Visual Studio
Code Distilled

Evolved Code Editing for Windows,
macOS, and Linux

Alessandro Del Sole

APress’

Visual Studio Code
Distilled

Evolved Code Editing for
Windows, macOS, and Linux

Alessandro Del Sole

Apress’

Visual Studio Code Distilled: Evolved Code Editing for Windows,
macOS, and Linux

Alessandro Del Sole
Cremona, Italy

ISBN-13 (pbk): 978-1-4842-4223-0 ISBN-13 (electronic): 978-1-4842-4224-7
https://doi.org/10.1007/978-1-4842-4224-7

Library of Congress Control Number: 2018965198

Copyright © 2019 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference
our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4223-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4224-7

To Angelica, the love of my life.

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
Acknowledgments.......ccucsmismssmsmssnssssssssssssnssssssssssssansssnssssnsssansasannsns Xiii
INtroductioncccccumsemmmsssmmmsssnnmssssnmsssnsssssnssssas s snn s nnnnns Xv
Chapter 1: Introducing Visual Studio Code.........c.ccussemmrrrsssnnnnsssssnnnnsnsns 1
Introducing Visual Studio COUEcceverrrriererenrenereresesseseresessessessessesessessesees 2
When and Why Visual Studio Code..........ccouvvvreniinnnieninsnsense s 3
Installing and Configuring Visual Studio Codeccccvreererenernncsnnesesesesesenens 5
Installing Visual Studio Code on WindOWS..........cooveererenerenerensesessesessesesessesenns 6
Installing Visual Studio Code on macOS...........cccoverrrererenernsesessesesesesessesenns 9
Installing Visual Studio Code 0N LiNUX.........cccvrererenerensesessesesseseressesessesessnnes 10
Localization SUPPOM.......cco i s 12
Updating Visual Studio COde..........oeceerererercrerererese e 13
Previewing Features with Insiders BUildsccccooevvvnininninsnnninnnsenennn, 15

RS T 111 T o O SS 17
Chapter 2: Getting to Know the Environmentc.ccccennnnsnnnnnnnsssannns 19
The Welcome Page......c.ccv it se s e e s snen 20
The Code EdItor..........ccecieerernreisiririss s 21
Reordering, Resizing, and Zooming Editor Windowscccceevvrierenenseniennes 22

THE SEALUS BArccovevieecciririsescne s 23
The ACHIVILY Bar ..o 24

TABLE OF CONTENTS

THE SIdE Bar ... 26
The EXPIOrer Bar ... s s ssssessesnens 26
The SEArCh TOOIcccoerereeeeerereres e 31
TNE Gt BAF.....covieeececeriris e sns e 32
The Debug Bar........oo e 34
The EXEENSIONS Bar ... 35
The Settings BULtON.........ccvevvirierere e sere s ses e se s e ssesessessesnens 36

Navigating Between Files ... 36

The Command Palette..........ccovcirerreecrresere e 37

THE PaNEIS Areacccveeerreserinisrseserisse s se s ses s s sennsnnns 38
The Problems Panel...........cccccveeernennnesenssessesesese s sessssessenens 38
The QUEPUL PANEl ..o 40
The Debug Console PanEl...........ccoveeeerenernsesnsesesesessse s s sessesessenens 41
Working with the Terminal..........ccocooovieinnsnnnsneseree s 42

SUMMANY....ceiiieereestre s e e p e nr e 43

Chapter 3: Language Support and Code Editing Featuresccceue. 45

LanguaQge SUPPOIL......coeirrererererserersessesessessessessssessessessssessessessssssessessessssensessens 46
Working With C# and G+ccvcevierererrereressssessesessssessesessssessessessessssessessens 47

Basic Code Editing FEAtUrescccvevvvririininsnsne s s 48
Working With TEXE.......ccvciiricrrr e 48
Syntax Colorization...........cccvveerecrnsrre s 49
Delimiter Matching and Text Selectionccovcvinvvninnnncninc s, 51
Code BIOCK FOIAING......cccccevrrerirririnesirs s se s se e ssnnes 51
MURICUISOLS ...t s 52
Reusable Code SNIPPELS.......ccvcvrererrrrrerierersrsereresessese e ssssessessesassessessesaes 52
L L0 € B 00T] o] =1 (3 54
Minimap MOGE.........cocrieecerirrr e e 55

TABLE OF CONTENTS

Whitespace Rendering and Breadcrumbscccocvverinvnnnnensensenseesesenns 56
MarkdoWn PreVIEBW.........couverirereriesiee s 58
Evolved Code Editing.......ccccccvnenrnnrncrncnins et ses e ses e 59
Working with INtelliSENSe........cccvvevrirrinrrnrr e 60
Parameter Hints..........ccooeiinnercrscserse s 62
Inline Documentation with TOOHIPSccccceveririrnene e 62

GO TO DEfiNitioN......cccevrereierererese s 63
Find All REfBrENCES.......cciveerereeree e 65
Peek Definition ..o 66
Renaming Symbols and Identifiers........ccovvvnrrierinnnsensensenssessessesesessesesees 67
Live COdE ANAIYSIS....cccerrerererrererreresserseressessssessessessssessessesssssssessessesssssssessees 68
11T 1117 o O 76
Chapter 4: Working with Files and Folders.........ccemmmmmmmmmmnsssssssnsnnsnnnas 77
Visual Studio Code and Project SYSIEMScccovermienesenmrnsesesesesesesessesessnens 77
Working with Individual FilesS...........ccouvviienniisrnsernesesese e sessesesseens 78
Creating FileS........ouivrnienneserese s 79
File Encoding, Line Terminators, and Line Browsing.........cccvouvernsesesseserennes 80
Working with Folders and Projectscccvvevnrnvniennnensnsesnesssessesseseesessessessens 82
00 T=T T gL = T 0] o T O 84
Opening .NET Core SOIULIONS........covierveriernnensersese s sesese e e sessessessssessesse s 86
Opening JavaScript and TypeScript Projects......c.ccovvvvrirennsenienenensensensens 87
0pening LO0SE FOIAEIScccerrecerncriresesse e s s s s 88
Working With WOrkSPaces........ccvvererirrersererensnsessesessessssesessesssssssessessesssssssessees 89
Creating WOrKSPACES......coivverrerierererserersessesessessessessssessessesssssssessessesssssssessees 91
Opening EXisting WOrKSPACESc.cecveererrererrersesensssessessessesessessessessssessessenes 92
WOrKSPaCe STTUCKUIEcceeverrererere e sa e nnees 92
1] 7 93

vii

TABLE OF CONTENTS

Chapter 5: Customizing Visual Studio Codec..cessmmmrrnssnnnnssssssnnnnas 95
Customizations and Extensions EXplained............cccoecvnvnrererescrnreneneserensenenns 95
Customizing Visual Studio Code..........ccovvrirnnninininnsnsnese s sessesns 97
Theme SelECLION........ccovceereere e 97
Customizing the Environment............ccccrvnnninninsnsnn s 99
Customizing Key Bindings......c.ccovvnnnininnnnnnnsnssnesess e sessesnes 106
SUMMANY....eieererereree s se s e pe e e e 110
Chapter 6: Installing and Managing Extensions..........cccoussseennnsssanns 111
Installing EXLENSIONSccoviierrirerinerisesess s srans 111
Extension Recommendationsc.cuceverennsesnnesennssenssesse e sesessenens 115
USEfUl EXIENSIONScvcecreerrsesese e s sn s snanes 117
Managing EXIENSIONS.......cccveverrrriere s s e sse e e e sne s 118
Configuring EXIENSIONS........ccvererernririene e snes 120
Hints About Extension AULNOKING.........cvvcrrerevensensenere s s seesessesseees 122
SUMMAIY . ueitetrereresersere s e sessessessess e e s e ssesa e e ssesaesaess e e saesaesaesensesaesaessssensessens 122
Chapter 7: Source Control with Git...........cccerrnsnenmnnnsssnssesssssnnessssnns 125
Source Control in Visual Studio Code........coccomrenrrncnereneresereeeresese e 125
Downloading Other Source Control Providersccccvennnnieniennneniennens 126
Managing REPOSITONIESccoerrererrnrererereree s 127
Initializing a Local Git REPOSItOrYcccovererererrnsereneseseseses e sessesesseeseenes 128
Creating a Remote RepoSitOry.........cccvverrrereresernsesensesesesess s 130
Handling File Changescccuvernnmnnenmnenesssessssse e se s sessssessenes 132
Staging ChaNGEScccveverrnerresere s 134
Managing ComMmMILSccovcernisernserne s 135

Working with the Git Command Line INterfacecccoevververvvrsenseniennnensensenns 137

viii

TABLE OF CONTENTS

Creating and Managing Branches............ccccurvnvnininnnnnsnseniesnsessesesss s 138
Switching to a Different Branchcccccovvvnvvriesnncvnre e 140
Merging from @ Branch............ccceinininicncnc s 140
Deleting BranChes ... s sesesnens 141

Adding Power to the Git Tooling with EXtensions...........ccccecveviinnnniniennseniennes 142
Gt HISTOIY . s 142
€T 144
GitHub Pull REQUESTS ..ot 148

Working with Azure DevOps and Team Foundation Servercoovvennrannan 150

SUMMANY....ceivierieesesese e se s se e ne e e 154

Chapter 8: Automating Taskscuccssssssmsssssssssssnsssassssnssssnsssassssnsssns 157

Understanding TasKS.......ccvrerrrenreniennnensensesesss s ssssessessessessssessessessssessessenes 158
TASKS TYPES ..eeereririersee s s s s r e s s r e s s n e sne e 159
Running and Managing TaSKS........cccvrerrererersersersessnsessessessessssessessessssessessens 159
The Default Build TSK.........cocvrrnmnmsensrsnsssssessssssssssess e sssssssssssesens 164
Auto-Detected TaskKS........ovrnmrr 164
CONFIGUIING TASKS ...cuvvererierersere et re s s sa s sae e saeenes 166
Running Files with a Default Program...........cccccomnnnnnnnsnssns 188

RS0 1] 1 O 189

Chapter 9: Running and Debugging Code..........ccceurmsssmnnnrssssnnnnsssssnns 191

Creating AppliCAtiONScccccicrcriere e 191
Creating .NET Core Projects ... s e sesseenes 192
Creating Projects on Other Platforms.........cccooeevvvvniennnsnnccvnccsecesenenne 195

Debugging YOUr COTE....... ..o 196
Configuring the DEDUGQETcccoeeeeerecerr e 198

ix

TABLE OF CONTENTS

Managing Breakpoints...........cccvreriennsnncniesnsinesiess s s ssessssessesnens 202
Debugging an Application.........cccooeervnininnsnin e 203
Supporting Azure, Docker, and Artificial Intelligence..........ccccoverreenerencrnccnen 207
SUMMANY....ceiveeriresrrese s sr s se s sr s as e nensenenns 209
INA@X..ceiiissnnnnnssssnnnsmssssnnnnsnsssnnnnsssssnnnnsssssnnnnsssssnnnssssssnnnnsssssnnnnssssnnnnnss 211

About the Author

Alessandro Del Sole is Senior Software Engineer for a healthcare company,
building mobile apps for doctors and dialysis patients. He has been in the
software industry for almost 20 years, focusing on Microsoft technologies
such as .NET, C#, Visual Studio, and Xamarin. He has been a trainer,
consultant, and a Microsoft MVP since 2008 and is the author of many
technical books. He is a Xamarin Certified Mobile Developer, Microsoft
Certified Professional, and a Microsoft Programming Specialist in C#.

Acknowledgments

Thanks to Joan Murray, Jill Balzano, Laura Berendson and to everyone at
Apress for the opportunity and the great teamwork on this book.

Special thanks to the technical editor, Dr. James McCaffrey, who
contributed to the quality and accuracy of the contents.

Special thanks to my girlfriend Angelica, who understands and never
complains about the time I spend on writing books.

xiii

Introduction

One of the most common requirements in software development today
is building applications and services that run on multiple systems and
devices, especially with the continued expansion of cloud and artificial
intelligence services.

Developers have many options to build cross-platform and cross-
device software, from languages to development platforms and
tools. However, in most cases such tools rely on proprietary systems,
therefore creating strong dependencies. Moreover, most development
tools target specific platforms and development scenarios. Microsoft
Visual Studio Code makes a step forward, by providing a fully featured
development environment for Windows, macOS, and Linux that not
only offers advanced coding features but also integrated tools that span
across the entire application lifecycle from coding to debugging to team
collaboration. In this book, developers with any skill will learn how to
leverage Visual Studio Code to target scenarios such as web, cloud, and
mobile development with the programming language of their choice,
providing guidance to build apps for any system and any device.

CHAPTER 1

Introducing Visual
Studio Code

Visual Studio Code is not just another evolved notepad with syntax
colorization and automatic indentation. Instead, it is a very powerful
code-focused development environment expressly designed to make

it easier to write web, mobile, and cloud applications using languages
that are available to different development platforms and to support
the application development lifecycle with a built-in debugger and with
integrated support to the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or
with structured file systems based on folders. This chapter provides an
introduction to Visual Studio Code giving you information on when and
why you should use it, as well as about installing and configuring the
program on the different supported operating systems.

Note Across the book, | will refer to the product with its full
name, Visual Studio Code, and its friendly names VS Code and Code
interchangeably.

© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_1

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Introducing Visual Studio Code

Visual Studio Code has been the first cross-platform development tool
in the Microsoft Visual Studio family that runs on Windows, Linux, and
macOS. It is free, open source (https://github.com/Microsoft/vscode),
and it is definitely a code-centric tool, which makes it easier to edit code
files and folder-based project systems as well as writing cross-platform
web and mobile applications over the most popular platforms, such as
Node.js and .NET Core, with integrated support for a huge number of
languages and rich editing features such as IntelliSense, finding symbol
references, quickly reaching a type definition, and much more.

Visual Studio Code is based on Electron (https://electronjs.org/),
a framework for creating cross-platform applications with native
technologies, and combines the simplicity of a powerful code editor with
the tools a developer needs to support the application lifecycle development,
including debuggers and version control integration based on Git. It is
therefore a complete development tool, rather than being a simple code
editor. For more advanced coding and development, you will certainly
consider Microsoft Visual Studio 2017 on Windows and Visual Studio for Mac
on macOS, but Visual Studio Code can be really helpful in many situations.

In this book, you learn how to use Visual Studio Code and how to get
the most out of it, seeing how you can use it both as a powerful code editor
and as a complete environment for end-to-end development. Except
where necessary, figures are based on the Microsoft Windows 10 operating
system, but there is no difference on Linux and macOS. Also, Visual Studio
Code includes a number of color themes that style its layout. In this book,
figures are based on the so-called Visual Studio Light Theme, so you might
see different colors. Chapter 5, “Customizing Visual Studio Code,” explains
how to change the theme, but if you want to be consistent with the book’s
figures, simply select File » Preferences » Color Theme and select the
Visual Studio Light Theme. It is worth mentioning that the theme you
select does not affect at all the features described in this book.

https://github.com/Microsoft/vscode
https://electronjs.org/

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

When and Why Visual Studio Code

Before you learn how to use Visual Studio Code, what features it offers, and
how it provides an improved code editing experience, you have to clearly
understand its purpose. Visual Studio Code is not a simple code editor;
rather it is a powerful environment that puts writing code at its center. The
main purpose of Visual Studio Code is making it easier to write code for
web, mobile, and cloud platforms for any developers working on different
operating systems, such as Windows, Linux, and macOS, making you
independent from proprietary development environments.

For a better understanding, let’s consider an example based on ASP.
NET Core, the cross-platform, open source technology able to run on
Windows, Linux, and macOS that Microsoft produced to create portable
web applications; forcing you to build cross-platform, portable web apps
with Microsoft Visual Studio 2017 would make you dependent on this
Integrated Development Environment (IDE). You could argue that the
Visual Studio 2017 Community edition is free of charge, but it only runs
on Windows. On the contrary, though it is not certainly intended to be
areplacement for more powerful and complete environments such as
its major brother, Visual Studio Code can run on a variety of operating
systems and can manage different project types, as well as the most
popular languages. To accomplish this, Visual Studio Code provides the
following core features:

e Built-in support for coding with many languages,
including those you typically use in cross-platform
development scenarios, with advanced editing features
and support for additional languages via extensibility

e Built-in debugger for Node.js, with support for
additional debuggers (such as .NET Core and Mono)
via extensibility

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

o Version control based on the popular Git engine, which
provides an integrated experience for collaboration
supporting code commits and branches, and that is the
proper choice for a tool intended to work with possibly
any language

In order to properly combine all these features into one tool, Visual
Studio Code provides a coding environment based on folders, which
makes it easy to work with code files that are not organized within projects
and offers a unified way to work with different languages. Starting from
this assumption, Code offers an advanced editing experience with features
that are common to any supported languages, plus some features that are
available to specific languages. As you learn throughout the book, Code
also makes it easy to extend its built-in features by supplying custom
languages, syntax coloring, editing tools, debuggers, and much more via
a number of extensibility points. It is a code-centric tool, with primary
focus on web, cross-platform code. That said, it does not provide all of the
features you need for full, more complex application development and
application lifecycle management and is not intended to be the proper
choice with some development platforms. If you have to make a choice,
consider the following points:

e Visual Studio Code can produce binaries and
executable files only if the language you use has
support to do so through a debugger. If you use a
language for which there is no extensive support (e.g.,
Visual Basic), Visual Studio Code is not able to invoke
a compiler. You can workaround this by implementing
task automation, discussed in Chapter 8, "Automating
Tasks," but this is different than having the compilation
process integrated.

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

e Visual Studio Code has no designers, so creating
an application’s user interface can only be done by
writing all of the related code manually. As you can
imagine, this is fine with some languages and for some
scenarios, but it can be very complicated with some
kinds of applications and development platforms,
especially if you are used to work with the powerful
graphical tools available in Microsoft Visual Studio.

o [Itisageneral purpose tool and is not the proper choice
for specific development scenarios such as building
Windows desktop applications.

If your requirements are different, consider instead Microsoft Visual
Studio 2017 or Microsoft Visual Studio for Mac, which are optimized
for building, testing, deploying, and maintaining multiple types of
applications.

Now that you have a cleaner idea of Code’s goals, you are ready to learn
the amazing editing features that put it on the top of any other code editor.

