*log10(YKn2+eps),'k--')
xlabel('Sample number'); ylabel('20*log10(amplitude)')
legend('Kaiser par. = \pi','Kaiser par. =5') 
axis tight; hold off
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Appendix 3-B: Fourier Transform Pairs
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Appendix 3-C: Z-Transform Pairs
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Part II - Radar Signals and Signal Processing

Chapter 4

4.1. The Matched Filter SNR
The topic of matched filtering is central to almost all radar systems. In this chapter the focus

is the matched filter. The unique characteristic of the matched filter is that it produces the max-
imum achievable instantaneous SNR at its output when a signal plus noise (Gaussian noise is
assumed in the analysis presented in this book) are present at its input. Maximizing the SNR is
key in all radar applications, as was described in Chapter 2 in the context of the radar equation,
and as will be discussed in a subsequent chapter in the context of target detection. 

It is important to use a radar receiver which can be modeled as an LTI system that maxi-
mizes the signal’s SNR at its output. For this purpose, the basic radar receiver of interest is
often referred to as the matched filter receiver. The matched filter is an optimum filter in the
sense of SNR because the SNR at its output is maximized at some delay  that corresponds to
the true target range  (i.e., ). Figure 4.1 shows a simplified block diagram for
the radar receiver of interest. 

In order to derive the general expression for the transfer function and the impulse response
of this optimum filter, adopt the following notation:  is the optimum filter impulse
response,  is the optimum filter transfer function,  is the input signal,  is the FT
of the input signal,  is the output signal,  is the FT of the output signal,  is the
input noise signal,  is the input noise PSD (not necessarily white),  is the out noise
signal, and  is the output noise PSD. As one would expect, the impulse response of this
optimum filter will take on distinct forms depending on the noise characteristics, i.e., white
versus non-white noise. 

The optimum filter input or received signal (the words input and received will be used inter-
changeably in this book) can then be represented by 

Eq. (4.1)

where  is an unknown time delay proportional to the target range. The optimum filter output
signal is 

 Eq. (4.2)

where

t0
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Eq. (4.3)

. Eq. (4.4)

The operator ( ) indicates convolution. The FT of Eq. (4.4) is

. Eq. (4.5)

Integrating the right-hand side of Eq. (4.5) over all possible frequencies yields the signal out-
put at time , as 

. Eq. (4.6)

From Parseval’s theorem the modulus square of Eq. (4.6) is the total signal energy, .

The total noise power at the output of the filter is calculated using Parseval’s theorem as

. Eq. (4.7)

Since the output signal power at time  is equal to the modulus square of Eq. (4.6), then the
instantaneous SNR at time  is 

. Eq. (4.8)

Equation (4.8) is the general form of the optimum SNR at the output of the matched filter. Of
course, when the noise is white, a simpler formula will result.

Remember Schawrz’s inequality, which has the form
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 Figure 4.1. Simplified block diagram of the radar receiver

Filter
Noncoherent
Integration

x t t0–

X f

h t

H f

ni t

Ni f

no t

No f

no t ni t h t=

xo t x t t0–= h t

Xo f X f H f e
j2 ft0=

t0

xo t0 X f H f e
j2 f t0 fd

–

=

Ex

No Ni f H f 2 fd

–

=

t0
t0

SNR t0

X f H f e
j2 ft0 fd

–

2

Ni f H f 2 fd

–

-----------------------------------------------------------
Ex

Ni f H f 2 fd

–

-------------------------------------------= =



The Matched Filter SNR 145                                                                                                                                                                                                                                                                         

. Eq. (4.9)

The equal sign in Eq. (4.9) applies when  for some arbitrary constant .
Apply Schawrz’s inequality to Eq. (4.8) with the following assumptions

Eq. (4.10)

. Eq. (4.11)

It follows that the SNR is maximized when

. Eq. (4.12)

An alternative way of writing Eq. (4.12) is 

. Eq. (4.13)

The optimum filter impulse response is computed using inverse FT integral 

. Eq. (4.14)

4.1.1. White Noise Case

A special case of great interest to radar systems is when the input noise is band-limited white
noise with PSD given by

. Eq. (4.15)

 is a constant. The transfer function for this optimum filter is then given by

Eq. (4.16)

where the constant  was set equal to . It follows that

Eq. (4.17)

which can be written as 
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. Eq. (4.18)

Observation of Eq. (4.18) indicates that the impulse response of the optimum filter is
matched to the input signal, and thus, the term matched filter is used for this special case.
Under these conditions, the maximum instantaneous SNR at the output of the matched filter is 

. Eq. (4.19)

Again, from Parseval’s theorem the numerator in Eq. (4.19) is equal to the input signal energy,
; consequently one can write the output peak instantaneous SNR as

. Eq. (4.20)

Note that Eq. (4.20) is unitless since the units for  are in watts per hertz (or joules). Finally,
one can draw the conclusion that the peak instantaneous SNR depends only on the signal
energy and input noise power, and is independent of the waveform utilized by the radar.

 As indicated by Eq. (4.18), the impulse response  may not be causal if the value for 
is less than the signal duration. Thus, an additional time delay term  is added to ensure
causality, where  is the signal duration. Thus, a realizable matched filter response is given by

. Eq. (4.21)

The transfer function for this casual filter is

. Eq. (4.22)

Substituting the right-hand side of Eq. (4.22) into Eq. (4.6) yields

, Eq. (4.23)

which has a maximum value when . This result leads to the following conclusion: The peak
value of the matched filter output is obtained by sampling its output at times equal to the filter
delay after the start of the input signal, and the minimum value for  is equal to the signal
duration . 

Example: 

Compute the maximum instantaneous SNR at the output of a linear filter whose impulse
response is matched to the signal .
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Solution: 

The signal energy is

.

It follows that the maximum instantaneous SNR is 

where  is the input noise power spectrum density.

4.1.2. The Replica

Again, consider a radar system that uses a finite duration energy signal , and assume
that a matched filter receiver is utilized. From Eq. (4.1), the input signal can be written as, 

. Eq. (4.24)

The matched filter output  can be expressed by the convolution integral between the fil-
ter’s impulse response and :

. Eq. (4.25)

Substituting Eq. (4.21) into Eq. (4.25) yields

Eq. (4.26)

where  and  is a cross-correlation between  and .
Therefore, the matched filter output can be computed from the cross-correlation between the
radar received signal and a delayed replica of the transmitted waveform. If the input signal is
the same as the transmitted signal, the output of the matched filter would be the autocorrelation
function of the received (or transmitted) signal. In practice, replicas of the transmitted wave-
forms are normally computed and stored in memory for use by the radar signal processor when
needed. 

4.3. General Formula for the Output of the Matched Filter
Two cases are analyzed; the first is when a stationary target is present. The second case is

concerned with a moving target whose velocity is constant. Assume the range to the target is 

Eq. (4.27)
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where  is the target radial velocity (i.e., the target velocity component on the radar line of
sight.) The initial detection range  is given by

Eq. (4.28)

where  is the speed of light and  is the round trip delay it takes a certain radar pulse to
travel from the radar to the target at range  and back. 

The general expression for the radar bandpass signal is

Eq. (4.29)

which can be written using its pre-envelope (analytic signal) as

Eq. (4.30)

where  indicates “the real part of.” Again,  is the complex envelope. 

4.2.1. Stationary Target Case

In this case, the received radar return is given by

. Eq. (4.31)

It follows that the received (or input) analytic signal is, 

Eq. (4.32)

and by inspection the received (or input) complex envelope is,

. Eq. (4.33)

Observation of Eq. (4.33) clearly indicates that the received complex envelope is more than
just a delayed version of the transmitted complex envelope. It actually contains an additional
phase shift  which represents the phase corresponding to the two-way optical length for the
target range. That is,

 Eq. (4.34)

where  is the radar wavelength and is equal to . Since a very small change in range can
produce significant change in this phase term, this phase is often treated as a random variable
with uniform probability density function over the interval . Furthermore, the radar
signal processor will first attempt to remove (correct for) this phase term through a process
known as phase unwrapping. 

Substituting Eq. (4.33) into Eq. (4.25) provides the output of the matched filter. It is given by 

 Eq. (4.35)
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where the impulse response  is in Eq. (4.18). It follows that

. Eq. (4.36)

Make the following change of variables:

. Eq. (4.37)

Therefore, the output of the matched filter when a stationary target is present is computed from
Eq (4.36) as 

. Eq. (4.38)

 is the autocorrelation function for the signal  (i.e., the transmitted waveform). 

4.2.2. Moving Target Case

In this case, the received signal is not only delayed in time by , but also has a Doppler fre-
quency shift  corresponding to the target velocity, where

. Eq. (4.39)

The pre-envelope of the received signal can be written as

. Eq. (4.40)

Substituting Eq. (4.27) into Eq. (4.40) yields

. Eq. (4.41)

Collecting terms yields

. Eq. (4.42)

Define the scaling factor  as

, Eq. (4.43)

then Eq. (4.42) can be written as

. Eq. (4.44)

Since , the following approximation can be used 
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. Eq. (4.45)

It follows that Eq. (4.44) can now be rewritten as 

. Eq. (4.46)

Recognizing that  and , the received pre-envelope signal is

Eq. (4.47)

or

. Eq. (4.48)

Then by inspection the complex envelope of the received signal is

. Eq. (4.49)

Finally, it is concluded that the complex envelope of the received signal when the target is
moving at a constant velocity  is a delayed (by ) version of the complex envelope signal of
the stationary target case except that: 

1. an additional phase shift term corresponding to the target’s Doppler frequency is present, 
and

2. the phase shift term  is present. 

The output of the matched filter was defined in Eq. (4.25). Substituting Eq. (4.49) into Eq.
(4.25) yields

. Eq. (4.50)

Applying the change of variables given in Eq. (4.37) and collecting terms provide

. Eq. (4.51)

Observation of Eq. (4.51) shows that the output is a function of both  and . Thus, it is
more appropriate to rewrite the output of the matched filter as a two-dimensional function of
both variables. That is,

. Eq. (4.52)

It is customary but not necessary to set . Note that if the causal impulse response is
used (i.e., Eq. (4.21)), the same analysis will hold true. However, in this case, the phase term is
equal to , instead of , where . 
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4.3. Waveform Resolution and Ambiguity
As indicated by Eq. (4.20), the radar sensitivity (in the case of white additive noise) depends

only on the total energy of the received signal and is independent of the shape of the specific
waveform. This leads to the following question: If the radar sensitivity is independent of the
waveform, what is the best choice for the transmitted waveform? The answer depends on many
factors; however, the most important consideration lies in the waveform’s range and Doppler
resolution characteristics, which can be determined from the output of the matched fitter.

As discussed in Chapter 1, range resolution implies separation between distinct targets in
range. Alternatively, Doppler resolution implies separation between distinct targets in fre-
quency. Thus, ambiguity and accuracy of this separation are closely associated terms. 

4.3.1. Range Resolution

Consider radar returns from two stationary targets (zero Doppler) separated in range by dis-
tance . What is the smallest value of  so that the returned signal is interpreted by the
radar as two distinct targets? In order to answer this question, assume that the radar transmitted
bandpass pulse is denoted by , 

Eq. (4.53)

where  is the carrier frequency,  is the amplitude modulation, and  is the phase
modulation. The signal  can then be expressed as the real part of the pre-envelope signal

, where

Eq. (4.54)

and the complex envelope is

. Eq. (4.55)

It follows that 

. Eq. (4.56)

The returns from two close targets are, respectively, given by

Eq. (4.57)

Eq. (4.58)

where  is the difference in delay between the two target returns. One can assume that the ref-
erence time is , and thus without any loss of generality, one may set . It follows that
the two targets are distinguishable by how large or small the delay  can be. 

In order to measure the difference in range between the two targets, consider the integral
square error between  and . Denoting this error as , it follows that

, Eq. (4.59)

which can be written as
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. Eq. (4.60)

Using Eq. (4.54) into Eq. (4.60) yields

Eq. (4.61)

This squared error is minimum when the second portion of Eq. (4.61) is positive and maxi-
mum. Note that the first term in the right-hand side of Eq. (4.61) represents the total signal
energy, and is assumed to be constant. The second term is a varying function of  with its fluc-
tuation tied to the carrier frequency. The integral inside the rightmost side of this equation is
defined as the range ambiguity function,

. Eq. (4.62)

This range ambiguity function is equivalent to the integral given in Eq. (4.38) with .
Comparison between Eq. (4.62) and Eq. (4.38) indicates that the output of the matched filter
and the range ambiguity function have the same envelope (in this case the Doppler shift  is
set to zero). This indicates that the matched filter, in addition to providing the maximum
instantaneous SNR at its output, also preserves the signal range resolution properties. The
value of  that minimizes the squared error in Eq. (4.61) occurs when . 

Target resolvability in range is measured by the squared magnitude . It follows that
if  for some nonzero value of , then the two targets are indistinguishable.
Alternatively, if  for some nonzero value of , then the two targets may be dis-
tinguishable (resolvable). As a consequence, the most desirable shape for  is a very
sharp peak (thumb tack shape) centered at  and falling very quickly away from the peak.
The minimum range resolution corresponding to a time duration  or effective bandwidth 
is 

. Eq. (4.63)

The effective time duration and the effective bandwidth for any waveform were defined in
Chapter 3 and are repeated here as Eq. (4.64) and Eq. (4.65), respectively

 Eq. (4.64)
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. Eq. (4.65)

4.3.2. Doppler Resolution

The Doppler shift corresponding to the target radial velocity is

Eq. (4.66)

where  is the target radial velocity,  is the wavelength,  is the frequency, and  is the
speed of light. 

The FT of the pre-envelope is

. Eq. (4.67)

Due to the Doppler shift associated with the target, the received signal spectrum will be shifted
by . In other words, the received spectrum can be represented by . In order to dis-
tinguish between the two targets located at the same range but having different velocities, one
may use the integral square error. More precisely,

. Eq. (4.68)

Using similar analysis as that which led to Eq. (4.61), one should maximize

. Eq. (4.69)

Taking the FT of the pre-envelope (analytic signal) defined in Eq. (4.54) yields 

. Eq. (4.70)

Thus, 

. Eq. (4.71)

The complex frequency correlation function is then defined as
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. Eq. (4.72)

The velocity resolution (Doppler resolution) is by definition 

Eq. (4.73)

where  is the minimum resolvable Doppler difference between the Doppler frequencies
corresponding to two moving targets, i.e., , where  and  are the two indi-
vidual Doppler frequencies for targets 1 and 2, respectively. The Doppler resolution  is
equal to the inverse of the total effective duration of the waveform. Thus, 

 . Eq. (4.74)

4.3.3. Combined Range and Doppler Resolution

In this general case, one needs to use a two-dimensional function in the pair of variables
( ). For this purpose, assume that the pre-envelope of the transmitted waveform is 

. Eq. (4.75)

Then the delayed and Doppler-shifted signal is

. Eq. (4.76)

Computing the integral square error between Eq. (4.75) and Eq. (4.76) yields

Eq. (4.77a)

Eq. (4.77b)

which can be written as

. Eq. (4.78)
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Again, in order to maximize this squared error for , one must minimize the last term of
Eq. (4.78). Define the combined range and Doppler correlation function as

. Eq. (4.79)

In order to achieve the most range and Doppler resolution, the modulus square of this func-
tion must be minimized at  and . Note that except for a phase term, the output of
the matched filter derived in Eq. (4.52) is identical to that given in Eq. (4.79). This means that
the output of the matched filter exhibits maximum instantaneous SNR as well as the most
achievable range and Doppler resolutions. The modulus square of Eq. (4.79) is often referred
to as the ambiguity function: 

. Eq. (4.80)

The ambiguity function is often used by radar designers and analysts to determine the good-
ness of a given radar waveform, where this goodness is measured by its range and Doppler res-
olutions. Remember that since the matched filter is used, maximum SNR is guaranteed. 

4.4. Range and Doppler Uncertainty
The formula derived in Eq. (4.79) represents the output of the matched filter when the signal

at its input comprises target returns only and has no noise components, an assumption that can-
not be true in practical situations. In general, the input at the matched filter contains both target
and noise returns. The noise signal is assumed to be an additive random process that is uncor-
related with the target and has a band-limited white spectrum. Referring to Eq. (4.79), a peak at
the output of the matched filter at  represents a target whose delay (range) corresponds
to  and Doppler frequency equal to . Therefore, measuring the targets’ exact range and
Doppler frequency is determined from measuring peak locations occurring in the two-dimen-
sional space . This last statement, however, is correct only if noise is not present at the
input of the matched filter. When noise is present and because noise is random, it will generate
ambiguity (uncertainty) about the exact location of the ambiguity function peaks in the 
space. 

4.4.1. Range Uncertainty

     Consider the received signal complex envelope (assuming stationary target); that is, 

Eq. (4.81)

where  is the target return signal complex envelope,  is the noise signal complex
envelope, and , where  is the target range. The integral squared error between the
total received signal (target plus noise) and a shifted (delayed by ) transmitted waveform is 

. Eq. (4.82)
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 corresponds to maximum range under consideration. Expanding this squared error yields

Eq. (4.83)

which can be written as

. Eq. (4.84)

This expression is minimum at some  that makes the integral term inside Eq. (4.88) maxi-
mum and positive. More precisely, the following correlation functions must be maximized

 Eq. (4.85)

 . Eq. (4.86)

Therefore, Eq. (4.84) can be written as

. Eq. (4.87)

Expanding  using Taylor series expansion about the point  leads to

Eq. (4.88)

where , , and  respectively, indicate the first, second, and third derivatives of 
with respect to . Remember that since the real part of the correlation function is an even func-
tion, then all of its odd number derivatives are equal to zero. Now, by approximating Eq. (4.88)
using the first three terms (where the second and fourth terms are equal to zero) one gets

. Eq. (4.89)

There is some value  close to the exact target range, , that will minimize the expression
in Eq. (4.87). To find this minimum value, differentiate the quantity 
with respect to  and set the result equal to zero to find . More specifically,

. Eq. (4.90)

The derivative of the  can be found from Eq. (4.89) as
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. Eq. (4.91)

Substituting the result of Eq. (4.91) into Eq. (4.90), collecting terms, and solving for , yield

. Eq. (4.92)

The value  represent the amount of target range error measurement. It is more mean-
ingful, since noise is random, to compute this error in terms of the standard deviation of its rms
value. Hence, the standard deviation for range measurement error is

. Eq. (4.93)

By using the differentiation property of the Fourier transform and Parseval’s theorem the
denominator of Eq. (4.93) can be determined by

. Eq. (4.94)

Next, from relations developed in Chapter 3, one can write the FT of  as

Eq. (4.95)

where  is the noise power spectrum density value (white noise). From the Fourier trans-
form properties, the FT of the derivative of  is

. Eq. (4.96)

The rms value for  is by definition

, Eq. (4.97)

which can be rewritten using Parseval’s theorem as

. Eq. (4.98)

Substituting Eq. (4.96) into Eq. (4.98) yields

. Eq. (4.99)
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Finally, the standard deviation for range measurement error can be written as

. Eq. (4.100)

Define the bandwidth rms value, , as

. Eq. (4.101)

It follows that Eq. (4.100) can now be written as

, Eq. (4.102)

which leads to the conclusion that the uncertainty in range measurement is inversely propor-
tional to the rms bandwidth and the square root of the ratio of signal energy to the noise power
density (square root of the SNR). 

4.4.2. Doppler Uncertainty

For this purpose, assume that the target range is completely known. In the next section the
case where both target range and target Doppler are not known will be analyzed. Denote the
signal transmitted by the radar as  and the received signal (target plus noise) as . The
integral square difference between the two returns can be written as

Eq. (4.103)

where  is the FT of ,  is the FT of , and  is the maximum anticipated
target Doppler. Again expand Eq. (4.103) to get

. Eq. (4.104)

Minimizing the error squared in Eq. (4.104) requires maximizing the value 
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. 

Conducting similar analysis as that performed in the previous section, the duration rms,
, value can be defined as

. Eq. (4.105)

The standard deviation in the Doppler measurement can be derived as

. Eq. (4.106)

Comparison of Eq. (4.106) and Eq. (4.102) indicates that the error in estimating Doppler is
inversely proportional to the signal duration, while the error in estimating range is inversely
proportional to the signal bandwidth. Therefore, and as expected, larger bandwidths minimize
the range measurement errors and longer integration periods minimize the Doppler measure-
ment errors.

4.4.3. Range-Doppler Coupling

In the previous two sections, range estimate error and Doppler estimate error were derived
by assuming that they are uncoupled estimates. In other words, range error was derived assum-
ing a stationary target, while Doppler error was derived assuming a completely known target
range. In this section a more general formula for the combined range and Doppler errors is
derived. 

The analytic signal for this case was derived in Section 4.2 and was given in Eq. (4.47),
which is repeated here as Eq. (4.107) for easy reference:

Eq. (4.107)

One can assume with any loss of generality that , thus, Eq. (4.107) can be expressed as

Eq. (4.108)

where the complex envelope signal, , can be expressed as

. Eq. (4.109)
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. Eq. (4.110)

It follows that for some fixed value , there is a value  close to  that will maximize
Eq. (4.110); that is,

. Eq. (4.111)

Again, the Taylor series expansion of  about  is

. Eq. (4.112)

Thus,

. Eq. (4.113)

Substituting Eq. (4.113) into Eq. (4.111) and solving for  yields

. Eq. (4.114)

The value of  is not much different from ; thus,

. Eq. (4.115)

To evaluate the term , start with the definition of ,

. Eq. (4.116)

Compute the derivative of Eq. (4.116) with respect to  

. Eq. (4.117)

Evaluating Eq. (4.117) at  and  gives

. Eq. (4.118)

The exponential term in Eq. (4.118) can be approximated using small angle approximation as

. Eq. (4.119)

Next, substitute Eq. (4.119) into Eq. (4.118), collect terms, and compute its real part to get
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. Eq. (4.120)

The first integral is evaluated (using FT properties and Parseval’s theorem) as

. Eq. (4.121)

Remember that since the envelope function  is a real lowpass signal, its Fourier transform
is an even function; thus, Eq. (4.121) is equal to zero. Using this result, Eq. (4.120) becomes

. Eq. (4.122)

Substitute Eq. (4.122) into Eq. (4.115) to get 

. Eq. (4.123)

Equation (4.123) provides a measure for the degree of coupling between range and Doppler
estimates. Clearly, if , then there is zero coupling between the two esti-
mates. Define the range-Doppler coupling constant as

. Eq. (4.124)

Doppler Error Estimate

Applying similar analysis as that performed in the preceding section to the spectral cross
correlation function yields an expression for the range-Doppler coupling term. It is given by

Eq. (4.125)
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It can be shown that Eq. (4.124) and Eq. (4.125) are equal. Given this result, the subscripts 
and  in Eq. (4.124) and Eq. (4.125) are dropped and the range-Doppler term is simply
referred to as . 

4.4.4. Range-Doppler Coupling in LFM Signals

Referring to Eq. (4.108) and Eq. (4.109), the phase for an LFM signal can be expressed as

Eq. (4.126)

where ,  is the LFM bandwidth, and  is the pulse width. Substituting Eq.
(4.126) into Eq. (4.124) yields

Eq. (4.127)

where  is the effective duration. Thus,

. Eq. (4.128)

Similarly,

Eq. (4.129)

where  and  are constants. Since estimates of range or Doppler when noise is present can-
not be 100% exact, it is better to replace these constants with their equivalent mean-squared
errors. That is, let

Eq. (4.130)

where  is as in Eq. (4.128) and  is in Eq. (4.129). Thus, Eq. (4.128) can be written as

, Eq. (4.131)

which can be algebraically manipulated to get

. Eq. (4.132)
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. Eq. (4.133)

These results lead to the conclusion that one can estimate target range and Doppler simultane-
ously only when the product of the rms bandwidth and rms duration is very large (i.e., very
large time bandwidth products). This is the reason radars using LFM waveforms cannot esti-
mate target Doppler accurately unless very large time bandwidth products are utilized. Often,
the LFM waveforms are referred to as “Doppler insensitive” waveforms. 

4.5. Target Parameter Estimation
Target parameters of interest to radar applications include, but are not limited to, target range

(delay), amplitude, phase, Doppler, and angular location (azimuth and elevation). Target infor-
mation (parameters) is typically embedded in the return signal’s amplitude and phase. Differ-
ent classes of waveforms are used by the radar signal and data processors to extract different
target parameters more efficiently than others. Since radar echoes typically comprise signal
plus additive noise, most if not all the target information is governed by the statistics of the
input noise, whose statistical parameters most likely are not known but can be estimated. Thus,
statistical estimates of the target parameters (amplitude, phase, delay, Doppler, etc.) are utilized
instead of the actual corresponding measurements. The general form of the radar signal can be
expressed in the following form

Eq. (4.134)

where  is the signal amplitude,  is the envelope lowpass signal,  is some constant
phase,  is the carrier frequency, and  and  are the target delay and Doppler, respectively.
The analysis in this section closely follows Melsa and Cohen1.

4.5.1.  What Is an Estimator?

In the case of radar systems, it always safe to assume, due to the central limit theorem, that
the input noise is always Gaussian with mainly unknown parameters. Furthermore, one can
assume that this noise is band-limited white noise. Consequently, the primary question that
needs to be answered is as follows: Given that the probability density function of the observa-
tion is known (Gaussian in this case) and given a finite number of independent measurements,
can one determine an estimate of a given parameter (such as range, Doppler, amplitude, or
phase)? 

Let  be the pdf of a random variable  with an unknown parameter . Define the
values  as  observed independent values of the variable . Define the func-
tion or estimator  as an estimate of the unknown parameter . The bias of
estimation is defined as

 Eq. (4.135)

where  represents the “expected value of.” The estimator  is referred to as an unbiased
estimator if and only if 

1. Melsa, J. L. Cohen, D. L., Decision and Estimation Theory, McGraw-Hill, New York, 1978.
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. Eq. (4.136)

One of the most popular and common measures of the quality or effectiveness of an estima-
tor is the Mean Square Deviation (MSD) referred to symbolically as . For an unbiased
estimator

Eq. (4.137)

where  is the estimator variance. It can be shown that the Cramer-Rao bound for this MSD
is given by

. Eq. (4.138)

The efficiency of this unbiased estimator is defined by

. Eq. (4.139)

When , the unbiased estimator is called an efficient estimate.

Consider an essentially time-limited signal  with effective duration , and assume a
band-limited white noise with PSD . In this case, Eq. (4.139) is equivalent to 

Eq. (4.140)

where  is the estimate for the ith parameter of interest and  is the pulse repetition interval
for the pulsed sequence. In the next two sections, estimates of the target amplitude and phase
are derived. It must be noted that since these estimates represent independent random vari-
ables, they are referred to as uncoupled estimates; that is, the computation of one estimate does
not depend on a priori knowledge of the other estimates.

4.5.2. Amplitude Estimation

The signal amplitude  in Eq. (4.134) is the parameter of interest, in this case. Taking the
partial derivative of Eq. (4.134) with respect to  and squaring the result yields

Eq. (4.141)

Thus,

Eq. (4.142)
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where  is the signal energy (from Parseval’s theorem). Substituting Eq. (4.142) into Eq.
(4.140) and collecting terms yields the variance for the amplitude estimate as

. Eq. (4.143)

In this case Eq. (4.20) used in Eq. (4.143) and  is the signal to noise ratio of the signal at
the output of the matched filter. This clearly indicates that the signal amplitude estimate is
improved as the SNR is increased.

4.5.3. Phase Estimation

In this case, it is desired to compute the best estimate for the signal phase . Again taking
the partial derivative of the signal in Eq. (4.134) with respect to  and squaring the result
yield

. Eq. (4.144)

It follows that

. Eq. (4.145)

Thus, the variance of the phase estimate is

. Eq. (4.146)

Problems
4.1. Compute the frequency response for the filter matched to the signal 

(a) ;

(b)  where  is a positive constant.

4.2. Repeat the example in Section 4.1 using .
4.3. An closed form expression for the SNR at the output of the matched filter when the
input noise is white was developed in Section 4.1.1. Derive an equivalent formula for the non-
white noise case.

4.4. A radar system uses LFM waveforms. The received signal is of the form
, where  is a time delay that depends on range,

, and . Assume that the radar band-

width is , and the pulse width is . (a) Give the quadrature components
of the matched filter response that is matched to . (b) Write an expression for the output of
the matched filter. (c) Compute the increase in SNR produced by the matched filter.
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4.5. (a) Write an expression for the ambiguity function of an LFM waveform, where
 and the compression ratio is . (b) Give an expression for the matched filter

impulse response.
4.6. (a) Write an expression for the ambiguity function of an LFM signal with bandwidth

, pulse width , and wavelength . (b) Plot the zero Doppler
cut of the ambiguity function. (c) Assume a target moving toward the radar with radial velocity

. What is the Doppler shift associated with this target? (d) Plot the ambiguity
function for the Doppler cut in part (c). (e) Assume that three pulses are transmitted with PRF

. Repeat part (b). 

4.7. (a) Give an expression for the ambiguity function for a pulse train consisting of 4
pulses, where the pulse width is  and the pulse repetition interval is .
Assume a wavelength of . (b) Sketch the ambiguity function contour.

4.8. Hyperbolic frequency modulation (HFM) is better than LFM for high radial velocities.
The HFM phase is

 

where  is an HFM coefficient and  is a constant. (a) Give an expression for the instanta-
neous frequency of an HFM pulse of duration . (b) Show that HFM can be approximated by
LFM. Express the LFM coefficient  in terms of  and in terms of  and .

4.9. Consider a sonar system with range resolution . (a) A sinusoidal pulse at
frequency  is transmitted. What is the pulse width, and what is the bandwidth?
(b) By using an up-chirp LFM, centered at , one can increase the pulse width for the same
range resolution. If you want to increase the transmitted energy by a factor of 20, give an
expression for the transmitted pulse. (c) Give an expression for the causal filter matched to the
LFM pulse in part b.
4.10. A pulse train  is given by

  

where  is a single pulse of duration  and the weighting sequence is
. Find and sketch the correlations , , and .

4.11. Repeat the previous problem for .

4.12. Show that

 

where , is the FT of  and  is its derivative with respect to time. The function
 is the derivative of  with respect to frequency.
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4.13. Using the range-Doppler coupling definition given in Eq. (4.125), develope an
expression for the range-Doppler coupling for the following cases: (a) Linear FM pulse with a
Gaussian envelope, and (b) parabolic FM signal. 
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Part II - Radar Signals and Signal Processing

Chapter 5

5.1. Introduction
The radar ambiguity function represents the modulus of the matched filter output, and it

describes the interference caused by the range and/or Doppler shift of a target when compared
to a reference target of equal RCS. The ambiguity function evaluated at  is
equal to the matched filter output that is perfectly matched to the signal reflected from the tar-
get of interest. In other words, returns from the nominal target are located at the origin of the
ambiguity function. Thus, the ambiguity function at nonzero  and  represents returns from
some range and Doppler different from those for the nominal target.

The formula for the output of the matched filter was derived in Chapter 4, and it is, assuming
a moving target with Doppler frequency ,

. Eq. (5.1)

The modulus square of Eq. (5.1) is referred to as the ambiguity function. That is, 

. Eq. (5.2)

The radar ambiguity function is normally used by radar designers as a means of studying dif-
ferent waveforms. It can provide insight about how different radar waveforms may be suitable
for the various radar applications. It is also used to determine the range and Doppler resolu-
tions for a specific radar waveform. The three-dimensional (3-D) plot of the ambiguity func-
tion versus frequency and time delay is called the radar ambiguity diagram. 

Denote  as the energy of the signal ,

. Eq. (5.3)

The following list includes the properties for the radar ambiguity function:
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fd
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1) The maximum value for the ambiguity function occurs at  and is equal to
,

Eq. (5.4)

. Eq. (5.5)

2) The ambiguity function is symmetric,

. Eq. (5.6)

3) The total volume under the ambiguity function is constant,

. Eq. (5.7)

4) If the function  is the Fourier transform of the signal , then by using Parseval’s the-
orem we get

. Eq. (5.8)

5) Suppose that  is the ambiguity function for the signal . Adding a quadratic
phase modulation term to  yields

Eq. (5.9)

where  is a constant. It follows that the ambiguity function for the signal  is given by

. Eq. (5.10)

5.2. Examples of the Ambiguity Function
The ideal radar ambiguity function is represented by a spike of infinitesimal width that peaks

at the origin and is zero everywhere else, as illustrated in Fig. 5.1. An ideal ambiguity function
provides perfect resolution between neighboring targets regardless of how close they may be to
each other. Unfortunately, an ideal ambiguity function cannot physically exist because the
ambiguity function must have a finite peak value equal to  and a finite volume also
equal to . Clearly, the ideal ambiguity function cannot meet those conditions.

5.2.1. Single Pulse Ambiguity Function

The complex envelope of a single pulse is  defined by

. Eq. (5.11)

From Eq. (5.1) we have

. Eq. (5.12)
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Substituting Eq. (5.11) into Eq. (5.12) and performing the integration yields

. Eq. (5.13)

MATLAB Function “single_pulse_ambg.m”

The MATLAB function “single_pulse_ambg.m” implements Eq. (5.13). The syntax is as
follows:

single_pulse_ambg [taup]

where taup is the pulse width. Figures 5.2 a and b show 3-D and contour plots of single pulse
ambiguity functions. This figure can be reproduced using MATLAB program “Fig5_2.m”
listed in Appendix 5-A. The ambiguity function cut along the time-delay axis  is obtained by
setting . More precisely,

. Eq. (5.14)

Note that the time autocorrelation function of the signal  is equal to . Similarly, the
cut along the Doppler axis is

. Eq. (5.15)

Figures 5.3 and 5.4, respectively, show the plots of the uncertainty function cuts defined by
Eqs. (5.14) and (5.15). Since the zero Doppler cut along the time-delay axis extends between

 and , close targets will be unambiguous if they are at least  seconds apart.

The zero time cut along the Doppler frequency axis has a  shape. It extends from
 to . The first null occurs at . Hence, it is possible to detect two targets that

are shifted by , without any ambiguity. Thus, a single pulse range and Doppler resolu-
tions are limited by the pulse width . Fine range resolution requires that a very short pulse be
used. Unfortunately, using very short pulses requires very large operating bandwidths and may
limit the radar average transmitted power to impractical values.

fdfd; 2

0 0

Figure 5.1. Ideal ambiguity function.

fd; 2 1
0

-----–
fd 0 –sin

fd 0 –
------------------------------------------

2
= 0

fd 0=

0; 1
0

-----–
2

= 0

x̃ t 0;

0 fd; 2 0fdsin

0fd
--------------------

2
=

0– 0 0

xsin x 2

– fd 1 0=
1 0

0



172                                                                                   Radar Systems Analysis and Design Using MATLAB®

 Figure 5.2a. Single pulse 3-D ambiguity plot. Pulse width is 3 seconds. 

 Figure 5.2b. Contour plot corresponding to Fig. 5.2a.
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5.2.2. LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

. Eq. (5.16)

In order to compute the ambiguity function for the LFM complex envelope, we will first con-
sider the case when . In this case the integration limits are from  to

. Substituting Eq. (5.16) into Eq. (5.1) yields

. Eq. (5.17)

It follows that

00–

amplitude

Figure 5.3. Zero Doppler ambiguity function cut along the time-delay axis.

 
 Figure 5.4. Ambiguity function of a single frequency pulse (zero delay). 

The pulse width is 3 seconds.
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. Eq. (5.18)

Finishing the integration process in Eq. (5.18) yields

. Eq. (5.19)

Similar analysis for the case when  can be carried out, where, in this case, the
integration limits are from  to . The same result can be obtained by using the
symmetry property of the ambiguity function ( ). It follows that an
expression for  that is valid for any  is given by

Eq. (5.20)

and the LFM ambiguity function is

. Eq. (5.21)

Again the time autocorrelation function is equal to . The reader can verify that the
ambiguity function for a down-chirp LFM waveform is given by

. Eq. (5.22)

Incidentally, either Eq. (5.21) or (5.22) can be obtained from Eq. (5.13) by applying property 5
from Section 5.1. 

Figures 5.5 a and b show 3-D and contour plots for the LFM uncertainty and ambiguity func-
tions for  second and  for a down-chirp pulse. This figure can be reproduced
using MATLAB program “Fig5_5.m,” listed in Appendix 5-A. 

The up-chirp ambiguity function cut along the time-delay axis  is

. Eq. (5.23)
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MATLAB Function “lfm_ambg.m” Listing 

The function “lfm_ambg.m” implements Eq. (5.21). The syntax is as follows:

lfm_ambg [taup, b, up_down]

where

 

Note that the LFM ambiguity function cut along the Doppler frequency axis is similar to that
of the single pulse. This should not be surprising since the pulse shape has not changed (only
frequency modulation was added). However, the cut along the time-delay axis changes signifi-
cantly. It is now much narrower compared to the unmodulated pulse cut. In this case, the first
null occurs at

. Eq. (5.24)

Figure 5.6 shows a plot for a cut in the uncertainty function corresponding to Eq. (5.23). This
figure can be reproduced using MATLAB program “Fig5_6.m,” listed in Appendix 5-A.

Symbol Description Units Status

taup pulse width seconds input

b bandwidth Hz input

up_down up_down = 1 for up-chirp

up_down = -1 for down-chirp

none input

 Figure 5.5a. Down-chirp LFM 3-D ambiguity plot. Pulse width is 1 second, and 
bandwidth is 5Hz. 

n1 1 B
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Equation (5.24) indicates that the effective pulse width (compressed pulse width) of the
matched filter output is completely determined by the radar bandwidth. It follows that the LFM
ambiguity function cut along the time-delay axis is narrower than that of the unmodulated
pulse by a factor

 Figure 5.5b. Contour plot corresponding to Fig. 5.5a.

 Figure 5.6. Zero Doppler ambiguity of an LFM pulse ( , ).0 1= b 20=
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Eq. (5.25)

 is referred to as the compression ratio (also called the time-bandwidth product and compres-
sion gain). All three names can be used interchangeably to mean the same thing. As indicated
by Eq. (5.25), the compression ratio also increases as the radar bandwidth is increased.

Example: 

Compute the range resolution before and after pulse compression corresponding to an LFM
waveform with the following specifications: Bandwidth  and pulse width

.

Solution: 
The range resolution before pulse compression is

.

Using Eq. (5.24) yields

.

5.2.3. Coherent Pulse Train Ambiguity Function

Figure 5.7 shows a plot of a coherent pulse train. The pulse width is denoted as  and the
PRI is . The number of pulses in the train is ; hence, the train’s length is  sec-
onds. A normalized individual pulse  is defined by

. Eq. (5.26)

When coherency is maintained between the consecutive pulses, then an expression for the nor-
malized train is 

. Eq. (5.27)
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Figure 5.7. Coherent pulse train (N=5).
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The output of the matched filter is

. Eq. (5.28)

Substituting Eq. (5.27) into Eq. (5.28) and interchanging the summations and integration yield

. Eq. (5.29)

Making the change of variable  yields

. Eq. (5.30)

The integral inside Eq. (5.30) represents the output of the matched filter for a single pulse, and
is denoted by . It follows that

. Eq. (5.31)

When the relation  is used, then the following relation is true:

. Eq. (5.32)

   Substituting Eq. (5.32) into Eq. (5.31) gives

Eq. (5.33)

Setting , and using the relation

Eq. (5.34)

yields

. Eq. (5.35)
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Using Eq. (5.35) in Eq. (5.31) yields two complementary sums for positive and negative .
Both sums can be combined as

. Eq. (5.36)

The second part of the right-hand side of Eq. (5.36) is the impact of the train on the ambiguity
function, while the first part is primarily responsible for its shape details (according to the
pulse type being used). 

Finally, the ambiguity function associated with the coherent pulse train is computed as the
modulus square of Eq. (5.36). For , the ambiguity function reduces to 

. Eq. (5.37)

Within the region , Eq. (5.37) can be written as

. Eq. (5.38)

Thus, the ambiguity function for a coherent pulse train is the superposition of the individual
pulse’s ambiguity functions. The ambiguity function cuts along the time-delay and the Doppler
axes are, respectively, given by

Eq. (5.39)

. Eq. (5.40)

MATLAB Function “tarin_ambg.m”

The function “train_ambg.m” implements Eq. (5.37). The syntax is as follows:

train_ambg [taup, n, pri]

where

Figures 5.8a and 5.8b show the 3-D ambiguity plot and the corresponding contour plot for
, , and . This plot can be reproduced using MATLAB program

“Fig5_8.m,” listed in Appendix 5-A. Figures 5.8c and 5.8d, respectively, show sketches of the
zero Doppler and zero delay cuts in the ambiguity function. The ambiguity function peaks

Symbol Description Units Status

taup pulse width seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input
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along the frequency axis are located at multiple integers of the frequency . Alterna-
tively, the peaks are at multiple integers of  along the delay axis. The width of the ambiguity
function peaks along the delay axis are . The peak width along the Doppler axis is

. 

f 1 T=
T
2 0

1 N 1– T

 Figure 5.8a. Three-dimensional ambiguity plot for a five-pulse equal amplitude 
coherent train. Pulse width is 0.4 seconds; and PRI is 1 second, N=5.

 Figure 5.8b. Contour plot corresponding to Fig. 5.8a. 
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5.2.4. Pulse Train Ambiguity Function with LFM 

In this case, the signal is as given in the previous section except for the LFM modulation
within each pulse. This is illustrated in Fig. 5.9. Again, let the pulse width be denoted by 
and the PRI by . The number of pulses in the train is ; hence, the train’s length is 
seconds. A normalized individual pulse  is defined by

 Figure 5.8c. Zero Doppler cut corresponding to Fig. 5.8a.
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 Figure 5.8d. Zero delay cut corresponding to Fig. 5.8a. 
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Eq. (5.41)

where  is the LFM bandwidth. 

The signal is now given by 

. Eq. (5.42)

Utilizing property 5 of Section 5.1 and Eq. (5.37) yields the following ambiguity function

Eq. (5.43)

where  is the ambiguity function of the single pulse. Note that the shape of the ambiguity
function is unchanged from the case of the unmodulated train along the delay axis. This should
be expected since only a phase modulation has been added, which will impact the shape only
along the frequency axis.

MATLAB Function “train_ambg_lfm.m” 

The function “train_ambg_lfm.m” implements Eq. (5.43). The syntax is as follows:

x = train_ambg_lfm(taup, n, pri, bw)

where

Symbol Description Units Status

taup pulse width seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input

bw the LFM bandwidth Hz input

x array of bimodality function none output

N 1– T
T

0

Figure 5.9. LFM pulse train (N=5).
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Note that this function will generate identical results to the function “train_ambg.m” when
the value of “bw” is set to zero. In this case, Eqs. (4.43) and (4.35) are identical. Figures 5.10 a
and b show the ambiguity plot and its associated contour plot for the same example listed in
the previous section except, in this case, LFM modulation is added and  pulses. This
figure can be reproduced using MATLAB program “Fig5_10.m,” listed in Appendix 5-A.

N 3=

 Figure 5.10a. Three-dimensional ambiguity plot for an LFM pulse train. 

 Figure 5.10b. Contour plot corresponding to Fig. 5.10a. 
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Understanding the difference between the ambiguity diagrams for a coherent pulse train and
an LFM pulse train can be done with the help of Fig. 5.11a and Fig. 5.11b. In both figures a
train of three pulses is used; in both cases the pulse width is sec and the period is

sec. In the case of the LFM pulse train, each pulse has LFM modulation with
. Locations of the ambiguity peaks along the delay and Doppler axes are the same in

both cases. This is true because peaks along the delay axis are  seconds apart and peaks along
the Doppler axis are  apart; in both cases  is unchanged. Additionally, the width of the
ambiguity peaks along the Doppler axis are the same in both cases, because this value depends
only on the pulse train length, which is the same in both cases (i.e., ). 

The width of the ambiguity peaks along the delay axis are significantly different, however.
In the case of the coherent pulse train, this width is approximately equal to twice the pulse
width. Alternatively, this value is much smaller in the case of the LFM pulse train. This clearly
leads to the expected conclusion that the addition of LFM modulation significantly enhances
the range resolution. Finally, the presence of the LFM modulation introduces a slope change in
the ambiguity diagram; again a result that is also expected.

5.3. Stepped Frequency Waveforms
Stepped Frequency Waveforms (SFW) is a class of radar waveforms that are used in

extremely wide bandwidth applications where very large time bandwidth product (or compres-
sion ratio as defined in Eq. (5.25) is required. One may think of SFW as a special case of an
extremely wide bandwidth LFM waveform. For this purpose, consider an LFM signal whose
bandwidth is  and whose pulse width is , and refer to it as the primary LFM. Divide this
long pulse into  subpulses, each of width , to generate a sequence of pulses whose PRI is

0 0.4=
T 1=
B 0 20=

T
1 T T

N 1– T

 Figure 5.11a. Contour plot for the ambiguity function of a coherent pulse train. 
N 3 0; 0.4 T; 1= = =
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denoted by . It follows that . One reason SFW is favored over an extremely
wideband LFM is that it may be very difficult to maintain the LFM slope when the time band-
width product is large. By using SFW, the same equivalent bandwidth can be achieved; how-
ever, phase errors are minimized since the LFM is chirped over a much shorter duration.

Define the beginning frequency for each subpulse as that value measured from the primary
LFM at the leading edge of each subpulse, as illustrated in Fig. 5.12. That is

Eq. (5.44)

where  is the frequency step from one subpulse to another. The set of  subpulses is often
referred to as a burst. Each subpulse can have its own LFM modulation. To this end, assume
that the subpulse LFM modulation corresponds to an LFM slope of . 

The complex envelope of a single subpulse with LFM modulation is 

. Eq. (5.45)

Of course if the subpulses do not have any LFM modulation, then the same equation holds true
by setting . The overall complex envelope of the whole burst is 

. Eq. (5.46)
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 Figure 5.11b. Contour plot for the ambiguity function of a coherent pulse train. 
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The ambiguity function of the matched filter corresponding to Eq. (5.46) can be obtained
from that of the coherent pulse train developed in Section 5.2.3 along with property 5 of the
ambiguity function. The details are fairly straightforward and are left to the reader as an exer-
cise. The result is (see Problem 5.2) 

Eq. (5.47)

where  is the ambiguity function of the single pulse. Unlike the case in Eq. (5.43), the sec-
ond part of the right-hand side of Eq. (5.47) is now modified according to property 5 of Section
5.1. This is true since each subpulse has its own beginning frequency derived from the primary
LFM slope. 

5.4. Nonlinear FM 
As clearly shown by Fig. 5.6, the output of the matched filter corresponding to an LFM pulse

has sidelobe levels similar to those of the  signal, that is, 13.4dB below the main
beam peak. In many radar applications, these sidelobe levels are considered too high and may
present serious problems for detection particularly in the presence of nearby interfering targets
or other noise sources. Therefore, in most radar applications, sidelobe reduction of the output
of the matched filter is always required. This sidelobe reduction can be accomplished using
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windowing techniques as described in Chapter 3. However, windowing techniques reduce the
sidelobe levels at the expense of reducing of the SNR and widening the main beam (i.e., loss of
resolution), which are considered to be undesirable features in many radar applications. 

These effects can be mitigated by using non-linear FM (NLFM) instead of LFM waveforms.
In this case, the LFM waveform spectrum is shaped according to a specific predetermined fre-
quency function. Effectively, in NLFM, the rate of change of the LFM waveform phase is var-
ied so that less time is spent on the edges of the bandwidth, as illustrated in Fig. 5.13. The
concept of NLFM can be better analyzed and understood in the context of the stationary phase.

5.4.1. The Concept of Stationary Phase 

Consider the following bandpass signal

, Eq. (5.48)

where  is the frequency modulation. The corresponding analytic signal (pre-envelope) is

Eq. (5.49)

where  is the complex envelope and is given by

, Eq. (5.50)

The lowpass signal  represents the envelope of the transmitted signal; it is given by

, Eq. (5.51)

It follows that the FT of the signal can then be written as 

, Eq. (5.52)
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 Figure 5.13. An illustration showing frequency versus time for an 
LFM waveform (solid line) and a NLFM (dashed line). 
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Eq. (5.53)

where  is the modulus of the FT and  is the corresponding phase frequency
response. It is clear that the integrand is an oscillating function of time varying at a rate of

. Eq. (5.54)

Most contribution to the FT spectrum occurs when this rate of change is minimal. More specif-
ically, it occurs when

. Eq. (5.55)

The expression in Eq. (5.55) is parametric since it relates two independent variables. Thus,
for each value  there is only one specific  that satisfies Eq. (5.55). Thus, the time
when this phase term is stationary will be different for different values of . Expanding the
phase term in Eq. (5.55) about an incremental value  using Taylor series expansion yields

Eq. (5.56)

An acceptable approximation of Eq. (5.56) is obtained by using the first three terms, provided
that the difference  is very small. Now, using the right-hand side of Eq. (5.55) into Eq.
(5.56) and terminating the expansion at the first three terms yields

. Eq. (5.57)

By substituting Eq. (5.57) into Eq. (5.52) and using the fact that  is relatively constant
(slow varying) when compared to the rate at which the carrier signal is varying, gives

Eq. (5.58)

where  and  represent infinitesimal changes about . Equation (5.58) can be written
as

. Eq. (5.59)

Consider the changes of variables

Eq. (5.60)

. Eq. (5.61)

Using these changes of variables leads to 
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Eq. (5.62)

where

. Eq. (5.63)

The integral in Eq. (5.62) is of the form of a Fresnel integral, which has an upper limit approx-
imated by

. Eq. (5.64)

Substituting Eq. (5.64) into Eq. (5.62) yields

. Eq. (5.65)

Thus, for all possible values of  

. Eq. (5.66)

The subscript  was used to indicate the dependency of  on time. 

Using a similar approach that led to Eq. (5.66), an expression for  can be obtained.
From Eq. (5.53), the signal 

. Eq. (5.67)

The phase term  is (using Eq. (5.65))

. Eq. (5.68)

Differentiating with respect to  yields

. Eq. (5.69)

Using the stationary phase relation in Eq. (5.55) (i.e., ) yields

 Eq. (5.70)

and

. Eq. (5.71)
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Define the signal group time-delay function as 

, Eq. (5.72)

then the signal instantaneous frequency is the inverse of the . Figure 5.14 shows a draw-
ing illustrating this inverse relationship between the NLFM frequency modulation and the cor-
responding group time-delay function.

Comparison of Eq. (5.67) and Eq. (5.52) indicates that both equations have similar form.
Thus, if one substitutes  for ,  for ,  for , and  for  in Eq.
(5.52), a similar expression to that in Eq. (5.65) can be derived. That is,

. Eq. (5.73)

The subscript  was used to indicate the dependency of  on frequency. However, from Eq.
(5.60) 

. Eq. (5.74)

It follows that Eq. (5.73) can be rewritten as

. Eq. (5.75)

Substituting Eq. (5.71) into Eq. (5.75) yields a general relationship for any  

, Eq. (5.76)

Clearly, the functions , , , and  are related to each other as Fourier trans-
form pairs, as given by

Eq. (5.77)
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 Figure 5.14. Matched filter time delay and frequency modulation for a 
NLFM waveform.
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. Eq. (5.78)

They are also related using Parseval’s theorem by

Eq. (5.79)

or

. Eq. (5.80)

The formula for the output of the matched filter was derived earlier and is repeated here as
Eq. (5.81) 

. Eq. (5.81)

Substituting the right-hand side of Eq. (5.50) into Eq. (5.81) yields

. Eq. (5.82)

It follows that the zero Doppler and zero delay cuts of the ambiguity function can be written as

Eq. (5.83)

. Eq. (5.84)

These two equations imply that the shape of the ambiguity function cuts are controlled by
selecting different functions  and  (related as defined in Eq. (5.76)). In other words, the
ambiguity function main beam and its delay axis sidelobes can be controlled (shaped) by the
specific choices of these two functions; hence, the term spectrum shaping is used. Using this
concept of spectrum shaping, one can control the frequency modulation of an LFM (see Fig.
5.13) to produce an ambiguity function with the desired sidelobe levels. 

5.4.2. Frequency Modulated Waveform Spectrum Shaping

One class of FM waveforms which takes advantage of the stationary phase principles to con-
trol (shape) the spectrum is
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Eq. (5.85)

where the value  is an integer greater than zero. It can be easily shown using direct integra-
tion and by utilizing Eq. (5.85) that

Eq. (5.86)

Eq. (5.87)

Eq. (5.88)

Eq. (5.89)

Figure 5.15 shows a plot for Eq. (5.86) through Eq. (5.89). These plots assume  and
the x-axis is normalized, with respect to . This figure can be reproduced using the MATLAB
program “Fig5_15.m,” listed in Appendix 5-A.

The Doppler mismatch (i.e., a peak of the ambiguity function at a delay value other than
zero) is proportional to the amount of Doppler frequency . Hence, an error in measuring tar-
get range is always expected when LFM waveforms are used. To achieve sidelobe levels for
the output of the matched filter that do not exceed a predetermined level, use this class of
NLFM waveforms 
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. Eq. (5.90)

For example, using the combination ,  yields sidelobe levels less than
.

5.5.  Ambiguity Diagram Contours
Plots of the ambiguity function are called ambiguity diagrams. For a given waveform, the

corresponding ambiguity diagram is normally used to determine the waveform properties such
as the target resolution capability, measurements (time and frequency) accuracy, and its
response to clutter. The ambiguity diagram contours are cuts in the 3-D ambiguity plot at some
value, , such that . The resulting plots are ellipses (see Problem 5.11). The
width of a given ellipse along the delay axis is proportional to the signal effective duration, ,
defined in Chapter 2. Alternatively, the width of an ellipse along the Doppler axis is propor-
tional to the signal effective bandwidth, . 

Figure 5.16 shows a sketch of typical ambiguity contour plots associated with a single
unmodulated pulse. As illustrated in Fig. 5.16, narrow pulses provide better range accuracy
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse than it is for a
short one. This trade-off between range and Doppler measurements comes from the uncer-
tainty associated with the time-bandwidth product of a single sinusoidal pulse, where the prod-
uct of uncertainty in time (range) and uncertainty in frequency (Doppler) cannot be much
smaller than unity (see Problem 5.12). Figure 5.17 shows the ambiguity contour plot associ-
ated with an LFM waveform. The slope is an indication of the LFM modulation. The values

, , , and  were derived in Chapter 4 and were respectively given in Eq.
(4.107), Eq. (4.111), Eq. (4.136), and Eq. (4.137). 
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5.6. Interpretation of Range-Doppler Coupling in LFM Signals
An expression of the range-Doppler for LFM signals was derived in Chapter 4. Range-Dop-

pler coupling affects the radar’s ability to compute target range and Doppler estimates. An
interpretation of this term in the context of the ambiguity function can be explained further
with the help of Eq. (5.20). Observation of this equation indicates that the ambiguity function
for the LFM pulse has a peak value, not at , but rather at 

Eq. (5.91)

This Doppler mismatch (i.e., a peak of the ambiguity function at a delay value other than zero)
is proportional to the amount of Doppler frequency . Hence, an error in measuring target
range is always expected when LFM waveforms are used. 

Most radar systems using LFM waveforms will correct for the effect of range-Doppler cou-
pling by repeating the measurement with an LFM waveform of the opposite slope and averag-
ing the two measurements. This way, the range measurement error is negated and the true
target range is extracted from the averaged value. However, some radar systems, particularly
those used for long-range surveillance applications, may actually take advantage of range-
Doppler coupling effect; and here is how it works: Typically, radars during the search mode
utilize very wide range bins which may contain many targets with different distinct Doppler
frequencies. It follows that the output of the matched filter has several targets that have equal
delay but different Doppler mismatches. 

All targets with Doppler mismatches greater than  are significantly attenuated by the
ambiguity function (because of the sharp decaying slope of the ambiguity function along the
Doppler axis), and thus will most likely go undetected along the Doppler axis. The combined
target complex within that range bin is then detected by the LFM as if all targets had a Doppler
mismatch corresponding to the target whose Doppler mismatch is less than or equal to .
Thus, all targets within that wide range bin are detected as one narrowband target. Because of
this range-Doppler coupling, LFM waveforms are often referred to as Doppler intolerant
(insensitive) waveforms. 

Delay

Doppler

fd

 Figure 5.17. Ambiguity contour plot for an up-chirp LFM waveform. 
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Problems
5.1. From Eq. (5.15) one can deduce that the transfer function of the matched filter is given
by . Show that

 

5.2. Prove Eq. (5.5) through Eq. (5.10).

5.3. Derive an expression for the ambiguity function of a Gaussian pulse defined by

  

where  is the pulsewidth and  is a constant.

5.4. Write a MATLAB program that computes and plots the 3-D and the contour plots for
the results in Problem 5.3.
5.5. Derive an expression for the ambiguity function of a V-LFM waveform, illustrated in
figure below. In this case, the overall complex envelope is

  

where 

and

5.6. Using the stationary phase concept, find the instantaneous frequency for the waveform
whose envelope and complex spectrum are, respectively, given by 
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and

 .

5.7. Using the stationary phase concept, find the instantaneous frequency for the waveform
whose envelope and complex spectrum are respectively given by

 

and

.

5.8. Write a MATLAB program to compute the ambiguity function for the parabolic FM
waveform. Your code must be able to produce 3-D and contour plots of the resulting ambiguity
function. 
5.9. Write a detailed MATLAB code to compute the ambiguity function for an SFW wave-
form. Your code must be able to produce 3-D and contour plots of the resulting ambiguity
function. 
5.10. Prove that cuts in the ambiguity function are always defined by an ellipse. Hint:
Approximate the ambiguity function using a Taylor series expansion about the values

; use only the first three terms in the Taylor series expansion.
5.11. The radar uncertainty principle establishes a lower bound for the time bandwidth
product. More specifically, if the radar effective duration is  and its effective bandwidth is

, show that , where  is the range-Doppler coupling coefficient
defined in Chapter 4.
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Appendix 5-A: Chapter 5 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “single_pulse_ambg.m” Listing
function [x] = single_pulse_ambg (taup)
% Computes the ambiguity of a single pulse
% % Inputs
    % taup      == pulsewidth in seconds
%%Outputs
    % x         == ambiguity surface array
eps = 0.000001;
i = 0;
del = 2*taup/150;
for tau = -taup:del:taup
   i = i + 1;
   j = 0;
   fd = linspace(-5/taup,5/taup,151);
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup .* (1.0 - abs(tau) / taup) .* fd;
   x(:,i) = abs( val1 .* sin(val2+eps)./(val2+eps));
end

MATLAB Program “Fig5_2.m” Listing
% Use this program to reproduce Fig. 5.2 of text
close all; 
clear all;
eps = 0.000001;
taup = 3;
[x] = single_pulse_ambg (taup);
taux = linspace(-taup,taup, size(x,1));
fdy = linspace(-5/taup+eps,5/taup-eps, size(x,1));
mesh(taux,fdy,x);
xlabel ('Delay in seconds'); 
ylabel ('Doppler in Hz'); 
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x);
xlabel ('Delay in seconds'); 
ylabel ('Doppler in Hz'); grid

MATLAB Program “Fig5_4.m” Listing
% Use this program to reproduce Fig 5.4 of text
close all
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clear all
eps = 0.0001;
taup = 3.;
fd = -10./taup:.001:10./taup;
uncer = abs( sinc(taup .* fd));
figure(2)
plot (fd, uncer,'k','linewidth',1);
xlabel ('Frequency - Hz')
ylabel ('Ambiguity - Volts')
grid

MATLAB Function “lfm_ambg.m” Listing
function x = lfm_ambg(taup, b, up_down)
% Implements Eq. (5.21) of textbook
%% Inputs
    % taup      == pulsewidth in seconds
    % b         == bandwidth in Hz 
    % up_down  == 1 to indicate an up-chirp LFM
    % up_down == -1 to indicate an down-chirp LFM
%% Output
    % x         == ambiguity matrix
eps = 0.000001;
i = 0;
mu = up_down * b / taup;
del = 2*taup/200;
for tau = -1.*taup:del:taup
   i = i + 1;
   j = 0;
   fd = linspace(-1.5*b,1.5*b,201);
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);
   val3 = (fd + mu * tau);
   val = val2 * val3;
   x(:,i) = abs( val1 .* (sin(val+eps)./(val+eps))).^2;
   end
end 

MATLAB Program “Fig5_5.m” Listing
% Use this program to reproduce Fig. 5.5 of text
close all
clear all
eps = 0.0001;
taup = 1.;
b = 5.;
up_down = -1.;
x = lfm_ambg(taup, b, up_down);
taux = linspace(-1.*taup,taup,size(x,1));
fdy = linspace(-1.5*b,1.5*b,size(x,1));
figure(1)
mesh(taux,fdy,sqrt(x))
xlabel ('Delay in seconds')
ylabel ('Doppler in Hz')
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zlabel ('Ambiguity function')
axis tight
figure(2)
contour(taux,fdy,sqrt(x))
xlabel ('Delay in seconds')
ylabel ('Doppler in Hz')

MATLAB Program “Fig5_6.m” Listing
% Use this program to reproduce Fig. 5.6 of text
close all
clear all
eps = 0.001;
taup = 1;
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup;
fd = 0.;
mu = up_down * b / 2. / taup;
ii = 0.;
for tau = -1.5*taup:.01:1.5*taup
   ii = ii + 1;
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);
   val3 = (fd + mu * tau);
   val = val2 * val3;
   x(ii) = abs( val1 * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,10*log10(x+eps))
grid
xlabel ('Delay in seconds')
ylabel ('Ambiguity in dB')
axis tight

MATLAB Function “train_ambg.m” Listing
function x = train_ambg(taup, n, pri)
% This function implements Eq. (5.37) of textbook
% % Inputs
    % taup    == pulse width in seconds
    % n        == number of pulses in train
    % pri       == pulse repetition interval in seconds
%% Outputs
    % x         == ambiguity matrix
if (taup >= pri/2)
    'ERROR. Pulse width must be less than the PRI/2.'
    return
end
eps = 1.0e-6;
bw = 1/taup;
q = -(n-1):1:n-1;
offset = 0:0.031:pri;
[Q, S] = meshgrid(q, offset);



200                                                                                   Radar Systems Analysis and Design Using MATLAB®

Q = reshape(Q, 1, length(q)*length(offset));
S = reshape(S, 1, length(q)*length(offset));
tau = (-taup * ones(1,length(S))) + S    ;
fd = -bw:0.011:bw;
[T, F] = meshgrid(tau, fd);
Q = repmat(Q, length(fd), 1);
S = repmat(S, length(fd), 1);
N = n * ones(size(T));
val1 = 1.0-(abs(T))/taup;
val2 = pi*taup*F.*val1;
val3 = abs(val1.*sin(val2+eps)./(val2+eps));
val4 = abs(sin(pi*F.*(N-abs(Q))*pri+eps)./sin(pi*F*pri+eps));
x = val3.*val4./N;
[rows, cols] = size(x);
x = reshape(x, 1, rows*cols);
T = reshape(T, 1, rows*cols);
indx = find(abs(T) > taup);
x(indx) = 0.0;
x = reshape(x, rows, cols);
return

MATLAB Program “Fig5_8.m” Listing
% Use this program to reproduce Fig. 5.8 of text
clear all
close all
taup = .4;
pri = 1;
n = 5;
x = train_ambg(taup, n, pri);
figure(1)
time = linspace(-(n-1)*pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-1/taup, 1/taup, size(x,1));
%mesh(time, doppler, x);
mesh(time, doppler, x); %shading interp;
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
zlabel('Ambiguity function');
axis tight;
figure(2)
contour(time, doppler, (x));
%surf(time, doppler, x); shading interp; view(0,90);
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
grid;
axis tight;

MATLAB Program “Fig5_9.m” Listing
% Use this program to reproduce Fig. 5.9 of textbook
close all
clear all
LFM_BW = 20;
time = linspace(0,1,3000);
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S = zeros(1,3000);
tau = .3;
index = find(time<=tau);
ts = tau / 3000; % 1000 samples per PW
beta = LFM_BW/tau;
S(index) = exp(j*pi*beta*(time(index).^2));
SS = repmat(S,1,5);
figure
timet = linspace(0,5,5*3000);
plot(timet,imag(SS),'linewidth',1.5), grid
ylabel('Up chirp LFM')

MATLAB Function “train_ambg_lfm.m” Listing
function x = train_ambg_lfm(taup, n, pri, bw)
% This function implemenst Eq. (5.43) of textbook
%% Inputs
    % taup  == pulsewidth in seconds
    % n        == number of pulses in train
    % pri       == pulse repetition interval in seconds
    % bw        == the LFM bandwidth in Hz
%%Outputs
    % x         == array of bimodality function 
if (taup >= pri/2)
    'ERROR. Pulse width must be less than the PRI/2.'
    return
end
eps = 1.0e-6;
 q = -(n-1):1:n-1;
offset = 0:0.033:pri;
[Q, S] = meshgrid(q, offset);
Q = reshape(Q, 1, length(q)*length(offset));
S = reshape(S, 1, length(q)*length(offset));
tau = (-taup * ones(1,length(S))) + S ;
fd = -bw:0.033:bw;
[T, F] = meshgrid(tau, fd);
Q = repmat(Q, length(fd), 1);
S = repmat(S, length(fd), 1);
N = n * ones(size(T));
val1 = 1.0-(abs(T))/taup;
val2 = pi*taup*(F+T*(bw/taup)).*val1;
val3 = abs(val1.*sin(val2+eps)./(val2+eps));
val4 = abs(sin(pi*F.*(N-abs(Q))*pri+eps)./sin(pi*F*pri+eps));
x = val3.*val4./N;
[rows, cols] = size(x);
x = reshape(x, 1, rows*cols);
T = reshape(T, 1, rows*cols);
indx = find(abs(T) > taup);
x(indx) = 0.0;
x = reshape(x, rows, cols);
return
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MATLAB Program “Fig5_10.m” Listing
% Use this program to reproduce Fig. 5.10 of the textbook.
clear all
close all
taup = 0.4;
pri = 1;
n = 3;
bw = 10;
x = train_ambg_lfm(taup, n, pri, bw);
figure(1)
time = linspace(-(n-1)*pri-taup, n*pri-taup, size(x,2));
doppler = linspace(-bw,bw, size(x,1));
%mesh(time, doppler, x);
surf(time, doppler, x); shading interp;
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
zlabel('Ambiguity function');
axis tight;
title('LFM pulse train, B\tau = 40, N = 3 pulses')
figure(2)
contour(time, doppler, (x));
%surf(time, doppler, x); shading interp; view(0,90);
xlabel('Delay in seconds');
ylabel('Doppler in Hz');
grid;
axis tight;
title('LFM pulse train, B\tau = 40, N = 3 pulses')

MATLAB Program “Fig5_15.m” Listing
% Use this program to reproduce Fig. 5.15
clear all; 
close all;
delw = linspace(-.5,.5,75);
T1 = .5 .* sin(pi.*delw);
T2 = delw + (1/2/pi) .* sin(2*pi.*delw);
T3 = .25 .* (sin(pi.*delw)) .* ((cos(pi.*delw)).^2 + 2);
T4 = delw + (1/2/pi) .* sin(2*pi.*delw) + (2/3/pi) .* (cos(pi.*delw)).^3 .* sin(delw);
figure (1)
plot(delw,T1,'k*',delw,T2,'k:',delw,T3,'k.',delw,T4,'k');
grid
ylabel('Group delay function'); xlabel('\omega/B')
legend('n=1','n=2','n=3','n=4')
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Part II - Radar Signals and Signal Processing

Chapter 6

The concepts of resolution and ambiguity were introduced in Chapter 4. The relationship
between the waveform resolution (range and Doppler) and its corresponding ambiguity func-
tion was discussed and analyzed. It was determined that the goodness of a given waveform is
based on its range and Doppler resolutions, which can be analyzed in the context of the ambi-
guity function. For this purpose, a few common analog radar waveforms were analyzed in
Chapter 5. In this chapter, another type of radar waveform based on discrete codes is analyzed.
This topic has been and continues to be a major research thrust area for many radar scientists,
designers, and engineers. Discrete coded waveforms are more effective in improving range
characteristics than Doppler (velocity) characteristics. Furthermore, in some radar applica-
tions, discrete coded waveforms are heavily favored because of their inherent anti-jamming
capabilities. In this chapter, a quick overview of discrete coded waveforms is presented. Three
classes of discrete codes are analyzed. They are unmodulated pulse-train codes (uniform and
staggered), phase-modulated (binary or polyphase) codes, and frequency modulated codes.    

6.1. Discrete Code Signal Representation
The general form for a discrete coded signal can be written as

Eq. (6.1)

where  is the carrier frequency in radians,  are constants,  is the code length
(number of bits in the code), and the signal  is given by

. Eq. (6.2)

The constant  is either  or , and

. Eq. (6.3)

Using this notation, the discrete code can be described through the sequence
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  Eq. (6.4)

which, in general, is a complex sequence depending on the values of  and . The sequence
 is called the code, and for convenience it will be denoted by .

In general, the output of the matched filter is

, Eq. (6.5)

Substituting Eq. (6.1) into Eq. (6.5) yields

, Eq. (6.6)

Depending on the choice of combination for , , and , different class of codes can be
generated. To this end, pulse-train codes are generated when

, Eq. (6.7)

Binary phase codes and polyphase codes are generated when

, Eq. (6.8)

Finally, frequency codes are generated when

, Eq. (6.9)

6.2. Pulse-Train Codes
The idea behind this class of code is to divide a relatively long pulse of length  into 

subpulses, each being a rectangular pulse with pulse width  and amplitude of 1 or 0. It fol-
lows that the code  is the sequence of 1s and 0s. More precisely, the signal representing this
class of code can be written as

Eq. (6.10)

One way to generate a train-pulse class code can be by setting

Eq. (6.11)

where  is a positive integer that divides evenly into . That is,

Eq. (6.12)

where  is the number of 1s in the code. For example, when  and , then
, and the resulting code is 
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. Eq. (6.13)

This is illustrated in Fig. 6.1. In previous chapters this code would have been represented by
the following continuous time domain signal

Eq. (6.14)

where the period is . Using this analogy yields 

 Eq. (6.15)

and Eq. (6.10) can now be written as

. Eq. (6.16)

In Chapter 5 an expression for the ambiguity function for a coherent train of pulses was
derived. Comparison of Eq. (6.16) and Eq. (5.27) show that the two equations are equivalent
when the condition in Eq. (6.15) is true except for some constants. It follows that the ambiguity
function for the signal defined in Eq. (6.16) is

 . Eq. (6.17)

The zero Doppler and zero delay cuts of the ambiguity function are derived from Eq. (6.17).
They are given by
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 Figure 6.1. Generating a pulse-train code of length  bits.N 21=
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Eq. (6.18)

. Eq. (6.19)

Figure 6.2a shows the three-dimensional ambiguity plot for the code shown in Fig. 6.1, while
Fig. 6.2b shows the corresponding contour plot. This figure can be reproduced using MAT-
LAB program “Fig6_2.m,” listed in Appendix 6-A. 

A cartoon showing contour cuts of the ambiguity function for a pulse-train code is shown in
Fig. 6.2c. Clearly, the width of the ambiguity function main lobe (i.e., resolution) is directly
tied to the code length. As one would expect, longer codes will produce a narrower main lobe
and thus have better resolution than shorter ones. Further observation of Fig. 6.2 shows that
this ambiguity function has a strong grating lobe structure along with high sidelobe levels. The
presence of such strong lobing structure limits the effectiveness of the code and will cause
detection ambiguities. These lobes are a direct result from the uniform equal spacing between
the 1s within a code (i.e., periodicity of the code). These lobes can be significantly reduced by
getting rid of the periodic structure of the code, i.e., placing the pulses at nonuniform spacing.
This is called code staggering (PRF staggering).
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 Figure 6.2a. Ambiguity function for the pulse-train code shown in Fig. 6.1. 
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 Figure 6.2b. Contour plot corresponding to Fig. 6.2a.

frequency

time

M
Tp
-----

Tp

M
-----

0

f
˜

f
˜

1 Tp=

 Figure 6.2c. Illustration of the ambiguity contour plot for a pulse-train code.

1
0

----

Tp



208                                                                                   Radar Systems Analysis and Design Using MATLAB®

 For example, consider a pulse-train code of length . A staggered train-pulse code
can then be obtained by using the following sequence 

. Eq. (6.20)

Thus, the resulting code is

. Eq. (6.21)

Figure 6.3 shows the ambiguity plot corresponding to this code. As indicated by Fig. 6.3, the
ambiguity function corresponding to a staggered pulse-train code approaches a thumbtack
shape. The choice of the optimum staggered code has been researched extensively by numer-
ous people. Resnick1 defined the optimum staggered pulse-train code as that whose ambiguity
function has absolutely uniform sidelobe levels that are equal to unity. Other researchers have
introduced different definitions for optimum staggering, none of which is necessarily better
than the others, except when considered for the particular application being analyzed by the
respective researcher. Figure 6.3 can be reproduced using MATLAB program “Fig6_3.m,”
listed in Appendix 6-A. 

1. Resnick, J. B., High Resolution Waveforms Suitable for a Multiple Target Environment, MS thesis, 
MIT, Cambridge, MA, June 1962.
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 Figure 6.3a. Ambiguity function for the pulse-train code in Eq. (6.21). 
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6.3. Phase Coding 
The signal corresponding to this class of code is obtained from Eq. (6.1) by letting .

It follows that 

. Eq. (6.22)

Two subclasses of phase codes are analyzed. They are binary phase codes and polyphase
codes. 

6.3.1. Binary Phase Codes

In this case, the phase  is set equal to either  or , and hence, the term binary is
used. For this purpose, define the coefficient  as

. Eq. (6.23)

The ambiguity function for this class of code is derived by substituting Eq. (6.22) into Eq.
(6.5). The resulting ambiguity function is given by

 Figure 6.3b. Contour plot corresponding to Fig. 6.3a.
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Eq. (6.24)

where

Eq. (6.25)

. Eq. (6.26)

The corresponding zero Doppler cut is then given by

, Eq. (6.27)

and when   then

. Eq. (6.28)

Barker Code

Barker code is one of the most commonly known codes from the binary phase code class. In
this case, a long pulse of width  is divided into  smaller pulses; each is of width

. Then, the phase of each subpulse is chosen as either  or  radians relative to
some code. It is customary to characterize a subpulse that has  phase (amplitude of +1 volt)
as either “1” or “+.” Alternatively, a subpulse with phase equal to  (amplitude of -1 volt) is
characterized by either “0” or “-.” Barker code is optimum in accordance with the definition
set by Resnick. Figure 6.4 illustrates this concept for a Barker code of length seven. A Barker
code of length  is denoted as . There are only seven known Barker codes that share this
unique property; they are listed in Table 6.1. Note that  and  have complementary forms
that have the same characteristics. 

In general, the autocorrelation function (which is an approximation for the matched filter
output) for a  Barker code will be  wide. The main lobe is  wide; the peak value is
equal to . There are  sidelobes on either side of the main lobe; this is illustrated in
Fig. 6.5 for a . Notice that the main lobe is equal to 13, while all sidelobes are unity.

The most sidelobe reduction offered by a Barker code is , which may not be suffi-
cient for the desired radar application. However, Barker codes can be combined to generate
much longer codes. In this case, a  code can be used within a  code (  within ) to
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generate a code of length . The compression ratio for the combined  code is equal to
. As an example, a combined  is given by 

Eq. (6.29)

and is illustrated in Fig. 6.6. Unfortunately, the sidelobes of a combined Barker code autocorre-
lation function are no longer equal to unity. Some sidelobes of a combined Barker code auto-
correlation function can be reduced to zero if the matched filter is followed by a linear
transversal filter with impulse response given by

Eq. (6.30)

where  is the filter’s order, the coefficients  ( ) are to be determined,  is the
delta function, and  is the Barker code subpulse width. A filter of order  produces  zero
sidelobes on either side of the main lobe. The main lobe amplitude and width do not change, as
illustrated in Fig. 6.7.

TABLE 6.1. Barker codes

Code 
Symbol

Code 
Length Code Elements

Side Lode 
Reduction (dB)

2 +- 

++

6.0

3 ++- 9.5

4 ++-+ 

+++-

12.0

5 +++-+ 14.0

7 +++--+- 16.9

11 +++---+--+- 20.8

13 +++++--++-+-+ 22.3
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Figure 6.4. Binary phase code of length 7. 
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In order to illustrate this approach, consider the case where the input to the matched filter is
, and assume . The autocorrelation for a  is 

. Eq. (6.31)

The output of the transversal filter is the discrete convolution between its impulse response and
the sequence . At this point we need to compute the coefficients  that guarantee the
desired filter output (i.e., unchanged main lobe and four zero sidelobe levels).
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 Figure 6.5. Barker code of length 13, and its corresponding auto-
correlation function.
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Performing the discrete convolution as defined in Eq. (6.30) and collecting equal terms
( ) yield the following set of five linearly independent equations:

. Eq. (6.32)

Solving Eq. (6.32) yields

. Eq. (6.33)

Note that setting the first equation equal to  and all other equations to  and then solving
for  guarantees that the main peak remains unchanged, and that the next four sidelobes are
zeros. So far we have assumed that coded pulses have rectangular shapes. Using other pulses
of other shapes, such as Gaussian, may produce better sidelobe reduction and a larger compres-
sion ratio. 

Figure 6.8 shows the output of this function when  is used as an input. Figure 6.9 is sim-
ilar to Fig. 6.8, except in this case  is used as an input. Figure 6.10 shows the ambiguity
function, the zero Doppler cut, and the contour plot for the combined Barker code defined in
Fig. 6.6. 

Figures 6.8 through 6.10 can be reproduced using the MATALB program “Fig6_8_10.m,”
listed in Appendix 6-A.

matched 
 filter

transversal 
    filter; order N

BN

 Figure 6.7. A linear transversal filter of order N can be used to produce N zero 
sidelobes in the autocorrelation function (N = 4).

k k–=

11 2– 2– 2– 2–
1– 10 2– 2– 1–
1– 2– 10 2– 1–
1– 2– 1– 11 1–
1– 1– 1– 1– 11

0

1

2

3

4

11
0
0
0
0

=

0

1

2

3

4

1.1342
0.2046
0.2046
0.1731
0.1560

=

11 0
k

B13
B7



214                                                                                   Radar Systems Analysis and Design Using MATLAB®

 

 Figure 6.8a. Ambiguity function for  Barker code.B13

 Figure 6.8b. Zero Doppler cut for the  ambiguity function.B13



Phase Coding 215                                                                                                                                                                                                                                                                         

 Figure 6.8c. Contour plot corresponding to Fig. 6.8a.

 Figure 6.9a. Ambiguity function for  Barker code.B7
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 Figure 6.9b. Zero Doppler cut for the  ambiguity function.B7

 Figure 6.9c. Contour plot corresponding to Fig. 6.9a.
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 Figure 6.10a. Ambiguity function for  Barker code.B54

 Figure 6.10b. Zero Doppler cut for the  ambiguity function.B54
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Pseudo-Random Number (PRN) Codes

Pseudo-Random Number (PRN) codes are also known as Maximal Length Sequences
(MLS) codes. These codes are called pseudo-random because the statistics associated with
their occurrence are similar to those associated with the coin-toss sequences. Maximum length
sequences are periodic. The MLS codes have the following distinctive properties:

1. The number of ones per period is one more than the number of minus ones.
2. Half the runs (consecutive states of the same kind) are of length one and one fourth are of 

length two.
3. Every maximal length sequence has the “shift and add” property. This means that, if a max-

imal length sequence is added (modulo 2) to a shifted version of itself, then the resulting 
sequence is a shifted version of the original sequence.

4. Every n-tuple of the code appears once and only once in one period of the sequence. 
5. The correlation function is periodic and is given by 

. Eq. (6.34)

Figure 6.11 shows a typical sketch for an MLS autocorrelation function. Clearly these codes
have the advantage that the compression ratio becomes very large as the period is increased.
Additionally, adjacent peaks (grating lobes) become farther apart.

 Figure 6.10c. Contour plot corresponding to Fig. 6.10a.
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Linear Shift Register Generators

There are numerous ways to generate MLS codes. The most common is to use linear shift
registers. When the binary sequence generated using a shift register implementation is periodic
and has maximal length, it is referred to as an MLS binary sequence with period , where 

. Eq. (6.35)

 is the number of stages in the shift register generator. A linear shift register generator basi-
cally consists of a shift register with modulo-two adders added to it. The adders can be con-
nected to various stages of the register, as illustrated in Fig. 6.12 for  (i.e., ).
Note that the shift register initial state cannot be 0. 

The feedback connections associated with a shift register generator determine whether the
output sequence will be maximal. For a given size shift register, only a few feedback connec-
tions lead to maximal sequence outputs. In order to illustrate this concept, consider the two 5-
stage shift register generators shown in Fig. 6.13. The shift register generator shown in Fig.
6.13 a generates a maximal length sequence, as clearly depicted by its state diagram. However,
the shift register generator shown in Fig. 6.13 b produces three non-maximal length sequences
(depending on the initial state).

Given an n-stage shift register generator, one would be interested in knowing how many
feedback connections will yield maximal length sequences. Zierler1 showed that the number of
maximal length sequences possible for a given n-stage linear shift register generator is

1. Zierler, N., Several Binary-Sequence Generators, MIT Technical Report No. 95, Sept. 1955.
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 Figure 6.11. Typical autocorrelation of an MLS code of length L.

 Figure 6.12. Circuit for generating an MLS sequence of length .L 15=
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. Eq. (6.36)

 is the Euler’s totient (Euler’s phi) function and is defined by

Eq. (6.37)

where  are the prime factors of . Note that when  has multiples, only one of them is
used. Also note that when  is a prime number, the Euler’s phi function is 

. Eq. (6.38)

For example, a 3-stage shift register generator will produce
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, Eq. (6.39)

and a 6-stage shift register,

, Eq. (6.40)

Maximal Length Sequence Characteristic Polynomial

Consider an n-stage maximal length linear shift register whose feedback connections corre-
spond to . This maximal length shift register can be described using its characteris-
tic polynomial defined by

Eq. (6.41)

where the additions are modulo 2. Therefore, if the characteristic polynomial for an n-stage
shift register is known, one can easily determine the register feedback connections and conse-
quently deduce the corresponding maximal length sequence. For example, consider a 6-stage
shift register whose characteristic polynomial is

 . Eq. (6.42)

It follows that the shift register which generates a maximal length sequence is shown in Fig.
6.14.

One of the most important issues associated with generating a maximal length sequence
using a linear shift register is determining the characteristic polynomial. This has been and
continues to be a subject of research for many radar engineers and designers. It has been shown
that polynomials which are both irreducible (not factorable) and primitive will produce maxi-
mal length shift register generators.

