

Testing	and	Securing	Android	Studio
Applications

Table	of	Contents

Testing	and	Securing	Android	Studio	Applications

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introduction	to	Software	Security

Software	security	terms

Threats,	vulnerabilities,	and	risks

Threat

Vulnerability

Risk

Secure	code-design	principles

Testing	the	basics

Summary

2.	Security	in	Android	Applications

The	mobile	environment

An	overview	of	Android	security

Permissions

Interapplication	communication

Intents

Content	providers

Summary

3.	Monitoring	Your	Application

Debugging	and	DDMS

Threads

Method	profiling

Heap

Allocation	Tracker

Network	Statistics

File	Explorer

Emulator	Control

System	Information

Summary

4.	Mitigating	Vulnerabilities

Input	validation

SQL	injection

Permissions

Handling	a	user’s	data	and	credentials

Interapplication	communication

Securing	Intents

Securing	the	content	providers

Summary

5.	Preserving	Data	Privacy

Data	privacy

Shared	preferences

Files	in	the	internal	storage

Files	in	the	external	storage

The	database	storage

Encryption

The	encryption	methods

Generating	a	key

Using	encryption	to	store	data

Summary

6.	Securing	Communications

HTTPS

SSL	and	TLS

Server	and	client	certificates

Keytool	in	the	terminal

Android	Studio

Code	examples	using	HTTPS

Summary

7.	Authentication	Methods

Multifactor	authentication

The	knowledge	factor

The	possession	factor

The	inherence	factor

Login	implementations

AccountManager

Summary

8.	Testing	Your	Application

Testing	in	Android

Testing	the	UI

The	uiautomator	API

The	UiDevice	class

The	UiSelector	class

The	UiObject	class

The	UiCollection	class

The	UiScrollable	class

The	uiautomatorviewer	tool

The	UI	test	project

Running	UI	test	cases

Summary

9.	Unit	and	Functional	Tests

Testing	activities

The	test	case	classes

Instrumentation

The	test	case	methods

The	Assert	class	and	method

The	ViewAsserts	class

The	MoreAsserts	class

UI	testing	and	TouchUtils

The	mock	object	classes

Creating	an	activity	test

Creating	a	unit	test

The	unit	test	setup

The	clock	test

The	layout	test

The	activity	Intent	test

Creating	a	functional	test

The	functional	test	setup

The	UI	test

The	activity	Intent	test

The	state	management	test

Getting	the	results

Summary

10.	Supporting	Tools

Tools	for	unit	testing

Spoon

Mockito

Android	Mock

FEST	Android

Robolectric

Tools	for	functional	testing

Robotium

Espresso

Appium

Calabash

MonkeyTalk

Bot-bot

Monkey

Wireshark

Other	tools

Genymotion

Summary

11.	Further	Considerations

What	to	test

Network	access

Media	availability

Change	in	orientation

Service	and	content	provider	testing

Developer	options

Getting	help

Summary

Index

Testing	and	Securing	Android	Studio
Applications

Testing	and	Securing	Android	Studio
Applications
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1190814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-880-8

www.packtpub.com

Cover	image	by	Ravaji	Babu	(<ravaji_babu@outlook.com>)

http://www.packtpub.com
mailto:ravaji_babu@outlook.com

Credits
Authors

Belén	Cruz	Zapata

Antonio	Hernández	Niñirola

Reviewers

Nico	Küchler

Anand	Mohan

Ravi	Shanker

Kevin	Smith

Abhinava	Srivastava

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editor

Rebecca	Youé

Content	Development	Editor

Parita	Khedekar

Technical	Editor

Mrunmayee	Patil

Copy	Editors

Roshni	Banerjee

Adithi	Shetty

Project	Coordinators

Neha	Thakur

Amey	Sawant

Proofreader

Ameesha	Green

Indexers

Mariammal	Chettiyar

Rekha	Nair

Tejal	Soni

Priya	Subramani

Graphics

Ronak	Dhruv

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

About	the	Authors
Belén	Cruz	Zapata	received	her	engineering	degree	in	Computer	Science	from	the
University	of	Murcia	in	Spain,	with	specialization	in	software	technologies	and	intelligent
and	knowledge	technologies.	She	has	earned	an	MSc	degree	in	Computer	Science	and	is
now	working	on	her	PhD	degree	in	Software	Engineering	Research	Group	from	the
University	of	Murcia.

Belén	is	based	in	Spain;	however,	due	to	the	field	of	her	PhD,	she	is	now	collaborating
with	Université	Mohammed	V	-	Soussi	in	Rabat.	Her	research	is	focused	on	mobile
technologies	in	general	and	also	applies	to	medicine.

Belén	has	worked	as	a	mobile	developer	for	several	platforms,	such	as	Android,	iOS,	and
the	Web.	She	is	the	author	of	the	book	on	Android	Studio:	Android	Studio	Application
Development,	Packt	Publishing.

To	follow	her	projects,	she	maintains	a	blog	at	http://www.belencruz.com	and	you	can
follow	her	on	Twitter	at	@belen_cz.

I	would	like	to	thank	Packt	Publishing	for	offering	me	the	opportunity	to	write	this	book.	I
would	particularly	like	to	thank	Parita	Khedekar,	Rebecca	Youé,	and	Amey	Sawant	for
their	valuable	help.

I	would	also	like	to	thank	Antonio,	the	co-author	of	this	book,	for	making	everything	so
easy;	my	new	friends	of	adventure,	especially	Paloma,	Camilla,	and	Adrián,	for	these	last
months;	my	friends	from	way	back	for	visiting	me;	and	finally,	my	family	for	supporting
me.

Antonio	Hernández	Niñirola	has	an	engineering	degree	in	Computer	Science	and	is	a
mobile	application	developer.	He	was	born	and	raised	in	Murcia	in	the	southeast	region	of
Spain	and	is	currently	living	in	Rabat,	Morocco.	He	has	developed	several	websites	and
mobile	applications.

After	completing	his	degree	in	Computer	Science,	he	pursued	a	Master’s	degree	in
Teacher	Training	for	Informatics	and	Technology.	Antonio	pushed	his	studies	further	and
is	now	a	doctoral	candidate	under	the	Software	Engineering	Research	Group	of	the	faculty
of	Computer	Science	at	the	University	of	Murcia,	and	is	actually	a	researcher	for	the
Université	Mohammed	V	-	Soussi	in	Rabat.

You	can	visit	his	website	at	http://www.ninirola.es	to	find	out	more	about	him	and	his
projects.

I	would	like	to	begin	by	thanking	Rebecca	Youé,	Parita	Khedekar,	and	Amey	Sawant	for
their	valuable	input.	Thank	you	to	everyone	at	Packt	Publishing	who	make	writing	a	book
such	an	enjoyable	experience.

Thank	you	Belén,	the	other	half	of	this	book,	for	making	everything	much	better.	I	would
finally	like	to	thank	my	family	for	their	support,	my	new	friends	in	Morocco,	my	old
friends	in	Spain,	and	everyone	who	helped	me	be	who	I	am	today.

http://www.belencruz.com
http://www.ninirola.es

About	the	Reviewers
Nico	Küchler	lives	in	Berlin,	Germany.	He	did	an	apprenticeship	as	a	mathematical-
technical	software	developer.	He	has	worked	for	the	gamble	industry	and	as	an	online
shop	provider.	He	has	been	working	at	Deutsche	Post	E-POST	Development	GmbH	for	2
years	within	the	scope	of	Android	app	development.

He	has	been	maintaining	a	project	that	provides	a	quick	start	with	test-driven	Android	app
development	at	https://github.com/nenick/android-gradle-template.

Anand	Mohan	is	a	geek	and	a	start-up	enthusiast.	He	graduated	from	the	Indian	Institute
of	Information	Technology,	Allahabad,	in	2008.	He	has	worked	with	Oracle	India	Pvt.	Ltd.
for	4	years.	In	2012,	Anand	started	his	own	venture,	TripTern,	along	with	his	friends,
which	is	a	company	that	algorithmically	plans	out	the	most	optimized	travel	itinerary	for
travelers	by	utilizing	Big	Data	and	machine-learning	algorithms.	At	TripTern,	Anand	has
developed	and	implemented	offline	Android	applications	so	that	travelers	can	modify	their
itinerary	on	the	go	without	relying	on	any	data	plan.

Apart	from	working	on	his	start-up,	Anand	also	likes	to	follow	the	latest	trends	in
technology	and	best	security	practices.

Ravi	Shanker	has	always	been	fascinated	with	technology.	He’s	been	a	passionate
practitioner	and	an	avid	follower	of	the	digital	revolution.	He	lives	in	Sydney,	Australia.
He	loves	traveling,	presenting,	reading,	and	listening	to	music.	When	not	tinkering	with
the	technology,	he	also	wields	a	set	of	brushes	and	palette	of	colors	to	put	the	right	side	of
his	brain	to	work.

Ravi	has	honed	his	skills	over	a	decade	in	development,	consulting,	and	product	and
project	management	for	start-ups	to	large	corporations	in	airline,	transportation,	telecom,
media,	and	financial	services.	He	has	worked	in	the	USA,	UK,	Australia,	Japan,	and	most
of	Asia-Pacific.	He	has	also	run	a	couple	of	start-ups	of	his	own	in	the	past.

Ravi	is	often	seen	blogging,	answering	or	asking	questions	on	Stack	Exchange,	posting	or
upvoting,	and	tweeting	on	the	latest	developments	in	digital	space.	He	has	made
presentations	at	meetings	and	interest	groups	and	has	conducted	training	classes	on
various	technologies.	He’s	always	excited	at	the	prospect	of	new	and	innovative
developments	in	improving	the	quality	of	life.

Abhinava	Srivastava	has	completed	his	Bachelor	of	Technology	degree	in	Computer
Science	Engineering	from	India	in	2008	and	has	also	received	a	Diploma	in	Wireless	and
Mobile	Computing	from	ACTS,	C-DAC,	India	in	2009.

He	started	his	career	as	a	Software	Engineer	at	Persistent	Systems	before	moving	to
Singapore,	and	is	currently	working	with	MasterCard,	Singapore.

Abhinava	is	a	core	technologist	by	heart	and	loves	to	play	with	open	source	technologies.
He	maintains	his	own	blog	at	http://abhinavasblog.blogspot.in/	and	keeps	jotting	his
thoughts	from	time	to	time.

I	would	like	to	thank	my	family	members	for	their	continuous	support,	especially	my	elder

https://github.com/nenick/android-gradle-template
http://abhinavasblog.blogspot.in/

brother,	Abhishek	Srivastava,	who	has	been	a	mentor	and	an	inspiration.	Last	but	not	least,
I	would	like	to	extend	my	gratitude	to	Packt	Publishing	for	giving	me	the	opportunity	to
be	a	part	of	such	a	wonderful	experience.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Mobile	applications	have	become	very	popular	in	the	last	few	years	thanks	to	a	huge
increment	in	the	use	of	mobile	devices.	From	a	developer’s	point	of	view,	Android	has
become	an	important	source	of	income	thanks	to	the	different	app	repositories,	such	as
Google	Play	and	Amazon	Appstore.

With	an	increase	in	the	number	of	applications	available,	users	have	become	more
demanding	about	the	features	of	the	applications	they	are	going	to	use.	A	solid	testing	of
the	application	and	its	security	aspects	are	the	key	factors	in	the	pursuit	of	success	for	an
application.	Bugs	and	security	issues	are	obviously	not	features	that	help	your	application
do	well	in	the	increasingly	more	exigent	market	of	Android.

In	this	book,	you	are	going	to	learn	how	to	turn	your	Android	application	into	a	solidly
debugged	and	secure	application.	To	achieve	this,	you	will	learn	how	to	use	Android
Studio	and	its	most	important	features:	testing	and	security.

What	this	book	covers
Chapter	1,	Introduction	to	Software	Security,	introduces	the	principles	of	software
security.

Chapter	2,	Security	in	Android	Applications,	describes	the	distinctive	features	found	in
mobile	environments	and	the	Android	system.

Chapter	3,	Monitoring	Your	Application,	presents	the	debugging	environment,	one	of	the
most	important	features	of	an	IDE.

Chapter	4,	Mitigating	Vulnerabilities,	describes	the	measures	that	should	be	taken	to
prevent	attacks.

Chapter	5,	Preserving	Data	Privacy,	presents	the	mechanisms	offered	by	Android	to
preserve	the	privacy	of	user	data.

Chapter	6,	Securing	Communications,	explains	the	mechanisms	offered	by	Android	to
secure	communications	between	an	Android	application	and	an	external	server.

Chapter	7,	Authentication	Methods,	presents	different	types	of	authentication	methods
used	in	Android	mobile	devices.

Chapter	8,	Testing	Your	Application,	introduces	ways	to	test	an	application	using	Android
Studio.

Chapter	9,	Unit	and	Functional	Tests,	covers	unit	and	functional	tests	that	allow
developers	to	quickly	verify	the	state	and	behavior	of	an	activity	on	its	own.

Chapter	10,	Supporting	Tools,	presents	a	set	of	external	tools	different	from	Android
Studio	to	help	developers	test	an	Android	application.

Chapter	11,	Further	Considerations,	provides	some	further	considerations	that	are	useful
for	developers.

What	you	need	for	this	book
For	this	book,	you	need	a	computer	with	a	Windows,	Mac	OS,	or	Linux	system.	You	will
also	need	to	have	Java	and	the	Android	Studio	IDE	installed	on	your	system.

Who	this	book	is	for
This	book	is	a	guide	for	developers	with	some	Android	knowledge,	but	who	do	not	know
how	to	test	their	applications	using	Android	Studio.	This	book	is	suitable	for	developers
who	have	knowledge	about	software	security	but	not	about	security	in	mobile
applications,	and	also	for	developers	who	do	not	have	any	knowledge	about	software
security.	It’s	assumed	that	you	are	familiar	with	Android	and	it	is	also	recommended	to	be
familiar	with	the	Android	Studio	IDE.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	will	help	you	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation
of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“To	send
an	ordered	broadcast,	you	can	call	the	sendOrderedBroadcast	method.”

A	block	of	code	is	set	as	follows:

Instrumentation.ActivityMonitor	monitor	=	

getInstrumentation().addMonitor(SecondActivity.class.getName(),	null,	

false);

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

@Override

protected	void	setUp()	throws	Exception	{

super.setUp();

Intent	intent	=	new	Intent(getInstrumentation().getTargetContext(),	

MainActivity.class);

startActivity(intent,	null,	null);

mActivity	=	getActivity();

Any	command-line	input	or	output	is	written	as	follows:

adb	shell	monkey	–p	com.packt.package	–v	100

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“The	multiplication	is
made	when	the	Button1	button	is	clicked.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	Software
Security
You	want	to	learn	how	to	improve	your	Android	applications	so	that	they’re	secure	and
robust.	You	would	like	to	learn	about	mobile	software	security	and	its	most	important
threats	and	vulnerabilities.	You	want	your	users	to	be	satisfied	while	ensuring	that	their
data	is	secure	and	that	the	application	has	no	bugs.	Can	you	do	this	easily?	What	do	you
need	to	do	in	order	to	achieve	this?

This	chapter	will	teach	you	the	basics	of	software	security.	We’ll	begin	by	teaching	you
the	different	security	terms	that	we	will	use	in	this	book.	You’ll	see	the	most	important
threats	and	vulnerabilities	that	may	affect	your	application.	You’ll	then	learn	about	secure
code	design	principles,	as	well	as	how	to	test	our	application	for	security	issues.

In	this	chapter,	we	will	cover	the	following	topics:

Software	security	terms
Threats,	vulnerabilities,	and	risks
Secure	code	design	principles
Security	testing

Software	security	terms
In	recent	years,	the	Internet	has	experienced	a	huge	increase	in	electronic	commerce	(e-
commerce).	This	increase	in	monetization	of	information	in	the	cloud	means	that
attackers	can	now	be	rewarded	financially,	socially,	and	even	politically	for	a	successful
attack.	There	is	a	low	risk	in	attempting	these	attacks,	since	there	is	a	small	chance	of
getting	captured	and	therefore,	of	prosecution.	With	a	more	motivated	enemy,	companies
and	enterprises	have	to	improve	their	security	measures	to	face	these	new	threats.	They
must	identify	the	threats	and	defend	the	vulnerabilities	that	may	affect	the	data	that	has	a
big	impact	on	their	business.

In	order	to	understand	the	content	of	this	book	completely,	you	will	first	need	to
understand	some	basic	concepts	about	software	security:

Access	control:	This	ensures	selective	access	to	resources	by	users	that	are	entitled	to
it.
Asymmetric	cryptography:	This	is	also	known	as	the	public	key	cryptography	and
uses	algorithms	that	employ	a	pair	of	keys—one	public	and	one	private.	A	public	key
is	used	to	encrypt	the	data	while	a	private	key	is	used	to	decrypt	data.
Authentication:	This	is	a	process	through	which	we	can	confirm	the	identity	of	a
user.
Authorization:	This	is	a	process	through	which	we	give	someone	permission	to	do
or	have	something.
Availability:	This	means	that	the	system	and	data	are	available	to	authorized	users
when	they	may	make	use	of	it.
Brute	force:	This	is	a	very	basic	and	nonoptimal	cryptanalysis	technique	that	tries
every	possibility	to	crack	a	key	or	a	password.
Cipher:	This	is	a	cryptographic	algorithm	that	may	be	used	for	encryption	and
decryption.
Code	injection:	This	is	an	attack	where	the	code	is	inserted	into	application	queries.
This	kind	of	attack	is	commonly	used	to	alter	databases	via	SQL	injections.
Confidentiality:	This	specifies	that	the	data	is	only	available	for	users	who	have
permission	to	access	it.
Crack:	This	is	the	process	through	which	an	attacker	attempts	to	gain	access	to	a
machine,	network,	or	software.
Decryption:	This	is	the	process	through	which	an	encrypted	message	is	transformed
into	its	original	state.
Denial-of-service	(DoS):	This	is	a	type	of	attack	that	makes	an	online	resource
unavailable	for	a	fixed	amount	of	time.
Distributed	denial-of-service	(DDoS):	This	type	of	attack	is	similar	to	the	DoS
attack,	but	it	is	perpetrated	from	several	machines	and	is	generally	more	effective
than	a	DoS	attack.
Dictionary	attack:	This	is	a	basic	cryptanalysis	technique	that	uses	all	the	words	in	a
dictionary	when	trying	to	crack	a	key	or	password.
Encryption:	This	is	a	process	through	which	a	plain	piece	of	data	is	transformed	into

an	encrypted	state,	with	the	objective	of	concealing	this	information	in	order	to
prevent	access	from	unwanted	sources.
Hash	function:	This	is	a	type	of	algorithm	that	maps	data	of	different	sizes	into	data
of	a	fixed	size.
Hijack	attack:	This	is	a	form	of	attack	in	which	an	already	established
communication	is	seized	and	acts	as	one	of	the	original	participants.
Hypertext	Transfer	Protocol	Secure	(HTTPS):	This	is	an	application	level	protocol
based	on	HTTP	that	allows	a	secure	transfer	of	sensitive	information	in	the	form	of
hypertext.
Integrity:	This	means	that	the	information	is	accurate	and	is	not	changed
accidentally	or	deliberately.
MD5:	This	is	a	very	commonly	used	hash	function.
Man-in-the-middle	attack:	This	is	a	type	of	attack	where	the	attacker	assumes	a
position	in	the	middle	of	a	communication,	intercepts	and	reads	the	messages	of	a
communication,	and	lets	the	victims	believe	that	they	are	directly	connected	to	each
other.
Password:	This	is	a	string	of	characters	used	for	authentication.
Phishing:	This	is	an	attack	attempt	that	appears	to	be	from	a	reliable	source	and
tricks	the	user	into	entering	their	authentication	credentials	in	a	different	domain	or
application.
Risk:	This	is	the	likelihood	of	an	attack	happening	and	succeeding.
SHA1:	This	is	a	commonly	used	hash	function.
Sniffing	attack:	This	is	an	attack	that	analyses	the	packets	exchanged	in	a	network	in
order	to	extract	useful	information	from	them.
Spoofing	attack:	This	is	an	attack	where	an	unauthorized	entity	gains	access	to	a
system	with	the	credentials	of	an	authorized	user.
Symmetric	cryptography:	This	is	a	type	of	cryptography	that	uses	the	same	key	for
encryption	and	decryption,	and	therefore,	every	entity	shares	the	same	key.
Threat:	This	is	a	circumstance	that	could	breach	security	and	cause	harm	to	the
system.
Vulnerability:	This	is	a	weakness	that	allows	for	a	threat	to	occur.

Threats,	vulnerabilities,	and	risks
There	are	three	key	terms	that	you	need	to	understand.	They	were	defined	in	the	previous
section,	but	we	will	talk	a	little	bit	more	about	them	since	they	are	commonly	mixed	up.
These	terms	are	threat,	risk,	and	vulnerability	and	they	are	discussed	in	the	following
sections.

Threat
A	threat	is	anything	that	may	exploit	vulnerability	in	order	to	access,	modify,	or	destroy
information.	A	threat	is	the	source	and	type	of	an	attack	and	is	what	we	try	to	defend
against.	Threat	assessments	are	used	to	determine	the	best	way	to	defend	against	a
determined	class	of	threat.

When	we	consider	a	communication	between	two	authorized	entities,	a	source	(S)	and	a
destination	(D),	threats	can	be	categorized	into	the	following	four	segments:

Interception:	This	happens	when	an	attacking	entity	has	an	access	to	a
communication	between	two	authorized	entities.	The	entities	do	not	realize	that
interception	is	happening	and	keep	on	with	their	communication	normally.
Interruption:	This	refers	to	when	the	attacking	entity	intercepts	the	communication.
The	source	entity	may	not	realize	this	is	happening,	while	the	destination	entity	has
no	knowledge	of	the	communication	attempt.
Modification:	This	happens	when	the	attacking	entity	changes	the	information	sent
between	the	two	authorized	entities.	The	destination	entity	does	not	realize	that	the
information	has	been	tampered	with	by	the	attacking	entity.
Fabrication:	This	happens	when	the	attacking	entity	acts	like	the	source	entity.	The
destination	entity	acknowledges	the	communication	as	if	it	was	produced	by	the
source	entity.

Vulnerability
Vulnerability	is	a	weakness	or	a	flaw	in	the	security	system	of	our	application	that	may	be
used	by	a	determined	threat	to	access,	modify,	or	destroy	information.	Vulnerability
testing	is	mandatory	and	should	be	performed	repeatedly	to	ensure	the	security	of	our
application.

When	a	human	or	a	system	tries	to	exploit	vulnerability,	it	is	considered	to	be	an	attack.
Some	of	the	most	common	kinds	of	vulnerabilities	that	can	be	exploited	to	damage	our
system	are	as	follows:

Improper	authentication:	This	happens	when	an	entity	claims	that	it	has	been
authenticated	and	the	software	does	not	check	whether	this	is	true	or	false.	This
vulnerability	affects	our	system	of	access	control,	since	an	attacker	can	evade	the
authentication	process.	A	very	common	example	of	exploiting	this	vulnerability	is
modifying	a	cookie	which	has	a	field	that	determines	whether	the	user	is	logged	in.
Setting	loggedin	to	true	can	cheat	the	system	into	believing	that	the	entity	is	already
logged	in	and	is	therefore	granted	access	when	it	should	not	be	granted.
Buffer	overflow:	This	happens	when	the	software	has	access	to	a	determined	amount
of	memory	but	tries	to	read	a	buffer	out	of	the	limits.	For	example,	if	the	software	has
a	buffer	of	size	N	but	tries	to	read	the	position	N+2,	it	will	read	information	that	may
be	used	by	another	process.	This	grants	access	and	even	modifies	the	information	that
belongs	to	a	part	of	the	memory	where	the	software	should	not	have	access.
Cross-site	scripting	(XSS):	This	is	a	kind	of	vulnerability	that	allows	a	third-party	to
inject	code	in	our	software.	It	is	especially	common	in	websites,	but	it	also	applies	to
certain	mobile	applications.	The	most	commonly	used	examples	of	XSS	are	the
access	to	cookies	from	a	different	site	and	the	injection	of	JavaScript	into	a	different
site.
Input	validation:	When	reading	information	provided	by	the	user,	it	is	always	a
good	idea	to	validate	the	data.	Not	validating	the	data	may	result	in	an	attacker
introducing	certain	unexpected	values	that	can	cause	an	issue	in	the	system.
SQL	injection:	This	is	a	kind	of	input	validation	vulnerability.	It	is	very	common	to
use	a	search	feature	in	almost	any	application.	The	string	that	the	user	introduces	in
the	search	field	is	then	introduced	in	a	SQL	sentence.	If	there	is	no	analysis	and	filter
of	the	string	provided	by	the	user,	an	attacker	could	write	a	SQL	query	that	would	be
executed.	If	this	is	combined	with	a	bad	access	control,	the	attacker	could	even	delete
the	whole	database.

Risk
A	risk	is	the	potential	for	an	attack	happening	and	being	successful.	The	more	sensitive	the
information,	the	higher	the	risk	of	attack,	as	it	can	cause	a	higher	level	of	damage	to	our
system.	Risks	are	the	result	of	a	threat	exploiting	vulnerability	and	accessing,	modifying,
or	destroying	a	piece	of	information	that	we	want	to	be	protected.	Risk	assessments	are
performed	to	identify	the	most	critical	dangers	and	to	evaluate	the	potential	damage.	This
potential	damage	is	calculated	through	a	state	between	the	cost	of	a	breach	happening,
which	depends	on	how	sensitive	the	information	is,	and	the	probability	of	that	event,
which	depends	on	the	threats	and	vulnerabilities	that	may	affect	the	application.

As	you	can	see,	there	is	a	very	important	relationship	between	these	three	terms;
especially	when	trying	to	correctly	identify	the	risk	that	the	information	stored	suffers.
Assessing	threats	and	detecting	vulnerabilities	is	crucial	to	the	protection	of	the
information	in	our	application.

Secure	code-design	principles
In	order	to	reduce	the	number	of	vulnerabilities	of	your	application,	a	good	security	design
is	mandatory.	There	are	many	standards	and	guidelines	that	recommend	different
processes	to	produce	secure	applications.	In	this	section,	we	are	going	to	identify	the	most
important	principles	that	you	should	follow	when	designing	your	application:

Secure	defaults:	Security	is	of	the	utmost	importance	for	an	average	user.	When
designing	your	application,	you	should	make	sure	that	the	most	demanding	user	is
going	to	be	satisfied	and,	therefore,	your	application	should	offer	the	best	security
methods	available.	However,	there	are	some	users	who	may	prefer	accessibility	over
security	and	may	want	to	reduce	the	level	of	security.	For	example,	you	may	want	to
add	password	aging	to	your	authentication	system.	This	means	that	every	established
period	of	time,	the	users	should	change	their	password	to	a	new	one.	This	means	an
additional	level	of	security	but	can	be	annoying	for	certain	users.	Adding	an	option	in
the	preferences	to	turn	off	this	feature	can	be	a	good	idea.	However,	always	make
sure	to	set	the	default	to	the	more	secure	setting,	and	let	the	user	decide	whether	they
want	to	increase	the	risk	of	breaching	their	information.
Least	privileges:	Privileges	are	sometimes	conceded	in	excess	in	order	to	speed	up
the	process	of	development.	This	principle	states	that	you	should	always	concede	the
least	privileges	as	possible	in	order	to	minimize	security	risks.
Clarity:	Never	trust	obscurity	to	ensure	the	security	of	your	application.	Concealing
the	information	on	how	your	security	system	works	is	a	good	idea,	but	it	should	not
be	granted	as	enough	by	itself;	the	security	must	come	from	good	cryptographic
techniques	and	a	good	security	design.
Small	surface	area:	If	you	know	you	may	have	vulnerability	in	a	determined	section
of	your	code,	you	can	try	to	minimize	the	risk	of	a	threat	exploiting	it	by	minimizing
the	overall	use	of	this	section.	For	example,	if	you	think	that	certain	functionality
may	be	exploited,	you	can	restrict	this	functionality	to	authenticated	users.
Strong	defense:	When	defending	against	a	certain	attack,	there	may	be	different
methods	to	use.	One	control	can	surely	be	enough	but	sensitive	information	demands
extraordinary	measures.	Also,	using	more	than	one	method	of	precaution	is	most	of
the	times	convenient.
Failing	securely:	When	developing	our	application,	we	aim	for	the	highest
robustness.	However,	applications	fail	sometimes	and	we	need	to	adapt	our	code	to
make	sure	the	application	fails	securely.	When	programming	for	Android,	we	can
address	this	issue	by	controlling	every	exception,	for	example,	through	the	correct
usage	of	try	and	catch.
Not	trusting	the	third-party	companies:	There	are	many	services	available	that
have	been	developed	by	the	third-party	companies	with	different	privacy	and	security
policies.	It	is	important	to	know	that	while	using	one	of	these	services,	you	trust	the
companies	on	how	they	use	your	information.	The	principle	of	not	trusting	the	third-
party	companies	recommends	that	you	should	only	trust	an	external	service	with	the
minimal	amount	of	information	possible	and	always	implies	a	certain	level	of	trust

with	them.
Simplicity:	Always	try	to	keep	your	security	code	simple.	Although	it	is
recommended	to	use	code	patterns,	when	talking	about	security,	the	safest	and	more
robust	way	is	its	simplicity.
Address	vulnerabilities:	When	you	detect	vulnerability,	it	is	important	to	address
this	issue	correctly.	You	need	to	understand	both	the	vulnerability	and	the	threat	and
then	act	accordingly.

Testing	the	basics
As	stated	by	Boris	Beizer,	author	of	the	book	Software	Testing	Techniques,	Dreamtech
Press:

“Bugs	lurk	in	corners	and	congregate	at	boundaries.”

Security	testing	can	be	defined	as	a	process	through	which	we	find	vulnerabilities	or	flaws
in	our	security	system.	Although	we	may	do	exhaustive	security	testing,	it	does	not	imply
that	no	flaws	exist.	In	this	section,	we	will	focus	on	the	taxonomy	of	tests	that	can	be
performed	in	any	circumstance.

Tests	can	be	categorized	into	two	big	groups:	white-box	tests	or	structural	tests	and	black-
box	tests	or	functional	tests.	Structural	testing,	more	commonly	known	as	the	white-box
testing,	is	a	testing	method	that	evaluates	the	internal	behavior	of	a	component.	It	is
focused	on	the	analysis	of	the	behavior	of	each	procedure	in	different	moments	of
execution.	The	white-box	test	evaluates	how	the	software	produces	a	result.	Functional
testing,	specification	testing,	or	black-box	testing,	are	methods	of	testing	that	focus	on	the
functionality	of	the	component	rather	than	its	structure.	When	using	this	kind	of	test,	the
tester	is	aware	that	a	certain	input	should	generate	a	particular	output.	This	test	evaluates
what	the	software	produces.

The	two	test	categories,	white-box	test	and	black-box	test,	are	shown	in	the	following
diagrams:

There	are	various	white-box	techniques.	However,	the	most	commonly	used	are	control
flow	testing,	data	flow	testing,	basis	path	testing,	and	statement	coverage	and	they	are
explained	as	follows:

Control	flow	testing:	This	evaluates	the	flow	graph	of	the	software	to	indicate
whether	the	set	of	tests	covers	every	possible	test	case.
Data	flow	testing:	This	requires	an	evaluation	of	how	the	program	variables	are
used.
Basis	path	testing:	This	ensures	that	every	possible	path	in	a	code	has	been	included
in	the	test	cases.
Statement	coverage:	This	consists	of	the	evaluation	of	the	code	and	the	development

of	individual	tests	that	will	work	on	every	individual	line	of	code.

The	black-box	testing	design	also	includes	different	techniques.	The	most	frequently	used
techniques	are	equivalence	partitioning,	boundary	value	analysis,	cause-effect	graphing,
state	transition	testing,	all	pairs	testing,	and	syntax	testing,	and	they	are	explained	as
follows:

Equivalence	partitioning:	This	divides	test	cases	in	different	partitions	that	present
similar	characteristics.	This	technique	can	help	in	reducing	the	number	of	tests	cases.
Boundary	value	analysis:	This	is	performed	in	order	to	analyze	the	behavior	of	a
component	when	the	input	is	near	the	extreme	valid	values.
Cause-effect	graphing:	This	graphically	illustrates	the	relationship	between
circumstances	or	events	that	cause	a	determined	effect	on	the	system.
State	transition	testing:	This	is	performed	through	a	number	of	inputs	that	make	the
system	execute	valid	or	invalid	state	transitions.
All	pairs	testing:	This	is	a	combinatorial	method	that	tests	every	possible
combination	of	parameters.	When	the	number	of	parameters	and	the	possible	values
for	each	parameter	are	big,	this	test	technique	can	be	combined	with	the	equivalent
partitioning	technique	to	reduce	the	number	of	test	cases.
Syntax	testing:	This	analyses	the	specifications	of	a	component	to	evaluate	its
behavior	with	a	huge	number	of	different	inputs.	This	process	is	usually	automatized
due	to	the	large	number	of	inputs	required.

When	testing	an	application,	there	are	different	levels	of	testing	that	depend	on	the	size	of
the	part	of	the	system	involved.	There	are	five	commonly	known	levels	of	tests:	unit,
integration,	validation,	system,	and	acceptance.