Installing and Configuring Visual
Studio Code

Installing Visual Studio Code is an easy task. In fact, you can simply visit
https://code.visualstudio.com from your favorite browser, and the
web page will detect your operating system, suggesting the appropriate
installer. Figure 1-1 shows how the download page appears on Windows.

https://code.visualstudio.com

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

B A g visusl Studic Code - Co ¥ |+ ~

= O f odesualstudiocom + = £ &

) Visual Studic Code

Code editing.
Redefined.

Download for Windows
tabbe Build

o

134 & ® [=

Intellisense Debugging Built-in Git Extensions

Figure 1-1. The download page for Visual Studio Code

In the next paragraphs, you will learn tips for installing Code on the
various supported systems.

Note The latest stable release at the time of this writing is version
1.27.2, released in August 2018 and called August Recovery.

Installing Visual Studio Code on Windows

Visual Studio Code can be installed on Windows 7, 8, and 10. For this
operating system, Visual Studio Code is available with two installers:
a global installer and a user-level installer. The first installer requires
administrative privileges for installation and makes Code available to all

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

users. The second installer makes Code available only to the currently
logged user, but it does not require administrative privileges.

The latter is the choice I recommend, especially if you work within a
corporate environment and you do not have administrative privileges to
install software on your PC. The Download for Windows button that you
can see in Figure 1-1 will automatically download the global installer. If
you instead wish to download the user-level installer, click the arrow at the
right of the button and then click the User Installer hyperlink. It is worth
mentioning that Visual Studio Code is available in two versions, 32 bit
and 64 bit. The download page will automatically suggest the version that
matches your operating system architecture, but if you wish to download a
different installer, you can click the arrow and then click Other downloads.

Once the download has been completed, launch the installer and
simply follow the guided procedure as you are already used to do with
most of Windows programs. During the installation, you will be prompted
to specify how you want to integrate shortcuts to Visual Studio Code in the
Windows’ shell. In the Select Additional Tasks dialog, make sure you select
(at least) the following options:

e Add “Open With Code” action to Windows Explorer
file context menu, which allows for right-clicking a
code file in the Explorer and opening such a file with
VS Code.

e Add “Open With Code” action to Windows Explorer
directory context menu, which allows for right-
clicking a folder in the Explorer and opening such a
folder with VS Code.

o Add to PATH (available after restart), which adds
the VS Code’s pathname to the PATH environment
variable, making it easy to run Visual Studio Code from
the command line without typing the full path.

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Note Some antivirus and system protection tools, such as
Symantec Endpoint Protection, might block the installation of some
files that are recognized as false positives. In most cases this will not
prevent Visual Studio Code from working, but it is recommended that
you disable the protection tool before installing Code or, if you do not
have elevated permissions, that you ask your administrator to do it
for you.

A specific dialog will inform you once the installation process has
completed. The installation folder for the user-level installer is C:\
Users\proga\AppData\Local\Programs\Microsoft VS Code, while the
installation folder for the global installer is C:\Program Files\Microsoft
VS Code on 64-bit systems and C:\Program Files(x86)\Microsoft VS
Code on 32-bit systems. You will find a shortcut to Visual Studio Code in
the Start menu and on the Desktop, if you selected the option to create
a shortcut during the installation. When started, Visual Studio Code
appears like in Figure 1-2.

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

4] Welcome - Visual Studio Code = O b4

File Edit Selection View Go Debug Terminal Help

Figure 1-2. Visual Studio Code running on Windows

Installing Visual Studio Code on mac0S

Installing VS Code on macOS is extremely simple. From the download
page, simply click the Download for macOS button and wait for the
download to complete. On macOS, Visual Studio Code works as an
individual program, and therefore you simply need to double-click the
downloaded file to start the application. Figure 1-3 shows Visual Studio

Code running on macOS.

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

® Code File Edit Selection View Go Debug Tasks Window Help

LN Welcome
@ EXPLORER 4] welcome % m -
4 DPEN EDITORS
o) 1) welcome Start Customize
% 4 NO FOLDER OPENED New file
Open folder... Tools and languages
Y Y¥ou have not yet opened a Add workspace folder... = -
X St r pport for JavaSeript, TypeScript, Pyth
folder.
® Open Folder
Install keyboard shortcuts
= Recent n t hortcuts of Vim, Sublime,
= ; i
Color theme
Help
Printable keyboard cheatsheet Learn

ntroductory videos
Tips and Tricks

Find and run all commands

Interface overview

Show welcome page on startup

Interactive playground

Figure 1-3. Visual Studio Code running on macOS

Installing Visual Studio Code on Linux

Linux is a very popular operating system and many derived distributions
exist, so there are different installers available depending on the
distribution you are using. For the Ubuntu and Debian distributions,
you will need the .deb installer. For the Red Hat Linux, Fedora, and
SUSE distributions, you will need the .rpm installer. This clarification is
important because, differently from Windows and macOS, the browser
might not be able to automatically detect the Linux distribution you are
using, and therefore it will offer both options.

Once installed, you will simply need to click the Show Applications
button on the desktop and then the Visual Studio Code shortcut. Figure 1-4
shows Visual Studio Code running on Ubuntu.

10

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Visual Studio Code = % sab 13:24 LHO-~-

Welcome - Visual Studio Code

4) welcome % m -

Visual Studio Code

Editing evolved

languages
Install support for Javaseript. Typescript. Python, PHP, Azure, Docker an

Vim, Sublime, Atom and ot

H
P
Int
Tip
P
=

Figure 1-4. Visual Studio Code running on Ubuntu

Note If you are a Windows user and want to try Visual Studio Code
on a Linux distribution, you can create a virtual machine with the
Hyper-V tool. For example, you might install the latest Ubuntu version
(www.ubuntu.com/download/desktop) as an ISO image and

use it as an installation media in Hyper-V. On macOS, you need to
purchase the Apple Parallels Desktop software separately in order to
create virtual machines, but you can basically do the same.

11

http://www.ubuntu.com/download/desktop

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Localization Support

Visual Studio Code ships in English, but it can be localized in many other
supported languages and cultures. When started, VS Code checks for the
operating system language and, if different from English, it shows a popup
suggesting to install a language pack for the culture of your operating
system. The localization support can be also enabled manually.

To accomplish this, select View » Command Palette. When the text
box appears at the top of the page, type the following command:

> Configure Display Language

This will open a file called locale.json, which is the place where Visual
Studio Code stores the localization information. Figure 1-5 shows how this
file appears in the editor. As you can see in the comments, there is a link to
the documentation that contains the full list of supported cultures.

Note The Command Palette will be discussed thoroughly in the next
chapter.

“_',l » localejson - Visual Studio Code - [n] »
File Edit Selection \iew Go Debug Terminal Help
|—“ localejson L] ¢ M
1
{
jo,
o or a list of supported languages

VS Code has been restarted.

In5Col 17 TabSzed UTF-8 LF SON @ &4

Figure 1-5. Changing the localization for Visual Studio Code

12

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

For instance, if you wanted to change the localization from English
to Italian, you would replace en with it, saving your changes. At restart,
Visual Studio Code will apply the new localization downloading the
language pack it needs.

Updating Visual Studio Code

Visual Studio Code is configured to receive automatic updates in the
background and, usually, Microsoft releases updates monthly.

Note Because VS Code receives monthly updates, some features
might have been updated at the time of your reading, and others
might be totally new. This is a necessary clarification you should keep
in mind while reading, and it is also the reason why | will also provide
links to the official documentation, so that you can stay up to date
more easily.

Additionally, you can manually check for updates with Help » Check
for Updates on Windows and Linux and with Code » Check for Updates
on macOS. If you do not want to receive automatic updates and prefer
manual updates, you can disable automatic updates by selecting File »
Preferences » Settings and then, in the Update section, disable the
background updates option. Figure 1-6 shows an example.

13

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

) Settings - Visusl Studio Code - o X
Eile Edtt Selection View Go Debug Terminal Help
Bl * & m -
}- B84 Settings Found
User Settings
Ry
Update
Channel
o
|CH 1ot
default
Update
£ | Enable Windows Background Updates
Show Release Notes
Telemetry
Enable Crash Reporter
| Enable crash reports to be sent to a Microsoft onfine service
Enable Telemetry
Fe | Enable

Figure 1-6. Disabling automatic updates

You will follow the same steps to re-enable updates in the background.
Whenever Visual Studio Code receives an update, you will receive a
notification that suggests you to restart Code in order to apply changes.
The first time you restart Visual Studio Code after an update, you will see
the release note for the version that was installed, as demonstrated in
Figure 1-7.

14

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

1] Release Notes: 1.27.1 - hellodotnet - Visual Studio Code -] X
File Edit Selection View Go Debug Terminal Help

® 1) Release Notes: 1.27.1 X ¢ m

August 2018 (version 1.27)

Update 1.27.1: The update addresses these issues.

Welcome to the August 2018 release of Visual Studio Code. There are a number of significant updates in this
version that we hope you will like, some of the key highlights include:

* Settings editor - New Settings editor Ul to discover, search, and modify VS Code settings.

* Custom menu bar - Fully themable title and menu bars on Windows and Linux.

¢ Breadcrumbs improvements - Symbols highlighted when navigating with breadcrumbs.

* New Terminal menu - Combined menu for creating terminals and managing tasks.

* Platform specific keyboard shortcuts - Share the same keybindingsjson file across different OSs.
* (SS @impoert path completion - Import path suggestions while you type in CSS, SCSS, and Less.
* JSON conditional evaluation - Support for i, ‘then’, and 'else’ schema keywords.

* Built-in Loaded Scripts view - Loaded Scripts Explorer now available for debug extensions.

ﬂ If you'd like to read these release notes online, go to Updates on code.visualstudio.com.

Insiders: Want to see new features as soon as possible? You can download the nightly Insiders build and try the
latest updates as soon as they are available. And for the latest Visual Studio Code news, updates, and content,

follow us on Twitter @code!

Workbench °

Settings editor

Figure 1-7. VS Code release notes

Release notes contain the list of new and updated features, as well as
hyperlinks that will open the proper feature page in the documentation.

Previewing Features with Insiders Builds

By default, the download page of the Visual Studio Code’s web site allows
you to download the latest stable build. However, Microsoft periodically
also releases preview builds of Visual Studio Code called Insiders builds
that you can download to have a look at new and updated upcoming
features before they are released to the general public.

15

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Insiders builds can be downloaded from https://code.
visualstudio.com/insiders, and follow the same installation rules
described previously for each operating system. They have a different icon
color, typically a green icon instead of a blue icon, and the name you see in

the application bar is Visual Studio Code - Insiders instead of Visual Studio
Code (see Figure 1-8).

Figure 1-8. Visual Studio Code Insiders builds

Insiders builds and stable builds can work side by side without
any issues. Because each lives in its own environment, your setting
customizations and extensions you installed on the stable build will not

be automatically available to the Insiders build and vice versa, so you will
need to provide them again.

16

https://code.visualstudio.com/insiders
https://code.visualstudio.com/insiders

CHAPTER 1 INTRODUCING VISUAL STUDIO CODE

Insiders builds are a very good option to have a look at what is coming
with Visual Studio Code, but because they are not stable, final builds, it
is not recommended you use them in production or with code you will
release to production.

Summary

Visual Studio Code is not a simple code editor but a fully featured
development environment optimized for web, mobile, and Cloud
development. In this chapter, you saw how to install Visual Studio Code
on Windows, macOS, and Linux distributions, learning how to select the
appropriate installers and fine-tune the setup process. You also saw how to
configure localization and updates. Finally, you had a look at the Insiders
build, which offer previews of upcoming, unreleased features.

Now that you have your environment ready for use, it is time to start
discovering the amazing features offered by Visual Studio Code. The next
chapter walks through the environment, then in Chapter 3, "Language
Support and Code Editing Features," you will see all the amazing code
editing features that make Visual Studio Code a rich, powerful cross-
platform editor.

17

CHAPTER 2

Getting to Know
the Environment

Before you use Visual Studio Code as the editor of your choice, it is
convenient for you to know how the workspace is organized and what
commands and tools are available, in order to get the most out of the
development environment.

The VS Code’s user interface and layout are optimized to maximize the
space for code editing, and it also provides easy shortcuts to quickly access
all the additional tools you need in a given context. More specifically, the
user interface is divided into five areas: the code editor, the status bar, the
activity bar, panels area, and the side bar. This chapter explains how the user
interface is composed and how you can be productive getting the most of it.

Note All the features discussed in this chapter apply to any file in
any language, and they will be available regardless of the language
you see in the figures (normally C#). You can open one or more code
files via File » Open File to get some editor windows active and
understand the features discussed in this chapter. Then in Chapter 4,
“Working with Files and Folders,” | will discuss more thoroughly how
you can work with individual files and multiple files, in one or more
languages concurrently.

© Alessandro Del Sole 2019 19
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_2

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

The Welcome Page

At startup, Visual Studio Code shows the Welcome page, visible in

Figure 2-1.
A weleome - Visusl Studic Code - o *
Eile Edtt Selection View Go Debug Terminal Help
o ol b e
Je

Figure 2-1. The Welcome page

On the left side of the page, under the Start group, you will find
shortcuts for creating and opening files and folders. Under the Recent
group, you will find a list of recently opened files and folders that you will
be able to click for fast opening. Under the Help group, there are useful
links to cheat sheets, introductory videos, product documentation, and
other learning resources about Visual Studio Code. On the right side,
under the Customize group, you can find shortcuts to customize Visual
Studio Code by installing extensions, changing keyboard shortcuts and

20

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

color themes. Under the Learn group, you will find additional shortcuts
to learning resources about commands and the user interface. Most of
the features highlighted in the Welcome page will be discussed across
this book. By default, the Welcome page is set to show up every time you
launch Code. You can remove the flag from the Show welcome page on
startup checkbox to change this behavior.

The Code Editor

The code editor is certainly the area where you spend most of your time
in VS Code. The code editor becomes available when you create a new file
or open existing files and folders. You can edit one file at a time as well as
multiple files side-by-side concurrently. Figure 2-2 shows an example.

] MainPagexaml.cs - Visual Studio Code = O X
File Edit Selection View Go Debug Tasis Help

A B " webappmd ¥ €* MainPagexamlcs X ¢ m -
1 ® Webapplicationi & | <txml version="1.87 1 |..sir|g System;

0O 2 2 <docr 2 using System.Collections.Ge:

-~ 3 mERd Method 3 <assembly> 3 using System.Ling;
Areas.HelpPage.ApiDescripti oo 4 <name>Webdpplicatio a using System.Text;

v onExtensions.GetFriendlyld 5 </assembly> 5 using System.Threading.Task:
(System.Web.Http. (-] <members»] using Xamarin.Forms;
Description.ApiDescription) iy 7 cmiaber names="M:Neb. 7

4 g 8 <summary> % 8 namespace Appl

s Generates an URI-friendly '_ 3 9 Generates an UR = -] {

E.—, 10 for the [[: 1} </ summary> L 18 public partial class Ma
4 T:System.Web.Http. 11 <param names="de i 11 {

Description. 12 <returns>The ID 4o 12 public MainPage()
4piDescription]]. E.g. 13 </member>) 13 {
“Get-Values-1d_name” e 14 <mesber name="T:Web 4 14 InitializeCompor
instead of "GetValues/{id} /=~ 15 <summary> j 15
Iname={name}" i 16 Use this class - < 16 this.Labell.Flo

6 For example you 7

7 Mame | Description 18 or you can prov 18

L I Jrmmmnn | 19 <f summary> 2 }

9 description: |The [[| 20 </member> L]
T:System.Web.Http. - 21 <meaber names"T:Web -
Description.ApiDescription] f 22 <summary>
1.1 § 23 The controller

18 **Returns®*: The ID as a 24 </summary>
string. 25 < /membery»

11 26 <meaber names"M:Neb T

12 27 <summary>

13 28 Sets the docume

14 - 29 <fsummary>

15 &2 Type : 30 cparam names"col %
Areas.HelpPage.HelpPageConf - - 31 <param name="do *
ig - 12 </members

16 33 <meaber “M:bebs [fii

o 17 Use this class to 34 <SUmmAPY>

Ln1,Coll TabSize:d4 UTF-BwithBOM CRIF C2 @

Q040 [installing packages..

Figure 2-2. The code editor and multiple file views

21

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

To do this, you have a couple options:

o Right-click a file name in the Explorer bar and then
select Open to Side.

o Citrl-click a file name in the Explorer bar.
e Ctrl+\ (or §8+\ on macOS) to split the editor in two.

Notice that if you already have three files open and you want to open
another file, the editor that is active will display that file. You can quickly
switch between editors by pressing Ctrl + 1, 2, and 3. The code editor is
the heart of Visual Studio Code and provides tons of powerful productivity
features that will be deeply discussed in the next chapter. For now, it is
enough to know how to open and arrange editor windows.

Reordering, Resizing, and Zooming Editor
Windows

Editor windows can be reordered and resized based on your preferences.
Reordering editors can be done by clicking the editor’s header (which is
where you see the file name) and moving it to a different position. Resizing
an editor can instead be accomplished by clicking the mouse left button
over the editor’s border, when the pointer appears as a left/right arrow pair.

You can also zoom in and out the active editor by clicking Ctrl++ and
Ctrl+-, respectively. As an alternative, you can select View » Zoom in and
View » Zoom out.

Note In Visual Studio Code, the zoom is actually an accessibility
feature. As an implication, when you zoom the code editor, the activity
bar and side bar will also be zoomed.

22

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Status Bar

The status bar contains information about the current file or folder and

provides shortcuts for some quick actions. Figure 2-3 shows an example of

how the status bar appears.

In26Col10 TbSe=d UTFE CRF ¢ @ A

Figure 2-3. The status bar

The status bar contains the following information, from left to right:

Git version control information and options, such as
the current branch.

Errors and warnings detected in the source code.
The cursor position expressed in line and column.

Indentation information, in this case Spaces: 4. You
can click this to change the indentation size and to
convert indentation to tabs or spaces.

The encoding of the current file.
The current line terminator.

The language for the open file. By clicking the current
language name, you will be able to change the language
from a dropdown list that will pop up.

The project name, if you open a folder that contains

a supported project system. It is worth noting that, in
case the folder contains multiple project files, clicking
this item will allow switching between projects.

23

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

o The feedback button, which allows sharing your
feedback about Visual Studio Code on Twitter.

¢ The notification icon, which shows the number of new
notifications (if any). Notification messages typically
come from extensions or they are about product
updates.

It is worth mentioning that the status bar color changes depending
on the situation. For example, it is violet when you open a single file,
blue when you open a folder, and orange when Visual Studio Code is in
debugging mode.