 

A polynomial of degree n is irreducible if it is not divisible by any polynomial of degree less
than n. It follows that all irreducible polynomials must have an odd number of terms. Conse-
quently, only linear shift register generators with an even number of feedback connections can
produce maximal length sequences. An irreducible polynomial is primitive if and only if it
divides  for no value of  less than . Figure 6.15 shows the output of this function
for 

u31 = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1].

Figure 6.16 is similar to Fig. 6.15, except in this case the input maximal length sequence is 

u15=[1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1].
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 Figure 6.15a. Ambiguity function corresponding to a 31-bit PRN code.

 Figure 6.15b. Zero Doppler cut corresponding to Fig. 6.15a. 
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 Figure 6.15c. Contour plot corresponding to Fig. 6.15a. 

 Figure 6.16a. Ambiguity function corresponding to a 15-bit PRN code.
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 Figure 6.16b. Zero Doppler cut corresponding to Fig. 6.16a. 

 Figure 6.16c. Contour plot corresponding to Fig. 6.16a. 
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6.3.2. Polyphase Codes

The signal corresponding to polyphase codes is that given in Eq. (6.22) and the correspond-
ing ambiguity function was given in Eq. (6.24). The only exception is that the phase  is no
longer restricted to . Hence, the coefficient  are no longer equal to  but can be
complex depending on the value of . Polyphase Barker codes have been investigated by
many scientists, and much is well documented in the literature. In this chapter the discussion
will be limited to Frank codes.

Frank Codes

In this case, a single pulse of width  is divided into  equal groups; each group is subse-
quently divided into other  subpulses, each of width . Therefore, the total number of sub-
pulses within each pulse is , and the compression ratio is . As previously, the phase
within each subpulse is held constant with respect to some CW reference signal. 

A Frank code of  subpulses is referred to as an N-phase Frank code. The first step in com-
puting a Frank code is to divide  by  and define the result as the fundamental phase
increment . More precisely,

. Eq. (6.43)

Note that the size of the fundamental phase increment decreases as the number of groups is
increased, and because of phase stability, this may degrade the performance of very long Frank
codes. For N-phase Frank code the phase of each subpulse is computed from

Eq. (6.44)

where each row represents a group, and a column represents the subpulses for that group. For
example, a 4-phase Frank code has , and the fundamental phase increment is

. It follows that

. Eq. (6.45)

Therefore, a Frank code of  elements is given by
. Eq. (6.46)

A plot of the ambiguity function for  is shown in Fig. 6.17. Note the thumbtack shape of
the ambiguity function. This plot can be reproduced using MATLAB program “Fig6_17.m,”
listed in Appendix 6-A. The phase increments within each row represent a step-wise approxi-
mation of an up-chirp LFM waveform. The phase increments for subsequent rows increase lin-
early versus time. Thus, the corresponding LFM chirp slopes also increase linearly for
subsequent rows. This is illustrated in Fig. 6.18, for . 
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 Figure 6.17a. Ambiguity plot for Frank code . F16

 Figure 6.17b. Contour plot corresponding to Fig. 6.17a. 
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 Figure 6.17c. Zero Doppler cut corresponding to Fig. 6.17a. 
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 Figure 6.18. Stepwise approximation of an up-chirp waveform, using a Frank 
code of 16 elements. 
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6.4. Frequency Codes
Frequency codes are derived from Eq. (6.1) under the condition stated in Eq. (6.9) (i.e.,

). The Stepped Frequency Waveform (SFW) discussed in the pre-
vious chapter is considered to be a code under this class of discrete coded waveforms. The
ambiguity function was derived in Chapter 5 for SFW. In this chapter the focus is on another
type of frequency codes that is called the Costas frequency code. 

6.4.1. Costas Codes

Construction of Costas codes can be understood in the context of SFW. In SFW, a relatively
long pulse of length  is divided into  subpulses, each of width  ( ). Each
group of  subpulses is called a burst. Within each burst the frequency is increased by 
from one subpulse to the next. The overall burst bandwidth is . More precisely,

Eq. (6.47)

 and the frequency for the  subpulse is

Eq. (6.48)

where  is a constant frequency and . It follows that the time-bandwidth product of
this waveform is

. Eq. (6.49)

Costas1 signals (or codes) are similar to SFW, except that the frequencies for the subpulses
are selected in a random fashion, according to some predetermined rule or logic. For this pur-
pose, consider the  matrix shown in Fig. 6.19 b. In this case, the rows are indexed from

 and the columns are indexed from . The rows are used
to denote the subpulses and the columns are used to denote the frequency. A dot indicates the
frequency value assigned to the associated subpulse. In this fashion, Fig. 6.19 a shows the fre-
quency assignment associated with an SFW. Alternatively, the frequency assignments in Fig.
6.19b are chosen randomly. For a matrix of size , there are a total of  possible ways
of assigning the dots (i.e.,  possible codes). 

The sequences of dot assignments for which the corresponding ambiguity function
approaches an ideal or a thumbtack response are called Costas codes. A near thumbtack
response was obtained by Costas using the following logic: There is only one frequency per
time slot (row) and per frequency slot (column). Therefore, for an  matrix, the number
of possible Costas codes is drastically less than .   For example, there are  possible
Costas codes for , and  possible codes for . It can be shown that the
code density, defined as the ratio , gets significantly smaller as  becomes larger.

There are numerous analytical ways to generate Costas codes. In this section we will
describe two of these methods. First, let  be an odd prime number, and choose the number of
subpulses as

. Eq. (6.50)

1. Costas, J. P., A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Doppler Ambi-
guity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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 Define  as the primitive root of . A primitive root of  (an odd prime number) is defined as
 such that the powers  modulo  generate every integer from  to . 

In the first method, for an  matrix, label the rows and columns, respectively, as

. Eq. (6.51)

Place a dot in the location  corresponding to  if and only if

 . Eq. (6.52)

In the next method, Costas code is first obtained from the logic described above; then by delet-
ing the first row and first column from the matrix a new code is generated. This method pro-
duces a Costas code of length .

Define the normalized complex envelope of the Costas signal as

Eq. (6.53)

. Eq. (6.54)

Costas showed that the output of the matched filter is 

Eq. (6.55)

 Figure 6.19. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10. 
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Eq. (6.56)

Eq. (6.57)

. Eq. (6.58)

Three-dimensional plots of the ambiguity function of Costas signals show the near thumb-
tack response of the ambiguity function. All side-lobes, except for a few around the origin,
have amplitude . Few sidelobes close to the origin have amplitude , which is typical
of Costas codes. The compression ratio of a Costas code is approximately . 

6.5. Ambiguity Plots for Discrete Coded Waveforms
Plots of the ambiguity function for a given code and the corresponding cuts along zero delay

and zero Doppler provide a strong indication about the code’s characteristics in range and Dop-
pler. Earlier, it was stated that the goodness of a given code is measured by its range and Dop-
pler resolution characteristics. Therefore, plotting the ambiguity function of a given code is a
key part of the design and analysis of radar waveforms. Unfortunately, some of the formulas
for the ambiguity function are rather complicated and fairly difficult to code by the nonexpert
programmer. In this section, a numerical technique for plotting the ambiguity function of any
code is presented. This technique takes advantage of the computation power of MATLAB by
exploiting one of the properties of the ambiguity function. Three-dimensional plots are built
successively from cuts of the ambiguity function as different Doppler mismatches. 

For this purpose, consider the ambiguity function property given in Eq. (5.8) and repeated
here as Eq. (6.59)

Eq. (6.59)

where  is the Fourier transform of the signal . Using Eq. (6.59), one can compute the
ambiguity function by first computing the FT of the signal under consideration, delaying it by
some value , and then taking the inverse FT. When the signal under consideration is a dis-
crete coded waveform then the Fast Fourier transform is utilized. From this one can compute
plots of the ambiguity function using the following technique:

1. Determine the code  under consideration. Note that  may have complex values in
accordance with the class of code being considered.

2. Extend the length of the code to the next power of 2 by zero padding (see Chapter 2 for
details on interpolation).

3. For better display utilize an FFT whose size is 8 times or higher than the power integer of 2
computed in step 2.

4. Compute the FFT of the extended sequence.
5. Generate vectors of frequency mismatches and delay cuts.
6. Calculate the value of  using vector notation.
7. Compute and store the vector resulting from the point-by-point multiplication

.
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8. Compute the inverse FFT of the product in step 7 for each delay value and store in a two-
dimensional (2-D) array.

9. Plot the amplitude square of the resulting 2-D array to generate the ambiguity plot for the
specific code under consideration.   

An implementation of this algorithm is in MATLAB function “ambiguity_code.m,” listed in
Appendix 6-A. 

Problems
6.1. Show that the zero Doppler cut for the ambiguity function of an arbitrary phase coded
pulse with a pulse width  is given by .

6.2. Consider the 7-bit Barker code, designated by the sequence . (a) Compute and
plot the autocorrelation of this code. (b) A radar uses binary phase-coded pulses of the form

, where ,

, and . Assume .
(a) Give an expression for the autocorrelation of the signal , and for the output of the
matched filter when the input is . (b) Compute the time bandwidth product, the
increase in the peak SNR, and the compression ratio.

6.3. (a) Perform the discrete convolution between the sequence  defined in Eq. (6.31),
and the transversal filter impulse response; and (b) sketch the corresponding transversal filter
output.
6.4. Repeat the previous problem for  and . Use a Barker code of length 13.
6.5. Develop a Barker code of length 35. Consider both  and . 
6.6. The smallest positive primitive root of  is ; for , generate the
corresponding Costas matrix.
6.7. Compute the discrete autocorrelation for an  Frank code.
6.8. Generate a Frank code of length 8, i.e., .
6.9. Using the MATLAB program developed in this chapter, plot the matched filter output
for a 3-, 4-, and 5-bit Barker code.
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Appendix 6-A: Chapter 6 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig6_2.m” Listing
% Use to reproduce Fig 6.2 of textbook
clc
close all
clear all
uinput = [1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figuiures_chap6 ( ambig, delay, freq)

MATLAB Function “plot_figures_chap6.m” Listing 
function plot_figures_chap6( ambig, delay, freq)
% This function is used to plot figures in Chapter 6
%
mesh(delay,freq,(ambig ./ max(max(ambig))))
view (-30,55);
axis tight
ylabel('frequency')
xlabel('delay')
zlabel('ambiguity function')
figure(2)
Nhalf = (size(ambig,1)-1)/2
plot(delay,ambig(Nhalf+1,:)/(max(max(ambig))),'k')
xlabel('delay')
ylabel('normalized ambiguity cut for f=0')
grid
axis tight
figure(3)
contour(delay,freq,(ambig ./ max(max(ambig))))
axis tight
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ylabel('frequency')
xlabel('delay')
grid 
end

MATLAB Program “Fig6_3.m” Listing
% Use to reproduce Fig 6.3 of textbook
clc
close all
clear all
uinput = [1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)

MATLAB Program “Fig6_8_10.m” Listing
% Use to reproduce Figs 6.8 trhough 6.10 of textbook
clc
close all
clear all
% Figure 8
uinput = [1 1 1 1 1 -1 -1 1 1 -1 1 -1 1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)
%
uinput = [1 1 1 -1 -1 1 -1 ];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
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% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)
%
uinput = [1 1 1 -1 1 1 1 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)

MATLAB Program “Fig6_15_16.m” Listing
% Use to reproduce Figs 6.15 and 6.16 of textbook
clc
close all
clear all
% Figure 15
uinput = [1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 -1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)
%Figure 6.16
uinput = [1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
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N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)

MATLAB Program “Fig6_17.m” Listing
% Use to reproduce Figs 6.17 text
clc
close all
clear all
uinput = [1 1 1 1 1 i -1 -i 1 -1 1 -1 1 -i -1 i];
[ambig] = ambiguity_code(uinput);
freq = linspace(-6,6, size(ambig,1));
N = size(uinput,2);
% set code length to tau
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
% compute the next power integer of 2 for FFT purposes
n = ceil(log(samp_num) / log(2));
% compute FFT size, nfft
nfft = 2^n;
% set a dummy array in preparation for interpolation
delay = linspace(-N-2,N,nfft);
plot_figures_chap6 ( ambig, delay, freq)

MATLAB Function “ambiguity_code.m” Listing
function [ambig] = ambiguity_code(uinput)
% Compute and plot the ambiguity function for any give code u
% Compute the ambiguity function by utilizing the FFT 
% through combining multiple range cuts
N = size(uinput,2);
tau = N;
code = uinput;
samp_num = size(code,2) * 10;
n = ceil(log(samp_num) / log(2));
nfft = 2^n;
u(1:nfft) = 0;
j = 0;
for index = 1:10:samp_num
    index;
    j = j+1;
    u(index:index+10-1) = code(j);
end



236                                                                                   Radar Systems Analysis and Design Using MATLAB®

% set-up the array v
v = u;
delay = linspace(0,5*tau,nfft);
freq_del = 12 / tau /100;
j = 0;
vfft = fft(v,nfft);
for freq = -6/tau:freq_del:6/tau;
    j = j+1;
    exf = exp(sqrt(-1) * 2. * pi * freq .* delay);
    u_times_exf = u .* exf;
    ufft = fft(u_times_exf,nfft);
    prod = ufft .* conj(vfft);
    ambig(j,:) = fftshift(abs(ifft(prod))');
end
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Part II - Radar Signals and Signal Processing

Chapter 7

Range resolution for a given radar can be significantly improved by using very short pulses.
Unfortunately, utilizing short pulses decreases the average transmitted power, hence reducing
the SNR. Since the average transmitted power is directly linked to the receiver SNR, it is often
desirable to increase the pulse width (i.e., the average transmitted power) while simultaneously
maintaining adequate range resolution. This can be made possible by using pulse compression
techniques and the matched filter receiver. Pulse compression allows us to achieve the average
transmitted power of a relatively long pulse, while obtaining the range resolution correspond-
ing to a short pulse. In this chapter, two pulse compression techniques are discussed. The first
technique is known as correlation processing, which is predominantly used for narrowband
and some medium-band radar operations. The second technique is called stretch processing
and is normally used for extremely wideband radar operations.

7.1. Time-Bandwidth Product
Consider a radar system that employs a matched filter receiver. Let the matched filter

receiver bandwidth be denoted as . Then the noise power available within the matched filter
bandwidth is given by

Eq. (7.1)

where the factor of two is used to account for both negative and positive frequency bands, as
illustrated in Fig. 7.1. The average input signal power over a pulse duration  is

. Eq. (7.2)

 is the signal energy. Consequently, the matched filter input SNR is given by

. Eq. (7.3)

The output peak instantaneous SNR to the input SNR ratio, at a specific time , is

. Eq. (7.4)

The quantity  is referred to as the time-bandwidth product for a given waveform or its cor-
responding matched filter. The factor  by which the output SNR is increased over that at
the input is called the matched filter gain, or simply the compression gain. 
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In general, the time-bandwidth product of an unmodulated pulse approaches unity. The time-
bandwidth product of a pulse can be made much greater than unity by using frequency or phase
modulation. If the radar receiver transfer function is perfectly matched to that of the input
waveform, then the compression gain is equal to . Clearly, the compression gain becomes
smaller than  as the spectrum of the matched filter deviates from that of the input signal. 

7.2. Radar Equation with Pulse Compression
The radar equation for a pulsed radar can be written as

Eq. (7.5)

where  is peak power,  is pulse width,  is antenna gain,  is target RCS,  is range, 
is Boltzmann’s constant,  is 290 degrees Kelvin,  is noise figure, and  is total radar
losses.

Pulse compression radars transmit relatively long pulses (with modulation) and process the
radar echo into very short pulses (compressed). One can view the transmitted pulse as being
composed of a series of very short subpulses (duty is 100%), where the width of each subpulse
is equal to the desired compressed pulse width. Denote the compressed pulse width as .
Thus, for an individual subpulse, Eq. (7.5) can be written as

. Eq. (7.6)

The SNR for the uncompressed pulse is then derived from Eq. (7.6) as

Eq. (7.7)

where  is the number of subpulses. Equation (7.7) is denoted as the radar equation with
pulse compression.

Observation of Eq. (7.5) and Eq. (7.7) indicates the following (note that both equations have
the same form): For a given set of radar parameters, and as long as the transmitted pulse
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Figure 7.1. Input noise power spectrum.
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remains unchanged, the SNR is also unchanged regardless of the signal bandwidth. More pre-
cisely, when pulse compression is used, the detection range is maintained while the range reso-
lution is drastically improved by keeping the pulse width unchanged and by increasing the
bandwidth. Remember that range resolution is proportional to the inverse of the signal band-
width:

. Eq. (7.8)

7.3. Basic Principle of Pulse Compression 
For this purpose, consider a long pulse with LFM modulation and assume a matched filter

receiver. The output of the matched filter (along the delay axis, i.e., range) is an order of mag-
nitude narrower than that at its input. More precisely, the matched filter output is compressed
by a factor , where  is the pulse width and  is the bandwidth. Thus, by using long
pulses and wideband LFM modulation, large compression ratios can be achieved. 

Figure 7.2 illustrates the ideal LFM pulse compression process. Part (a) shows the envelope
of a pulse, part (b) shows the frequency modulation (in this case it is an upchirp LFM) with
bandwidth . Part (c) shows the matched filter time-delay characteristic while part
(d) shows the compressed pulse envelope. Finally, part (e) shows the matched filter input/out-
put waveforms.
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 Figure 7.2. Ideal LFM pulse compression.
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Figure 7.3 illustrates the advantage of pulse compression using a more realistic LFM wave-
form. In this example, two targets with RCS,  and , are detected. The
two targets are not separated enough in time to be resolved. Figure 7.3a shows the composite
echo signal from those targets. Clearly, the target returns overlap, and thus they are not
resolved. However, after pulse compression, the two pulses are completely separated and are
resolved as two distinct targets. In fact, when using LFM, returns from neighboring targets are
resolved as long as they are separated in time by , the compressed pulse width. 

 

1 1m2= 2 0.5m2=

c

 Figure 7.3a. Composite echo signal for two unresolved targets.

 Figure 7.3b. Composite echo signal corresponding to Fig. 7.3a after 
pulse compression. 
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7.4. Correlation Processor
Radar operations (search, track, etc.) are usually carried out over a specified range window,

referred to as the receive window, and defined by the difference between the radar maximum
and minimum range. Returns from all targets within the receive window are collected and
passed through matched filter circuitry to perform pulse compression. One implementation of
such analog processors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often performed digi-
tally using the FFT. This digital implementation is called Fast Convolution Processing (FCP)
and can be implemented at the base band. The fast convolution process is illustrated in Fig. 7.4.

Since the matched filter is a linear time invariant system, its output can be described mathe-
matically by the convolution between its input and its impulse response, 

Eq. (7.9)

where  is the input signal,  is the matched filter impulse response (replica), and the
( ) operator symbolically represents convolution. From the Fourier transform properties, 

, Eq. (7.10)

and when both signals are sampled properly, the compressed signal  can be computed
from

Eq. (7.11)

where  is the inverse FFT. When using pulse compression, it is desirable to use modula-
tion schemes that can accomplish a maximum pulse compression ratio and can significantly
reduce the sidelobe levels of the compressed waveform. For the LFM case, the first sidelobe is
approximately  below the main peak, and for most radar applications this may not be
sufficient. In practice, high sidelobe levels are not preferable because noise and/or jammers
located at the sidelobes may interfere with target returns in the main lobe. 

Weighting functions (windows) can be used on the compressed pulse spectrum in order to
reduce the sidelobe levels. The cost associated with such an approach is a loss in the main lobe
resolution, and a reduction in the peak value (i.e., loss in the SNR). Weighting the time domain
transmitted or received signal instead of the compressed pulse spectrum will theoretically
achieve the same goal. However, this approach is rarely used, since amplitude modulating the
transmitted waveform introduces extra burdens on the transmitter.
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Figure 7.4. Computing the matched filter output using an FFT.
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Consider a radar system that utilizes a correlation processor receiver (i.e., matched filter).
The receive window in meters is defined by 

Eq. (7.12)

where  and , respectively, define the maximum and minimum range over which the
radar performs detection. Typically,  is limited to the extent of the target complex. The
normalized complex transmitted signal has the form 

. Eq. (7.13)

 is the pulse width, , and  is the bandwidth. 

The radar echo signal is similar to the transmitted one with the exception of a time delay and
an amplitude change that correspond to the target RCS. Consider a target at range . The
echo received by the radar from this target is 

Eq. (7.14)

where  is proportional to target RCS, antenna gain, and range attenuation. The time delay
 is given by 

. Eq. (7.15)

The first step of the processing consists of removing the frequency . This is accomplished
by mixing  with a reference signal whose phase is . The phase of the resultant sig-
nal, after lowpass filtering, is then given by 

Eq. (7.16)

and the instantaneous frequency is

. Eq. (7.17)

The quadrature components are

. Eq. (7.18)

Sampling the quadrature components is performed next. The number of samples, , must be
chosen so that foldover (ambiguity) in the spectrum is avoided. For this purpose, the sampling
frequency,  (based on the Nyquist sampling rate), must be

Eq. (7.19)

and the sampling interval is 

. Eq. (7.20)

Rrec Rmax Rmin–=

Rmax Rmin
Rrec

x t j2 f0t 2
---t2+exp= 0 t 0

0 B 0= B

R1

xr t a1 j2 f0 t t1– 2
--- t t1– 2+exp=

a1
t1

t1 2R1 c=

f0
xr t 2 f0t

t 2 f– 0t1 2
--- t t1– 2+=

fi t 1
2
------

td
d t t t1– B

0
---- t

2R1

c
---------–= = =

xI t

xQ t

tcos
tsin

=

N

fs

fs 2B

t 1 2B



Correlation Processor 243                                                                                                                                                                                                                                                                         

Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the frequency resolution
of the FFT is

. Eq. (7.21)

The minimum required number of samples is

. Eq. (7.22)

Equating Eqs. (7.20) and (7.22) yields

. Eq. (7.23)

Consequently, a total of  real samples, or  complex samples, is sufficient to com-
pletely describe an LFM waveform of duration  and bandwidth . For example, an LFM
signal of duration  and bandwidth  requires 200 real samples to
determine the input signal (100 samples for the I-channel and 100 samples for the Q-channel). 

For better implementation of the FFT,  is extended to the next power of two, by zero pad-
ding. Thus, the total number of samples, for some positive integer , is 

. Eq. (7.24)

The final steps of the FCP processing include (1) taking the FFT of the sampled sequence, (2)
multiplying the frequency domain sequence of the signal with the FFT of the matched filter
impulse response, and (3) performing the inverse FFT of the composite frequency domain
sequence in order to generate the time domain compressed pulse. Of course, weighting,
antenna gain, and range attenuation compensation must also be performed. 

Assume that  targets at ranges , , and so forth are within the receive window. From
superposition, the phase of the down-converted signal is 

. Eq. (7.25)

The times  represent the two-way time delays, where 
coincides with the start of the receive window. 

MATLAB Function “matched_filter.m” 

The function “matched_filter.m” performs fast convolution processing. The user can access
this function either by a MATLAB function call or by executing the MATLAB program
“matched_filter_gui.m,” which utilizes a MATLAB-based GUI. The work space associated
with this program is shown in Fig. 7.5. The outputs for this function include plots of the com-
pressed and uncompressed signals as well as the replica used in the pulse compression process.
This function utilizes the function “power_integer_2.m.” Its syntax is as follows:

[y] = matched_filter(nscat, rrec, taup, b, scat_range, scat_rcs, win)
where
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As an example, consider the case where

Symbol Description Units Status

nscat number of point scatterers within the received window none input

rrec  receive window size m input

taup uncompressed pulse width seconds input

b chirp bandwidth Hz input

scat_range scatterers’ relative range (within the receive window) m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window; 1 = Hamming; 2 = Kaiser with 
parameter pi; and 3 = Chebychev sidelobes at -60dB

none input

y normalized compressed output volts output

# Tar-
gets

Rrec Pulse 
Width

Band-
width

Targets 
Range

Target 
RCS

Window 
Type

3 200m 0.005ms 100e6 Hz [30 70 120] m [1 1 1]m2 Hamming

 Figure 7.5. GUI workspace associated with the function “matched_filter_gui.m.”
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Note that the compressed pulsed range resolution is . Figure 7.6a and Fig. 7.6b
shows the real part and the amplitude spectrum of the replica used for this example. Figure
7.7a shows the uncompressed echo, while Fig. 7.7b shows the compressed MF output. Note
that the scatterer amplitude attenuation is also a function of the inverse of the scatterer’s range
within the receive window. Figure 7.7c is similar to Fig. 7.7b except in this case the first and
second scatterers are less than 1.5 meters apart (they are at 70 and 71 meters).

R 1.5m=

 Figure 7.6a. Real part of replica. 

 Figure 7.6b. Replica spectrum. 
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 Figure 7.7a. Uncompressed echo signal. Scatterers are not resolved. 

 Figure 7.7b. Compressed signal of three scatterers. All scatterers are 
completely resolved. 
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7.5. Stretch Processor
Stretch processing, also known as active correlation, is normally used to process extremely

high-bandwidth LFM waveforms. This processing technique consists of the following steps:
First, the radar returns are mixed with a replica (reference signal) of the transmitted waveform.
This is followed by Low Pass Filtering (LPF) and coherent detection. Next, Analog-to-Digital
(A/D) conversion is performed; and finally, a bank of Narrow-Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch processing effec-
tively converts time delay into frequency. All returns from the same range bin produce the
same constant frequency. 

7.5.1. Single LFM Pulse

Figure 7.8 shows a block diagram for a stretch processing receiver. The reference signal is
an LFM waveform that has the same LFM slope as the transmitted LFM signal. It exists over
the duration of the radar “receive-window,” which is computed from the difference between
the radar maximum and minimum range. Denote the start frequency of the reference chirp as

. Consider the case when the radar receives returns from a few close (in time or range) tar-
gets, as illustrated in Fig. 7.8. Mixing with the reference signal and performing lowpass filter-
ing are effectively equivalent to subtracting the return frequency chirp from the reference
signal. Thus, the LPF output consists of constant tones corresponding to the targets’ positions.
The normalized transmitted signal can be expressed by

 Figure 7.7c. Compressed signal of three scatterers. The two scatterers at 
70m and 71m are not resolved. 

 Figure 7.9. Compressed echo signal of three scatterers, two of 
which are not resolved. 

fr
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Eq. (7.26)

where  is the LFM coefficient and  is the chirp start frequency. Assume a point
scatterer at range . The signal received by the radar is

Eq. (7.27)

where  is proportional to target RCS, antenna gain, and range attenuation. The time delay 
is 

. Eq. (7.28)

The reference signal is 

. Eq. (7.29)

The receive window in seconds is 

. Eq. (7.30)

It is customary to let . The output of the mixer is the product of the received and refer-
ence signals. After lowpass filtering, the signal is 
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. Eq. (7.31)

Substituting Eq. (7.28) into Eq. (7.31) and collecting terms yields

, Eq. (7.32)

and since , Eq. (7.32) is approximated by

. Eq. (7.33)

The instantaneous frequency is

, Eq. (7.34)

which clearly indicates that target range is proportional to the instantaneous frequency. There-
fore, proper sampling of the LPF output and taking the FFT of the sampled sequence lead to
the following conclusion: a peak at some frequency  indicates the presence of a target at
range 

. Eq. (7.35)

Assume  close targets at ranges , , and so forth ( ). From super-
position, the total signal is

Eq. (7.36)

where  are proportional to the targets’ cross sections, antenna gain,
and range. The times  represent the two-way time delays,
where  coincides with the start of the receive window. Using Eq. (7.32), the overall signal at
the output of the LPF can then be described by 

. Eq. (7.37)

Hence, target returns appear as constant frequency tones that can be resolved using the FFT.
Consequently, determining the proper sampling rate and FFT size is very critical. The rest of
this section presents a methodology for computing the proper FFT parameters required for
stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is  and the
chirp bandwidth is . Since stretch processing is normally used in extreme bandwidth cases
(i.e., very large ), the receive window over which radar returns will be processed is typically
limited to from a few meters to possibly less than 100 meters. The compressed pulse range res-
olution is computed from Eq. (7.8). Declare the FFT size to be  and its frequency resolution
to be . The frequency resolution can be computed using the following procedure: Consider
two adjacent point scatterers at ranges  and . The minimum frequency separation, ,
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between those scatterers so that they are resolved can be computed from Eq. (7.34). More pre-
cisely,

. Eq. (7.38)

Substituting Eq. (7.8) into Eq. (7.38) yields

. Eq. (7.39)

The maximum frequency resolvable by the FFT is limited to the region . Thus, the
maximum resolvable frequency is 

. Eq. (7.40)

Using Eqs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yields

. Eq. (7.41)

For better implementation of the FFT, choose an FFT of size 

Eq. (7.42)

where  is a nonzero positive integer. The sampling interval is then given by

. Eq. (7.43)

MATLAB Function “stretch.m” 

The function “stretch.m” presents a digital implementation of the stretch processing
described in this section. The user can access this function either by a MATLAB function call
or by executing the MATLAB program “stretch_gui.m,” which utilizes MATLAB-based GUI
and is shown in Fig. 7.9. 

The outputs of this function are the complex array  containing pulsed compressed signal
samples. The syntax for this function is as follows:

[y] = stretch (nscat, taup, f0, b, scat_range, rrec, scat_rcs, win)

where

Symbol Description Units Status

nscat number of point scatterers within the receive window none input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers’ range m input
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 As an example, consider the case where

rrec range receive window m input

scat_rcs vector of scatterers’ RCS m2 input

win 0 = no window; 1 = Hamming; 2 = Kaiser with 
parameter pi; 3 = Chebychev sidelobes at -60dB

none input

y compressed output volts output

# Targets 3

Pulse Width 10ms

Center Frequency 5.6GHz

Bandwidth 1GHz

Receive Window 30m

Relative Target’s Range  [2 5 10]m

Target’s RCS [1, 1, 2]m2

Window 2 (Kaiser)

Symbol Description Units Status

 Figure 7.9. GUI workspace associated with the function “stretch_gui.m.”
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Note that the compressed pulse range resolution, without using a window, is .
Figure 7.10a and Fig. 7.10b, respectively, show the uncompressed and compressed echo sig-
nals corresponding to this example. Figure 7.11 is similar to Fig. 7.10 except in this case two of
the scatterers are less than 15 cm apart (i.e., unresolved targets at ).

R 0.15m=

Rrelative 3 3.1 m=

 Figure 7.10a. Uncompressed echo signal. Three targets are unresolved. 

 Figure 7.10b. Compressed echo signal. Three targets are 
resolved. 
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 Figure 7.11a. Uncompressed echo signal. Three targets. 

 Figure 7.11b. Compressed echo signal of three targets; the two targets at 
3m and 3.1m are not resolved. 
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7.5.2. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) are used in extremely wideband radar applications
where a very large time-bandwidth product is required. Generation of SFW was discussed in
Chapter 5. For this purpose, consider an LFM signal whose bandwidth is  and whose pulse
width is , and refer to it as the primary LFM. Divide this long pulse into  subpulses, each
of width , to generate a sequence of pulses whose PRI is denoted by . It follows that

. Define the beginning frequency for each subpulse as that value measured from
the primary LFM at the leading edge of each subpulse, as illustrated in Fig. 7.12. That is

Eq. (7.44)

where  is the frequency step from one subpulse to another. The set of  subpulses is often
referred to as a burst. Each subpulse can have its own LFM modulation. To this end, assume
that each subpulse is of width  and bandwidth , then the LFM slope of each pulse is 

. Eq. (7.45)

The SFW operation and processing involve the following steps: 

1. A series of  narrowband LFM pulses is transmitted. The chirp beginning frequency from
pulse to pulse is stepped by a fixed frequency step , as defined in Eq. (7.44). Each group
of  pulses is referred to as a burst.

2. The LFM slope (quadratic phase term) is first removed from the received signal, as
described in Fig. 7.10. The reference slope must be equal to the combined primary LFM
and single subpulse slopes. Thus, the received signal is reduced to a series of subpulses.

3. These subpulses are then sampled at a rate that coincides with the center of each pulse,
sampling rate equivalent to ( ). 

4. The quadrature components for each burst are collected and stored.
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5. Spectral weighting (to reduce the range sidelobe levels) is applied to the quadrature compo-
nents. Corrections for target velocity, phase, and amplitude variations are applied.

6. The IDFT of the weighted quadrature components of each burst is calculated to synthesize
a range profile for that burst. The process is repeated for  bursts to obtain consecutive
high resolution range profiles.

Within a burst, the transmitted waveform for the  step can be described as

 Eq. (7.46)

where  are constants. The received signal from a target located at range  is then given by

Eq. (7.47)

where  are constant and the round-trip delay  is given by

Eq. (7.48)

where  is the speed of light and  is the target radial velocity. 

In order to remove the quadratic phase term, mixing is first performed with the reference sig-
nal given by

. Eq. (7.49)

Next lowpass filtering is performed to extract the quadrature components. More precisely, the
quadrature components are given by

Eq. (7.50)

where  are constants, and 

Eq. (7.51)

where now . For each pulse, the quadrature components are then sampled at 

. Eq. (7.52)

 is the time delay associated with the range that corresponds to the start of the range profile.

The quadrature components can then be expressed in complex form as

. Eq. (7.53)
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Equation (7.53) represents samples of the target reflectivity, due to a single burst, in the fre-
quency domain. This information can then be transformed into a series of range delay reflec-
tivity (i.e., range profile) values by using the IDFT. It follows that 

. Eq. (7.54)

Substituting Eq. (7.51) and Eq. (7.53) into (7.54) and collecting terms yields

. Eq. (7.55)

By normalizing with respect to  and by assuming that  and that the target is station-
ary (i.e., ), then Eq. (7.55) can be written as

. Eq. (7.56)

Using  inside Eq. (7.56) yields

, Eq. (7.57)

which can be simplified to

Eq. (7.58)

where

. Eq. (7.59)

Finally, the synthesized range profile is 

. Eq. (7.60)

Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth. Assuming an
SFW with  steps and step size , the corresponding range resolution is equal to 

. Eq. (7.61)
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Range ambiguity associated with an SFW can be determined by examining the phase term
that corresponds to a point scatterer located at range . More precisely,

. Eq. (7.62)

It follows that

, Eq. (7.63)

or equivalently,

. Eq. (7.64)

It is clear from Eq. (7.64) that range ambiguity exists for . Therefore,

Eq. (7.65)

and the unambiguous range window is

. Eq. (7.66)

A range profile synthesized using a particular SFW represents the relative range reflectivity
for all scatterers within the unambiguous range window, with respect to the absolute range that
corresponds to the burst time delay. Additionally, if a specific target extent is larger than ,
then all scatterers falling outside the unambiguous range window will fold over and appear in
the synthesized profile. This foldover problem is identical to the spectral foldover that occurs
when using a Fast Fourier Transform (FFT) to resolve certain signal frequency contents. For
example, consider an FFT with frequency resolution  and size . In
this case, this FFT can resolve frequency tones between  and . When this
FFT is used to resolve the frequency content of a sine-wave tone equal to , foldover
occurs and a spectral line at the fourth FFT bin (i.e., ) appears. Therefore, in order to
avoid foldover in the synthesized range profile, the frequency step  must be 

Eq. (7.67)

where  is the target extent in meters. 

Additionally, the pulse width must be large enough to contain the whole target extent. Thus, 

Eq. (7.68)

and in practice, 

. Eq. (7.69)

This is necessary in order to reduce the amount of contamination of the synthesized range pro-
file caused by the clutter surrounding the target under consideration. 
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MATLAB Function “SFW.m”

The function “SFW.m” computes and plots the range profile for a specific SFW. This func-
tion utilizes an Inverse Fast Fourier Transform (IFFT) of a size equal to twice the number of
steps. A Hamming window of the same size is also assumed. The syntax is as follows:

[hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, r0, winid)

where

For example, assume that the range profile starts at  and that

In this case, 

, and .

Thus, scatterers that are more than 0.235 meters apart will appear as distinct peaks in the syn-
thesized range profile. Assume two cases; in the first case, [scat_range] = [908, 910, 912]
meters, and in the second case, [scat_range] = [908, 910, 910.2] meters. In both cases, let
[scat_rcs] = [100, 10, 1] meters squared. Figure 7.13 shows the synthesized range profiles
generated using the function “SWF.m” and the first case when the Hamming window is not
used. Figure 7.14 is similar to Fig. 7.13, except in this case the Hamming window is used. Fig-
ure 7.15 shows the synthesized range profile that corresponds to the second case (Hamming
window is used). Note that all three scatterers were resolved in Fig. 7.13 and Fig. 7.14; how-
ever, the last two scatterers are not resolved in Fig. 7.15, because they are separated by less
than . 

Next, consider another case where [scat_range] = [908, 912, 916] meters. Figure 7.16
shows the corresponding range profile. In this case, foldover occurs, and the last scatterer
appears at the lower portion of the synthesized range profile. Also, consider the case where
[scat_range] = [908, 910, 923] meters. Figure 7.17 shows the corresponding range profile. In

Symbol Description Units Status

nscat number of scatterers that make up the target none input

scat_range vector containing range to individual scatterers m input

scat_rcs vector containing RCS of individual scatterers input

n number of steps none input

deltaf frequency step Hz input

prf PRF of SFW Hz input

v target velocity m/sec input

r0 profile starting range meters input

winid number>0 for Hamming window

 number < 0 for no window

none input

hl range profile dB output

# Targets Pulse Width N 1/T v

3 64 0.0

m2

R0 900m=

f

100 sec 10MHz 100KHz

R 3 108

2 64 10 106
------------------------------------------ 0.235m= = Ru

3 108

2 10 106
----------------------------- 15m= =

R
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this case, ambiguity is associated with the first and third scatterers since they are separated by
. Both appear at the same range bin.15m

 Figure 7.13. Synthetic range profile for three resolved scatterers. No window.

 Figure 7.14. Synthetic range profile for three scatterers. Hamming window.
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 Figure 7.15. Synthetic range profile for three scatterers. Two are unresolved.

 Figure 7.16. Synthetic range profile for three scatterers. Third scatterer folds 
over.

foldover
target
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7.5.3. Effect of Target Velocity 

The range profile defined in Eq. (7.60) is obtained by assuming that the target under exami-
nation is stationary. The effect of target velocity on the synthesized range profile can be deter-
mined by starting with Eq. (7.55) and assuming that . Performing similar analysis as that
of the stationary target case yields a range profile given by 

. Eq. (7.70)

The additional phase term present in Eq. (7.70) distorts the synthesized range profile. In order
to illustrate this distortion, consider the SFW described in the previous section, and assume the
three scatterers of the first case. Also, assume that . Figure 7.18 shows the syn-
thesized range profile for this case. Comparisons of Figs. 7.13 and 7.18 clearly show the distor-
tion effects caused by the uncompensated target velocity. Figure 7.19 is similar to Fig. 7.18
except in this case, . Note in either case, the targets have moved from their
expected positions (to the left or right) by  (1.28 m).

This distortion can be eliminated by multiplying the complex received data at each pulse by
the phase term

. Eq. (7.71)

 and  are, respectively, estimates of the target velocity and range. 

 Figure 7.17. Synthetic range profile for three scatterers. The first and third 
scatterers appear in the same FFT bin.
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 Figure 7.18. Illustration of range profile distortion due to target velocity.

 Figure 7.19. Illustration of range profile distortion due to target velocity.
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This process of modifying the phase of the quadrature components is often referred to as
“phase rotation.” In practice, when good estimates of  and  are not available, then the
effects of target velocity are reduced by using frequency hopping between the consecutive
pulses within the SFW. In this case, the frequency of each individual pulse is chosen according
to a predetermined code. Waveforms of this type are often called Frequency Coded Waveforms
(FCW). Costas waveforms or signals are a good example of this type of waveform.

Figure 7.20 shows a synthesized range profile for a moving target whose RCS is 
and . The initial target range is at . All other parameters are as before.
This figure can be reproduced using the following MATLAB code.

Problems
7.1. Starting with Eq. (7.17) derive Eq. (7.21).

7.2. Using MATLAB, generate a baseband (complex-valued) LFM waveform having a
time duration of  and bandwidth of  using a sampling step of . Plot the real
part, imaginary part, and the modulus of the FFT of this waveform. 

7.3. Compress the waveform developed in Problem 7.3 using the “xcorr” function. Gener-
ate the magnitude-squared signal using the MATLAB command “y.*conj(y).” Plot the result-
ing compressed pulse and verify that the half power points correspond to the inverse
bandwidth (i.e., , or 5 samples).

7.4. The Synthetic Aperture Radar (SAR) ambiguity function can be approximated by 

v̂ R̂

10m2=
v 10m s= R 912m=

 Figure 7.20. Synthesized range profile for a moving target (4 seconds long).

10 s 200MHz 1ns

5ns
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where x is the variable for the range-compressed axis, y is the azimuth-compressed axis, and k
and r are related to the SAR range and azimuth resolutions. (a) Generate the x-axis from 
to  using a sampling interval of . Assume . Plot the magnitude of this range
profile. (b) Generate the y-axis from  to  using a sampling interval of .
Assume  and . Plot the magnitude of this azimuth profile. (c) Use the
findings in (a) and (b) to generate the two-dimensional ambiguity surface plot.

7.5. Derive Eq. (7.60).

7.6. Reproduce Fig. 7.19 for . Compare your outputs.
What are your conclusions?

7.7. Using MATLAB, generate the waterfall plot corresponding to Fig.7.20.

kxsin
x

------------- Nrysin
rysin

-----------------=

40m–
40m 0.1m k 1=

40m– 40m 0.1m
r 0.00015= N 1000=

v 10 50 100 150– 250 m s=
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Appendix 7-A: Chapter 7 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig7_3.m” Listing
% use this program to reproduce Fig. 7.3 of text
clc
clear all
close all
nscat = 2; %two point scatterers
taup = 10e-6; % 100 microsecond uncompressed pulse
b = 50.0e6; % 50 MHz bandwidth
rrec = 50 ; % 50 meter processing window
scat_range = [15 25] ; % scatterers are 15 and 25 meters into window
scat_rcs = [1 2]; % RCS 1 m^2 and 2m^2
winid = 0; %no window used
[y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid);

MATLAB Function “matched_filter.m” Listing
function [y] = matched_filter(nscat,taup,b,rrec,scat_range,scat_rcs,winid)
% This function implements the matched filter processor
%% Inputs
    % nscat    == number of point scatterers within the received window
    % rrec         == receive window size in m
    % taup         == uncompressed pulse width in seconds
    % b            == chirp bandwidth in Hz
    % scat_range    == scatterers’ relative range in m
    % scat_rcs     == vector of scatterers’ RCS in meter squared
    % win          == 0 = no window; 1 = Hamming; 2 = Kaiser with parameter pi; ...

and 3 = Chebychev side-lobes at -60dB
%% Output
    % y             == normalized compressed output
%
eps = 1.0e-16;
% time bandwidth product
time_B_product = b * taup;
if(time_B_product < 5 )
    fprintf('************ Time Bandwidth product is TOO SMALL ***************')
    fprintf('\n Change b and or taup')
  return
end
%
% speed of light
c = 3.e8; 
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% number of samples
n = fix(5 * taup * b);
% initialize input, output, and replica vectors
x(nscat,1:n) = 0.;
y(1:n) = 0.;
replica(1:n) = 0.;
% determine proper window
if( winid == 0.)
   win(1:n) = 1.;
end
if(winid == 1.);
    win = hamming(n)';
end
if( winid == 2.)
    win = kaiser(n,pi)';
end
if(winid == 3.)
    win = chebwin(n,60)';
end
% check to ensure that scatterers are within recieve window
index = find(scat_range > rrec);
if (index ~= 0)
    'Error. Receive window is too large; or scatterers fall outside window'
  return
end
%
% calculate sampling interval
t = linspace(-taup/2,taup/2,n);
replica = exp(i * pi * (b/taup) .* t.^2);
figure(1)
subplot(2,1,1)
plot(t,real(replica))
ylabel('Real (part) of replica')
xlabel('Time in seconds')
grid
subplot(2,1,2)
sampling_interval = taup / n;
freqlimit = 0.5/ sampling_interval;
freq = linspace(-freqlimit,freqlimit,n);
plot(freq,fftshift(abs(fft(replica))));
ylabel('Spectrum of replica')
xlabel('Frequency in Hz')
grid
 for j = 1:1:nscat
    range = scat_range(j) ;
    x(j,:) = scat_rcs(j) .* exp(i * pi * (b/taup) .* (t +(2*range/c)).^2) ;
    y = x(j,:)  + y;
end
%
figure(2) 
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 y = y .* win;
plot(t,real(y),'k')
xlabel ('Relative delay in seconds')
ylabel ('Uncompressed echo')
grid
out =xcorr(replica, y);
out = out ./ n;
s = taup * c /2;
Npoints = ceil(rrec * n /s);
dist =linspace(0, rrec, Npoints);
delr = c/2/b;
figure(3)
plot(dist,abs(out(n:n+Npoints-1)),'k')
xlabel ('Target relative position in meters')
ylabel ('Compressed echo')
grid
return

MATLAB Function “power_integer_2.m” Listing
function n = power_integer_2 (x)
m = 0.;
for j = 1:30
   m = m + 1.;
   delta = x - 2.^m;
   if(delta < 0.)
      n = m;
      return
   else
   end
end
return

MATLAB Function “stretch.m” Listing
function [y] = stretch(nscat, taup, f0, b, scat_range, rrec, scat_rcs, winid)
% This function implements the stretch processor
%% Inputs
    % nscat == number of point scatterers within the receive window 
    % taup         == uncompressed pulse width in seconds
    % f0            == chirp start frequency in Hz
    % b            == chirp bandwidth in Hz
    % scat_range == vector of scatterers’ range in m
    % rrec         == range receive window in m
    % scat_rcs     == vector of scatterers’ RCS in m^2
    % win          == 0 = no window; 1 = Hamming; 2 = Kaiser with parameter pi; ...

3 = Chebychev side-lobes at -60dB  
%% Outputs
    % y            == compressed output in volts
%
eps = 1.0e-16;
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htau = taup / 2.;
c = 3.e8;
trec = 2. * rrec / c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:n) = 0.;
y(1:n) = 0.;
if( winid == 0.)
   win(1:n) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(n);
   else
      if( winid == 2.)
         win = kaiser(n,pi);
      else
         if(winid == 3.)
            win = chebwin(n,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range);
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   return
end
t = linspace(0,taup,n);
for j = 1:1:nscat
    range = scat_range(j);% + rmin;
   psi1 = 4. * pi * range * f0 / c - ...
      4. * pi * b * range * range / c / c/ taup;
   psi2 = (2*4. * pi * b * range / c / taup) .* t;
   x(j,:) = scat_rcs(j) .* exp(i * psi1 + i .* psi2);
   y = y + x(j,:);
end
%
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay in seconds')
ylabel ('Uncompressed echo')
grid
ywin = y .* win';
yfft = fft(y,n) ./ n;
out= fftshift(abs(yfft));
figure(2)
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delinc = rrec/ n;
%dist = linspace(-delinc-rrec/2,rrec/2,n);
dist = linspace((-rrec/2), rrec/2,n);
plot(dist,out,'k')
xlabel ('Relative range in meters')
ylabel ('Compressed echo')
axis auto
grid

MATLAB Function “SFW.m” Listing
function [hl] = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote, winid)
% Range or Time domain Profile
% Range_Profile returns the Range or Time domain plot of a simulated 
% HRR SFWF returning from a predetermined number of targets with a predetermined
% RCS for each target.
%% Inputs 
    % nscat         == number of scatterers that make up the target 
    % scat_range == vector containing range to individual scatterers m
    % scat_rcs     == vector containing RCS of individual scatterers m^2
    % n             == number of steps  
    % deltaf        == frequency step in Hz
    % prf           == PRF of SFW in Hz
    % v             == target velocity  m/sec
    % r0            == profile starting range im m
    % winid         == number>0 for Hamming window; umber < 0 no window 
%% Output
    % hl            == range profile    dB
%
c=3.0e8;  % speed of light (m/s)
num_pulses  = n;
SNR_dB = 40;
nfft = 256;
% carrier_freq = 9.5e9; %Hz (10GHz)
freq_step    = deltaf; %Hz (10MHz)
V = v;  % radial velocity (m/s)  -- (+)=towards radar (-)=away
PRI = 1. / prf; % (s)
if (nfft > 2*num_pulses)
    num_pulses = nfft/2;
else
end
%
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt    = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
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taur = 2. * rnote / c;
for jscat = 1:nscat
   ii = 0;
   for i = 1:num_pulses
      ii = ii+1;
      rec_freq = ((i-1)*freq_step);
      Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * cos(-2*pi*rec_freq*...
         (2.*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
      Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))*sin(-2*pi*rec_freq*...
         (2*scat_range(jscat)/c - 2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
   end
end
if(winid >= 0)
    window(1:num_pulses) = hamming(num_pulses);
else
    window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses).* window';
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* window';
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
   Weighted_Q_freq_domain*j;
Weighted_IQ_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
dB_abs_Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB;
% calculate the unambiguous range window size
Ru = c /2/deltaf;
hl = dB_abs_Weighted_IQ_time_domain;
 numb = 2*num_pulses;
delx_meter = Ru / numb;
xmeter = 0:delx_meter:Ru-delx_meter;
plot(xmeter, dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('Relative distance in meters')
ylabel ('Range profile in dB')
grid

MATLAB Program “Fig7_20.m” Listing
% Use this program to reproduce Fig 7.20 of text
clc;
clear all;
close all;
nscat = 1;
scat_range = 912;
scat_rcs = 10;
n =64;
deltaf = 10e6;
prf = 10e3;
v = 10;
rnote = 900,
winid = 1;
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count = 0;
for time = 0:.05:3
    count = count +1;
    hl = SFW (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote, winid);
    array(count,:) = transpose(hl);
    hl(1:end) = 0;
    scat_range =  scat_range - 2 * n * v / prf;
end
figure (1)
 numb = 2*256;% this number matches that used in hrr_profile. 
 delx_meter = 15 / numb;
 xmeter = 0:delx_meter:15-delx_meter;
 imagesc(xmeter, 0:0.05:4,array)
ylabel ('Time in seconds')
xlabel('Relative distance in meters')
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Part III - Special Radar Considerations

Chapter 8 

8.1. The Earth’s Impact on the Radar Equation
So far in this book, all analysis presented implicitly assumed that the radar electromagnetic

waves travel as if they were in free space. Simply put, all analysis presented did not account
for the effects of the earth’s atmosphere nor the effects of the earth’s surface. Despite the fact
that “free space analysis” may be adequate to provide a general understanding of radar sys-
tems, it is only an approximation. In order to accurately predict radar performance, one must
modify free space analysis to include the effects of the earth and its atmosphere. These modifi-
cations should account for ground reflections from the surface of the earth, diffraction of elec-
tromagnetic waves, bending or refraction of radar waves due to the earth’s atmosphere,
Doppler errors, rotation of the polarization plane, time delays, dispersion effects, and attenua-
tion or absorption of radar energy by the gases constituting the atmosphere. 

The earth’s impact on the radar equation manifests itself by introducing an additional power
term in the radar equation. This term is referred to as the pattern propagation factor and is
symbolically denoted by . The propagation factor can actually introduce constructive as
well as destructive interference onto the SNR depending on the radar frequency and the geom-
etry under consideration. In general, the pattern propagation factor is defined as

Eq. (8.1)

where  is the electric field in the medium and  is the free space electric field. In this case,
the radar equation is now given by

. Eq. (8.2)

8.2. Earth’s Atmosphere
The earth’s atmosphere compromises several layers, as illustrated in Fig. 8.1. The first layer,

which extends in altitude to about 30Km, is known as the troposphere. Electromagnetic waves
refract (bend downward) as they travel in the troposphere. The troposphere refractive effect is
related to its dielectric constant, which is a function of the pressure, temperature, water vapor,
and gaseous content. Additionally, due to gases and water vapor in the atmosphere, radar
energy suffers a loss. This loss is known as the atmospheric attenuation. Atmospheric attenua-
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tion increases significantly in the presence of rain, fog, dust, and clouds. The region above the
troposphere (altitude from 30 to 85Km) behaves like free space, and thus little refraction
occurs in this region. This region is known as the interference zone.

 The ionosphere extends from about 85Km to about 1000Km. It has very low gas density
compared to the troposphere. It contains a significant amount of ionized free electrons. The
ionization is primarily caused by the sun’s ultraviolet and X-rays. This presence of free elec-
trons in the ionosphere affects electromagnetic wave propagation in different ways. These
effects include refraction, absorption, noise emission, and polarization rotation. The degree of
degradation depends heavily on the frequency of the incident waves. For example,   frequen-
cies lower than about 4 to 6MHz are completely reflected from the lower region of the iono-
sphere. Frequencies higher than 30MHz may penetrate the ionosphere with some level of
attenuation. In general, as the frequency is increased, most of the ionosphere’s effects become
less prominent. The region below the horizon, close to the earth’s surface, is called the diffrac-
tion region. Diffraction is a term used to describe the bending of radar waves around physical
objects. In this region, two types of diffraction are common. 

In free space, electromagnetic waves travel in straight lines. However, in the presence of the
earth’s atmosphere, they bend (refract), as illustrated in Fig. 8.2. Refraction is a term used to
describe the deviation of radar wave propagation from straight lines. The deviation from
straight line propagation is caused by the variation of the index of refraction. The index of
refraction is defined as 

Eq. (8.3)
where  is the velocity of electromagnetic waves in free space and  is the wave group veloc-
ity in the medium. In the troposphere, the index of refraction decreases uniformly with altitude,
while in the ionosphere the index of refraction is minimum at the level of maximum electron
density. Alternatively, the interference zone acts like free space and in it the index of refraction
is unity. 

n c v=
c v

Figure 8.1. Earth’s atmosphere geometry.
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In order to effectively study the effects of the atmosphere on the propagation of radar waves,
it is necessary to have accurate knowledge of the height variation of the index of refraction in
the troposphere and the ionosphere. The index of refraction is a function of the geographic
location on the earth, weather, time of day or night, and the season of the year. Therefore, ana-
lyzing the atmospheric propagation effects under all parametric conditions becomes an over-
whelming task. Typically, this problem is simplified by analyzing atmospheric models that are
representative of an average of atmospheric conditions. 

In most applications, including radars, one can assume a well-mixed atmosphere condition,
where the index of refraction decreases in a smooth monotonic fashion with height. The rate of
change of the earth’s index of refraction  with altitude  is normally referred to as the refrac-
tivity gradient, . As a result of the negative rate of change in , electromagnetic
waves travel at slightly higher velocities in the upper troposphere than in the lower part. As a
result of this, waves traveling horizontally in the troposphere gradually bend downward. In
general, since the rate of change in the refractivity index is very slight, waves do not curve
downward appreciably unless they travel very long distances through the atmosphere. 

Refraction affects radar waves in two different ways depending on height. For targets that
have altitudes typically above 100 meters, the effect of refraction is illustrated in Fig. 8.3. In
this case, refraction imposes limitations on the radar’s capability to measure target position,
and introduces an error in measuring the elevation angle. In a well-mixed atmosphere and very
low altitudes (less than 100m), the refractivity gradient close to the earth’s surface is almost
constant. However, temperature changes and humidity lapses close to the earth’s surface may
cause serious changes in the refractivity profile. When the refractivity index becomes large
enough, electromagnetic waves bend around the curve of the earth. Consequently, the radar’s
range to the horizon is extended. This phenomenon is called ducting, and is illustrated in Fig.
8.4. Ducting can be serious over the sea surface, particularly during a hot summer. 

8.3.  Atmospheric Models
The amount of bending electromagnetic waves experience due to refraction has a lot to do

with the medium propagation index of refraction , defined in Eq. (8.3). Because the index of
refraction is not constant as one rises in altitude, it is necessary to analyze the formulas for the

horizon

earth’s surface

refracted ray path

free space ray path

 Figure 8.2. Bending of radio waves due to the variation in the 
atmosphere index of refraction.

n h
dn dh dn dh

n
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index of refraction as a function of height or altitude. Over the last several decades, this topic
has been a subject of study by many scientists and physicists; thus, open source references on
the subject are abundant in the literature. However, due to differences in notation used as well
as the application being studied, it is rather difficult to sift through all available information in
a timely and productive manner, particularly for the non-experts in the field. In this chapter, the
subject is analyzed in the context of radar wave propagation in the atmosphere. In order to sim-
plify the presentation of the theory, the index of refraction is first analyzed in the troposphere,
then the ionosphere.

 Figure 8.3. Refraction high-altitude effect on electromagnetic waves.
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 Figure 8.4. Refraction low-altitude effect on electromagnetic waves.
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8.3.1. Index of Refraction in the Troposphere

As mentioned earlier, the index of refraction is a function of water vapor, air temperature,
and air pressure in the medium, which all vary as a function of height. Because the rate of
change of the index of refraction as a function of height is so small, it is very common to intro-
duce a new quantity referred to as refractivity , where 

. Eq. (8.4)

Using this notation, refractivity in the troposphere is  given by

Eq. (8.5)

where  is the air temperature of the medium in degrees Kelvin,  is the total air pressure in
millibars,  is the partial pressure of water vapor in millibars, and  are constants. The
first term of Eq. (8.5) (i.e., ) applies to all frequencies, while the second term (i.e.,

) is applicable to radio frequencies only. Experts in the field differ on the exact
values for  based on their relevant applications. However, for most radar applications

 can be assumed to be Kelvin/millibar and  is Kelvin. Therefore, Eq. (8.5)
can now be written as,

. Eq. (8.6)

The lowest values of  occur in dry areas where both  and  are low. In the United States,
the surface value of , denoted by , varies between 285 and 345 in the winter, and from
275 to 385 in the summer. Note that Eq. (8.6) is valid for heights up to .

If the values for , , and  are known everywhere and at all times, then  can be com-
puted everywhere. However, knowing these variables everywhere and at all times is a very
daunting task. Therefore, approximations are made for , where the assumption that pressure
and water vapor tend to decrease with height in a well-mixed atmosphere is taken into consid-
eration. On average, the refractivity will decrease exponentially from  in accordance with
the following relation,

   Eq. (8.7)

where  is the altitude in Km and  is a constant (in ) related to refractivity by

   . Eq. (8.8)

In general,  can be computed from Eq. (8.7) using two different altitudes, for example, 

   . Eq. (8.9)

The International Telecommunication Union (ITU) has established that for an average atmo-
sphere,  and , while in the United States these average values are
given by  and . Table 8.1 lists a few values for these variables.
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8.3.2. Index of Refraction in the Ionosphere

Unlike the troposphere, refraction in the ionosphere occurs because of the high electron den-
sity (ionization) inside the ionosphere and not due to water vapor or other variables. The aver-
age electron density as a function of height is given by the Chapman function as

Eq. (8.10)

where  is the electron density in electrons per cubic meters,  is the maximum electron
density along the propagation path, and  is the normalized altitude or normalized height. The
normalized height is given by

Eq. (8.11)

where  is the height of maximum electron density and the height scale H is given by

Eq. (8.12)

where k is Boltzmann’s constant,  is the temperature in degrees Kelvin,  is the mean
molecular mass of an air particle, and  is the gravitational constant. Table 8.2 shows some
representative values for , and the corresponding values for .  

Table 8.1. Published Values for the Parameters in Eq. (8.7).

 (h in Km)  (h in feet)

200 0.1184

250 0.1256

301 0.1396

313 0.1439

350 0.1593

400 0.1867

450 0.2233

Table 8.2. Representative Values for ,  and .
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Electrons in the ionosphere travel in spiral paths along the earth’s magnetic field lines at an
angular rate  given by 

Eq. (8.13)

where  is the charge of an electron ( ) and  is the permittivity of
free space ( ). The index of refraction is given by

Eq. (8.14)

where  is the radar wave frequency in radians and  is the frequency in hertz. Substi-
tuting Eq. (813) into Eq. (8.14) and collecting terms yields

. Eq. (8.15)

Note that Eq. (8.15) is valid for  and the refractivity is given by 

. Eq. (8.16)

8.3.3. Mathematical Model for Computing Refraction

Consider the geometry shown in Fig 8.5. The different variables shown in this figure are
defined as follows:  is the range to the target in free space,  is the actual refracted range to
the target,  is the earth’s radius and is equal to 6375 Km,  is the distance from the center of
earth to the target,  is the target height above the earth’s surface,  is the elevation angle of
the free space range ray,  is the elevation angle of the actual refracted range ray,  is the tar-
get elevation angle, the rest of the variables are as defined in the figure. From the geometry, 
and  are related by the relationships

Eq. (8.17)

. Eq. (8.18)

Hence,

. Eq. (8.19)

From Eq. (8.3), the time it takes a radar wave to travel from point  to  is given by

. Eq. (8.20)

In radar applications, this time represents the time difference between the time it takes the
wave to travel from its source to the target using the refracted and the free space rays. From the
law of sines,
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Eq. (8.21)

and the free space range using the law of cosines is given by 

. Eq. (8.22)

Clearly the range error due to refraction is the difference between the apparent range  and
the free space range , which is defined in Eq. (8.22). More precisely,

. Eq. (8.23)

Calculating the error in Eq. (8.23) can be a cumbersome task; it requires minimizing the
integral defined in Eq. (8.20) using Fermat’s principle. This process is well documented in the
literature and only the results are shown here. One can easily show (see Problem 8.3) that 

Eq. (8.24)
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 Figure 8.5. Bending of radio waves due to the variation in the atmosphere 
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where  and  are, respectively, the medium indices of refraction at the radar and at the tar-
get. From Eq. (8.20) the apparent range is

. Eq. (8.25)

Substituting Eqs. (8.18) and (8.24) into Eq. (8.25) and collecting terms yields

Eq. (8.26)

. Eq. (8.27)

Eq. (8.26) is used to calculate  in the troposphere while Eq. (8.27) is used in the ionosphere.
Recall that Eq. (8.4) should be used for  in Eq. (8.26) while Eq. (8.15) should be used for 
in Eq. (8.27). 

8.3.4. Stratified Atmospheric Refraction Model

In this section, an excellent approximation method for calculating the range measurement
errors and the time-delay errors experienced by radar waves due to refraction is presented. This
method is referred to as the stratified atmospheric model, and is capable of producing very
accurate theoretical estimates of the propagation errors. The basic assumption for this
approach is that the atmosphere is stratified into  spherical layers, each is of thickness

 and a constant refractive index , as illustrated in
Fig. 8.6. In this figure,  is the apparent elevation angle and  is the true elevation angle.
The free space path is denoted by , while the refracted path comprises the sum of

. From the figure,

Eq. (8.28)

where  is the actual radius of the earth.

Using the law of sines, the angle of incidence  is given by

. Eq. (8.29)

Using Snell’s law for spherically symmetrical surfaces, the angle  that the ray makes
with the horizon in layer (m+1) is given by

. Eq. (8.30)
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. Eq. (8.31)

Recall from Fig. 8.6 that  and  are defined to be one in the same, and so are  and .
From Eq. (8.29), one can write the general expression for the angle of incidence. More pre-
cisely,

. Eq. (8.32)

Applying the law of sines of the direct path  yields

Eq. (8.33)
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 Figure 8.6. Atmosphere stratification.

earth’s surface

center of earth

Note that  is the
index of refraction at
the surface

n0

m 1+
nmrm

n m 1+ r m 1+
-------------------------------- mcosacos= m, 0 1 M 1–=

0 1 n0 n1

m
r m 1–

rm
--------------- mcosasin= m 1 2 M=;

R0m

om
rm

Rom
--------- j

j 1=

m

sinacos= m; 1 2 M=



Atmospheric Models 285                                                                                                                                                                                                                                                                         

Eq. (8.34)

. Eq. (8.35)

The refraction angle error is measured as the difference between the apparent and true eleva-
tion angles. Thus, it is given by

. Eq. (8.36)

In this notation, ; thus, when , then 

. Eq. (8.37)

Furthermore, when ,

. Eq. (8.38)

Now, in order to determine the time-delay error due to refraction, refer again to Fig. 8.6. The
time it takes an electromagnetic wave to travel through a given layer, ,
is defined as  where

Eq. (8.39)

and where  is the phase velocity in the  layer and is defined by

. Eq. (8.40)

It follows that the total time of travel of the refracted wave in a stratified atmosphere is

. Eq. (8.41)

The free space travel time of an unrefracted wave is denoted by ,  

. Eq. (8.42)

Therefore, the range error resulting from refraction at the  is  and is given by

. Eq. (8.43)

By using the law of cosines, one computes  as

. Eq. (8.44)
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The results stated in Eqs. (8.41) and (8.43) are valid only in the troposphere. In the iono-
sphere, which is a dispersive medium, the index of refraction is also a function of frequency. In
this case, the group velocity must be used when estimating the range errors of radar measure-
ments. The group velocity is

. Eq. (8.45)

Thus, the total time of travel in the medium is now given by

. Eq. (8.46)

Finally, the range error at the  in the ionosphere is 

. Eq. (8.47)

MATLAB Function “refraction.m” 

The MATLAB function “refraction.m” computes the apparent range, range error, and the
time delay due to refraction. It implements the analysis presented in the previous two sections.
Its syntax is as follows:

[deltaR, Rm, Rt] = refraction(Rmax, el, H, No, Ce, pmax, hm, f)

where

Figure 8.7 shows a plot for the total range error incurred versus range due to refraction at
 for a few elevation angles. This figure can be reproduced using MATLAB pro-

gram “Fig8_7.m,” listed in Appendix 8-A.

Symbol Description Units Status

Rmax maximum down range Km input

el initial radar ray elevation angle degrees input

No surface refractivity none input

Ce constant input

pmax maximum electron density C input

hm height at which maximum electron density occurs Km input

f radar operating center frequency Hz input

deltaR array of range measurement error Km output

Rm stratified range (apparent range) Km output

Rt time delay incurred sec output
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8.4. Four-Third Earth Model 
A very common way of dealing with refraction is to replace the actual earth with an imagi-

nary earth whose effective radius is , where  is the actual earth radius, and  is 

. Eq. (8.48)

When the refractivity gradient is assumed to be constant with altitude and is equal to 
per meter, then . Using an effective earth radius  produces what is
known as the four-third earth model. In general, choosing 

Eq. (8.49)

produces a propagation model where waves travel in straight lines. Selecting the correct value
for  depends heavily on the region’s meteorological conditions. At low altitudes (typically
less than 10Km) when using the 4/3 earth model, one can assume that radar waves (beams)
travel in straight lines and do not refract. This is illustrated in Fig. 8.8.

8.4.1. Target Height Equation
Using ray tracing (geometric optics), an integral-relating range-to-target height with the eleva-
tion angle as a parameter can be derived and calculated. However, such computations are com-
plex and numerically intensive. Thus, in practice, radar systems deal with refraction in two
different ways, depending on height. For altitudes higher than 3Km, actual target heights are
estimated from look-up tables or from charts of target height versus range for different eleva-
tion angles. 

 Figure 8.7. Refraction range error versus radar-to-target range. 
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Blake1 derives the height-finding equation for the 4/3 earth (see Fig. 8.9); it is

Eq. (8.50)

where  and  are in feet and  is nautical miles. 

 The distance to the horizon for a radar located at height  can be calculated with the help
of Fig. 8.10. For the right-angle triangle OBA we get

Eq. (8.51)

where  is the distance to the horizon. By expanding Eq. (8.51) and collecting terms, one can
derive the expression for the distance to the horizon as 

. Eq. (8.52)

Finally, since  Eq. (8.52) is approximated by

, Eq. (8.53)

and when refraction is accounted for, Eq. (8.53) becomes
. Eq. (8.54)

1. Blake, L. V., Radar Range-Performance Analysis, Artech House, 1986. 
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 Figure 8.8. Geometry for 4/3 earth.
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8.5. Ground Reflection 
When radar waves are reflected from the earth’s surface, they suffer a loss in amplitude and

a change in phase. Three factors that contribute to these changes that are the overall ground
reflection coefficient are the reflection coefficient for a flat surface, the divergence factor due
to earth’s curvature, and the surface roughness.

8.5.1. Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, on the surface dielectric
coefficient, and on the radar grazing angle. The vertical polarization and the horizontal polar-
ization reflection coefficients are 

 Figure 8.9. Measuring target height for 4/3 earth.
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 Figure 8.10. Measuring the distance to the horizon.
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Eq. (8.55)

Eq. (8.56)

where  is the grazing angle (incident angle) and  is the complex dielectric constant of the
surface, and are given by

Eq. (8.57)

where  is the wavelength and  the medium conductivity in mhos/meter. Typical values of
 and  can be found tabulated in the literature. Tables 8.3 through 8.5 show some typical

values for the electromagnetic properties of soil, lake water, and seawater.

Note that when  one gets

Eq. (8.58)

while when the grazing angle is very small ( ), one has

Eq. (8.59)

  MATLAB Function “ref_coef.m”

The function “ref_coef.m” calculates the horizontal and vertical magnitude and phase
response of the reflection coefficient. The syntax is as follows

[rh,rv] = ref_coef (psi, epsp, epspp)

where

Fig. 8.11 shows the corresponding magnitude plots for  and , while Fig. 8.12 shows
the phase plots for seawater at  where  and  at the X-band. The plots
shown in these figures show the general typical behavior of the reflection coefficient. Figures
8.13 and 8.14 show the magnitudes of the horizontal and vertical reflection coefficients as a
function of grazing angle for four soils at 8GHz. 

Symbol Description Status

psi grazing angle in degrees (can be a vector or 

a scalar)

input

epsp input

epspp input

rh horizontal reflection coefficient complex vector output

rv vertical reflection coefficient complex vector output
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Observation of Figs. 8.11 and 8.12 yields the following conclusions: (1) The magnitude of
the reflection coefficient with horizontal polarization is equal to unity at very small grazing
angles and it decreases monotonically as the angle is increased. (2) The magnitude of the verti-
cal polarization has a well-defined minimum. The angle that corresponds to this condition is
called Brewster’s polarization angle. For this reason, airborne radars in the look-down mode
utilize mainly vertical polarization to significantly reduce the terrain bounce reflections. (3)
For horizontal polarization, the phase is almost ; however, for vertical polarization, the phase
changes to zero around the Brewster’s angle. (4) For very small angles (less than ), both

 and  are nearly one; and  are nearly . Thus, little difference in the propa-
gation of horizontally or vertically polarized waves exists at low grazing angles.

Moisture content by volume 
0.3% 10% 20% 30% Frequency 

GHz         
0.3 2.9 0.071 6.0 0.45 10.5 0.75 16.7 1.2 
3.0 2.9 0.027 6.0 0.40 10.5 1.1 16.7 2.0 
8.0 2.8 0.032 5.8 0.87 10.3 2.5 15.3 4.1 
14.0 2.8 0.350 5.6 1.14 9.4 3.7 12.6 6.3 
24 2.6 0.030 4.9 1.15 7.7 4.8 9.6 8.5 

Table 8.3. Electromagnetic properties of soil.

Table 8.4. Electromagnetic properties of lake water. 
 

Temperature 
CT 0  CT 10  CT 20  Frequency 

GHz 
      

0.1 85.9 68.4 83.0 91.8 79.1 115.2 
1.0 84.9 15.66 82.5 15.12 78.8 15.84 
2.0 82.1 20.7 81.1 16.2 78.1 14.4 
3.0 77.9 26.4 78.9 20.6 76.9 16.2 
4.0 72.6 31.5 75.9 24.8 75.3 19.4 
6.0 61.1 39.0 68.7 33.0 71.0 24.9 
8.0 50.3 40.5 60.7 36.0 65.9 29.3 

Table 8.5. Electromagnetic properties of sea water. 

Temperature 
CT 0  CT 10  CT 20  Frequency 

GHz 
      

0.1 77.8 522 75.6 684 72.5 864 
1.0 77.0 59.4 75.2 73.8 72.3 90.0 
2.0 74.0 41.4 74.0 45.0 71.6 50.4 
3.0 71.0 38.4 72.1 38.4 70.5 40.2 
4.0 66.5 39.6 69.5 36.9 69.1 36.0 
6.0 56.5 42.0 63.2 39.0 65.4 36.0 
8.0 47.0 42.8 56.2 40.5 60.8 36.0 

 

2
h v h v
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Figures 8.11 and 8.12 can be reproduced using MATLAB program “Fig8_11_12.m,” listed
in Appendix 8-A. Alternatively, Figs. 8.13 and 8.14 can be reproduced using MATLAB pro-
gram “Fig8_13_14.m,” listed in Appendix 8-A.

Figure 8.11. Reflection coefficient magnitude.

Figure 8.12. Reflection coefficient phase.
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8.5.2. Divergence

The overall reflection coefficient is also affected by the round earth divergence factor, .
When an electromagnetic wave is incident on a round earth surface, the reflected wave

 Figure 8.13. Vertical reflection coefficient for soil at 8GHz.

 Figure 8.14. Horizontal reflection coefficient for soil at 8GHz.

D
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diverges because of the earth’s curvature. This is illustrated in Fig. 8.15. Due to divergence, the
reflected energy is defocused, and the radar power density is reduced. The divergence factor
can be derived using geometrical considerations. 

The divergence factor can be expressed as

Eq. (8.60)

where all the parameters in Eq. (8.60) are defined in Fig. 8.16. Since the grazing  is always
small when the divergence  is very large, the following approximation is adequate in almost
most radar cases of interest,

Eq. (8.61)

D
re r gsin

2r1r2 gcos rer gsin+ 1 hr re+ 1 ht re+
-----------------------------------------------------------------------------------------------------------------------------=

g
D

D 1
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-------------------------+
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flat earth

spherical earth

 Figure 8.15.Illustration of divergence. Solid line: Ray perimeter for 
spherical earth. Dashed line: Ray perimeter for flat earth. 
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 Figure 8.16. Definition of variables in Eq. (8.60).
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MATLAB Function “divergence.m”

The MATLAB function “divergence.m” calculates the divergence using Eq. (8.60). The syn-
tax is as follows:

D = divergence (r1, r2, hr, ht, psi)
where

8.5.3. Rough Surface Reflection

In addition to divergence, surface roughness also affects the reflection coefficient. Surface
roughness is given by 

Eq. (8.62)

where  is the rms surface height irregularity. Another form for the rough surface reflection
coefficient that is more consistent with experimental results is given by

Eq. (8.63)

Eq. (8.64)

where  is the modified Bessel function of order zero. 

MATLAB Function “surf_rough.m”

The MATLAB function “surf_rough.m” calculates the surface roughness reflection coeffi-
cient as defined in Eq. (8.62). The syntax is as follows:

Sr = surf_rough (hrms, freq, psi)

where

Symbol Description Status

psi grazing angle in degrees (can be vector or scalar) input

r1 ground range between radar and specular point in Km input

r2 ground range between specular point and target in Km input

hr radar height in meters input

ht target height in meters input

D divergence output

Symbol Description Status

hrms surface rms roughness value in meters input

freq frequency in Hz input

psi grazing angle in degrees input

Sr surface roughness coefficient output

Sr e
2

2 hrms gsin
--------------------------------

2
–

=

hrms

Sr e z– I0 z=

z 2
2 hrms gsin
-------------------------------

2
=

I0
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Figure 8.17 shows a plot of the rough surface reflection coefficient versus . The
solid line uses Eq. (8.62) while the dashed line uses Eq. (8.63). This figure can be reproduced
using MATLAB program “Fig8_17.m,” listed in Appendix 8-A.

8.5.4. Total Reflection Coefficient

In general, rays reflected from rough surfaces undergo changes in phase and amplitude,
which results in the diffused (noncoherent) portion of the reflected signal. Combining the
effects of smooth surface reflection coefficient, divergence, the rough surface reflection coeffi-
cient, one can express the total reflection coefficient  as

, Eq. (8.65)

where  is the horizontal or vertical smooth surface reflection coefficient,  is diver-
gence, and  is the rough surface reflection coefficient.

8.6. The Pattern Propagation Factor
In general, the pattern propagation factor is a term used to describe the wave propagation

when free space conditions are not met. This factor is defined separately for the transmitting
and receiving paths. The propagation factor also accounts for the radar antenna pattern effects.
The basic definition of the propagation factor is

, Eq. (8.66)

where  is the electric field in the medium and  is the free space electric field. 

fMHzhrms gsin

t

t h v DSr=

h v D
Sr

 Figure 8.17. Reflection coefficient as a function . fMHzhrms gsin

fMHzhrms gsin

Sr

Fp E E0=

E E0
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Near the surface of the earth, multipath propagation effects dominate the formation of the
propagation factor. In this section, a general expression for the propagation factor due to mul-
tipath will be developed. In this sense, the propagation factor describes the constructive/
destructive interference of the electromagnetic waves diffracted from the earth’s surface
(which can be either flat or curved). The subsequent sections derive the specific forms of the
propagation factor due to flat and curved earth.

 Consider the geometry shown in Fig. 8.18. The radar is located at height . The target is at
range , and is located at a height . The grazing angle is . The radar energy emanating
from its antenna will reach the target via two paths: the “direct path”  and the “indirect
path” . The lengths of the paths  and  are normally very close to one another,
and thus the difference between the two paths is very small. Denote the direct path as , the
indirect path as , and the difference as . It follows that the phase difference
between the two paths is given by 

Eq. (8.67)

where  is the radar wavelength. 

The indirect signal amplitude arriving at the target is less than the signal amplitude arriving
via the direct path. This is because the antenna gain in the direction of the indirect path is less
than that along the direct path, and because the signal reflected from the earth’s surface at point

 is modified in amplitude and phase in accordance with the earth’s reflection coefficient, .
The earth reflection coefficient is given by

Eq. (8.68)

where  is less than unity and  describes the phase shift induced on the indirect path signal
due to surface roughness.
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 Figure 8.18. Geometry for multipath propagation.
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The direct signal (in volts) arriving at the target via the direct path can be written as

Eq. (8.69)

where the time harmonic term  represents the signal’s time dependency, and the
exponential term  represents the signal spatial phase. The indirect signal at
the target is 

Eq. (8.70)

where  is the surface reflection coefficient. Therefore, the overall signal arriving at
the target is 

. Eq. (8.71)

Due to reflections from the earth’s surface, the overall signal strength is then modified at the
target by the ratio of the signal strength in the presence of earth to the signal strength at the tar-
get in free space. By using Eqs. (8.69) and (8.71) into Eq. (8.66) the propagation factor is com-
puted as

, Eq. (8.72)

which can be rewritten as

Eq. (8.73)

where . Using Euler’s identity ( ), Eq. (8.73) can be written
as

. Eq. (8.74)

It follows that the signal power at the target is modified by the factor . By using reciprocity,
the signal power at the radar is computed by multiplying the radar equation by the factor .
In the following two sections we will develop exact expressions for the propagation factor for
flat and curved earth.

The propagation factor for free space and no multipath is . Denote the radar detec-
tion range in free space (i.e., ) as . It follows that the detection range in the presence
of the atmosphere and multipath interference is

 Eq. (8.75)

where  is the two-way atmospheric loss at range . Atmospheric attenuation will be dis-
cussed in a later section. Thus, for the purpose of illustrating the effect of multipath interfer-
ence on the propagation factor, assume that . In this case, Eq. (8.75) is modified to

. Eq. (8.76)
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Figure 8.19 shows the general effects of multipath interference on the propagation factor.
Note that, due to the presence of surface reflections, the antenna elevation coverage is trans-
formed into a lobed pattern structure. The lobe widths are directly proportional to , and
inversely proportional to . A target located at a maxima will be detected at twice its free
space range. Alternatively, at other angles, the detection range will be less than that in free
space.

8.6.1. Flat Earth 

Using the geometry of Fig. 8.18, the direct and indirect paths are computed as

Eq. (8.77)

. Eq. (8.78)

Eqs. (8.77) and (8.78) can be approximated using the truncated binomial series expansion as

Eq. (8.79)

. Eq. (8.80)

This approximation is valid for low grazing angles, where . It follows that

. Eq. (8.81)

hr

  0.5

  1

  1.5

  2

30

60

90

0

Normalized range R/Ro

P
ro

pa
ga

tio
n 

fa
ct

or

 Figure 8.19. Vertical lobe structure due to the reflecting surface as a 
function of the elevation angle. 
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Substituting Eq. (8.81) into Eq. (8.67) yields the phase difference due to multipath propagation
between the two signals (direct and indirect) arriving at the target. More precisely,

. Eq. (8.82)

At this point, assume a smooth surface with reflection coefficient . This assumption
means that waves reflected from the surface suffer no amplitude loss, and that the induced sur-
face phase shift is equal to . Using Eq. (8.67) and Eq. (8.74) along with these assump-
tions yields

. Eq. (8.83)

Substituting Eq. (8.82) into Eq. (8.83) yields

. Eq. (8.84)

By using reciprocity, the expression for the propagation factor at the radar is then given by

. Eq. (8.85)

Finally, the signal power at the radar is computed by multiplying the radar equation by the fac-
tor ,

. Eq. (8.86)

Since the sine function varies between  and , the signal power will then vary between 
and . Therefore, the fourth power relation between signal power and the target range results
in varying the target range from  to twice the actual range in free space. In addition to that,
the field strength at the radar will now have holes that correspond to the nulls of the propaga-
tion factor. 

The nulls of the propagation factor occur when the sine is equal to zero. More precisely, 

Eq. (8.87)

where . The maxima occur at 

. Eq. (8.88)

The target heights that produce nulls in the propagation factor are
, and the peaks are produced from target heights

. Therefore, due to the presence of surface reflections, the
antenna elevation coverage is transformed into a lobed pattern structure as illustrated by Fig.
8.19. A target located at a maxima will be detected at twice its free space range. Alternatively,
at other angles, the detection range will be less than that in free space. At angles defined by Eq.
(8.87), there would be no measurable target returns. 
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For small angles, Eq. (8.86) can be approximated by 

, Eq. (8.89)

thus, the received signal power varies as the eighth power of the range instead of the fourth
power. Also, the factor  is now replaced by .