Unit	tests:	These	tests	focus	on	each	individual	component.	These	tests	are	usually
performed	by	the	same	development	team	and	consist	of	a	series	of	tests	that	evaluate
the	behavior	of	a	single	component	checking	for	the	correctness	of	the	data	and	its
integrity.
Integration	tests:	These	tests	are	performed	by	the	development	team.	These	tests
assess	the	communication	between	different	components.
Validation	tests:	These	tests	are	performed	by	the	fully	developed	software	in	order
to	evaluate	the	fulfilment	of	functional	and	performance	requirements.	They	can	also
be	used	to	assess	how	easy	it	is	to	maintain	or	to	see	how	the	software	manages
errors.
System	tests:	These	tests	involve	the	whole	system.	Once	the	software	is	validated,	it
is	integrated	in	the	system.
Acceptance	tests:	These	tests	are	performed	in	the	real	environment	where	the
software	is	used.	The	user	performs	these	tests	and	accepts	the	final	product.

The	higher	the	level	of	testing,	unit	testing	being	the	lowest	and	acceptance	testing	the
highest,	the	more	likely	it	is	to	use	black-box	tests.	Unit	tests	evaluate	components	that	are
small	and	therefore	easy	to	analyze	in	behavior.	However,	the	higher	the	level,	the	bigger
the	system,	and	therefore	the	more	difficult	and	more	resource-consuming	it	is	to	apply
white-box	testing	category.	This	does	not	mean	that	you	should	not	apply	the	black-box

testing	category	while	performing	unit	tests,	as	each	one	complements	the	other.

Summary
In	this	chapter,	learned	the	basic	and	most	commonly	used	terminologies	while	discussing
software	security.	You	know	the	difference	between	threat,	vulnerability,	and	risk,	and
understand	how	each	one	is	related	to	the	other.	You	also	learned	about	the	different	kinds
of	threats	and	vulnerabilities	that	can	affect	a	system.	You	now	know	how	to	properly
approach	coding	your	security	system	thanks	to	the	secure	code	principles.	Finally,	you
learned	about	the	different	methods	of	testing	that	you	should	consider	in	order	to	make
your	application	robust.	Properly	understanding	these	definitions	allows	you	to	design
better	security	systems	for	your	software.

So	as	a	developer,	you	have	to	address	the	security	of	your	application,	but	what	does
Android	do	for	you?	Android	has	several	built-in	security	measures	that	reduce	the
frequency	and	the	potential	damage	that	application	security	issues	may	cause.	In	the	next
chapter,	you	will	learn	about	these	features	and	understand	how	they	work.

Chapter	2.	Security	in	Android
Applications
You	understand	the	security	concepts	in	software	and	now	you	want	to	discover	how	those
threats	and	vulnerabilities	are	applied	to	a	mobile	environment.	You	want	to	be	aware	of
the	special	security	features	in	the	Android	operating	system.	You	are	already	familiar
with	Android,	but	you	need	to	know	the	components	that	are	critical	for	its	security.

This	chapter	will	show	you	the	challenges	that	exist	in	the	mobile	environment.	You	will
learn	about	the	Android	security	architecture	and	about	what	application	sandboxing
means.	This	chapter	will	show	you	the	main	features	in	Android	that	will	allow	you
protect	your	location:	permissions	and	interprocess	communication.

We	will	be	covering	the	following	topics	in	this	chapter:

Vulnerabilities	in	the	mobile	environment
Android	security	overview
Permissions
Interapplication	communication

The	mobile	environment
Android	is	an	operating	system	(OS)	created	for	intelligent	mobile	devices	with	a
touchscreen,	such	as	smartphones	or	tablets.	Knowing	the	features	of	a	device	is	important
to	identify	the	vulnerabilities	that	can	potentially	compromise	the	integrity,	confidentiality,
or	availability	of	your	application	(app).

A	smartphone	is	a	connected	device	and	so	malicious	software	can	infect	it	in	several
ways.	The	smartphone	can	communicate	with	different	devices	by	a	wireless	or	wired
connection.	For	example,	it	can	connect	to	a	computer	by	a	cable	or	it	can	connect	to
another	mobile	device	by	a	wireless	Bluetooth	network.	These	communications	allow	the
user	to	transfer	data,	files,	or	software,	which	is	a	possible	path	to	infect	the	smartphone
with	malware.

A	smartphone	is	also	a	connected	device	in	the	sense	that	it	can	connect	to	the	Internet	by
cellular	networks	like	3G	or	access	points	via	Wi-Fi.	Internet	is	therefore	another	path	of
potential	threats	to	the	security	of	smartphones.

Smartphones	also	have	internal	vulnerabilities,	for	example,	malicious	apps	that	are
installed	by	the	user	themselves.	These	malicious	apps	can	collect	the	smartphone’s	data
without	the	user’s	knowledge.	Sensitive	data	might	be	exposed	because	of	implementation
errors	or	because	of	errors	that	occur	while	sending	data	to	the	wrong	receiver.
Communication	between	the	apps	installed	in	the	smartphone	can	become	a	way	to	attack
them.

The	following	figure	represents	the	types	of	existing	vulnerabilities	in	smartphones.	The
connection	to	the	network	is	one	of	the	external	vulnerabilities,	since	network	connections
are	susceptible	to	sniffing	or	spoofing	attacks.	The	connections	to	external	devices	also
involve	potential	vulnerabilities	as	mentioned	earlier.	Regarding	internal	vulnerabilities,
implementation	errors	can	cause	failures	and	attackers	can	take	advantage	of	them.
Finally,	user	unawareness	is	also	a	vulnerability	that	affects	the	internals	of	the
smartphone.	For	example,	installing	apps	from	untrusted	sources	or	setting	an	imprudent
configuration	for	Wi-Fi	or	Bluetooth	services	is	a	risk.

As	a	developer,	you	cannot	control	the	risks	associated	with	external	devices	or	the
network,	not	even	those	related	to	user	unawareness.	Therefore,	your	responsibility	is	to
create	robust	apps	without	implementation	errors	that	can	cause	security	breaches.

An	overview	of	Android	security
Android	provides	a	secure	architecture	to	protect	the	system	and	its	applications.	Android
architecture	is	structured	like	a	software	stack	in	which	each	component	of	a	layer	accepts
that	the	layer	following	it	is	secure.	The	following	figure	shows	a	simplified	version	of	the
Android	security	architecture:

Android	OS	is	a	multiuser,	Linux-based	platform	in	which	each	app	has	a	different	user.
Each	app	has	its	own	user	ID	(UID)	in	the	Linux	kernel	that	is	unique.	The	UID	is
assigned	by	the	system	and	is	unknown	to	the	app.	Because	of	the	unique	UID,	Android
apps	run	in	separate	processes	with	different	permissions.	This	mechanism	is	known	as
application	sandboxing.	The	Android	Application	Sandbox	isolates	each	application’s
data	and	code	execution	to	improve	its	security	and	prevent	malware.	This	means	that
under	normal	circumstances,	you	cannot	have	access	to	other	application’s	data	and	other
applications	do	not	have	access	to	your	application’s	data.	As	the	Application	Sandbox	is
implemented	in	the	Linux	kernel,	the	security	provided	by	this	mechanism	is	extended	to
all	the	layers	above	the	kernel	(such	as	libraries,	Android	runtime,	application	framework,
and	application	runtime).	For	example,	if	a	memory	corruption	error	is	generated,	this
error	will	only	have	consequences	for	the	application	in	which	the	error	was	produced.

Application	sandboxing	is	one	of	the	main	security	features	of	Android,	but	we	can	also
find	the	following	features	in	the	security	model:

Application-defined	permissions:	If	applications	are	isolated	from	each	other,	how
can	they	share	information	when	required?	Applications	can	define	permissions	to
allow	other	applications	to	control	its	data.	There	are	also	many	predefined	system-
based	permissions	cover	many	situations	and	that	will	reduce	the	necessity	of
creating	permissions,	especially	for	your	application.
Interprocess	communication:	Under	normal	circumstances,	every	component	of	an
application	runs	in	the	same	process.	However,	there	are	times	when	developers

decide	to	run	certain	components	in	different	processes.	Android	provides	an
interprocess	communication	method	that	is	secure	and	robust.
Support	for	secure	networking:	Network	transactions	are	especially	risky	on
mobile	devices	that	commonly	use	unsecured	Wi-Fi	networks	in	public	spaces.
Android	supports	the	most	commonly	used	protocols	to	secure	connections	under
these	extreme	conditions.
Support	for	cryptography:	Android	provides	a	framework	that	developers	can	use
with	tested	and	robust	implementations	of	commonly	used	cryptographic	methods.
Encrypted	file	system:	Android	provides	a	full	filesystem	encryption.	This	means
that	the	information	stored	on	an	Android	device	is	encrypted	and	is	therefore
protected	at	any	time	against	external	entities.	This	option	is	not	active	by	default	and
requires	a	username	and	a	password.
Application	signing:	The	installation	package	of	every	app	must	be	signed	with	a
certificate,	which	can	be	a	self-signed	certificate.	An	attacker	can	preserve	their
anonymity,	since	it’s	not	necessary	for	a	trusted	third-party	to	sign	the	certificate.
Certificates	are	mainly	used	to	distinguish	developers	and	allow	the	system	to
manage	permissions.	To	prevent	an	attacker	from	modifying	your	application,	you
should	keep	your	certificate	safe.	Furthermore,	application	updates	must	be	signed
with	this	same	certificate.

Permissions
With	application	sandboxing,	apps	cannot	access	parts	of	the	system	without	permission,
but	even	with	it,	Android	allows	data	sharing	with	other	apps	or	access	to	some	system
services.	An	app	needs	to	request	permission	to	access	device	data	or	to	access	system
services.	Permissions	are	a	security	feature	of	Android	system,	but	misused	permissions
make	your	application	vulnerable.

The	permission	needs	of	an	app	are	declared	in	its	manifest	file.	This	manifest	file	is
bundled	into	the	app’s	Android	application	package	(APK),	which	includes	its	compiled
code	along	with	other	resources.	The	permissions	requested	in	the	manifest	file	(manifest
permissions)	will	be	shown	to	the	user	when	installing	the	app.	The	user	should	review
these	permissions	and	accept	them	to	complete	the	installation	process.	If	the	user	agrees
to	them,	the	protected	resources	are	available	to	the	app.

Tip
Do	not	request	permissions	that	your	app	does	not	need.	Reducing	the	number	of
permissions	makes	your	app	less	vulnerable.

Permissions	control	how	an	app	interacts	with	the	system	by	using	an	Android
application	programming	interface	(API).	Some	of	the	protected	APIs	that	need
permission	include	the	following:

Bluetooth
Camera
Location	GPS
Network	and	data	connections
NFC
SMS	and	MMS
Telephony

For	example,	to	request	permission	to	use	the	camera,	you	have	to	add	the	following	line
code	in	our	manifest	file:

<uses-permission	android:name="android.permission.CAMERA"	/>

The	following	code	is	used	to	request	permission	to	access	the	Internet:

<uses-permission	android:name="android.permission.INTERNET"	/>

The	following	code	is	used	to	request	permission	to	send	a	SMS:

<uses-permission	android:name="android.permission.SEND_SMS"	/>

Interapplication	communication
Apps	in	Android	cannot	access	each	other’s	data	directly	because	of	application
sandboxing,	but	Android’s	system	provides	some	other	mechanisms	for	the	applications	to
communicate	with	each	other.	Intents	and	content	providers	are	mechanisms	that	we	can
use	on	the	Java	API	layer.	Intents	and	content	providers	should	be	used	carefully	to
prevent	attacks	from	malware	applications.	This	is	the	reason	why	it	is	important	to
understand	their	characteristics.

Intents
Intents	are	an	asynchronous	interprocess	communication	mechanism.	Intent	is	a	message
that	includes	the	receiver	and	optional	arguments	to	pass	the	data.	The	receiver	of	Intent
can	be	declared	explicitly	so	that	the	Intent	is	sent	to	a	particular	component,	or	it	can	be
declared	implicitly	so	that	the	Intent	is	sent	to	any	component	that	can	handle	it.	Intents
are	used	for	intra-application	communication	(in	the	same	application),	or	for
interapplication	communication	(in	different	applications).	The	following	components	can
receive	Intents:

Activities:	An	activity	represents	a	screen	in	the	app.	Intents	can	start	activities,	and
these	activities	can	return	data	to	the	invoking	component.	To	start	an	activity	using
Intent,	you	can	call	the	startActivity	method	or	the	startActivityForResult
method	to	receive	a	result	from	the	activity.
Services:	A	service	performs	long-running	background	tasks	without	interacting	with
the	user.	To	start	a	service	using	Intent,	you	can	call	the	startService	method	or	the
bindService	method	to	bind	other	components	to	it.
Broadcast	receivers:	Intents	can	be	sent	to	multiple	receivers	through	broadcast
receivers.	When	a	receiver	is	started	because	of	Intent,	it	runs	in	the	background	and
often	delivers	the	message	to	an	activity	or	a	service.	Some	system	events	generate
broadcast	messages	to	notify	you,	for	example,	when	the	device	starts	charging	or
when	the	device’s	battery	level	is	low.	To	send	a	broadcast	message	using	Intent,	you
can	call	the	sendBroadcast	method.	To	send	an	ordered	broadcast,	you	can	call	the
sendOrderedBroadcast	method.	To	send	a	sticky	broadcast,	you	can	call	the
sendStickyBroadcast	method.	There	are	three	types	of	broadcast	messages:

Normal	broadcast:	In	this	type	of	broadcast,	the	message	is	delivered	to	all	the
receivers	at	the	same	time.	Soon	after,	the	message	is	no	longer	available.
Ordered	broadcast:	In	this	type	of	broadcast,	the	message	is	delivered	to	one
receiver	at	a	time	depending	on	its	priority	level.	Any	receiver	can	stop	the
propagation	of	the	message	to	the	rest	of	the	receivers.	Soon	after,	the	message
is	no	longer	available.
Sticky	broadcast:	In	this	type	of	broadcast,	the	message	is	sent	but	it	does	not
disappear.	An	example	of	a	sticky	broadcast	is	the	battery	level.	An	app	can	find
out	which	was	the	last	battery	level	broadcast	because	it	remains	accessible.

Application	communication	by	Intents	allows	the	receiver	and	optional	arguments	to	reuse
each	other’s	features.	For	example,	if	you	want	to	show	a	web	page	in	your	app,	you	can
create	Intent	to	start	any	activity	that	is	able	to	handle	it.	You	do	not	need	to	implement	the
functionality	to	display	a	web	page	in	our	app.	The	following	code	shows	you	how	to
create	Intent	to	display	web	page	content:

Intent	i	=	new	Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse("http://www.packtpub.com"));

startActivity(i);

Tip

Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

The	preceding	code	is	an	example	of	an	implicit	Intent	in	which	a	general	action	is
indicated:	Intent.ACTION_VIEW.	The	Android	system	searches	for	all	the	apps	that	match
the	Intent.	If	there	is	more	than	one	application	that	matches	the	Intent	and	the	user	has	not
set	a	default	one,	a	dialog	is	displayed	so	that	the	user	can	choose	which	one	of	them	to
use.

Intents	that	are	supported	by	a	component	are	declared	in	the	manifest	file	using	the	Intent
filters.	The	broadcast	receivers	can	be	also	be	declared	at	runtime.	Intent	filter	declares	the
types	of	Intents	that	a	component	can	respond	to.	When	a	component	includes	an	Intent
filter,	the	component	is	exported	so	it	can	receive	Intents	from	other	components.	Intent
filter	can	constrict	by	the	action	of	the	Intent,	by	the	type	of	data,	or	by	the	category	of	the
Intent.	For	example,	if	you	want	your	app	to	behave	as	a	browser,	you	have	to	create	an
activity	with	the	following	Intent	filters	in	your	manifest	file:

<activity	…>

		<intent-filter>

				<action	android:name="android.intent.action.VIEW"	/>

				<data	android:scheme="http"	/>

				<category	android:name="android.intent.category.DEFAULT"	/>

				<category	android:name="android.intent.category.BROWSABLE"	/>

		</intent-filter>

</activity>

The	following	example	shows	you	how	to	register	a	receiver	to	run	when	the	device	starts
charging:

<receiver…>

		<intent-filter>

				<action	android:name="android.intent.action.ACTION_POWER_CONNECTED"	/>

</intent-filter>

</receiver>

Note
If	you	want	to	learn	more	about	Intents,	you	might	want	to	check	out	the	official
documentation:	http://developer.android.com/guide/components/intents-filters.html.

http://www.packtpub.com
http://www.packtpub.com/support
http://developer.android.com/guide/components/intents-filters.html

Content	providers
Content	providers	are	a	mechanism	that	allows	sharing	between	applications	and	serves	as
persistent	internal	data	storage	facility.	The	data	stored	through	a	content	provider	is
structured	and	the	interface	is	designed	to	be	used	with	a	Structural	Query	Language
(SQL)	backend.	Although	it	is	common	to	use	a	SQL	database	behind	content	providers,
file	storage	or	REST	calls	can	also	be	used.	If	you	are	not	familiar	with	content	providers,
you	might	want	to	check	out	the	official	documentation	since	it	is	a	broad	topic:
http://developer.android.com/guide/topics/providers/content-providers.html.	Our	interest
in	content	providers	is	related	to	their	security	and	permissions.	Content	providers	are	the
perfect	scenario	for	SQL	injection	attacks.

To	access	the	data	of	content	providers,	there	are	content	resolvers	that	you	can	use	in
your	app.	The	provider’s	data	is	identified	by	a	content	URI.	To	access	the	content
provider,	you	should	use	the	getContentResolver().query()	method,	which	receives	the
following	parameters:

Content	URI:	This	is	the	URI	that	identifies	the	data	(the	FROM	clause	in	SQL)
Projection:	This	specifies	the	columns	to	retrieve	for	each	row	(the	SELECT	clause	in
SQL)
Selection:	This	is	the	criteria	to	select	the	rows	(the	WHERE	clause	in	SQL)
Selection	arguments:	This	complements	the	criteria	to	select	the	rows
Sort	order:	This	is	the	sort	order	for	the	rows	(the	ORDER	BY	clause	in	SQL)

There	are	some	content	providers	offered	by	the	Android	system	itself,	such	as	the
calendar	provider	and	the	contacts	provider.	To	access	the	system	content	providers,	you
need	to	request	the	permission	in	your	manifest	file.	For	example,	to	be	able	to	read	the
contacts,	you	must	add	the	following	permission	to	your	app:

<uses-permission	android:name="android.permission.READ_CONTACTS"	/>

To	acquire	the	writing	access	permissions,	you	must	add	the	following	line	of	code	in	your
manifest:

<uses-permission	android:name="android.permission.WRITE_CONTACTS"	/>

Any	other	content	provider,	not	only	those	of	the	system,	can	indicate	the	required
permissions	that	other	apps	must	request	so	that	they	can	access	the	provider’s	data.

http://developer.android.com/guide/topics/providers/content-providers.html

Summary
In	this	chapter,	you	learned	about	the	vulnerabilities	associated	with	mobile	devices—both
external	and	internal.	You	now	understand	the	Android	architecture	and	the	features
provided	by	the	system	to	keep	it	safe.	You	now	know	which	components	of	the	Java	API
layer	are	vulnerable	to	attacks,	so	you	can	learn	how	to	mitigate	them	in	the	next	chapters
of	this	book.

In	the	next	chapter,	we	will	start	using	Android	Studio	IDE.	As	the	first	step	to	create
secure	Android	applications,	you	will	learn	how	to	monitor	Android	applications	in	the
debugging	environment	in	order	to	detect	incorrect	behaviors.

Chapter	3.	Monitoring	Your	Application
You	are	now	aware	of	the	importance	of	learning	how	to	monitor	the	activity	of	your
Android	application	and	are	also	familiar	with	the	basic	console	or	logs	that	you	use	to
debug	your	application.	However,	there	is	more	to	learn	about	the	debugging	tool
available	in	Android	Studio.	Android	Studio	includes	the	Dalvik	Debug	Monitor	Server
(DDMS)	debugging	tool.	Do	you	want	to	use	this	debugging	tool	while	programming	in
Android	Studio?

This	chapter	presents	the	debugging	environment,	one	of	the	most	important	features	of	an
IDE.	Monitoring	your	Android	application	allows	you	to	detect	the	incorrect	behaviors
and	security	vulnerabilities.	In	this	chapter,	you	will	learn	about	the	information	available
in	the	advanced	debugging	tool	included	in	Android	Studio:	DDMS.

The	topics	that	will	be	covered	in	this	chapter	are	as	follows:

Debugging	and	DDMS
Thread	and	method	profiling
Heap	usage	and	memory	allocation
Network	statistics
File	explorer
Emulator	control	and	system	information

Debugging	and	DDMS
In	Android	Studio,	you	can	use	different	mechanisms	to	debug	your	application.	One	of
them	is	the	debugger.	The	debugger	manages	the	breakpoints,	controls	the	execution	of
the	code,	and	displays	information	about	the	variables.	To	debug	an	application,	navigate
to	Run	|	Debug	‘MyApplication’	or	click	on	the	bug	icon	present	in	the	toolbar.

Another	mechanism	is	the	Console.	The	Console	displays	the	events	that	are	taking	place
while	the	application	is	being	launched.	Actions	such	as	uploading	the	application
package,	installing	the	application	in	the	device,	or	launching	the	application	are	displayed
in	the	Console.

LogCat	is	another	useful	tool	to	debug	your	application.	It	is	an	Android	logging	system
that	displays	all	the	log	messages	generated	by	the	system	in	the	running	device.	Log
messages	have	several	levels	of	significance:	verbose,	debug,	information,	warning,	and
error.

Finally,	you	also	have	DDMS,	an	excellent	debugging	tool	available	in	the	SDK	that	is
available	directly	in	Android	Studio.	This	tool	is	the	main	topic	of	this	chapter.

To	open	the	DDMS	tool	in	Android	Studio,	navigate	to	Tools	|	Android	|	Monitor
(DDMS	included).	Alternatively,	you	can	click	on	the	Android	icon	present	in	the	toolbar,
which	will	open	a	window	with	the	DDMS	perspective.

Once	the	perspective	is	open,	as	shown	in	the	following	screenshot,	you	can	see	the	list	of
connected	devices	to	the	left-hand	side	of	the	screen,	along	with	a	list	of	the	processes
running	on	each	device.	On	the	right-hand	side	of	the	screen,	you	can	see	the	detailed
information	of	the	process.	This	information	is	divided	into	seven	tabs:	Threads,	Heap,
Allocation	Tracker,	Network	Statistics,	File	Explorer,	Emulator	Control,	and	System
Information.	LogCat	and	Console	are	accessible	at	the	bottom	of	the	window.

Threads
The	Threads	tab	displays	the	list	of	threads	that	are	a	part	of	the	selected	process.
Applications	have	one	main	thread,	also	called	as	the	UI	thread,	which	dispatches	the
events	to	the	user	interface	(UI)	widgets.	To	perform	long	operations,	it	is	necessary	to
create	new	threads	so	that	the	main	thread	is	not	blocked.	If	the	main	thread	gets	blocked,
the	whole	UI	will	also	get	blocked.

To	illustrate	the	working	of	this	tool,	run	the	following	example.	In	Android	Studio,	create
a	new	basic	project	with	a	main	layout	and	a	main	activity.	Add	a	button	to	the	main
layout	named,	for	example,	Start	New	Thread.	Create	a	new	method	to	be	executed	when
the	button	is	clicked	and	add	the	following	code	in	the	method:

public	void	startNewThread(View	v){

		new	Thread(new	Runnable()	{

				public	void	run()	{

						Thread.currentThread().setName("My	example	Thread");

						

						try{

								Thread.sleep(30000);

						}	catch	(InterruptedException	e){	

								e.printStackTrace();	

								}

				}

		}).start();

}

The	preceding	method	creates	a	new	thread	in	the	application,	although	it	does	nothing
and	contains	only	a	sleep	instruction.	You	can	set	the	thread	a	name	to	recognize	it	easily.
Run	the	application	and	open	the	DDMS	perspective.

Select	your	application	process	from	the	Devices	section	and	click	on	the	Update	Threads
icon	present	on	the	toolbar	of	the	Devices	section	and	the	threads	will	be	loaded	in	the
content	of	the	tab.	The	Status	column	indicates	the	thread	state,	utime	indicates	the	total
time	spent	by	the	thread	executing	user	code,	stime	indicates	the	total	time	spent	by	the
thread	executing	system	code,	and	Name	indicates	the	name	of	the	thread.	You	can
identify	the	main	thread	in	the	result	list	with	the	ID	number	1,	as	shown	in	the	following
screenshot:

Click	on	the	Start	New	Thread	button	of	your	application	and	notice	that	a	new	thread
appears	in	the	list	as	can	be	observed	in	the	following	screenshot,	My	example	Thread:

The	thread	is	active	for	a	period	of	30	seconds.	Every	time	you	click	on	the	Start	New
Thread	button,	a	new	thread	is	created.

This	tool	is	especially	useful	while	creating	threads	in	our	application	apart	from	the	main
thread.	Thanks	to	this	tool,	we	can	easily	check	whether	our	threads	are	being	executed	at
a	certain	point	of	the	execution	or	whether	they	are	performing	as	expected	in	memory
usage.

Method	profiling
The	method	profiling	tool	is	used	to	measure	the	performance	of	the	methods	of	a
selected	process.	With	this	tool,	you	can	access	the	number	of	calls	of	a	method	and	the
CPU	time	spent	on	their	execution.	There	are	two	types	of	values	available,	the	exclusive
time	and	the	inclusive	time:

Exclusive	time:	This	refers	to	the	time	spent	in	the	execution	of	the	method	itself.
Inclusive	time:	This	refers	to	the	total	time	spent	in	the	execution	of	the	method,
which	includes	both	the	time	spent	by	the	method	as	well	as	the	time	spent	by	any
other	method	called	inside	the	method.

To	illustrate	the	working	of	this	tool,	we	are	going	to	run	the	following	example.	Create	a
new	basic	project	with	a	main	layout	and	a	main	activity	in	Android	Studio.	You	can	also
reuse	the	project	created	in	the	previous	section.	Add	a	button	to	the	main	layout,	for
example,	Start	Method	Hierarchy.	Create	a	new	method	that	is	to	be	executed	when	the
button	is	clicked	and	add	the	following	code	in	the	method:

public	void	startMethodHierarchy(View	v){

		secondMethod();

}

Add	the	second	and	the	third	method	in	your	activity,	shown	as	follows:

private	void	secondMethod()	{

		thirdMethod();

}

private	void	thirdMethod()	{

		try{

				Thread.sleep(30000);

		}	catch	(InterruptedException	e){	e.printStackTrace();	}

}

As	seen	in	the	previous	code,	you	create	a	hierarchy	of	method	calls	that	you	will	be	able
to	observe	in	the	method	profiling.	To	take	a	look	at	your	method	profiling	data,	select
your	application	process	in	the	devices	section	and	click	on	the	Start	Method	Profiling
icon	present	on	the	toolbar	of	the	Devices	section.	Click	on	the	Start	Method	Hierarchy
button	of	your	application	and	wait	for	a	period	of	at	least	30	seconds	so	that	the	third
method	finishes	its	execution.	Once	the	third	method	finishes	its	execution,	you	can	stop
the	method	profiling	by	clicking	on	the	Stop	Method	Profiling	icon.

When	you	stop	the	method	profiling,	a	new	tab	with	the	resultant	trace	will	appear	within
the	DDMS	perspective.	The	top	of	this	new	tab	represents	the	method	calls	in	a	time	graph
where	each	row	belongs	to	each	thread	of	the	application.	The	bottom	of	the	trace
represents	the	summary	of	the	time	spent	on	a	method	in	a	table.

To	search	for	your	application	package	and	main	activity,	click	on	the	Name	label	to	order
the	methods	by	their	name,	for	example,
com/example/myapplication/app/MainActivity.	The	three	methods

(startMethodHierarchy,	secondMethod,	and	thirdMethod)	should	appear	in	the	list	as	is
shown	in	the	following	screenshot:

On	expanding	the	detailed	information	of	the	secondMethod,	you	can	see	that	the	parent	is
the	startMethodHierarchy	method	and	that	the	thirdMethod	method	is	its	child.	This
information	is	presented	in	the	following	screenshot:

Also,	examine	the	exclusive	and	inclusive	real	times.	The	preceding	screenshot	reveals
that	the	inclusive	real	time	for	thirdMethod	was	30001,138	ms,	because	of	the	sleep
clause	of	30	seconds.	The	time	spent	in	the	execution	of	the	secondMethod	itself	is	0,053
ms	(exclusive	real	time),	but	since	the	inclusive	time	includes	the	time	spent	by	the
children	methods,	its	inclusive	real	time	was	30001,191	ms.

Method	profiling	can	be	used	to	detect	methods	that	are	spending	more	time	than
anticipated	in	their	execution.	With	this	information,	you	can	learn	which	methods	are
causing	problems	and	need	to	be	optimized.	You	can	also	learn	which	methods	are	more
time-consuming	so	that	you	can	avoid	unnecessary	calls	to	them.

Heap
The	Heap	tab	stores	all	new	objects	created	in	the	application.	The	garbage	collector
(GC)	deletes	the	objects	that	are	not	referred	anymore,	releasing	unused	memory.	The
Heap	tab	displays	the	heap	usage	for	a	selected	process.

To	illustrate	the	working	of	this	tool,	run	the	following	example.	Create	a	new	basic
project	with	a	main	layout	and	a	main	activity	in	Android	Studio.	Add	a	button	to	the	main
layout,	for	example,	Start	Memory	Consumption.	Create	a	new	method	to	be	executed
when	the	button	is	clicked	and	add	the	following	code	to	the	method:

public	void	memoryConsumption(View	v){

		list	=	new	ArrayList<Button>();

		for	(int	i	=	0;	i	<=	1000;	i++)	{

				list.add(new	Button(this));

		}

}

Finally,	add	the	declaration	of	the	list	as	a	global	variable	in	the	activity.	This	way,	you	are
preventing	the	GC	to	release	the	memory	that	stores	the	list	after	the	method	finishes	its
execution.	The	declaration	of	the	list	as	a	global	variable	in	the	activity	is	shown	as
follows:

private	List<Button>	list;

In	this	method,	you	are	creating	a	large	number	of	new	objects,	for	example,	a	list
containing	1000	buttons.	Using	this	method,	you	are	going	to	examine	how	the	creation	of
the	list	is	reflected	in	the	heap.	Run	the	application	and	open	the	DDMS	perspective.
Select	the	application	process	in	the	Devices	tab	and	click	on	the	Update	Heap	icon
present	on	the	toolbar	to	enable	it.	The	heap	information	is	shown	after	a	GC	execution.
Select	the	Heap	tab	and	click	on	the	Cause	GC	button,	and	you’ll	see	the	heap	usage.

The	first	table	of	the	tab	displays	a	summary:	the	total	size,	the	allocated	space,	the	free
space,	and	the	number	of	allocated	objects.	The	statistics	table	presents	the	details	of	the
objects	that	are	allocated	on	the	heap	by	its	type:	number	of	objects,	total	size	of	the
objects,	size	of	the	smallest	and	largest	objects,	median	size,	and	average	size.	We	can
select	each	type	individually.	This	action	will	load	the	bottom	bar	graph	with	the	number
of	objects	of	that	type	ordered	by	its	size	in	bytes.	We	can	then	click	on	the	graph	using
the	right	button	of	the	mouse	to	change	its	properties:	title,	colors,	font,	labels,	and	so	on.
We	can	also	save	it	as	a	PNG	image.

Observe	the	number	of	data	objects	allocated	on	the	heap	as	shown	in	the	following
screenshot:

Click	on	the	Start	Memory	Consumption	button	of	the	application.	In	the	DDMS
perspective,	cause	more	GC	executions	and	note	how	the	number	of	objects	increases
while	the	method	is	being	executed.	The	following	screenshot	shows	the	heap	information
when	the	method	has	already	finished	its	execution.	The	allocated	data	objects	have	grown
from	24.822	to	60.821.

Finally,	you	can	also	try	to	change	the	declaration	of	the	list	so	that	it	becomes	a	local
variable	in	the	memoryConsumption	method.	Repeat	the	previous	process	and	note	that	the
new	data	objects	are	released	by	the	GC	once	the	execution	of	the	method	is	finished.

Allocation	Tracker
The	Allocation	Tracker	tab	displays	the	memory	allocations	of	the	selected	process.	The
allocation	tracker,	unlike	the	heap	tool,	shows	the	specific	objects	being	allocated	along
with	the	thread,	the	method,	and	the	line	code	that	allocated	them.

You	can	again	run	the	previous	example	created	for	the	heap	monitor	to	show	the	results
of	the	allocation	tracker.	Select	the	application	process	and	in	the	Allocation	Tracker	tab
and	click	on	the	Start	Tracking	button	to	start	tracking	the	memory	information.	Now,
click	on	the	Get	Allocations	button.	This	will	get	the	list	of	allocated	objects,	which
includes	a	filter	on	the	top	of	the	tab	that	you	can	use	to	filter	the	objects	allocated	in	your
own	classes.

Click	on	the	Start	Memory	Consumption	button	of	the	application.	In	the	DDMS
perspective,	again	click	on	the	Get	Allocations	button	and	observe	the	new	objects	that
are	listed	in	the	results.	The	objects	are	the	buttons	created	in	the	memoryConsumption
method.

