
www.it-ebooks.info

http://avaxhm.com/blogs/interes
http://www.it-ebooks.info/

SQL Server 2014 Development
Essentials

Design, implement, and deliver a successful database
solution with Microsoft SQL Server 2014

Basit A. Masood-Al-Farooq

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

SQL Server 2014 Development Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1180714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-255-0

www.packtpub.com

Cover image by Angela Robledo (angel.spo@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Basit A. Masood-Al-Farooq

Reviewers
Basavaraj Biradar

Brenner Grudka Lira

David Loo

Richard Louie

José (Cheo) Redondo

Acquisition Editor
Neha Nagwekar

Content Development Editor
Neil Alexander

Technical Editor
Pankaj Kadam

Copy Editors
Insiya Morbiwala

Sayanee Mukherjee

Aditya Nair

Project Coordinator
Sageer Parkar

Proofreaders
Simran Bhogal

Ameesha Green

Indexers
Rekha Nair

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinators
Kyle Albuquerque

Saiprasad Kadam

Conidon Miranda

Cover Work
Kyle Albuquerque

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Basit A. Masood-Al-Farooq is an internationally known Lead SQL DBA, trainer,
and technical author with twelve years' experience of the Microsoft technology stack.
He is an accomplished development and production SQL Server DBA with a proven
record of delivering major projects on time and within budget. He is an expert at
evaluating the clients' needs against the capabilities of the SQL Server product
set, with the objective of minimizing costs and maximizing functions by making
innovative use of advance capabilities. Basit has authored numerous SQL Server
technical articles on various SQL Server topics for different SQL Server community
sites, which include SQLMag.com, MSSQLTips.com, SQLServerCentral.com,
SSWUG.org, SQL-Server-Performance.com, and SearchSQLServer.com.

He has also developed and implemented many successful database infrastructures,
data warehouses, and business intelligence projects. He holds a Master's degree in
Computer Science from London Metropolitan University and industry-standard
certifications from Microsoft, Sun, Cisco, Brainbench, ProSoft, and APM, which
include MCITP Database Administrator 2008, MCITP Database Administrator 2005,
MCDBA SQL Server 2000 and MCTS .NET Framework 2.0 Web Applications. He
also has a good understanding of ITIL principles.

He can be reached via Twitter (@BasitAali), his blog (http://basitaalishan.
com), or via LinkedIn (http://uk.linkedin.com/in/basitfarooq).

He was a technical reviewer for SQL Server 2012 Reporting Services Blueprints,
Marlon Ribunal and Mickey Stuewe, Packt Publishing and Reporting with Microsoft
SQL Server 2012, James Serra and Bill Anton, Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

First and foremost, I would like to praise and thank Allah SWT, the compassionate,
the almighty, the most merciful, who has granted me countless blessings, knowledge,
and opportunities. Without the will of Allah SWT, none of this would be possible.

I would like to thank my parents for getting me started on my journey, giving me
the opportunity for a great education, allowing me to realize my own potential,
and giving me the freedom to choose my career path. Thanks Dad (Masood Ahmad
Nisar) and Mom (Saeeda Perveen); you both have always supported me and
encouraged me in everything I have ever done. You both have worked extremely
hard all your life to give me the life I wanted.

I would like to thank my caring, loving, and supportive wife, Aniqa, for all the
encouragement and support. Despite the long days, sleepless nights, and long and
exhausting marathons of writing, a few words of love and encouragement from you
always successfully wipe away all my fatigue. Thank you for supporting me, coping
with my hectic work schedule, and taking care of our kids and household activities,
and giving me time so that I can pursue and concentrate on this book-writing project.
I would also like to thank my two sons, Saifaan and Rayyan, and would like to
dedicate this book to them because they always make me smile and understood on
those weekend mornings when I was writing this book instead of playing with them.
I hope someday you both will read my book and understand why I spent so much
time in front of my laptop.

I would also like to thank Packt Publishing for giving me the opportunity to write this
book. Last but not least, I would like to thank Neha Nagwekar, the Acquisition Editor;
Neil Alexander, the Content Development Editor; Pankaj Kadam, the Technical Editor;
and all the technical reviewers, for their help, advice, and constructive comments,
because without their feedback this book would not have been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Basavaraj Biradar holds a Master's degree in Computer Applications with gold
medals from Gulbarga University, India. Besides these, he has a Microsoft Certified
Professional certification in SQL Server 2000. Basavaraj has a rich experience of more
than 13 years in designing and developing databases for complex, large, online
systems. Currently, Basavaraj is working as Senior Technical Lead in a major IT
security company.

Basavaraj writes blogs regularly at http://sqlhints.com on SQL Server
technologies and his articles are quite popular in the industry. Basavaraj speaks
about SQL Server in Microsoft User Group meetings and in his company as well.
You may contact Basavaraj through his e-mail ID, basav@sqlhints.com.

Brenner Grudka Lira has been a data analyst and DBA at Neurotech since 2012.
He has a Bachelor's degree in Computer Science and a postgraduate degree in Project
Management, both from the Catholic University of Pernambuco in Recife, Brazil.

He also has experience in building and modeling data warehouses and has
knowledge in SQL Server and MySQL database management. Today, he is dedicated
to the study of project management and database tuning.

He has reviewed Microsoft SQL Server 2012 Integration Services: An Expert Cookbook,
Reza Rad and Pedro Perfeito; Oracle BI Publisher 11g: A Practical Guide to Enterprise
Reporting, Daniela Bozdoc; and Getting Started with SQL Server 2014 Administration,
Gethyn Ellis, all by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

David Loo is a senior software professional with over 25 years' experience in both
software development and people management. He is respected for his ability to
focus teams on service excellence and for designing and implementing practical
process improvements and solutions. He is always on the lookout for ways to
contribute his knowledge and experience of software development, team-building,
and development best practices.

He has reviewed Getting Started with SQL Server 2012 Cube Development,
Simon Lidberg and Getting Started with SQL Server 2014 Administration, Gethyn Ellis,
both by Packt Publishing.

Richard Louie is a Senior Business Intelligence Developer with over 20 years'
experience in software development and project management. He has extensive
hands-on experience in Oracle and Microsoft SQL for ETL, SSIS, SSRS, SSAS, and
VB.Net. Richard is a graduate of the University of California, Irvine in Information
and Computer Science, and is ASQ Green Belt Certified.

He has reviewed Getting Started with SQL Server 2012 Cube Development,
Simon Lidberg and Getting Started with SQL Server 2014 Administration, Gethyn Ellis,
both by Packt Publishing.

José (Cheo) Redondo is a consultant, educator, mentor, and evangelist of
technology databases and a SQL Server MVP in Latin America, specializing in
enterprise databases and business intelligence solutions since 1998. Since that
time, he has been providing consulting services and specialized education through
academic and business-user groups. He gives conferences to the PASS Community
(SQLSaturday events) in Latin America and the US in Spanish, and has been leading
SQL PASS Venezuela for several years now. You can follow Cheo on Twitter at
@redondoj or contact him through his blog, El Blog de Cheo Redondo in Spanish
(http://redondoj.wordpress.com/), or his e-mail, redondoj@gmail.com.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Microsoft SQL Server Database Design Principles	 7

Database design	 8
The requirement collection and analysis phase	 8
The conceptual design phase	 9
The logical design phase	 9
The physical design phase	 10
The implementation and loading phase	 10
The testing and evaluation phase	 10
The database design life cycle recap	 10

Table design	 11
Tables	 11
Entities	 12
Attributes	 12

Relationships	 12
A one-to-one relationship	 12
A one-to-many relationship	 13
A many-to-many relationship	 13

Data integrity	 14
The basics of data normalization	 14

The normal forms	 15
The first normal form (1NF)	 15
The second normal form (2NF)	 15
The third normal form (3NF)	 16

Denormalization	 16
The SQL Server database architecture	 16

Pages	 17
Extents	 18

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

The transaction log file architecture	 19
The operation and workings of a transaction log	 20

Filegroups	 21
The importance of choosing the appropriate data type	 21

SQL Server 2014 system data types	 22
Alias data types	 23

Creating and dropping alias data types with SSMS 2014	 23
Creating and dropping alias data types using the Transact-SQL DDL statement	 23

CLR user-defined types	 24
Summary	 24

Chapter 2: Understanding DDL and DCL Statements in
SQL Server	 25

Understanding the DDL, DCL, and DML language elements	 26
Data Definition Language (DDL) statements	 26
Data Manipulation Language (DML) statements	 26
Data Control Language (DCL) statements	 26

Understanding the purpose of SQL Server 2014 system databases	 27
SQL Server 2014 system databases	 27

The master database	 27
The model database	 28
The msdb database	 28
The tempdb database	 28
The resource database	 29
The distribution database	 29

An overview of database recovery models	 29
The simple recovery model	 29
The bulk-logged recovery model	 29
Full recovery	 30

Creating and modifying databases	 30
Create, modify, and drop databases with T-SQL DDL statements	 30

Creating a database with T-SQL DDL statements	 30
Example 1 – creating a database based on a model database	 32
Example 2 – creating a database that explicitly specifies the database data and the
transaction log file's filespecs properties	 32
Example 3 – creating a database on multiple filegroups	 33

Modifying a database with T-SQL DDL statements	 33
Example – adding a secondary data file to an existing database	 34

Dropping a database with T-SQL DDL statements	 35
Create, modify, and drop databases with SSMS 2014	 35

Creating a database with SSMS 2014	 35
Modifying a database with SSMS 2014	 37

Dropping a database with SSMS 2014	 38

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Creating and managing database schemas	 39
Managing schemas using T-SQL DDL statements	 40
Managing schemas using SSMS 2014	 40

Creating and managing tables	 41
Creating and modifying tables	 42
Creating and modifying tables with T-SQL DDL statements	 42

Creating a table with T-SQL DDL statements	 42
Modifying a table with T-SQL DDL statements	 44
Dropping a table with T-SQL DDL statements	 44

Creating and modifying tables with SSMS 2014	 45
Creating a table with SSMS 2014	 45
Modifying a table with SSMS 2014	 46
Deleting a table with SSMS 2014	 46

Grant, deny, and revoke permissions to securables	 46
Grant, deny, and revoke permissions to securables with T-SQL DCL
statements	 46

Granting permissions to securables with T-SQL DCL statements	 47
Denying permissions to securables with T-SQL DCL statements	 47
Revoking permissions to securables with T-SQL DCL statements	 48

Managing permissions using SSMS 2014	 48
Summary	 48

Chapter 3: Data Retrieval Using Transact-SQL Statements	 49
Understanding Transact-SQL SELECT, FROM, and WHERE clauses	 50

The SELECT statement	 50
The FROM clause	 51
The WHERE clause	 51

Using T-SQL functions in the query	 52
Aggregate functions	 52
Configuration functions	 53
Cursor functions	 53
Date and time functions	 53
Mathematical functions	 54
Metadata functions	 54
Rowset functions	 54
Security functions	 54
String functions	 55
System statistical functions	 55

Multiple table queries using UNION, EXCEPT, INTERSECT, and JOINs	 55
The UNION operator	 56
The EXCEPT operator	 57
The INTERSECT operator	 58

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

The JOIN operator	 59
Using INNER JOIN	 59
Using outer joins	 60

Subqueries	 61
Examples of subqueries	 62

Common Table Expressions	 63
Organizing and grouping data	 64

The ORDER BY clause	 64
The GROUP BY clause	 65

The HAVING clause	 65
The TOP clause	 66
The DISTINCT clause	 66
Pivoting and unpivoting data	 66

Using the Transact-SQL analytic window functions	 68
Ranking functions	 69
PERCENT RANK	 71
CUME_DIST	 72
PERCENTILE_CONT and PERCENTILE_DISC	 73
LEAD and LAG	 74
FIRST_VALUE and LAST_VALUE	 76

Summary	 77
Chapter 4: Data Modification with SQL Server Transact-SQL
Statements	 79

Inserting data into SQL Server database tables	 80
The INSERT examples	 82

Example 1 – insert a single row into a SQL Server database table	 82
Example 2 – INSERT with the SELECT statement	 84
Example 3 – INSERT with the EXEC statement	 84
Example 4 – explicitly inserting data into the IDENTITY column	 85

Updating data in SQL Server database tables	 86
The UPDATE statement examples	 87

Example 1 – updating a single row	 87
Example 2 – updating multiple rows	 87

Deleting data from SQL Server database tables	 88
The DELETE statement examples	 89

Example 1 – deleting a single row	 89
Example 2 – deleting all rows	 89

Using the MERGE statement	 89
The MERGE statement examples	 91

The TRUNCATE TABLE statement	 94
The SELECT INTO statement	 94
Summary	 95

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 5: Understanding Advanced Database Programming
Objects and Error Handling	 97

Creating and using variables	 98
Creating a local variable	 98
Creating the cursor variable	 99
Creating the table variable	 99

Control-of-flow keywords	 100
BEGIN…END keywords	 100
The IF…ELSE expression	 101
A CASE statement	 102
WHILE, BREAK, and CONTINUE statements	 102
RETURN, GOTO, and WAITFOR statements	 103

Creating and using views	 104
Creating views with Transact-SQL and SSMS 2014	 104

Creating, altering, and dropping views with Transact-SQL DDL statements	 104
Creating, altering, and dropping views with SSMS 2014	 107
Indexed views	 109

Creating and using stored procedures	 111
Creating a stored procedure	 113
Modifying a stored procedure	 117
Dropping a stored procedure	 118
Viewing stored procedures	 119
Executing stored procedures	 120

Creating and using user-defined functions	 120
Creating user-defined functions	 121

Creating a user-defined scalar function	 121
Creating a user-defined table-valued function	 124

Modifying user-defined functions	 128
Using a user-defined table-valued function	 129

Dropping user-defined functions	 129
Viewing user-defined functions	 130

Creating and using triggers	 131
Nested triggers	 131
Recursive triggers	 132
DML triggers	 132

Inserted and deleted logical tables	 133
Creating DML triggers	 133
Modifying a DML trigger	 135
Dropping a DML trigger	 135

Data Definition Language (DDL) triggers	 135
The EVENTDATA function	 135
Creating a DDL trigger	 135
Modifying a DDL trigger	 136

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Dropping a DDL trigger	 137
Disabling and enabling triggers	 137
Viewing triggers	 137

Handling Transact-SQL errors	 138
An example of TRY...CATCH	 139
An example of TRY...CATCH with THROW	 140
An example of TRY...CATCH with RAISERROR	 141

Summary	 141
Chapter 6: Performance Basics	 143

Components of SQL Server Database Engine	 143
The SQL Server Relational Engine architecture	 144

Parsing and binding	 145
Query optimization	 145
Query execution and plan caching	 147
Query plan aging	 148
The improved design in SQL Server 2014 for the cardinality estimation	 148
Optimizing SQL Server for ad hoc workloads	 148
Manually clearing the plan cache	 149

The SQL Server 2014 in-memory OLTP engine	 149
The limitations of memory-optimized tables	 150

Indexes	 151
The cost associated with indexes	 151
How SQL Server uses indexes	 151

Access without an index	 152
Access with an index	 152

The structure of indexes	 152
Index types	 153

Clustered indexes	 153
Nonclustered indexes	 154
Single-column indexes	 154
Composite indexes	 155
Covering indexes	 157
Unique indexes	 160
Spatial indexes	 160
Partitioned indexes	 161
Filtered indexes	 161
Full-text indexes	 162
XML indexes	 163
Memory-optimized indexes	 163
Columnstore indexes	 164

Guidelines for designing and optimizing indexes	 168
Avoid overindexing tables	 168
Create a clustered index before creating nonclustered indexes when using
clustered indexes	 168
Index columns used in foreign keys	 168

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Index columns frequently used in joins	 169
Use composite indexes and covering indexes to give the query optimizer
greater flexibility	 169
Limit key columns to columns with a high level of selectability	 169
Pad indexes and specify the fill factor to reduce page splits	 169
Rebuild indexes based on the fragmentation level	 170

Query optimization statistics	 170
Database-wide statistics options in SQL Server to automatically create
and update statistics	 171
Manually create and update statistics	 171
Determine the date when the statistics were last updated	 172

Using the DBCC SHOW_STATISTICS command	 172
Using the sys.stats catalog view with the
STATS_DATE() function	 173

The fundamentals of transactions	 173
Transaction modes	 174
Implementing transactions	 174

BEGIN TRANSACTION	 174
COMMIT TRANSACTION	 174
ROLLBACK TRANSACTION	 175
SAVE TRANSACTION	 175

An overview of locking	 175
Basic locks	 176
Optimistic and pessimistic locking	 176
Transaction isolation	 177

SQL Server 2014 tools for monitoring and troubleshooting SQL
Server performance	 178

Activity Monitor	 178
The SQLServer:Locks performance object	 178
Dynamic Management Views	 179
SQL Server Profiler	 179
The sp_who and sp_who2 system stored procedures	 180
SQL Server Extended Events	 180

Summary	 180
Index	 181

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Microsoft SQL Server is an enterprise database server that is the cornerstone of
modern business applications and is in the center of the business processes of many
leading organizations. The latest release of Microsoft SQL Server, SQL Server 2014,
has many new features. These new features of SQL Server 2014 let you design, build,
and deploy high-performance OLTP applications. Especially, the new in-memory
technology of SQL Server 2014 helps you to design and implement high-performance
OLTP applications. According to Microsoft, in some situations, implementing the
new SQL Server 2014 in-memory technology for existing OLTP applications can
improve the performance of these applications by 10 times. This book will provide
you with all the skills you need to successfully design, build, and deploy databases
using SQL Server 2014. Starting from the beginning, this book gives you an insight
into the key stages of the SQL Server database process, provides you with an
in-depth knowledge of the SQL Server database architecture, and shares tips to help
you design the new database.

By sequentially working through the steps in each chapter, you will gain hands-on
experience in designing, creating, and deploying SQL Server databases and objects.
You will learn how to use SQL Server 2014 Management Studio and the advanced
Transact-SQL queries to retrieve data from the SQL Server database. You will also
learn how to add, modify, and delete data stored within a database. You will use
Transact-SQL statements to create and manage advanced database objects that
include scalar and table-valued functions, views, stored procedures, and triggers.
Finally, you will learn about how the SQL Server 2014 relation engine works,
how indexes and statistics improve query performance, and the new SQL Server
2014 in-memory technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What this book covers
Chapter 1, Microsoft SQL Server Database Design Principles, explains the database
design process and the architecture and working of the SQL Server 2014 Storage
Engine. This chapter covers the database development life cycle in detail, including
the normalization and denormalization process, benefits of choosing appropriate
data types, and the functioning of the SQL Server 2014 Storage Engine.

Chapter 2, Understanding DDL and DCL Statements in SQL Server, introduces the
reader to the SQL Server 2014 Transact-SQL language elements and SQL Server 2014
Management Studio (SSMS 2014). This chapter explains Transact-SQL DDL, DCL, and
DML language elements in detail, and how you can use them to create, manage, and
secure SQL Server 2014 databases, schemas, and tables. This chapter also shows you
how you can use SQL Server Management Studio to create and manage SQL Server
2014 databases, schemas, and tables. Finally, this chapter covers the purpose of SQL
Server 2014 system databases and highlights the advantages and disadvantages of
database recovery models.

Chapter 3, Data Retrieval Using Transact-SQL Statements, demonstrates how to query
data from tables, how to write multiple table queries, and how to group, organize, and
pivot result set data. This chapter explores the basic form of the SELECT statement and
how it can be used to query data from tables. This chapter also highlights the different
categories of built-in T-SQL functions and how you can use them in your SELECT
statements. This chapter also explains different techniques that you can use to combine
data from multiple tables, how to organize the data, and how to generate the summary
data by grouping or pivoting it. Finally, this chapter covers the purpose of the CTE and
SQL Server 2014 windowing functions and how to use them to quickly solve complex
analytical tasks.

Chapter 4, Data Modification with SQL Server Transact-SQL Statements, illustrates how
to add, modify, and delete data in tables using Transact-SQL DML statements.
This chapter covers how to add data to a table using the INSERT statement, how to
delete the data using the DELETE statement, and how to update existing data using
the UPDATE statement. This chapter also covers the SELECT…INTO, MERGE, and
TRUNCATE TABLE statements, and it highlights the key new enhancements of
these statements in SQL Server 2014.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 5, Understanding Advanced Database Programming Objects and Error Handling,
covers reusable programming objects that includes views, stored procedures
(normal and natively compiled), functions and triggers (based on either DDL or
DML), SQL Server 2014 control-of-flow statements, and structured error handling
blocks. This chapter shows you how you can declare and use variables and how
you can use control-of-flow statements to control your program execution. Next,
it explains the purpose of views, stored procedures, user-defined functions,
and triggers, and highlights the guidelines and restrictions to design each of
these programmable objects. This chapter also illustrates how to handle errors
that occur within Transact-SQL batches and programmable objects using the
TRY...CATCH construct.

Chapter 6, Performance Basics, explains performance-related features of SQL Server
2014. This chapter first explains the architecture of the SQL Server Relational Engine.
Then, it introduces the architecture of the SQL Server 2014 in-memory technology.
Next, it covers all SQL Server 2014 index types and how they can be used to achieve
optimal query performance while reducing the overall response time. Then, it
explores the architectural differences of B-tree, Bw-tree, and xVelocity columnstore
indexes. Finally, it explains core performance topics such as SQL Server query
optimization statistics, SQL Server transactions and locks, and tools that come with
SQL Server 2014 Database Engine, which you can use to monitor and troubleshoot its
Database Engine performance.

What you need for this book
The following are the software prerequisites to run the samples in the book:

•	 Windows 7.0 SP1 or later
•	 SQL Server 2014 Developer edition
•	 SQL Server Management Studio
•	 AdventureWorks2012 sample database, which is available for download

from the CodePlex site at http://msftdbprodsamples.codeplex.com/
downloads/get/478214

Who this book is for
If you want to learn how to design, implement, and deliver successful database
solutions with SQL Server 2014, this is the book for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Each row in the Customer table represents an individual customer."

A block of code is set as follows:

[default]
DECLARE @Table2 TABLE (
COL1 [int],
COL2 [varchar](30),
COL3 [datetime],
 INDEX [ixc_col3] CLUSTERED (col3)
 WITH (FILLFACTOR=80),
 INDEX [ixnc_col1_col2] NONCLUSTERED (col1, col2)
 WITH (FILLFACTOR=80)
);

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Right-click
on User-Defined Data Types and choose New User-Defined Data Type."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server
Database Design Principles

Database design is one of the most important tasks in the Systems Development
Life Cycle (SDLC), also referred to as Application Development Life Cycle
(ADLC). That's because databases are essential for all businesses, and good design is
crucial to any business-critical, high-performance application. Poor database design
results in wasted time during the development process and often leads to unusual
databases that are unfit for use.

We'll be covering the following topics in this chapter:

•	 The database design process and considerations
•	 The table design process, which includes identifying entities and attributes,

creating a relationship between entities, and ensuring data integrity
•	 The basics of data normalization
•	 The SQL Server database architecture
•	 The importance of choosing the appropriate data type

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[8]

Database design
The database design process consists of a number of steps. The general aim of a
database design process is to develop an efficient, high-quality database that meets
the needs and demands of the application and business stakeholders. Once you have
a solid design, you can build the database quickly. In most organizations, database
architects and database administrators (DBAs) are responsible for designing
a database. Their responsibility is to understand the business and operational
requirements of an organization, model the database based on these requirements,
and establish who will use the database and how. They simply take the lead on the
database design project and are responsible for the management and control of the
overall database design process.

The database design process can usually be broken down into six phases, as follows:

•	 The requirement collection and analysis phase
•	 The conceptual design phase
•	 The logical design phase
•	 The physical design phase
•	 The implementation and loading phase
•	 The testing and evaluation phase

These phases of design do not have clear boundaries and are not strictly linear. In
addition, the design phases might overlap, and you will often find that due to real-
world limitations, you might have to revisit a previous design phase and rework
some of your initial assumptions.

The requirement collection and analysis phase
In this phase, you interview the prospective users, gather their requirements, and
discuss their expectations from the new database application. Your objective in
this phase is to gather as much information as possible from potential users and
then document these requirements. This phase results in a concise set of user
and functional requirements, which should be detailed and complete. Functional
requirements typically include user operations that need to be applied to the
database, information flow, type of operation, frequency of transactions, and data
updates. You can document functional requirements using diagrams, such as
sequence diagrams, data flow diagrams (DFDs), scenarios, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Moreover, you can also conduct an analysis of the current operating
environment—whether it's manual, a file processing system, or an old DBMS
system—and interact with users extensively to analyze the nature of the business to
be supported; you can also justify the need for data and databases. The requirement
collection and analysis phase can take a significant amount of time; however, it plays
a vital role in the success of the new database application. The outcome of this phase
is the document that contains the user's specifications, which is then used as the basis
for the design of the new database application.

The conceptual design phase
Your goal during the conceptual design phase is to develop the conceptual schema
of the database, which is then used to ensure that all user requirements are met and
do not conflict. In this step, you need to select the appropriate data model and then
translate the requirements that arise from the preceding phase into the conceptual
database schema by applying the concepts of the chosen data model, which does
not depend on RDBMS. The most general data model used in this phase is the
entity-relationship (ER) model, which is usually used to represent the conceptual
database design. The conceptual schema includes a concise description of the user's
data requirements, including a detailed description of the entity types, relationships,
and constraints.

The conceptual design phase does not include the implementation details. Thus,
end users can easily understand them, and they can be used as a communication
tool. During this phase, you are not concerned with how the solution will be
implemented. In the conceptual design phase, you only make general design
decisions that may or may not hold when you start looking at the technologies and
project budget available. The information you gather during the conceptual design
phase is critical to the success of your database design.

The logical design phase
During the logical design phase, you map the high-level, conceptual, entity-relationship
data model into selected RDBMS constructs. The data model that is chosen will
represent the company and its operations. From there, a framework of how to provide
a solution based on the data model will be developed. In this phase, you also determine
the best way to represent the data, the services required by the solution, and how to
implement these services. The data model of a logical design will be a more detailed
framework than the one developed during the conceptual design phase. This phase
provides specific guidelines, which you can use to create the physical database design.

You do little, if any, physical implementation work at this point, although you may
want to do a limited prototyping to see whether the solution meets user expectations.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[10]

The physical design phase
During the physical design phase, you make decisions about the database environment
(database server), application development environment, database file organization,
physical database objects, and so on. The physical design phase is a very technical
stage in the database design process. The result of this phase will be a physical design
specification that will be used to build and deploy your database solution.

The implementation and loading phase
During this phase, you implement the proposed database solution. The phase
includes activities such as the creation of the database, the compilation and execution
of Data Definition Language (DDL) statements to create the database schema and
database files, the manual or automatic loading of the data into a new database
system from a previous system, and finally, the configuration of the database and
application security.

The testing and evaluation phase
In this phase, you perform the testing of your database solution to tune it for
performance, integrity, concurrent access, and security restrictions. Typically, this
is done in parallel with the application programming phase. If the test fails, you
take several actions such as adjusting the performance based on a reference manual,
modifying the physical design, modifying the logical design, and upgrading or
changing the SQL Server software and database server hardware.

The database design life cycle recap
The following diagram briefly illustrates the database design process:

Requirement
collection

and
analysis phase

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Conceptual
design phase

Logical
design phase

Physical
design phase

Implementation
and

loading phase

Testing
and

evaluation
phase

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Table design
As mentioned earlier, you complete the table and data design activities during the
conceptual and logical design phases of the database design. During the conceptual
design phase, you identify specific data needs and determine how to present the
data in the database solution, which is based on the information you collected in
the requirement gathering phase. You then use the information from the conceptual
design phase in the logical design phase to design and organize your data structure.
In the logical design phase, you also identify the requirements for database objects to
store and organize the data.

Often, one of the most time-consuming and important tasks in the physical design
phase is the table design. During the physical design phase, you identify the following:

•	 Entities and attributes
•	 Relationships between entities

Tables
You use tables to store and organize data in the database. A table contains columns
and rows. For example, the following is an example of how a Customer table might
look. Each row in the Customer table represents an individual customer. The column
contains information that describes the data for the individual customer. Each
column has a data type, which identifies a format in which the data is stored in that
column. Some data types can have a fixed length, which means that the size does
not depend on the data stored in it. You also have data types with variable lengths,
which means their length changes to fit the data they possess.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[12]

Entities
Entities are business objects that your database contains, and they are used to
logically separate the data in the database. An entities list, which you need to create,
is used to determine the tables as part of the physical design phase. You create a
separate table in the database for each entity (such as customers, employees, orders,
and the payroll). Entities are characterized by attributes. For example, you declare
each individual attribute of an entity (such as an individual customer, an individual
order, an individual employee, or an individual payroll record) as a row in the table.

Attributes
An attribute is a property of an entity. For example, the employee entity has
attributes such as the employee ID, first name, last name, birthday, social security
number, address, country, and so on. Some attributes are unique values. For
example, each customer in a Customer table has a unique customer number.
Attributes are used to organize specific data within the entity.

Relationships
Relationships identify associations between the data stored in different tables.
Entities relate to other entities in a variety of ways. Table relationships come in
several forms, listed as follows:

•	 A one-to-one relationship
•	 A one-to-many relationship
•	 A many-to-many relationship

A one-to-one relationship
A one-to-one relationship represents a relationship between entities in which one
occurrence of data is related to one and only one occurrence of data in the related
entity. For example, every employee should have a payroll record, but only one
payroll record. Have a look at the following diagram to get a better understanding
of one-to-one relationships:

EmployeeID
Name

Address
City

State

Employee

EmployeeID
Grade
Salary

Position

Payroll

1 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

A one-to-many relationship
A one-to-many relationship seems to be the most common relationship that exists in
relational databases. In the one-to-many relationship, each occurrence of data in one
entity is related to zero or more occurrences of data in a second entity. For example,
each department in a Department table can have one or more employees in the
Employee table. The following diagram will give you a better understanding of one-
to-many relationships:

EmployeeID
Name

Address
City

State
DepartmentID

Employee

DepartmentID
Name

Department

∞ 1

A many-to-many relationship
In a many-to-many relationship, each occurrence of data in one entity is related
to zero or more occurrences of data in a second entity, and at the same time, each
occurrence of the second entity is related to zero or more occurrences of data in the
first entity. For example, one instructor teaches many classes, and one class is taught
by many instructors, as shown in the following diagram:

InstructorID
Name

Subject
ClassID

Instructor

ClassID
Name

InstructorID

Class

∞ ∞

A many-to-many relationship often causes problems in practical examples of
normalized databases, and therefore, it is common to simply break many-to-many
relationships in to a series of one-to-many relationships.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[14]

Data integrity
Data integrity ensures that the data within the database is reliable and adheres to
business rules. Data integrity falls into the following categories:

•	 Domain integrity: This ensures that the values of the specified columns are
legal, which means domain integrity ensures that the value meets a specified
format and value criteria. You can enforce domain integrity by restricting the
type of data stored within columns (through data types), the format (through
CHECK constraints and rules), or the range of possible values (through
FOREIGN KEY constraints, CHECK constraints, DEFAULT definitions, NOT NULL
definitions, and rules).

•	 Entity integrity: This ensures that every row in the table is uniquely identified
by requiring a unique value in one or more key columns of the table. You can
enforce entity integrity through indexes, UNIQUE KEY constraints, PRIMARY
KEY constraints, or IDENTITY properties.

•	 Referential integrity: This ensures that the data is consistent between related
tables. You can enforce referential integrity through PRIMARY KEY constraints
and FOREIGN KEY constraints.

•	 User-defined integrity: This ensures that the values stored in the database
remain consistent with established business policies. You can maintain
user-defined integrity through business rules and enforce user-integrity
through stored procedures and triggers.

The basics of data normalization
Normalization is the process of reducing or completely eliminating the occurrence
of redundant data in the database. Normalization refers to the process of designing
relational database tables from the ER model. It is a part of the logical design process
and is a requirement for online transaction processing (OLTP) databases. This is
important because it eliminates (or reduces as much as possible) redundant data.
During the normalization process, you usually split large tables with many columns
into one or more smaller tables with a smaller number of columns. The main
advantage of normalization is to promote data consistency between tables and data
accuracy by reducing the redundant information that is stored. In essence, data only
needs to be changed in one place if an occurrence of the data is stored only once.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The disadvantage of normalization is that it produces many tables with a relatively
small number of columns. These columns have to then be joined together in order for
the data to be retrieved. Normalization could affect the performance of a database
drastically. In fact, the more the database is normalized, the more the performance
will suffer.

The normal forms
Traditional definitions of normalization refer to the process of modifying database
tables to adhere to accepted normal forms. Normal forms are the rules of
normalization. They are a way to measure the levels or depth that a database is
normalized to. There are five different normal forms; however, most database solutions
are implemented with the third normal form (3NF). Both the forth normal form (4NF)
and the fifth normal form (5NF) are rarely used and, hence, are not discussed in this
chapter. Each normal form builds from the previous. For example, the second normal
form (2NF) cannot begin before the first normal form (1NF) is completed.

A detailed discussion of all of the normal forms is outside the scope of
this book. For help with this, refer to the Wikipedia article at http://
en.wikipedia.org/wiki/Database_normalization.

The first normal form (1NF)
In 1NF, you divide the base data into logical units called entities or tables. When
you design each entity or table, you assign the primary key to it, which uniquely
identifies each record inside the table. You create a separate table for each set of
related attributes. There can be only one value for each attribute or column heading.
The 1NF eliminates the repetition of groups by putting each one in a separate table
and connecting them with a one-to-many relationship.

The second normal form (2NF)
The objective of 2NF is to avoid the duplication of data between tables. In 2NF,
you take data that is partly dependent on the primary key and enter it into another
table. The entity is in 2NF when it meets all of the requirements of 1NF and has no
composite primary key. In 2NF, you cannot subdivide the primary key into separate
logical entities. You can, however, eliminate functional dependencies on partial keys
by putting those fields in a separate table from the ones that are dependent on the
whole key.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[16]

The third normal form (3NF)
The 3NF objective is used to remove the data in a table that is not dependant on the
primary key. In 3NF, no non-key column can depend on another non-key column,
so all of the data applies specifically to the table entity. The entity is in 3NF when
it meets all of the requirements of 1NF and 2NF and there is no transitive
functional dependency.

Denormalization
Denormalization is the reverse of the normalization process, where you combine
smaller tables that contain related attributes. Applications such as online analytical
processing (OLAP) applications are good candidates for denormalized data. This is
because all of the necessary data is in one place, and SQL Server does not require to
combine data when queried.

The SQL Server database architecture
SQL Server maps the database over a set of operating system files that store the
database objects. Physically, a SQL Server database is a set of two or more operating
system files. Each database file has two names:

•	 A logical filename: This is the name you reference in Transact-SQL statements
•	 A physical filename: This is the name that you can view in the operating

system directory tree

SQL Server database files can be stored on either a FAT or an NTFS filesystem. You
can create three types of SQL Server database files, listed as follows:

•	 Primary data file: This is the initial default file that contains the configuration
information for the database, pointers to the other files in the database, and
all of the database objects. Every database has one primary data file. The
preferred filename extension for a primary data file is .mdf. Although you
can store user objects within the main data file, but it is not recommended.