8.6.2. Spherical Earth

In order to model the effects of multipath propagation on radar performance more accurately,
we need to remove the flat earth condition and account for the earth’s curvature. When consid-
ering round earth, electromagnetic waves travel in curved paths because of the atmospheric
refraction. And as mentioned earlier, the most commonly used approach to mitigating the
effects of atmospheric refraction is to replace the actual earth by an imaginary earth such that
electromagnetic waves travel in straight lines. The effective radius of the imaginary earth is

Eq. (8.90)

where  is a constant and  is the actual earth radius. Using the geometry in Fig. 8.20, the
direct and indirect path difference is 

. Eq. (8.91)
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 Figure 8.20. Geometry associated with multipath propagation over round earth.
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The propagation factor is computed by using  from Eq. (8.91) in Eq. (8.67) and substituting
the result in Eq. (8.74). To compute ( , , and ), the following cubic equation must first
be solved for :

. Eq. (8.92)

The solution is 

Eq. (8.93)

where

Eq. (8.94)

. Eq. (8.95)

Next, we solve for , , and . From Fig. 8.20,

Eq. (8.96)

. Eq. (8.97)

Using the law of cosines to the triangles ABO and BOC yields

Eq. (8.98)

. Eq. (8.99)

Eqs. (8.98) and (8.99) can be written in the following simpler forms:

Eq. (8.100)

 Eq. (8.101)

Using the law of cosines on the triangle AOC yields

. Eq. (8.102)

Additionally

. Eq. (8.103)

Substituting Eqs. (8.100) through (8.102) directly into Eq. (8.91) may not be conducive to
numerical accuracy. A more suitable form for the computation of  is then derived. The
detailed derivation is in Blake (1986). The results are listed below. For better numerical accu-
racy, use the following expression to compute :
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 Eq. (8.104)

where

. Eq. (8.105)

8.6.3. MATLAB Program “multipath.m”

The MATLAB program “multipath.m” calculates the two-way propagation factor using the
4/3 earth model for spherical earth. It assumes a known free space radar-to-target range. It can
be easily modified to assume a known true spherical earth ground range between the radar and
the target. Additionally, this program generates three types of plots. They are: (1) The propaga-
tion factor as a function of range, (2) the free space relative signal level versus range, and (3)
the relative signal level with multipath effects included. This program uses the equations pre-
sented in the previous few sections.

This program includes the effects of divergence  and the total surface reflection coeffi-
cient . Adding the effects of the radar antenna pattern on the signal level is left to the reader
as an exercise. Finally, it can also be easily modified to plot the propagation factor versus tar-
get height at a fixed target range. 

Using this program, Fig. 8.21 presents a plot for the propagation factor loss versus range
using ; ; and . In this case, the target reference range is
at . Divergence effects are not included; neither is the reflection coefficient.
More precisely, .  

Figure 8.22 shows the relative signal level with and without multipath losses. Note that mul-
tipath losses affect the signal level by introducing numerous nulls in the signal level. These
nulls will typically cause the radar to lose track of targets passing through such nulls. Figures
8.23 and 8.24 are similar to Figs. 8.21 and 8.22, except these new figures account for diver-
gence. All plots assume vertical polarization.

8.7. Diffraction
Diffraction is a term used to describe the phenomenon of electromagnetic waves bending

around obstacles. It is of major importance to radar systems operating at very low altitudes.
Hills and ridges diffract radio energy and make it possible to perform detection in regions that
are physically shadowed. In practice, experimental data measurements provide the dominant
source of information available on this phenomenon. Some theoretical analyses of diffraction
are also available. However, in these cases many assumptions are made, and perhaps the most
important assumption is that obstacles are chosen to be perfect conductors.

The problem of propagation over a knife edge on a plane can be described with the help of
Fig. 8.25. The target and radar heights are denoted, respectively, by  and . The edge height
is . Denote the distance by which the radar rays clear (or do not clear) the tip of the edge by

. As a matter of notation,  is assumed to be positive when the direct rays clear the edge, and
is negative otherwise. Because the ground reflection occurs on both sides of the edge, the prop-
agation factor is composed of four distinct rays, as illustrated in Fig. 8.26.
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 Figure 8.21. Propagation loss versus slant range. No divergence.

 Figure 8.22. Solid line: Propagation loss versus slant range. Dashed line: 
free space loss. No divergence.
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 Figure 8.23. Propagation loss versus slant range, with divergence.

 Figure 8.24. Solid line: Propagation loss versus slant range. Dashed line: 
free space loss, with divergence.
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The analysis that led to creating the multipath model described in the previous section
applies only to ground reflections from the intermediate region, as illustrated in Fig. 8.27. The
effects of ground reflection below the radar horizon are governed by another physical phenom-
enon referred to as diffraction. The diffraction model requires calculations of the Airy function
and its roots. For this purpose, the numerical approximation presented in Shatz and Polychro-
nopoulos1 is adopted. This numerical algorithm, described by Shatz and Polychronopoulos, is
very accurate and its implementation using MATLAB is straightforward.

Define the following parameters,

Eq. (8.106)

where  is the radar altitude,  is target altitude,  is range to the target,  and  are nor-
malizing factors given by

Eq. (8.107)

1. Shatz, M. P., and Polychronopoulos, G. H., An Algorithm for Evaluation of Radar Propagation in the 
Spherical Earth Diffraction Region. IEEE Transactions on Antenna and Propagation, Vol. 38, August 
1990, pp. 1249-1252.

hthr he

 Figure 8.25. Diffraction over a knife edge. (a) Positive . (b) Negative .
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 Figure 8.26. Four ray formation.

x R
r0
----= y

hr

h0
-----= t

ht

h0
-----=

hr ht R h0 r0

h0
1
2
--- re

2 2 1 3
=



Diffraction 307                                                                                                                                                                                                                                                                         

        

. Eq. (8.108)

 is the wavelength and  is the effective earth radius. Let  denote the Airy function
defined by

. Eq. (8.109)

The general expression for the propagation factor in the diffraction region is equal to

Eq. (8.110)

where  are defined in Eq. (8.106) and 

Eq. (8.111)

where  is the nth root of the Airy function and  is the first derivative of the Airy function.
Shatz and Polychronopoulos showed that Eq. (8.110) can be approximated by

 Eq. (8.112)

where

. Eq. (8.113)

Shatz and Polychronopoulos showed that the sum in Eq. (8.112) represents accurate compu-
tation of the propagation factor within the diffraction region. 

 Figure 8.27. Diffraction region.
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MATLAB Function “diffraction.m”

The MATLAB function “diffraction.m” implements Eq. (8.112) where the sum is termi-
nated at  for accurate computation. It utilizes Shatz’s model to calculate the propaga-
tion factor in the diffraction region. For this purpose, another MATLAB function called
“airyzo1.m” was used to compute the roots of the Airy function and the roots of its first deriv-
ative. The syntax for the function “diffraction.m” is as follows

F = diffraction(freq, hr, ht, R, nt);

where 

Figure 8.28 (after Shatz) shows a typical output generated by this program for ,
, and . Figure 8.29 is similar to Fig. 8.28 except in this

case the following parameters are used: , , and
. Figure 8.30 shows a plot for the propagation factor using the same

parameters in Fig. 8.29; however, in this figure, both intermediate and diffraction regions are
shown. These figures can be reproduced using the MATLAB code listed in Appendix 8-A. 

Symbol Description Status

freq radar operating frequency Hz

hr radar height meters

ht target height meters

R range over which to calculate the propagation factor Km

nt number of data point is the series given in Eq. (1.186) none

F propagation factor in diffraction region dB

n 1500

ht 1000m=
hr 8000m= frequency 167MHz=

ht 3000m= hr 200m=
frequency 428MHz=

Figure 8.28. Propagation factor in the diffraction region. 
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Figure 8.29. Propagation factor in the diffraction region. 

Figure 8.30. Propagation factor. 
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8.8.  Atmospheric Attenuation
Radar electromagnetic waves travel in free space without suffering any energy loss. How-

ever, due to gases (mainly oxygen) and water vapor present along the radar wave propagation
path, a loss in radar energy occurs. This loss is known as atmospheric attenuation. Most of this
lost radar energy is normally absorbed by gases and water vapor and transformed into heat,
while a small portion of this lost energy is used in molecular transformation of the atmosphere
particles. This section will analyze atmospheric attenuation in the context of most radar appli-
cation within the atmosphere. 

8.8.1. Atmospheric Absorption

The atmospheric absorption due to oxygen is given by the Van Vleck1 equation as

Eq. (8.114)

where  is the total oxygen absorption in ;  is the wave number (reciprocal of the
wavelength) in ,  is the resonance wave number for oxygen and is equal to , 
is a constant related to the non-resonance part of absorption in ,  is a constant related
to the resonance part of absorption in ,  is the atmospheric pressure in millibars, and T
is the atmospheric temperature in degrees Kelvin. 

Using data derived from his experiments, Van Vleck suggested using equal values for both
 and ; more specifically, he recommended using . However, a

decade later after Van Vleck’s work, Bean and Abbott2 using more advanced experimentations
determined more accurate values for both constants. They found that  and

. Nonetheless, for most radar applications one can use Van Vleck’s values
without losing much accuracy. The relationship between  and  is rather complicated and
has dependencies on pressure and temperature.

Equation (8.114) can be approximated by (see Problem 8.16)

Eq. (8.115)

where  is the radar wavelength. Note that water vapor absorption is negligible below . 

1. Van Vleck, J. H., The Absorption of Microwaves by Oxygen, Physical Review, Vol. 71:413, 1947.
2. Bean, B. R., and Abbott, R., Oxygen and Water-Vapor Absorption of Radio Waves in the Atmo-

spheric, J. Appl. Phys. 30:1417, 1959.
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The Van Vleck1 equation for water vapor absorption for frequencies over  is given by

Eq. (8.116)

where all variables are as defined before in Eq. (8.114) except for:  is the water vapor
absorption in ,  is the water vapor density in ,  is a constant equal to

,  is a constant related to water vapor resonance at , and  is a con-
stant related to water vapor resonance above . Van Vleck suggested using

, which was later updated by Bean and Abbott to the more accurate val-
ues of at  and . Equation (8.116) can be approximated by (see
Problem 8.17)

. Eq. (8.117)

The atmospheric temperature for altitudes less than 12Km is given by 

Eq. (8.118)

where  is the temperature in degrees Kelvin and  is the altitude in Km. Assuming that air
pressure at sea level is 1015 millibars, then the air pressure in millibars at any altitude for up to
12Km is given by

Eq. (8.119)

Using Eqs. (8.118) and (8.119), one can construct Table 8.6, which shows some representative
data for air pressure, atmospheric pressure, and their corresponding water vapor density. 

1. Van Vleck, J. H., The Absorption of Microwaves by Uncondensed Water Vapor, Physical Review, Vol. 
71:425, 1947.

Table 8.6. Sample Atmospheric Data.
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T - degrees 
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MATLAB Function “atmo_absorp.m”

The MATLAB function “atmo_absorp.m” implements Eqs. (8.115) and (8.117). It syntax is
as follows:

[gammaO2, gammaH2O] = atmo_absorp (height, Wvd, freq)

where

Figure 8.31 shows the total atmospheric absorption in dB and the attenuation due to oxygen
alone versus range using the data in Table 8.6. This figure can be reproduced using the MAT-
LAB program “Fig8_31.m,” listed in Appendix 8-A.

8.8.2. Atmospheric Attenuation Plots

To compute the total atmospheric attenuation experienced by a radar, one must first compute
the two-way total absorption along the radar wave path, from the radar to the target and back.
Then, the total atmospheric attenuation is computed from the integral of  along
the ray path. Clearly,  is not only a function of pressure, temperature, water vapor, and fre-
quency, but it is also a function of the radar waves path and its initial elevation angle. More
specifically, one would expect the radar wave ray to go through more atmosphere at lower ele-
vation angles, and thus experience more atmospheric attenuation. The total two-way atmo-
spheric attenuation at range  using the elevation angle  and the wavelength  as
parameters is then given by

Eq. (8.120)

where the factor 2 is used to account for the two-way loss or attenuation. The computation of
Eq. (8.120) is complex. In this book, the computational power of MATLAB is utilized to gen-
erate plots of  versus range using the algorithm described in the next paragraph.

 3.0480  695.73  267.58 2.01

 6.0960 463.10  247.16 0.34

 9.1440 297.91  226.74 0.05

12.1920 184.04 206.31 <0.01

Symbol Description Units Status

height altitude array Km input

Wvd Water vapor density array g/m^3 input

freq radar frequency Hz input

gammaO2 oxygen absorption dB output

gammaH2O water vapor absorption dB output

Table 8.6. Sample Atmospheric Data.

P - millibars
T - degrees 

Kelvin

Water vapor 

density - h Km– g m3

atm O w+=
atm

Ri

atm Ri; 2 atm Ri; Rd

0

Ri

=

atm
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In the previous section, atmospheric absorption was computed and plotted versus target
height. To calculate the same absorption versus range, consider the geometry shown in Fig.
8.32. Using the law of sines, one can compute the angle , then using the law of cosines, one
can compute the range . The MATLAB function “absorption_range.m” is then used to gen-
erate data for plotting absorption versus range. Finally, the two-way atmospheric attenuation
given in Eq. (8.120) is computed using numerical integration. Simply put, once the plot of
absorption versus range is generated (see Fig. 8.33), the atmospheric attenuation is equal to the
area under the curve.

Using the law of sines,

Eq. (8.121)

where the angle  is 

, Eq. (8.122)

and from the law of cosines,

. Eq. (8.123)

Figure 8.31. Atmospheric absorption versus altitude. 

R

r0

r0 h+
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2
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R r0
2 r0 h+ 2 2r0 r0 h+ cos–+=
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MATLAB Function “absorption_range.m”

The MATLAB function “absorption_range.m” is a modified version of the function
“atmo_absorp.m.” In this case, the function will use Eqs. (81.21) to (8.123) to also return the
total atmospheric absorption versus range. Its syntax is as follows:

[gammaO2, gammaH2O,range] = absorption_range (height, Wvd, freq,beta)

where

Figure 8.33 shows plots of total atmospheric absorption versus range using the same atmo-
spheric data used to generate Fig. 8.31. This figure can be reproduced using MATLAB pro-
gram “Fig8_33.m,” listed in Appendix 8-A.

Symbol Description Units Status

height altitude array Km input

Wvd Water vapor density array g/m^3 input

freq radar frequency Hz input

beta radar wave ray path elevation angle degrees input

gammaO2 oxygen absorption versus target  height dB output

gammaH2O water vapor absorption versus target  height dB output

range range array Km output

earth surface

 Figure 8.32. Geometry of radar wave propagation path. 

horizontal at radar

r r0 h+=

center of earth

R

r0

2
---+

target

h
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MATLAB Function “atmospheric_attn.m”

The MATLAB function “atmospheric_attn.m” uses, Riemann sums method to compute the
area under the curves in Fig. 8.33. It also uses data generated using the function
“absorption_range.m” to compute the two-way atmospheric attenuation along the radar wave
ray path. Its syntax is as follows:

[Attn, rangei] = atmospheric_attn (gammaO2, gammaH2O, range)

where

 Figure 8.34 shows a typical two-way atmospheric attenuation plot versus range at
, with the elevation angle as a parameter. Figure. 8.35 is similar to Fig. 8.34, except it

is for . Both figures can be reproduced using MATLAB program “Fig8_33_34.m,”
listed in Appendix 8-A.

Symbol Description Units Status

gammaO2 oxygen absorption versus target  height dB input

gammaH2O water vapor absorption versus target  height dB input

range range array Km input

Attn 2-way atmospheric attenuation dB output

rangei range array used in integration Km output

Figure 8.33. Atmospheric absorption rate as a function of range. 

300MHz
3GHz
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Figure 8.34. Attenuation versus range; frequency is 300MHz. 

Figure 8.35. Attenuation versus range; frequency is 3GHz. 
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8.9.  Attenuation Due to Precipitation
Radar waves propagating through rain precipitation suffer loss in signal power. This power

loss is due to absorption by and scattering from the rain droplets. Clearly, heaver rain rate will
result in more absorption and scattering, thus leading to more power loss. Attenuation due to
rain is also a function of frequency or radar wavelength. For example, the one-way attenuation,
measured in , due to rain precipitation is given y

 Eq. (8.124)

where  is the rainfall rate in mm/hr. A more general formula for this attenuation is given by

Eq. (8.125)

where f is the frequency in GHz,  and  are constants yet to be defined. Almost all open lit-
erature sources do not agree on specific values for these two constants, where  varies from
about 2.39 to 3.84 while  varies from  to . This author recommends
using  and . It follows that

  . Eq. (8.126)

Figure 8.36 illustrates the behavior of rain attenuation as a function of frequency. Clearly,
and as one would expect, as the wavelength becomes smaller, the rain attenuation becomes
more dominant. This figure can be reproduced using MATLAB program “Fig8_36.m,” listed
in Appendix 8-A.

dB Km

Ar

3.43 10 4– r0.97 10cm=

1.8 10 3– r1.05 5cm=

1.0 10 2– r1.21 3.2cm=

=

r

Ar KA f r=

KA

KA 1.21 10 5– 8.33 10 6–

KA 0.0002= 2.25=

Ar 0.0002 f2.25r= dB Km

Figure 8.36. One-way rain attenuation versus rain rate and as a function of frequency. 
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The one-way attenuation in  due to snow precipitation has been reported in the liter-
ature as one of the following two formulas

 Eq. (8.127)

Eq. (8.128)

where r is the snow fall rate in millimeters of water content per hour and  is the radar wave-
length in centimeters. Both of Eqs. (8.127) and (8.128) give fairly accurate results with Eq.
(8.127) having the edge.

Figure 8.37 illustrates the behavior of snow attenuation as a function of frequency. Clearly,
and as one would expect, as the wavelength becomes smaller, the snow attenuation becomes
more dominant. This figure can be reproduced using MATLAB program “Fig8_37.m,” listed
in Appendix 8-A.

Problems
8.1. Using Eq. (8.50), determine  when  and .

8.2. An exponential expression for the index of refraction is given by

where the altitude  is in Km. Calculate the index of refraction for a well-mixed atmosphere at
10% and 50% of the troposphere.

dB Km

As
0.035r2

4
------------------ 0.0022r-------------------+=

As
0.00349r1.6

4
--------------------------- 0.00224r----------------------+=

Figure 8.37. One-way rain attenuation versus snow rate and as a function of frequency. 

h hr 15m= R 35Km=

n 1 315 10 6– 0.136h–exp+=

h
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8.3. Validate Eq. (8.20) and Eq. (8.25).

8.4. Derive Eq. (8.24).

8.5. Using Snell’s law (i.e., ), show that

.

8.6. Reproduce Figs. 8.11 and 8.12 by using  and (a)  and
 (dry soil); (b)  and  (seawater at ); (c)  and

 (lake water at ).

8.7. Derive an asymptotic form for  and  when the grazing angle is very small.

8.8. Starting with Eq. (8.60), derive Eq. (8.61).

8.9. Calculate the range to the horizon corresponding to a radar at  and  of alti-
tude. Assume 4/3 earth.

8.10. In reference to Fig. 8.18, assume a radar height of  and a target height of
. The range is . (a) Calculate the lengths of the direct and indirect

paths. (b) Calculate how long it will take a pulse to reach the target via the direct and indirect
paths.

8.11. In the previous problem, assuming that you may be able to use the small grazing
angle approximation. (a) Calculate the ratio of the direct to the indirect signal strengths at the
target. (b) If the target is closing on the radar with velocity , calculate the Dop-
pler shift along the direct and indirect paths. Assume .

8.12. Assume a radar at altitude  and a target at altitude , and
assuming a spherical earth, calculate , , and .

8.13. Derive Eq. (8.103).

8.14. Modify the MATLAB program “multipath.m” so that it uses the true spherical
ground range between the radar and the target.

8.15. Modify the MATLAB program “multipath.m” so that it accounts for the radar
antenna.

8.16. Starting with Eq. (8.114), derive Eq. (8.115), assume . In your analysis

you may assume that .

8.17. Derive Eq. (8.117) from Eq. (8.116).

noro 0cos n1r1 1cos=

1

2
-----sin

2 ro

2r1
-------- 2 0

2
-----sin

2 r1 ro–
ro

---------------
No N1– 10 6–

n1
-------------------------------------- 0cos–+=

f 8GHz= 2.8=
0.032= 47= 19= 0 C 50.3=
18= 0 C

h v

5Km 10Km

hr 100m=
ht 500m= R 20Km=

v 300m s=
3cm=

hr 10m= ht 300m=
r1 r2 g

o 2cm 1–=

4 1
2
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Appendix 8-A: Chapter 8 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “refraction.m” Listing
function [deltaR, Rm, Rt] = refraction(Rmax, el,H, No, Ce, pmax, hm, f)
% Compute the apparent range, range error, and the time delay due to
% refraction; Implements a stratified atmospheric refraction model.
%% Inputs:   
       % Rmax == true range maximum (km)
       % el        == true initial elevation angle (deg)
       % H        == height scale factor in km
       % No       == refractivity at earth surface
       % Ce      == constant im km^-1
       % pmax   == maximum electron density at hm
       % hm       == height for maximum electron contents in Kmkm
       % f          == hz, center frequency
%% Outputs:  
    % deltaR    == range error (m)
    % Rm         == apparent range (m)
    % Rt          == time delay (sec)
 % initizlize some variables
c = 299792.458;     % km/s, speed of light
Re = 6375;          % km, Earth equatorial radius
 % compute object altitude using the law of cosines
hmax = sqrt(Re^2 + Rmax^2 - 2*Re*Rmax*cosd(90 + el)) - Re;
 % compute the distance from Earth's center to top of each stratified layer
alt = linspace(0, hmax, ceil(hmax));
r = Re + alt;
 % get the altitude indices for both the troposphere and ionosphere
Tindx = find(alt <= 50);
Iindx = find(alt > 50);
 % compute the index of refraction for each layer
Ntropo = No * exp(-Ce * alt(Tindx));    % eqn 8.7
z = (alt(Iindx) - hm)/H;                % eqn 8.11
pe = pmax * exp((1-z-exp(-z))/2);       % eqn 8.10
Niono = -40.3 * pe * 1e6 / f^2;         % eqn 8.16
n = 1 + 1e-6*[Ntropo, Niono];           % eqn 8.4
% compute Bm from eqn 8.31 in degrees
Bm = el;
for k = 2:length(alt)-1
    j = k - 1;
    Bm(k) = acosd(cosd(Bm(j)).*n(j).*r(j)./n(k)./r(k));
end
% compute Am from eqn 8.32 in degrees
rm = r(1:end-1);
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rmp1 = r(2:end);
Am = asind(cosd(Bm).*rm./rmp1);
% compute Theta from eqn 8.35 in degrees
theta = 90 - Bm - Am;
% compute Rom from eqn 8.34 in km
Rom = sqrt(Re^2 + rmp1.^2 - 2*Re*rmp1.*cosd(cumsum(theta)));
% compute Rm from from eqn 8.44 in km
Rm = sqrt(rm.^2 + rmp1.^2 - 2*rm.*rmp1.*cosd(theta));
% compute deltaR from eqns 8.43 & 8.47 in km
nR = [n(Tindx).*Rm(Tindx), Rm(Iindx(1:end-1))./n(Iindx(1:end-1))];
deltaR = cumsum(nR) - Rom;
% compute the time delay in seconds
tT = sum(nR) / c;       % eqns 8.41, 8.46
toM = Rom / c;          % eqn 8.42 
Rt = tT - toM(end);
return

MATLAB Program “Fig8_7.m” Listing
% this program reproduces Fig. 8.7 of text
clc
close all
clear all
Rmax = 1600;        % Km
el = [ 1 2 5 10];   % elevation angle in deg
H = 78.11;          % km
No = 313;           % refractivity at earth surface
Ce = 0.1439;        % km^-1
pmax = 1.25e5;      % maximum electron density at hm
hm = 300.73;        % % height for maximum electron contents in Kmkm
f = 9.5e9;          % hz, center frequency
[deltaR, Rm, Rt] = refraction(Rmax, el(1),H, No, Ce, pmax, hm, f);
figure
plot(cumsum(Rm), deltaR .*1000, 'k--')
hold on
[deltaR, Rm, Rt] = refraction(Rmax, el(2),H, No, Ce, pmax, hm, f);
plot(cumsum(Rm), deltaR .*1000, '.-k')
hold on
[deltaR, Rm, Rt] = refraction(Rmax, el(3),H, No, Ce, pmax, hm, f);
plot(cumsum(Rm), deltaR .*1000, 'k:','linewidth',1.5)
hold on
[deltaR, Rm, Rt] = refraction(Rmax, el(4),H, No, Ce, pmax, hm, f);
plot(cumsum(Rm), deltaR .*1000, 'k')
hold off
grid on
xlabel('\bfRange - Km ')
ylabel('\bfRange Error - meters')
legend('\beta=1deg','\beta=2deg','\beta=5deg','\beta=10deg')
title('frequency = 9.5GHz')

MATLAB Function “ref_coef.m” Listing
function [rh,rv] = ref_coef (psi, epsp, epspp)
% This function calculates the horizontal and vertical magnitude and phase 
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% response of the reflection coefficient. 
%% Inputs
    % psi    == grazing angle in degrees (a vector or a scalar)
    % epsp      == epsilon prime 
    % epspp     == epsilon double prime
%% Output
    % rh        == horizontal reflection coefficient complex vector 
    % rv        == vertical reflection coefficient complex vector   
eps = epsp - i .* epspp; 
psirad = psi.*(pi./180.);
arg1 = eps - (cos(psirad).^2);
arg2 = sqrt(arg1);
arg3 = sin(psirad);
arg4 = eps.*arg3;
rv = (arg4-arg2)./(arg4+arg2);
rh = (arg3-arg2)./(arg3+arg2);
return

MATLAB Program “Fig8_11_12.m” Listing
% this program generates Figs. 8.11 and 8.12 of text
close all
clear all
psi = 0.01:0.05:90;
[rh,rv] = ref_coef (psi, 65,30.7);
gamamodv = abs(rv);
gamamodh = abs(rh);
figure
plot(psi,gamamodv,'k',psi,gamamodh,'k -.','linewidth',1.5);
grid
legend ('Vertical Polarization','Horizontal Polarization')
xlabel('\bfGrazing angle - degrees');
ylabel('\bfReflection coefficient - magnitude')
pv = -angle(rv);
ph = angle(rh);
figure 
plot(psi,pv,'k',psi,ph,'k -.','linewidth',1.5);
grid
legend ('\bfVertical Polarizatio','Horizontal Polarization')
xlabel('\bfGrazing angle - degrees');
ylabel('\bfReflection coefficient- phase')

MATLAB Program “Fig8_13_14.m” Listing
% this program generates Fig. 8.13 and 8.14 of text
close all
clear all
psi = 0.01:0.25:90;
epsp = [2.8];
epspp = [0.032];% 0.87 2.5 4.1];
[rh1,rv1] = ref_coef(psi, epsp,epspp);
gamamodv1 = abs(rv1);
gamamodh1 = abs(rh1);
epsp = [5.8] ;



Appendix 8-A: Chapter 8 MATLAB Code Listings 323                                                                                                                                                                                                                                                                         

epspp = [0.87];
[rh2,rv2] = ref_coef(psi, epsp,epspp);
gamamodv2 = abs(rv2);
gamamodh2 = abs(rh2);
epsp = [10.3];
epspp = [2.5];
[rh3,rv3] = ref_coef(psi, epsp,epspp);
gamamodv3 = abs(rv3);
gamamodh3 = abs(rh3);
epsp = [15.3]; epspp = [4.1];
[rh4,rv4] = ref_coef(psi, epsp,epspp);
gamamodv4 = abs(rv4);
gamamodh4 = abs(rh4);
figure(1)
semilogx(psi,gamamodh1,'k',psi,gamamodh2,'k-.',psi,gamamodh3,'k.',psi,gamamodh4,'k:','linewidth',1);
grid
xlabel('\bfGrazing angle - degrees');
ylabel('\bfReflection coefficient - amplitude')
legend('moisture = 0.3%','moisture = 10%%','moisture = 20%','moisture = 30%')
title('\bfhorizontal polarization')
figure(2)
semilogx(psi,gamamodv1,'k',psi,gamamodv2,'k-.',psi,gamamodv3,'k.',psi,gamamodv4,'k:','linewidth',1);
grid
xlabel('\bfGrazing angle - degrees');
ylabel('\bfReflection coefficient - amplitude')
legend('moisture = 0.3%','moisture = 10%%','moisture = 20%','moisture = 30%')
title('\bfveritcal polarization')

MATLAB Function “divergence.m” Listing
function [D] = divergence(r1, r2, ht, hr, psi)
% calculates divergence
% Inputs
    % r1      == ground range between radar and specular point in Km  
    % r2        == ground range between specular point and target in Km
    % hr        == radar height in meters   
    % ht        == target height in meters  
    % psi       == grazing angle in degrees
% Output
    % D         == divergence 
psi = psi .* pi ./180; % psi in radians
re = (4/3) * 6375e3;
r = r1 + r2;
arg1 = re.* r .* sin(psi) .*cos(psi);
arg2 = ((2.*r1.*r2./cos(psi)) + re.*r.*sin(psi)) .* ...
    (1+hr./re) .* (1+hr./re);
D = sqrt(arg1 ./ arg2);
return

MATLAB Function “surf_rough.m” Listing
function Sr = surf_rough(hrms, freq, psi)
clight = 3e8;
psi = psi .* pi ./ 180; % angle in radians
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lambda = clight / freq; % wavelength
g = (2.* pi .* hrms .* sin(psi) ./ lambda).^2;
Sr = exp(-2 .* g);
return

MATLAB Program “Fig8_17.m” Listing
% this program generates Fig. 8.17 of text
clear all
close all
clight = 3.0e8;
gg = linspace(0,200,500);
zz = 2.* (2*pi.* gg .* .3048/300).^2;
val1 = besseli(0,zz);
% index= find(val1 >1e20);
% val1(index) = 1e-12;
Sr = exp(-zz) ;
Srr = exp(-zz);
Srr1 = val1 .* Sr;
figure(1)
plot(gg,Sr,'k',gg,Srr1,'k-.','linewidth',1)
grid

MATLAB Program “multipath.m” Listing
% This program calculates and plots the propagation factor versus
% target range with a fixed target hieght.
% The free space radar-to-target range is assumed to be known.
 fprintf('****** WARNING ****** \n')
 fprintf('Diffraction is not accounted for in this routine')
clear all ; close all
eps = 0.0015;
%%%%%%%%%%%%% input %%%%%%%%%%%%%%%%
ro = 6375e3; % earth radius
re = ro * 4 /3; % 4/3 earth radius
freq = 3000e6; % frequnecy
lambda = 3.0e8 / freq; % wavelength
hr = 100*.3048; % radar height in meters
ht = 200*.3048; % target height in meters
Rd1 = linspace(2e3, 45e3, 500); % slant range 3 to 55 Km 500 points
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%determine whether the target is beyond the radar's line of sight
range_to_horizon = sqrt(2*re) * (sqrt(ht) + sqrt(hr)); % range to horizon
index = find(Rd1 > range_to_horizon);
if isempty(index);
    Rd = Rd1;
else
    Rd = Rd1(1:index(1)-1);
    fprintf('****** WARNING ****** \n')
    fprintf('Maximum range is beyond radar line of sight. \n')
    fprintf('****** WARNING ****** \n')
end
val1 = (re + hr).^2 + (re + ht).^2 - Rd.^2;
val2 = 2 .* (re +hr) .* (re + ht);
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phi = acos(val1./val2); % Eq. (8.77)
r = re .* phi; % Eq. (8.71)
p = sqrt(re .* (ht + hr) + (r.^2 ./4)) .* 2 ./ sqrt(3); %Eq.(8.68)
exci = asin((2 .* re .* r .* (ht - hr) ./ p.^3)); % Eq. (8.69)
r1 = (r ./ 2) - p .* sin(exci ./3);
phi1 = r1 ./ re; % Eq. (8.70)
r2 = r - r1;
phi2 = r2 ./ re; % Eq. (8.70)
R1 = sqrt(hr.^2 + 4 .* re .* (re + hr) .* (sin(phi1./2)).^2); % Eq. (8.74)
R2 = sqrt(ht.^2 + 4 .* re .* (re + ht) .* (sin(phi2./2)).^2); % Eq. (8.75)
psi = asin((2 .* re .* hr + hr.^2 - R1.^2) ./ (2 .* re .* R1));
deltaR = (4 .* R1 .* R2 .* (sin(psi)).^2) ./ (R1 + R2 + Rd); % Eq. (8.65)
%%%%%%%%%%%%% input surface roughness %%%%%%%%%%%%%%%%
hrms = 1; % 
psi = psi .* 180 ./ pi;
[Sr] = surf_rough(hrms, freq, psi);
%%%%%%%%%%%%% input divergence %%%%%%%%%%%%%%%%
[D] = divergence(r1, r2, ht, hr, psi);
%%%%%%%%%%%%% input smooth earth ref. coefficient %%%%%%%%%%%
epsp = 13.7;
epspp = .01;
[rh,rv] = ref_coef (psi, epsp, epspp);
%D = 1;
Sr =1;
gamav = abs(rv);
phv = angle(rv);
gamah = abs(rh);
phh = angle (rh);
 gamav =1;
 phv = -pi;
Gamma_mod = abs(gamav .* D .* Sr); % Eq. (8.39)
Gamma_phase = phv; %
rho = Gamma_mod;
delta_phi = 2 .* pi .* deltaR  ./ lambda; % Eq. (8.56)
alpha = delta_phi + phv;
F = ( 1 + rho.^2 + 2 .* rho .* cos( alpha)); % Eq. (8.48)
Ro = 185.2e3; % refrence range in Km
F_free = 40 .* log10(Ro ./ Rd);
F_dbr = 20 .* log10( F ) + F_free;
F_db = 20 .* log10( eps + F );
figure(1)
plot(Rd./1000, F_db,'k','linewidth',1)
grid
xlabel('slant range in Km')
ylabel('propagation factor in dB')
axis tight
axis([2 Rd(end)/1000 -60 20])
figure(2)
plot(Rd./1000, F_dbr,'k',Rd./1000, F_free,'k-.','linewidth',1)
grid
xlabel('slant range in Km')
ylabel('propagation factor in dB')
axis tight
axis([2 Rd(end)/1000 -40 80])
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legend('multipath','free space')

MATLAB Program “diffraction.m” Listing
function F = diffraction(freq, hr, ht,R,nt);
%   Generalized spherical earth propagation factor calculations
%   After Shatz: Michael P. Shatz, and George H. Polychronopoulos, An
%   Algorithm for Elevation of Radar Propagation in the Spherical Earth 
%   Diffraction Region. IEEE Transactions on Antenna and Propagation, 
%   VOL. 38, NO.8, August 1990.
format long
re = 6373e3 * (4/3); % 4/3 earth radius in Km
[an] = airyzo1(nt);% calculate the roots of the Airy function
c = 3.0e8; % speed of light
lambda = c/freq; % wavelength
r0 = (re*re*lambda / pi)^(1/3);
h0 = 0.5 * (re*lambda*lambda/pi/pi)^(1/3);
y = hr / h0;
z = ht / h0;
%%%%%%%%%%%%
par1 = exp(sqrt(-1)*pi/3);
pary1 = ((2/3).*(an + y .* par1).^(1.5));
    pary = exp(pary1);
    parz1 = ((2/3).*(an + z .* par1).^(1.5));
    parz = exp(parz1);
    f1n = airy(an + y * par1) .* airy(an + z * par1) .* pary .*parz ;
    f1d = par1 .* par1 .* airy(1,an) .* airy(1,an);
    f1 = f1n ./ f1d;
    index = find(f1<1e6);
%%%%%%%%%%%%
F = zeros(1,size(R,2));
for range = 1:size(R,2)
    x(range) = R(range)/r0;
    f2 = exp(0.5 .* (sqrt(3) +sqrt(-1)) .*an.*x(range) - pary1 -parz1);
    victor = f1(index) .* f2(index);
    fsum = sum(victor);
    F(range) = 2 .*sqrt(pi.*x(range)) .* fsum;
end

MATLAB Program “airyzo1.m” Listing
function [an] = airyzo1(nt)
%   This program is a modified version of a function obtained from 
%   free internet source www.mathworks.com/matlabcentral/fileexchange/
%   modified by B. Mahafza (bmahafza@dbresearch.net) in 2005
%       ==============================
%   Purpose: This program computes the first nt zeros of Airy
%   functions Ai(x)
%   Input :  nt    --- Total number of zeros
%   Output:  an ---    first nt roots for Ai(x)
format long
an = zeros(1,nt);
xb = zeros(1,nt);
ii = linspace(1,nt,nt);
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u = 3.0.*pi.*(4.0.*ii-1)./8.0;
u1 = 1./(u.*u);
rt0 = -(u.*u).^(1.0./3.0).*((((-15.5902.*u1+.929844).* ...
u1-.138889).*u1+.10416667).*u1+1.0);
rt = 1.0e100;
while(abs((rt-rt0)./rt)> 1.e-12);
x = rt0;
ai = airy(0,x);
ad = airy(1,x);
rt=rt0-ai./ad; 
if(abs((rt-rt0)./rt)> 1.e-12);
rt0 = rt;
end;
end;
an(ii)= rt;
end

MATLAB Program “Fig8_29.m” Listing
% Figure 8.28 or Figure 8.29
clc
clear all
close all
freq =167e6;
hr = 8000; 
ht = 1000;
R = linspace(400e3,600e3,200); % range in Km
nt =1500; % number of point used in calculating infinite series
F = diffraction(freq, hr, ht, R, nt);
figure(1)
plot(R/1000,10*log10(abs(F).^2),'k','linewidth',1)
grid 
xlabel('Range in Km')
ylabel('One way propagation factor in dB')
title('frequency = 167MHz; hr = 8000 m; ht = 1000m')

MATLAB Program “Fig8_30.m” Listing
% generates Fig. 8.30 of text
clc; clear all; close all
freq =428e6;
hr = 3000; 
ht = 200;
%%%%%%%%%%%%% input %%%%%%%%%%%%%%%%
ro = 6375e3; % earth radius
re = ro * 4 /3; % 4/3 earth radius
lambda = 3.0e8 / freq; % wavelength
Rd1 = linspace(75e3, 210.1e3, 800); % slant range 3 to 55 Km 500 points
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine whether the traget is beyond the radar's line of sight
range_to_horizon = sqrt(2*re) * (sqrt(ht) + sqrt(hr)); % range to horizon
index = find(Rd1 > range_to_horizon);
if isempty(index);
    Rd = Rd1;
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else
    Rd = Rd1(1:index(1)-1);
    fprintf('****** WARNING ****** \n')
    fprintf('Maximum range is beyond radar line of sight. \n')
    fprintf('Traget is in diffraction region \n')
    fprintf('****** WARNING ****** \n')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
val1 = Rd.^2 - (ht -hr).^2;
val2 = 4 .* (re + hr) .* (re + ht);
r = 2 .* re .* asin(sqrt(val1 ./ val2));
phi = r ./ re; 
p = sqrt(re .* (ht + hr) + (r.^2 ./4)) .* 2 ./ sqrt(3); 
exci = asin((2 .* re .* r .* (ht - hr) ./ p.^3)); 
r1 = (r ./ 2) - p .* sin(exci ./3);
phi1 = r1 ./ re; 
r2 = r - r1;
phi2 = r2 ./ re; 
R1 = sqrt( re.^2 + (re + hr).^2 - 2 .* re .* (re + hr) .* cos(phi1)); 
R2 = sqrt( re.^2 + (re + ht).^2 - 2 .* re .* (re + ht) .* cos(phi2)); 
psi = asin((2 .* re .* hr + hr^2 - R1.^2) ./ (2 .* re .* R1));
deltaR = R1 + R2 - Rd; 
%%%%%%%%%%%%% input surface roughness %%%%%%%%%%%%%%%%
hrms = 1; % 
psi = psi .* 180 ./ pi;
[Sr] = surf_rough(hrms, freq, psi);
%%%%%%%%%%%%% input divergence %%%%%%%%%%%%%%%%
[D] = divergence(r1, r2, ht, hr, psi);
%%%%%%%%%%%%% input smooth earth ref. coefficient %%%%%%%%%%%
epsp = 50;
epspp = 15;
[rh,rv] = ref_coef (psi, epsp, epspp);
D = 1;
 Sr =1;
gamav = abs(rv);
phv = angle(rv);
gamah = abs(rh);
phh = angle (rh);
 gamav =1;
 phv = pi;
Gamma_mod = gamav .* D .* Sr; 
Gamma_phase = phv; %
rho = Gamma_mod;
delta_phi = 2 .* pi .* deltaR  ./ lambda; 
alpha = delta_phi + phv;
F = sqrt( 1 + rho.^2 + 2 .* rho .* cos( alpha)); 
Ro = 185.2e3; % refrence range in Km
F_free = 40 .* log10(Ro ./ Rd);
F_dbr = 40 .* log10( F .* Ro ./ Rd);
F_db = 40 .* log10( eps + F );
 figure(2)
plot(Rd./1000, F_dbr,'r','linewidth',1)
grid
xlabel('\bfslant range in Km')
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ylabel('\bfPropagation factor in dB')
axis tight
title('\bffrequency = 428 MHz; ht = 3000 m; hr = 200 m')
 R = linspace(210.1e3,350e3,200); % range in Km
nt =1500; % number of point used in calculting infinite series
F = diffraction(freq, hr, ht,R,nt);
figure(3)
plot(R/1000,10*log10(abs(F).^2),'k','linewidth',1)
grid 
xlabel('\bfRange - Km')
ylabel('\bfOne way propagation factor - dB')
title('\bffrequency = 428 MHz; hr = 3000 m; ht = 2000 m')
figure(4)
plot(Rd./1000, F_dbr,'k','linewidth',1.)
hold on
plot(R/1000,10*log10(abs(F).^2),'k-.','linewidth',1.5)
grid on
hold off
axis tight
title('\bffrequency = 428 MHz; hr = 3000 m; ht = 2000 m')
legend('Intermediate region', 'Diffraction region')
ylabel('\bfPropagation factor in dB')
xlabel('\bfRange in Km')

MATLAB Function “atmo_absorp.m” Listing
function [gammaO2, gammaH2O] = atmo_absorp(height,Wvd, freq)
% This function computes the atmospheric attenuation as a function of
% target height for up to 12 Km
%% Inputs
    % height  == target height array in Km
    % Wvd     == water vapor density array in g/m^3
    % freq      == radar operating frequency in Hz
%% Outputs
    % gammaO2   == atmospheric attention due to oxygen in dB
    % gammaH2O  == atmospheric attention due to water vapor in dB
%format long
format short
ro = 6375;
v1 = 0.018; v2 = .05;
v3 = 0.1; v4 = 0.3;
lambda = 3e10/freq; % wavelength in cm
height = height ./1000;
T = 288 -6.7 .* height; % compute temperature array at different heights
pressure = 1015 .* (1-0.02275.*height).^5.2561;% compute air pressure array at different 
heights
% implement Eq. (8.115)
P = (v1 * 0.4909 .* pressure.^2) ./ (T.^(5/2)); 
Q = v1^2 * 2.904e-4 .* pressure.^2 ./ T;
gammaO2 = P .* (1./(1+Q.*lambda^2)) .* (1+ (1.39/lambda^2));
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% implement Eq. (8.117)
P = 1.852 * 3.165e-6 .* Wvd .*pressure.^2 ./ (T.^(3/2));
Q1 = (1 - 0.742 * lambda)^2;
Q2 = (1 + 0.742 * lambda)^2;
Q = 2.853e-6 .* pressure.^2 ./T;
gammaH2O = P .*((1./(Q1 + Q .*lambda^2)) + (1./(Q2 + Q .*lambda^2)) + 3.43/lambda^2);
end

MATLAB Program “Fig8_31.m” Listing
% this program reproduces Fig 8.31 of text book
clc
clear all
close all
format long
h_ft = [0 2500 5000 10000 20000 30000 40000 60000 80000];
height = 0.3048 .* h_ft ;
Wvd = [6.18 4.93 3.74 2.01 0.34 0.05 .009 eps eps];
freq = 300e6;
[gammaO21, gammaH2O1] = atmo_absorp(height,Wvd, freq);
gamma1 = gammaO21 + gammaH2O1;
freq = 500e6;
[gammaO22, gammaH2O2] = atmo_absorp(height,Wvd, freq);
gamma2 = gammaO22 + gammaH2O2;
freq = 1e9;
[gammaO23, gammaH2O3] = atmo_absorp(height,Wvd, freq);
gamma3 = gammaO23 + gammaH2O3;
freq = 5e9;
[gammaO24, gammaH2O4] = atmo_absorp(height,Wvd, freq);
gamma4 = gammaO24 + gammaH2O4;
freq = 10e9;
[gammaO25, gammaH2O5] = atmo_absorp(height,Wvd, freq);
gamma5 = gammaO25 + gammaH2O5;
figure
height = height ./1000;
subplot(1,2,1)
semilogy (height, gammaO25,'k',height, gammaO24,'k-.',height, gammaO23,'k:',height,...
    gammaO22,'k.',height, gammaO21,'k--','linewidth', 1.5)
grid
legend('\bf10GHz','5GHz','1GHz','500MHz','300MHz')
ylabel('\bfAtmospheric absorption due to Oxygen - dB')
xlabel('\bfAltitude - Km')
subplot(1,2,2)
semilogy (height, gamma5,'k',height, gamma4,'k-.',height, gamma3,'k:',height,...
    gamma2,'k.',height, gamma1,'k--','linewidth', 1.5)
grid
legend('\bf10GHz','5GHz','1GHz','500MHz','300MHz')
ylabel('\bfTotal atmospheric absorption - dB')
xlabel('\bfAltitude - Km')

MATLAB Function “absorption_range.m” Listing
function [gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta)
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% This function computes the atmospheric absorption as a function of
% target height and range
% % Inputs
    % height  == target height array in Km
    % Wvd     == water vapor density array in g/m^3
    % freq      == radar operating frequency in Hz
    % beta      == intial elevation angle in degrees
%% Outputs
    % gammaO2   == atmospheric absorption due to oxygen in dB
    % gammaH2O  == atmospheric absorption due to water vapor in dB
    % A_km      == atmospheric absorption versu range
%
format long
ro = 6375;
v1 = 0.018;
v2 = .05;
v3 = 0.1;
v4 = 0.3;
lambda = 3e10/freq; % wavelength in cm
height = height ./1000;
T = 288 -6.7 .* height; % compute temperature array at different heights
pressure = 1015 .* (1-0.02275.*height).^5.2561;% compute air pressure array at different heights
% implement Eq. (8.115)
P = (v1 * 0.4909 .* pressure.^2) ./ (T.^(5/2)); 
Q = v1^2 * 2.904e-4 .* pressure.^2 ./ T;
gammaO2 = P .* (1./(1+Q.*lambda^2)) .* (1+ (1.39/lambda^2));
% implement Eq. (8.117)
P = 1.852 * 3.165e-6 .* Wvd .*pressure.^2 ./ (T.^(3/2));
Q1 = (1 - 0.742 * lambda)^2;
Q2 = (1 + 0.742 * lambda)^2;
Q = 2.853e-6 .* pressure.^2 ./T;
gammaH2O = P .*((1./(Q1 + Q .*lambda^2)) + (1./(Q2 + Q .*lambda^2)) + 3.43/lambda^2);
% convert beta into radian 
beta = beta * pi /180.; 
% calcualte array of r0 plus target height
r = ro + height;
alpha =asin(cos(beta) * ro ./r);
theta = (pi/2) - beta - alpha;
% range = sqrt(ro^2 + r.^2 - 2 * cos(theta) * ro .* r);
range = r .* sin(theta) / cos(beta); 
end 

MATLAB Program “Fig8_33.m” Listing
% this program reproduces Figs 8.33 
clc
clear all
close all
format long
h_ft = [0 2500 5000 10000 20000 30000 40000 60000 80000];
height = 0.3048 .* h_ft ;
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Wvd = [6.18 4.93 3.74 2.01 0.34 0.05 .009 eps eps];
freq = 300e6;
beta = .0;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
Akm1 = gammaO2 + gammaH2O;
xx = 0:.1:range(end);
yy1 = spline(range,Akm1,xx);
freq = 1e9; 
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
Akm2 = gammaO2 + gammaH2O;
yy2 = spline(range,Akm2,xx);
figure
height = height ./1000;
subplot(1,2,1)
plot(xx,yy1,'k','linewidth',1)
grid
legend('300MHz')
ylabel('Atmospheric absorption per Km - dB')
xlabel('Radar down range - Km')
subplot(1,2,2)
plot(range,Akm2,'k','linewidth',1)
grid
legend('1GHz')
ylabel('Atmospheric absorption per Km - dB')
xlabel('Radar down range - Km')

MATLAB Function “atmospheric_attn.m” Listing
function [Attn,rangei] = atmospheric_attn(gammaO2,gammaH2O,range)
% this function usse Rieman sums to calculate area under the 
% total abosrption curve veruses range
sum = gammaO2 + gammaH2O;
delr = 10;
rangei = 0:delr:range(end);
Attn = zeros(1,size(rangei,2));
yy1 = spline(range,sum,rangei);
yint(1) = 0;
n = 2;
N = size(rangei,2);
while n<=N
    yint(n) = yint(n-1) + delr * (yy1(n-1) + yy1(n));
    n = n+1;
end
% use 1.75 instead of 2 for the 2-way because of inaccuracies of Riemann
% sums method
Attn = 1.75 .* yint;
end

MATLAB Program “Fig_34_35.m” Listing
 % this program reproduces Figs 8.34 and 8.35 of text book
clc
clear all
close all
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format long
h_ft = [0 2500 5000 10000 20000 30000 40000 60000 80000];
height = 0.3048 .* h_ft ;
Wvd = [6.18 4.93 3.74 2.01 0.34 0.05 .009 eps eps];
figure(1)
freq = 500e6;
beta = .0;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei1] = atmospheric_attn(gammaO2,gammaH2O,range);
M = size(Attn,2);
plot(rangei1,Attn,'K', 'linewidth',1.5)
hold on
beta = 0.5;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei] = atmospheric_attn(gammaO2,gammaH2O,range);
Attn (end:M) = Attn(end);
plot(rangei1,Attn,'k:','linewidth',1.5)
hold on
beta = 1.0;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei] = atmospheric_attn(gammaO2,gammaH2O,range);
Attn (end:M) = Attn(end);
plot(rangei1,Attn,'k-.', 'linewidth',1.5)
hold on
beta = 2;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei] = atmospheric_attn(gammaO2,gammaH2O,range);
Attn (end:M) = Attn(end);
plot(rangei1,Attn,'k--', 'linewidth',1.5)
hold on
beta = 5;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei] = atmospheric_attn(gammaO2,gammaH2O,range);
Attn (end:M) = Attn(end);
plot(rangei1,Attn,'k.', 'linewidth',1.5)
hold on
beta = 10;
[gammaO2, gammaH2O,range] = absorption_range(height,Wvd, freq,beta);
[Attn rangei] = atmospheric_attn(gammaO2,gammaH2O,range);
Attn (end:M) = Attn(end);
plot(rangei1,Attn,'k*')
hold off
legend('\beta=0.0','\beta=0.5','\beta=1.0','\beta=2.','\beta=5.0','\beta=10.0')
xlabel('Radar to target range - Km')
ylabel('2-way atmospheric attenuation - dB')
title('frequency = 3.0GHz')
axis tight
grid on 

MATLAB Program “Fig8_36.m” Listing
% geerates Fig 8.36 of text
clc
clear all
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close all
format long
alpha = 0.0002;
beta = 2.25;
freq = [1 10 20];
f = freq.^beta;
r = linspace(0,100,1000); % rai fall rate i mm/hr
Att1 = (alpha * f(1) .* r);
Att2 = (alpha * f(2) .* r);
Att3 = (alpha * f(3) .* r);
figure(1)
semilogy(r,Att3, 'k:',r,Att2,'k-.',r,Att1,'k','linewidth',1.5)
xlabel('\bf Rain rate mm/hr')
ylabel('\bfone-way rain attenuation dB/Km')
grid on
legend('freq = 10Ghz','freq = 5GHz','freq = 1GHz')

MATLAB Program “Fig8_37.m” Listing
% generates Fig 8.37 of text
clc
clear all
close all
format long
alpha = 0.00349;
beta = 0.00224;
freq = [1e9 5e9 10e9];
lambda = 3e10 ./ freq; % wavelength in cm;
r = linspace(0,1,1000); % rai fall rate i mm/hr
Att1 = (0.0035 .* r.^2 ./lambda(1)^4) + 0.0022 .* r ./ lambda(1);
Att2 = (0.0035 .* r.^2 ./lambda(2)^4) + 0.0022 .* r ./ lambda(2);
Att3 = (0.0035 .* r.^2 ./lambda(3)^4) + 0.0022 .* r ./ lambda(3);
figure(1)
semilogy(r,Att3, 'k:',r,Att2,'k-.',r,Att1,'k','linewidth',1.5)
xlabel('\bf Snow  rate <==> water equivalnet in mm/hr')
ylabel('\bfone-way attenuation due to snow fall dB/Km')
grid on
legend('freq = 10Ghz','freq = 5GHz','freq = 1GHz')
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Part III - Special Radar Considerations

Chapter 9

9.1. Clutter Definition
Clutter is a term used to describe any object that may generate unwanted radar returns that

may interfere with normal radar operations. Parasitic returns that enter the radar through the
antenna’s mainlobe are called mainlobe clutter; otherwise they are called sidelobe clutter. Clut-
ter can be classified into two main categories: surface clutter and airborne or volume clutter.
Surface clutter includes trees, vegetation, ground terrain, man-made structures, and sea surface
(sea clutter). Volume clutter normally has a large extent (size) and includes chaff, rain, birds,
and insects. Surface clutter changes from one area to another, while volume clutter may be
more predictable.

Clutter echoes are random and have thermal noise-like characteristics because the individual
clutter components (scatterers) have random phases and amplitudes. In many cases, the clutter
signal level is much higher than the receiver noise level. Thus, the radar’s ability to detect tar-
gets embedded in high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR. White noise normally introduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. Since clutter returns
are target-like echoes, the only way a radar can distinguish target returns from clutter echoes is
based on the target RCS , and the anticipated clutter RCS  (via clutter map). Clutter RCS
can be defined as the equivalent radar cross section attributed to reflections from a clutter area,

. The average clutter RCS is given by 

Eq. (9.1)

where  is the clutter scattering coefficient, a dimensionless quantity that is often
expressed in dB. Some radar engineers express  in terms of squared centimeters per squared
meter. In these cases,  is  higher than normal.

9.2. Surface Clutter
Surface clutter includes both land and sea clutter, and is often called area clutter. Area clutter

manifests itself in airborne radars in the look-down mode. It is also a major concern for
ground-based radars when searching for targets at low grazing angles. The grazing angle  is
the angle from the surface of the earth to the main axis of the illuminating beam, as illustrated
in Fig. 9.1.
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Three factors affect the amount of clutter in the radar beam. They are the grazing angle, sur-
face roughness, and the radar wavelength. Typically, the clutter scattering coefficient  is
larger for smaller wavelengths. Fig. 9.2 shows a sketch describing the dependency of  on
the grazing angle. Three regions are identified; they are the low grazing angle region, flat or
plateau region, and the high grazing angle region.

The low grazing angle region extends from zero to about the critical angle. The critical angle
is defined by Rayleigh as the angle below which a surface is considered to be smooth, and
above which a surface is considered to be rough; Denote the root mean square (rms) of a sur-
face height irregularity as , then according to the Rayleigh criteria, the surface is consid-
ered to be smooth if

. Eq. (9.2)

Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to surface height
irregularity (surface roughness), the “rough path” is longer than the “smooth path” by a dis-
tance . This path difference translates into a phase differential :

. Eq. (9.3)

The critical angle  is then computed when  (first null), thus

Eq. (9.4)
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or equivalently,

. Eq. (9.5)

In the case of sea clutter, for example, the rms surface height irregularity is

Eq. (9.6)

where  is the sea state, which is tabulated in several cited references. The sea state is
characterized by the wave height, period, length, particle velocity, and wind velocity. For
example,  refers to a moderate sea state, where in this case the wave height is
approximately between , the wave period 6.5 to 4.5 seconds, wave
length , wave velocity , and wind velocity

. 

Clutter at low grazing angles is often referred to as diffuse clutter, where there are a large
number of clutter returns in the radar beam (noncoherent reflections). In the flat region the
dependency of  on the grazing angle is minimal. Clutter in the high grazing angle region is
more specular (coherent reflections) and the diffuse clutter components disappear. In this
region the smooth surfaces have larger  than rough surfaces, the opposite of the low grazing
angle region.

9.2.1. Radar Equation for Area Clutter - Airborne Radar

Consider an airborne radar in the look-down mode shown in Fig. 9.4. The intersection of the
antenna beam with the ground defines an elliptically shaped footprint. The size of the footprint
is a function of the grazing angle and the antenna 3dB beamwidth , as illustrated in Fig.
9.5. The footprint is divided into many ground range bins each of size , where 
is the pulse width.

From Fig. 9.5, the clutter area  is 

. Eq. (9.7)

g

g

smooth
path

rough
path

smooth surface level

hrms

 Figure 9.3. Rough surface definition.

gc 4hrms
-------------asin=

hrms 0.025 0.046 Sstate
1.72+

Sstate

Sstate 3=
0.9144 to 1.2192 m

1.9812 to 33.528 m 20.372 to 25.928 Km hr
22.224 to 29.632 Km hr

0

0

3dB
c 2 gsec

Ac

Ac R 3dB
c
2
----- gsec



338                                                                                   Radar Systems Analysis and Design Using MATLAB®

The power received by the radar from a scatterer within  is given by the radar equation as

Eq. (9.8)

where, as usual,  is the peak transmitted power,  is the antenna gain,  is the wavelength,
and  is the target RCS. Similarly, the received power from clutter is

Eq. (9.9)

where the subscript  is used for area clutter. Substituting Eq. (9.1) for  and Eq. (9.7) for
 into Eq. (9.9), one can then obtain the SCR for area clutter by dividing Eq. (9.8) by Eq.

(9.9). More precisely,

g

Figure 9.4. Airborne radar in the look-down mode.
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. Eq. (9.10)

Example: 

Consider an airborne radar shown in Fig. 9.4. Let the antenna 3dB beamwidth be
, the pulse width , range , and grazing angle

. The target RCS is . Assume that the clutter reflection coefficient is

. Compute the SCR.

Solution: 

The SCR is given by Eq. (9.10) as

.

It follows that
.

Thus, for reliable detection, the radar must somehow increase its SCR by at least ,
where  is on the order of  or better.

9.3. Volume Clutter
Volume clutter has large extents and includes rain (weather), chaff, birds, and insects. The

volume clutter coefficient is normally expressed in square meters (RCS per resolution vol-
ume). Birds, insects, and other flying particles are often referred to as angle clutter or biologi-
cal clutter. 

Weather or rain clutter can be suppressed by treating the rain droplets as perfect small
spheres. We can use the Rayleigh approximation of a perfect sphere to estimate the rain drop-
lets’ RCS. The Rayleigh approximation, without regard to the propagation medium index of
refraction is

Eq. (9.11)

where , and  is radius of a rain droplet.

Electromagnetic waves, when reflected from a perfect sphere, become strongly co-polarized
(have the same polarization as the incident waves). Consequently, if the radar transmits, for
example, a right-hand-circular (RHC) polarized wave, then the received waves are left-hand-
circular (LHC) polarized because they are propagating in the opposite direction. Therefore, the
back-scattered energy from rain droplets retains the same wave rotation (polarization) as the
incident wave, but has a reversed direction of propagation. It follows that radars can suppress
rain clutter by co-polarizing the radar transmit and receive antennas. 

Denote  as RCS per unit resolution volume . It is computed as the sum of all individ-
ual scatterers RCS within the volume

SCR C
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Eq. (9.12)

where  is the total number of scatterers within the resolution volume. Thus, the total RCS of
a single resolution volume is 

. Eq. (9.13)

A resolution volume is shown in Fig. 9.6 and is approximated by

Eq. (9.14)

where  and  are, respectively, the antenna azimuth and elevation beamwidths in radians,
 is the pulse width in seconds,  is the speed of light, and  is range.

Consider a propagation medium with an index of refraction . The  rain droplet RCS
approximation in this medium is

 Eq. (9.15)

where 

Eq. (9.16)

and  is the  droplet diameter. For example, temperatures between  and  yield

. Eq. (9.17)

and for ice, Eq. (9.17) can be approximated by
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. Eq. (9.18)

Substituting Eq. (9.18) into Eq. (9.13) yields

Eq. (9.19)

where the weather clutter backscatter coefficient  is defined as 

. Eq. (9.20)

In general, a rain droplet diameter is given in millimeters and the radar resolution volume is
expressed in cubic meters; thus the units of  are often expressed in .

9.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a  target at range  as

 Eq. (9.21)

where all parameters in Eq. (9.21) have been defined earlier. The weather clutter power
received by the radar is

. Eq. (9.22)

It follows that

. Eq. (9.23)

The SCR for weather clutter is then computed by dividing Eq. (9.21) by Eq. (9.23). More
precisely, 

Eq. (9.24)

where the subscript  is used to denote volume clutter.

Example: 

A certain radar has target RCS , pulse width , antenna beamwidth
. Assume the detection range to be , and compute the

SCR if .

i 0.2
5

4
-----Di

6

w

5

4
-----K2Z=

Z

Z Di
6

i 1=

N

=

Z millimeter6 m3

t R

St
PtG

2 2
t

4 3R4
-----------------------=

Sw
PtG

2 2
w

4 3R4
-------------------------=

Sw
PtG

2 2

4 3R4
--------------------

8
---R2

a ec i

i 1=

N

=

SCR V
St

Sw
------

8 t

a ec R2
i

i 1=

N
----------------------------------------------= =

V

t 0.1m2= 0.2 s=
a e 0.02radians= = R 50Km=

i 1.6 10 8– m2 m3=



342                                                                                   Radar Systems Analysis and Design Using MATLAB®

Solution: 

From Eq. (9.24) we have

.

Substituting the proper values we get

.

9.4.  Surface Clutter RCS 

9.4.1. Single Pulse - Low PRF Case

In this case, the received power from clutter is calculated using Eq. (9.9). However, the clut-
ter RCS  is now computed differently. It is

Eq. (9.25)

where  is the main-beam clutter RCS and  is the sidelobe clutter RCS, as illustrated
in Fig. 9.7. 

In order to calculate the total clutter RCS given in Eq. (9.125), one must first compute the
corresponding clutter areas for both the main beam and the sidelobes. For this purpose, con-
sider the geometry shown in Fig. 9.8. The angles  represent the antenna 3dB azi-
muth and elevation beamwidths, respectively. The radar height (from the ground to the phase
center of the antenna) is denoted by , while the target height is denoted by . The radar
slant range is , and its ground projection is . The range resolution is  and its ground
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 Figure 9.7. Geometry for ground-based radar clutter
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projection is . The main beam clutter area is denoted by  and the sidelobe clutter
area is denoted by . 

From Fig. 9.8, the following relations can be derived

Eq. (9.26)

Eq. (9.27)

Eq. (9.28)

where  is the radar range resolution. The slant range ground projection is

. Eq. (9.29)
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It follows that the main beam and the sidelobe clutter areas are

Eq. (9.30)

. Eq. (9.31)

Assume a radar antenna beam  of the form

Eq. (9.32)

. Eq. (9.33)

Then the main-beam clutter RCS is 

Eq. (9.34)

and the sidelobe clutter RCS is

Eq. (9.35)

where the quantity  is the rms for the antenna sidelobe level.

Finally, in order to account for the variation of the clutter RCS versus range, one can calcu-
late the total clutter RCS as a function of range. It is given by

Eq. (9.36)

where  is the radar range to the horizon calculated as

Eq. (9.37)

where  is the Earth’s radius equal to . The denominator in Eq. (9.36) is put in that
format in order to account for refraction and for round (spherical) Earth effects. The radar SNR
due to a target at range  is 

Eq. (9.38)

where, as usual,  is the peak transmitted power,  is the antenna gain,  is the wavelength,
 is the target RCS,  is Boltzmann’s constant,  is the effective noise temperature,  is

the radar operating bandwidth,  is the receiver noise figure, and  is the total radar losses.
Similarly, the Clutter-to-Noise Ratio (CNR) at the radar is

Eq. (9.39)
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where the  is calculated using Eq. (9.36).

When the clutter statistic is Gaussian, the clutter signal return and the noise return can be
combined, and a new value for determining the radar measurement accuracy is derived from
the Signal-to-Clutter+Noise Ratio, denoted by SIR. It is given by

. Eq. (9.40)

Note that the  is computed from Eq. (9.439).

MATLAB Function “clutter_rcs.m”

The function “clutter_rcs.m” implements Eq. (9.36). It generates plots of the clutter RCS
and the CNR versus the radar range. Its outputs include the clutter RCS in dBsm and the CNR
in dB. The function “clutter_rcs.m” is listed in Appendix 9-A, and its syntax is as follows:

sigmac = clutter_rcs(sigma0,thetaE,thetaA,SL,range,hr,ht,b,ant_id)

where

As an example consider the case with the following parameters

Symbol Description Units Status

sigma0 clutter back scatterer coefficient dB input

thetaE antenna 3dB elevation beamwidth degrees input

thetaA antenna 3dB azimuth beamwidth degrees input

SL antenna sidelobe level dB input

range range; can be a vector or a single value Km input

hr radar height meters input

ht target height meters input

b bandwidth Hz input

ant_id 1 for (sin(x)/x)^2 pattern; 2 for Gaussian pattern none input

sigmac clutter RCS; vector or single value depending on 
“range”

dB output

clutter back scatterer coefficient -20 dB

antenna 3dB elevation beamwidth 1.5 degrees

antenna 3dB azimuth beamwidth 2 degrees

antenna sidelobe level -25 dB

radar height 3 meters

target height 150 meters

pulse width 1 micro sec

range 2 - 45Km

target RCS -10 dBsm

radar center frequency 5 GHz

c

SIR SNR
1 CNR+
---------------------=

CNR
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Figure 9.9a shows the clutter RCS versus range when a sin(x)/x antenna pattern is used, and
Fig. 9.9b shows the resulting SNR, CNR, and SCR. Figure 9.10 is similar to Fig. 9.9, except in
this case the antenna has a Gaussian shape. These plots can be reproduced using the MATLAB
program “Fig9_9_10.m,” listed in Appendix 9-A. 

 Figure 9.9a. Clutter RCS versus range with sin(x)/x antenna pattern. Single 
pulse case.

 Figure 9.9b. SNR, CNR, and SCR corresponding to Fig. 9.9a. 
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 Figure 9.10a. Clutter RCS versus range with Gaussian antenna pattern. 
Single pulse case.

 Figure 9.10b. SNR, CNR, and SCR corresponding to Fig. 9.10a. 
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9.4.2. High PRF Case 

High PRFs are typically used by pulsed Doppler radars. Pulsed Doppler radars use a very
short unmodulated train of pulses, and hence, range resolution is limited by the pulse width,
which forces the radar to use extremely short duration pulses. High PRF radars make up for the
loss of average transmitted power due to using short pulses by coherently processing a train of
these pulses within one coherent processing interval (integration time or dwell interval).
Although high PRF radars are ambiguous in range, they provide excellent capability to mea-
suring Doppler frequency. Range ambiguity can be dealt with by using multiple PRF (PRF
staggering), which will be addressed in a later section. One major drawback of using high
PRFs (or pulsed Doppler radars) is the fact that pulsed Doppler radars have to contend with
much more clutter than do low PRF radars. 

Consider Fig. 9.11; the low PRF case is shown in Fig. 9.11a. In this case, the target is at max-
imum detection range, which corresponds to an unambiguous range 

Eq. (9.41)Ru
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 Figure 9.11. Main-beam clutter entering radar. (a) Low PRF case; (b) high PRF 
case.
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where  is the pulse repetition interval and  is the radar PRF. The amount of clutter entering
the radar through its main-beam corresponds only to the clutter patch located at the target’s
range. Alternatively, in Fig. 9.11b the high PRF case is depicted. In this case, the radar is range
ambiguous and the amount of main-beam clutter entering the radar corresponds to many more
clutter patches, as shown in Fig. 9.11b. Consequently, the amount of clutter competing with
target detection is an order of magnitude larger than the case of low PRF. This is typically
referred to as clutter folding.

Denote the clutter power entering the radar due to a single pulse for the target at range  as
, then because of the high PRF operation, the total clutter power entering the radar is

Eq. (9.42)

where  is the number of pulses in one coherent processing interval (dwell),  is the PRI, and
 is the pulse width. Note that since the radar receiver is shut off during transmission of a

given pulse, Eq. (9.42) is computed only at delays (range) that correspond to 

Eq. (9.43)

where in this case, the transmitter is assumed to be shut off not only during the transmission of
each pulse, but also for one pulse width before and after each transmission. Thus, one would
expect the folded clutter RCS to not be continuous versus the range, but rather to exist over
intervals of length  seconds with gaps that correspond to three times the pulse width. This is
illustrated in the following few examples for both low and high PRF cases. 

Figure 9.12 shows the SIR, SCR,CNR, and SNR for the high PRF using the same data used
in Figs. 9.9 and 9.10. In this figure the antenna pattern has a sin(x)/x shape. Figure 9.13 is sim-
ilar to Fig. 9.12, except in this case the antenna pattern is Gaussian. These plots can be repro-
duced using MATLAB program “Fig9_12_13.m,” listed in Appendix 9-A.

9.5. Clutter Components
It was established earlier that the complex envelope of the signal received by the radar com-

prise the target returns and additive band-limited white noise. In the presence of clutter, the
complex envelope is now composed of target, noise, and clutter returns. That is,

Eq. (9.44)

where , , and  are, respectively, the target, noise, and clutter complex envelope
echoes. Noise is typically modeled (as discussed in earlier chapters) as a bandlimited white
Gaussian random process. Furthermore, noise samples are considered statistically independent
of each other and of clutter measurements. 

Clutter arises from reflections of unwanted objects within the radar beam. Since many
objects comprise the clutter returns, clutter may also be molded as a Gaussian random process.
In other words, clutter samples from one radar measurement to another constitute a joint set of
Gaussian random variables. However, because of the clutter fluctuation and due to antenna
mechanical scanning, wind speed, and radar platform motion (if applicable), these random
variables are not statistically independent. 
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 Figure 9.12. SIR, SCR, CNR, and SNR for a pulse Doppler radar with 
sin(x)/x antenna pattern. 

 Figure 9.13. SIR, SCR, CNR, and SNR for a pulse Doppler radar with 
Gaussian antenna pattern. 
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More precisely, because of the antenna mechanical scanning, clutter returns in the radar
main-beam do not have the same amplitude from pulse to pulse. This will effectively add
amplitude modulation to the clutter returns. This additional modulation is governed by the
shape of the antenna pattern, the rate of mechanical scanning, and the radar PRF. Denote the
antenna two-way azimuth  beamwidth as  and the antenna scan rate as . It follows
that the contribution of antenna scanning to the standard deviation of the clutter fluctuation is 

. Eq. (9.45)

 Another contributor to the clutter spectral spreading is caused by motion of the clutter itself,
due to wind. Trees, vegetation, and sea waves are the main contributors to this effect. This rel-
ative motion, although relatively small, introduces additional Doppler shift in the clutter
returns. Earlier, it was established that Doppler frequency due to a relative velocity  is given
by 

Eq. (9.46)

where  is the radar operating wavelength. It follows that if the apparent rms velocity due to
wind is , then the standard deviation is

. Eq. (9.47)

Finally, if the radar platform is in motion, then the relative motion between the platform and
the stationary clutter will cause a Doppler shift given by

Eq. (9.48)

where  is the radial velocity component of the platform in the direction of clutter.
Since the radar beam has a finite width, not all clutter components have the same radial veloc-
ity at all times. More specifically, if the angles  and  represent the edges of the radar
beam, then Eq. (9.48) can be written as

 Eq. (9.49)

and the standard deviation due to platform motion is given by

. Eq. (9.50)

Finally, the overall clutter spreading is denoted by , where

. Eq. (9.51)

9.6. Clutter Backscatter Coefficient Statistical Models
Assessing radar performance in the presence of clutter depends heavily on one’s ability to

accurately estimate or measure the backscatter coefficient . Since clutter within a resolution
or volume cell is composed of a large number of scatterers with random phases and ampli-
tudes, the backscatter coefficient is typically described statistically by a probability distribution
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function. The type of distribution depends on the nature of clutter itself (sea, land, volume), the
radar operating frequency, and the grazing angle. 

9.6.1. Surface Clutter Case

The most common statistical model used to describe  for surface clutter is the log-normal
and exponential (i.e., Rayleigh amplitude) probability density functions. Although the log-nor-
mal distribution will provide an accurate measure of  at large grazing angles, it is not as
accurate at low grazing angles less than 5-7 degrees. In this case, the Rayleigh distribution
(which is a special case of the Weibull distribution) provides more accurate statistical estimates
of . Another probability density function widely used to estimate  is the Weibull distri-
bution.

The Weibull probability density function can be written as

Eq. (9.52)

where  are the Weibull distribution parameters. Define the Weibull distribution slope a as
1/b, and the parameter  as

 Eq. (9.53)

where  is the median value for . The proof of Eq. (9.53) is left as an exercise (see Prob-
lem 9.6) It follows that Eq. (9.52) can be written as

. Eq. (9.54)

Note that when b=1, then Eq. (9.52) becomes the exponential (or Rayleigh amplitude) proba-
bility density function,

Eq. (9.55)

where  is the average value for .

The mean value for  can be determined from the integral

Eq. (9.56)

by making the change of variable , and by using  yields

, Eq. (9.57)

which is the incomplete Gamma integral. More precisely,
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. Eq. (9.58)

The probability that an actual clutter radar cross section per unit area will not exceed the
value  is

. Eq. (9.59)

Substituting Eq. (9.52) into Eq. (9.59) and performing the integration yields:

Eq. (9.60)

Eq. (9.60) can now be used to solve for , that is

. Eq. (9.61)

The median value for  is compute be setting  in Eq. (9.61). In this case,

. Eq. (9.62)

Using Eqs. (9.53) and (9.62) into Eq. (9.60) yields

. Eq. (9.63)

To obtain a simpler formula for  in decibels, substitute Eq. (9.53) into Eq. (9.61) to get

, Eq. (9.64)

which can be rewritten as

. Eq. (9.65)

Figure 9.14 shows some typical plots for  against the probability defined in Eq. (9.60).
Note that only values where  are used because values of  corre-
sponding to very low probabilities are typically below the radar’s noise level. Alternatively,
values for  corresponding to high probabilities are typically too high for an MTI radar to
suppress (the next chapter addresses MTI radars in details). Figure 9.14 can be reproduced
using MATLAB program “Fig9_14.m,” listed in Appendix 9-A. 

9.6.2. Volume Clutter Case

The backscatter coefficient, , defined in Eq. (9.20) of Section 9.3, is often used by meteo-
rologists and less often by radar engineers. In radar applications, it is more meaningful to use a
precipitation backscatter coefficient that is measured in squared meters per cubic meter instead
of . For this purpose, define a new precipitation backscatter coefficient  as
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      Eq. (9.66)

where  is the rate of precipitation in  and  is the radar operating wavelength
in meters. 

The value of the exponent in Eq. (9.66) varies from 0.95 at tropical latitudes and frequencies
above 10GHz to about 1.6, which is more applicable to temperate latitudes. Additionally, radar
waves using circular polarization and wavelengths comparable to the rain droplets’ average
diameter will result in less backscattering than is the case for linearly polarized waves. To
explain this observation further, consider a right circular polarized radar whose wavelength is
comparable to the average rain droplet diameter. The reflected waves from the rain droplets
will also be right circularly polarized waves but traveling in the opposite direction (i.e., from
the point view of the radar they will be left circularly polarized). Therefore, most of the
reflected energy will be denied entry into the radar receiver by its antenna, resulting in less
backscatter energy in the radar signal and data processors. The average ratio of a circularly
polarized to a linearly polarized backscatter coefficient is 

 Figure 9.14. ground clutter spatial distribution for cultivated land, i.e., Eq. (9.64). 
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Eq. (9.67)

where bright land is defined as the transitional region between ice or snow and water resulting
from melting. 

Problems
9.1. Compute the signal-to-clutter ratio (SCR) for the radar described in Section 9.2.1. In
this case, assume antenna 3dB beam width , pulse width , range

, grazing angle , target RCS , and clutter reflection coeffi-

cient .

9.2. Repeat the example of Section 9.3 for target RCS , pulse width

, antenna beam width ; the detection range is

, and .

9.3. The quadrature components of the clutter power spectrum are, respectively, given by

.

Compute the D.C. and A.C. power of the clutter. Let .

9.4. A certain radar has the following specifications: pulse width , antenna beam
width , and wavelength . The radar antenna is  high. A certain target
is simulated by two point targets (scatterers). The first scatterer is  high and has RCS

. The second scatterer is  high and has RCS . If the target is

detected at , compute (a) the SCR when both scatterers are observed by the radar; (b)
the SCR when only the first scatterer is observed by the radar. Assume a reflection coefficient

of , and .
9.5. A certain radar has range resolution of  and is observing a target somewhere in a

line of high towers each having RCS . If the target has RCS , (a)
how much signal-to-clutter ratio should the radar have? (b) Repeat part (a) for range resolution
of .
9.6. Prove that the Weibull distribution  is given by  where  is the median
value for .
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Appendix 9-A: Chapter 9 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “clutter_rcs.m” Listing
function [sigmaC] = clutter_rcs(sigma0, thetaE, thetaA, SL, range, hr, ht, b,ant_id)
% This unction calculates the clutter RCS and the CNR for a ground based radar.
%% Inputs
    % sigma0   == clutter back scatterer coefficient   dB
    % thetaE  == antenna 3dB elevation beamwidth  degrees
    % thetaA  == antenna 3dB azimuth beamwidth    degrees
    % SL          == antenna sidelobe level  dB
    % range     == range; can be a vector or a single value Km
    % hr           == radar height meters
    % ht           == target height    meters
    % b            == bandwidth    Hz
    % ant_id    == 1 for (sin(x)/x)^2 pattern; 2 for Gaussian pattern   
%% Outputs
    % sigmac  == clutter RCS; vector or single value depending on “range” dB
%
thetaA = thetaA * pi /180; % antenna azimuth beamwidth in radians
thetaE = thetaE * pi /180.; % antenna elevation beamwidth in radians
re = 6371000; % earth radius in meter
rh = sqrt(8.0*hr*re/3.); % range to horizon in meters
SLv = 10.0^(SL/10); % radar rms sidelobes in volts
sigma0v = 10.0^(sigma0/10); % clutter backscatter coefficient 
deltar = 3e8 / 2 / b; % range resolution for unmodulated pulse
range_m = 1000 .* range;  % range in meters
thetar = asin(hr ./ range_m);
thetae = asin((ht-hr) ./ range_m);
propag_atten = 1. + ((range_m ./ rh).^4); % propagation attenuation due to round earth
Rg = range_m .* cos(thetar);
deltaRg = deltar .* cos(thetar);
theta_sum = thetae + thetar;
% use sinc^2 antenna pattern when ant_id=1
% use Gaussian antenna pattern when ant_id=2
if(ant_id ==1) % use sinc^2 antenna pattern
    ant_arg = (theta_sum ) ./ (pi*thetaE);
    gain = (sinc(ant_arg)).^2;
else
    gain = exp(-2.776 .*(theta_sum./thetaE).^2);
end
% compute sigmac
sigmac = (sigma0v .* Rg .* deltaRg) .* (pi * SLv * SLv + thetaA .* gain.^2) ./ propag_atten;
sigmaC = 10*log10(sigmac);
figure
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plot(range, sigmaC,'linewidth',1.5)
grid
xlabel('\bfSlant Range in Km')
ylabel('\bfClutter RCS in dBsm')

MATLAB Program “Fig9_9_10.m” Listing
% Use this code to generate Fig. 9.9 or Fig 9.10 of text
clc
clear all
close all
k = 1.38e-23; % Boltzman’s constant
pt = 45e3;
theta_AZ = 1.5;
theta_EL = 2;
F = 6;
L = 10;
tau = 1e-6;
B = 1/tau;
sigmmat = -10;
sigmma0 = -20;
SL = -25;
hr = 3;
ht = 150;
f0 = 5e9;
lambda = 3e8/f0;
range = linspace(2,45, 120);
[sigmmaC] = clutter_rcs(sigmma0, theta_EL, theta_AZ, SL, range, hr, ht, B,1);
sigmmaC = 10.^(sigmmaC./10);
range_m = 1000 .* range;
F = 10.^(F/10); % noise figure is 6 dB
T0 = 290; % noise temperature 290K
g = 26000 /theta_AZ /theta_EL; % antenna gain
Lt = 10.^(L/10); % total radar losses 13 dB
sigmmat = 10^(sigmmat/10)
CNR = pt*g*g*lambda^2 .* sigmmaC ./ ((4*pi)^3 .* (range_m).^4 .* k*T0*F*Lt*B); % CNR
SNR = pt*g*g*lambda^2 .* sigmmat ./ ((4*pi)^3 .* (range_m).^4 .* k*T0*F*L*B); % SNR
SCR = SNR ./ CNR; % Signal to clutter ratio
SIR = SNR ./ (1+CNR); % Signal to interference ratio
figure(2)
subplot(3,1,1)  
plot(range,10*log10(SNR),'linewidth',1.5);
ylabel('\bfSNR in dB'); 
grid on;
axis tight
subplot(3,1,2) 
plot(range,10*log10(CNR),'linewidth',1.5);
ylabel('\bfCNR in dB');
grid on;
axis tight
subplot(3,1,3)
plot(range,10*log10(SCR),'linewidth',1.5);
ylabel('\bfSCR in dB') ;
grid on;
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axis tight
xlabel('\bfRange in Km')

MATLAB Program “Fig9_12_13.m” Listing
% Use this code to generate Fig. 9.12 or 9. 13 of text
clear all
close all
k = 1.38e-23; % Boltzmann's constant
T0 = 290; % degrees Kelvin
ant_id = 2; % use 1 for sin(x)/x antenna pattern and use 2 for Gaussian pattern
theta_ref = 0.75; % reference angle of radar antenna in degrees
re = 6371000 * 4 /3; %4 3rd earth radius in Km
c = 3e8; % speed of light
theta_EL = 1.5; % Antenna elevation beamwidth in degrees
theta_AZ = 2; % Antenna azimuth beamwidth in degrees
SL_dB = -25; % Antenna RMS sidelobe level
hr = 3; % Radar antenna hieght in meters
ht = 150; % Target hieght in meters
Sigmmat = -10; % Target RCS in dB
Sigmma0 = -20; % Clutter backscatter coefficient
P = 45e3; % Radar peak power in Watts
tau = 1e-6; % Pulse width (unmodulated)
fr = 50e3; % PRF in Hz
f0 = 5e9; % Radar center frequency
F = 6; % Noise figure in dB
L = 10; % Radar losses in dB
lambda = c /f0; 
SL = 10^(SL_dB/10);
sigmma0 = 10^(Sigmma0/10);
F = 10^(F/10);
L = L^(L/10);
sigmmat = 10^(Sigmmat/10);
T = 1/fr; % PRI
B = 1/tau; % Bandwidth
delr = c * tau /2; % Range resolution;
Rh = sqrt(2*re*hr); % Range to Horizon
R1 = [2*delr:delr:c/2*(T-tau)]; 
Rclut = sqrt(R1.^2 + hr^2); % Range to clutter patches
G = 26000 /theta_EL /theta_AZ; %Antenna gain
for j = 0:40
    Rtgt = [c/2*(j*T+2*tau):delr:c/2*((j+1)*T-tau)];
    thetaR = asin(hr./Rclut); % Elevation angle from radar to clutter patch where traget is present
    thetae = theta_ref *pi/180;
    d = Rclut .* cos(thetaR); % Ground range to center of clutter at range Rclut
    del_d = delr .* cos(thetaR);
    % claculte clutter RCS
    theta_sum = thetaR+thetae;
    if(ant_id ==1) % use sinc^2 antenna pattern
        ant_arg = ( theta_sum ) ./ (pi*theta_EL/180);
        gain = (sinc(ant_arg)).^2;
    else
        gain = exp(-2.776 .*(theta_sum./(pi*theta_EL/180)).^2);
    end
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    % clutter RCS
    sigmmac = (pi*SL^2+(theta_AZ*pi/180).*gain.*sigmma0.*d.*del_d) ./ (1+(Rclut/Rh).^4);
    CNR = P*G*G*lambda^2 .* sigmmac ./ ((4*pi)^3 .* Rclut.^4 .* k*T0*F*L*B); % CNR
    SNR = P*G*G*lambda^2 .* sigmmat ./ ((4*pi)^3 .* Rtgt.^4 .* k*T0*F*L*B); % SNR
    SCR = SNR ./ CNR; % Signal to clutter ratio
    SIR = SNR ./ (1+CNR); % Signal to interfernce ratio
    figure(2)
    subplot(4,1,1), hold on
    plot(Rtgt/1000,10*log10(SNR),'linewidth',1.5);
    ylabel('\bfSNR in dB'); 
grid on
    subplot(4,1,2), hold on
    plot(Rtgt/1000,10*log10(CNR),'linewidth',1.5);
    ylabel('\bfCNR in dB');
grid on
    subplot(4,1,3), hold on
    plot(Rtgt/1000,10*log10(SCR),'linewidth',1.5);
    ylabel('\bfSCR in dB') ;
grid on
    subplot(4,1,4), hold on
    plot(Rtgt/1000,10*log10(SIR),'linewidth',1.5);
    xlabel('\bfRange in Km')
    ylabel('\bfSIR in dB');
grid on
  end
subplot(4,1,1)
axis([0 50 -10 100])
subplot(4,1,2)
axis([0 50 60 110]);
subplot(4,1,3)
axis([0 50 -110 0])
subplot(4,1,4)
axis([0 50 -110 0])

MATLAB Program “Fig9_14.m” Listing
% reproduce Fig 9.14 of text
clc
clear all
close all
P = linspace(.001,.999,10000);
sigmam = -47.75;
a =3.3
sigmao = sigmam + 1.5917 * a + 10 * a .* log10(-log((1-P)));
figure
index = find (P >=.2 & P <=.9);
plot(sigmao(index),P(index),'k','linewidth',1.5)
hold on
sigmam = -38.;
a =1.75
sigmao = sigmam + 1.5917 * a + 10 * a .* log10(-log((1-P)));
index = find (P >=.20 & P <=.9);
plot(sigmao(index),P(index),'k:','linewidth',1.5)
sigmam = -29.8;
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a =1.1
sigmao = sigmam + 1.6917 * a + 10 * a .* log10(-log((1-P)));
index = find (P >=.2 & P <=.9);
plot(sigmao(index),P(index),'k-.','linewidth',1.5);
hold off
axis([-75 0 0 1])
legend('a=3.3','a=1.75','a=1.1')
xlabel('\bf\sigma^o - Backscatter coefficient - dB') 
ylabel('\bf Probability of clutter density is less than \sigma^o')
grid on
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Part III - Special Radar Considerations

Chapter 10

10.1. Clutter Power Spectrum Density
Clutter primarily comprises unwanted stationary ground reflections with limited relative

motion with respect to the radar. Therefore, its power spectrum density will be concentrated
around . However, because the overall clutter spreading  (derived in Chapter 9 and
repeated here as Eq. (10.1) for convenience) is not always zero, clutter actually exhibits some
Doppler frequency spread. The overall clutter spreading is denoted by , and is given by

. Eq. (10.1)

 accounts for clutter spread due to platform motion,  accounts for the antenna scan rate,
and  accounts for the clutter spread due to wind. 