The	results	table	presents	the	allocation	size,	the	thread,	the	object	or	class,	and	the
method	in	which	each	object	was	allocated.	Click	on	any	of	the	Button	objects	to	see
more	information	as	shown	the	following	screenshot.

You	can	notice	that	the	Button	object	is	allocated	in	the	main	activity	in	the
memoryConsumption	method,	and	the	line	of	code	that	allocated	it	is	the	line	number	26.

Whenever	you	need	to	examine	the	objects	allocated	in	the	heap,	you	can	use	the
allocation	tracker.	You	can	analyze	the	interactions	in	your	application	and	improve	the
memory	usage.

The	following	screenshot	shows	the	details	of	the	Button	objects:

Network	Statistics
The	Network	Statistics	tab	displays	the	network	resources	used	by	our	application.	Let’s
create	a	simple	example	to	test	this	tool.	Create	a	new	project	and	add	the	following
permissions	in	your	manifest	file:

<uses-permission	android:name="android.permission.INTERNET"	/>

<uses-permission	android:name="android.permission.ACCESS_NETWORK_STATE"	/>

In	the	main	layout,	add	a	button	named,	for	example,	Start	Network	Connection.	Create
a	new	method	to	be	executed	when	the	button	is	clicked	and	add	the	following	code:

public	void	startNetworkConnection(View	v){

		new	Thread(new	Runnable()	{

				public	void	run()	{

						try{

								//	Small	image

								TrafficStats.setThreadStatsTag(0x0001);

								downloadURL("http://goo.gl/iGoYng");

								TrafficStats.clearThreadStatsTag();

								Thread.sleep(5000);

								//	Medium	image

								TrafficStats.setThreadStatsTag(0x0002);

								downloadURL("http://goo.gl/eQHDRh");

								TrafficStats.clearThreadStatsTag();

								Thread.sleep(5000);

								//	Large	image

								TrafficStats.setThreadStatsTag(0x0003);

								downloadURL("http://goo.gl/tUDnRv");

								TrafficStats.clearThreadStatsTag();

						}	catch	(IOException	e){	

								e.printStackTrace();

						}	catch	(InterruptedException	ie){	ie.printStackTrace();	}

				}

		}).start();

}

Using	the	preceding	example,	you	are	downloading	three	images	of	different	sizes:	small,
medium,	and	large.	Considering	that	connecting	to	the	network	is	a	long	operation,	we
need	to	execute	the	code	in	a	new	thread.	Using	an	AsyncTask	class	is	a	better	solution,
but	instead	the	Thread	class	is	used	to	keep	the	code	cleaner.	After	downloading	an	image
and	before	downloading	the	next	one,	you	will	have	to	wait	for	a	period	of	5	seconds	so
that	the	results	displayed	later	are	not	confusing.	Finally,	to	clearly	separate	the	different
downloads,	we	establish	a	different	tag	for	each	download	using	the	setThreadStatsTag
and	clearThreadStatsTag	methods	of	the	TrafficStats	class.	The	TrafficStats	class
provides	network	traffic	statistics	such	as	the	number	of	bytes	or	packages	received	and
transmitted.

To	download	an	image,	you	have	to	add	the	following	method	in	your	activity:

private	Bitmap	downloadURL(String	image)	throws	IOException	{

		InputStream	is	=	null;

		try	{

				URL	url	=	new	URL(image);

				HttpURLConnection	conn	=	(HttpURLConnection)	url.openConnection();

				conn.setRequestMethod("GET");

				conn.connect();

				int	response	=	conn.getResponseCode();

				is	=	conn.getInputStream();

				//	Convert	the	InputStream	into	a	bitmap

				return	BitmapFactory.decodeStream(is);		}	finally	{

				if	(is	!=	null)	{

						is.close();

				}

		}

}

In	order	to	have	simple	code,	the	previous	method	does	not	execute	any	additional	actions
on	the	images.	The	images	are	only	downloaded.

Run	the	application	and	open	the	DDMS	perspective.	To	get	the	network	statistics	of	your
application,	click	on	the	Start	button	in	the	Network	tab.	Then,	click	on	the	Start
Network	Connection	button	of	the	application	to	start	downloading	the	images.	The	data
transfers	will	appear	in	the	graph	as	packets	are	sent	or	received.	The	following	screenshot
shows	the	results	of	the	network	statistics:

In	the	previous	screenshot,	the	download	of	the	three	images	can	be	easily	identified.	The
columns	RX	bytes	and	RX	packets	represent	the	total	number	of	bytes	and	packets
received.	The	columns	TX	bytes	and	TX	packets	represent	the	total	number	of	bytes	and
packets	transmitted.	We	can	use	the	network	statistics	tool	to	optimize	the	network
requests	in	our	application	and	control	the	packets	that	are	being	transferred	at	a	certain
point	of	the	execution.

File	Explorer
The	File	Explorer	tab	exposes	the	whole	filesystem	of	the	device.	We	can	examine	the
size,	date,	or	permissions	for	each	element.	Navigate	to	/data/app/yourpackage	to	search
for	your	application	.apk	package	file.	To	check	the	path	in	which	your	files	are	saved
when	they	are	created	on	internal	storage,	you	can	use	the	getFilesDir()	method	in	your
activity.	The	files	related	to	your	application	are	usually	located	at
/data/data/yourpackage.	Let’s	perform	an	example.

Create	a	new	project	and	in	the	main	layout	add	a	button	named,	for	example,	Create	New
File.	Create	a	new	method	to	be	executed	when	the	button	is	clicked	and	add	the
following	code:

public	void	createNewFile(View	v){

		String	string	=	"Hello	world!";

		FileOutputStream	outputStream;

		try	{

				outputStream	=	openFileOutput("MyFile",	MODE_PRIVATE);

				outputStream.write(string.getBytes());

				outputStream.close();

		}	catch	(Exception	e)	{	e.printStackTrace();	}

}

Using	the	previous	code,	you	are	creating	a	new	text	file	on	the	internal	storage	of	our
application.	Run	the	application	and	open	the	File	Explorer	tab	of	the	DDMS	perspective.
Navigate	to	/data/data/yourpackage/files,	which	is	empty.	Click	on	the	Create	New
File	button	of	your	application	and	check	that	the	new	file	has	been	created	at
/data/data/yourpackage/files,	as	shown	in	the	following	screenshot:

Emulator	Control
The	Emulator	Control	tab	makes	it	possible	to	change	states	or	activities	in	the	virtual
device.	With	this	emulator,	you	can	test	your	application	in	environments	and	situations
that	would	otherwise	be	impossible	or	time-consuming	to	achieve.	This	allows	you	to
check	whether	it	is	behaving	as	expected	under	the	following	special	conditions:

Telephony	Status:	You	can	choose	the	voice	and	data	status,	changing	its	speed	and
latency
Telephony	Actions:	You	can	simulate	an	incoming	calls,	MMS,	or	SMS
Location	Controls:	You	can	change	the	geolocation	of	the	device

System	Information
In	the	System	Information	tab,	you	can	access	Frame	Render	Time,	CPU	load,	and
Memory	usage	of	the	device	in	the	form	of	graphs.	You	can	select	your	application
individually	and	compare	it	with	the	rest	of	applications	that	are	running	on	the	device.

If	you	click	on	the	graph	with	the	right	button	of	the	mouse,	you	will	see	a	pop	up	with	the
graph	properties	such	as	colors,	font,	and	title.	The	graph	can	be	customized	here	and	can
also	be	saved	as	a	PNG	image.

Summary
After	going	through	this	chapter,	you	know	how	to	debug	an	application.	You	created
several	examples	in	this	chapter	so	you	know	how	to	interpret	the	data	provided	by	the
DDMS	in	each	of	the	tabs	available.	You	now	understand	better	how	threads,	method
calls,	memory	allocation,	and	network	usage	work	in	Android	applications.

In	the	next	chapter,	you	will	apply	all	that	you	have	learned	from	this	and	the	previous
chapter.	You	will	learn	how	to	identify	and	mitigate	the	vulnerabilities	in	Android
applications,	and	you	will	be	able	to	create	secure	applications	by	following	the
recommendations	included	in	the	next	chapter.

Chapter	4.	Mitigating	Vulnerabilities
In	Chapter	1,	Introduction	to	Software	Security,	we	already	discussed	the	most	important
vulnerabilities	that	can	be	exploited	in	order	to	compromise	your	application.	Now,	you
need	to	learn	what	measures	you	can	take	in	order	to	address	these	vulnerabilities	and
make	your	application	more	secure.	What	easy	steps	can	be	taken	in	order	to	achieve	this?

This	chapter	will	show	you	how	to	mitigate	vulnerabilities.	Removing	or	at	least	treating
vulnerabilities	will	significantly	reduce	the	risks	of	your	system.	We’ll	begin	by	learning
how	to	validate	input	fields.	We’ll	also	learn	how	to	avoid	code	injection,	especially	the
most	common	one:	SQL	injection.	We’ll	then	see	recommended	practices	when	handling
user	credentials	and	we	will	learn	how	to	make	our	components	more	secure	in	order	to
avoid	vulnerabilities	in	the	interapplication	communications.

The	topics	that	will	be	covered	in	this	chapter	are	as	follows:

Input	validation
Permissions
Handling	users’	data	and	credentials
Interapplication	communication

Input	validation
According	to	the	Android	development	guidelines,	the	lack	of	sufficient	input	validation
measures	is	one	of	the	most	common	security	problems	in	Android	applications.	There	are
several	problems	that	can	be	derived	from	insufficient	input	validation	such	as	buffer
overflows,	null	pointers,	off-by-one	errors,	inconsistencies	in	the	database,	and	even	code
injection	problems.

Now,	we	will	see	some	tips	that	will	help	us	to	mitigate	this	vulnerability.

We	can	use	the	inputType	attribute	in	order	to	limit	the	possible	characters	the	user	can
set	in	a	field.	For	example,	if	we	have	an	EditText	field	where	we	want	a	telephone
number,	we	can	define	the	EditText	as	follows	in	your	layout	file:

<EditText

		android:id="@+id/EditTextTelephone"

		android:hint="@string/telephone"

		android:layout_width="fill_parent"

		android:layout_height="wrap_content"

		android:inputType="phone">

</EditText>

Although	this	should	not	be	considered	a	security	feature,	it	can	help	to	mitigate	this
vulnerability.	However,	in	order	to	ensure	that	the	field	is	correct,	additional	measures
should	be	taken.

For	example,	if	we	have	EditText	for	an	e-mail,	we	can	check	if	its	content	matches	the
format	of	an	e-mail	simply	by	using	the	Pattern	class	from	the	java.util.regex	package
and	the	Pattern	class	from	the	java.util	package:

public	void	isEmail(EditText	et)	{

		if	(et.getText()==	null)	return	false;

		else	return	Patterns.EMAIL_ADDRESS.matcher

				(et.getText().toString()).matches();

}

There	are	more	patterns	available	in	this	class	that	we	can	use:

DOMAIN_NAME:	This	pattern	is	used	to	check	the	domain	names
EMAIL_ADDRESS:	This	pattern	is	used	to	check	the	e-mail	addresses
IP_ADDRESS:	This	pattern	is	used	to	check	the	IP	addresses
PHONE:	This	pattern	is	intended	to	check	the	substrings	that	are	similar	to	phone
numbers	in	text	and	should	not	be	used	to	validate	a	phone	number
TOP_LEVEL_DOMAIN:	This	pattern	is	used	to	check	the	Internet	Assigned	Numbers
Authority	(IANA)	top-level	domains
WEB_URL:	This	pattern	is	used	to	check	most	parts	of	the	web	URLs

If	we	need	to	validate	an	input	that	is	not	in	this	list,	we	can	use	our	own	regular
expressions.	There	are	plenty	of	options	to	do	the	validation,	but	using	the	Pattern	class
from	the	java.util.regex	package	is	recommended.	To	learn	more	about	regular
expressions,	which	will	allow	you	to	define	your	own	patterns,	you	can	check	the	official

documentation	at	http://developer.android.com/reference/java/util/regex/Pattern.html.

http://developer.android.com/reference/java/util/regex/Pattern.html

SQL	injection
One	of	the	most	common	and	harmful	attacks	is	a	particular	kind	of	code	injection	where
unauthorized	SQL	queries	can	access	or	even	alter	our	database.	To	illustrate	this	situation,
let’s	consider	the	following	example	where	you	have	the	following	code	to	check	the
username	and	password	that	was	just	entered	by	the	user:

//	We	have	the	username/password	in	two	EditTexts

String	username	=	usernameEditText.getText().toString();

String	password	=	passwordEditText.getText().toString();

//	We	form	our	query

String	query	=	

"SELECT	*	FROM	users	WHERE	username	=	'"	+	username	+	"'	AND	

password	=	'"	+	password	+"'";

SQLiteDatabase	db	=	this.getWritableDatabase();

//	The	method	rawQuery	performs	the	query

Cursor	c	=	db.rawQuery(query,	null);

//	In	c	you	have	a	cursor	to	the	user	if	there	was	a	match	in	the	query

if	(c.getCount!=0)	return	true;	//	If	there	is	one	result,	grant	access

So	what’s	the	problem	with	the	preceding	code?	An	attacker	can	simply	write	a	username
and	enter	the	following	string	in	EditText	for	password:

''	OR	'1'='1'

This	will	grant	the	user	access	to	the	username	since	the	string	query	will	appear	as
follows:

"SELECT	*	FROM	users	WHERE	username	=	'admin'	AND	password	=	''	OR	'1'	=	

'1'"

The	best	defense	against	this	vulnerability	is	to	use	parameterized	queries.	The	most
important	methods	that	we	will	be	using	are	as	follows:

query(Uri	uri,	String[]	projection,	String	selection,	String[]

selectionArgs,	String	sortOrder)

insert(Uri	uri,	ContentValues)

update(Uri	uri,	ContentValues	values,	String	selection,	String[]

selectionArgs)

delete(Uri	uri,	String	selection,	String[]	selectionArgs)

Note	that	if	the	selectionArgs	parameter	contains	any	meaningful	SQL	characters,	those
characters	are	sanitized	and	can	therefore	mean	no	harm	to	the	integrity	of	the	database.	In
order	to	execute	the	code	used	in	the	previous	example	safely,	we	can	use	the	method
shown	in	the	following	code:

//	We	have	the	username/password	in	two	EditTexts

String	username	=	usernameEditText.getText().toString();

String	password	=	passwordEditText.getText().toString();

//	We	set	the	URI	of	the	table;

String	tableName	=	"USERS";

//	We	set	the	projection

String	[]	projection	=	new	String	[]{"username",	"password"}

//	We	set	the	WHERE	clause	or	selection

String	selection	=	"username=?	AND	password=?";

//	Finally	we	set	the	selection	arguments

String	[]	selectionArgs	=	new	String[]{username,	password};

//	Now	we	get	the	database	

SQLiteDatabase	db	=	this.getWritableDatabase();

//	The	method	rawQuery	performs	the	query

Cursor	c	=	db.query(tableName,	projection,	selection,	selectionArgs,	null);

//	In	c	you	have	a	cursor	to	the	user	if	there	was	a	match	in	the	query

if	(c.getCount!=0)	return	true;	//	If	there	is	one	result,	grant	access

Permissions
The	Android	sandboxing	system	alienates	applications	from	each	other.	This	means	that
the	applications	must	explicitly	share	resources	through	the	use	of	permissions.	In	order	to
access	the	additional	capabilities,	we	need	to	declare	the	permissions	that	we	require	in
our	manifest,	and	these	permissions	must	be	accepted	by	the	user	after	installation.

If	our	application	does	not	have	access	to	many	permissions,	it	reduces	the	vulnerabilities
that	may	affect	our	application.	When	developing	the	application,	we	should	always	try	to
request	as	few	permissions	as	possible.	For	example,	try	to	store	data	locally	instead	of
asking	for	a	permission	for	external	storage.	If	it	is	not	possible,	we	can	obviously	request
permissions	but	we	should	address	the	vulnerabilities	that	these	permissions	can	lead	to.

If	the	system-defined	permissions	are	not	enough,	we	can	create	our	own	permission	to
use,	which	will	be	defined	and	will	require	other	entities	to	ask	for	permission	when
required.	When	creating	a	permission,	we	have	to	consider	the	different	protection	levels
available:

normal:	This	is	the	lowest	possible	permission	level	and	is	set	by	default
dangerous:	This	permission	level	can	be	granted	by	the	user	during	installation
signature:	This	permission	level	is	granted	by	the	system	if	a	requesting	app	is
signed	with	the	same	certificate	as	the	app	that	declared	the	permission
signatureOrSystem:	This	permission	level	is	granted	by	the	system	if	a	requesting
app	is	in	the	Android	system	image	or	is	signed	with	the	same	certificate	as	the	app
that	declared	the	permission

Always	try	to	use	the	signature	permissions	since	they	are	transparent	to	the	user	and
grant	access	only	to	applications	signed	by	the	same	developer.	If	we	need	to	use	the
dangerous	permission	level,	we	have	to	understand	that	this	permission	is	granted	by	the
user	and,	therefore,	needs	to	be	well	explained	when	defined.	Users	can	decide	not	to
install	the	application	if	they	do	not	understand	the	permission	that	they	have	to	grant	or	if
they	perceive	it	as	a	possible	harm.

We	will	see	some	examples	of	creating	permissions	in	the	following	sections.

Handling	a	user’s	data	and	credentials
The	best	way	to	handle	a	user’s	data	and	credentials	is	to	minimize	the	use	of	this
information.	We	should	have	access	to	the	user	data,	store	user	data,	or	transmit	user	data
only	when	it	is	completely	necessary.

In	the	cases	where	handling	user’s	data	and	credentials	is	necessary,	there	are	some
considerations	that	we	should	have	as	developers:

Consider	using	hash	or	nonreversible	forms	of	data	if	the	logic	of	your	application
allows	it.
Do	not	expose	user’s	data	to	other	applications	on	the	device.	Try	to	make	the
interprocess	communication	as	strict	as	possible.	Programming	with	more	flexible
interprocess	communication	permissions	can	be	more	comfortable,	but	it	can	also	be
a	huge	vulnerability	in	your	system.
Minimize	the	use	of	APIs	that	access	sensitive	information,	especially	when	the
information	is	personal	data.	Different	APIs	have	different	privacy	policies	and	can
even	be	malicious	sometimes.
Make	sure	you	understand	what	each	and	every	piece	of	data	that	we	have	to	supply
to	a	third-party	component	is	for.	When	you	don’t	understand	why	a	third-party
component	or	API	requires	certain	data,	it	is	better	not	provide	it.
Limit	the	number	of	times	users	are	asked	for	credentials	as	much	as	possible.	Asking
for	credentials	a	number	of	times	can	make	the	user	less	aware	of	possible	phishing
attacks.
Logs	are	a	shared	resource	in	Android,	and	therefore	you	should	be	careful	about
which	information	you	write	onto	these	logs.
Avoid	transmitting	unnecessary	information	whenever	it	is	possible.	When	treating
sensitive	information,	evaluate	whether	it	is	necessary	to	transmit	that	information	on
the	server.	If	the	operation	can	be	performed	locally,	you	should	perform	it	locally.
When	using	a	username	and	password	authentication	system,	be	sure	not	to	store	this
information	on	the	device.	If	it	is	strictly	necessary	to	do	so,	use	cryptography
methods	and	never	store	it	as	plain	data.

You	can	avoid	some	of	these	problems	using	the	Android	class	AccountManager.	The	class
AccountManager	provides	access	to	the	user’s	online	accounts	that	are	set	in	the	device.
Google,	Facebook,	and	WhatsApp	have	their	own	authenticators	that	are	used	to	manage
the	authentication	of	your	application.	This	also	has	an	added	value,	that	is,	to	avoid	the
process	of	registration,	which	sometimes	can	drive	away	lazy	users.	You	will	learn	more
about	this	authentication	method	in	Chapter	7,	Authentication	Methods.

Interapplication	communication
As	we	seen	in	Chapter	2,	Security	in	Android	Applications,	there	are	ways	to	communicate
between	Android	apps	as	they	cannot	share	data	due	to	Application	sandboxing.	This
communication	raises	security	challenges	that	should	not	be	overlooked.

Securing	Intents
When	using	Intents,	there	are	two	kinds	of	vulnerabilities:	unauthorized	Intent	receipt	and
Intent	spoofing.	An	unauthorized	Intent	receipt	happens	while	using	an	implicit	Intent.	As
the	Intent	is	broadcasted,	there	is	no	guarantee	that	the	intended	recipient	will	receive	it.	A
malicious	application	can	declare	an	implicit	Intent	by	declaring	all	the	possible	actions	in
the	intent	filter.	This	kind	of	interception	can	lead	to	DoS	and	phishing	attacks.

The	best	way	to	protect	against	this	kind	of	vulnerability	is	to	be	very	cautious	with
implicit	Intents.

Note
If	you	are	sharing	some	private	information,	avoid	using	implicit	Intents.

When	possible,	and	especially	while	sharing	private	information,	your	application	should
consider	using	explicit	Intents.	You	can	make	the	recipient	explicit	by	setting	the
destination	class	using	the	method	setClassName	(Context	ctxt,	String	className)
as	follows:

Intent	i	=	new	Intent();

i.setClassName("com.example.myapplication",	

		"com.example.myapplication.MyActivity");

You	can	also	use	the	setPackage	(string	packageName)	method	to	limit	the	access	to	a
single	package:

Intent	i	=	new	Intent();

i.setPackage("com.example.myapplication");

An	application	with	an	exported	component	that	does	not	expect	Intents	from	a	malicious
application	is	vulnerable	to	Intent	spoofing	attacks.	As	a	developer,	you	should	limit	your
component’s	exposure	by	setting	different	permission	level	requirements	in	the	manifest.

The	default	values	of	certain	properties	can	be	misleading	and	may	change	from	one
version	to	another.	It	is	a	good	idea	to	indicate	the	nature	of	your	activity	explicitly.	For
example,	let’s	make	our	activity	PrivateActivity	private:

<activity	

		android:name=".PrivateActivity"

		android:exported="false">

</activity>

If	we	want	to	make	our	activity	accessible	to	external	applications,	we	can	explicitly
indicate	which	applications	have	the	selective	access.	In	this	case,	we’ll	make
SelectiveActivity	accessible	to	other	applications	through	our	own	permission.	Then,
we	can	use	this	permission	to	indicate	selective	access	to	SelectiveActivity	using	the
Intent	filter,	as	shown	in	the	following	code:

<permission

		android:description="Packt	permission"

		android:name="packt.permission"

		android:protectionLevel="signature"/>

<activity	

android:name=".SelectiveActivity"

		android:exported="true"

		android:permission="packt.permission">

		<intent-filter>

				<action	android:name="packt.action.NAME_ACTION"/>

		</intent-filter>

</activity>

Note
Intent	filters	are	not	a	security	feature.	They	perform	input	validation	in	your	receiver	in
order	to	verify	the	data	received.

Securing	the	content	providers
In	Chapter	2,	Security	in	Android	Applications	we	have	learned	about	the	content	provider
mechanism	that	allows	applications	to	share	raw	data.	One	external	component	can	use	an
authority	name	as	a	handle	to	perform	SQL	queries	to	both	read	and/or	write	content.	We
should	be	careful	and	use	a	content	provider	only	when	it	is	completely	necessary	and	take
the	following	precautions:

Use	separate	read	and	write	provider-level	permissions.	We	can	specify	each	of	them
with	the	attribute	android:readPermission	and	android:writePermission.	We	can
also	use	both	the	attributes	by	using	android:permission.
Use	path-permission	to	specify	each	URI	that	you	want	to	control.	In	this	way,	you
can	allow	permission	for	a	single	or	different	URIs	in	your	provider.

This	mechanism	is	also	vulnerable	to	SQL	injections.	In	order	to	easily	avoid	this
vulnerability,	Android	supports	parameterized	queries.	The	content	provider	methods
support	parameterization.	The	methods	that	are	used	in	parameterized	queries	to	a	content
provider	are	the	same	as	to	any	other	SQL	database,	and	we	have	already	seen	them	in	this
chapter.

Summary
In	this	chapter,	you	learned	how	to	mitigate	the	most	important	vulnerabilities	that	can
affect	our	Android	application.	You	know	how	to	use	regular	expressions	in	order	to
validate	an	input.	You	have	also	learned	about	SQL	injections	and	how	parameterized
queries	can	help	overcome	this	vulnerability.	We	know	how	to	handle	user	and	critical
information.	Finally,	we	learned	how	to	use	Intents	and	content	providers	in	the	most
secure	way	possible.

In	the	next	chapter,	you	will	learn	how	to	preserve	the	privacy	of	our	data.	You	will	learn
how	to	handle	the	data	when	stored	locally,	the	different	possibilities,	and	ways	to	secure
them.	You	will	also	learn	about	cryptography	and	how	to	encrypt	local	data.

Chapter	5.	Preserving	Data	Privacy
Most	applications	need	to	save	some	kind	of	data.	You	want	to	learn	how	to	use	the
storage	options	provided	by	the	Android	system,	how	can	you	protect	your	data
application,	what	security	measures	should	be	taken	in	each	type	of	storage,	and	how	can
you	use	encryption	in	Android	to	preserve	the	privacy	of	your	data.

This	chapter	presents	the	mechanisms	offered	by	Android	to	preserve	user	data	privacy.
You	will	learn	to	handle	data	when	it’s	stored	on	the	device,	what	are	the	risks	involved
with	the	storage,	the	different	storage	options,	and	how	to	secure	the	storage.	You	will	also
learn	about	cryptography	and	how	to	encrypt	local	data.

The	topics	that	will	be	covered	in	this	chapter	are:

Data	privacy
Encryption
Using	encryption	to	store	data

Data	privacy
Data	privacy	is	an	important	concern	for	applications	because	a	lot	of	information	is
stored	and	managed	in	the	applications:	contacts,	e-mails,	bank	accounts,	messages,
agenda,	social	networks,	and	so	on.	Some	of	this	information	can	also	be	considered	as
sensitive	data.	Sensitive	data	can	be	any	of	the	following	types	of	information:

Information	that	allows	you	to	identify	a	device	or	the	user	of	that	device	such	as	the
phone	number	or	the	International	Mobile	Station	Equipment	Identity	(IMEI)
number	of	that	device
Information	from	the	resources	of	the	device	such	as	the	GPS	location	of	that	device
Information	created	and	managed	by	the	applications
Users’	personal	data	such	as	photos	or	messages

As	a	developer,	your	responsibility	is	to	protect	the	privacy	of	the	information	that	is
stored	by	your	application.	There	are	different	mechanisms	to	store	your	application	data
in	Android,	and	each	storage	mechanism	is	meant	to	keep	a	specific	kind	of	information.
The	storage	mechanisms	provided	by	Android	are	shared	preferences,	internal	and
external	storage,	and	database	storage.

Shared	preferences
Shared	preferences	are	used	to	save	the	collection	of	key-value	pairs	of	the	primitive	data
types	such	as	boolean,	float,	int,	long,	and	string.	These	key-values	pairs	are	saved	in
your	application	data	in	the	form	of	an	XML	file,	which	is	stored	on	the	device	at
/data/data/yourpackage/shared_prefs/.	If	you	only	need	one	shared	preference	file,
you	can	get	the	default	one	by	using	the	getPreferences()	method.	If	you	need	to	create
more	than	one	shared	preference	file,	you	can	specify	its	name	by	using	the
getSharedPreferences()	method.	Both	these	methods	are	received	as	parameters	in	the
operating	mode.	The	operating	mode	is	static	final	int,	which	can	have	the	following
values:

MODE_PRIVATE:	The	shared	preferences	in	this	mode	are	private	and	only	your
application	can	work	with	them
MODE_WORLD_READABLE:	The	shared	preferences	in	this	mode	can	be	read	by	other
applications
MODE_WORLD_WRITEABLE:	The	shared	preferences	in	this	mode	can	be	edited	by	other
applications

To	illustrate	these	three	modes,	create	a	new	application	project	and	in	the	onCreate
method	of	the	main	activity,	add	the	following	to	code	to	create	three	shared	preference
files:

SharedPreferences	sharedPref	=	

getSharedPreferences("com.example.MyPrefsFile",	MODE_PRIVATE);

SharedPreferences.Editor	editor	=	sharedPref.edit();

editor.putBoolean("KeyA",	true);

editor.commit();

SharedPreferences	sharedPref2	=	

getSharedPreferences("com.example.MyReadablePrefsFile",	

MODE_WORLD_READABLE);

SharedPreferences.Editor	editor2	=	sharedPref2.edit();

editor2.putBoolean("KeyB",	true);

editor2.commit();

SharedPreferences	sharedPref3	=	

getSharedPreferences("com.example.MyWriteablePrefsFile",	

MODE_WORLD_WRITEABLE);

SharedPreferences.Editor	editor3	=	sharedPref3.edit();

editor3.putBoolean("KeyC",	true);

editor3.commit();

The	private	shared	preference	file	is	named	MyPrefsFile,	the	readable	shared	preference
file	is	named	MyReadablePrefsFile,	and	the	writeable	shared	preference	file	is	named
MyWriteablePrefsFile.	In	each	file,	we	save	a	Boolean	value.	Execute	the	application
and	open	the	DDMS	perspective.	Open	the	File	Explorer	tab	and	navigate	to	your
application	files	under	/data/data/yourpackage/.	You’ll	see	that	a	new	shared_prefs
folder	has	been	created	and	inside	this	folder	the	three	preference	files	have	also	been
created,	as	shown	in	the	following	screenshot:

Observe	the	system	permissions	of	the	three	preference	files.	The	MyReadablePrefsFile
file	allows	any	user	of	the	system	to	read	it	and	the	MyWriteablePrefsFile	file	allows	any
user	of	the	system	to	write	it.	Creating	a	shared	preference	file	using	any	of	these	two
modes	is	very	dangerous	as	the	privacy	of	the	data	stored	in	them	is	not	preserved.	There
are	better	mechanisms	than	shared	preferences	to	distribute	data	between	applications	such
as	the	content	providers.

Note
Always	create	your	shared	preferences	using	the	private	mode	to	reduce	security	holes.

The	mode	flag	of	the	shared	preferences	determines	only	the	system	permission	of	the	file.
The	XML	file	is	not	encrypted.	You	can	check	this	by	downloading	the	MyPrefsFile	file
from	the	DDMS	perspective.	Open	the	file	using	any	text	editor	and	notice	that	the	saved
data	is	not	encrypted	and	can	be	read.	The	content	of	the	downloaded	shared	preference
file	is	as	shown	in	the	following	code:

<?xml	version='1.0'	encoding='utf-8'	standalone='yes'	?>

<map>

				<boolean	name="KeyA"	value="true"	/>

</map>

The	actual	user,	any	application	with	the	root	system	permission,	or	any	attacker	that	gains
access	to	the	device	is	able	to	read	this	file.

Note
Do	not	save	sensitive	data	on	shared	preferences	as	they	are	stored	in	an	unencrypted	file.

Files	in	the	internal	storage
Internal	storage	allows	you	to	save	any	type	of	file	in	your	application’s	data	directory,
which	is	stored	on	the	device	at	/data/data/yourpackage/files/.	To	create	a	file,	you
can	use	the	openFileOutput()	method	in	which	you	can	specify	the	mode	flag	as	a
parameter.	The	mode	flag	can	have	the	following	values:

MODE_PRIVATE:	The	file	is	private	in	this	mode	flag	and	only	your	application	can
work	with	it.
MODE_APPEND:	In	this	mode	flag,	if	the	file	already	exists,	data	is	written	to	the	end	of
the	existing	file.	If	the	file	does	not	exist,	the	system	permissions	for	the	file	are	like
the	permissions	for	MODE_PRIVATE.
MODE_WORLD_READABLE:	The	file	in	this	mode	flag	can	be	read	by	other	applications.
MODE_WORLD_WRITEABLE:	The	file	in	this	mode	flag	can	be	edited	by	other
applications.

Just	like	the	shared	preferences,	creating	a	file	using	the	MODE_WORLD_READABLE	or
MODE_WORLD_WRITEABLE	flag	is	very	dangerous	as	the	privacy	of	the	file	content	is	not
preserved.	In	fact,	both	the	flags	were	deprecated	in	Android	API	Level	17.

Note
Do	not	use	the	flags	MODE_WORLD_READABLE	or	MODE_WORLD_WRITEABLE	to	create	your	files.

The	created	files	are	not	encrypted,	therefore	you	can	encrypt	the	file	content	to	preserve
its	privacy.