The Activity Bar

The Activity bar is at the left side of the workspace and can be considered a
collapsed container for the side bar. Figure 2-4 shows the Activity bar.

24

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

Figure 2-4. The Activity bar

The Activity bar provides shortcuts for the Explorer, Search, Git, Debug,
Extensions, and Settings tools, each described in the next section. When
you click a shortcut, the side bar related to the selected tool becomes
visible. You can click again the same shortcut to collapse again the side bar.

25

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

The Side Bar

The Side bar is one of the most important tools in Visual Studio Code,
certainly the tool you will interact more with together with the code editor.
It is made of five tools, each enabled by the corresponding icon, described
in the next subsections.

The Explorer Bar

The Explorer bar is enabled by clicking the first icon from the top and
provides a structured, organized view of the folder or files you are working
with. The OPEN EDITORS subview contains the list of active files,
including open files that are not part of a project or folder or files that have
been modified. These are instead shown in a subview whose name is the
folder or project name. Figure 2-5 provides an example of Explorer.

26

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

2 « Appxaml.cs - App1 - Visual Studio Code
File Edit Selection View Go Debug Tasks Help
4 OPEN EDITORS ' 2 UNSAVED
® Appxaml.cs App1\Appl
@ PersonViewModel.cs App1\App1
4 APP1 rhln)
P s
4 Appl
4 Appl
» bin

@]CC

» obj
Appxaml
Appxaml.cs
Appl.cspro)
MainPagexaml

MainPage.xaml.cs

C C C Cp=snC

PersonViewModel.cs
b App1l.Android
b App1l.iOS
» Appl.UWP
4 Wpfapp1
b bin
b obj
b Properties
App.config
4 OUTLINE u

P master* ©@0AD

Figure 2-5. The Explorer bar

Note You must hover over the folder name (APP1 in Figure 2-5) in
order to get the four buttons visible.

27

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

The subview that shows a folder structure provides four buttons (from
left to right): New File, New Folder, Refresh, and Collapse All, each
self-explanatory. The OPEN EDITORS subview has instead three buttons
(which you get when hovering over with the mouse): Toggle Vertical/
Horizontal Editor Layout, Save All, and Close All Files. Right-clicking
a folder or file name in Explorer provides a context menu that offers
common commands (such as Open to Side you saw at the beginning
of this chapter). A very interesting command is Reveal to Explorer (or
Reveal to Finder on Mac and Open Containing Folder on Linux), which
opens the containing folder for the selected item. Notice that the Explorer
icon in the Activity bar also reports the number of modified files.

The Outline View

The bottom of the Explorer bar contains another group called OUTLINE.
This group provides a hierarchical view of types and members defined
within a code file or of tags within defined in a markup file. Figures 2-6
and 2-7 show the OUTLINE based on a TypeScript file and on a HTML file,
respectively.

28

CHAPTER 2

GETTING TO KNOW THE ENVIRONMENT

") » Untitled-1 - Visual Studic Cade

File Edit Selection View Go Debug Tasks Help

> 1)
[\l -
jo) 2
-__ra' s
C &

.

& .

4 OUTLINE

TS Untitled-1 ®
class Student {
fullhame: string;
constructor{public firstName: string,
this.fullkame = firsthame +

3}

interface Person {
firsthane: string;
lastMame: string;
}

function greeter(person
return "Hello,

: Person} {
}
let user = new Student("Jahe",

document.body. innarHTML = greeter(user);

Ln 17, Col 27

Figure 2-6. The Outline view on a TypeScript file

“user”

public middleInitial

® 4 person.firsthame + " °

| H

" + middleInitial + = ~

+ person. lastNam

Spaced4 UTF-8 CRLF TypeSoipt 301

]

a

29

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

4] » Untitled-2 - Visual Studic Code - o x
File Edit Selection View Go Debug Tasks Help
E—“ EXPLORER 4] ™S 1. Untithed-2 @ M =
4 OPEN EDITORS | ZUNSAVED 1 <IDOCTYPE html>
0) v - 2 <htal lang="en">
’”~ o 3 3 chead>
4 «titles»Css Template</titles
® <> Untitled-2 4 - - "
LY 5 <meta charset="utf-8">
. 4 NO FOLDER OPENED & t o " content="width=device-width, initial-scaz
7 tyle> =
You have not yet opened a folder :5 o
8 {
Open Folder 9 box-sizing: border-box;
1) 1w}
[11
bady {
ont-fami. Arial, Helvetica, sans-serif;

/* style the header */

-header {

4 QUTUINE 22 l
: 24 /* Create three equal columns that floats next to each other *
+ @ hml
+ % head
@ tit
?“"’I' /* Should be removed. Only for demonstratio
@ met,
- 1
f* Clear floats after the columns
2 bo

r: Dsf1f1f1;

D440 Ln$4,Col7 Spacemd UTF-E CRIF HTML @ &

Figure 2-7. The Outline view on a HTML file

You can expand types and members to see what other objects they
define, and you can click each item and get the cursor over the selected
item definition in the source code. Also, you can type in the Filter text
box to restrict the list of items based on a search criterion. It is worth
mentioning that Visual Studio Code highlights with a different color (red
in the case of the Visual Studio Light Theme) items that have potential
problems and that are highlighted with squiggles in the code editor.

30

The Search Tool

CHAPTER 2

GETTING TO KNOW THE ENVIRONMENT

The Search tool, enabled with the search icon, allows for searching and

optionally replacing text across files. You can search for one or more words,

including special characters (such as * and ?), and you can even search

based on regular expressions. Figure 2-8 shows the Search tool in action,

with advanced options expanded (files to include and files to exclude).

1) o Appxamics - App! - Visual Studic Code
File Edit Selection View Go Debug Tasis Help
SEARCH o & =

|

vBagi's DecorVi
\ndroad\obi 63

Pmaster OO0 AD

Figure 2-8. The Search tool

Appaamlcs @

T R

using System;

using Xamarin.Forms;

using Xamarin.Forms.Xasl;

[assembly: XamlCompilation (XamlCompilationDptions.Compile)]

namespace Appl

{

public partial class App : Application

public App ()

{

InitializeComponent();

MainPage = new MainPage();

3

protected override void OnStart ()

i
}

f/ Handle

when your app starts

protected override void OnSleep ()

{

ff Handle

4

when your app sleeps

protected override void OnResume ()

r
i

/! Handle

}
}

when your app resumes

Ln14,Col40 TabSzed UTFS CRF 2 @ A

Search results are presented in a hierarchical view that groups all the

files that contain the specified search key, showing an excerpt of the line

of code that contains it. Occurrences are also highlighted in both the list

of files and in the code editor. You can finally clean up search results by

clicking the Clear Search Results button. If you instead wish to replace

31

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

some text with a new text, you can do this by entering the new text into the
Replace text box and then by clicking the Replace All button.

The Git Bar

The Side bar provides access to Git integration for version control. Git
integration is a core topic and will be thoroughly discussed in Chapter 7,
“Source Control with Git,” but a quick look is provided here for the sake of
completeness about the Side bar.

The Git bar can be enabled by clicking the third button from the top
(with a kind of fork icon) and provides access to all of the common source
control operations, such as initializing a repository, committing code files,
and synchronizing branches. The Git icon also shows the number of files
that have been modified locally. Figure 2-9 shows an example.

32

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

A) « Appxaml.cs - App1 - Visual Studio Code

File Edit

Selection View Go Debug Tasks Help

CHANGES 2334
App1lsin

.dtbcache .vs\App1\DesignTimeBuild
SU0 wvs\Applivls

db.lock wvs\AppT\wi15\Serverisqglite3
storage.ide .vs\App1\v15\Server\sglite3

storage.ide-shm .vs\App1\v15\Server\sqlite3

e e B e R R

storage.ide-wal .wvs\App1iv15\Server\sqlite3

=

Appxaml AppT\Appl

Appxaml.cs App1\App1

Appl.csproj Appi\Appl

MainPagexaml App1\App1
MainPage.xaml.cs AppT\App1l
PersonViewModel.cs App1\App1
Appl.csproj.nuget.cache App1\App1\obj
App1.csproj.nuget.g.props App1\App1\obj
App1l.csproj.nuget.g.targets AppT\AppT\obj
project.assets.json App1\App1\obj
Appxaml.g.cs App1\App1\obj\Debug\netsta...
App1.dil App1\App1i\cbj\Debug\netstandard...
Appl.pdb App1\App1\obj\Debug\netstanda...
App1.Assemblyinfo.cs App1\AppT\obj\Deb...

R e e e e e B e

App1.Assemblyinfolnputs.cache App1\Ap...

T
pe
o
]
wi
v
m
-
L
e]
w
sl
-
o
b
O
o
o
o]
e
5
&
©
(1]
o
[
.
5
L =

App1.csproj.CoreCompileinputs.cache Ap... U
App1.csproj.FileListAbsolute.txt AppT\App... U
App1.csprojAssemblyReference.cache Ap... U

MainPagexaml.g.cs App1\App1\obj\Debug... U

P master @0 AD

Figure 2-9. The Git bar

The Git bar also provides a popup menu that you can see by clicking

the ... button at the top-right corner of the bar and that contains the list

of supported Git commands in Visual Studio Code. As I said before, Git

integration will be described later in the book.

33

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

The Debug Bar

Visual Studio Code is not a simple code editor, but it is also a fully featured
development tool that ships with an integrated debugger for .NET Core and
that can be extended with third-party debuggers for other platforms and
languages. Chapter 9, "Running and Debugging Code," describes in more
detail such an important part of Visual Studio Code, but for now you have
to know that the debugging tools can be accessed by clicking the fourth
icon from the top. This will open the Debug bar, shown in Figure 2-10.

#) launch.json - App1 - Visual Studic Code
File Edit Selection View Go Debug Tasks Help
IG | Launch R =

4 VARIABLES

4 WATCH

4 CALL STACK

4 BREAKPOINTS
Pmaster* ©0 A0

Figure 2-10. The Debug bar

34

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

In Chapter 9 you will see how powerful the debugging tools are in
Visual Studio Code and how easy is installing additional debuggers.

The Extensions Bar

The Extensions bar can be enabled by clicking the fifth button from the top
in the Activity bar and allows for searching and installing extensions for
Visual Studio Code, which include additional languages, debuggers, code
snippets, and much more. Extensibility will be discussed in Chapter 6,
"Installing and Managing Extensions," but Figure 2-11 provides an example
of how the Extensions bar appears.

2] launch json - App1 - Visual Studio Code

File Edit Selection View Go Debug Tasks Help

4 ENABLED 2
CfCe+ D121
C/C++ IntelliSense, debugging, and code bro..

Microsoft fol

C# for Visual Studio Code (powered by Omni...
Microsoft £
Cordova Tools 140

Code-hinting, debugging and integrated co
Visual Studio Mobile Tools ol

Nahunnar far Chramea o =

4 RECOMMENDED H
XML Tools 23
XML Formatting, XQuery, and XPath Tools for.
Josh Johnson
markdownlint o200
Markdown linting and style checking for Visu...

David Anson =0

* DISABLED o
Pmasterr @0 A0

Figure 2-11. The Extensions bar
35

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

Not only you can search online for extensions, but you can see the list
of installed extensions as well as disabled and recommended extensions.

The Settings Button

The Settings button is represented with the gear icon, at the bottom of

the Activity bar. If you click it, you will see a popup menu with a list of
commands that represent shortcuts for customizing Visual Studio Code
and that will be discussed more thoroughly in Chapter 5, "Customizing
Visual Studio Code." Among the others, a command in the menu allows for
manually searching for product updates.

Navigating Between Files

Visual Studio Code provides two ways of navigating between files. The
quickest way is pressing Alt+Left or Alt+Right to switch between active files.

If you instead press Ctrl+Tab, you will be able to browse the list of files
that were opened since VS Code was launched, and you will be able to
select one for editing, as shown in Figure 2-12.

A nunch.jsen - App! - Visual Studic Code - o *

File Edit Selection View Go Debug Tasis Help

Figure 2-12. Navigating between active files

36

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Command Palette

Together with the code editor and the activity and side bars, the Command
Palette is another very important tool in Visual Studio Code, which allows
for accessing Visual Studio Code built-in commands and also commands
added by extensions via the keyboard. The Command Palette can be
opened with View » Command Palette or via the Ctrl+Shift+P keyboard
shortcut (38+P on macOS), and Figure 2-13 shows how it looks like.

) launch json - App1 - Visual Studio Code = o x
File Edit Selction View Go Debug Tmsks Help

+ OPEN EDITORS ZuUNsavE

T i

Figure 2-13. The Command Palette

The Command Palette is not just about menu commands or to user
interface instrumentation but also to other actions that are not accessible
elsewhere. For instance, the Command Palette allows installing extensions
as well as restoring NuGet packages over the current project or folder. You
can simply move up and down to see the full list of available commands,
and you can type in some characters to filter the list. You will notice how
many of them map actions available within menus and that, for many
of them, there is a keyboard shortcut available. Other commands, such
as extension, debug, and Git commands, will be discussed in the next
chapters, so it is important that you get started with the Command Palette
at this point.

37

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

The Panels Area

Visual Studio Code will very often need to display information about
source code but also information coming from the Git engine, external
tools, or debuggers. To accomplish this in an organized way, the
environment provides the so-called Panels area, which appears by default
at the bottom of the user interface.

The Panels area is made of four built-in panels: Problems, Output,
Debug Console, and Terminal, each discussed in this section. The Panels
area is not visible by default, and it usually pops up when the information
they represent becomes available (such as the debugger sending
information about symbols in the source code). Additionally, by default it
appears at the bottom of the VS Code’s user interface, but you can move it
to the side of the workspace with a button called Move to Right that each
panel provides, and then you can restore the original layout with another
button called Move to Bottom. Let’s now discuss each panel in more detail.

The Problems Panel

With languages that have built-in enhanced editing support, such as
TypeScript (www. typescriptlang.org), or for which an extension has
been added to provide advanced editing features, such as C#, Visual Studio
Code can detect code issues as you type. In the code editor, these are
usually highlighted with red squiggles (for blocking errors) and in green
(for warnings). The list of errors, warnings, and informational messages is
also displayed in the Problems panel. This can be enabled by clicking the
number of errors at the bottom-left corner of the status bar (see Figure 2-11).

The Problems panel makes it easy to distinguish between errors and
warnings due to different icons (a white x over red background for errors
and a black exclamation mark over yellow background for warnings).
Figure 2-14 shows an example based on some C# code that contains an
unused variable (warning) and a syntax error.

38

http://www.typescriptlang.org

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

. [m] X
C* Programcs @ m
1 using System;
2
3 namespace HelloCode
4 o
5 class Program
6 { 1
0 references]
7 static void Main(string[] args)
8 {
9 int a;
1@ Console.WriteLine("Hello World!"™)
11 3]
12 }
13 }
14
PROBLEMS @) OUTPUT DEBUG CONSOLE TERMINAL Filter. Eg: text, /15 ¥ B A~ [X

4 C* Program.cs (2
@ : expected [HelloCode] (1

& The variable ‘a’ is declared but never used [HelloCode] (9, 17)

Ln 9, Col 18 (1 selected) Spaces:4 UTF-8withBOM CRLF C2 @ A

Figure 2-14. The Problems panel

In case you have multiple files opened, the Problems panel will group
problems by file name. Also, for each problem, you will be able to see the
folder name and the position within the source code file. Just double-click
a problem, and VS Code will move the cursor to the selected item in the
code editor.

39

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

Note The code editor also provides a way to quickly fix code issues
while typing, but this is not related to the Problems panel and will
instead be discussed in the next chapter.

The Output Panel

The Output panel is the place where Visual Studio Code displays messages
from internal and external tools, such as runtime tools, Git commands,
extensions, and tasks. Figure 2-15 shows an example based on the output
of .NET’s NuGet package manager.

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL | .NET N E & A O x
Restoring packages for c:\Temp\HelloCode\Hell T'“k"_ i
Generating MSBuild file c¢:\Temp\HelloCode\obj i“fer""'"" let.g.props.
Restore completed in 188.62 ms for c:\Temp\He ~ " rej.

OmniSharp Log

Done: @.
C/C++ -

Figure 2-15. The Output panel

Because multiple tools might run concurrently during an operation
against source code files (e.g., package restore and then compilation) or
during the Visual Studio Code lifetime (such as extensions), you can use
the dropdown box in the panel to change the view and see the output of
each tool. This tool is particularly useful if the execution of external tools
fails and you want to get more information about what happened.

40

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

The Debug Console Panel

As the name implies, the Debug Console panel is a specialized panel used
by debuggers to display information about code execution. Figure 2-16
shows an example based on the execution of a simple C# application.

2] program.cs - HellsCode - Visual Studio Code - [u] »
File Edit Selection \iew Go Debug Tasks Help
w DESUG B MET Core Launch (console * € & » =2 ¢+ 1t O n m -
B s 1 using System;
@) seals 3
-~ args [string[]]: {string[e]} 3 namespace HelloCode
\;; a t]: 1@ {
: b [int]: 20 5 class Progras
[int]: 30 6 {
static void Main(string[] args)
- 8 {
u
[J] int a = 18;

int b = 28;
int cwas+b;
12 Console.WriteLine(Hello World!™);
4 WATCH . 13 Console.ReadLine();

4 CALL STACK PAUSED O BESAKPORIT PROBLEMS DEBUG CONSOLE

i
>

=
x

HelloCode.dl1!HelloCode . Program. Main(string]

Ln 13, Col 32 (19 selected) Spaces:4 UTF-3withBOM CRF C2 @ A

Figure 2-16. The Debug Console panel

Not only the Debug Console shows information about code execution,
debug symbols, and any other information a debugger needs to display, but
it also acts as an interactive console where you can evaluate expressions.
Ifyou take a look at Figure 2-16, you can see how a mathematical
expression has been manually evaluated using variables defined in the
code. Debugging is a very important topic in Visual Studio Code and is
thoroughly discussed in Chapter 9, "Running and Debugging Code," where
you will find additional information about the Debug Console.

41

CHAPTER 2 ~ GETTING TO KNOW THE ENVIRONMENT

Working with the Terminal

Visual Studio Code allows executing commands against the operating
system directly from within the development environment. In fact, you can
select the Terminal » New Terminal command to open a new terminal
instance in a panel at the bottom of the work area. Figure 2-17 shows an
example based on Windows.