The clutter power spectrum can be written as the sum of fixed (stationary) and random (due
to frequency spreading) components, as

Eq. (10.2)

where  is the PRI (i.e., ,  is the PRF),  is the clutter power or clutter mean square
value, and  is the clutter spectral spreading parameter as defined in Eq. (10.1). As clearly
indicated by Eq. (10.2), the clutter PSD is periodic with period equal to . Furthermore, the
clutter PSD extends about each multiple integer of the PRF. It must be noted that this spread is
relatively small and thus the relation  is always true. This is illustrated in Fig. 10.1. The
mean square value can be calculated from

. Eq. (10.3)

Let  denote the central portion of Eq. (10.2) (i.e., ); then  is be expressed by

Eq. (10.4)
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where  is a Gaussian shape function given by

Eq. (10.5)

and . 

10.2.  Concept of a Moving Target Indicator (MTI)
The clutter spectrum is concentrated around DC ( ) and multiple integers of the radar

PRF , as was illustrated in Fig. 10.1. In CW radars, clutter is avoided or suppressed by ignor-
ing the receiver output around DC, since most of the clutter power is concentrated about the
zero frequency band. Pulsed radar systems may utilize special filters that can distinguish
between slow-moving or stationary targets and fast-moving ones. This class of filter is known
as the Moving Target Indicator (MTI). In simple words, the purpose of an MTI filter is to sup-
press target-like returns produced by clutter and allow returns from moving targets to pass
through with little or no degradation. In order to effectively suppress clutter returns, an MTI
filter needs to have a deep stopband at DC and at integer multiples of the PRF. Figure 10.2b
shows a typical sketch of an MTI filter response, while Fig. 10.2c shows its output when the
PSD shown in Fig. 10.2a is the input. 

MTI filters can be implemented using delay line cancelers. As we will show later in this
chapter, the frequency response of this class of MTI filter is periodic, with nulls at integer mul-
tiples of the PRF. Thus, targets with Doppler frequencies equal to  are severely attenuated.
Since Doppler is proportional to target velocity ( ), target speeds that produce Dop-
pler frequencies equal to integer multiples of  are known as blind speeds. More precisely,

. Eq. (10.6)

Radar systems can minimize the occurrence of blind speeds either by employing multiple
PRF schemes (PRF staggering) or by using high PRFs in which the radar may become range
ambiguous. The main difference between PRF staggering and PRF agility is that the pulse rep-
etition interval (within an integration interval) can be changed between consecutive pulses for
the case of PRF staggering.
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10.2.1. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 10.3. The canceler’s
impulse response is denoted as . The output  is equal to the convolution between the
impulse response  and the input . The single delay canceler is often called a two-pulse
canceler since it requires two distinct input pulses before an output can be read.

The delay  is equal to the radar PRI ( ). The output signal  is 

. Eq. (10.7)

The impulse response of the canceler is given by 

Eq. (10.8)

where  is the delta function. It follows that the Fourier transform (FT) of  is 

Eq. (10.9)

where . In the z-domain, the single delay line canceler response is 

. Eq. (10.10)

noise level

frequencytarget
return

frf 0=fr–

clutter returns

MTI filter
response

frequencyfrf 0=fr–

input to 
MTI filter

MTI filter
output

frequencyfrf 0=fr–

                
                   

(a)    

(c)    

(b)    

 Figure 10.2. (a) Typical radar return PSD when clutter and target are present. 
(b) MTI filter frequency response. (c) Output from an MTI filter.
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The power gain for the single delay line canceler is given by

. Eq. (10.11)

It follows that

Eq. (10.12)

and using the trigonometric identity  yields

. Eq. (10.13)

MATLAB Function “single_canceler.m”

The function “single_canceler.m” computes and plots (as a function of ) the amplitude
response for a single delay line canceler. The syntax is as follows:

[resp] = single_canceler (fofr)

where “fofr” is the number of periods desired. It is Listed in Appendix 10-A.

The amplitude frequency response for a single delay line canceller is shown in Fig. 10.4.
Clearly, the frequency response of a single canceler is periodic with a period equal to . The
peaks occur at , and the nulls are at , where . In most radar
applications the response of a single canceler is not acceptable since it does not have a wide
notch in the stopband. A double delay line canceler has better response in both the stop- and
passbands, and thus it is more frequently used than a single canceler. In this book, we will use
the names single delay line canceler and single canceler interchangeably.

10.2.2. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig. 10.5. Double can-
celers are often called three-pulse cancelers since they require three distinct input pulses before
an output can be read. The double line canceler impulse response is given by

. Eq. (10.14)

Again, the names double delay line canceler and double canceler will be used interchangeably.
The power gain for the double delay line canceler is

-
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 Figure 10.4. Single canceler frequency response.
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Eq. (10.15)

where  is the single line canceler power gain given in Eq. (10.13). It follows that

. Eq. (10.16)

And in the z-domain, we have 

. Eq. (10.17)

MATLAB Function “double_canceler.m”

The function “double_canceler.m” computes and plots (as a function of ) the amplitude
response for a double delay line canceler. The syntax is as follows:

[resp] = double_canceler (fofr)

where “fofr” is the number of periods desired. Figure 10.6 shows typical output from this 
function. Note that the double canceler has a better response than the single canceler (deeper 
notch and flatter passband response). This function is listed in Appendix 10-A.
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 Figure 10.6. Normalized frequency responses for single and double cancelers.
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10.2.3. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The advantage of a
recursive filter is that through a feedback loop, we will be able to shape the frequency response
of the filter. As an example, consider the single canceler shown in Fig. 10.7. From the figure
we can write

Eq. (10.18)

Eq. (10.19)

. Eq. (10.20)

Applying the z-transform to the above three equations yields

Eq. (10.21)

Eq. (10.22)

. Eq. (10.23)

Solving for the transfer function  yields

. Eq. (10.24)

The modulus square of  is then equal to 

. Eq. (10.25)

Using the transformation  yields 

. Eq. (10.26)

Thus, Eq. (10.24) can now be rewritten as 

. Eq. (10.27)
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Note that when , Eq. (10.27) collapses to Eq. (10.11) (single line canceler). Figure 10.8
shows a plot of Eq. (10.27) for . Clearly, by changing the gain factor ,
one can control the filter response. This plot can be reproduced using the MATLAB program
“Fig10_8.m,” listed in Appendix 10-A. 

In order to avoid oscillation due to the positive feedback, the value of  should be less than
unity. The value  is normally equal to the number of pulses received from the target.
For example,  corresponds to ten pulses, while  corresponds to about fifty
pulses.

10.3. PRF Staggering
Target velocities that correspond to multiple integers of the PRF are referred to as blind

speeds. This terminology is used since an MTI filter response is equal to zero at these values.
Blind speeds can pose serious limitations on the performance of MTI radars and their ability to
perform adequate target detection. Using PRF agility by changing the pulse repetition interval
between consecutive pulses can extend the first blind speed to more tolerable values. In order
to show how PRF staggering can alleviate the problem of blind speeds, let us first assume that
two radars with distinct PRFs are utilized for detection. Since blind speeds are proportional to
the PRF, the blind speeds of the two radars would be different. However, using two radars to
alleviate the problem of blind speeds is a very costly option. A more practical solution is to use
a single radar with two or more different PRFs. 

For example, consider a radar system with two interpulse periods  and , such that

Eq. (10.28)
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 Figure 10.8. Frequency response corresponding to Eq. (10.27). 
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where  and  are integers. The first true blind speed occurs when

 . Eq. (10.29)

This is illustrated in Fig. 10.9 for  and . This figure can be reproduced using
the MATLAB program “Fig10_9.m,” listed in Appendix 10-A.
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 Figure 10.9. Frequency responses of a single canceler. Top plot corresponds to T1, 
middle plot corresponds to T2, bottom plot corresponds to stagger ratio T1/T2 = 4/3. 
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The ratio 

Eq. (10.30)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the first true blind
speed farther out. However, the dip in the vicinity of  becomes deeper. In general, if there
are  PRFs related by

. Eq. (10.31)

and if the first blind speed to occur for any of the individual PRFs is , then the first true
blind speed for the staggered waveform is

. Eq. (10.32)

To better determine the frequency response of an MTI filter with staggered PRFs, consider a
three-pulse canceler with two PRFs, or equivalently two PRIs,  and . In this case, the
impulse response will be given by

Eq. (10.33)

which can be written as

. Eq. (10.34)

Note that PRF staggering requires a minimum of two PRFs. 

Make the change of variables  in Eq. (10.34), and it follows that

. Eq. (10.35)

The Z-transform of the impulse response in Eq. (10.35) is then given by

Eq. (10.36)

and the amplitude frequency response for the staggered double delay line canceller is then
given by

. Eq. (10.37)

Performing the algebraic manipulation in Eq. (10.37) and using the t trigonometric identity
 yields

. Eq. (10.38)

It is customary to normalize the amplitude frequency response, thus 

. Eq. (10.39)

To determine the characteristics of higher stagger ratio MTI filters, adopt the notion of hav-
ing several MTI filters, one for each combination of two staggered PRFs. Then the overall fil-
ter response is computed as the average of all individual filters. For example, consider the case
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where a PRF stagger is required with PRIs , , , and . First, compute the filter
response using  and denote by . Then compute  using  and , the filter  is
computed using    and the filter  is computed using    and . Finally compute the
overall response as

. Eq. (10.40)

Figure 10.10 shows the MTI filter response for a 4-stagger-ratio defined. The overall
response is computed as the average of 4 individual filters, each corresponding to one combi-
nation of the stagger ratio. In the top portion of the figure the individual filters used were 2-
pulse MTIs, while the bottom portion used 4-pulse individual MTI filters. This plot can be
reproduced using the MATLAB program “Fig10_10.m,” listed in Appendix 10-A.

10.4. MTI Improvement Factor
In this section, two quantities that are normally used to define the performance of MTI sys-

tems are introduced. They are Clutter Attenuation (CA) and the Improvement Factor. The MTI
CA is defined as the ratio between the MTI filter input clutter power  to the output clutter
power ,

. Eq. (10.41)
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 Figure 10.10. MTI responses with PRF staggering. 
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The MTI improvement factor is defined as the ratio of the SCR at the output to the SCR at the
input, 

, Eq. (10.42)

which can be rewritten as

. Eq. (10.43)

The ratio  is the average power gain of the MTI filter, and it is equal to . In
this section, a closed form expression for the improvement factor using a Gaussian-shaped
power spectrum is developed. A Gaussian-shaped clutter power spectrum is given by

Eq. (10.44)

where  is the clutter power (constant), and  is the clutter rms frequency (which describes
the clutter spectrum spread in the frequency domain, see Eq. (10.1)). 

The clutter power at the input of an MTI filter is

. Eq. (10.45)

Factoring out the constant  yields

. Eq. (10.46)

It follows that 

. Eq. (10.47)

The clutter power at the output of an MTI is

. Eq. (10.48)

10.4.1. Two-Pulse MTI Case 

In this section we will continue the analysis using a single delay line canceler. The frequency
response for a single delay line canceler is

. Eq. (10.49)

It follows that
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. Eq. (10.50)

Since clutter power will only be significant for small , the ratio  is very small. Conse-
quently, by using the small angle approximation, Eq. (10.50) is approximated by

, Eq. (10.51)

which can be rewritten as

. Eq. (10.52)

The integral part in Eq. (10.52) is the second moment of a zero-mean Gaussian distribution
with variance . Replacing the integral in Eq. (10.52) by  yields

. Eq. (10.53)

Substituting Eq. (10.53) and Eq. (10.47) into Eq. (10.41) produces

. Eq. (10.54)

It follows that the improvement factor for a single canceler is

. Eq. (10.55)

The power gain ratio for a single canceler is (remember that  is periodic with period )

. Eq. (10.56)

Using the trigonometric identity  yields

. Eq. (10.57)

It follows that

. Eq. (10.58)

The expression given in Eq. (10.58) is an approximation valid only for . When the
condition  is not true, then the autocorrelation function needs to be used in order to
develop an exact expression for the improvement factor. Furthermore, when taking into
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account Eq. (10.1) (i.e., account for antenna scan rate, wind, and platform motion) the
improvement factor is reduced since  becomes larger. 

Example: 

A certain radar has . If the clutter rms is , find the improvement
factor when a single delay line canceler is used.

Solution: 

The clutter attenuation CA is

and since  one gets

.

10.4.2. The General Case

A general expression for the improvement factor for the n-pulse MTI (shown for a 2-pulse
MTI in Eq. (10.58)) is given by

Eq. (10.59)

where the double factorial notation is defined by

Eq. (10.60)

Eq. (10.61)

Of course ;  is defined by

Eq. (10.62)

where  are the binomial coefficients for the MTI filter. It follows that  for a 2-pulse, 3-
pulse, and 4-pulse MTI are, respectively, 

. Eq. (10.63)

Using this notation, the improvement factor for a 3-pulse and 4-pulse MTI are, respectively,
given by

Eq. (10.64)

. Eq. (10.65)
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10.5. Subclutter Visibility (SCV)
Subclutter Visibility (SCV) describes the radar’s ability to detect nonstationary targets

embedded in a strong clutter background, for some probabilities of detection and false alarm. It
is often used as a measure of MTI performance. For example, a radar with  SCV will be
able to detect moving targets whose returns are ten times smaller than those of clutter. A sketch
illustrating the concept of SCV is shown in Fig. 10.11.

If a radar system can resolve the areas of strong and weak clutter within its field of view,
then Interclutter Visibility (ICV) describes the radar’s ability to detect nonstationary targets
between strong clutter points. The subclutter visibility is expressed as the ratio of the improve-
ment factor to the minimum MTI output SCR required for proper detection for a given proba-
bility of detection. More precisely,

. Eq. (10.66)

When comparing the performance of different radar systems on the basis of SCV, one should
use caution since the amount of clutter power is dependent on the radar resolution cell (or vol-
ume), which may be different from one radar to another. Thus, only if the different radars have
the same beamwidths and the same pulse widths, can SCV be used as a basis of performance
comparison.

10.6. Delay Line Cancelers with Optimal Weights
The delay line cancelers discussed in this chapter belong to a family of transversal Finite

Impulse Response (FIR) filters widely known as the “tapped delay line” filters. Figure 10.12
shows an N-stage tapped delay line implementation. When the weights are chosen such that
they are the binomial coefficients (i.e., the coefficients of the expansion ) with alter-
nating signs, then the resultant MTI filter is equivalent to N-stage cascaded single line cancel-
ers. This is illustrated in Fig. 10.13 for . In general, the binomial coefficients are given
by

. Eq. (10.67)
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 Figure 10.11. Illustration of SCV. (a) MTI input. (b) MTI output.
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Using the binomial coefficients with alternating signs produces an MTI filter that closely
approximates the optimal filter in the sense that it maximizes the improvement factor, as well
as the probability of detection. In fact, the difference between an optimal filter and one with
binomial coefficients is so small that the latter one is considered to be optimal by most radar
designers. However, being optimal in the sense of the improvement factor does not guarantee a
deep notch or a flat passband in the MTI filter response. Consequently, many researchers have
been investigating other weights that can produce a deeper notch around DC, as well as a better
passband response.

delay, T delay, T delay, T

w1 w2 w3 wN

summing network

output

input

 Figure 10.12. N-stage tapped delay line filter.
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                   Figure 10.13. Two equivalent three delay line cancelers. (a) Tapped delay 

line.    (b) Three cascaded single line cancelers.
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In general, the average power gain for an N-stage delay line canceler is

. Eq. (10.68)

For example,  (double delay line canceler) gives

. Eq. (10.69)

Equation (10.69) can be rewritten as

. Eq. (10.70)

As indicated by Eq. (10.70), blind speeds for an N-stage delay canceler are identical to those of
a single canceler. It follows that blind speeds are independent from the number of cancelers
used. It is possible to show that Eq. (10.70) can be written as

Eq. (10.71)

A general expression for the improvement factor of an N-stage tapped delay line canceler is

Eq. (10.72)

where the weights  and  are those of a tapped delay line canceler, and    is
the correlation coefficient between the  and  samples. For example,  produces

. Eq. (10.73)

10.7.  Pulsed Doppler Radars
Pulsed radars transmit and receive a train of modulated pulses. Range is extracted from the

two-way time delay between a transmitted and received pulse. Doppler measurements can be
made in two ways. If accurate range measurements are available between consecutive pulses,
then Doppler frequency can be extracted from the range rate . This approach
works fine as long as the range is not changing drastically over the interval . Otherwise,
pulsed radars utilize a Doppler filter bank. 

Pulsed radar waveforms can be completely defined by the following: (1) carrier frequency,
which may vary depending on the design requirements and radar mission; (2) pulse width,
which is closely related to the bandwidth and defines the range resolution; (3) modulation; and
finally (4) the pulse repetition frequency. Different modulation techniques are usually utilized
to enhance the radar performance, or to add more capabilities to the radar that otherwise would
not have been possible. The PRF must be chosen to avoid Doppler and range ambiguities as
well as maximize the average transmitted power. 
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Radar systems employ low, medium, and high PRF schemes. Low PRF waveforms can
provide accurate, long, unambiguous range measurements, but exert severe Doppler
ambiguities. Medium PRF waveforms must resolve both range and Doppler ambiguities;
however, they provide adequate average transmitted power as compared to low PRFs. High
PRF waveforms can provide superior average transmitted power and excellent clutter rejection
capabilities. Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR). Range and
Doppler ambiguities for different PRFs are summarized in Table 10.1.

Distinction of a certain PRF as low, medium, or high PRF is almost arbitrary and depends on
the radar mode of operations. For example, a  PRF is considered low if the maximum
detection range is less than . However, the same PRF would be considered medium if
the maximum detection range is well beyond . 

Radars can utilize constant and varying (agile) PRFs. For example, Moving Target Indicator
(MTI) radars use PRF agility to avoid blind speeds, as discussed in Chapter 9. This kind of
agility is known as PRF staggering. PRF agility is also used to avoid range and Doppler
ambiguities, as will be explained in the next three sections. Additionally, PRF agility is used to
prevent jammers from locking onto the radar’s PRF. These two last forms of PRF agility are
sometimes referred to as PRF jitter.

Figure 10.14 shows a simplified pulsed radar block diagram. The range gates can be
implemented as filters that open and close at time intervals that correspond to the detection
range. The width of such an interval corresponds to the desired range resolution. The radar
receiver is often implemented as a series of contiguous (in time) range gates, where the width
of each gate is achieved through pulse compression. The clutter rejection can be implemented
using MTI or other forms of clutter rejection techniques. The NBF bank is normally
implemented using an FFT, where bandwidth of the individual filters corresponds to the FFT
frequency resolution.

In ground-based radars, the amount of clutter in the radar receiver depends heavily on the
radar-to-target geometry. The amount of clutter is considerably higher when the radar beam
has to face toward the ground. Radars employing high PRFs have to deal with an increased
amount of clutter due to folding in range. Clutter introduces additional difficulties for airborne
radars when detecting ground targets and other targets flying at low altitudes. This is illustrated
in Fig. 10.15. Returns from ground clutter emanate from ranges equal to the radar altitude to
those which exceed the slant range along the mainbeam, with considerable clutter returns in
the sidelobes and mainbeam. The presence of such large amounts of clutter interferes with
radar detection capabilities and makes it extremely difficult to detect targets in the look-down
mode. This difficulty in detecting ground or low-altitude targets has led to the development of
pulse Doppler radars where other targets, kinematics such as Doppler effects, are exploited to
enhance detection.

  
TABLE 10.1. PRF Ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes

High PRF Yes No

3KHz
30Km

30Km
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Pulse Doppler radars utilize high PRFs to increase the average transmitted power and rely on
the target’s Doppler frequency for detection. The increase in the average transmitted power
leads to an improved SNR, which helps the detection process. However, using high PRFs
compromises the radar’s ability to detect long-range targets because of range ambiguities
associated with high PRF applications.

Pulse Doppler radars (or high PRF radars) have to deal with the additional increase in clutter
power due to clutter folding. This has led to the development of a special class of airborne MTI
filters, often referred to as AMTI. Techniques such as using specialized Doppler filters to reject
clutter are very effective and are often employed by pulse Doppler radars. Pulse Doppler radars
can measure target Doppler frequency (or its range rate) fairly accurately and use the fact that
ground clutter typically possesses limited Doppler shift when compared with moving targets to
separate the two returns. This is illustrated in Fig. 10.16. Clutter filtering (i.e., AMTI) is used
to remove both main-beam and altitude clutter returns, and fast-moving target detection is done
effectively by exploiting its Doppler frequency. In many modern pulse Doppler radars, the
limiting factor in detecting slow-moving targets is not clutter but rather another source of
noise, referred to as phase noise, generated from the receiver local oscillator instabilities.
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 Figure 10.14. Pulsed radar block diagram.
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ground

Figure 10.15. Pulse radar detection of ground targets with clutter interference.
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 Figure 10.16. Illustration of frequency characteristics of pulse Doppler radar echoes.
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10.7.1. Pulse Doppler Radar Signal Processing

The main idea behind pulse Doppler radar signal processing is to divide the footprint (the
intersection of the antenna 3dB beamwidth with the ground) into resolution cells that constitute
a range Doppler map, . The sides of this map are range and Doppler, as illustrated in Fig.
10.17. Fine range resolution, , is accomplished in real time by utilizing range gating and
pulse compression. Frequency (Doppler) resolution is obtained from the coherent processing
interval.

To further illustrate this concept, consider the case where  is the number of azimuth
(Doppler) cells, and  is the number of range bins. Hence, the  is of size ,
where the columns refer to range bins and the rows refer to azimuth cells. For each transmitted
pulse within the dwell, the echoes from consecutive range bins are recorded sequentially in the
first row of . Once the first row is completely filled (i.e., returns from all range bins have
been received), all data (in all rows) are shifted downward one row before the next pulse is
transmitted. Thus, one row of  is generated for every transmitted pulse. Consequently,
for the current observation interval, returns from the first transmitted pulse will be located in
the bottom row of , and returns from the last transmitted pulse will be in the top row of

. 

Fine range resolution is achieved using the matched filter. Clutter rejection (filtering) is
performed on each range bin (i.e., rows in the ). Then all samples from one dwell within
each range bin are processed using an FFT to resolve targets in Doppler. It follows that a peak
in a given resolution cell corresponds to a specific target detection at that range and Doppler
frequency. Selection of the proper size FFT and its associated parameters were discussed in
Chapter 3.

10.7.2. Resolving Range Ambiguities

Pulse Doppler radars exhibit serve range ambiguities because they use high PRF pulse
streams. In order to resolve these ambiguities, pulse Doppler radars utilize multiple high PRFs
(PRF staggering) within each processing interval (dwell). For this purpose, consider a pulse
Doppler radar that uses two PRFs,  and , on transmit to resolve range ambiguity, as

shown in Fig. 10.18. Denote  and  as the unambiguous ranges for the two PRFs,
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Figure 10.17. Range Doppler map.
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respectively. Normally, these unambiguous ranges are relatively small and are short of the
desired radar unambiguous range  (where ). Denote the radar desired PRF that

corresponds to  as .

The choice of  and  is such that they are relatively prime with respect to one another.
One choice is to select  and  for some integer . Within one

period of the desired PRI ( ), the two PRFs  and  coincide only at one
location, which is the true unambiguous target position. The time delay  establishes the
desired unambiguous range. The time delays  and  correspond to the time between the
transmit of a pulse on each PRF and receipt of a target return due to the same pulse.

Let  be the number of PRF1 intervals between transmit of a pulse and receipt of the true
target return. The quantity  is similar to  except it is for PRF2. It follows that over the
interval  to , the only possible results are  or . The radar
needs only to measure  and . First, consider the case when . In this case,

Eq. (10.74)

for which we get

Eq. 10.75)

where  and . It follows that the round-trip time to the true target loca-
tion is
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 Figure 10.18. Resolving range ambiguity.
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Eq. (10.76)

and the true target range is 

. Eq. (10.77)

Now, if , then

. Eq. (10.78)

Solving for  we get

Eq. (10.79)

and the round-trip time to the true target location is

, Eq. (10.80)

and in this case, the true target range is

. Eq. (10.81)

Finally, if , then the target is in the first ambiguity. It follows that

Eq. (10.82)

and
Eq. (10.83)

Since a pulse cannot be received while the following pulse is being transmitted, these times
correspond to blind ranges. This problem can be resolved by using a third PRF. In this case,
once an integer  is selected, then in order to guarantee that the three PRFs are relatively
prime with respect to one another, we may choose , ,

and .

10.7.3. Resolving Doppler Ambiguity

In the case where the pulse Doppler radar is utilizing medium PRFs, it will be ambiguous in
both range and Doppler. Resolving range ambiguities was discussed in the previous section. In
this section, Doppler ambiguity is addressed. Remember that the line spectrum of a train of
pulses has  envelope, and the line spectra are separated by the PRF, , as illustrated in
Fig. 10.19. The Doppler filter bank is capable of resolving target Doppler as long as the
anticipated Doppler shift is less than one half the bandwidth of the individual filters (i.e., one
half the width of an FFT bin). Thus, pulsed radars are designed such that

 Eq. (10.84)

where  is the maximum anticipated target Doppler frequency,  is the maximum
anticipated target radial velocity, and  is the radar wavelength.
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If the Doppler frequency of the target is high enough to make an adjacent spectral line move
inside the Doppler band of interest, the radar can be Doppler ambiguous. Therefore, in order to
avoid Doppler ambiguities, radar systems require high PRF rates when detecting high-speed
targets. When a long-range radar is required to detect a high-speed target, it may not be
possible to be both range and Doppler unambiguous. This problem can be resolved by using
multiple PRFs. Multiple PRF schemes can be incorporated sequentially within each dwell
interval (scan or integration frame) or the radar can use a single PRF in one scan and resolve
ambiguity in the next. The latter technique, however, may have problems due to changing
target dynamics from one scan to the next.

The Doppler ambiguity problem is analogous to that of range ambiguity. Therefore, the same
methodology can be used to resolve Doppler ambiguity. In this case, we measure the Doppler
frequencies  and  instead of  and . If , then we have

. Eq. (10.85)

And if ,

Eq. (10.86)

and the true Doppler is 

. Eq. (10.87)

Finally, if , then

. Eq. (10.88)

Again, blind Dopplers can occur, which can be resolved using a third PRF.
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 Figure 10.19. Spectra of transmitted and received waveforms, and Doppler bank. (a) 
Doppler is resolved.   (b) Spectral lines have moved into the next Doppler filter. This 

results in an ambiguous Doppler measurement. 
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Example:

 A certain radar uses two PRFs to resolve range ambiguities. The desired unambiguous range
is . Choose . Compute , , , and . 

Solution: 

First let us compute the desired PRF, 

.

It follows that

.

Example:

Consider a radar with three PRFs; , , and .

Assume . Calculate the frequency position of each PRF for a target whose velocity

is . Calculate  (Doppler frequency) for another target appearing at , ,

and  for each PRF.

Solution: 

The Doppler frequency is

.

Then by using Eq. (10.87)  where , we can write

.

We will show here how to compute , and leave the computations of  and  to the reader.
First, if we choose , that means , which cannot be true since  cannot
be greater than . Choosing  is also invalid since  cannot be true
either. Finally, if we choose , we get , which is an acceptable value. It fol-
lows that the minimum  that may satisfy the above three relations are ,

, and . Thus, the apparent Doppler frequencies are ,
, and , as seen below.
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Now for the second part of the problem. Again, by using Eq. (10.87) we have

.

We can now solve for the smallest integers  that satisfy the above three relations. See
the table below. Thus, , and , and the true target Doppler is

. It follows that 

.

n 0 1 2 3 4

 from 8 23 38 53 68

 from 2 20 38 56
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10.8. Phase Noise
It was determined in earlier chapters that the radar performance is improved as the SNR

becomes larger, and in Chapter 2, an expression of the SNR against thermal noise was derived
and analyzed. It was also established that in the presence of clutter, the radar performance will
degrade beyond the impact of thermal noise alone, and in this case, the SCR becomes more
critical than the SNR. Another source of noise that greatly limits MTI and pulsed Doppler
radar performance is known as phase noise. Phase noise, sometimes called flicker noise, is ran-
dom in nature and is caused by instabilities within the radar’s local oscillator. 

Phase noise may limit, depending on its actual value, pulsed Doppler radars’ ability to detect
very slow moving targets whose RCS is relatively small. This is illustrated in Fig. 10.20. In
this case, when the slow-moving target return signal is close to zero (or multiple integers of the
PRF) it will likely be masked by the phase noise power caused by a noisy radar local oscillator.
In addition to the masking problem illustrated in Fig. 10.20, the MTI improvement factor will
also be reduced by some appreciable values corresponding to the amount of phase noise pres-
ent in the radar receiver, as will be explained later in this section. 

Simply put, phase noise is a term used to describe the random frequency perturbation (rela-
tively small in nature) occurring around the signal carrier frequency, thus causing a new instan-
taneous signal frequency that is slightly different form the original value. For example,
consider the signal defined by the simple sinusoid 

Eq. (10.89)

where  is the amplitude modulation and  is the carrier frequency. The perturbed signal
due to amplitude and phase instabilities of the local oscillator will take on the form

Eq. (10.90)

where  is the amplitude perturbation and  is the phase perturbation or fluctuation.
Recalling that the instantaneous frequency is the derivative of phase with respect to time
divided by , then the phase perturbation will change the center frequency from  to 
where  is a fractional frequency deviation away from the carrier. More specifically,

. Eq. (10.91)
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 Figure 10.20. Illustrating how phase noise may mask small slow-moving target 
returns. 
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The notation commonly used in the literature to describe the phase noise power spectrum
density is

. Eq. (10.92)

The factor of 2 accounts for both sidebands of the spectrum (lower and upper sidebands around
) and  is the ratio of noise power in a 1Hz bandwidth at an offset from the carrier signal

power measured in . In this notation,  is often used to denote phase noise. For
example, consider a frequency-modulated signal as described in Eq. (2.117b) in Chapter 2,
which is repeated here for convenience as Eq. (10.93), 

Eq. (10.93)

where  is the modulation index and  is the amplitude. In this case, phase noise is defined as
the ratio of the sideband power to the carrier power at a certain modulation frequency offset
from the carrier. More specifically,

. Eq. (10.94)

In general, the phase noise  decreases with frequency as a function of , ,
and . Figure 10.21 shows an illustration plot for  versus the log of the frequency.
Typically, the manufacturer of a given oscillator will measure and publish the phase noise char-
acteristics (plots similar to Fig. 10.21) as part of their product documentation. Observation of
Fig. 10.21 shows that this plot is a piece-wise linear function. It follows that the formula for a
given segment of this plot is given by

Eq. (10.95)

where  is the slope of the  segment defined by

. Eq. (10.96)

Eq. (10.95) can be written in a more compact form as

. Eq. (10.97)

Figure 10.22 shows an actual plot for  using the following values: 
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 Figure 10.21. Typical graph of phase noise PSD versus frequency.
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The literature is flooded with sources on phase noise. Different users use slightly different
formulas to express phase noise in their particular application. In this book, the following for-
mula for phase noise is adopted,

Eq. (10.98)

where  is the carrier frequency and  is a constant that describes phase noise of the oscilla-
tor. Figure 10.23 shows some typical plots of the ratio of noise power to the carrier power (as
defined in Eq. (10.98)). This figure can be reproduced using MATLAB Program
“Fig10_23.m,” listed in Appendix 10-A. Note that when the constant  becomes larger, the
noise ratio spectrum becomes wider with lower amplitude of the main beam, and hence less
phase noise in the system.

The normalized phase noise power spectrum density can be computed using Eqs. (10.92)
and (10.97), and can be approximated as

Eq. (10.99)

where . Figure 10.24 shows the corresponding normalized phase noise power spec-
trum density versus frequency. This figure can be reproduced using MATLAB program
“Fig10_24.m,” listed in Appendix 10-A.
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 Figure 10.23.  ratio of noise power to carrier power versus frequency.L f
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As indicated by Fig. 10.24, quiet oscillators will almost always have phase noise of less than
 at frequency offsets of more than 1Hz away from the carrier. However, at some

small frequency bandwidth of less than 1Hz, phase noise maybe greater than . 

The power spectral density function of phase noise at the output of the radar’s matched filter
can be expressed as

Eq. (10.100)

where  is the phase noise ratio relative to the carrier,  was defined in Eq. (10.2) as the
clutter power, and  is the radar pulsewidth.  can be computed from the analysis presented
earlier; however, an acceptable range for  varies between  to dBc/Hz. The clutter
attenuation was defined in Eq. (10.41) as

 Eq. (10.101)

where  is equal to  (see the derivation of Eq. (10.47)). 

Ignoring the phase noise, the clutter power spectrum was given in Eq. (10.44), but when
phase noise is taken into consideration, Eq. (10.44) is modified to

Eq. (10.102)

and the clutter output of the MTI filter is computed in a manner similar to that described in
Section 10.4, except in this case  is replaced by  in Eq. (10.102). Performing the inte-
gration and collecting terms (assuming a 2-pulse MTI filter), yields 

 Figure 10.24. Normalized phase noise power spectrum density.
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Eq. (10.103)

where  is the PRF. It follows that the clutter attenuation in the presence of phase noise is
given by

. Eq. (10.104)

Figure 10.25 shows the clutter attenuation for two values of , with  and
 using Eq. (10.104). Observation of Fig. 10.26 leads to the following conclusions:

Larger values of  will result in less clutter attenuation, so if more clutter attenuation is
desired then a 3-pulse or higher order MTI filter ought to be used. Next, phase noise does not
start to affect the performance of the MTI filter until it becomes higher than -100dBc/Hz.
Clearly, using higher-order MTI filters will increase the amount of clutter attenuation; how-
ever, the question that remain, is how does phase noise affect the MTI performance when
higher-order filters are used? This analysis is left as an exercise (see Problem 10.20). Figure
10.25 can be reproduced using MATLAB program “Fig10_25.m,” listed in Appendix 10-A.

Co Pc
1
2
---

2 f

fr
------------

2
Pc
L0------+=

fr

CA
Ci

Co
------ 1

1
2
---

2 f

fr
------------

2 L0------+
------------------------------------= =

f fr 2.5KHz=
1 s=

f

 Figure 10.25. Clutter attenuation in the presence of phase noise; 2-pulse MTI 
case.
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Problems
10.1. (a) Derive an expression for the impulse response of a single delay line canceler. (b)
Repeat for a double delay line canceler.
10.2. One implementation of a single delay line canceler with feedback is shown below.

(a) What is the transfer function, ? (b) If the clutter power spectrum is
, find an exact expression for the filter power gain. (c) Repeat part

(b) for small values of frequency, . (d) Compute the clutter attenuation and the improvement
factor in terms of  and .

10.3. Plot the frequency response for the filter described in the previous problem for
.

10.4. An implementation of a double delay line canceler with feedback is shown below.

(a) What is the transfer function, ? (b) Plot the frequency response for ,
and .

10.5. Consider a single delay line canceler. Calculate the clutter attenuation and the
improvement factor. Assume that  and PRF .
10.6. Develop an expression for the improvement factor of a double delay line canceler.
10.7. Repeat Problem 9.10 for a double delay line canceler.
10.8. An experimental expression for the clutter power spectrum density is

 

where  is a constant. Show that using this expression leads to the same result obtained for
the improvement factor as developed in Section 10.4. 

10.9. A certain radar uses two PRFs with a stagger ratio 63/64. If the first PRF is
. Compute the blind speeds for both PRFs and for the resultant composite PRF.

Assume .
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10.10. Using PRI ratios 25:30:27:31, generate the MTI response for a 3-pulse MTI.  
10.11. A certain filter used for clutter rejection has an impulse response

. (a) Show an implementation of this filter
using delay lines and adders. (b) What is the transfer function?    (c) Plot the frequency
response of this filter. (d) Calculate the output when the input is the unit step sequence.
10.12. The quadrature components of the clutter power spectrum are given in Problem 9.3.
Let  and . Compute the improvement of the signal-to-clutter ratio
when a double delay line canceler is utilized.
10.13. The quadrature components of the clutter power spectrum are 

.

Let  and . Compute the improvement of the signal-to-clutter ratio
when a double delay line canceler is utilized.

10.14. Develop an expression for the clutter improvement factor for single and double line
cancelers using the clutter autocorrelation function.
10.15. Consider a medium PRF radar on board an aircraft moving at a speed of 
with PRFs , , and ; the radar operating frequency is

. Calculate the frequency position of a nose-on target with a speed of . Also
calculate the closing rate of a target appearing at , , and  away from the center line
of PRF , , and , respectively.
10.16. Repeat Problem 10.13 when the target is  off the radar line of sight.
10.17. A certain radar operates at two PRFs,  and , where 
and . Show that this multiple PRF scheme will give the same range
ambiguity as that of a single PRF with PRI .
10.18. Consider an X-band radar with wavelength  and bandwidth

. The radar uses two PRFs,  and . A target is
detected at range bin  for  and at bin  for . Determine the actual target range.
10.19. A certain radar uses two PRFs to resolve range ambiguities. The desired unambig-
uous range is . Select a reasonable value for . Compute the corresponding ,

, , and .
10.20. A certain radar uses three PRFs to resolve range ambiguities. The desired unambig-
uous range is . Select . Compute the corresponding , , , ,

, and . 
10.21. Starting with Eq. (10.94), derive a closed form expression for the phase noise of an
FM modulated waveform.
10.22. Reproduce Fig. 10.26 for a 3-pulse and a 4-pulse MTI system, and briefly discuss
your output in terms how much phase noise affects the performance of each system,
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Appendix 10-A: Chapter 10 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “single_canceler.m” Listing
function [resp] = single_canceler (fofr1)
% single delay canceller
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency in f/fr')
ylabel( 'Amplitude response in Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency in f/fr')
ylabel( 'Amplitude response in dB')
end

MATLAB Function “double_canceler.m” Listing
function [resp] = double_canceler(fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .* ((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
resp2 = resp .* resp;
subplot(2,1,1);
plot(fofr,resp,'k--',fofr, resp2,'k');
ylabel ('Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
resp1 = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,resp1,'k--',fofr,resp2,'k');
legend ('single canceler','double canceler')
xlabel ('Normalized frequency f/fr')
ylabel ('Amplitude response in dB')
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end

MATLAB Program “Fig10_8.m” Listing
% generates Fig. 10.8 of text
clear all;
fofr = 0:0.001:1;
arg = 2.*pi.*fofr;
nume = 2.*(1.-cos(arg));
den11 = (1. + 0.25 * 0.25);
den12 = (2. * 0.25) .* cos(arg);
den1 = den11 - den12;
den21 = 1.0 + 0.7 * 0.7;
den22 = (2. * 0.7) .* cos(arg);
den2 = den21 - den22;
den31 = (1.0 + 0.9 * 0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32;
resp1 = nume ./ den1;
resp2 = nume ./ den2;
resp3 = nume ./ den3;
plot(fofr,resp1,'k',fofr,resp2,'k-.',fofr,resp3,'k--');
xlabel('Normalized frequency')
ylabel('Amplitude response')
legend('K=0.25','K=0.7','K=0.9')
grid
axis tight

MATLAB Program “Fig10_9.m” Listing
% generates Fig 9.10 of text
clc
close all
clear all
fofr=0:0.001:1;
f1=4.*fofr;
f2=5.*fofr;
arg1=pi.*f1;
arg2=pi.*f2;
resp1=abs(sin(arg1));
resp2=abs(sin(arg2));
resp=resp1+resp2;
max1=max(resp);
resp=resp./max1;
subplot(3,1,1)
plot(fofr,resp1);
ylabel('\bfFilter response')
grid on
subplot(3,1,2)
plot(fofr,resp2);
ylabel('\bfFilter response')
grid on
subplot(3,1,3)
plot(fofr,resp);
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ylabel('\bfFilter response')
xlabel('\bff/fr')
grid on

MATLAB Program “Fig10_10.m” Listing
% generates Fig 10.10 of text
k = .00035/25; a = 25*k; b = 30*k; c = 27*k; d = 31*k;
v2 = linspace(0,1345,10000); 
f2 = (2.*v2)/.0375;
% H1(f)
T1 = exp(-j*2*pi.*f2*a); X1 = 1/2.*(1 - T1).*conj(1 - T1); H1 = 10*log10(abs(X1));
% H2(f)
T2 = exp(-j*2*pi.*f2*b); X2 = 1/2.*(1 - T2).*conj(1 - T2); H2 = 10*log10(abs(X2));
% H3(f)
T3 = exp(-j*2*pi.*f2*c); X3 = 1/2.*(1 - T3).*conj(1 - T3); H3 = 10*log10(abs(X3));
% H4(f)
T4 = exp(-j*2*pi.*f2*d); X4 = 1/2.*(1 - T4).*conj(1 - T4); H4 = 10*log10(abs(X4));
% Plot of the four components of H(f)
figure(1)
subplot(2,1,1)
% H(f) Average
ave2 = abs((X1 + X2 + X3 + X4)./4);
Have2 = 10*log10(abs((X1 + X2 + X3 + X4)./4));
plot(v2,Have2); 
axis([0 1345 -25 5]);
 title('Two pulse MTI stagger ratio 25:30:27:31');
xlabel('Radial Velocity (m/s)');
 ylabel('MTI Gain (dB)'); grid on
% %Mean value of H(f)
v4 = v2; f4 = (2.*v4)/.0375;
% H1(f)
T1 = exp(-j*2*pi.*f4*a);
 T2 = exp(-j*2*pi.*f4*(a + b)); 
T3 = exp(-j*2*pi.*f4*(a + b + c));
X1 = 1/20.*(1 - 3.*T1 + 3.*T2 - T3).*conj(1 - 3.*T1 + 3.*T2 - T3);
H1 = 10*log10(abs(X1));
% H2(f)
T3 = exp(-j*2*pi.*f4*b); 
T4 = exp(-j*2*pi.*f4*(b + c));
T5 = exp(-j*2*pi.*f4*(b + c + d));
X2 = 1/20.*(1 - 3.*T3 + 3.*T4 - T5).*conj(1 - 3.*T3 + 3.*T4 - T5);
H2 = 10*log10(abs(X2));
% H3(f)
T6 = exp(-j*2*pi.*f4*c); 
T7 = exp(-j*2*pi.*f4*(c + d));
T8 = exp(-j*2*pi.*f4*(c + d + a));
X3 = 1/20.*(1 - 3.*T6 + 3.*T7 - T8).*conj(1 - 3.*T6 + 3.*T7 - T8);
H3 = 10*log10(abs(X3));
% H4(f)
T9 = exp(-j*2*pi.*f4*d); T10 = exp(-j*2*pi.*f4*(d + a));
T11 = exp(-j*2*pi.*f4*(d + a + b));
X4 = 1/20.*(1 - 3.*T9 + 3.*T10 - T11).*conj(1 - 3.*T9 + 3.*T10 - T11);
H4 = 10*log10(abs(X4));
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% H(f) Average
ave4 = abs((X1 + X2 + X3 + X4)./4);
Have4 = 10*log10(abs((X1 + X2 + X3 + X4)./4));
% Plot of H(f) Average
subplot(2,1,2)
plot(v4,Have4);
axis([0 1345 -25 5]);
title('Four pulse MTI stagger ratio 25:30:27:31');
xlabel('Radial Velocity (m/s)');
ylabel('MTI Gain (dB)');
grid on

MATLAB Program “Fig10_23.m” Listing
% generates Fig. 10.23 of text
clc
close all; 
clear all;
fc = 500;
f  = linspace(350,650, 300);
c1  = 2*1e-5; 
fc1 = c1*pi*fc^2; 
L1f = 1/pi*fc1./(fc1^2 + (f-fc).^2);
c2  = 0.5*1e-5; 
fc2 = c2*pi*fc^2; 
L2f = 1/pi*fc2./(fc2^2 + (f-fc).^2);
plot(f,L1f,'ro-','linewidth',1.); 
hold on;
plot(f,L2f,'bd-','linewidth',1.); 
xlabel('\bfFrequency - Hz'); 
ylabel('\bfL(f), ratio of noise power to carrier power');
axis([300 700 0 0.09]); 
title('\bf fc=500Hz')
grid on;
legend('cp=2e-5','cp=0.5*1e-5'); 

MATLAB Program “Fig10_24.m” Listing
% generates Fig. 10.24 of text
clc; close all
clear all;
fc = 500; 
f  = [0.01:.01:100];
fb = pi/2;
Lf = 1/pi*fb./(fb^2 + (f-fc+fc).^2);
semilogx((f),10*log10(Lf),'b','linewidth',1.5);
xlabel('\bfFrequency - Hz'); 
ylabel('\bfRatio of noise power to carrier power - dBc/Hz');
title('\bf fb= \pi /2')
axis([0.01 100 -50 10]); grid on;

MATLAB Program “Fig10_25.m” Listing
% generates Fig. 10.25 of text
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clc
clear all
close all
format long
PRF = 1/400e-6;
taup = 1e-6;
sigma1 = 11.93;
sigma2 = 20.72;
phi0L = 10^-15.00;
phi0U = 10^-8;
phi0 = linspace(phi0L,phi0U,150000);
phi_ratio = phi0 ./ taup;
 % two-pulse MTI
%%%% sigma1 %%%%
gns = 1/2 * (2*pi*sigma1/PRF)^2
den = gns + phi_ratio;
CA_NS = 10*log10(1.0 ./ den);
%%%% sigma2 %%%%%
gs = 1/2 * (2*pi*sigma2/PRF)^2;
den = gs + phi_ratio;
CA_S = 10*log10(1.0 ./ den);
x_axis = 10*log10(phi0);
figure(1)
plot(x_axis,CA_NS,'r-.',x_axis,CA_S,'b','linewidth',1.5)
grid
% axis([-135 -90 20 35])
xlabel('\bfPhase noise - dBc/HZ')
ylabel('\bfClutter attenuation - dB')
legend('\sigmaf = 11.92', '\sigmaf = 20.72')
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Part IV - Radar Detection

Chapter 11 

The material in Part IV of this book, requires a strong background in random variables and
random processes. Users of this book are advised to use this chapter as means for a quick top-
level review of random variables and random processes. Instructors using this book as a text
may assign Chapter 11 as a reading assignment to their students. This chapter is written in such
a way that it only highlights the major points of the subject.

11.1. Random Variables
Consider an experiment with outcomes defined by a certain sample space. The rule or func-

tional relationship that maps each point in this sample space into a real number is called a ran-
dom variable. Random variables are designated by capital letters (e.g., ), and a
particular value of a random variable is denoted by a lowercase letter (e.g., ). 

The Cumulative Distribution Function (cdf) associated with the random variable  is
denoted as  and is interpreted as the total probability that the random variable  is less
than or equal to the value . More precisely,

. Eq. (11.1)

The probability that the random variable  is in the interval  is then given by 

. Eq. (11.2)

It is often practical to describe a random variable by the derivative of its cdf, which is called
the Probability Density Function (pdf). The pdf of the random variable  is

Eq. (11.3)

or, equivalently,

. Eq. (11.4)

It follows that Eq. (11.2) can be written in the following equivalent form
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. Eq. (11.5)

The cdf has the following properties:

Eq. (11.6)

Define the  moment for the random variable  as

. Eq. (11.7)

The first moment, , is called the mean value, while the second moment, , is called
the mean squared value. When the random variable  represents an electrical signal across a

 resistor, then  is the DC component, and  is the total average power.

The  central moment is defined as

. Eq. (11.8)

and thus the first central moment is zero. The second central moment is called the variance and
is denoted by the symbol ,

. Eq. (11.9)

In practice, the random nature of an electrical signal may need to be described by more than
one random variable. In this case, the joint cdf and pdf functions need to be considered. The
joint cdf and pdf for the two random variables  and  are, respectively, defined by

Eq. (11.10)

. Eq. (11.11)

The marginal cdfs are obtained as follows:

Eq. (11.12)
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If the two random variables are statistically independent, then the joint cdfs and pdfs are,
respectively, given by

Eq. (11.13)

. Eq. (11.14)

Consider a case when the two random variables  and  are mapped into two new variables
 and  through some transformations  and  defined by

. Eq. (11.15)

The joint pdf, , may be computed based on the invariance of probability under the
transformation. For this purpose, one must first compute the matrix of derivatives; then the
new joint pdf is computed as

Eq. (11.16)

Eq. (11.17)

where the determinant of the matrix of derivatives  is called the Jacobian. The characteristic
function for the random variable  is defined as

. Eq. (11.18)

The characteristic function can be used to compute the pdf for a sum of independent random
variables. More precisely, let the random variable  be

Eq. (11.19)

where  is a set of independent random variables. It can be shown that

 Eq. (11.20)

and the pdf  is computed as the inverse Fourier transform of  is

. Eq. (11.21)

The characteristic function may also be used to compute the  moment for the random vari-
able  as

. Eq. (11.22)
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11.2. Multivariate Gaussian Random Vector

Consider a joint probability for  random variables, . These variables can be
represented as components of an  random column vector, . More precisely,

. Eq. (11.23)

The joint pdf for the vector  is

. Eq. (11.24)

The mean vector is defined as

Eq. (11.25)

and the covariance is an  matrix given by

Eq. (11.26)

where the superscript  indicates the transpose operation. Note that if the elements of the vec-
tor  are independent, then the covariance matrix is a diagonal matrix. 

A random vector  is multivariate Gaussian if its pdf is of the form

Eq. (11.27)

where  is the mean vector,  is the covariance matrix,  is inverse of the covariance
matrix,  is its determinant, and  is of dimension . If  is a  matrix of rank

, then the random vector  is a K-variate Gaussian vector with

Eq. (11.28)

. Eq. (11.29)

The characteristic function for a multivariate Gaussian pdf is defined by

. Eq. (11.30)
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Then the moments for the joint distribution can be obtained by partial differentiation. For
example,

. Eq. (11.31)

A special case of Eq. (11.29) is when the matrix  is given by

. Eq. (11.32)

It follows that  is a sum of random variables , that is

. Eq. (11.33)

The finding in Eq. (11.33) leads to the conclusion that the linear sum of Gaussian variables is
also a Gaussian variable with mean and variance given by

Eq. (11.34)

, Eq. (11.35)

and if the variables  are independent then Eq. (11.35) reduces to

. Eq. (11.36)

Finally, in this case, the probability density function  is given by (which can also be
derived from Eq. (11.20))

 Eq. (11.37)

where  indicates convolution.
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.

Solution:

 has a bivariate Gaussian distribution with

.

The vector  can be expressed as

.

It follows that 

.

11.2.1. Complex Multivariate Gaussian Random Vector

Consider the complex envelope for the  vector random variable  is,

Eq. (11.38)

where  and  are real random multivariate Gaussian random vectors. The joint pdf for the
complex random vector  is computed from the joint pdf of the two real vectors. The mean for
the vector  is

. Eq. (11.39)

The covariance matrix is also defined by

Eq. (11.40)

where the operator  indicates complex conjugate transpose.
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The pdf for the vector  is

Eq. (11.41)

with the following three conditions holding true

Eq. (11.42)

Eq. (11.43)

. Eq. (11.44)

11.3.  Rayleigh Random Variables
 Let  and  be zero mean independent Gaussian random variables with zero mean and

variance . Define two new random variables  and  as

. Eq. (11.45)

The joint pdf of the two random variables  is

. Eq. (11.46)

The joint pdf for the two random variables  is given by

Eq. (11.47)

where  is a matrix of derivatives defined by

. Eq. (11.48)

The determinant of the matrix of derivatives is called the Jacobian, and in this case it is equal
to

Eq. (11.49)

Substituting Eqs. (11.46) and (11.49) into Eq. (11.47) and collecting terms yields

. Eq. (11.50)

The pdf for  alone is obtained by integrating Eq. (11.50) over 
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Eq. (11.51)

where the integral inside Eq. (11.51) is equal to ; thus, 

. Eq. (11.52)

The pdf described in Eq. (11.52) is referred to as a Rayleigh probability density function.
The density function for the random variable  is obtained from

. Eq. (11.53)

substituting Eq. (11.50) into Eq. (11.53) and performing integration by parts yields 

, Eq. (11.54)

which is a uniform probability density function. 

11.4. The Chi-Square Random Variables

11.4.1. Central Chi-Square Random Variable with N Degrees of Freedom

Let the random variables  be zero mean, statistically independent Gaussian
random variable with unity variance. The variable

Eq. (11.55)

is the central chi-square random variable with  degrees of freedom. The chi-square pdf is 

Eq. (11.56)

where the Gamma function is defined as

Eq. (11.57)

with the following recursion

Eq. (11.58)
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and 
. Eq. (11.59)

The mean and variance for the central chi-square are, respectively, given by

Eq. (11.60)

. Eq. (11.61)

Hence, the degrees of freedom  is the ratio of twice the squared mean to the variance

. Eq. (11.62)

11.4.2. Non-Central Chi-Square Random Variable with N Degrees of Freedom

In the general, the chi-square random variable requires that the Gaussian random variables
 do not have zero means. Define a multivariate random variable  such that

 Eq. (11.63a)

. Eq. (11.63b)

Consider the random variable

. Eq. (11.64)

the variable  is called the non-central chi-square random variable with  degrees of free-
dom and with a non-central parameter , where

. Eq. (11.65)

The non-central chi-square pdf is

Eq. (11.66)

where  is the modified Bessel function (or occasionally called the hyperbolic Bessel function)
of the first kind; and the subscripts are referred to as its order.

11.5. Random Processes
A random variable  is by definition a mapping of all possible outcomes of a random exper-

iment to numbers. When the random variable becomes a function of both the outcome of the
experiment and time, it is called a random process and is denoted by . Thus, one can view
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a random process as an ensemble of time-domain functions that are the outcome of a certain
random experiment, as compared with single real numbers in the case of a random variable.

Since the cdf and pdf of a random process are time dependent, we will denote them as
 and , respectively. The  moment for the random process  is 

. Eq. (11.67)

A random process  is referred to as stationary to order one if all its statistical properties
do not change with time. Consequently, , where  is a constant. A random pro-
cess  is called stationary to order two (or wide-sense stationary) if

Eq. (11.68)

for all  and . 

Define the statistical autocorrelation function for the random process  as

. Eq. (11.69)

The correlation  is, in general, a function of . As a consequence of the
wide-sense stationary definition, the autocorrelation function depends on the time difference

, rather than on absolute time; and thus, for a wide-sense stationary process we
have

. Eq. (11.70)

If the time average and time correlation functions are equal to the statistical average and sta-
tistical correlation functions, the random process is referred to as an ergodic random process.
The following is true for an ergodic process:

Eq. (11.71)

. Eq. (11.72)

The covariance of two random processes  and  is defined by

, Eq. (11.73)

which can also be written as

. Eq. (11.74)
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11.6. The Gaussian Random Process
Let  be a random process defined over the interval , then  is said to be a

Gaussian random process if every possible outcome of this process over this interval is a
Gaussian process, provided that the mean square value of this process is finite. More precisely,

 will be a random process over the same interval  defined by

Eq. (11.75)

where  is any function that yields .

Gaussian random processes have a few unique properties that distinguish them from other
types of random processes. (1) If the input to an LTI system is said to be a Gaussian random
process, then its output is also a Gaussian random process. (2) If  is a Gaussian random
process for any set of time occurrences , then the random variables

 are jointly Gaussian random variables. Finally, (3) any linear com-
bination of a Gaussian process yields another jointly Gaussian random variable.

11.6.1. Lowpass Gaussian Random Processes

Let  be a real-valued Gaussian random process. If this process is an essentially band-
limited process (recall the definition of an essentially band-limited signals in Chapter3) over
the frequency interval , then the minimal number of samples required to represent this
process is  real samples. Therefore, over the interval , there are  random
variables represented by the vector  made of  random variables, that is 

 . Eq. (11.76)

If the random process  is a complex lowpass Gaussian process, represented by its com-
plex envelop , then in this case, the minimal number of samples required to represent this
process is  complex samples. The resulting jointly Gaussian complex random vector
comprising  complex random variables is

 . Eq. (11.77)

If the power spectral destiny of a real Gaussian random process  is defined by

, Eq. (11.78)
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then the probability density function of the vector  is given by

. Eq. (11.79)

The mean of the random process defined in Eq. (11.76) is 

. Eq. (11.80)

When the power spectral density of the process is non-white over the bandwidth, then in this
case the random variables defined in Eq. (11.76) are no longer independent. Therefore, the pdf
given in Eq. (11.79) is modified to

Eq. (11.81)

where the covariance matrix is 

. Eq. (11.82)

11.6.2. Bandpass Gaussian Random Processes

It is customary to define the bandpass Gaussian random process through its complex enve-
lope as

Eq. (11.83)

where both  and  are jointly lowpass statistically independent and stationary
Gaussian random processes with zero mean and equal variance . The pdf for a sample

 of the complex envelope is the joint pdf for  and . That is,

. Eq. (11.84)

Now, if both lowpass processes do not have zero mean and instead have a mean defined by

, Eq. (11.85)

the mean complex envelope is 

. Eq. (11.86)

It follows that Eq. (11.84) can be rewritten as

x

fX x t 1
4 SoB M 2

----------------------------- 1
4SoB
------------– Xm

m 1=

M

exp 1
4 SoB M 2

----------------------------- xtx
4SoB
------------–exp= =

x

E X1

E X2

E XM

1

2

M

= =

fX x t 1

2 M CX

------------------------------ 1
2
---– x x– tCX

1– x x–exp=

CX E x x– x x– t=

X̃ t XI t jXQ t+=

XI t XQ t
2

X̃ t0 XI t XQ t

fX x̃ t0
1

2 2
------------ xI

2 t0 xQ
2 t0+

2 2
-----------------------------------–exp 1

2 2
------------ x̃ t0

2

2 2
-----------------–exp= =

t I t 2 f0tcos j Q t 2 f0tsin+=

˜ t I t j Q t+=



The Gaussian Random Process 415                                                                                                                                                                                                                                                                         

. Eq. (11.87)

Consider a duration of the process that spans the interval . Then this segment of the
complex envelope of the random process can be represented using a complex random variable
vector of at least  elements where  is the bandwidth of the process. Define

Eq. (11.88)

 . Eq. (11.89)

By definition, the covariance matrix  is

Eq. (11.90)

where

Eq. (11.91)

. Eq. (11.92)

Therefore, the pdf for the segment  is

. Eq. (11.93)

11.6.3. The Envelope of a Bandpass Gaussian Process

Consider the pdf of a segment of the envelope of a bandpass Gaussian random process. This
process can be expressed as

 Eq. (11.94)

where  and  are zero mean independent lowpass Gaussian processes. The envelope
and phase are respectively denoted by  and , where

Eq. (11.95)

and 

fX x̃ t0
1

2 2
------------ xI t0 I t0– 2 xQ t0 Q t0– 2+

2 2
-------------------------------------------------------------------------------------------–exp

1
2 2
------------

x̃ t0
˜ t0– 2

2 2
-----------------------------------exp

= =

0 T

M BT= B

X̃i X̃ m
B
---- m; 1 2 BT M= = =

x̃

X̃1

X̃2

X̃M

=

C

C
˜

X E x̃ x
˜– x̃ x

˜– † 2 C
˜

XI jC
˜

XIQ+= =

C
˜

XI E x̃I
˜
xI

– x̃I
˜
xI

– †=

C
˜

XIQ E x̃I
˜
xI

– x̃Q
˜
xQ

– †=

X̃ t 0 t T;

fX x̃
x̃ x

˜– †CX
˜ 1– x̃ x

˜––exp
N CX

˜---------------------------------------------------------------------------=

X t XI t 2 f0tcos XQ t 2 f0tsin–=

XI t XQ t
R t t

R t XI t 2 XQ t 2+=



416                                                                                   Radar Systems Analysis and Design Using MATLAB®

Eq. (11.96)

where 

. Eq. (11.97)

The two processes  and  are also independent, and their respective pdfs were derived
in Section 11.3 and were given in Eqs. (11.52) and (11.54), respectively. 

Problems
11.1. Suppose you want to determine an unknown DC voltage  in the presence of addi-

tive white Gaussian noise  of zero mean and variance . The measured signal is
. An estimate of  is computed by making three independent measure-

ments of  and computing the arithmetic mean, . (a) Find the mean
and variance of the random variable . (b) Does the estimate of  get better by using ten
measurements instead of three? Why?
11.2. Assume the  and  miss distances of darts thrown at a bulls-eye dart board are
Gaussian with zero mean and variance . (a) Determine the probability that a dart will fall
between  and . (b) Determine the radius of a circle about the bull’s-eye that contains
80% of the darts thrown. (c) Consider a square with side  in the first quadrant of the board.
Determine  so that the probability that a dart will fall within the square is 0.07.

11.3. (a) A random voltage  has an exponential distribution function
, where . The expected value . Deter-

mine . 

11.4. Consider the network shown in the figure below, where  is a random voltage
with zero mean and autocorrelation function . Find the power spec-
trum . What is the transfer function? Find the power spectrum .

11.5. Let  be the PSD function for the stationary random process . Compute an
expression for the PSD function of

 .

11.6. Let  be a random variable with

t
XQ t
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  .

(a) Determine the characteristic function . (b) Using , validate that  is a
proper pdf. (c) Use  to determine the first two moments of . (d) Calculate the variance
of .

11.7. Let the random variable  be written in terms of two other random variables  and
 as follows: . Find the mean and variance for the new random variable in terms

of the other two. 
11.8. Suppose you have the following sequences of statistically independent Gaussian ran-
dom variables with zero means and variances . if 

 and . 

Define . Find an expression where  exceeds a threshold value .

11.9. Repeat the previous problem when two single delay line cancelers are cascaded to
produce a double delay line canceler. Let  be a stationary random process, 
and the autocorrelation . Define a new random variola  as 

 . Eq. (11.98)

Compute  and .

11.10. Consider the single delay line canceler in the figure below. The input  is a
wide-sense stationary random process with variance  and mean  and a covariance matrix

. Find the mean and variance and the autocorrelation function of the output .
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Part IV - Radar Detection

Chapter 12

12.1. Single Pulse with Known Parameters
In its simplest form, a radar signal can be represented by a single pulse comprising a sinu-

soid of known amplitude and phase. Consequently, a retuned signal will also comprise a sinu-
soid. Under the assumption of completely known signal parameters, a returned pulse from a
target has known amplitude and known phase with no random components; and the radar sig-
nal processor will attempt to maximize the probability of detection for a given probability of
false alarm. In this case, detection is referred to as coherent detection or coherent demodula-
tion. A radar system will declare detection with a certain probability of detection if the
received voltage signal envelope exceeds a pre-set threshold value. For this purpose, the radar
receiver is said to employ an envelope detector.

Figure 12.1 shows a simplified block diagram of a radar matched filter receiver followed by
a threshold decision logic. The signal at the input of the matched filter  is composed of the
target echo signal  and additive zero mean Gaussian noise (white noise is assumed in the
analysis presented in this chapter) random process , with variance . The input noise is
assumed to be spatially incoherent and uncorrelated with the signal. The matched filter
impulse response is , and its output is denoted by the signal , which was derived in
Chapter 4; it is given by

. Eq. (12.1)
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 Figure 12.1. Simplified matched filter receiver block diagram. 
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Recall that if  is a Gaussian random process, then so is , since  is a determinis-
tic signal; its only effect is a shift of the mean of the random process. Following the definition
of the Gaussian process developed in Section 11.6 of Chapter 11, one concludes that the signal

 is also a Gaussian random process, and over a coherent processing interval , two
hypotheses are considered, they are:

 when the signal  is made of noise only, and 

 when the signal is made of signal plus noise. 

More specifically, by following the analysis in Section 11.6.1 of Chapter 11, one gets

Eq. (12.2)

    Eq. (12.3)

where all vectors are of size  ( ), and  is the operating bandwidth of the
receiver. It follows that, 

Eq. (12.4)

where  is the noise covariance matrix. 

When the noise  is white, or it is band-limited white over the frequency band ,
then its power spectrum density is given by

Eq. (12.5)

where  is a constant. Analysis of the non-white noise case is left as an exercise. The condi-
tional probability for the  case was derived in Eq. (11.79) of Chapter 11; it is

. Eq. (12.6)

Alternatively, the conditional probability for  is identical to Eq. (12.6) except in this case,
one must replace  by . It follows that

 . Eq. (12.7)

As determined earlier, the statistics associated with the random process  over the inter-
val  is Gaussian. In general, a Gaussian pdf function is given by

Eq. (12.8)

where  is the variance and  is the mean value. It follows (the proof is left as an exercise
(see Problem 12.1) that 

Eq. (12.9)
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Eq. (12.10)

Eq. (12.11)

Eq. (12.12)

where  is the signal’s energy. 

Assuming the  hypothesis, then the probability of a false  alarm is computed from Eq.
(12.8) when the signal  exceeds a set threshold value . More specifically,

. Eq. (12.13)

Substituting the variance as computed in Eq. (12.10) into Eq. (12.13) yields,

. Eq. (12.14)

Making the change of variable  yields

. Eq. (12.15)

Multiplying and dividing Eq. (12.15) by 2 yields

  Eq. (12.16)

where  is the complimentary error function defined by

. Eq. (12.17)

The error function  is related to the complimentary error function using the relation

. Eq. (12.18)
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Both  and  are intrinsic MATLAB functions found within the Signal Processing Tool-
box. Using similar analysis, one can derive the probability of detection as

. Eq. (12.19)

The derivation of Eq. (12.19) is left as an exercise (see Problem 12.2).

Table 12.1 gives samples of the single pulse SNR corresponding to few values of  and
, using Eq. (12.19). For example, if  and , then the minimum sin-

gle pulse SNR required to accomplish this combination of  and  is .

 

12.2. Single Pulse with Known Amplitude and Unknown Phase
In this case, the retuned radar signal comprises a sinusoid of a deterministic amplitude and

random phase whose pdf is uniform over the interval . The output of the matched filter
receiver that employs an envelope detector is denoted by  (see Fig. 12.2), and it can be
written as a bandpass random process as

Eq. (12.20)

TABLE 12.1. Single Pulse SNR (dB) 

Pfa

PD 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12

.1 4.00 6.19 7.85 8.95 9.94 10.44 11.12 11.62 12.16 12.65

.2 5.57 7.35 8.75 9.81 10.50 11.19 11.87 12.31 12.85 13.25

.3 6.75 8.25 9.50 10.44 11.10 11.75 12.37 12.81 13.25 13.65

.4 7.87 8.85 10.18 10.87 11.56 12.18 12.75 13.25 13.65 14.00

.5 8.44 9.45 10.62 11.25 11.95 12.60 13.11 13.52 14.00 14.35

.6 8.75 9.95 11.00 11.75 12.37 12.88 13.50 13.87 14.25 14.62

.7 9.56 10.50 11.50 12.31 12.75 13.31 13.87 14.20 14.59 14.95

.8 10.18 11.12 12.05 12.62 13.25 13.75 14.25 14.55 14.87 15.25

.9 10.95 11.85 12.65 13.31 13.85 14.25 14.62 15.00 15.45 15.75

.95 11.50 12.40 13.12 13.65 14.25 14.64 15.10 15.45 15.75 16.12

.98 12.18 13.00 13.62 14.25 14.62 15.12 15.47 15.85 16.25 16.50

.99 12.62 13.37 14.05 14.50 15.00 15.38 15.75 16.12 16.47 16.75

.995 12.85 13.65 14.31 14.75 15.25 15.71 16.06 16.37 16.65 17.00

.998 13.31 14.05 14.62 15.06 15.53 16.05 16.37 16.7 16.89 17.25

.999 13.62 14.25 14.88 15.25 15.85 16.13 16.50 16.85 17.12 17.44

.9995 13.84 14.50 15.06 15.55 15.99 16.35 16.70 16.98 17.35 17.55

.9999 14.38 14.94 15.44 16.12 16.50 16.87 17.12 17.35 17.62 17.87
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Eq. (12.21)

where  is the radar operating frequency,  is the envelope of , the phase is
, and the subscripts , and , respectively, refer to the in-phase and

quadrature components. A target is detected when  exceeds the threshold value , where
the decision hypotheses are

. Eq. (12.22)

The case when the noise subtracts from the signal (while a target is present) to make 
smaller than the threshold is called a miss. The matched filter output is a complex random vari-
able that comprises either noise alone or noise plus target returns (i.e., sine wave of amplitude

 and random phase). The quadrature components corresponding to the case of noise alone
are

 Eq. (12.23)

where the noise quadrature components  and  are uncorrelated zero mean lowpass
Gaussian noise with equal variances, . In the second case the quadrature components are

. Eq. (12.24)

 The joint probability density function (pdf) of the two random variables  is

, Eq. (12.25)

which can be written as

. Eq. (12.26)
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 Figure 12.2. Simplified matched filter receiver employing an envelope detector. 
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The pdfs of the random variables  and , respectively, represent the modulus and
phase of . The joint pdf for the two random variables  are derived using a simi-
lar approach to that developed in Chapter 11. More precisely,

Eq. (12.27)

where  is determinant of the matrix of derivatives  and referred to as the Jacobian. The
matrix of derivatives is given by 

. Eq. (12.28)

It follows that the Jacobian is 

. Eq. (12.29)

Substituting Eq. (12.25) and Eq. (12.29) into Eq. (12.27) and collecting terms yields

. Eq. (12.30)

The pdf for  alone is obtained by integrating Eq. (12.30) over . That is,

Eq. (12.31)

where the integral inside Eq. (12.31) is known as the modified Bessel function of zero order,

. Eq. (12.32)

Thus,

, Eq. (12.33)

which is the Rician probability density function. The case when  (noise alone) was
analyzed in Chapter 11 and the resulting pdf is a Rayleigh probability density function

. Eq. (12.34)

When  is very large, Eq. (12.33) becomes a Gaussian probability density function of
mean  and variance :

. Eq. (12.35)
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Figure 12.3 shows plots for the Rayleigh and Gaussian densities. The density function for the
random variable  is obtained from

. Eq. (12.36)

While the detailed derivation is left as an exercise, the result is 

Eq. (12.37)

where

. Eq. (12.38)

The function  can be found tabulated in most mathematical formula reference books.
Note that for the case of noise alone ( ), Eq. (12.37) collapses to a uniform pdf over the
interval . One excellent approximation for the function  is

. Eq. (12.39)

and for negative values of 

. Eq. (12.40)
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 Figure 12.3. Gaussian and Rayleigh probability densities.
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MATALAB Function “que_func.m” 

The MATLAB function “que_function.m” calculates Eq.(12.38) using the approximation in
Eqs. (12.39) and (12.40). Its syntax is as follows:

fofx = que_func(x).

12.2.1. Probability of False Alarm

The probability of false alarm  is defined as the probability that a sample  of the signal
 will exceed the threshold voltage  when noise alone is present in the radar:

Eq. (12.41)

. Eq. (12.42)

Figure 12.4 shows a plot of the normalized threshold versus the probability of false alarm. It
is evident from this figure that  is very sensitive to small changes in the threshold value.
The false alarm time  is related to the probability of false alarm by

Eq. (12.43)

where  represents the radar integration time, or the average time that the output of the enve-
lope detector will pass the threshold voltage. Since the radar operating bandwidth  is the
inverse of , by using the right-hand side of Eq. (12.41) and Eq. (12.42), one can rewrite 
as 

Eq. (12.44)

Minimizing  means increasing the threshold value, and as a result, the radar maximum
detection range is decreased. The choice of an acceptable value for  becomes a compromise
depending on the radar mode of operation. 

The false alarm number is defined as

. Eq. (12.45)

Other slightly different definitions for the false alarm number exist in the literature, causing a
source of confusion for many non-expert readers. Other than the definition in Eq. (12.45), the
most commonly used definition for the false alarm number is the one introduced by Marcum
(1960). Marcum defines the false alarm number as the reciprocal of . In this text, the defi-
nition given in Eq. (12.45) is always assumed. Hence, a clear distinction is made between Mar-
cum’s definition of the false alarm number and the definition in Eq. (12.45). 
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12.2.2. Probability of Detection
The probability of detection  is the probability that a sample  of  will exceed the

threshold voltage in the case of noise plus signal,

. Eq. (12.46)

Assuming that the radar signal is a sinusoid of amplitude  (completely known), then its power
is . Now, by using  (single-pulse SNR) and ,
then Eq. (12.46) can be rewritten as

Eq. (12.47)

where

. Eq. (12.48)
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 Figure 12.4. Normalized detection threshold versus probability of false alarm.
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 is called Marcum’s Q-function. When  is small and  is relatively large so that the
threshold is also large, Eq. (12.47) can be approximated by

. Eq. (12.49)

 is given by Eq. (12.38). Many approximations for Eq. (12.47) can be found throughout
the literature. One very accurate approximation presented by North (1963) is given by

Eq. (12.50)

where the complementary error function was defined in Eq. (12.17).

The integral given in Eq. (12.47) is complicated and can be computed using numerical inte-
gration techniques. Parl1 developed an excellent algorithm to numerically compute this inte-
gral. It is summarized as follows:

Eq. (12.51)

 Eq. (12.52)

Eq. (12.53)

Eq. (12.54)

Eq. (12.55)

. Eq. (12.56)

, , and . The recursive Eq. (12.51) through Eq. (12.56) are com-
puted continuously until  for values of . The accuracy of the algorithm is
enhanced as the value of  is increased. 

MATLAB Function “marcumsq.m”

The MATLAB function “marcumsq.m” implements Parl’s algorithm to calculate the proba-
bility of detection defined in Eq. (12.47). The syntax is as follows:

Pd = marcumsq (a, b)

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans. Information Theory, 
Vol. IT-26, January 1980, pp. 121-124.
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where 

Figure 12.5 shows plots of the probability of detection, , versus the single pulse SNR, with
the  as a parameter using this MATLAB function. This figure can be reproduced using
MATLAB program “Fig12_5.m,” listed in Appendix 12-A.

Symbol Description Units Status

a dB input

b none input

Pd signal pulse probability of detection none output

A

2– Pfaln

PD
Pfa

 Figure 12.5. Probability of detection versus single pulse SNR, for several values of .Pfa
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Problems
12.1. Prove the results given in Eqs. (12.9) through (12.12). 

12.2. Derive Eq. (12.19).

12.3. Consider the matched filter receiver shown in Fig. 12.1. Develop expressions for the
single pulse of known parameters probability of detection  and probability of false alarm

  

12.4. In the case of noise alone, the quadrature components of a radar return are indepen-
dent Gaussian random variables with zero mean and variance . Assume that the radar pro-
cessing consists of envelope detection followed by threshold decision. (a) Write an expression
for the pdf of the envelope; (b) determine the threshold  as a function of  that ensures a
probability of false alarm .

12.5. A pulsed radar has the following specifications: time of false alarm ,
probability of detection , operating bandwidth . (a) What is the proba-
bility of false alarm ? (b) What is the single pulse SNR? 

12.6. Show that when computing the probability of detection at the output of an envelope
detector, it is possible to use Gaussian probability approximation when the SNR is very large.

12.7. A radar system uses a threshold detection criterion. The probability of false alarm is
. (a) What must be the average SNR at the input of a linear detector so that the

probability of miss is ? Assume a large SNR approximation. (b) Write an expres-
sion for the pdf at the output of the envelope detector.

12.8. An X-band radar has the following specifications: received peak power ,
probability of detection , time of false alarm , pulse width ,
operating bandwidth , operating frequency , and detection range

. Assume single pulse processing. (a) Compute the probability of false alarm
. (b) Determine the SNR at the output of the matched filter. (c) At what SNR would the

probability of detection drop to  (  does not change)? (d) What is the increase in range
that corresponds to this drop in the probability of detection?

12.9. Using the equation 

.

calculate  when  and . Perform the integration numerically.
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Appendix 12-A: Chapter 12 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “que_func.m” Listing
function fofx = que_func(x)
% This function computes the value of the Q-function
% It uses the approximation in Eqs. (12.39) and (12.40)
if (x >= 0) 
    denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else
   denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
   fofx = 1.0 - value;
end

MATLAB Function “marcumsq.m” Listing 
function PD = marcumsq (a,b)
% This function uses Parl's method to compute PD
% Inputs
    % a    == sqrt(2.0 * 10^(.1*snr))
    % b    == sqrt(-2.0 * log(10^(-nfa)));
%%Output
    % PD  == single pulse probability of detection
if (a < b)
   alphan0 = 1.0;
   dn = a ./ b;
else
   alphan0 = 0.;
   dn = b ./ a;
end
alphan_1 = 0.;
betan0 = 0.5;
betan_1 = 0.;
D1 = dn;
n = 0;
ratio = 2.0 ./ (a .* b);
r1 = 0.0;
betan = 0.0;
alphan = 0.0;
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while betan < 1000.,
   n = n + 1;
   alphan = dn + ratio .* n .* alphan0 + alphan_1;
   betan = 1.0 + ratio .* n .* betan0 + betan_1;
   alphan_1 = alphan0;
   alphan0 = alphan;
   betan_1 = betan0;
   betan0 = betan;
   dn = dn .* D1;
end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b).^2 / 2.0);
if ( a >= b)
   PD = 1.0 - PD;
end
return

MATLAB Program “Fig12_5.m” Listing
% This program is used to produce Fig. 12.5
close all
clear all
for nfa = 6:2:12
   b = sqrt(-2.0 * log(10^(-nfa)));
   index = 0;
   hold on
   for snr = 2:.1:18
      index = index +1;
      a = sqrt(2.0 * 10^(.1*snr));
      pro(index) = marcumsq(a,b);
   end
   x = 2:.1:18;
   set(gca,'ytick',[.1 .2 .3 .4 .5 .6  .7 .75 .8 .85 .9 .95 .9999])
   set(gca,'xtick',[2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])
    plot(x, pro,'k');
end
hold off
xlabel ('\bfSingle pulse SNR in dB'); ylabel ('\bfProbability of detection')
grid on
gtext('\bfP_f_a=10^-^6','rotation',65)
gtext('\bfP_f_a=10^-^8','rotation', 68)
gtext('\bfP_f_a=10^-^1^0','rotation', 70)
gtext('\bfP_f_a=10^-^1^2','rotation', 72)
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Part IV - Radar Detection

Chapter 13

13.1. Introduction
In the previous chapter target detection was introduced in the context of single pulse detec-

tion with completely known (i.e., deterministic) amplitude and phase in one case, and known
amplitude with random phase in another. The underlying assumption was that radar targets
were made of non-varying (non-fluctuating) scatterers. However, in practice that it is rarely the
case. First, one would expect the radar to receive multiple returns (pulses) from any given tar-
get in its field of view. Furthermore, real-world targets will fluctuate over the duration of a sin-
gle pulse or from pulse to pulse. This chapter extends the analysis of Chapter 12 to account for
target fluctuation as well as for target detection where multiple returned pulses are taken into
consideration. Multiple returned pulses can be integrated (combined) coherently or non-coher-
ently. The process of combining radar returns from many pulses is called radar pulse integra-
tion. Pulse integration can be performed on the quadrature components prior to the envelope
detector. This is called coherent integration or predetection integration. Coherent integration
preserves the phase relationship between the received pulses. Thus a buildup in the signal
amplitude is expected. Alternatively, pulse integration performed after the envelope detector
(where the phase relation is lost) is called noncoherent or post-detection integration, and a
buildup in the signal amplitude is guaranteed. 