•	 Secondary data file: Secondary data files are optional and used to hold
user database objects. You can create one or more secondary files within
the database to hold the user database objects. The recommend filename
extension for a secondary data file is .ndf. Secondary data files can be spread
across multiple disks and are useful as the database's additional storage area.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

•	 Transaction log file: This is the log file for the database that holds
information about all database modification events. The information in
the transaction log file is used to recover the database. A database can
have one or more transaction log files. Multiple transaction log files do not
improve database performance as the SQL Server database engine writes
log information sequentially. The recommended filename extension for
transaction logs is .ldf.

Pages
SQL Server uses pages as a basic unit of data storage. The disk space allocated
to a data file (.mdf or .ndf) in a database is logically divided into pages that are
numbered contiguously from 0 to n. SQL Server performs disk I/O operations at
a page level, which means that the SQL Server database engine reads or writes the
whole data page during the Data Manipulation Language (DML) operation.

In SQL Server, the page is an 8 KB block of contiguous disk space. SQL Server can
store 128 pages per megabyte of allocated storage space. Each page starts with 96
bytes of header information about the page. If the rows are small, multiple rows can
be stored on a page, as shown in the following diagram:

Free space

Row
offset2 13

SQL Server Data Page

Page header

Data row 1

Data row 2

Data row 3

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[18]

The rows of a SQL Server table cannot span multiple pages of data. That is why the
rows are limited to a maximum of 8,060 bytes of data. However, there is an exception
to this rule for data types that are used to store large blocks of text. The data for such
data types is stored separately from the pages of the small row data. For example, if
you have a row that exceeds 8,060 bytes, which includes a column that contains large
blocks of text, SQL Server dynamically moves this text to a separate text/image page,
as shown in the following diagram:

Free space

2 13

SQL Server Data Page

SQL Server
Text/Image Page

Page header info

Row 1 - Large text data

Page header info

Data row 1

Data row 2

Data row 3

SQL Server uses the following page types in the data files of a SQL Server
database: Data, Index, Text/Image, Global Allocation Map, Shared
Global Allocation Map, Page Free Space, Index Allocation Map, Bulk
Changed Map, and Differential Changed Map. A detailed discussion
about the contents of these page types used in the data files of a SQL
Server database is beyond the scope of this chapter. For help with this,
refer to the Understanding Pages and Extents article at http://technet.
microsoft.com/en-US/library/ms190969(v=sql.120).aspx.

Extents
An extent is eight contiguous pages (64 KB) of disk storage. SQL Server can store
16 extents per megabyte of allocated storage space. A small table can share extents
with other database objects to make better use of available space, with the limitation
of eight objects per extent. Each page in an extent can be owned by different user
objects as shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

SQL Server Data Page

Table 2

SQL Server Data Page SQL Server Data Page SQL Server Data Page

Table 2 Table 3 Table 4

SQL Server Data Page

Table 5

SQL Server Data Page SQL Server Data Page SQL Server Data Page

Table 6 Table 7 Table 8

Extent

The transaction log file architecture
SQL Server database transaction log files contain the information that is needed to
recover the SQL Server database if a system failure occurs. A database can have one
or more transaction log files. SQL Server records each DML operation performed
against the database in the transaction log file. When a system failure occurs,
SQL Server enters into the automatic recovery mode on startup, and it uses the
information in the transaction log to recover the database. The automatic recovery
process rolls committed transactions forward (which means that it makes changes to
the database) and reverts any uncommitted transactions post system failure.

SQL Server divides the physical transaction log file into smaller segments called
Virtual Log Files (VLFs). The virtual log file only contains a log record for active
transactions. SQL Server truncates the virtual log file once it is no longer contains
active transactions. The virtual log file has no fixed size, and there is no fixed number
of virtual log files per physical transaction log file. You cannot configure the size and
number of virtual log files; the SQL Server database engine dynamically manages the
size and number of the virtual log files each time you create or extend the physical
transaction log file.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[20]

SQL Server tries to keep the number of virtual log files to a minimum; however,
you will end up with too many virtual log files if you incorrectly size the physical
transaction log file or set it to grow in small increments. This is because whenever
the physical transaction log file grows, the SQL Server database engine adds more
virtual log files to the physical transaction log file. Having too many virtual log files
can significantly impair the performance of the database. Therefore, you need to
periodically monitor the physical transaction log file to check for a high number of
virtual log files. You can run DBCC LOGINFO to check the number of the virtual log
files in the database. The following is the syntax of this command:

USE [YourDatabaseName];
DBCC LOGINFO;

You can also use DBCC SQLPREF to view the amount of space available in the
transaction log file.

The operation and workings of a transaction log
The following diagram illustrates the workings of the transaction log during the
data manipulation language operation:

User executes INSERT,
UPDATE, and DELETE
statements in SQL Server

Once the transaction
is committed, all
modified records
from log cache are
written to one or
more transaction log
file on disk

Log Cache

SQL Server Service

Buffer Cache

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

UPDATE

SET

WHERE

INSERT

VALUES

[Table1]

[Col1] = 9219

[Col2] = N'Record1'

INTO [Table1]

(9324, N'Record2')

Once the affected

records are modified,

the modified records

are then written to log

If they do not already exist,

SQL Server loads the affected

data pages into the buffer cache,

where they will be modified by

INSERT, UPDATE, and
DELETE operations

DataPage DataPage DataPage
1

2

3

4

Database

The SQL Server database transaction log acts as a write-ahead log (as SQL Sever
writes to the log before writing to the disk) for modifications to the database, which
means that the modification of the data is not written to disk until a checkpoint
occurs in the database. For example, as illustrated in the previous diagram, when
you execute an INSERT, UPDATE, or DELETE statement, the SQL Server database
engine first checks the buffer cache for the affected data pages. If the affected data
pages are not in the buffer cache, the SQL Server database engine loads these affected
data pages into a buffer cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

The SQL Server database engine then logs the operation in the log cache, which
is another designated area in memory. When the transaction is committed, the
modifications associated with the transaction are written from the log cache to the
transaction log file on disk. Completed transactions are written to the database
periodically by the checkpoint process.

Filegroups
In SQL Server databases, you can group the secondary data files logically for
administrative purposes. This administrative grouping of data files is called
filegroups. By default, the SQL Server databases are created with one filegroup, also
known as the default filegroup (or primary filegroup) for the database. The primary
database is a member of the default filegroup. You can add secondary database
files to the default filegroup; however, this is not recommended. It is recommended
that you create separate filegroups for your secondary data files. This is known
as a secondary filegroup (or user-defined filegroup). The SQL Server database
engine allows you to create one or more filegroups, which can contain one or more
secondary data files. Transaction log files do not belong to any filegroup. You
can query the sys.filegroups system catalog to list all of the information about
filegroups created within the SQL Server database.

The main advantage of filegroups is that they can be backed up or restored
separately, or they can be brought online or taken offline separately.

We will learn about creating a database and filegroups in the
next chapter.

The importance of choosing the
appropriate data type
A data type determines the type of data that can be stored in a database table
column. When you create a table, you must decide on the data type to be used for
the column definitions. You can also use data types to define variables and store
procedure input and output parameters. You must select a data type for each column
or variable appropriate for the data stored in that column or variable. In addition,
you must consider storage requirements and choose data types that allow for
efficient storage. For example, you should always use tinyint instead of smallint,
int, or bigint if you want to store whole positive integers between 0 and 255. This
is because tinyint is a fixed 1-byte field, whereas smallint is 2 bytes, int is 4 bytes,
and bigint is a fixed 8-byte field.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[22]

Choosing the right data types for your tables, stored procedures, and variables
not only improves performance by ensuring a correct execution plan, but it also
improves data integrity by ensuring that the correct data is stored within a database.
For example, if you use a datetime data type for a column of dates, then only valid
dates will be stored in this column. However, if you use a character or numeric
data type for the column, then eventually, someone will be able to store any type of
character or numeric data value in the column that does not represent a date.

SQL Server 2014 supports three basic data types: system data types defined by SQL
Server, alias data types based on system data types, and .NET Framework common
language runtime (CLR) user-defined data types (UDT).

SQL Server 2014 system data types
SQL Server defines a wide variety of system data types that are designed to meet
most of your data storage requirements. The system data types are organized into
the following categories:

•	 Exact numeric data types include bigint, int, smallint, tinyint, bit,
numeric, money, and smallmoney

•	 Approximate numeric data types include float and real
•	 Character string data types include char, varchar, and text
•	 Unicode character string data types include nchar, nvarchar, and ntext
•	 Date and time data types include date, time, smalldatetime, datetime,

datetime2, and datetimeoffset
•	 Binary string data types include: binary, varbinary, and image
•	 Other data types include cursor, timestamp, hierarchyid,

uniqueidentifier, sql_variant, xml, table, and spatial types (geometry
and geography)

Out of these data types, the following data types are not supported in
memory-optimized tables and natively compiled stored procedures:
datetimeoffset, geography, geometry, hierarchyid, rowversion, sql_variant,
UDT, xml, varchar(max), nvarchar(max), image, xml, text, and ntext. This is
because the size of the memory-optimized tables is limited to 8,060 bytes, and they
do not support off-row or large object (LOB) storage.

For more information on the data types supported in memory-optimized
tables and natively compiled stored procedures, refer to the Supported Data
Types article at http://msdn.microsoft.com/en-us/library/
dn133179(v=sql.120).aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Alias data types
In SQL Server, you can create alias data types, also known as user-defined data
types. The purpose of the alias data types is to create a custom data type to help
ensure data consistency. The alias data types are based on system data types. You
can either use SQL Server 2014 Management Studio or the CREATE TYPE and DROP
TYPE Transact-SQL DDL statements to create and drop alias data types.

Creating and dropping alias data types with
SSMS 2014
Perform the following steps to create alias data types:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder, then the database

for which you want to see user-defined types, then Programmability,
and then Types.

3.	 Right-click on User-Defined Data Types and choose New User-Defined
Data Type.

4.	 Enter the information about the data type you want to create.

To drop the alias data type, right-click on the data type and choose Delete.

Creating and dropping alias data types using the
Transact-SQL DDL statement
In this section, we will use the CREATE TYPE and DROP TYPE Transact-SQL DDL
statements to create and drop alias data types.

Creating an alias data type using CREATE TYPE
The following is the basic syntax for the CREATE TYPE Transact-SQL DDL statement:

CREATE TYPE [schema.]name
FROM base_type[(precision [, scale])] [NULL | NOT NULL] [;]

In the following example, T-SQL code creates the alias data type called
account_type to hold the six-character book type:

CREATE TYPE dbo.account_type
FROM char(6) NOT NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server Database Design Principles

[24]

Dropping an alias data type using DROP TYPE
The following is the basic syntax for the DROP TYPE Transact-SQL DDL statement:

DROP TYPE [schema.]name [;]

The following example T-SQL code drops the alias data type called account_type:

DROP TYPE dbo.account_type

CLR user-defined types
CLR user-defined types are data types based on CLR assemblies. A detailed
discussion on CLR data types is outside the scope of this chapter. For help with this,
refer to the CLR User-Defined Types article at http://msdn.microsoft.com/en-us/
library/ms131120(v=sql.120).aspx.

Summary
Designing a new database is very similar to designing anything else, such as a
building, a car, a road, a bridge through the city, or a book like this one. In this
chapter, we learned about the key stages to design a new database. Next, we talked
about the normal form, the process of normalizing and denormalizing data, entities,
attributes, relationships, and data integrity. Then, we learned about the architecture
of SQL Server databases and got an understanding of how SQL Server uses the
transaction log when you execute INSERT, UPDATE, or DELETE statements in SQL
Server. Finally, we learned about why it is important to choose appropriate data
types for your databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL
Statements in SQL Server

Once you have completed the physical design phase of the database design
process, the next step is to implement your proposed database solution.

The Structured Query Language (SQL) of Microsoft SQL Server is called
Transact-SQL (T-SQL). The Transact-SQL statements have three categories:
Data Definition Language (DDL) statements, Data Control Language (DCL)
statements, and Data Manipulation Language (DML) statements that can be
used to create, modify, and query SQL Server databases and tables.

In this chapter, we'll be covering the following topics:

•	 Understanding DDL, DCL, and DML language elements
•	 Understanding the purpose of SQL Server 2014 system databases
•	 Exploring database recovery models
•	 Creating and modifying databases
•	 Creating and modifying database schemas
•	 Creating and modifying tables
•	 Grating, revoking, and denying permissions to securables

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[26]

Understanding the DDL, DCL, and DML
language elements
As mentioned earlier, the Transact-SQL statements have three categories: DDL
statements, DCL statements, and DML statements. Each of the commands in these
categories include keywords and parameters that can be used to create, modify,
and query SQL Server 2014 databases and tables. Let's have a quick look at the
keywords and the purpose of each T-SQL statement type in the following sections.

Data Definition Language (DDL) statements
The T-SQL DDL statements include keywords that you can use to create databases
and database objects, modify databases and database objects, and remove databases
and database objects. The DDL statements consist of the following keywords:
CREATE, ALTER, and DROP. Using these DDL keywords, you can create and modify
the structure of your databases and create and modify all kinds of database objects
(tables, schemas, indexes, stored procedures, functions, views, triggers, login
accounts, database users, server and database roles, credentials, extended events,
event notifications, and service broker objects).

To execute DDL statements, you must have the appropriate permissions to SQL
Server and database. By default, members of the sysadmin fixed server role and the
db_owner fixed database role have permissions to execute DDL statements.

Data Manipulation Language (DML) statements
We use DML statements to insert, update, delete, and query data that is stored in
SQL Server database tables. The DML statements consist of the following commands:
SELECT, INSERT, BULK INSERT, UPDATE, MERGE, and DELETE.

To execute DML statements, you must have the appropriate permissions in the
database. By default, members of the sysadmin fixed server role and the db_owner and
db_writer fixed database roles have the permissions to execute DML statements.

Data Control Language (DCL) statements
DCL statements enable you to grant, deny, and revoke permissions on databases
and database objects. The DCL statements include the standard GRANT and REVOKE
keywords, as well as the T-SQL DENY statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

To execute DCL statements, you must have the appropriate permissions for the
database. By default, members of the sysadmin and securityadmin fixed server
roles and the db_owner and db_securityadmin fixed database roles have the
permissions to execute DCL statements.

In this chapter, we will use the DDL commands to create, modify,
and delete databases and tables, and DCL commands to grant, deny,
and revoke permissions on databases and tables.
We will discuss the DML commands in the next two chapters.

Understanding the purpose of SQL
Server 2014 system databases
Before you start creating databases on a SQL Server 2014 instance, you should have
a good understanding of the system databases that are installed by default when a
SQL Server 2014 instance is created. Each SQL Server 2014 system database has a
specific purpose and is required to run SQL Server. So, having a good understanding
of the SQL Server system databases is useful when you are troubleshooting SQL
Server issues.

SQL Server 2014 system databases
By default, when you install a SQL Server 2014 instance, the SQL Server 2014 setup
program creates the following five system databases: master, model, msdb, tempdb,
and resource. Apart from these system databases, there is another system database
called distribution that does not exist until you configure replication on the SQL
Server instance.

The master database
The master database, as its name implies, is the most important database in a SQL
Server 2014 instance. In fact, it is the heart of a SQL Server 2014 instance because,
without it, SQL Server will not start. The master database contains the following
system-level configuration information:

•	 Information on how a SQL Server 2014 instance is initialized
•	 The names, locations, and other information about the databases hosted

within the instance of SQL Server 2014

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[28]

•	 All settings for logins, and the roles the logins are members of
•	 Information about fixed and user-defined server roles
•	 Other SQL Server instance-level security settings (such as certificates, keys,

and so on)
•	 AlwaysOn and database mirroring configuration information
•	 Resource Governor configuration information
•	 Information about how linked servers are configured
•	 Configuration information of all SQL Server 2014 instance endpoints
•	 Other system-level configuration settings (such as system errors and

warnings, assemblies, available system languages, and so on)

The model database
The model database is used as a template for creating a new database. In other
words, every new database is modeled on a model database. Any modifications
(such as a minimum size, default objects, predefined database users, and so on)
made in the model database are automatically applied to the databases that are
created afterwards.

The msdb database
The msdb database is another critical database within a SQL Server 2014 instance,
as it acts as a backend database for the Microsoft SQL Server Agent service. For
example, the msdb database contains job scheduling and job history information.

The msdb database also stores information about many other features of SQL Server.
These SQL Server features are alerts, SSIS packages, database mail, the database
backup and restore feature, maintenance plans, log shipping, change data capture
(CDC), and service broker.

The tempdb database
The tempdb database is a temporary shared workspace for temporary objects
that are created by internal processes of the SQL Server Database Engine instance
and temporary objects that are created by users or applications' processes. These
temporary objects include local and global temporary tables, stored procedures, table
variables, and cursors. In addition to temporary objects, tempdb acts as a version
store for read-committed and snapshot isolation transactions. Furthermore, tempdb
stores online index operations, intermediate query results, database consistency
checks, bulk load operations for tables with triggers, and AFTER triggers. The tempdb
database is automatically recreated every time SQL Server is restarted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

The resource database
The resource database is a hidden read-only database that acts as a physical
store for SQL Server instance system objects such as system tables, metadata,
and system-stored procedures. These system objects are referenced logically
by other databases.

The resource database does not contain any user data, information about your SQL
Server instance, or databases hosted on the SQL Server instance. You should not move
or rename the resource database because SQL Server will not start if you do so.

The distribution database
The distribution database stores all metadata for replication. The distribution
database is created only on replication distributors. The distribution database
does not exist until you configure replication on the SQL Server instance.

An overview of database recovery models
The recovery model determines how the transactions are logged, whether the
backups of transaction logs are allowed, and the type of restore options available
to recover the database. The SQL Server 2014 database can be configured to one
of three recovery models, which are explained in the following sections.

The simple recovery model
When you use the simple recovery model, SQL Server logs a minimal amount of
transactions in the transaction log file, and the transaction log is truncated as soon as
transactions are committed. Simple recovery does not allow backups of transaction
log files; therefore, databases with a simple recovery model are vulnerable to data
loss because you cannot restore the databases to a specific point in time.

The bulk-logged recovery model
With the bulk-logged recovery model, bulk operations are minimally logged in the
transaction log file, reducing the overall size of the transaction log file. All other
operations are fully logged in the transaction log file. The backups of transaction
log files are allowed in a bulk-logged recovery model. Therefore, in most situations,
you can restore the databases to a specific point in time using the bulk-logged
recovery model.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[30]

Full recovery
With a full recovery model, SQL Server logs all database changes in the transaction
log, and the transaction log continues to grow until the backup is performed. The
full recovery model supports the greatest number of backup and restore options.
Therefore, you can recover to a specific point in time.

Creating and modifying databases
You can use either Transact-SQL DDL statements or SQL Server Management
Studio to create and modify databases. In the following subsections, we will
discuss these options.

Create, modify, and drop databases with
T-SQL DDL statements
In this section, we will cover Transact-SQL DDL statements that are used to create,
alter and modify SQL Server databases.

Creating a database with T-SQL DDL statements
We use the CREATE DATABASE statement to create a new database on SQL Server.
The general syntax for the CREATE DATABASE command is as follows:

CREATE DATABASE database_name
[CONTAINMENT = {NONE | PARTIAL}]
[ON [PRIMARY] [<filespec> [,...n]
[,<filegroup> [,...n]]
[LOG ON <filespec> [,...n]]]
[COLLATE collation_name]
[WITH <option> [,...n]]
[;]

The following are the arguments of the CREATE DATABASE command:

•	 database_name: This is the name of new SQL Server database. The database
name must be unique with an instance of SQL Server.

•	 CONTAINMENT: This is used to specify the containment status of the database.
Specify NONE for non-contained databases, and PARTIAL for partially
contained databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

•	 ON [PRIMARY]: This is used to specify the files in the primary filegroup. If this
parameter is not specified, the first file in the list becomes the primary file for
the database.

•	 LOG ON: This is used to specify the location for the transaction log files.
•	 filespec: The filespec arguments are used to control file properties. This

option is supported for both the data and transaction log file. The filespec
parameters include:

°° Name: This is the logical name of the database. We use this name in
Transact-SQL statements to refer to the file.

°° FILENAME: This specifies the operating system name and file path.

SQL Server 2014 Database Engine enables you to store SQL Server
database files as Windows Azure Blobs Storage. This is one of the new
features of SQL Server 2014. For more information about this feature,
refer to the SQL Server Data Files in Windows Azure article at http://
msdn.microsoft.com/en-us/library/dn385720.aspx.

°° Size: This is the initial size of the database file. The value can be
specified in KB, MB, GB, or TB.

°° MAXSIZE: This is used to specify the maximum size limit for
the database file. The value can be specified in KB, MB, GB, TB,
or as UNLIMITED.

°° FILEGROWTH: This is used to specify the automatic growth increments
for the database file. The value can be specified in KB, MB, GB, TB,
or percentage (%).

•	 COLLATE: This specifies the default collation setting for the database. If not
specified, the server default collation is used as the database collation. For
more information about the Windows and SQL collation names, refer to the
COLLATE (Transact-SQL) topic at http://msdn.microsoft.com/en-gb/
library/ms184391(v=sql.120).aspx.

•	 WITH <option>: This is used to configure the following external
excess options:

°° DEFAULT_FULLTEXT_LANGUAGE

°° DEFAULT_LANGUAGE

°° DB_CHAINING, TRUSTWORTHY

°° NESTED_TRIGGERS

°° TWO_DIGIT_YEAR_CUTOFF

°° TRANSFORM_NOISE_WORDS

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[32]

A detailed discussion about a database's external excess options
is beyond the scope of this chapter. For help with this, refer
to http://technet.microsoft.com/en-us/library/
ms176061(v=sql.120).aspx.

Example 1 – creating a database based on a model
database
The following CREATE DATABASE script creates a CH02_01 database using the default
parameters from the model database:

USE [master];
GO

CREATE DATABASE [CH02_01];
GO

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Example 2 – creating a database that explicitly
specifies the database data and the transaction log
file's filespecs properties
The following CREATE DATABASE script creates the CH02_02 database by explicitly
specifying data and the transaction log file's filespecs properties:

USE [master];
GO

CREATE DATABASE CH02_02 ON PRIMARY
(NAME='CH02_02_Data', FILENAME = 'C:\SQLDATA\CH02_02.mdf',
SIZE=10MB, MAXSIZE=20, FILEGROWTH=10%)
 LOG ON
(NAME='CH02_02_log', FILENAME = 'C:\SQLLog\CH02_02_log.ldf',
SIZE=10MB, MAXSIZE=200, FILEGROWTH=20%);
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Example 3 – creating a database on multiple
filegroups
The following CREATE DATABASE script creates the CH02_03 database on the
following two filegroups:

•	 The primary filegroup, which contains CH02_03DAT01 and CH02_02DAT02
•	 The user-defined filegroup, CH02_FG1, which only contains the database file,

that is, CH02_03DAT03

The following code generates the CH02_03 database:

USE [master];
GO

CREATE DATABASE [CH02_03]
 CONTAINMENT = NONE
 ON PRIMARY
(NAME = N'CH02_03DAT01 ', FILENAME = N'C:\Program Files\Microsoft
SQL Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\CH02_03DAT01.mdf', SIZE
= 524288KB, FILEGROWTH = 102400KB),
(NAME = N'CH02_03DAT02', FILENAME = N'C:\Program Files\Microsoft
SQL Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\CH02_03DAT02.ndf', SIZE
= 524288KB, FILEGROWTH = 102400KB),
 FILEGROUP [CH02_FG1]
(NAME = N'CH02_03DAT03', FILENAME = N'C:\Program Files\Microsoft
SQL Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\CH02_03DAT03.ndf', SIZE
= 262144KB, FILEGROWTH = 102400KB)
 LOG ON
(NAME = N'CH02_03_log', FILENAME = N'C:\Program Files\Microsoft
SQL Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\CH02_03_log.ldf', SIZE =
262144KB, FILEGROWTH = 102400KB)
GO

Modifying a database with T-SQL DDL
statements
We use ALTER DATABASE to modify an existing SQL Server database. Some common
situations for modifying an existing SQL Server database include:

•	 Adding or removing filegroups and database files to an existing database
•	 Adding or removing transaction log files to an existing database
•	 Manually expanding data and/or transaction log file sizes

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[34]

•	 Changing data and/or transaction log file growth settings
•	 Setting database options
•	 Changing the database default collation

The following is the basic syntax for the ALTER DATABASE statement:

ALTER DATABASE database_name
ADD FILE <filespec> [,...n]
[TO FILEGROUP {filegroup_name | DEFAULT}]
| ADD LOG FILE <filespec> [,...n]
| REMOVE FILE logical_filename
| MODIFY FILE filespec

The following are the arguments of the ALTER DATABASE command:

•	 database_name: This is the name of a new SQL Server database. The
database name must be unique with an instance of SQL Server.

•	 ADD FILE: This argument adds a file to the database.
•	 TO FILEGROUP: This will be the name of the filegroup to which the specified

file will be added.
•	 REMOVE FILE: This argument removes a file from the database.
•	 MODIFY FILE: This argument specifies the file that should be modified.

Example – adding a secondary data file to an
existing database
The following example uses ALTER DATABASE to add a secondary data file to the
CH2_03 database user-defined filegroup (CH02_FG1):

USE [master];
GO
ALTER DATABASE [CH02_03] ADD FILE (NAME = N'CH02_03DAT04',
FILENAME = N'C:\Program Files\Microsoft SQL
Server\MSSQL12.MSSQLSERVER\MSSQL\DATA\CH02_03DAT04.ndf', SIZE =
524288KB, FILEGROWTH = 102400KB) TO FILEGROUP [CH02_FG1];
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

You can also use the SET clause of the ALTER DATABASE statement to change database
options. For example, you can run the following command to set the recovery model
of the CH02_03 database to FULL:

USE [master];
GO

ALTER DATABASE [CH02_03] SET RECOVERY FULL WITH NO_WAIT;
GO

Dropping a database with T-SQL DDL
statements
When you no longer need a database, you can use the DROP DATABASE statement
to delete the database from SQL Server. The following is the basic syntax for
DROP DATABASE:

DROP DATABASE database_name;

For example, you run the following command to drop the CH02_01 database:

USE [master];
GO

DROP DATABASE CH02_01;
GO

Create, modify, and drop databases with
SSMS 2014
You can also use SQL Server 2014 Management Studio to create, modify, and drop
SQL Server databases. In this section, we will cover this GUI tool.

Creating a database with SSMS 2014
Here are the steps for creating databases with SQL Server 2014 Management Studio:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, right-click on the Databases folder and select New

Database from the context menu. This opens the New Database window.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[36]

3.	 In the General page of the New Database window, type in CH02_04 in the
Database name textbox.

4.	 On the same page, select the owner of the database. By default, the user who
creates the database is set as the owner of the database.

5.	 In the Database files section, configure the data and transaction log file
settings for this database. For the purposes of this demonstration, we will
add a user-defined filegroup called CH02_04FG that contains one secondary
data file named CH02_04Data02, as shown in the following screenshot:

6.	 To change database options, select Options. Change options as necessary and
then click on OK to create a database, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Modifying a database with SSMS 2014
This section illustrates how you can modify an existing SQL Server database using
SQL Server 2014 Management Studio. Here are the steps for modifying an existing
SQL Server database using SQL Server 2014 Management Studio:

1.	 In Object Explorer, expand the Databases folder.
2.	 Right-click on the CH02_04 database and select Properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[38]

3.	 In there, click on the Add button to add another secondary data file to the
user-defined filegroup of the CH02_04 database.

4.	 Configure the settings for this secondary data file, as shown in the
following screenshot:

5.	 Once done, click on OK to add this secondary data file to the CH02_04
database user-defined filegroup.

Dropping a database with SSMS 2014
To drop a database, use the following steps:

1.	 To drop a database, right-click on the name of the database you want to
delete and then choose Delete from the shortcut menu. This opens the
Delete Object window, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

2.	 Click on OK to drop the database from the SQL Server instance.

Creating and managing database
schemas
A schema is a logical container that groups objects of similar scope or ownership
together. By default, the database owner (dbo) schema is automatically created in
a SQL Server database. Unless you specify otherwise, all SQL Server user objects
are created in the database owner (dbo) schema. You can define different default
schemas for each user of the database. When you create a user database, SQL Server
automatically creates these schemas: sys, dbo, INFORMATION_SCHEMA, and guest.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[40]

You can query the sys.schemas system catalog view to see the schemas defined for
the database. The following is the syntax to query this system catalog:

SELECT * FROM sys.schemas

You can also use SQL Server Management Studio 2014 to list the schemas defined
for the database. To list the schemas defined for the database in SQL Server 2014
Management Studio, use the following steps:

1.	 In Object Explorer, expand the Databases folder.
2.	 Next, select the database and expand the Security folder.
3.	 Finally, expand the Schemas folder to list the schemas defined for

the database.

Managing schemas using T-SQL DDL
statements
You can use the CREATE SCHEMA statement to create a schema. The following is
the basic syntax of this command:

CREATE SCHEMA schema_name
AUTHORIZATION user_or_role

We use the ALTER SCHEMA statement to transfer objects from one schema to another.
The following is the basic syntax of this command:

ALTER SCHEMA schema_name
 TRANSFER [<entity_type> ::] securable_name [;]

To delete a schema, we use the DROP SCHEMA statement as follows:

DROP SCHEMA schema_name

Managing schemas using SSMS 2014
The following are the steps to create a schema from SQL Server 2014
Management Studio:

1.	 In the Object Explorer window, expand the Databases folder.
2.	 Next, expand the database in which you want to create a schema.
3.	 Expand the Security folder and then right-click on the Schemas folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

4.	 Choose New Schema and then enter the schema name and owner. You can
view and select from a list of available owners by clicking on the Search
button in the New Schema dialog box.

5.	 Click on OK to create a schema.

To delete a schema, right-click on the schema and choose Delete.

Creating and managing tables
After you have created the database, the next step is to create tables. Tables are
objects that store and organize data within a database. SQL Server provides the
following types of tables:

•	 Temporary tables: These exist within the tempdb database. These tables
do not exist permanently. Instead, temporary tables have a life and limited
accessibility, which differ according to their type. You can create two types
of temporary tables: local and global. The name of the local temporary
table must begin with a single number sign (#) and the name of the global
temporary table must begin with two number signs (##). Local temporary
tables are only available in the user session that created the table. Therefore,
SQL Server removes the local temporary table when the user session ends.
On the other hand, global temporary tables are available for all user sessions
after its creation. SQL Server removes the global temporary table once all
user sessions that refer to it are disconnected.

•	 System tables: These store data about SQL Server 2014 and its components.
SQL Server does not allow you to directly update the data of system tables.

•	 User-defined tables: These are standard tables that contain user data. You
can create up to 2,147,483,647 tables per user database.

•	 Partitioned tables: These are a type of user-defined tables whose data is
horizontally divided into distinct units and spread across one or more
filegroups in a database. Partitioned tables make the large tables and indexes
more manageable because you can manage them separately. By default, SQL
Server 2014 supports up to 15,000 partitions.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[42]

•	 File tables: Since SQL 2012, the SQL Server database engine lets you save files
and directories in a SQL Server database. The FileTable feature builds on top
of SQL Server FILESTREAM technology. File table has a fixed schema, and
every row in this table represents a file or directory. Files can be loaded in bulk
and updated and managed in T-SQL like any other column. SQL Server also
supports the backup and restore operations on file tables. File tables allow files
and similar objects to be stored in the SQL Server database, but allow access to
them as if they were stored in the filesystem. All this is possible without any
changes to client applications.

•	 Memory-optimized tables: SQL Server 2014 allows you to create
memory-optimized tables within a database. It is one of the key new
performance-related architectural enhancements to the SQL Server 2014
database engine. The benefit of memory-optimized tables is to improve the
performance of OLTP applications, as all the data for memory-optimized
tables resides in memory. All transactions on memory-optimized OLTP
tables are fully atomic, consistent, isolated, and durable (ACID).

Creating and modifying tables
You can use either Transact-SQL DDL statements or SQL Server Management Studio
to create and modify tables. In the following sections, we will discuss these options.

Creating and modifying tables with T-SQL
DDL statements
In this section, you will learn how to create and manage tables using T-SQL
DDL statements.

Creating a table with T-SQL DDL statements
We use the CREATE TABLE statement to create tables within a database. The following
is the basic syntax for this command:

CREATE TABLE [[database_name.]schema.]table_name
(column_name data_type | [column_definition] |
[computed_column], [table_constraint])
[ON filegroup | partition_scheme | DEFAULT]
[TEXTIMAGE_ON filegroup|DEFAULT]
[FILESTREAM_ON partition_scheme_name | filegroup | default]
 [WITH (<table_option> [,...n])]
[;]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

For example, enter and execute the following T-SQL code in the query editor to
create a Book_Info table within a CH02_03 database:

USE [CH02_03];
GO
CREATE TABLE Book_Info
 (
 Book_ID SMALLINT ,
 Book_Name VARCHAR(20) ,
 Description VARCHAR(30) ,
 Price [SMALLMONEY] ,
 Author_ID [int]
)
ON CH02_FG1;
GO

To create memory-optimized tables, we must first create a MEMORY_OPTIMIZED_DATA
filegroup within a database. For example, to create a MEMORY_OPTIMIZED_DATA
filegroup in the CH02_03 database, we enter and execute the following T-SQL code:

USE [master];
GO

ALTER DATABASE [CH02_03]
ADD FILEGROUP [CH02_FGMO]
CONTAINS MEMORY_OPTIMIZED_DATA;
GO

Next, run the following code to add a database file to the CH02_03 database
memory-optimized file group (CH02_FGMO):

USE [master];
GO

ALTER DATABASE [CH02_03]
ADD FILE (NAME = 'CH02_03_MemoryOptimized', FILENAME =
'C:\SQLData\CH02_03_MO.ndf')
TO FILEGROUP CH02_FGMO
GO

Finally, enter and execute the following T-SQL code to create a memory-optimized
version of the Book_Info_MO table within the CH02_03 database:

USE [CH02_03];
GO

CREATE TABLE Book_Info_MO

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[44]

 (
 Book_ID SMALLINT NOT NULL,
 Book_Name VARCHAR(20),
 Description VARCHAR(30),
 Price [SMALLMONEY],
 Author_ID [int],
 CONSTRAINT [PK_Book_Info_ID] PRIMARY KEY
 NONCLUSTERED HASH (Book_ID) WITH (BUCKET_COUNT = 2000))
 WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO

Modifying a table with T-SQL DDL statements
We use the ALTER TABLE statement to modify an existing table. The following is
the basic syntax for this command:

ALTER TABLE [[database.]schema.]table_name
[ADD | ALTER | DROP column_information]
[ADD | DROP constraint_information [index_properties]]
[WITH CHECK | NOCHECK CONSTRAINT constraint_name | ALL]
[ENABLE | DISABLE TRIGGER trigger_name | ALL]
[SWITCH partition_information] [;]

For example, to add a Topic_ID column to the Book_Info table, we execute the
following T-SQL code:

USE [CH02_03];
GO

ALTER TABLE [Book_Info]
ADD [Topic_ID] INT NOT NULL;
GO

Dropping a table with T-SQL DDL statements
We use the DROP TABLE statement to delete the table from the SQL Server database.
The basic syntax for this is as follows:

DROP TABLE table_name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

For example, enter and execute the following T-SQL code to drop the Book_Info_MO
table from the CH02_03 database:

USE [CH02_03];
GO
DROP TABLE Book_Info_MO;
GO

Creating and modifying tables with SSMS
2014
You can use SQL Server 2014 Management Studio to create and modify tables. In this
section, we will cover this GUI tool.