TERMINAL = se» 1: powershell v S M @B ~ O %

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Users\adelsole> ||

Figure 2-17. The Terminal panel

On macOS and Linugx, the terminal tool is based on the bash shell
of each system. On Windows, the terminal is based on PowerShell by
default. However, when you open a terminal instance, a popup message
will tell you that you can select a different tool by clicking the Customize
button on the popup itself. At this point you will be able to select, from
the Command Palette, one among the Windows command prompt,
PowerShell, and the Git bash command line tool. You can also open
multiple terminal instances by clicking the New Terminal button (the icon
with the + symbol). The Terminal panel is also used by Visual Studio Code
to launch automatic scripts and commands against the operating system.
For example, when you build a C# application, Visual Studio Code starts
the .NET Core compiler whose output is displayed in the Terminal panel,
as shown in Figure 2-18.

42

CHAPTER 2 GETTING TO KNOW THE ENVIRONMENT

OUTPUT DEBUG CONSOLE TERMINAL 1: Task - build r 4+ M @ A~ O x

> Executing task: C:\Program Files\dotnet\dotnet.exe build C:\Temp\HelloCode/HelloCode.csproj <

Microsoft (R) Build Engine version 15.8.166+gd4e8d81a88 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

Restore completed in 35.66 ms for C:\Temp\HelloCode\HelloCode.csproj.
HelloCode -> C:\Temp\HelloCode\bin\Debug\netcoreapp2.1\HelloCode.d1l

@ Warning(s)
@ Error(s)

Ln13,Col1 Spacess4 UTF-8withBOM CRF C¢ @ 4&

Figure 2-18. The Terminal panel used for automatic scripting

Summary

In this chapter, you got an overview of the workspace in Visual Studio Code
and of the tools you will interact more with. You saw how to take advantage
of quick shortcuts in the Welcome page and how you can arrange editor
windows.

You saw how the status bar provides information about the active
file and how the Activity bar is a collapsed container of shortcuts for the
tools contained in the Side bar: the Explorer bar, the Search tool, the Git
bar, the Debug bar, the Extensions bar, and the Settings button. You saw
how to quickly navigate between files and how the Command Palette
provides a way for accessing commands via the keyboard, both Visual
Studio Code commands and extensions’ commands. You have also
walked through another important area in the environment, the Panels
area, where you can get information about code issues, messages from
internal and external tools and debuggers, and where you can execute
commands and scripts via the Terminal. Now that you have seen how
the environment is organized, it is time to get fun walking through all the
powerful productivity features in the code editor. This is the topic of the
next chapter.

43

CHAPTER 3

Language Support
and Code Editing
Features

Visual Studio Code is not just another evolved text editor with syntax
colorization and automatic indentation. Instead, it is a very powerful code-
focused development environment expressly designed to make it easier

to write web, mobile, and cloud applications using languages that are
available to different development platforms.

With the ambition to provide a powerful, rich development
environment, Visual Studio Code integrates a number of editing features
that are focused on improving the productivity and quality of your
code. This chapter discusses what languages are supported in Visual
Studio Code and all the available code editing features, starting from the
most basic that are available to all the supported languages to the most
advanced productivity tools that are available to specific languages such as
C# and TypeScript.

Note Keyboard shortcuts used in this chapter are based on the
default settings in Visual Studio Code.

© Alessandro Del Sole 2019 45
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_3

CHAPTER 3

Language Support

LANGUAGE SUPPORT AND CODE EDITING FEATURES

Out of the box, Visual Studio Code has built-in support for many

languages. Table 3-1 groups supported languages by editing features.

Table 3-1. Language Support by Feature

Languages

Editing Features

Batch, C, G#, C++, Clojure, CoffeeScript,
Diff, Dockerfile, F#, Go, HLSL, Jade, Java,

HandleBars, Ini, Lua, Makefile, Objective-C,

Objective-C++, Perl, PowerShell,
Properties, Pug, Python, R, Razor, Ruby,
Rust, SCSS, ShaderLab, Shell Script, SQL,
Visual Basic, XML

Groovy, Markdown, PHP, Swift

CSS, HTML, JSON, JSON with Comments,
Less, Sass

TypeScript, TypeScript React, JavaScript,
JavaScript React

Common features (syntax coloring,
bracket matching, basic word
completion)

Common features and code snippets

Common features, code snippets,
IntelliSense, Outline

Common features, code snippets,
IntelliSense, Outline, parameter hints,
refactoring, Find All References, Go To
Definition, Peek Definition

Visual Studio Code can be extended with additional languages

produced by the developer community and that can be downloaded from

the Visual Studio Marketplace. This is discussed in more detail in Chapter 6,

“Installing and Managing Extensions,” but, in the meantime, you can have

alook at the available languages.

46

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Working with C# and C++

The C# programming language deserves a more detailed version, because
of its popularity and because it is now a cross-platform language that you
can use not only on Windows but also on macOS and Linux. As you can
see from Table 3-1, the editing experience that Visual Studio Code offers
out of the box for C# is limited to common features.

However, full and rich support for the coding experience with C#
is offered via the Microsoft C# free extension (https://marketplace.
visualstudio.com/items?itemName=ms-vscode.csharp). This provides
an optimized experience for .NET Core development and includes all
the support and tools you need to build apps with C#, including the
necessary support for the .NET Core debugger. With this extension, you
will basically get the same experience available to TypeScript, including
advanced editing capabilities based on the .NET Compiler Platform (also
known as Roslyn) that makes it easier to fix code issues as you type. If you
plan to work with C#, I definitely recommend you to install this extension,
especially because this chapter discusses some editing features that are
available only through the extension. Extensibility is explained in more
detail in Chapter 6, "Installing and Managing Extensions," so the easiest
way to get the extension installed without further information is opening
any C# code file (.cs) and following the instructions shown by Visual Studio
Code when it detects that a proper extension is available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension
that adds enhanced editing features to the C and C++ languages, plus
debugging support for Windows (PDB, MinGW, Cygwin), macOS, and
Linux. The extension is available at https://marketplace.visualstudio.
com/items?itemName=ms-vscode.cpptools, and you can follow the same
steps described before about the C# extension for easy installation, of
course opening a .c, .h, or .cpp file.

47

https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Basic Code Editing Features

Visual Studio Code provides many of the features you would expect from

a powerful code editor. This section describes what editing features make
your coding experience amazing with this new tool. If you are familiar with
Microsoft Visual Studio 2017, you will also see how some features have
been inherited from this IDE. It is worth mentioning that Visual Studio
Code provides keyboard shortcuts for almost all the editing features, giving
you an option to edit code faster. For this reason, the keyboard shortcut is
also mentioned for many of the described features.

Note Features described in this section apply to all the supported
languages described in Table 3-1, except where expressly specified.

Working with Text

As you would expect, the code editor in VS Code offers commands for

text manipulation and text selection. The Edit menu provides the Undo,
Redo, Copy, Cut, Paste, Find, Replace, Find in Files, and Replace in Files
commands. These commands are available in every text editor and do not
require any further explanation, except for the find and replace tools that
were described in the previous chapter.

The Edit menu also includes the Toggle Line Comment and Toggle
Block Comment commands, which add a single line comment or a block
comment, respectively, depending on the language. For instance, in C# the
first command would comment a line like this:

// int a = 0;

48

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Instead, the block comment tool would add a multiline comment as
follows:

/* */ int a = 0;

The Edit menu also provides two commands to work with code
snippets, Emmet: Expand Abbreviation and Emmet.... The first
command is the menu representation of keyboard shortcuts offered by
code editor to add a code snippet, whereas the second command opens
the Command Palette and shows the list of code snippets that you can
add. Code snippets are discussed in more detail in the “Reusable Code
Snippets” section in this chapter.

The Selection menu not only provides commands for text selection
but also commands that make it easier to move or duplicate lines of code
above and below the current line. The Add Cursor Above, Add Cursor
Below, and Add Cursors To Line Ends commands allow working with
multicursors, described in the “Multicursors” section in this chapter.

Ifyou click an identifier, reserved word, or type name in the editor, you
can use the Add Next Occurrence, Add Previous Occurrence, and Select
All Occurrences commands that allow to quickly select occurrences of
the selected word, and occurrences will be highlighted in a different color,
which differs depending on the current theme.

Syntax Colorization

For all the languages summarized in Table 3-1, the code editor in Visual
Studio Code provides the proper syntax colorization. Figure 3-1 shows an
example based on a TypeScript code file.

49

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

) » Untitied-1 - Visual Studio Code

- o x
File Edit Selection View Go Debug Tasis Help
~ TS Untithed-1 @ m
1
class Menu {
0y 2 f/ Our properties:
>~ 3 // By default they are but can also be private or protected.
items: Array<strings; items in the menu, an array of strings.
pages: number; many pages will the menu be, a number.
I A straightfc
constructor(item_ », total_pages: number) {
this.items = item list;
this.pages = total_pages;
/1 Methods
list(): void {
16 console.log("Our menu for today:");
T for(var i=8; i<this items. length; i++) {
18 console. log(this.items[1]);
19 3
20
2 }
23
24 /f Create a new Instance of the Menu class.
25 var sundayMenu = new Menu([“pancakes”,“waffles”,“orange juice™], 1);
26
27 /¢ Call the list method.
sundayMenu. 1ist();
class HappyMeal extends Menu {
£ properties are inherited
‘I:l‘ f/ A new constructor has to be defined.
34 constructor(item_list: Arcay<string>, total_pages: number) {

Ln55Col 28 Spaces:4 UTF-8 CRLF TypeSoipt @ M

Figure 3-1. Syntax colorization

Syntax colorization is available for other languages via extensibility.
If you need to work with a language that is not included out of the box,
you can check the Visual Studio Marketplace and see if an extension
is available to support such a language. See Chapter 6, "Installing and
Managing Extensions," for information about extensibility. As a side note,
syntax colorization is the minimum that an extension must provide to add
support for a new language.

50

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Delimiter Matching and Text Selection

The code editor can highlight matching delimiters such as brackets and

parentheses (both square and round). This feature is extremely useful to
delimit code blocks and is triggered once the cursor gets near one of the
delimiters. Figure 3-2 shows an example based on bracket matching in a

constructor definition.

2] » Untitied-1 - Visual Studio Code - O %
Eile Edit Selection View Go Debug Tasis Help
titled-1 [T

/B they are public, but can also be private or protected.
itens: Array<strings: // The ms 1 W, an an
pages: number; /{ How many pages will the menu be, a number.

ems in the menu, an array of

rd constructor.
ray<string», total_pages: number) {

ff A straightf:

he thi
this.items = ist;
this.pages = total_pages;

Figure 3-2. Delimiter matching

This feature is also very useful when you need to visually delimit
nested blocks and with complex and long expressions. It is worth
mentioning that you can press Ctrl+D to fast select a word or identifier at
the right of the cursor and that you can also easily expand (Shift+Alt+Right)
and shrink (Shift+Alt+Left) text selection within enclosing delimiters of a
code block.

Code Block Folding

The code editor allows folding delimited code blocks. Just hover line
numbers and the - symbol will appear near the start of a code block.
Simply click to fold, and you will see the + symbol at this point, which you
click to unfold the code block. Figure 3-3 provides an example.

51

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

) « Untitied-1 - Visual Studic Code - O X
File Edit Selection View Go Debug Tasks Help
TS Untitled-1 @ {1s 5
class Menu {
£/ Qur properties:

3 f/ By default they are public, but can also be private or protected.

4 itens: Array<string»: // Th
pages: number; {/ How many pages menu be,

A straightforward constructor.

8 constructor(item_list: Array<string», total_pages: number) {
14 f/ methods
15 list(): void {

console. log(“Our menu for today:");

for(var i-0; i<this.items.length; i++) {

18 console. log(this.items[i]);

Figure 3-3. Code block folding

Multicursors

The code editor supports multicursors. Each cursor operates
independently, and you can add secondary cursors by pressing Alt-Click

at the desired position. You will see that secondary cursors will be
rendered thinner. The most typical situation in which you want to use
multicursors is when you want to add (or replace) the same text in different
positions of a code file.

Reusable Code Snippets

Visual Studio Code ships with a number of built-in code snippets that you
can easily add by using the Emmet abbreviation syntax and pressing Tab.
See the “Language Support” section to discover what languages support
code snippets natively. For instance, in a Swift file, you can easily add
ado..catch block definition by using the do code snippet, as shown in
Figure 3-4.

52

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

4] « Untitled-2 - Visual Studio Code - o x
File Edit Selection View Go Debug Tasks Help
|_“ S ® 3 Untitled-2 m e

class Person

Y 5 [1do do statement (Swift Language Basics

do {

e } catch error {

CH }

&t

QOAD Lnd, Col6 Spaces4 UTF-8 CRIF Swit @ A&

Figure 3-4. Adding code snippets

Code snippets are available as you type within the code editor, and you
can recognize them by the icon representing a small, white sheet. Notice
how a tooltip shows a preview of the code snippet. Pressing Tab over the
previous snippet produces the result shown in Figure 3-5.

4] « Untitled-2 - Visual Studio Code - o x
File Edit Selection View Go Debug Tasks Help
l—Q TS L] 3 Untitled-2 @ m e
L2
1 class Person
0 2 {
3
4 do { —
¥ |
3 catch ERROR {
] -
> &
-y 10
|CH

QOAD Ln 6, Col 18 (5 selected) Spaces4 UTF-8 CRLF Swit @ &

Figure 3-5. A newly added code snippet with a variable name
highlighted

53

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Notice that if the code snippet contains variable names or identifiers,
these might be highlighted suggesting that you should give them a
different name (like for the error identifier in Figure 3-5). When you
rename a highlighted identifier, all occurrences will be also renamed.

Visual Studio Code is not limited to built-in code snippets. You
can download code snippets produced by other developers for many
languages from the Visual Studio Marketplace. Actually, most of the
extensions that introduce or extend support for programming languages
also include a number of code snippets.

Word Completion

Out of the box, the code editor in Visual Studio Code implements basic
word completion for all the supported languages. This feature helps you
complete words and statements as you type. For example, if you look

at Figure 3-6, you can see how the code editor suggests terminating a
statement with the Class keyword in a Visual Basic file, based on what the
developer is typing.

4] « Untitled-2 - Visual Studic Code - [m] X

File Edit Selection View Go Debug Tasks Help

l:{\. 5 L] Untitled-2 ® M e
1 Namespace Foo

0O :

~ 3 Class Bar =
4 End (|

Y 5 End Names [= Class

Ind4 Col 10 Spaces=4 UTF-8 CRLF Visual Basic ® A

Figure 3-6. Completing a statement with word completion

54

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Simply press Enter or Tab to insert the suggested word. The word
completion engine learns as you code and can provide suggestions based
on variables and member names you declare. For example, Figure 3-7
demonstrates how the editor suggests adding the name of a variable called
Test, declared previously in the code.

4] « Untitled-2 - Visual Studio Code - [m] X
File Edit Selection View Go Debug Tasks Help
l:;\. 5 Ur . Untitled-2 @ M e

1 Namespace Foo
P
o~ 3 Class Bar
Y 5 Private Test As String

Public Sub New
Q) 8 i

o End SuE Test
[--_| 1¢ End Class

L 11 End Namespace

Ln8 Col15 Spacess4 UTF-8 CRIF VisualBasic @ A

Figure 3-7. The code editor can suggest identifiers declared in the
code

Minimap Mode

Sometimes it is difficult to have an idea of the position of the cursor inside
a source code file, especially with very long files. Visual Studio Code
provides the Minimap, a small preview of the source code file on the code
editor’s scrollbar. Figure 3-8 provides an example.

55

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

|) » unttied-2 - Viswal Studie Code = MK
!‘Ie Edit Selection Vew Go Debug Tasis Help

m
= </PackageMan1rest>
po 568 ‘For some rea he License field i1 the one you have to check
‘I the XElement is empty, the whole package sork
R L If Me.license <> ™" Or Me.License IsNot Wothing Then
71 VsixManifest Elements.First &dd(<Licenses<Xa [0.Path.GetFileName(Me.License) X></Licenser)
End If
574 Try
7S ‘Save the manifest and content types to the temp folder

9] i = . SR . e
L.J vsixManifest,Save(Path.Cosbine(targetFolder, “extension.usixmanifest™))

RaiseEvent ManifestGenerationCompleted()
Catch ex As Exception
Throw
End Try
End Sub

am nane="filelame™></param>
Private Sub BulldéClasslcvsix(fileName &s String)
If HasErrors Then

Din errortlessage = “Ca

ot d the VSIX package. The current instance of the VSIXPackage class has Jeen -
Throw New InvalidOperationEx

tion{errortessage)

End If
If Mot CodeSnippets.any Then
Throw New InvalldOperationException{”The CodeSnippets property contalns @ snippets®)

RalseEvent vsixGenerationStarted()

& ‘Create a temporary folder that stores all the archive content

Q0AD

Ln 1208 Col 1 Spacexd4 UTF-E CRLF

Figure 3-8. The Minimap allows for previewing source code on the
scrollbar

Ifyou click the Minimap, the portion of source code that is visible in
the code editor is highlighted in the scrollbar, so that you can have a better
perception of the current position of the cursors. The Minimap can be
disabled and enabled using the View » Toggle Minimap command.

Whitespace Rendering and Breadcrumbs

A very common feature with text editors is the possibility of showing light
dots instead of white spaces. In Visual Studio Code, this is possible for
white spaces within indentations. To accomplish this, you select View »
Toggle Render Whitespace. Figure 3-9 shows an example of how white
spaces for indentations are replaced with dots.

56

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

! 4] » Untitled-2 - Visual Studio Code - (=] 4
Ele fdt felecton Vew Go Debug Tuis Help
Sl vl . Untitied-2 m -
—2 </PackageMan1rests
‘Far-sose r
If the XEL package
If Me.license <3 Or Me.License IsNot Nothing Then
vsixManifest.Elements.First, &dd(<Licenses<%s T0.Path.GetFileName(Me.License) Xoc/Licenser)

License

L 1d i3 the o
pty, -t

e you have to check

sork

ent

End TF
Try
. *Save the manifest and content types to the temp folder
= VsixManifest.Save(Path.Cosbine(targetFolder, “extension,vsixmanifest”™))

RaiseEvent ManifestGeneratlonCospleted()
Catch ex As Exception
Throw
End Try
End Sub

package for Visval Studio 2815
<paran nane="fileName™ < /paran>
Private Sub BulldClassicvsix(fileName As String)

588 1f HasErrors Then

589 Dim errorMessage = "Cannot bulld] the VSIX package. The current Instance of the VSIXPackage class has je—w
z90 Theow New InvalidOperationException{errerBessage)
End If
If Mot Me.CodeSnippets.any Then
Throw New InvalidOperationException(”The CodeSnippets property contalns @ snippets®)
End If

RalseEvent VsixGenerationstarted()

‘Create a temporary folder that stores all the archive content

Q0AD i

Figure 3-9. Rendering indentation spaces with dots

Simply use again the same command to return to white spaces.
Another very useful command is Toggle Breadcrumbs, available in the
View menu. With supported languages, such as JavaScript, TypeScript, and
C# with the extension installed, it shows an icon at the upper left corner of
the code editor, which you can expand to see the definition of types and
members, as shown in Figure 3-10.