13.2. Pulse Integration
Combining the returns from all pulses returned by a given target during a single scan is very

likely to increase the radar sensitivity (i.e., SNR). The number of returned pulses from a given
target depends on the antenna scan rate, the antenna beamwidth, and the radar PRF. More pre-
cisely, the number of pulses returned from a given target is given by

Eq. (13.1)

where  is the azimuth antenna beamwidth,  is the scan time, and  is the radar PRF. The
number of reflected pulses may also be expressed as 

 Eq. (13.2)

nP
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where  is the antenna scan rate in degrees per second. Note that when using Eq. (13.1),
 is expressed in radians, while when using Eq. (13.2), it is expressed in degrees. As an

example, consider a radar with an azimuth antenna beamwidth , antenna scan rate
 (antenna scan time, ), and a PRF . Using either

Eq. (13.1) or Eq. (13.2) yields  pulses. 

As it was described in Chapter 2, pulse integration will very likely improve the receiver
SNR. Nonetheless, caution should be exercised when attempting to account for how much
SNR is attained through pulse integration. This is true for the following reasons: First, during a
antenna scan, a given target will not always be located at the center of the radar beam (i.e.,
have maximum gain). In fact, during a scan, a target will first enter the antenna beam at the
3dB point, reach maximum gain, and finally leave the beam at the 3dB point again. Thus, the
returns do not have the same amplitude even though the target RCS may be constant and all
other factors that may introduce signal loss remain the same. 

Other factors that may introduce further variation to the amplitude of the returned pulses
include target RCS and propagation path fluctuations. Additionally, when the radar employs a
very fast scan rate, an additional loss term is introduced due to the motion of the beam between
transmission and reception. This is referred to as scan loss. A distinction should be made
between scan loss due to a rotating antenna (which is described here) and the term scan loss
that is normally associated with phased array antennas (which takes on a different meaning in
that context).

Finally, since coherent integration utilizes the phase information from all integrated pulses, it
is critical that any phase variation between all integrated pulses be known with a great level of
confidence. Consequently, target dynamics (such as target range, range rate, tumble rate, RCS
fluctuation) must be estimated or computed accurately so that coherent integration can be
meaningful. In fact, if a radar coherently integrates pulses from targets without proper knowl-
edge of the target dynamics, it suffers a loss in SNR rather than the expected SNR buildup.
Knowledge of target dynamics is not as critical when employing noncoherent integration;
nonetheless, target range rate must be estimated so that only the returns from a given target
within a specific range bin are integrated. In other words, one must avoid range walk (i.e., hav-
ing a target cross between adjacent range bins during a single scan).

A comprehensive analysis of pulse integration should also take into account issues such as
the probability of detection , probability of false alarm , the target statistical fluctuation
model, and the noise or interference of statistical models. This is the subject of the rest of this
chapter.

13.2.1. Coherent Integration
In coherent integration, and when a perfect integrator is used (100% efficiency) to integrate
 pulses, the SNR is improved by the same factor. Otherwise, integration loss occurs, which

is always the case for noncoherent integration. Coherent integration loss occurs when the inte-
gration process is not optimum. This could be due to target fluctuation, instability in the radar
local oscillator, or propagation path changes. 

Denote the single pulse SNR required to produce a given probability of detection as
. The SNR resulting from coherently integrating  pulses is then given by 

. Eq. (13.3)

·
scan

a

a 3=
·

scan 45 sec= Tsc 8sec= fr 300Hz=
nP 20=

PD Pfa

nP

SNR 1 nP

SNR CI nP SNR 1=
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Coherent integration cannot be applied over a long interval of time, particularly if the target
RCS is varying rapidly. If the target radial velocity is known and no acceleration is assumed,
the maximum coherent integration time is limited to 

Eq. (13.4)

where  is the radar wavelength and  is the target radial acceleration. Coherent integration
time can be extended if the target radial acceleration can be compensated for by the radar. 

In order to demonstrate the improvement in the SNR using coherent integration, consider the
case where the radar return signal contains both signal plus additive noise. The  pulse is

 Eq. (13.5)

where  is the radar signal return of interest and  is white uncorrelated additive noise
signal with variance . Coherent integration of  pulses yields

. Eq. (13.6)

The total noise power in  is equal to the variance. More precisely,

 Eq. (13.7)

where  is the expected value operator. It follows that

Eq. (13.8)

where  is the single pulse noise power and  is equal to zero for  and unity for
. Observation of Eqs. (13.6) and (13.8) indicates that the desired signal power after

coherent integration is unchanged, while the noise power is reduced by the factor . Thus,
the SNR after coherent integration is improved by . 

13.2.2. Noncoherent Integration

When the phase of the integrated pulses is not known, so that coherent integration is no lon-
ger possible, another form of pulse integration is done. In this case, pulse integration is per-
formed by adding (integrating) the individual pulses’ envelopes or the square of their
envelopes. Thus, the term noncoherent integration is adopted. A block diagram of a radar
receiver utilizing noncoherent integration is illustrated in Fig. 13.1. 

The performance difference (measured in SNR) between the linear envelope detector and the
quadratic (square law) detector is practically negligible. Robertson (1967) showed that this dif-
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ference is typically less than ; he showed that the performance difference is higher than
 only for cases where  and . Both of these conditions are of no prac-

tical significance in radar applications. It is much easier to analyze and implement the square
law detector in real hardware than is the case for the envelope detector. Therefore, most
authors make no distinction between the type of detector used when referring to noncoherent
integration, and the square law detector is almost always assumed. The analysis presented in
this book will always assume, unless indicated otherwise, noncoherent integration using the
square law detector. 

13.2.3. Improvement Factor and Integration Loss

Noncoherent integration is less efficient than coherent integration. Actually, the noncoherent
integration gain is always smaller than the number of noncoherently integrated pulses. This
loss in integration is referred to as post-detection or square-law detector loss.

Define  as the SNR required to achieve a specific  given a particular  when
 pulses are integrated noncoherently. Also denote the single pulse SNR as . It fol-

lows that 

Eq. (13.9)

where  is called the integration improvement factor. An empirically derived expression
for the improvement factor that is accurate within  is reported in Peebles (1998) as

. Eq. (13.10)

The integration loss in dB is defined as 

. Eq. (13.11)

MATLAB Function “impmrov_fact.m”

The function “improv_fac.m” calculates the improvement factor using Eq. (13.10). The syn-
tax is as follows:

[impr_of_np] = improv_fac (np, pfa, pd)

0.2dB
0.2dB nP 100 PD 0.01

From Antenna
and Low Noise Matched

Filter

Envelope

Threshold vT

Threshold
Detectorv tAmp.

 Figure 13.1. Simplified block diagram of a radar detector when noncoherent 
integration is used. 

r t z t
Single Pulse 

   OR
Square Law

Detector
Integration

SNR NCI PD Pfa
nP SNR 1

SNR NCI SNR 1 I nP=

I nP
0.8dB

I nP dB 6.79 1 0.253PD+ 1
1 Pfalog

46.6
---------------------------+ nP

1 0.140 nPlog 0.018310 nPlog 2+–

log=

LNCI dB 10 nPlog I nP dB–=



Pulse Integration 437                                                                                                                                                                                                                                                                         

where

Figure 13.2 shows plots of the improvement factor versus the number of integrated pulses
using different combinations of  and . The top part of Fig. 13.2 shows plots of the inte-
gration improvement factor as a function of the number of integrated pulses with  and 
as parameters using Eq. (13.10). While, the lower part of Fig. 13.2 shows plots of the corre-
sponding integration loss versus  with  and  as parameters. This figure can be repro-
duced using the MATLAB program “Fig13_2.m,” listed in Appendix 13-B. 

Symbol Description Units Status

np number of integrated pulses none input

pfa probability of false alarms none input

pd probability of detection none input

impr_of_np improvement factor output dB

PD Pfa
PD Pfa

nP PD Pfa

 Figure 13.2. Typical plots for the improvement factor and integration loss versus 
number of noncoherently integrated pulses.
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13.3. Target Fluctuation: The Chi-Square Family of Targets 
Target detection utilizing the square law detector was first analyzed by Marcum1, where he

assumed a constant RCS (nonfluctuating target). This work was extended by Swerling2 to four
distinct cases of target RCS fluctuation. These cases have come to be known as Swerling mod-
els. They are Swerling I, Swerling II, Swerling III, and Swerling IV. The constant RCS case
analyzed by Marcum is widely known as Swerling 0 or equivalently as Swerling V. Target
fluctuation introduces an additional loss factor in the SNR as compared to the case where fluc-
tuation is not present, given the same  and . 

Swerling V targets have constant amplitude over one antenna scan or observation interval;
however, a Swerling I target amplitude varies independently from scan to scan according to a
chi-square probability density function with two degrees of freedom. The amplitude of Swer-
ling II targets fluctuates independently from pulse to pulse according to a chi-square probabil-
ity density function with two degrees of freedom. 

Target fluctuation associated with a Swerling III model is from scan to scan according to a
chi-square probability density function with four degrees of freedom. Finally, the fluctuation of
Swerling IV targets is from pulse to pulse according to a chi-square probability density func-
tion with four degrees of freedom. 

Swerling showed that the statistics associated with Swerling I and II models apply to targets
consisting of many small scatterers of comparable RCS values, while the statistics associated
with Swerling III and IV models apply to targets consisting of one large RCS scatterer and
many small equal RCS scatterers. Noncoherent integration can be applied to all four Swerling
models; however, coherent integration cannot be used when the target fluctuation is either
Swerling II or Swerling IV. This is because the target amplitude decorrelates from pulse to
pulse (fast fluctuation) for Swerling II and IV models, and thus phase coherency cannot be
maintained. 

The chi-square pdf with  degrees of freedom can be written as

Eq. (13.12)

where  is the standard deviation for the RCS value. Using this equation, the pdf associated
with Swerling I and II targets can be obtained by letting , which yields a Rayleigh pdf.
More precisely, 

. Eq. (13.13)

Letting  yields the pdf for Swerling III and IV type targets, 

. Eq. (13.14)

1. Marcum, J. I., A Statistical Theory of Target Detection by Pulsed Radar, IRE Transactions on Infor-
mation Theory, Vol IT-6, pp. 59-267, April 1960.

2. Swerling, P., Probability of Detection for Fluctuating Targets, IRE Transactions on Information The-
ory, Vol IT-6, pp. 269-308, April 1960.
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13.4. Probability of False Alarm Formulation for a Square Law
Detector

Computation of the general formula for the probability of false alarm  and subsequently
the rest of square law detection theory requires knowledge and a good understating of the
incomplete Gamma function. Hence, those readers who are not familiar with this function are
advised to read Appendix 13-A before proceeding with the rest of this chapter. 

 DiFranco and Rubin1 derived a general form relating the threshold and  for any number
of pulses when noncoherent integration is used. The square law detector under consideration is
shown in Fig. 13.3. There are  pulses integrated noncoherently and the noise power
(variance) is .

The complex envelope in terms of the quadrature components is given by

, Eq. (13.15)

thus the square of the complex envelope is

. Eq. (13.16)

The samples  are computed from the samples of  evaluated at
. It follows that

. Eq. (13.17)

The random variable  is the sum of  squares of random variables, each of which is a
Gaussian random variable with variance . Thus, using the analysis developed in Chapter 3,
the pdf for the random variable  is given by

. Eq. (13.18)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection, Artech House, Norwood, MA 1980.
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Consequently, the probability of false alarm given a threshold value  is

. Eq. (13.19)

and using analysis provided in Appendix 13-A yields

. Eq. (13.20)

Using the algebraic expression for the incomplete Gamma function, Eq. (13.20) can be written
as

. Eq. (13.21)

The threshold value  can then be approximated by the recursive formula used in the New-
ton-Raphson method. More precisely,

Eq. (13.22)

The iteration is terminated when . The functions  and 
are 

Eq. (13.23)

. Eq. (13.24)

The initial value for the recursion is

. Eq. (13.25)

MATLAB Function “threshold.m” 

The function “threshold.m” calculates the threshold value given the algorithm described in
this section. The syntax is as follows:

[pfa, vt] = threshold (nfa, np)

where

Symbol Description Units Status

nfa number of false alarm none input

np number of pulses none input

pfa probability of alarm none output

vt threshold value none output
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Figure 13.4 shows plots of the threshold value versus the number of integrated pulses for
several values of ; remember that . This figure can be reproduced using the
following MATLAB program, “Fig13_4.m,” listed in Appendix 13-B. 

13.4.1. Square Law Detection   

The pdf for the linear envelope  was derived in Chapter 12. Define a new dimensionless
variable  as

Eq. (13.26)

where the subscript n denotes the  pulse. Also define 

. Eq. (13.27)

 is the noise variance. It follows that the pdf for the new variable is

. Eq. (13.28)

The output of a square law detector for the  pulse is proportional to the square of its
input. Thus, it is convenient to define a new change variable,

. Eq. (13.29)

The pdf for the variable at the output of the square law detector is given by

nfa Pfa 2ln nfa
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. Eq. (13.30)

Noncoherent integration of  pulses is implemented as 

. Eq. (13.31)

Again, . Since the random variables  are independent, the pdf for the variable  is

. Eq. (13.32)

The operator  symbolically indicates convolution. The characteristic functions for the indi-
vidual pdfs can then be used to compute the joint pdf for Eq. (13.32). The result is 

. Eq. (13.33)

 is the modified Bessel function of order . Substituting Eq. (13.27) into (13.33)
yields

. Eq. (13.34)

When target fluctuation is not present (referred to as Swerling 0 or Swerling V target), the
probability of detection is obtained by integrating  from the threshold value to infinity.
The probability of false alarm is obtained by letting  be zero and integrating the pdf from
the threshold value to infinity. More specifically,

, Eq. (13.35)

which can be rewritten as

. Eq. (13.36)

Alternatively, when target fluctuation is present, the pdf is calculated using the conditional
probability density function of Eq. (13.35) with respect to the SNR value of the target fluctua-
tion type. In general, given a fluctuating target with , where the superscript indicates
fluctuation, the expression for the probability of detection is 

. Eq. (13.37)

fZn
xn f yn

ynd
znd

------- zn
p

2
-------+–exp I0 2zn p= =

np

z 1
2
---yn

2

n 1=

nP

=

nP 2 yn z

f z f y1 f y2 f ynp
=

fZ z 2z
nP p
-------------

nP 1– 2
z– 1

2
---nP p–exp InP 1– 2nPz p=

InP 1– nP 1–

fZ z z
nPSNR
-----------------

nP 1– 2
e

z– nPSNR–
InP 1– 2 nPzSNR=

fZ z
p

PD SNR

z
nPSNR
-----------------

nP 1– 2
e

z– nPSNR–
InP 1– 2 nPzSNR zd

vT

=

PD SNR
e

nPSNR– nPSNR k

k!
------------------------

k 0=

e
vT–

vT
j

j!
-----------------

j 0=

nP 1– k+

=

SNRF

PD
SNRF

PD SNR
fZ zF SNRF zd

0

PD SNR

zF

nPSNRF
--------------------

nP 1– 2

e
zF– nPSNRF–

InP 1– 2 nPzFSNRF zd

0

= =



Probability of Detection Calculation 443                                                                                                                                                                                                                                                                         

Remember that target fluctuation introduces an additional loss term in the SNR. It follows
that for the same  given the same  and the same , . One way to calcu-
late this additional SNR is to first compute the required SNR given no fluctuation, then add to
it the amount of target fluctuation loss to get the required value for . How to calculate
this fluctuation loss will be addressed later on in this chapter. Meanwhile, hereinafter, the
superscript  will be dropped and it will always be assumed.

13.5. Probability of Detection Calculation
Marcum defined the probability of false alarm for the case when  as 

. Eq. (13.38)

The single pulse probability of detection for nonfluctuating targets was derived in Chapter 12.
When , the probability of detection is computed using the Gram-Charlier series. In this
case, the probability of detection is 

Eq. (13.39)

where the constants , , and  are the Gram-Charlier series coefficients, and the vari-
able  is 

. Eq. (13.40)

In general, values for , , , and  vary depending on the target fluctuation type.

13.5.1. Detection of Swerling 0 (Swerling V) Targets 

For Swerling 0 (Swerling V) target fluctuations, the probability of detection is calculated
using Eq. (13.39). In this case, the Gram-Charlier series coefficients are

Eq. (13.41)

Eq. (13.42)

Eq. (13.43)

. Eq. (13.44)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for Swerling 0 tar-
gets. The syntax is as follows:

[pd] = pd_swerling5 (input1, indicator, np, snr)
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where

Figure 13.5 shows a plot for the probability of detection versus SNR for cases .
Note that it requires less SNR, with ten pulses integrated noncoherently, to achieve the same
probability of detection as in the case of a single pulse. Hence, for any given , the SNR
improvement can be read from the plot. Equivalently, using the function “improv_fac.m” leads
to about the same result. 

For example, when , the function “improv_fac.m” gives an SNR improvement
factor of . Figure 13.5 shows that the ten pulse SNR is about . There-
fore, the single pulse SNR is about , which can be read from the figure. This figure can
be reproduced using MATLAB program “Fig13_5.m,” listed in Appendix 13-B.

Symbol Description Units Status

input1 Pfa or nfa none input

indicator 1 when input1 = Pfa

2 when input1 = nfa

none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

SNR

np 1 10=

PD

PD 0.8=
I 10 8.55dB 6.03dB

14.5dB

 Figure 13.5. Probability of detection versus SNR, , and 
noncoherent integration; Swerling 0.

Pfa 10 9–=

8.55dB
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13.5.2. Detection of Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets was derived by
Swerling. It is

Eq. (13.45)

Eq. (13.46)

MATLAB Function “pd_swerling1.m”

The function “pd_swerling1.m” calculates the probability of detection for Swerling I type
targets. The syntax is as follows:

[pd] = pd_swerling1 (nfa, np, snr) 

where

Figure 13.6 shows a plot of the probability of detection as a function of SNR for  and
 for both Swerling I and V (Swerling 0) type fluctuations. Note that it requires

more SNR, with fluctuation, to achieve the same  as in the case with no fluctuation. This
figure can be reproduced using the MATLAB program “Fig13_6.m,” listed in Appendix 13-B.
Figure 13.7 is similar to Fig. 13.6, except in this case  and . This figure can
be reproduced using the following MATLAB program, “Fig13_7.m,” listed in Appendix 13-B. 

13.5.3. Detection of Swerling II Targets

In the case of Swerling II targets, the probability of detection is given by

. Eq. (13.47)

For the case when  the probability of detection is computed using the Gram-Charlier
series. In this case,

Eq. (13.48)

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output
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 Figure 13.6. Probability of detection versus SNR, single pulse. .Pfa 10 9–=

 Figure 13.7. Probability of detection versus SNR. Swerling I and Swerling 0.
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Eq. (13.49)

. Eq. (13.50)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates  for Swerling II type targets. The syntax is as
follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

Figure 13.8 shows a plot of the probability of detection for Swerling 0, Swerling I, and
Swerling II with , where . Figure 13.9 is similar to Fig. 13.8 except in this
case . Both figures can be reproduced, respectively, using the MATLAB programs
“Fig13_8.m” and “Fig13_9.m,” listed in Appendix 13-B.

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

C4
1

4nP
---------=

nP 1 SNR+=

PD

SNR

nP 5= Pfa 10 7–=
nP 2=

 Figure 13.8. Probability of detection versus SNR. Swerling II, Swerling I, 
and Swerling 0.

 



448                                                                                   Radar Systems Analysis and Design Using MATLAB®

13.5.4. Detection of Swerling III Targets

The exact formulas, developed by Marcum, for the probability of detection for Swerling III
type targets when 

 Eq. (13.51)

For  the expression is

. Eq. (13.52)

MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates  for Swerling III type targets. The syntax is as
follows:

 Figure 13.9. Probability of detection versus SNR. Swerling II, Swerling I, 
and Swerling 0.
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[pd] = pd_swerling3 (nfa, np, snr) 

where

Figure 13.10 shows a plot of the probability of detection as a function of SNR for
, where . Figure 13.11 shows a plot of the probability of

detection for Swerling 0, Swerling I, Swerling II, and Swerling III with  and
. 

Notice that (see Fig. 13.11) as the target fluctuation becomes more rapid, as in the case of
Swerling I type targets, it requires more SNR to achieve the same probability of detection
when considering lesser fluctuating targets as in the case of Swerling 0, for example. Figures
13.10 and 13.11 can be reproduced, respectively, using the MATLAB programs “Fig13_10.m”
and “Fig13_11.m,” listed in Appendix 13-B.

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

SNR

nP 1 10 50 100= Pfa 10 9–=
nP 5=

Pfa 10 7–=

 Figure 13.10. Probability of detection versus SNR. Swerling III. .Pfa 10 9–=
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13.5.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for  is 

Eq. (13.53)

 . Eq. (13.54)

By using the recursive formula

, Eq. (13.55)

only  needs to be calculated using Eq. (13.54), and the rest of  are calculated from the fol-
lowing recursion:

Eq. (13.56)

Eq. (13.57)

 Figure 13.11. Probability of detection versus SNR. Swerling III, Swerling II, 
Swerling I, and Swerling 0.
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Eq. (13.58)

. Eq. (13.59)

For the case when , the Gram-Charlier series can be used to calculate the probability
of detection. In this case,

Eq. (13.60)

Eq. (13.61)

Eq. (13.62)

. Eq. (13.63)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates  for Swerling IV type targets. The syntax is as
follows:

[pd] = pd_swerling4 (nfa, np, snr)
where

Figure 13.12 shows plots of the probability of detection as a function of SNR for
, where . This figure can be reproduced using the MATLAB

program “Fig13_12.m,” listed in Appendix 13-B. 

13.6. Computation of the Fluctuation Loss 

The fluctuation loss, , can be viewed as the amount of additional SNR required to com-
pensate for the SNR loss due to target fluctuation, given a specific  value. Kanter1 devel-
oped an exact analysis for calculating the fluctuation loss. In this text, this author will take
advantage of the computational power of MATLAB and the MATLAB functions developed in
this text to numerically calculate the amount of fluctuation loss. 

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

1. Kanter, I., Exact Detection Probability for Partially Correlated Rayleigh Targets, IEEE Trans, AES-
22, pp. 184-196, March 1986.
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MATLAB Function “fluct.m”

To calculate the amount of fluctuation loss, the MATALB function “fluct.m” was developed.
Its syntax is as follows:

[SNR] = fluct(pd, pfa, np, sw_case)

where

For example, using the syntax 

[SNR0] = fluct(0.8, 1e6, 5, 0)

will calculate the SNR0 corresponding to a Swerling 0. If one would use this  in the func-
tion “pd_swerling5.m” with following syntax

[pd] = pd_swerling5 (1e6, 2, 5, SNR0),

Symbol Description Units Status

pd desired probability of detection none input

nfa desired number of false alarms none input

np number of pulses none input

sw_case 0, 1, 2, 3, or 4 depending on the 
desired Swerling case

none input

SNR Resulting SNR dB output

 Figure 13.12. Probability of detection versus SNR. Swerling IV. 
.Pfa 10 6–=

SNR
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the resulting  will be equal to . Similarly, if the following syntax is used

[SNR1] = fluct(0.8, 1e-6, 5, 1),

then the value SNR1 will be that of Swerling 1. Of course, if one would use this SNR1 value in
the function “pd_swerling1.m” with following syntax

[pd] = pd_swerling1(1e6, 5,0.8, SNR1),

the same  of  will be calculated. Therefore, the fluctuation loss for this case is equal to
SNR0 - SNR1. Figure 13.13 shows a plot for the additional SNR (or fluctuation loss) required
to achieve a certain probability of detection. This figure can be reproduced using MATLAB
program “Fig13_13.m,” listed in Appendix 13-B.

13.7.  Cumulative Probability of Detection
Denote the range at which the single pulse SNR is unity (0 dB) as , and refer to it as the

reference range. Then, for a specific radar, the single pulse SNR at  is defined by the radar
equation and is given by

. Eq. (13.64)

The single pulse SNR at any range  is 

PD 0.8

PD 0.8

 Figure 13.13. Fluctuation loss versus probability of detection.
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. Eq. (13.65)

Dividing Eq. (13.165) by Eq. (13.64) yields

. Eq. (13.66)

Therefore, if the range  is known, then the SNR at any other range  is 

. Eq. (13.67)

Also, define the range  as the range at which . Normally, the radar unam-
biguous range  is set equal to .

The cumulative probability of detection refers to detecting the target at least once by the time
it is at range . More precisely, consider a target closing on a scanning radar, where the target
is illuminated only during a scan (frame). As the target gets closer to the radar, its probability
of detection increases since the SNR is increased. Suppose that the probability of detection
during the  frame is ; then, the cumulative probability of detecting the target at least
once during the  frame (see Fig. 13.14) is given by

. Eq. (13.68)

 is usually selected to be very small. Clearly, the probability of not detecting the target dur-
ing the  frame is . The probability of detection for the  frame, , is com-
puted as discussed in the previous section.

Example:

 A radar detects a closing target at , with probability of detection  equal to
. Assume . Compute and sketch the single look probability of detection as a

function of normalized range (with respect to ), over the interval . If
the range between two successive frames is , what is the cumulative probability of detec-
tion at ?

SNR
PtG

2 2

4 3kT0BFLR4
----------------------------------------=
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SNR dB 40
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Figure 13.14. Detecting a target in many frames.
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Solution:

From the function “marcumsq.m,” the SNR corresponding to  and  is
approximately 12dB. By using a similar analysis to that which led to Eq. (13.67), we can
express the SNR at any range  as

.

By using the function “marcumsq.m,” we can construct the following table:

where  is very small. A sketch of  versus normalized range is shown in the figure below.

The cumulative probability of detection is given in Eq. (13.68), where the probability of
detection of the first frame is selected to be very small. Thus, we can arbitrarily choose frame 1
to be at . Note that selecting a different starting point for frame 1 would have a
negligible effect on the cumulative probability (we only need  to be very small). Below is a
range listing for frames 1 through 9, where frame 9 corresponds to . 

 

R Km (SNR) dB

2 39.09 0.999

4 27.9 0.999

6 20.9 0.999

8 15.9 0.999

9 13.8 0.9

10 12.0 0.5

11 10.3 0.25

12 8.8 0.07

14 6.1 0.01

16 3.8

20 0.01

frame 1 2 3 4 5 6 7 8 9

range in Km 16 15 14 13 12 11 10 9 8

PD 0.5= Pfa 10 7–=

R

SNR R SNR 10 40 10
R
------log+ 52 40 Rlog–= =

PD

PD

R 10

PD

1

.5

 Cumulative probability of detection versus normalized range.

R 16Km=
PD1
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The cumulative probability of detection at 8Km is then

.

13.8.  Constant False Alarm Rate (CFAR)
The detection threshold is computed so that the radar receiver maintains a constant predeter-

mined probability of false alarm. The relationship between the threshold value  and the
probability of false alarm  was derived in Chapter 12, and for convenience is repeated here
as Eq. (13.69):

. Eq. (13.69)

If the noise power  is constant, then a fixed threshold can satisfy Eq. (13.69). However, due
to many reasons, this condition is rarely true. Thus, in order to maintain a constant probability
of false alarm, the threshold value must be continuously updated based on the estimates of the
noise variance. The process of continuously changing the threshold value to maintain a con-
stant probability of false alarm is known as the Constant False Alarm Rate (CFAR). 

Three different types of CFAR processors are primarily used. They are adaptive threshold
CFAR, nonparametric CFAR, and nonlinear receiver techniques. Adaptive CFAR assumes that
the interference distribution is known and approximates the unknown parameters associated
with these distributions. Nonparametric CFAR processors tend to accommodate unknown
interference distributions. Nonlinear receiver techniques attempt to normalize the root-mean-
square amplitude of the interference. In this book, only the analog Cell-Averaging CFAR (CA-
CFAR) technique is examined. The analysis presented in this section closely follows Urkow-
itz1.

13.8.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 13.15. Cell averaging is performed on a series of
range and/or Doppler bins (cells). The echo return for each pulse is detected by a square-law
detector. In analog implementation, these cells are obtained from a tapped delay line. The Cell
Under Test (CUT) is the central cell. The immediate neighbors of the CUT are excluded from
the averaging process due to a possible spillover from the CUT. The output of  reference
cells (  on each side of the CUT) is averaged. The threshold value is obtained by multiply-
ing the averaged estimate from all reference cells by a constant  (used for scaling). A detec-
tion is declared in the CUT if

. Eq. (13.70)

CA-CFAR assumes that the target of interest is in the CUT and all reference cells contain
zero-mean independent Gaussian noise of variance . Therefore, the output of the reference
cells, , represents a random variable with gamma probability density function (special case
of the chi-square) with  degrees of freedom. In this case, the gamma pdf is 

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed Martin Co., 
Moorestown, NJ.
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. Eq. (13.71)

 The probability of false alarm corresponding to a fixed threshold was derived earlier. When
CA-CFAR is implemented, then the probability of false alarm can be derived from the condi-
tional false alarm probability, which is averaged over all possible values of the threshold in
order to achieve an unconditional false alarm probability. The conditional probability of false
alarm when  can be written as 

. Eq. (13.72)

It follows that the unconditional probability of false alarm is

Eq. (13.73)

where  is the pdf of the threshold, which except for the constant , is the same as that
defined in Eq. (13.71). Therefore,

. Eq. (13.74)

Performing the integration in Eq. (13.73) yields   

. Eq. (13.75)

Observation of Eq. (13.75) shows that the probability of false alarm is now independent of the
noise power, which is the objective of CFAR processing.

K0 K0Z
Z

Y1

M 2 M 2

reference 
 cells

reference 
 cellsCUT

guardguard
 cells  cells

input square-law
 detector

comparator

output

threshold

 Figure 13.15. Conventional CA-CFAR.
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13.8.2. Cell-Averaging CFAR with Noncoherent Integration

In practice, CFAR averaging is often implemented after noncoherent integration, as illus-
trated in Fig. 13.16. Now, the output of each reference cell is the sum of  squared envelopes.
It follows that the total number of summed reference samples is . The output  is also
the sum of  squared envelopes. When noise alone is present in the CUT,  is a random
variable whose pdf is a gamma distribution with  degrees of freedom. Additionally, the
summed output of the reference cells is the sum of  squared envelopes. Thus,  is also a
random variable which has a gamma pdf with  degrees of freedom.

The probability of false alarm is then equal to the probability that the ratio  exceeds the
threshold. More precisely,

. Eq. (13.76)

Equation (12.76) implies that one must first find the joint pdf for the ratio . However, this
can be avoided if  is first computed for a fixed threshold value , then averaged over all
possible values of the threshold. Therefore, let the conditional probability of false alarm when

 be . It follows that the unconditional false alarm probability is

Eq. (13.77)

where  is the pdf of the threshold. In view of this, the probability density function describ-
ing the random variable  is given by

. Eq. (13.78)
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 Figure 13.16. Conventional CA-CFAR with noncoherent integration. 
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It can be shown that in this case the probability of false alarm is independent of the noise
power and is given by

, Eq. (13.79)

which is identical to Eq. (13.75) when  and . 

13.9.  M-out-of-N Detection
A few sources in the literature refer to the M-out-of-N detection as binary integration and /

or as double threshold detection; nonetheless, M-out-of-N is the most commonly used name.
The basic idea behind the M-out-of-N detection technique is as follows: In any given resolution
cell (range, Doppler, or angle) the detection process is repeated N times, where the outcome of
each decision cycle is either a “detection” or “no detection,” hence the term binary is used in
the literature. For each decision cycle, the probability of detection and the probability of false
alarm are computed. The final decision criterion declares a target detection if M out of N deci-
sion cycles have resulted in a detection. Clearly, the decision criterion associated with this
technique follows a binomial distribution.

To elaborate further on this concept of detection, assume a non-fluctuating target whose sin-
gle trial probability of detection is  and its probability of false alarm is . Denote the total
probability of detection resulting from the M-out-of-N detection technique as . It follows
that after N independent trials of detection one gets

. Eq. (13.80)

Similarly, the probability of false alarm after the same number of trials is 

. Eq. (13.81)

For example, if the desired  is 0.99, then by using Eq. (13.80), one finds that a 
will accomplish the desired  after 2 trials (i.e., N=2); alternatively, when using a

, it will take 20 trials to reach the desired . Furthermore, Eq. (13.80) implicitly
indicates that as the number of trials increases so does , but this buildup in detection
probability is somewhat costly. That is true because as the number of trials is increased, the
overall probability of false alarm  is also increased. Obviously, a very undesirable result
(the proof is left as an exercise, see Problem 13.20). 

A slight modification to the M-out-of-N detection process that guarantees an increase or
buildup in  while simultaneously keeping  in check is as follows: 

1. A specific  value is chosen; typically it is a design constraint. 
2.  For each value , compute the corresponding  from Eq. (13.83).
3.  Using any of the techniques developed in this book to calculate the threshold value  so

that  is maintained, compute its corresponding SNR.
4.  Calculate  that corresponds to the SNR computed in step 3.
5.  Use Eq. (13.82) to compute the probability of detection , and from any of the tech-

niques developed in this book, compute the corresponding SNR so that the threshold value
computed in step 3 is maintained, therefore,  is also maintained. 
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6.  Repeat for each  to establish the specific combination of  (i.e., yielding ) so that
the SNR is minimized for a given . 

Following this modified approach,  and  are given by

Eq. (13.82)

Eq. (13.83)

where

. Eq. (13.84)

For small values of , Eq. (13.82) keeps the overall detection probability  to less than
or equal to . Alternatively, for larger values of , a quick buildup in the value of 
occurs. 

Selecting the specific combination of N and M that yields a desired  is typically a
design constraint. In any case, once the choice is made, one must take target fluctuating into
account. In this case, the optimal value for M is

 Eq. (13.85)

where  and  are constants that vary depending on the target fluctuation type, Table 13.1
shows their values corresponding to different Swerling targets. 

13.10. The Radar Equation Revisited
The radar equation developed in Chapter 2 assumed a constant target RCS and did not

account for integration loss. In this section, a more comprehensive form of the radar equation
is introduced. In this case, the radar equation is given by

(4.86)

Table 13.1. Parameters of Eq. (13.85)

Fluctuation Type Range of N

Swerling 0 0.8 -0.02 5-700
Swerling I 0.8 -0.02 6-700
Swerling II 0.91 -0.38 9-700
Swerling III 0.8 -0.02 6-700
Swerling IV 0.873 -0.27 10-700
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where  is the average transmitted power,  is the peak transmitted power,  is
the pulse width,  is PRF,  is the transmitting antenna gain,  is the receiving antenna
gain,  is the wavelength,  is the target cross section,  is the improvement factor,  is
the number of integrated pulses,  is Boltzman’s constant,  is 290 Kelvin,  is the system
noise figure,  is the receiver bandwidth,  is the total system losses including integration
loss,  is the loss due to target fluctuation, and  is the minimum single pulse SNR
required for detection. 

Assuming that the radar parameters such as power, antenna gain, wavelength, losses, band-
width, effective temperature, and noise figure are known, the steps one should follow to solve
for range are shown in Fig. 13.17. Note that both sides of the bottom half of Fig. 13.17 are
identical. Nevertheless, two paths are purposely shown so that a distinction between scintillat-
ing and nonfluctuating targets is made.
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Figure 13.17. Solving the radar equation.
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Problems
13.1. A pulsed radar has the following specifications: time of false alarm ,
probability of detection , operating bandwidth . (a) What is the proba-
bility of false alarm ? (b) What is the single pulse SNR? (c) Assuming noncoherent integra-
tion of 100 pulses, what is the SNR reduction so that  and  remain unchanged?
13.2. An L-band radar has the following specifications: operating frequency

, operating bandwidth , noise figure , system losses
, time of false alarm , detection range , probability

of detection , antenna gain , and target RCS . (a) Determine
the PRF , the pulse width , the peak power , the probability of false alarm , and the
minimum detectable signal level . (b) How can you reduce the transmitter power to
achieve the same performance when 10 pulses are integrated noncoherently? (c) If the radar
operates at a shorter range in the single pulse mode, find the new probability of detection when
the range decreases to .
13.3. A certain radar utilizes 10 pulses for noncoherent integration. The single pulse SNR
is  and the probability of miss is . (a) Compute the probability of false alarm

. (b) Find the threshold voltage .
13.4. (a) Show how you can use the radar equation to determine the PRF , the pulse
width , the peak power , the probability of false alarm , and the minimum detectable
signal level . Assume the following specifications: operating frequency ,
operating bandwidth , noise figure , system losses , time of
false alarm , detection range , probability of detection 
(three pulses). (b) If post-detection integration is assumed, determine the SNR.
13.5. Consider a scanning low PRF radar. The antenna half-power beam width is , and
the antenna scan rate is  per second. The pulse width is , and the PRF is

. (a) Compute the radar operating bandwidth. (b) Calculate the number of returned
pulses from each target illumination. (c) Compute the SNR improvement due to post-detection
integration (assume 100% efficiency). (d) Find the number of false alarms per minute for a
probability of false alarm .
13.6. Show that the detection probability for a SW 1&2 target is given by the equation

.

13.7. A certain radar has the following specifications: single pulse SNR corresponding to a
reference range  is . The probability of detection at this range is

. Assume a Swerling I type target. Use the radar equation to compute the required
pulse widths at ranges , and , so that the probability of detection
is maintained. 
13.8. Repeat Problem 13.8 for a Swerling IV type target.
13.9. Utilizing the MATLAB functions presented in this chapter, plot the actual value for
the improvement factor versus the number of integrated pulses. Pick three different values for
the probability of false alarm.
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13.10. A circularly scanning, fan beam radar has a rotation rate of 2 seconds per revolu-
tion. The azimuth beamwidth is 1.5 degrees and the radar uses a PRF of 12.5KHz. The radar
uses an unmodulated pulse with a width of 1.2 s and searches a range window that extends
from 15Km to 100Km. The range cells used during search are separated by one pulse width. It
is desired that the false alarm probability be set so that the radar experiences only one false
alarm every 2min. What is the required  for each range cell? What is the threshold-to-noise
ratio, in dB, needed to maintain that ?
13.11. The probability of recording a detection in a particular range-angle cell of the scan-
ning radar of Problem 13.11 is 0.7. What is the cumulative detection probability if the cell is
checked on three successive scans? If the false alarm probability for a certain range-angle cell
of the same radar is 10-6 what is the cumulative false alarm probability for that cell over three
scans?
13.12. A radar with a phased array antenna conducts a search using a 1500-beam search
raster. That is, it steps through 1500 beam positions that span a certain angular area. It trans-
mits one pulse per beam. The radar uses range gates separated by 10m. The output of each
range gate is sent to a bank of Doppler filters with a width of 1000Hz each. Thus, the signal
processor consists of a set of range gates with a bank of Doppler filters connected to each range
gate output. The output of the signal processor consists of a range-Doppler array of signals that
consists of MN elements where M is the number of range gates and N is the number of Dop-
pler filter outputs. During the particular search of interest, the detection processor covers a
range extent of 10Km and a Doppler extent of 25Km. The design specifications state that, in
this mode, the radar must have less than one false alarm every 10 scans through the search ras-
ter. What is the required  in each range-Doppler-beam cell needed to support this require-
ment?
13.13. A certain radar employs a noncoherent integrator that integrates 25 pulses. What
are the integrator gains, in dB, for a SW0, a SW1, a SW2, a SW3, and a SW4 target? Briefly
discuss how you arrived at each of your answers. If needed, assume that the radar is to operate
with a desired detection probability of 0.9. 
13.14. A certain radar has the following parameters: Peak power , total
losses , operating frequency , PRF , pulse width

, antenna beamwidth  and , noise figure , and scan
time . The radar can experience one false alarm per scan. (a) What is the probability
of false alarm? Assume that the radar searches a minimum range of 10Km to its maximum
unambiguous range. (b) Plot the detection range versus RCS in dBsm. The detection range is
defined as the range at which the single scan probability of detection is equal to 0.94. Generate
curves for Swerling I, II, III, and IV type targets. (c) Repeat part (b) above when noncoherent
integration is used.
13.15. A certain circularly scanning radar with a fan beam has a rotation rate of 3 seconds
per revolution. The azimuth beamwidth is 3 degrees, and the radar uses a PRI of 600 microsec-
onds. The radar pulse width is 2 microseconds and the radar searches a range window that
extends from 15Km to 100Km. It is desired that the false alarm rate not be higher than two false
alarms per revolution. What is the required probability of false alarm? What is the minimum
SNR so that the minimum probability of false alarm can be maintained?

Pfa
Pfa

Pfa

Pt 500KW=
L 12dB= fo 5.6GHZ= fr 2KHz=

0.5 s= az 2= el 7= F 6dB=
Tsc 2s=
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13.16. Write a MATLAB program to compute the CA-CFAR threshold value. Use similar
approach to that used in the case of a fixed threshold.
13.17. Develop a MATLAB program to calculate the cumulative probability of detection.
13.18. Derive Eq. (13.79).
13.19. The sum inside Eq. (13.79) presents a very formidable challenge. It can be, how-
ever, computed recursively with relative ease. Develop a recursive algorithm to calculate this
sum. 
13.20. Starting with Eq. (13.81), show that as N is increased so is the over all probability
of false alarm. More specifically, prove that .PFA NPfa
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Appendix 13-A The Incomplete Gamma Function
The Gamma Function

Define the Gamma function (not the incomplete Gamma function) of the variable  (gener-
ally complex) as

Eq. (13.87)

and when  is a positive integer, then

. Eq. (13.88)

One very useful and frequently used property is 

Eq. (13.89)

The Incomplete Gamma Function

The incomplete gamma function  used in this text is given by

. Eq. (13.90)

Another definition, which is often used in the literature, for the incomplete Gamma function is

. Eq. (13.91)

It follows that 

, Eq. (13.92)

which is the same as Eq. (13.80). Furthermore, for a positive integer , the incomplete Gamma
function can be represented by

. Eq. (13.93)

In order to relate  and , compute the following relation

. Eq. (13.94)

Applying the change of variables  and  yields
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, Eq. (13.95)

and if  is a positive integer then

. Eq. (13.96)

Using Eqs. (13.81) and (7.86) in Eq. (13.89) yields 

. Eq. (13.97)

Finally, the incomplete Gamma function can be written as

. Eq. (13.98)

The two limiting values for Eq. (13.91) are 

. Eq. (13.99)

Figure 13A.1 shows the incomplete gamma function for . This figure can be
reproduced using the MATLAB program “Fig13A_1.m” listed in Appendix 13-B, which uti-
lizes the built-in MATLAB function “gammainc.m.” 
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 Figure 13A.1. The incomplete Gamma function for four values of q.
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Appendix 13-B: Chapter 13 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “improv_fac.m” Listing
function impr_of_np = improv_fac (np, pfa, pd)
% This function computes the non-coherent integration improvement
% factor using the empirical formula defind in Eq. (13.10)
% Inputs
    % np     == number of pulses
    % pfa    == probability of false alaram
    % pd     == probability of detection
%% Output
    % impr_of_np    == improvement factor for np pulses
fact1 = 1.0 + log10( 1.0 / pfa) / 46.6;
fact2 = 6.79 .* (1.0 + 0.253 .* pd);
fact3 = 1.0 - 0.14 .* log10(np) + 0.0183 .* (log10(np)).^2;
impr_of_np = fact1 .* fact2 .* fact3 .* log10(np);
end

 MATLAB Program “Fig13_2.m” Listing
% This program is used to produce Fig. 13.2
% It uses the function "improv_fac". 
clc
clear all
close all
Pfa = [1e-2, 1e-6, 1e-8, 1e-10];
Pd = [.5 .8 .95 .99];
np = linspace(1,1000,10000);
I(1,:) = improv_fac (np, Pfa(1), Pd(1));
I(2,:) = improv_fac (np, Pfa(2), Pd(2));
I(3,:) = improv_fac (np, Pfa(3), Pd(3));
I(4,:) = improv_fac (np, Pfa(4), Pd(4));
index = [1 2 3 4];
L(1,:) = 10.*log10(np) - I(1,:);
L(2,:) = 10.*log10(np) - I(2,:);
L(3,:) = 10.*log10(np) - I(3,:);
L(4,:) = 10.*log10(np) - I(4,:);
subplot(2,1,2)
semilogx (np, L(1,:), 'k:', np, L(2,:), 'k-.', np, L(3,:), 'k-.', np, L(4,:), 'k','linewidth',1.5)
xlabel ('\bfNumber of pulses');
ylabel ('\bfIntegration loss in dB')
axis tight
grid
subplot(2,1,1)
semilogx (np, I(1,:), 'k:', np, I(2,:), 'k-.', np, I(3,:), 'k--', np, I(4,:), 'k','linewidth',1.5)
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%set (gca,'xtick',[1 2 3 4 5 6 7 8  10 20 30 100]);
xlabel ('\bfNumber of pulses');
ylabel ('\bfImprovement factor in dB')
legend ('P_D=.5, P_f_a=10^-^2','P_D=.8, P_f_a=10^-^6','P_D=.95, P_f_a=10^-^8','P_D=.99,
P_f_a=10^-^1^0');
grid
axis tight

MATLAB Function “threshold.m” Listing
function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The newton-Raphson  recursive formula 
% This function uses "gammainc.m".
% Inputs
    % nfa     == number of false alarm
    % np      == number of pulses
%% Outputs
    % Pfa     == probability of false alarm
    % vt        == threshold 
%
delta = eps;
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end

MATLAB Program “Fig13_4.m” Listing
% Use this program to reproduce Fig. 13.4 of text
clear all
close all
for n= 1: 1:10000
   [pfa1 y1(n)] = threshold(1e4,n);
   [pfa2 y3(n)] = threshold(1e8,n);
   [pfa3 y4(n)] = threshold(1e12,n);
end
n =1:1:10000;
loglog(n,y1,'k',n,y3,'k--',n,y4,'k-.','linewidth',1.5);
xlabel ('\bfNumber of pulses');
ylabel('\bfThreshold')
legend('nfa=10^1^2','nfa=10^8','nfa=10^8')
grid
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MATLAB Function “pd_swerling5.m” Listing
function pd = pd_swerling5 (input1, indicator, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 5 or 0 targets for np>1.
%
% Inputs
    % input1    == Pfa or nfa
    % indicator == 1 when input1 = Pfa; 2 when input1 = nfa
    % np          == number of pulses
    % snrbar   == SNR
% Outputs
    % pd        == probability of detection
if(np == 1)
   'Stop, np must be greater than 1'
   return
end
format long
snrbar = 10.0.^(snrbar./10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
if (indicator ~=1)
   nfa = input1;
   pfa =  np * log(2) / nfa;
else
   pfa = input1;
   nfa = np * log(2) / pfa;
end
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
% Calculate the Gram-Chrlier coefficients
temp1 = 2.0 .* snrbar + 1.0;
omegabar = sqrt(np .* temp1);
c3 = -(snrbar + 1.0 / 3.0) ./ (sqrt(np) .* temp1.^1.5);
c4 = (snrbar + 0.25) ./ (np .* temp1.^2.);
c6 = c3 .* c3 ./2.0;
V = (vt - np .* (1.0 + snrbar)) ./ omegabar;
Vsqr = V .*V;
val1 = exp(-Vsqr ./ 2.0) ./ sqrt( 2.0 * pi);
val2 = c3 .* (V.^2 -1.0) + c4 .* V .* (3.0 - V.^2) -...
   c6 .* V .* (V.^4 - 10. .* V.^2 + 15.0);
q = 0.5 .* erfc (V./sqrt(2.0)); pd =  q - val1 .* val2;
return



470                                                                                   Radar Systems Analysis and Design Using MATLAB®

MATLAB Program “Fig13_5.m” Listing
% This program is used to produce Fig. 13.5
clc
close all
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
b = sqrt(-2.0 * log(pfa));
index = 0;
for snr = 0:.1:20
   index = index +1;
   a = sqrt(2.0 * 10^(.1*snr));
   pro(index) = marcumsq(a,b);
   prob205(index) =  pd_swerling5 (pfa, 1, 10, snr);
end
x = 0:.1:20;
plot(x, pro,'k',x,prob205,'k:','linewidth',1.5);
axis([0 20 0 1])
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('n_p = 1','n_p = 10')
grid on

MATLAB Function “pd_swerling1.m” Listing
function pd = pd_swerling1 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 1 targets.
%
% Inputs
    % nfa       == Marcum’s false alarm number
    % np        == number of integrated pulses
    % snrbar    == SNR 
%
% outputs
    % pd        == probability of detection
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delta = eps;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
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if (np == 1)
   temp = -vt / (1.0 + snrbar);
   pd = exp(temp);
   return
end
   temp1 = 1.0 + np * snrbar;
   temp2 = 1.0 / (np *snrbar);
   temp = 1.0 + temp2;
   val1 = temp^(np-1.);
   igf1 = gammainc(vt,np-1);
   igf2 = gammainc(vt/temp,np-1);
   pd = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);
   return

MATLAB Program “Fig13_6.m” Listing
% This program is used to reproduce Fig. 13.6
clc
close all
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
b = sqrt(-2.0 * log(pfa));
index = 0;
for snr = 0:.01:22
   index = index +1;
   a = sqrt(2.0 * 10^(.1*snr));
   swer0(index) = marcumsq(a,b);
   swer1(index) =  pd_swerling1 (nfa, 1, snr);
end
x = 0:.01:22;
%figure(10)
plot(x, swer0,'k',x,swer1,'k:','linewidth', 1.5);
axis([2 22 0 1])
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('Swerling 0','Swerling I')
grid on

MATLAB Program “Fig13_7.m” Listing
% This program is used to produce Fig. 13.7
clc
clear all
close all
pfa = 1e-6;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 15, snr);
   prob0(index) =  pd_swerling5 (nfa, 2, 15, snr);
  end
x = -10:.5:30;
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plot(x, prob1,'k',x,prob0,'k:','linewidth',1.5);
axis([-10 30 0 1])
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('Swerling I','Swerling 0')
title('\bfP_f_a =10^-^6;  n_p=5')
grid

MATLAB Function “pd_swerling2.m” Listing
function pd = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 2 targets.
% Inputs
    % nfa       == number of fals alarm
    % np        == number of pulses
    % snrbar    == SNR
%
% Outputs
    % pd        == proability of detection
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delta = eps;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
if (np <= 50)
   temp = vt / (1.0 + snrbar);
   pd = 1.0 - gammainc(temp,np);
   return
else
   temp1 = snrbar + 1.0;
   omegabar = sqrt(np) * temp1;
   c3 = -1.0 / sqrt(9.0 * np);
   c4 = 0.25 / np;
   c6 = c3 * c3 /2.0;
   V = (vt - np * temp1) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
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   pd =  q - val1 * val2;
end
return

MATLAB Program “Fig13_8.m” Listing
% This program is used to produce Fig. 13.8
clc
clear all
close all
pfa = 1e-7;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 5, snr);
   prob0(index) =  pd_swerling5 (nfa, 2, 5, snr);
   prob2(index) =  pd_swerling2 (nfa, 5, snr);
end
x = -10:.5:30;
plot(x, prob0,'k',x,prob1,'k:',x,prob2,'k--','linewidth',1.5);
axis([-10 30 0 1])
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('Swerling 0','Swerling I','Swerling II')
title('P_f_a =10^-^7;  n=5')
grid

MATLAB Program “Fig13_9.m” Listing
% This program is used to produce Fig. 13.9
clear all
close all
pfa = 1e-6;
nfa = log(2) / pfa;
index = 0;
b = sqrt(-2.0 * log(pfa));
for snr = -10:.5:30
   a = sqrt(2.0 * 10^(.1*snr));
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 2, snr);
   prob0(index) =  marcumsq(a,b);
   prob2(index) =  pd_swerling2 (nfa, 2, snr);
end
x = -10:.5:30;
plot(x, prob0,'k',x,prob1,'k:',x,prob2,'k--','linewidth',1.5);
axis([-10 30 0 1])
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('Swerling 0','Swerling I','Swerling II')
title('P_f_a =10^-^6;  n_p = 2')
grid on
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MATLAB Function “pd_swerling3.m” Listing
function pd = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 2 targets.
% Inputs
    % nfa       == false alarm number
    % np        == number of pulses
    % snrbar    == SNR
% Outputs
    % pd        == probability of detection
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delta = eps;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
temp1 = vt / (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0 / (np * snrbar);
temp3 = 2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
if (np <= 2)
   pd = ko;
   return
else
   ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
   temp4 = vt^(np-1.) * exp(-vt) / (temp1 * (factorial(np-2.)));
   temp5 =  vt / (1.0 + 2.0 / (np *snrbar));
   pd = temp4 + 1.0 - gammainc(vt,np-1.) + ko * gammainc(temp5,np-1.);
end; return 

MATLAB Program “Fig13_10.m” Listing
% This program is used to produce Fig. 13.10 
clc
close all
clear all
pfa = 1e-9;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling3 (nfa, 1, snr);
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   prob10(index) =  pd_swerling3 (nfa, 10, snr);
   prob50(index) =  pd_swerling3(nfa, 50, snr);
   prob100(index) =  pd_swerling3 (nfa, 100, snr);
end
x = -10:.5:30;
plot(x, prob1,'k',x,prob10,'k:',x,prob50,'k--', x, prob100,'k-.','linewidth',1.5);
axis([-10 30 0 1])
xlabel ('SNR in dB')
ylabel ('Probability of detection')
legend('np = 1','np = 10','np = 50','np = 100')
grid on 

MATLAB Program “Fig13_11.m” Listing 
% This program is used to produce Fig. 13.11
clc
clear all
close all
pfa = 1e-7;
nfa = log(2) / pfa;
index = 0;
for snr = -10:.5:30
   index = index +1;
   prob1(index) =  pd_swerling1 (nfa, 5, snr);
   prob0(index) =  pd_swerling5 (nfa, 2, 5, snr);
   prob2(index) =  pd_swerling2 (nfa, 5, snr);
   prob3(index) =  pd_swerling3 (nfa, 5, snr);
end
x = -10:.5:30;
plot(x, prob0,'k',x,prob1,'k:',x,prob2,'k--',x,prob3,'k-.','linewidth',1,'linewidth',1.5);
axis([-10 30 0 1])
xlabel ('\bfSNR in dB')
ylabel ('P\bfrobability of detection')
legend('Swerling 0','Swerling I','Swerling II', 'Swerling III')
title('P_f_a =10^-^7;  n=5')
grid on

MATLAB Function “pd_swerling4.m” Listing
function pd = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of detection
% for Swerling 4 targets.
% Inputs
    % nfa       == number of false alarm
    % np        == number of pulses
    % snrbar    == SNR
% Output
    % pd        == probability of detection
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delta = eps;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
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sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (delta < (vt0/10000));
   igf = gammainc(vt0,np);
   num = 0.5^(np/nfa) - igf;
   deno = -exp(-vt0) * vt0^(np-1) /factorial(np-1);
   vt = vt0 - (num / (deno+eps));
   delta = abs(vt - vt0);
   vt0 = vt;
end
h8 = snrbar /2.0;
beta = 1.0 + h8;
beta2 = 2.0 * beta^2 - 1.0;
beta3 = 2.0 * beta^3;
if (np >= 50)
   temp1 = 2.0 * beta -1;
   omegabar = sqrt(np * temp1);
   c3 = (beta3 - 1.) / 3.0 / beta2 / omegabar;
   c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;;
   c6 = c3 * c3 /2.0;
   V = (vt - np * (1.0 + snrbar)) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
   return
else
   gamma0 = gammainc(vt/beta,np);
   a1 = (vt / beta)^np / (factorial(np) * exp(vt/beta));
   sum = gamma0;
   for i = 1:1:np
      temp1 = gamma0;
      if (i == 1)
         ai = a1;
      else
         ai = (vt / beta) * a1 / (np + i -1);
      end
      gammai = gamma0 - ai;
      gamma0 = gammai;
      a1 = ai;
      for ii = 1:1:i
         temp1 = temp1 * (np + 1 - ii);
      end
      term = (snrbar /2.0)^i * gammai * temp1 / (factorial(i));
      sum = sum + term;
   end
   pd = 1.0 - (sum / beta^np);
end
pd = max(pd,0.);
return
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MATLAB Program “Fig13_12.m” Listing
% This program is used to produce Fig. 13.12 of text
clear all
close all
pfa = 1e-6;
nfa = log(2) / pfa;
index = 0;
for snr = -7:.15:10
   index = index +1;
   prob1(index) =  pd_swerling4 (nfa, 5, snr);
   prob10(index) =  pd_swerling4 (nfa, 10, snr);
   prob25(index) =  pd_swerling4(nfa, 25, snr);
   prob75(index) =  pd_swerling4 (nfa, 75, snr);
end
x = -7:.15:10;
plot(x, prob1,'k',x,prob10,'k.',x,prob25,'k:',x, prob75,'k-.','linewidth',1.5);
xlabel ('\bfSNR in dB')
ylabel ('\bfProbability of detection')
legend('np = 5','np = 10','np = 25','np = 75')
grid on; axis tight

MATLAB Function “fluct_loss.m” Listing
function [SNR] = fluct(pd, nfa, np, sw_case)
% This function calculates the SNR fluctuation loss for Swerling models
% A negative Lf value indicates SNR gain instead of loss 
% Inputs
    % pd        == desired probability of detection
    % nfa       == desired number of false alarms
    % np        == number of pulses
    % sw_case   == 0, 1, 2, 3, or 4 depending on the desired Swerling case
% Output
    % SNR       == Resulting SNR
format long
% *************** Swerling 5 case ****************
% check to make sure that np>1
pfa =  np * log(2) / nfa;
if (sw_case == 0)
if (np ==1)
    nfa = 1/pfa;
    b = sqrt(-2.0 * log(pfa));
    Pd_Sw5 = 0.001;
    snr_inc = 0.1 - 0.005;
    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.005;
        a = sqrt(2.0 * 10^(.1*snr_inc));
        Pd_Sw5 = marcumsq(a,b);
    end
    PD_SW5 = Pd_Sw5;
    SNR = snr_inc;
else
    % np > 1 use MATLAB function pd_swerling5.m
    snr_inc = 0.1 - 0.001;
    Pd_Sw5 = 0.001;
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    while(Pd_Sw5 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw5 = pd_swerling5(pfa, 1, np, snr_inc);
    end
    PD_SW5 = Pd_Sw5;
    SNR = snr_inc;
end
end
% *************** End Swerling 5 case ************
% *************** Swerling 1 case ****************
% compute the false alarm number
if (sw_case == 1)
    Pd_Sw1 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw1 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw1 = pd_swerling1(nfa, np, snr_inc);
    end
    PD_SW1 = Pd_Sw1;
    SNR = snr_inc;
end
 % *************** End Swerling 1 case ************
% *************** Swerling 2 case ****************
if (sw_case == 2)
    Pd_Sw2 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw2 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw2 = pd_swerling2(nfa, np, snr_inc);
    end
    PD_SW2 = Pd_Sw2;
    SNR = snr_inc;
end
 % *************** End Swerling 2 case ************
% *************** Swerling 3 case ****************
if (sw_case == 3)
    Pd_Sw3 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw3 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw3 = pd_swerling3(nfa, np, snr_inc);
    end
    PD_SW3 = Pd_Sw3;
    SNR = snr_inc;
 end
 % *************** End Swerling 3 case ************
% *************** Swerling 4 case ****************
if (sw_case == 4)
    Pd_Sw4 = 0.001;
    snr_inc = 0.1 - 0.001;
    while(Pd_Sw4 <= pd)
        snr_inc = snr_inc + 0.001;
        Pd_Sw4 = pd_swerling4(nfa, np, snr_inc);
    end
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    PD_SW4 = Pd_Sw4;
    SNR = snr_inc;
 end
 % *************** End Swerling 4 case ************
return

MATLAB Program “Fig13_13.m” Listing
% Use this program to reproduce Fig. 13.13 of text
clear all
close all
index = 0.;
for pd = 0.01:.05:1
    index = index + 1;
    [Lf,Pd_Sw5] = fluct_loss(pd, 1e-7,1,1); 
    Lf1(index) = Lf;
    [Lf,Pd_Sw5] = fluct_loss(pd, 1e-7,1,4);
    Lf4(index) = Lf;
end
pd = 0.01:.05:1;
figure (3)
plot(pd, Lf1, 'k',pd, Lf4,'K:','linewidth',1.5)
xlabel('\bfProbability of detection')
ylabel('\bfFluctuation loss - dB')
legend('Swerling I & II','Swerling III & IV')
title('P_f_a = 10^-^9, n_p = 1')
grid on

MATLAB Program “Fig13A_1.m” Listing
% This program can be used to reproduce Fig. 13A.1
clc
close all
clear all
x=linspace(0,20,200);
y1 = gammainc(x,1);
y2 = gammainc(x,3);
y3 = gammainc(x,5);
y4 = gammainc(x,8);
plot(x,y1,'k',x,y2,'k:',x,y3,'k--',x,y4,'k-.','linewidth',1.5)
legend('q = 1','q = 3','q = 5','q = 8')
xlabel('\bfx')
ylabel('\bfIncomplete Gamma function (x,q)')
grid
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Part V - Radar Special Topics

Chapter 14

This chapter was coauthored with Mr. Walton C. Gibson.1

14.1. RCS Definition
Electromagnetic waves, with any specified polarization, are normally diffracted or scattered

in all directions when incident on a target. These scattered waves are broken down into two
parts. The first part is made of waves that have the same polarization as the receiving antenna.
The other portion of the scattered waves will have a different polarization to which the receiv-
ing antenna does not respond. The two polarizations are orthogonal and are referred to as the
Principal Polarization (PP) and Orthogonal Polarization (OP), respectively. The intensity of
the backscattered energy that has the same polarization as the radar’s receiving antenna is used
to define the target RCS. When a target is illuminated by RF energy, it acts like an antenna, and
will have near and far scattered fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decomposed into a linear
combination of plane waves. 

Assume the power density of a wave incident on a target located at range  away from the
radar is , as illustrated in Fig. 14.1. The amount of reflected power from the target is 

Eq. (14.1)

where  denotes the target cross section. Define  as the power density of the scattered
waves at the receiving antenna. It follows that

. Eq. (14.2)

Equating Eqs. (14.1) and (14.2) yields

Eq. (14.3)

1. Mr. Gibson is associated with Tripoint Industries, Inc. in Huntsville, Alabama, 
www.tripointindustries.com.
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and in order to ensure that the radar receiving antenna is in the far field (i.e., scattered waves
received by the antenna are planar), Eq. (14.3) is modified to

. Eq. (14.4)

The RCS defined by Eq. (14.4) is often referred to as the monostatic RCS, the backscattered
RCS, or simply the target RCS. 

The backscattered RCS is measured from all waves scattered in the direction of the radar and
has the same polarization as the receiving antenna. It represents a portion of the total scattered
target RCS , where . Assuming a spherical coordinate system defined by ( ),
then at range , the target scattered cross section is a function of ( ). Let the angles ( )
define the direction of propagation of the incident waves. Also, let the angles ( ) define
the direction of propagation of the scattered waves. The special case, when  and

, defines the monostatic RCS. The RCS measured by the radar at angles  and
 is called the bistatic RCS. The total target scattered RCS is given by

. Eq. (14.5)

The amount of backscattered waves from a target is proportional to the ratio of the target
extent (size) to the wavelength, , of the incident waves. In fact, a radar will not be able to
detect targets much smaller than its operating wavelength. For example, if weather radars use
L-band frequency, rain drops become nearly invisible to the radar since they are much smaller
than the wavelength. The frequency region, where the target extent and the wavelength are
comparable, is referred to as the Rayleigh region. Alternatively, the frequency region where
the target extent is much larger than the radar operating wavelength is referred to as the optical
region. In practice, the majority of radar applications fall within the optical region. 

 Figure 14.1. Scattering object located at range .R

Radar

R

Radar

R scattering object

radar

4 R2 PDr

PDi
--------

R
lim=

t t

i i

s s

s i=
s i= s i

s i

t
1

4
------ s s ssin d sd

s 0=s 0=

2

=



RCS Dependency on Aspect Angle and Frequency 487                                                                                                                                                                                                                                                                         

The analysis presented in this book mainly assumes far field monostatic RCS measurements
in the optical region. Near field RCS, bistatic RCS, and RCS measurements in the Rayleigh
region will not be considered since their treatment falls beyond this book’s intended scope.
Additionally, RCS treatment in this chapter is mainly concerned with Narrow Band (NB)
cases. In other words, the extent of the target under consideration falls within a single range bin
of the radar. Wideband (WB) RCS measurements will be briefly addressed in a later section.
Wideband radar range bins are small (typically 10 - 50 cm); hence, the target under consider-
ation may cover many range bins. The RCS value in an individual range bin corresponds to the
portion of the target falling within that bin. 

14.2. RCS Dependency on Aspect Angle and Frequency
Radar cross section fluctuates as a function of radar aspect angle and frequency. For the pur-

pose of illustration, isotropic point scatterers are considered. An isotropic scatterer is one that
scatters incident waves equally in all directions. Consider the geometry shown in Fig. 14.2. In
this case, two unity ( ) isotropic scatterers are aligned and placed along the radar line of
sight (zero aspect angle) at a far field range . The spacing between the two scatterers is 1
meter. The radar aspect angle is then changed from zero to 180 degrees, and the composite
RCS of the two scatterers measured by the radar is computed. 

This composite RCS consists of the superposition of the two individual radar cross sections.
At zero aspect angle, the composite RCS is . Taking scatterer-1 as a phase reference, when
the aspect angle is varied, the composite RCS is modified by the phase that corresponds to the
electrical spacing between the two scatterers. For example, at aspect angle , the electrical
spacing between the two scatterers is

. Eq. (14.6)

 is the radar operating wavelength.

1m2
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2m2
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elec spacing– 2 1.0 10cos--------------------------------------------------=
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radar line of sight
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radar

radar line of sight 0.707m
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(b)

scat1 scat2

 Figure 14.2. RCS dependency on aspect angle. (a) Zero aspect   angle, zero 
electrical spacing. (b)  aspect angle,  electrical spacing.45 1.414
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MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes the RCS dependency on the aspect angle. Its syntax
is as follows:

[rcs] = rcs_aspect (scat_spacing, freq)
where

Figure 14.3 shows the composite RCS corresponding to this experiment. This plot can be
reproduced using MATLAB program “Fig.14.3.m” listed in Appendix 14-A. As clearly indi-
cated by Fig. 14.3, RCS is dependent on the radar aspect angle; thus, knowledge of this con-
structive and destructive interference between the individual scatterers can be very critical
when a radar tries to extract the RCS of complex or maneuvering targets. This is true because
of two reasons. First, the aspect angle may be continuously changing. Second, complex target
RCS can be viewed as made up from contributions of many individual scattering points distrib-
uted on the target surface. These scattering points are often called scattering centers. Many
approximate RCS prediction methods generate a set of scattering centers that define the back-
scattering characteristics of such complex targets.

Next, to demonstrate RCS dependency on frequency, consider the experiment shown in Fig.
14.4. In this case, two far field unity isotropic scatterers are aligned with radar line of sight, and
the composite RCS is measured by the radar as the frequency is varied from 8GHz to 12.5GHz
(X-band). 

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus aspect angle dBsm output

 Figure 14.3. Illustration of RCS dependency on aspect angle.
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MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes the RCS dependency on frequency. Its syntax is
as follows:

[rcs] = rcs_frequency (scat_spacing, frequ, freql)

where

Figures 14.5 and 14.6 show the composite RCS versus frequency for scatterer spacing of
0.25 and 0.75 meters. The plots shown in Figs. 14.5 and 14.6 can be reproduced using the
MATLAB program “Fig.14_5_6.m,” listed in Appendix 14-A. From those two Figures, RCS
fluctuation as a function of frequency is evident. A small frequency change can cause serious
RCS fluctuation when the scatterer spacing is large. Alternatively, when scattering centers are
relatively close, it requires more frequency variation to produce significant RCS fluctuation. 

 

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freql, frequ start and end of frequency band Hz input

radar

radar line of sight

dist

scat1 scat2

 Figure 14.4. Experiment setup which demonstrates RCS dependency 
on frequency; dist = 0.25, or 0.75 m.

 Figure 14.5. Illustration of RCS dependency on frequency.
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14.3. RCS Dependency on Polarization
The material in this section covers two topics. First, a review of polarization fundamentals is

presented. Second, the concept of the target scattering matrix is introduced.

14.3.1. Normalized Electric Field

In most radar simulations, it is desirable to obtain the complex-valued electric field scattered
by the target at the radar. In such cases, it is useful to use a quantity called the normalized elec-
tric field. It is assumed that the incident electric field has a magnitude of unity, and is phase
centered at a point at the target (usually the center of gravity). More precisely,

Eq. (14.7)

where  is the direction of incidence and  as a location at the target, each with respect to the
phase center. The normalized scattered field is then given by

Eq. (14.8)

The quantity  is independent of radar and target location. It may be combined with an
incident magnitude and phase.

14.3.2. Polarization

The x and y electric field components for a wave traveling along the positive z direction are
given by

Eq. (14.9)

 Figure 14.6. Illustration of RCS dependency on frequency.
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Eq. (14.10)

where ,  is the wave frequency, the angle  is the time phase angle at which 
leads , and finally,  and  are, respectively, the wave amplitudes along the x and y
directions. When two or more electromagnetic waves combine, their electric fields are inte-
grated vectorially at each point in space for any specified time. In general, the combined vector
traces an ellipse when observed in the x-y plane. This is illustrated in Fig. 14.7.

The ratio of the major to the minor axes of the polarization ellipse is called the Axial Ratio
(AR). When AR is unity, the polarization ellipse becomes a circle, and the resultant wave is
then called circularly polarized. Alternatively, when  and , the wave becomes
linearly polarized. 

Eqs. (14.9) and (14.10) can be combined to give the instantaneous total electric field,

Eq. (14.11)

where  and  are unit vectors along the x and y directions, respectively. At ,
 and , then by replacing  by the ratio 

and by using trigonometry properties Eq. (14.11) can be rewritten as

 . Eq. (14.12)

Note that Eq. (14.12) has no dependency on . In the most general case, the polarization
ellipse may have any orientation, as illustrated in Fig. 14.8. The angle  is called the tilt angle
of the ellipse. In this case, AR is given by

. Eq. (14.13)
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When , the wave is said to be linearly polarized in the y direction, while if ,
the wave is said to be linearly polarized in the x direction. Polarization can also be linear at an
angle of  when  and . When  and , the wave is said to
be Left Circularly Polarized (LCP), while if  the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along the x and y
directions by the names horizontal and vertical polarizations, respectively. 

In general, an arbitrarily polarized electric field may be written as the sum of two circularly
polarized fields. More precisely,

Eq. (14.14)

where  and  are the RCP and LCP fields, respectively. Similarly, the RCP and LCP
waves can be written as

Eq. (14.15)

Eq. (14.16)

where  and  are the fields with vertical and horizontal polarizations, respectively. Com-
bining Eqs. (14.15) and (14.16) yields

Eq. (14.17)

. Eq. (14.18)

Using matrix notation, Eqs. (14.17) and (14.18) can be rewritten as

Eq. (14.19)

 Figure 14.8. Polarization ellipse in the general case.
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. Eq. (14.20)

For many targets, the scattered waves will have different polarization than the incident
waves. This phenomenon is known as depolarization or cross-polarization. However, perfect
reflectors reflect waves in such a fashion that an incident wave with horizontal polarization
remains horizontal, and an incident wave with vertical polarization remains vertical but is
phase shifted . Additionally, an incident wave that is RCP becomes LCP when reflected,
and a wave that is LCP becomes RCP after reflection from a perfect reflector. Therefore, when
a radar uses LCP waves for transmission, the receiving antenna needs to be RCP polarized in
order to capture the PP RCS, and LCR to measure the OP RCS.

14.3.3. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the scattering
matrix, and is denoted by . When an arbitrarily linearly polarized wave is incident on a tar-
get, the backscattered field is then given by

. Eq. (14.21)

The superscripts  and  denote incident and scattered fields. The quantities  are in general
complex, and the subscripts 1 and 2 represent any combination of orthogonal polarizations.
More precisely, , and . From Eq. (14.3), the backscattered RCS is related
to the scattering matrix components by the following relation:

Eq. (14.22)

It follows that once a scattering matrix is specified, the target backscattered RCS can be com-
puted for any combination of transmitting and receiving polarizations. The reader is advised to
see Ruck (1970) for ways to calculate the scattering matrix .

Rewriting Eq. (14.22) in terms of the different possible orthogonal polarizations yields

Eq. (14.23)

. Eq. (14.24)

By using the transformation matrix  in Eq. (14.19), the circular scattering elements can be
computed from the linear scattering elements
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Eq. (14.25)

and the individual components are 

. Eq. (14.26)

Similarly, the linear scattering elements are given by

Eq. (14.27)

and the individual components are 

. Eq. (14.28)

14.4. RCS of Simple Objects 
Electromagnetic wave scattering from simple objects has historically received a great

amount of attention as analytic expressions since the scattered fields can often be derived.
Among these are objects such as spheres and ellipsoids, and two-dimensional cylinders, half
planes and wedges. The study of such shapes is of great value as they lend insight into the
important scattering mechanisms inherent in wave interactions with real-world objects. These
analytic scattering equations are also used to test and verify Computational Electromagnetic
(CEM) software codes. Readers interested in these subjects should consider sources such as
Bowman and Ruck, which summarize research into the scattering from such bodies. 

This section presents a sample set of simple object radar cross section. Most of the expres-
sions presented represent the radar cross section of the object when it is large compared to the
wavelength. These are derived from analytic expressions, often series or complex-plane inte-
grations, using asymptotic limits for wavelength or empirical fits to simplify their evaluation.
These approximations are said to operate in the “high-frequency” or “optical” scattering
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regime. Computational methods will be discussed later in this chapter. In this case, other meth-
ods in the “low-frequency” or “resonance” regime are used to calculate the RCS. 

This section presents examples of a backscattered radar cross section for a number of simple
shape objects. In all cases, except for the perfectly conducting sphere, only optical region
approximations are presented. Radar designers and RCS engineers consider the perfectly con-
ducting sphere to be the simplest target to examine. Even in this case, the complexity of the
exact solution, when compared to the optical region approximation, is overwhelming. Most
formulas presented are Physical Optics (PO) approximation for the backscattered RCS mea-
sured by a far field radar in the direction ( ), as illustrated in Fig. 14.9. In this section, it is
assumed that the radar is always illuminating an object from the positive z-direction.

14.4.1. Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are co-polarized (have
the same polarization) with the incident waves. This means that the cross-polarized backscat-
tered waves are practically zero. For example, if the incident waves were Left Circularly Polar-
ized (LCP), then the backscattered waves will also be LCP. However, because of the opposite
direction of propagation of the backscattered waves, they are considered to be Right Circularly
Polarized (RCP) by the receiving antenna. Therefore, the PP backscattered waves from a
sphere are LCP, while the OP backscattered waves are negligible. 

The normalized exact backscattered RCS for a perfectly conducting sphere is a Mie series
given by 

Eq. (14.29)

where  is the radius of the sphere, ,  is the wavelength,  is the spherical Bes-
sel of the first kind of order n, and  is the Hankel function of order n, and is given by 

. Eq. (14.30)
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Direction to
receiving radar

 Figure 14.9. Direction of antenna receiving backscattered waves.
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 is the spherical Bessel function of the second kind of order n. Plots of the normalized per-
fectly conducting sphere RCS as a function of its circumference in wavelength units are shown
in Figs. 14.10a and 14.10b. These plots can be reproduced using the function “rcs_sphere.m.”
In Fig. 14.10, three regions are identified. First is the optical region (corresponds to a large
sphere). In this case, 

. Eq. (14.31)

Second is the Rayleigh region (small sphere). In this case,

. Eq. (14.32)

The region between the optical and Rayleigh regions is oscillatory in nature and is called the
Mie or resonance region.

The backscattered RCS for a perfectly conducting sphere is constant in the optical region.
For this reason, radar designers typically use spheres of known cross sections to experimen-
tally calibrate radar systems. For this purpose, spheres are flown attached to balloons. In order
to obtain Doppler shift, spheres of known RCS are dropped out of an airplane and towed
behind the airplane whose velocity is known to the radar.

Yn

r2= r »

9 r2 kr 4 r «

 Figure 14.10a. Normalized backscattered RCS for a perfectly conducting sphere. 
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14.4.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 14.11. It is defined by the following equa-
tion:

. Eq. (14.33)

One widely accepted approximation for the ellipsoid backscattered RCS is given by

. Eq. (14.34)

When , the ellipsoid becomes roll symmetric. Thus, the RCS is independent of , and
Eq. (14.34) is reduced to

 , Eq. (14.35)

and for the case when ,

. Eq. (14.36)

Note that Eq. (14.36) defines the backscattered RCS of a sphere. This should be expected,
since under the condition  the ellipsoid becomes a sphere. 

 Figure 14.10b. Normalized backscattered RCS for a perfectly conducting 
sphere using semi-log scale.
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MATLAB Function “rcs_ellipsoid.m”

The MATLAB function “rcs_ellipsoid.m” computes the RCS of an ellipsoid by implement-
ing Eqs. (14.34) and (14.35). Its syntax is as follows:

[rcs] = rcs_ellipsoid (a, b, c, phi) 

where

Figure 14.12a shows the backscattered RCS for an ellipsoid versus the aspect angle  for
, , and . Note that at normal incidence ( ), the RCS corre-

sponds to that of a sphere of radius , and is often referred to as the broadside specular RCS
value. This figure can be reproduced using MATLAB program “Fig14_12a.m,” listed in
Appendix 14-A. 

A MATLAB-based graphical user interface (GUI) was developed for this purpose. Figure
14.12b shows the GUI workspace associated with the function. To execute this GUI, first
download its MATLAB code from this book’s web page on the CRC Press website, then in the
MATLAB command window, type “rcs_ellipsoid_gui.”

Symbol Description Units Status

a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

Z

Y

X

Direction to
receiving radar

 Figure 14.11. Ellipsoid.

a

c 

b

0= 45= 90= 90=
c



RCS of Simple Objects 499                                                                                                                                                                                                                                                                         

 Figure 14.12a. Ellipsoid backscattered RCS versus aspect angle.

 Figure 14.12b. GUI workspace associated with the function “rcs_ellipsoid.m.”
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14.4.3. Circular Flat Plate

Figure 14.13 shows a circular flat plate of radius , centered at the origin. Due to the circular
symmetry, the backscattered RCS of a circular flat plate has no dependency on . The RCS is
only aspect angle dependent. For normal incidence (i.e., zero aspect angle), the backscattered
RCS for a circular flat plate is 

. Eq. (14.37)

For non-normal incidence, two approximations for the circular flat plate backscattered RCS
for any linearly polarized incident wave are

Eq. (14.38)

 Eq. (14.39)

where , and  is the first-order spherical Bessel function.

 

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS from a circular
plate. The syntax is as follows: 

 [rcs] = rcs_circ_plate (r, freq)

where

r

4 3r4

2
--------------= 0=

r

8 sin tan 2
-----------------------------------------=

k2r4 2J1 2krsin
2kr sin

---------------------------------
2

cos 2=

k 2= J1

Z

Y

X

Direction to
receiving radar

 Figure 14.13. Circular flat plate.
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A MATLAB-based GUI was developed to implement this function. Figure 14.14 shows the
GUI workspace associated with function and a typical output. To execute this GUI, first down-
load its MATLAB code from this book’s web page on the CRC Press website, then in the
MATLAB command window type, “rcs_circ_gui.m.”

14.4.4. Truncated Cone (Frustum) 

Figures 14.15 and 14.16 show the geometry associated with a frustum. The half cone angle
 is given by 

. Eq. (14.40)

Define the aspect angle at normal incidence with respect to the frustum’s surface (broadside)
as . Thus, when a frustum is illuminated by a radar located at the same side as the cone’s
small end, the angle  is 

. Eq. (14.41)

Alternatively, normal incidence occurs at

Symbol Description Units Status

r radius of circular plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

 Figure 14.14. Backscattered RCS for a circular flat plate. 
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. Eq. (14.42)

At normal incidence, one approximation for the backscattered RCS of a truncated cone due
to a linearly polarized incident wave is

Eq. (14.43)

n 90 +=

n

8 z2
3 2 z1

3 2–
2

9 nsin
--------------------------------------- nsin ncos tan– 2tan=

 Figure 14.15. Truncated cone (frustum).
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 Figure 14.16. Definition of half cone angle. 

Z Z

r1

r2



RCS of Simple Objects 503                                                                                                                                                                                                                                                                         

. Eq. (14.44)

For non-normal incidence, the backscattered RCS due to a linearly polarized incident wave is

Eq. (14.45)

where  is equal to either  or , depending on whether the RCS contribution is from the
small or the large end of the cone. Again, using trigonometric identities Eq. (14.45) (assuming
the radar illuminates the frustum starting from the large end) is reduced to

Eq. (14.46)

where  is the wavelength, and ,  are defined in Fig. 14.15. 

When the radar illuminates the frustum starting from the small end (i.e., the radar is in the
negative z direction in Fig. 14.15), Eq. (14.46) should be modified to 

. Eq. (14.47)

MATLAB Function “rcs_frustum.m”

The function “rcs_frustum.m” computes and plots the backscattered RCS of a truncated
conic section. The syntax is as follows:

[rcs] = rcs_frustum (r1, r2, freq, indicator)

where

For example, consider a frustum defined by , , and
. It follows that the half cone angle is . Figure 14.17a shows a plot of its

RCS when illuminated by a radar in the positive z direction. Figure 14.17b shows the same
thing, except in this case, the radar is in the negative z direction. Note that for the first case,
normal incidence occurs at , while for the second case it occurs at . A MATLAB-
based GUI was developed to implement this function. To execute this GUI, first download the
its MATLAB code from this book’s web page on the CRC Press website, then in the MATLAB
command window type, “rcs_frustum_gui.m.” 

Symbol Description Units Status

r1 small end radius meters input

r2 large end radius meters input

freq frequency Hz input

indicator indicator = 1 when viewing from large end

indicator = 0 when viewing from small end

none input

rcs array of RCS versus aspect angle dBsm output
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 Figure 14.17a. Backscattered RCS for a frustum.