Creating a table with SSMS 2014
Here are the steps to create tables with SQL Server 2014 Management Studio:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder and then click on the

Tables folder and select New Table from the menu. This launches the table
designer in SSMS 2014.

3.	 Use the Table, Properties, and Column Properties panes to define some
basic information about the table, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[46]

4.	 Click on the Save button.
5.	 Type in the table name in the textbox on the Choose Name window and

then click on OK to save the table.

Modifying a table with SSMS 2014
Here are the steps to modify an existing database table with SQL Server 2014
Management Studio:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder and then expand the

Tables folder.
3.	 Right-click on the table you want to modify and then select Design from

the menu. This opens the table designer.
4.	 After making changes to the table design, click on the Save button to save

the changes.

Deleting a table with SSMS 2014
To delete a table, use the following steps:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder and then expand the

Tables folder.
3.	 Right-click on the table you want to delete and choose Delete from the

menu. Click on OK to delete the table.

Grant, deny, and revoke permissions to
securables
You can use SQL Server Management Studio or the T-SQL DCL statements to
grant, revoke, and deny permissions to securables.

Grant, deny, and revoke permissions to
securables with T-SQL DCL statements
In this section, we will use T-SQL DCL statements to grant, deny and
revoke permissions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Granting permissions to securables with T-SQL
DCL statements
We use the GRANT keyword to grant permissions to securables. The basic syntax for
the GRANT statement is as follows:

GRANT permission [,…n]
TO <grantee_principal> [,…n] [WITH GRANT OPTION]
[AS <grantor_principal>]

We use WITH GRANT OPTION when we want the user to grant the same permission
to other logins.

For example, to grant Bob the SELECT permission WITH GRANT OPTION on the
Book_Info table, you execute the following code:

USE [CH02_03];
GO

GRANT SELECT ON [dbo].[Book_Info] TO [Bob]
WITH GRANT OPTION;
GO

Denying permissions to securables with T-SQL
DCL statements
We use the DENY keyword to prevent a user from performing certain actions. The
basic syntax for this command is as follows:

DENY permission [,…n]
TO <grantee_principal> [,…n]
[CASCADE]
[AS <grantor_principal>]

We can specify the CASCADE option when we want to deny the permission to the
specified principal and to all the other principals to which the principal granted
the permission.

For example, enter and execute the following T-SQL code to deny Bob the UPDATE
permission on the Book_Info table:

USE [CH02_03];
GO

DENY UPDATE ON [dbo].[Book_Info] TO [Bob];
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding DDL and DCL Statements in SQL Server

[48]

Revoking permissions to securables with T-SQL
DCL statements
We use the REVOKE keyword to remove the permission assigned using the GRANT or
DENY keyword. The following is the basic syntax for this command:

REVOKE [GRANT OPTION FOR] permission [,…n]
{ TO | FROM } <grantee_principal> [,…n]
[CASCADE]
[AS <grantor_principal>

Managing permissions using SSMS 2014
You can manage permissions using SQL Server Management Studio. For example,
the following are the steps to grant, deny, or revoke user permissions to securables
via SSMS 2014:

1.	 Launch SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder and then expand the

Tables folder.
3.	 Right-click on the table and choose Properties.
4.	 Click on Permissions and then select a user or role to which you want to

assign a permission.
5.	 In the explicit permissions list, check Grant, With Grant, or Deny for the

appropriate permission. To revoke a permission, uncheck the box.
6.	 Click on OK to complete this action.

Summary
In this chapter, you learned about the Transact-SQL DDL, DML, and DCL language
elements. You also understood the purpose of SQL Server 2014 system databases. We
then covered the purpose of database recovery models. We used the DDL language
CREATE statement to create databases, schemas, and tables. We then used the DDL
language ALTER statement to modify databases, schemas, and tables. We also used
the DDL language DROP statement to delete databases, schemas, and tables. Finally,
you learned how to set permissions on SQL Server objects using the DCL language
GRANT, DENY, and REVOKE statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using
Transact-SQL Statements

The primary purpose of creating databases and tables in SQL Server is to store
data and make that data available to users and application queries. Like any other
Relational Database Management System (RDBMS), retrieval of data from a SQL
Server database is a relatively straightforward task. In this chapter, you will learn how
to get data from the databases using the Transact-SQL (T-SQL) SELECT statement.
After reading through the chapter, you will be able to understand the following:

•	 Transact-SQL SELECT, FROM, and WHERE clauses
•	 Use a Transact-SQL function in a query
•	 Multiple table queries using UNION, EXCEPT, INTERSECT, and JOINs
•	 Use subqueries and CTEs to perform advanced queries
•	 Organizing, grouping, and pivoting data
•	 Use of the Transact-SQL analytic window functions

This chapter contains a large number of example T-SQL queries, all of
which require the AdventureWorks2012 database, which is available
for download from http://msftdbprodsamples.codeplex.com/
downloads/get/478214.
After attaching the AdventureWorks2012 database to your SQL
Server instance, enter and execute the following Transact-SQL in SSMS
2014 to set its compatibility level to SQL Server 2014:

USE [master];
GO

ALTER DATABASE [AdventureWorks2012] SET
COMPATIBILITY_LEVEL = 120;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[50]

Understanding Transact-SQL SELECT,
FROM, and WHERE clauses
In this section, you will learn how to use the Transact-SQL SELECT, FROM, and WHERE
clauses to retrieve the data you need from the SQL Server databases.

The SELECT statement
The SELECT statement is the most frequently used Transact-SQL statement. We use
the SELECT statement for the following purposes:

•	 To query specific data from the selected database tables
•	 To assign a value to local variables
•	 To call a function

We often see SELECT statements within programming objects (such as views, stored
procedures, functions, batches, and common table expressions (CTEs)). We also use
SELECT statements to run ad hoc queries, most often through an SSMS 2014 query
window. The SELECT statement has several clauses, most of which are optional. The
following is the general syntax of the SELECT statement:

SELECT [TOP(n)|TOP(n) PERCENT] [ALL|DISTINCT] select_list
[INTO[[database.]owner.]table_name]
FROM[[[database.]owner.]table_name|view_name|UDF]
[WHERE search_conditions]
[GROUP BY aggregate_free_expression]
[HAVING search_conditions]
[ORDER BY table_or_view_and_column]
[COMPUTE row_aggregate(column_name)]
[BY column_name]]
[FOR for_options]
[OPTION (query_hint)][;]

The select_list parameter is the list of expressions (such as numeric computation,
constants, functions, aliases, and subqueries) or columns in the SELECT clause that
you want to return in the query result set. We can use asterisk (*) as a wildcard
character in the select_list parameter of the SELECT statement to return all
columns from the selected tables. For example, the following query returns all
columns from the Sales.Currency table in the AdventureWorks2012 database:

SELECT *
FROM [Sales].[Currency];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

However, you should avoid using the asterisk (*) wildcard character in select_list;
instead, provide a full list of columns needed for the query, because SQL Server
resolves the column list each time the SELECT statement is executed. Moreover, if
we use SELECT * in the T-SQL code, the SELECT statement might generate an error
due to changes in the schemas of the underlying tables. To display the values in
CurrencyCode and Name from the Sales.Currency table, run the following code:

SELECT [CurrencyCode] ,
 [Name]
FROM [Sales].[Currency];

The FROM clause
The purpose of the FROM clause in the SELECT statement is to identify the data
sources for a query. For example, in the previous example, we used the FROM clause
in the SELECT statement to specify the Sales.Currency table as a data source for
the query.

The WHERE clause
The WHERE clause is used to specify the query criteria, so that only the required subset
of data is returned in the result set. For example, suppose that you want to write a
query to return all the currency codes that begin with the A character. To accomplish
this, we include the WHERE clause in the preceding query as follows:

SELECT [CurrencyCode] ,
 [Name]
FROM [Sales].[Currency]
WHERE [CurrencyCode] LIKE 'A%';

The WHERE clause always comes after the FROM clause and can include conditions that
use the following:

•	 Comparison operators (= (equal to), <> (not equal to), != (not equal to),
> (greater than), !> (not greater than), < (less than), !< (not less than),
>= (greater than or equal to), and <= (less than or equal to))

•	 Subqueries and JOINs
•	 The LIKE operator for wildcard searches
•	 The BETWEEN operator for searching ranges of data
•	 The IN and NOT IN operators to match any one value from a list of values
•	 The EXISTS and NOT EXISTS keywords to check whether a value or record

exists in the result set
•	 The IS and IS NOT operators to search for NULLs

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[52]

Using T-SQL functions in the query
As mentioned earlier, we can also use the functions in your SELECT statements. SQL
Server 2014 comes with many built-in functions (also known as system functions), and
also lets you create user-defined functions. The functions are either deterministic or
nondeterministic. The deterministic functions return the same value every time, while
nondeterministic functions might return different values each time based on the values
of their specified input parameters. The SQL Server 2014 built-in functions belong to
one of the following categories:

•	 Aggregate functions
•	 Configuration functions
•	 Cursor functions
•	 Date and time functions
•	 Mathematical functions
•	 Metadata functions
•	 Other functions
•	 Rowset functions
•	 Security functions
•	 String functions
•	 System statistical functions

Aggregate functions
Aggregate functions operate on a group of rows and return a single summarizing
value. The SQL Server 2014 aggregate functions include AVG, MIN, MAX, SUM,
CHECKSUM_AGG, COUNT, COUNT_BIG, STDEV, STDEVP, GROUPING, GROUPING_ID, VAR,
and VARP.

In the following query, I used the AVG function to calculate the average unit price for
all orders:

SELECT AVG(OrderQty * UnitPrice) AS [Avg]
FROM [Sales].[SalesOrderDetail];

In the following query, I used the COUNT function to count the number of orders
where ProductID is 777:

SELECT COUNT(*)
FROM [Sales].[SalesOrderDetail]
WHERE ProductID = 777;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Configuration functions
Configuration functions return the current option configuration settings. These are
the SQL Server 2014 configuration functions: @@DATEFIRST, @@OPTIONS, @@DBTS,
@@REMSERVER, @@LANGID, @@SERVERNAME, @@LANGUAGE, @@SERVICENAME,
@@LOCK_TIMEOUT, @@SPID, @@MAX_CONNECTIONS, @@TEXTSIZE, @@VERSION,
@@MAX_PRECISION, and @@NESTLEVEL.

The following query returns the SQL Server name and version information:

SELECT @@SERVERNAME ,
 @@VERSION;

Cursor functions
We use cursor functions to return information about cursors. The SQL Server 2014
cursor functions include @@CURSOR_ROWS, CURSOR_STATUS, and @@FETCH_STATUS.
Cursor functions do not return the same value each time.

Date and time functions
Date and time functions are used to retrieve and manipulate information about dates
and times. These are the SQL Server 2014 date and time functions: SYSDATETIME,
SYSDATETIMEOFFSET, SYSUTCDATETIME, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE,
DATENAME, DATEPART, DAY, MONTH, YEAR, DATEFROMPARTS, DATETIME2FROMPARTS,
DATETIMEFROMPARTS, DATETIMEOFFSETFROMPARTS, SMALLDATETIMEFROMPARTS,
TIMEFROMPARTS, DATEDIFF, DATEADD, EOMONTH, SWITCHOFFSET, TODATETIMEOFFSET,
and ISDATE.

To return the current system date and time, we either use the GETDATE or
CURRENT_TIMESTAMP function as follows:

SELECT GETDATE() ,
 CURRENT_TIMESTAMP;

Or, to find the number of days between two specified dates, we use the DATEDIFF
function. For example, enter and execute the following to return the total number of
days since January 1, 2014:

SELECT DATEDIFF(DAY, '01-01-2014', CURRENT_TIMESTAMP);

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[54]

Mathematical functions
We use mathematical functions to perform mathematical operations based on
the input values specified as parameters to these functions. The SQL Server 2014
mathematical functions are ABS, DEGREES, RAND, ACOS, EXP, ROUND, ASIN, FLOOR,
SIGN, ATAN, LOG, SIN, ATN2, LOG10, SQRT, CEILING, PI, SQUARE, COS, POWER, TAN,
COT, and RADIANS.

Run the following code to round off the AvergateRate and EndOfDayRate columns
of the Sales.CurrencyRate table to one decimal place:

SELECT [FromCurrencyCode] ,
 [ToCurrencyCode] ,
 ROUND([AverageRate], 1) ,
 ROUND([EndOfDayRate], 1)
FROM [Sales].[CurrencyRate];

Metadata functions
We use metadata functions to return information about databases, the files and
filegroups associated with them, and their objects. A detailed discussion of metadata
functions is beyond the scope of this chapter.

To determine the date when the statistics where last updated for each statistics object
that exists for the tables, indexes, and indexed views in the database, we execute the
sys.stats system catalog view with the STATS_DATE() function as follows:

SELECT OBJECT_NAME(object_id),
 [name] AS [StatisticName],
 STATS_DATE([object_id], [stats_id])
FROM sys.stats;

Rowset functions
The rowset functions return an object that can be used in place of a table or view
name in a Transact-SQL statement. The rowset functions include OPENDATASOURCE,
OPENROWSET, OPENQUERY, and OPENXML.

Security functions
The security functions are used to return the security information about users
and roles. The information returned is useful for managing security. A detailed
discussion of the security functions is beyond the scope of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

String functions
String functions are used to manipulate string data. All strings specified in a string
function must be enclosed in single quotes.

The following uses the CONCAT function to concatenate the FirstName, MiddleName,
and LastName columns of the Person.Person table:

SELECT CONCAT([FirstName] + SPACE(1) ,
 [MiddleName] + SPACE(1),
 [LastName])
FROM [Person].[Person];

System statistical functions
We use system statistical functions to return information about connections and
resource usage since SQL Server was last restarted. For example, we can use the
@@CONNECTIONS function to return successful or unsuccessful connection attempts
since SQL Server was last started. Have a look at the following query:

SELECT @@CONNECTIONS;

For a full list of Transact-SQL deterministic and nondeterministic
functions and their parameters, refer to the Deterministic and
Nondeterministic Functions topic at http://msdn.microsoft.com/
en-us/library/ms178091.aspx.

Multiple table queries using UNION,
EXCEPT, INTERSECT, and JOINs
So far in this book, we have seen queries that only retrieve data from a single table.
However, in the real world, it is very unlikely that you will write queries that only
refer to a single table. In practice, the requirement might be to retrieve data from
multiple tables. SQL Server 2014 provides several options to create queries that
return data from multiple tables. In this section, we will explore these options.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[56]

The UNION operator
The UNION operator is used to combine the result sets of two or more SELECT
statements to generate a single result set. The following is the basic syntax for using
the UNION operator:

select_statement UNION [ALL] select_statement
[UNION [ALL] select_statement […n]]

The key point to remember is that all statements combined using the UNION operator
must have the same number of columns and must have compatible data types. The
column names of the first SELECT statement are used as headings for the result set.

By default, the UNION operator removes duplicate rows from the
result set. If you do not want to remove duplicate rows, specify the
ALL keyword. UNION ALL is faster than UNION because it requires
less backend processing for the union operation. This is because the
UNION clause also adds an additional sorting operation to remove
duplicate rows from two or more SELECT statements. Therefore, it is
better to use UNION ALL, where possible.

Have a look at the following Venn diagram to get a better understanding of UNION
and UNION ALL operators:

For example, the following query returns all products associated with a purchase
order and all products associated with a sales order:

SELECT [ProductID],
 [UnitPrice],
 [OrderQty]
FROM [Purchasing].[PurchaseOrderDetail]
UNION
SELECT [ProductID],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

 [UnitPrice],
 [OrderQty]
FROM [Sales].[SalesOrderDetail];

We will run the following query to keep duplicates:

SELECT [ProductID] ,
 [UnitPrice] ,
 [OrderQty]
FROM [Purchasing].[PurchaseOrderDetail]
UNION ALL
SELECT [ProductID] ,
 [UnitPrice] ,
 [OrderQty]
FROM [Sales].[SalesOrderDetail];

The EXCEPT operator
The EXCEPT operator compares the results of two SELECT statements and returns
only distinct rows from the first SELECT statement result set that do not exist in the
second SELECT statement result set. The following is the basic syntax for using the
EXCEPT operator:

select_statement EXCEPT select_statement

Like the UNION operator, all statements combined using the EXCEPT operator must
have compatible data types and the same number of columns. Have a look at the
following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[58]

For example, let's rewrite the preceding query to return only distinct ProductID,
UnitPrice, and OrderQty values of those products associated with the purchase
orders that do not have an associated sales order. Have a look at the following code:

SELECT [ProductID] ,
 [UnitPrice] ,
 [OrderQty]
FROM [Purchasing].[PurchaseOrderDetail]
EXCEPT
SELECT [ProductID] ,
 [UnitPrice] ,
 [OrderQty]
FROM [Sales].[SalesOrderDetail];

The INTERSECT operator
The INTERSECT operator compares the results of two SELECT statements and only
returns distinct rows from the first SELECT statement result set that also exist in the
second SELECT statement result set. The general syntax for the INTERSECT statement
is as follows:

select_statement INTERSECT select_statement

Similar to the UNION and EXCEPT operators, the INTERSECT operator has the same
SELECT list restrictions. The following diagram will help you understand the
INTERSECT operator:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

For example, to find out which currency codes exist in both the Sales.Currency
table and the Sales.CurrencyRate table, we need to retrieve the distinct list of
currency codes, for which we will run the following query:

SELECT [CurrencyCode]
FROM [Sales].[Currency]
INTERSECT
SELECT [ToCurrencyCode]
FROM [Sales].[CurrencyRate];

The JOIN operator
The JOIN operator is used to join columns from multiple tables and return them in
a single result set. The JOINs often use foreign key relationships to join multiple
related tables. The basic syntax for the JOIN operator is as follows:

SELECT select_list
FROM table_or_view
[INNER | LEFT | RIGHT | FULL | OUTER] JOIN table_or_view
ON (join_condition)

The following are the four main types of joins: inner joins, outer joins, cross joins,
and self joins. In this section, we will discuss these join types.

Using INNER JOIN
Include only those records in the result set that satisfy the join condition. Therefore,
inner joins are also called equi-joins. For example, the following query uses INNER
JOIN to retrieve all the employees' names, titles, and current department information:

SELECT p.[Title] ,
p.[FirstName] + SPACE(1)
+ p.[MiddleName] + SPACE(1)
+ p.[LastName] AS [FullName] ,
e.[JobTitle] ,
d.[Name] AS [Department] ,
d.[GroupName] ,
dhist.[StartDate]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID];

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[60]

Using outer joins
The outer joins return all rows, whether or not they satisfy the join conditions. There
are three basic outer join types: LEFT OUTER JOIN (left join), RIGHT OUTER JOIN
(right join), and FULL OUTER JOIN (full join).

Using LEFT OUTER JOIN
The LEFT OUTER JOIN operator returns all rows from the left table named in the
LEFT OUTER JOIN clause. If there is no matching row in the table to the right, SQL
Server displays the values of the right table as NULLs. For example, the following
query uses LEFT OUTER JOIN to retrieve an employee's name and title, regardless of
whether they have a phone, an e-mail ID, and additional contact information:

SELECT p.[Title] ,
p.[FirstName] + SPACE(1)
+ p.[MiddleName] + SPACE(1)
+ p.[LastName] AS [FullName] ,
pp.[PhoneNumber] ,
pt.[Name] AS [PhoneNumberType] ,
ea.[EmailAddress] ,
p.[AdditionalContactInfo]
FROM [HumanResources].[Employee] e
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
LEFT OUTER JOIN [Person].[EmailAddress] ea
ON p.[BusinessEntityID] = ea.[BusinessEntityID]
LEFT OUTER JOIN [Person].[PersonPhone] pp
ON pp.[BusinessEntityID] = p.[BusinessEntityID]
LEFT OUTER JOIN [Person].[PhoneNumberType] pt
ON pp.[PhoneNumberTypeID] = pt.[PhoneNumberTypeID];

Using RIGHT OUTER JOIN
The RIGHT OUTER JOIN operator returns all rows from the right table named in the
RIGHT OUTER JOIN clause. If there is no matching row in the left table, SQL Server
displays the values of the left table as NULLs. For example, the following query uses
RIGHT OUTER JOIN to return the list of all products, regardless of whether there is a
special discount associated with the product:

SELECT p.[ProductID] ,
p.[Name] ,
so.[SpecialOfferID] ,
so.[Description] ,
so.[DiscountPct] ,
so.[Type] ,
so.[Category] ,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

so.[StartDate] ,
so.[EndDate] ,
so.[MinQty] ,
so.[MaxQty]
FROM [Sales].[SpecialOfferProduct] sop
RIGHT OUTER JOIN [Sales].[SpecialOffer] so
ON so.[SpecialOfferID] = sop.[SpecialOfferID]
RIGHT OUTER JOIN [Production].[Product] p
ON p.[ProductID] = sop.[ProductID];

Using FULL OUTER JOIN
The FULL OUTER JOIN operator returns all rows from both tables. If there are no
matches between the right and left rows, SQL Server displays the missing values
as NULLs. In other words, FULL OUTER JOIN acts as a combination of LEFT OUTER
JOIN and RIGHT OUTER JOIN.

Using CROSS JOIN
The CROSS JOIN operator returns all rows from the table to the left. Each row in the
table to the left is combined with all rows in the table to the right. This is also known
as a Cartesian product. The cross join does not have an ON clause. The following is an
example of a cross join:

SELECT c.* ,
 crc.*
FROM [Sales].[Currency] c
 CROSS JOIN [Sales].[CountryRegionCurrency] crc;

Using self joins
In self join, you join a table to itself in order to find the rows in a table that have values
in common with other rows of the table. Self joins are rarely used in a normalized
database. Create a table alias to reference the table multiple times in the same query.
We can also use a WHERE clause to eliminate cases where a row matches itself.

Subqueries
A subquery is a query that is nested inside a SELECT, INSERT, UPDATE, or DELETE
statement, or inside another subquery. Subqueries are often used in situations where
a query depends on the results of another query. SQL Server supports noncorrelated
and correlated subqueries.

In a noncorrelated subquery, the inner query is independent and gets evaluated first,
then passes results to the outer query. A noncorrelated (independent) subquery can be
independently evaluated and relies only on its own SELECT clause for instructions.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[62]

In a correlated subquery, the outer query provides values for the dependant inner
subquery evaluation. SQL Server passes the subquery results back to the outer query
for evaluation. A correlated (dependant) subquery receives values from the outer
SELECT statement.

Subqueries are useful for solving complex data retrieval and modification
problems; however, this method is often less efficient than performing a
join operation.

Typically, the statements that include subqueries take one of three forms. The first
form is to use a comparison operator in the WHERE clause, as follows:

WHERE expression comparison_operator [ANY | ALL] (subquery)

When ALL is specified, SQL Server evaluates the expression as true if it is true for
either all rows or none of the rows. When ANY is specified, SQL Server evaluates the
expression to true if the expression is true for at least one row of a subquery.

In the second form, we use the IN keyword (or NOT IN) in the WHERE clause of the
outside query as follows:

WHERE expression [NOT] IN (subquery)

In the third form, we use the EXISTS (or NOT EXISTS) keyword in the WHERE clause
as follows:

WHERE expression [NOT] EXISTS (subquery)

Examples of subqueries
The following query returns the names of all employees who have a valid
e-mail address:

SELECT [Title] ,
 [FirstName] ,
 [MiddleName] ,
 [LastName]
FROM [Person].[Person] p
WHERE EXISTS (SELECT *
 FROM [Person].[EmailAddress] e
 WHERE p.[BusinessEntityID] =
e.[BusinessEntityID]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

To return a list of all customers who live in territories that are not covered by any
salesperson, we will execute the following T-SQL code:

SELECT *
FROM [Sales].[Customer]
WHERE [TerritoryID] <> ANY (SELECT [TerritoryID]
 FROM [Sales].[SalesPerson]);

The following query finds the CustomerID and AccountNumber values of all
customers who live in Europe:

SELECT [CustomerID] ,
 [AccountNumber]
FROM [Sales].[Customer]
WHERE [TerritoryID] IN (
 SELECT [TerritoryID]
 FROM [Sales].[SalesTerritory]
 WHERE [Group] = 'Europe');

Common Table Expressions
A common table expression (CTE) is a temporary result set that your query can
reference. You can use a CTE just as you would any other table. However, when
the query ends, the CTE is deleted from the memory. We also use CTEs to create
recursive queries, simplify complex query logic, and create multiple references of
the same table.

To create a CTE, use a WITH clause outside the SELECT statement. The following is
the basic syntax of a CTE:

WITH cte_name ([(column_name [,...n])])
AS
(CTE_query_definition)

The following is an explanation of the arguments of the CTE syntax:

•	 cte_name: This is the name of the CTE you have referenced in
the query

•	 column_name: This is the name of the column; note that it is an
optional argument

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[64]

The following is an example of the structure of a CTE:

WITH cteSalesPerson ([SalesPersonID], [FullName],
[TerritoryName], [SalesQuota], [Bonus], [CommissionPct],
[SalesYTD], [SalesLastYear])
AS (SELECT sp1.[BusinessEntityID] ,
sp2.[FirstName] + SPACE(1) + sp2.[LastName] ,
st.[Name] ,
sp1.[SalesQuota] ,
sp1.[Bonus] ,
sp1.[CommissionPct] ,
sp1.[SalesYTD] ,
sp1.[SalesLastYear]
FROM [Sales].[SalesPerson] sp1
INNER JOIN [Sales].[vSalesPerson] sp2
ON sp2.[BusinessEntityID] = sp1.[BusinessEntityID]
INNER JOIN [Sales].[SalesTerritory] st
ON st.[TerritoryID] = sp1.[TerritoryID]
WHERE sp1.[TerritoryID] IS NOT NULL
)
SELECT *
FROM cteSalesPerson;

The query inside the CTE returns every salesperson's current and previous
years' sales figures. The following are the columns returned by this CTE query:
SalesPersonID, FullName, TerritoryName, SalesQuota, Bonus, CommissionPct,
SalesYTD, and SalesLastYear.

Organizing and grouping data
We can use the SELECT statement and its clauses and keywords to organize and
summarize data. In this section, we will cover these clauses.

The ORDER BY clause
By default, when you query the data in a table with no clustered index, SQL Server
does not guarantee the order in which data is returned and returns rows in a random
order. If the table has a clustered index, SQL Server returns the rows in a clustered
index order. Therefore, we use the ORDER BY clause in your SELECT statements to sort
the data returned by the query based on the columns' sort order specified in the ORDER
BY clause. The ORDER BY clause guarantees the order in which data is returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

For example, to display a sales representative's sales-related information ordered by
the FirstName and LastName values, we would run the following query:

SELECT *
FROM [Sales].[vSalesPerson]
ORDER BY [FirstName] ASC,
 [LastName] ASC;

The GROUP BY clause
The GROUP BY clause is used to divide the table into groups and return a row for each
group. We use the GROUP BY clause with aggregate functions to produce summary
values for each set. The general syntax of the GROUP BY clause is as follows:

SELECT select_list
FROM[[[database.]owner.]table_name|view_name|UDF]
[WHERE search_conditions]
[GROUP BY [ALL] aggregate_free_expression
[, aggregate_free_expression...]]
[HAVING search_conditions]

Each column in the SELECT clause must either be an aggregate function or be
included in the GROUP BY clause. For example, to retrieve the number of customers
in each territory, you would use the following query:

SELECT st.[Name] ,
 COUNT(c.[CustomerID]) [TotalCustomer]
FROM [Sales].[Customer] c
 INNER JOIN [Sales].[SalesTerritory] st
 ON st.[TerritoryID] = c.[TerritoryID]
GROUP BY st.[Name];

The HAVING clause
We use the HAVING clause to set the search conditions that restrict the groups
returned. For example, the following query returns only those territories in which
the number of customers is less than 1,000:

SELECT st.[Name] ,
 COUNT(c.[CustomerID]) [TotalCustomer]
FROM [Sales].[Customer] c
 INNER JOIN [Sales].[SalesTerritory] st
 ON st.[TerritoryID] = c.[TerritoryID]
GROUP BY st.[Name]
HAVING (COUNT(c.[CustomerID]) < 1000);

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[66]

The TOP clause
The TOP clause is used to limit the number of rows returned by the query. For
example, you can either use the TOP keyword to return the first n rows or the first
n percent of rows from a result set. For example, enter and execute the following
T-SQL query to return a list of the 10 most expensive products:

SELECT TOP (10)
 [ProductID],
 [Name],
 [ProductNumber],
 [ListPrice]
FROM [Production].[Product]
ORDER BY [ListPrice] DESC;

The DISTINCT clause
We use the DISTINCT clause to remove duplicates from the result set. For example,
to return a distinct list of product names, we run the following query:

SELECT DISTINCT
 [Name]
FROM [Production].[Product];

Pivoting and unpivoting data
We can use the PIVOT relational operator to swap the specified column values into
multiple columns. The UNPIVOT relational operator performs the opposite operation
by changing the columns into rows.

The following is the basic syntax of the PIVOT statement:

SELECT <non-pivoted column>,
 [first pivoted column] AS <column name>,
 [second pivoted column] AS <column name>,
 ...
 [last pivoted column] AS <column name>
FROM table_source
PIVOT (aggregate_function (value_column)
FOR pivot_column
IN (<column_list>)
) table_alias

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

For example, examine the output of the following query, which returns the count of
employees in each group:

SELECT p.[BusinessEntityID] , d.[GroupName]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID];

The following screenshot shows the output of the preceding query:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[68]

Now, suppose you want to write a query to determine the total number of employees
in each group. To accomplish this, you pivot the group column values into columns,
along with the count of employees in each group. The following code snippet will
help you perform this:

SELECT [Executive General and Administration] , [Inventory
Management] , [Manufacturing] , [Quality Assurance] , [Research
and Development] ,[Sales and Marketing]
FROM (SELECT p.BusinessEntityID , d.[GroupName]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID]
) AS a PIVOT
(COUNT(a.[BusinessEntityID])
FOR [GroupName] IN ([Executive General and Administration],
[Inventory Management], [Manufacturing], [Quality Assurance],
[Research and Development], [Sales and Marketing])) AS b;

The preceding query returns information in the format shown in the
following screenshot:

Using the Transact-SQL analytic window
functions
SQL Server 2014 supports several analytic functions. With the help of these window
analytic functions, we can perform common analyses, such as ranking, percentiles,
moving averages, and cumulative sums that can be expressed concisely in a single
SELECT statement.

Before the advent of analytic functions, the solution for performing complex
analytical tasks was to use self joins, correlated subqueries, temporary tables, or
some combination of all three. This solution was inefficient and highly resource
intensive. Expressing queries with analytic functions simplifies complex tasks by
eliminating programming self joins and correlated subqueries. It also uses fewer
temporary tables.

In this section, we will cover all SQL Server 2014 analytic functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Ranking functions
We use ranking functions to return the ranking value for the rows within a query
result set or partition. The rows in a partition can receive the same ranking value,
which depends on the ranking function that is used.

There are four ranking functions, which are listed here:

•	 ROW_NUMBER: This function assigns a row number to each row in the result set.
•	 RANK: This function returns the rank value for each row in the result set, but

with gaps.
•	 DENSE_RANK: This function is the same as the RANK function, but also displays

the rank value for each row in the result set and without gaps in the sequence.
•	 NTILE: This function partitions the ranks into a specific number of groups.

For example, suppose you have a table with 30 values; you can use NTILE(3)
to group the first 10 rows as group 1, the middle 10 rows as group 2, and the
last 10 rows as group 3.

We must specify a mandatory OVER clause with sorting functions. The OVER clause
determines the partition and order of rows in a result set or partition before applying
the ranking functions.

The following is the general syntax of ranking functions:

FUNCTION (Argument1,…[n])
OVER ([PARTITION BY value_expression,…[n]) <<Order_by_clause>>)

The following query demonstrates the use of ranking functions based on the
SalesQuota column:

SELECT [LastName] ,
 [FirstName],
 [SalesQuota],
 ROW_NUMBER() OVER (ORDER BY
 [SalesQuota]) [ROW_NUMBER],
 RANK() OVER (ORDER BY
 [SalesQuota]) [RANK],
 DENSE_RANK() OVER (ORDER BY
 [SalesQuota]) [DENSE_RANK],
 NTILE(10) OVER (ORDER BY
 [SalesQuota]) AS [NTILE]
FROM [Sales].[vSalesPerson];

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[70]

The preceding code returns the information shown in the following screenshot:

We can use the optional PARTITION BY clause, which partitions the rows based on
the value expression and then ranks the rows in the order specified. For example,
enter and execute the following T-SQL query to partition the result set by the
CountryRegionName column:

SELECT [LastName],
 [FirstName],
 [SalesQuota],
 [CountryRegionName],
 ROW_NUMBER() OVER
 (PARTITION BY [CountryRegionName]
 ORDER BY [SalesQuota]) [ROW_NUMBER],
 RANK() OVER
 (PARTITION BY [CountryRegionName]
 ORDER BY [SalesQuota]) [RANK],
 DENSE_RANK() OVER
 (PARTITION BY [CountryRegionName]
 ORDER BY [SalesQuota]) [DENSE_RANK],
 NTILE(4) OVER
 (PARTITION BY [CountryRegionName]
 ORDER BY [SalesQuota]) AS [NTILE]
FROM [Sales].[vSalesPerson];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

The preceding code returns the result set shown in the following screenshot:

PERCENT RANK
The purpose of the PERCENT_RANK function is to calculate the relative position of each
row in a query result set or within a partition. SQL Server uses the following formula
to calculate the value of the PERCENT_RANK column:

(rank()–1) / (total rows in a query result set or partition-1)

As an example, enter and execute the following T-SQL query, which uses the
PERCENT_RANK function to compute the rank of a salesperson's sales quota within a
country as a percentage. The PARTITION BY clause is specified for the partitioning of
the rows in the result set by country region name, and the ORDER BY clause sorts the
rows in each partition.