57

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

|) » unttied-1 - Visual Studie Code = MK

|gie gan feecton Vaw Go Dibug Iwis Help

Sl s Untitied-1 @ m -
-3
o)
nds Menu {
W {nherited
or has to b
b 9 sundayh ist: Array< tal_pages: number) {
“§ Happybeal we want the exact nstructor as the parent class (Menu),
L.] i . lly copy it we can call super() - a reference to the parent’s constructor.

ly copy it we
tetal_pages);

Create a new instance of the HappyMeal class.
var menu_for_children = new HappyMeal([~candy”,“drink™,“toy"], 1);

/f This time the log message will begin with the special introduction.
senu_for_children.1ist();

Figure 3-10. Navigating between types and members with
breadcrumbs

By clicking a type or member name, the cursor will be moved to its
definition, making code navigation much easier.

Markdown Preview

Visual Studio Code supports the Markdown syntax for producing
documents in the very popular .md file format. Other than syntax
colorization, for this particular language Visual Studio Code also provides
a preview of how the document will look like. Simply press Ctrl+Shift+V
(Cmd+Shift+V on macOS) in the code editor, and the preview will appear
in a separate window, as demonstrated in Figure 3-11.

58

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

ﬂ] Preview README.md - LightGBM-master - Visual Studic Code - [m] x
File Edit Selection View Go Debug Terminal Help
. README ; . MEmd % #om e
1 LightGEM, Light Gradient Boosting Machine [
2 LnghtGBM nght Gradient Boosting
) Machine
Y
- d/_build/latestidefinitionld=it Mm
5 X .
o 5 0 Status]
LH yor . com/api/orofects /status /lysSotselndfep LightGEM is & gradient boosting framework that uses tree based leaming
nch/raster isvgstrue)] algorithms. it is designed to be distributed and efficient with the following
"N /1. appveyor. com/project /guolinke/lightgbe/ tranch/m advantages:

» Faster training speed and higher sfficiency
Micresoft /LightG8M.sv * Lower memony usage

Jtravis-ci. cr;"’:(rc;o?(fLightGEM) Better accuracy

] Paraliel and GPU learning supported

» Capable of handling large-scale data

For more detalls, please refer to Features. Benefit

-do/githun/issues/Mic

F mbthin
«com/Micrasoft/L1ghtGeM/ 5 of machne

LightGBM is being widely-used in many winn
learning competitions.

/ieg.shields.ic/vacge/license-MIT-blue.svg)]
fgithub. com/Microsoft/LightGEM/ bloh / master/LICENSE)

expeniments on public datasets show that LightGEM can
f ting boosting frameworks on both efficiency and accuracy
pypi/pyversions/lightgbe. svg)] with significantly lower memary consumption. What's mare, the panalls

7 ts show that LightGEM can achieve a linear speedup by using
rultiple machines for training in spacific settings.

: \e sion
Jrg shields.ic/) [lightgbe.svg)]

@0 A0 Anaconds 520

Figure 3-11. Integrated Markdown preview

This feature is very useful because it allows to preview your documents
without the need of an external program such as a web browser.

Evolved Code Editing

Visual Studio Code is an extremely powerful code editing tool and brings
to a cross-platform and multilanguage environment many features that
have been available in Microsoft Visual Studio since many years, providing
what is called evolved code editing. This section explains all the advanced
code editing features that are available, out of the box, to languages such as
TypeScript and JavaScript and to languages like C#, C++, and Python with
the appropriate extensions installed.

59

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Working with IntelliSense

IntelliSense provides rich, advanced word completion via a convenient
popup that appears as you type. In the developer tools from Microsoft,
such as Visual Studio, IntelliSense has always been one of the most
popular features, and the reason is that it is not simply word completion.
In fact, IntelliSense provides suggestions as you type, showing the
documentation about a member (if available) and displaying an icon
near each suggestion that describes what kind of syntax element a word
represents. Figure 3-12 shows IntelliSense in action with a C# code file.

using System;

namespace HelloCode
{

class Program

static vodd Main(string(] args)

L
9 Console. i
18 Console.R & WindowHeight vold WriteLine() (+ 17 overload(s)
11) A Windowleft
1 3 S WindowTop Writes the current line terminator to the standard

F Windowwidth output stream.
P Write System.|O.I0Exception: An /O error cocurred.

P WriteLine

In9 Col22 Spacesd UTF-EwithBOM CRIF C: @ A

Figure 3-12. IntelliSense showing suggestions as you type and
advanced word completion

As you can see in Figure 3-12, IntelliSense shows the list of available
members as you write, for the given type (in this case Console). When
you select a word from the completion list, Visual Studio Code shows the
member documentation.

60

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Note The documentation for a type or member will only be
available if it has been supplied by the developers. For example, in
C# the documentation for types and members must be provided with
XML comments. This will enable IntelliSense to display it in a tooltip,
like in Figure 3-12.

Press either Tab or Enter to complete the word insertion. Not limited to
this, IntelliSense in Visual Studio code supports suggestion filtering: based
on the CamelCase convention, you can type the uppercase letters of a
member name to filter the suggestion list. For instance, if you are working
against the System.Console type and you write cv, the suggestion list will
show the CursorVisible property, as demonstrated in Figure 3-13.

=] » Program.cs - HelloCode - Visual Studic Code - o ®

file Edit Selection View Go Debug Tasks Help

1 using System;

3 namespace HelloCode
Y 4

class Program

[.'] static vodd Main(string(] args)
8 {
9 console.cy
Console.Re & cursorvisible

Gets or sets a value indicating whether the cursor is
visible.

Returns: true if the cursor is visible: otherwise, false.
System.Security.SecurityException: The user does
net have permission to perform this action.
System.10.I0Exception: An /O error ecourred.

n9 Col23 Spacesd UTF-EwithBOM CRIF C: @ A

Figure 3-13. Suggestion filtering in IntelliSense

IntelliSense also provides the foundation for other advanced features
in the code editor that depend on it, described in the next subsections.

61

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Parameter Hints

When you write a function invocation, IntelliSense also shows a tooltip
that describes each parameter. This feature is called parameter hints and
is available only if the documentation for function parameters has been
implemented. An example is visible in Figure 3-14.

using System;

namespace HelloCode
{
. void Console . Writeline(string value)
class Program
{ value: The value to write.

Writes the specified string value. followed by the current line

static vold Main(strin =
‘ terminator. to the standard output stream.

8 { v
9 Console.WriteLine()
J Console.Readline();

In9 Col31 Spacesd UTF-EwithBOM CRIF C2 @ A

Figure 3-14. IntelliSense shows parameter hints

For languages such as C# and TypeScript or, more generally, with
languages that allow for function overloads, parameter hints show the
description for the parameters of each overload. You can also scroll the
list of overloads with the up and down arrow keys to select a different
overload.

Inline Documentation with Tooltips

If you hover types, variables, and type members, Visual Studio Code will
show a tooltip that contains the documentation for the selected object.
Figure 3-15 provides an example.

62

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

=] Startup.cs - hellowed - Visual Studio Code - o ®

file Edit Selection View Go Debug Tasks Help

Sl © sompes X m
L .
@) § i
-~ - = . i K i g g 7=
16 public void ConfigureServices(IServiceCollection services)
Ry i { Captures sy and term.E instances from the
& 18 iy pipeline and generates HTML error responses.
19
0 1/ This mern Parameters TTP request pipelineg
app: The Microsoft.AspNetCore.Builder.lApplicationBuilder .
[..1 ’ 1 ‘:ul*'i" et A reference to the app after the operation has completed.
= 23 i if (env. I4pplicationBuilder IApplicationBuilder.UseDeveloperExceptionPa -
24 { ge()
5 app.UseDeveloperExceptipnPage():
6 }

23 app.Run{async (context) =>
g {
18 await context.Response. WriteAsync(“Hello World!™);

In25,Col 40 Spacessd UTF-SwithBOM CRIF C2 @ &4

Figure 3-15. Tooltips provide quick, inline documentation

Like parameter hints, this feature is available only if the documentation
has been implemented. If you instead hover a variable name, the tooltip
will only show the type for the variable.

Go To Definition

Visual Studio Code provides another interesting feature called Go To
Definition. You can hover over a symbol with the mouse and, if you press
Ctrl (or 38 on macOS), the symbol will appear as a hyperlink; also, a tooltip
will show the code that declares that symbol. You click the type name while
pressing Ctrl, and you will be redirected to the code that defines that type.
Figure 3-16 shows how the code editor appears when you press Ctrl and
hover over a type name.

63

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

9 Program.cs - helloweb - Visual Studic Code

- o x
File Edit Selection View Go Debug Tasis Help
@ BXPLORER Progromcs X e m -
4 OPEN EDITORS 1 using System; ¥
0 BT 2 using System.Collections.Generic;
e 3 using System.10;
4 using System.Ling;
v 5 using System.Threading.Tasks;
1] using Microsoft.AspHetCore;
) 7 using Microsoft.AspNetCore.Hosting;
] & using Microsoft.Extensions.Configuration;
eb.csproj 9 using Microsoft.Extensions.Logging;
& 1@
4 11 namespace helloweb
12 {
public class Program
b
15 public static void Main(string[] args)
16 {
17 CreatebiebHostBuilder (args) .Build().Run();
18 }
19 public class Startup
i} public static IwebHo { itBuilder(string[’
21 WebHost .CreateDs helloweb.Startup
UseStartup<STartup»();
23 1
25
i
* DUTLINE

QoAD i hellowe Ln23,Col6 Spacess4 UTF-BwithBOM CRIF ¢ @ A

Figure 3-16. Citrl+ hovering over a type enables Go To Definition

The same tool is available if you select a type name and press F12 or
if you right-click a type name and then select Go To Definition from the
context menu. This is an extremely useful feature that lets you quickly
browse between type definitions that are in different code files.

Note For C#, Go To Definition can also open the definition of a type
exposed by the .NET Core libraries, not just your code.

64

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Find All References

Find All References is a very useful feature that makes it easy to see
how many times and where a type or member has been used across the
code. For each type or member, the code editor shows how many times
a member has been referenced and in which files. Figure 3-17 shows an
example based on finding all references of a type called Startup.

A Program.cs - helloweb - Visual Studic Code - o 4
File Edit Selection View Go Debug Tasis Help

Il Frogromes ® & m -
~ 13 public class Program
>~ 14 i
Ry 15 public static void Main(string[] args)
16 {

CreateWebHostBuilder{args).Build().Run{};

}

H i

E.J 0 public static IWebHostBuilder CreatebebMostBuilder(string[] args) > —
21 WebHost.CreateDefaultBuilder(args)
22 -Usestartup<Startups();

- 2 references

nasespace helloweb

12 {

13 public class Program

14 {

15 public static vold Main(string[] args)

16 {

17 CreateWebHostBuilder(args).Build().Run{};
18 }

19

28 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =»> —
21 WebHost.CreateDefaultBuilder(args)

22 -UseStartup<STartup>();

Qo0AD i hellowe Ln22 Col32 Spacesd UTF-BwithBOM CRIF ¢ @ A

Figure 3-17. Finding all references of types and members

Ifyou click an occurrence in the list on the right, the code editor brings
up a popup containing the code where that occurrence has been found. It
is very important noting that this popup is interactive, which means that
you can edit the code directly, without the need of opening the containing
code file separately. This allows keeping your focus on the code, saving
time. Also, notice that the interactive popup shows, at the top, the file
name that contains the selected reference.

65

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Peek Definition

Suppose you have dozens of code files and that you want to see or edit the
definition of a type you are currently using. With other editors, you should
search among the code files, which not only can be annoying but that
would also move your focus away from the original code. Visual Studio
Code brilliantly solves this problem with a feature called Peek Definition.

You can simply right-click a type name and then select Peek
Definition (the keyboard shortcut is Alt+F12); an interactive popup
window appears, showing the code that defines the type, giving you not
only an option to look at the code but also of direct editing. Figure 3-18
shows the peek window in action.

A Program.cs - helloweb - Visual Studic Code - o 4
File Edit Selection View Go Debug Tasis Help

Wl cogrames % o M
. 13 public class Program
>~ 14 {
Ry 15 public static void Main(string[] args)
16 {
17 CreateWebHostBuilder(args).Build().Run{);
18 }
19
1 1
[CH 28 public static TWebHostBuilder CreateWebHostBuilder(string[] args) => -
21 WebHost.CreateDefaultBuilder(args)
22 .UseStartup<Startup>();
Startup.cs x
TEITE Sy IV TSI TSRS bh- o s
using Microsoft.AspMetCore.Builder; PRINE iR

6 using Microsoft.AspNetCore.Hosting;
7 using Microsoft.AspHetCore.Http;
8 using Microsoft.Extensions.DependencyInjection;

1@ nasespace helloweb

{
12 public class Startup
13 {
14 /f This method gets called by the runtime. Use this sethod to add servi
15 /{ For more information on how to configure your application, visit htt
16 public woid ConfigureServices(IServiceCollection services)
1 {

Ln22 Col32 Spacesd UTF-BwithBOM CRIF C2 @ A

Figure 3-18. Working on a type defined in another file with Peek
Definition

66

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

As you can see, the peek window is very similar to the Find All
References feature, and it still shows the file name that defines the type at
its top. Simply click the file name to open the code file in a separate editor.

Renaming Symbols and Identifiers

Itis very frequent to rename a symbol, so Visual Studio Code offers

a convenient way to accomplish this. If you press F2 over the symbol

you wish to rename or right-click and then select the Rename Symbol
command, a small interactive popup appears. Figure 3-19 shows an
example based on a symbol called app. There you can write the new name
without any dialogs, keeping your focus on the code.

"S] Startup.cs - helloweb - Visual Studio Code - (m] X
File Edit Selection View Go Debug Tasks Help

[:j\l : T Startup.cs x ®© @O
o L i
):} 12 public class Startwp L
13 {
14 // This method gets called by the runtime. Use this method to a
Y 15 // For more information on how to configure your application, v
16 public void ConfigureServices(IServiceCollection services)
17 {
18 }
[I] 19 B
28 // This method gets called by the runtime. Use this method to «
21 public void Configure(IApplicationBuilder app, IHostingEnvironm
22 {
23 if (env.IsDevelopment())
24 {
25 | app.UseDeveloperExceptionPage();
26 } e
_rr. 27
1 28 app.Run(async (context) =>

o040 M helloweb Ln25Cal18 Spaces:4 UTF-8withBOM CRIF ¢ @ &

Figure 3-19. Renaming symbols

67

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

All references of that symbol will be renamed accordingly. Additionally,
you can rename all the occurrences of an identifier. You simply right-click
the identifier, then select Change All Occurrences (or press Ctrl+F2
on Windows/Linux and 38+F2 on macOS); all the occurrences will be
highlighted and updated with the new name as you type.

Live Code Analysis

With C#, TypeScript, and with languages whose support can be enhanced
via extensions like Python, Visual Studio Code can detect code issues as
you type, suggesting fixes and offering code refactorings. This is one of
the most powerful features in this tool, which is something that you will
not find in most other code editors. The next examples are based on the
C# programming language, since (together with TypeScript) this supports
the richest experience possible in Visual Studio Code, and therefore itis a
good choice to discuss the powerful coding features available. Of course,
everything discussed here applies to all other languages that support the
same enhanced features.

According to the severity level of a code issue, Visual Studio Code
underlines with squiggles the pieces of code that need your attention.
Green squiggles mean a warning; red squiggles mean an error that must
be fixed. If you hover over the line or symbol with squiggles, you will get
a tooltip that describes the issue. Figure 3-20 shows two code issues, one
with green squiggles (an unused local variable) and one with red squiggles
(a symbol that does not exist), plus the tooltip for the code issue with the
higher severity level.

68

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

4] » Program.cs - hellodotnet - Visual Studio Code - o X
File Edit Selection View Go Debug Tasks Help
|—?, Program.cs L] ¢ @

using System;

"D 2 using System.Text;
Va 3 using System.Diagnostics;
V 5 namespace hellodotnet
) 6 {
7 class Program
8 {
= sl :
o 9 static void Main(string[] args)
1@ {
. int anlnteger;
12 Console.WriteLine(welcomeMessage);
13 H
14 3
15
PROBLEMS (@ OUTPUT DEBUG CONSOLE TERMINAL Filter. Egrtext 15 8% & A~ O X

4 Program.cs (2
@ The name ‘welcomeMessage’ does not exist in the current context [helledotnet]

L The variable "aninteger’ is declared but never used [hellodotnet]

o141 I hellodotnet Ln12,Col38 Spaces:4 UTF-8withBOM CRIF ¢ @ &

Figure 3-20. Code issue detection as you type

Code issues are detected as you type and they are also listed in the
Problems panel. If you look at Figure 3-20, you can also see an icon with
the shape of a light bulb. This icon is a shortcut for a tool called Light Bulb.
When you click the Light Bulb, Visual Studio Code shows possible code
fixes for the current context. For example, if you look at Figure 3-21, you
can see the suggestions that the Light Bulb provides to fix the missing
symbol underlined with red squiggles.