 Figure 14.17b. Backscattered RCS for a frustum.
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14.4.5. Cylinder

Figure 14.18 shows the geometry associated with a finite-length conducting cylinder. Two
cases are presented: first, the general case of an elliptical cross section cylinder; second, the
case of a circular cross section cylinder. The normal and non-normal incidence backscattered
RCS due to a linearly polarized incident wave from an elliptical cylinder with minor and major
radii being  and  are, respectively, given by

Eq. (14.48)

Eq. (14.49)

For a circular cylinder of radius , due to roll symmetry, Eqs. (14.48) and (14.49), respec-
tively, reduce to

Eq. (14.50)

. Eq. (14.51)
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 Figure 14.18. (a) Elliptical cylinder; (b) circular cylinder.
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MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of a cylinder. The
syntax is as follows:

[rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)

where

Figure 14.19a shows a plot of the cylinder backscattered RCS for a symmetrical cylinder.
Figure 14.19b shows the backscattered RCS for an elliptical cylinder. Figure 14.19 can be
reproduced using the MATLAB program “Fig14_19.m,” listed in Appendix 14-A. 

Symbol Description Units Status

r1 radius r1 meters input

r2 radius r2 meters input

h length of cylinder meters input

freq frequency Hz input

phi roll viewing angle degrees input

Cylinder Type “Circular,” i.e., ; “Elliptic,” i.e., none input

rcs array of RCS versus aspect angle dBsm output

r1 r2= r1 r2

 Figure 14.19a. Backscattered RCS for a symmetrical cylinder, 
 and .r 0.125m= H 1m=
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14.4.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as shown in Fig.
14.20. The two sides of the plate are denoted by  and . For a linearly polarized incident
wave in the x-z plane, the horizontal and vertical backscattered RCS are, respectively, given by

Eq. (14.52)

Eq. (14.53)

where  and

Eq. (14.54)

Eq. (14.55)

Eq. (14.56)

Eq. (14.57)

 Figure 14.19b. Backscattered RCS for an elliptical cylinder, , 
, and .
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Eq. (14.58)

Eq. (14.59)

Eq. (14.60)

 Eq. (14.61)

. Eq. (14.62)

Equations (14.52) and (14.53) are valid and quite accurate for aspect angles .
For aspect angles near , Ross1 obtained, by extensive fitting of measured data, an empirical
expression for the RCS. It is given by

. Eq. (14.63)

 The backscattered RCS for a perfectly conducting thin rectangular plate for incident waves
at any , can be approximated by

Eq. (14.64)

1. Ross, R. A., Radar Cross Section of Rectangular Flat Plate as a Function of Aspect Angle, IEEE 
Trans., AP-14, 320, 1966.

 Figure 14.20. Rectangular flat plate.
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Note that, Eq. (14.64) is independent of the polarization, and is only valid for aspect angles 
.

MATLAB Function “rcs_rect_plate.m”
The function “rcs_rect_plate.m” calculates and plots the backscattered RCS of a rectangular

flat plate. Its syntax is as follows:

[rcs] = rcs_rect_plate (a, b, freq)

where

 Figure 14.21 shows an example for the backscattered RCS of a rectangular flat plate, for
both vertical (Fig. 14.21a) and horizontal (Fig. 14.21b) polarizations, using Eqs. (14.52),
(14.53), and (14.64). In this example,  and wavelength . This
plot can be reproduced using MATLAB function “rcs_rect_plate.” Figure 14.21c shows the
GUI workspace associated with this function.

Symbol Description Units Status

a short side of plate meters input

b long side of plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

20

a b 10.16cm= = 3.33cm=

 Figure 14.21a. Backscattered RCS for a rectangular flat plate.
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14.4.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented in Fig. 14.22.
The backscattered RCS can be approximated for small aspect angles ( ) by

Eq. (14.65)

 Figure 14.21b. Backscattered RCS for a rectangular flat plate.

 Figure 14.21c. GUI workspace associated with the function “rcs_rect_plate.m.”
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Eq. (14.66)

Eq. (14.67)

where , , and . For waves incident in the plane
, the RCS reduces to

, Eq. (14.68)

and for incidence in the plane ,

. Eq. (14.69)

MATLAB Function “rcs_isosceles.m”

The function “rcs_isosceles.m” calculates and plots the backscattered RCS of a triangular
flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)

where

Symbol Description Units Status

a height of plate meters input

b base of plate meters input

freq frequency Hz input

phi roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

 Figure 14.22. Coordinates for a perfectly conducting isosceles triangular plate.
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Figure 14.23 shows a plot for the normalized backscattered RCS from a perfectly conducting
isosceles triangular flat plate. In this example , . This plot can be repro-
duced using MATLAB GUI “rcs_isosceles_gui.m.”

14.5. RCS of Complex Objects 
A complex target RCS is normally computed by coherently combining the cross sections of

the simple shapes that make that target. In general, a complex target RCS can be modeled as a
group of individual scattering centers distributed over the target. The scattering centers can be
modeled as isotropic point scatterers (N-point model) or as simple shape scatterers (N-shape
model). In any case, knowledge of the scattering centers’ locations and strengths is critical in
determining complex target RCS. This is true because as seen in Section 14.3, relative spacing
and aspect angles of the individual scattering centers drastically influence the overall target
RCS. Complex targets that can be modeled by many equal scattering centers are often called
Swerling 1 or 2 targets. Alternatively, targets that have one dominant scattering center and
many other smaller scattering centers are known as Swerling 3 or 4 targets.

In narrowband (NB) radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle. However, in
wideband (WB) applications, a target may straddle many range bins. For each range bin, the
average RCS extracted by the radar represents the contributions from all scattering centers that
fall within that bin. 

a 0.2m= b 0.75m=

 Figure 14.23. Backscattered RCS for a perfectly conducting triangular 
flat plate,  and .a 20cm= b 75cm=
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As an example, consider a circular cylinder with two perfectly conducting circular flat plates
on both ends. Assume linear polarization and let  and . The backscat-
tered RCS for this object versus aspect angle is shown in Fig. 14.24. Note that at aspect angles
close to  and , the RCS is mainly dominated by the circular plate, while at aspect
angles close to normal incidence, the RCS is dominated by the cylinder broadside specular
return. The reader can reproduce this plot using the MATLAB program
“rcs_cylinder_complex.m,” listed in Appendix 14-A.

14.6. RCS Prediction Methods
Before presenting the different RCS calculation methods, it is important to understand the

significance of RCS prediction. Most radar systems use RCS as a means of discrimination.
Therefore, accurate prediction of target RCS is critical in order to design and develop robust
discrimination algorithms. Additionally, measuring and identifying the scattering centers
(sources) for a given target aid in developing RCS reduction techniques. Another reason of
lesser importance is that RCS calculations require broad and extensive technical knowledge;
thus, many scientists and scholars find the subject challenging and intellectually motivating.
Two categories of RCS prediction methods are available: exact and approximate. 

Exact methods of RCS prediction are very complex, even for simple shape objects. This is
because they require solving either differential or integral equations that describe the scattering
problem under the proper set of boundary conditions. Such boundary conditions are governed
by Maxwell’s equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers. 

Due to the difficulties associated with the exact RCS prediction, approximate methods
become the viable alternative. The majority of the approximate methods are valid in the optical

H 1m= r 0.125m=

0 180

 Figure 14.24. Backscattered RCS for a cylinder with flat plates.
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region, and each has its own strengths and limitations. Most approximate methods can predict
RCS within a few dB of the truth. In general, such a variation is quite acceptable to radar engi-
neers and designers. Approximate methods are usually the main source for predicting the RCS
of complex and extended targets such as aircrafts, ships, and missiles. When experimental
results are available, they can be used to validate and verify the approximations. 

Some of the most commonly used approximate methods are Geometrical Optics (GO), Phys-
ical Optics (PO), Geometrical Theory of Diffraction (GTD), Physical Theory of Diffraction
(PTD), and Method of Equivalent Currents (MEC). Interested readers may consult Knott or
Ruck for more details on these and other approximate methods. 

14.6.1. Computational Electromagnetics

Most scattering problems involve radar targets with very complicated shapes. Among these
are ground-based targets such as trucks, tanks, and artillery; air targets such as aircraft, heli-
copters, and missiles; and space-based targets, such as reentry vehicles and satellites. For such
an object, there is generally no analytic method available to predict the radar cross section. The
field of Computational Electromagnetics (CEM) uses the power of a computer to implement
Maxwell’s Equations and solve these problems. CEM has applications in other areas, too, such
as antennas and waveguide design, wave propagation, and medical imaging.

There exist many CEM techniques to solve scattering problems, each employing a different
numerical analysis technique. Among the most popular methods used are the Finite Difference
Time Domain (FDTD) method, the Finite Element Method (FEM), integral equation methods
such as the Method of Moments (MoM), and asymptotic techniques such as Physical Optics
(PO), the Physical Theory of Diffraction (PTD), and Shooting and Bouncing Rays (SBR).

14.6.2. Finite Difference Time Domain Method

The Finite Difference Time Domain (FDTD) method is useful for solving scattering prob-
lems involving objects composed of complex, often inhomogeneous media. It uses a finite dif-
ference scheme to discretize Maxwell's equations in the time domain. This has the advantage
of allowing waveforms with wide bandwidths to be used as an excitation. 

The main drawbacks for the FDTD method include the requirements on the grid size and
non-conformal grid shape, which often results in poor discretization of target geometry and
high memory requirements, particularly in three-dimensional cases. The object and its adjacent
region must be discretized, and an artificial absorbing layer used to truncate the grid to simu-
late an unbounded space. It is also challenging to create a purely planar wave in such simula-
tions.

The FDTD method makes use of finite difference approximations to directly discretize Max-
well's equations in the time domain. Consider the “forward difference” approximation for the
first derivative:

. Eq. (14.70)

The backward difference approximation is

. Eq. (14.71)

f· xo
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----------------------------------------
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The central difference approximation is 

. Eq. (14.72)

Second derivatives can be approximated by a similar procedure

, Eq. (14.73)

where the second-order derivative makes use of forward and backward first derivatives. 

Next consider an example of using FDTD to implement two-dimensional simulation. First,
consider the time domain form of Maxwell’s equations in a charge and conductive-free region

Eq. (14.74)

Eq. (14.75)

Eq. (14.76)

Eq. (14.77)

where  is the electric field intensity in volts/meter,  is the magnetic field intensity in
ampere/meter2,  is the current density in coulombs/meter3,  is the displacement flux in
coulombs/meter2,  is the magnetic induction flux in Tesla or Weber/meter2,  is the permea-
bility, and  is the permittivity. Note that the region may comprise several homogeneous areas,
each with its own  and . 

In rectangular coordinates, one can write these equations as

Eq. (14.78)

Eq. (14.79)

Eq. (14.80)

Eq. (14.81)

Eq. (14.82)

. Eq. (14.83)
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Consider a filamentary current source  with direction , which excites TM-polarized 
waves only. The above three equations then reduce to

Eq. (14.84)

Eq. (14.85)

Eq. (14.86)

These expressions can be discretized using a 2-D Yee Algorithm.1 In this scheme, the electric
and magnetic fields are arranged on grids that are a half  point in distance and time away from
each other. 

First-order derivatives may be applied to the above equations to obtain values at these time
and grid points. More precisely,

Eq. (14.87)

Eq. (14.88)

. Eq. (14.89)

As an example, consider a two-dimensional box with width and height of 2 meters. In the cen-
ter of the box, place a  directed current source and assign to it the excitation function,

 Eq. (14.90)

where  and . Place a  meter dielectric slab with 
at (1.0, 0.7) to introduce an obstruction to the spreading wavefront. The current  is shown in
Figs. 14.25 and 14.26 at different times. Note that the wave slows down inside the slab by a
factor of , and hence the wavelength is compressed. The wavefront starts penetrating the
slab at time . At time  the wave starts to leave the dielectric slab and the
unobstructed wavefronts reach the walls of the box.

The MATLAB program “fdtd.m” was developed to simulate this example. It is listed in
Appendix 14-A. Readers are strongly advised to run this program and observe how the wave
front spreads through the dielectric slab. 

1. Taflove, Allen, Computational Electromagnetic: The Finite-Difference-Time-Domain Method, Artech 
House, 1995.
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 Figure 14.25. The wavefront at time .t 0.2ns=

 Figure 14.26. The wavefront at time .t 3.36ns=
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14.6.3. Finite Element Method

The Finite Element Method (FEM) is a popular CEM technique for solving boundary-valued
problems. In this method, the problem is formulated in terms of a variational expression, or
functional, which has a minimum corresponding to the governing differential equation under
the given boundary conditions. A trial function comprising a set of weighted basis functions is
assigned to the unknown quantity in the region of study, typically the electric or magnetic field
distribution. A matrix equation is then formed that can be solved for the unknown coefficients.
In FEM, the basis functions are typically assigned to surface or volume elements, such as trian-
gles or tetrahedrons. The coefficients are usually defined at the vertices (or edges in some vec-
tor FEM formulations).

The FEM is attractive for solving both static and time-harmonic electromagnetic problems,
as well as eigenvalue problems such as determining the fundamental modes in a waveguide of
arbitrary cross section. Most regions are easily discretized into triangular or quadrilateral ele-
ments, which conform very well to object boundaries and dielectric interfaces. Like the FDTD
method however, the object and the adjoining space must be discretized, requiring an absorb-
ing boundary condition imposed at the terminating boundary if an unbounded radiation prob-
lem is to be studied.

14.6.4. Integral Equations

There exists a set of auxiliary scattering equations that assists the solution of scattering prob-
lems in unbounded regions. One of the most widely used is the frequency-domain magnetic
vector potential , derived from Maxwell's equations,

Eq. (14.91)

where  is an electric surface current, and  is the surface in free space on which the current
resides. Using this definition, the scattered electric field at all points in space is given by the
well-known Electric Field Integral Equation (EFIE) 

. Eq. (14.92)

This equation relates the scattered field  to a known current . In a general scattering prob-
lem, it is typically the incident electric field that is known, and the surface current and scattered
field that are the unknowns. If we assume a conducting surface for the currents, the tangential
electric field must vanish, producing

. Eq. (14.93)

The EFIE can be rewritten using the known incident field 

. Eq. (14.94)

This represents an integral equation for the unknown current .

The Method of Moments (MoM) is a technique used to solve such integral equations, and
has received much attention in the last 30 years. In using the MoM to solve the EFIE, Max-
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well's equations are represented exactly, and the solution is described as “exact” or “full
wave.” This means that all electromagnetic effects and dominant scattering mechanisms are
represented in the result. To solve the EFIE, the current is usually discretized according to

Eq. (14.95)

where the  are basis functions chosen to represent the behavior of the current, and the 
are unknown coefficients. The target surface is typically broken up into small subdomains and
a basis function assigned to each. Inserting Eq. (14.95) into Eq. (14.93) yields a single equation
in  unknowns. 

To create  equations in  unknowns, the EFIE is tested or enforced over all subdomains
by employing an inner product of Eq. (14.93) by a set of testing functions. Most often, the
basis functions  are used (the Galerkin method). The resulting system may then be solved
for the unknown coefficients by Gaussian elimination, or an iterative technique.

The MoM has been used extensively to solve scattering problems involving rotationally
symmetric objects. The McDonnell Douglas1 code (CICERO), solves the body-of-revolution
scattering problem for objects that have various conducting and dielectric coated surfaces. The
MoM has also been applied to three-dimensional bodies, and this is often done according to the
method proposed by Rao, Wilton, and Glisson, who introduced a basis function suitable for use
with surfaces described by connected triangular patches. 

While the MoM achieves excellent accuracy, the size of the matrix system is proportional to
the square of the radar wavelength. Until recently this has limited the maximum object size
that could be stored in system memory, typically a few wavelengths at most for three-dimen-
sional problems. Methods that approximate the system’s Green’s Function have been devel-
oped in recent years in an attempt to reduce the required memory. The Adaptive Integral
Method (AIM) and the Fast Multipole Method (FMM) are two methods that were developed to
alleviate this problem. The FMM has proved quite successful and is used in the Fast Illinois
Solver Code (FISC) at the University of Illinois.

In the next few sections a brief discussion of asymptotic, or so, called high-frequency tech-
niques is presented. 

14.6.5. Geometrical Optics

The method of Geometrical Optics (GO) treats the radar energy as small ray tubes that prop-
agate according to Fermat’s Principle. The specular reflection points on the target are found
and divergence and spreading of energy are accounted for by analyzing the radii of curvature at
the reflection points. GO is limited by its applicability at caustic points, and it does not handle
diffractions from tips and edges, or account for creeping waves. Keller introduced the Geomet-
rical Theory of Diffraction (GTD) in an attempt to handle diffraction effects; however, GTD
suffers from the same problem at caustics and shadow boundaries. The Uniform Theory of Dif-
fraction (UTD) was introduced to further improve this method.

1. Medgyesi-Mitschang, Louis and Putnam, John, Electromagnetic Scattering from Axially Inhomoge-
neous Bodies of Revolution, IEEE Trans. Antennas Propagation, Vol. 32, pp.707-806, August 1984.
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14.6.6. Physical Optics

Physical Optics (PO) is a technique that approximates that surface current  in the illumi-
nated portion of the target by assuming that locally, the target’s surface can be considered flat
and planar. If at each point the surface is considered to be an infinite half plane, image theory
allows the surface current to be written directly in terms of the incident magnetic field and the
local surface normal, 

. Eq. (14.96)

This is called the physical optics approximation. With the current known, the scattered electric
field is obtained directly via Eq. (14.91). 

While the PO method is used extensively in high-frequency CEM computations, it is limited
in its accuracy to near-specular observations. It does not treat diffractions, traveling or creep-
ing waves, multiple bounces, or other scattering phenomena. These mechanisms are often sup-
plemented in the PO solution by other techniques, some of which are discussed later. 

Rectangular Plate

Consider a rectangular plate of length  and width  in the xy-plane. The  polarized inci-
dent electric and magnetic fields on the plate are, respectively, given by

Eq. (14.97)

 Eq. (14.98)

where  is the direction on incidence, and  is the free space impedance. This field generates
the current

, Eq. (14.99)

resulting in magnetic vector potential given by

Eq. (14.100)

where , and for phase variation, the range  is approximated as

. Eq. (14.101)

Evaluating Eq. (14.100) analytically yields

. Eq. (14.102)
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In the far field, the  polarized scattered field is given by

. Eq. (14.103)

Figure 14.27 shows the backscattered RCS for a rectangular plate versus incident angle,
using the technique presented in this section. This plot can be reproduced using the MATLAB
program “rectplate.m,” listed in Appendix 14-A. 

N-Sided Polygon

The integral in Eq. (14.100) has the form of a Fourier transform over the planar extent of the
rectangular plate. In general, this 2-D Fourier transform is given by

. Eq. (14.104)

The expression for an arbitrarily N-sided polygon in a local coordinate system has been evalu-
ated analytically as

Eq. (14.105)

where  are the polygon vertices and  are the edge vectors given by

, Eq. (14.106)
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 Figure 14.27. Rectangular plate backscattered RCS. 
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and . In the summation above, . Figure 14. 28 shows a plot for the
backscattered RCS for a N-sided polygon versus angle of incidence. This figure can be repro-
duced using the MATLAB program “polygon.m,” listed in Appendix 14-A.

14.6.7.  Edge Diffraction

The PO does not treat the diffraction of waves at edges. In the late 1950s the Russian physi-
cist, P. Ufimtsev, published a paper on a technique now known as the Physical Theory of Dif-
fraction. In this paper, Ufimtsev introduced expressions for the edge diffraction at arbitrary
incidence and scattering angles that complemented Physical Optics. This method was extended
by K. Mitzer at Northrop who applied the PTD to incremental length edges in three dimen-
sions. The PTD method was used in codes such as Northrop’s (MISCAT), and was instrumen-
tal in the design of low cross-section aircraft such as Lockheed’s F-117 Stealth fighter.

14.7. Multiple Bounce
Multiple reflections are a very important scattering mechanism in some complex targets.

Many real-world targets have cavities or other concave areas where energy may be reflected
and scattered several times. Examples are rocket boosters with nozzles and fuel tanks and air-
craft with deep engine inlets. This type of scattering often results in high RCS at certain aspect
angles, and significantly delayed returns that may cause the target to appear much longer in the
downrange direction than it actually is. 

A popular method for modeling these interactions is to treat the incident plane wave as a
bundle of “ray tubes” as in GO theory, incorporating material effects and ray tube spreading
and divergence. At the exit aperture of the ray bundle, a PO-type integral is performed over the
ray tube footprint. This technique is known as Shooting and Bouncing Rays (SBR), and was
developed at the University of Illinois in the late 1980s. This technique, as well as the PO and

ux̂ vŷ+= o N=

 Figure 14.28. Backscattered RCS for an N-sided polygon.
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PTD methods, are used in the well-known software called XPATCH, which has been used in
high-frequency signature prediction for many years.

Problems
14.1. Design a cylindrical RCS calibration target such that its broadside RCS (cylinder)

and end (flat plate) RCS are equal to  at . The RCS for a flat plate of area 

is .

14.2.  The following table is constructed from a radar cross-section measurement experi-
ment. Calculate the mean and standard deviation of the radar cross section.

14.3. Develop a MATLAB simulation to compute and plot the backscattered RCS for the
following objects. Utilize the simple shape MATLAB functions developed in this chapter.
Assume that the radar is located on the left side of the page and that its line of sight is aligned
with the target body axis. Assume an X-band radar.

Number of samples RCS, m2

2 55

6 67

12 73

16 90

20 98

24 110

26 117

19 126

13 133

8 139

5 144

3 150

10m2 f 9.5GHz= A

fp 4 f2A2 c2=

90cm

70cm
15cm

30cm

flat plate cylinder
frustum

flat plate

side view
top view
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14.4. The backscattered RCS for a corner reflector is given by

.

This RCS is symmetric about the angle . Develop a MATLAB program to compute
and plot the RCS for a corner reflector. The RCS at the  is

.
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Appendix 14-A: Chapter 14 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “rcs_aspect.m” Listing
function [rcs] = rcs_aspect(scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS
% The default frequency is 3GHz. The radar is observing two unity 
% point scatterers separated by 1.0 meters. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degress and the equivalant RCS is computed.
% The RCS as measured by the radar versus aspect angle is then plotted.
% Inputs 
    % scat_spacing in meters
    % freq radar frequency in Hz
%
% Output
    % rcs in dBsm    
% Users may vary frequency, and/or scatteres spacing to observe RCS variation
eps = 0.0001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase refernce point
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
end

MATLAB Program “Fig.14_3.m” Listing
% generates Fig.. 14.3 of text
clc
close all
clear all
% Enter scatterer spacing, in meters
distance = input('Enter scatterer spacing, in meters \n');
% Enter frequency
freq = input('Enter Enter frequency in Hz \n');
rcs = rcs_aspect(distance,freq);
Figure (1);
aspect_degrees = 0.:.05:180.;
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plot(aspect_degrees,rcs);
grid;
xlabel('\bfaspect angle - degrees');
ylabel('\bfRCS in dBsm');

MATLAB Function “rcs_frequency.m” Listing
function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength 
% The default assumes two unity point scatterers separated 
% The radar line of sight is aligned with the two scatterers
% Inputs
    % scat_spacing in meters
    % freql lower frequency limit in Hz
    % frequ upper frequency limit in Hz
% Output
    % rcs in dBsm
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ
   index = index +1;
   wavelength(index) = 3.0e+8 / freq;
end
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = 2.0 * scat_spacing ./ wavelength;
% Compute RCS (RCS = RCS_scat1 + RCS_scat2) 
rcs = abs (  1 + cos((2.0 * pi) .* elec_spacing)+ i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
end

MATLAB Program “Fig.14_5_6.m” Listing
% Generates plot like Fig.. 14.5 and Fig. 14.6 
% Enter scatterer spacing, in meters
clc
close all
clear all
scat_spacing = input('Enter scatterer spacing, in meters \n');
% Enter frequency band
freql = input('Enter lower frequency limit in Hz \n');
frequ = input('Enter upper frequency limit in Hz \n');
[rcs] = rcs_frequency (scat_spacing, frequ, freql);
N = size(rcs,2) ;
freq = linspace(freql,frequ,N)./1e9;
Figure (1);
plot(freq,rcs);
grid on;
xlabel('\bfFrequency');
ylabel('\bfRCS in dBsm');
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MATLAB Program “Fig.14_10.m” Listing
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(14.28), and produce plots similar to Fig.14.8 
% Spherical Bessel functions are computed using series approximation and recursion.
clc
close all
clear all
eps   = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.01:25
   index = index + 1;
   sphere_rcs   = 0. + 0.*i;
   f1    = 0. + 1.*i;
   f2    = 1. + 0.*i;
   m     = 1.;
   n     = 0.;
   q     = -1.;
   % initially set del to huge value
   del =100000+100000*i;
   while(abs(del) > eps)
      q   = -q;
      n   = n + 1;
      m   = m + 2;
      del = (2.*n-1) * f2 / kr-f1;
      f1  = f2;
      f2  = del;
      del = q * m /(f2 * (kr * f1 - n * f2));
      sphere_rcs = sphere_rcs + del;
   end
   rcs(index)   = abs(sphere_rcs);
   sphere_rcsdb(index) = 10. * log10(rcs(index));
   end
Figure(1);
n=0.05:.01:25;
subplot(2,1,1)
plot (n,rcs,'k','linewidth',1.5);
% set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('\bfSphere circumference in wavelengths; (2 \pi r / \lambda)');
ylabel ('\bf Normalized RCS ( \sigma / \pi r^2)');
grid on
subplot(2,1,2)
plot (n,sphere_rcsdb,'k','linewidth',1.5);
%set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('\bfSphere circumference in wavelengths; (2 \pi r / \lambda)');
ylabel ('\bf Normalized RCS ( \sigma / \pi r^2) - dB');
grid;
Figure (2);
semilogx (n,sphere_rcsdb,'k','linewidth',1.5);
xlabel ('\bfSphere circumference in wavelengths; (2 \pi r / \lambda)');
ylabel ('\bf Normalized sphere RCS ( \sigma / \pi r^2) - dB');
grid on
gtext('\bfRayleigh Region')
gtext('\bfMie Region')
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gtext('\bfOptical Region')

MATLAB Function “rcs_ellipsoid.m” Listing
function [rcs_db] = rcs_ellipsoid (a, b, c, phi)
% This program computes the back-scattered RCS for an ellipsoid.
% The angle phi is fixed, while the angle theta is varied from 0-180 deg.
% Inputs
    % a     == ellipsoid a-radius in meters
    % b     == ellipsoid b-radius in meters
    % c     == ellipsoid c-radius in meters
    % phi   == ellipsoid roll angle in degrees
%Output
    % rcs   == ellipsoid rcs versus aspect angle in dBsm
eps = 0.00001;
sin_phi_s = sin(phi)^2;
cos_phi_s = cos(phi)^2;
% Generate aspect angle vector
theta = 0.:.05:180;
theta = (theta .* pi) ./ 180.;
if(a ~= b & a ~= c)
   rcs = (pi * a^2 * b^2 * c^2) ./ (a^2 * cos_phi_s .* (sin(theta).^2) + ...
   b^2 * sin_phi_s .* (sin(theta).^2) + ...
   c^2 .* (cos(theta).^2)).^2 ;
else
   if(a == b & a ~= c)
      rcs = (pi * b^4 * c^2) ./ ( b^2 .* (sin(theta).^2) + ...
         c^2 .* (cos(theta).^2)).^2 ;
   else
      if (a == b & a ==c)
         rcs = pi * c^2;
      end
   end
end
rcs_db = 10.0 * log10(rcs);
return

MATLAB Program “Fig14_12a.m” Listing
% generates Fig 14.12a of text
clc
close all
clear all
% Enter the ellpsiod a radius
a = .15;
% Enter the ellpsiod b radius
b = .3;
% Enter the ellpsiod c radius
c = .95;
% Enter the ellpsiod roll angle in degrees
phi = [0 75 90];
[rcs_db1] = rcs_ellipsoid (a, b, c, phi(1));
[rcs_db2] = rcs_ellipsoid (a, b, c, phi(2));
[rcs_db3] = rcs_ellipsoid (a, b, c, phi(3));
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N = size(rcs_db1,2);
theta = linspace(0.0, pi, N);
theta = theta .* 180 ./ pi;
figure (1);
plot(theta,rcs_db1,'k:',theta,rcs_db2,'k',theta,rcs_db3,'k-.','linewidth',1.5);
xlabel ('\bfAspect angle - degrees');
ylabel ('\bfEllipsoid RCS - dBsm');
legend ('\phi = 0.0', '\phi = 75', '\phi = 90')
title('(a, b, c) = (.15, .3, .95) meters')
grid on;

MATLAB Function “rcs_circ_plate.m” Listing
function [rcsdb] = rcs_circ_plate (r, freq) 
% This program calculates and plots the backscattered RCS of
% circular flat plate of radius r.
eps = 0.000001;
% Compute aspect angle vector
% Compute wavelength
lambda = 3.e+8 / freq; % X-Band
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
% Compute RCS using Eq. (2.36)
       val1m = lambda * r;
       val2m = 8. * pi * sin(aspect) * (tan(aspect)^2);
       rcs_mu(index) = val1m / val2m + eps;
    end
 end
 % Compute RCS using Eq. (2.35) (theta=0,180)
rcsdb = 10. * log10(rcs_po);
rcsdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb,'k',angle,rcsdb_mu,'k-.')
grid;
xlabel ('\bfAspect angle - degrees');
ylabel ('\bfRCS - dBsm');
axis tight
legend('Using Eq.(14.39)','Using Eq.(14.38)')
freqGH = num2str(freq*1.e-9);
title (['Frequency = ',[freqGH],'  GHz']);
end
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MATLAB Function “rcs_frustum.m” Listing
function [rcs] = rcs_frustum (r1, r2, h, freq, indicator)
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed.
% When viewing from the small end of the frustum
% normal incedence occurs at aspect pi/2 - half cone angle
% When viewing from the large end, normal incidence occur at
% pi/2 + half cone angle.
% RCS is computed using Eq. (14.43). This program assumes a geometry
% similar top Fig. 14.13
% Inputs
    % r1        == small end radius in meters
    % r2        == large end radius in meters
    % freq      == frequency in Hz
    % indicator == 1 when viewing from large end 0 when viewing from small end
% Output
    % rcs       == array of RCS versus aspect angle
format long
index = 0;
eps = 0.000001;
lambda = 3.0e+8 /freq;
% Enter frustum's small end radius
%r1 =.02057;
% Enter Frustum's large end radius
%r2 = .05753;
% Compute Frustum's length
%h = .20945;
% Comput half cone angle, alpha
alpha = atan(( r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r1 / tan(alpha);
delta = (z2^1.5 - z1^1.5)^2;
factor = (8. * pi * delta) / (9. * lambda);
%('enter 1 to view frustum from large end, 0 otherwise')
large_small_end = indicator;
if(large_small_end == 1)
   % Compute normal incidence, large end
   normal_incedence = (180./pi) * ((pi /2) + alpha)
   % Compute RCS from zero aspect to normal incidence
   for theta = 0.001:.1:normal_incedence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees 
   for theta = normal_incedence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
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      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
else
   % Compute normal incidence, small end
   normal_incidence = (180./pi) * ((pi /2) - alpha)
   % Compute RCS from zero aspect to normal incidence (large end of frustum)
   for theta = 0.001:.1:normal_incedence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees (small end of frustum)
   for theta = normal_incedence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs),'k','linewidth',1.5);
grid;
xlabel ('\bfApsect angle - degrees');
ylabel ('\bfRCS - dBsm');
axis tight
if(indicator ==1)
    title ('\bfViewing from large end');
else
    title ('\bfViewing from small end');
end

MATLAB Function “rcs_cylinder.m” Listing
function [rcs] = rcs_cylinder(r1, r2, h, freq, phi, CylinderType)
% rcs_cylinder.m
% This program compute monostatic RCS for a finite length
% cylinder of either circular or elliptical cross-section.
% Plot of RCS versus aspect angle theta is generated at a specified 
r = r1;           % radius of the circular cylinder
eps =0.00001;
dtr = pi/180;
phir = phi*dtr;
lambda = 3.0e+8 /freq;      % wavelength
% CylinderType= 'Elliptic';   % 'Elliptic' or 'Circular' 
 
switch CylinderType
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case 'Circular'
    % Compute RCS from 0 to (90-.5)  degrees 
    index = 0;
    for theta = 0.0:.1:90-.5
        index = index +1;
        thetar = theta * dtr;
        rcs(index) = (lambda * r * sin(thetar) / ...
            (8. * pi * (cos(thetar))^2)) + eps;
    end
    % Compute RCS for broadside specular at 90 degree
    thetar = pi/2;
    index = index +1;
    rcs(index) = (2. * pi * h^2 * r / lambda )+ eps;    
    % Compute RCS from (90+.5) to 180 degrees
    for theta = 90+.5:.1:180.
        index = index + 1;
        thetar = theta * dtr;
        rcs(index) = ( lambda * r * sin(thetar) / ...
            (8. * pi * (cos(thetar))^2)) + eps;
    end
case 'Elliptic'
   r12 = r1*r1;
    r22 = r2*r2;
    h2 = h*h;
    % Compute RCS from 0 to (90-.5)  degrees 
    index = 0;
    for theta = 0.0:.1:90-.5
        index = index +1;
        thetar = theta * dtr;
        rcs(index) =  lambda * r12 * r22 * sin(thetar) / ...
                 ( 8*pi* (cos(thetar)^2)* ( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 ))+ eps;    
    end
    % Compute RCS for broadside specular at 90 degree
    index = index +1;
    rcs(index) = 2. * pi * h2 * r12 * r22 / ...
                 ( lambda*( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 ))+ eps;    
    % Compute RCS from (90+.5) to 180 degrees
    for theta = 90+.5:.1:180.
        index = index + 1;
        thetar = theta * dtr;
        rcs(index) =  lambda * r12 * r22 * sin(thetar) / ...
                 ( 8*pi* cos(thetar)^2* ( (r12*cos(phir)^2 + r22*sin(phir)^2)^1.5 ))+ eps;    
    end
end
end

MATLAB Program “Fig14_19.m” Listing
% generates Fig. 14.19 of text
clc
close all
clear all
r1 = .125;
r2 = 0.05;
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h = 1;
phi = 45;
freq = 5.6e9;
freqGH = num2str(freq*1.e-9);
% Fig 14.19a
[rcs1] = rcs_cylinder(r1, r1, h, freq, phi,'Circular');
figure(1)
angle = linspace(0,180,size(rcs1,2));
plot(angle,10*log10(rcs1),'k','linewidth',1.5);
grid on;
xlabel ('\bfAspect angle in dDegrees');
ylabel ('\bfRCS - dBsm');
title  (['Circular Cylinder at Frequency = ',[freqGH],'  GHz']); 
% Fig. 14.19b
[rcs2] = rcs_cylinder(r1, r2, h, freq, phi,'Elliptic');
figure(2)
angle = linspace(0,180,size(rcs2,2));
plot(angle,10*log10(rcs2),'k','linewidth',1.5);
grid on;
xlabel ('\bfAspect angle in degrees');;
ylabel ('\bfRCS - dBsm');
title  (['Elliptic Cylinder at Frequency = ',[freqGH],'  GHz']);

MATLAB Function “rcs_rect_plate.m” Listing
function  [rcsdb_h,rcsdb_v] = rcs_rect_plate(a, b, freq)
% This program computes the backscattered RCS for a rectangular 
% flat plate. The RCS is computed for vertical and horizontal
% polarization based on Eq.s(14.52)through (14.62). Also Physical
% Optics approximation Eq.(14.64) is computed.
% User may vary frequency, or the plate's dimensions.
% Default values are a=b=10.16cm; lambda=3.25cm.
eps = 0.000001;
% Enter a, b, and lambda
lambda = .0325;
ka = 2. * pi * a / lambda;
% Compute aspect angle vector
theta_deg = 0.05:0.1:85;
theta = (pi/180.) .* theta_deg;
sigma1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)^1.5);
sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...
   (1. - sin(theta)).^2;
sigma4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...
   (1. + sin(theta)).^2;
sigma5v = 1. - (exp(i * 2. * ka - (pi / 2)) / (8. * pi * (ka)^3));
sigma1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2h = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka));
sigma3h =  exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));
sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta));
sigma5h = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);
% Compute vertical polarization RCS
rcs_v = (b^2 / pi) .* (abs(sigma1v - sigma2v .*((1. ./ cos(theta)) ...
   + .25 .* sigma2v .* (sigma3v + sigma4v)) .* (sigma5v).^-1)).^2 + eps;
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% compute horizontal polarization RCS
rcs_h = (b^2 / pi) .* (abs(sigma1h - sigma2h .*((1. ./ cos(theta)) ...
   - .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigma5h).^-1)).^2 + eps;
% Compute RCS from Physical Optics, Eq.(2.62)
angle = ka .* sin(theta);
rcs_po = (4. * pi* a^2 * b^2 / lambda^2 ).*  (cos(theta)).^2 .* ...
   ((sin(angle) ./ angle).^2) + eps;
rcsdb_v = 10. .*log10(rcs_v);
rcsdb_h = 10. .*log10(rcs_h);
rcsdb_po = 10. .*log10(rcs_po);
figure
plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k -.','linewidth',1.5);
set(gca,'xtick',[10:10:85]);
freqGH = num2str(freq*1.e-9);
A = num2str(a);
B = num2str(b);
title (['Vertical Polarization,  ','Frequency = ',[freqGH],'  GHz, ', '  a = ', [A], ' m','  b = ',[B],' m']);
ylabel ('\bfRectangular plate RCS -dBsm');
xlabel ('\bfAspect angle - deg');
legend('Eq.(14.52)','Eq.(14.53)')
grid on
figure
plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k -.','linewidth',1.5);
set(gca,'xtick',[10:10:85]);
title (['Horizontal Polarization,  ','Frequency = ',[freqGH],'  GHz, ', '  a = ', [A], ' m','  b = ',[B],' m']);
ylabel ('\bfREctangular plate RCS -dBsm');
xlabel ('\bfAspect angle - deg');
legend('Eq.(14.53)','Eq.(14.53)')
grid on

MATLAB Function “rcs_isosceles.m” Listing
function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
% conducting triangular flat plate, using Eq.s (14.65) through (14.67)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees
% Users may vary wavelength, or plate's dimensions
% Inputs
    % a     == height of plate in meters
    % b     == base of plate in meters
    % freq  == frequency in Hz
    % phi   == roll angle in degrees
% Output
    % rcs   == array of RCS versus aspect angle
A = a * b / 2.;
lambda = 3.e+8 / freq;
ka = 2. * pi / lambda;
kb = 2. *pi / lambda;
% Compute theta vector
theta_deg = 0.01:.05:89;
theta = (pi /180.) .* theta_deg;
alpha = ka * cos(phi) .* sin(theta);
beta =  kb * sin(phi) .* sin(theta);
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if (phi == pi / 2)
  rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* (sin(beta ./ 2)).^4 ...
     ./ (beta./2).^4 + eps;
end
if (phi == 0)
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* ...
      ((sin(alpha).^4 ./ alpha.^4) + (sin(2 .* alpha) - 2.*alpha).^2 ...
      ./ (4 .* alpha.^4)) + eps;
end
if (phi ~= 0 & phi ~= pi/2)
   sigmao1 = 0.25 *sin(phi)^2 .* ((2. * a / b) * cos(phi) .* ...
      sin(beta) - sin(phi) .* sin(2. .* alpha)).^2;
   fact1 = (alpha).^2 - (.5 .* beta).^2;
   fact2 = (sin(alpha).^2 - sin(.5 .* beta).^2).^2;
   sigmao = (fact2 + sigmao1) ./ fact1;
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k','linewidth', 1.5)
xlabel ('\bfAspect angle - degrees');
ylabel ('\bfRCS - dBsm')
grid on

MATLAB Program “rcs_cylinder_cmplx.m” Listing
clc
close
clear all
indes = 0;
eps =0.00001;
a1 =.125;
h = 1.;
lambda = 3.0e+8 /9.5e+9;
lambda = 0.00861;
index = 0;
for theta = 0.0:.1:90-.1
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * a1 * sin(theta) / (8 * pi * (cos(theta))^2)) + eps;
end
theta*180/pi
theta = pi/2;
index = index +1
rcs(index) = (2 * pi * h^2 * a1 / lambda )+ eps;
for theta = 90+.1:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * a1 * sin(theta) / (8 * pi * (cos(theta))^2)) + eps;
end
%%%%%%%%%%%
r = a1;
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
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   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
    end
 end
rcs_t =(rcs_po + rcs);
 %%%%%%%%%%%%%
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k');
xlabel('\bfAspect angle in degrees')
ylabel('\bfRCS - dBsm')
grid

MATLAB Program “fdtd.m” Listing
clear all
%
mu_o = pi*4.0e-7;                 % free space permeability
epsilon_o = 8.854e-12;            % free space permittivity
% 
c = 1.0/sqrt(mu_o * epsilon_o);   % speed of light
% 
length_x = 2.0;                   % x-width of region
nx = 200;                         % number of x grid points 
dx = length_x / (nx - 1);         % x grid size
% 
x = linspace(0.0, length_x, nx);  % x array
%
length_y = 2.0;                   % y-width of region 
ny = 200;                         % number of y grid points
dy = length_y / (ny - 1);         % y grid size
% 
y = linspace(0.0, length_y, ny);  % y array
%
max_timestep = c*sqrt(1.0/(dx*dx) + 1.0/(dy*dy));   % max tstep for FDTD
max_timestep = 1.0/max_timestep;
%
delta_t = 0.5*max_timestep;      % delta t a little less than max tstep
%
er = 8.0;                         % relative permittivity of slab
%
epsilon = epsilon_o*ones(ny, nx); % epsilon array
mu = mu_o*ones(ny - 1, nx - 1);   % mu array
% 
a1 = [0.5 1.5 1.5 0.5 0.5];       % for drawing slab on plot 
a2 = [0.6 0.6 0.8 0.8 0.6];       % for drawing slab on plot
% 
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x1 = fix(0.5/dx)+1;               % grid extents for slab
y1 = fix(0.6/dy);                 % grid extents for slab
x2 = fix(1.5/dx)+1;               % grid extents for slab
y2 = fix(0.8/dy);                 % grid extents for slab
% 
epsilon(y1:y2,x1:x2) = er*epsilon_o;  % set epsilon inside slab
% 
j_x = nx/2;                       % x location of current source
j_y = ny/2;                       % y location of current source
% 
e_z_1 = zeros(ny, nx);          % initialize array. e_z at boundaries will remain 0
h_x_1 = zeros(ny - 1, nx - 1);  % initialize array
h_y_1 = zeros(ny - 1, nx - 1);  % initialize array
e_z_2 = zeros(ny, nx);          % initialize array. e_z at boundaries will remain 0
h_x_2 = zeros(ny - 1, nx - 1);  % initialize array
h_y_2 = zeros(ny - 1, nx - 1);  % initialize array
% 
ntim = 300;                     % number of desired time points
f_o = 600e6;                    % base frequency for pulse
tau = 1.0/(4.0*pi*f_o);         % tau for pulse
% 
for i_t = 1:ntim
%   
   time(i_t) = i_t * delta_t;
%   
   i_t
   time(i_t)
%   
   if time(i_t) > 3.36e-9
       break
   end
%   
   jz(i_t) = (4.0 * (time(i_t)/tau)^3 - (time(i_t)/tau)^4) * exp(-time(i_t)/tau);
%   
   for i_x = 2:nx-1     % ez at boundaries remains zero
      for i_y = 2:ny-1  % ez at boundaries remains zero
%         
         j = 0.0;
         if i_x == j_x
            if i_y == j_y
               j = jz(i_t);
            end
         end
%         
         if rem(i_t, 2) == 1
            a = 1.0/dx*(h_y_1(i_y, i_x) - h_y_1(i_y, i_x - 1));
            b = 1.0/dy*(h_x_1(i_y, i_x) - h_x_1(i_y - 1, i_x));
            e_z_2(i_y, i_x) = e_z_1(i_y, i_x) + (delta_t/epsilon(i_y, i_x))*(a - b) - j;
         else
            a = 1.0/dx*(h_y_2(i_y, i_x) - h_y_2(i_y, i_x - 1));
            b = 1.0/dy*(h_x_2(i_y, i_x) - h_x_2(i_y - 1, i_x));
            e_z_1(i_y, i_x) = e_z_2(i_y, i_x) + (delta_t/epsilon(i_y, i_x))*(a - b) - j;
         end
%         
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      end
   end
%   
   for i_x = 1:nx-1
      for i_y = 1:ny-1
%         
         if rem(i_t, 2) == 1
            h_x_2(i_y, i_x) = h_x_1(i_y, i_x) - (delta_t/mu(i_y, i_x)/dy)*(e_z_2(i_y + 1, i_x) - e_z_2(i_y, i_x));
            h_y_2(i_y, i_x) = h_y_1(i_y, i_x) + (delta_t/mu(i_y, i_x)/dx)*(e_z_2(i_y, i_x + 1) - e_z_2(i_y,
i_x));
         else
            h_x_1(i_y, i_x) = h_x_2(i_y, i_x) - (delta_t/mu(i_y, i_x)/dy)*(e_z_1(i_y + 1, i_x) - e_z_1(i_y, i_x));
            h_y_1(i_y, i_x) = h_y_2(i_y, i_x) + (delta_t/mu(i_y, i_x)/dx)*(e_z_1(i_y, i_x + 1) - e_z_1(i_y,
i_x));
         end
      end
   end
%   
   pcolor(x, y, abs(e_z_2))
   line(a1, a2, 'Linewidth', 1.0, 'Color', 'white');
   xlabel('X (m)')
   ylabel('Y (m)')
   title('Ez (V/m)')
   axis square
   shading interp
   %colormap gray
   caxis([0 .1])
   %axis([0 2 0 2 0 .1])
   fr(i_t) = getframe;
end

MATLAB Program “rectplate.m” Listing
close all
clear all
frequency = 2.6e9;                  % desired radar frequency
freqGH = num2str(frequency*1.e-9);
c = 299795645.0;                    % speed of light
w = 2.0*pi*frequency;               % radian frequency
wavenumber = w/c;                   % free space wavenumber
mu = 4.0*pi*1.0e-7;                 % free space permeability
z_o = 376.7343;                     % free space wave impedance
l_x = 1.0;                          % length of plate
l_y = 1.0;                          % width of plate
normal_vect = [0 0 1];              % +z normal for x-y plane
theta_points = 180;                 % number of points in theta
phi_points = 1;                     % number of points in phi
 theta = linspace(-0.5*pi, 0.5*pi, theta_points);
phi = linspace(0.0, 2.0*pi, phi_points);
 for i_theta = 1:theta_points
          for i_phi = 1:phi_points
                theta_vect(1) = cos(theta(i_theta))*cos(phi(i_phi));
        theta_vect(2) = cos(theta(i_theta))*sin(phi(i_phi));
        theta_vect(3) = -sin(theta(i_theta));



Appendix 14-A: Chapter 14 MATLAB Code Listings 539                                                                                                                                                                                                                                                                         

                phi_vect(1) = -sin(phi(i_phi));
        phi_vect(2) = cos(phi(i_phi));
        phi_vect(3) = 0.0;
                u = sin(theta(i_theta))*cos(phi(i_phi));
        v = sin(theta(i_theta))*sin(phi(i_phi));
                vect_term = dot(theta_vect, cross(phi_vect, normal_vect));
                es(i_theta, i_phi) = -j*w*mu/2.0/pi/z_o*vect_term*l_x*l_y*sinc(wavenum-
ber*u*l_x)*sinc(wavenumber*v*l_y);   
    end
end
rcs = 20.0*log10(sqrt(4*pi)*abs(es));
plot(180*theta/pi, rcs)
axis([-90 90 -60 30])
xlabel('\bfTheta (degrees)')
ylabel('\bfRCS (dBsm')
grid on
title  (['Frequency = ',[freqGH],'  GHz']);
return

MATLAB Program “polygon.m” Listing
% this routine calculates the scattered electric field of an arbitrary
% N-sided polygon located in the x-y plane.
clc
clear all
close all
frequency = 1.0e9;                  % desired radar frequency
freqGH = num2str(frequency*1.e-9);
c = 299795645.0;                    % speed of light
w = 2.0*pi*frequency;               % radian frequency
wavenumber = w/c;                   % free space wavenumber
mu = 4.0*pi*1.0e-7;                 % free space permeability
z_o = 376.7343;                     % free space wave impedance
 
nsides = 3;                         % number of polygon sides
vertices(1,:) = [0.0 0.0 0.0];      % vertexes of polygon (counterclockwise)
vertices(2,:) = [1.0 0.5 0.0];      % vertexes of polygon (counterclockwise)
vertices(3,:) = [1.5 0.0 0.0];      % vertexes of polygon (counterclockwise)
 
for n = 1:nsides
    if n == nsides
        alpha_n(nsides,1) = vertices(1,1) - vertices(nsides,1);
        alpha_n(nsides,2) = vertices(1,2) - vertices(nsides,2);
        alpha_n(nsides,3) = vertices(1,3) - vertices(nsides,3);
    else 
        alpha_n(n,1) = vertices(n+1,1) - vertices(n,1);
        alpha_n(n,2) = vertices(n+1,2) - vertices(n,2);
        alpha_n(n,3) = vertices(n+1,3) - vertices(n,3);
    end
    alpha_n(n, 1:3) = alpha_n(n, 1:3)/norm(alpha_n(n, 1:3));
end
 
normal_vect = [0 0 1];              % +z normal for x-y plane
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theta_points = 180;                 % number of points in theta
phi_points = 1;                     % number of points in phi
 
theta = linspace(-0.5*pi, 0.5*pi, theta_points);
phi = linspace(0.0, 2.0*pi, phi_points);
 
for i_theta = 1:theta_points
      
    for i_phi = 1:phi_points
        
        theta_vect(1) = cos(theta(i_theta))*cos(phi(i_phi));
        theta_vect(2) = cos(theta(i_theta))*sin(phi(i_phi));
        theta_vect(3) = -sin(theta(i_theta));
        
        phi_vect(1) = -sin(phi(i_phi));
        phi_vect(2) = cos(phi(i_phi));
        phi_vect(3) = 0.0;
        
        w_vect(1) = 2*wavenumber*sin(theta(i_theta))*cos(phi(i_phi));
        w_vect(2) = 2*wavenumber*sin(theta(i_theta))*sin(phi(i_phi));
        w_vect(3) = 0.0;
            
        s_term = 0.0;
        
        for n = 1:nsides
            expterm = exp(i*dot(w_vect, vertices(n,1:3)));
            if n == 1
                num = dot(cross(normal_vect, alpha_n(n,1:3)), alpha_n(nsides,1:3));
                denom = dot(w_vect, alpha_n(n,1:3))*dot(w_vect, alpha_n(nsides,1:3));
            else
                num = dot(cross(normal_vect, alpha_n(n,1:3)), alpha_n(n-1,1:3));
                denom = dot(w_vect, alpha_n(n,1:3))*dot(w_vect, alpha_n(n-1,1:3));
            end
            s_term = s_term + num*expterm/denom;
        end
        
        vect_term = dot(theta_vect, cross(phi_vect, normal_vect));
        
        es(i_theta, i_phi) = -j*w*mu/2.0/pi/z_o*vect_term*s_term;
       
    end
end
 
rcs = 20.0*log10(sqrt(4*pi)*abs(es));
plot(180*theta/pi, rcs)
axis([-90 90 -120 20])
xlabel('\bfAspect angle - degrees')
ylabel('\bfRCS (dBsm')
grid on
title  (['Frequency = ',[freqGH],'  GHz']);
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Part V - Radar Special Topics

Chapter 15

15.1. Directivity, Power Gain, and Effective Aperture 
Radar antennas can be characterized by the directive gain , power gain , and effective

aperture . Antenna gain is a term used to describe the ability of an antenna to concentrate
the transmitted energy in a certain direction. Directive gain, or simply directivity, is more rep-
resentative of the antenna radiation pattern, while power gain is normally used in the radar
equation. Plots of the power gain and directivity, when normalized to unity, are called the
antenna radiation pattern. The directivity of a transmitting antenna can be defined by

. Eq. (15.1)

The radiation intensity is the power-per-unit solid angle in the direction  and denoted
by . The average radiation intensity over  radians (solid angle) is the total power
divided by . Hence, Eq. (15.1) can be written as

. Eq. (15.2)

It follows that

. Eq. (15.3)

As an approximation, it is customary to rewrite Eq. (15.3) as

Eq. (15.4)

where  and  are the antenna half-power (3-dB) beamwidths in either direction. The
antenna power gain and its directivity are related by

Eq. (15.5)

where  is the radiation efficiency factor. In this book, the antenna power gain will be
denoted as gain. The radiation efficiency factor accounts for the ohmic losses associated with
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the antenna. Therefore, the definition for the antenna gain is also given in Eq. (15.1). The
antenna effective aperture  is related to gain by 

 Eq. (15.6)

where  is the wavelength. The relationship between the antenna’s effective aperture  and
the physical aperture  is

Eq. (15.7)

 is referred to as the aperture efficiency, and good antennas require  (in this book
 is always assumed, i.e., ). 

Using simple algebraic manipulations of Eqs. (15.4) through (15.6) (assuming that )
yields

Eq. (15.8)

Consequently, the angular cross section of the beam is

. Eq. (15.9)

Eq. (15.9) indicates that the antenna beamwidth decreases as  increases. Thus, in surveil-
lance operations, the number of beam positions an antenna will take on to cover a volume  is

. Eq. (15.10)

and when  represents the entire hemisphere, Eq. (15.10) is modified to

. Eq. (15.11)

15.2. Near and Far Fields
The electric field intensity generated from the energy emitted by an antenna is a function of

the antenna physical aperture shape and the electric current amplitude and phase distribution
across the aperture. Plots of the modulus of the electric field intensity of the emitted radiation,

, are referred to as the intensity pattern of the antenna. Alternatively, plots of
 are called the power radiation pattern (the same as ).

Based on the distance from the face of the antenna, where the radiated electric field is mea-
sured, three distinct regions are identified. They are the near field, Fresnel, and the Fraunhofer
regions. In the near field and the Fresnel regions, rays emitted from the antenna have spherical
wavefronts (equiphase fronts). In the Fraunhofer region, the wavefronts can be locally repre-
sented by plane waves. The near field and the Fresnel regions are normally of little interest to
most radar applications. Most radar systems operate in the Fraunhofer region, which is also
known as the far field region. In the far field region, the electric field intensity can be com-
puted from the aperture Fourier transform. 
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Construction of the far criterion can be developed with the help of Fig. 15.1. Consider a radi-
ating source at point O that emits spherical waves. A receiving antenna of length  is at dis-
tance  away from the source. The phase difference between a spherical wave and a local
plane wave at the receiving antenna can be expressed in terms of the distance . The distance

 is given by

, Eq. (15.12)

and since in the far field , Eq. (15.12) is approximated via binomial expansion by 

. Eq. (15.13)

It is customary to assume far field when the distance  corresponds to less than  of a
wavelength (i.e., ). More precisely, if

 , Eq. (15.14)

then a useful expression for far field is 

. Eq. (15.15)

Note that far field is a function of both the antenna size and the operating wavelength.

15.3. General Arrays
An array is a composite antenna formed from two or more basic radiators. Each radiator is

denoted as an element. The elements forming an array could be dipoles, dish reflectors, slots in
a wave guide, or any other type of radiator. Array antennas synthesize narrow directive beams
that may be steered, mechanically or electronically, in many directions. Electronic steering is
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 Figure 15.1. Construction of the far field criterion.
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achieved by controlling the phase of the current feeding the array elements. Arrays with elec-
tronic beam steering capability are called phased arrays. Phased array antennas, when com-
pared to other simple antennas such as dish reflectors, are costly and complicated to design.
However, the inherent flexibility of phased array antennas to steer the beam electronically, and
also the need for specialized multifunction radar systems, have made phased array antennas
attractive for radar applications.

Figure 15.2 shows the geometrical fundamentals associated with this problem. In general,
consider the radiation source located at  with respect to a phase reference at

. The electric field measured at far field point  is 

Eq. (15.16)

where  is the complex amplitude,  is the wave number, and is the radia-
tion pattern.

Now, consider the case where the radiation source is an array made of many elements, as
shown in Fig. 15.3. The coordinates of each radiator with respect to the phase reference is

, and the vector from the origin to the  element is given by

. Eq. (15.17)

The far field components that constitute the total electric field are

Eq. (15.18)

where

. Eq. (15.19)

Using spherical coordinates, where , , and , yields
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 Figure 15.2. Geometry for an array antenna. Single element.
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. Eq. (15.20)

Thus, a good approximation (using binomial expansion) for Eq. (15.19) is 

. Eq. (15.21)

It follows that the phase contribution at the far field point from the  radiator with respect to
the phase reference is 

. Eq. (15.22)

Remember, however, that the unit vector  along the vector  is 

. Eq. (15.23)

Hence, we can rewrite Eq. (15.22) as

. Eq. (15.24)

Finally, by virtue of superposition, the total electric field is

, Eq. (15.25)

which is known as the array factor for an array antenna where the complex current for the 
element is .

In general, an array can be fully characterized by its array factor. This is true since knowing
the array factor provides the designer with knowledge of the array’s (1) 3-dB beamwidth; (2)
null-to-null beamwidth; (3) distance from the main peak to the first sidelobe; (4) height of the
first sidelobe as compared to the main beam; (5) location of the nulls; (6) rate of decrease of
the sidelobes; and (7) grating lobe locations.
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 Figure 15.3. Geometry for an array antenna.
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15.4. Linear Arrays
Figure 15.4 shows a linear array antenna consisting of  identical elements. The element

spacing is  (normally measured in wavelength units). Let element #1 serve as a phase refer-
ence for the array. From the geometry, it is clear that an outgoing wave at the  element
leads the phase at the  element by , where . The combined phase
at the far field observation point  is independent of  and is computed from Eq. (15.24) as

. Eq. (15.26)

Thus, from Eq. (15.25), the electric field at a far field observation point with direction-sine
equal to  (assuming isotropic elements) is

. Eq. (15.27)

Expanding the summation in Eq. (15.27) yields

. Eq. (15.28)

The right-hand side of Eq. (15.28) is a geometric series, which can be expressed in the form

. Eq. (15.29)

Replacing  by  yields
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. Eq. (15.30)

The far field array intensity pattern is then given by

. Eq. (15.31)

Substituting Eq. (15.30) into Eq. (15.31) and collecting terms yields

, Eq. (15.32)

and using the trigonometric identity  yields 

, Eq. (15.33)

which is a periodic function of , with a period equal to . 

The maximum value of , which occurs at , is equal to . It follows that the
normalized intensity pattern is equal to

 . Eq. (15.34)

The normalized two-way array pattern (radiation pattern) is given by

. Eq. (15.35)

Figure 15.5 shows a plot of Eq. (15.35) versus  for . The pattern  has
cylindrical symmetry about its axis , and is independent of the azimuth angle.
Thus, it is completely determined by its values within the interval . This figure can
be reproduced using MATLAB program “Fig15_5.m,” listed in Appendix 15-A. 

The main beam of an array can be steered electronically by varying the phase of the current
applied to each array element. Steering the main beam into the direction-sine  is accom-
plished by making the phase difference between any two adjacent elements equal to .
In this case, the normalized radiation pattern can be written as

Eq. (15.36)

If  ,then the main beam is perpendicular to the array axis, and the array is said to be a
broadside array. Alternatively, the array is called an endfire array when the main beam points
along the array axis. 

The radiation pattern maxima are computed using L’Hopital’s rule when both the denomina-
tor and numerator of Eq. (15.35) are zeros. More precisely, 

Eq. (15.37)
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 Figure 15.5a. Normalized radiation pattern for a linear array; ; .N 8= d =

 

 Figure 15.5b. Polar plot for the array pattern in Fig. 15.5a.
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Eq. (15.38)

where the subscript  is used as a maxima indicator. The first maximum occurs at ,
and is denoted as the main beam (lobe). Other maxima occurring at  are called grating
lobes. Grating lobes are undesirable and must be suppressed. The grating lobes occur at non-
real angles when the absolute value of the arc-sine argument in Eq. (15.38) is greater than
unity; it follows that . Under this condition, the main lobe is assumed to be at 
(broadside array). Alternatively, when electronic beam steering is considered, the grating lobes
occur at 

Eq. (15.39)

Thus, in order to prevent the grating lobes from occurring between , the element spacing
should be .

The radiation pattern attains secondary maxima (sidelobes) when the numerator of Eq.
(15.35) is maximum, or equivalently

Eq. (15.40)

Solving for  yields

Eq. (15.41)

where the subscript  is used as an indication of sidelobe maxima. The nulls of the radiation
pattern occur when only the numerator of Eq. (15.35) is zero. More precisely,

Eq. (15.42)

Again solving for  yields

Eq. (15.43)

where the subscript  is used as a null indicator. Define the angle that corresponds to the half
power point as . It follows that the half power (3dB) beamwidth is . This occurs
when

. Eq. (15.44)

15.4.1. Array Tapering

Figure 15.6 shows a normalized two-way radiation pattern of a uniformly excited linear
array of size , element spacing . The first sidelobe is  below the
main lobe, and for most radar applications this may not be sufficient, particularly in the pres-
ence of a strong source of jamming or high levels of noise. Under such conditions, target detec-
tion in the main beam becomes rather challenging, since the SNR is reduced.   
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In order to reduce the sidelobe levels, the array must be designed to radiate more power
toward the center, and much less at the edges. This can be achieved through tapering (window-
ing) the current distribution over the face of the array. There are many possible tapering
sequences that can be used for this purpose. However, as known from spectral analysis, win-
dowing reduces sidelobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the trade-off between
sidelobe reduction and main-beam widening. The same type of windows discussed earlier in
Chapter 3 can be used for array tapering. Table 15.1 summarizes the impact of most common
windows on the array pattern in terms of main-beam widening and peak reduction. Note that
the rectangular window is used as the baseline. This is also illustrated in Fig. 15.7, which can
be reproduced using MATLAB program “Fig15_7.m,” listed in Appendix 15-A. 

TABLE 15.1. Common windows.

Window Null-to-Null Beamwidth Peak Reduction

Rectangular 1 1

Hamming 2 0.73

Hanning 2 0.664

Blackman 6 0.577

Kaiser ( 2.76 0.683

Kaiser ( 1.75 0.882

 Figure 15.6. Normalized pattern for a linear array. , .N 8= d 2=

6=

3=



Linear Arrays 551                                                                                                                                                                                                                                                                         

15.4.2. Computation of the Radiation Pattern via the DFT

Figure 15.8 shows a linear array of size , element spacing , and wavelength . The radi-
ators are circular dishes of diameter . Let  and , respectively, denote the tapering
and phase shifting sequences. The normalized electric field at a far field point in the direction-
sine  is

Eq. (15.45)

where in this case the phase reference is taken as the physical center of the array, and 

 . Eq. (15.46)

 Figure 15.7. Most common windows.

N d
d w n n

sin

E sin w n e
j n N 1–

2
-------------–

n 0=

N 1–

=

2 d---------- sin=



552                                                                                   Radar Systems Analysis and Design Using MATLAB®

Expanding Eq. (15.45) and factoring the common phase term  yields

. Eq. (15.47)

By using the symmetry property of a window sequence (remember that a window must be
symmetrical about its central point), we can rewrite Eq. (15.47) as

Eq. (15.48)

where . 

Define . It follows that

. Eq. (15.49)

The discrete Fourier transform of the sequence  is defined as

. Eq. (15.50)

The set  that makes  equal to the DFT kernel is

. Eq. (15.51)

Then, by using Eq. (15.51) in Eq. (15.50) yields

. Eq. (15.52)

The one-way array pattern is computed as the modulus of Eq. (15.52). It follows that the
one-way radiation pattern of a tapered linear array of circular dishes is
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 Figure 15.8. Linear array of size 5, with tapering and phase shifting hardware.
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Eq. (15.53)

where  is the element pattern. In practice, phase shifters are normally implemented as part
of the Transmit/Receive (TR) modules, using a finite number of bits. Consequently, due to the
quantization error (difference between desired phase and actual quantized phase) the sidelobe
levels are affected. 

MATLAB Function “linear_array.m”

The function “linear_array.m” computes and plots the linear array gain pattern as a function
of real sine-space. The syntax is as follows:

[theta, patternr, patterng] = linear_array(Nr, dolr, theta0, winid, win, nbits)

where

The MATLAB-based graphical user interface (GUI) in Fig. 15.9 implements this function.
This GUI was used to produce Figs. 15.10 through 15.18 assuming the following cases:

[theta, patternr, patterng] = linear_array(19, 0.5, 0, -1, -1, -3);

[theta, patternr, patterng] = linear_array(19, 0.5, 0, 1, ‘hamming’, -3);

[theta, patternr, patterng] = linear_array(19, 0.5, 5, -1, -1, 3);

[theta, patternr, patterng] = linear_array(19, 0.5, 5, 1, ‘hamming’, 3);

[theta, patternr, patterng] = linear_array(19, 0.5, 25, 1, ‘hamming’, 3);

[theta, patternr, patterng] = linear_array(19, 1.5, 48, -1, -1, -3);

[theta, patternr, patterng] = linear_array(19, 1.5, 48, 1, ‘hamming’, -3);

[theta, patternr, patterng] = linear_array(19, 1.5, -48, -1, -1, 3);

[theta, patternr, patterng] = linear_array(19, 1.5, -38, 1, ‘hamming’, 3);

Symbol Description Units Status

Nr number of elements in array none input

dolr element spacing in lambda units wavelengths input

theta0 steering angle degrees input

winid -1== No weighting; 1== weighting = user 
specified window

none input

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

theta real angle available for steering degrees output

patternr array pattern dB output

patterng gain pattern dB output

G sin Ge W q=

Ge

2nbits
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 Figure 15.9. MATLAB GUI workspace associated with the function 
“linear_array.m.”

 Figure 15.10. Array gain pattern: ; 
.

Nr 19 dolr; 0.5 0; 0= = =
win none nbits; 3–= =
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 Figure 15.11. Array gain pattern: ; Nr 19 dolr; 0.5 0; 0= = =
win Hamming nbits; 3–= =

 Figure 15.12. Array gain pattern: ; Nr 19 dolr; 0.5 0; 5= = =
win none nbits; 3= =
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 Figure 15.13. Array gain pattern: ; Nr 19 dolr; 0.5 0; 5= = =
win Hamming nbits; 3= =

 Figure 15.14. Array gain pattern: ; Nr 19 dolr; 0.5 0; 25= = =
win Hamming nbits; 3= =
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 Figure 15.15. Array gain pattern: ; Nr 19 dolr; 1.5 0; 48= = =
win none nbits; 3–= =

 Figure 15.16. Array gain pattern: ; Nr 19 dolr; 1.5 0; 48= = =
win Hamming nbits; 3–= =
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 Figure 15.17. Array gain pattern: ; Nr 19 dolr; 1.5 0; 48–= = =
win none nbits; 3= =

 Figure 15.18. Array gain pattern: ; Nr 19 dolr; 1.5 0; 38–= = =
win Hamming nbits; 3= =



Planar Arrays 559                                                                                                                                                                                                                                                                         

15.5. Planar Arrays
Planar arrays are a natural extension of linear arrays. Planar arrays can take on many config-

urations, depending on the element spacing and distribution defined by a “grid.” Examples
include rectangular, rectangular with circular boundary, hexagonal with circular boundary, cir-
cular, and concentric circular grids, as illustrated in Fig. 15.19.

Planar arrays can be steered in elevation and azimuth ( , as illustrated in Fig. 15.20 for
a rectangular grid array. The element spacing along the x- and y-directions are respectively
denoted by  and . The total electric field at a far field observation point for any planar
array can be computed using Eqs. (15.24) and (15.25).

dx dy

(a) (b)

(c) (d)

(e)

 Figure 15.19. Planar array grids. (a) Rectangular, (b) rectangular with circular 
boundary, (c) circular, (d) concentric circular, and (e) hexagonal.
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15.5.1. Rectangular Grid Arrays

Consider the  rectangular grid as shown in Fig. 15.20. The dot product , where
the vector  is the vector to the  element in the array and  is the unit vector to the far
field observation point, can be broken linearly into its x- and y-components. It follows that the
electric field components due to the elements distributed along the x- and y-directions are,
respectively, 

Eq. (15.54)

. Eq. (15.55)

The total electric field at the far field observation point is then given by

Eq. (15.56)

Eq. (15.56) can be expressed in terms of the directional cosines

Eq. (15.57)

y

z

x dy

dx

far field
 point

Figure 15.20. Rectangular array geometry.
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Eq. (15.58)

the visible region is then defined by 

. Eq. (15.59)

It is very common to express a planar array’s ability to steer the beam in space in terms of
the  space instead of the angles . Figure 15.21 shows how a beam steered in a certain

 direction is translated into  space. 

The rectangular array one-way intensity pattern is then equal to the product of the individual
patterns. More precisely for a uniform excitation ( ),

. Eq. (15.60)

The radiation pattern maxima, nulls, sidelobes, and grating lobes in both the x- and y-axes
are computed in a similar fashion to the linear array case. Additionally, the same conditions for
grating lobe control are applicable. Note the symmetry is about the angle . 
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 Figure 15.21. Translation from spherical coordinates into U,V space.
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15.5.2. Circular Grid Arrays

The geometry of interest is shown in Fig. 15.19c. In this case,  elements are distributed
equally on the outer circle whose radius is . For this purpose, consider the geometry shown in
Fig. 15.22. From the geometry 

. Eq. (15.61)

The coordinates of the  element are

. Eq. (15.62)

It follows that 

. Eq. (15.63)

Equation (15.63) can be rearranged as

. Eq. (15.64)

Then, by using the identity , Eq.(15.63) collapses to

. Eq. (15.65)

Finally, by using Eq. (15.25), the far field electric field is then given by

Eq. (15.66)

N
a

n
2
N
------ n= n; 1 2 N=

nth

xn a ncos=

yn a nsin=

zn 0=

k rn r0 n k a ncoscossin a nsinsinsin 0+ += =

n ak ncoscos nsinsin+sin=

A B–cos A Bcoscos A Bsinsin+=

n ak n–cossin=

E a; In j2 a---------- n –cossinexp

n 1=

N

=
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z

1

N

N 1–

1
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P
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 Figure 15.22. Geometry for a circular array.

N 2–
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where  represents the complex current distribution for the  element. When the array
main beam is directed in the , Eq. (15.65) takes on the following form

. Eq. (15.67)

MATLAB program “circular_array.m”

The MATLAB program “circular_array.m” calculates and plots the rectangular and polar
array patterns for a circular array versus  and  constant planes. The input parameters to this
program are:

As an example, consider the following two cases with inputs defined in Table 15.2:

Figures 15.23 and 15.24 respectively show the array patterns in relative amplitude and the
power patterns versus the angle  corresponding to Case I parameters. Figures 15.25 and
15.26 are similar to Figs. 15.23 and 15.24, except in this case the patterns are plotted in polar
coordinates. Figure 15.27 shows a plot of the normalized single element pattern (upper left cor-
ner), the normalized array factor (upper right corner), the total array pattern (lower left corner).
Figures 15.28 through 15.32 are similar to those in Figs. 15.23 through 15.27, except in this
case the input parameters correspond to Case II.

Symbol Description Units

a Circular array radius

N number of elements none

theta0 main direction in degrees

phi0 main direction in degrees

Variations ‘Theta’; or ‘Phi’ none

phid constant  plane degrees

thetad constant  plane degrees

Table 15.2. Parameters to be used in Figs. 15.23 through 15.32

Parameter Case I Case II

a 1. 1.5

N 10 10

45 45

60 60

variation ‘Theta’ ‘Phi’

60 60

45 45

In nth
0 0

E a; In j2 a---------- n –cossin 0 n 0–cossin–exp

n 1=

N

=

0

0

d

d
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 Figure 15.23. Array factor pattern for a circular array, using the parameters 
defined in Case I of Table 15.2. 

 Figure 15.24. Same as Fig. 15.23 using dB scale. 
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 Figure 15.25. Array factor pattern for a circular array, using the parameters 
defined in Case I of Table 15.2. 

 Figure 15.26. Same as Fig. 15.25 using dB scale.
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 Figure 15.27. Element, array factor and total pattern using the parameters 
defined in Case I of Table 15.2. 

 Figure 15.28. Array factor pattern for a circular array, using the parameters 
defined in Case II of Table 15.2.
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 Figure 15.29. Same as Fig. 15.28 using dB scale.

 Figure 15.30. Array factor pattern for a circular array, using the parameters 
defined in Case II of Table 15.2.
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 Figure 15.31. Same as Fig. 15.30 using dB scale.

 Figure 15.32. Element, array factor and total pattern for the circular using the 
parameters defined in Case II of Table 15.2.
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15.5.3. Concentric Grid Circular Arrays

The geometry of interest is shown in Fig. 15.33. In this case,  elements are distributed
equally on the outer circle whose radius is , while another  elements are linearly distrib-
uted on the inner circle whose radius is . The element located on the center of both circles is
used as the phase reference. In this configuration, there are  total elements in the
array.

The array factor is derived in two steps. First, the array factor corresponding to a linearly
distributed circular array is computed. Second, the overall array factor corresponding to all ele-
ments will be the product of each individual circular array times the pattern of the central ele-
ment. More precisely,

(8.68)

Fig. 15.34 shows a 3-D plot for a concentric circular array in the  space for the follow-
ing parameters: , , and 

N2
a2 N1

a1
N1 N2 1+ +

E E1 a1; E2 a2; E0=

a1 1= N1 8 N2= = a2 2=

x

y

N2

1

2

N2-1

N2-2

a1
a2

 Figure 15.33. Concentric circular array geometry.

N1-1
N1-2

 Figure 15.34. A 3-D array pattern - concentric circular array;  and .45= 90=
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15.5.4. Rectangular Grid with Circular Boundary Arrays

The far field electric field associated with this configuration can be easily obtained from that
corresponding to a rectangular grid. In order to accomplish this task, follow these steps: First,
select the desired maximum number of elements along the diameter of the circle and denote it
by . Also select the associated element spacings . Define a rectangular array of size

. Draw a circle centered at  with radius  where

Eq. (15.69)

and . Finally, modify the weighting function across the rectangular array by multi-
plying it with the two-dimensional sequence , where

Eq. (15.70)

where distance, , is measured from the center of the circle. This is illustrated in Fig. 15.35.

15.5.5. Hexagonal Grid Arrays

The analysis provided in this section is limited to hexagonal arrays with circular boundaries.
The horizontal element spacing is denoted as  and the vertical element spacing is

. Eq. (15.71)

The array is assumed to have the maximum number of identical elements along the x-axis
( ). This number is denoted by , where  is an odd number, in order to obtain a sym-
metric array, where an element is present at . The number of rows in the array
is denoted by . The horizontal rows are indexed by , which varies from  to

. The number of elements in the  row is denoted by  and is defined by

. Eq. (15.72)

Nd dx dy
Nd Nd x y 0 0= rd
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2
--------------- x+=
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a m n

a m n
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=
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a m n 1=

a m n 0=

 Figure 15.35. Elements with solid dots have ; other elements 
have . 
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The electric field at a far field observation point is computed using Eq. (15.24) and (15.25).
The phase associated with  location is 

. Eq. (15.73)

MATLAB Function “rect_array.m”

The function “rect_array.m” computes and plots the rectangular antenna gain pattern in the
visible U,V space. The syntax is as follows:

[pattern] = rect_array(Nxr, Nyr, dolxr, dolyr, theta0, phi0, winid, win, nbits)

where

A MATLAB-based GUI workspace called “array.m” was developed for this function. It is
shown in Fig. 15.36. The user is advised to use this MATLAB GUI workspace to generate
array gain patterns that match this requirement. Figures 15.37 through 15.42, respectively,
show plots of the array gain pattern in the U-V space, for the following cases: 

Case I: [pattern] = rect_array(15, 15, 0.5, 0.5, 0, 0, -1, -1, -3)

Case II: [pattern] = rect_array(15, 15, 0.5, 0.5, 20, 30, -1, -1, -3)

Case III: [pattern] = rect_array(15, 15, 0.5, 0.5, 45, 45, 1, ‘Hamming’, -3)

Case IV: [pattern] = rect_array(15, 15, 0.5, 0.5, 10, 20, -1, -1, 3)

Case V: [pattern] = rect_array(15, 15, 1, 0.5, 20, 25, -1, -1, -3)

Case VI: [pattern] = rect_array(15, 15, 1.25, 1.25, 0, 0, -1, -1, -3)

Symbol Description Units Status

Nxr number of elements along x none input

Nyr number of elements along y none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units along y wavelengths input

theta0  elevation steering angle degrees input

phi0 azimuth steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

pattern gain pattern dB output

m n th

m n
2 dx------------ m n

2
---+ cos n 3

2
------- sin+sin=

2nbits
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 Figure 15.36. MATLAB GUI workspace “array.m.”

 Figure 15.37a. 3-D gain pattern corresponding to Case I.
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 Figure 15.37b. Contour plot corresponding to Case I.

 Figure 15.38a. 3-D gain pattern corresponding to Case II.
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 Figure 15.38b. Contour plot corresponding to Case II.

 Figure 15.39a. 3-D gain pattern corresponding to Case III.
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 Figure 15.39b. Contour plot corresponding to Case III.

 Figure 15.40a. 3-D gain pattern corresponding to Case IV.
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 Figure 15.40b. Contour plot corresponding to Case IV.

 Figure 15.41a. 3-D gain pattern corresponding to Case V.



Planar Arrays 577                                                                                                                                                                                                                                                                         

 Figure 15.41b. Contour plot corresponding to Case V.

 Figure 15.42a. 3-D gain pattern corresponding to Case VI.
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MATLAB Function “circ_array.m”

The function “circ_array.m” computes and plots the rectangular grid with a circular array
boundary antenna gain pattern in the visible U,V space. The syntax is as follows:

[pattern, amn] = circ_array(N, dolxr, dolyr, theta0, phi0, winid, win, nbits);

where

Symbol Description Units Status

N number of elements along diameter none input

dolxr element spacing in lambda units along x wavelengths input

dolyr element spacing in lambda units along y wavelengths input

theta0  elevation steering angle degrees input

phi0 azimuth steering angle degrees input

winid -1: No weighting is used

1: Use weighting defined in win

none input

win window for sidelobe control none input

nbits negative #: perfect quantization

positive #: use  quantization levels 

none input

 Figure 15.42b. Contour plot corresponding to Case VI.

2nbits
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Figures 15.43 through 15.48, respectively, show plots of the array gain pattern versus steer-
ing for the following cases:

Case I: [pattern, amn] = circ_array(15, 0.5, 0.5, 0, 0, -1, -1, -3)

Case II: [pattern, amn] = circ_array(15, 0.5, 0.5, 20, 30, -1, -1, -3)

Case III: [pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, 1, ‘Hamming’, -3)

Case IV: [pattern, amn] = circ_array(15, 0.5, 0.5, 30, 30, -1, -1, 3)

Case V: [pattern, amn] = circ_array(15, 1, 0.5, 30, 30, -1, -1, -3)

Case VI: [pattern, amn] = circ_array(15, 1, 1, 0, 0, -1, -1, -3)

Note that the function “circ_array.m” uses the function “rec_to_circ.m,” which computes
the array . Also note that the GUI workspace shown in Fig. 15.36 can be used in this
case by applying the “Ncirc” option on the GUI, where “Ncirc” refers to the number of array
elements along the diameter. 

patterng gain pattern dB output

amn a(m,n) sequence defined in Eq. (15.68) none output

Symbol Description Units Status

a m n

 Figure 15.43a. 3-D gain pattern corresponding to Case I.
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 Figure 15.43b. Contour plot corresponding to Case I.

 Figure 15.44a. 3-D gain pattern corresponding to Case II.
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 Figure 15.44b. Contour plot corresponding to Case II.

 Figure 15.45a. 3-D gain pattern corresponding to Case III.
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 Figure 15.45b. Contour plot corresponding to Case III.

 Figure 15.46a. 3-D gain pattern corresponding to Case IV.
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 Figure 15.46b. Contour plot corresponding to Case IV.

 Figure 15.47a. 3-D gain pattern corresponding to Case V.
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 Figure 15.467b. Contour plot corresponding to Case V.

 Figure 15.48a. 3-D gain pattern corresponding to Case VI.
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The program “array.m” also plots the array’s element spacing pattern. Figures 15.49a and
15.49b show two examples. The “x’s” indicate the location of actual active array elements,
while the “o’s” indicate the location of dummy or virtual elements created merely for compu-
tational purposes. More precisely, Figure 15.49a shows a rectangular grid with circular bound-
ary as defined in Eqs. (15.67) and (15.68) with  and . Figure
15.49b is similar, except for an element spacing  and .

 Figure 15.48b. Contour plot corresponding to Case VI.

dx dy 0.5= = a 0.35=
dx 1.5= dy 0.5=

 Figure 15.49a. A 15-element circular array made from a rectangular 
array with circular boundary. Element spacing .dx 0.5 dy= =
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15.6. Array Scan Loss
Phased arrays experience gain loss when the beam is steered away from the array boresight,

or zenith (normal to the face of the array). This loss is due to the fact that the array effective
aperture becomes smaller, and consequently the array beamwidth is broadened, as illustrated in
Fig. 15.50. This loss in antenna gain is called scan loss, , where

. Eq. (15.74)

  is the effective aperture area at scan angle , and  is the effective array gain at the
same angle.

 The beamwidth at scan angle  is

Eq. (15.75)

due to the increased scan loss at large scanning angles. In order to limit the scan loss to under
some acceptable practical values, most arrays do not scan electronically beyond about

. Such arrays are called Full Field of View (FFOV) arrays. FFOV arrays employ ele-
ment spacing of  or less to avoid grating lobes. FFOV array scan loss is approximated by

 . Eq. (15.76)

Arrays that limit electronic scanning to under  are referred to as Limited Field of
View (LFOV) arrays. In this case the scan loss is

 Figure 15.49b. A 15-element circular array made from a rectangular array 
with circular boundary. Element spacing  and .dy 0.5= dx 1.5=

Lscan

Lscan
A
A
------

2 G
G
------

2
= =

A G
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cos
------------------------=

60=
0.6

Lscan cos 2.5
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 . Eq. (15.77)

Figure 15.51 shows a plot for scan loss versus scan angle. This figure can be reproduced using
MATLAB program “Fig15_50.m,” listed in Appendix 15-A.