Files	in	the	external	storage
External	storage	refers	to	a	world-readable	part	of	storage	in	an	Android	device.	We	tend
to	think	about	external	storage	as	an	SD	card,	but	actually,	external	storage	can	also	be	a
non-removable	storage.	External	storage	may	not	always	be	available,	for	example,	if	the
SD	card	is	removed	in	case	the	storage	was	provided	by	an	SD	card,	or	if	the	storage	has
been	mounted	to	a	PC.	For	this	reason,	you	must	always	check	external	storage	state
before	using	it,	using	the	following	code:

String	exStorageState	=	Environment.getExternalStorageState();

In	the	external	storage,	there	are	two	types	of	files:	public	and	private.	These	two	terms
should	not	be	confused	with	the	file	permissions.	The	public	and	private	files	in	external
storage	are	discussed	in	detail	as	follows:

Public	files:	These	files	in	the	external	storage	are	files	that	can	be	shared	with	other
applications,	such	as	pictures,	music,	or	ringtones.	To	fetch	the	path	of	the	directories
in	which	these	types	of	files	should	be	stored,	you	can	use	the
Environment.getExternalStoragePublicDirectory()	method.	You	indicate	the
type	of	the	public	content	you	want	to	work	with	as	a	parameter.	Some	examples	for
this	type	flag	are	DIRECTORY_PICTURES,	DIRECTORY_ALARMS,	DIRECTORY_DOCUMENTS,
DIRECTORY_MUSIC,	and	DIRECTORY_RINGTONES.
Private	files:	These	files	on	the	external	storage	are	files	that	belong	to	your
application	and	hence,	they	have	no	utility	outside	your	application.	These	files	are
removed	when	your	application	is	uninstalled.	Remember	that	although	these	types
of	files	belong	to	your	application,	their	permissions	are	still	world	readable.	To	get
the	path	of	your	private	directory,	you	can	use	the	context.getExternalFilesDir()
method.

Note
Do	not	save	sensitive	information	on	external	storage	because	files	in	it	are	globally
readable	and	writeable.

The	database	storage
SQLite	databases	allow	you	to	store	your	data	in	a	private	database.	The	database	is	a	.db
file,	which	is	created	in	the	internal	storage	directory	of	your	application.	The	specific
path	for	this	file	is	/data/data/yourpackage/databases/.	Databases	are	private	but	not
encrypted	and	thus,	the	user	or	any	attacker	that	gains	access	to	the	device	can	read	the
database	content.

Note
Sensitive	data	should	be	encrypted	and	very	sensitive	data	should	not	be	saved	on	the
device.

Encryption
Encryption	is	the	process	of	encoding	data	into	a	form	that	cannot	be	understood	by
unauthorized	users.	Sensitive	data	stored	in	the	device	should	be	encrypted	to	preserve	its
security.	You	can	encode	data	to	save	it	as	shared	preferences,	as	files	in	the	internal
storage,	in	databases,	or	even	in	external	storage.	But	you	should	remember	that	sensitive
data	must	not	be	stored	on	external	storage.	There	are	two	types	of	encryption	methods:

Symmetric:	In	symmetric	encryption,	the	keys	for	encoding	and	decoding	are	the
same.	Some	examples	of	well-known	symmetric	algorithms	are	DES,	Triple	DES,
AES,	Serpent,	Twofish,	and	Blowfish.
Asymmetric	or	public-key:	In	asymmetric	or	public-key	encryption,	the	key	for
encoding	is	different	from	the	key	for	decoding.	The	encryption	key	can	be	public
and	hence,	anyone	can	encode	data	using	the	public	key.	But	only	the	owner	of	the
private	key	is	able	to	decode	it.	Some	examples	of	well-known	asymmetric
algorithms	are	RSA,	Diffie-Hellman,	ElGamal,	and	DSA.

Using	a	symmetric	algorithm	is	enough	to	encrypt	our	data	since	nobody	else	needs	the
public	encryption	key.	The	following	figure	explains	how	symmetric	encryption	works:

Let’s	see	an	example	of	how	to	encrypt	some	information.	The	class	that	provides
implementations	for	encryption	and	decryption	is	the	Cipher	class	from	the	javax.crypto
package.	To	use	this	class,	you	need	to	create	an	instance	indicating	the	encryption
algorithm	and	optionally	the	mode	or	the	padding.	You	can	see	both	examples	in	the
following	code	snippets:

Cipher	c	=	Cipher.getInstance("AES");

Cipher	c	=	Cipher.getInstance("AES/CBC/PKCS5Padding");

The	next	step	is	to	initialize	the	instance	using	the	init	method	of	the	Cipher	class.	This
method	receives	the	operation—encrypt	or	decrypt—and	the	key	to	use	for	the	encryption,
as	shown	in	the	following	code	snippets:

c.init(Cipher.ENCRYPT_MODE,	key);

c.init(Cipher.DECRYPT_MODE,	key);

To	perform	the	operation,	use	the	doFinal	method,	as	shown	in	the	following	code

snippet:

byte[]	finalBytes	=	c.doFinal(initialBytes);

Both	methods—init	and	doFinal—admit	more	parameters	that	can	be	consulted	in	the
Android	reference	at	http://developer.android.com/reference/javax/crypto/Cipher.html.

http://developer.android.com/reference/javax/crypto/Cipher.html

The	encryption	methods
The	following	code	shows	the	complete	method	to	encrypt	a	text	using	the	encryption
methods	discussed	in	the	preceding	section:

public	byte[]	encrypt(String	text,	Key	key)

throws	NoSuchPaddingException,	NoSuchAlgorithmException,	

InvalidKeyException,	BadPaddingException,	IllegalBlockSizeException

{

		Cipher	c	=	Cipher.getInstance("AES/CBC/PKCS5Padding");

		c.init(Cipher.ENCRYPT_MODE,	key);

		byte[]	encodedBytes	=	c.doFinal(text.getBytes());

		

		return	encodedBytes;

}

The	following	code	shows	the	complete	method	to	decrypt	a	text	using	the	decryption
methods	discussed	in	the	preceding	section:

public	String	decrypt(byte[]	text,	Key	key)	

throws	NoSuchPaddingException,	NoSuchAlgorithmException,	

InvalidKeyException,	BadPaddingException,	IllegalBlockSizeException

{

		Cipher	c	=	Cipher.getInstance("AES/CBC/PKCS5Padding");

		c.init(Cipher.DECRYPT_MODE,	key);

		byte[]	decodedBytes	=	c.doFinal(text);

		

		return	new	String(decodedBytes);

}

Generating	a	key
To	generate	a	key	in	order	to	encrypt	or	decrypt	your	data,	you	can	just	write	down	your
own	key	as	a	String	data	type.	For	example,	you	can	use	the	following	line	of	code	but
with	a	different	key:

private	final	String	key	=	"12345678901234567890123456789012";

To	obtain	a	Key	object	so	that	it	can	be	passed	as	a	parameter	to	your	encryption	and
decryption	methods,	you	can	use	the	SecretKeySpec	class.	The	simplest	constructor	of
this	class	receives	the	key	bytes	and	algorithm	name,	as	shown	in	the	following	line	of
code:

SecretKeySpec	sks	=	new	SecretKeySpec(key.getBytes(),	"AES");

Although	writing	your	own	key	is	simple,	keeping	it	visible	in	your	code	is	not	secure.
Any	attacker	that	gains	access	to	your	code	can	get	the	key.	The	right	way	to	generate
your	key	is	by	using	the	SecureRandom	and	KeyGenerator	classes.	The	objective	is	to
obfuscate	the	key.

The	SecureRandom	class,	as	specified	in	the	Android	reference,	generates
cryptographically	secure	pseudorandom	numbers.	Using	the	default	constructor	is
recommended	so	that	an	instance	of	the	strongest	provider	is	returned.	Setting	a	seed	may
also	be	insecure	because	it	may	replace	the	strong	default	seed.	The	KeyGenerator	class
generates	symmetric	cryptographic	keys.	You	should	remember	to	save	the	generated	keys
so	that	you	can	use	them	later,	even	when	the	application	is	closed	and	restarted.

Note
You	should	invoke	the	SecureRandom	class	using	the	default	constructor	and	without
setting	any	seed.

The	following	code	shows	the	complete	method	to	generate	a	key	for	both	encryption	and
decryption:

public	SecretKeySpec	generateKey()	throws	NoSuchAlgorithmException

{

		SecureRandom	secureRandom	=	new	SecureRandom();

		KeyGenerator	keyGenerator	=	KeyGenerator.getInstance("AES");

		keyGenerator.init(256,	secureRandom);

		SecretKeySpec	sks	=	new	SecretKeySpec(key.getEncoded(),	"AES");

		return	sks;

}

Using	encryption	to	store	data
Using	all	the	methods	discussed	in	the	earlier	sections,	you	can	now	encrypt	any
information	in	your	application,	as	shown	in	the	following	code:

String	myData	=	"My	secret	information";

SecretKeySpec	sks	=	generateKey();

byte[]	encoded	=	encrypt(myData,	sks);

String	decoded	=	decrypt(encoded,	sks);

Log.d("MAIN	-	Encoded:	",	

Base64.encodeToString(encoded,	Base64.DEFAULT));

Log.d("MAIN	-	Decoded:	",	decoded);

The	results	generated	in	LogCat	are	shown	in	the	following	screenshot:

The	previous	example	can	be	adapted	to	encrypt	the	content	of	a	file	on	the	internal
storage	of	your	application,	as	shown	in	the	following	code:

String	myData	=	"My	secret	information	in	my	internal	file";

SecretKeySpec	sks	=	generateKey();

byte[]	encoded	=	encrypt(myData,	sks);

FileOutputStream	fos	=	

openFileOutput("MyEncryptedFile.txt",	Context.MODE_PRIVATE);

fos.write(encoded);

fos.close();

On	executing	the	code	in	your	main	activity,	the	MyEncryptedFile.txt	file	will	be	created
in	the	internal	storage,	as	seen	in	the	following	screenshot.	Download	the	file	and	open	it
in	any	text	editor.	Notice	that	the	content	is	not	understandable	because	it	is	encoded.

It	is	mandatory	for	you	to	store	the	persistent	data	encrypted	retaining	the	key	that	has
been	used	for	encoding.	The	key	cannot	be	saved	in	the	internal	storage	as	it	is	considered
to	be	sensitive	data.	In	Android	4.3,	the	KeyStore	facility	was	provided	but	KeyStore	only
stores	public	or	private	keys.	Symmetric	keys	cannot	be	stored	in	KeyStore.	To	provide
additional	protection,	the	key	should	not	be	directly	accessible	to	the	application.

Note
The	key	used	to	encrypt	your	data	should	be	kept	in	a	safe	place.	If	you	lose	the	key,	the
data	cannot	be	decoded.

The	best	solution	to	keep	your	key	safe	is	to	send	it	to	your	server	so	that	the	key	is	never
allocated	in	the	device	itself.	The	user	or	any	attacker	that	gains	physical	access	to	the
device	cannot	obtain	the	key.	In	Chapter	6,	Securing	Communications,	you	will	learn	how
to	protect	your	external	communications.

An	alternative	solution	is	to	generate	the	key	from	a	password	that	the	user	has	to
introduce	when	starting	his/her	application.	The	key	is	therefore	not	stored	in	the	device
and	is	remembered	by	the	user.	This	solution	is	very	secure	but	it	requires	the	user	to
introduce	a	password	every	time	the	application	is	started,	affecting	the	usability	of	your
application.	In	Chapter	7,	Authentication	Methods,	you	will	learn	more	about	the
authentication	methods.	To	generate	a	key	from	a	password,	you	can	use	the	PBKDF2
algorithm	implemented	in	the	SecretKeyFactory	class,	as	shown	in	the	following	code
snippet:

SecretKeyFactory	skf	=	SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

The	key	is	generated	creating	a	PBEKeySpec	object,	which	receives	the	password,	a	byte
array	as	salt,	the	iteration	count	of	the	algorithm,	and	the	derived	key	length.	The	method
to	generate	a	key	of	this	type	is	as	shown	in	the	following	code:

private	static	byte[]	salt	=	"3r4ghe69".getBytes();

public	SecretKeySpec	generatePassKey(String	password)	

throws	NoSuchAlgorithmException,	InvalidKeySpecException	{

		KeySpec	keySpec	=	

		new	PBEKeySpec(password.toCharArray(),	salt,	500,	256);

		SecretKeyFactory	skf	=	

SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

		SecretKey	key	=	skf.generateSecret(keySpec);

		SecretKeySpec	sks	=	new	SecretKeySpec(key.getEncoded(),	"AES");

		return	sks;

}

The	salt	byte	array	can	also	be	stored	in	the	internal	storage.

Summary
In	this	chapter,	you	learned	more	about	the	different	types	of	storage	for	our	data
application	in	Android.	You	also	learned	about	the	characteristics	and	risks	of	each	type	of
storage.	You	also	know	how	to	encrypt	the	user	data	and	manage	the	local	storage.	You
have	created	the	necessary	methods	to	encrypt	your	sensitive	data	and	use	it	in	your
application.

In	the	next	chapter,	you	will	learn	how	to	preserve	the	privacy	of	your	data	when	it	is	sent
or	received	over	a	network	from	an	internal	or	external	device.	You	will	also	learn	how	to
secure	the	network	using	protocols	such	as	HTTPS.

Chapter	6.	Securing	Communications
This	chapter	presents	the	mechanisms	offered	by	Android	to	secure	communications
between	an	Android	application	and	an	external	entity.	By	the	end	of	this	chapter,	you	will
know	how	to	secure	connections.	You	will	see	some	implementations	through	code
examples	using	Android	Studio.

Most	applications	need	to	share	some	sort	of	data.	You	should	learn	how	to	protect	this
data	especially	when	sensitive	information	such	as	personal	data	or	authentication
information	is	being	transferred.

The	topics	that	will	be	covered	in	this	chapter	are:

HTTPS
SSL	and	TSL
Server	and	client	certificates
Android	Studio
Code	examples	using	HTTPS

HTTPS
Hypertext	Transfer	Protocol	Secure	(HTTPS)	is	considered	an	application	layer
protocol	based	on	HTTP.	It	is	designed	to	transfer	the	hypertext	data	securely.	HTTPS	is
largely	used	by	bank	entities,	online	shops,	and	in	general,	any	online	service	that	requires
sending	protected	data.

First	of	all,	you	need	to	understand	what	HTTPS	being	an	application	layer	protocol
means.	There	are	two	important	conceptual	models	that	standardize	the	internal	functions
of	a	communication	system.	These	models	are	the	Open	Systems	Interconnection	(OSI)
model	and	the	Transmission	Control	Protocol/Internet	protocol	suite	(TCP/IP)	model.
The	OSI	model	consists	of	seven	abstraction	layers	while	the	TCP/IP	model	is	simplified
into	only	five	layers.	Each	layer	does	not	represent	a	protocol	but	a	level	in	which	a
protocol	is	encapsulated.	For	simplicity	and	as	its	use	is	more	common,	we	will	focus	on
the	TCP/IP	model,	discussed	as	follows:

The	physical	layer:	This	layer	defines	the	most	basic	form	of	communication—the
electrical	and	physical	specifications.	The	connection	is	defined	between	two	directly
connected	elements	over	a	physically	established	communication	medium	(cable,	air,
and	so	on.).	The	IEEE	802.11	specifications	over	which	Wi-Fi,	Bluetooth,	and	even
USB	work	are	some	examples	of	the	protocols	that	operate	in	the	physical	layer.
The	link	layer:	This	layer	defines	the	communication	established	between	two
elements	that	are	in	the	same	local	network.	Notice	that	there	might	be	several
physical	elements	(routers,	switches,	and	furthermore)	between	these	two	elements.
The	Media	Access	Control	(MAC)	protocols,	such	as	Ethernet,	ISDN,	or	DSL	work
in	this	layer.
The	internet	layer:	This	layer	is	responsible	for	establishing	communication
between	two	elements	across	multiple	networks.	There	are	two	main	functions
carried	out	in	this	layer:	host	identification	and	packet	routing.	The	most	known
example	of	a	protocol	working	in	this	layer	is	IP,	with	IPv4	and	IPv6	being	the	most
extended	versions	of	IP.
The	transport	layer:	This	layer	defines	the	communication	between	two	processes
in	different	hosts	that	can	potentially	be	several	networks	apart.	This	layer	uses	ports
for	the	purpose	of	providing	communication	channels	needed	by	the	applications.
The	most	common	protocols	that	work	on	the	transport	layer	are	TCP	and	UDP.
While	TCP	is	connection-oriented	and	is	in	charge	of	identifying	lost	packages	and
resending	them,	UDP	is	connectionless	and	does	not	perform	these	checks.
The	application	layer:	This	is	the	layer	that	applications	use	in	order	to	provide	user
services.	This	layer	is	the	most	important	for	developers,	since	it	is	usually	the	one
we	will	be	working	with.	The	model	of	this	layer	enables	you	to	treat	the	transport
layer	and	lower	layers	as	a	black	box;	they	provide	a	service	and	you	do	not	need	to
worry	about	them.	There	are	hundreds	of	protocols	that	work	over	the	application
layer,	for	example	HTTP	and	its	secure	version	HTTPS,	File	Transfer	Protocol
(FTP),	Simple	Mail	Transfer	Protocol	(SMTP),	and	so	on.	The	application	layer	in
the	TCP/IP	model	can	be	compared	to	a	combination	of	the	application	layer,

presentation	layer,	and	session	layer	in	the	OSI	model,	as	shown	in	the	following
figure:

HTTPS	is	considered	to	be	an	application	layer	protocol	that	uses	cryptographic	methods
based	on	Secure	Sockets	Layer	(SSL)	or	his	elder	brother	Transport	Layer	Security
(TLS)	to	ensure	the	security	of	sensitive	hypertext	data.	However,	technically,	it	is	not	a
protocol	itself	but	the	result	of	combining	HTTP	in	the	application	layer	with	SSL	or	TLS
in	the	transport	layer.	The	security	is	therefore	not	provided	in	the	application	layer	but	in
the	transport	layer.	HTTPS	also	specifies	that	the	transport	layer	should	use	the	TCP
protocol	to	ensure	that	every	package	is	received	correctly,	as	shown	in	the	following
figure:

Although	HTTPS	is	based	on	the	application	layer	protocol	HTTP,	there	are	some
differences	between	the	two	of	them.	The	most	important	are:

URLs	start	with	http://	when	using	the	HTTP	protocol	and	with	https://	when	using
the	HTTPS	protocol
By	default,	HTTP	uses	the	TCP	port	80.	On	the	other	hand,	HTTPS	uses	port	443	by
default
HTTP	is	vulnerable	to	man-in-the-middle	attacks	and	eavesdropping,	and	is	designed

to	solve	these	vulnerabilities	and	minimize	the	risks

If	you	want	to	learn	more	about	the	differences	between	HTTP	and	HTTPS,	you	can	use	a
packet	analyzer	to	see	how	the	exchange	of	hypertext	is	performed	with	each	protocol,	as
shown	in	the	following	screenshot.	To	do	this,	we	recommend	Wireshark
(http://www.wireshark.org/),	a	free	and	open	source	software	(OSS).	You	will	learn	more
about	this	tool	in	Chapter	10,	Supporting	Tools.

http://www.wireshark.org/

SSL	and	TLS
SSL	is	a	cryptographic	protocol	that	supports	secure	connections	over	a	network.	SSL	was
originally	designed	by	Netscape.	There	are	three	main	versions	of	SSL	and	being	the	latest
one,	SSL	3.0	is	the	most	commonly	used	over	the	Internet.	SSL	3.0	is	supported	by	99.5
percent	of	the	websites	on	the	Internet.

TLS	is	an	update	of	SSL	3.0.	It	is	compatible	with	SSL	3.0	but	it	weakens	the	security
level.	The	most	extended	version	of	TLS	is	TLS	1.0	although	there	are	two	updates:	TLS
1.1	and	TLS	1.2.	TLS	1.0	is	supported	by	99.3	percent	of	the	websites	on	the	Internet.

An	SSL	or	TSL	connection	is	always	initiated	by	the	client.	Data	transferred	under	the
SSL	protocol	is	encrypted	using	a	symmetrical	algorithm	like	Data	Encryption	Standard
(DES).	An	asymmetrical	algorithm	is	used	to	exchange	the	keys	for	the	symmetrical
algorithm.	The	basic	steps	to	establish	an	SSL	connection	are	as	follows:

1.	 Client	->	server:	The	client	initiates	the	communication	with	the	server	sending	a
“Hello”	message.	This	message	contains	different	cryptographic	options	available	to
the	client	sorted	by	preference	of	use.

2.	 Server	->	client:	The	server	responds	by	sending	a	Hello	message.	In	this	case,	the
message	contains	the	cryptographic	method	and	the	compression	method	chosen.

3.	 Server	->	client:	The	server	sends	their	digital	certificate.	The	standard	is	to	use	an
X.509	certificate.	If	the	server	requires	a	certificate	from	the	client,	a	Certificate
Request	message	is	sent.

4.	 Client	->	server:	The	client	cross-checks	the	certificate	received	from	the	server	with
a	list	of	known	authorities.	If	the	authority	is	not	recognized,	the	client	can	ask	the
user	for	permission	to	manually	accept	the	certificate.	The	client	also	assesses	if	the
connection	parameters	are	adequate.	If	everything	is	acceptable,	the	client	generates	a
symmetric	random	key,	which	is	cyphered	with	the	server	public	key	received	in	step
3.	The	cyphered	symmetric	key	is	then	sent	to	the	server.

5.	 Client	->	server:	The	server	receives	the	encrypted	symmetric	key	and	proceeds	to
decrypt	it	using	his	private	key.

6.	 Client	<->	server:	Now	both	the	client	and	the	server	know	the	symmetric	key	and
can	start	a	secure	connection.

Server	and	client	certificates
In	this	section,	you	will	learn	more	about	how	certificates	are	used	and	generated.	A
certificate	is	a	digitally	signed	statement	from	an	authority	that	grants	a	certain	value	to
the	public	key	of	the	subject.	They	are	used	in	asymmetric	encryption	methods.

X.509	certificate	is	a	standard	format	and	must	have	the	following	information:

Version:	This	is	the	X.509	version	number
Serial	number:	This	is	the	sequence	number	of	the	certificate
Signature	algorithm:	This	is	the	identifier	of	the	algorithm	used	to	sign	the
certificate
Issuer:	This	is	the	name	of	the	authority	that	signs	the	certificate
Validity:	This	is	the	period	of	time	during	which	the	certificate	should	be	considered
valid
Subject:	This	is	the	name	of	the	subject	of	the	public	key
Subject	public	key:	This	is	the	public	key	itself	and	its	related	information

You	will	now	learn	how	to	create	a	self-signed	X.509	certificate	with	no	additional
installation	necessary	whatsoever.	You	will	see	two	easy	ways	to	generate	a	certificate:
using	a	tool	available	in	every	Java	Development	Kit	(JDK)	called	Keytool	from	the
terminal	and	using	the	same	tool	from	Android	Studio	in	a	more	visual	way.	There	are
many	other	options	to	create	certificates	like	the	OpenSSL	client.

Keytool	in	the	terminal
Open	your	operating	system	terminal	or	go	to	Tools	|	Open	Terminal	in	Android	Studio,
and	write	the	following	command:

keytool	-genkey	-keyalg	RSA	-alias	selfsigned	-keystore	my_keystore.jks	-

storepass	password	-validity	360	-keysize	2048

The	parameter	–genkey	is	the	action	the	tool	and	is	going	to	perform.	In	this	case,	it	will
generate	a	key.	The	parameter	–keyalg	specifies	the	algorithm	to	be	used;	in	this	case,	we
want	to	use	RSA.	The	parameter	–alias	is	for	the	name	or	alias	of	the	keys	being
generated.	The	parameter	–keystore	indicates	which	JKS	file	is	going	to	be	used	to	store
the	keys.	The	parameter	–storepass	indicates	the	master	password	used	to	access	the	JKS
file.	If	the	file	is	being	created	just	like	the	one	created	in	this	example,	you	can	set	the
password,	but	if	the	keystore	already	exists,	you	should	introduce	its	password.	The
parameter	–validity	specifies	the	number	of	days	the	certificate	is	valid.	Finally,	with	the
parameter	–keysize,	you	can	indicate	the	size	of	the	key	in	bits.	In	this	example,	the
parameter	–keysize	has	a	value	of	2048	because	we	have	used	an	RSA	algorithm	whose
keys	are	normally	between	1024	and	2048	bits.

The	execution	of	the	previous	command	will	prompt	a	sequence	of	questions.	Make	sure
that	when	asked	for	your	first	name	and	last	name,	you	answer	with	the	domain	name	of
the	server	you	want	to	get	the	certificate	from.	If	you	have	problems	executing	this,	you
can	add	the	keytool	to	the	path	of	the	system.	The	application	is	available	in	the	/bin
folder	of	your	JDK	installation	folder	and	can	also	be	executed	directly	from	there:

What	is	your	first	and	last	name?

		[Unknown]:		www.mydomain.com

What	is	the	name	of	your	organizational	unit?

		[Unknown]:		My	Application

What	is	the	name	of	your	organization?

		[Unknown]:		My	Company

What	is	the	name	of	your	City	or	Locality?

		[Unknown]:		Murcia

What	is	the	name	of	your	State	or	Province?

		[Unknown]:		Murcia

What	is	the	two-letter	country	code	for	this	unit?

		[Unknown]:		ES

Is	<CN=www.mydomain.com,	OU=My	Application,	O=My	Company,	L=Murcia,	

ST=Murcia,	C=ES>	correct?

		[no]:		y

Enter	key	password	for	<my_keystore>

								(RETURN	if	same	as	keystore	password):

This	process	will	generate	a	my_keystore.jks	file	in	a	JKS	format.	This	file	contains	both
private	key	and	public	key	certificates	so	make	sure	not	to	share	it	as	your	private	key	is
what	should	be	kept	from	other	entities.	In	order	to	extract	the	certificate,	you	can	execute
the	following	command:

keytool	–export	–alias	selfsigned	–file	certificate.crt	–keystore	

my_keystore.jks	–storepass	password

This	will	generate	a	file	called	certificate.crt,	which	contains	the	certificate.	Using	the
very	same	tool,	we	can	print	its	contents	using	the	following	command:

keytool	–printcert	–file	certificate.crt

This	will	print	the	information	of	our	self-signed	certificate:

Owner:	CN=www.mydomain.com,	OU=My	Application,	O=My	Company,	L=Murcia,	

ST=Murcia,	C=ES

Issuer:	CN=www.mydomain.com,	OU=My	Application,	O=My	Company,	L=Murcia,	

ST=Murcia,	C=ES

Serial	number:	71e760d8

Valid	from:	Tue	Jun	03	17:42:47	BST	2014	until:	Fri	May	29	17:42:47	BST	

2015

Certificate	fingerprints:

		MD5:	63:34:55:9F:11:74:3A:02:EB:D3:8F:E2:7B:A3:1B:25

		SHA1:	CA:CF:6E:75:83:F9:01:D9:13:45:A5:DE:D2:95:EB:2E:31:BA:2D:B4

		SHA256:	

5A:A8:68:87:3D:89:B2:26:60:0F:55:DB:68:F1:24:6E:81:33:8B:3B:B2:57:07:36:D4:

06:B2:1A:C3:03:DE:F0

Algorithm:	SHA256withRSA

Version:	3

You	can	see	how	Owner	and	Issuer	are	the	same	since	the	certificate	is	self-signed.	If	it
was	signed	by	a	different	CA,	Issuer	would	be	that	CA.

Android	Studio
Android	Studio	has	a	tool	to	sign	your	APK.	This	option	internally	makes	use	of	keytool
to	create	a	certificate	with	which	the	APK	is	later	signed.	You	can	use	the	first	step	of	this
process	to	generate	your	certificate.	Navigate	to	Build	|	Generate	Signed	APK.	A	wizard
will	appear	asking	you	to	select	an	already	existing	certificate	or	create	a	new	one.	Click
on	Create	New	and	the	following	window	will	appear:

As	you	can	see,	it	asks	for	the	exact	same	information	we	filled	in	using	the	keytool.	You
can	follow	the	same	instructions	as	in	the	previous	section	to	fill	the	information	required
in	this	form.

If	you	want	to	learn	more	about	certificates	and	certificate	authorities,	you	can	check	the
section	on	App	Signing	in	the	Android	development	documentation	since	the	signature	of
apps	also	uses	the	certificates	and	certificate	authorities	at
http://developer.android.com/tools/publishing/app-signing.html.

http://developer.android.com/tools/publishing/app-signing.html

Code	examples	using	HTTPS
You	already	understand	how	HTTPS	works	theoretically,	but	how	can	an	Android
developer	use	secure	connections	using	HTTPS?

To	establish	an	HTTP	connection,	all	you	need	to	do	is	run	the	following	three	lines	of
code:

URL	url	=	new	URL("http://wikipedia.org");

HttpURLConnection	connection	=	(HttpURLConnection)	url.openConnection();

InputStream	in	=	connection.getInputStream();

Wikipedia	supports	secure	communications,	so	let’s	change	the	code	to	make	it	use
HTTPS	instead	of	HTTP,	as	shown	in	the	following	code:

URL	url	=	new	URL("https://wikipedia.org");

HttpsURLConnection	connection	=	(HttpsURLConnection)	url.openConnection();

InputStream	in	=	connection.getInputStream();

Can	you	see	the	difference?	Well,	if	you	can	see	the	difference,	congratulations!	You	have
a	very	sharp	eye.	If	you	can’t,	here	is	a	little	hint:	check	the	protocol	in	the	URL	again	and
the	HttpURLConnection	class.	Now	you	see	the	little	s	after	http	in	the	URL	and	in	the
class	name,	and	yes,	that	is	all	you	need	to	do	to	start	a	secure	communication	with	a
server	that	supports	HTTPS.

Easy	right?	Well,	that	is	not	entirely	true.	You	may	work	with	certificates	that	are	signed
by	a	trusted	Certificate	Authority	(CA)	or	you	may	not	work	with	certificates	signed	by
a	trusted	CA.	There	are	three	different	cases	where	this	can	happen:

The	CA	that	issued	the	certificate	is	unknown
The	certificate	was	self-signed
The	server	is	missing	an	intermediate	CA

If	the	issuer	of	the	certificate	is	an	unknown	CA,	an	SSLHandshakException	will	occur.	If
you	know	this	is	going	to	happen,	you	can	create	HttpsURLConnection,	which	trusts
certain	CAs	that	are	not	in	the	list	of	the	system-trusted	CAs.	The	class	TrustManager	is
used	by	the	system	in	order	to	validate	unknown	certificates.	In	the	following	example,	we
will	create	KeyStore,	which	contains	our	trusted	CAs.	With	KeyStore,	we	will	initiate
TrustManager,	which	trusts	the	CAs	included	in	KeyStore.	With	TrustManager	created,
we	will	initiate	an	SSL	connection,	shown	as	follows:

//	First	we	read	the	certificate	from	a	file

CertificateFactory	cf	=	CertificateFactory.getInstance("X.509");

InputStream	certificate	=	new	BufferedInputStream(new	

FileInputStream("my_keystore.jks"));

Certificate	ca	=	cf.generateCertificate(certificate);

//	Now	we	create	the	KeyStore	containing	the	certificate

String	type	=	KeyStore.getDefaultType();

KeyStore	keyStore	=	KeyStore.getInstance(type);

keyStore.load(null,	null);

keyStore.setCertificateEntry("CA",	ca);

//	Now	we	can	initiate	the	TrustManager	with	our	KeyStore

String	algorithm	=	TrustManagerFactory.getDefaultAlgorithm();

TrustManagerFactory	tmf	=	TrustManagerFactory.getInstance(algorithm);

tmf.init(keyStore);

//	With	the	TrustManager	we	initiate	a	SSLContext

SSLContext	context	=	SSLContext.getInstance("TLS");

context.init(null,	tmf.getTrustManagers(),	null);

//	Now	we	can	initiate	the	connection	using	the	SSLContext

URL	url	=	new	URL("https://www.mydomain.com");

HttpsURLConnection	connection	=	(HttpsURLConnection)	url.openConnection();

connection.setSSLSocketFactory(context.getSocketFactory());

InputStream	in	=	urlConnection.getInputStream();

As	you	can	see,	the	last	four	lines	of	the	code	are	similar	to	what	we	were	doing	before
worrying	about	the	certificate	authorities.	We	have	removed	some	try	clauses	for	the	sake
of	clean	code,	but	if	you	copy	the	code	to	Android	Studio,	just	follow	its	suggestions	to
treat	exceptions.

In	this	example,	we	used	the	certificate	that	we	generated	using	the	Java	tool—keytool.	If
you	remember,	the	certificate	we	generated	was	self-signed,	which	is	the	second	case	and
not	the	first.	From	a	coding	perspective,	both	situations	are	similar.	In	the	first	one,	CA	is
not	recognized	so	we	create	TrustManager	in	order	to	acknowledge	it.	In	the	second	case,
it	is	exactly	the	same,	but	the	issuer	of	the	certificate	is	also	the	subject.

If	the	server	is	missing	an	intermediate	CA,	there	will	also	be	an	SSLHandshakeException
since	there	is	a	missing	CA	in	the	trust	chain.	There	are	two	ways	you	can	solve	this
situation:

From	the	server	side:	You	can	reconfigure	the	server	to	include	the	missing	CA	in
the	trust	chain.	This	is	obviously	possible	only	if	you	administrate	the	server.
From	the	client	side:	The	only	problem	you	have	is	that	there	is	a	missing	CA,
therefore,	that	CA	is	an	unknown	CA.	You	can	therefore	use	the	class	TrustManager
as	we	did	in	the	first	two	cases	to	trust	the	missing	CA	directly.

Summary
In	this	chapter,	you	learned	about	network	communications	in	your	Android	application.
Now	you	understand	how	the	most	common	protocols	to	secure	connections	work.	You
also	learned	how	to	use	the	APIs	that	Android	offers	to	secure	your	application’s
communications.	Finally,	you	learned	about	certificate	generation.