69

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

2] « Program.cs - hellodotnet - Visual Studio Code - a X

File Edit Selection View Go Debug Terminal Help

Ei\ Programcs @ ¢ @
1
- using System; =
0O 2 using System.Text;
7~ 3 using System.Diagnostics;
4
'v' 5 namespace hellodotnet
| : (
7 class Program _I
8 {
= g
- 9 static void Main(string[] args)
10 {
11 int anlnteger;
12 Console.WriteLine(welcomeMessage);
13 ;
Generate variable ‘welcomeMessage’ -> Generate field "Program.welcomeMessage’
14
15 } Generate variable ‘welcomeMessage' -> Generate read-only field ‘Program.welcomeMessage’
16 Generate variable 'welcomeMessage’ -> Generate property ‘Program.welcomeMessage’

Generate variable ‘welcomeMessage' -> Generate local 'welcomeMessage

In12,Col36 Spaces4 UTF-8withBOM CRIF C2 @ A

Figure 3-21. Potential fixes suggested by the Light Bulb

In this particular case, the editor suggests four options, such as

creating a field, a read-only field, a property, or alocal variable. In this

particular case, a field would be created as follows:

private static bool welcomeMessage;

Instead, a property would be generated like this:

public static bool welcomeMessage { get; private set; }

Probably bool is not the type you would expect here, but Visual Studio

Code has not enough information to infer a different type. However, when

the code contains some information that Visual Studio Code could use to

70

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

understand the proper type, properties, fields, and local variables would

be generated of the expected type. With the Light Bulb, it is also easier to
generate types on the fly. Figure 3-22 shows an example based on an object
called person, for which a type has not been defined yet. As you can see, for
this context the code editor shows a larger list of possible fixes, including
generating a new class, either in the current file or in a separate file.

%) o Program.cs - hellodotnet - Visual Studio Code - O X

File Edit Selection View Go Debug Terminal Help

Program.cs [¢ M

8 1 1
9

18 static void Main(string[] args)

11 {

12 Console.WriteLine(person.ToString());

13

5 Generate variable ‘person’ -> Generate field ‘Program.person’

14

15) Generate variable ‘person’ -> Generate read-only field "Program.person’ L

16 Generate variable ‘person’ -> Generate property ‘Program.person’

Generate vaniable ‘person’ -> Generate local ‘person’
Generate type ‘person’ -> Generate class ‘person’ in new file
Generate type ‘person’ -> Generate class ‘person’

Generate type ‘person’ -> Generate nested class ‘person’
Change ‘person’ to ‘Version'.

Use expression body for methods

Ln12, Col36 Spacess4 UTF-8withBOM CRF 2 @ A

Figure 3-22. Generating types on the fly

71

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

Not limited to this, the Light Bulb can help you refactor your code and
keep it cleaner. For example, you can click any of the using directives (or
equivalent in other languages) and, when the Light Bulb appears, you can
see how it offers to remove unused code, as shown in Figure 3-23.

4] o Program.cs - hellodotnet - Visual Studio Code = O X

File Edit Selection View Go Debug Terminal Help

ﬁ Programcs @ ¢ @
1
1 using System;
O 2 uling System.Text; B
= 3 using System.Diagnostics;
'V : " Remove Unnecessary Usings
3 6 {

class Program

8 {
g
] :]
CH
10 static void Main(string[] args)
11 {
12 Console.WriteLine(person.ToString());
13 }
14 1
15}

In3,Col1 Spacess4 UTF-8withBOM CRIF c: @ A

Figure 3-23. Code refactoring made easy

Actually, there is even more power. Suppose you want to create a class
that implements the IDisposable interface. As you can see in Figure 3-24,
the code editor cannot find the definition of such interface and shows a
red squiggle, but the Light Bulb provides shortcuts for quickly fixing this
issue. For example, it suggests adding a using System; directive, which is
what the code needs.

72

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

4] « Person.cs - hellodotnet - Visual Studic Code = [} X

File Edit Selection View Go Debug Terminal Help

Eﬁ : ® Personcs ° ¢ m
2
'® 1 public class Person: IDisEosable —I
7~ 2 {
F ing Sy .
\r’ a using ystem

System.IDisposable

\‘ Generate type 'IDisposable’ -> Generate interface 'IDisposable’ in new file
A2\

A&

Generate type 'IDisposable’ -> Generate interface 'IDisposable’

In1,Col24 Spaces4 UTF-8 CRIF C¢+ @ A

Figure 3-24. Adding missing directives

At this point, IDisposable will be still underlined with a red squiggle
because the code is not implementing the interface yet. If you still enable
the Light Bulb, you will see how the code editor suggests potential fixes
based on the current context, such as implementing the interface in
different ways (see Figure 3-25).

73

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

A o Person.cs - hellodotnet - Visual Studio Code = a X
File Edit Selection View Go Debug Terminal Help
@ g C ® Personcs L ¢ M -

1 using System;

Implement interface

Implement interface with Dispose pattern

} Implemeant interface explicitly

'-:_}'J Implement interface explicitly with Dispose pattern

Generate constructor ‘Person()’

In3,Col27 Spaces4 UTF8 CRIF C2 @ A

Figure 3-25. The Light Bulb provides suggestions based on the
current context

Just to give you an idea of the power of this tool, following is the code
that is generated if you choose to implement the interface with Dispose
pattern:

using System;

public class Person: IDisposable

{

#iregion IDisposable Support
private bool disposedValue = false; // To detect redundant
calls

74

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
// TODO: dispose managed state (managed objects).

}

// TODO: free unmanaged resources (unmanaged objects)
// TODO: set large fields to null.

disposedValue = true;

}

// TODO: override a finalizer only if Dispose(bool
disposing) above

// has code to free unmanaged resources.

// ~Person() {

/7 // Do not change this code. Put cleanup code in
Dispose(bool disposing) above.

// Dispose(false);

/1 }

// This code added to correctly implement the disposable
pattern.

public void Dispose()

{

// Do not change this code. Put cleanup code in
Dispose(bool disposing) above.
Dispose(true);

75

CHAPTER 3 LANGUAGE SUPPORT AND CODE EDITING FEATURES

// TODO: uncomment the following line if the finalizer
is overridden above.
// GC.SuppressFinalize(this);

}

#endregion

You would get a similar result, but with different implementation, if the
choice was one of the other possible code fixes. Though it is not possible
to show examples for all the code fixes that Code can apply, what you have
to keep in mind is that suggestions and code fixes are based on the context
for the code issue, which is a very powerful feature that makes Visual
Studio Code a unique editor.

Summary

Visual Studio Code is a code-centric tool that supports out of the box

a wide variety of languages, offering coding features such as syntax
colorization, delimiter matching, code block folding, multicursors, code
snippets, and code completion that are common to all the supported
languages.

In addition, languages such as TypeScript and C# provide the so-called
evolved code editing experience via integrated tools such as IntelliSense,
Go To Definition and Peek Definition, Find All References, and the
extremely powerful Light Bulb that detects code issues as you type and
that suggests potential fixes based on the context. Now that you have
knowledge of the powerful coding features that Visual Studio Code offers,
it is time to see how to use them with individual source code files and
structured folders.

76

CHAPTER 4

Working with Files
and Folders

Being the powerful editor it is, Visual Studio Code provides a convenient
way of working with code files and folders containing both loose files and
projects. In this chapter you will learn how to work with individual files,
with folders containing source code files, and with workspaces. You will
also learn about VS Code’s independency from proprietary project systems
as well as the built-in support for a few, popular project types.

Visual Studio Code and Project Systems

Visual Studio Code is file and folder based. This means that you can open
one or more code files distinctly, but it also means that you can open

a folder that contains source code files and treat them in a structured,
organized way. When you open a folder, Visual Studio Code searches for
one of the following files:

o Tsconfig.json
e Jsconfig.json
o Package.json
o Project.json

e .sln Visual Studio solutions for .NET Core with the C#
extension installed

© Alessandro Del Sole 2019 77
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_4

CHAPTER 4 WORKING WITH FILES AND FOLDERS

If Code finds one of these files, it is able to organize the file structure
into a convenient editing experience and can offer additional rich editing
features such as IntelliSense and code refactoring. If a folder only contains
source code files, without any of the aforementioned .json or .sln files,
it still opens and shows all the source code files in that folder, providing
a convenient way to switch between all of them. This chapter describes
how to work with individual files and with folders in Visual Studio Code,
and more details about how it manages projects will be provided in the
subsection “Working with Folders and Projects.”

Working with Individual Files

The easiest way to get started editing with Visual Studio Code is working
with one code file. You can open an existing supported code file with File
» Open (Ctrl+O or 38+0 on macOS). Visual Studio Code automatically
detects the language for the code files and enables the proper editing
features. Of course, you can certainly open more files and easily switch
between files by pressing Ctrl+Tab (or A+Tab on macOS). As you can see in
Figure 4-1, a convenient popup will show the list of open files; by pressing
Ctrl+Tab, you will be able to browse files, and when you release the keys,
the selected file will become the active editing window.

4] mterfacests - nterfaces - Visual Studhe Code - o

[Fie fdt Selection View Go Debug Jerminal Help

4 OPEN EDITORS

Figure 4-1. Quickly navigating between open editors

78

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Simply close an editor by using the Close button at the upper right
corner, or use the Close All Files command in the File menu.

Note In the Visual Studio Code terminology, it is common to refer
to open files as active editors or open editors. This is because editor
windows are not limited to code files, but they can also display
documentation files or provide formatted previews of the content of
other types of files (e.g., images and spreadsheets).

Creating Files

You have several ways to create a new file:
o Via File » New File
o By pressing Ctrl+N (38+N on macOS)
e By using the New File shortcut in the Welcome page

e By clicking the New File button in the Explorer bar
when a folder is currently opened

By default, new files are treated as plain text files. In order to change
the language for a new file, click the Select Language Mode item in the
right corner of the status bar, near the smile icon. In this case, you will see
Plain Text as the current mode, so click it. As you can see in Figure 4-2, you
will be presented with a list of supported languages where you can select
the new language for the current file. You can also start typing a language
name to filter the list.

79

CHAPTER 4 WORKING WITH FILES AND FOLDERS

] Untitled-1 - Visual Studie Code - o ®
File Edit Selsction View Go Debug Terminal Help

Y —— o m -

LI -

In1,Col1 Spacess4 UTF-8 CRIF PlainTet @ M

Figure 4-2. Selecting the language for a new file

When you select a new language, the Select Language Mode item is
updated with the current language, and the editor enables the supported
features for the selected language, such as syntax colorization, word
completion, and code snippets.

Obviously, you can change the language of any open code file, not just
new files.

File Encoding, Line Terminators, and Line
Browsing

Visual Studio Code allows you to specify an encoding for new and existing
files. Default encoding for new files is UTF-8. You can change the current

encoding by clicking the Select Encoding item in the status bar (in the
previous figures, it is represented with UTF-8, the current encoding). You

80

CHAPTER 4 WORKING WITH FILES AND FOLDERS

will be presented with a long list of supported encodings and a search box
where you can filter the list as you type (see Figure 4-3).

] Untitled-1 - Visual Studie Code - o ®

File Edit Selsction View Go Debug Terminal Help

In1,Col1 Spacess4 UTF-8 CRIF PlainTet @ M

Figure 4-3. Selecting the file encoding

Similarly, you can change the line terminator by clicking the Select
End of Line Sequence item (in previous figures it’s represented by CRLF).
Visual Studio Code supports CRLF (Carriage Return and Line Feed) and
LF (Line Feed), and the default selection is CRLE. You can also move fast
to a line of code by clicking the Go to Line item, represented by the line
number/column group in the status bar. This will open up a search box
where you can write the line number you want to go to, and the line of
code will be immediately highlighted as you type (see Figure 4-4).

81

CHAPTER 4 WORKING WITH FILES AND FOLDERS

) interfacests - interfaces - Visual Studic Code

- o x
File Edit Selsction View Go Debug Terminal Help
@ & m
Go to line 34
O
pe
21 ® Starts the car's ignition so that it can drive.
L% 22 /
23 public start() {
24 this._isRunning = true;
25 }
[.'1 27
a B £ 5
28 Attempt to drive a distance. Returns true or false base
39 - @paran {number} distance The distance attempting to cov
31 .
32 * j@returns {boolean} wWhether or not the drive was success
34 public drive(distance: number): boolean {
35 sRunning) {
36 istanceFromStart += distance;
38 }
return false;
a8 4
3 Gives the distance from starting positior
5 greturns {number} Distance from starting position;
public getPosition(): number {
T 48 return this. distanceFromStart;

¥ OUTUNE 49 i3

Ln11,Col31 Spacessd UTF-8 LF TypeScript 303 @ 4

Figure 4-4. Quickly moving to a specific line of code with Go to Line

Working with Folders and Projects

Differently from other development environments, such as Microsoft
Visual Studio, Visual Studio Code is folder based, not project based.

This makes Visual Studio Code independent from proprietary project
systems. VS Code can open folders on disk containing multiple code files
and organize them the best way possible in the environment, and it also

supports a variety of project files. More specifically, when you open a
folder, VS Code first searches for:

e MSBuild solution files (.sln): In this case, Visual Studio
Code expects to find a .NET Core solution made of C#
projects, so it scans the referenced projects (*.csproj
files) and organizes files and subfolders in the proper

82

CHAPTER 4 WORKING WITH FILES AND FOLDERS

way. Remember that Visual Studio Code needs the
Microsoft C# extension installed in order to properly
treat solution files. It is worth mentioning that VS Code
can open any .sln solution, but full support is currently
offered only for .NET Core. An example of this scenario
will be offered in Chapter 8, “Automating Tasks.”

tsconfig.json files: If found, Visual Studio Code knows
this represents the root of a TypeScript project, so it
scans for the referenced files and provides the proper
file and folder representation.

jsconfig.json files: If found, Visual Studio Code knows
this represents the root of a JavaScript project. So,
similarly to TypeScript, it scans for the referenced files
and provides the proper file and folder representation.

package.json files: These are typically included with
JavaScript projects and .NET Core projects, so Visual
Studio Code automatically resolves the project type
based on the folder’s content.

project.json files: If found, Code treats the folder as
alegacy DNX project written in C#. DNX stands for
.NET Execution Environment and represents the
runtime with Software Development Kit (SDK) built

on top of .NET Core 1.0 and 1.1. Project.json has been
discontinued as a project system starting with .NET
Core 2.0 so, if you have projects written with earlier
versions, I recommend you to read the migration guide
from Microsoft (https://docs.microsoft.com/en-us/
dotnet/core/migration/from-dnx).

83

https://docs.microsoft.com/en-us/dotnet/core/migration/from-dnx
https://docs.microsoft.com/en-us/dotnet/core/migration/from-dnx

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Note Opening a .sIn or .json file directly will result in editing the
content of the individual file. For this reason, you must open a folder,
not a solution or a project file.

Additional project systems might be supported via extensibility. If
no one of the supported projects is found, Visual Studio Code loads all
the code files in the folder as a loose assortment, organizing them into a
virtual folder for easy navigation. Now let’s discover how Visual Studio
Code allows you to work with folders and supported projects providing

appropriate examples.

Opening a Folder

You open a folder via File » Open Folder or via the Open Folder shortcut
in the Welcome page. You can also drag and drop a folder name from
Windows’ Explorer or macOS’ Finder onto Visual Studio Code.

Note On Windows, the VS Code installer will also provide an option
to enable a shortcut called Open With Code when you right-click a
folder or file name in File Explorer.

Whatever folder you open, VS Code organizes files and subfolders into
a structured view represented in the Explorer side bar. Figure 4-5 shows an

example based on a C# project.

84

CHAPTER 4 WORKING WITH FILES AND FOLDERS

4] Welcome - expensereport - Visual Studio Code

File Edit Selection View Go Debug Terminal Help

4 OPEN EDITORS
x A welcome
4 EXPENSEREPORT
b bin
4 Controllers
C* HomeController.cs
b Models
» obj
b Properties
Views
¢ Home
Shared

_Viewimports.cshtml
_ViewStart.cshtml
wwwroot
b css
b Images
ks
4 ib

b bootstrap

b Jquery

b jquery-validation

b jquery-validation-unobtrusive

% favicon.ico
appsettings.Developmentjson
appsettingsjson

& expensereport.csproj

C* Program.cs

C Startup.cs

¢ OUTLINE
Q040 I expensereport

Figure 4-5. The structured view of files and folders inside the
Explorer

The root container is the folder name. Nested you see files and
subfolders, and you can expand each subfolder to browse every file it
contains. Simply click a file to open an editor window on it.

85

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening .NET Core Solutions

When you open a folder that contains a .NET Core solution based on
the MSBuild project system (.sIn file), Visual Studio Code organizes all
the code files into the Explorer bar and enables all the available editing
features for C#. Figure 4-6 shows an example.

2 Program.cs - expenserepon - Visual Studio Code

- o x
File Edit Selection View Go Debug Terminal Help
@ BPLORER © Program.cs % $ m -
+ OPEN EDITORS © Proaram () expensereport ¢ % sxpensersport ’
fofl * © Pogumes 1 . using System; -
- 4 EXPENSEREPORT 2 using System.Collections.Generic;
3 using System.IO;]
1 L using Systes.Ling;
using System.Threading.Tasks;
using Microsoft. AspNetCore;
using Microsoft.AspMetCore.Hosting;
using Microsoft.Extensions.Configuration;
l:_—; using Microsoft.Extensions.Legging; -
d
11 namespace expensereport
{
public class Program
-
{
15 public static woid Main(string[] args)
16 {
image: 17 CreateWebHostBuilder(args).Build().Run{);
L
lib
b b "
public static IWebMostBuilder CreatelebHostBuilder(string
i 21 WebHost . CreateDefaul tBuilder(args)
¥ 22 .UseStartup<Startup();
[of . 13 -I
Al |
on
1t € Startup.cs
+ DUTLINE

QOAD B expencerepont

In23,Col6 Spacessd UTF-BwithBOM CRIF & @ &

Figure 4-6. A .NET Core solution opened in Visual Studio Code

Notice how the root level in Explorer is the project name. You can browse
folders, code files, and edit anything that Visual Studio Code can properly
recognize. It is worth mentioning that Visual Studio Code can certainly
open any MSBuild solution, not only .NET Core solutions, but it will only
be able to run and debug .NET Core applications. For instance, if you open
a Windows Presentation Foundation (WPF) solution in VS Code, you will

86

CHAPTER 4 WORKING WITH FILES AND FOLDERS

still benefit the structured folder view in the Explorer bar and then full C#

language support, but you will not be able to build, run, and debug the code.

Instead, with .NET Core you also have integrated debugging support which

allows running, debugging, and testing code directly within VS Code. This

will be discussed in Chapter 9, "Running and Debugging Code."

Opening JavaScript and TypeScript Projects

Similarly to .NET Core solutions, Visual Studio Code can manage

JavaScript folders by searching for jsconfig.json or package.json files. If

found, Code organizes the list of folders and files the proper way and

enables all the available editing features for all the files it supports, as

shown in Figure 4-7.