Lscan

d------ sinsin

d------ sin
-------------------------------

4–

=

maximum effective aperture

array boresight

effective aperture is reduced

effective
aperture

effective
aperture

 Figure 15.50. Reduction in array effective aperture due to electronic scanning.

plane 
containing
the array 

steering
angle

 Figure 15.51. Scan loss versus scan angle, based on Eq. (15.77).
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15.7. Multiple Input Multiple Output (MIMO) - Linear Array
In this section, a multiple input multiple output (MIMO) target detection technique is pre-

sented. This section is based on Mahafza1 et al (1996). In this approach, each array element (or
subarray; super-element) has its own receive channel as described in Fig. 15.52. The radar is
assumed to transmit a burst of  pulses, where  is equal to the number of elements in the
array. The phase reference of transmitted pulses is assumed to move linearly from the first ele-
ment in the array when the first pulse in the burst is transmitted, to the last element in the array
for the last pulse in the burst. In this fashion, a total of  complex returns are collected and
stored in memory. As will be explained later, there are a total of  distinct returns of
equal two-way phase. It follows that an array twice as large as the actual one is synthesized;
hence the term synthetic in the title. This synthetic array effectively doubles the angular resolu-
tion as compared to the standard operation and the SNR is greatly improved.

 Consider the array shown in Fig. 15.52. A burst of N pulses is transmitted where the phase
reference for  is the physical center of element . The echo signals are collected and stored
coherently on the basis of equal two-way geometric phase. A complex information sequence

 is synthesized. The two-way array pattern is computed as the ampli-
tude spectrum of . The synthesized sequence has natural triangular windowing, and
the sidelobes are about -27dB, thus extra tapering may not be required.

For each transmitted pulse there are a total of N echo signals. The two-way phase corre-
sponding to the echo signal for the  element transmitting and the  element receiving is
computed as 

Eq. (15.78)

Eq. (15.79)

Eq. (15.80)

 Eq. (15.81)

Eq. (15.82)

Eq. (15.83)

where  and  are the dot products between the vectors  and , respectively.
The vector  is the ray between the phase reference point of the array, taken as the physical
center of the array, in this analysis, and the far field target; the vectors  are the rays
between ,  elements of the array and the far field target, respectively. Note that

 if the path:  element transmitting and  element receiving exists, otherwise it
is equal to zero, and  is the direction-sine toward which the radiation pattern is steered.
The information sequence has  distinct entries. The components of the informa-
tion sequence have linear phase, and the phase increment between any two adjacent terms is
equal to . The sequence  also has triangular shape weighting, defined by

1. Mahafza, B. R., Heifner, L.A., and Gracchi, V. C., Multitarget Detection Using Synthetic Sampled 
Aperture Radars (SSAMAR), IEEE - AES Trans., Vol. 31, No. 3, July 1995, pp. 1127-1132.
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. Eq. (15.84)

Through zero padding, the sequence  is extended to the next power of 2. The two-way
pattern in the direction , is computed as the modulus of the Discrete Fourier Transform
(DFT) of the extended sequence .

Assume an incident plane wave defined by amplitude  and direction-sine , and
zero-mean, white additive noise  with variance . Then, the  sample of the informa-
tion sequence is

Eq. (15.85)

Eq. (15.86)
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Figure 15.52. Block diagram for a spacial array architecture.

from other 
elements

block 1

block 3



590                                                                                   Radar Systems Analysis and Design Using MATLAB®

Eq. (15.87)

where,  represents the two-way element gain,  is the reference range, and  is the wave
amplitude. It follows that if there are  incident plane waves defined by ,
then the composite information sequence is

, Eq. (15.88)

which can be written in vector notation as

. Eq. (15.89)

Assuming that the noise is spatially incoherent and is uncorrelated with the signal samples,
the autocorrelation matrix for the field sensed by the array is

Eq. (15.90)

where  is the identity matrix. The discrete Fourier transformation of the sequence 
yields,

, Eq. (15.91)

which can be expressed as the dot product

Eq. (15.92)

where

. Eq. (15.93)

The power at the output of the signal processor at frequency bin  is

Eq. (15.94)

where  is defined in Eq. (15.90). Thus,

. Eq. (15.95)

After compensation for range attenuation and antenna gain, spectral peaks will be proportional
to amplitudes of incident waves. For example, a peak at an arbitrary bin  will correspond to
a plane wave defined by direction-sine . It follows that
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. Eq. (15.96)

The first term of the right-hand side of Eq. (15.96) represents the noise power at . The last
term corresponds to spectral leakage, while the signal power at  is given by the middle term.
Note that the sequence  is the reason for the  factor. More precisely, 

. Eq. (15.97)

Thus, the SNR is

. Eq. (15.98)

Recall that in conventional phased array radars the SNR is improved by a factor of N, where N
is the size of the array. Examination of Eq. (15.98) indicates that the SNR improvement factor
using this MIMO mode of operation over conventional array operation and signal processing is

. Eq. (15.99)

Problems
15.1. Consider an antenna whose diameter is . What is the far field requirement
for an X-band or an L-band radar that is using this antenna? 
15.2. Consider an antenna with electric field intensity in the xy-plane . This electric
field is generated by a current distribution  in the yz-plane. The electric field intensity is
computed using the integral 

where  is the wavelength and  is the aperture. (a) Write an expression for  when
 (a constant). (b) Write an expression for the normalized power radiation pattern

and plot it in dB.

15.3. A linear phased array consists of 50 elements with  element spacing. (a) Com-
pute the 3dB beamwidth when the main-beam steering angle is  and . (b) Compute the
electronic phase difference for any two consecutive elements for steering angle . 
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15.4. A linear phased array antenna consists of eight elements spaced with  element
spacing. (a) Give an expression for the antenna gain pattern (assume no steering and uniform
aperture weighting). (b) Sketch the gain pattern versus the sine of the off-boresight angle .
What problems do you see is using  rather than ? 
15.5. In Section 15.4.2 we showed how a DFT can be used to compute the radiation pattern
of a linear phased array. Consider a linear phased array of 64 elements at half wavelength spac-
ing, where an FFT of size 512 is used to compute the pattern. What are the FFT bins that corre-
spond to steering angles ?
15.6. Derive Eq. (15.73).
15.7. Consider the two-element array shown in the figure below. If the composite array
electric field is , where  are constants (can be complex) and

 are the individual elements fields. Determine  so that the electric field is maxi-

mum at . Plot the resulting array pattern.

15.8. Use the FFT to compute the radiation pattern for an array of size 21 elements and ele-
ment spacing (a) , and (b) . In each case, compute and plot the array pat-
tern with and without using Hamming weights.
15.9. Modify the FFT routine developed in the previous problem to compute and plot the
power gain pattern.
15.10. Repeat Problems 15.8 and 15.9, where in this case the array pattern can be steered
in any off-boresight direction.
15.11. Why do the grating lobes appear when the array beam is steered to angles other
than the boresight? Include reasonable plots to back up your argument.

d =

d = d 2=

30 45=

E a1E1 a2E2+= a1 a2

E1 E2 a1 a2

o

d 0.5= d 0.8=
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Appendix 15-A: Chapter 15 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig15_5.m” Listing
% Use this code to produce Fig. 15.5a and 15.5b based on Eq.(15.35)
clc
clear all
close all
eps = 0.00001;
k = 2*pi;
theta = -pi : pi / 10791 : pi;
var = sin(theta);
nelements = 8;
d = 1;         %  d = 1;
num = sin((nelements * k * d * 0.5) .* var);
% 
if(abs(num) <= eps)
   num = eps;
end
den = sin((k* d * 0.5) .* var);
if(abs(den) <= eps)
   den = eps;
end
% 
pattern = abs(num ./ den);
maxval = max(pattern);
pattern = pattern ./ maxval;
 %
figure(1)
plot(var,pattern,'linewidth', 1.5)
xlabel('\bfsine angle - dimensionless')
ylabel('\bfArray pattern')
grid
% 
figure(2)
plot(var,20*log10(pattern),'linewidth', 1.5)
axis ([-1 1 -60 0])
xlabel('\bfsine angle - dimensionless')
ylabel('\bfPower pattern [dB]')
grid;
% 
figure(3)
theta = theta +pi/2;
polar(theta,pattern)
title ('\bfArray pattern')
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MATLAB Program “Fig15_7.m” Listing
% Use this program to reproduce Fig. 15.7 of text
clc
clear all
close all
eps =0.00001;
N = 32;
rect(1:32) = 1;
ham = hamming(32);
han = hanning(32);
blk = blackman(32);
k3 = kaiser(32,3);
k6 = kaiser(32,6);
RECT = 20*log10(abs(fftshift(fft(rect, 1024)))./32 +eps);
HAM =  20*log10(abs(fftshift(fft(ham, 1024)))./32 +eps);
HAN =  20*log10(abs(fftshift(fft(han, 1024)))./32+eps);
BLK = 20*log10(abs(fftshift(fft(blk, 1024)))./32+eps);
K6 = 20*log10(abs(fftshift(fft(k6, 1024)))./32+eps);
x = linspace(-1,1,1024);
figure
subplot(2,1,1)
plot(x,RECT,'k',x,HAM,'k--',x,HAN,'k-.','linewidth',1.5);
xlabel('x')
ylabel('Window')
grid
axis tight
legend('Rectangular','Hamming','Hanning')
subplot(2,1,2)
plot(x,RECT,'k',x,BLK,'k--',x,K6,'K-.','linewidth',1.5)
xlabel('x')
ylabel('Window')
legend('Rectangular','Blackman','Kasier at \beta = 6')
grid
axis tight

MATLAB Function “linear_array.m” Listing
function [theta,patternr,patterng] = linear_array(Nr,dolr,theta0,winid,win,nbits);
% This function computes and returns the gain radiation pattern for a linear array
% It uses the FFT to computes the pattern
%%%% *INPUTS ********** %%%%%%%%%%%%%%%%%%%
% Nr ==> number of elements; dolr ==> element spacing (d) in lambda units divided by lambda
% theta0 ==> steering angle in degrees; winid ==> use winid negative for no window, winid positive to
enter your window of size(Nr)
% win is input window, NOTE that win must be an NrX1 row vector; nbits ==> number of bits used in the
pahse shifters
% negative nbits mean no quantization is used
%%%% *OUTPUTS ********** %%%%%%%%%%%%%%%%%%%
% theta ==> real-space angle; patternr ==> array radiation pattern in dBs
% patterng ==> array directive gain pattern in dBs
%%%%%%%% ************************ %%%%%%%%%%%%%%%%%%%
eps = 0.00001;
n = 0:Nr-1;
i = sqrt(-1);
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%if dolr is > 0.5 then; choose dol = 0.25 and compute new N
if(dolr <=0.5)
   dol = dolr;
   N = Nr;
else
   ratio = ceil(dolr/.25);
   N = Nr * ratio;
   dol = 0.25;
end
% choose proper size fft, for minimum value choose 256
Nrx = 10 * N; 
nfft = 2^(ceil(log(Nrx)/log(2)));
if nfft < 256
    nfft = 256;
end
% convert steering angle into radians; and compute the sine of angle
theta0 = theta0 *pi /180.;
sintheta0 = sin(theta0);
% detrmine and comupte quantized steering angle
if nbits < 0
   phase0 = exp(i*2.0*pi .* n * dolr * sintheta0);
else
    % compute and add the phase shift terms (WITH nbits quantization)
    % Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^nbits
    % and rounded to the nearest qunatization level
    levels = 2^nbits;
    qlevels = 2.0 * pi / levels; % compute quantization levels
% compute the phase level and round it to the closest quantizatin level 
    angleq = round(dolr .* n * sintheta0 * levels) .* qlevels; % vector of possible angles
    phase0 = exp(i*angleq);
end
% generate array of elements with or without window
if winid < 0 
    wr(1:Nr) = 1;
else
    wr = win';
end
% add the phase shift terms
 wr =  wr .* phase0;
 % determine if interpolation is needed (i.e N > Nr)
if N > Nr
    w(1:N) = 0;
    w(1:ratio:N) = wr(1:Nr);
else
    w = wr;
end
% compute the sine(theta) in real space sthat correspond to the FFT index 
arg = [-nfft/2:(nfft/2)-1] ./ (nfft*dol);
idx = find(abs(arg) <= 1);
sinetheta = arg(idx);
theta = asin(sinetheta);
% convert angle into degrees
theta = theta .* (180.0 / pi);
% Compute fft of w (radiation pattern)
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patternv = (abs(fftshift(fft(w,nfft)))).^2;
% convert raditiona pattern to dBs
patternr = 10*log10(patternv(idx) ./Nr +  eps);
% Compute directive gain pattern  
rbarr  = 0.5 *sum(patternv(idx)) ./ (nfft * dol);
patterng = 10*log10(patternv(idx) + eps) - 10*log10(rbarr + eps);
return

MATLAB Program “circular_array.m” Listing
%Circular Array in the x-y plane 
% Element is a short dipole antenna parallel to the z axis
% 2D Radiation Patterns for fixed phi or fixed theta
% dB polar plots uses the polardb.m file
%
%%%% Element expression needs to be modified if different
%%%% than a short dipole antenna along the z axis
%
clear all
clf
close all
% 
%  ====   Input Parameters  ====
a = 1.;         % radius of the circle
N = 10;           % number of Elements of the circular array
theta0 = 45;    % main beam Theta direction
phi0 = 60;      % main beam Phi direction
% Theta or Phi variations for the calculations of the far field pattern
Variations = 'Phi';  % Correct selections are  'Theta' or 'Phi' 
phid = 60;       % constant phi plane for theta variations
thetad = 45;     % constant theta plane for phi variations
%  ====   End of Input parameters section  ====
% 
dtr = pi/180;           % conversion factors
rtd = 180/pi;
phi0r = phi0*dtr;
theta0r = theta0*dtr;
lambda = 1;   
k = 2*pi/lambda;
ka = k*a;               % Wavenumber times the radius
jka = j*ka;
I(1:N) = 1;             % Elements excitation Amplitude and Phase
alpha(1:N) =0;    
for n = 1:N             % Element positions Uniformly distributed along the circle
    phin(n) = 2*pi*n/N;
end
%
switch Variations
case 'Theta'
    phir = phid*dtr;    % Pattern in a constant Phi plane 
    i = 0;
    for theta = 0.001:1:181
        i = i+1;
        thetar(i) = theta*dtr;
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        angled(i) = theta;  angler(i) = thetar(i);
        Arrayfactor(i) = 0;
        for n = 1:N
            Arrayfactor(i) = Arrayfactor(i) + I(n)*exp(j*alpha(n)) ...
                           * exp( jka*(sin(thetar(i))*cos(phir -phin(n))) ...
                                 -jka*(sin(theta0r  )*cos(phi0r-phin(n)))  );             
        end
        Arrayfactor(i) = abs(Arrayfactor(i));
        Element(i) = abs(sin(thetar(i)+0*dtr));  % use the abs function to avoid 
    end
case 'Phi'
    thetar = thetad*dtr;  % Pattern in a constant Theta plane 
    i = 0;
    for phi = 0.001:1:361
        i = i+1;
        phir(i)   = phi*dtr;
        angled(i) = phi;  angler(i) = phir(i);
        Arrayfactor(i) = 0;
        for n = 1:N
            Arrayfactor(i) = Arrayfactor(i) +  I(n)*exp(j*alpha(n)) ...
                           * exp( jka*(sin(thetar )*cos(phir(i)-phin(n))) ...
                                 -jka*(sin(theta0r)*cos(phi0r  -phin(n)))  );              
        end
        Arrayfactor(i) = abs(Arrayfactor(i));
        Element(i) = abs(sin(thetar+0*dtr));  % use the abs function to avoid 
    end   
end
angler = angled*dtr;
Element = Element/max(Element);
Array = Arrayfactor/max(Arrayfactor);
ArraydB = 20*log10(Array);
EtotalR =(Element.*Arrayfactor)/max(Element.*Arrayfactor);
% 
figure(1)
plot(angled,Array,'linewidth',1.5)
ylabel('Array pattern')
grid
switch Variations
case 'Theta'
  axis ([0 180 0 1 ])
%  theta = theta +pi/2;
   xlabel('\theta - Degrees')
   title ( '\phi = 90^o plane')
case 'Phi'
axis ([0 360 0 1 ])
   xlabel('\phi - Degrees')
    title ( '\theta = 90^o plane')
end
% 
figure(2)
plot(angled,ArraydB,'linewidth',1.5)
%axis ([-1 1 -60 0])
ylabel('Power pattern [dB]')
grid;
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switch Variations
case 'Theta'
  axis ([0 180 -60 0 ])
   xlabel('Theta [Degrees]')
      title ( '\phi = 90^o plane')
case 'Phi'
axis ([0 360 -60 0 ])
   xlabel('\phi - degrees')
       title ( '\theta = 90^o plane')
end
% 
figure(3)
polar(angler,Array)
title ('Array pattern')
% 
figure(4)
polardb(angler,Array)
title ('Power pattern [dB]')
 %
% the plots provided above are for the array factor based on the circular 
% array plots for other patterns such as those for the antenna element 
% (Element)or the total pattern (Etotal based on Element*Arrayfactor) can 
% also be displayed by the user as all these patterns are already computed 
% above.
 %
figure(10)
subplot(2,2,1)  
polardb (angler,Element,'b-'); % rectangular plot of element pattern
title('Element normalized E field [dB]')
subplot(2,2,2)
polardb(angler,Array,'b-')
title(' Array Factor normalized [dB]')
subplot(2,2,3)
polardb(angler,EtotalR,'b-');  % polar plot
title('Total normalized E field [dB]')

MATLAB Function “rect_array.m” Listing
function [pattern] = rect_array(Nxr,Nyr,dolxr,dolyr,theta0,phi0,winid,win,nbits);
%%%%% ************************ %%%%%%%%%%%%%%
% This function computes the 3-D directive gain patterns for a planar array
% This function uses the fft2 to compute its output
%%%%%%%%%************  INPUTS ************ %%%%%%%%%%%%
% Nxr ==> number of along x-aixs; Nyr ==> number of elemnts along y-axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y-direction Both are in
lambda units
% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering angle in degrees
% winid ==> window identifier; winid negative ==> no window ; winid positive ==> use window given
by win
% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==> NO quantization
%%%%%%%% *********** OUTPUTS ************* %%%%%%%%%%%%%
% pattern ==> directive gain pattern
%%%%%%%%%%%%%%%% ************************ %%%%%%%%%%%
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eps = 0.0001;
nx = 0:Nxr-1;
ny = 0:Nyr-1;
i = sqrt(-1);
% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
    if nw ~= Nxr
    fprintf('STOP == Window size must be the same as the array')
    return
end
if mw ~= Nyr
    fprintf('STOP == Window size must be the same as the array')
    return
end
end
%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)
   ratiox = 1  ;
   dolx = dolxr ;
   Nx = Nxr ;
else
   ratiox = ceil(dolxr/.5) ;
   Nx = (Nxr -1 ) * ratiox + 1 ;
   dolx = 0.5 ;
end
if(dolyr <=0.5)
   ratioy = 1  ;
   doly = dolyr ;
   Ny = Nyr ;
else
   ratioy = ceil(dolyr/.5) ;
   Ny = (Nyr -1) * ratioy + 1 ;
   doly = 0.5 ;
end
% choose proper size fft, for minimum value choose 256X256
Nrx = 10 * Nx; 
Nry = 10 * Ny;
nfftx = 2^(ceil(log(Nrx)/log(2)));
nffty = 2^(ceil(log(Nry)/log(2)));
if nfftx < 256
   nfftx = 256;
end
if nffty < 256
   nffty = 256;
end
% generate array of elements with or without window
if winid < 0 
   array = ones(Nxr,Nyr);
else
   array = win;
end
% convert steering angles (theta0, phi0) to radians
theta0 = theta0 * pi / 180;
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phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
v0 = sin(theta0) * sin(phi0);
% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^m levels
% and rounded to the nearest qunatization level
if nbits < 0
    phasem = exp(i*2*pi*dolx*u0 .* nx *ratiox);
    phasen = exp(i*2*pi*doly*v0 .* ny *ratioy);
else
    levels = 2^nbits;
    qlevels = 2.0*pi / levels; % compute quantization levels
    sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector of possible angles
    sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector of possible angles
    phasem = exp(i*sinthetaq);
    phasen = exp(i*sinphiq);     
end
 % add the phase shift terms
array = array .* (transpose(phasem) * phasen);
  % determine if interpolation is needed (i.e. N > Nr)
if (Nx > Nxr )| (Ny > Nyr)
   for xloop = 1 : Nxr
      temprow = array(xloop, :) ;
      w( (xloop-1)*ratiox+1, 1:ratioy:Ny) =  temprow ;
   end
   array = w;
else
    w = array ;
%    w(1:Nx, :) = array(1:N,:);
end
% Compute array pattern
arrayfft = abs(fftshift(fft2(w,nfftx,nffty))).^2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);
V = V(indexy);
%Normalize to generate gain pattern
rbar=sum(sum(arrayfft(indexx,indexy))) / dolx/doly/4./nfftx/nffty;
arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
pattern = 10*log10(arrayfft +eps);
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB')
figure(2)
contour(V,U,pattern)
grid
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axis image
xlabel('V')
ylabel('U');
axis([-1 1 -1 1])
figure(3)
x0 = (Nx+1)/2 ;
y0 = (Ny+1)/2 ;
radiusx = dolx*((Nx-1)/2) ;
radiusy = doly*((Ny-1)/2) ;
[xxx, yyy]=find(abs(array)>eps);
xxx = xxx-x0 ;
yyy = yyy-y0 ;
plot(yyy*doly, xxx*dolx,'rx')
hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
grid
title('antenna spacing pattern');
xlabel('y - \lambda units')
ylabel('x - \lambda units')
[xxx0, yyy0]=find(abs(array)<=eps);
xxx0 = xxx0-x0 ;
yyy0 = yyy0-y0 ;
plot(yyy0*doly, xxx0*dolx,'co')
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
hold off
return

MATLAB Function “circ_array.m” Listing
function [pattern,amn] = circ_array(N,dolxr,dolyr,theta0,phi0,winid,win,nbits);
%%%%%% ************************ %%%%%%%%%%%%%%
% This function computes the 3-D directive gain patterns for a circular planar array
% This function uses the fft2 to compute its output. It assumes that there are the same number 
% of elements along the major x- and y-axes
%%%%%%%%% ************  INPUTS ************ %%%%%%%%%% N ==> number of ele-
ments along x-aixs or y-axis
% dolxr ==> element spacing in x-direction; dolyr ==> element spacing in y-direction. Both are in
lambda units
% theta0 ==> elevation steering angle in degrees, phi0 ==> azimuth steering angle in degrees
% This function uses the function (rec_to_circ) which computes the circular array from a square 
% array (of size NXN) using the notation developed by ALLEN,J.L.,"The Theory of Array Antennas 
% (with Emphasis on Radar Application)" MIT-LL Technical Report No. 323,July, 25 1965. 
% winid ==> window identifier; winid negative ==> no window ; winid positive ==> use window given
by win
% win ==> input window function (2-D window) MUST be of size (Nxr X Nyr)
% nbits is the number of nbits used in phase quantization; nbits negative ==> NO quantization
%%%%%%%%%% *********** OUTPUTS ************* %%%%%%%%
% amn ==> array of ones and zeros; ones indicates true element location on the grid
% zeros mean no elements at that location; pattern ==> directive gain pattern
%%%%%%%%%%%% ************************ %%%%%%%%%%
eps = 0.0001;
nx = 0:N-1;
ny = 0:N-1;
i = sqrt(-1);
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% check that window size is the same as the array size
[nw,mw] = size(win);
if winid >0
   if mw ~= N
      fprintf('STOP == Window size must be the same as the array')
       return
   end
   if nw ~= N
      fprintf('STOP == Window size must be the same as the array')
       return
   end
end
%if dol is > 0.5 then; choose dol = 0.5 and compute new N
if(dolxr <=0.5)
   ratiox = 1 ;
   dolx = dolxr ;
   Nx = N ;
else
   ratiox = ceil(dolxr/.5) ;
   Nx = (N-1) * ratiox + 1 ;
   dolx = 0.5 ;
end
if(dolyr <=0.5)
   ratioy = 1 ;
   doly = dolyr ;
   Ny = N ;
else
   ratioy = ceil(dolyr/.5); 
   Ny = (N-1)*ratioy + 1 ;
   doly = 0.5 ;
end
% choose proper size fft, for minimum value choose 256X256
Nrx = 10 * Nx; 
Nry = 10 * Ny;
nfftx = 2^(ceil(log(Nrx)/log(2)));
nffty = 2^(ceil(log(Nry)/log(2)));
if nfftx < 256
    nfftx = 256;
end
if nffty < 256
    nffty = 256;
end
% generate array of elements with or without window
if winid < 0 
   array = ones(N,N);
else
    array = win;
end
% convert steering angles (theta0, phi0) to radians
theta0 = theta0 * pi / 180;
phi0 = phi0 * pi / 180;
% convert steering angles (theta0, phi0) to U-V sine-space
u0 = sin(theta0) * cos(phi0);
v0 = sin(theta0) * sin(phi0);
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% Use formula thetal = (2*pi*n*dol) * sin(theta0) divided into 2^m levels
% and rounded to the nearest quantization level
if nbits < 0
    phasem = exp(i*2*pi*dolx*u0 .* nx * ratiox);
    phasen = exp(i*2*pi*doly*v0 .* ny * ratioy);
else
    levels = 2^nbits;
    qlevels = 2.0*pi / levels; % compute quantization levels
    sinthetaq = round(dolx .* nx * u0 * levels * ratiox) .* qlevels; % vector of possible angles
    sinphiq = round(doly .* ny * v0 * levels *ratioy) .* qlevels; % vector of possible angles
    phasem = exp(i*sinthetaq);
    phasen = exp(i*sinphiq);     
end
% add the phase shift terms
array = array .* (transpose(phasem) * phasen) ;
% determine if interpolation is needed (i.e N > Nr)
if (Nx > N )| (Ny > N)
   for xloop = 1 : N
      temprow = array(xloop, :) ;
      w( (xloop-1)*ratiox+1, 1:ratioy:Ny) =  temprow ;
   end
   array = w;
else
    w(1:Nx, :) = array(1:N,:);
end
% Convert rectangular array into circular using function rec_to_circ
[m,n] = size(w) ;
NC = max(m,n);  % Use Allens algorithm
if Nx == Ny
    temp_array = w;
else
    midpoint = (NC-1)/2 +1 ;
    midwm = (m-1)/2 ;
    midwn = (n-1)/2 ;
    temp_array = zeros(NC,NC);
    temp_array(midpoint-midwm:midpoint+midwm, midpoint-midwn:midpoint+midwn) = w ;
end
amn = rec_to_circ(NC);  % must be rectangular array (Nx=Ny)
amn = temp_array .* amn ;
% Compute array pattern
arrayfft = abs(fftshift(fft2(amn,nfftx,nffty))).^2 ;
%compute [su,sv] matrix
U = [-nfftx/2:(nfftx/2)-1] ./(dolx*nfftx);
indexx = find(abs(U) <= 1);
U = U(indexx);
V = [-nffty/2:(nffty/2)-1] ./(doly*nffty);
indexy = find(abs(V) <= 1);
V = V(indexy);
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
%Normalize to generate gain patern
rbar=sum(sum(arrayfft(indexx,indexy))) / dolx/doly/4./nfftx/nffty;
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arrayfft = arrayfft(indexx,indexy) ./rbar;
[SU,SV] = meshgrid(V,U);
indx = find((SU.^2 + SV.^2) >1);
arrayfft(indx) = eps/10;
pattern = 10*log10(arrayfft +eps);
figure(1)
mesh(V,U,pattern);
xlabel('V')
ylabel('U');
zlabel('Gain pattern - dB')
figure(2)
contour(V,U,pattern)
axis image
grid
xlabel('V')
ylabel('U');
axis([-1 1 -1 1])
figure(3)
x0 = (NC+1)/2 ;
y0 = (NC+1)/2 ;
radiusx = dolx*((NC-1)/2 + 0.05/dolx) ;
radiusy = doly*((NC-1)/2 + 0.05/dolx) ;
theta = 5  ;
[xxx, yyy]=find(abs(amn)>0);
xxx = xxx-x0 ;
yyy = yyy-y0 ;
plot(yyy*doly, xxx*dolx,'rx')
axis equal
hold on
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
grid
title('antenna spacing pattern');
xlabel('y - \lambda units')
ylabel('x - \lambda units')
[x, y]= makeellip( 0, 0, radiusx, radiusy, theta) ;
plot(y, x) ;
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
[xxx0, yyy0]=find(abs(amn)<=0);
xxx0 = xxx0-x0 ;
yyy0 = yyy0-y0 ;
plot(yyy0*doly, xxx0*dolx,'co')
axis([-radiusy-0.5 radiusy+0.5 -radiusx-0.5  radiusx+0.5]);
axis equal
hold off ;
return

MATLAB Function “rect_to_circ.m” Listing
function amn = rec_to_circ(N)
midpoint = (N-1)/2 + 1;
amn = zeros(N);
array1(midpoint,midpoint) = N;
x0 = midpoint;
y0 = x0;
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for i = 1:N
    for j = 1:N
        distance(i,j) = sqrt((x0-i)^2 + (y0-j)^2);
    end
end
idx = find(distance < (N-1)/2 + .025);
amn (idx) = 1;
return

MATLAB Program “Fig15_51.m” Listing
%Use this program to reproduce Fig. 15.51 of text
clear all
close all
d = 0.6; % element spacing in lambda units
betadeg = linspace(0,22.5,1000);
beta = betadeg .*pi ./180;
den = pi*d .* sin(beta);
numarg = den;
num = sin(numarg);
lscan = (num./den).^-4;
LSCAN = 10*log10(lscan+eps);
figure (1)
plot(betadeg,LSCAN,'linewidth',1.5)
xlabel('\bfscan angle in degrees')
ylabel('\bfScan loss in dB')
grid
title('Element spacing is d = 0.6 \lambda ')
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Part V - Radar Special Topics

Chapter 16

The emphasis in this chapter is on adaptive signal processing to include adaptive array pro-
cessing and Space Time Adaptive processing (STAP). Adaptive arrays employ phased array
antennas to adaptively sense and eliminate unwanted signals entering the radar's Field of View
(FOV) while enhancing reception about the desired target returns. For this purpose, adaptive
arrays utilize a rather complicated combination of hardware and require demanding levels of
software implementation. Through feedback networks, a proper set of complex weights is
computed and applied to each channel of the array. 

STAP processing refers to the ability to simultaneously process spatial sensor and temporal
(time dependent) input data. For this purpose, phased arrays (spatial component) along with
time delay units (temporal component) are used to optimally detect targets in the presence of
high clutter or interference environment. 

16.1. Nonadaptive Beamforming 
In adaptive beamforming the beam of interest is formed (generated) by continuously chang-

ing a set of weights through feedback circuits to minimize an output error signal. Nonadaptive
or conventional beamformers do the same thing in the sense that the beam of interest is gener-
ated using a set of unique weights. Except in this case, these weights are determined a priori so
that interference from a specific angle of arrival is minimized or eliminated. Different sets of
weights will produce nulls in different directions in the array’s field of view. 

Consider a linear array of  equally spaced elements, and a plane wave ) inci-
dent on the aperture with direction-sine , as shown in Fig. 16.1. The weights

 are, in general, complex constants. The output of the beamformer is

Eq. (16.1)

Eq. (16.2)

where  is the element spacing and  is the speed of light. Fourier transformation of Eq.
(16.1) yields
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. Eq. (16.3)

The phase term  is defined as

, Eq. (16.4)

 and . Eq. (16.3) can be written in vector form as

Eq. (16.5)

Eq. (16.6)

Eq. (16.7)

where the superscripts  and , respectively, indicate complex conjugate and complex con-
jugate transpose. 

Let  be the amplitude of the wavefront defined by ; it follows that the vector  is
given by

Eq. (16.8)

where  is a steering vector and can be written as,

. Eq. (16.9)

Using this notation, Eq. (16.5) can be expressed in the form

 Figure 16.1. A linear array of size , element spacing , and an incident 
plane wave defined by .
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. Eq. (16.10)

The array pattern of the beam steered at  is computed as the expected value of . In other
words, the power spectrum density for the beamformer output is given by

Eq. (16.11)

where  and  is the correlation matrix given by

. Eq. (16.12)

Consider  incident plane waves with directions of arrival defined by

. Eq. (16.13)

The  sample at the output of the  sensor is

Eq. (16.14)

where  is the amplitude of the  plane wave and  is white, zero-mean noise with
variance , and it is assumed to be uncorrelated with the signals. Equation (16.44) can be
written in vector notation as

. Eq. (16.15)

A set of  steering vectors is needed to simultaneously form  beams. Define the steering
matrix  as

. Eq. (16.16)

Then the autocorrelation matrix of the field measured by the array is

Eq. (16.17)

where , and  is the identity matrix.

For example, consider the case depicted in Fig. 16.2, where an interfering signal is located at
angle  off the antenna boresight. The desired signal is at . The desired out-
put should contain only the signal . From Eq. (16.3) and Eq. (16.4), the desired output is 

. Eq. (16.18)

Since the angle , it follows that

Eq. (16.19)
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. Eq. (16.20)

Thus, in order to produce the desired signal, , at the output of the beamformer, it is
required that

. Eq. (16.21)

Next, the output due to the interfering signal is

Eq. (16.22)

Since the angle , it follows that

, Eq. (16.23)

and in order to eliminate the interference signal from the output of the beamformer, it is
required that

. Eq. (16.24)

Solving Eq. (16.21) and Eq. (16.24) yields

. Eq. (16.25)

 Figure 16.2. Two-element array with an interfering signal at .i 6=
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Using the weights given in Eq. (16.25) will allow the desired signal to get through the beam-
former unaffected; however, the interference signal will be completely eliminated from the
output.   

16.2. Adaptive Signal Processing Using Least Mean Square (LMS)
Adaptive signal processing evolved as a natural evolution from adaptive control techniques

of time-varying systems. Advances in digital processing computation techniques and associ-
ated hardware have facilitated maturing adaptive processing techniques and algorithms. 

Consider the basic adaptive digital system shown in Fig. 16.3. The system input is the
sequence  and its output is the sequence . What differentiates adaptive from non-
adaptive systems is that in adaptive systems the transfer function  is now time varying.
The arrow through the transfer function box is used to indicate adaptive processing (or time
varying transfer function). The sequence  is referred to as the desired response sequence.
The error sequence is the difference between the desired response and the actual response.
Remember that the desired sequence is not completely known; otherwise, if it were completely
known, one would not need any adaptive processing to compute it. The definition of this
desired response is dependent on the system-specific requirements.

Many different techniques and algorithms have been developed to minimize the error
sequence. Using one technique over another depends heavily on the operating environment
under consideration. For example, if the input sequence is a stationary random process, then
minimizing the error signal is nothing more than solving the least mean squares problem.
However, in most adaptive processing systems, the input signal is a non-stationary process. In
this section, the least mean squares technique is examined. 

The least mean squares (LMS) algorithm is the most commonly utilized algorithm in adap-
tive processing, primary because of its simplicity. The time-varying transfer function of order

 can be written as a Finite Impulse Response (FIR) filter defined by

. Eq. (16.26)

The input output relationship is given by the discrete convolution
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 Figure 16.3. Basic adaptive system.
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. Eq. (16.27)

The goal of the adaptive LMS process is to adjust the filter coefficients toward an optimum
minimum mean square error (MMSE). The most common approach to achieving this MMSE
utilizes the method of steepest descent. For this purpose, define the filter coefficients in vector
notation as

, Eq. (16.28)

then

Eq. (16.29)

where  is a parameter that controls how fast the error converges to the desired MMSE value,
and the gradient vector  is defined by

. Eq. (16.30)

As clearly indicated by Eq. (16.29), the adaptive filter coefficients update rate is proportional
to the negative gradient; thus, if the gradient is known at each step of the adaptive process, then
better computation of the coefficient is obtained. In other words, the MMSE decreases from
step  to step . Of course, once the solution is found, the gradient becomes zero and the
coefficient will not change any more.

When the gradient is not known, estimates of the gradient are used based only on the instan-
taneous squared error. These estimates are defined by

. Eq. (16.31)

Since the desired sequence  is independent from the output , Eq. (16.31) can be writ-
ten as

Eq. (16.32)

where the vector  is the input signal sequence. Substituting Eq. (16.32) into Eq. (16.29)
yields

. Eq. (16.33)

The choice of the convergence parameter  plays a significant role in determining the system
performance. This is clear because as indicated by Eq. (16.33), a successful implementation of
the LMS algorithm depends on the input signal, the choice of the desired signal, and the con-
vergence parameter. Much research and effort has been devoted to selecting the optimal value
for . Nonetheless, no universal value has been found. However, a range for this parameter
has been determined to be . 

Often, a normalized value for the convergence parameter  can be used instead of its abso-
lute value. That is,
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Eq. (16.34)

where  is the order of the adaptive FIR filter and  is the variance (power) of the input sig-
nal. When the input signal is not stationary and its variance is varying with time, a time-vary-
ing estimate of  is used. That is

Eq. (16.35)

where  is a factor selected such that . Finally, Eq. (16.33) can be written as

Eq. (16.36)

MATLAB Function “LMS.m”

The MATLAB function “LMS.m” implements Eq. (16.36). Its syntax is as follows:

Xout = LMS(Xin, D, B, mu, sigma, alpha)

where

As an example and in reference to Fig. 16.3, let the input and desired signals be defined as 

Eq. (16.37)

Eq. (16.38)

where  is additive white noise with zero mean and variance . Figure 16.4 shows
the output of the LMS algorithm defined in Eq. (16.36) when  and . Figure
16.5 is similar to Fig. 16.4 except in this case,  and . 

Note that in Fig. 16.5, the rate of convergence is reduced since  is smaller than that used in
Fig. 16.4; however, the filter’s output is less noise because  is greater than zero, which
allows for more accurate updates of the noise variance as defined in Eq. (16.35). These plots
can be reproduced using the MATLAB program “Fig16_4_5.m,” listed in Appendix 16-A. 

Symbol Description Status

X input data sequence - corrupted input

D desired signal sequence input

B adaptive coefficient input

mu convergence parameters input

sigma input signal power estimate input

alpha forgetting factor, see Eq. (16.35) input

Xout predicted out sequence output
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 Figure 16.4. Input signal, desired response, and output response of an LMS filter. 

 Figure 16.5. Input signal, desired response, and output response of an LMS filter. 
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16.3. The LMS Adaptive Array Processing 
Consider the LMS adaptive array shown in Fig. 16.6. The difference between the reference

signal and the array output constitutes an error signal. The error signal is then used to adap-
tively calculate the complex weights, using a predetermined convergence algorithm. The refer-
ence signal is assumed to be an accurate approximation of the desired signal (or desired array
response). This reference signal can be computed using a training sequence or spreading code,
which is supposed to be known at the radar receiver. The format of this reference signal will
vary from one application to another. But in all cases, the reference signal is assumed to be cor-
related with the desired signal. An increased amount of this correlation significantly enhances
the accuracy and speed of the convergence algorithm being used. In this section, the LMS
algorithm is assumed.

In general, the complex envelope of a bandpass signal and its corresponding analytical (pre-
envelope) signal can be written using the quadrature components pair ( ). Recall
that the quadrature components are related using the Hilbert transform as follows:

; and Eq. (16.39)

where  and  are, respectively, the Hilbert transforms of  and . A bandpass signal
 can be expressed as follows (visit Chapter 3 for a refresher):

Eq. (16.40)

Eq. (16.41)

Eq. (16.42)
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 Figure 16.6. A linear adaptive array.
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where  is the pre-envelope and  is the complex envelope. Equation (16.42) can be
written using Eq. (16.39) as

. Eq. (16.43)

 Using this notation, the adaptive array output signal, its reference signal, and the error signal
can also be written using the same notation as

Eq. (16.44)

Eq. (16.45)

. Eq. (16.46)

Referencing Fig. 16.6, denote the output of the  array input signal as  and assume
complex weights given by

. Eq. (16.47)

It follows that 

. Eq. (16.48)

Taking the Hilbert transform of Eq. (16.48) yields 

. Eq. (16.49)

By using Eq. (16.39) into Eq. (16.49), one gets

. Eq. (16.50)

The  channel analytic signal is

. Eq. (16.51)

Substituting Eq. (16.48) and Eq. (16.49) into Eq. (16.50) gives

. Eq. (16.52)

Collecting terms yields, using complex notation,

. Eq. (16.53)

Therefore, the output of the entire adaptive array is

, Eq. (16.54)

which can be written using vector notation as

Eq. (16.55)

where the vectors  and  are given by
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Eq. (16.56)

. Eq. (16.57)

The superscript  indicates the transpose operation.

As discussed earlier, one common technique to achieving the MMSE of an LMS algorithm is
to use the steepest descent. Thus, the complex weights in the LMS adaptive array are related as
defined in Eq. (16.29). That is,

Eq. (16.58)

where again,  is the convergence parameter. The subscript  indicates time samples. In this
case, the gradient vector  is defined by

. Eq. (16.59)

Rearranging Eq. (16.58) so that the rate of change between consecutive estimates of the com-
plex weights is on one side of the equation yields

Eq. (16.60)

where the middle portion of Eq. (16.59) was also substituted for the gradient vector. In this for-
mat, the left-hand side of Eq. (16.60) represents the rate of change of the complex weights with
respect to time (i.e., the derivative of the weights with respect to time). It follows that

. Eq. (16.61)

However, see from Fig. 16.5, that the error signal complex envelope is 

. Eq. (16.62)

It can be shown (see Problem 16.1) that 

. Eq. (16.63)

Therefore, Eq. (16.61) can be written as

. Eq. (16.64)

Substituting Eq. (16.62) into Eq. (16.64) gives

. Eq. (16.65)
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. Eq. (16.66)

The covariance matrix is by definition

, Eq. (16.67)

and the reference signal correlation vector  is

. Eq. (16.68)

Using Eq. (16.68) and Eq. (16.67), one can rewrite the differential equation (DE) given Eq.
(16.66) as

. Eq. (16.69)

The steady state solution for the DE defined in Eq. (16.69) (provided that the covariance
matrix is not singular) is

. Eq. (16.70)

As the size of the covariance matrix increases (i.e., number of channels in the adaptive
array), so does the complexity associated with computing the adaptive weights in real time.
This is true because computing the inverse of large matrices in real time can be extremely chal-
lenging and demands a significant amount of computing power. Consequently, the effective-
ness of adaptive arrays has been limited to small-sized arrays, where only a few interfering
signals can be eliminated (cancelled). Additionally, computing of a good estimate of the cova-
riance matrix in real time is also difficult in practical applications. In order to mitigate that
effect, a reasonable estimate for  (the i,j element of the covariance matrix) is derived
by averaging m independent samples of data from the same distribution. This approach can be
extended to the entire covariance matrix by collecting M independent “snapshots” of data from

 channels. Thus, the estimate of the covariance matrix can be given as,

. Eq. (16.71)

The transient solution of Eq. (16.69) (see Problem 16.2) is 

Eq. (16.72)

where the vectors  are constants that depend on the initial value of , and  are the
eigenvalues of the matrix . It follows that the complete solution of Eq. (16.69) is 

. Eq. (16.73)

A very common measure of effectiveness of an adaptive array is the ratio of the total output
interference power, , to the internal noise power, .
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Example:

Consider the two-element array in Section 16.2. Assume the desired signal is at directional-
sine  and the interference signal is at . Calculate the adaptive weights so that
the interference signal is cancelled. 

Solution:

From Fig. 16.6 

where  is the desired response,  is the noise, signal, and  is the interference signal. The
noise signal is spatially incoherent, more specifically

.

Also 

.

The desired signal is 

where  is a uniform random variable. The interference signal is

where  is a uniform random variable. Of course the random variables  and  are
assumed to be statistically independent. In vector format,

.

Of course, the noise vector is

,

and the reference signal is (this is an assumption so that the desired and reference signal are
correlated)
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.

Note that the input SNR is 

 

and the interference to noise ratio is

.

The input signal can be written using vector notation as

 .

The covariance matrix is computed from Eq. (16.67) as

.

In order to compute the covariance matrix eigenvalue, one needs to compute the determinant
first 

.

Thus, 

.

The reference correlation vector is

.

It follows that the weights are

.

MATLAB Function “adaptive_array_lms.m”

The MATLAB function “adaptive_array_lms.m” implements the LMS adaptive array pro-
cessing described in this section. Its syntax is as follows:

adaptive_array_lms(N, dol,tagt_angle, jam_angle)
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where

The output of this function is a plot of the normalized array response in dB versus scan before
and after adaptive processing is applied. Figure 16.7 shows an example using the following
MATLAB call:

adaptive_array_lms(19, 0.5, 0, 35)

Note that the quality of the null (how deep and how narrow) heavily depends on the accuracy
of the covariance matrix. In the “adaptive_array_lms.m” code, the MATLAB function “mvn-
rnd” was employed to estimate the noise vector used in computing the covariance matrix. It
follows that each time the code is executed, a different covariance matrix is calculated, and
hence it is very likely that the adaptive null will differ in appearance from one run to another.
This is illustrated in Figs. 16.8a and 16.8b. In this case, the main beam is steered to ,
while the jammer is located at .

Symbol Description Units Status

N array size none input

dol array element spacing lambda input

tagt_angle desired beam spatial location degrees input

jam_angle jammer spatial location degrees input

10–=
25=

 Figure 16.7. Demonstrating the LMS adaptive array processing. Note that 
the gain patterns have been purposefully normalized to slightly different 

maxima in order to make a clear visual distinction between the two 
patterns.
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 Figure 16.8a. Demonstrating the LMS adaptive array processing. Note 
that the gain patterns have been purposefully normalized to slightly 

different maxima in order to make a clear visual distinction between the 
two patterns.

 Figure 16.8b. Demonstrating the LMS adaptive array processing. Note 
that the gain patterns have been purposefully normalized to slightly 

different maxima in order to make a clear visual distinction between the 
two patterns.
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16.4. Sidelobe Cancelers (SLC)
Sidelobe cancelers typically consist of a main antenna (which can be a phased array or a sin-

gle element) and one or more auxiliary antennas. The main antenna is referred to as the main
channel; it is assumed to be highly directional and is pointed toward the desired signal angular
location. The interfering signal is assumed to be located somewhere off the main antenna bore-
sight (in the sidelobes). Because of this configuration, the main channel receives returns from
both the desired and the interfering signals. However, returns from the interfering signal in the
main channel are weak because of the low main antenna sidelobe gain in the direction of the
interfering signal. Also the auxiliary antenna returns are primarily from the interfering signal.
This is illustrated in Fig. 16.9. 

 Referring to Fig. 16.9,  is the desired signal,  is the main channel noise signal,
which is primarily from the interfering signal, while  is the interfering signal in the auxil-
iary array. It is assumed that the signals  and  are uncorrelated. It is also assumed that
the interfering signal is highly correlated with the noise signal in the main channel. The basic
idea behind the SLC is to have the adaptive auxiliary channel produce an accurate estimate of
the noise signal first, then to subtract that estimate from the main channel signal so that the out-
put signal is mainly the desired signal.

The error signal is 

Eq. (16.74)

where  is the vector of the auxiliary array signal, and  is the adapted weights. The vector
 of size . The residual power is

Eq. (16.75)

. Eq. (16.76)

It follows that

. Eq. (16.77)

Differentiate the residual power with respect to  and setting the answer equal to zero (to
compute the optimal weights that minimize the power residual) yields    

Eq. (16.78)

where  is the covariance matrix of the auxiliary channel. Finally, the optimal weights are
given by

. Eq. (16.79)

Note that the vector  represents the components that are common to both main and auxil-
iary channels. Note that Eq. (16.79) makes intuitive sense where the objective is to isolate the
components in the data which are common to the main and auxiliary channels, and we then
wish to give them some heavy attenuation (which comes from inverting ).
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ñ t

s̃ t ñ t
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16.5. Space Time Adaptive Processing (STAP)
Space time adaptive processing (STAP) is the term used to describe adaptive arrays that

simultaneously process spatial and temporal data. The spatial components of the signal are col-
lected using the array sensors (same as in any array operation) while the temporal components
of the signal are generated using time-delay units of equal intervals behind each array sensor.
For this purpose, an array of size N will have N sub-channels (one behind each senor); within
each sub-channel the signal from the  range bin comprises M pulses interleaved by the radar
pulse repetition interval ( ) where  is the PRF. The outputs from all M delayed
responses are then summed coherently, then all N channels are coherently summed to generate
the composite array response. The array input is assumed to be made of target returns, clutter
returns, and interfering signals (e.g., jammers) returns. 

The material in this section is presented in the following sequence: First, the concept of
space time beamforming is introduced; then the analysis is extended to encompass space time
adaptive processing. 

16.5.1. Space Time Processing

The configuration of a space time beamformer is illustrated in Fig. 16.10. In this case, an
array of N sensors and M pulses (interleaved by the radar PRI) comprise the beamformer out-
put for each range bin. The signal output of the  array sensor corresponding to the 
pulse and  range bin is

   Eq. (16.80)

 Figure 16.9. Sidelobe canceler array.
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. . .

wM

1 2 N

Signal

feedback
Circuit
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where  is the number of sensors in the array,  is the number of pulses, and  is the number
of range bins being processed. 

Using this notation, the  range bin return signal from all pulses is given by

. Eq. (16.81)

In this manner, the space time beamformer receives a series of M pulses from each of the N
array elements for each of the J range bins. Hence, a data cube of returns is generated, as illus-
trated in Fig. 16.11. For this purpose, the data received from the  range bin is made of

 space (or time snapshots).

By taking element-1 the array phase reference, then the signal received by the  array ele-
ment (or sensor) at time  from a far field target whose angle of arrival is  can be computed
with the help of Eq. (16.1) as

Eq. (16.82)

where

Eq. (16.83)

where, in general, the signal  is 
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. Eq. (16.84)

 is the radar operating frequency. It follows that

  Eq. (16.85)

where the  is the spatial steering vector associated with the arrival angle . In this nota-
tion, the subscript s is used to differentiate the spatial steering vector from the temporal steer-
ing vector, which will be defined later. 

Next, consider the Doppler effects due to the target relative motion to the radar line of sight.
In this case, the returned signal at sensor-1 due to M pulses is given by

 Eq. (16.86)

where  is the temporal steering vector for the Doppler shift . Therefore, the composite
return signal from the  range bin (i.e., time ) for a target whose Doppler frequency is 
and is located at angle  off the array boresight is

 Figure 16.11. Space time data cube. 
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 Eq. (16.87)

where the symbol  indicates the Kronecker product and . 

16.5.2. Space Time Adaptive Processing

The space time adaptive beamformer is shown in Fig. 16.12. The output of the STAP beam-
former is now given by,

 Eq. (16.88)

where  was defined in the previous section and  is the adaptive weights matrix (see Fig.
16.11). As before, the input signal to the array is assumed to be made of the target returned sig-
nal, clutter and interference retuned signal, and thermal noise.

The total power output of the STAP beamformer is

Eq. (16.89)

where  is the composite input signal covariance matrix and  is the desired target signal
power. Note that the covariance matrix represents the combined target, clutter, noise, and inter-
ference signals; it is of size . It follows that the signal-to-interference plus noise
ratio is

. Eq. (16.90)
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Therefore, the optimal set of weights that maximize the ratio given in Eq. (16.90) is 

. Eq. (16.91)

Figures 16.13 through 16.18 demonstrate STAP processing. In these examples, one target
and one jammer are present. Figures 16.13 and 16.14 show the combined target, jammer, and
clutter returns. Figures 16.15 and 16.16 show the target and jammer return after removing the
clutter ridge. Figures 16.17 and 16.18 show the target return after removing the jammer and
clutter ridge returns. These figures can be reproduced using the MATLAB program
“run_stap.m” and its associated MATLAB functions, which are listed in Appendix 16-A. 

Wopt C 1– st=

 Figure 16.13. Output of STAP processor. The clutter dominates the scene. 

 Figure 16.14. 3-D plot corresponding to Fig. 16.12.
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 Figure 16.15. Output of STAP processor. Target and jammer returns; clutter 
ridge has been removed. 

 Figure 16.16. 3-D plot corresponding to Fig. 16.16. 
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 Figure 16.17. Output of STAP processor. Target only; jammer and clutter ridge 
returns have been removed. 

 Figure 16.18. 3-D plot corresponding to Fig. 16.18. 
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Problems
16.1. Starting with Eq. (16.62), derive Eq. (16.63).
16.2. Compute the transient solution of the DE defined in Eq. (16.69).
16.3. Repeat the example in Section 16.1 for angle  instead of .
16.4. In Section 16.3, the MATLAB function “adaptive_array_lms.m” was developed to
illustrate how linear arrays can adaptively place a null anywhere within the array’s field of
view. This code, however, assumed a single target (desired beam) and a single jammer (null).
Extend this code (or develop your own) to account for multiple simultaneous desired beams
(up to N/2) and multiple jammers (up to N/2-1) where N is the size of the array.
16.5. Building on the previous problem, in Chapter 15, the effect of having a limited num-
ber of bits to steer the main beam was demonstrated. Modify the code of the previous problem
to include the effects of having a limited number of bits for phase shifting. 
16.6. Figures 16.8a and 16.8b clearly demonstrate how the estimate of the covariance
matrix impacts the quality of the adaptive null. In Section 16.3 (see Eq. (16.71)), a technique
was described for estimating and improving the quality of the covariance matrix. Modify the
MATLAB code “adaptive_array_lms.m” or develop your own code to implement Eq. (16.71).
Briefly discuss how the quality of the adaptive null has been improved.
16.7. Develop a MATLAB code to implement the SLC canceler. 
16.8. The MATLAB code “run_stap.m” used hard-coded (pre-determined) values for the
SNR, CNR, and JSR power ratios. Modify this code, or write your own, to allow the user to
change these values. Make a few runs with different combinations of these values and discuss
your results. 
16.9. Repeat the previous problem, where in this case, you will allow the number of ele-
ments in the array, N, to become a user-controlled variable. Run two cases one with low value
for N (less than 10) and one with a large value (more than 20), briefly discuss your results. 

4 6
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Appendix 16-A: Chapter 16 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “LMS.m” Listing
function Xout = LMS(Xin, D, B, mu, sigma, alpha)
%   This program was written by Stephen Robinson a senior radar 
%   engineer at deciBel Research, Inc. in Huntsville, AL
%   Xin = data vector ; size = 1 x N
%   D = desired signal vector; size = 1 x N
%   N = number of data samples and of adaptive iterations
%   B = adaptive coefficients of Lht order fFIRfilter; size = 1 x L
%   L = order of adaptive system
%   mu = convergence parameter
%   sigma = input signal power estimate
%   alpha = exponential forgetting factor
N = size(Xin,2)
L = size(B,2)-1
px = B;
for k = 1:N    
    px(1) = Xin(k);
    Xout(k) = sum(B.*px);  
    E = D(k) - Xout(k);
    sigma = alpha*(px(1)^2) + (1 - alpha)*sigma;
    tmp = 2*mu/((L+1)*sigma);
    B = B + tmp*E*px;
    px(L+1:-1:2) = px(L:-1:1);
end; return

MATLAB Program “Fig16_4_5.m” Listing
% Figures 16.4 and 16.5
clc; close all;  clear all
N = 501;
mu = 0.1; % convergence parameter
Mu = num2str(mu);
L = 20; % FIR filter order
B = zeros(1,L+1); % FIR coefficients
sigma = 2; %Initial estimate for noise power
alpha = .100; % forgetting factor
Alpha =num2str(alpha);
k = 1:N;
noise = rand(1, length(k)) - .5; % Random noise
D = sqrt(2)*sin(2*pi*k/20); 
X = D + sqrt(7)*noise;
Y = LMS(X, D, B, mu, sigma, alpha);
subplot(3,1,1)
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plot(D,'linewidth',1.5); 
xlim([0 501]); grid on; 
ylabel('\bfDesired response'); 
title(['\mu = ',[Mu],  ' ,   \alpha = ',[Alpha]])
subplot(3,1,2)
plot(X,'linewidth',1);
xlim([0 501]); grid on; 
ylabel('\bfCorrupted signal')
subplot(3,1,3)
plot(Y,'linewidth',1.5); 
xlim([0 501]); 
grid on; xlabel('\bftime in sec'); ylabel('\bfLMS output')

MATLAB Function “adaptive_array_lms.m” Listing
function adaptive_array_lms(N, dol,tagt_angle, jam_angle)
% This function implements the adaptive array LMS algorithm described in
% Section 16.6 of text.
% This function calls two other function
    % la_sampled_wave  and
    % linear_array_FFT
% Inputs
    % N         == size of linear array
    % dol       == array element spacing in lambda units
    % tgt_angle == targte angle (desired signal) in degrees
    % jam_angle == jammer angle (desired location of null) in degrees
% Outputs
    % This function will display the before and after normalized array
    % response in dB versus scan angle in degrees
clc; close all
mu = [0 0]; % noise mean value
sigma = [.21 .21; .21 .210]; % noise variance
% N = 19;
% dol = 0.5;
% tgt_angle = 0; 
% jam_angle = 40;
sine_tgt_angle = sin(tagt_angle *pi/180);
sine_jam_angle = sin(jam_angle*pi/180);
al = la_sampled_wave(N, dol, sine_tgt_angle);
jl  = la_sampled_wave(N, dol, sine_jam_angle);
x = al + jl;
n = mvnrnd(mu,sigma,N);
jl = jl + complex(n(:,1),n(:,2));
Xl = jl * jl';
Cl = cov(Xl) + eye(N);
Wl = inv(Cl) * al;
[G, R, u, theta] = linear_array_FFT(Wl, dol);
[G1, R1, u, theta] = linear_array_FFT(x, dol);
u_deg = asin(u) *180/pi;
plot(u_deg, 10*log10((G/max(G)+eps))','linewidth', 1.5);
grid on
hold on
plot(u_deg, 10*log10((G1/max(G1)+eps)),'k:','linewidth', 2);
xlabel('\bfscan angle, \theta in degrees')
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ylabel('\bf normalized array response')
legend('Adaptive array response','Input response')
JAM = num2str(jam_angle); title (['null placed at \theta = ',[JAM],'^0'])

MATLAB Function “la_sampled_wave.m” Listing
function s = la_sampled_wave(N, dol, sinbeta)
 k = 2*pi * dol * sinbeta;
for m = 1: N,
    s(m) = exp(j*(m-1)*k);
end
% Return a column vector, not a row vector
if size(s,1)==1,
    s = s.';
end

MATLAB Function “Linear_array_FFT.m” Listing
function [G, R, u, theta] = linear_array_FFT(a, dol);
 
Nelt = length(a);
ratio = 1;
if dol<=0.5,
    Nr = Nelt;
    dolr = dol;
else
    ratio = ceil(dol/0.5);
    Nr = Nelt * ratio;
    dolr = dol/ratio;
    atemp = a;
    a = zeros(1, Nr);
    a(1: ratio: Nr) = atemp(1: Nelt);
end
% use a value for NFFT that is at least 10 times that of N
% I borrowed this piece of code
nfft = 2^(ceil(log(10*Nr)/log(2)));
nfft = 65536;
A = fftshift(fft(a, nfft));
% Compute u = sin(theta)
u = [-nfft/2 : nfft/2-1] * (1/dolr/nfft);
% 'k' gives us the bounds of visible space
k = find(abs(u)<=1);
R = (abs(A(k))).^2;
u = u(k);
theta = asin(u);
% Gain patterns
Rbar = 0.5 * sum(R) / (nfft*dol);
G = R / Rbar;

MATLAB Program “run_stap.m” Listing
clear all; close all
sintheta_t1 = .4;
wd_t1 =-.6;
sintheta_t2 = -.6;
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wd_t2 = .2;
[LL, sintheta, wd] = stap_std(sintheta_t1, wd_t1, sintheta_t2, wd_t2);
LL = LL / max(max(abs(LL)));
LL = max(LL, 1e-6);
figure (3)
imagesc(sintheta, wd, 10*log10(abs(LL)))
colorbar
title('STAP Detection of target & jammer; clutter removed');
set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
figure (4)
surf(sintheta, wd, 10*log10(abs(LL)))
shading interp
title('STAP Detection of target & jammer; clutter removed');
set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
[LL, sintheta, wd] = stap_smaa(sintheta_t1, wd_t1, sintheta_t2, wd_t2);
LL = LL / max(max(abs(LL)));
LL = max(LL, 1e-6);
figure
imagesc(sintheta, wd, 10*log10(abs(LL)))
colorbar
set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
title('STAP Detection of target; jammer & clutter removed');
figure
surf(sintheta, wd, 10*log10(abs(LL)))
shading interp
set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
title('SNR after SMAA STAP Detection of target, clutter, noise & jammer');

MATLAB Function “stap_std.m” Listing
function [LL, sintheta, wd] = stap_std(sintheta_t1, wd_t1, sintheta_t2, wd_t2);
do_plot = 1;
N = 10;         % Sensors 
M = 12;         % Pulses
No = 250;       % k-th clutter bins (refers to fig. 5)
beta = 1;       % The way the clutter fills the angle Doppler
dol = 0.5;      % d over lambda
CNR = 30;   % dB Clutter to Noise Ratio  
SNR = 10;    % dB Signal to Noise Ratio 
JSR = 0;   % dB Jammer to Signal Ratio
% Set the noise power
sigma2_n = 1;
% Clutter power
sigma2_c = sigma2_n * 10^(CNR/10);
sigma_c = sqrt(sigma2_c);
% Target 1 power
sigma2_t1 = sigma2_n * 10^(SNR/10);
sigma_t1 = sqrt(sigma2_t1);
% Target 2 (Jammer) power
sigma2_t2 = sigma2_t1 * 10^(JSR/10);
sigma_t2 = sqrt(sigma2_t2);
% Ground clutter is the primary source of interference
sintheta = linspace(-1, 1, No);
phi = 2 * dol * sintheta;
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wd = beta * phi;
Rc = zeros(N*M);
ac_all = zeros(N*M,1);
for k = 1: length(phi),
    ac = sigma_c * st_steering_vector(phi(k), N, beta*phi(k), M);  % Xc
    Rc = Rc + ac * ac';    % covarience matrix of target "1" ,  "'" --> conjugate transpose
    ac_all = ac_all + ac;  % "w" not optimized yet 
end
Rc = Rc / length(phi);   
% Noise signals decorrelate from pulse-to-pulse
% With this assumption, noise covariance matrix is
Rn = sigma2_n * eye(M*N);
% Target 1 covariance matrix
% at1 = st_steering_vector(sintheta_t1, N, wd_t1, M);
% Rt1 = sigma2_t1 * at1 * at1';
at1 = sigma_t1 * st_steering_vector(sintheta_t1, N, wd_t1, M); % Xj1
Rt1 = at1 * at1';   % covarience matrix of target "1"
at2 = sigma_t2 * st_steering_vector(sintheta_t2, N, wd_t2, M);
Rt2 = at2 * at2';  % covarience matrix of target "2" == jammer
% Total covariance matrix
R = Rc + Rn + Rt1 + Rt2;
% Unweighted spectrum of the total return from the beamformer
sintheta = linspace(-1, 1);
wd = beta * sintheta;
Pb = zeros(length(wd), length(sintheta));
for nn = 1: length(sintheta),
    for mm = 1: length(wd),
        a = st_steering_vector(sintheta(nn), N, wd(mm), M);
        Pb(mm, nn) = a' * R * a;
    end
end
if do_plot,
    % Display the total return spectrum
    figure (1)
    imagesc(sintheta, wd, 10*log10(abs(Pb)))
    colorbar
    title('Total Return spectrum before STAP Detection of target, clutter, noise & jammer');
    set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
    figure (2)
    surf(sintheta, wd, 10*log10(abs(Pb)))
    shading interp, , xlabel('sine angle'), ylabel('normalized doppler')
    title('Total Return spectrum before STAP Detection of target, clutter, noise & jammer');
end
% Total covariance matrix
R = Rc + Rn + Rt1 + Rt2;
% Calculate optimal weights
Rc = (ac_all * ac_all') / length(phi);
Rinv = inv(Rc + Rn );  n
wopt = Rinv' * (at1 + at2 );  
% Log-Likelihood Function
% Calculating the SNR and switching to the run_stap.m to execute the log part
sintheta = linspace(-1, 1);
wd = beta * sintheta;
LL = zeros(length(wd), length(sintheta));
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for nn = 1: length(sintheta),
    for mm = 1: length(wd),
        a = st_steering_vector(sintheta(nn), N, wd(mm), M);
    %    LL(mm,nn) = abs( a' * Rinv * (at1+at2+ac_all) )^2 / ( a' * Rinv * a ); % Original by Keith
       LL(mm,nn) = abs(a' * Rinv * (at1+at2+ac_all)  )^2 / ( a' * (Rc + Rn ) * a ); % our expectation
    end
end
disp(size(a))
disp (size(Rinv))

MATLAB Function “stap_smaa.m” Listing
function [LL, sintheta, wd] = stap_smaa(sintheta_t1, wd_t1, sintheta_t2, wd_t2);
do_plot = 1;
N = 10; Na = 2*N-1;
M = 12;
No = 250;
beta = 1;
dol = 0.5;
CNR = 20; % dB
SNR = 0; % dB
JSR = 20; % dB
% Set the noise power
sigma2_n = 1;
% Clutter power
sigma2_c = sigma2_n * 10^(CNR/10);
sigma_c = sqrt(sigma2_c);
% Target 1 power
sigma2_t1 = sigma2_n * 10^(SNR/10);
sigma_t1 = sqrt(sigma2_t1);
% Target 2 (Jammer) power
sigma2_t2 = sigma2_t1 * 10^(JSR/10);
sigma_t2 = sqrt(sigma2_t2);
% Ground clutter is the primary source of interference
sintheta = linspace(-1, 1, No);
phi = 2 * dol * sintheta;
wd = beta * phi;
Rc = zeros(Na*M);
ac_all = zeros(Na*M,1);
for k = 1: length(phi),
    ac = sigma_c * smaa_st_steering_vector(phi(k), N, beta*phi(k), M);
    Rc = Rc + ac * ac';
    ac_all = ac_all + ac;
end
Rc = Rc / length(phi);
% Noise signals decorrelate from pulse-to-pulse
% With this assumption, noise covariance matrix is
Rn = sigma2_n * eye(M*Na);
% Target 1 covariance matrix
% at1 = smaa_st_steering_vector(sintheta_t1, N, wd_t1, M);
% Rt1 = sigma2_t1 * at1 * at1';
at1 = sigma_t1 * smaa_st_steering_vector(sintheta_t1, N, wd_t1, M);
Rt1 = at1 * at1';
% Target 1 covariance matrix
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% at2 = smaa_st_steering_vector(sintheta_t2, N, wd_t2, M);
% Rt2 = sigma2_t2 * at2 * at2';
at2 = sigma_t2 * smaa_st_steering_vector(sintheta_t2, N, wd_t2, M);
Rt2 = at2 * at2';
% Total covariance matrix
R = Rc + Rn + Rt1 + Rt2;
% Unweighted spectrum of the total return from the beamformer
sintheta = linspace(-1, 1);
wd = beta * sintheta;
Pb = zeros(length(wd), length(sintheta));
for nn = 1: length(sintheta),
    for mm = 1: length(wd),
        a = smaa_st_steering_vector(sintheta(nn), N, wd(mm), M);
        Pb(mm, nn) = a' * R * a;
    end
end
if do_plot,
    % Display the total return spectrum
    figure (5)
    imagesc(sintheta, wd, 10*log10(abs(Pb)))
    set(gca,'ydir','normal'), xlabel('sine angle'), ylabel('normalized doppler')
    figure (6)
    surf(sintheta, wd, 10*log10(abs(Pb)))
    shading interp, xlabel('sine angle'), ylabel('normalized doppler')
end
% Calculate optimal weights
Rc = (ac_all * ac_all') / length(phi);
Rinv = inv(Rc + Rn);
wopt = Rinv * (at1 + at2);
% Log-Likelihood Function
sintheta = linspace(-1, 1);
wd = beta * sintheta;
LL = zeros(length(wd), length(sintheta));
for nn = 1: length(sintheta),
    for mm = 1: length(wd),
        a = smaa_st_steering_vector(sintheta(nn), N, wd(mm), M);
        LL(mm,nn) = abs( a' * Rinv * (at1+at2+ac_all) )^2 / ( a' * Rinv * a );
    end
end

MATLAB Function “st_steering_vector.m” Listing
function a = st_steering_vector(sintheta, N, wd, M)
a_N = exp(-j*pi*sintheta*[0:N-1]');
b_M = exp(-j*pi*wd      *[0:M-1]');
a = kron(b_M, a_N);

MATLAB Function “smaa_st_steering_vector.m” Listing
function a = smaa_st_steering_vector(sintheta, N, wd, M)
a_N = exp(-j*pi*sintheta*[-(N-1):+(N-1)]');
b_M = exp(-j*pi*wd      *[0:M-1]');
a_N = a_N .* ts_weighting(N);
a = kron(b_M, a_N);
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Part V - Radar Special Topics

Chapter 17

Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in range, azimuth
angle, elevation angle, and velocity. Then, by using and keeping track of these measured
parameters the radar can predict their future values. Target tracking is important to military
radars as well as to most civilian radars. In military radars, tracking is responsible for fire con-
trol and missile guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control radars, may utilize
tracking as a means of controlling incoming and departing airplanes.

Tracking techniques can be divided into range/velocity tracking and angle tracking. It is also
customary to distinguish between continuous single-target tracking radars and multi-target
track-while-scan (TWS) radars. Tracking radars utilize pencil beam (very narrow) antenna pat-
terns. It is for this reason that a separate search radar is needed to facilitate target acquisition
by the tracker. Still, the tracking radar has to search the volume where the target’s presence is
suspected. For this purpose, tracking radars use special search patterns, such as helical, T.V.
raster, cluster, and spiral patterns, to name a few.

17.1. Angle Tracking
Angle tracking is concerned with generating continuous measurements of the target’s angu-

lar position in the azimuth and elevation coordinates. The accuracy of early-generation angle
tracking radars depended heavily on the size of the pencil beam employed. Most modern radar
systems achieve very fine angular measurements by utilizing monopulse tracking techniques.

Tracking radars use the angular deviation from the antenna main axis of the target within the
beam to generate an error signal. This deviation is normally measured from the antenna’s main
axis. The resultant error signal describes how much the target has deviated from the beam
main axis. Then, the beam position is continuously changed in an attempt to produce a zero
error signal. If the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the case. 

In order to be able to quickly change the beam position, the error signal needs to be a linear
function of the deviation angle. It can be shown that this condition requires the beam’s axis to
be squinted by some angle (squint angle) off the antenna’s main axis. 

Target Tracking 
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17.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by the early genera-
tion of radar systems. Sequential lobing is often referred to as lobe switching or sequential
switching. It has a tracking accuracy that is limited by the pencil beamwidth used and by the
noise caused by either mechanical or electronic switching mechanisms. However, it is very
simple to implement. The pencil beam used in sequential lobing must be symmetrical (equal
azimuth and elevation beamwidths). 

Tracking is achieved (in one coordinate) by continuously switching the pencil beam between
two pre-determined symmetrical positions around the antenna’s Line of Sight (LOS) axis.
Hence, the name sequential lobing is adopted. The LOS is called the radar tracking axis, as
illustrated in Fig. 17.1. 

As the beam is switched between the two positions, the radar measures the returned signal
levels. The difference between the two measured signal levels is used to compute the angular
error signal. For example, when the target is tracked on the tracking axis, as the case in Fig.
17.1a, the voltage difference is zero. However, when the target is off the tracking axis, as in
Fig. 17.1b, a nonzero error signal is produced. The sign of the voltage difference determines
the direction in which the antenna must be moved. Keep in mind, the goal here is to make the
voltage difference be equal to zero.

beam axis

tracking axis

beam
 positi

on A

beam position B

beam A
return beam B

return

(a)

beam position B

beam
 positi

on A
tracking axis

beam A
return

beam B
return

(b)

                     

 Figure 17.1. Sequential lobing. (a) Target is located on track axis. (b) 
Target is off track axis. 
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In order to obtain the angular error in the orthogonal coordinate, two more switching posi-
tions are required for that coordinate. Thus, tracking in two coordinates can be accomplished
by using a cluster of four antennas (two for each coordinate) or by a cluster of five antennas. In
the latter case, the middle antenna is used to transmit, while the other four are used to receive.

17.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case, the antenna is
continuously rotated at an offset angle, or has a feed that is rotated about the antenna’s main
axis. Figure 17.2 shows a typical conical scan beam. The beam scan frequency, in radians per
second, is denoted as . The angle between the antenna’s LOS and the rotation axis is the
squint angle . The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Figure 17.3 shows a simplified conical scan radar system. The envelope detector is used to
extract the return signal amplitude, and the Automatic Gain Control (AGC) tries to hold the
receiver output to a constant value. Since the AGC operates on large time constants, it can hold
the average signal level constant and still preserve the signal rapid scan variation. It follows
that the tracking error signals (azimuth and elevation) are functions of the target’s RCS; they
are functions of its angular position off the main beam axis.

 In order to illustrate how conical scan tracking is achieved, we will first consider the case
shown in Fig. 17.4. In this case, as the antenna rotates around the tracking axis, all target
returns have the same amplitude (zero error signal). Thus, no further action is required.

Next, consider the case depicted by Fig. 17.5. Here, when the beam is at position B, returns
from the target will have maximum amplitude, and when the antenna is at position A, returns
from the target have minimum amplitude. Between those two positions, the amplitude of the
target returns will vary between the maximum value at position B, and the minimum value at
position A. In other words, Amplitude Modulation (AM) exists on top of the returned signal.
This AM envelope corresponds to the relative position of the target within the beam. Thus, the
extracted AM envelope can be used to derive a servo-control system in order to position the
target on the tracking axis. 

s

tracking axis

beam axis

squint angle

rotating
feed

Figure 17.2. Conical scan beam.

s



642                                                                                   Radar Systems Analysis and Design Using MATLAB®

Now, let us derive the error signal expression that is used to drive the servo-control system.
Consider the top view of the beam axis location shown in Fig. 17.6. Assume that  is the
starting beam position. The locations for maximum and minimum target returns are also identi-
fied. The quantity  defines the distance between the target location and the antenna’s tracking
axis. It follows that the azimuth and elevation errors are, respectively, given by

Eq. (17.1)

. Eq. (17.2)

These are the error signals that the radar uses to align the tracking axis on the target.
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 Figure 17.3. Simplified conical scan radar system.
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The AM signal  can then be written as

Eq. (17.3)

where  is a constant called the error slope,  is the scan frequency in radians per second,
and  is the angle already defined. The scan reference is the signal that the radar generates to
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 Figure 17.5. Error signal produced when the target is off the 
tracking axis for a conical scan. 
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keep track of the antenna’s position around a complete path (scan). The elevation error signal
is obtained by mixing the signal  with  (the reference signal) followed by lowpass
filtering. More precisely,

, Eq. (17.4)

and after lowpass filtering we get

. Eq. (17.5)

Negative elevation error drives the antenna beam downward, while positive elevation error
drives the antenna beam upward. Similarly, the azimuth error signal is obtained by multiplying

 by  followed by lowpass filtering. It follows that

. Eq. (17.6)

The antenna scan rate is limited by the scanning mechanism (mechanical or electronic),
where electronic scanning is much faster and more accurate than mechanical scanning. In
either case, the radar needs at least four target returns to be able to determine the target azimuth
and elevation coordinates (two returns per coordinate). Therefore, the maximum conical scan
rate is equal to one fourth of the PRF. Rates as high as 30 scans per second are commonly used.

The conical scan squint angle needs to be large enough so that a good error signal can be
measured. However, due to the squint angle, the antenna gain in the direction of the tracking
axis is less than maximum. Thus, when the target is in track (located on the tracking axis), the
SNR suffers a loss equal to the drop in the antenna gain. This loss is known as the squint or
crossover loss. The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.   

17.2. Amplitude Comparison Monopulse
Amplitude comparison monopulse tracking is similar to lobing in the sense that four

squinted beams are required to measure the target’s angular position. The difference is that the
four beams are generated simultaneously rather than sequentially. For this purpose, a special
antenna feed is utilized such that the four beams are produced using a single pulse, hence the
name “monopulse.” Additionally, monopulse tracking is more accurate and is not susceptible
to lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in sequential and
conical lobing, variations in the radar echoes degrade the tracking accuracy; however, this is
not a problem for monopulse techniques since a single pulse is used to produce the error sig-
nals. Monopulse tracking radars can employ both antenna reflectors as well as phased array
antennas. 

Figure 17.7 show a typical monopulse antenna pattern. The four beams A, B, C, and D repre-
sent the four conical scan beam positions. Four feeds, mainly horns, are used to produce the
monopulse antenna pattern. Amplitude monopulse processing requires that the four signals
have the same phase and different amplitudes.

A good way to explain the concept of amplitude monopulse technique is to represent the tar-
get echo signal by a circle centered at the antenna’s tracking axis, as illustrated by Fig. 17.8a,
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where the four quadrants represent the four beams. In this case, the four horns receive an equal
amount of energy, which indicates that the target is located on the antenna’s tracking axis.
However, when the target is off the tracking axis (Figs. 17.8b-d), an imbalance of energy
occurs in the different beams. This imbalance of energy is used to generate an error signal that
drives the servo-control system. Monopulse processing consists of computing a sum  and
two difference  (azimuth and elevation) antenna patterns. Then by dividing a  channel
voltage by the  channel voltage, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam returns to sense the
amount of target displacement off the tracking axis. It is critical that the phases of the four sig-
nals be constant in both transmit and receive modes. For this purpose, either digital networks
or microwave comparator circuitry are utilized. Figure 17.9 shows a block diagram for a typi-
cal microwave comparator, where the three receiver channels are declared as the sum channel,
elevation angle difference channel, and azimuth angle difference channel.

To generate the elevation difference beam, one can use the beam difference (A-D) or (B-C).
However, by first forming the sum patterns (A+B) and (D+C) and then computing the differ-
ence (A+B)-(D+C), we achieve a stronger elevation difference signal, . Similarly, by first
forming the sum patterns (A+D) and (B+C) and then computing the difference (A+D)-(B+C),
a stronger azimuth difference signal, , is produced.
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az
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Figure 17.7. Monopulse antenna pattern.
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 Figure 17.8. Illustration of monopulse concept. (a) Target is on the tracking axis. 
(b) - (d) Target is off the tracking axis.
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A simplified monopulse radar block diagram is shown in Fig. 17.10. The sum channel is
used for both transmit and receive. In the receive mode, the sum channel provides the phase
reference for the other two difference channels. Range measurements can also be obtained
from the sum channel. In order to illustrate how the sum and difference antenna patterns are
formed, we will assume a  single-element antenna pattern and squint angle . The
sum signal in one coordinate (azimuth or elevation) is then given by

, Eq. (17.7)
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and a difference signal in the same coordinate is

. Eq. (17.8)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (17.7) and (17.8). Its output includes plots
of the sum and difference antenna patterns as well as the difference-to-sum ratio. The syntax is
as follows:

mono_pulse (phi0)

where phi0 is the squint angle in radians. 

Figure 17.11 (a-c) shows the corresponding plots for the sum and difference patterns for
 radians. Fig. 17.12 (a-c) is similar to Fig. 17.11, except in this case 

radians. Clearly, the sum and difference patterns depend heavily on the squint angle. Using a
relatively small squint angle produces a better sum pattern than that resulting from a larger
angle. Additionally, the difference pattern slope is steeper for the small squint angle.

The difference channels give us an indication of whether the target is on or off the tracking
axis. However, this signal amplitude depends not only on the target angular position, but also
on the target’s range and RCS. For this reason, the ratio  (delta over sum) can be used to
accurately estimate the error angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the azimuth error sig-
nal. Define the signals  and  as

Eq. (17.9)

. Eq. (17.10)

The sum signal is , and the azimuth difference signal is . If ,
then both channels have the same phase  (since the sum channel is used for phase refer-
ence). Alternatively, if , then the two channels are  out of phase. Similar analysis
can be done for the elevation channel, where in this case  and . Thus,
the error signal output is

Eq. (17.11)

where  is the phase angle between the sum and difference channels and it is equal to  or
. More precisely, if , then the target is on the tracking axis; otherwise it is off the

tracking axis. Figure 17.13 (a,b) shows a plot for the ratio  for the monopulse radar whose
sum and difference patterns are in Figs. 17.11 and 17.12.

17.3. Phase Comparison Monopulse
Phase comparison monopulse is similar to amplitude comparison monopulse in the sense that
the target angular coordinates are extracted from one sum and two difference channels. The
main difference is that the four signals produced in amplitude comparison monopulse will have
similar phases but different amplitudes; however, in phase comparison monopulse, the signals
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have the same amplitude and different phases.  Phase comparison monopulse tracking radars
use a minimum of a two-element array antenna for each coordinate (azimuth and elevation), as
illustrated in Fig. 17.14. A phase error signal (for each coordinate) is computed from the phase
difference between the signals generated in the antenna elements.

 Figure 17.11a. Two squinted patterns. Squint angle is  radians.0 0.15=
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 Figure 17.11b. Sum pattern corresponding to Fig. 17.11a.
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 Figure 17.11c. Difference pattern corresponding to Fig. 17.11a.
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 Figure 17.12a. Two squinted patterns. Squint angle is  radians.0 0.75=
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 Figure 17.12b. Sum pattern corresponding to Fig. 17.12a.
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 Figure 17.12c. Difference pattern corresponding to Fig. 17.12a.
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 Consider Fig. 17.14; since the angle  is equal to , it follows that

, Eq. (17.12)

and since , we can use the binomial series expansion to get

. Eq. (17.13)

 Figure 17.13a. Difference-to-sum ratio corresponding to Fig. 17.11a.
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 Figure 17.13b. Difference-to-sum ratio corresponding to Fig. 17.12a.
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Similarly, 

. Eq. (17.14)

The phase difference between the two elements is then given by

Eq. (17.15)

where  is the wavelength. The phase difference  is used to determine the angular target
location. Note that if , then the target would be on the antenna’s main axis. The problem
with this phase comparison monopulse technique is that it is quite difficult to maintain a stable
measurement of the off-boresight angle , which causes serious performance degradation.
This problem can be overcome by implementing a phase comparison monopulse system as
illustrated in Fig. 17.15. 

The (single coordinate) sum and difference signals are, respectively, given by

Eq. (17.16)

Eq. (17.17)

where the  and  are the signals in the two elements. Now, since  and  have similar
amplitude and are different in phase by , we can write

. Eq. (17.18)

It follows that

Eq. (17.19)
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Figure 17.14. Single coordinate phase comparison monopulse antenna. 
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. Eq. (17.20)

The phase error signal is computed from the ratio . More precisely,

, Eq. (17.21)

which is purely imaginary. The modulus of the error signal is then given by

. Eq. (17.22)

This kind of phase comparison monopulse tracker is often called the half-angle tracker.