In	the	next	chapter,	you	will	learn	about	authentication	methods.	You	will	see	how	two-
key	and	three-key	authentication	methods	work.	You	will	also	learn	about	using	biometric
authentication	in	your	application.

Chapter	7.	Authentication	Methods
This	chapter	presents	different	types	of	authentication	methods	used	in	Android	mobile
devices.	This	chapter	will	help	readers	choose	the	proper	authentication	method	for	their
mobile	application.

First,	you	will	learn	about	multifactor	authentication	and	the	different	authentication
factors,	such	as	the	knowledge	factor,	the	possession	factor,	and	the	inherence	factor.	You
will	then	learn	how	to	make	your	own	implementation	of	a	login	system	for	your	Android
application.	You	will	also	learn	about	authenticating	different	services	using
AccountManager.

The	topics	that	will	be	covered	in	this	chapter	are:

Multifactor	authentication
Login	implementations
AccountManager

Multifactor	authentication
If	you	think	of	an	authentication	method,	the	first	method	that	will	come	to	your	mind	will
always	be	the	combination	of	a	username	and	a	password.	While	its	simplicity	makes	it
one	of	the	most	extended	authentication	methods	in	all	kinds	of	software,	it	is	not	the
safest	method.	The	multifactor	authentication	approach	combines	a	set	of	authentication
methods.	Access	is	granted	only	if	each	method	derives	a	positive	result.	Two-factor
authentication	and	three-factor	authentication	involve	two	and	three	authentication
factors,	respectively.	Although	two-factor	authentication	and	above	are	often	considered	to
be	strong	authentication	methods	and	are	in	fact	more	secure,	you	can	also	achieve	strong
authentication	for	your	service	using	only	one	authentication	factor.	There	are	three	kinds
of	authentication	factors	that	serve	as	a	taxonomy	for	authentication	techniques:	the
knowledge	factor,	the	possession	factor,	and	the	inherence	factor.

The	knowledge	factor
The	combination	of	a	username	and	password	is	an	example	of	a	knowledge	factor.	When
using	a	knowledge	factor,	the	user	is	required	to	provide	information	he/she	knows	in
order	to	grant	access:	something	the	user	knows.

The	most	widely	used	methods	are:

Username/password:	The	combination	of	a	certain	kind	of	identifier	for	the	user,
generally	a	username	or	an	e-mail	address,	and	a	password	is	the	most	extended
authentication	technique.	While	the	username	or	e-mail	address	may	be	public,	the
password	should	always	remain	a	secret.
Pattern:	Patterns	are	used	as	authentication	methods	since	the	human	brain	is	more
likely	to	remember	graphical	patterns	than	strings	of	characters	or	numbers.	There	are
several	types	of	patterns	that	often	involve	a	3	x	3	grid	although	bigger	grids	are	also
used.
PIN:	The	PIN	is	a	very	basic	password	that	has	been	traditionally	used	in	the	banking
system	for	ATMs,	credit	cards,	and	so	on.	It	consists	of	an	array	of	digits.	It	is
technically	an	implementation	of	the	password	techniques,	where	only	digits	are
allowed.

The	pattern	and	PIN	techniques	are	available	by	default	as	the	access	control	to	your
Android	system,	as	shown	in	the	following	screenshot:

The	possession	factor
The	most	basic	and	well-known	example	of	a	possession	factor	is	a	key	that	opens	a	door.
In	order	to	authenticate	a	user	trying	to	access	a	resource,	they	are	required	to	provide	a
physical	object	they	possess:	something	the	user	has.

There	are	several	examples	of	possession	factors.	The	most	typical	techniques	based	on	a
possession	factor	are	physical	tokens	such	as	smartcards	or	magnetic	cards.	The	technique
most	commonly	used	in	Android	is	probably	the	cryptographic	keys.	We	already	learned
about	cryptographic	keys	in	the	earlier	chapters,	and	although	these	keys	are	digital	and
the	user	does	not	have	material	access	to	them,	they	are	considered	as	something	the	user
possesses.	There	are	other	algorithms	like	Time-based	One-Time	Password	(TOTP).
TOTP	consists	of	combining	a	secret	key	with	the	current	timestamp	to	generate	a
password	that	is	temporarily	valid.

The	inherence	factor
The	inherence	factor	is	based	on	something	the	user	is.	The	techniques	based	on	this	factor
are	the	ones	that	are	used	frequently,	but	the	ones	with	the	brightest	future.	Biometric
authentication	measures	the	distinctive	characteristics	of	individuals	to	identify	the	user.

There	are	two	types	of	biometric	identifiers:

Physiological	characteristics:	This	is	when	the	shape	of	the	body	is	measured.	The
most	commonly	known	examples	are	the	fingerprint	analysis,	face	recognition,	and
iris	or	retina	recognition.	In	Android,	there	are	several	implementations	of	face
recognition,	and	some	smartphones	come	with	a	hardware	support	for	fingerprint
scan	like	the	HTC	One	Max.
Behavioral	characteristics:	This	is	when	the	behavior	of	a	person	is	measured.
Physiological	characteristics	are	more	consolidated	than	behavioral	characteristics.
The	most	extended	behavioral	characteristic	is	voice	recognition.	There	are	different
implementations	of	voice	recognition	for	Android.

Login	implementations
We	will	now	see	a	small	example	on	how	to	perform	authentication	using	Android.	The
example	we	are	going	to	see	here	uses	the	login	and	password	combination	technique.	We
are	going	to	start	with	a	very	simple	example	and	increase	the	functionalities	as	well	as	the
complexities	in	every	iteration.

First	of	all,	we	will	define	EditText	and	Button,	shown	as	follows:

<EditText

			android:id="@+id/etUsername"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"/>

<EditText

			android:id="@+id/etPassword"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:inputType="textPassword"/>	

<Button

			android:id="@+id/bLogin"

			android:layout_width="wrap_content"

			android:layout_height="wrap_content"

			android:onClick="login"

			android:text="Login"/>

Now,	we	are	going	to	check	whether	the	combination	of	a	username	and	password	is	good
or	not.	To	start,	we	will	simply	check	whether	both	the	username	and	password	are	admin,
shown	as	follows:

EditText	username	=	(EditText)findViewById(R.id.etUsername);

EditText	password	=	(EditText)findViewById(R.id.etPassword);

String	sUsername	=	username.getText().toString();

String	sPassword	=	password.getText().toString();

if	(sUsername.equals("admin")	&&	sPassword.equals("admin"))	{

		//	Grant	access

}	else	{

		Toast.makeText(getApplicationContext(),	"Wrong	password",	

			Toast.LENGTH_SHORT).show();

}

This	is	obviously	not	a	good	example	of	a	secure	authentication	method	but	from	the
example,	we	can	learn	some	useful	things.	For	example,	the	inputType	parameter	of
EditText	can	be	set	to	textPassword	when	using	a	password	field.

You	are	normally	going	to	make	a	request	to	your	server	in	order	to	authenticate	the	user.
For	example,	in	this	case,	we	use	SimpleHTTPClient	to	make	the	request,	shown	as
follows:

EditText	username	=	(EditText)findViewById(R.id.etUsername);

EditText	password	=	(EditText)findViewById(R.id.etPassword);

String	sUsername	=	username.getText().toString();

String	sPassword	=	password.getText().toString();

ArrayList<NameValuePair>	params	=	new	ArrayList<NameValuePair>();

params.add(new	BasicNameValuePair("username",	sUsername);

params.add(new	BasicNameValuePair("password",	sPassword);

String	response	=	SimpleHttpClient.executeHttpPost(

		"http://www.mydomain.com/login",	

		params);

//	Analyze	response	with	what	the	server	is	supposed	to	answer

You	have	to	realize	that	this	implementation	also	has	big	problems,	even	bigger	than	the
previous	one.	In	this	case,	the	username	and	password	are	being	transferred	online	and	any
attacker	could	see	them	in	plain	text.	In	order	to	avoid	this,	we	can	use	an	HTTPS
connection	as	we	have	seen	in	the	previous	chapter.

There	are	some	login	implementations	that	hash	the	username	and	password	before
sending	them	to	the	server	in	order	to	increase	the	security,	for	example,	using	the	SHA1
hash	shown	as	follows:

EditText	username	=	(EditText)findViewById(R.id.editText1);

EditText	password	=	(EditText)findViewById(R.id.editText2);	

String	sUsername	=	SHA1.Sha1Hash(username.getText().toString());

String	sPassword	=	SHA1.Sha1Hash(password.getText().toString());

ArrayList<NameValuePair>	params	=	new	ArrayList<NameValuePair>();

params.add(new	BasicNameValuePair("username",	sUsername);

params.add(new	BasicNameValuePair("password",	sPassword);

String	response	=	SimpleHttpClient.executeHttpPost(

		"http://www.mydomain.com/login",	

		params);

//	Analyze	response	with	what	the	server	is	supposed	to	answer

The	problem	with	this	implementation	is	that	the	hashed	username	and	password	can	still
be	sniffed	by	an	attacker	as	they	are	still	being	transferred	in	plain	text.	This	is	a	common
mistake.	So	when	you	store	passwords,	you	want	to	make	sure	you	store	their	hashed
versions.	The	correct	solution	would	be	to	send	the	password	using	a	secure	connection.
Later,	when	you	want	to	check	if	the	password	is	right,	you	apply	the	hash	function	to	the
password	provided	by	the	user	and	compare	it	to	the	stored	hashed	password	to	see
whether	they	match.

In	Chapter	6,	Securing	Communications,	we	saw	how	to	establish	an	HTTPS	connection
between	your	application	and	a	server.	You	can	use	that	information	and	the	preceding
example	to	create	a	secure	login	implementation	for	your	application.

AccountManager
The	AccountManager	class	provides	access	to	all	the	registered	users’	online	accounts.
This	way,	the	user	only	needs	to	provide	his/her	credentials	once	for	each	account	and
then	he/she	can	grant	access	to	these	applications	in	a	simpler	way.	Using	the
AccountManager	class,	you	can	get	a	token	that	can	be	used	as	a	form	of	authentication	in
different	services.

The	steps	that	you	need	to	take	in	order	to	make	use	of	this	feature	are	as	follows:

1.	 First,	you	need	to	modify	the	manifest	file	and	add	permission	to	use	credentials:

<uses-permission	

		android:name="android.permission.USE_CREDENTIALS">

</uses-permission>

2.	 Once	your	application	can	use	credentials,	you	can	get	an	instance	of
AccountManager	using	the	get(Context	c)	method:

AccountManager	am	=	AccountManager.get(this);

3.	 Now,	you	have	an	instance	of	AccountManager,	but	you	need	to	know	which
accounts	are	available.	To	do	this,	you	can	use	the	getAccountsByType(String	s)
method.	The	String	parameter	is	the	name	of	the	account	type.	In	this	case,	we	will
look	for	the	Facebook	accounts:

Account	[]	accounts	=	am.getAccountsByType("com.facebook.auth.login");

4.	 You	can	also	use	null	as	the	parameter	to	obtain	all	the	available	accounts:

Account	[]	accounts	=	am.getAccountsByType(null);

5.	 The	getAccountsByName	method	should	also	be	called	if	the	application	is	using	a
previously	saved	account	selection	in	order	to	make	sure	that	this	account	still	exists
in	the	device.	You	can	check	this	by	looking	up	the	account	in	the	array	of	accounts
returned	by	getAccountsByName.

6.	 Once	you	have	a	list	of	the	available	accounts,	you	should	ask	the	user	which	account
is	to	be	used.	When	the	selection	is	done,	you	can	call	the	method,	shown	as	follows:

getAuthToken(Account	account,	String	authTokenType,	Bundle	options,	

Activity	activity,	AccountManagerCallback<Bundle>	callback,	Handler	

handler).

7.	 You	will	get	an	authentication	token	in	the	AccountManagerFuture<Bundle>	object
for	a	particular	account,	which	will	automatically	prompt	the	user	for	acceptance	if	it
is	required.

8.	 In	case	the	token	request	returns	an	error,	there	could	be	a	cached	instance	of	an
authentication	token	that	may	be	being	used.	You	can	call	the
invalidateAuthToken(String	accountType,	String	authToken)	method	to
remove	an	obsolete	token.	Once	the	obsolete	token	is	removed,	you	can	again	request
a	new	token	using	the	getAuthToken	method.

Summary
In	this	chapter,	you	learned	about	multifactor	authentication	and	the	different	techniques
available	in	each	authentication	factor.	You	also	learned	how	to	make	your	own
implementation	of	a	simple	login	system.	Finally,	you	learned	how	you	can	get
authentication	tokens	to	access	different	services	by	using	AccountManager.

In	the	next	chapter,	you	will	learn	how	to	start	testing	your	application,	test	your	user
interface,	and	use	the	test	environment	in	Android	Studio.

Chapter	8.	Testing	Your	Application
You	have	learned	how	to	create	secure	applications.	Now,	you	want	to	ensure	the	quality
of	your	Android	application.	What	elements	can	be	tested	in	Android?	How	test	cases	are
developed?	Does	Android	Studio	support	testing?

This	chapter	introduces	the	ways	of	testing	an	application	in	Android.	In	Android,	we	can
design	tests	to	evaluate	the	user	interface	(UI),	activities,	services,	and	content	providers.
In	this	chapter,	we	will	learn	about	UI	testing.

The	topics	that	will	be	covered	in	the	chapter	are	as	follows:

Testing	in	Android
The	uiautomator	API
The	uiautomatorviewer	tool
The	UI	test	project
Running	UI	test	cases

Testing	in	Android
The	security	and	quality	of	Android	applications	are	the	key	factors	to	its	success.	Testing
helps	you	discover	bugs	and	errors	in	your	application,	measure	its	accuracy,	and	also
improve	security.

Android	testing	is	based	on	JUnit.	JUnit	is	a	framework	to	write	repeatable	tests	in	Java.
It	evaluates	whether	the	class	that	is	to	be	tested	is	working	as	expected.	There	are	two
types	of	tests	to	be	created	in	an	Android	application:

Tests	that	can	run	on	the	Java	Virtual	Machine	(JVM):	If	you	want	to	test
standard	Java	classes	that	do	not	call	the	Android	API,	you	can	use	plain	JUnit	tests.
The	execution	of	this	type	of	test	is	faster	because	it	does	not	require	any	time	for
deployment	on	an	Android	device,	especially	when	running	on	an	emulator.
Tests	that	require	the	Android	SDK:	If	you	need	to	evaluate	classes	that	use
Android	API,	tests	have	to	be	run	on	an	Android	device	using	the	Android	JUnit
extensions.	From	now	on,	we	will	be	using	this	kind	of	test	since	we	want	to	learn
how	to	check	Android	classes	such	as	activities	or	the	UI	components.

Tests	are	implemented	in	methods	contained	in	test	classes.	These	tests	are	organized	in
test	packages.	By	convention,	the	test	package	name	is	the	same	as	your	application
package	suffixed	with	.test.	Test	class	names	are	the	same	as	the	element	to	be	tested
suffixed	with	Test.	For	example,	the	test	class	that	evaluates	your	MainActivity	file
should	be	named	MainActivityTest.	Test	method	names	are	prefixed	with	test.	Some
examples	of	method	names	are	testLayout()	and	testOnClick().

Testing	the	UI
The	UI	can	be	evaluated	using	the	white-box	testing	or	black-box	testing.	In	the	white-box
testing,	UI	components	are	checked	in	the	activities	that	manage	them.	Activity	testing
will	be	explained	in	the	next	chapter,	that	is,	Chapter	9,	Unit	and	Functional	Tests.	The
black-box	testing	is	based	on	the	uiautomator	API.	This	API	includes	classes	to	capture
and	manipulate	components	in	the	application	under	test.	This	type	of	test	does	not	require
you	to	know	the	internal	implementation	of	the	application.

Android	Studio	does	not	directly	support	the	uiautomator	framework,	but	since	it	is
available	in	the	Android	SDK,	we	can	use	it	anyway.	The	steps	to	complete	the	testing
process	are	as	follows:

1.	 Install	the	application	under	test	on	a	device	(real	device	or	an	emulator).
2.	 Analyze	the	UI	components	of	the	application	under	test,	employing	the

uiautomatorviewer	tool.
3.	 Create	a	Java	test	project	to	implement	your	test	cases	using	the	uiautomator	API.
4.	 Compile	the	test	project	into	a	JAR	file	and	install	it	on	the	device.
5.	 Run	the	implemented	tests.

We	are	going	to	proceed	with	a	complete	UI	testing	example	in	the	successive	sections,
but	first	let’s	learn	about	the	uiautomator	API.

The	uiautomator	API
The	uiautomator	API	is	included	in	the	uiautomator.jar	library,	which	can	be	found	in
your	Android	SDK	installation	folder,	under	the	<android-sdk>/platforms/	directory.
The	API	includes	a	TestCase	class	that	extends	the	JUnit	TestCase	class:
UiAutomatorTestCase.	To	manipulate	the	UI	components,	the	UiDevice,	UiSelector,
UiObject,	UiCollection,	and	UiScrollable	classes	are	also	supplied	to	the	API.

The	UiDevice	class
The	UiDevice	class	represents	the	device.	We	can	get	the	UiDevice	instance	by	calling	the
getUiDevice()	method.	With	this	instance	object,	you	can	check	properties	such	as	the
orientation	or	the	display	size.	You	can	also	perform	device-level	actions	such	as	clicking
on	the	Home	button	or	taking	a	screenshot.	Some	examples	of	the	available	methods	are
as	follows:

click(int	x,	int	y):	This	method	performs	a	click	at	the	specified	coordinates
getDisplaySizeDp():	This	method	returns	the	display	size	in	device-independent
pixels
pressBack():	This	method	simulates	a	press	on	the	back	button
pressHome():	This	method	simulates	a	press	on	the	home	button
sleep():	This	method	simulates	a	press	on	the	power	button	to	set	the	screen	off
takeScreenshot(File	storepath):	This	method	takes	a	screenshot	of	the	current
screen
wakeUp():	This	method	simulates	a	press	on	the	power	button	to	set	the	screen	on

The	UiSelector	class
The	UiSelector	class	represents	the	search	criteria	to	query	any	UI	element	on	the	screen.
If	no	component	is	found,	UiAutomatorObjectNotFoundException	is	thrown.	If	more
than	one	component	is	found,	the	first	one	in	the	layout	hierarchy	is	returned.	The
UiSelector	class	offers	methods	to	refine	the	search.	Some	of	the	methods	are	as	follows:

checked(boolean	val):	This	method	matches	elements	that	are	checked.
childSelector(UiSelector	selector):	This	method	adds	a	child	selector	criteria
to	the	current	selector.
className(String	className):	This	method	matches	elements	of	the	specified
class.	For	example,	you	can	search	for	buttons	using	the	following	code:

new	UiSelector().className("android.widget.Button")

resourceID(String	id):	This	method	matches	the	element	with	the	specified	ID.
text(String	text):	This	method	matches	elements	containing	the	indicated	visible
text.	For	example,	you	can	refine	the	previous	search	for	buttons	by	adding	a	second
filter,	as	shown	in	the	following	code:

new	UiSelector().className("android.widget.Button").text("Continue")

The	UiObject	class

The	UiObject	class	represents	a	UI	element.	The	UiObject	instances	are	obtained	from
the	UiSelector	instances.	The	class	UiObject	provides	methods	to	perform	actions	on	the
UI	elements.	Some	examples	of	the	methods	are	as	follows:

click():	This	method	performs	a	click	at	the	center	of	the	UI	element
exists():	This	method	checks	whether	the	element	exists
getText():	This	method	returns	the	text	of	the	element
isChecked():	This	method	returns	whether	the	element	is	currently	checked	or	not
setText(String	text):	This	method	sets	the	text	whether	the	element	allows	it
(whether	it’s	an	editable	field)

The	UiCollection	class
The	UiCollection	class	represents	a	collection	of	items.	The	UiCollection	instances	are
obtained	from	the	UiSelector	instances	that	return	a	container	of	other	child	UI	elements.
The	methods	provided	by	this	class	are	all	related	to	the	selection	of	children,	shown	as
follows:

getChildByDescription(UiSelector	childPattern,String	text):	This	method
searches	for	a	child	by	its	description	and	returns	a	UiObject	object
getChildByInstance(UiSelector	childPattern,	int	instance):	This	method
searches	for	a	child	by	its	instance	number	and	returns	a	UiObject	object
getChildByText(UiSelector	childPattern,	String	text):	This	method	searches
for	a	child	by	its	visible	text	and	returns	a	UiObject	object
getChildCount(UiSelector	childPattern):	This	method	returns	the	child	count

The	UiScrollable	class
The	UiScrollable	class	represents	a	scrollable	collection	of	items.	This	class	is	useful	to
simulate	scrolling	and	brings	hidden	elements	into	view.	The	UiScrollable	instances	are
obtained	from	the	UiSelector	instances.	This	class	presents	methods	similar	to	the
methods	of	the	UiCollection	class	and	also	provides	methods	to	simulate	scrolling:

scrollBackward():	This	method	performs	a	backward	scroll
scrollForward():	This	method	performs	a	forward	scroll
scrollToBeginning():	This	method	scrolls	to	the	beginning
scrollToEnd():	This	method	scrolls	to	the	end

The	uiautomatorviewer	tool
The	uiautomatorviewer	tool	serves	to	take	a	snapshot	of	the	current	screen	on	an	Android
device	that	is	connected	to	the	development	machine.	The	snapshot	allows	you	to	examine
the	layout	components	that	are	included	in	the	screen.	You	can	learn	about	how	they	are
structured	and	their	properties	such	as	IDs,	texts,	classes,	and	furthermore.	The
uiautomatorviewer	tool	is	included	in	the	tools	directory	of	the	Android	SDK	installation:
<android-sdk>/tools/.

Let’s	look	at	an	example	to	show	how	this	tool	works.	Since	we	are	performing	black-box
testing,	the	uiautomatorviewer	tool	can	be	applied	to	any	application	although	it	is	not
developed	by	us,	nor	do	we	have	its	source	code.	We	are	going	to	use	the	default	Android
clock	application	by	following	this	procedure:

1.	 Open	Android	Studio	and	launch	an	Android	Virtual	Device	(AVD)	in	the	emulator.
You	can	also	use	a	real	device	connected	to	your	computer.

2.	 When	the	device	is	completely	loaded,	open	the	application	drawer	and	select	the
Clock	application.

3.	 Back	in	the	Android	Studio	IDE,	click	on	the	Tools	menu	and	select	the	Open
Terminal	option	to	open	the	terminal	panel.

4.	 Using	the	terminal,	navigate	to	the	Android	tools	folder	where	the
uiautomatorviewer	executable	is	found.	In	Unix-based	systems,	you	can	find	it	by
using	the	command:

$	cd	androidSDK/tools/

5.	 Launch	uiautomatorviewer	by	using	the	command:

$./uiautomatorviewer

6.	 The	uiautomatorviewer	tool	is	now	open	and	shows	an	empty	window.	Click	on	the
button	icon	from	the	top	bar,	which	hints	at	the	Device	Screenshot	(uiautomator
dump).	This	button	is	marked	in	red	in	the	following	screenshot.	This	option	will	take
a	snapshot	of	the	clock	application	that	is	being	displayed	in	the	foreground	in	the
emulator.

In	the	uiautomator	viewer,	we	can	inspect	the	layout	elements	of	the	screen.	The	following
screenshot	shows	the	uiautomator	viewer	after	capturing	the	screen	from	the	clock
application.	On	the	left	side	of	the	viewer,	the	snapshot	is	displayed.	You	can	hover	the
mouse	over	it	to	navigate	and	select	the	UI	components.	On	the	top-right	part	of	the
viewer,	the	layout	hierarchy	is	listed.	We	can	expand	and	collapse	the	layouts	and	select
individual	elements.	In	the	following	screenshot	of	our	example,	the	layout	containing	the
hour	is	selected.	On	the	bottom-right	part	of	the	viewer,	the	properties	of	the	selected
component	are	detailed.

The	UI	test	project
The	test	code	to	evaluate	the	UI	of	an	application	has	to	be	included	in	a	normal	Java
project.	This	Java	project	will	be	built	into	a	JAR	file,	which	will	be	copied	in	the	Android
device	to	evaluate	the	application	under	test.	Since	Android	Studio	does	not	support	the
uiautomator	framework,	for	this	section	you	can	use	any	other	tool	that	allows	you	create
a	Java	project.	The	required	steps	are	as	follows:

1.	 Create	a	standard	Java	project.	This	is	the	test	project	where	the	test	code	will	be
implemented	using	the	uiautomator	API.	You	can	call	this	project	UITestProject.

2.	 Import	the	JUnit	library	into	your	test	project.	Currently,	JUnit	3.8	is	the	supported
version.

3.	 Import	the	Android	library	as	an	external	JAR	into	your	test	project.	This	JAR	is
named	android.jar	and	is	stored	in	your	Android	SDK	installation	folder	under
<android-sdk>/platforms/<sdk>/.

4.	 Import	the	uiautomator	library	as	an	external	JAR	into	your	test	project.	This	JAR	is
named	uiautomator.jar	and	is	stored	in	your	Android	SDK	installation	folder	under
<android-sdk>/platforms/<sdk>/.

5.	 Create	a	new	class	in	the	source	folder	of	your	test	project.	You	can	name	the	class
ClockTest.java.	This	class	is	used	to	implement	your	test	case	and	therefore,	has	to
extend	the	UiAutomatorTestCase	class.

6.	 Add	your	test	code	in	the	ClockTest	class.

Your	UI	test	code	is	now	ready.	For	our	example,	let’s	add	some	simple	code	just	to
demonstrate	how	UI	testing	works.	Create	a	test	method	named	testOpenAlarms	to
evaluate	the	alarm	button	in	the	clock	application.	To	perform	a	click	on	the	alarm	button,
we	need	to	indicate	its	ID,	which	can	be	extracted	from	uiautomatorviewer,	as	shown	in
the	following	screenshot:

The	resourceId	method	of	the	UiSelector	class	can	be	used	to	find	the	UI	component
whose	ID	is	com.android.deskclock:id/alarms_button.	The	object	created	can	be
checked	and	if	everything	is	fine,	a	click	is	simulated	on	it:

public	class	ClockTest	extends	UiAutomatorTestCase	{

		

		public	void	testOpenAlarms()	throws	UiObjectNotFoundException	{

		

				UiObject	alarmButton	=	new	UiObject(new	UiSelector().

				resourceId("com.android.deskclock:id/alarms_button"));

				

				if(alarmButton.exists()	&&	alarmButton.isEnabled())	{

						alarmButton.click();

				}

		}

}

Running	UI	test	cases
The	Java	test	project	created	in	the	previous	section	has	to	be	compiled	into	a	JAR	file	to
run	your	test	cases.	The	JAR	file	has	to	be	copied	onto	the	same	Android	device	in	which
the	application	under	test	is	running.	Follow	the	next	steps	to	run	your	test	case:

1.	 Open	the	terminal	panel	in	Android	Studio	(Tools	|	Open	Terminal).
2.	 Navigate	to	the	Android	Studios	tools	folder	where	the	android	executable	is	found:

$	cd	androidSDK/tools/

3.	 Get	the	ID	of	the	Android	target	that	you	want	to	use	in	your	project.	Execute	the
android	executable	with	the	list	of	the	target	actions.	This	command	will	list	the
available	Android	targets	along	with	their	IDs:

$./android	list	targets

4.	 Execute	the	android	executable	with	the	create	uitest-project	action.	This
command	receives	the	name	of	the	output	project	(-n),	the	ID	of	the	Android	target	(-
t),	and	the	path	of	your	Java	test	project	(-p)	as	parameters.	This	step	is	to	generate
the	project’s	build	file	as	a	test	project:

$./android	create	uitest-project	–n	UITest	-t	1	

-p	/Users/myUser/workspace/UITestProject

Note
The	UI	test	projects	can	only	target	API	16	and	above;	otherwise,	an	error	will	be
prompted.

As	a	result,	the	UITestProject/build.xml	file	is	generated	and	the
/Users/myUser/workspace/UITestProject/build.xml	file	is	added.

5.	 Build	the	JAR	file	from	the	project	using	the	build.xml	file	obtained	before.
6.	 Copy	the	JAR	file	into	the	device	using	the	adb	utility:

$	cd	androidSDK/platform-tools/

$./adb	push	/Users/myUser/workspace/UITestProject/bin/UITest.jar	

/data/local/tmp

7.	 Finally,	execute	the	next	command	to	run	the	UI	test	case	on	the	connected	device:

$./adb	shell	uiautomator	runtest	UITest.jar	-c	com.example.ClockTest

If	you	observe	the	device	while	the	UI	test	is	being	executed,	you	will	see	how	the	actions
implemented	in	the	testOpenAlarms	test	method	are	simulated.	The	results	are	shown	in
the	terminal	panel	as	you	can	see	in	the	following	screenshot,	in	which	the	test	case
execution	has	been	successful:

Summary
In	this	chapter,	you	learned	about	testing	in	Android.	You	developed	black-box	testing	for
your	user	interface.	You	also	learned	how	to	create	a	test	case	for	your	application	UI	and
how	you	can	run	it	on	a	device.

In	the	next	chapter,	you	will	learn	more	about	testing	in	Android.	You	will	develop	test
cases	to	evaluate	the	activities	of	your	application.	You	will	use	unit	and	functional	tests
and	set	up	the	testing	environment	using	Android	Studio.

Chapter	9.	Unit	and	Functional	Tests
You	already	learned	about	Android	testing	in	the	previous	chapter.	You	know	how	to
develop	a	black-box	test	of	the	UI	of	your	application.	Now	you	want	to	learn	how	to
implement	the	white-box	testing	for	your	application.	Are	there	different	types	of	activity
testing?	Does	Android	Studio	support	activity	testing?	How	can	you	get	the	results	of	your
test	cases?	We	will	be	covering	these	points	in	this	chapter.

In	this	chapter,	you	will	learn	how	to	use	unit	tests	that	allow	developers	to	quickly	verify
the	state	and	behavior	of	an	activity	on	its	own.	The	chapter	will	also	cover	functional
tests;	their	main	purpose	is	to	check	the	interaction	between	components.

The	topics	that	will	be	covered	in	this	chapter	are	as	follows:

Differences	between	unit	and	functional	tests
Android	testing	API
Creating	a	simple	unit	test	case
Creating	a	simple	functional	test
Getting	the	test	results

Testing	activities
There	are	two	possible	modes	of	testing	activities:

Functional	testing:	In	functional	testing,	the	activity	being	tested	is	created	using	the
system	infrastructure.	The	test	code	can	communicate	with	the	Android	system,	send
events	to	the	UI,	or	launch	another	activity.
Unit	testing:	In	unit	testing,	the	activity	being	tested	is	created	with	minimal
connection	to	the	system	infrastructure.	The	activity	is	tested	in	isolation.

In	this	chapter,	we	will	explore	the	Android	testing	API	to	learn	about	the	classes	and
methods	that	will	help	you	test	the	activities	of	your	application.

The	test	case	classes
The	Android	testing	API	is	based	on	JUnit.	Android	JUnit	extensions	are	included	in	the
android.test	package.	The	following	figure	presents	the	main	classes	that	are	involved
when	testing	activities:

Let’s	learn	more	about	these	classes:

TestCase:	This	JUnit	class	belongs	to	the	junit.framework.	The	TestCase	package
represents	a	general	test	case.	This	class	is	extended	by	the	Android	API.
InstrumentationTestCase:	This	class	and	its	subclasses	belong	to	the	android.test
package.	It	represents	a	test	case	that	has	access	to	instrumentation.
ActivityTestCase:	This	class	is	used	to	test	activities,	but	for	more	useful	classes,
you	should	use	one	of	its	subclasses	instead	of	the	main	class.
ActivityInstrumentationTestCase2:	This	class	provides	functional	testing	of	an
activity	and	is	parameterized	with	the	activity	under	test.	For	example,	to	evaluate
your	MainActivity,	you	have	to	create	a	test	class	named	MainActivityTest	that
extends	the	ActivityInstrumentationTestCase2	class,	shown	as	follows:

public	class	MainActivityTest	extends	

ActivityInstrumentationTestCase2<MainActivity>	

ActivityUnitTestCase:	This	class	provides	unit	testing	of	an	activity	and	is
parameterized	with	the	activity	under	test.	For	example,	to	evaluate	your
MainActivity,	you	can	create	a	test	class	named	MainActivityUnitTest	that
extends	the	ActivityUnitTestCase	class,	shown	as	follows:

public	class	MainActivityUnitTest	extends	

ActivityUnitTestCase<MainActivity>

There	is	a	new	term	that	has	emerged	from	the	previous	classes	called	Instrumentation.

Instrumentation
The	execution	of	an	application	is	ruled	by	the	life	cycle,	which	is	determined	by	the
Android	system.	For	example,	the	life	cycle	of	an	activity	is	controlled	by	the	invocation
of	some	methods:	onCreate(),	onResume(),	onDestroy(),	and	so	on.	These	methods	are
called	by	the	Android	system	and	your	code	cannot	invoke	them,	except	while	testing.	The
mechanism	to	allow	your	test	code	to	invoke	callback	methods	is	known	as	Android
instrumentation.