SELECT [LastName] ,
 [FirstName] ,
 [SalesQuota] ,
 [CountryRegionName] ,
 PERCENT_RANK() OVER
(PARTITION BY [CountryRegionName]
ORDER BY [SalesQuota]) [PERCENT_RANK]
FROM [Sales].[vSalesPerson]
WHERE [SalesQuota] IS NOT NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[72]

The preceding code returns the result set shown in the following screenshot:

CUME_DIST
We use the CUME_DIST function to evaluate the cumulative distribution value for
a group of values in a given result set or partition. SQL Server uses the following
formula to calculate the value of the CUME_DIST column:

(Values less than or equal to the current value in the group)
/ (total row in a query result set or partition)

For example, the following query uses the CUME_DIST function to calculate the sales
quota percentile for each salesperson within a particular country. The value returned
by the CUME_DIST function represents the percentage of salespeople in the same
country who have a sales quota that is less than or equal to that of the salesperson we
have chosen to analyze.

SELECT [LastName] ,
 [FirstName] ,
 [SalesQuota] ,
 [CountryRegionName] ,
 CUME_DIST() OVER
 (PARTITION BY [CountryRegionName]
 ORDER BY [SalesQuota]) [CUME_DIST]
FROM [Sales].[vSalesPerson]
WHERE [SalesQuota] IS NOT NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

The following screenshot shows the results of this query:

PERCENTILE_CONT and PERCENTILE_DISC
The PERCENTILE_CONT function uses a discrete distribution model to calculate a
percentile. The PERCENTILE_CONT function accepts the percentile value (that is, the
desired CUME_DIST value) and a sort specification to return the value that would fall
into that percentile value. The PERCENTILE_DISC function works in the same way
as a PERCENTILE_CONT function because it also returns the smallest value whose
percentile is greater than or equal to the given percentile.

Here is the general syntax of PERCENTILE_CONT and PERCENTILE_DISC:

PERCENTILE_CONT | PERCENTILE_DISC (numeric_literal)
WITHIN GROUP
(ORDER BY order_by_expression [ASC|DESC])
OVER ([<partition_by_clause>])

For example, enter and execute the following T-SQL query, which uses
PERCENTILE_CONT and PERCENTILE_DISC to find the median employee salary in
each business entity. These functions do not always return the same value because
PERCENTILE_CONT interpolates the correct value, which may not exist in the data
set, while PERCENTILE_DISC always gives an actual value of the set.

SELECT TOP 15
 [BusinessEntityID],
 [Rate],

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[74]

 PERCENTILE_CONT(0.5)
 WITHIN GROUP
(ORDER BY [Rate]) OVER
(PARTITION BY [BusinessEntityID]) [PERCENTILE_CONT],
 PERCENTILE_DISC(0.5)
 WITHIN GROUP
(ORDER BY [Rate]) OVER
(PARTITION BY [BusinessEntityID]) [PERCENTILE_DISC]
FROM [HumanResources].[EmployeePayHistory];

Examine the following output of this query:

LEAD and LAG
The LEAD function provides access to the row following the current row. The LAG
function is the opposite of LEAD, which provides access to the previous row instead
of the row following the current row. Here is the general syntax:

LAG (scalar_expression [,offset] [,default])
OVER ([partition_by_clause] order_by_clause)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

The following example uses the LEAD and LAG functions to compare year-to-date
sales among the employees, partitioned by sales territory, that are included in the
AdventureWorks2012 database:

SELECT [FirstName],
[TerritoryGroup],
[SalesYTD],
LEAD([SalesYTD])
OVER (PARTITION BY [TerritoryGroup]
ORDER BY [SalesYTD]) [Next_Lower_SalesYTD(LEAD)],
LAG([SalesYTD])
OVER (PARTITION BY [TerritoryGroup]
ORDER BY [SalesYTD]) [Prev_Higer_SalesYTD(LAG)]
FROM [Sales].[vSalesPerson]
WHERE [TerritoryGroup] IS NOT NULL;

The preceding query returns the result shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Retrieval Using Transact-SQL Statements

[76]

FIRST_VALUE and LAST_VALUE
We use the FIRST_VALUE function to return the first value in the result set or
partition. We use the LAST_VALUE function to return the last value in the result set or
partition. If the last value in the set is NULL, the LAST_VALUE function returns NULL
unless we specify IGNORE NULLS.

When not specified, the row's range clause defaults to RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW, which sometimes returns an unexpected value. This
is because the last value in the window is fixed. For proper results, specify the row
range as either RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
or RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING.

For example, the following query uses the FIRST_VALUE and LAST_VALUE functions
to return the highest and lowest year-to-date sales figures for each sales territory:

SELECT DISTINCT
[TerritoryGroup] ,
FIRST_VALUE([SalesYTD])
OVER (PARTITION BY [TerritoryGroup] ORDER BY [SalesYTD]
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS [Highest_SalesYTD (FIRST_VALUE)] ,
LAST_VALUE([SalesYTD])
OVER (PARTITION BY [TerritoryGroup]
ORDER BY [SalesYTD]
RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)
AS [Lowest_SalesYTD (FIRST_VALUE)]
FROM [Sales].[vSalesPerson]
WHERE [TerritoryGroup] IS NOT NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

The following screenshot shows the output of the preceding query:

Summary
In this chapter, you learned the basic syntax of the SELECT statement and how it can be
used to query data from SQL Server database tables. You learned about the different
categories of built-in T-SQL functions and used them in your queries. You learned
the different techniques to combine data from multiple tables. You also learned how
to organize the data and how to generate the summary data by grouping data or
pivoting data. You also understood the purpose of the CTE. We then went through the
purpose of window analytic functions and how to use them to quickly solve complex
analytical tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with
SQL Server Transact-SQL

Statements
In the previous chapter, you learned how to query data stored in the SQL Server
database tables. In this chapter, you will learn how to insert, update, and delete
data in tables using Transact-SQL Data Manipulation Language (DML) statements.
You will also learn how you can use Transact-SQL MERGE statements to perform
multiple DML operations against a specified target table based on the results of
join conditions with a source table. In the final section of this chapter, you will use
Transact-SQL TRUNCATE TABLE statements to remove all data from a table, and use
Transact-SQL SELECT INTO statements to create a table and (optionally) populate it
with rows from a query.

In this chapter, we'll cover the following topics:

•	 Inserting data into SQL Server database tables
•	 Updating data in SQL Server database tables
•	 Deleting data from SQL Server database tables
•	 Using Transact-SQL MERGE statements to perform multiple DML operations

using a single code block
•	 Using TRUNCATE TABLE statements
•	 Using SELECT INTO statements

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[80]

Inserting data into SQL Server database
tables
In SQL Server, you use the INSERT statement to add one new row or multiple new
rows to an existing table. You can use the INSERT statement to insert data into a
particular column, all columns, and IDENTITY columns.

To execute INSERT statements, a user must have at least the INSERT permission
assigned on the target table.

The following is the basic syntax for INSERT statements:

[WITH <common_table_expression> [,...n]]
INSERT [TOP (expression) [PERCENT]
[INTO]
table_name | view_name | rowset function | common_table_expression
[WITH table_hints]
<output_clause>
[(column_list)]
{VALUES (values_list) | select_statement | DEFAULT |
execute_statement | dml_table_source
NULL
} | DEFAULT VALUES

The column_list parameter specifies a list of one or more columns in which you
are inserting data. The column_list parameter is optional when you are providing
a value for each column in the table, and the values appear in the exact order in
which the columns are defined. If a column does not appear, then SQL Server must
generate a value for that column. SQL Server can automatically provide values for
IDENTITY columns, columns with the timestamp data type, columns with a default
value, and nullable columns.

Although the column_list parameters are optional for the SELECT
and INSERT statements, it is always a good idea to provide a full-column
list for these statements. This is because if the full-column list is not
specified, SQL Server resolves full-column lists whenever the SELECT
and INSERT statements execute. Moreover, the SELECT or INSERT
statement may generate an error if the underlying table schema changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

The other arguments of the INSERT statement are explained as follows:

•	 WITH: This keyword specifies the common table expression (CTE) that you
can reference in your INSERT statement.

•	 TOP: Specify this keyword if you want to insert a specific number or percent
of rows from the top of the query result.

•	 table_name | view_name | rowset function | common_table_
expression: This specifies the name of the table, view, rowset function, or
CTE in which you want to insert data.

•	 WITH table_hints: You use this keyword to specify one or more table hints
for the target table.

•	 output_clause: You use this keyword to identify the rows affected by the
INSERT statement.

•	 VALUES: This keyword specifies the data values to be inserted. You must
provide a value for each column specified in the column_list parameter.
Otherwise, you must provide a value for each column in the table.

•	 value_list: Values can be constants, variables, or expressions. If an
expression is used, it cannot contain SELECT or EXECUTE. You can specify
DEFAULT to have a column use its default value, or use NULL to set a column
value to NULL.

•	 select_statement: If a SELECT statement is used, each result set must be
compatible with the table columns or the column list.

•	 DEFAULT: When you use DEFAULT, the SQL Server Database Engine inserts
the default value, or (if the column allows NULL) a NULL value is inserted to
the column.

•	 execute_statement: This can be any valid EXECUTE statement that returns
data with a SELECT statement. You can also use EXECUTE to execute a
stored procedure that returns data with a SELECT statement. If an EXECUTE
statement is used, each result set must be compatible with the columns of the
table or the column list.

•	 dml_table_source: This can be any valid DML statement that returns the
affected rows in an OUTPUT clause.

•	 DEFAULT_VALUE: When you use DEFAULT_VALUE, SQL Server inserts a new
row with the default values defined for each column.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[82]

The INSERT examples
This section describes the various forms of INSERT statements used to insert data
into a SQL Server database table. To illustrate the INSERT statement, create the
dbo.CustomProducts table within the AdventureWorks2012 database. Here is the
code to create this table:

USE [AdventureWorks2012];
GO
IF OBJECT_ID(N'dbo.CustomProducts', N'U') IS NOT NULL
 DROP TABLE [dbo].[CustomProducts];
GO

CREATE TABLE [dbo].[CustomProducts]
 (
 [ProductID] [int] IDENTITY(1, 1)
 NOT NULL,
 [ProductName] [varchar](50) NULL
 DEFAULT ('Anonymous'),
 [ProductCategory] [varchar](50) NULL
 DEFAULT ('Anonymous'),
 [ListPrice] [money] NOT NULL
 DEFAULT (1.0),
 [ListPriceCurrency] VARCHAR(30)
 DEFAULT ('US Dollar'),
 [SellStartDate] [datetime] NOT NULL
 DEFAULT CURRENT_TIMESTAMP,
 [SellEndDate] [datetime] NULL
)
ON [PRIMARY];
GO

Example 1 – insert a single row into a SQL Server
database table
In Object Explorer, enter and execute the following INSERT statement to add a single
row to the dbo.CustomProducts table:

INSERT INTO [dbo].[CustomProducts]
 ([ProductName],
 [ProductCategory],
 [ListPrice],
 [ListPriceCurrency],
 [SellStartDate],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

 [SellEndDate]
)
VALUES (N'iPhone 5s',
 N'Gadget',
 25,
 N'GB',
 CURRENT_TIMESTAMP,
 DEFAULT
);
GO

Execute the following code to show the new row:

USE [AdventureWorks2012];
GO

SELECT * FROM [dbo].[CustomProducts];
GO

The following screenshot shows the new row:

You can also use the INSERT statement to insert multiple rows in a table. This is done
by providing a comma-delimited list of values for each row in the VALUE clause.
For example, enter and execute the following T-SQL code to add three rows to the
dbo.CustomProducts table:

USE [AdventureWorks2012];
GO

INSERT INTO [dbo].[CustomProducts]
 ([ProductName], [ProductCategory], [ListPrice],
 [ListPriceCurrency],
 [SellStartDate], [SellEndDate])
VALUES (N'Samsung Galaxy S5', N'Gadget', 426, N'GB',
CURRENT_TIMESTAMP, DEFAULT)
 ,(N'HTC One (M8)', N'Gadget', 609, N'USD',
CURRENT_TIMESTAMP, DEFAULT),
 (N'Nokia Lumia 1520', N'Gadget', 529, N'USD',
CURRENT_TIMESTAMP,DEFAULT);
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[84]

You can query the dbo.CustomProducts table again to verify the new rows inserted
with the multirow INSERT statement. The result will be similar to the one shown in
the following screenshot:

Example 2 – INSERT with the SELECT statement
You can also use the SELECT statement within an INSERT statement to insert data
rows that already exist in the same table, other tables, or even the tables of a different
database. For example, the following INSERT statement uses the SELECT statement to
insert rows in the dbo.CustomProducts table:

USE [AdventureWorks2012];
GO

INSERT INTO [dbo].[CustomProducts]
 ([ProductName], [ProductCategory], [ListPrice],
 [ListPriceCurrency],
 [SellStartDate], [SellEndDate])
SELECT p.[Name],
 pc.[Name],
 [ListPrice],
 N'USD',
 [SellStartDate],
 [SellEndDate]
FROM [Production].[Product] p
 INNER JOIN [Production].[ProductCategory] pc
 ON p.[ProductSubcategoryID] = PC.ProductCategoryID;
GO

Example 3 – INSERT with the EXEC statement
As mentioned in the preceding section, you can insert data into a table from the
results of the EXECUTE statement. For example, enter and execute the following
T-SQL code to insert the xp_msver stored procedure output into a temporary table:

USE [AdventureWorks2012];
GO

IF OBJECT_ID(N'Tempdb..#xp_msver') IS NOT NULL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

DROP TABLE #xp_msver
GO

CREATE TABLE #xp_msver
 (
 [idx] [int] NULL,
 [c_name] [varchar](100) NULL,
 [int_val] [float] NULL,
 [c_val] [varchar](128) NULL
)

INSERT INTO #xp_msver
EXEC ('[master]..[xp_msver]');
GO

Example 4 – explicitly inserting data into the
IDENTITY column
By default, the SQL Server Database Engine generates the values for the IDENTITY
columns. You cannot explicitly insert values into the IDENTITY property columns,
unless you specify the IDENTITY_INSERT option. For example, SQL Server generates
the following error when you attempt to insert a value into the IDENTITY
property column:

Msg 544, Level 16, State 1, Line 27
Cannot insert explicit value for identity column in table
'CustomProducts' when IDENTITY_INSERT is set to OFF.

To explicitly insert values into the IDENTITY property column, use the IDENTITY_
INSERT option. The basic syntax for this command is as follows:

SET IDENTITY_INSERT [database.[owner.]]table ON|OFF

For example, the following T-SQL code uses the IDENTITY_INSERT option and
inserts an explicit value into the ProductID column:

USE [AdventureWorks2012];
GO

SET IDENTITY_INSERT [dbo].[CustomProducts] ON;

INSERT INTO [dbo].[CustomProducts]
 ([ProductID] ,
 [ProductName] ,
 [ProductCategory] ,

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[86]

 [ListPrice] ,
 [ListPriceCurrency] ,
 [SellStartDate] ,
 [SellEndDate]
)
VALUES (110 ,
 N'Samsung Galaxy S4',
 N'Gadget',
 200,
 N'GB',
 CURRENT_TIMESTAMP,
 DEFAULT
);

SET IDENTITY_INSERT [dbo].[CustomProducts] OFF;
GO

Updating data in SQL Server database
tables
You use the UPDATE statement to modify an existing table data.

To execute the UPDATE statement, a user must have at least an UPDATE permission
assigned on the target table.

The following is the basic syntax for the UPDATE statement:

[WITH <common_table_expression> [, ...n]]
UPDATE
[TOP (expression) [PERCENT]]
table_name | view_name | rowset_function | common_table_expression
[WITH table_hint]
SET column_name = {expression | DEFAULT | NULL} [,...n]
<outputclause>
FROM < table_name | view_name | common_table_expression>
WHERE <search_condition>

The following are the arguments of the UPDATE statement:

•	 WITH: This keyword specifies the CTE that you can reference in your
UPDATE statement

•	 TOP: You specify this keyword to only update a specific number or percent of
rows from the top of the query

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

•	 table_name | view_name | rowset function |
common_table_expression: This specifies the name of the table, view,
rowset function, or CTE that contains the data to be updated

•	 SET: This specifies the name of the column or columns to be updated
•	 FROM: This keyword specifies the name of the table, view, or CTE from which

you are taking the data
•	 WHERE: This keyword specifies the search condition to identify which records

are to be updated
•	 WITH table_hints: You use this keyword to specify one or more table hints

for the destination table
•	 output_clause: You use this to identify the rows affected by the

UPDATE statement

The UPDATE statement examples
This section describes the basic forms of the UPDATE statement.

Example 1 – updating a single row
The following UPDATE statement updates the list price of a single product in the
Production.Product table:

USE [AdventureWorks2012];
GO

UPDATE [Production].[Product]
SET [ListPrice] = 1670
WHERE [ProductID] = 13;
GO

Example 2 – updating multiple rows
Suppose you want to increase the list price by 25 percent only for products
whose list price is less than $1,000. To accomplish this, you need to run the
following UPDATE statement in the SSMS 2014 Query Editor:

USE [AdventureWorks2012];
GO

UPDATE [Production].[Product]
SET [ListPrice] = [ListPrice] + ([ListPrice] * 0.25)
WHERE [ListPrice] < 1000;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[88]

Another example, the following UPDATE statement, updates the list price to $200 for
products whose current price list is $0.0:

USE [AdventureWorks2012];
GO

UPDATE [Production].[Product]
SET [ListPrice] = 200.0
WHERE [ListPrice] = 0.0;
GO

Deleting data from SQL Server database
tables
You use the DELETE statement to delete unwanted data from SQL Server
database tables.

To execute the DELETE statement, the user must at least have the DELETE permission
assigned on the target table.

The basic syntax for a DELETE statement is as follows:

[WITH <common_table_expression> [,...n]]
DELETE
[TOP (expression) [percent]]
[FROM] table_name | view_name | rowset_function
[WITH table_hint]
<outputclause>
[FROM table_source]
WHERE search_conditions

The following are the arguments of a DELETE statement:

•	 WITH: This keyword specifies the CTE that you can reference in your
DELETE statement

•	 TOP: Specify this keyword to only delete a specific number or percent of
rows from the top of the query

•	 table_name | view_name | rowset function |
common_table_expression: This specifies the name of the table, view,
rowset function, or CTE containing the data that you want to delete

•	 FROM: This keyword specifies the name of the table, view, or CTE from
which you are deleting the data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

•	 WHERE: This keyword specifies the search condition to identify which
records you want to delete

•	 WITH table_hints: You use this keyword to specify one or more table
hints for the destination table

•	 output_clause: You use this to identify the rows affected by a
DELETE statement

The DELETE statement examples
The following are the two examples of the DELETE statement.

Example 1 – deleting a single row
The following DELETE statement deletes all rows from the dbo.CustomProducts
table in which the ProductCategory column value is Components:

USE [AdventureWorks2012];
GO

DELETE FROM [dbo].[CustomProducts]
WHERE [ProductCategory] = N'Components';
GO

Example 2 – deleting all rows
Execute the following DELETE statement to delete all rows from the dbo.
CustomProducts table:

USE [AdventureWorks2012];
GO

DELETE FROM [dbo].[CustomProducts];
GO

Using the MERGE statement
In SQL Server, you can perform multiple DML operations in a single code block using
the MERGE statement. The MERGE statement is a powerful Transact-SQL language
feature that allows you to join a source table with a target table, and then perform
multiple DML operations against the specified target table, based on the results of the
MERGE statement join conditions. By using a MERGE statement, you can improve the
performance of OLTP applications, since the data is processed only once.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[90]

To execute a MERGE statement, a user must at least have a SELECT permission assigned
on the source table and INSERT, UPDATE, and DELETE permissions assigned on the
target table.

The basic syntax for the MERGE statement is as follows:

[WITH <common_table_expression> [,...n]]
MERGE
 [TOP (expression) [PERCENT]]
 [INTO] <target_table> [WITH (<merge_hint>)]
 USING <source_table>
 ON <merge_search_condition>
 [WHEN MATCHED [AND <search_condition>]
 THEN <merge_matched>] [...n]
 [WHEN NOT MATCHED [BY TARGET] [AND <search_condition>]
 THEN <merge_not_matched>]
 [WHEN NOT MATCHED BY SOURCE [AND <search_condition>]
 THEN <merge_matched>] [...n]
 [<output_clause>]
 [OPTION (<query_hint> [,...n])] ;

The following are the arguments of the MERGE statement:

•	 WITH: This keyword specifies the CTE that you can reference in your
MERGE statement.

•	 TOP: You use this keyword only to perform DML operations on a specific
number or percent of rows from the top of the joined rows.

•	 target_table: This specifies the name of the target table against which the
source table rows are matched.

•	 USING <source_table>: This specifies the name of the source table that is
matched with the target table.

•	 ON: This keyword specifies the MERGE statement join conditions to identify
which records should be affected.

•	 WHEN MATCHED: These keywords specify all rows that exist in both the source
and target tables. Based on these matching rows, update or delete data in the
target table.

•	 WHEN NOT MATCHED [BY TARGET]: These keywords specify all rows in
the source table that do not exist in the target table. Based on the results
of the <merge_search_condition> condition, you insert the data into
the target table. You can only have one WHEN NOT MATCHED clause in the
MERGE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

•	 WHEN NOT MATCHED BY SOURCE: These keywords specifies all rows in the
target table that do not exist in the source table. Based on the results of the
<merge_search_condition> condition, you either update or delete data in
the target table.

•	 output_clause: You use this to identify the rows affected by the
MERGE statement.

•	 OPTION (<query_hint> [,...n]): You use this keyword to specify one
or more optimizer query hints.

The MERGE statement examples
To illustrate the MERGE statement, consider the following two tables:

•	 dbo.Spices: This database contains information about the spices that the
company is currently selling

•	 dbo.SpicesNew: This database contains information about the spices that
the company will sell in the future

The following T-SQL code creates and populates these two tables:

USE [AdventureWorks2012];
GO

IF OBJECT_ID(N'dbo.Spices', N'U') IS NOT NULL
 DROP TABLE [dbo].[Spices];
GO
CREATE TABLE [dbo].[Spices]
 (
 [SpiceID] [int] PRIMARY KEY,
 [SpiceMixName] [nvarchar](64),
 [Supplier] [nvarchar](50)
);

IF OBJECT_ID(N'dbo.Spices_New', N'U') IS NOT NULL
 DROP TABLE [dbo].[Spices_New];
GO
CREATE TABLE [dbo].[Spices_New]
 (
 [SpiceID] [int] PRIMARY KEY,
 [SpiceMixName] [nvarchar](64),
 [Supplier] [nvarchar](50)
);

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[92]

INSERT INTO [dbo].[Spices]
VALUES (1, N'Five-spice powder', N'Go it!')
, (2, N'Curry powder', N'East-end Spices')
, (3, N'Garam masala', N'All Spices')
, (4, N'Harissa', N'More Places For Stuff')
, (5, N'Shichimi togarashI', N'World-wide Supply')
, (6, N'Mixed spice', N'UK Spices')
, (7, N'Old Bay Seasoning', N'US Mixed Spices')
, (8, N'Jerk spice', N'Quality Spices');

INSERT INTO [dbo].[Spices_New]
VALUES (1, N'Advieh', N'Outlander Spices')
, (2, N'Baharat', N'Spice Source')
, (3, N'Berbere', N'International Supply')
, (4, N'Bumbu', N'Natural Farms')
, (5, N'Chaat masala', N'Sells All')
, (6, N'Chili powder', N'Jo''s Stuff')
, (9, N'Curry powder', N'VJC Processing');

SELECT * FROM [dbo].[Spices];
SELECT * FROM [dbo].[Spices_New];
GO

Now, suppose you want to synchronize the dbo.Spices target table with the
dbo.Spices_New source table. Here is the criterion for this task:

•	 Spices that exist in both the dbo.Spices_New source table and the dbo.Spices
target table are updated in the dbo.Spices target table with new names

•	 Any spices in the dbo.Spices_New source table that do not exist in the dbo.
Spices target table are inserted into the dbo.Spices table target table

•	 Any spices in the dbo.Spices target table that do not exist in the dbo.
Spices_New source table must be deleted from the dbo.Spices target table

Without the MERGE statement, one has to write multiple DML statements to accomplish
this task. Moreover, for each DML operation, SQL Server processes the data separately,
resulting in more time taken to complete each task. However, with the MERGE
statement, you can perform this task in a single statement. Here is the MERGE statement
to perform this task:

USE [AdventureWorks2012];
GO

MERGE [dbo].[Spices] AS [SourceTbl]
USING [dbo].[Spices_New] AS [TargetTbl]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

ON (SourceTbl.[SpiceID] = TargetTbl.[SpiceID])
WHEN MATCHED AND SourceTbl.[SpiceMixName] <>
TargetTbl.[SpiceMixName]
 OR SourceTbl.[Supplier] <> TargetTbl.[Supplier] THEN
 UPDATE SET SourceTbl.[SpiceMixName] = TargetTbl.[SpiceMixName]
,
 SourceTbl.[Supplier] = TargetTbl.[Supplier]
WHEN NOT MATCHED THEN
 INSERT ([SpiceID] ,
 [SpiceMixName] ,
 [Supplier]
)
 VALUES (TargetTbl.[SpiceID] ,
 TargetTbl.[SpiceMixName] ,
 TargetTbl.[Supplier]
)
WHEN NOT MATCHED BY SOURCE THEN
 DELETE
OUTPUT
 $action ,
 INSERTED.* ,
 DELETED.*;
GO

The following screenshot shows the rows affected by this MERGE statement:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modification with SQL Server Transact-SQL Statements

[94]

The TRUNCATE TABLE statement
The TRUNCATE TABLE statement is another way to delete all rows from a table.
Unlike the DELETE statement, SQL Server does not log individual row deletion in a
transaction log. Therefore, this operation is not recoverable because when you run
the TRUNCATE TABLE statement, SQL Server just logs page deallocations that occur
as a result of this operation. The TRUNCATE TABLE statement is much faster when
compared to the DELETE statement, with no WHERE clause, because it uses fewer
system and database transaction log resources.

You cannot use the TRUNCATE TABLE statement on tables that are referenced by a
foreign key constraint, included in an indexed view, or published for transactional or
merge replication. In such a situation, you are required to use the DELETE statement
without a WHERE clause to remove all rows.

The TRUNCATE TABLE statement does reset identity value to its seed
value, while the DELETE statement does not reset identity value. So,
use TRUNCATE TABLE if you also want to reset the identity value to
its seed value.

To execute the TRUNCATE TABLE statement, the user must have at least an ALTER
permission assigned on the target table. The syntax for this command is as follows:

TRUNCATE TABLE [[database.]owner.]table_name

The following is the example of the TRUNCATE TABLE statement, which will delete all
records from a dbo.CustomProduct table:

USE [AdventureWorks2012];
GO

TRUNCATE TABLE [dbo].[CustomProducts];
GO

The SELECT INTO statement
The SELECT INTO statement is another way to insert data into SQL Server tables.
When you use SELECT INTO, SQL Server creates a new table with the specified name
in the default filegroup and then inserts the rows from a SELECT query in the newly
created table. This new table is based on the columns you specify in the SELECT list,
and it must be unique within a database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

The SELECT…INTO statement has been enhanced in SQL Server
2014, and it can now operate in parallel. The parallel insert
functionality of SELECT…INTO requires database compatibility
level 110 or higher.

To execute the SELECT…INTO statement, a user must have at least the SELECT
permission assigned on the target table and the CREATE TABLE permission assigned
on the target database. The following is the basic syntax for a SELECT INTO clause:

SELECT [ALL|DISTINCT] select_list
[INTO[[database.]owner.]table_name]
FROM[[[database.]owner.]table_name|view_name|UDF]
[WHERE search_conditions]
[GROUP BY aggregate_free_expression]
[HAVING search_conditions]
[ORDER BY table_or_view_and_column]
[OPTION (query_hint)]

For example, the following T-SQL code uses the SELECT INTO statement to create a
backup copy of the Production.Product table:

USE [AdventureWorks2012];
GO

SELECT *
INTO [Production].[Product_Backup]
FROM [Production].[Product];
GO

Summary
The SQL Server Transact-SQL language has a set of DML statements that you can
use to manipulate table data. In this chapter, you learned how to add data to a table
using the INSERT statement, how to delete the data using the DELETE statement,
and how to update existing data using the UPDATE statement. You learned about
the MERGE statement and how you can use it to avoid multiple INSERT, UPDATE,
and DELETE DML statements. You also learned how to use the TRUNCATE TABLE
and SELECT…INTO statements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced
Database Programming

Objects and Error Handling
None of the Transact-SQL code that we have written so far in this book is reusable.
SQL Server allows you to create reusable programming objects. The SQL Server
reusable programming objects include views, stored procedures, functions, and
triggers (based on either DDL or DML). In this chapter, we first take a look at
variables. Next, we take a look at control-flow statements. Then we take a look at the
design and use of each of the programmable objects in turn. Finally, we learn how
to handle errors that occur in the Transact-SQL batches and programmable objects
using a TRY...CATCH construct.

After completing this chapter, you will be able to:

•	 Create and use variables
•	 Add logic around and within the Transact-SQL statements to control

program execution
•	 Design and create user-defined views
•	 Design and create user-defined stored procedures
•	 Design and create user-defined functions
•	 Design and create triggers
•	 Handle errors that occur within the Transact-SQL statements and

programming objects

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[98]

Creating and using variables
Like other programming languages, the SQL Server Transact-SQL language also
allows temporary storage in the form of variables. Variables are stored in memory and
are accessible only from the batch or stored procedure, or the function in which they
are declared. There are three types of variables you can create in SQL Server: local
variables (based on system or user-defined data types), cursor variables (to store a
server-side cursor), and table variables (that is, structured like a user-defined table).

We can declare a variable as a standard variable in Transact-SQL by prefixing it with
the @ symbol. We use the DECLARE statement to declare a variable or multiple variables.

Creating a local variable
The basic syntax for creating a local variable is as follows:

DECLARE @variable_name [AS] data_type

By default, all local variables are initialized as NULL. We can assign a value to a local
variable in one of the following three ways:

•	 By using the SET keyword, which is the preferred method
•	 By using the SELECT statement
•	 During the declaration of the variable

For example, the following T-SQL code shows the assignment of values to local
variables using these methods:

•	 By using the SET keyword:
--Example of assigning a value to the local variable using the
--SET keyword.
DECLARE @var1 [int],
 @var2 [varchar](10);

SET @var1 = 10
SET @var2 = N'MyValue1';

•	 By using the SELECT statement:
--Example of assigning a value to the local variable using the
--SELECT statement.
DECLARE @var3 [int],
 @var4 [varchar](10);

SELECT @var3 = 20 ,
 @var4 = N'MyValue2';

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

•	 During the declaration of the variable:
--Example of assigning a value to the local variable at
--declaration.
DECLARE @var5 [int] = 30,
 @var6 [varchar](10) = N'MyValue3';
GO

Creating the cursor variable
SQL Server supports cursor variables primarily to provide backward
compatibility with batches, scripts, and programmable objects written for
earlier SQL Server versions.

The syntax to create a cursor variable is as follows:

DECLARE @variable_name CURSOR

The following is an example of creating a cursor variable:

DECLARE @cur_variable1 CURSOR;

Creating the table variable
Table variables behave in the same manner as local variables. A table variable
stores the data in the form of a table. They are suitable for smaller data sets
(typically less than 1,000 rows). The basic syntax for creating a table variable is
as follows:

DECLARE @table_variable_name [AS] table
(
[(column_definition) [,...n])]
)

The following is a basic example of creating a table variable:

DECLARE @Table1 TABLE
 (
 COL1 [int],
 COL2 [varchar](30)
);

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[100]

As you can see in the previous example, the columns of table variables are defined in
the same way as you define columns when creating an actual table. Table variables do
not support FOREIGN KEY constraints. Moreover, prior to SQL Server 2014, the only
way to create indexes on table variables was by defining the PRIMARY KEY or UNIQUE
KEY constraint on the table variable columns. However, SQL Server 2014 Database
Engine supports non-unique clustered and non-clustered indexes for table variables.
We can define indexes on table variables using new inline index specification syntax.
The following is an example of inline index creation on a table variable:

DECLARE @Table2 TABLE (
COL1 [int],
COL2 [varchar](30),
COL3 [datetime],
INDEX [ixc_col3] CLUSTERED (col3)
WITH (FILLFACTOR=80),
INDEX [ixnc_col1_col2] NONCLUSTERED (col1, col2)
WITH (FILLFACTOR=80)
);
GO

Control-of-flow keywords
Control-of-flow keywords help SQL Server determine when and how Transact-SQL
statements should execute. With these keywords, you can add logic around and
within Transact-SQL statements to control program execution. Control-of-flow
keywords add greater flexibility in OLTP application design and help you write
clever code. Control-of-flow keywords include BEGIN…END, IF…ELSE, CASE, WHILE,
BREAK, CONTINUE, RETURN, GOTO, and WAITFOR.

BEGIN…END keywords
The BEGIN…END keywords identify a code block. We typically use them to group
Transact-SQL statements. The BEGIN…END blocks can be nested. We also use
BEGIN…END statements to identify a code block in an IF…ELSE clause, WHILE loop, and
CASE element. The following is the basic syntax for the BEGIN…END keyword block:

BEGIN
 {
 sql_statement | statement_block
 }
END

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

The following is a basic example of BEGIN…END:

USE [AdventureWorks2012];
GO

BEGIN
 DECLARE @Today [datetime];
 SET @Today = CURRENT_TIMESTAMP;

 SELECT TOP 100
 *
 FROM [HumanResources].[vEmployee];

 SELECT @Today;
END

The IF…ELSE expression
The IF…ELSE block is simply used to make processing decisions based on Boolean
(true/false) expressions. For example, it tells SQL Server to run a Transact-SQL
statement or a set of statements if the Boolean expression specified in the IF clause
returns True, or optionally run an alternate Transact-SQL statement or set of
statements if the Boolean expression specified in the IF clause returns False.

A Boolean expression is one that must return True, False, or NULL.
SQL Server treats NULL as False.