) serverjs - multeor-master - Visual Studic Code

File Edit Selecton View Go Debug Terminal

e

“ OPEN EDITORS
% 15 serverjs
4 MULTEOR-MASTER

- o x
¥ ¢ O
f Star ket on port 1443 i
http: comfLearnBoost /socket. i i/Socket.I0-and-fires

i/ ub.com/LearnBoost/Socket.
var fs = require('fs");

var = require(sys');

var akdirp « require(mkdirp’);

var io = require('socket.ic’).listen(1443);
ic.enable(browser client minification');
io.enable(browser client etag');
ic.enable(browser client grip'):

/Configuring-Socke Mt

fo.set('log level', 1);
ic.set(transports”, ['websocket’]);//, ‘flashsocket®, "htmlfile

var ppsCounter = @;

var previousTimer = new Date();
var currentGames = {};

var maxPlayers = &

// Read highscores from a private file
log("working directory: ' + __dirname);
var highScorePrivateFile = _ dirname +
var highScorePublicFile = __dirname + '/
var highestScore = [{“name”: “Anonymous™, “score™: 18, “ip®: "8.@
fs.readfile{highScorePrivatefile, "utf8', function (err, data) {
if (lerr) {
highestScore = JSON.parse(data);

// Store the highestscore in a public file (without ip)
var tepObject = {name: highestScore[@].name, score: highestSc 5
fs.uriteFile(highScorePublicFile, JSON.stringify(tmpObject), i
if (err) {
log(err);

Ln1,Coll Spacesd UTFE IF JmaSoipt @ 4

Figure 4-7. A JavaScript project opened in Visual Studio Code

87

CHAPTER 4 WORKING WITH FILES AND FOLDERS

TypeScript projects’ behavior is the same as for JavaScript, except that
Visual Studio Code will search for a file called tsconfig.json as the root.

Opening Loose Folders

Visual Studio Code allows opening folders that contain unrelated, loose
assortments of files. Visual Studio Code creates a logical root based on the
folder name, showing files and subfolders. Figure 4-8 shows an example
based on a sample folder called MyFiles that contains files in different
languages.

) » Helpers.v - MyFiles - Visual Studie Code s o x
File Edit Selection View Go Debug Terminal Help

Helpers.vb @ © m -
4 OPEN EDITORS | UNSAVED Ipersvt
® - Helpersvb 1 Namespace Helpers T
4 MYFILES 2 . =

© Com Public Module CommonFunctions

il ‘Calculate the area of a circle given the radius
Public Function CalculateCirclearea(radius As Double)
age htm 7 As Double

Return radius * radius * Math.PI
End Function

11 End Module

End Namespace

» OUTLINE

In3 Coi34 Spacesd UTF-2 CRLF Visual Basic

S A

Figure 4-8. A folder containing a loose assortment of files

88

CHAPTER 4 WORKING WITH FILES AND FOLDERS

With this option, you can basically open any folder in VS Code and edit
all supported files taking advantage of the code editing features for each
file individually.

Working with Workspaces

Visual Studio Code has recently introduced the concept of workspace.
A workspace can be thought of as a logical container of folders.

Note If you have experience with Microsoft Visual Studio, a
workspace in Visual Studio Code can be compared to a Visual Studio
solution as a container of projects.

Workspaces are extremely useful to organize multiple projects and/
or folders into one place. For example, you might have a .NET Core
Web API project, a JavaScript application that consumes such API and
a folder containing documentation. Instead of working on each folder
separately, you can put them all under the same workspace and have them
all available in Visual Studio Code at the same time. Figure 4-9 shows a
workspace, called SampleWorkspace, which includes the projects and
folders shown in the previous figures.

89

CHAPTER 4 WORKING WITH FILES AND FOLDERS

4] Welcome - SampleWorkspace (Warkspace] - Visual Studio Code e] x

File Edit Selection View Go Debug Terminal Help
@ EXPLORER 2 welcome % ¢ D -
4 OPEN EDITORS
% 9] Welcome
4 SAMPLEWORKSPACE (WORKSPACE)

for Javascript, Typescript. Pyth..

Settings and keybindings

» Controllers

port.csproj.nuget.cache Mare

props

Find and run all commands

Figure 4-9. A workspace can group multiple projects and folders into
one logical container

The multeor-master folder is referred to a sample open-source project
called multeor that you can download for instructional purposes from
https://github.com/filidorwiese/multeor. The Explorer bar shows the
name of the workspace in uppercase together with the (WORKSPACE)
literal so that it’s easier to recognize it. In the next paragraphs, I will
explain in more detail how to create and open workspaces and what is the
structure of a workspace file.

90

https://github.com/filidorwiese/multeor

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Creating Workspaces

Creating a workspace can be done whether you already have any folders
opened or not. If you already have any folders opened, you can select File
» Save Workspace As. VS Code will ask you to specify the location and file
name for the new workspace. A workspace is represented by a JSON file
with .code-workspace extension, whose structure will be explained shortly.
The workspace name is simply the file name without the .code-
workspace extension and will be shown in the Explorer bar (see Figure 4-9).
Then you can add other folders to the workspace by selecting File » Add
Folder to Workspace or via the Add workspace folder shortcut in the
Welcome page. Added folders will be displayed in the Explorer bar under
the workspace root. If you do not have any folders already opened, you
can either start with File » Save Workspace As or with File > Add
Folder to Workspace. With the first option, you will basically create an
empty workspace with a name, and then you will add folders as described
in the preceding text. With the second option, you will instead create an
empty, untitled workspace starting from an existing folder. In this case,
in fact, the Explorer bar will show UNTITLED (WORKSPACE) as the
new workspace name. When you save the workspace like described in
the preceding text, the Explorer bar will show the new name based on
the workspace file name. Remember that workspaces are only logical
containers and do not affect the structure or behavior of your projects and
folders in any manner.

Note Folders you add to a workspace can be anywhere on disk;
Visual Studio Code will be able to group their content under the
workspace root and let you work like if they were in the same location.

91

CHAPTER 4 WORKING WITH FILES AND FOLDERS

Opening Existing Workspaces

You can open an existing workspace via File » Open Workspace. You
can also drag and drop a workspace file name from your operating
system’s file browsing program onto the Visual Studio Code surface.
Opening a .code-workspace file directly will simply result in viewing the
file content, not opening the workspace. Similarly, opening a folder that
contains a .code-workspace file will only result in opening the folder, not
the workspace. You can only use the specific commands described at the
beginning of this paragraph.

Workspace Structure

The information of a Visual Studio Code workspace is stored inside a file
with .code-workspace extension. A workspace file is a JSON file with a root
element called folders. This is an array of path elements, each assigned
with the name of a folder that is included in the workspace. The following
JSON markup represents the workspace file of the example shown in

Figure 4-9:
{
"folders": [
{
"path": "MyFiles"
1
{
"path": "ExpenseReport”
b

92

CHAPTER 4 WORKING WITH FILES AND FOLDERS

"path": "C:\\Users\\adelsole\\Downloads\\
multeor-master”

Notice that the full pathname of a folder is only provided if such a
folder is not in the same location of the workspace file. In this case, the
.code-workspace file, the MyFiles folder, and the ExpenseReport folders
are all in the same location; instead, the multeor-master folder is located
under a different folder, C:\Users\adelsole\Downloads. If you want to see
yourself the structure of a workspace file, you can open it within Visual
Studio Code via File » Open File.

Summary

Visual Studio Code is file and folder based, and it allows for working with
individual files as well as with folders that contain source code files and
treat them in a structured, organized way.

It also supports a number of project systems such as .NET Core,
TypeScript, and JavaScript, and it allows for creating and managing
workspaces, logical containers of folders that make it easy to have multiple
projects and folders under the same visual root. Visual Studio Code is
not only a very powerful code editor but also a very flexible environment
which can be customized in many ways. Customization is the topic of the
next chapter.

93

CHAPTER 5

Customizing Visual
Studio Code

Visual Studio Code is an extremely versatile development tool that can
be customized and extended in many ways. In fact, you can customize
its appearance, the code editor, and key shortcuts to make your editing
experience extremely personalized.

Additionally, you can install third-party extensions such as new
languages, debuggers, themes, linters, and code snippets. This chapter
explains how to customize Visual Studio Code, explaining the difference
between customizations and extensions. Then, in the next chapter, you will

learn how to work with extensions.

Customizations and Extensions Explained

You can personalize the environment of Visual Studio Code with both
customizations and extensions. The difference is that extensions add
new instrumentation or they add functionalities to a tool or change the
behavior of existing functionalities. Implementing IntelliSense for a
language that does not have it by default, adding commands to the status
bar, and adding custom debuggers are examples of extensions.
Customizations are instead related to environment settings and do not
add functionalities to a tool. Table 5-1 summarizes customizations and
extensions in VS Code.

© Alessandro Del Sole 2019 95
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_5

CHAPTER 5

CUSTOMIZING VISUAL STUDIO CODE

Table 5-1. Customizations and Extensions

Feature

Description

Type

Color themes
User and workspace
settings

Key bindings

Language grammar
and syntax colorizers
Code snippets
Debuggers

Language servers

Activation

Editor

Workspace

Eventing

Evolved editing

Style the environment layout with
different colors.

Specify environment preferences.

Redefine keyboard shortcuts.

Add support to additional languages with
syntax colorizers.

Add TextMate and Sublime Text snippets
and write repetitive code faster.

Add new debuggers for specific
languages and platforms.

Implement your validation logic for files
opened in VS Code.

Load an extension when a specific file
type is detected or when a command is
selected in the Command Palette.

Work against the code editor’s content,

including text manipulation and selection.

Enhance the status bar, working file list,
and other tools.

Interact with Code’s lifecycle events such
as open and close.

Improve language support with
IntelliSense, Peek Definition, Go To
Definition, and all the advanced,
supported editing capabilities.

Customization

Customization

Customization

Customization

Customization

Extension

Extension

Extension

Extension

Extension

Extension

Extension

96

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

In this chapter, you will see how to customize Visual Studio Code
by changing the existing preferences. Then in the next chapter, you
will see how to install extensions, including extensions that add new
customizations to the development environment, such as themes and
key bindings.

Customizing Visual Studio Code

In this section, you will discover how easy it is customizing Visual Studio
Code, walking through the customization types described in Table 5-1.

Theme Selection

You can select among several themes to give Visual Studio Code a different
look and feel. You select a color theme with File » Preferences » Color
Theme or by clicking the Settings button and then Color Theme. The list
of available color themes will be shown in the Command Palette, as you
can see in Figure 5-1.

) Welcome - Visual Studio Code - o X

File Edit Sewection View Go Debug Imis Help

Jim. Sublime Atom an

Figure 5-1. Selecting a theme

97

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

Once you select a different color theme, this will be applied
immediately. Also, you can get a preview of the theme as you scroll the
list with the keyboard. Figure 5-2 shows the Dark (Visual Studio) theme
applied to VS Code, which is a very popular choice, while you can try
yourself the other themes.

| 2 Viewhodelcs - Visual Studio Code = o X

File Edit Selection View Go Debug Tasis Help
Jising Systes;
using System.Collections.Generic;
ng System.Text;
namespare ChartSample
public class ViewModel
iblic ObservableCollection<Model> Collection { get; set;

blic viewModel()

public class LessThanMinimumModel : ViewModel

{

Datelime date = Datelime.Mow;

public LessThanMinimumModel()

{
tollection = new ObservableCollection<Model»()

1(date, 51),

l(date.AddDays(1), 58),
1(date.AddDays(2), 7€),
1(date.AddDays(3), 18@),
1(date.addDays(4), 148),
1 (date.AddDays(5), 28@),

In1,Col1 Spacesd UTF-8withBOM CRIF C2 @ &

Figure 5-2. The Dark (Visual Studio) theme applied to Visual Studio
Code

As you might expect, applying a theme also affects colors used in
the code editor so that there is an appropriate brightness and contrast
balance. In the next chapter, you will see how to install additional themes

as extensions.

98

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Customizing the Environment

In most applications, including other IDEs, you set environment settings
and preferences via a convenient user interface, and VS Code is no less.
There are two different types of settings: user settings and workspace
settings. User settings apply globally to the development environment,
while workspace settings only apply to the current project or folder. I will
now cover both user and workspace settings.

Understanding User Settings

User settings globally apply to the VS Code’s development environment.
Customizing user settings is accomplished by selecting File »
Preferences » Settings. When you do this, the settings editor appears, as
represented in Figure 5-3.

®© m -

838 Settings Found

Commodly Ussd Commonly Used

Files: Auto Save

les: Auto Save Delay

Editor: Font Family

Figure 5-3. Working with user settings
99

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

On the left side of the editor, settings are grouped by category. In the
Search settings bar, you can quickly search settings based on what you
type, and you can also see the number of total settings found, which varies
depending on the version of VS Code and on the number of extensions
you have installed. You can manually expand setting categories manually,
or you can just scroll the list of settings, and the related category is
automatically expanded as you scroll. For instance, you could control the
behavior of the Explorer bar by locating and selecting Explorer under
the Features category, and here you could change the current settings, as
shown in Figure 5-4.

®© m -

838 Settings Found

Explorer
Auto Revea
7] com

Explorer Confirm Delete

Confirm Drag And Drop

Enable Drag And Drop

v

5 Visible

Figure 5-4. Changing user settings

100

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Similarly, you could change settings and preferences for the text editor,
the whole application, and extension settings. In fact, extensions that allow
for customizing preferences store their settings in the same place as VS
Code does, so that you have a unique settings editor. There are hundreds
of settings and the number varies depending on your configuration and
installed extensions, so it’s not possible to list all settings here. For more
details about available settings, visit the official documentation (https://
code.visualstudio.com/docs/getstarted/settings).

Note Remember that changes will be applied only after you save
your edits with File > Save.

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file
called settings.json. In this file, each key/value pair represents a specific
setting and its value. Before Visual Studio Code 1.27.1, settings could only
be edited manually by modifying the settings.json file, and only in version
1.27.1, the editor discussed in the previous section was introduced.

It is important to understand how this file works, so click the ... button
below the number of settings displayed in the search bar, and then click
Open settings.json. Figure 5-5 shows how the editor appears at this point.

101

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

[20 « sestingsjson - Visual studie Code R -

Fle Edit Selection View Go Debug Terminal Help

= User Settings @ ¢ M -
-1
e Search Setting Total 840 Settings
pe,
b'd right
L]
+ Commenly Used (11)
- /f Conmtrols auto save of dirty files. Read more about
[CH re] T
itor/codebasicsd_sa .
7 A
"files.autoSave™: "off",
/f comtrols the font size in pixels.
“editor_ fontsize™: 14,
nt family.
ily": “Censolas, 'Courier Mew',
spaces a tab is equal to. This setting
an the file contents when
entation is on.
“editor.tabSize”: 4
{/ Controls how the editor should render whitespace

Ee 3 characters.

Ln7.Col2 Spacesd UTF-8 CRIF JSONwithComment: @ M4

Figure 5-5. Working with the settings.json file

As you can see, the editor view is split in two areas: the DEFAULT
USER SETTINGS on the left and the USER SETTINGS on the right.

Default user settings relate to Visual Studio Code’s environment
and tools but also to supported languages and to installed extensions’
behavior (if any). The default settings view provides detailed comment
for each available setting expressed with JSON format so that you can
easily understand what setting a particular line applies to. You can easily
provide custom settings by overriding one or more default settings, writing
inside settings.json. Figure 5-5 shows an example where you can see how
to change the theme, how to control white characters, how to control
characters and breadcrumbs in the code editor, and how to enable the
Minimap mode. Also, you will see how IntelliSense helps you choose

102

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

among available settings as you type. It is worth mentioning that you can
search for settings by typing a search key in the Search Settings box. The
settings editor will highlight occurrences of the search key as you type.

IntelliSense also allows you to get more information about a given
settings by clicking the information icon, which shows hints about the
setting with a convenient tooltip exactly as you would expect after learning
about IntelliSense’s features in Chapter 3, “Language Support and Code
Editing Features.” When done, do not forget to save settings.json otherwise
your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network might probably be behind a
proxy server. In this case, you or the system administrator might need to
configure Visual Studio Code to work with the proxy. If you do not, you
will not be able to download packages, extensions, and product updates.
Visual Studio Code should automatically detect proxies and ask for your
credentials, but this does not always happen, so you might need some
manual steps.

The first thing to do is making sure that the following sites are in the
allowed applications list of the firewall:

e vscode-update.azurewebsites.net
o vscode.blob.core.windows.net

o marketplace.visualstudio.com

o *gallerycdn.vsassets.io

o rink.hockeyapp.net

e vscode.search.windows.net

o raw.githubusercontent.com

o vsmarketplacebadge.apphb.com

103

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

The next step is configuring Code to work with the proxy. Actually,
ifthe http_proxy and https_proxy environment variables have been
defined at the system level, Visual Studio Code will use their values. If
these variables have not been set, you must provide the proxy address in
the user settings. In the settings editor, locate Proxy under the Application
category. Then, as you can see in Figure 5-6, enter the proxy address in the
Proxy text box.

[] Sestings - Vicual Studio Code - o ®
Edit Selection View Go Debug Terminal Help
) x e m
-~ 833 Settings Found
Je,

User Settings

Proxy

[- i

Proxy Strict SSL

Update
£ Channel

default

Enable Windows Background Updates

& o En

Figure 5-6. Configuring VS Code to work behind a proxy server

If your proxy also requires an authorization header, this must be
specified in the settings.json file, so you have to click the Edit in settings.
json hyperlink and then enter the value supplied by your network
administrator as the value for http.proxyAuthorization key. Also, flag the
Proxy Strict SSL option if the certificate should be verified against the list
of supplied certification authorities.

104

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

Save your changes and try to see if Visual Studio Code is able to
download extensions, packages and libraries required by some languages,
and product updates. If you still encounter network issues, you should ask
your network administrator to help you configure the proxy settings.

Note Some protection programs such as Symantec Endpoint
Protection block some Visual Studio Code installation (and update)
files because they are recognized as Cryptolocker virus instances.
Obviously, these are false positives, but you might want to talk to
your network administrator to review the protection rules for Visual
Studio Code.

Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s
environment, workspace settings only apply to the current folder. As an
implication, you first need to open an existing folder in order to customize
workspace settings.

Next you still select File » Preferences » Settings. At this point
the settings editor will show two tabs, one for user settings and one for

workspace settings, as demonstrated in Figure 5-7.