Android	instrumentation	is	a	set	of	methods	to	control	a	component	independent	of	its
normal	lifecycle.	To	invoke	the	callback	methods	from	your	test	code,	you	have	to	use	the
classes	that	are	instrumented.	For	example,	to	start	the	activity	under	test,	you	can	use	the
getActivity()	method	that	returns	the	activity	instance.	For	each	test	method	invocation,
the	activity	will	not	be	created	until	the	first	time	this	method	is	called.	Instrumentation	is
necessary	to	test	activities	considering	the	lifecycle	of	an	activity	is	based	on	the	callback
methods.	These	callback	methods	include	the	UI	events	as	well.

From	an	instrumented	test	case,	you	can	use	the	getInstrumentation()	method	to	get
access	to	an	Instrumentation	object.	This	class	provides	methods	related	to	the	system
interaction	with	the	application.	The	complete	documentation	about	this	class	can	be
found	at:	http://developer.android.com/reference/android/app/Instrumentation.html.	Some
of	the	most	important	methods	are	as	follows:

The	addMonitor	method:	This	method	adds	a	monitor	to	get	information	about	a
particular	type	of	Intent	and	can	be	used	to	look	for	the	creation	of	an	activity.	A
monitor	can	be	created	indicating	IntentFilter	or	displaying	the	name	of	the
activity	to	the	monitor.	Optionally,	the	monitor	can	block	the	activity	start	to	return
its	canned	result.	You	can	use	the	following	call	definitions	to	add	a	monitor:

ActivityMonitor	addMonitor	(IntentFilter	filter,	ActivityResult	result,	

boolean	block).

ActivityMonitor	addMonitor	(String	cls,	ActivityResult	result,	boolean	

block).

The	following	line	is	an	example	line	code	to	add	a	monitor:

Instrumentation.ActivityMonitor	monitor	=	

getInstrumentation().addMonitor(SecondActivity.class.getName(),	null,	

false);

The	activity	lifecycle	methods:	The	methods	to	call	the	activity	lifecycle	methods
are:	callActivityOnCreate,	callActivityOnDestroy,	callActivityOnPause,
callActivityOnRestart,	callActivityOnResume,	callActivityOnStart,	finish,
and	so	on.	For	example,	you	can	pause	an	activity	using	the	following	line	code:

getInstrumentation().callActivityOnPause(mActivity);

The	getTargetContext	method:	This	method	returns	the	context	for	the	application.
The	startActivitySync	method:	This	method	starts	a	new	activity	and	waits	for	it	to
begin	running.	The	function	returns	when	the	new	activity	has	gone	through	the	full

http://developer.android.com/reference/android/app/Instrumentation.html

initialization	after	the	call	to	its	onCreate	method.
The	waitForIdleSync	method:	This	method	waits	for	the	application	to	be	idle
synchronously.

The	test	case	methods
JUnit’s	TestCase	class	provides	the	following	protected	methods	that	can	be	overridden
by	the	subclasses:

setUp():	This	method	is	used	to	initialize	the	fixture	state	of	the	test	case.	It	is
executed	before	every	test	method	is	run.	If	you	override	this	method,	the	first	line	of
code	will	call	the	superclass.	A	standard	setUp	method	should	follow	the	given	code
definition:

@Override

protected	void	setUp()	throws	Exception	{

		super.setUp();

		//	Initialize	the	fixture	state

}

tearDown():	This	method	is	used	to	tear	down	the	fixture	state	of	the	test	case.	You
should	use	this	method	to	release	resources.	It	is	executed	after	running	every	test
method.	If	you	override	this	method,	the	last	line	of	the	code	will	call	the	superclass,
shown	as	follows:

@Override

protected	void	tearDown()	throws	Exception	{

		//	Tear	down	the	fixture	state

		super.tearDown();

}

The	fixture	state	is	usually	implemented	as	a	group	of	member	variables	but	it	can	also
consist	of	database	or	network	connections.	If	you	open	or	init	connections	in	the	setUp
method,	they	should	be	closed	or	released	in	the	tearDown	method.	When	testing	activities
in	Android,	you	have	to	initialize	the	activity	under	test	in	the	setUp	method.	This	can	be
done	with	the	getActivity()	method.

The	Assert	class	and	method
JUnit’s	TestCase	class	extends	the	Assert	class,	which	provides	a	set	of	assert	methods
to	check	for	certain	conditions.	When	an	assert	method	fails,
AssertionFailedException	is	thrown.	The	test	runner	will	handle	the	multiple	assertion
exceptions	to	present	the	testing	results.	Optionally,	you	can	specify	the	error	message	that
will	be	shown	if	the	assert	fails.	You	can	read	the	Android	reference	of	the	TestCase	class
to	examine	all	the	available	methods	at
http://developer.android.com/reference/junit/framework/Assert.html.	The	assertion
methods	provided	by	the	Assert	superclass	are	as	follows:

assertEquals:	This	method	checks	whether	the	two	values	provided	are	equal.	It
receives	the	actual	and	expected	value	that	is	to	be	compared	with	each	other.	This
method	is	overloaded	to	support	values	of	different	types,	such	as	short,	String,
char,	int,	byte,	boolean,	float,	double,	long,	or	Object.	For	example,	the
following	assertion	method	throws	an	exception	since	both	values	are	not	equal:

assertEquals(true,	false);

assertTrue	or	assertFalse:	These	methods	check	whether	the	given	Boolean
condition	is	true	or	false.
assertNull	or	assertNotNull:	These	methods	check	whether	an	object	is	null	or
not.
assertSame	or	assertNotSame:	These	methods	check	whether	two	objects	refer	to
the	same	object	or	not.
fail:	This	method	fails	a	test.	It	can	be	used	to	make	sure	that	a	part	of	code	is	never
reached,	for	example,	if	you	want	to	test	that	a	method	throws	an	exception	when	it
receives	a	wrong	value,	as	shown	in	the	following	code	snippet:

try{

		dontAcceptNullValuesMethod(null);

		fail("No	exception	was	thrown");

}	catch	(NullPointerExceptionn	e)	{

		//	OK

}

The	Android	testing	API,	which	extends	JUnit,	provides	additional	and	more	powerful
assertion	classes:	ViewAsserts	and	MoreAsserts.

The	ViewAsserts	class
The	assertion	methods	offered	by	JUnit’s	Assert	class	are	not	enough	if	you	want	to	test
some	special	Android	objects	such	as	the	ones	related	to	the	UI.	The	ViewAsserts	class
implements	more	sophisticated	methods	related	to	the	Android	views,	that	is,	for	the	View
objects.	The	whole	list	with	all	the	assertion	methods	can	be	explored	in	the	Android
reference	about	this	class	at
http://developer.android.com/reference/android/test/ViewAsserts.html.	Some	of	them	are
described	as	follows:

assertBottomAligned	or	assertLeftAligned	or	assertRightAligned	or

http://developer.android.com/reference/junit/framework/Assert.html
http://developer.android.com/reference/android/test/ViewAsserts.html

assertTopAligned(View	first,	View	second):	These	methods	check	that	the	two
specified	View	objects	are	bottom,	left,	right,	or	top	aligned,	respectively
assertGroupContains	or	assertGroupNotContains(ViewGroup	parent,	View
child):	These	methods	check	whether	the	specified	ViewGroup	object	contains	the
specified	child	View
assertHasScreenCoordinates(View	origin,	View	view,	int	x,	int	y):	This
method	checks	that	the	specified	View	object	has	a	particular	position	on	the	origin
screen
assertHorizontalCenterAligned	or	assertVerticalCenterAligned(View
reference	View	view):	These	methods	check	that	the	specified	View	object	is
horizontally	or	vertically	aligned	with	respect	to	the	reference	view
assertOffScreenAbove	or	assertOffScreenBelow(View	origin,	View	view):
These	methods	check	that	the	specified	View	object	is	above	or	below	the	visible
screen
assertOnScreen(View	origin,	View	view):	This	method	checks	that	the	specified
View	object	is	loaded	on	the	screen	even	if	it	is	not	visible

The	MoreAsserts	class
The	Android	API	extends	some	of	the	basic	assertion	methods	from	the	Assert	class	to
present	some	additional	methods.	Some	of	the	methods	included	in	the	MoreAsserts	class
are:

assertContainsRegex(String	expectedRegex,	String	actual):	This	method
checks	that	the	expected	regular	expression	(regex)	contains	the	actual	given	string
assertContentsInAnyOrder(Iterable<?>	actual,	Object…	expected):	This
method	checks	that	the	iterable	object	contains	the	given	objects	and	in	any	order
assertContentsInOrder(Iterable<?>	actual,	Object…	expected):	This	method
checks	that	the	iterable	object	contains	the	given	objects,	but	in	the	same	order
assertEmpty:	This	method	checks	if	a	collection	is	empty
assertEquals:	This	method	extends	the	assertEquals	method	from	JUnit	to	cover
collections:	the	Set	objects,	int	arrays,	String	arrays,	Object	arrays,	and	so	on
assertMatchesRegex(String	expectedRegex,	String	actual):	This	method
checks	whether	the	expected	regex	matches	the	given	actual	string	exactly

Opposite	methods	such	as	assertNotContainsRegex,	assertNotEmpty,
assertNotEquals,	and	assertNotMatchesRegex	are	included	as	well.	All	these	methods
are	overloaded	to	optionally	include	a	custom	error	message.	The	Android	reference	about
the	MoreAsserts	class	can	be	inspected	to	learn	more	about	these	assert	methods	at
http://developer.android.com/reference/android/test/MoreAsserts.html.

http://developer.android.com/reference/android/test/MoreAsserts.html

UI	testing	and	TouchUtils
The	test	code	is	executed	in	two	different	threads	as	the	application	under	test,	although,
both	the	threads	run	in	the	same	process.	When	testing	the	UI	of	an	application,	UI	objects
can	be	referenced	from	the	test	code,	but	you	cannot	change	their	properties	or	send
events.	There	are	two	strategies	to	invoke	methods	that	should	run	in	the	UI	thread:

Activity.runOnUiThread():	This	method	creates	a	Runnable	object	in	the	UI	thread
in	which	you	can	add	the	code	in	the	run()	method.	For	example,	if	you	want	to
request	the	focus	of	a	UI	component:

public	void	testComponent()	{

		mActivity.runOnUiThread(

				new	Runnable()	{

						public	void	run()	{

								mComponent.requestFocus();

						}

				}

);

		…

}

@UiThreadTest:	This	annotation	affects	the	whole	method	because	it	is	executed	on
the	UI	thread.	Considering	the	annotation	refers	to	an	entire	method,	statements	that
do	not	interact	with	the	UI	are	not	allowed	in	it.	For	example,	consider	the	previous
example	using	this	annotation,	shown	as	follows:

@UiThreadTest

public	void	testComponent	()	{

		mComponent.requestFocus();

		…

}

There	is	also	a	helper	class	that	provides	methods	to	perform	touch	interactions	on	the
view	of	your	application:	TouchUtils.	The	touch	events	are	sent	to	the	UI	thread	safely
from	the	test	thread;	therefore,	the	methods	of	the	TouchUtils	class	should	not	be	invoked
in	the	UI	thread.	Some	of	the	methods	provided	by	this	helper	class	are	as	follows:

The	clickView	method:	This	method	simulates	a	click	on	the	center	of	a	view
The	drag,	dragQuarterScreenDown,	dragViewBy,	dragViewTo,	dragViewToTop
methods:	These	methods	simulate	a	click	on	an	UI	element	and	then	drag	it
accordingly
The	longClickView	method:	This	method	simulates	a	long	press	click	on	the	center
of	a	view
The	scrollToTop	or	scrollToBottom	methods:	These	methods	scroll	a	ViewGroup	to
the	top	or	bottom

The	mock	object	classes
The	Android	testing	API	provides	some	classes	to	create	mock	system	objects.	Mock
objects	are	fake	objects	that	simulate	the	behavior	of	real	objects	but	are	totally	controlled
by	the	test.	They	allow	isolation	of	tests	from	the	rest	of	the	system.	Mock	objects	can,	for
example,	simulate	a	part	of	the	system	that	has	not	been	implemented	yet,	or	a	part	that	is
not	practical	to	be	tested.

In	Android,	the	following	mock	classes	can	be	found:	MockApplication,	MockContext,
MockContentProvider,	MockCursor,	MockDialogInterface,	MockPackageManager,
MockResources,	and	MockContentResolver.	These	classes	are	under	the
android.test.mock	package.	The	methods	of	these	objects	are	nonfunctional	and	throw
an	exception	if	they	are	called.	You	have	to	override	the	methods	that	you	want	to	use.

Creating	an	activity	test
In	this	section,	we	will	create	an	example	application	so	that	we	can	learn	how	to
implement	the	test	cases	to	evaluate	it.	Some	of	the	methods	presented	in	the	previous
section	will	be	put	into	practice.	You	can	download	the	example	code	files	from	your
account	at	http://www.packtpub.com.

Our	example	is	a	simple	alarm	application	that	consists	of	two	activities:	MainActivity
and	SecondActivity.	The	MainActivity	implements	a	self-built	digital	clock	using	text
views	and	buttons.	The	purpose	of	creating	a	self-built	digital	clock	is	to	have	more	code
and	elements	to	use	in	our	tests.	The	layout	of	MainActivity	is	a	relative	one	that	includes
two	text	views:	one	for	the	hour	(the	tvHour	ID)	and	one	for	the	minutes	(the	tvMinute
ID).	There	are	two	buttons	below	the	clock:	one	to	subtract	10	minutes	from	the	clock	(the
bMinus	ID)	and	one	to	add	10	minutes	to	the	clock	(the	bPlus	ID).	There	is	also	an	edit
text	field	to	specify	the	alarm	name.	Finally,	there	is	a	button	to	launch	the	second	activity
(the	bValidate	ID).	Each	button	has	a	pertinent	method	that	receives	the	click	event	when
the	button	is	pressed.	The	layout	looks	like	the	following	screenshot:

The	SecondActivity	receives	the	hour	from	the	MainActivity	and	shows	its	value	in	a
text	view	simulating	that	the	alarm	was	saved.	The	objective	to	create	this	second	activity
is	to	be	able	to	test	the	launch	of	another	activity	in	our	test	case.

Open	Android	Studio	and	the	Android	project	under	test.	You	can	create	a	blank	project
with	a	main	activity	and	layout.	Later	in	this	chapter,	we	will	add	an	example	code	to	run
the	test	cases.	In	the	project	structure,	there	is	a	folder	and	a	package	where	the	tests	will

http://www.packtpub.com

be	saved:	/src/androidTest/java/<your_package>.	If	you	don’t	have	this	package,	you
should	add	it.

Creating	a	unit	test
A	unit	test	evaluates	the	activity	in	isolation.	Unit	tests	are	used,	for	example,	to	check	a
method	of	the	activity	or	to	check	that	the	activity	has	the	correct	layout.	In	this	section,
we	are	going	to	create	a	unit	test	for	the	main	activity	of	our	example	project.

Create	a	new	class	in	the	test	package	of	your	application	named	MainActivityUnitTest.
This	class	extends	the	ActivityUnitTestCase	class,	which	is	the	test	case	class	to	create
unit	tests.	The	test	class	has	to	be	parameterized	with	the	activity	under	test	and	you	also
need	to	add	the	test	case	constructor,	shown	as	follows:

public	class	MainActivityUnitTest	extends	

ActivityUnitTestCase<MainActivity>	{

		

		public	MainActivityUnitTest()	{

				super(MainActivity.class);

		}

For	this	unit	test	example,	we	will	create	the	setUp	method,	and	then	we	will	test	the
buttons	to	manage	the	clock,	main	layout,	and	launch	of	the	second	activity.

The	unit	test	setup
The	fixture	state	of	our	test	case	includes	the	reference	to	the	activity	under	test	and	the
layout	objects	that	will	be	used	in	the	test	methods,	shown	as	follows:

private	MainActivity	mActivity;

private	TextView	mHour,	mMinute;

private	Button	mValidate,	mMinus,	mPlus;

The	getActivity()	method	initializes	the	activity	under	test,	but	remember	that	in	unit
tests,	the	activity	is	tested	in	isolation	and	therefore,	it	is	not	automatically	started	by	the
system.	The	activity	has	to	be	started	in	your	own	code	via	an	Intent	object.	The	code	for
the	setUp	method	is	as	follows:

@Override

protected	void	setUp()	throws	Exception	{

super.setUp();

Intent	intent	=	new	Intent(getInstrumentation().getTargetContext(),	

MainActivity.class);

startActivity(intent,	null,	null);

mActivity	=	getActivity();

mHour	=	(TextView)	mActivity.findViewById(R.id.tvHour);

mMinute	=	(TextView)	mActivity.findViewById(R.id.tvMinute);

mValidate	=	(Button)	mActivity.findViewById(R.id.bValidate);

mMinus	=	(Button)	mActivity.findViewById(R.id.bMinus);

mPlus	=	(Button)	mActivity.findViewById(R.id.bPlus);

}

Layout	elements	are	accessed	by	their	ID	as	usual.	Because	the	test	code	is	included	in	a
different	package,	you	have	to	import	the	R	class	from	the	application	package.

The	clock	test
Let’s	start	implementing	test	methods.	First,	we	will	check	whether	the	clock	works
properly.	The	test	method	consists	of	clicking	on	both	the	buttons,	that	is,	-	10	min	and	+
10	min	and	checking	whether	the	values	for	the	hour	and	minute	texts	are	the	expected
ones.	Since	the	activity	runs	in	isolation,	the	TouchUtils	library	cannot	be	used,	but	the
performClick	method	can	be	invoked	instead,	as	follows:

public	void	testClock()	{

		mMinus.performClick();

		assertEquals("11",	mHour.getText());

		assertEquals("50",	mMinute.getText());

		

		mPlus.performClick();

		mPlus.performClick();

		mMinus.performClick();

		assertEquals("00",	mHour.getText());

		assertEquals("00",	mMinute.getText());

}

From	the	default	layout	values,	the	initial	hour	is	00:00.	On	clicking	the	minus	button
once,	the	resultant	hour	is	11:50.	On	clicking	the	plus	button	twice	and	the	minus	button
once,	the	final	hour	is	again	00:00.	The	conditions	are	checked	using	the	assertEquals
method.

Tip
If	you	want	to	test	complex	UI	events,	do	not	use	unit	tests;	you	should	create	a	functional
test	(ActivityInstrumentationTestCase2	test	case).

The	layout	test
The	second	test	method	to	be	implemented	is	used	to	test	whether	the	layout	is	correct.
The	text	of	the	UI	elements	can	be	checked,	or	the	assertion	methods	of	the	class
ViewAsserts	can	also	be	invoked.	A	simple	example	of	a	UI	test	for	our	example	is	shown
as	follows:

public	void	testUI()	{

		assertNotNull("Hour	text	view	not	found",	mHour);

		assertEquals("Wrong	button	label",	"Validate",	mValidate.getText());

		ViewAsserts.assertBottomAligned(mHour,	mMinute);

}

The	activity	Intent	test
The	last	test	method	we	will	implement	is	going	to	check	whether	the	second	activity	is
properly	launched.	First,	the	Validate	button	is	clicked	to	execute	the	code	that	will	create
Intent	of	the	second	activity.	The	getStartedActivityIntent	method	will	return	if	any
Intent	was	launched.	The	code	snippet	for	the	test	method	is	as	follows:

public	void	testSecondActivityLaunch()	{

		mValidate.performClick();

		

		Intent	triggeredIntent	=	getStartedActivityIntent();

		assertNotNull("Intent	was	null",	triggeredIntent);

		

		String	payload	=	triggeredIntent.getExtras().getString("hour");

		assertEquals("Wrong	data	passed	to	SecondActivity",	"00",	payload);

}

In	the	test	method,	Intent	is	checked	to	evaluate	whether	it	is	null.	Furthermore,	the	data
passed	to	the	second	activity	can	be	examined	as	well.

Note
The	created	Intent	is	not	really	sent	to	the	system	because	the	activity	runs	in	isolation.

Creating	a	functional	test
A	functional	test	evaluates	the	activity	and	its	communication	with	the	Android	system.
The	UI	events	or	changes	in	the	life	cycle	should	be	checked	in	a	functional	test.	In	this
section,	we	will	create	a	functional	test	for	the	main	activity	of	our	example	project.

Create	a	new	class	in	the	test	package	of	your	application	named	MainActivityTest.	This
class	extends	the	ActivityInstrumentationTestCase2	class	and	has	to	be	parameterized
with	the	activity	under	test,	shown	as	follows:

public	class	MainActivityTest	extends	

ActivityInstrumentationTestCase2<MainActivity>	{

		

		public	MainActivityTest()	{

				super(MainActivity.class);

}

For	this	example	of	functional	tests,	we	will	evaluate	the	UI	(white-box	testing),	launch	of
the	second	activity,	and	state	management.

The	functional	test	setup
The	fixture	state	of	our	test	case	includes	the	reference	to	the	activity	under	test	and	the
layout	objects	that	will	be	used	in	the	test	methods,	shown	as	follows:

private	MainActivity	mActivity;

private	TextView	mHour,	mMinute;

private	Button	mValidate;

private	EditText	mName;

Unlike	unit	testing,	the	getActivity()	method	is	enough	to	start	the	activity	under	test.
The	setUp	method	code	is	shown	as	follows:

@Override

protected	void	setUp()	throws	Exception	{

		super.setUp();

		

		setActivityInitialTouchMode(false);

		mActivity	=	getActivity();

		

		mHour	=	(TextView)	mActivity.findViewById(R.id.tvHour);

		mMinute	=	(TextView)	mActivity.findViewById(R.id.tvMinute);

		mValidate	=	(Button)	mActivity.findViewById(R.id.bValidate);

		mName	=	(EditText)	mActivity.findViewById(R.id.etName);

}

The	setActivityInitialTouchMode	method	sets	the	initial	touch	mode	for	the	activity.
Setting	the	mode	as	false	is	necessary	to	set	off	the	touch	mode	in	the	device	so	that	the
key	events	are	not	ignored.	This	method	should	be	called	before	starting	the	activity	with
the	getActivity	method	and	also	because	it	cannot	be	executed	on	the	UI	thread.

The	UI	test
In	the	first	test	method,	as	an	example	of	UI	testing,	we	will	evaluate	EditText	containing

the	name	of	the	alarm.	The	steps	to	be	implemented	for	this	test	are	as	follows:

1.	 Request	the	focus	of	the	edit	text	element.	This	step	interacts	with	View	of	the
application	and	therefore,	it	should	run	in	the	UI	thread,	that	is,	the	main	thread	of	the
application.	To	run	some	code	in	the	UI	thread,	you	can	use	the	runOnUiThread()
method	of	the	activity	under	test.

2.	 Send	key	events	to	write	the	alarm	name.	Only	an	instrumented	class	allows	to	send
key	events	to	the	activity	under	test.	Thanks	to	instrumentation,	it	is	not	necessary	to
run	these	calls	in	the	UI	thread	either.

3.	 Test	that	the	text	of	the	edit	field	is	the	same	as	expected.

The	UI	test	method	is	shown	as	follows:

public	void	testEditTextName()	{

		mActivity.runOnUiThread(new	Runnable()	{

				public	void	run()	{

						mName.requestFocus();

				}

		});

		

		sendKeys(KeyEvent.KEYCODE_A);

		sendKeys(KeyEvent.KEYCODE_L);

		sendKeys(KeyEvent.KEYCODE_1);

		

		getInstrumentation().waitForIdleSync();

		assertEquals("Wrong	alarm	name",	"al1",	mName.getText().toString());

}

The	waitForIdleSync	method	is	called	to	wait	for	the	application	to	be	idle.	Thus,	we
know	for	sure	that	the	text	has	been	completely	inserted	in	the	field.

The	activity	Intent	test
Unlike	unit	tests,	when	a	new	Intent	is	created,	it	is	sent	to	the	Android	system.	To
monitor	the	launched	activity,	we	can	register	an	ActivityMonitor	object	using
instrumentation.	Another	difference	between	functional	and	unit	tests	is	that	in	a
functional	test,	we	can	use	the	TouchUtils	library	to	send	a	click	event	on	a	UI	element,
shown	as	follows:

public	void	testSecondActivityLaunch()	{

		Instrumentation.ActivityMonitor	monitor	=	

getInstrumentation().addMonitor(SecondActivity.class.getName(),	null,	

false);

		

		TouchUtils.clickView(this,	mValidate);

		

		SecondActivity	secondActivity	=	(SecondActivity)	

monitor.waitForActivityWithTimeout(2000);

		assertNotNull(secondActivity);

		

		getInstrumentation().removeMonitor(monitor);

		sendKeys(KeyEvent.KEYCODE_BACK);

}

Our	code	performs	the	following	steps	for	this	test	method:

1.	 Creates	the	activity	monitor.
2.	 Sends	a	click	event	to	the	Validate	button.
3.	 When	the	monitor	receives	the	launched	activity,	it	verifies	that	the	activity	was

launched.
4.	 Deletes	the	monitor.
5.	 Closes	the	second	activity	by	sending	a	click	event	to	the	device’s	back	button.

The	state	management	test
This	last	test	method	checks	whether	the	activity	state	is	preserved	when	the	activity	is,	for
example,	paused	or	restarted.	For	this	example,	we	will	evaluate	how	our	main	activity
behaves	when	it	is	paused	and	resumed.	The	expected	behavior	is	that	the	hours	and
minutes	are	maintained.	Performing	a	reliable	test	is	necessary	to	directly	change	the	text
views	between	the	pausing	and	resuming	of	the	activity.	This	change	ensures	that	the
activity	actually	restores	the	previous	state.	The	code	of	this	method	is	as	follows:

@UiThreadTest

public	void	testStateManagement()	{

		mHour.setText("02");

		assertEquals("02",	mHour.getText());

		

		getInstrumentation().callActivityOnPause(mActivity);

		mHour.setText("11");

		getInstrumentation().callActivityOnResume(mActivity);

		assertEquals("02",	mHour.getText());

}

Notice	the	@UiThreadTest	annotation	before	the	method.	Methods	annotated	with
@UiThreadTest	are	executed	in	the	UI	thread.	In	the	previous	test	method,	the	setText
method	on	the	text	view	has	to	be	executed	on	the	UI	thread.	If	the	@UiThreadTest
annotation	is	not	added,	you	have	to	use	the	runOnUiThread()	method	instead.

Getting	the	results
We	already	have	an	application	and	two	test	cases	created	in	our	Android	project.	The
structure	of	the	project	can	be	seen	in	the	following	screenshot.	Run	the	application	once
to	check	that	there	are	no	errors	and	install	the	application	on	the	device.	In	this	section,
we	will	be	running	the	test	cases	and	examining	the	results.

In	Android	Studio,	select	the	package	containing	the	test	cases.	Click	on	it	using	the	right
mouse	button,	and	select	the	Run	‘Tests	in	<your_package>’	option.	In	the	bottom	part
of	Android	Studio,	open	the	Run	tab	to	see	the	test	execution.	On	the	left	part	of	this	tab,
you	can	inspect	the	test	execution	state.	From	the	buttons	on	the	left	side,	you	can	stop	the
test	execution	or	rerun	it.	The	next	screenshot	shows	the	initial	state	of	the	tests	being
initialized.	On	the	right	part	of	the	tab,	the	commands	and	results	are	listed	in	the	console.

While	a	test	method	is	being	executed,	it	is	also	revealed	on	the	left	panel	along	with	its
execution	state	such	as	whether	the	test	is	still	being	evaluated,	and	whether	the	test	was
passed	or	not	passed.	When	the	test	execution	is	completed,	all	the	results	are	displayed.
By	deselecting	the	Hide	Passed	icon	(highlighted	in	the	previous	screenshot),	you	can	see
all	the	test	methods.	Over	the	console,	a	color	bar	is	also	shown	in	green	or	red	to	indicate
whether	all	the	tests	were	passed	or	whether	there	were	any	fails.	In	our	example,	all	the
tests	were	passed	as	you	can	see	in	the	following	screenshot:

Try	to	insert	an	error	in	any	test	method,	for	example,	by	changing	the	following	line	of
code	from	the	testStateManagement()	test	method:

assertEquals("30",	mMinute.getText());

Change	the	preceding	line	of	code	to	the	following:

assertEquals("40",	mMinute.getText());

Run	the	tests	and	notice	that	now	the	fail	is	indicated	in	the	results.	The	following
screenshot	shows	how	the	fail	is	displayed:

Summary
In	this	chapter,	you	learned	more	about	Android	testing.	You	now	understand	the	structure
of	the	Android	testing	API	and	we	know	its	main	classes	and	methods.	You	also	learned
about	the	importance	of	instrumentation	to	test	activities	of	the	Android	applications.	We
set	up	the	testing	environment	using	Android	Studio	and	followed	the	complete	process	of
testing.

In	the	next	chapter,	you	will	learn	about	some	external	tools	different	from	Android
Studio.	These	tools	will	help	us	secure	and	test	our	Android	applications.

Chapter	10.	Supporting	Tools
In	this	chapter,	you	will	learn	about	the	external	tools	different	from	those	available	in
Android	Studio	that	will	help	us	test	our	Android	applications.	The	chapter	will	cover	test
tools	to	perform	unit	and	functional	tests.	It	will	also	cover	tools	that	help	us	secure	our
application	in	different	ways.	We	will	end	this	chapter	with	an	alternative	tool	that	allows
you	to	emulate	an	Android	device.

The	topics	that	are	going	to	be	covered	in	this	chapter	are:

Tools	for	unit	testing	Android	applications
Tools	for	functional	testing	Android	applications
Tools	for	securing	Android	applications
Some	other	tools

Tools	for	unit	testing
As	we	have	seen	in	Chapter	9,	Unit	and	Functional	Tests,	unit	testing	is	performed	with
minimal	connection	to	the	system	infrastructure	and	tests	the	different	components	in
isolation.	We	will	see	different	tools	that	allow	us	to	easily	perform	unit	tests	on	Android
applications.	They	are	as	follows:

Spoon
Mockito
Android	Mock
FEST	Android
Robolectric

Spoon
Spoon	is	not	a	new	form	of	unit	testing.	Instead,	it	makes	use	of	the	existing	unit	testing
instrumentation	such	as	JUnit	to	run	tests	on	multiple	devices.	With	Spoon,	you	can	test
your	application	on	many	devices	at	the	same	time.	When	the	test	is	completed,	you	will
receive	a	summary	generated	by	Spoon	with	all	the	information	regarding	the	test
performed	on	the	devices.	You	can	also	use	Spoon	for	functional	testing.

For	a	device	to	be	considered	by	Spoon	to	run	tests	on,	it	has	to	be	visible	to	the	Android
Debug	Bridge	(adb)	devices.	You	can	even	perform	the	tests	on	different	types	of	devices
at	the	same	time,	such	as	smartphones,	tablets,	phablets,	and	so	on,	and	in	different
versions	of	Android.	The	greater	the	diversity	of	the	devices,	the	more	useful	the	summary
will	be.	With	a	big	sample	of	devices,	you	can	find	more	potential	issues	to	be	addressed.
We	can	see	an	example	with	eight	devices	in	the	following	figure:

If	you	want	to	access	the	summary	of	the	testing	performed	on	a	single	device,	you	can	do
it	with	the	Device	View.	Spoon	makes	a	Device	View	available	for	each	device	in	the
sample	so	that	you	can	see	the	results	of	a	device	individually.	To	access	the	Device	View,
you	can	simply	click	on	the	name	of	a	device.	We	can	see	this	view	in	the	following
figure:

If	you	want	to	access	the	summary	of	a	specific	test	performed	on	all	the	devices	in	the
sample,	you	can	do	it	through	the	Test	View.	The	Test	View	displays	the	result	of	a	single
test	on	every	device.	In	case	of	an	error,	it	will	show	the	information	that	was	generated	by
the	error.	To	access	the	Test	View,	you	can	click	on	the	icon	with	the	shape	of	a
smartphone	on	the	Device	View.	We	can	see	an	example	of	this	view	in	the	following
screenshot:

If	you	want	to	check	the	view	of	the	application	at	any	point	in	time,	you	can	use	the
Screenshot	feature.	This	feature	allows	you	to	take	a	screenshot	of	the	information	being
displayed	to	the	user	at	any	given	moment	during	the	execution.	The	screenshots	are
available	in	both	the	Device	View	if	you	want	to	see	all	the	screenshots	taken	in	a	single
device,	and	the	Test	View	if	you	want	to	see	the	screenshots	taken	of	each	test	in	every
device.

To	make	use	of	this	feature,	you	need	to	include	the	spoon-client.jar	library	in	your
application.	When	you	want	to	take	a	screenshot,	you	can	call	the	static
screenshot(Activity,	String)	method	of	the	Spoon	class,	shown	as	follows:

Spoon.screenshot(activity,	"login_activity");

Note
If	you	want	to	know	more	about	Spoon	or	want	to	download	the	tool,	you	can	follow	this
link:

http://square.github.io/spoon/

http://square.github.io/spoon/

Mockito
Mockito	is	a	mock	testing	framework	for	Java	that	can	be	used	in	conjunction	with	JUnit
and	other	unit	testing	frameworks.	It	has	been	compatible	with	Android	since	Version
1.9.5.	Mockito	allows	the	use	of	automatic	unit	testing	to	enhance	the	quality	of	our	code.
Most	unit	testing	frameworks	are	based	on	an	expect-run-verify	pattern.	Mockito
removes	the	specification	of	expectations	reducing	the	pattern	to	run-verify.