We can have an IF clause without an ELSE clause; however, an ELSE clause cannot
exist without an IF clause. The IF…ELSE statements can be nested, meaning that an
IF or ELSE clause can contain another IF…ELSE structure. The basic syntax for the
IF…ELSE block follows:

IF Boolean_expression { sql_statement | statement_block }
[ELSE { sql_statement | statement_block }]

When the block of statements is used in an IF…ELSE block, then you must use the
BEGIN…END keywords to identify whether the block is in the IF clause or the ELSE
clause. Moreover, if you include a SELECT statement in the expression, you must
enclose the statement in parentheses. Here is a basic example of an IF…ELSE block:

IF (SELECT DATENAME(dw, CURRENT_TIMESTAMP)
) IN (N'Friday', N'Saturday', N'Sunday')
 BEGIN

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[102]

 SELECT 'Hey, its weekend!!!';
 END;
ELSE
 BEGIN
 SELECT N'Its weekday!!!';
 END;

A CASE statement
We can also use the CASE statement to make decisions based on an expression.
The CASE statement is a conceptually simpler way to perform operations similar
to IF…ELSE IF…ELSE. The basic syntax for a CASE statement is as follows:

CASE input_expression
WHEN test_result THEN statement_block
WHEN test_result THEN statement_block
…
[ELSE statement_block]
END

The input_expression parameter is the value that is tested by the WHEN statements.
If the input_expression parameter includes a SELECT statement, then you must
enclose the SELECT statement in parentheses. The following is a basic example of the
CASE statement:

SELECT CASE (SELECT DATENAME(dw, CURRENT_TIMESTAMP))
 WHEN N'Friday' THEN N'Hey, Its Friday!!!'
 WHEN N'Saturday' THEN N'Hey, its Saturday!!!'
 WHEN N'Sunday' THEN N'Hey, its Sunday!!!'
 ELSE N'Its weekday!!!'
 END;

WHILE, BREAK, and CONTINUE statements
The WHILE statement is a basic looping construct in SQL Server that is based on
a Boolean expression. As long as the expression evaluates to true, SQL Server
continues to repeat the execution of the specified T-SQL statement or code block.
The basic syntax of the WHILE loop is as follows:

WHILE Boolean_expression
{ sql_statement | statement_block | BREAK | CONTINUE }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

The optional keywords BREAK and CONTINUE can be included with the WHILE loop
and are used to control the logic inside the loop. When you specify the BREAK
keyword with the WHILE loop, it exits the innermost WHILE loop (in nested loops).
If in the outer loop, SQL Server exits the WHILE loop and continues with the next
statement. On the other hand, when you specify the CONTINUE keyword, SQL Server
restarts the loop at the first statement in the block and ignores any statements
following the CONTINUE keyword. Here is a basic example of the WHILE loop:

DECLARE @counter [int] = 0
WHILE (@counter < 10)
 BEGIN
 IF (@counter < 5)
 BEGIN
 SELECT @counter;
 SET @counter = @counter + 1;
 CONTINUE;
 END;
 ELSE
 SET @counter = @counter + 1;
 IF @counter = 7
 BEGIN
 SELECT @counter;
 BREAK;
 END;
 END;

RETURN, GOTO, and WAITFOR statements
We use the RETURN keyword to unconditionally end the procedure, batch, or
statement block. We use the GOTO keyword to transfer the execution context of the
statement from its current point to the specified line in the GOTO label. SQL Server
ignores any statements between these. We use the WAITFOR keyword to suspend
execution until the specified time of day is reached, or an interval (up to 24 hours)
has passed. The time can be supplied as a literal or with a variable.

The TRY…CATCH construct and the THROW statement are also part of the
control-of-flow language keywords. We will cover these control-of-flow
keywords later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[104]

Creating and using views
A view is a virtual table whose result set is derived from a query. In reality, a view
is simply a SELECT statement that is saved with the name in the database. Views
are used just like regular tables without incurring additional cost, unless you are
indexing the view. We typically create views based on one or more tables, views,
CTEs, table-valued functions, or a combination of them all. We can reference views
in Transact-SQL statements in the same way tables are referenced. We can also
perform DML operations on views. The typical uses of views include:

•	 A denormalized presentation of normalized data
•	 Limiting access to specific columns of the underlying tables
•	 Creating a reusable set of data
•	 Restricting users' access to sensitive data

You should avoid using SELECT * in views, because when
you do, the columns list is resolved each time you query the
view. Moreover, the result set of the view query changes
when the underlying table schema changes. A good practice is
returning only those columns that are required.
The ORDER BY clause is not valid in views unless used with a
TOP clause.

Creating views with Transact-SQL and
SSMS 2014
This section describes how to create and manage views using Transact-SQL DDL
statements and SSMS 2014.

Creating, altering, and dropping views with
Transact-SQL DDL statements
You can create, alter, and drop views with these Transact-SQL DDL statements:
CREATE VIEW, ALTER VIEW, and DROP VIEW.

The CREATE VIEW statement
The syntax for the CREATE VIEW statement is very simple and straightforward,
as follows:

CREATE VIEW [schema.]view_name [(column_list)]
[WITH view_attributes]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

AS select_statement [;]
[WITH CHECK OPTION]

The following are the arguments of the CREATE VIEW statement:

•	 schema: This specifies the name of the schema in which you are creating
a view.

•	 view_name: This specifies the name of the view; it must be unique within
the schema.

•	 column_list: This specifies the name to be used for a column in the view;
it is an optional argument unless you have a derived column.

•	 WITH view_attributes: This is an optional view attribute. The attributes
are as follows:

°° ENCRYPTION: This attribute encrypts the text of the CREATE
VIEW statement

°° SCHEMABINDING: This attribute binds the view to the underlying table
or tables, meaning users cannot modify the underlying table or tables
in any way that affects the view definition

°° VIEW_METADATA: This attribute specifies the instance of SQL Server
to return the metadata information about the view instead of the
underlying base table or tables to the DB-Library, ODBC, and OLE
DB application programming interfaces (APIs)

•	 AS select_statement: This is the SELECT statement defining the view.
•	 WITH CHECK OPTION: This forces the DML statements executed against the

view to follow the criteria in the SELECT statement.

Here is an example of the CREATE VIEW statement:

USE [AdventureWorks2012];
GO

CREATE VIEW [HumanResources].[vEmployeesWithinCompanyGroup]
AS
SELECT [Executive General and Administration] , [Inventory
Management] , [Manufacturing] , [Quality Assurance] , [Research
and Development] ,[Sales and Marketing]
FROM (SELECT p.BusinessEntityID , d.[GroupName]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[106]

INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID]
) AS a PIVOT
(COUNT(a.[BusinessEntityID])
FOR [GroupName] IN ([Executive General and Administration],
[Inventory Management], [Manufacturing], [Quality Assurance],
[Research and Development], [Sales and Marketing])) AS b
GO

The ALTER VIEW statement
We use the ALTER VIEW statement to modify the view definition. The ALTER VIEW
statement syntax is the same as the CREATE VIEW statement syntax:

ALTER VIEW [schema.]view_name [(column_list)]
[WITH view_attributes]
AS select_statement [;]
[WITH CHECK OPTION]

The following is an example of the ALTER VIEW statement:

USE [AdventureWorks2012];
GO

ALTER VIEW [HumanResources].[vEmployeesWithinCompanyGroup]
AS
SELECT [Executive General and Administration] , [Inventory
Management] , [Manufacturing] , [Quality Assurance] , [Research
and Development] ,[Sales and Marketing]
FROM (SELECT p.BusinessEntityID , d.[GroupName]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID]
) AS a PIVOT
(COUNT(a.[BusinessEntityID])
FOR [GroupName] IN ([Executive General and Administration],
[Inventory Management], [Manufacturing], [Quality Assurance],
[Research and Development], [Sales and Marketing])) AS b
GO

The DROP VIEW statement
We use the DROP VIEW statement to permanently delete a view. The DROP VIEW
statement syntax is as follows:

DROP VIEW [schema.]view_name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

The following is an example of the DROP VIEW statement:

USE [AdventureWorks2012];
GO

DROP VIEW [HumanResources].[vEmployeesWithinCompanyGroup];
GO

Creating, altering, and dropping views with
SSMS 2014
You can use the SQL Server 2014 Management Studio GUI to create, alter, and drop
views. This section demonstrates the steps to do that.

Creating views with SSMS 2014
The following are the steps to create views with the SQL Server 2014 Management
Studio GUI:

1.	 Open SQL Server 2014 Management Studio.
2.	 In Object Explorer, expand the Databases folder.
3.	 Expand the database in which you want to create the view.
4.	 Right-click on the Views folder and select New View... from the context menu.

The Add Table dialog box now opens, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[108]

5.	 Choose all the necessary base objects for your view query and then click on
the Close button to close the Add Table dialog box. The Create View pane is
now visible, as shown in the following screenshot:

6.	 You can use the Create View panes to design your views. For example,
using the Create View pane, you can perform the following:

°° You can use the Diagram pane to select the view columns
°° You can use the Criteria pane to specify the view criteria, such as

sort order and filter logic
°° You can use the SQL pane to directly modify the view query

7.	 Once satisfied with the changes, click on the save icon in the SSMS 2014
menu bar. This opens the Choose Name dialog box. Type in the name of
the view and then click on OK to save the view.

8.	 Finally, click on the X in the corner of the new view tab to close the view
designer GUI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Altering and dropping views with SSMS 2014
To modify a view in SQL Server 2014 Management Studio, perform the
following steps:

1.	 Expand the Views folder.
2.	 Right-click on the view and choose Design from the context menu.
3.	 Make the necessary changes to the Diagram, Criteria, and SQL panes.
4.	 Save the view changes.

If the view was created using the WITH ENCRYPTION
option, you cannot modify it in SSMS. The Design option
is disabled when you right-click on an encrypted view.

To drop a view in SQL Server 2014 Management Studio, perform the following steps:

1.	 Expand the Views folder.
2.	 Right-click on the view and choose Delete.
3.	 Click on OK to verify your action.

Indexed views
An indexed view is a persisted view that is stored on disk. The indexed view
helps improve performance because, as long as the data in the base objects has not
changed, SQL Server can process queries based on views without accessing the
base objects. SQL Server Database Engine automatically updates the indexed view
indexes if the data in the key columns changes.

The indexed view feature is available only in the Enterprise edition of
SQL Server 2014.

When creating an indexed view, you should consider the following points:

•	 Create a view using WITH SCHEMABINDING
•	 The indexed view base objects cannot include other views
•	 You must reference base objects with two-part names (schema.object_name)
•	 You must create a clustered index on the indexed view
•	 The SELECT statement cannot include the UNION keyword or any subqueries
•	 The LEFT, RIGHT, or FULL OUTER joins are not allowed for indexed

view queries

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[110]

Indexed view example
To create an indexed view, first create a view. Use the following code to do so:

USE [AdventureWorks2012];
GO

CREATE VIEW [Sales].[vIndividualEmployeeIndexedViews]
WITH SCHEMABINDING
AS
SELECT p.[Title] ,
p.[FirstName] + SPACE(1)
+ p.[MiddleName] + SPACE(1)
+ p.[LastName] AS [FullName] ,
e.[JobTitle] ,
d.[Name] AS [Department] ,
d.[GroupName] ,
dhist.[StartDate]
FROM [HumanResources].[Employee] e
INNER JOIN [HumanResources].[EmployeeDepartmentHistory] dhist
ON e.[BusinessEntityID] = dhist.[BusinessEntityID]
AND dhist.[EndDate] IS NULL
INNER JOIN [Person].[Person] p
ON p.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [HumanResources].[Department] d
ON dhist.[DepartmentID] = d.[DepartmentID];
GO

Then, using the following code, create a clustered index on the view to make it an
indexed view:

USE [AdventureWorks2012];
GO

CREATE UNIQUE CLUSTERED INDEX ixc_EmployeeList ON
[Sales].[vIndividualEmployeeIndexedViews]
([FullName], [JobTitle], [StartDate]);
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Creating and using stored procedures
A stored procedure in SQL Server is a precompiled collection of Transact-SQL
statements, variables, and control-of-flow statements typically grouped together
to perform a specific task. Stored procedures encapsulate code as a single module
for processing. Statements in the procedure usually include DML statements, DDL
statements, control-of-flow statements, comments, and calls to .NET Framework CLR
methods. The code within a stored procedure is executed as a single unit or batch. The
benefit of this is that the network traffic is greatly reduced as several Transact-SQL
statements contained in the stored procedure are not required to travel through the
network individually. Only the name of the stored procedure and its parameters are
transmitted over the network.

The stored procedure runs faster than ad hoc Transact-SQL batches, especially when
used in repetitive tasks. This is because SQL Server always caches a stored procedure
execution plan in an area of SQL Server memory called procedure cache, and it is
likely to remain in the procedure cache (provided there is enough memory available;
unless run with RECOMPILE option) and be reused, while ad hoc SQL plans created
when running ad hoc Transact-SQL statements might or might not be stored in
the procedure cache. Therefore, SQL Server does not retrieve and reload the stored
procedure from disk and nor does it parse, optimize, and compile the stored procedure
each time it runs.

You can run DBCC FREEPROCCACHE to manually clear the
procedure cache.

Since database operations can be performed within stored procedures, they provide
a high level of security. Instead of access granted to the underlying object, permission
can be granted for the stored procedure.

The stored procedure allows modular programming, which allows you to break
database procedures down into smaller, more manageable pieces.

You can create stored procedures that accept input parameters and return values
and status information. Stored procedures use variables for internal temporary
data storage, input parameters, and output parameters.

You can create stored procedures in any SQL Server database except
the resource database.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[112]

Microsoft SQL Server 2014 has four types of stored procedures, listed as follows:

•	 User-defined stored procedures: These are procedures you write using the
CREATE PROCEDURE statement.

•	 Natively compiled stored procedures: These are user-defined stored
procedures that operate on memory-optimized tables. Though natively
compiled stored procedures are written in Transact-SQL, they are actually
compiled to highly efficient machine code. This maximizes the runtime
performance of certain workloads and types of queries because the
generated machine code only contains exactly what is needed to run the
request, and nothing more.

•	 System stored procedures: These are the procedures shipped with SQL
Server as part of the default installation. The system stored procedures
are used to perform administrative procedures. System stored procedures
have names that are prefixed with sp_.

•	 Temporary stored procedures: These are like normal stored procedures, but
they do not exist permanently. Instead, temporary stored procedures have
a life and limited accessibility, depending on their type. Temporary stored
procedures reside inside tempdb. We can create two types of temporary
stored procedures: local and global. The name of a local temporary stored
procedure must begin with a single number sign (#), and the name of the
global temporary stored procedure must begin with two number signs (##).
Local temporary stored procedures are only available to the user session that
created the stored procedure. Therefore, SQL Server removes local temporary
stored procedures when the user session ends. On the other hand, global
temporary stored procedures are available for all user sessions after their
creation. SQL Server removes global temporary stored procedures once all
user sessions that refer to it are disconnected.

•	 Extended user-defined stored procedures: These are the routines you
write in a programming language, which are compiled as a dynamic link
library (DLL) file. We write them using the SQL Server Extended Stored
Procedure API.

•	 CLR stored procedures: These are the procedures you write using the .NET
framework programming language.

Extended user-defined stored procedures have been replaced by CLR
stored procedures. A detailed discussion of CLR stored procedures is
beyond the scope of this chapter. For more information about CLR stored
procedures, see CLR Stored Procedure at http://msdn.microsoft.
com/en-us/library/ms131094.aspx.

This chapter only focuses on user-defined stored procedures.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Creating a stored procedure
Now that we understand the purpose of stored procedures, let's take a look at the
syntax of the CREATE PROCEDURE statement. Have a look at the following code:

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
[{ @parameter [type_schema_name.] data_type }
[VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] } [;]
<procedure_option> ::=
[ENCRYPTION]
[RECOMPILE]
[NATIVE_COMPILATION]
[SCHEMABINDING]
[EXECUTE AS Clause]

The following are the arguments of the CREATE PROCEDURE statement:

•	 schema_name: This specifies the name of the schema in which you are
creating the stored procedure.

•	 procedure_name: This specifies the name of the stored procedure; it must be
unique within the schema.

•	 @parameter data_type: This defines the stored procedure parameters.
•	 procedure_option: These are used to further define the procedure. The

following are the available options:
°° ENCRYPTION: This encrypts the text of the CREATE

PROCEDURE statement.
°° SCHEMABINDING: This binds the stored procedure to the underlying

base objects, meaning users cannot modify the underlying base
objects in any way that affects the stored procedure definition. This
option is supported only for natively compiled stored procedures.

°° NATIVE_COMPILATION: This makes the stored procedure a natively
compiled procedure.

°° EXECUTE AS: This specifies the context under which the stored
procedure executes. We can set the execute context as CALLER, SELF,
OWNER, or as a username to identify a specific user.

°° WITH RECOMPILE: This recompiles stored procedures each time it runs.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[114]

You can also recompile the stored procedure either by
executing a stored procedure with the WITH RECOMPILE
option or by running a sp_recompile stored procedure.

•	 NOT FOR REPLICATION: This specifies that the stored procedure cannot be
executed on the subscribing server.

•	 AS: This specifies the SQL statements (for Transact-SQL procedures) or
module identifier (for CLR procedures) used to define a stored procedure.

Here is an example of a stored procedure:

USE [AdventureWorks2012];
GO

CREATE PROCEDURE [HumanResources].[uspUpdateEmployeeInfo]
 @BusinessEntityID [int],
 @NationalIDNumber [nvarchar](15),
 @BirthDate [datetime],
 @MaritalStatus [nchar](1),
 @Gender [nchar](1)
WITH EXECUTE AS CALLER
AS
BEGIN
 SET NOCOUNT ON;

 BEGIN TRY
 UPDATE [HumanResources].[Employee]
 SET [NationalIDNumber] = @NationalIDNumber
 ,[BirthDate] = @BirthDate
 ,[MaritalStatus] = @MaritalStatus
 ,[Gender] = @Gender
 WHERE [BusinessEntityID] = @BusinessEntityID;
 END TRY
 BEGIN CATCH
 EXECUTE [dbo].[uspLogError];
 END CATCH;
END;
GO

Use SET NOCOUNT ON within stored procedures to increase
performance. This is because, when specified, this statement
does not return the number of rows affected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

For a natively compiled stored procedure example, first create a memory-optimized
table called Sales.SalesOrderDetail_MO in the AdventureWorks2012 database. To
create this table, run the following code snippet:

USE [master];
GO

ALTER DATABASE [AdventureWorks2012]
ADD FILEGROUP [AW_MEMORYOPTIMIZED]
CONTAINS MEMORY_OPTIMIZED_DATA;

ALTER DATABASE [AdventureWorks2012]
ADD FILE (NAME='AdventureWorks2012_MemoryOptimized',
FILENAME='C:\SQLData\AdventureWorks2012_MO.ndf')
TO FILEGROUP [AW_MemoryOptimized];
GO

USE [AdventureWorks2012];
GO

CREATE TABLE Sales.SalesOrderDetail_MO (
 [SalesOrderID] [int] NOT NULL
 ,[SalesOrderDetailID] [int] NOT NULL
 ,[CarrierTrackingNumber] [nvarchar](25) NULL
 ,[OrderQty] [smallint] NOT NULL
 ,[ProductID] [int] NOT NULL
 ,[SpecialOfferID] [int] NOT NULL
 ,[UnitPrice] [money] NOT NULL
 ,[UnitPriceDiscount] [money] NOT NULL
 ,[LineTotal] [money]
 ,[rowguid] [uniqueidentifier] NOT NULL
 ,[ModifiedDate] [datetime]
 ,CONSTRAINT
 [PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID2] PRIMARY
 KEY NONCLUSTERED HASH (
 [SalesOrderID]
 ,[SalesOrderDetailID]) WITH (BUCKET_COUNT = 20000))
 WITH (MEMORY_OPTIMIZED = ON
 ,DURABILITY = SCHEMA_AND_DATA);
GO

Next, enter and execute the following T-SQL code to copy the data from Sales.
SalesOrderDetail to our memory-optimized table, Sales.SalesOrderDetail_MO:

USE [AdventureWorks2012];
GO

INSERT INTO [Sales].[SalesOrderDetail_MO]
SELECT [SalesOrderID]
 ,[SalesOrderDetailID]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[116]

 ,[CarrierTrackingNumber]
 ,[OrderQty]
 ,[ProductID]
 ,[SpecialOfferID]
 ,[UnitPrice]
 ,[UnitPriceDiscount]
 ,[LineTotal]
 ,[rowguid]
 ,[ModifiedDate]
 FROM [Sales].[SalesOrderDetail];
GO

Now that we have created a memory-optimized table in the AdventureWorks2012
database and copied data into it, we are ready for a natively compiled stored
procedure example. To create a natively compiled stored procedure, enter and
execute the following T-SQL code to retrieve the orders' detail information from
the Sales.SalesOrderDetail_MO table:

USE [AdventureWorks2012];
GO

CREATE PROCEDURE RetriveOrderDetail
 @SalesOrderID [int]
 WITH NATIVE_COMPILATION
 ,SCHEMABINDING
 ,EXECUTE AS OWNER
AS
 BEGIN
 ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT
 ,LANGUAGE = 'English')
 SELECT [SalesOrderID] ,
 [SalesOrderDetailID] ,
 [CarrierTrackingNumber] ,
 [OrderQty] ,
 [ProductID] ,
 [SpecialOfferID] ,
 [UnitPrice] ,
 [UnitPriceDiscount] ,
 [LineTotal] ,
 [rowguid] ,
 [ModifiedDate]
 FROM [Sales].[SalesOrderDetail_MO]
 WHERE [SalesOrderID] = @SalesOrderID;
 END;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

The Transact-SQL code that actually makes the store procedure a natively compiled
procedure is as follows:

WITH NATIVE_COMPILATION
,SCHEMABINDING
 ,EXECUTE AS OWNER
AS
BEGIN
 ATOMIC
 WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT
 ,LANGUAGE = 'English')

Modifying a stored procedure
We use a ALTER PROCEDURE statement to modify the stored procedure definition.
The following is the ALTER PROCEDURE syntax, which is the same as the CREATE
PROCEDURE syntax:

ALTER { PROC | PROCEDURE } [schema_name.] procedure_name [;
number]
[{ @parameter [type_schema_name.] data_type }
[VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }[;]
<procedure_option> ::=
[ENCRYPTION]
[RECOMPILE]
[NATIVE_COMPILATION]
[SCHEMABINDING]
[EXECUTE AS Clause]

The following is an example of the ALTER PROCEDURE statement:

USE [AdventureWorks2012];
GO

ALTER PROCEDURE [HumanResources].[uspUpdateEmployeeInfo]
 @BusinessEntityID [int],
 @NationalIDNumber [nvarchar](15),
 @BirthDate [datetime],
 @MaritalStatus [nchar](1),
 @Gender [nchar](1)
WITH EXECUTE AS CALLER
AS
BEGIN

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[118]

 SET NOCOUNT ON;

 BEGIN TRY
 UPDATE [HumanResources].[Employee]
 SET [NationalIDNumber] = @NationalIDNumber
 ,[BirthDate] = @BirthDate
 ,[MaritalStatus] = @MaritalStatus
 ,[Gender] = @Gender
 WHERE [BusinessEntityID] = @BusinessEntityID;
 END TRY
 BEGIN CATCH
 EXECUTE [dbo].[uspLogError];
 END CATCH;
END;
GO

Note here that the operation ALTER PROCEDURE is not supported
with natively compiled stored procedures.

Dropping a stored procedure
We use the DROP PROCEDURE statement to permanently delete a stored procedure.
The DROP PROCEDURE statement syntax is as follows:

DROP PROC[EDURE] [schema.]procedure_name

The following is an example of the DROP PROCEDURE statement:

USE [AdventureWorks2012];
GO

DROP PROCEDURE [HumanResources].[uspUpdateEmployeeInfo];
GO

The following are the steps to drop a stored procedure in SSMS 2014:

1.	 In Object Explorer, expand the Databases folder.
2.	 Expand the database where the stored procedure you want to delete exists.
3.	 Expand Programmability.
4.	 Expand Stored Procedures.
5.	 In Stored Procedures, right-click on the procedure and choose Delete from

the context menu.
6.	 SQL Server prompts you to verify your action. Click on OK to confirm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Viewing stored procedures
The following are the steps to view stored procedures in SSMS 2014:

1.	 In Object Explorer, expand the Databases folder.
2.	 Expand the database whose stored procedures you want to view.
3.	 Expand Programmability.
4.	 Expand Stored Procedures. We can now view the stored procedures,

as shown in the following screenshot:

You can also either use the sp_helptext system stored procedure or query the
sys.sql_modules or sys.syscomments system view to view the definition of a
stored procedure and the statement that was used to create the procedure. (The
sp_helptext system stored procedure and the sys.syscomments system view
can also be used to print the definition of a trigger, a view, a rule, or a default.)

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[120]

You cannot use the sp_helptext system stored procedure and nor can
you query the sys.sql_modules and sys.syscomments system views
to view the stored procedure definition if a stored procedure was created
using the WITH ENCRYPTION option.

Executing stored procedures
Although you can run a stored procedure by simply typing in the name of the stored
procedure in SSMS 2014 Query Editor, this is not the recommended way to run the
stored procedure. The recommended way is to use the EXECUTE keyword followed
by a stored procedure. The syntax for this is as follows:

EXECUTE | EXEC procedure_name [parameter1, parameter2, n…]

For example, enter and execute the following T-SQL code in SSMS 2014 Query Editor
to execute the dbo.uspGetWhereUsedProductID stored procedure:

USE [AdventureWorks2012]
GO

DECLARE @RC INT
DECLARE @StartProductID INT = 20
DECLARE @CheckDate DATETIME = CURRENT_TIMESTAMP - 40

EXECUTE @RC = [dbo].[uspGetWhereUsedProductID] @StartProductID,
@CheckDate;
GO

Creating and using user-defined functions
User-defined functions (UDFs) are similar to stored procedures, except that they
do not support OUTPUT parameters. Instead, a user-defined function returns a value.
The type of value returned depends on the type of function. One of the two most
notable differences between stored procedures and user-defined functions is that
user-defined functions can be used in the SELECT statement, and you can join them
to tables, views, CTE and even other functions. The second difference is that you can
perform DML operations within stored procedures, but you cannot perform DML
operations within user-defined functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

We primarily use functions to perform logic and complex functions. SQL Server
supports Transact-SQL and CLR user-defined functions. The difference between
the two is that a Transact-SQL user-defined function is based on Transact-SQL
statements and a CLR user-defined function is based on a registered assembly
method. In general, CLR user-defined functions are more suitable for computational
tasks, string manipulation, and business logic, while Transact-SQL functions are
more suitable for data-access-intensive logic.

A detailed discussion of CLR user-defined function is beyond the scope
of this chapter. For help with this, see Create CLR Functions at http://
msdn.microsoft.com/en-us/library/ms189876.aspx.

The advantages of using functions are the same as those of using stored procedures:
modular programming support, reduced network traffic, and faster execution.

Microsoft SQL Server 2014 allows you to create two types of functions: scalar
and table-valued. A scalar user-defined function returns a single value, while a
table-valued function returns a table that results from a SELECT statement.

Creating user-defined functions
We use the CREATE FUNCTION statement to create a user-defined function. The
CREATE FUNCTION syntax varies depending on the type of function you create.

Creating a user-defined scalar function
The syntax to create a user-defined scalar function is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS return_data_type
[WITH <function_option> [,...n]]
[AS]
BEGIN
function_body
RETURN scalar_expression
END [;]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[122]

The following describes the arguments of the CREATE FUNCTION statement:

•	 schema_name: This specifies the name of the schema in which you are
creating the function.

•	 function_name: This specifies the name of the function; it must be unique
within the schema.

•	 @parameter data_type: This defines the function input parameters.
•	 WITH <function_option>: These are used to further define the function

options. The following are these options:
°° ENCRYPTION: This encrypts the text of the CREATE FUNCTION statement.
°° SCHEMABINDING: This binds the function to the underlying base

objects, meaning users cannot modify the underlying base object in
any way that affects the function definition.

°° EXECUTE AS: This specifies the context under which the stored
procedure executes. We can set the execute context as CALLER, SELF,
OWNER, or as a username to identify a specific user.

•	 RETURNS: This sets the return value data type; we will use scalar data types
only for scalar-valued functions.

•	 sql_statements: These are the statements that generate the return value.
•	 RETURN: This returns the value result.

For example, run the following Transact-SQL code to create the dbo.fnIsWeekday
user-defined scalar function within the AdventureWorks2012 database:

USE [AdventureWorks2012];
GO

CREATE FUNCTION dbo.fnIsWeekday (@p_date [datetime])
RETURNS [bit]
AS
 BEGIN
 DECLARE @weekday [bit]
 IF (SELECT DATENAME(dw, @p_date)
) IN (N'Friday', N'Saturday', N'Sunday')
 BEGIN
 SET @weekday = 0
 END
 ELSE
 BEGIN
 SET @weekday = 1
 END
 RETURN (@weekday)
 END;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

This user-defined scalar function accepts an input parameter (@p_date) and returns
1 if it is a weekend date and 0 if it is not a weekend date. Moreover, this function
definition also includes control-of-flow statements.

Obviously, you need to provide a date to use this user-defined
scalar function.

Using a user-defined scalar function
You can use user-defined scalar function in the same way you use system scalar
functions. For example, to use the above user-defined scalar function, run the
following code in SSMS 2014 Query Editor:

USE [AdventureWorks2012];
GO

SELECT dbo.fnIsWeekday ('June 23, 2014');
GO

The preceding code snippet returns 1 as June 23, 2014, a weekday. The following
screenshot shows the result of the preceding code:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[124]

Creating a user-defined table-valued function
We can create two types of table-valued functions: inline table-valued functions
and multistatement table-valued functions. The inline table-valued function simply
returns a result set from a query, and the multistatement table-valued function offers
the ability to include logic within the body of the function and returns the result set
on the basis of that logic. The syntax to create both types of table-valued functions
are as follows:

•	 The syntax for an inline table-valued function is as follows:
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS TABLE
[WITH <function_option> [,...n]]
[AS]
RETURN [(] select_stmt [)][;]

•	 The syntax for a multistatement table-valued function is as follows:

CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS @return_variable TABLE <table_type_definition>
[WITH <function_option> [,...n]]
[AS]
BEGIN
function_body
RETURN
END[;]

The parameters of the CREATE FUNCTION statement for both types of user-defined
table-valued functions are the same as the CREATE FUNCTION statement of
user-defined scalar functions, except that the user-defined table-valued functions
return a result set rather than a single value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Inline table-valued function example
Here is an example of an inline table-valued function:

USE [AdventureWorks2012];
GO

CREATE FUNCTION [dbo].[GetEmployeeDetails] (@p_employeeid [int])
RETURNS TABLE
AS
RETURN
(
WITH [CTE_EmployeeInfo]
AS
(
SELECT e.[BusinessEntityID], p.[Title], p.[FirstName] ,
p.[MiddleName] , p.[LastName] , p.[Suffix] , e.[JobTitle] ,
pp.[PhoneNumber] , pnt.[Name] AS [PhoneNumberType] ,
ea.[EmailAddress] , p.[EmailPromotion] , a.[AddressLine1] ,
a.[AddressLine2] ,
a.[City], sp.[Name] AS [StateProvinceName] , a.[PostalCode] ,
cr.[Name] AS [CountryRegionName]
FROM [HumanResources].[Employee] e
INNER JOIN [Person].[Person] p ON p.[BusinessEntityID] =
e.[BusinessEntityID]
INNER JOIN [Person].[BusinessEntityAddress] bea ON
bea.[BusinessEntityID] = e.[BusinessEntityID]
INNER JOIN [Person].[Address] a ON a.[AddressID] = bea.[AddressID]
INNER JOIN [Person].[StateProvince] sp ON sp.[StateProvinceID] =
a.[StateProvinceID]
INNER JOIN [Person].[CountryRegion] cr ON cr.[CountryRegionCode] =
sp.[CountryRegionCode]
LEFT OUTER JOIN [Person].[PersonPhone] pp ON pp.BusinessEntityID =
p.[BusinessEntityID]
LEFT OUTER JOIN [Person].[PhoneNumberType] pnt ON
pp.[PhoneNumberTypeID] = pnt.[PhoneNumberTypeID]
LEFT OUTER JOIN [Person].[EmailAddress] ea ON p.[BusinessEntityID]
= ea.[BusinessEntityID]
)
SELECT * FROM [CTE_EmployeeInfo]
WHERE [BusinessEntityID] = @p_employeeid
)
GO

This user-defined scalar function accepts an input parameter (@p_employeeid) and
returns the employee details of the specified employee.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[126]

Multistatement table-valued function example
Here is an example of a multistatement table-valued function:

USE [AdventureWorks2012];
GO

CREATE FUNCTION [dbo].[ufnRetrieveContactInformation]
(@p_contactid [int])
RETURNS @ContactDetails TABLE
(-- Columns returned by the function
[ContactID] [int] PRIMARY KEY NOT NULL ,
[Title] [nvarchar](8) NULL ,
[FirstName] [nvarchar](50) NULL ,
[MiddleName] [nvarchar](50) NULL ,
[LastName] [nvarchar](50) NULL ,
[JobTitle] [nvarchar](50) NULL ,
[ContactType] [nvarchar](50) NULL)
AS
BEGIN
IF @p_contactid IS NOT NULL
BEGIN
INSERT INTO @ContactDetails ([ContactID], [Title], [FirstName],
[MiddleName], [LastName], [ContactType])
SELECT [BusinessEntityID], [Title], [FirstName], [MiddleName],
[LastName], CASE [PersonType] WHEN N'EM' THEN N'Employee' WHEN
N'SP' THEN N'Employee' WHEN N'VC' THEN N'Vendor Contact' WHEN
N'SC' THEN N'Store Contact' WHEN N'IN' THEN N'Consumer' ELSE
N'General Contact' END
FROM [Person].[Person]
WHERE [BusinessEntityID] = @p_contactid;

IF EXISTS (SELECT * FROM [Person].[Person] p WHERE
p.[BusinessEntityID] = @p_contactid AND p.[PersonType] IN (N'EM',
N'SP'))
BEGIN
UPDATE @ContactDetails
SET [JobTitle] = (SELECT e.[JobTitle] FROM [Person].[Person] p
INNER JOIN [HumanResources].[Employee] e ON e.[BusinessEntityID] =
p.[BusinessEntityID] AND p.[BusinessEntityID] = @p_contactid);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

END;

IF EXISTS (SELECT * FROM [Person].[Person] p WHERE
p.[BusinessEntityID] = @p_contactid AND p.[PersonType] = N'VC')
BEGIN
UPDATE @ContactDetails
SET [JobTitle] = (SELECT ct.[Name] FROM [Person].[Person] p INNER
JOIN [Person].[BusinessEntityContact] bec ON bec.[PersonID] =
p.[BusinessEntityID] AND p.[BusinessEntityID] = @p_contactid INNER
JOIN [Person].[ContactType] ct ON ct.[ContactTypeID] =
bec.[ContactTypeID]);
END;

IF EXISTS (SELECT * FROM [Person].[Person] p WHERE
p.[BusinessEntityID] = @p_contactid AND p.[PersonType] = N'SC')
BEGIN
UPDATE @ContactDetails
SET [JobTitle] = (SELECT ct.[Name] FROM [Person].[Person] p INNER
JOIN [Person].[BusinessEntityContact] bec ON bec.[PersonID] =
p.[BusinessEntityID] AND p.[BusinessEntityID] = @p_contactid INNER
JOIN [Person].[ContactType] ct ON ct.[ContactTypeID] =
bec.[ContactTypeID] INNER JOIN [Sales].[Store] s ON
bec.[BusinessEntityID] = s.[BusinessEntityID]);
END;

IF EXISTS (SELECT * FROM [Person].[Person] p WHERE
p.[BusinessEntityID] = @p_contactid AND p.[PersonType] = N'IN')
BEGIN
UPDATE @ContactDetails
SET [JobTitle] = (SELECT NULL FROM [Person].[Person] p INNER
JOIN [Sales].[Customer] c ON c.[PersonID] = p.[BusinessEntityID]
AND p.[BusinessEntityID] = @p_contactid AND c.[StoreID] IS NULL);
END;
END;
RETURN;
END;
GO

This user-defined scalar function accepts an input parameter (@p_contactid) and
returns the title, first name, middle name, last name, job title, and contact type of the
specified contact.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[128]

Modifying user-defined functions
We use the ALTER FUNCTION statement to modify a function. It uses the same syntax
as the CREATE FUNCTION statement.