17.4. Range Tracking
Target range is measured by estimating the round-trip delay of the transmitted pulses. The

process of continuously estimating the range of a moving target is known as range tracking.
Since the range to a moving target is changing with time, the range tracker must be constantly
adjusted to keep the target locked in range. This can be accomplished using a split gate system,
where two range gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 17.16, where a sketch of a typical pulsed radar echo is shown in the figure. The
early gate opens at the anticipated starting time of the radar echo and lasts for half its duration.
The late gate opens at the center and closes at the end of the echo signal. For this purpose, good
estimates of the echo duration and the pulse center time must be reported to the range tracker
so that the early and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation process.”

The early gate produces positive voltage output while the late gate produces negative voltage
output. The outputs of the early and late gates are subtracted, and the difference signal is fed
into an integrator to generate an error signal. If both gates are placed properly in time, the inte-
grator output will be equal to zero. Alternatively, when the gates are not timed properly, the
integrator output is not zero, which gives an indication that the gates must be moved in time,
left or right, depending on the sign of the integrator output.

d

Figure 17.15. Single coordinate phase monopulse antenna,
        with sum and difference channels.

S2

S1

S2 1 e j–+=

--- 1 e j––
1 e j–+
------------------ j 2

---tan= =

------ 2
---tan=



654                                                                                   Radar Systems Analysis and Design Using MATLAB®

radar echo

early gate

late gate

early gate response

late gate response

Figure 17.16. Illustration of split-range gate. 
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Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval, and use sophisti-
cated smoothing and prediction filters to estimate the target parameters between scans. To this
end, the Kalman filter and the Alpha-Beta-Gamma ( ) filter are commonly used. Once a
particular target is detected, the radar may transmit up to a few pulses to verify the target
parameters, before it establishes a track file for that target. Target position, velocity, and accel-
eration comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in this part. First, an
overview of state representation for Linear Time Invariant (LTI) systems is discussed. Then,
second- and third-order one-dimensional fixed-gain polynomial filter trackers are developed.
These filters are, respectively, known as the  and  filters (also known as the g-h and g-
h-k filters). Finally, the equations for an n-dimensional multi-state Kalman filter is introduced
and analyzed. As a matter of notation, lower case letters, with an underbar, are used.

17.5. Track-While-Scan (TWS)
Modern radar systems are designed to perform multi-function operations, such as detection,

tracking, and discrimination. With the aid of sophisticated computer systems, multi-function
radars are capable of simultaneously tracking many targets. In this case, each target is sampled
once (mainly range and angular position) during a dwell interval (scan). Then, by using
smoothing and prediction techniques, future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-Scan (TWS)
radars.

Once a TWS radar detects a new target, it initiates a separate track file for that detection; this
ensures that sequential detections from that target are processed together to estimate the tar-
get’s future parameters. Position, velocity, and acceleration comprise the main components of
the track file. Typically, at least one other confirmation detection (verify detection) is required
before the track file is established. 

Unlike single target tracking systems, TWS radars must decide whether each detection
(observation) belongs to a new target or belongs to a target that has been detected in earlier
scans. And in order to accomplish this task, TWS radar systems utilize correlation and associa-
tion algorithms. In the correlation process, each new detection is correlated with all previous
detections in order to avoid establishing redundant tracks. If a certain detection correlates with
more than one track, then a pre-determined set of association rules are exercised so that the
detection is assigned to the proper track. A simplified TWS data processing block diagram is
shown in Fig. 17.17. 

Choosing a suitable tracking coordinate system is the first problem a TWS radar has to con-
front. It is desirable that a fixed reference of an inertial coordinate system be adopted. The
radar measurements consist of target range, velocity, azimuth angle, and elevation angle. The
TWS system places a gate around the target position and attempts to track the signal within this
gate. The gate dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a gate has to be
large enough so that targets do not move appreciably from scan to scan; more precisely, targets
must stay within the gate boundary during successive scans. After the target has been observed
for several scans, the size of the gate is reduced considerably.
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Gating is used to decide whether an observation is assigned to an existing track file, or to a
new track file (new detection). Gating algorithms are normally based on computing a statistical
error distance between a measured and an estimated radar observation. For each track file, an
upper bound for this error distance is normally set. If the computed difference for a certain
radar observation is less than the maximum error distance of a given track file, then the obser-
vation is assigned to that track.

All observations that have an error distance less than the maximum distance of a given track
are said to correlate with that track. For each observation that does not correlate with any exist-
ing tracks, a new track file is established accordingly. Since new detections (measurements)
are compared to all existing track files, a track file may then correlate with no observations or
with one or more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix represent radar
observations, while columns represent track files. In cases where several observations correlate
with more than one track file, a set of pre-determined association rules can be utilized so that a
single observation is assigned to a single track file. 

17.6. State Variable Representation of an LTI System 
A linear time invariant system (continuous or discrete) can be described mathematically

using three variables. They are the input, output, and the state variables. In this representation,
any LTI system has observable or measurable objects (abstracts). For example, in the case of a
radar system, range may be an object measured or observed by the radar tracking filter. States
can be derived in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time derivatives. For
example, a third-order one-dimensional (in this case range) state vector representing range can
be given by 

Eq. (17.23)

establish time
and radar

coordinates

radar
measurements

pre-processing
     gating

correlation /
association

smoothing
& prediction

establish
track files

deleting files
of lost targets

Figure. 9.17. Simplified block diagram of TWS data processing. 
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where , , and  are, respectively, the range measurement, range rate (velocity), and accel-
eration. The state vector defined in Eq. (17.23) can be representative of continuous or discrete
states. In this book, the emphasis is on discrete time representation, since most radar signal
processing is executed using digital computers. For this purpose, an n-dimensional state vector
has the following form:

Eq. (17.24)

where the superscript indicates the transpose operation. 

The LTI system of interest can be represented using the following state equations:

Eq. (17.25)

Eq. (17.26)

where  is the value of the  state vector;  is the value of the  output vector;  is
the value of the  input vector;  is an  matrix;  is an  matrix;  is 
matrix; and  is an  matrix. The homogeneous solution (i.e., ) to this linear
system, assuming known initial condition  at time , has the form

. Eq. (17.27)

The matrix  is known as the state transition matrix, or fundamental matrix, and is equal to

. Eq. (17.28)

Eq. (17.28) can be expressed in series format as

Eq. (17.29)

where  is the identity matrix. 

Example:

Compute the state transition matrix for an LTI system when

.  

Solution:

The state transition matrix can be computed using Eq. (17.29). For this purpose, compute
 and . It follows
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.  

The state transition matrix has the following properties (the proof is left as an exercise):

1. Derivative property

Eq. (17.30)

2. Identity property

Eq. (17.31)

3. Initial value property

Eq. (17.32)

4. Transition property

Eq. (17.33)

5. Inverse property

Eq. (17.34)

6. Separation property

Eq. (17.35)

The general solution to the system defined in Eq. (17.25) can be written as

. Eq. (17.36)

The first term of the right-hand side of Eq. (17.36) represents the contribution from the system
response to the initial condition. The second term is the contribution due to the driving force

. By combining Eqs. (17.26) and (17.36), an expression for the output is computed as

. Eq. (17.37)

Note that the system impulse response is equal to . 

The difference equations describing a discrete time system, equivalent to Eqs. (17.25) and
(17.26), are 

Eq. (17.38)
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Eq. (17.39)

where  defines the discrete time  and  is the sampling interval. All other vectors and
matrices were defined earlier. The homogeneous solution to the system defined in Eq. (17.38),
with initial condition , is

. Eq. (17.40)

In this case, the state transition matrix is an  matrix given by

. Eq. (17.41)

The following is the list of properties associated with the discrete transition matrix:

Eq. (17.42)

Eq. (17.43)

Eq. (17.44)

Eq. (17.45)

Eq. (17.46)

Eq. (17.47)

The solution to the general case (i.e., non-homogeneous system) is given by

. Eq. (17.48)

It follows that the output is given by

Eq. (17.49)

where the system impulse response is given by

Eq. (17.50)

where  is a vector.

Taking the Z-transform for Eqs. (17.38) and (17.39) yields

Eq. (17.51)

. Eq. (17.52)

Manipulating Eqs. (17.51) and (17.52) yields
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Eq. (17.53)

. Eq. (17.54)

It follows that the state transition matrix is 

, Eq. (17.55)

and the system impulse response in the z-domain is

. Eq. (17.56)

17.7. The LTI System of Interest 
For the purpose of establishing the framework necessary for the Kalman filter development,

consider the LTI system shown in Fig. 17.18. This system (which is a special case of the sys-
tem described in the previous section) can be described by the following first-order differential
vector equations

Eq. (17.57)

Eq. (17.58)

where  is the observable part of the system (i.e., output),  is a driving force, and  is the
measurement noise. The matrices  and  vary depending on the system. The noise observa-
tion  is assumed to be uncorrelated. If the initial condition vector is , then from Eq.
(17.36) we get

. Eq. (17.59)

The object (abstract) is observed only at discrete times determined by the system. These
observation times are declared by discrete time  where  is the sampling interval. Using
the same notation adopted in the previous section, the discrete time representations of Eqs.
(17.57) and (17.58) are
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 Figure 17.18. An LTI system.
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Eq. (17.60)

. Eq. (17.61)

The homogeneous solution to this system is given in Eq. (17.27) for continuous time, and in
Eq. (17.40) for discrete time. 

The state transition matrix corresponding to this system can be obtained using Taylor series
expansion of the vector . More precisely,

Eq. (17.62)

It follows that the elements of the state transition matrix are defined by

. Eq. (17.63)

Using matrix notation, the state transition matrix is then given by 

. Eq. (17.64)

The matrix given in Eq. (17.64) is often called the Newtonian matrix.

17.8. Fixed-Gain Tracking Filters 
This class of filters (or estimators) is also known as “Fixed-Coefficient” filters. The most

common examples of this class of filters are the  and  filters and their variations. The
 and  trackers are one-dimensional second- and third-order filters, respectively. They

are equivalent to special cases of the one-dimensional Kalman filter. The general structure of
this class of estimators is similar to that of the Kalman filter.

The standard  filter provides smoothed and predicted data for target position, velocity
(Doppler), and acceleration. It is a polynomial predictor/corrector linear recursive filter. This
filter can reconstruct position, velocity, and constant acceleration based on position measure-
ments. The  filter can also provide a smoothed (corrected) estimate of the present position,
which can be used in guidance and fire control operations. 

Notation: 

For the purpose of the discussion presented in the remainder of this chapter, the following
notation is adopted:  represents the estimate during the  sampling interval, using
all data up to and including the  sampling interval;  is the  measured value; and 
is the  residual (error).
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The fixed-gain filter equation is given by 

. Eq. (17.65)

Since the transition matrix assists in predicting the next state, 

. Eq. (17.66)

Substituting Eq. (17.66) into Eq. (17.65) yields

. Eq. (17.67)

The term enclosed within the brackets on the right-hand side of Eq. (17.67) is often called the
residual (error), which is the difference between the measured input and predicted output. Eq.
(17.67) means that the estimate of  is the sum of the prediction and the weighted residual.
The term  represents the prediction state. In the case of the  estimator,  is
the row vector given by

, Eq. (17.68)

and the gain matrix  is given by 

. Eq. (17.69)

One of the main objectives of a tracking filter is to decrease the effect of the noise observa-
tion on the measurement. For this purpose, the noise covariance matrix is calculated. More pre-
cisely, the noise covariance matrix is 

Eq. (17.70)

where  indicates the expected value operator. Noise is assumed to be a zero mean random
process with variance equal to . Additionally, noise measurements are assumed to be uncor-
related,

. Eq. (17.71)

Eq. (17.65) can be written as 

Eq. (17.72)

where 

. Eq. (17.73)

Substituting Eqs. (17.72) and (17.73) into Eq. (17.70) yields

. Eq. (17.74)

Expanding the right-hand side of Eq. (17.74), and using Eq. (17.71), gives
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. Eq. (17.75)

Under the steady-state condition, Eq. (17.75) collapses to

Eq. (17.76)

where  is the steady-state noise covariance matrix. In the steady-state, 

Eq. (17.77)

Several criteria can be used to establish the performance of the fixed-gain tracking filter. The
most commonly used technique is to compute the Variance Reduction Ratio (VRR). The VRR
is defined only when the input to the tracker is noise measurements. It follows that in the
steady-state case, the VRR is the steady-state ratio of the output variance (auto-covariance) to
the input measurement variance. 

In order to determine the stability of the tracker under consideration, consider the Z-trans-
form for Eq. (17.72),

. Eq. (17.78)

Rearranging Eq. (17.78) yields the following system transfer functions:

Eq. (17.79)

where  is called the characteristic matrix. Note that the system transfer functions
can exist only when the characteristic matrix is a non-singular matrix. Additionally, the system
is stable if and only if the roots of the characteristic equation are within the unit circle in the z-
plane,

. Eq. (17.80)

The filter’s steady-state errors can be determined with the help of Fig. 17.19. The error trans-
fer function is 

, Eq. (17.81)

and by using Abel’s theorem, the steady-state error is

. Eq. (17.82)
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 Figure 17.19. Steady-state error computation.
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Substituting Eq. (17.82) into (17.81) yields

. Eq. (17.83)

17.8.1. The  Filter

The  tracker produces, on the  observation, smoothed estimates for position and
velocity, and a predicted position for the  observation. Figure 17.20 shows an imple-
mentation of this filter. Note that the subscripts “p” and “s” are used to indicate, respectively,
the predicated and smoothed values. The  tracker can follow an input ramp (constant veloc-
ity) with no steady-state errors. However, a steady-state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the predicted position
through adding a weighted difference between the measured and predicted values to the pre-
dicted position, as follows:

Eq. (17.84)

. Eq. (17.85)

 is the position input samples. The predicted position is given by

. Eq. (17.86)

The initialization process is defined by
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 Figure 17.20. An implementation of an  tracker.
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A general form for the covariance matrix was developed in the previous section, and is given
in Eq. (17.75). In general, a second-order one-dimensional covariance matrix (in the context of
the  filter) can be written as

Eq. (17.87)

where, in general,  is

. Eq. (17.88)

By inspection, the  filter has

Eq. (17.89)

Eq. (17.90)

Eq. (17.91)

. Eq. (17.92)

Finally, using Eqs. (17.89) through (17.92) in Eq. (17.72) yields the steady-state noise covari-
ance matrix,

. Eq. (17.93)

It follows that the position and velocity VRR ratios are, respectively, given by

Eq. (17.94)

. Eq. (17.95)

The stability of the  filter is determined from its system transfer functions. For this pur-
pose, compute the roots for Eq. (17.80) with  from Eq. (17.89),

. Eq. (17.96)

Solving Eq. (17.96) for  yields

, Eq. (17.97)
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and in order to guarantee stability,

. Eq. (17.98)

Two cases are analyzed. First,  are real. In this case (the details are left as an exercise),

. Eq. (17.99)
The second case is when the roots are complex; in this case we find

. Eq. (17.100)

The system transfer functions can be derived by using Eqs. (17.79), (17.89), and (17.90), 

. Eq. (17.101)

Up to this point all relevant relations concerning the  filter were made with no regard to
how to choose the gain coefficients (  and ). Before considering the methodology of select-
ing these coefficients, consider the main objective behind using this filter. The twofold purpose
of the  tracker can be described as follows:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual (tracking error) 
as possible.

The reduction of measurement noise is normally determined by the VRR ratios. However, the
maneuverability performance of the filter depends heavily on the choice of the parameters 
and . 

A special variation of the  filter was developed by Benedict and Bordner1 and is often
referred to as the Benedict-Bordner filter. The main advantage of the Benedict-Bordner is
reducing the transient errors associated with the  tracker. This filter uses both the position
and velocity VRR ratios as measures of performance. It computes the sum of the squared dif-
ferences between the input (position) and the output when the input has a unit step velocity at
time zero. Additionally, it computes the squared differences between the real velocity and the
velocity output when the input is as described earlier. Both error differences are minimized
when

. Eq. (17.102)

In this case, the position and velocity VRR ratios are, respectively, given by

Eq. (17.103)

. Eq. (17.104)

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-While-Scan Smooth-
ing Equations. IRE Transaction on Automatic Control, AC-7. July 1962, pp. 27-32.
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Another important sub-class of the  tracker is the critically damped filter, often called the
fading memory filter. In this case, the filter coefficients are chosen on the basis of a smoothing
factor , where . The gain coefficients are given by

Eq. (17.105)

. Eq. (17.106)

Heavy smoothing means  and little smoothing means . The elements of the cova-
riance matrix for a fading memory filter are

Eq. (17.107)

Eq. (17.108)

. Eq. (17.109)

17.8.2. The  Filter

The  tracker produces, for the  observation, smoothed estimates of position, veloc-
ity, and acceleration. It also produces the predicted position and velocity for the 
observation. An implementation of the  tracker is shown in Fig. 17.21.

The  tracker will follow an input whose acceleration is constant with no steady-state
errors. Again, in order to reduce the error at the output of the tracker, a weighted difference
between the measured and predicted values is used in estimating the smoothed position, veloc-
ity, and acceleration as follows:
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 Figure 17.21. An implementation for an  tracker.
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Eq. (17.110)

Eq. (17.111)

Eq. (17.112)

. Eq. (17.113)

and the initialization process is 

 

 

 

.  

Using Eq. (17.63), the state transition matrix for the  filter is 

. Eq. (17.114)

The covariance matrix (which is symmetric) can be computed from Eq. (17.76). For this pur-
pose, note that 

Eq. (17.115)

Eq. (17.116)

and

. Eq. (17.117)

Substituting Eq. (17.117) into (17.76) and collecting terms, the VRR ratios are computed as

Eq. (17.118)
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Eq. (17.119)

. Eq. (17.120)

As in the case of any discrete time system, this filter will be stable if and only if all of its poles
fall within the unit circle in the z-plane. 

The  characteristic equation is computed by setting 

. Eq. (17.121)

Substituting Eq. (17.117) into (17.121) and collecting terms yields the following characteristic
function:

. Eq. (17.122)

The  becomes a Benedict-Bordner filter when 

. Eq. (17.123)

Note that for , Eq. (17.123) reduces to Eq. (17.102). For a critically damped filter the
gain coefficients are 

Eq. (17.124)

Eq. (17.125)

. Eq. (17.126)

Note that heavy smoothing takes place when , while  means that no smoothing is
present.

MATLAB Function “ghk_tracker.m”

The function “ghk_tracker.m” implements the steady-state  filter. The syntax is as fol-
lows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array of position measurements input

npts number of points in input position input

T sampling interval input

nvar desired noise variance input

VRR x·
4 3 4 2– 2 2 2 –+

T2 4 2– – 2 2–+
-----------------------------------------------------------------------------=

VRR x··
4 2

T4 4 2– – 2 2–+
-----------------------------------------------------------------------------=

I Az 1–– 0=

f z z3 3– + + z2 3 – 2– + z 1 ––+ +=

2
2
---+ +– 0=

0=

1 3–=

1.5 1 2– 1 – 1.5 1 – 2 1 += =

1 – 3=

1 0=



670                                                                                   Radar Systems Analysis and Design Using MATLAB®

Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to generate zero mean
Gaussian noise, which is part of MATLAB’s Statistics Toolbox. If this toolbox is not available
to the user, then “ghk_tracker.m” function-call must be modified to

[residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)

In this case, noise measurements are either considered to be unavailable or are part of the posi-
tion input array.

To illustrate how to use the functions “ghk_tracker.m” and “ghk_tracker1.m,” consider the
inputs shown in Figs. 17.22 and 17.23. Figure 17.22 assumes an input with lazy maneuvering,
while Figure 17.23 assumes an aggressive maneuvering case. These figures can be reproduced
using MATLAB program “Fig17_20s.m,” listed in Appendix 17-A. 

Figures 17.24 and 17.25 show the residual error and predicted position corresponding to Fig.
17.22 assuming the cases: heavy smoothing and little smoothing with and without noise. The
noise is white Gaussian with zero mean and variance of . Figures 17. 26 and 17.27
show the residual error and predicted position corresponding to Fig. 17.23 with and without
noise.

residual array of position error (residual) output

estimate array of predicted position output

Symbol Description Status

v
2 0.05=

 Figure 17.22. Position (truth-data); lazy maneuvering. 
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 Figure 17.23. Position (truth-data); aggressive maneuvering. 
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 Figure 17.24a-1. Predicted and true position.  (i.e., large gain 
coefficients). No noise present.
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 Figure 17.24a-2. Position residual (error). Large gain coefficients. 
No noise. The error settles to zero fairly quickly.
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 Figure 17.24b-1. Predicted and true position.  (i.e., small 
gain coefficients). No noise present.
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 Figure 17.24b-2. Position residual (error). Small gain coefficients. No noise. 
It takes the filter a longer time for the error to settle down.
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 Figure 17.25a-1. Predicted and true position.  (i.e., large 
gain coefficients). Noise is present.
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 Figure 17.25a-2. Position residual (error). Large gain coefficients. Noise present. 
The error settles down quickly. The variation is due to noise.
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 Figure 17.25b-1. Predicted and true position.  (i.e., small gain 
coefficients). Noise is present.
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 Figure 17.25b-2. Position residual (error). Small gain coefficients. Noise present. 
The error requires more time before settling down. The variation is due to noise.
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 Figure 17.26a. Predicted and true position.  (i.e., large gain 
coefficients). Noise is present.
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 Figure 17.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.
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 Figure 17.27a. Predicted and true position.  (i.e., small gain 
coefficients). Noise is present.
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17.9. The Kalman Filter
The Kalman filter is a linear estimator that minimizes the mean squared error as long as the

target dynamics are modeled accurately. All other recursive filters, such as the  and the
Benedict-Bordner filters, are special cases of the general solution provided by the Kalman fil-
ter for the mean squared estimation problem. Additionally, the Kalman filter has the following
advantages:

1. The gain coefficients are computed dynamically. This means that the same filter can be 
used for a variety of maneuvering target environments. 

2.  The Kalman filter gain computation adapts to varying detection histories, including 
missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix. This allows for 
better implementation of the gating and association processes. 

4. The Kalman filter makes it possible to partially compensate for the effects of mis-correla-
tion and mis-association. 

Many derivations of the Kalman filter exist in the literature; only results are provided in this
chapter. Figure17.28 shows a block diagram for the Kalman filter. The Kalman filter equations
can be deduced from Fig. 17.28. The filtering equation is

. Eq. (17.127)

 Figure 17.27b. Position residual (error). Small gain coefficients. Noise present. 
The error stays fairly large; however, its average is around zero.  The variation is 

due to noise.
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The measurement vector is

Eq. (17.128)

where  is zero mean, white Gaussian noise with covariance ,

. Eq. (17.129)

The gain (weight) vector is dynamically computed as

Eq. (17.130)

where the measurement noise matrix  represents the predictor covariance matrix, and is
equal to

Eq. (17.131)

where  is the covariance matrix for the input ,

. Eq. (17.132)

The corrector equation (covariance of the smoothed estimate) is

. Eq. (17.133)

Finally, the predictor equation is 

. Eq. (17.134)

u
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 Figure 17.28. Structure of the Kalman filter.
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17.9.1. The Singer -Kalman Filter

 The Singer1 filter is a special case of the Kalman, where the filter is governed by a specified
target dynamic model whose acceleration is a random process with autocorrelation function
given by

 Eq. (17.135)

where  is the correlation time of the acceleration due to target maneuvering or atmospheric
turbulence. The correlation time  may vary from as low as 10 seconds for aggressive
maneuvering to as large as 60 seconds for lazy maneuvering cases. 

Singer defined the random target acceleration model by a first-order Markov process given
by

Eq. (17.136)

where  is a zero mean, Gaussian random variable with unity variance,  is the maneu-
ver standard deviation, and the maneuvering correlation coefficient  is given by 

. Eq. (17.137)

The continuous time domain system that corresponds to these conditions is the same as the
Wiener-Kolmogorov whitening filter, which is defined by the differential equation 

Eq. (17.138)

where  is equal to . The maneuvering variance using Singer’s model is given by

. Eq. (17.139)

 is the maximum target acceleration with probability , and the term  defines the
probability that the target has no acceleration. 

The transition matrix that corresponds to the Singer filter is given by

. Eq. (17.140)

Note that when  is small (the target has constant acceleration), then Eq. (17.140)
reduces to Eq. (17.114). Typically, the sampling interval  is much less than the maneuvering

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets, 
IEEE Transaction on Aerospace and Electronics, AES-5, July, 1970. pp. 473-483.
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time constant ; hence, Eq. (17.140) can be accurately replaced by its second-order approxi-
mation. More precisely,

. Eq. (17.141)

The covariance matrix was derived by Singer, and it is equal to

Eq. (17.142)

where

Eq. (17.143)

Eq. (17.144)

Eq. (17.145)

Eq. (17.146)

Eq. (17.147)

. Eq. (17.148)

Two limiting cases are of interest:

1. The short sampling interval case ( ),

Eq. (17.149)

and the state transition matrix is computed from Eq. (17.141) as

, Eq. (17.150)
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which is the same as the case for the  filter (constant acceleration).

2. The long sampling interval ( ). This condition represents the case when acceleration 

is a white noise process. The corresponding covariance and transition matrices are, respec-
tively, given by

Eq. (17.151)

 . Eq. (17.152)

Note that under the condition that , the cross correlation terms  and  become
very small. It follows that estimates of acceleration are no longer available, and thus a two-
state filter model can be used to replace the three-state model. In this case,

Eq. (17.153)

. Eq. (17.154)

17.9.2. Relationship between Kalman and  Filters

The relationship between the Kalman filter and the  filters can be easily obtained by
using the appropriate state transition matrix , and gain vector  corresponding to the 
in Eq. (17.127). Thus,

Eq. (17.155)

with (see Fig. 17.21) 

Eq. (17.156)

Eq. (17.157)

. Eq. (17.158)

Comparing the previous three equations with the  filter equations yields,
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. Eq. (17.159)

Additionally, the covariance matrix elements are related to the gain coefficients by

. Eq. (17.160)

Eq. (17.160) indicates that the first gain coefficient depends on the estimation error variance of
the total residual variance, while the other two gain coefficients are calculated through the
covariances between the second and third states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalman_filter.m” implements a state Singer-  Kalman filter. The syntax is
as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

where

Note that “kalman_filter.m” uses MATLAB’s function “normrnd.m” to generate zero mean
Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 

To illustrate how to use the functions “kalman_filter.m,” consider the inputs shown in Figs.
17.22 and 17.23. Figures 17.29 and 17.30 show the residual error and predicted position corre-
sponding to Figures 17.22 and 17.23. These plots can be reproduced using the MATLAM pro-
gram “Fig17_28.m,” listed in Appendix 17-A. 

Symbol Description Status

npts number of points in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (10-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array of predicted position output

T
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 Figure 17.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman_filter.m.”
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 Figure 17.29b. Residual corresponding to Fig. 17.29a.
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 Figure 17.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman_filter.m.”
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 Figure 17.30b. Residual corresponding to Fig. 17.30a.
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17.10. MATLAB Kalman Filter Simulation
For this purpose, the MATLAB GUI workspace entitled “kalman_gui.m” was developed. It

is shown in Fig. 17.31. In this design, the inputs can be initialized to correspond to two target
type kinematics (aircraft and missile). For example, when you click on the button “ResetMis-
sile,” the initial x-, y-, and z-detection coordinates for the missile are loaded into the “Starting
Location” field. The corresponding target velocity is also loaded in the “velocity in x direc-
tion” field. Finally, all other fields associated with the Kalman filter are also loaded using
default values that are appropriate for this design case study. Note that the user can alter these
entries as appropriate. 

This program generates a fictitious default trajectory for the selected target type. This is
accomplished using the function “maketraj.m,” listed in Appendix 17-A. Users can either use
this program with its default trajectories, or import their own specific trajectory files. The func-
tion “maketraj.m” assumes constant altitude, and generates a maneuvering trajectory in the x-
y plane, as shown in Fig. 17.32. This trajectory can be changed using the different fields in the
“trajectory Parameter” fields. 

Next the program corrupts the trajectory by adding white Gaussian noise. This is accom-
plished by the function “addnoise.m,” which is listed in Appendix 17-A. A six-state Kalman
filter named “kalfilt.m” is then utilized to perform the tracking task. This function is also listed
in Appendix 17-A. 

The azimuth, elevation, and range errors are input to the program using their corresponding
fields on the GUI. In the example used in this chapter, these entries are assumed constant
throughout the simulation. In practice, this is not true and these values will change. They are
calculated by the radar signal processor on a “per-processing-interval” basis and then are input
into the tracker. For example, the standard deviation of the error in the range measurement is 

Eq. (17.161)

where  is the range resolution,  is the speed of light,  is the bandwidth, and  is the
measurement SNR. 

The standard deviation of the error in the velocity measurement is 

Eq. (17.162)

where  is the wavelength and  is the uncompressed pulse width. The standard deviation of
the error in the angle measurement is

Eq. (17.163)

where  is the antenna beamwidth of the angular coordinate of the measurement (azimuth and
elevation). 

Table 17.1 lists the type of plots generated by this simulation. Figures 17.32 through Fig.
17.42 show typical outputs produced using this simulation, assuming the missile case, during
any given run.
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TABLE 17.1. Output list generated by the “kalman_gui.m” simulation

Figure # Description

1 uncorrupted input trajectory

2 corrupted input trajectory

3 corrupted and uncorrupted x-position

4 corrupted and uncorrupted y-position

5 corrupted and uncorrupted z-position

6 corrupted and filtered x-, y- and z- positions 

7 predicted x-, y- and z- velocities 

8 position residuals

9 velocity residuals

10 covariance matrix components versus time

11 Kalman filter gains versus time

 Figure 17.32. Default missile uncorrupted trajectory.
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 Figure 17.33. Default missile corrupted trajectory.

 Figure 17.34. Missile x-position from 153 to 160 seconds.
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 Figure 17.35. Missile y-position.

 Figure 17.36. Missile z-position.
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 Figure 17.37. Missile trajectory and filtered trajectory.

 Figure 17.38. Missile velocity filtered.
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 Figure 17.39. Missile position residuals.

 Figure 17.40. Missile velocity residuals.
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 Figure 17.41. Missile covariance matrix components versus time.

 Figure 17.42. Kalman filter gains versus time.
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Problems
17.1. Show that in order to be able to quickly achieve changing the beam position, the
error signal needs to be a linear function of the deviation angle. 
17.2. Prepare a short report on the vulnerability of conical scan to amplitude modulation
jamming. In particular, consider the self-protecting technique called “Gain Inversion.”
17.3. Consider a conical scan radar. The pulse repetition interval is . Calculate the
scan rate so that at least ten pulses are emitted within one scan.
17.4. Consider a conical scan antenna whose rotation around the tracking axis is completed
in 4 seconds. If during this time 20 pulses are emitted and received, calculate the radar PRF
and the unambiguous range.
17.5. Reproduce Fig. 17.11 for  and  radians.

17.6. Reproduce Fig. 17.13 for the squint angles defined in the previous problem.
17.7. Derive Eq. (17.33) and Eq. (17.34). 
17.8. Consider a monopulse radar where the input signal is comprised of both target return
and additive white Gaussian noise. Develop an expression for the complex ratio .
17.9. To generate the sum and difference patterns for a linear array of size , follow this
algorithm: To form the difference pattern, multiply the first  elements by -1 and the sec-
ond  elements by +1. Plot the sum and difference patterns for a linear array of size 60.
17.10. Generate the delta/sum patterns for a 21-element linear array using the form

where  is the difference voltage pattern and  is the sum voltage pattern.

17.11. Consider the sum and difference signals defined in Eqs. (17.7) and (17.8). What is
the squint angle  that maximizes ?

17.12. A certain system is defined by the following difference equation:

 

Find the solution to this system for  and .

17.13. Prove the state transition matrix properties (i.e., Eqs. (17.30) through (17.36)).
17.14. Suppose that the state equations for a certain discrete time LTI system are

.  

If , find  when the input is a step function.

17.15. Derive Eq. (17.55).
17.16. Derive Eq. (17.75).
17.17. Using Eq. (17.83), compute a general expression (in terms of the transfer function)
for the steady-state errors when the input sequence is:

10 s
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17.18. Verify the results in Eqs. (17.99) and (17.100).
17.19. Develop an expression for the steady-state error transfer function for an 
tracker. 
17.20. Using the result of the previous problem and Eq. (17.83), compute the steady-state
errors for the  tracker with the inputs defined in Problem 17.13.
17.21. Design a critically damped , when the measurement noise variance associated

with position is  and when the desired standard deviation of the filter prediction

error is .
17.22. Derive Eqs. (17.118) through (17.120).
17.23. Derive Eq. (17.122).
17.24. Consider a  filter. We can define six transfer functions: , , ,

, , and  (predicted position, predicted velocity, predicted acceleration,
smoothed position, smoothed velocity, and smoothed acceleration). Each transfer function has
the form

 .  

The denominator remains the same for all six transfer functions. Compute all the relevant coef-
ficients for each transfer function.

17.25. Verify the results obtained for the two limiting cases of the Singer-Kalman filter.
17.26. Verify Eq. (17.160).
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Appendix 17-A: Chapter 17 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Function “mono_pulse.m” Listing
function mono_pulse(phi0)
eps = 0.0000001;
angle = -pi:0.01:pi;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ysum = y1 + y2;
ydif = -y1 + y2;
figure (1)
plot (angle,y1,'k',angle,y2,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Squinted patterns')
figure (2)
plot(angle,ysum,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Sum pattern')
figure (3)
plot (angle,ydif,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Difference pattern')
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -y1 + y2;
ysum = y1 + y2;
dovrs = ydif ./ ysum;
figure(4)
plot (angle,dovrs,'k');
grid;
xlabel ('Angle - radians')
ylabel ('voltage gain')

MATLAB Function “ghk_tracker.m” Listing
function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma



696                                                                                   Radar Systems Analysis and Design Using MATLAB®

w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = (inp(rn) + normrnd(0,nvar)) - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return

MATLAB Function “ghk_tracker1.m” Listing
function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = inp(rn)  - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return



Appendix 17-A: Chapter 17 MATLAB Code Listings 697                                                                                                                                                                                                                                                                         

MATLAB Program “Fig17_20s.m” Listing
clear all
eps = 0.0000001;
npts = 5000;
del = 1./ 5000.;
t = 0. : del : 1.;
% generate input sequence
inp = 1.+ t.^3 + .5 .*t.^2 + cos(2.*pi*10 .* t) ;
% read the initial estimate for the state vector
X0 = [2,.1,.01]';
% this is the update interval in seconds
T = 100. * del;
% this is the value of the smoothing coefficient
xi = .91;
[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
figure(1)
plot (residual(1:500))
xlabel ('Sample number')
ylabel ('Residual error')
grid
figure(2)
NN = 4999.;
n = 1:NN;
plot (n,estimate(1:NN),'b',n,inp(1:NN),'r')
xlabel ('Sample number')
ylabel ('Position')
legend ('Estimated','Input')

MATLAB Function “kalman_filter.m” Listing
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
rn=1;
% read the initial estimate for the state vector
X = X0;
% it is assumed that the measurement vector H=[1,0,0]
% this is the state noise variance
VAR = nvar;
% setup the initial value for the prediction covariance.
S = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.; 0. 1. T; 0. 0. 1.];
% setup the state noise covariance matrix
Q(1,1) = (VAR * (T^5)) / 20.;
Q(1,2) = (VAR * (T^4)) / 8.;
Q(1,3) = (VAR * (T^3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (T^3)) / 3.;
Q(2,3) = (VAR * (T^2)) / 2.;
Q(3,1) = Q(1,3);
Q(3,2) = Q(2,3);
Q(3,3) = VAR * T;
while rn < N ;
   %use the transition matrix to predict the next state
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   XN = PHI * X;
   % Perform error covariance extrapolation
   S = PHI * S * PHI' + Q;
   % compute the Kalman gains
   ak(1) = S(1,1) / (S(1,1) + R);
   ak(2) = S(1,2) / (S(1,1) + R);
   ak(3) = S(1,3) / (S(1,1) + R);
   %perform state estimate update:
   error = inp(rn) + normrnd(0,R) - XN(1);
   residual(rn) = error;
   tmp1 = ak(1) * error;
   tmp2 = ak(2) * error;
   tmp3 = ak(3) * error;
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   % update the error covariance
   S(1,1) = S(1,1) * (1. -ak(1));
   S(1,2) = S(1,2) * (1. -ak(1));
   S(1,3) = S(1,3) * (1. -ak(1));
   S(2,1) = S(1,2);
   S(2,2) = -ak(2) * S(1,2) + S(2,2);
   S(2,3) = -ak(2) * S(1,3) + S(2,3);
   S(3,1) = S(1,3);
   S(3,3) = -ak(3) * S(1,3) + S(3,3);
   rn = rn + 1.;
end

MATLAB Program “Fig17-29.m” Listing
% generates Fig 17.29
clc
close ll
clear all
npts = 2000;
del = 1/2000;
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.^2);% + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the update interval in seconds
T = 1.;
% enter the mesurement noise variance
R = .01;
% this is the state noise variance
nvar = .18;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual(1:500),'k')
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
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plot(inp,'k')
axis tight
ylabel ('position - truth')
subplot(2,1,2)
plot(estimate,'k')
axis tight
xlabel ('Sample number')
ylabel ('Predicted position')

MATLAB Program “Fig17_30.m” Listing
% generates Fig 17.30 of text
clc
close all
clear all
npts = 2000;
del = 1/2000;
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.^2) + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurement vector H=[1,0,0]
% this is the update interval in seconds
T = 1.;
% enter the mesurement noise variance
R = .035;
% this is the state noise variance
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual,'k')
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp,'k')
axis tight
ylabel ('position - truth')
subplot(2,1,2)
plot(estimate,'k')
axis tight
xlabel ('Sample number')
ylabel ('Predicted position')

MATLAB Function “maketraj.m” Listing
function [times , trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, zamp, zperiod, samplingtime,
deltat)
% maketraj.m
% USAGE:  [times , trajectory] = maketraj(start_loc, xvelocity, yamp, yperiod, zamp, zperiod, sampling-
time, deltat)
% NOTE: all coordinates are in radar reference coordinates.
% INPUTS
% name         dimension explanation                             units
%------        ------    ---------------                         -------
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% start_loc     3 X 1    starting location of target             m
% xvelocity     1        velocity of target                      m/s
% yamp          1        amplitude of oscillation y direction    m
% yperiod       1        period of oscillation y direction       m
% zamp          1        amplitude of oscillation z direction    m
% zperiod       1        period of oscillation z direction       m
% samplingtime  1        length of interval of trajectory        sec
% deltat        1        time between samples                    sec
%
% OUTPUTS
%
% name         dimension               explanation              units
%------        ----------              ---------------          ------
% times        1 X samplingtime/deltat vector of times            
%                                      corresponding to samples sec
% trajectory   3 X samplingtime/deltat trajectory x,y,z         m
%
times = 0: deltat: samplingtime ;
x = start_loc(1)+xvelocity.*times ;
if yperiod~=0
   y = start_loc(2)+yamp*cos(2*pi*(1/yperiod).*times) ;
else
   y = ones(1, length(times))*start_loc(2) ;
end
if zperiod~=0
   z = start_loc(3)+zamp*cos(2*pi*(1/zperiod).*times)  ;
else
   z = ones(1, length(times))*start_loc(3) ;    
end
trajectory = [x ; y  ; z] ;

MATLAB Function “addnoise.m” Listing
function [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% addnoise.m
% USAGE: [noisytraj ] = addnoise(trajectory, sigmaaz, sigmael, sigmarange )
% INPUTS
% name         dimension  explanation                             units
%------        ------     ---------------                         -------
% trajectory   3 X POINTS trajectory in radar reference coords    [m;m;m]
% sigmaaz      1          standard deviation of azimuth error     radians
% sigmael      1          standard deviation of elevation error   radians
% sigmarange   1          standard deviation of range error       m
%
% OUTPUTS
% name         dimension   explanation                            units
%------        ------      ---------------                        -------
% noisytraj    3 X POINTS  noisy trajectory                       [m;m;m]
noisytraj = zeros(3, size(trajectory,2)) ;

for loop = 1 : size(trajectory,2)
   x = trajectory(1,loop);
   y = trajectory(2,loop);
   z = trajectory(3,loop);
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   azimuth_corrupted =  atan2(y,x) + sigmaaz*randn(1) ;
   elevation_corrupted = atan2(z, sqrt(x^2+y^2)) + sigmael*randn(1) ;
   range_corrupted = sqrt(x^2+y^2+z^2)  + sigmarange*randn(1) ;
   x_corrupted = range_corrupted*cos(elevation_corrupted)*cos(azimuth_corrupted) ;
   y_corrupted = range_corrupted*cos(elevation_corrupted)*sin(azimuth_corrupted) ;
   z_corrupted = range_corrupted*sin(elevation_corrupted) ;
   noisytraj(:,loop) = [x_corrupted ; y_corrupted; z_corrupted ] ;
end % next loop

MATLAB Function “kalfilt.m” Listing
function [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory, x0, P0, phi, R, Q )
% kalfilt.m
% USAGE: [filtered, residuals , covariances, kalmgains] = kalfilt(trajectory, x0, P0, phi, R, Q)
%
% INPUTS
% name         dimension                    explanation                                  units
%------        ------                       ---------------                              -------
% trajectory   NUMMEASUREMENTS X NUMPOINTS  trajectory in radar reference coords
[m;m;m]
% x0           NUMSTATES X 1                initial estimate of state vector             m, m/s
% P0           NUMSTATES X NUMSTATES        initial estimate of covariance matrix        m, m/s
% phi          NUMSTATES X NUMSTATES        state transition matrix                      -
% R            NUMMEASUREMENTS X NUMMEASUREMENTS   measurement error covariance matrix
m
% Q            NUMSTATES X NUMSTATES        state error covariance matrix                m, m/s
%
% OUTPUTS
% name         dimension                    explanation                                  units
%------        ------                       ---------------                              -------
% filtered     NUMSTATES X NUMPOINTS        filtered trajectory x,y,z pos, vel    [m; m/s; m; m/s; m; m/s]
% residuals    NUMSTATES X NUMPOINTS        residuals of filtering                [m;m;m]
% covariances  NUMSTATES X NUMPOINTS        diagonal of covariance matrix         [m;m;m]
% kalmgains    (NUMSTATES X NUMMEASUREMENTS) 
%                 X NUMPOINTS               Kalman gain matrix                    -
NUMSTATES = 6 ;
NUMMEASUREMENTS = 3 ;
NUMPOINTS = size(trajectory, 2) ;
% initialize output matrices
filtered = zeros(NUMSTATES, NUMPOINTS) ;
residuals = zeros(NUMSTATES, NUMPOINTS) ;
covariances = zeros(NUMSTATES, NUMPOINTS) ;
kalmgains = zeros(NUMSTATES*NUMMEASUREMENTS, NUMPOINTS) ;
% set matrix relating measurements to states
H = [1 0 0 0 0 0 ; 0 0 1 0 0 0 ; 0 0 0 0 1 0];
xhatminus = x0 ;
Pminus = P0 ;
 for loop = 1: NUMPOINTS
    % compute the Kalman gain
   K = Pminus*H'*inv(H*Pminus*H' + R) ;
   kalmgains(:,loop) = reshape(K, NUMSTATES*NUMMEASUREMENTS, 1) ;
   % update the estimate with the measurement z
   z = trajectory(:,loop) ;
   xhat = xhatminus + K*(z - H*xhatminus) ;
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   filtered(:,loop) = xhat ;
   residuals(:,loop) = xhat - xhatminus ;
   % update the error covariance for the updated estimate
   P = ( eye(NUMSTATES, NUMSTATES) - K*H)*Pminus ;
   covariances(:,loop) = diag(P) ;  % only save diagonal of covariance matrix
   % project ahead
   xhatminus_next = phi*xhat ;
   Pminus_next = phi*P*phi' + Q ;
    xhatminus = xhatminus_next ;
   Pminus = Pminus_next ;
end 
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Part V - Radar Special Topics

Chapter 18

This chapter was coauthored with Brian J. Smith.1

This chapter provides an introduction to Tactical Synthetic Aperture Radar (TSAR). The
purpose of this chapter is to further develop the readers’ understanding of SAR by taking a
closer look at high resolution spotlight SAR image formation algorithms, motion compensa-
tion techniques, autofocus algorithms, and performance metrics.

18.1. Introduction
Modern airborne radar systems are designed to perform a large number of functions which

range from detection and discrimination of targets to mapping large areas of ground terrain.
This mapping can be performed by the Synthetic Aperture Radar (SAR). Through illuminating
the ground with coherent radiation and measuring the echo signals, SAR can produce high res-
olution two-dimensional (and in some cases three-dimensional) imagery of the ground surface.
The quality of ground maps generated by SAR is determined by the size of the resolution cell.
A resolution cell is specified by both range and azimuth resolutions of the system. Other fac-
tors affecting the size of the resolution cells are (1) size of the processed map and the amount
of signal processing involved; (2) cost consideration; and (3) size of the objects that need to be
resolved in the map. For example, mapping gross features of cities and coastlines does not
require as much resolution when compared to resolving houses, vehicles, and streets.

SAR systems can produce maps of reflectivity versus range and Doppler (cross range).
Range resolution is accomplished through range gating. Fine range resolution can be accom-
plished by using pulse compression techniques. The azimuth resolution depends on antenna
size and radar wavelength. Fine azimuth resolution is enhanced by taking advantage of the
radar motion in order to synthesize a larger antenna aperture. Let  denote the number of
range bins and let  denote the number of azimuth cells. It follows that the total number of
resolution cells in the map is . SAR systems that are generally concerned with improving
azimuth resolution are often referred to as Doppler Beam-Sharpening (DBS) SARs. In this
case, each range bin is processed to resolve targets in Doppler which corresponds to azimuth.
This chapter is presented in the context of DBS.

1. Dr. Brian J. Smith is with the US Army Aviation and Missile Command (AMCOM), Redstone Arse-
nal, Alabama. 
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Due to the large amount of signal processing required in SAR imagery, the early SAR
designs implemented optical processing techniques. Although such optical processors can pro-
duce high-quality radar images, they have several shortcomings. They can be very costly and
are, in general, limited to making strip maps. Motion compensation is not easy to implement
for radars that utilize optical processors. With the recent advances in solid state electronics and
Very Large Scale Integration (VLSI) technologies, digital signal processing in real time has
been made possible in SAR systems. 

18.1.1. Side Looking SAR Geometry

Fig. 18.1 shows the geometry of the standard side looking SAR. We will assume that the
platform carrying the radar maintains both fixed altitude  and velocity . The antenna 
beamwidth is , and the elevation angle (measured from the z-axis to the antenna axis) is .
The intersection of the antenna beam with the ground defines a footprint. As the platform
moves, the footprint scans a swath on the ground.

The radar position with respect to the absolute origin , at any time is the vec-
tor . The velocity vector  is

 . Eq. (18.1)

The Line of Sight (LOS) for the current footprint centered at  is defined by the vector
, where  denotes the central time of the observation interval  (coherent integration

interval). More precisely,

Eq. (18.2)

where  and  are the absolute and relative times, respectively. The vector  defines the
ground projection of the antenna at central time. The minimum slant range to the swath is

, and the maximum range is denoted , as illustrated by Fig. 18.2. It follows that

. Eq. (18.3)

Notice that the elevation angle  is equal to 

Eq. (18.4)

where  is the grazing angle. The size of the footprint is a function of the grazing angle and
the antenna beamwidth, as illustrated in Fig. 18.3. The SAR geometry described in this section
is referred to as SAR “strip mode” of operation. Another SAR mode of operation, which will
not be discussed in this chapter, is called “spot-light mode,” where the antenna is steered
(mechanically or electronically) to continuously illuminate one spot (footprint) on the ground.
In this case, one high resolution image of the current footprint is generated during an observa-
tion interval. 
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Figure 18.1. Side looking SAR geometry.
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18.2. SAR Design Considerations
The quality of SAR images is heavily dependent on the size of the map resolution cell shown

in Fig. 18.4. The range resolution, , is computed on the beam LOS, and is given by

 Eq. (18.5)

where  is the pulse width. From the geometry in Fig. 18.5, the extent of the range cell ground
projection  is computed as

. Eq. (18.6)

The azimuth or cross range resolution for a real antenna with a  beamwidth  (radians)
at range  is

. Eq. (18.7)

However, the antenna beamwidth is proportional to the aperture size, 

Eq. (18.8)

where  is the wavelength and  is the aperture length. It follows that

. Eq. (18.9)

And since the effective synthetic aperture size is twice that of a real array, the azimuth resolu-
tion for a synthetic array is then given by

. Eq. (18.10)
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Furthermore, since the synthetic aperture length  is equal to , Eq. (18.10) can be rewrit-
ten as

. Eq. (18.11)

The azimuth resolution can be greatly improved by taking advantage of the Doppler varia-
tion within a footprint (or a beam). As the radar travels along its flight path, the radial velocity
to a ground scatterer (point target) within a footprint varies as a function of the radar radial
velocity in the direction of that scatterer. The variation of Doppler frequency for a certain scat-
terer is called the “Doppler history.”

Let  denote the range to a scatterer at time , and  be the corresponding radial veloc-
ity; thus the Doppler shift is

Eq. (18.12)

where  is the range rate to the scatterer. Let  and  be the times when the scatterer
enters and leaves the radar beam, respectively, and  be the time that corresponds to minimum
range. Fig. 18.6 shows a sketch of the corresponding . Since the radial velocity can be
computed as the derivative of  with respect to time, one can clearly see that Doppler fre-
quency is maximum at , zero at , and minimum at , as illustrated in Fig. 18.7. 

In general, the radar maximum PRF, , must be low enough to avoid range ambiguity.
Alternatively, the minimum PRF, , must be high enough to avoid Doppler ambiguity. SAR
unambiguous range must be at least as wide as the extent of a footprint. More precisely, since
target returns from maximum range due to the current pulse must be received by the radar
before the next pulse is transmitted, it follows that SAR unambiguous range is given by

. Eq. (18.13)
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An expression for unambiguous range was derived in Chapter 1, and is repeated here as Eq.
(18.14), 

. Eq. (18.14)

Combining Eq. (18.14) and Eq. (18.13) yields

. Eq. (18.15)

 SAR minimum PRF, , is selected so that Doppler ambiguity is avoided. In other words,
 must be greater than the maximum expected Doppler spread within a footprint. From the

geometry of Fig. 18.8, the maximum and minimum Doppler frequencies are, respectively,
given by

Eq. (18.16)
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. Eq. (18.17)

It follows that the maximum Doppler spread is

. Eq. (18.18)

Substituting Eqs. (18.16) and (18.17) into Eq. (18.18) and applying the proper trigonometric
identities yield

. Eq. (18.19)
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Finally, by using the small angle approximation we get

. Eq. (18.20)

Therefore, the minimum PRF is 

. Eq. (18.21)

Combining Eqs. (18.15) and (18.21) we get

. Eq. (18.22)

It is possible to resolve adjacent scatterers at the same range within a footprint based only on
the difference of their Doppler histories. For this purpose, assume that the two scatterers are
within the  range bin. 

Denote their angular displacement as , and let  be the minimum Doppler spread
between the two scatterers such that they will appear in two distinct Doppler filters. Using the
same methodology that led to Eq. (18.20), we get

Eq. (18.23)

where  is the elevation angle corresponding to the  range bin. 

The bandwidth of the individual Doppler filters must be equal to the inverse of the coherent
integration interval  (i.e., ). It follows that

. Eq. (18.24)

Substituting  for  yields

. Eq. (18.25)

Therefore, the SAR azimuth resolution (within the  range bin) is

. Eq. (18.26)

Note that when , Eq. (18.26) is identical to Eq. (18.10).

18.3. SAR Radar Equation
The single-pulse radar equation was derived in Chapter 2, and is repeated here as Eq.

(18.27),

Eq. (18.27)
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where  is peak power,  is antenna gain,  is wavelength,  is radar cross section,  is
radar slant range to the  range bin,  is Boltzman’s constant,  is receiver noise tempera-
ture,  is receiver bandwidth, and  is radar losses. The radar cross section is a function of
the radar resolution cell and terrain reflectivity. More precisely,

Eq. (18.28)

where  is the clutter scattering coefficient,  is the azimuth resolution, and Eq. (18.6)
was used to replace the ground range resolution. The number of coherently integrated pulses
within an observation interval is

Eq. (18.29)

where  is the synthetic aperture size. Using Eq. (18.26) in Eq. (18.29) and rearranging terms
yield

. Eq. (18.30)

The radar average power over the observation interval is 

. Eq. (18.31)

The SNR for  coherently integrated pulses is then

. Eq. (18.32)

Substituting Eqs. (18.31), (18.30), and (18.28) into Eq. (18.32) and performing some algebraic
manipulations give the SAR radar equation, 

. Eq. (18.33)

Eq. (18.33) leads to the conclusion that in SAR systems, the SNR is (1) inversely propor-
tional to the third power of range; (2) independent of azimuth resolution; (3) a function of the
ground range resolution; (4) inversely proportional to the velocity ; and (5) proportional to
the third power of wavelength. 

18.4. SAR Signal Processing
There are two signal processing techniques to sequentially produce a SAR map or image;

they are line-by-line processing and Doppler processing. The concept of SAR line-by-line pro-
cessing is as follows: Through the radar linear motion, a synthetic array is formed, where the
elements of the current synthetic array correspond to the position of the antenna transmissions
during the last observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combinations of the last observation interval returns. Fine range resolu-
tion is accomplished in real time by utilizing range gating and pulse compression. For each
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range bin and each of the transmitted pulses during the last observation interval, the returns are
recorded in a two-dimensional array of data that is updated for every pulse. Denote the two-
dimensional array of data as .

To further illustrate the concept of line-by-line processing, consider the case where a map of
size  is to be produced, where  is the number of azimuth cells and  is the number
of range bins. Hence,  is of size , where the columns refer to range bins, and the
rows refer to azimuth cells. For each transmitted pulse, the echoes from consecutive range bins
are recorded sequentially in the first row of . Once the first row is completely filled (i.e.,
returns from all range bins have been received), all data (in all rows) are shifted downward one
row before the next pulse is transmitted. Thus, one row of  is generated for every trans-
mitted pulse. Consequently, for the current observation interval, returns from the first transmit-
ted pulse will be located in the bottom row of , and returns from the last transmitted
pulse will be in the first row of . 

In SAR Doppler processing, the array  is updated once every  pulses so that a block
of  columns is generated simultaneously. In this case,  refers to the number of transmis-
sions during an observation interval (i.e., size of the synthetic array). From an antenna point of
view, this is equivalent to having  adjacent synthetic beams formed in parallel through elec-
tronic steering.

18.5. Side Looking SAR Doppler Processing
Consider the geometry shown in Fig. 18.9, and assume that the scatterer  is located within

the  range bin. The scatterer azimuth and elevation angles are  and , respectively. The
scatterer elevation angle  is assumed to be equal to , the range bin elevation angle. This
assumption is true if the ground range resolution, , is small; otherwise,  for
some small ; in this chapter .

The normalized transmitted signal can be represented by

Eq. (18.34)

where  is the radar operating frequency, and  denotes the transmitter phase. The returned
radar signal from  is then equal to

Eq. (18.35)

where  is the round-trip delay to the scatterer, and  includes scatterer strength, range
attenuation, and antenna gain. The round-trip delay is 

Eq. (18.36)

where  is the speed of light and  is the scatterer slant range. From the geometry in
Fig. 18.9, one can write the expression for the slant range to the  scatterer within the 
range bin as

. Eq. (18.37)
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And by using Eq. (18.36), the round-trip delay can be written as

. Eq. (18.38)

The round-trip delay can be approximated using a two-dimensional second-order Taylor
series expansion about the reference state . Performing this Taylor series
expansion yields

 Eq. (18.39)

where the over-bar indicates evaluation at the state , and the subscripts denote partial
derivatives. For example,  means

. Eq. (18.40)

The Taylor series coefficients are 

Eq. (18.41)

Eq. (18.42)
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. Eq. (18.43)

Note that other Taylor series coefficients are either zeros or very small. Hence, they are
neglected. Finally, we can rewrite the returned radar signal as

. Eq. (18.44)

Observation of Eq. (18.44) indicates that the instantaneous frequency for the  scatterer var-
ies as a linear function of time due to the second-order phase term  (this con-
firms the result we concluded about a scatterer Doppler history). Furthermore, since this phase
term is range-bin dependent and not scatterer dependent, all scatterers within the same range
bin produce this exact second-order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the time delay
required to fly between them, as illustrated in Fig. 18.10.

Suppose that there are  scatterers within the  range bin. In this case, the combined
returns for this cell are the sum of the individual returns due to each scatterer as defined by Eq.
(18.44). In other words, superposition holds, and the overall echo signal is

. Eq. (18.45)

A signal processing block diagram for the  range bin is illustrated in Fig. 18.11. It con-
sists of the following steps. First, heterodyning with the carrier frequency is performed to
extract the quadrature components. 
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This is followed by LP filtering and A/D conversion. Next, deramping or focusing to remove
the second-order phase term of the quadrature components is carried out using a phase rotation
matrix. The last stage of the processing includes windowing, performing an FFT on the win-
dowed quadrature components, and scaling the amplitude spectrum to account for range atten-
uation and antenna gain.

The discrete quadrature components are

Eq. (18.46)

Eq. (18.47)

and  denotes the  sampling time (remember that ). The quadrature
components after deramping (i.e., removal of the phase ) are given by

. Eq. (18.48)
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18.6. SAR Imaging Using Doppler Processing
It was mentioned earlier that SAR imaging is performed using two orthogonal dimensions

(range and azimuth). Range resolution is controlled by the receiver bandwidth and pulse com-
pression. Azimuth resolution is limited by the antenna beamwidth. A one-to-one correspon-
dence between the FFT bins and the azimuth resolution cells can be established by utilizing the
signal model described in the previous section. Therefore, the problem of target detection is
transformed into a spectral analysis problem, where detection is based on the amplitude spec-
trum of the returned signal. The FFT frequency resolution  is equal to the inverse of the
observation interval . It follows that a peak in the amplitude spectrum at  indicates the
presence of a scatterer at frequency .

For an example, consider the scatterer  within the  range bin. The instantaneous fre-
quency  corresponding to this scatterer is 

. Eq. (18.49)

This is the same result derived in Eq. (18.23), with . Therefore, the scatterers sepa-
rated in Doppler by more than  can then be resolved. 

Fig. 18.12 shows a two-dimensional SAR image for three point scatterers located 10Km down-
range. In this case, the azimuth and range resolutions are equal to 1m and the operating fre-
quency is 35GHz. Fig. 18.13 is similar to Fig. 18.12, except in this case the resolution cell is
equal to 6 inches. One can clearly see the blurring that occurs in the image. Figures 12.12 and
12.13 can be reproduced using the program “Fig18_12_13.m,” listed in Appendix 18-A.

18.7. Range Walk
As shown earlier, SAR Doppler processing is achieved in two steps: first, range gating and

second, azimuth compression within each bin at the end of the observation interval. For this
purpose, azimuth compression assumes that each scatterer remains within the same range bin
during the observation interval. However, since the range gates are defined with respect to a
radar that is moving, the range gate grid is also moving relative to the ground. As a result, a
scatterer appears to be moving within its range bin. This phenomenon is known as range walk.
A small amount of range walk does not bother Doppler processing as long as the scatterer
remains within the same range bin. However, range walk over several range bins can constitute
serious problems, where in this case Doppler processing is meaningless. 

18.8. A Three-Dimensional SAR Imaging Technique
This section presents a new three-dimensional (3-D) Synthetic Aperture Radar (SAR) imag-

ing based on Mahafza1 et al. It utilizes a linear array in transverse motion to synthesize a two-
dimensional (2-D) synthetic array. Elements of the linear array are fired sequentially (one ele-
ment at a time), while all elements receive in parallel. A 2-D information sequence is com-
puted from the equiphase two-way signal returns.

1. Mahafza, B. R. and Sajjadi, M., Three-Dimensional SAR Imaging Using a Linear Array in Transverse 
Motion, IEEE - AES Trans., Vol. 32, No. 1, January 1996, pp. 499-510.
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 Figure 18.12. Three-point scatterer image. Resolution cell is 1m2. 

 Figure 18.13. Three-point scatterer image. Resolution cell is squared inches.
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 A signal model based on a third-order Taylor series expansion about incremental relative
time, azimuth, elevation, and target height is used. Scatterers are detected as peaks in the
amplitude spectrum of the information sequence. Detection is performed in two stages. First,
all scatterers within a footprint are detected using an incomplete signal model where target
height is set to zero. Then, processing using the complete signal model is performed only on
range bins containing significant scatterer returns. The difference between the two images is
used to measure target height. Computer simulation shows that this technique is accurate and
virtually impulse invariant.

18.8.1. Background

Standard Synthetic Aperture Radar (SAR) imaging systems are generally used to generate
high resolution two-dimensional (2-D) images of ground terrain. Range gating determines res-
olution along the first dimension. Pulse compression techniques are usually used to achieve
fine range resolution. Such techniques require the use of wideband receiver and display
devices in order to resolve the time structure in the returned signals. The width of azimuth cells
provides resolution along the other dimension. Azimuth resolution is limited by the duration of
the observation interval.

This section presents a three-dimensional (3-D) SAR imaging technique based on Discrete
Fourier Transform (DFT) processing of equiphase data collected in sequential mode
(DFTSQM). It uses a linear array in transverse motion to synthesize a 2-D synthetic array. A 2-
D information sequence is computed from the equiphase two-way signal returns. To this end, a
new signal model based on a third-order Taylor series expansion about incremental relative
time, azimuth, elevation, and target height is introduced. Standard SAR imaging can be
achieved using an incomplete signal model where target height is set to zero. Detection is per-
formed in two stages. First, all scatterers within a footprint are detected using an incomplete
signal model, where target height is set to zero. Then, processing using the complete signal
model is performed only on range bins containing significant scatterer returns. The difference
between the two images is used as an indication of target height. Computer simulation shows
that this technique is accurate and virtually impulse invariant.

18.8.2. DFTSQM Operation and Signal Processing
Linear Arrays 

Consider a linear array of size , uniform element spacing , and wavelength . Assume a
far field scatterer  located at direction-sine . DFTSQM operation for this array can be
described as follows. The elements are fired sequentially, one at a time, while all elements
receive in parallel. The echoes are collected and integrated coherently on the basis of equal
phase to compute a complex information sequence . The x-coordinates,
in -units, of the  element with respect to the center of the array is

. Eq. (18.50)

The electric field received by the  element due to the firing of the , and reflection by the
 far field scatterer  is
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Eq. (18.51)

Eq. (18.52)

Eq. (18.53)

where  is the target cross section,  is the two-way element gain, and  is the
range attenuation with respect to reference range . The scatterer phase is assumed to be
zero, however it could be easily included. Assuming multiple scatterers in the array’s FOV, the
cumulative electric field in the path  due to reflections from all scatterers is 

Eq. (18.54)

where the subscripts  denote the quadrature components. Note that the variable part of
the phase given in Eq. (18.52) is proportional to the integers resulting from the sums

. In the far field operation, there are a total of 
distinct  sums. Therefore, the electric fields with paths of the same 
sums can be collected coherently. In this manner, the information sequence

 is computed, where  is set to zero. At the same time, one
forms the sequence , which keeps track of the number of returns that
have the same  sum. More precisely, for 

Eq. (18.55)

. Eq. (18.56)

It follows that

Eq. (18.57)

which is a triangular shape sequence.

The processing of the sequence  is performed as follows: (1) the weighting takes the
sequence  into account; (2) the complex sequence  is extended to size , a
power integer of two, by zero padding; (3) the DFT of the extended sequence

 is computed,

; Eq. (18.58)

and, (4) after compensation for antenna gain and range attenuation, scatterers are detected as
peaks in the amplitude spectrum . Note that step (4) is true only when

E x1 x2 sl; G2 sl
R0

R
-----

4

l exp j x1 x2 sl;=

x1 x2 sl; 2------ x1 x2+ sl=

sl lsin=

l G2 sl R0 R 4

R0

x1 x2

E x1 x2 EI x1 x2 sl; jEQ x1 x2 sl;+
all l

=

I Q

xn1 xn2+ ; n1 n2 0 N 1–= 2N 1–
xn1 xn2+ xn1 xn2+

b m m; 0 2N 1–= b 2N 1–
c m m; 0 2N 2–=

xn1 xn2+ m n1 n2+= ; n1 n2 0 N 1–=

b m b m E xn1 xn2+=

c m c m 1+=

c m m; 0 2N 2–=
m 1 m;+ 0 N 2–=
N m; N 1–=
2N 1– m m– N 2N 2–=

=

b m
c m b m NF

b' m m; 0 NF 1–=

B q b' m exp j2 qm
NF

--------------– q;

m 0=

NF 1–

0 NF 1–= =

B q



A Three-Dimensional SAR Imaging Technique 721                                                                                                                                                                                                                                                                         

, Eq. (18.59)

where  denotes the direction-sine of the  scatterer, and  is implied in Eq.
(18.59).

The classical approach to multiple target detection is to use a phased array antenna with
phase shifting and tapering hardware. The array beamwidth is proportional to , and
the first sidelobe is at about -13dB. On the other hand, multiple target detection using
DFTSQM provides a beamwidth proportional to  as indicated by (Eq. (18.59), which
has the effect of doubling the array’s resolution. The first sidelobe is at about -27dB due to the
triangular sequence . Additionally, no phase shifting hardware is required for detec-
tion of targets within a single-element field of view.

Rectangular Arrays 

DFTSQM operation and signal processing for 2-D arrays can be described as follows. Con-
sider an  rectangular array. All  elements are fired sequentially, one at a time.
After each firing, all the  array elements receive in parallel. Thus,  samples of the
quadrature components are collected after each firing, and a total of  samples will be
collected. However, in the far field operation, there are only  distinct
equiphase returns. Therefore, the collected data can be added coherently to form a 2-D infor-
mation array of size . The two-way radiation pattern is computed as the
modulus of the 2-D amplitude spectrum of the information array. The processing includes 2-D
windowing, 2-D Discrete Fourier Transformation, antenna gain and range attenuation compen-
sation. The field of view of the 2-D array is determined by the 3dB pattern of a single element.
All the scatterers within this field will be detected simultaneously as peaks in the amplitude
spectrum.

Consider a rectangular array of size , with uniform element spacing ,
and wavelength . The coordinates of the  element, in -units, are

Eq. (18.60)

. Eq. (18.61)

Assume a far field point  defined by the azimuth and elevation angles . In this case,
the one-way geometric phase for an element is

. Eq. (18.62)

Therefore, the two-way geometric phase between the  and  elements is

. Eq. (18.63)
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. Eq. (18.64)

Assuming multiple scatterers within the array’s FOV, then the cumulative electric field for the
two-way path  is given by

. Eq. (18.65)

All formulas for the 2-D case reduce to those of a linear array case by setting  and
.

The variable part of the phase given in Eq. (18.63) is proportional to the integers 
and . Therefore, after completion of the sequential firing, electric fields with paths of
the same  sums, where

 Eq. (18.66)

Eq. (18.67)

can be collected coherently. In this manner, the 2-D information array
 is computed. The coefficient sequence
 is also computed. More precisely,

Eq. (18.68)

. Eq. (18.69)

It follows that

. Eq. (18.70)

The processing of the complex 2-D information array  is similar to that of the
linear case with the exception that one should use a 2-D DFT. After antenna gain and range
attenuation compensation, scatterers are detected as peaks in the 2-D amplitude spectrum of
the information array. A scatterer located at angles  will produce a peak in the ampli-
tude spectrum at DFT indexes , where

 Eq. (18.71)

. Eq. (18.72)

Derivation of Eq. (18.71) is in Section 12.9.7.

18.8.3. Geometry for DFTSQM SAR Imaging

Fig. 18.14 shows the geometry of the DFTSQM SAR imaging system. In this case, 
denotes the central time of the observation interval, . The aircraft maintains both constant
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velocity , and height . The origin for the relative system of coordinates is denoted as .
The vector  defines the radar location at time . The transmitting antenna consists of a
linear real array operating in the sequential mode. The real array is of size , element spacing

, and the radiators are circular dishes of diameter . Assuming that the aircraft scans
 transmitting locations along the flight path, then a rectangular array of size  is syn-

thesized, as illustrated in Fig. 18.15.
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 Figure 18.14. Geometry for DFTSQM imaging system.
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The vector  defines the center of the 3dB footprint at time . The center of the array
coincides with the flight path, and it is assumed to be perpendicular to both the flight path and
the line of sight . The unit vector , along the real array is 

Eq. (18.73)

where  is the elevation angle, or the compliment of the depression angle, for the center of
the footprint at central time .

18.8.4. Slant Range Equation

Consider the geometry shown in Fig. 18.16 and assume that there is a scatterer  within the
 range cell. This scatterer is defined by 

. Eq. (18.74)

the scatterer  (assuming rectangular coordinates) is given by 

Eq. (18.75)

Eq. (18.76)

where  denotes the elevation angle for the  range cell at the center of the observation
interval and  is an incremental angle. Let  refer to the vector between the  array ele-
ment and the point , then
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Eq. (18.77)

. Eq. (18.78)

The range between a scatterer  within the  range cell, and the  element of the real
array is

. Eq. (18.79)

It is more practical to use the scatterer's elevation and azimuth direction-sines rather than the
corresponding increments. Therefore, define the scatterer's azimuth and elevation direction-
sines as 

Eq. (18.80)

. Eq. (18.81)

Then, one can rewrite Eq. (18.79) as

Eq. (18.82)

Eq. (18.83)

Expanding  as a third-order Taylor series expansion about incremental  yields

Eq. (18.84)

where subscripts denote partial derivations, and the over-bar indicates evaluation at the state
. Note that

. Eq. (18.85)

Section 12.9.8 has detailed expressions of all non-zero Taylor series coefficients for the 
range cell.

Even at the maximum increments , the terms

Eq. (18.86)

are small and can be neglected. Thus, the range  is approximated by
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. Eq. (18.87)

Consider the following two-way path: the  element transmitting, scatterer  reflecting,
and the  element receiving. It follows that the round-trip delay corresponding to this two-
way path is

Eq. (18.88)

where  is the speed of light.

18.8.5. Signal Synthesis

The observation interval is divided into  subintervals of width . During
each subinterval, the real array is operated in sequential mode, and an array length of  is
synthesized. The number of subintervals  is computed such that  is large enough to allow
sequential transmission for the real array without causing range ambiguities. In other words, if
the maximum range is denoted as , then

. Eq. (18.89)

Each subinterval is then partitioned into  sampling subintervals of width . The loca-
tion  represents the sampling time at which the  element is transmitting during the 
subinterval.

The normalized transmitted signal during the  subinterval for the  element is defined
as

Eq. (18.90)

where  denotes the transmitter phase, and  is the system operating frequency. Assume that
there is only one scatterer,  within the  range cell defined by . The
returned signal at the  element due to firing from the  element and reflection from the

 scatterer is

Eq. (18.91)

where  represents the two-way antenna gain, and the term  denotes the
range attenuation at the  range cell. The analysis in this paper will assume that  and  are
both equal to zeroes.

Suppose that there are  scatterers within the  range cell, with angular locations given
by

. Eq. (18.92)

The composite returned signal at time  within this range cell due to the path
 is
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. Eq. (18.93)

The platform motion synthesizes a rectangular array of size , where only one column of
 elements exists at a time. However, if  and the real array is operated in the sequen-

tial mode, a square planar array of size  is synthesized. The element spacing along the
flight path is .

Consider the  range bin. The corresponding two-dimensional information sequence
consists of  similar vectors. The  vector represents

the returns due to the sequential firing of all  elements during the  subinterval. Each vec-
tor has  rows, and it is extended, by adding zeroes, to the next power of two. For
example, consider the  subinterval, and let . Then, the elements of the
extended column  are

. Eq. (18.94)

18.8.6. Electronic Processing

Consider again the  range cell during the  subinterval, and the two-way path:  ele-
ment transmitting and  element receiving. The analog quadrature components correspond-
ing to this two-way path are

Eq. (18.95)

Eq. (18.96)

Eq. (18.97)

where  denotes antenna gain, range attenuation, and scatterers' strengths. The subscripts for
 have been dropped for notation simplicity. Rearranging Eq. (18.97) and collecting terms

yields

s n1 n2 tmn1
; si n1 n2 tmn1

;

i 1=

No

=

N M
N M 2N=

2N 2N
dy vDob M=

kth

bk n m n m; 0 2N 2–= 2N mth

N mth

2N 1–
mth M 2N 4= =

bk n m

bk 0 m bk 1 m bk 2 m bk 3 m bk 4 m bk 5 m
bk 6 m bk 7 m s 0 0 tmn0

; s 0 1 tmn0
; s 1 0 tmn1

;+
s 0 2 tmn0

; s 1 1 tmn1
; s 2 0 tmn2

; s 0 3 tmn0
; s 1 2 tmn1

;
s 2 1 tmn2

; s 3 0 tmn3
; s 1 3 tmn1

; s 2 2 tmn2
;

s 3 1 tmn3
; s 2 3 tmn2

; s 3 2 tmn3
; s 3 3 tmn3

; 0+
+ +

+ +
+

+ +
=

kth mth n1
th

n2
th

sI n1 n2 t; Bcos=

sQ n1 n2 t; B sin=

2 f0 t 1
c
--- 2r r

h̃
Dn1

r
h̃

Dn2
+ h̃ ru Dn1

ru Dn2
+ u

r
h̃h̃

Dn1
r

h̃h̃
Dn2

+ h̃2

2
----- r

h̃u
Dn1

r
h̃u

Dn2
+ h̃u

rss Dn1
rss Dn2

+ s2

2
---- 2rstst 2rtt

t2

2
----

ruu Dn1
ruu Dn2

+ u2

2
----- r

h̃st
Dn1

r
h̃st

Dn2
+ h̃st

+ + +

+

+ + +

+ +

–=

B
t



728                                                                                   Radar Systems Analysis and Design Using MATLAB®

Eq. (18.98)

After analog-to-digital (A/D) conversion, deramping of the quadrature components to cancel
the quadratic phase  is performed. Then, the digital quadrature components are

Eq. (18.99)

Eq. (18.100)

. Eq. (18.101)

The instantaneous frequency for the  scatterer within the  range cell is computed as

. Eq. (18.102)

Substituting the actual values for , ,  and collecting terms yields

. Eq. (18.103)

Note that if , then

, Eq. (18.104)

which is the Doppler value corresponding to a ground patch (see Eq. (18.49)).

The last stage of the processing consists of three steps: (1) two-dimensional windowing; (2)
performing a two-dimensional DFT on the windowed quadrature components; and (3) scaling
to compensate for antenna gain and range attenuation.

18.8.7. Derivation of Eq. (18.71)

Consider a rectangular array of size , with uniform element spacing ,
and wavelength . Assume sequential mode operation where elements are fired sequentially,
one at a time, while all elements receive in parallel. Assume far field observation defined by
azimuth and elevation angles . The unit vector  on the line of sight, with respect to ,
is given by 
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. Eq. (18.105)

The  element of the array can be defined by the vector 

Eq. (18.106)

where . The one-way geometric phase for this element is

Eq. (18.107)

where  is the wavenumber, and the operator  indicates dot product. There-
fore, the two-way geometric phase between the  and  elements is

. Eq. (18.108)

The cumulative two-way normalized electric field due to all transmissions in the direction
 is

Eq. (18.109)

where the subscripts  and , respectively refer to the transmitted and received electric fields.
More precisely,

Eq. (18.110)

. Eq. (18.111)

In this case,  denotes the tapering sequence. Substituting Eqs. (18.108), (18.110), and
(18.111) into Eq. (18.109) and grouping all fields with the same two-way geometric phase
yields

Eq. (18.112)

Eq. (18.113)
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Eq. (18.115)

. Eq. (18.116)

The two-way array pattern is then computed as
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. Eq. (18.117)

Consider the two-dimensional DFT transform, , of the array 

. Eq. (18.118)

Comparison of Eqs. (18.117) and Eq. (18.118) indicates that  is equal to  if

Eq. (18.119)

. Eq. (18.120)

It follows that 

. Eq. (18.121)

18.8.8. Non-Zero Taylor Series Coefficients for the kth Range Cell 
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Eq. (18.129)

Eq. (18.130)
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Problems
18.1. A side looking SAR is traveling at an altitude of ; the elevation angle is

. If the aperture length is , the pulse width is  and the wavelength
is , (a) calculate the azimuth resolution, (b) calculate the range and ground range
resolutions.
18.2. An MMW side looking SAR has the following specifications: radar velocity

, elevation angle , operating frequency , and antenna 3dB

beamwidth . (a) Calculate the footprint dimensions. (b) Compute the mini-
mum and maximum ranges. (c) Compute the Doppler frequency span across the footprint. (d)
Calculate the minimum and maximum PRFs.
18.3. A side looking SAR takes on eight positions within an observation interval. In each
position, the radar transmits and receives one pulse. Let the distance between any two consec-

utive antenna positions be , and define  to be the one-way phase dif-

ference for a beam steered at angle . (a) In each of the eight positions a sample of the phase
pattern is obtained after heterodyning. List the phase samples. (b) How will you process the
sequence of samples using an FFT (do not forget windowing)? (c) Give a formula for the angle
between the grating lobes.
18.4. Consider a synthetic aperture radar. You are given the following Doppler history for
a scatterer: , which corresponds to times . Assume
that the observation interval is , and a platform velocity . (a) Show
the Doppler history for another scatterer which is identical to the first one except that it is
located in azimuth  earlier. (b) How will you perform deramping on the quadrature compo-
nents (show only the general approach)? (c) Show the Doppler history for both scatterers after
deramping.
18.5. You want to design a side looking synthetic aperture ultrasonic radar operating at

 and peak power . The antenna beam is conical with 3dB beamwidth

. The maximum gain is . The radar is at a constant altitude  and is

moving at a velocity of . The elevation angle defining the footprint is . (a)
Give an expression for the antenna gain assuming a Gaussian pattern. (b) Compute the pulse
width corresponding to range resolution of . (c) What are the footprint dimensions? (d)
Compute and plot the Doppler history for a scatterer located on the central range bin. (e) Cal-
culate the minimum and maximum PRFs. Do you need to use more than one PRF? (f) How
will you design the system in order to achieve an azimuth resolution of ?
18.6. Validate Eq. (18.46).
18.7. In Section 18.7 we assumed the elevation angle increment  is equal to zero.
Develop an equivalent to Eq. (18.43) for the case when . You need to use a third-order
three-dimensional Taylor series expansion about the state  in order to
compute the new round-trip delay expression. 
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Appendix 18-A: Chapter 18 MATLAB Code Listings
The MATLAB code provided in this chapter was designed as an academic standalone tool

and is not adequate for other purposes. The code was written in a way to assist the reader in
gaining a better understanding of the theory. The code was not developed, nor is it intended to
be used as part of an open-loop or a closed-loop simulation of any kind. The MATLAB code
found in this textbook can be downloaded from this book’s web page on the CRC Press web-
site. Simply use your favorite web browser, go to www.crcpress.com, and search for keyword
“Mahafza” to locate this book’s web page.

MATLAB Program “Fig18_12-13.m” Listing
%                        Figures 18.12 and 18.13
%    Program to do Spotlight SAR using the rectangular format and
%    HRR for range compression.   
%                        13 June 2003
%                     Dr. Brian J. Smith
clear all;
%%%%%%%%% SAR Image Resolution %%%%
dr = .50;
da = .10;
% dr = 6*2.54/100;
% da = 6*2.54/100;
%%%%%%%%% Scatter Locations %%%%%%%
xn = [10000 10015 9985];  % Scatter Location, x-axis
yn = [0 -20 20];          % Scatter Location, y-axis
Num_Scatter = 3;          % Number of Scatters
Rnom = 10000;
%%%%%%%%% Radar Parameters %%%%%%%%
f_0 =   35.0e9;    % Lowest Freq. in the HRR Waveform
df =     3.0e6;    % Freq. step size for HRR, Hz
c =        3e8;    % Speed of light, m/s
Kr = 1.33;
Num_Pulse = 2^(round(log2(Kr*c/(2*dr*df))));
Lambda = c/(f_0 + Num_Pulse*df/2);
%%%%%%%%% Synthetic Array Parameters %%%%%%%
du = 0.2;
L = round(Kr*Lambda*Rnom/(2*da));
U = -(L/2):du:(L/2);
Num_du = length(U);
%%%%%%%%% This section generates the target returns %%%%%%
Num_U = round(L/du);
I_Temp = 0;
Q_Temp = 0;
for I = 1:Num_U
    for J = 1:Num_Pulse
        for K = 1:Num_Scatter
            Yr = yn(K) - ((I-1)*du - (L/2));
            Rt = sqrt(xn(K)^2 + Yr^2);
            F_ci = f_0 + (J -1)*df;
            PHI = -4*pi*Rt*F_ci/c;
            I_Temp = cos(PHI) + I_Temp;
            Q_Temp = sin(PHI) + Q_Temp;
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        end;
        IQ_Raw(J,I) = I_Temp + i*Q_Temp;
        I_Temp = 0.0;
        Q_Temp = 0.0;
    end;
end;
%%%%%%%%%% End target return section %%%%%
%%%%%%%%%% Range Compression %%%%%%%%%%%%%
Num_RB = 2*Num_Pulse;
WR = hamming(Num_Pulse);
for I = 1:Num_U
    Range_Compressed(:,I) = fftshift(ifft(IQ_Raw(:,I).*WR,Num_RB));
end;
%%%%%%%%%% Focus Range Compressed Data %%%%
dn = (1:Num_U)*du - L/2;
PHI_Focus = -2*pi*(dn.^2)/(Lambda*xn(1));
for I = 1:Num_RB
    Temp = angle(Range_Compressed(I,:)) - PHI_Focus;
    Focused(I,:) = abs(Range_Compressed(I,:)).*exp(i*Temp);
end;
%Focused = Range_Compressed;
%%%%%%%%%% Azimuth Compression %%%%%%%%%%%%
WA = hamming(Num_U);
for I = 1:Num_RB
   AZ_Compressed(I,:) = fftshift(ifft(Focused(I,:).*WA'));
end;
 SAR_Map = 10*log10(abs(AZ_Compressed));
Y_Temp = (1:Num_RB)*(c/(2*Num_RB*df));
Y = Y_Temp - max(Y_Temp)/2;
X_Temp = (1:length(IQ_Raw))*(Lambda*xn(1)/(2*L));
X = X_Temp - max(X_Temp)/2;
image(X,Y,20-SAR_Map);  % 
%image(X,Y,5-SAR_Map);  % 
axis([-25 25 -25 25]); axis equal; colormap(gray(64));
xlabel('Cross Range (m)'); ylabel('Down Range (m)');
grid
%print -djpeg .jpg
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