We	already	know	that	unit	tests	are	performed	over	an	isolated	class.	This	means	that	their
interaction	with	other	classes	should	be	eliminated	when	possible.	As	seen	in	Chapter	9,
Unit	and	Functional	Tests,	you	can	achieve	these	interactions	using	mock	objects	also
known	as	stubs.	Mockito	allows	you	to	create	mock	objects	using	the	mock()	method.

You	can	also	initialize	a	mock	object	using	the	@Mock	annotation	and	the
MockitoAnnotations	class.	You	can	call	the	MockitoAnnotations.initMocks()	method
to	initiate	the	mock	objects	that	were	defined	with	the	@Mock	annotation.

The	verify()	method	can	be	called	on	a	mock	object	to	verify	that	a	certain	method	was
called.	To	specify	a	condition	and	a	return	value	when	the	condition	is	met,	you	can	use
the	when()	method	in	conjunction	with	the	thenReturn()	method.

For	example,	let’s	say	we	want	to	check	whether	the	test	method	was	called	in	the
following	code:

//	Create	the	mock	object

TestClass	testClassMock	=	Mockito.mock(TestClass.class);

//	Call	a	method	on	the	mock	object

boolean	result	=	testClassMock.test("hello	world");

//	Test	the	return	value

assertTrue	(result);

//	Check	that	the	method	test()	was	called

Mockito.verify(testClassMock).test("hello	world");

Mockito	cannot	be	used	to	test	final	classes,	anonymous	classes,	and	primitive	types.

Note
If	you	want	to	learn	more	about	Mockito,	visit	its	website:
https://code.google.com/p/mockito/

https://code.google.com/p/mockito/

Android	Mock
Android	Mock	is	similar	to	Mockito.	Android	Mock	is	also	a	framework	to	mock	classes
and	interfaces.	It	works	with	the	Android	Dalvik	Virtual	Machine.	It	is	based	on	the	Java
mocking	framework	EasyMock	and	uses	the	same	grammar	and	syntax.

In	order	to	learn	about	the	grammar	and	syntax	of	Android	Mock,	we	will	repeat	the	same
example	as	we	did	with	Mockito:

public	class	MockingTest	extends	TestCase	{

		//	Create	the	mock	object

		@UsesMocks(TestClass.class)

		TestClass	testClassMock	=	AndroidMock.createMock(TestClass.class);

		

		//	Tells	the	mock	object	that	the	method	test	will	be	called	and

		//	the	value	true	will	be	expected

		AndroidMock.expect(testClassMock.test("hello	world")).andReturn(true);

		

		//	Make	the	mock	object	ready	to	be	tested

		AndroidMock.replay(testClassMock);	

		

		//	Test	the	return	value

		assertTrue	(testClassMock.test("hello	world"));

		

		//	Test	that	the	method	test()	was	called

		AndroidMock.verify(testClassMock);

}

As	you	can	see,	the	main	difference	in	Android	Mock	and	Mockito	is	that	Android	Mock
follows	the	pattern	expectation-run-verify.

Note
If	you	want	to	learn	more	about	Android	Mock,	you	can	visit	the	project	website:
https://code.google.com/p/android-mock/.

https://code.google.com/p/android-mock/

FEST	Android
FEST	Android	is	a	library	that	extends	the	FEST	functionality	to	Android.	FEST	is	a	unit
test	framework	for	Java.	It	is	basically	a	simpler	form	of	making	assertions.	In	the
following	code,	we	see	the	differences	between	JUnit,	FEST,	and	FEST	for	Android:

//	Assertion	using	JUNIT

assertEquals(View.GONE,	view.getVisibility());

//	Assertion	using	FEST

assertThat(view.getVisibility()).isEqualTo(View.GONE);

//	Assertion	using	FEST	for	Android

assertThat(view).isGone();

FEST	for	Android	offers	assertions	that	are	executed	directly	on	objects	instead	of
properties.	This	makes	it	possible	to	chain	together	several	assertions,	shown	as	follows:

assertThat(layout).isVisible().isVertical().hasChildCount(3);

There	are	many	available	assertions	for	typical	Android	objects,	such	as	LinearLayout,
ActionBar,	Fragment,	and	MenuItem.

Note
If	you	want	to	learn	more	about	FEST,	you	can	visit	the	project	website	at
https://code.google.com/p/fest/.	If	you	want	to	learn	more	about	FEST	for	Android,	you
can	visit	the	URL	at	http://square.github.io/fest-android/.

https://code.google.com/p/fest/
http://square.github.io/fest-android/

Robolectric
Robolectric	allows	you	to	run	unit	tests	of	your	Android	application	on	your	workstation’s
Java	Virtual	Machine.	This	has	one	main	advantage,	that	is,	speed.	Running	unit	tests	in
Android	means	that	the	application	needs	to	be	loaded	either	on	the	Android	emulator	or
on	your	device.

Robolectric	takes	a	different	path	than	mock	frameworks	such	as	Mockito	and	instead	of
mocking	out	the	Android	SDK,	Robolectric	rewrites	the	Android	SDK	classes	and	makes
it	possible	to	run	them	on	a	regular	JVM.	It	can,	however,	be	used	in	conjunction	with
mocking	testing	frameworks	such	as	Mockito	or	Android	Mock.

Robolectric	makes	use	of	the	@RunWith	annotation	from	JUnit	4,	shown	as	follows:

@RunWith(RobolectricTestRunner.class)

public	class	Test1	{

		//	Your	tests

}

Note
If	you	want	to	learn	more	about	Robolectric,	you	can	visit	the	project	website	at
http://robolectric.org/.

http://robolectric.org/

Tools	for	functional	testing
In	Chapter	9,	Unit	and	Functional	Tests,	you	learned	how	functional	tests	are	performed
with	full	connection	to	the	system	infrastructure.	In	this	section,	we	will	look	at	the
different	tools	that	allow	us	to	easily	perform	functional	tests	in	Android	applications:

Robotium
Espresso
Appium
Calabash
MonkeyTalk
Bot-bot
Monkey
Wireshark

Robotium
Robotium	runs	on	the	official	Android	testing	framework.	It	adds	the	necessary	features	to
run	through	an	entire	Android	application.	It	has	full	support	for	both	native	and	hybrid
applications.

Now,	we	will	see	the	steps	needed	to	run	a	test	using	Robotium	on	our	Android
application:

1.	 Add	the	Robotium	JAR	to	your	Build	Path.
2.	 Create	a	test	case	using	the	JUnit	TestCase	class.
3.	 Write	the	test	case	code.
4.	 Run	the	test	case.

Tests	with	Robotium	are	performed	using	the	com.robotium.solo.Solo	class	available	in
the	Robotium	library.

We	will	now	see	an	example	of	the	white-box	testing	using	Robotium.	In	this	example,	we
have	two	EditText	fields:	one	where	the	user	can	input	a	numeric	value	ValueEditText
and	another	one	that	will	display	the	value	of	the	input	multiplied	by	2,	ResultEditText.
The	multiplication	is	made	when	the	Button1	button	is	clicked:

public	class	TestMain	extends	

ActivityInstrumentationTestCase2<MainActivity>	{

		

		//	Declaration	of	the	Solo	object

		private	Solo	mSolo;

		

		//	Constructor

		public	TestMain()	{

				super(Main.class);

		}

		

		//	Set	Up

		@Override

		protected	void	setUp()	throws	Exception	{

				super.setUp();

				//	Initiate	the	instance	of	Solo

				mSolo	=	new	Solo(getInstrumentation(),	getActivity());

		}

		

		//	White-Box	Test	Code

		public	void	testWhiteBox()	{

				EditText	valueEditText	=	(EditText)	solo.getView(R.id.ValueEditText);

				EditText	resultEditText	=	(EditText)	solo.getView(R.id.ResultEditText);

				

				//	Clears	the	Edit	Text

				mSolo.clearEditText(valueEditText);

				//	Sets	the	value	of	the	EditText	to	10

				mSolo.enterText(valueEditText,	String.valueOf(10));

				

				//	Clicks	on	Button1

				mSolo.clickOnButton("Button1");

				

				//	Assert	to	check	if	it	worked

				assertEquals(String.valueOf(20),							

resultEditText.getText().toString());

		}

}

Note
If	you	want	to	learn	more	about	Robotium,	you	can	visit	the	project	website	at
https://code.google.com/p/robotium/.	If	you	want	to	learn	how	to	use	Robotium,	we
recommend	the	official	getting	started	guide:
https://code.google.com/p/robotium/wiki/Getting_Started.

https://code.google.com/p/robotium/
https://code.google.com/p/robotium/wiki/Getting_Started

Espresso
Espresso	is	an	API	that	lets	you	test	state	expectations,	assertions,	and	interactions.	There
are	many	actions	that	can	be	performed	with	Espresso	using	a	simple	syntax.	Let’s	see
how	the	example	we	used	for	Robotium	will	be	executed	with	Espresso:

public	void	testWhiteBox()	{

		

		//	Type	the	text	"10"	in	the	ValueEditText

		onView(withId(R.id.ValueEditText)).perform(typeText("10"));

		

		//	Click	the	button	Button1

		onView(withId(R.id.Button1)).perform(click());

		

		//	Check	if	the	value	displayed	is	"20"

		onView(withText("20").check(matches(isDisplayed()));

}

To	make	use	of	the	Espresso	library	in	Android	Studio,	you	need	to	follow	these	steps:

1.	 Add	the	Espresso	JAR	as	a	library	dependency.
2.	 Add	this	instrumentation	to	your	project	AndroidManifest.xml:

<instrumentation	

android:name="com.google.android.apps.common.testing.testrunner.GoogleI

nstrumentationTestRunner"	android:targetPackage="YOUR_PACKAGE"/>

3.	 Configure	tests	to	run	with	GoogleInstrumentationTestRunner.

Note
If	you	want	to	learn	more	about	Espresso,	you	can	visit	the	project	website	at
https://code.google.com/p/android-test-kit/wiki/Espresso.	If	you	have	15	minutes	to
spare,	we	recommend	their	Google	Test	Automation	Conference	2013	presentation	at
https://www.youtube.com/watch?v=T7ugmCuNxDU.

https://code.google.com/p/android-test-kit/wiki/Espresso
https://www.youtube.com/watch?v=T7ugmCuNxDU

Appium
Appium	is	an	open	source	framework	that	allows	automated	testing.	Appium	works	with
both	native	and	hybrid	Android	applications.	It	even	works	with	iOS.	Appium	is	a	good
solution	if	you	need	to	test	in	both	Android	and	iOS.

Note
To	download	or	just	learn	more	about	Appium,	you	can	visit	their	website	at
http://appium.io/.	If	you	want	to	see	examples	for	Appium,	visit	their	GitHub	at
https://github.com/appium/appium/tree/master/sample-code/examples.

http://appium.io/
https://github.com/appium/appium/tree/master/sample-code/examples

Calabash
Just	like	Appium,	Calabash	is	also	a	multiplatform	framework	that	performs	automated
tests.	It	works	with	Android	native	applications,	hybrid	applications,	and	iOS	native
applications.	Calabash	allows	you	to	take	screenshots	of	the	current	view	in	a	determined
instant.	One	of	the	things	that	separate	Calabash	from	the	other	testing	frameworks	is	that
it	supports	Cucumber.	Cucumber	allows	people	with	less	expertise	in	this	matter	to	easily
define	the	behavior	of	the	application	using	natural	language,	for	example:

When	I	touch	the	"addition"	button

Then	I	should	see	"20"

The	Calabash	tool	is	based	on	ActivityInstrumentationTestCase2	from	the	Android
SDK.

Note
If	you	want	to	know	more	about	Calabash,	you	can	visit	the	project	website:
http://calaba.sh/.	To	learn	more	about	the	Cucumber	project,	visit	their	website:
http://cukes.info/.

http://calaba.sh/
http://cukes.info/

MonkeyTalk
MonkeyTalk	is	yet	another	multiplatform	automated	test	framework.	MonkeyTalk
supports	more	features	than	Appium	and	Calabash.	However,	the	version	with	every
feature	available	is	a	subscription-licensed	product	that	is	currently	offered	in	a	free	beta
version	but	will	be	charged	when	the	beta	is	over.

Note
If	you	want	to	download	MonkeyTalk	or	just	learn	more	about	it,	you	can	visit	the	project
website	at	http://www.cloudmonkeymobile.com/monkeytalk.	To	see	an	example	using	the
MonkeyTalk	framework	with	an	Android	application,	watch	the	following	YouTube
video:	https://www.youtube.com/watch?v=pjDGctTnThQ.

http://www.cloudmonkeymobile.com/monkeytalk
https://www.youtube.com/watch?v=pjDGctTnThQ

Bot-bot
Bot-bot	is	an	Android	automation	testing	tool	with	two	interesting	features:	record	and
replay.	You	do	not	need	to	add	any	kind	of	library	or	dependency	to	your	project,	since	the
only	thing	bot-bot	needs	is	an	APK	of	the	application	you	want	to	test.	The	record	feature
allows	you	to	store	the	sequence	of	events	that	were	triggered.	It	works	both	on	a
simulator	and	a	real	device.	The	recorded	test	cases	can	be	exported	in	the	CSV	format
and	replayed	using	the	bot-bot	tool.

Bot-bot	consists	of	three	elements:

The	bot-bot	server:	This	server	is	used	to	store	and	modify	the	actions	taken	on	the
Android	application.	It	includes	a	simple	HTML	interface	that	allows	you	to	view
recorded	sessions,	view	recorded	entries	of	a	session,	modify	or	create	assertions,
export	recorded	sessions	in	CSV,	and	delete	recorded	sessions.
The	bot-bot	recorder:	This	recorder	tracks	the	user	actions	on	the	Android
application	that	are	being	tested,	and	sends	these	tasks	to	the	bot-bot	server.	It
supports	recording	of	actions	on	TextBoxes,	Adapters,	and	Spinners.	It	also	records
clicks	on	elements	and	views.	It	does	not	support	actions	on	WebViews.
The	bot-bot	runner:	This	runner	takes	the	exported	sessions	in	the	CSV	format	and
interprets	them.	The	bot-bot	runner	then	executes	the	actions	on	the	Android
application	and	generates	an	HTML	report	that	shows	the	execution	of	the	test	cases
defined.

The	following	screenshot	shows	an	example	of	a	generated	HTML	report	by	the	bot-bot
runner:

Bot-bot	is	perfectly	integrated	with	Robotium.

Note
If	you	want	to	download	the	bot-bot	application,	you	can	visit	their	website:
http://imaginea.github.io/bot-bot/.	To	learn	how	to	use	the	bot-bot	tool,	we	recommend	the
official	Get	Started	guide:	http://imaginea.github.io/bot-bot/pages/get_started.html.

http://imaginea.github.io/bot-bot/
http://imaginea.github.io/bot-bot/pages/get_started.html

Monkey
Monkey	is	a	command-line	tool	that	runs	on	your	Android	emulator	or	device.	It	generates
random	user	events	and	system-level	events	to	stress	test	your	application.	Although	the
interactions	are	random,	they	are	based	on	a	seeding	system	and	therefore	you	can	repeat
the	same	sequence	of	actions	using	the	same	seed.	This	is	important	since	otherwise,	you
would	not	be	able	to	repeat	the	sequence	that	produced	an	error	to	check	whether	it	was
fixed.

There	are	four	main	categories	of	options	in	Monkey:

Basic	configuration	options:	An	example	of	this	can	be	the	help	or	verbosity	level
Operational	constraints:	An	example	of	this	can	be	the	packages	in	which	the	stress
test	will	be	performed
Event	types:	An	example	of	this	can	be	the	number	of	events,	random	seed,	and
delay	between	events
Debugging	options:	An	example	of	this	can	be	killing	the	process	after	an	error	or
ignoring	the	security	exceptions

To	launch	the	Monkey,	you	need	to	use	a	command	line	on	your	development	machine
shown	as	follows:

adb	shell	monkey	–p	com.packt.package	–v	100

The	–p	argument	states	the	package	where	the	Monkey	will	send	random	events.	The	–v
parameter	states	the	number	of	random	events	that	will	be	sent.

Note
There	are	many	other	parameters	for	Monkey.	If	you	want	to	learn	about	these	parameters,
you	can	visit	the	official	Android	guide:
http://developer.android.com/tools/help/monkey.html.

http://developer.android.com/tools/help/monkey.html

Wireshark
Wireshark,	formerly	known	as	Ethereal,	is	a	protocol	analyzer	used	to	perform	analysis
and	solve	problems	related	to	network	connectivity.	Its	functionality	is	similar	to	the	tool
tcpdump,	but	Wireshark	provides	a	more	intuitive	GUI.

You	can	use	Wireshark	in	combination	with	your	Android	emulator	to	check	what
information	is	being	transferred	to	and	from	your	Android	application.	The	main	issue
with	this	tool	is	that	you	need	to	know	what	packages	to	expect,	since	otherwise	the	task
of	filtering	can	become	really	difficult.	The	best	advice	we	can	give	is	to	close	the	browser
and	other	programs	in	your	computer	that	may	generate	network	traffic	to	keep	it	to	a
minimum.

In	this	book,	we	already	discussed	Wireshark	in	Chapter	6,	Securing	Communications.
One	of	the	topics	we	discussed	was	that	we	can	use	Wireshark	to	test	whether	the	data	we
are	sending	is	being	encrypted	properly	or	not.	Other	alternatives	to	Wireshark	are	Fiddler
for	Windows	and	Charles	proxy	for	OS	X.	A	screenshot	of	Wireshark	is	shown	in	the
following	figure:

Note
If	you	want	to	download	or	learn	more	about	Wireshark,	visit	their	website:
http://www.wireshark.org/.

http://www.wireshark.org/

Other	tools
In	this	last	section,	we	will	see	a	tool	that	is	not	directly	related	to	application	testing	or
security	testing.	However,	it	can	significantly	improve	our	testing	experience.

Genymotion
Genymotion	is	an	alternative	and	unofficial	Android	emulator.	It	is	basically	a	virtual
emulator	that	creates	a	virtual	image	of	Android	and	is	often	considered	much	faster	than
the	official	Android	emulator.	It	is	available	for	Windows,	Linux,	and	Mac	OS.	If	you	are
using	Windows	or	Linux,	you	only	need	to	install	the	Genymotion	distribution	package.
However,	if	you	are	using	Mac	OS,	you	need	to	download	and	install	VirtualBox
manually.	The	following	is	a	screenshot	captured	from	the	virtual	device	manager	that	lists
all	the	virtual	devices	available:

Note
If	you	want	to	get	started	with	using	Genymotion,	you	can	visit	our	blog:
http://belencruz.com/2014/01/first-look-at-genymotion-android-emulator/.	To	download
and	learn	more	about	Genymotion,	visit	the	project	website:	http://www.genymotion.com/.
If	you	are	using	Mac	OS	and	need	to	download	VirtualBox,	follow	this	link:
https://www.virtualbox.org/.

http://belencruz.com/2014/01/first-look-at-genymotion-android-emulator/
http://www.genymotion.com/
https://www.virtualbox.org/

Summary
In	this	chapter,	you	learned	about	the	external	tools	that	help	us	perform	tests	on	our
Android	applications.	The	chapter	covered	several	automated	unit	testing	tools	and	several
automated	functional	testing	tools.	You	also	learned	how	to	stress	test	our	applications
using	Monkey	and	what	tools	we	will	need	if	we	want	to	check	the	network	connectivity
of	our	application.	An	alternative	Android	emulator	that	is	in	most	cases	faster	than	the
official	one	was	reviewed	too.

In	the	next	chapter,	which	is	the	last	chapter,	you	will	learn	about	some	tips	that	are	very
useful	for	developers.	You	will	also	learn	how	to	get	help	in	case	you	need	it.

Chapter	11.	Further	Considerations
This	chapter	provides	some	further	considerations	that	are	useful	for	developers.	We	will
review	what	are	the	most	important	parts	of	our	application	that	we	need	to	test.	This
chapter	also	contains	information	about	how	to	get	help	for	more	advanced	topics.

The	topics	that	will	be	covered	in	this	chapter	are:

What	to	test
Developer	options
Getting	help

What	to	test
In	the	previous	chapters,	you	learned	about	the	Android	testing	API	working	with	Android
Studio.	Apart	from	knowing	about	activity	and	UI	testing,	considering	what	parts	of	your
application	should	be	evaluated	is	also	important.

Network	access
If	your	application	depends	on	the	network	access,	you	should	examine	the	behavior	of
your	application	when	different	network	states	are	given.	Consider	the	following
suggestions:

If	your	application	completely	depends	on	the	network	when	it	is	launched	and	there
is	no	network	access,	it	should	at	least	show	a	default	home	screen.	Your	application
should	not	show	a	blank	screen	with	any	information	on	it.	Let	the	user	know	that
he/she	should	review	the	device	connectivity.	The	network	state	can	be	checked	using
the	ConnectivityManager	class	in	the	following	code:

ConnectivityManager	connManager	=	(ConnectivityManager)	

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo	netInfo	=	connManager.getActiveNetworkInfo();

if	(netInfo	!=	null	&&	netInfo.isConnected())	{

		//	Connect

}	else	{

		//	display	default	screen

}

When	there	are	problems	accessing	the	network	that	affect	the	normal	behavior	of
your	application,	let	the	user	know	this	by	displaying	a	message.
When	performing	long	network	operations,	the	user	should	also	be	able	to	use	your
application.	Check	that	your	application	continues	working	properly	even	while
performing	long	network	operations.
Your	application’s	data	should	maintain	its	consistency.	If	your	application	sends	or
receives	any	kind	of	information	to	or	from	your	server,	this	information	should	be
correctly	synchronized.	Check	that	your	application	and	server	can	recover	from	a
network	failure	and	maintain	the	consistency	of	your	application’s	data.
To	mitigate	network	failures,	your	application	can	cache	some	of	the	information.
Check	the	management	of	the	cached	information	and	its	usage	when	there	is	no
network	access.
A	good	policy	is	to	change	the	behavior	of	your	application	depending	on	the	type	of
network	access,	for	example,	it	should	be	able	to	detect	whether	the	device	is
connected	to	a	Wi-Fi	or	3G	network	and	work	accordingly.	You	should	test	whether
your	application	follows	the	defined	policy	and	whether	it	is	able	to	react	to	changes
in	the	connection	type.	The	connection	type	can	be	checked	using	the	following	code:

boolean	wifiConnected	=	netInfo.getType()	==	

ConnectivityManager.TYPE_WIFI;

boolean	mobileConnected	=	netInfo.getType()	==	

ConnectivityManager.TYPE_MOBILE;

If	there	is	a	network	failure,	your	application	should	retry	after	a	while.	You	should
check	which	behavior	is	appropriate	for	your	application	and	whether	it	is	capable	of
recovering	from	failures.

Media	availability
If	your	application	depends	on	external	media,	your	code	should	check	the	availability	of
that	media.	While	designing	your	tests,	you	should	evaluate	whether	your	application
behaves	correctly	if	the	media	is	not	available.

For	example,	if	your	application	works	with	an	external	storage,	you	can	check	its	state	by
using	the	Environment.getExternalStorageState	method,	as	it	was	shown	in	Chapter	5,
Preserving	Data	Privacy.	To	test	the	external	storage	availability,	you	can	configure	the
AVD	to	run	on	the	emulator	from	Android	Studio,	as	it	is	shown	in	the	following
screenshot:

Change	in	orientation
If	a	device	supports	multiple	orientations,	your	application	should	be	prepared	for	the
same.	You	have	to	decide	whether	your	application	will	block	the	orientation	changes	or
not.	If	your	application	supports	orientation	changes,	consider	the	following	suggestions:

When	there	is	an	orientation	change,	the	current	activity	is	destroyed	and	restarted.
Check	that	the	activity	state	is	maintained.	For	example,	if	your	activity	contains	an
input	field	that	the	user	can	edit,	its	content	has	to	be	preserved	when	the	device
orientation	changes.
Your	UI	should	also	adapt	to	the	device’s	current	orientation.	The	position	and
distribution	of	your	UI	elements	are	different	on	a	portrait	orientation	than	on	a
landscape	one.	You	should	check	that	the	design	of	your	UI	is	perfectly	displayed	in
both	the	orientations.

You	can	change	the	emulator	orientation	by	pressing	Ctrl	+	F11	in	Windows	or	Linux,	or
Fn	+	Ctrl	+	F11	in	Mac	OS.	To	check	the	orientation	changes,	you	can	override	the
onConfigurationChanged	method	of	your	activities,	shown	as	follows:

@Override

public	void	onConfigurationChanged(Configuration	newConfig)	{

		super.onConfigurationChanged(newConfig);

		

		if	(newConfig.orientation	==	Configuration.ORIENTATION_LANDSCAPE)	{

		…

}	else	if	(newConfig.orientation	==	Configuration.ORIENTATION_PORTRAIT){

		…

		}

}

Service	and	content	provider	testing
In	Android,	we	can	test	the	UI,	activities,	services,	and	content	providers.	In	Chapter	9,
Unit	and	Functional	Tests,	activity	testing	was	explained.	But	you	should	not	forget	about
services	testing	and	content	providers	testing.	The	classes	in	the	Android	testing	API	used
to	evaluate	services	and	content	providers	are	listed	in	the	following	figure:

The	AndroidTestCase	class	and	its	subclasses	belong	to	the	android.test	package.	It
represents	a	test	case	to	be	used	in	the	Android	environment.	Since	this	class	is	generic,
you	should	use	one	of	its	subclasses.	The	ProviderTestCase2	class	is	used	to	test	content
providers.	The	ServiceTestCase	class	is	used	to	test	services.

Developer	options
The	Android	system	provides	a	set	of	on-device	developer	options	that	will	help	you	test
your	application.	These	options	are	available	in	the	Settings	menu	of	any	Android	device.
On	Android	4.2	and	higher,	the	developer	options	are	hidden.	Click	on	the	About	phone
option	in	the	Settings	menu	and	click	on	the	Build	number	seven	times	to	make	them
available.	The	following	screenshot	shows	the	Developer	options	in	Android’s	Settings
menu:

The	Developer	options	are	organized	into	seven	categories,	described	as	follows:

General:	This	option	is	not	present	in	any	category.	For	example,	you	can	get	a	bug
report	by	selecting	the	Take	bug	report	option.
Debugging:	This	category	includes	useful	tools	to	debug	your	application.	For
example,	when	you	want	to	test	your	application	on	a	real	device,	you	should	check
the	USB	debugging	option	contained	in	this	category.	You	can	also	select	a	debug
app	(Select	debug	app)	or	allow	mock	locations	(Allow	mock	locations).
Input:	This	category	contains	two	tools.	These	are	Show	touches	to	provide	a	visual
feedback	for	touches	on	the	screen,	and	Pointer	location	to	overlay	the	touch	data	on
the	screen.
Drawing:	This	category	includes	options	to	change	the	graphical	behavior	of	the
application	and	the	system	itself,	such	as	Show	surface	updates,	Show	layout
bounds,	Force	RTL	layout	direction,	and	Simulate	secondary	displays.	You	may
want	to	disable	animations	that	take	place	when	an	application	is	opened.	To	do	so,
you	can	set	to	Animation	off	the	following	options:	Window	animation	scale,
Transition	animation	scale,	and	Animator	duration	scale.
Hardware	accelerated	rendering:	In	this	section,	you	can	change	the	behavior	of
the	Graphics	Processing	Unit	(GPU).	The	options	available	are	Force	GPU
rendering,	Show	GPU	view	updates,	Show	hardware	layers	updates,	Debug
GPU	overdraw,	Debug	non-rectangular	clip	operation,	Force	4xMSAA,	and
Disable	HW	overlays.
Monitoring:	This	category	contains	options	that	allow	you	to	track	possible

problems	or	malfunctions.	The	options	available	are	Strict	mode	enabled,	Show
CPU	usage,	Profile	GPU	rendering,	and	Enable	OpenGL	traces.
Apps:	This	category	includes	options	to	manage	the	behavior	of	applications	when
they	are	running	in	the	background.	Activating	Don’t	keep	activities	will	destroy
every	activity	when	the	user	leaves	it.	The	background	process	limit	allows	you	to
control	the	number	of	processes	that	can	be	executed	in	the	background.	If	you
activate	the	option	Show	all	ANRs,	applications	will	display	a	dialog	when	they
don’t	respond.

Getting	help
If	you	want	to	access	the	Android	Studio	documentation,	you	can	do	it	through	the	IntelliJ
IDEA	web	help.	You	can	go	to	Help	|	Online	Documentation,	or	access	the	web	page
http://www.jetbrains.com/idea/documentation/.	You	can	also	go	to	Help	|	Help	Topics	to
directly	open	the	documentation	contents	tree,	or	visit	the	web	page
http://www.jetbrains.com/idea/webhelp/intellij-idea.html.

Android’s	official	documentation	is	provided	by	Google	and	is	available	at
http://developer.android.com/.	The	Android	documentation	includes	every	kind	of	guide	to
learn	how	to	program	Android	applications.	It	also	includes	design	guidelines	and	even
tips	on	distributing	and	promoting	your	application.

Some	of	the	important	references	of	all	the	previous	chapters	are	listed	as	follows:

Chapter	1,	Introduction	to	Software	Security:

Glossary	of	terms	at	http://www.sans.org/security-resources/glossary-of-terms/

Chapter	2,	Security	in	Android	Applications:

Content	providers	at
http://developer.android.com/guide/topics/providers/content-providers.html
Intent	filters	at	http://developer.android.com/guide/components/intents-
filters.html

Chapter	3,	Monitoring	Your	Application:

DDMS	at	http://developer.android.com/tools/debugging/ddms.html

Chapter	4,	Mitigating	Vulnerabilities:

The	Pattern	class	at
http://developer.android.com/reference/java/util/regex/Pattern.html
Storing	data	at	http://developer.android.com/training/articles/security-
tips.html#StoringData

Chapter	5,	Preserving	Data	Privacy:

Cipher	at	http://developer.android.com/reference/javax/crypto/Cipher.html
Storage	options	at	http://developer.android.com/guide/topics/data/data-
storage.html#filesInternal

Chapter	6,	Securing	Communications:

Using	cryptography	at	http://developer.android.com/training/articles/security-
tips.html#Crypto
Security	with	HTTPS	and	SSL	at
http://developer.android.com/training/articles/security-ssl.html

Chapter	7,	Authentication	Methods:

AccountManager	at

http://www.jetbrains.com/idea/documentation/
http://www.jetbrains.com/idea/webhelp/intellij-idea.html
http://developer.android.com/
http://www.sans.org/security-resources/glossary-of-terms/
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/reference/java/util/regex/Pattern.html
http://developer.android.com/training/articles/security-tips.html#StoringData
http://developer.android.com/reference/javax/crypto/Cipher.html
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/training/articles/security-tips.html#Crypto
http://developer.android.com/training/articles/security-ssl.html

http://developer.android.com/reference/android/accounts/AccountManager.html

Chapter	8,	Testing	Your	Application:

UI	testing	at	http://developer.android.com/tools/testing/testing_ui.html
uiautomator	at	http://developer.android.com/tools/help/uiautomator/index.html

Chapter	9,	Unit	and	Functional	Tests:

Creating	unit	tests	at	http://developer.android.com/training/activity-
testing/activity-unit-testing.html
Creating	functional	tests	at	http://developer.android.com/training/activity-
testing/activity-functional-testing.html
ViewAsserts	at
http://developer.android.com/reference/android/test/ViewAsserts.html
MoreAsserts	at
http://developer.android.com/reference/android/test/MoreAsserts.html

Chapter	10,	Supporting	Tools:

Spoon	at	http://square.github.io/spoon/
Mockito	at	https://code.google.com/p/mockito/
Android	Mock	at	https://code.google.com/p/android-mock/
FEST	Android	at	http://square.github.io/fest-android/
Robolectric	at	http://robolectric.org/
Robotium	at	https://code.google.com/p/robotium/
Espresso	at	https://code.google.com/p/android-test-kit/wiki/Espresso
Appium	at	http://appium.io/
Calabash	at	http://calaba.sh/
MonkeyTalk	at	http://www.cloudmonkeymobile.com/monkeytalk
Bot-bot	at	http://imaginea.github.io/bot-bot/
Monkey	at	http://developer.android.com/tools/help/monkey.html
Wireshark	at	http://www.wireshark.org/
Genymotion	at	http://www.genymotion.com/

http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/tools/testing/testing_ui.html
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/training/activity-testing/activity-unit-testing.html
http://developer.android.com/training/activity-testing/activity-functional-testing.html
http://developer.android.com/reference/android/test/ViewAsserts.html
http://developer.android.com/reference/android/test/MoreAsserts.html
http://square.github.io/spoon/
https://code.google.com/p/mockito/
https://code.google.com/p/android-mock/
http://square.github.io/fest-android/
http://robolectric.org/
https://code.google.com/p/robotium/
https://code.google.com/p/android-test-kit/wiki/Espresso
http://appium.io/
http://calaba.sh/
http://www.cloudmonkeymobile.com/monkeytalk
http://imaginea.github.io/bot-bot/
http://developer.android.com/tools/help/monkey.html
http://www.wireshark.org/
http://www.genymotion.com/

Summary
In	this	chapter,	you	learned	about	which	parts	of	our	application	are	more	important	to
evaluate	and	test.	We	reviewed	the	developer	options	available	in	Android	and	how	to
access	them.	We	also	learned	how	to	get	additional	help	using	the	official	documentation
and	other	sources.