For scalar-value functions, the syntax is as follows:

ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS return_data_type
[WITH <function_option> [,...n]]
[AS]
BEGIN
function_body
RETURN scalar_expression
END [;]

For inline table-valued function, the syntax is as follows:

ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS TABLE
[WITH <function_option> [,...n]]
[AS]
RETURN [(] select_stmt [)] [;]

For multistatement table-valued functions, the syntax is as follows:

ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.]
parameter_data_type
[= default] [READONLY] }
[,...n]])
RETURNS @return_variable TABLE <table_type_definition>
[WITH <function_option> [,...n]]
[AS]
BEGIN
function_body
RETURN
END [;]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Using a user-defined table-valued function
You can use a user-defined table-valued function in the same way you use tables
or views. For example, to use the preceding user-defined table-valued functions,
run the following code in SSMS 2014 Query Editor:

USE [AdventureWorks2012]
GO

SELECT *
FROM [dbo].[GetEmployeeDetails](92);
GO

SELECT *
FROM [dbo].[ufnRetrieveContactInformation] (89);
GO

Dropping user-defined functions
We use the DROP FUNCTION statement to permanently delete a user-defined function.
The DROP FUNCTION statement syntax is as follows:

DROP PROC[EDURE] [schema.]function_name

The following is an example of the DROP FUNCTION statement:

USE [AdventureWorks2012];
GO

DROP FUNCTION [dbo].[ufnRetrieveContactInformation];
GO

The following are the steps to drop a function in SSMS 2014:

1.	 In Object Explorer, expand the Databases folder.
2.	 Expand the database where the function you want to delete exists.
3.	 Expand Programmability.
4.	 Expand Functions.
5.	 Expand the appropriate user-defined function folder.
6.	 Right-click on the function you want to delete, and then choose Delete from

the context menu.
7.	 SQL Server prompts you to verify your action. Click on OK to confirm.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[130]

Viewing user-defined functions
To view functions in SSMS 2014, perform the following steps:

1.	 In Object Explorer, expand the Databases folder.
2.	 Expand the database for which you want to view functions.
3.	 Expand Programmability.
4.	 Expand Functions. The following screenshot shows the functions

in SSMS 2014:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

You can also either use the sp_helptext system stored procedure or query the
sys.sql_modules or sys.syscomments system view to view the definition of a
function and the statement that was used to create a function.

If a function was created using WITH ENCRYPTION, you cannot use
the sp_helptext system stored procedure and nor can you query
the sys.sql_modules and sys.syscomments system views to
view its definition.

Creating and using triggers
A trigger is a special type of stored procedure that fires (executes) in response to
an event. We typically use triggers to maintain data integrity rules that are too
complicated to implement through constraints and referential integrity. We also
use triggers to:

•	 Implement referential actions, such as cascading deletes
•	 Maintain an audit trail of changes
•	 Perform administrative tasks such as auditing and regulating

database operations
•	 Compare data before and after modification
•	 Implement custom error messages

Triggers cannot support parameters and should not return values or result sets.

Microsoft SQL Server 2014 has two basic trigger types: DML triggers and
DDL triggers.

You can write DDL and DML triggers as Transact-SQL or CLR triggers.
In this topic, we will use Transact-SQL to write DDL and DML triggers.
For more information about CLR triggers, see CLR triggers at http://
msdn.microsoft.com/en-us/library/ms131093.aspx.

Nested triggers
SQL Server 2014 allows the nesting of DDL and DML triggers if the nested triggers
server configuration option is enabled. The nested triggers option allows triggers
to call themselves recursively. For example, one trigger changes a table to activate
another trigger, which activates another trigger, and so on. SQL Server has a
maximum nesting depth of 32.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[132]

By default, the nested triggers option is disabled. To enable this, use the
sp_configure system stored procedure as follows:

USE [master];
GO

EXEC sp_configure 'show advanced options', 1;
GO
-- To update the currently configured value for advanced options.
RECONFIGURE;
GO

-- To enable the nested trigger feature.
EXEC sp_configure 'nested triggers', 1;
GO

-- To update the currently configured value for this feature.
RECONFIGURE;
GO

Nested triggers require careful planning because they can result in multiple changes
in the same column or even changes in multiple tables. Nested triggers can produce
unexpected results.

Instead of nesting triggers, you may find it more appropriate to have one trigger
perform all of the required actions. This is usually easier to manage and results in
an easier-to-maintain solution.

Recursive triggers
A trigger that can activate itself is called a recursive trigger. There are two types
of recursion: direct and indirect recursion. Direct recursion occurs when a trigger
directly activates itself, while indirect recursion occurs when the trigger activates
another trigger, which then activates the first trigger. SQL Server 2014 disables
recursive triggers by default.

DML triggers
DML triggers fire in response to any combination of INSERT, UPDATE, or DELETE
events on a specific table. We cannot create DML triggers on system tables.
Moreover, you cannot use the following statements in DML triggers: CREATE
DATABASE, ALTER DATABASE, DROP DATABASES, RESTORE DATABASE, RESTORE LOG,
RECONFIGURE, DISK INIT, DISK RESIZE, and SHUTDOWN.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

There are two types of DML triggers, listed as follows, based on when the code in the
trigger executes:

•	 AFTER: This fires after processing the data manipulation statement. SQL
Server does not allow you to create AFTER triggers on views.

•	 INSTEAD OF: This fires before the data manipulation statement executes,
and the code in the trigger runs instead of the statement.

Inserted and deleted logical tables
The inserted and deleted tables are special tables accessible from within the bodies of
DML triggers only. The tables reside in memory and contain the rows affected by the
DML statement that caused the trigger to fire.

Creating DML triggers
We use the CREATE TRIGGER statement to create triggers. The syntax of the CREATE
TRIGGER statement is as follows:

CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method
specifier [;] > }
<dml_trigger_option> ::=
[ENCRYPTION]
[EXECUTE AS Clause]
<method_specifier> ::=
assembly_name.class_name.method_name

The following describes the arguments of the CREATE FUNCTION statement:

•	 schema_name: This specifies the name of the schema in which you are
creating the trigger.

•	 trigger_name: This specifies the name of the trigger; it must be unique
within the schema.

•	 ON {table | view}: This specifies the name of the table or view on which
you are creating the trigger.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[134]

•	 trigger_options: These are used to further define the trigger. The options
are as follows:

°° ENCRYPTION: This encrypts the text of the CREATE TRIGGER statement.
°° EXECUTE AS: This specifies the context under which the trigger

executes. We can set the execute context as CALLER, SELF, OWNER, or as
a username to identify a specific user.

•	 FOR | AFTER | INSTEAD OF: This specifies the DML trigger type.
•	 NOT FOR REPLICATION: This specifies that the specified trigger is not

executed when the table is updated or modified through replication.
•	 sql_statements: This specifies the statements that will generate the result

table by trigger.

Here is a basic example of the DML trigger:

USE [AdventureWorks2012];
GO

CREATE TRIGGER [Production].[WorkOrder_after_trigger] ON
[Production].[WorkOrder]
AFTER INSERT
AS
BEGIN
DECLARE @Count INT;

SET @Count = @@ROWCOUNT;
IF @Count = 0
RETURN;

SET NOCOUNT ON;
INSERT INTO [Production].[TransactionHistory]
([ProductID] ,
 [ReferenceOrderID] ,
 [TransactionType] ,
 [TransactionDate] ,
 [Quantity] ,
 [ActualCost]
)
SELECT inserted.[ProductID] ,
 inserted.[WorkOrderID] ,
 'W' ,
 GETDATE() ,
 inserted.[OrderQty] ,
 0
FROM inserted;
END;
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Modifying a DML trigger
We use the ALTER TRIGGER statement to modify a function. It uses the same syntax as
the CREATE TRIGGER statement. The ALTER TRIGGER statement syntax is as follows:

ALTER TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method
specifier [;] > }
<dml_trigger_option> ::=
[ENCRYPTION]
[EXECUTE AS Clause]
<method_specifier> ::=
assembly_name.class_name.method_name

Dropping a DML trigger
We use the DROP TRIGGER statement to permanently delete a trigger. The DROP
TRIGGER statement syntax is as follows:

DROP TRIGGER schema.trigger_name

Data Definition Language (DDL) triggers
DDL triggers fire in response to data-definition-level events such as creating or
dropping objects. DDL triggers can have database- or server-wide scope.

The EVENTDATA function
The EVENTDATA function provides detailed information about the DDL event that
caused the DDL trigger to fire. The EVENTDATA function returns a value of type XML.

Creating a DDL trigger
To create a DDL trigger, we execute the CREATE TRIGGER statement using the
following syntax:

CREATE TRIGGER trigger_name
ON {ALL SERVER | DATABASE }

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[136]

WITH <ddl_trigger_option> [,…n]
{FOR | AFTER} {event_type | event_group} [,…n]
AS {sql_statements | EXTERNAL NAME <method_specifier>

As you can see, its syntax is the same as the DML trigger CREATE TRIGGER statement.
Specify ON ALL SERVER to set the scope of the DDL trigger to the current server and
specify ON DATABASE to set the scope of the DDL trigger to the current database.
When you create a DDL trigger, you specify either an event or an event group.

For the list of events / event groups that you can use with DDL trigger,
refer to DDL Event Groups at http://msdn.microsoft.com/en-us/
library/bb510452.aspx.

The following is a basic example of the DDL trigger that fires in response to
database-level events:

CREATE TRIGGER trig_preventDDLOOH ON DATABASE
 FOR DDL_DATABASE_LEVEL_EVENTS
AS
BEGIN
 IF (DATEPART(HOUR, CURRENT_TIMESTAMP) < 8
 OR DATEPART(HOUR, CURRENT_TIMESTAMP) > 17)
PRINT N'You cannot perform DDL outside of normal business hours';
 ROLLBACK;
END
GO

This trigger fires and prevents any database-level changes outside normal business
hours, that is, 08:00 to 17:00.

Modifying a DDL trigger
To modify a DDL trigger, we execute the ALTER TRIGGER statement using the
following syntax:

ALTER TRIGGER trigger_name
ON {ALL SERVER | DATABASE }
WITH <ddl_trigger_option> [,…n]
{FOR | AFTER} {event_type | event_group} [,…n]
AS {sql_statements | EXTERNAL NAME <method_specifier>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

Dropping a DDL trigger
To delete a DDL trigger, we execute the DROP TRIGGER statement using the
following syntax:

DROP TRIGGER schema.trigger_name
ON {ALL SERVER | DATABASE}

Disabling and enabling triggers
We can also enable and disable triggers. To enable a trigger, we use the ENABLE
TRIGGER statement as follows:

ENABLE TRIGGER [schema.]trigger_name | ALL
ON table_or_view | DATABASE | ALL SERVER

To disable a trigger, we use the DISABLE TRIGGER statement as follows:

DISABLE TRIGGER [schema.]trigger_name | ALL
ON table_or_view | DATABASE | ALL SERVER

We can also use SSMS 2014 to disable or enable a trigger. To enable or disable the
trigger, right-click on the trigger and select Disable or Enable.

Viewing triggers
You can view the DML triggers for an individual table in SSMS 2014 under the
table's Triggers folder. We can view DDL triggers by scope. For database triggers,
expand the Databases folder, then Programmability and then Database Trigger.
For DDL server triggers, expand the server instance, then the Server Objects
folder, and then Triggers.

You can either use the sp_helptext system stored procedure or query the following
system views to view the definition of DDL and DML triggers:

•	 sys.triggers: This returns information about all triggers
•	 sys.servertriggers: This returns information about server-level triggers
•	 sys.sql_modules: This returns creation information about all triggers

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[138]

Handling Transact-SQL errors
Like other programming languages, T-SQL provides a sophisticated mechanism
that captures and handles errors during execution. The mechanism for handling
errors during execution includes the object-oriented-programming-style TRY…CATCH
construct. When writing Transact-SQL batches and programmable objects, we wrap
the Transact-SQL statements to be executed within a TRY block, and at runtime, if
an error occurs, control is sent to the CATCH block. We enclose error-handling code
within the CATCH block. The syntax for the TRY…CATCH construct is as follows:

BEGIN TRY
{ sql_statement |statement_block}
END TRY
BEGIN CATCH
[{ sql_statement |statement_block}]
END CATCH

Only errors with severity between 11 and 19 cause the CATCH block to execute. SQL
Server treats errors with lower severity as informational messages. Errors with
severity 20 or higher usually terminate the connection. If they do terminate the
connection, SQL Server does not execute the Transact-SQL code within the CATCH
block. If they do not terminate the connection, SQL Server executes the Transact-SQL
code within the CATCH block.

You can use the following scalar functions within the CATCH block to retrieve the
information about the error that caused the CATCH block to execute:

•	 ERROR_NUMBER(): This returns the error number

The @@ERROR function also returns the error number if the
previous Transact-SQL statement encountered an error
during execution. It returns 0 if the previous Transact-SQL
statement is executed without any error.

•	 ERROR_MESSAGE(): This returns the textual description of the error
•	 ERROR_SEVERITY(): This returns the error severity
•	 ERROR_STATE(): This returns the error state number

You can use the state number in conjunction with the error
number when looking for information about the error in the
Knowledge Base.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

•	 ERROR_LINE(): This returns the line number of the Transact-SQL statement
on which the error occurred

•	 ERROR_PROCEDURE(): This returns the name of the stored procedure or
trigger where the error occurred

You can use THROW with the TRY block to raise an exception and transfer execution to
the CATCH block. The THROW statement must end with a semicolon (;). The syntax for
the THROW statement is as follows:

THROW [{ error_number | @local_variable },
{ message | @local_variable },

{ state | @local_variable }] [;]

We use the RAISERROR statement to instruct SQL Server to send an error to a client
application. We typically use the RAISERROR statement for user-defined errors. The
syntax for the RAISERROR statement is as follows:

RAISERROR ({ msg_id | msg_str | @local_variable }
 { ,severity ,state }
 [,argument [,...n]])
 [WITH option [,...n]]

The following sections discuss a few examples of the TRY…CATCH construct.

An example of TRY...CATCH
The following code snippet illustrates a simple TRY…CATCH block:

BEGIN TRY
 SELECT 50 / 0
END TRY
BEGIN CATCH
 SELECT @@ERROR AS [@@ERROR]
 SELECT ERROR_NUMBER() AS [ERROR_NUMBER] ,
 ERROR_MESSAGE() AS [ERROR_MESSAGE]
END CATCH

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Advanced Database Programming Objects and Error Handling

[140]

Executing this will return the output shown in the following screenshot:

An example of TRY...CATCH with THROW
The following code snippet illustrates a TRY…CATCH expression with a THROW block:

BEGIN TRY
 SELECT 50 / 0
END TRY
BEGIN CATCH
 THROW;
END CATCH

Executing this will return the output shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

An example of TRY...CATCH with RAISERROR
The following code snippet illustrates a TRY…CATCH expression with a
RAISERROR block:

BEGIN TRY
 SELECT 50 / 0
END TRY
BEGIN CATCH
 RAISERROR (N'Oops, a divide-by-zero error occurred.', 16, 1)
WITH NOWAIT
END CATCH

Executing this will return the output shown in the following screenshot:

Summary
In this chapter, you declared and used local variables. You learned about
control-of-flow statements and learned how to use them to control program execution.
You understood the purpose of views, stored procedures, user-defined functions, and
triggers, as well as understood the guidelines and restrictions to designing each of
these programmable objects. You also learned how to design, create, and use views,
stored procedures, user-defined functions, and triggers. In the last section, you learned
how to handle errors that occur within Transact-SQL batches and programmable
objects using the TRY...CATCH construct.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics
There are many factors that could affect the performance of a SQL Server database,
such as the server hardware, the operating system setup, and the configuration of the
database. Therefore, optimizing the database performance is often considered to be
one of the most difficult tasks that few understand. However, in most situations, you
can achieve optimum performance with a relatively small investment of your time
and by understanding how SQL Server works.

After completing this chapter, you will be able to do the following:

•	 Understand the workings of the SQL Server Relational Engine
•	 Understand the workings of the SQL Server 2014 in-memory

engine (Hekaton)
•	 Understand the use of indexes and how they optimize

database performance
•	 Understand the purpose of SQL Server query optimization statistics
•	 Understand the use of transactions and locks
•	 Identify the tools that you can use to troubleshoot the performance of

SQL Server Database Engine

Components of SQL Server Database
Engine
SQL Server Database Engine has two major components: Relational Engine
and Storage Engine. We have already covered the SQL Server Storage Engine
architecture in the first chapter of this book. In this section, we'll be covering
the SQL Server Relational Engine architecture and other topics to optimize the
SQL Server Relational Engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[144]

The SQL Server Relational Engine architecture
The SQL Server Relational Engine is also known as the query processor because it
produces the optimal execution plan for your query or each query stored in a batch
or stored procedure. Then, it executes this query plan to deliver the desired results
to the client in a format specified in the submitted Transact-SQL statement.

The following diagram outlines the query optimization process:

Retrieve plan from
plan cache

Perform trivial
optimization

Found trivial plan?

Full Optimization

Save query plan in the
plan cache

Wait for Memory Grant
Scheduler to allocate

memory

Execute

Return data to
client in the

format specified
in submitted

query

Does query
plan need to be

recompiled?

Yes

No

Does
the query plan
exist in plan

cache?

Yes

Parse and bind
Transact-SQL statement

Yes No

No

The key phases of the query optimization process are explored in the next sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

Parsing and binding
The SQL Server Relational Engine includes a command parser that checks the query to
make sure that its syntax is valid. If the query has a syntax error, the error is returned
to the client through a protocol layer. If the query syntax is valid, the command parser
generates a parse tree and proceeds to the algebrizer. The algebrizer's primary function
is to perform binding, that is, to validate whether the tables and columns used in
the query exist; load the metadata information for the tables and columns; identify
all of the data types used for the query; add information about the required implicit
data conversions (typecasting) to the algebrizer tree; replace views with definitions;
verify whether the GROUP BY and aggregate functions are used in the right place; and
perform simple, syntax-based optimizations. The output of this phase is the tree of
logical operators that are necessary to carry out the work that the query has requested.

Query optimization
Query optimization is one of the most complex phases of query processing. The
first step of this phase is to perform trivial optimization, where SQL Server tries to
determine whether a trivial plan for the query exists. A trivial plan is one that has
a known, constant CPU and I/O cost. The trivial plan will only exist when the SQL
Server optimizer determines that there is only one viable plan to run the query. The
SQL Server query optimizer performs trivial optimization based on the complexity
of a submitted query. For example, the SQL Server query optimizer creates a trivial
query plan for one of the following instances:

•	 For a SELECT query on a single table with no indexes
•	 For a SELECT query on a single table with no ORDER BY or GROUP BY clause
•	 For a SELECT query on a single table with Search Arguments (SARG) on a

unique key
•	 For a SELECT query that involves no parameters
•	 For a SELECT query that uses predefined system functions
•	 For an INSERT statement using a VALUES clause to insert data into a single table

This is because there is only one viable way to execute such Transact-SQL statements.

So, when you submit a query, the SQL Server query optimizer first determines
whether the query plan is trivial. To do this, it investigates the query and relevant
metadata to determine whether there is only one viable method to run the query.
Due to trivial optimization, the SQL Server query optimizer is able to avoid a lot of
the work that is required to initiate and carry out cost-based optimization. If a query
has a trivial plan, the SQL Server query optimizer returns the trivial query plan to
the query executor and no additional work is required.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[146]

If a trivial plan is not available, the SQL Server query optimizer retrieves all of
the available statistics for columns and indexes that will help it find the optimal
execution plan from the plan cache. At this stage, the SQL Server query optimizer
performs more syntactical transformations of the query itself, such as cumulative
properties and operations that can be rearranged. After this, the SQL Server query
optimizer begins the optimization process.

A plan cache is an area of memory that is used to store query
execution plans. You can use the sys.dm_exec_cached_plans
dynamic management view to find query plans that are cached in
the SQL Server plan cache. For more information on the columns of
this dynamic management view, refer to the sys.dm_exec_cached_plans
(Transact-SQL) article at http://msdn.microsoft.com/en-us/
library/ms187404.aspx.

Initially, the SQL Server query optimizer looks in the plan cache for the simple
query plan. The simple query plan is one that usually uses a nested loops join and
one index per table. If the SQL Server query optimizer does not find a simple query
plan in the plan cache, it then looks for more complex query plan possibilities
by analyzing multiple indexes on the table to find a good enough query plan. In
a situation where a table is being used in a join and it does not have a suitable
index for the query join criteria, the SQL Server query optimizer attempts to seek
possibilities for a complex query plan by assessing the cost of using a hash join.

If the SQL Server query optimizer is unable to find the appropriate query plan in
the plan cache, it enters into a full cost-based optimization phase. In this phase, the
SQL Server query optimizer uses the logical tree to devise every possible way to
run the query. If your machine has multiple processors and the cost threshold
for parallelism and max degree of parallelism configuration options are
configured correctly, the SQL Server query optimizer then creates only the parallel
query execution plan for parallel processing.

The SQL Server query optimizer chooses a nonparallel query plan over
a parallel query plan, only when the cost of the least expensive parallel
query plan is greater than the cost of the least expensive nonparallel
query plan.

The SQL Server query optimizer then chooses the least expensive query plan in
terms of the required CPU processing and I/Os, then it passes it along to the query
executor for processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

The reason I used the word "least expensive" here is because the SQL
Server query optimizer is a cost-based optimizer. This means that a faster
or better query plan might exist in the plan cache, but the query optimizer
will always choose the execution plan that it deems will have the lowest
cost in terms of the required CPU processing and I/Os.

So, all in all, the main objective of the SQL Server query optimizer is to create
a low-cost execution plan, which it then passes along to the query executor
for processing.

You can query the sys.dm_exec_query_optimizer_info dynamic
management view to see detailed statistics about the operation of the
SQL Server query optimizer. For further information on this dynamic
management view, refer to the sys.dm_exec_query_optimizer_info
(Transact-SQL) article at http://msdn.microsoft.com/en-us/
library/ms175002.aspx.

Query execution and plan caching
After the execution plan is created or retrieved from the plan cache, the SQL Server
query executor uses the selected query execution plan and works in conjunction with
the storage engine to run the query and return the results to the client through a
protocol layer in the format specified in the submitted Transact-SQL statement.

Note that the SQL Server query optimizer may change the estimated execution plan
during the actual execution process if the following conditions are met:

•	 The table and column statistics are out of date
•	 The nonparallel plan exceeds the threshold for a parallel plan execution
•	 The data in the underlying query tables changes significantly

In addition, if the underlying table's data, indexes, or statistics change significantly
between each run, it results in the recompilation of an execution plan. If not, this
estimated plan is then stored in the plan cache.

At most, SQL Server caches two instances of the query plan in the
plan cache at a given time: the parallel execution plan and nonparallel
execution plan.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[148]

Query plan aging
SQL Server saves each query plan with its age and the cost factor. The cost factor
reflects the total cost when compiling the query. The cost factor is incremented by 1
each time that the query plan is referenced. SQL Server does not decrement this cost
factor until the size of the plan cache reaches 50 percent of the size of the SQL Server
buffer pool. When this happens, and the next time plan cache is accessed, SQL Server
decrements the cost factor for all cached query plans by 1. It then periodically cleans
the plan cache. This happens in the following situations:

•	 When the SQL Server buffer pool requires more memory for another object
•	 When the cost factor of the query plan reaches 0
•	 When the query plan is not referenced by any connection

The improved design in SQL Server 2014 for the
cardinality estimation
Cardinality refers to the number of unique values that exist in the data. To improve
the quality of the query plan, Microsoft redesigned the query optimizer cardinality
estimator algorithm logic in SQL Server 2014. By default, all databases created with
SQL Server 2014 have this feature enabled. For the new cardinality estimator to be
enabled on databases that were created with prior versions, the compatibility level
of the databases must be set to 120. For more information on the new cardinality
estimator, see the Cardinality Estimation (SQL Server) article at http://msdn.
microsoft.com/en-us/library/dn600374.aspx.

Optimizing SQL Server for ad hoc workloads
By default, SQL Server caches all query plans in the plan cache. If your SQL Server is
experiencing memory pressure, it is recommended that you optimize SQL Server for
ad hoc workloads. You can do this by running the following Transact-SQL code:

USE [master];
GO

EXEC [sp_configure] 'show advanced options', 1;
GO

RECONFIGURE;
GO

EXEC [sp_configure] 'optimize for ad hoc workloads', 1;
GO

RECONFIGURE;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

GO

EXEC [sp_configure] 'show advanced options', 0;
GO

RECONFIGURE;
GO

Setting this option will not affect plans that are already in the plan cache. This option
is only available on SQL Server 2008 and higher SQL Server versions.

Manually clearing the plan cache
If you want to clear the plan cache manually, you need to run DBCC FREEPROCCACHE.
You should avoid running this command in a production environment because
clearing the plan cache forces queries and stored procedures to be recompiled,
which reduces the query performance temporarily.

The SQL Server 2014 in-memory OLTP
engine
The SQL Server 2014 in-memory online transaction processing (OLTP) engine,
previously code-named Hekaton, allows you to create in-memory, optimized
OLTP tables within a conventional relational database. It is one of the key, new,
performance-related architectural enhancements to SQL Server Database Engine. Like
traditional transactions on disk-based tables, the transactions on in-memory-optimized
OLTP tables are fully atomic, consistent, isolated, and durable. The in-memory OLTP
engine solves problems in high-concurrency situations as it uses data structures that
are entirely latch-free (lock-free), which means there are no latches or spinlocks on
performance-critical paths in the system. Instead, it uses an optimistic Multiversion
Concurrency Control (MVCC) technique that provides transaction isolation semantics,
which help avoid interference among transactions. Thus, any user process can access
any row in a table without acquiring latches or locks.

The combination of these MVCC and latch-free data structures results in a system
in which user processes can run without stalling or waiting. In addition, stored
procedures that operate on memory-optimized tables, though written in Transact-
SQL, are compiled to highly efficient machine code. This maximizes the runtime
performance for certain workloads and types of queries because the generated
machine code only contains exactly what is needed to run the query, and nothing
more. According to Microsoft, some applications can achieve a 50x performance
increase only using the in-memory OTLP engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[150]

There are two main types of in-memory optimized OLTP tables: SCHEMA_AND_DATA
and SCHEMA_ONLY. The following is a brief explanation of these:

•	 SCHEMA_AND_DATA in-memory optimized OLTP tables reside in memory
where both the schema of the table and the data persist after SQL Server
crashes or restarts

•	 SCHEMA_ONLY in-memory optimized OLTP tables reside in memory where
only the schema of the table persists after SQL Server crashes or restarts

SCHEMA_ONLY in-memory optimized OLTP tables are useful as staging tables for your
database application. On the other hand, SCHEMA_AND_DATA in-memory optimized
OLTP tables are more useful as transactional OLTP applications, where you would
not want to lose data and transactions after SQL Server crashes or restarts.

The in-memory OLTP feature is only supported on the 64-bit Enterprise, Developer,
or Evaluation editions of SQL Server 2014.

You can use the Memory Optimization Advisor wizard, which can be launched from
SQL Server 2014 Management Studio, to help identify and migrate fully compatible
tables in memory and select the stored procedures that can be compiled into machine
code for high-performance execution.

For more information on how to use this wizard, see the Memory Optimization Advisor
article at http://msdn.microsoft.com/en-us/library/dn284308.aspx.

The limitations of memory-optimized tables
In-memory optimized OLTP tables do not support a full set of SQL Server and
Transact-SQL features that are supported by traditional, disk-based tables. Some of the
key limitations of in-memory optimized OLTP tables include no support for SPARSE,
IDENTITY, and computed columns; DML triggers; FILESTREAM data; columnstore,
filtered, and full-text indexes; the ROWGUIDCOL option; FOREIGN KEY, CHECK, and
UNIQUE constraints; TRUNCATE TABLE, MERGE, and dynamic and key set cursors.

The following data types are not supported by in-memory optimized tables:
Datetimeoffset, geography, geometry, and LOBs (varchar(max), image, XML,
text, and ntext).

For a full list of SQL Server 2014 features that are not supported with
memory-optimized tables, see the MSDN resource Transact-SQL Constructs
Not Supported by In-Memory OLTP at http://msdn.microsoft.com/en-us/
library/dn246937.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

Indexes
As a database administrator (DBA) or developer, one of your most important goals is
to ensure that the query times are consistent with the service-level agreement (SLA)
and are meeting user expectations. Along with other performance enhancement
techniques, creating indexes for your queries on underlying tables is one of the most
effective and common ways to achieve this objective.

The indexes of underlying relational tables are very similar in purpose to an index
section at the back of a book. For example, instead of flipping through each page
of the book, you use the index section at the back of the book to quickly find the
particular information or topic within the book. In the same way, instead of scanning
each individual row on the data page, SQL Server uses indexes to quickly find the
data for the qualifying query. Therefore, by indexing an underlying relational table,
you can significantly enhance the performance of your database.

Indexing affects the processing speed for both OLTP and OLAP and helps you
achieve optimum query performance and response time.

The cost associated with indexes
As mentioned earlier, SQL Server uses indexes to optimize overall query performance.
However, there is also a cost associated with indexes; that is, indexes slow down
insert, update, and delete operations. Therefore, it is important to consider the cost and
benefits associated with indexes when you plan your indexing strategy.

How SQL Server uses indexes
A table that doesn't have a clustered index is stored in a set of data pages called
a heap. Initially, the data in the heaps is stored in the order in which the rows are
inserted into the table. However, SQL Server Database Engine moves the data
around the heap to store the rows efficiently. Therefore, you cannot predict the order
of the rows for heaps because data pages are not sequenced in any particular order.
The only way to guarantee the order of the rows from a heap is to use the SELECT
statement with the ORDER BY clause.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[152]

Access without an index
When you access the data, SQL Server first determines whether there is a suitable
index available for the submitted SELECT statement. If no suitable index is found for
the submitted SELECT statement, SQL Server retrieves the data by scanning the entire
table. The database engine begins scanning at the physical beginning of the table and
scans through the full table page by page and row by row to look for qualifying data
that is specified in the submitted SELECT statement. Then, it extracts and returns the
rows that meet the criteria in the format specified in the submitted SELECT statement.

Access with an index
The process is improved when indexes are present. If the appropriate index is
available, SQL Server uses it to locate the data. An index improves the search process
by sorting data on key columns. The database engine begins scanning from the first
page of the index and only scans those pages that potentially contain qualifying data
based on the index structure and key columns. Finally, it retrieves the data rows or
pointers that contain the locations of the data rows to allow direct row retrieval.

The structure of indexes
In SQL Server, all indexes—except full-text, XML, in-memory optimized, and
columnstore indexes—are organized as a balanced tree (B-tree). This is because
full-text indexes use their own engine to manage and query full-text catalogs,
XML indexes are stored as internal SQL Server tables, in-memory optimized
indexes use the Bw-tree structure, and columnstore indexes utilize SQL Server
in-memory technology.

In the B-tree structure, each page is called a node. The top page of the B-tree
structure is called the root node. Non-leaf nodes, also referred to as intermediate
levels, are hierarchical tree nodes that comprise the index sort order. Non-leaf nodes
point to other non-leaf nodes that are one step below in the B-tree hierarchy, until
reaching the leaf nodes. Leaf nodes are at the bottom of the B-tree hierarchy. The
following diagram illustrates the typical B-tree structure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Root Page

Intermediate
Levels

Leaf Level

Next | Previous

Index Rows

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Rows of Data

Next | Previous

Index Rows

Next | Previous

Index Rows

Next | Previous

Index Rows

Next | Previous

Index Rows

Next | Previous

Index Rows

Next | Previous

Index Rows

Index types
In SQL Server 2014, you can create several types of indexes. They are explored in the
next sections.

Clustered indexes
A clustered index sorts table or view rows in the order based on clustered index
key column values. In short, a leaf node of a clustered index contains data pages,
and scanning them will return the actual data rows. Therefore, a table can have
only one clustered index. Unless explicitly specified as nonclustered, SQL Server
automatically creates the clustered index when you define a PRIMARY KEY constraint
on a table.

When should you have a clustered index on a table?
Although it is not mandatory to have a clustered index per table, according to
the TechNet article, Clustered Index Design Guidelines, with few exceptions,
every table should have a clustered index defined on the column or columns
that used as follows:

•	 The table is large and does not have a nonclustered index. The presence of
a clustered index improves performance because without it, all rows of the
table will have to be read if any row needs to be found.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[154]

•	 A column or columns are frequently queried, and data is returned in a sorted
order. The presence of a clustered index on the sorting column or columns
prevents the sorting operation from being started and returns the data in the
sorted order.

•	 A column or columns are frequently queried, and data is grouped together.
As data must be sorted before it is grouped, the presence of a clustered
index on the sorting column or columns prevents the sorting operation from
being started.

•	 A column or columns data that are frequently used in queries to search data
ranges from the table. The presence of clustered indexes on the range column
will help avoid the sorting of the entire table data.

Nonclustered indexes
Nonclustered indexes do not sort or store the data of the underlying table. This is
because the leaf nodes of the nonclustered indexes are index pages that contain
pointers to data rows. SQL Server automatically creates nonclustered indexes
when you define a UNIQUE KEY constraint on a table. A table can have up to 999
nonclustered indexes.

You can use the CREATE INDEX statement to create clustered and
nonclustered indexes. A detailed discussion on the CREATE INDEX
statement and its parameters is beyond the scope of this chapter. For help
with this, refer to the CREATE INDEX (Transact-SQL) article at http://
msdn.microsoft.com/en-us/library/ms188783.aspx.
SQL Server 2014 also supports new inline index creation syntax for
standard, disk-based database tables, temp tables, and table variables.
For more information, refer to the CREATE TABLE (SQL Server) article at
http://msdn.microsoft.com/en-us/library/ms174979.aspx.

Single-column indexes
As the name implies, single-column indexes are based on a single-key column.
You can define it as either clustered or nonclustered. You cannot drop the index key
column or change the data type of the underlying table column without dropping
the index first. Single-column indexes are useful for queries that search data based
on a single column value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Composite indexes
Composite indexes include two or more columns from the same table. You can
define composite indexes as either clustered or nonclustered. You can use composite
indexes when you have two or more columns that need to be searched together. You
typically place the most unique key (the key with the highest degree of selectivity)
first in the key list.

For example, examine the following query that returns a list of account numbers and
names from the Purchasing.Vendor table, where the name and account number
starts with the character A:

USE [AdventureWorks2012];

SELECT [AccountNumber] ,
 [Name]
FROM [Purchasing].[Vendor]
WHERE [AccountNumber] LIKE 'A%'
 AND [Name] LIKE 'A%';
GO

If you look at the execution plan of this query without modifying the existing indexes
of the table, you will notice that the SQL Server query optimizer uses the table's
clustered index to retrieve the query result, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[156]

As our search is based on the Name and AccountNumber columns, the presence of the
following composite index will improve the query execution time significantly:

USE [AdventureWorks2012];
GO

CREATE NONCLUSTERED INDEX [AK_Vendor _ AccountNumber_Name]
 ON [Purchasing].[Vendor] ([AccountNumber] ASC, [Name] ASC) ON
 [PRIMARY];
GO

Now, examine the query execution plan of this query once again, after creating
the previous composite index on the Purchasing.Vendor table, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

As you can see, SQL Server performs a seek operation on this composite index to
retrieve the qualifying data.

Covering indexes
SQL Server 2005 introduces included columns in indexes, also known as covering
indexes. Included columns are nonkey columns. Query performance improves when
all columns in a query are included in the index as either key or nonkey columns.
SQL Server Database Engine stores nonkey columns at the index leaf level, which
is the bottommost level of the index hierarchy, and not in the index row. Included
columns are supported on nonclustered indexes only. Columns included as nonkey
columns have the following features:

•	 They are not included in the 900-byte index key limit
•	 They can be data types that are not allowed as key columns
•	 They can include computed columns, but require deterministic values
•	 They cannot include text, ntext, or image data types
•	 They cannot be used as both key and nonkey columns

For example, consider that you now want to retrieve all columns from the
Purchasing.Vendor table based on the values of the Name and AccountNumber
columns. To accomplish this, execute the following query:

USE [AdventureWorks2012];
GO

SELECT [AccountNumber]
 ,[Name]
 ,[CreditRating]
 ,[PreferredVendorStatus]
 ,[ActiveFlag]
 ,[PurchasingWebServiceURL]
 ,[ModifiedDate]
FROM [Purchasing].[Vendor]
WHERE [AccountNumber] IN (N'AUSTRALI0001', N'JEFFSSP0001',
N'MITCHELL0001')
 AND [Name] IN (N'Inner City Bikes', N'Hill Bicycle Center');
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[158]

Examine the execution plan of this query without modifying the existing indexes of
the table; refer to the following screenshot:

You will notice that SQL Server uses the table's clustered index to retrieve the
query result. This is because the query contains the columns that are not part of
the nonclustered index. Therefore, SQL Server uses the clustered index to retrieve
the query results. To improve this query performance, you can modify your
nonclustered composite index on the Purchasing.Vendor table, which we created
earlier, to add the remaining columns of the query as nonkey columns in this
composite index. Have a look at the following code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

USE [AdventureWorks2012];
GO

CREATE NONCLUSTERED INDEX [AK_Vendor_AccountNumber_Name]
 ON [Purchasing].[Vendor] ([AccountNumber] ASC, [Name] ASC)
INCLUDE([CreditRating]
 ,[PreferredVendorStatus]
 ,[ActiveFlag]
 ,[PurchasingWebServiceURL]
 ,[ModifiedDate]) ON [PRIMARY];
GO

After creating the previous composite index with included columns, run the query
and examine its query execution plan as show in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[160]

Unique indexes
You can use unique indexes to enforce uniqueness on the key columns. If you
attempt to add rows or change data that generates duplicate data in a table that
is indexed by a unique index, the operation is aborted and SQL Server reports an
error. A unique index has the following features:

•	 It can have one or more key columns
•	 It can be created as a clustered or nonclustered index
•	 It checks for duplicate values when the index is created or rebuilt
•	 It checks for duplicate values during data manipulation (INSERT or UPDATE)

By default, SQL Server creates a unique clustered index when you define a primary
key and a unique nonclustered index when you define a unique constraint. However,
you can override the default behavior to define a nonclustered index on the primary
key and clustered unique constraint. A unique index ensures the data integrity of
the defined columns and provides additional information that is helpful to the query
optimizer and can produce more efficient execution plans.

For more information on unique indexes, refer to the Create Unique
Indexes article at http://msdn.microsoft.com/en-us/library/
ms187019.aspx.

Spatial indexes
SQL Server supports spatial data and spatial indexes. A spatial index is an extended
index that allows you to index a spatial column. A spatial column is a data table
column that contains spatial data types, such as geometry or geography.

A detailed discussion on spatial indexes is beyond the scope of this
chapter. For help with this, download the white paper, New Spatial
Features in SQL Server 2012, for a detailed description and examples
of the spatial feature and the effect of spatial indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

Partitioned indexes
Partitioned indexes are created on partitioned tables. They are partitioned on the same
horizontal filter and ranges as the table that they are based on. You can specify the
table partition scheme (how the table is partitioned) when creating partitioned indexes.
You can also create partitioned indexes on existing nonpartitioned tables, but to do
this, you first have to convert the existing nonpartitioned tables into partitioned tables.
To do this, you first need to add appropriate partitioned filegroups, then create a
partitioned function and partition scheme inside of the database. Once done, you need
to rebuild the desired table index/indexes on this partition.

Partitioned indexes not only help optimize queries that include data only from a single
partition, but they also help make index management operations easier because you
can also rebuild the partition of an index that is fragmented individually.

A detailed discussion on partitioned tables and indexes is outside the
scope of this chapter. For more information, see the Partitioned Tables and
Indexes article at http://msdn.microsoft.com/en-us/library/
ms190787.aspx.

Filtered indexes
Beginning with SQL Server 2008, Microsoft introduced a new type of nonclustered
index known as a filtered index. A filtered index is an optimized nonclustered
index that only contains the subset of data specified by the filter predicate. Filtered
indexes are especially useful to cover those queries that frequently need access to
a well-defined subset of data. Having a well-designed filtered index can improve
query performance, reducing the overall index maintenance costs and index storage
costs compared to full-table indexes.

For example, have a look at the following query that returns all of the orders from
Sales.SalesOrderDetail that are placed on or after January 1, 2008:

USE [AdventureWorks2012]
GO

SELECT [SalesOrderID] ,
 [SalesOrderDetailID] ,
 [OrderQty] ,
 [ProductID] ,
 [SpecialOfferID] ,
 [UnitPrice] ,

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[162]

 [UnitPriceDiscount] ,
 [LineTotal] ,
 [ModifiedDate]
FROM [Sales].[SalesOrderDetail]
WHERE [ModifiedDate] >= '2008-01-01 00:00:00.000';
GO

By creating the following filtered index, you can significantly improve the query
response time because SQL Server will perform an index seek on this filtered index
to retrieve the qualifying data:

USE [AdventureWorks2012];
GO

CREATE NONCLUSTERED INDEX IXNC_SalesOrderDetail_ModifiedDate
ON [Sales].[SalesOrderDetail] ([ModifiedDate])
INCLUDE ([SalesOrderID]
 ,[SalesOrderDetailID]
 ,[OrderQty]
 ,[ProductID]
 ,[SpecialOfferID]
 ,[UnitPrice]
 ,[UnitPriceDiscount]
 ,[LineTotal])
WHERE [ModifiedDate] >= '2007-01-01 00:00:00.000';
GO

Full-text indexes
A full-text search is a word search based on character string data. The Microsoft
Full-Text Engine for SQL Server automatically creates and maintains a full-text
catalog when you enable a table to do a full-text search.

For more information on full-text indexes, see the Populate Full-Text Indexes article
at http://msdn.microsoft.com/en-us/library/ms142575.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

XML indexes
XML indexes are persisted representations of the data contained in an XML data type
column. They have different procedures of creation and management from standard
indexes, and they are structured differently from standard indexes as well. There
are two main XML index types: primary and secondary. You must create a primary
index first and can then create one or more secondary indexes. When creating XML
indexes, the base table must have a primary key constraint defined. If the base table
is a partitioned table, XML indexes will use the same partitioning function and
partitioning scheme. Moreover, you can create one primary index and one or more
secondary indexes for each XML column in the base table. If you are using data type
methods, you should create at least a primary index. All data type methods use the
primary index for optimization if it is present.

For more information on XML indexes, see the XML Indexes (SQL Server) article at
http://msdn.microsoft.com/en-us/library/ms191497.aspx.

Memory-optimized indexes
You create memory-optimized indexes on memory-optimized tables. You can
only create nonclustered indexes on memory-optimized tables. The nonclustered
indexes of memory-optimized tables are structured as a Bw-tree. The Bw-tree is
a high-performance, latch-free B-tree index structure that exploits log-structured
storage. The following diagram illustrates the Bw-tree architecture:

API

B-tree Layer

Cache Layer

Mapping Table

Flash Layer

� API
� B-tree search/update logic
� In-memory pages only

� Logical page abstraction for B-tree layer
� Maintains mapping table
� Brings pages from flash to RAM as necessary

� Manages writes to flash storage
� Sequential writes to log-structured storage
� Flash garbage collection

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[164]

Like memory-optimized tables, memory-optimized indexes also reside in memory.
You can create two types of nonclustered indexes. These are as follows:

•	 Nonclustered, memory-optimized hash indexes: These indexes are made
for point lookups. They do not have pages and are always fixed in size.
The values returned from a query using a hash index are not sorted. Hash
indexes are optimized for index seeks on equality predicates and also
support full index scans. Queries that use hash indexes return results in an
unsorted order.

•	 Nonclustered, memory-optimized non-hash indexes: These are made for
range scans and ordered scans. They support everything that hash indexes
support, plus seek operations, such as greater than or less than, on inequality
predicates as well as sort order. Queries that use non-hash indexes return
results in a sorted order.

For more information on memory-optimized indexes, see the extensive set
of documentation named Introduction to Indexes on Memory-Optimized Tables at
http://msdn.microsoft.com/en-us/library/dn511012.aspx.

Columnstore indexes
SQL Server 2014 is another fascinating release, which has several compelling,
performance-related features, out of which the updatable, in-memory columnstore
(abbreviated to xVelocity where appropriate) index is one of them. Columnstore
indexes allow you to deliver predictable performance for large data volumes.
Columnstore indexes were first introduced with SQL Server 2012 to significantly
improve the performance of data warehouse workloads. According to Microsoft,
you can achieve up to 10x performance improvements for certain data warehousing
analytical queries using in-memory columnstore indexes.

The in-memory columnstore index feature is one of the most significant scalability
and performance enhancements of SQL Server 2012. However, the SQL Server 2012
implementation of in-memory columnstore indexes is not updatable, which means
that you cannot perform DML operations on tables once the in-memory columnstore
index is created on them. Therefore, the underlying table that you are creating the
columnstore index on has to be read only. Moreover, to update data on the underlying
table, you need to first drop or disable the columnstore index and then enable or
recreate the columnstore index once the data in the underlying table is updated.
SQL Server 2014 removed this restriction and introduced updatable in-memory
columnstore indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

Unlike SQL Server 2012 Database Engine, which only supports nonclustered
columnstore indexes, SQL Server 2014 Database Engine supports both clustered and
nonclustered columnstore indexes. Both these types of SQL Server 2014 columnstore
indexes use the same in-memory technology but have different purposes. The
clustered columnstore indexes of SQL Server 2014 are updatable, which means that
you can perform DML operations on the underlying table without having to disable
or remove the clustered columnstore index.

The architecture of columnstore indexes
Unlike traditional B-tree indexes, where data is stored and grouped in a row-based
fashion, the columnstore indexes group and store data for each column on a separate
set of disk pages. For example, consider the following table with 8 columns:

When you create the traditional B-tree index on this table, SQL Server stores multiple
table rows per index page as illustrated in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[166]

When you create the columnstore index on this table, SQL Server stores the data for
each column on a separate index page as illustrated in the following diagram:

A columnstore index does not physically store columns in a sorted order. Instead, it
is based on VertiPaq compression technology, which allows large amounts of data to
be compressed in memory. This highly compressed, in-memory store, significantly
improves the query execution time by improving the buffer pool usage, while
reducing the total disk I/O and CPU usage. This is because only the column-based
data pages needed to solve the query are fetched from disk and moved in memory.

Creating and managing columnstore indexes
You can use the CREATE CLUSTERED COLUMNSTORE INDEX statement to create a
clustered columnstore index and the CREATE COLUMNSTORE INDEX statement to
create a nonclustered columnstore index. To create a clustered columnstore index,
use the following code:

CREATE CLUSTERED COLUMNSTORE INDEX index_name
ON [database_name].[schema_name].[table_name]
 [WITH (<columnstore_index_option> [,...n])]
 [ON {
 partition_scheme_name (column_name)
 | filegroup_name
 | "default"
 }][;]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

To create a nonclustered columnstore index, use the following code:

CREATE [NONCLUSTERED] COLUMNSTORE INDEX index_name
 ON [database_name].[schema_name].[table_name]
 (column [,...n])
 [WITH (<columnstore_index_option> [,...n])]
 [ON {
 partition_scheme_name (column_name)
 | filegroup_name
 | "default"
 }] [;]

When creating columnstore indexes, you need to consider the following:

•	 The columnstore index feature is only available in the SQL Server 2014
Enterprise, Evaluation, and Developer editions.

•	 Columnstore indexes cannot be combined with the following SQL Server
features: page and row compression, replication, filestreams, change
tracking, and CDC.

•	 Clustered columnstore indexes must include all columns of the table.
•	 You cannot create columnstore indexes on other indexes or indexed views.
•	 Columnstore indexes cannot have more than 1,024 columns.
•	 Columnstore indexes cannot include sparse columns, unique constraints,

primary key constraints, or foreign key constraints.
•	 Columnstore indexes cannot include columns with the following data types:

ntext, text, image, varchar(max), nvarchar(max), varbinary(max),
rowversion (and timestamp), sql_variant, CLR types (hierarchyid and
spatial types), and XML.

•	 Avoid creating columnstore indexes on tables that are frequently updated
or need small lookup queries. They are only suitable for read-mostly,
read-intensive, large database tables.

You can use the ALTER INDEX statement to modify a columnstore index. You can use
ALTER INDEX…REBUILD with the COLUMNSTORE_ARCHIVE data compression option
to further compress the columnstore index, which is suitable for situations where
the archiving of data is possible. You can use the DROP INDEX statement to delete a
columnstore index.

You can also use SQL Server 2014 Management Studio to create columnstore indexes
in the same way that you use it to manage standard, disk-based table indexes. For
example, to create a new clustered columnstore index, in Object Explorer, expand
table and right-click on the Indexes folder. Next, choose New Index and then the
new clustered columnstore index.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[168]

Guidelines for designing and optimizing
indexes
The following sections will cover some guidelines that you can follow to
make indexes more effective and improve performance during the creation,
implementation, and maintenance of indexes.

Avoid overindexing tables
Indexes are the solution to many performance problems, but too many indexes on
tables affect the performance of INSERT, UPDATE, and DELETE statements. This is
because SQL Server updates all indexes on the table when you add (INSERT), change
(UPDATE), or remove (DELETE) data from a table. Therefore, it is recommended
that you only create required indexes on the tables by analyzing the data access
requirements of the application or users.

Create a clustered index before creating
nonclustered indexes when using clustered indexes
As mentioned earlier, the leaf layer of a clustered index is made up of data pages that
contain table rows, and the leaf layer of a nonclustered index is made up of index
pages that contain pointers to the data rows. In addition, SQL Server sorts table rows
in the clustered index order based on key column values, while the nonclustered
index does not affect the table sort order. When we define the nonclustered index on
a table first, the nonclustered index contains a nonclustered index key value and a
row locator, which points to a heap that contains a key value. However, if the table
has a clustered index, a leaf node of the nonclustered index points to a leaf node
location in the clustered index. So, when you create or rebuild the clustered index,
the leaf node structure of the nonclustered index also changes. Therefore, you need
to follow this rule because the creation or changing of the clustered index will also
change the nonclustered indexes of the tables.

Index columns used in foreign keys
Foreign key columns are always good candidates for nonclustered indexes because
they are mostly used in JOIN operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

Index columns frequently used in joins
Be sure to create nonclustered indexes on columns that are frequently used in JOIN
operations as this will improve query performance when the JOIN operation is being
performed by reducing the time required to locate the required rows in each table.

Use composite indexes and covering indexes to
give the query optimizer greater flexibility
When you use composite indexes, you create fewer indexes for your queries because
a composite index is defined from two or more columns from the same table. This
improves the query performance because the query requires less disk I/O than the
same query that uses a single column index.

Covering indexes also improve query performance by reducing the overall disk I/O
because all of the data needed to satisfy the query exists within the index itself.

Limit key columns to columns with a high level of
selectability
We need to limit key columns to columns with a high level of selectability because
the higher the level of selectivity in a column, the more likely that it is a key column
candidate. For example, good candidates for index key columns are the ones used in
the DISTINCT, WHERE, ORDER BY, GROUP BY, and LIKE clauses.

Pad indexes and specify the fill factor to reduce
page splits
When the database engine needs to add a row to a full index page, the database
engine has to split this page to make additional space for the new row. This process
of splitting pages will help keep the index hierarchy intact.

Obviously, this process is resource intensive as it depends on the size of the index
and other activities in the database. The process can result in a significant loss in
performance, and to prevent splits, or at least reduce the need for them, you should
pad the index and specify the fill factor value. The fill factor value specifies the
percentage of space on each leaf-level page to be filled with data, reserving the
remainder of space for future growth. The fill factor can either be set to 0 or to a
percentage between 1 and 100. The server-wide default for the fill factor value is 0,
which means the leaf-level pages are filled to capacity.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[170]

A padding index leaves an open space on each page at the intermediate level of the
index. The padding option in indexing is useful only when the fill factor is specified
as it uses the percentage specified by the fill factor. By default, SQL Server ensures
that each index page has enough space to accommodate at least one row of the
maximum index size, given the set of keys on the intermediate pages. However,
when you pad an index, if the percentage specified for the fill factor is not large
enough to accommodate a row, SQL Server internally overrides the percentage to
allow the minimum. For more information, refer to the Specify Fill Factor for an Index
article at http://msdn.microsoft.com/en-us/library/ms177459.aspx.

Rebuild indexes based on the fragmentation level
Index fragmentation can occur in an active database because SQL Server maintains
indexes on an ongoing basis during DML operations so that they reflect data
changes. As a DBA or developer, your main goal is to look for index fragmentation
and correct the fragmentation with a minimal impact on user operations.

Luckily, SQL Server provides the sys.dm_db_index_physical_stats dynamic
management view, which you can use to detect the fragmentation in a specific
index, all of the indexes in a table or indexed view, all indexes in databases, or all
indexes in all databases. The avg_fragmentation_in_percent column of this view
returns the percentage of fragmented data. Depending on the level of fragmentation,
you can either rebuild or reorganize the index. For more information, see the
Reorganize and Rebuild Indexes article at http://msdn.microsoft.com/en-us/
library/ms189858.aspx.

Query optimization statistics
Query optimization statistics are only a form of dynamic metadata that contains
statistical information about the distribution of values in one or more columns of
a table or indexed view. Statistics describe index key values, are maintained for
index columns, and are used by SQL Server when deciding on the most appropriate
indexes to use when running queries. Statistics help estimate the cardinality, or
number of rows, in the query result, and this usually helps the query optimizer make
better decisions. For example, if there are only a dozen rows in a table, then there is
no reason to go to the index to search. This is because it is always better to do a full
table scan to find the required result set. However, if that same table grows to one
million rows, then you're probably better off using the index.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

The SQL Server query optimizer uses statistics to create query plans, which improves
the query performance. For most queries, the query optimizer generates the
necessary statistics for a high-quality query plan; in a few cases, you need to create
additional statistics or modify the query design for best results.

Database-wide statistics options in SQL Server
to automatically create and update statistics
There are three database-wide statistics options that you can enable to let SQL Server
automatically create and manage indexes and columns statistics. These are listed
as follows:

•	 AUTO_CREATE_STATISTICS: When this is set to ON, SQL Server automatically
creates the missing statistics needed for query optimization

•	 AUTO_UPDATE_STATISTICS: When this is set to ON, SQL Server
automatically updates the statistics as needed by the query optimizer
for optimal query performance

•	 AUTO_UPDATE_STATISTICS_ASYNC: When this is set to ON, the SQL Server
query optimizer uses asynchronous statistics updates

You can use the ALTER DATABASE Transact-SQL DDL command with the SET
keyword to configure these options. Here is the general syntax for this:

ALTER DATABASE database_name
SET
 AUTO_CREATE_STATISTICS { ON | OFF }
 | AUTO_UPDATE_STATISTICS { ON | OFF }
 | AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

By default, both AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS are set
to ON.

Manually create and update statistics
To create statistics, you can use the CREATE STATISTICS statement as follows:

CREATE STATISTICS statistics_name
ON { table|view } (column_list)
[WITH
[[FULLSCAN | SAMPLE number PERCENT | ROWS
| STATS_STREAM = stats_stream] [,]] [NORECOMPUTE]]

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[172]

To update statistics, you can use the UPDATE STATISTICS statement as follows:

UPDATE STATISTICS table | view [index | (statistics_name)]
[WITH [FULLSCAN | RESAMPLE | SAMPLE number PERCENT | ROWS
[[,] ALL | COLUMNS | INDEX]] [[,] NORECOMPUTE]]

A detailed discussion on the parameters of these two commands
is beyond the scope of this chapter. For help with this, see the
following articles:

•	 CREATE STATISTICS (Transact-SQL) at http://msdn.
microsoft.com/en-us/library/ms188038.aspx

•	 UPDATE STATISTICS (Transact-SQL) at http://msdn.
microsoft.com/en-us/library/ms187348.aspx

Determine the date when the statistics were
last updated
The following two sections will cover the ways to determine when the statistics were
last modified.

Using the DBCC SHOW_STATISTICS command
You can use the DBCC SHOW_STATISTICS command to retrieve the header information
about the statistics. This header information also includes the data and time when
the statistics were last updated. For example, the following DBCC SHOW_STATISTICS
command returns information about the statistics for the AK_Employee_LoginID index
of the HumanResources.Employee table in the AdventureWorks2012 database:

USE [AdventureWorks2012];
GO

DBCC SHOW_STATISTICS (N'HumanResources.Employee',
N'AK_Employee_LoginID');
GO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

Using the sys.stats catalog view with the
STATS_DATE() function
You can use the sys.stats catalog view with the STATS_DATE() function to view
the most recent update date for each statistics object that exists for the tables,
indexes, and indexed views in the database. This function accepts two parameters,
that is, object_id and stats_id. To determine the date when the statistics were
last updated, you need to execute the sys.stats system catalog view with the
STATS_DATE() function as follows:

USE [AdventureWorks2012];
GO

SELECT OBJECT_NAME([object_id]) AS [ObjectName] ,
 [name] AS [StatisticName] ,
 STATS_DATE([object_id], [stats_id]) AS
[StatisticUpdateDate]
FROM [sys].[stats];
GO

The fundamentals of transactions
A transaction is a logical unit of work made up of one or more tasks. In general,
a transaction is considered to have four primary characteristics: atomicity,
consistency, isolation, and durability (ACID). The following is a brief explanation
of these characteristics:

•	 Atomicity: The transaction is an atomic unit of work in which every task
within that transaction must be completed

•	 Consistency: The transaction must leave all of the data in a consistent state
•	 Isolation: The changes made by concurrent transactions must be isolated

from each other, which means that no transaction should find data in an
indeterminate state (in the process of change)

•	 Durability: The changes made by the transaction are persisted

In SQL Server, the transaction log makes ACID transactions possible. This is because
SQL Server first writes the transactions to the transaction log, and after that, it writes
committed transactions to the data file. In the case of a system failure, SQL Server
rolls back the uncommitted and rolls forward the committed transaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[174]

Transaction modes
SQL Server supports the following transaction modes:

•	 Explicit: The statement explicitly begins, commits, and rolls back
each transaction

•	 Implicit: The next transaction begins automatically when the previous
transaction commits or is rolled back

•	 Autocommit: Each statement is its own transaction
•	 Batch-scoped: All transactions that start under a Multiple Active Result Sets

(MARS) session are part of a batch-scoped transaction, and any transactions
not completed when the batch completes are rolled back

You can manage transactions separately for each connection. You can configure
a different transaction mode for each connection as needed. Unless specified
otherwise, SQL Server operates in autocommit mode with each Transact-SQL
statement treated as a standalone transaction.

Implementing transactions
SQL Server supports the following statements to implement transactions.

BEGIN TRANSACTION
You can use the BEGIN TRANSACTION statement to start a new SQL Server
transaction. After the transaction is opened, it stays open until it is committed or
rolled back. The syntax for the BEGIN TRANSACTION statement is as follows:

BEGIN TRAN[SACTION] [transaction_name]
[WITH MARK ['description']]]

COMMIT TRANSACTION
You can use the COMMIT TRANSACTION statement to complete the transaction. The
basic syntax for the COMMIT TRANSACTION statement is as follows:

COMMIT [TRAN[SACTION]] [transaction_name]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

ROLLBACK TRANSACTION
You can use the ROLLBACK TRANSACTION statement to roll back the transaction to the
last savepoint or a savepoint that was specified by name. If a savepoint has not been
set, the transaction rolls back to the beginning of the transaction. The basic syntax for
the ROLLBACK TRANSACTION statement is as follows:

ROLLBACK TRAN[SACTION] [transaction_name|savepoint_name]

SAVE TRANSACTION
You can use SAVE TRANSACTION to establish the savepoints in a transaction. The
basic syntax for this command is as follows:

SAVE TRAN[SACTION] savepoint_name

An overview of locking
Locking is a necessary part of the transaction process when working in multiuser
OLTP. SQL Server uses locks to prevent update conflicts. For example, when one
user is updating the data in the table, SQL Server locks prevent other users from
accessing the data that is being updated. Locks help prevent the following:

•	 Lost updates: This occurs when two transactions are updating the same data
simultaneously. The changes are saved to the last transaction that writes to
the database, losing the changes of another transaction.

•	 Dirty reads: This occurs when a transaction reads uncommitted data from
another transaction. It may lead to inaccurate changes being made to the
data. This is also known as an uncommitted dependency.

•	 Nonrepeatable reads: This occurs when the row data changes between data
reads. It is also referred to as an inconsistent analysis.

•	 Phantoms: This is a record that appears when a transaction rereads the data
after making a change.

SQL Server can issue a lock for the following:

•	 RID: A row identifier, which locks a single row in a table
•	 Key: A key, which is a row lock within an index
•	 Table: A table, which locks all data rows and indexes

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[176]

•	 Database: A database, which is used when restoring a database
•	 Page: A page, which locks an 8 KB data or index page
•	 Extent: An extent, which locks a contiguous group of pages during

space allocation

SQL Server uses dynamic lock management, which means that
the level of locking can be adjusted automatically, as needed. You
can refer to the dynamic management view, sys.dm_tran_locks
(Transact-SQL), for information on active locks at http://msdn.
microsoft.com/en-us/library/ms190345.aspx.

Basic locks
SQL Server supports the following types of locks:

•	 Shared locks (S): These are used when performing read-only operations
against the database. Resources that are locked with a shared lock are
available for the SELECT statement operation, but not for modification.

•	 Exclusive locks (X): These are used for operations, such as INSERT, UPDATE,
and DELETE statements that modify data and require exclusive locks.

•	 Intent locks: These set a lock hierarchy. The following are the types of intent
locks: intent shared (IS), intent exclusive (IX), and shared with intent
exclusive (SIX).

•	 Update locks (U): These are usually placed on a page before an update
is performed. When SQL Server is ready to update the page, the lock is
promoted to an exclusive page lock.

•	 Schema locks: These are used to prevent the table or index that is being used
in another session from being dropped or its schema being modified. When a
resource is locked with a schema lock, the object cannot be accessed.

•	 Bulk update locks (BU): These are used to prevent other processes from
accessing a table while the bulk load operation is in process.

Optimistic and pessimistic locking
The following two terms are commonly used to describe locking methods:

•	 Pessimistic locking: This locks resources as they are obtained and holds the
locks throughout the duration of the transaction. Pessimistic locking is more
likely to cause deadlocks. A deadlock occurs when two transactions each
block access to the resources needed for the other transaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

•	 Optimistic locking: This assumes that conflicts between transactions are not
possible, but could occur. Transactions can be executed without blocking
resources. The only time that the resources are controlled by a conflict is
when changes are made to the data. If a conflict occurs, the transaction is
rolled back.

Transaction isolation
Transaction isolation protects the transaction activities that are performed outside
the transaction, meeting the isolation requirements of an ACID transaction. You can
manage transaction isolation as a session-level setting that affects all operations in
the sessions. You can override the isolation level for individual statements through
locking options. To set the transaction isolation level, run the following code:

SET TRANSACTION ISOLATION LEVEL
READ COMMITTED | READ UNCOMMITTED
| REPEATABLE READ | SNAPSHOT | SERIALIZABLE

SQL Server 2014 supports the following transaction isolation levels:

•	 READ UNCOMMITTED: In this level, dirty reads are possible. A shared lock is
not acquired, and no exclusive locks are honored.

•	 READ COMMITTED: This prevents dirty reads using shared locks or row
versioning. The method used depends on the configuration of the database
option, READ_COMMITED_SNAPSHOT. If set to ON, SQL Server uses row
versioning. If set to OFF, SQL Server uses shared locks.

Using row versioning improves concurrency because
SQL Server manages row versioning at a statement level,
nonrepeatable reads, which are caused by data changes
between reads that might occur.

•	 REPEATABLE READ: Dirty reads and nonrepeatable reads cannot occur. Read
locks are held until the transaction is committed or rolled back.

•	 SNAPSHOT: Data changes made outside the transaction after the transaction
begins are not visible within the transaction. This transaction isolation level
uses row versioning. No shared locks are held. When you try to update the
data, SQL Server compares the current data with those stored in tempdb. If
they are different, the update fails and the transaction is rolled back.

•	 SERIALIZABLE: Other transactions cannot update or insert any new rows that
were read by the transaction until after the current transaction is committed.

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[178]

SQL Server 2014 tools for monitoring and
troubleshooting SQL Server performance
There are a number of tools that you can use to monitor SQL Server Database Engine
performance. These are explored in the following sections.

Activity Monitor
Activity Monitor is a tool in SQL Server 2014 Management Studio that gives you a
view of current connections on SQL Server. You can use it to view information about
the current processes and locks held on SQL Server resources. To open Activity
Monitor in SQL Server Management Studio, right-click on the SQL Server instance
name in Object Explorer and then select Activity Monitor.

To find blocked processes with Activity Monitor, use the following steps:

1.	 First click on Processes in Activity Monitor to open the Process Info page.
2.	 Then, locate the process that is waiting, scroll over to the Blocked By column,

and note the process ID in that column.
3.	 Find this process ID on the Process Info page.
4.	 If you want to terminate the blocking process, right-click on it and choose

Kill Process.

The SQLServer:Locks performance object
You can use the SQLServer:Locks object counter in Performance Monitor to view
current statistics or create a log or alert to monitor locks and deadlocks. For example,
you can monitor statistics such as the average wait time, number of deadlocks per
second, and lock timeouts per second to determine whether there is a problem
with resource contention on SQL Server. The following are the steps to monitor the
SQLServer: Locks performance counter:

1.	 On the Start menu, point to Run, type perfmon in the Run dialog box, and
then click on OK to launch Performance Monitor.

2.	 Right-click anywhere on the screen and then choose Add Counters....
3.	 Scroll down to locate and add the following SQL Server lock counters:

Average Wait Time, Number of deadlocks/sec, and Locks Timeouts/sec.
Once done, click on OK to save the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Dynamic Management Views
SQL Server 2014 provides the following three Dynamic Management Views
(DMVs) that provide detailed information about locks and blocks:

•	 sys.dm_exec_requests: You can use this to obtain detailed information
about requests that are currently being executed on SQL Server

•	 sys.dm_tran_locks: You can use this to obtain information about current
locks and the processes that are blocking them

•	 sys.dm_os_waiting_tasks: You can use this to view detailed information
on blocked and blocking processes

SQL Server Profiler
You can use SQL Server Profiler to capture SQL Server Database Engine activities
based on selected events. SQL Server Profiler includes a set of predefined templates
that meet the most common trace capture scenarios. You can save the trace to file or
in a SQL Server database, which will allow you to monitor the data in real time. You
can also replay the trace in real time or step by step in the same or on another SQL
Server Database Engine instance.

You use the SQL Server Profiler Lock event category to create a trace of events
related to locks and deadlocks. The event classes you might be interested in when
troubleshooting locking and blocking include the following:

•	 Deadlock_Graph_Event_Class: This creates an XML description of
the deadlocks

•	 Lock:Acquired: This is used in conjunction with Lock:Released to
determine the types of locks being requested and the length of time they
will be retained for

•	 Lock:Cancel: This is used to determine which locks were cancelled
•	 Lock:Deadlock: This is used to determine the objects and applications

involved in a deadlock
•	 Lock:Escalation: This reports information about locks that have been

escalated to cover a larger resource, for example, when a row lock becomes
a table lock

•	 Lock:Released: This is used in conjunction with Lock:Acquired
•	 Lock:Timeout(timeout>0): This provides information about locks that

have timed out due to blocking issues
•	 Lock:Timeout: This provides the same information as Lock:Timeout

(timeout>0), but includes timeouts where the duration was 0

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Basics

[180]

The sp_who and sp_who2 system stored
procedures
You can use the sp_who and sp_who2 system stored procedures to return information
about all of the sessions that are currently established in SQL Server.

The blk column of sp_who and the blkby column of sp_who2 contain
the spid for the blocking process.

SQL Server Extended Events
SQL Server Extended Events is an event infrastructure that is a highly scalable and
lightweight performance monitoring system and uses very few system resources.
Extended Events can be used to capture all SQL Server Database Engine and
Analysis Services events to specific consumers, as defined in SQL Server Extended
Events, through XEvents. For example, you can use SQL Server Extended Events to
monitor blocks and deadlocks. The SQL Server Extended Events infrastructure is
integrated directly into SQL Server and can easily be managed with Transact-SQL.
For more information, see the Extended Events article at http://msdn.microsoft.
com/en-us/library/bb630282.aspx.