Index
A

acceptance	tests	/	Testing	the	basics
access	control,	software	security	/	Software	security	terms
AccountManager	class

about	/	AccountManager
using	/	AccountManager

activity
about	/	Intents

Activity.runOnUiThread()	method
about	/	UI	testing	and	TouchUtils

ActivityInstrumentationTestCase2	class
about	/	The	test	case	classes

activity	lifecycle	methods	/	Instrumentation
activity	test

creating	/	Creating	an	activity	test
unit	test,	creating	/	Creating	a	unit	test
functional	test,	creating	/	Creating	a	functional	test
executing	/	Getting	the	results

ActivityTestCase	class
about	/	The	test	case	classes

ActivityUnitTestCase	class
about	/	The	test	case	classes

addMonitor	method	/	Instrumentation
Allocation	Tracker	tab

displaying	/	Allocation	Tracker
All	pairs	testing	technique	/	Testing	the	basics
Android

about	/	The	mobile	environment
Android	application

testing	/	Testing	in	Android
Android	application	package	(APK)	/	Permissions
Android	Application	Sandbox	/	An	overview	of	Android	security
Android	Debug	Bridge	(adb)	/	Spoon
Android	instrumentation

about	/	Instrumentation
Android	Mock

about	/	Android	Mock
URL	/	Android	Mock

Android	SDK
used,	for	testing	Android	application	/	Testing	in	Android

Android	security

overview	/	An	overview	of	Android	security
features	/	An	overview	of	Android	security

Android	Studio
about	/	Android	Studio
URL,	for	documentation	/	Getting	help
help,	obtaining	/	Getting	help

Android	Virtual	Device	(AVD)
about	/	The	uiautomatorviewer	tool

API
about	/	Permissions

app
about	/	The	mobile	environment

Appium
about	/	Appium
URL,	for	downloading	/	Appium,	Calabash

application	layer
about	/	HTTPS

application	sandboxing	/	An	overview	of	Android	security
Assert	class

about	/	The	Assert	class	and	method
ViewAsserts	class	/	The	ViewAsserts	class
MoreAsserts	class	/	The	MoreAsserts	class

assertEquals	method	/	The	Assert	class	and	method
assertFalse	method	/	The	Assert	class	and	method
assert	method

about	/	The	Assert	class	and	method
assertEquals	method	/	The	Assert	class	and	method
assertTrue	method	/	The	Assert	class	and	method
assertFalse	method	/	The	Assert	class	and	method
assertNull	method	/	The	Assert	class	and	method
assertNotNull	method	/	The	Assert	class	and	method
assertSame	method	/	The	Assert	class	and	method
assertNotSame	method	/	The	Assert	class	and	method
fail	method	/	The	Assert	class	and	method

assertNotNull	method	/	The	Assert	class	and	method
assertNotSame	method	/	The	Assert	class	and	method
assertNull	method	/	The	Assert	class	and	method
assertSame	method	/	The	Assert	class	and	method
assertTrue	method	/	The	Assert	class	and	method
asymmetric	cryptography,	software	security	/	Software	security	terms
asymmetric	encryption

about	/	Encryption
authentication,	software	security	/	Software	security	terms
authentication	factors

knowledge	factor	/	The	knowledge	factor
possession	factor	/	The	possession	factor
inherence	factor	/	The	inherence	factor

availability,	software	security	/	Software	security	terms

B
basis	path	testing	/	Testing	the	basics
biometric	authentication

about	/	The	inherence	factor
biometric	identifiers

physiological	characteristics	/	The	inherence	factor
behavioral	characteristics	/	The	inherence	factor

black-box	testing
about	/	Testing	the	UI

black-box	tests
about	/	Testing	the	basics

black-box	tests,	techniques
equivalence	partitioning	/	Testing	the	basics
boundary	value	analysis	/	Testing	the	basics
state	transition	testing	/	Testing	the	basics
all	pairs	testing	/	Testing	the	basics
syntax	testing	/	Testing	the	basics

bot-bot
about	/	Bot-bot
server	/	Bot-bot
recorder	/	Bot-bot
runner	/	Bot-bot
URL,	for	downloading	/	Bot-bot

bot-bot	recorder
about	/	Bot-bot

bot-bot	runner
about	/	Bot-bot

bot-bot	server
about	/	Bot-bot

boundary	value	analysis	technique	/	Testing	the	basics
broadcast	messages,	types

normal	/	Intents
ordered	/	Intents
sticky	/	Intents

broadcast	receivers
about	/	Intents

brute	force,	software	security	/	Software	security	terms

C
Calabash

about	/	Calabash
categories,	developer	options

General	/	Developer	options
Debugging	/	Developer	options
Input	/	Developer	options
Drawing	/	Developer	options
Hardware	accelerated	rendering	/	Developer	options
Monitoring	/	Developer	options
Apps	/	Developer	options

Cause-effect	graphing	technique	/	Testing	the	basics
certificate

about	/	Server	and	client	certificates
creating	/	Server	and	client	certificates
using	/	Server	and	client	certificates

certificate.crt	file	/	Keytool	in	the	terminal
Certificate	Authority	(CA)	/	Code	examples	using	HTTPS
certificates

about	/	An	overview	of	Android	security
Cipher,	software	security	/	Software	security	terms
code	injection,	software	security	/	Software	security	terms
confidentiality,	software	security	/	Software	security	terms
Console

about	/	Debugging	and	DDMS
content	provider

testing	/	Service	and	content	provider	testing
content	providers

about	/	Content	providers
URL,	for	official	documentation	/	Content	providers
securing	/	Securing	the	content	providers
securing,	precautions	/	Securing	the	content	providers

control	flow	testing	/	Testing	the	basics
crack,	software	security	/	Software	security	terms
cryptographic	keys

about	/	The	possession	factor

D
.db	file

about	/	The	database	storage
dangerous	permission	level

about	/	Permissions
data

storing,	encryption	used	/	Using	encryption	to	store	data
database	storage

about	/	The	database	storage
Data	Encryption	Standard	(DES)

about	/	SSL	and	TLS
data	flow	testing	/	Testing	the	basics
data	privacy

about	/	Data	privacy
DDMS

about	/	Debugging	and	DDMS
debugger

about	/	Debugging	and	DDMS
debugging

about	/	Debugging	and	DDMS
decryption,	software	security	/	Software	security	terms
Denial-of-service	(DoS)	/	Software	security	terms
developer	options

about	/	Developer	options
categories	/	Developer	options

Device	View
about	/	Spoon

Dictionary	attack	/	Software	security	terms
Distributed	denial-of-service	(DDoS)	/	Software	security	terms
doFinal	method

about	/	Encryption

E
electronic	commerce	(e-commerce)	/	Software	security	terms
Emulator	Control	tab

about	/	Emulator	Control
Telephony	Status	/	Emulator	Control
Telephony	Actions	/	Emulator	Control
Location	Controls	/	Emulator	Control

encryption	/	Software	security	terms
about	/	Encryption
symmetric	encryption	/	Encryption
asymmetric	encryption	/	Encryption
key,	generating	/	Generating	a	key
used,	for	storing	data	/	Using	encryption	to	store	data

encryption	methods
using	/	The	encryption	methods

Equivalence	partitioning	technique	/	Testing	the	basics
Espresso

about	/	Espresso
reference	link	/	Espresso

exclusive	time	/	Method	profiling
expect-run-verify	pattern	/	Mockito
external	storage

about	/	Files	in	the	external	storage
public	files	/	Files	in	the	external	storage
private	files	/	Files	in	the	external	storage

F
fabrication,	threat	/	Threat
fail	method	/	The	Assert	class	and	method
features,	Android	security

application-defined	permissions	/	An	overview	of	Android	security
interprocess	communication	/	An	overview	of	Android	security
support	for	secure	networking	/	An	overview	of	Android	security
support	for	cryptography	/	An	overview	of	Android	security
encrypted	file	system	/	An	overview	of	Android	security
application	signing	/	An	overview	of	Android	security

FEST
reference	link	/	FEST	Android

FEST	Android
about	/	FEST	Android
URL	/	FEST	Android

File	Explorer	tab
about	/	File	Explorer

FTP
about	/	HTTPS

functional	test
creating	/	Creating	a	functional	test
setting	up	/	The	functional	test	setup
UI	test	method,	implementing	/	The	UI	test
activity	Intent	test	method,	implementing	/	The	activity	Intent	test
state	management	test	method,	implementing	/	The	state	management	test

functional	testing
about	/	Testing	activities
tools,	using	/	Tools	for	functional	testing

G
garbage	collector	(GC)

about	/	Heap
Genymotion

about	/	Genymotion
URL	/	Genymotion

getAccountsByName	method
about	/	AccountManager

getActivity()	method
about	/	Instrumentation,	The	unit	test	setup

getContentResolver().query()	method
about	/	Content	providers

getContentResolver().query()	method,	parameters
content	URI	/	Content	providers
projection	/	Content	providers
selection	/	Content	providers
selection	arguments	/	Content	providers
sort	order	/	Content	providers

getInstrumentation()	method
about	/	Instrumentation

getPreferences()	method
about	/	Shared	preferences

getSharedPreferences()	method
about	/	Shared	preferences

getTargetContext	method	/	Instrumentation
getUiDevice()	method

about	/	The	UiDevice	class
Graphics	Processing	Unit	(GPU)	/	Developer	options

H
hash	function	/	Software	security	terms
Heap	tab

displaying	/	Heap
help,	Android	Studio

obtaining	/	Getting	help
Hijack	attack	/	Software	security	terms
HTTP

versus,	HTTPS	/	HTTPS
HTTPS

about	/	HTTPS
versus,	HTTP	/	HTTPS
SSL	/	SSL	and	TLS
TLS	/	SSL	and	TLS
certificate,	creating	/	Server	and	client	certificates
Keytool	/	Keytool	in	the	terminal
Android	Studio	/	Android	Studio
examples	/	Code	examples	using	HTTPS

Hypertext	Transfer	Protocol	Secure	(HTTPS)	/	Software	security	terms

I
inclusive	time	/	Method	profiling
inherence	factor

about	/	The	knowledge	factor,	The	inherence	factor
init	method	/	Encryption
input	validation

about	/	Input	validation
SQL	injection	/	SQL	injection

instrumentation
about	/	Instrumentation

Instrumentation	class
URL,	for	documentation	/	Instrumentation
addMonitor	method	/	Instrumentation
activity	lifecycle	methods	/	Instrumentation
getTargetContext	method	/	Instrumentation
startActivitySync	method	/	Instrumentation
waitForIdleSync	method	/	Instrumentation

InstrumentationTestCase	class
about	/	The	test	case	classes

integration	tests	/	Testing	the	basics
integrity,	software	security	/	Software	security	terms
intents

about	/	Intents
URL,	for	official	documentation	/	Intents

Intents
securing	/	Securing	Intents
vulnerabilities	/	Securing	Intents

Intent	spoofing
about	/	Securing	Intents

interapplication	communication
about	/	Interapplication	communication,	Interapplication	communication
intents	/	Intents
content	providers	/	Content	providers
Intents,	securing	/	Securing	Intents
content	providers,	securing	/	Securing	the	content	providers

interception,	threat	/	Threat
internal	storage

about	/	Files	in	the	internal	storage
International	Mobile	Station	Equipment	Identity	(IMEI)

about	/	Data	privacy
Internet	Assigned	Numbers	Authority	(IANA)

about	/	Input	validation
internet	layer

about	/	HTTPS
interruption,	threat	/	Threat

J
Java	Development	Kit	(JDK)

about	/	Server	and	client	certificates
JUnit

about	/	Testing	in	Android
JVM

about	/	Testing	in	Android
Android	application,	testing	on	/	Testing	in	Android

K
key

generating,	for	encryption	/	Generating	a	key
KeyGenerator	class	/	Generating	a	key
Keytool

about	/	Server	and	client	certificates,	Keytool	in	the	terminal
keytool	command

-genkey	parameter	/	Keytool	in	the	terminal
-keyalg	parameter	/	Keytool	in	the	terminal
-alias	parameter	/	Keytool	in	the	terminal
-keystore	parameter	/	Keytool	in	the	terminal
-storepass	parameter	/	Keytool	in	the	terminal
-validity	parameter	/	Keytool	in	the	terminal
-keysize	parameter	/	Keytool	in	the	terminal

knowledge	factor
username/password	/	The	knowledge	factor
pattern	/	The	knowledge	factor
PIN	/	The	knowledge	factor

L
link	layer

about	/	HTTPS
LogCat

about	/	Debugging	and	DDMS
login	implementations

about	/	Login	implementations

M
Man-in-the-middle	attack	/	Software	security	terms
MD5,	software	security	/	Software	security	terms
Media	Access	Control	(MAC)	/	HTTPS
media	availability

testing	/	Media	availability
method	profiling	tool

about	/	Method	profiling
mobile	environment

about	/	The	mobile	environment
mock()	method	/	Mockito
Mockito

about	/	Mockito
URL	/	Mockito

mock	object	classes
about	/	The	mock	object	classes
MockApplication	class	/	The	mock	object	classes
MockContext	class	/	The	mock	object	classes
MockContentProvider	class	/	The	mock	object	classes
MockCursor	class	/	The	mock	object	classes
MockDialogInterface	class	/	The	mock	object	classes
MockPackageManager	class	/	The	mock	object	classes
MockResources	class	/	The	mock	object	classes
MockContentResolver	class	/	The	mock	object	classes

mode	flag,	internal	storage
MODE_PRIVATE	/	Files	in	the	internal	storage
MODE_APPEND	/	Files	in	the	internal	storage
MODE_WORLD_READABLE	/	Files	in	the	internal	storage
MODE_WORLD_WRITEABLE	/	Files	in	the	internal	storage

modification,	threat	/	Threat
Monkey

about	/	Monkey
basic	configuration	options	/	Monkey
operational	constraints	/	Monkey
event	types	/	Monkey
debugging	options	/	Monkey
URL,	for	parameters	/	Monkey

MonkeyTalk
about	/	MonkeyTalk
URL,	for	downloading	/	MonkeyTalk

MoreAsserts	class	/	The	Assert	class	and	method
about	/	The	MoreAsserts	class
assertContainsRegex()	method	/	The	MoreAsserts	class

assertContentsInAnyOrder()	method	/	The	MoreAsserts	class
assertContentsInOrder()	method	/	The	MoreAsserts	class
assertEmpty()	method	/	The	MoreAsserts	class
assertEquals()	method	/	The	MoreAsserts	class
assertMatchesRegex()	method	/	The	MoreAsserts	class
URL	/	The	MoreAsserts	class

multifactor	authentication
about	/	Multifactor	authentication

MyPrefsFile	file	/	Shared	preferences
MyReadablePrefsFile	file	/	Shared	preferences
MyWriteablePrefsFile	file	/	Shared	preferences
my_keystore.jks	file	/	Keytool	in	the	terminal

N
network	access

testing	/	Network	access
Network	Statistics	tab

displaying	/	Network	Statistics
normal	broadcast

about	/	Intents
normal	permission	level

about	/	Permissions

O
onCreate	method	/	Instrumentation
openFileOutput()	method

about	/	Files	in	the	internal	storage
open	source	software	(OSS)

about	/	HTTPS
operating	mode,	shared	preferences

MODE_PRIVATE	/	Shared	preferences
MODE_WORLD_READABLE	/	Shared	preferences

operating	system	(OS)
about	/	The	mobile	environment

ordered	broadcast
about	/	Intents

orientation	changes
testing	/	Change	in	orientation

OSI	model
about	/	HTTPS
versus,	TCP/IP	model	/	HTTPS

P
-p	parameter	/	Monkey
password,	software	security	/	Software	security	terms
pattern

about	/	The	knowledge	factor
Pattern	class

DOMAIN_NAME	pattern	/	Input	validation
EMAIL_ADDRESS	pattern	/	Input	validation
IP_ADDRESS	pattern	/	Input	validation
PHONE	pattern	/	Input	validation
TOP_LEVEL_DOMAIN	pattern	/	Input	validation
WEB_URL	pattern	/	Input	validation

PBKDF2	algorithm	/	Using	encryption	to	store	data
permission	level

normal	/	Permissions
dangerous	/	Permissions
signature	/	Permissions
signatureOrSystem	/	Permissions

permissions
about	/	Permissions,	Permissions

phishing,	software	security	/	Software	security	terms
physical	layer

about	/	HTTPS
PIN

about	/	The	knowledge	factor
possession	factor

about	/	The	possession	factor
private	files

about	/	Files	in	the	external	storage
public	files

about	/	Files	in	the	external	storage

R
regular	expressions

URL,	for	documentation	/	Input	validation
resourceId	method	/	The	UI	test	project
risk,	software	security

about	/	Software	security	terms,	Risk
Robolectric

about	/	Robolectric
URL	/	Robolectric

Robotium
about	/	Robotium
reference	link	/	Robotium

S
Screenshot	feature

about	/	Spoon
SecretKeySpec	class	/	Generating	a	key
secure	code-design,	principles

secure	defaults	/	Secure	code-design	principles
least	privileges	/	Secure	code-design	principles
clarity	/	Secure	code-design	principles
small	surface	area	/	Secure	code-design	principles
strong	defense	/	Secure	code-design	principles
failing	securely	/	Secure	code-design	principles
third-party	companies,	not	trusting	/	Secure	code-design	principles
simplicity	/	Secure	code-design	principles
Address	vulnerabilities	/	Secure	code-design	principles

SecureRandom	class	/	Generating	a	key
security	testing

about	/	Testing	the	basics
white-box	tests	/	Testing	the	basics
black-box	tests	/	Testing	the	basics

sensitive	data
about	/	Data	privacy

service
about	/	Intents

services
testing	/	Service	and	content	provider	testing

setUp()	method
about	/	The	test	case	methods

SHA1,	software	security	/	Software	security	terms
shared	preferences

about	/	Shared	preferences
signatureOrSystem	permission	level

about	/	Permissions
signature	permission	level

about	/	Permissions
smartphone

about	/	The	mobile	environment
vulnerabilities	/	The	mobile	environment

SMTP
about	/	HTTPS

sniffing	attack,	software	security	/	Software	security	terms
spoofing	attack	/	Software	security	terms
Spoon

about	/	Spoon

URL,	for	downloading	/	Spoon
spoon-client.jar	library

about	/	Spoon
SQL

about	/	Content	providers
SQL	injection

about	/	SQL	injection
SSL

about	/	HTTPS,	SSL	and	TLS
SSL	3.0

about	/	SSL	and	TLS
SSL	connection

establishing	/	SSL	and	TLS
SSLHandshakeException

about	/	Code	examples	using	HTTPS
startActivitySync	method	/	Instrumentation
Statement	coverage	/	Testing	the	basics
State	transition	testing	technique	/	Testing	the	basics
sticky	broadcast

about	/	Intents
storage	options

shared	preferences	/	Data	privacy,	Shared	preferences
internal	storage	/	Data	privacy,	Files	in	the	internal	storage
external	storage	/	Data	privacy,	Files	in	the	external	storage
database	storage	/	Data	privacy,	The	database	storage

symmetric	cryptography	/	Software	security	terms
symmetric	encryption

about	/	Encryption
Syntax	testing	technique	/	Testing	the	basics
System	Information	tab

about	/	System	Information
system	tests	/	Testing	the	basics

T
TCP/IP	model

about	/	HTTPS
physical	layer	/	HTTPS
link	layer	/	HTTPS
internet	layer	/	HTTPS
transport	layer	/	HTTPS
application	layer	/	HTTPS
versus,	OSI	model	/	HTTPS

tcpdump	/	Wireshark
tearDown()	method

about	/	The	test	case	methods
terms,	software	security

access	control	/	Software	security	terms
asymmetric	cryptography	/	Software	security	terms
authentication	/	Software	security	terms
authorization	/	Software	security	terms
availability	/	Software	security	terms
brute	force	/	Software	security	terms
Cipher	/	Software	security	terms
code	injection	/	Software	security	terms
confidentiality	/	Software	security	terms
crack	/	Software	security	terms
decryption	/	Software	security	terms
Denial-of-service	(DoS)	/	Software	security	terms
Distributed	denial-of-service	(DDoS)	/	Software	security	terms
Dictionary	attack	/	Software	security	terms
encryption	/	Software	security	terms
hash	function	/	Software	security	terms
Hijack	attack	/	Software	security	terms
Hypertext	Transfer	Protocol	Secure	(HTTPS)	/	Software	security	terms
Integrity	/	Software	security	terms
MD5	/	Software	security	terms
Man-in-the-middle	attack	/	Software	security	terms
passwords	/	Software	security	terms
phishing	/	Software	security	terms
risk	/	Software	security	terms
SHA1	/	Software	security	terms
Sniffing	attack	/	Software	security	terms
spoofing	attack	/	Software	security	terms
symmetric	cryptography	/	Software	security	terms
threat	/	Software	security	terms
vulnerability	/	Software	security	terms

TestCase	class
about	/	The	test	case	classes
setUp()	method	/	The	test	case	methods
tearDown()	method	/	The	test	case	methods

test	case	classes
about	/	The	test	case	classes
TestCase	class	/	The	test	case	classes
InstrumentationTestCase	class	/	The	test	case	classes
ActivityTestCase	class	/	The	test	case	classes
ActivityInstrumentationTestCase2	class	/	The	test	case	classes
ActivityUnitTestCase	class	/	The	test	case	classes

test	case	methods
about	/	The	test	case	methods

testing,	Android	application
on	JVM	/	Testing	in	Android
Android	SDK,	using	/	Testing	in	Android

testing,	content	provider
about	/	Service	and	content	provider	testing

testing,	media	availability
about	/	Media	availability

testing,	network	access
about	/	Network	access

testing,	orientation	changes
about	/	Change	in	orientation

testing,	services
about	/	Service	and	content	provider	testing

testing	activities
functional	testing	/	Testing	activities
unit	testing	/	Testing	activities
test	case	classes	/	The	test	case	classes
instrumentation	/	Instrumentation
test	case	methods	/	The	test	case	methods
Assert	class	/	The	Assert	class	and	method
assert	method	/	The	Assert	class	and	method
UI	testing	/	UI	testing	and	TouchUtils
TouchUtils	/	UI	testing	and	TouchUtils
mock	object	classes	/	The	mock	object	classes

testing	levels
unit	tests	/	Testing	the	basics
integration	tests	/	Testing	the	basics
validation	tests	/	Testing	the	basics
system	tests	/	Testing	the	basics
acceptance	tests	/	Testing	the	basics

Test	View

about	/	Spoon
Threads	tab

about	/	Threads
threat

about	/	Software	security	terms,	Threat
interception	/	Threat
interruption	/	Threat
modification	/	Threat
fabrication	/	Threat

three-factor	authentication
about	/	Multifactor	authentication

Time-based	One-Time	Password	(TOTP)
about	/	The	possession	factor

TLS
about	/	HTTPS,	SSL	and	TLS

tools
Genymotion	/	Genymotion

tools,	functional	testing
Robotium	/	Tools	for	functional	testing,	Robotium
Espresso	/	Tools	for	functional	testing,	Espresso
Appium	/	Tools	for	functional	testing,	Appium
Calabash	/	Tools	for	functional	testing,	Calabash
MonkeyTalk	/	Tools	for	functional	testing,	MonkeyTalk
Bot-bot	/	Tools	for	functional	testing
Monkey	/	Tools	for	functional	testing,	Monkey
Wireshark	/	Tools	for	functional	testing,	Wireshark
bot-bot	/	Bot-bot

tools,	unit	testing
Spoon	/	Tools	for	unit	testing,	Spoon
Mockito	/	Tools	for	unit	testing,	Mockito
Android	Mock	/	Tools	for	unit	testing,	Android	Mock
FEST	Android	/	Tools	for	unit	testing,	FEST	Android
Robolectric	/	Tools	for	unit	testing,	Robolectric

TouchUtils
about	/	UI	testing	and	TouchUtils

TouchUtils	class
clickView	method	/	UI	testing	and	TouchUtils
drag	method	/	UI	testing	and	TouchUtils
dragQuarterScreenDown	method	/	UI	testing	and	TouchUtils
dragViewBy	method	/	UI	testing	and	TouchUtils
dragViewTo	method	/	UI	testing	and	TouchUtils
dragViewToTop	method	/	UI	testing	and	TouchUtils
longClickView	method	/	UI	testing	and	TouchUtils
scrollToTop	method	/	UI	testing	and	TouchUtils

scrollToBottom	method	/	UI	testing	and	TouchUtils
TrafficStats	class

about	/	Network	Statistics
transport	layer

about	/	HTTPS
TrustManager	class	/	Code	examples	using	HTTPS
two-factor	authentication

about	/	Multifactor	authentication

U
@UiThreadTest()	method

about	/	UI	testing	and	TouchUtils
uiautomator.jar	library

about	/	The	uiautomator	API
uiautomator	API

about	/	Testing	the	UI,	The	uiautomator	API
UiDevice	class	/	The	UiDevice	class
UiSelector	class	/	The	UiSelector	class
UiObject	class	/	The	UiObject	class
UiCollection	class	/	The	UiCollection	class
UiScrollable	class	/	The	UiScrollable	class

uiautomatorviewer	tool
about	/	The	uiautomatorviewer	tool

UiCollection	class
about	/	The	UiCollection	class
getChildByDescription(UiSelector	childPattern,String	text)	method	/	The
UiCollection	class
getChildByInstance(UiSelector	childPattern,	int	instance)	method	/	The
UiCollection	class
getChildByText(UiSelector	childPattern,	String	text)	method	/	The	UiCollection
class
getChildCount(UiSelector	childPattern)	method	/	The	UiCollection	class

UiDevice	class
about	/	The	UiDevice	class
click(int	x,	int	y)	method	/	The	UiDevice	class
getDisplaySizeDp()	method	/	The	UiDevice	class
pressBack()	method	/	The	UiDevice	class
pressHome()	method	/	The	UiDevice	class
sleep()	method	/	The	UiDevice	class
takeScreenshot(File	storepath)	method	/	The	UiDevice	class
wakeUp()	method	/	The	UiDevice	class

UiObject	class
about	/	The	UiObject	class
click()	method	/	The	UiObject	class
exists()	method	/	The	UiObject	class
getText()	method	/	The	UiObject	class
isChecked()	method	/	The	UiObject	class
setText(String	text)	method	/	The	UiObject	class

UiScrollable	class
about	/	The	UiScrollable	class
scrollBackward()	method	/	The	UiScrollable	class
scrollForward()	method	/	The	UiScrollable	class

scrollToBeginning()	method	/	The	UiScrollable	class
scrollToEnd()	method	/	The	UiScrollable	class

UiSelector	class
about	/	The	UiSelector	class
checked(boolean	val)	method	/	The	UiSelector	class
childSelector(UiSelector	selector)	method	/	The	UiSelector	class
className(String	className)	method	/	The	UiSelector	class
resourceID(String	id)	method	/	The	UiSelector	class
text(String	text)	method	/	The	UiSelector	class

UI	test	cases
executing	/	Running	UI	test	cases

UI	testing
about	/	Testing	the	UI,	UI	testing	and	TouchUtils
white-box	testing	/	Testing	the	UI
black-box	testing	/	Testing	the	UI
uiautomator	API	/	The	uiautomator	API
uiautomatorviewer	tool	/	The	uiautomatorviewer	tool

UI	test	project
creating	/	The	UI	test	project

UI	thread
about	/	Threads

unauthorized	Intent	receipt
about	/	Securing	Intents

unit	test
creating	/	Creating	a	unit	test
setting	up	/	The	unit	test	setup
clock	test	method,	implementing	/	The	clock	test
layout	test	method,	implementing	/	The	layout	test
activity	Intent	test	method,	implementing	/	The	activity	Intent	test

unit	testing
about	/	Testing	activities
tools,	using	/	Tools	for	unit	testing

unit	tests	/	Testing	the	basics
unknown	CA

solving	/	Code	examples	using	HTTPS
user’s	data	and	credentials

handling	/	Handling	a	user’s	data	and	credentials
handling,	considerations	/	Handling	a	user’s	data	and	credentials

user	ID	(UID)	/	An	overview	of	Android	security
user	interface	(UI)

about	/	Threads
username/password

about	/	The	knowledge	factor

V
-v	parameter	/	Monkey
validation	tests	/	Testing	the	basics
values,	method	profiling	tool

exclusive	time	/	Method	profiling
inclusive	time	/	Method	profiling

verify()	method	/	Mockito
ViewAsserts	class	/	The	Assert	class	and	method

about	/	The	ViewAsserts	class
URL	/	The	ViewAsserts	class
assertBottomAligned()	method	/	The	ViewAsserts	class
assertLeftAligned()	method	/	The	ViewAsserts	class
assertRightAligned()	method	/	The	ViewAsserts	class
assertTopAligned()	method	/	The	ViewAsserts	class
assertGroupContains	()	method	/	The	ViewAsserts	class
assertGroupNotContains()	method	/	The	ViewAsserts	class
assertHasScreenCoordinates()	method	/	The	ViewAsserts	class
assertHorizontalCenterAligned()	method	/	The	ViewAsserts	class
assertVerticalCenterAligned()	method	/	The	ViewAsserts	class
assertOffScreenAbove()	method	/	The	ViewAsserts	class
assertOffScreenBelow()	method	/	The	ViewAsserts	class
assertOnScreen()	method	/	The	ViewAsserts	class

VirtualBox
URL,	for	downloading	/	Genymotion

vulnerabilities,	Intents
unauthorized	Intent	receipt	/	Securing	Intents
Intent	spoofing	/	Securing	Intents

vulnerabilities,	smartphone	/	The	mobile	environment
vulnerability

about	/	Software	security	terms,	Vulnerability
improper	authentication	/	Vulnerability
buffer	overflow	/	Vulnerability
cross-site	scripting	(XSS)	/	Vulnerability
Input	validation	/	Vulnerability
SQL	injection	/	Vulnerability

W
waitForIdleSync	method	/	Instrumentation
when()	method	/	Mockito
white-box	testing

about	/	Testing	the	UI
white-box	tests

about	/	Testing	the	basics
white-box	tests,	techniques

control	flow	testing	/	Testing	the	basics
data	flow	testing	/	Testing	the	basics
basis	path	testing	/	Testing	the	basics
statement	coverage	/	Testing	the	basics

Wireshark
URL	/	HTTPS
about	/	Wireshark
URL,	for	downloading	/	Wireshark

X
X.509	certificate

version	/	Server	and	client	certificates
serial	number	/	Server	and	client	certificates
signature	algorithm	/	Server	and	client	certificates
issuer	/	Server	and	client	certificates
validity	/	Server	and	client	certificates
subject	/	Server	and	client	certificates
subject	public	key	/	Server	and	client	certificates

	Testing and Securing Android Studio Applications
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to Software Security
	Software security terms
	Threats, vulnerabilities, and risks
	Threat
	Vulnerability
	Risk
	Secure code-design principles
	Testing the basics
	Summary
	2. Security in Android Applications
	The mobile environment
	An overview of Android security
	Permissions
	Interapplication communication
	Intents
	Content providers
	Summary
	3. Monitoring Your Application
	Debugging and DDMS
	Threads
	Method profiling
	Heap
	Allocation Tracker
	Network Statistics
	File Explorer
	Emulator Control
	System Information
	Summary
	4. Mitigating Vulnerabilities
	Input validation
	SQL injection
	Permissions
	Handling a user's data and credentials
	Interapplication communication
	Securing Intents
	Securing the content providers
	Summary
	5. Preserving Data Privacy
	Data privacy
	Shared preferences
	Files in the internal storage
	Files in the external storage
	The database storage
	Encryption
	The encryption methods
	Generating a key
	Using encryption to store data
	Summary
	6. Securing Communications
	HTTPS
	SSL and TLS
	Server and client certificates
	Keytool in the terminal
	Android Studio
	Code examples using HTTPS
	Summary
	7. Authentication Methods
	Multifactor authentication
	The knowledge factor
	The possession factor
	The inherence factor
	Login implementations
	AccountManager
	Summary
	8. Testing Your Application
	Testing in Android
	Testing the UI
	The uiautomator API
	The UiDevice class
	The UiSelector class
	The UiObject class
	The UiCollection class
	The UiScrollable class
	The uiautomatorviewer tool
	The UI test project
	Running UI test cases
	Summary
	9. Unit and Functional Tests
	Testing activities
	The test case classes
	Instrumentation
	The test case methods
	The Assert class and method
	The ViewAsserts class
	The MoreAsserts class
	UI testing and TouchUtils
	The mock object classes
	Creating an activity test
	Creating a unit test
	The unit test setup
	The clock test
	The layout test
	The activity Intent test
	Creating a functional test
	The functional test setup
	The UI test
	The activity Intent test
	The state management test
	Getting the results
	Summary
	10. Supporting Tools
	Tools for unit testing
	Spoon
	Mockito
	Android Mock
	FEST Android
	Robolectric
	Tools for functional testing
	Robotium
	Espresso
	Appium
	Calabash
	MonkeyTalk
	Bot-bot
	Monkey
	Wireshark
	Other tools
	Genymotion
	Summary
	11. Further Considerations
	What to test
	Network access
	Media availability
	Change in orientation
	Service and content provider testing
	Developer options
	Getting help
	Summary
	Index