Summary
In this chapter, you learned about the architecture of SQL Server Relational Engine.
You also learned about SQL Server 2014 in-memory technology. You learned about
SQL Server indexes and how they help achieve optimal query performance while
reducing the overall response time. You got an understanding of the architectural
differences between the B-tree, Bw-tree, and xVelocity columnstore indexes. You also
got an idea of the purpose of SQL Server query optimization statistics. You learned
about SQL Server transactions and locks. You also learned about the tools that come
with SQL Server Database Engine, which you can use to monitor and troubleshoot
the performance of SQL Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
ACID characteristics 42, 173
Activity Monitor

about 178
blocked processes, finding with 178

ad hoc workloads
optimizing for 148, 149

aggregate functions 52
alias data types

about 23
creating, CREATE TYPE used 23
creating, T-SQL DDL statement used 23
creating, with SSMS 2014 23
dropping, DROP TYPE used 24
dropping, T-SQL DDL statement used 23
dropping, with SSMS 2014 23

ALTER DATABASE statement
arguments 34
syntax 34

ALTER PROCEDURE statement
about 117
example 117

ALTER VIEW statement
about 106
example 106

analytic window functions, T-SQL
CUME_DIST 72, 73
FIRST_VALUE 76, 77
LAG 74
LAST_VALUE 76, 77
LEAD 74
PERCENTILE_CONT 73
PERCENTILE_DISC 73
PERCENT RANK 71
ranking functions 69-71

Application Development Life Cycle
(ADLC). See Systems Development
Life Cycle (SDLC)

application programming
interfaces (APIs) 105

architecture, columnstore indexes 165, 166
arguments, ALTER DATABASE statement

ADD FILE 34
database_name 34
MODIFY FILE 34
REMOVE FILE 34
TO FILEGROUP 34

arguments, CREATE DATABASE command
COLLATE 31
CONTAINMENT 30
database_name 30
filespec 31
filespec, FILEGROWTH parameter 31
filespec, FILENAME parameter 31
filespec, MAXSIZE parameter 31
filespec, name parameter 31
filespec, size parameter 31
LOG ON 31
ON [PRIMARY] 31
WITH <option> 31

arguments, CREATE FUNCTION statement
@parameter data_type 122
FOR | AFTER | INSTEAD OF 134
function_name 122
NOT FOR REPLICATION 134
ON {table | view} 133
RETURN 122
RETURNS 122
schema_name 122, 133
sql_statements 122, 134
trigger_name 133

www.it-ebooks.info

http://www.it-ebooks.info/

[182]

trigger_options 134
WITH <function_option> 122

arguments, CREATE PROCEDURE
statement

@parameter data_type 113
AS 114
NOT FOR REPLICATION 114
procedure_name 113
procedure_option 113
schema_name 113

arguments, CREATE VIEW statement
AS select_statement 105
column_list 105
schema 105
view_name 105
WITH CHECK OPTION 105
WITH view_attributes 105

arguments, DELETE statement
FROM 88
output_clause 89
table_name | view_name | rowset function

| common_table_expression 88
TOP 88
WHERE 89
WITH 88
WITH table_hints 89

arguments, INSERT statement
DEFAULT 81
DEFAULT_VALUE 81
output_clause 81
select_statement 81
TOP 81
value_list 81
VALUES 81
WITH 81
WITH table_hints 81

arguments, MERGE statement
ON 90
OPTION (<query_hint> [,...n]) 91
output_clause 91
TOP 90
WHEN MATCHED 90
WHEN NOT MATCHED BY SOURCE 91
WHEN NOT MATCHED [BY TARGET] 90
WITH 90

arguments, UPDATE statement
FROM 87

output_clause 87
table_name | view_name | rowset function

| common_table_expression 87
TOP 86
WHERE 87
WITH 86
WITH table_hints 87

atomicity 173
atomicity, consistency, isolation, and

durability. See ACID characteristics
attribute 12
attributes, procedure_option

ENCRYPTION 113
EXECUTE AS 113
NATIVE_COMPILATION 113
SCHEMABINDING 113
WITH RECOMPILE 113

attributes, WITH <function_option>
ENCRYPTION 122
EXECUTE AS 122
SCHEMABINDING 122

attributes, WITH view_attributes
ENCRYPTION 105
SCHEMABINDING 105
VIEW_METADATA 105

autocommit transaction mode 174
AUTO_CREATE_STATISTICS

statement 171
AUTO_UPDATE_STATISTICS_ASYNC

statement 171
AUTO_UPDATE_STATISTICS

statement 171

B
balanced tree (B-tree) 152
batch-scoped transaction mode 174
BEGIN…END keywords

about 100
example 101
syntax 100

BEGIN TRANSACTION statement
about 174
syntax 174

BETWEEN operator 51
binding 145

www.it-ebooks.info

http://www.it-ebooks.info/

[183]

blocked processes
finding, with Activity Monitor 178

BREAK statement 103
bulk-logged recovery model 29
bulk update locks (BU) 176

C
cardinality 148
cardinality estimator

URL, for information 148
CASE statement 102
categories, data integrity

domain integrity 14
entity integrity 14
referential integrity 14
user-defined integrity 14

change data capture (CDC) 28
characteristics, transactions

atomicity 173
consistency 173
durability 173
isolation 173

clauses, T-SQL
FROM 51
SELECT 50, 51
WHERE 51

CLR stored procedures
about 112
URL, for information 112

CLR triggers
URL, for information 131

CLR user-defined function
URL, for information 121

CLR user-defined types
about 24
URL, for articles 24

clustered indexes 153
clustered indexes, on table 153, 154
column_list parameter 80
columnstore indexes

about 164, 165
architecture 165, 166
considerations, for creating 167
creating 166
managing 166

COMMIT TRANSACTION statement
about 174
syntax 174

common language runtime (CLR)
user-defined data types
(UDT). See CLR user-defined types

Common Table Expressions. See CTE
components, SQL Server Database Engine

about 143
Relational Engine 144
Storage Engine 143

composite indexes 155, 156
conceptual design phase, database

design process 9
configuration functions 53
consistency 173
CONTINUE statement 103
control-of-flow keywords

about 100
BEGIN…END 100
BREAK 103
CASE statement 102
CONTINUE 103
GOTO 103
IF…ELSE expression 101
RETURN 103
WAITFOR 103
WHILE 102

covering indexes 157-159
CREATE DATABASE command

arguments 30
syntax 30

CREATE FUNCTION statement
arguments 122, 133, 134

CREATE INDEX statement
about 154
URL, for article 154

CREATE PROCEDURE statement
arguments 113, 114

CREATE STATISTICS statement 171
CREATE STATISTICS

(Transact-SQL) article
URL 172

CREATE TABLE (SQL Server) article
URL, for information 154

www.it-ebooks.info

http://www.it-ebooks.info/

[184]

CREATE TYPE
used, for creating alias data types 23

Create View pane
Criteria pane 108
Diagram pane 108
SQL pane 108

CREATE VIEW statement
about 104
arguments 105
example 105

CROSS JOIN operator
using 61

CTE
about 50, 63
creating 63
structure 64

CUME_DIST function 72, 73
cursor functions 53
cursor variable

creating 99
example 99
syntax 99

D
data

accessing, with index 152
accessing, without index 152
deleting, from SQL Server

database tables 88
grouping 64
inserting, into IDENTITY column 85
inserting, into SQL Server

database tables 80
organizing 64
pivoting 66-68
unpivoting 66-68
updating, in SQL Server database tables 86

database
creating, with SSMS 2014 35
creating, with T-SQL DDL

statements 30, 31
dropping, with SSMS 2014 38, 39
dropping, with T-SQL DDL statements 35
modifying, with SSMS 2014 37, 38
modifying, with T-SQL DDL statements 33

database administrator (DBA) 8, 151

database design process
about 8
conceptual design phase 9
implementation and loading phase 10
logical design phase 9
phases 8
physical design phase 10
requirement collection and analysis phase 8
screenshot, for lifecycle 10
testing and evaluation phase 10

database files, SQL Server
primary data file 16
secondary data file 16
transaction log file 17

database-wide statistics options, SQL Server
AUTO_CREATE_STATISTICS 171
AUTO_UPDATE_STATISTICS 171
AUTO_UPDATE_STATISTICS_ASYNC 171

Data Control Language. See DCL statements
Data Definition Language. See DDL
data flow diagrams (DFDs) 8
data integrity 14
Data Manipulation Language. See DML

statements
Data Manipulation Language (DML) 17, 79
data normalization. See normalization
data type

about 21
selecting, significance 21, 22

data types, SQL Server
URL 22

date and time functions 53
DBCC SHOW_STATISTICS command

using 172
DCL statements

executing 27
DDL 10, 135
DDL trigger

about 135
creating 135, 136
dropping 137
EVENTDATA function 135
example 136
modifying 136

DECLARE statement 98

www.it-ebooks.info

http://www.it-ebooks.info/

[185]

DELETE statement
arguments 88
examples 89
syntax 88

denormalization 16
DENSE_RANK function 69
dirty reads 175
DISTINCT clause

about 66
syntax 66

distribution database 29
DLL 112
DML statements

executing 26
DML triggers

about 132
creating 133
deleted logical tables 133
dropping 135
example 134
inserted logical tables 133
modifying 135
types 133

DML triggers, types
AFTER 133
INSTEAD OF 133

domain integrity 14
DROP TYPE

used, for dropping alias data type 24
DROP VIEW statement

about 106
example 107

durability 173
dynamic link library. See DLL
dynamic lock management 176
Dynamic Management Views (DMVs)

about 179
sys.dm_exec_requests 179
sys.dm_os_waiting_tasks 179
sys.dm_tran_locks 179
URL, for information 146, 147

E
entities 12

entity integrity 14
entity-relationship (ER) model 9
event classes, SQL Server Profiler

Deadlock_Graph_Event_Class 179
Lock:Acquired 179
Lock:Cancel 179
Lock:Deadlock 179
Lock:Escalation 179
Lock:Released 179
Lock:Timeout 179
Lock:Timeout(timeout>0) 179

EVENTDATA function 135
examples, DELETE statement

rows, deleting 89
single row, deleting 89

examples, INSERT statement
data, inserting into IDENTITY column 85
INSERT statement, using with

EXEC statement 84
INSERT statement, using with

SELECT statement 84
single row, inserting to 82, 83

examples, MERGE statement 91, 92
examples, TRUNCATE TABLE

statement 94
examples, T-SQL DDL statements

database, creating on multiple filegroups 33
explicit data specification database,

creating 32
model base database, creating 32
secondary data file, adding to

existing database 34
examples, UPDATE statement

multiple rows, updating 87
single row, updating 87

EXCEPT operator
about 57
syntax 57

exclusive locks (X) 176
EXEC statement

INSERT statement, using with 84
EXISTS keyword 51
explicit transaction mode 174
extended user-defined

stored procedures 112
extent 18

www.it-ebooks.info

http://www.it-ebooks.info/

[186]

F
features, unique indexes 160
fifth normal form (5NF) 15
filegroups

about 21
advantages 21

file tables 42
filtered indexes 161
first normal form (1NF) 15
FIRST_VALUE function 76, 77
forth normal form (4NF) 15
FROM clause 51
FULL OUTER JOIN operator

using 61
full-text indexes

about 162
URL, for information 162

G
GOTO statement 103
GROUP BY clause

about 65
HAVING clause 65
syntax 65

H
HAVING clause 65

I
IDENTITY column

data, inserting into 85
IF…ELSE expression 101
implementation and loading phase,

database design process 10
implicit transaction mode 174
included columns

indexes, covering with 157-159
indexed views

about 109
considerations, for creating 109
creating 110
example 110

indexes
about 151
cost associated with 151
covering, with included columns 157-159
data, accessing with 152
rebuilding, based on fragmentation

level 170
structure 152
using, in SQL Server 151

index fragmentation 170
index, types

about 153
clustered indexes 153
columnstore indexes 164, 165
composite indexes 155, 156
covering indexes 157-159
filtered indexes 161
full-text indexes 162
memory-optimized indexes 163, 164
nonclustered indexes 154
partitioned indexes 161
single-column indexes 154
spatial indexes 160
unique indexes 160
XML indexes 163

inline table-valued function
example 125

in-memory OLTP engine 149
in-memory optimized OLTP tables

SCHEMA_AND_DATA 150
SCHEMA_ONLY 150

in-memory optimized tables
limitations 150
unsupported data types 150

INNER JOIN operator
about 59
using 59

IN operator 51
INSERT statement

about 80
arguments 81
examples 82-85
syntax 80
using, with EXEC statement 84
using, with SELECT statement 84

intent exclusive (IX) lock 176

www.it-ebooks.info

http://www.it-ebooks.info/

[187]

intent locks
about 176
intent exclusive (IX) 176
intent shared (IS) 176
shared with intent exclusive (SIX) 176

intent shared (IS) lock 176
INTERSECT operator

about 58
syntax 58

IS NOT operator 51
isolation 173
IS operator 51

J
JOIN operator

about 59
inner joins 59
outer joins 60
self joins 61
syntax 59

L
LAG function

about 74
syntax 74

large object (LOB) storage 22
LAST_VALUE function 76, 77
LEAD function

about 74
syntax 75

LEFT OUTER JOIN operator
using 60

LIKE operator 51
local variable

creating 98
locking 175
locking methods

optimistic locking 177
pessimistic locking 176

locks, types
bulk update locks (BU) 176
exclusive locks (X) 176
intent locks 176
schema locks 176

shared locks (S) 176
update locks (U) 176

logical design phase, database design
process 9

logical filename 16
lost updates 175

M
many-to-many relationship 13
master database

about 27
system-level configuration 27, 28

mathematical functions 54
Memory Optimization Advisor article

URL 150
memory-optimized indexes

about 163, 164
guidelines, for designing 168, 169
guidelines, for optimizing 168, 169
URL, for information 164

memory-optimized tables 42
MERGE statement

arguments 90
examples 91, 92
syntax 90
using 89

metadata functions 54
model based database

creating 32
model database 28
msdb database 28
Multiple Active Result Sets (MARS) 174
multiple rows

updating 87
multiple table queries

about 55
with EXCEPT operator 57
with INTERSECT operator 58
with JOIN operator 59
with UNION operator 56

multistatement table-valued function
example 126, 127

Multiversion Concurrency
Control (MVCC) 149

www.it-ebooks.info

http://www.it-ebooks.info/

[188]

N
natively compiled stored procedures 112
nested triggers

about 131, 132
DML triggers 132
recursive triggers 132

nonclustered columnstore index
creating 167

nonclustered indexes
about 154
memory-optimized hash indexes 164
memory-optimized non-hash indexes 164

nonrepeatable reads 175
normal forms

about 15
fifth normal form (5NF) 15
first normal form (1NF) 15
forth normal form (4NF) 15
second normal form (2NF) 15
third normal form (3NF) 16
URL, for information 15

normalization
about 14
advantages 14
disadvantages 15

NOT EXISTS keyword 51
NOT IN operator 51
NTILE function 69

O
one-to-many relationship 13
one-to-one relationship 12
online analytical processing (OLAP) 16
online transaction

processing (OLTP) 14, 149
operating system files, SQL Server

logical filename 16
physical filename 16

optimistic locking 177
ORDER BY clause

about 64
syntax 65

outer joins
CROSS JOIN 61
FULL OUTER JOIN 61

LEFT OUTER JOIN 60
RIGHT OUTER JOIN 60
using 60

P
pages

about 17, 18
URL, for information 18

parsing 145
PARTITION BY clause 70
partitioned indexes

about 161
URL, for information 161

partitioned tables 41
PERCENTILE_CONT function

about 73
syntax 73

PERCENTILE_DISC function
about 73
syntax 73

PERCENT_RANK function 71
permission

denying, to securables with T-SQL DCL
statements 47

granting, to securables with T-SQL DCL
statements 47

managing, with SSMS 2014 48
revoking, to securables with T-SQL DCL

statements 48
pessimistic locking 176
phantoms 175
physical design phase, database design

process 10
physical filename 16
plan cache

about 146
clearing, manually 149

plan caching 147
primary data file 16

Q
query execution 147
query optimization

process 144-147
statistics 170

www.it-ebooks.info

http://www.it-ebooks.info/

[189]

query plan aging 148
query processor. See Relational Engine

R
RANK function 69
ranking functions

about 69
DENSE_RANK 69
NTILE 69
RANK 69
ROW_NUMBER 69

RDBMS 49
READ COMMITTED transaction isolation

level 177
READ UNCOMMITTED transaction

isolation level 177
recovery model, database

about 29
bulk-logged 29
full recovery 30
simple 29

recursive triggers 132
referential integrity 14
Relational Database Management System.

See RDBMS
Relational Engine

about 143, 144
binding 145
improved design, in SQL Server 2014 for

cardinality estimation 148
optimizing, for ad hoc workloads 148, 149
parsing 145
plan cache, clearing manually 149
plan caching 147
query execution 147
query optimization 145-147
query plan aging 148

relationships
about 12
many-to-many relationship 13
one-to-many relationship 13
one-to-one relationship 12

Reorganize and Rebuild Indexes article
URL, for information 170

REPEATABLE READ transaction isolation
level 177

requirement collection and analysis phase,
database design process 8

resource database 29
RETURN statement 103
RIGHT OUTER JOIN operator

using 60
ROLLBACK TRANSACTION statement

about 175
syntax 175

row
deleting 89
inserting, to SQL Server

database table 82, 83
updating 87

ROW_NUMBER function 69
rowset functions 54
row versioning 177

S
SAVE TRANSACTION statement

about 175
syntax 175

scalar functions, within CATCH block
ERROR_LINE() 139
ERROR_MESSAGE() 138
ERROR_NUMBER() 138
ERROR_PROCEDURE() 139
ERROR_SEVERITY() 138
ERROR_STATE() 138

schema
about 39
listing, in SSMS 2014 40
managing, with SSMS 2014 40
managing, with T-SQL DDL statements 40

SCHEMA_AND_DATA in-memory
optimized OLTP tables 150

schema locks 176
SCHEMA_ONLY in-memory optimized

OLTP tables 150
Search Arguments (SARG) 145
secondary data file 16
second normal form (2NF) 15
securables

permissions, denying to 47
permissions, granting to 47
permissions, revoking to 48

www.it-ebooks.info

http://www.it-ebooks.info/

[190]

security functions 54
SELECT INTO statement 94
select_list parameter 50
SELECT statement

about 50, 98
INSERT statement, using with 84
purposes 50
syntax 50

self joins
using 61

SERIALIZABLE transaction
isolation level 177

Server 2014 system databases
distribution database 29
master database 27, 28
model database 28
msdb database 28
resource database 29
tempdb database 28

service-level agreement (SLA) 151
SET keyword 98
shared locks (S) 176
shared with intent exclusive (SIX) lock 176
simple recovery model 29
single-column indexes 154
SNAPSHOT transaction isolation level 177
spatial indexes 160
Specify Fill Factor for an Index article

URL, for information 170
sp_who2 system stored procedure 180
sp_who system stored procedure 180
SQL 25
SQL Server

indexes, using 151
lock, issuing for database 176
lock, issuing for extent 176
lock, issuing for key 175
lock, issuing for page 176
lock, issuing for row identifier 175
lock, issuing for table 175
transaction modes 174

SQL Server 2014
system data types 22
transaction isolation levels 177

SQL Server 2014 Management Studio. See
SSMS 2014

SQL Server database architecture
about 16, 17
extent 18
filegroups 21
pages 17, 18
transaction log file architecture 19, 20

SQL Server Database Engine
components 143

SQL Server database tables
data, deleting from 88
data, inserting into 80
data, updating in 86
row, inserting to 82, 83

SQL Server Extended Events
about 180
URL, for article 180

SQLServer:Locks performance object
about 178
monitoring 178

SQL Server performance
monitoring tools 178, 179
troubleshooting tools 178-180

SQL Server Profiler
about 179
event classes 179

SQL Server query optimizer 146
SSMS 2014

alias data types, creating with 23
alias data types, dropping with 23
used, for creating database 35
used, for creating tables 45
used, for deleting tables 46
used, for dropping database 38, 39
used, for managing permission 48
used, for managing schema 40
used, for modifying database 37, 38
used, for modifying tables 46
views, altering with 107-109
views, creating with 104, 107, 108
views, dropping with 107-109

statistics
creating, manually 171
last update date, determining 172
updating 172

STATS_DATE() function
sys.stats catalog view, using with 173

www.it-ebooks.info

http://www.it-ebooks.info/

[191]

Storage Engine 143
stored procedure

about 111
creating 111-113
dropping 118
example 114-117
executing 120
modifying 117
using 111
viewing 119

stored procedures, types
CLR stored procedures 112
extended user-defined

stored procedures 112
natively compiled stored procedures 112
system stored procedures 112
temporary stored procedures 112
user-defined stored procedures 112

string functions 55
Structured Query Language. See SQL
subqueries

about 61, 62
examples 62, 63

sys.stats catalog view
using, with STATS_DATE() function 173

system databases, SQL Server 2014 27
system data types, SQL Server 2014

about 22
approximate numeric data types 22
binary string data types 22
character string data types 22
date and time data types 22
exact numeric data types 22
unicode character string data types 22

Systems Development Life Cycle (SDLC) 7
system statistical functions 55
system stored procedures 112
system tables 41

T
table design

about 11
attributes 12
entities 12
tables 11

tables
about 11, 41
creating, with SSMS 2014 45
creating, with T-SQL DDL

statements 42, 43
dropping, with T-SQL DDL statements 44
file tables 42
memory-optimized tables 42
modifying, with SSMS 2014 46
modifying, with T-SQL DDL statements 44
overindexing, avoiding 168
partitioned tables 41
system tables 41
temporary tables 41
user-defined tables 41

table variable
creating 99
example 99
syntax 99

tempdb database 28
temporary stored procedures 112
temporary tables 41
testing and evaluation phase, database

design process 10
third normal form (3NF) 15, 16
TOP clause

about 66
syntax 66

transaction isolation 177
transaction isolation levels, SQL Server 2014

READ COMMITTED 177
READ UNCOMMITTED 177
REPEATABLE READ 177
SERIALIZABLE 177
SNAPSHOT 177

transaction log file architecture
about 17-19
operation 20
working 20

transaction modes
autocommit 174
batch-scoped 174
explicit 174
implicit 174

transactions
about 173

www.it-ebooks.info

http://www.it-ebooks.info/

[192]

characteristics 173
implementing 174

Transact-SQL. See T-SQL
triggers

about 131
disabling 137
enabling 137
nested triggers 131, 132
uses 131
viewing 137

TRUNCATE TABLE statement
about 94
example 94

TRY…CATCH block
example 140

TRY…CATCH with RAISERROR block
example 141

TRY…CATCH with THROW block
example 140

T-SQL
about 49
analytic window functions 68
clauses 50
URL, for deterministic and

nondeterministic functions 55
views, creating with 104

T-SQL DCL statements
used, for denying permissions

to securables 47
used, for granting permissions

to securables 47
used, for revoking permissions

to securables 48
T-SQL DDL statements

used, for creating alias data types 23
used, for creating database 30-32
used, for creating tables 42, 43
used, for dropping alias data types 23
used, for dropping database 35
used, for dropping tables 44
used, for managing schema 40
used, for modifying database 33
used, for modifying tables 44
views, altering with 104
views, creating with 104
views, dropping with 104

T-SQL errors
handling 138, 139

T-SQL functions, in query
about 52
aggregate functions 52
configuration functions 53
cursor functions 53
date and time functions 53
mathematical functions 54
metadata functions 54
rowset functions 54
security functions 54
string functions 55
system statistical functions 55

T-SQL statements
DCL statements 26
DDL statements 26
DML statements 26

U
UDFs. See user-defined functions
UNION ALL operator 56
UNION operator

about 56
syntax 56

unique indexes
about 160
features 160
URL, for information 160

update locks (U) 176
UPDATE statement

about 86
arguments 86, 87
examples 87
syntax 86

UPDATE STATISTICS statement 172
UPDATE STATISTICS (Transact-SQL)

article
URL 172

user-defined functions
about 120
creating 121
dropping 129
inline table-valued function, syntax 128
modifying 128

www.it-ebooks.info

http://www.it-ebooks.info/

[193]

multistatement table-valued functions,
syntax 128

scalar-value functions, syntax 128
viewing 130, 131

user-defined integrity 14
user-defined scalar function

creating 121-123
using 123

user-defined stored procedures 112
user-defined tables 41
user-defined table-valued function

creating 124
inline table-valued function, syntax 124
multistatement table-valued function,

syntax 124
using 129

V
variables

creating 98
cursor variable, creating 99
local variable, creating 98
table variable, creating 99
using 98

Venn diagram
for UNION ALL operator 56
for UNION operator 56

views
about 104
altering, with SSMS 2014 107-109
altering, with T-SQL DDL statements 104
creating 104
creating, with SSMS 2014 104, 107, 108
creating, with T-SQL 104
creating, with T-SQL DDL statements 104
dropping, with SSMS 2014 107-109
dropping, with T-SQL DDL statements 104
uses 104
using 104

Virtual Log Files (VLFs) 19

W
WAITFOR statement 103
WHERE clause 51
WHILE statement 102

X
XML indexes

about 163
URL, for information 163

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
SQL Server 2014 Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server 2012
Performance Tuning Cookbook
ISBN: 978-1-84968-574-0 Paperback: 478 pages

80 recipes to help you tune SQL Server 2012 and
achieve optimal performance

1.	 Learn about the performance tuning needs for
SQL Server 2012 with this book and ebook.

2.	 Diagnose problems when they arise and employ
tricks to prevent them.

3.	 Explore various aspects that affect performance
by following the clear recipes.

Microsoft SQL Server 2012
with Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and provide business intelligence on the
heterogeneous data

1.	 Integrate data from unstructured (Hadoop)
and structured (SQL Server 2012) sources.

2.	 Configure and install connectors for a
bi-directional transfer of data.

3.	 Full of illustrations, diagrams, and tips
with clear, step-by-step instructions and
practical examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server 2014
Business Intelligence
Development Beginner's Guide
ISBN: 978-1-84968-888-8 Paperback: 350 pages

Get to grips with Microsoft Business Intelligence
and data warehousing technologies using this
practical guide

1.	 Discover the Dimensional Modeling concept
while designing a data warehouse.

2.	 Learn Data Movement based on technologies
such as SSIS, MDS, and DQS.

3.	 Design dashboards and reports with Microsoft
BI technologies.

Getting Started with SQL Server
2014 Administration
ISBN: 978-1-78217-241-3 Paperback: 106 pages

Optimize your database server to be fast, efficient,
and highly secure using the brand new features of
SQL Server 2014

1.	 Design your SQL Server 2014 infrastructure
by combining both on-premise and
Windows-Azure-based technologies.

2.	 Implement the new InMemory OLTP database
engine feature to enhance the performance of
your transaction databases.

3.	 This is a hands-on tutorial that explores the
new features of SQL Server 2014 along with
giving real world examples.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Microsoft SQL Server Database Design Principles
	Database design
	The requirement collection and analysis phase
	The conceptual design phase
	The logical design phase
	The physical design phase
	The implementation and loading phase
	The testing and evaluation phase
	The database design life cycle recap

	Table design
	Tables
	Entities
	Attributes

	Relationships
	A one-to-one relationship
	A one-to-many relationship
	A many-to-many relationship

	Data integrity
	The basics of data normalization
	The normal forms
	The first normal form (1NF)
	The second normal form (2NF)
	The third normal form (3NF)

	Denormalization

	The SQL Server database architecture
	Pages
	Extents
	The transaction log file architecture
	The operation and workings of a transaction log

	Filegroups

	The importance of choosing the appropriate data type
	SQL Server 2014 system data types
	Alias data types
	Creating and dropping alias data types with
SSMS 2014
	Creating and dropping alias data types using the Transact-SQL DDL statement

	CLR user-defined types

	Summary

	Chapter 2: Understanding DDL and DCL Statements in SQL Server
	Understanding the DDL, DCL, and DML language elements
	Data Definition Language (DDL) statements
	Data Manipulation Language (DML) statements
	Data Control Language (DCL) statements

	Understanding the purpose of SQL Server 2014 system databases
	SQL Server 2014 system databases
	The master database
	The model database
	The msdb database
	The tempdb database
	The resource database
	The distribution database

	An overview of database recovery models
	The simple recovery model
	The bulk-logged recovery model
	Full recovery

	Creating and modifying databases
	Create, modify, and drop databases with T-SQL DDL statements
	Creating a database with T-SQL DDL statements
	Example 1 – creating a database based on a model database
	Example 2 – creating a database that explicitly specifies the database data and the transaction log file's filespecs properties
	Example 3 – creating a database on multiple filegroups

	Modifying a database with T-SQL DDL statements
	Example – adding a secondary data file to an existing database

	Dropping a database with T-SQL DDL statements
	Create, modify, and drop databases with SSMS 2014
	Creating a database with SSMS 2014
	Modifying a database with SSMS 2014

	Dropping a database with SSMS 2014

	Creating and managing database schemas
	Managing schemas using T-SQL DDL statements
	Managing schemas using SSMS 2014

	Creating and managing tables
	Creating and modifying tables
	Creating and modifying tables with T-SQL DDL statements
	Creating a table with T-SQL DDL statements
	Modifying a table with T-SQL DDL statements
	Dropping a table with T-SQL DDL statements

	Creating and modifying tables with SSMS 2014
	Creating a table with SSMS 2014
	Modifying a table with SSMS 2014
	Deleting a table with SSMS 2014

	Grant, deny, and revoke permissions to securables
	Grant, deny, and revoke permissions to securables with T-SQL DCL statements
	Granting permissions to securables with T-SQL DCL statements
	Denying permissions to securables with T-SQL
DCL statements
	Revoking permissions to securables with T-SQL DCL statements

	Managing permissions using SSMS 2014

	Summary

	Chapter 3: Data Retrieval Using Transact-SQL Statements
	Understanding Transact-SQL SELECT, FROM, and WHERE clauses
	The SELECT statement
	The FROM clause
	The WHERE clause

	Using T-SQL functions in the query
	Aggregate functions
	Configuration functions
	Cursor functions
	Date and time functions
	Mathematical functions
	Metadata functions
	Rowset functions
	Security functions
	String functions
	System statistical functions

	Multiple table queries using UNION, EXCEPT, INTERSECT, and JOINs
	The UNION operator
	The EXCEPT operator
	The INTERSECT operator
	The JOIN operator
	Using INNER JOIN
	Using outer joins

	Subqueries
	Examples of subqueries

	Common Table Expressions
	Organizing and grouping data
	The ORDER BY clause
	The GROUP BY clause
	The HAVING clause

	The TOP clause
	The DISTINCT clause
	Pivoting and unpivoting data

	Using the Transact-SQL analytic window functions
	Ranking functions
	PERCENT RANK
	CUME_DIST
	PERCENTILE_CONT and PERCENTILE_DISC
	LEAD and LAG
	FIRST_VALUE and LAST_VALUE

	Summary

	Chapter 4: Data Modification with SQL Server Transact-SQL Statements
	Inserting data into SQL Server database tables
	The INSERT examples
	Example 1 – insert a single row into a SQL Server database table
	Example 2 – INSERT with the SELECT statement
	Example 3 – INSERT with the EXEC statement
	Example 4 – explicitly inserting data into the IDENTITY column

	Updating data in SQL Server database tables
	The UPDATE statement examples
	Example 1 – updating a single row
	Example 2 – updating multiple rows

	Deleting data from SQL Server database tables
	The DELETE statement examples
	Example 1 – deleting a single row
	Example 2 – deleting all rows

	Using the MERGE statement
	The MERGE statement examples

	The TRUNCATE TABLE statement
	The SELECT INTO statement
	Summary

	Chapter 5: Understanding Advanced Database Programming Objects and Error Handling
	Creating and using variables
	Creating a local variable
	Creating the cursor variable
	Creating the table variable

	Control-of-flow keywords
	BEGIN…END keywords
	The IF…ELSE expression
	A CASE statement
	WHILE, BREAK, and CONTINUE statements
	RETURN, GOTO, and WAITFOR statements

	Creating and using views
	Creating views with Transact-SQL and
SSMS 2014
	Creating, altering, and dropping views with Transact-SQL DDL statements
	Creating, altering, and dropping views with
SSMS 2014
	Indexed views

	Creating and using stored procedures
	Creating a stored procedure
	Modifying a stored procedure
	Dropping a stored procedure
	Viewing stored procedures
	Executing stored procedures

	Creating and using user-defined functions
	Creating user-defined functions
	Creating a user-defined scalar function
	Creating a user-defined table-valued function

	Modifying user-defined functions
	Using a user-defined table-valued function

	Dropping user-defined functions
	Viewing user-defined functions

	Creating and using triggers
	Nested triggers
	Recursive triggers
	DML triggers
	Inserted and deleted logical tables
	Creating DML triggers
	Modifying a DML trigger
	Dropping a DML trigger

	Data Definition Language (DDL) triggers
	The EVENTDATA function
	Creating a DDL trigger
	Modifying a DDL trigger
	Dropping a DDL trigger

	Disabling and enabling triggers
	Viewing triggers

	Handling Transact-SQL errors
	An example of TRY...CATCH
	An example of TRY...CATCH with THROW
	An example of TRY...CATCH with RAISERROR

	Summary

	Chapter 6: Performance Basics
	Components of SQL Server Database Engine
	The SQL Server Relational Engine architecture
	Parsing and binding
	Query optimization
	Query execution and plan caching
	Query plan aging
	The improved design in SQL Server 2014 for the cardinality estimation
	Optimizing SQL Server for ad hoc workloads
	Manually clearing the plan cache

	The SQL Server 2014 in-memory OLTP engine
	The limitations of memory-optimized tables

	Indexes
	The cost associated with indexes
	How SQL Server uses indexes
	Access without an index
	Access with an index

	The structure of indexes
	Index types
	Clustered indexes
	Nonclustered indexes
	Single-column indexes
	Composite indexes
	Covering indexes
	Unique indexes
	Spatial indexes
	Partitioned indexes
	Filtered indexes
	Full-text indexes
	XML indexes
	Memory-optimized indexes
	Columnstore indexes

	Guidelines for designing and optimizing indexes
	Avoid overindexing tables
	Create a clustered index before creating nonclustered indexes when using clustered indexes
	Index columns used in foreign keys
	Index columns frequently used in joins
	Use composite indexes and covering indexes to give the query optimizer greater flexibility
	Limit key columns to columns with a high level of selectability
	Pad indexes and specify the fill factor to reduce page splits
	Rebuild indexes based on the fragmentation level

	Query optimization statistics
	Database-wide statistics options in SQL Server to automatically create and update statistics
	Manually create and update statistics
	Determine the date when the statistics were last updated
	Using the DBCC SHOW_STATISTICS command
	Using the sys.stats catalog view with the
STATS_DATE() function

	The fundamentals of transactions
	Transaction modes
	Implementing transactions
	BEGIN TRANSACTION
	COMMIT TRANSACTION
	ROLLBACK TRANSACTION
	SAVE TRANSACTION

	An overview of locking
	Basic locks
	Optimistic and pessimistic locking
	Transaction isolation

	SQL Server 2014 tools for monitoring and troubleshooting SQL Server performance
	Activity Monitor
	The SQLServer:Locks performance object
	Dynamic Management Views
	SQL Server Profiler
	The sp_who and sp_who2 system stored procedures
	SQL Server Extended Events

	Summary

	Index