105

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

[=] Settings - greetes - Visual Studic Code - o ®

= 3 T8 ! Settings X ¢ M -
818 Settings Found

i Workspace Settings

Commanty \sed Commonly Used

Files: Auto Save
2]
LH
off

les: Auto Save Delay

nt Size

itor: Font Family

Prmaster & O0A1

Figure 5-7. Customizing workspace settings

You customize workspace settings exactly as you do with user settings,
so you have not only a second view in the settings editor but also another
settings.json file where you can specify your preferences. The settings.
json for workspace settings is saved under the .vscode subfolder that
Visual Studio Code creates inside the opened folder, restricting settings
availability to the current folder only.

Customizing Key Bindings

In the VS Code terminology, key bindings represent shortcuts you use to
invoke commands and actions from the keyboard instead of using the
mouse. Visual Studio Code includes a huge number of keyboard shortcuts
that you can override with custom values. This is particularly useful if you
used to work with other development tools and you want to get the same

106

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

keyboard shortcuts in Visual Studio Code. You will see how to accomplish
this by downloading ready-to-use key binding extensions, but it’s
important for you to know how key bindings work.

Like user and workspace settings, key bindings are represented with
JSON markup, and each is made of two elements: key, which stores
one or more keys to be associated to an action, and command, which
represents the action to invoke. In some cases, VS Code might offer the
same shortcuts for different scenarios. This is the typical case of the escape
key, which targets a number of actions depending on what you are working
with, such as the code editor or a tool window. In order to identify the
proper action, key binding settings support the when element, which
specifies the proper action based on the context. You can quickly get the
list of current key bindings by selecting File » Preferences » Keyboard
Shortcuts. At this point, Visual Studio Code will display a nicely formatted
list of commands and shortcuts, as you can see in Figure 5-8.

| 4] Keyboard Shertouts - ChartSamede - Visual Studio Code - (=] *

File Edt Zeiecton View Go Debug Twsks Help

4] Keyboard Sherteuts X m -

Figure 5-8. The list of current key bindings

107

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

In order to customize key bindings, all you need to do is clicking
the keybindings.json hyperlink under the search box and edit the
keybindings.json file that Code generates for you. The code editor gets
split into two views: on the left view, you can see the full list of default key
bindings, whereas on the right view, you can override default shortcuts
with custom ones (see Figure 5-7).

Note Remember that Visual Studio Code has (and allows for
customizing) different default key bindings depending on what
operating system it is running on.

You can quickly add a custom key binding by clicking the Define
Keybinding button or use the shortcut suggested in the button text (which
varies depending on your operating system). When you do this, a popup
appears and asks you to specify the key binding, as shown in Figure 5-9.

|) keptindmgz son - ChanSample - Visual Studio Code - .
File Eot Selecton View Go Debug Twsis el
3 4] Outautt Kayt . baybindingsjson % m -
1 /7 Oversrite key b your key 1 lace your key bingings in this file to overwrite the
£ 3 { "key 3
4 '
Ry 5 { “key": “shiftsescape”, :
- 7 "key cape” 1
® 8 :
8 { “key": "shifte
o 18
(CH 11 [key"
13 { "key"
15 { “key send”,
18 Press desired key combinstion and then press ENTER.
1 { “key +don 1
'
18 i
19 { “key' teleft”
21 Tkey alt+pagedo
23 [Tkeyt tealtepagaup
2% { “key tealteright”,
%
27 Tkey ralt
2% { "key
3 { “key
‘‘} { “key “shiftsdown”, Define Keybinding (Chri+K Ciri+K)

Wl Coll Spacend UIFE U SONwthComments @ 4

Figure 5-9. Adding a keyboard shortcut

108

CHAPTER5 CUSTOMIZING VISUAL STUDIO CODE

When you press Enter, the JSON markup for the new keyboard shortcut
is added, as shown in Figure 5-10.

|) = beybindings json - ChartSample - Visual Studic Code - o X
Fle [dit Selection Vew Go Debug Imb belp

m -

1 // Overwrite key bindings by placing them into your key 1 our key bindings in this file to overwrite the

editorTextFocus”

“shifteascape™,

“escape”,

trlsshiftedown”,

Define Keybinding 11+ Cirl +€)

i “shiftedoun”,

Lnd, Col 26 (D scleeted) Spacend UTFE [F SONwis Comments @ 4

Figure 5-10. Editing the new keyboard shortcut

You will need to edit the command and when elements with the
command you want to map and for which scenario. You can look at the
original markup on the left to get them both. Actually, the when element
is optional. Save your changes to the keybindings.json file to get your new
keyboard shortcuts ready.

109

CHAPTER 5 CUSTOMIZING VISUAL STUDIO CODE

Summary

Visual Studio Code allows for several customizations that will help you
feel at home especially if you used to work with other development tools
or code editors. You can select a different color theme from a list, you can
customize the environment settings globally or for a specific folder, and
you can even create custom keyboard shortcuts.

But the very good news is that customizations can also be downloaded
as extensions, as well as new languages, debuggers, and tools. Extensibility
is discussed in the next chapter.

110

CHAPTER 6

Installing and
Managing Extensions

Extensibility is one of the key features in Visual Studio Code, because
you can add tools, languages, code snippets, debuggers, key bindings,
and themes. Especially about languages, Visual Studio Code allows for
extending the code editor with specific syntax support, which can also
include IntelliSense, code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any
language and any tool on any platform, opening to infinite development
scenarios. This chapter explains how to find and install extensions and

how to manage extensions on your system.

Installing Extensions

You have two ways of browsing and installing extensions: from the Visual
Studio Marketplace and from within Visual Studio Code. The Visual Studio
Marketplace is a web site that contains extensions for the most popular
Microsoft development tools and services, such as Visual Studio, Visual
Studio Code, and Visual Studio Team Services. It is available at https://
marketplace.visualstudio.com, and you will need to click the Visual
Studio Code tab to see a list of extensions for Visual Studio Code. Figure 6-1
shows the Marketplace for Visual Studio Code.

© Alessandro Del Sole 2019 111
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_6

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

|lb £ [Edensions for Visual S0 X | e _ o w

“ Ly & marketplaceisualstudia.com ¥ = L o= ..

Visual Studio Visual Studio Team Services Visual Studio Code Subscriptions.

Extensions for the Visual Studio family of products

Featured
LRy 2 -
A 4 (6)
Vim V5 Live Share Pythen ion Pa indent-rainbs Azure Storage Night Owl
LR S FREE ok ok FREE LR LT 1REE ok FREE LR FREE ek ok "

Trending this week -

o> £
| RAILS
Identical Sublime M reason-vscode Tailwind C5S Intellis Moctis Horizen Theme Rails i18n

L 2 FREE LA a2 2 FREE TRIE La A 8 2 TREE *oddh ok TRIE m

Figure 6-1. The Visual Studio Marketplace

You can search for extensions by typing in the search box, or you can
use the groups below, such as Featured, Trending, Most Popular, and
Recently Added. Once you have found an extension of your interest, click
its name and you will see a detail page. Figure 6-2 shows an example based
on the C# extension by Microsoft.

112

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

|IE| 1 5 O visual Studio Mark W |

“ Ly & marketplaceisualstudia.com ¥ = L o= ..

C#

m Microsoft | & 7.408.517installs | s s 7 % o (138)

C# for Visual Studio Code (powered by OmniSharp).

m Trouble lnstalling? =

Get Started Writing C# in VS Code

| Mihat's Maw in 1150

Figure 6-2. Detail page for an extension

An extension’s page provides a detailed description and guidance
about using the extension, often providing links to additional
documentation, resources, and to the source code (if open source).

I strongly recommend you to read the detail page to get information about
what the extension includes, especially with extensions that add language
support, because it is important to know if there is only support for a new
syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, the download link will be opened by
Visual Studio Code for easy installation. You can also download the offline
installer of the extension for later reuse. To do so, click the Download
Extension hyperlink under the Resources group, on the right of the page.
In this way you will be able to download a .vsix installer file that you can
then launch manually.

113

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Note If you have experience with the Microsoft Visual Studio
development environment, you probably know that VSIX is the format
used by Microsoft for extension installer files. However, the VSIX
format for Visual Studio Code is not the same. Extensions for Visual
Studio Code are packaged with a tool called vsce and cannot work
with Visual Studio 2017 on Windows and with Visual Studio for Mac.

The second way of installing extensions is from within Visual Studio
Code. You can open the Extensions bar and search for an extension, then
you can click a specific extension to get the details, as shown in Figure 6-3.

2] Extension: C# - Visusl Studic Code - o X

Fle [dit Seection Vew Go Debug Imb belp

e ned colors with meanings.
g eppe This extoasion is recommunded based on the files you recently ope
2 Ex prsi &5
e C# IDE Extersions for VSCode DPetails Contributions Changelog
channcn

C= FixFormat 2074 o dddc *as : 5 i ;
@ e Ronat o uisinge # Inchents / DRaces / iinpty s C# for Visual Studio Code (powered by OmniSharp)
S Master Release

C# XML Documentation Comm. 3000 WaS

e Gen C# MM documentation comments for
Kitudon Knte
% S

=1
[rezas |
=
=3

ano

ces susl Studia Code
forg

. Identical Sublime Monokai CF the... o1r
Masrctiog

a. intellitense, Find 41 Beferences, etc
Sebugging is not supperied. Desdop CLR 2eduggng

@ € IL Viewer
€3 Super Sharp (CF exterslons) =1+ 4
.’ s R : erisons For CA

& ge

e 02 by OmniSharp
Get Started Writing C# in VS Code °

Figure 6-3. Installing extensions from within Visual Studio Code

You can click the Install button when ready. You will need to click the
Reload button (that appears once the installation completes) to enable the
extension in VS Code. You can also filter the search results; for instance,
if you type category:linters in the search box, Visual Studio Code will list

114

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

all the extensions that provide linting support with syntax colorization to
specific languages. You can use the same category names you see in the
Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and
manage) extensions. You can open the Command Palette, type in ext, and
a list of self-explanatory commands related to extension management will
appear. You will typically prefer working with extensions from the Command
Palette when you do not want to lose focus on the active editor window,
otherwise using the Extensions bar’s user interface is definitely easier.

Note Many extensions, especially extensions that provide full
language support such as C# and C/C++, rely on additional tools

like debuggers and libraries. These additional tools are usually
downloaded the first time you use the extension. For example, in the
case of the C# extension, required tools and libraries are downloaded
the first time you create or open a C# file. Also, newly downloaded
extensions might need some initial configuration. In this case, a
popup will appear explaining what you need to do to get started.

Extension Recommendations

Visual Studio Code can provide suggestions about recommended
extensions based on your activity. When you open the Extensions bar, you
will see a group called RECOMMENDED EXTENSIONS, under the list of
installed extensions.

The list of recommended extensions varies on your activity and might
be empty the first times you work with Visual Studio Code. Not limited to
this, Visual Studio Code can suggest extensions based on the file you open.
For example, suppose you open a code file written with the Go language
but you do not have installed any Go extension yet. Visual Studio Code has

115

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

built-in support for the Go language syntax, so the editor provides syntax
colorization and basic word completion, but you might want to work with
aricher editing experience that includes code snippets, code navigation,
and rich IntelliSense support. In this case, Code will suggest that an

extension is available to help you work with Go files and will offer to install
it, as represented in Figure 6-4.

4] arrays.go - Visual Studio Code

= o *
File Edit Selection View Go Debug Tasis Help
[j] W oarspsge X m
1 package main
0O
>~ 3 import "fmt”
vV 5 func main() {
o var a [5)int
) g fmt.Println(emp:”, a)
9 a[4] « 100
18 Println(“set:”
E--] 1 fmt. 1r“t_n("sn 8 az
o fot.Println(“get:", a[4])
fmt.Println{“len:", len(a))
b := [5)int{1, 2, 3, 4, 5}
16 fat.Println(“dcl:”, b)
var twoD [2][3]int
for 1 := 8; 1 ¢ 2; 1w+ {
for j t=9; 3¢ 3; Jr {
twoD[1][j] = 1 + 3
}
i
24 fat.println(“2d: *, twoD)
25}
@ The 'Go’ extension is recommended for this file type. &5 %
" [

Ln1,Col1 Spacesd UTF8 CRIF Go @ M1

Figure 6-4. Extension recommendations based on the current file

You can click Install and Visual Studio Code will automatically install
the extension that it thinks to be the most appropriate, or you can click
Show Recommendations to see a list of possible extensions. In both cases,
the Extensions bar will be opened and you will see the list of available
recommended extensions, but when you click Install, the proposed
extension will be already installing.

116

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Useful Extensions

The Visual Studio Marketplace contains tons of useful extensions, but
there is a set that I personally recommend after using Visual Studio Code
for a long time in my daily job. Table 6-1 summarizes a list of useful
extensions, with the description.

Table 6-1. Recommended Extensions for Visual Studio Code

Name Description Type

C# C# full language support Language,
debugger, editing

C/C++ C and C++ full language support Language,
debugger, editing

Python Python full language support Language,
debugger, editing

Language Support Java full language support Language, editing

for Java

Microsoft SQL SQL Server support Language, editing,

Server tools

Debugger for JavaScript debugging with the Chrome ~ Debugger

Chrome browser

Debugger for Java Java debugging support Debugger

Debugger for Edge JavaScript debugging with the Edge Debugger

browser

Cordova Tools Mobile development with Apache Cordova Editing, tools

Node Debug Debug support for Node.js Debugger

Visual Studio Keyboard shortcuts based on Microsoft ~ Key binding

Keymap Visual Studio

(continued)

117

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Table 6-1. (continued)

Name Description Type

Atom Keymap Keyboard shortcuts based on Atom Key binding

Notepad++ Keymap Keyboard shortcuts based on Notepad++ Key binding

Docker Language support for Dockerfile Language, editing,
tools

vscode-icons Colored icons for the Explorer bar Tools

GitLens Extend Git integrated features for Visual ~ Tools

Studio Code

PowerShell PowerShell scripting support Language, editing,
tools

Visual Studio Team Integrated Git support for the Visual Tools

Services Studio Team Services platform

As you work with Visual Studio Code on your projects and on the
operating system of your choice, you will be able to find and fine-tune
extensions that will help you be more productive.

Managing Extensions

The Extensions bar allows you to quickly manage extensions. It shows
the list of installed extensions, as shown in Figure 6-5. Then, for each
extension, the button with the gear icon opens a popup menu that
contains commands for disabling or uninstalling an extension.

118

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

) Extension: C/C++ - Visual Studic Code - u] b4
File Edit Selection View Go Debug Tasks Help

o™ EXTENSIONS = e Extension: C/C++ X [

o Search Extensio Markstplace C/C-I- 4 - m

4 ENABLED n
C/Cir ni S1TM kg Microsoft | & 11,777,782
Y C/C++ Intellisense, debugging, and code browsing. CC4+4) (e intetisense debugging, and code browsing
Microsoft &

C# for Visual Studio Code (powered by OmniSharp]

Micresoft

t', utions Changelog
LA Oiven Cucumber (Gherkin) Full Support 2110

u“:'\ VsCode Cucumber (Gherkin) Full Language Supper Disable
-
Alewander Krechik . -
r Visual Studio Code
Debugger for Chrome 2:: 10 .
Uninstall
9 Debug your JavaScript code in the Chrome browse
Micresaft FoY This preview release of the extension adds language suppert for C/C
Debugger for Edge 10: Visual Studio Code including:
E Debug your JavasScript code in the Mi
ouTRY o = 8 A O x
4 RECOMMENDED (] Failed. Retrying... Done!

Dewnloading package "Visual Studic Windows Debugger’
Failed. Retrying... Failed. Retrying... Failed.
Retrying...Waiting 8 seconds... Failed. Retrying...Waiting
16 seconds... Failed. Retrying... Done!

No extensions found.

Installing package "C/C++ language components (Windows)®
Failed at stage: installPackages
Error: end of central directory record signature not found

DISABLED 2 If you work in an offline envirgnment or repeatedly see -

Figure 6-5. Shortcuts for extension management

You can also click an extension name, and the detail page will show
the Disable and Uninstall buttons. Notice that every time you disable or
uninstall an extension, you will need to click a button called Reload (that
appears when the extension has been disabled or uninstalled) to refresh
the development environment. It is worth mentioning that you can change
the default view of the Extensions bar (displaying the list of installed
extensions) by clicking the ... button at the top of the EXTENSIONS group.
When you click this button, a popup menu appears showing different
options, such as viewing popular extensions, as well as commands for
searching extension updates and installing extensions from .vsix files.

Note Shortcuts for extension management are also available in the
Command Palette.

119

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Configuring Extensions

Visual Studio Code has some options that allow you to control the global
behavior of extensions. You can see these options in the user settings,
under the Extensions group, as shown in Figure 6-6.

4] File Fdt gelecton View Go Debug Terminal Help Settings - Viewal Studiic Code = o X
m Sertings * ¢ m -
(9] T71 Settings Found
jo,
%
) Extensions

(CH Azure Repos extension options
App Insights: Enabled
L 4 | Enables Appsatior etry collection for the Azure Repos extension.

Build Definition I

1]

Logging: Level

o Set the logging level for the extension (ermor, warn, info, verbose, debug]
the Ty jilce to i ot L

polling Interval

Specify the number of minutes to w

olling for new builds and pull requests.

Remote Url

Figure 6-6. Customizing options about extension management

120

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

There are detailed comments that explain what each option is about.
Additionally, each extension might allow for customizing its own behavior
in the user settings. For instance, suppose you have the C# extension
installed. If you look in the user settings, you will find a group called C#
Configuration. If you expand this group, you will see the full list of options
about the C# extension, which include options for code editing and for
tools the extensions add. Figure 6-7 shows these options.

4] File Fdt gelecton View Go Debug Terminal Help Settings - Viewsl Studiio Code = o 4

771 Settings Found

C# configuration

Format: Enable
| Enablefdissbis sefault O fsmatter (7

References Code Lens: Enabled
| Specifies whether the references Codelens should be show be show

xtensio. Supgpress Dotnet Install Warning

s Suppress the waming that the NET CLI is not on the path.
C# configuration

Suppress Dotnet Restore Motification

Suppress the notification windew 1o perform 3 ‘deinet restore’ when dependencies can be resolved.

‘) from appearing in

Supgress Project JSON Warning
Suppress the waming that propect json is no longer a supported project format for NET Core applications

Tests Code Lens: Enabled

ind debig test Codelens should be show be shown.

Uit Test Debugging Options

to use with th tugger when lunching for unit test debugging. Any

Figure 6-7. Customizing extension options

121

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Normally, extension authors provide detailed comments that explain
what an option is about so that it is easier for you to fine-tune an extension
behavior, such as in the case of the C# extension.

Hints About Extension Authoring

You can build extensions for Visual Studio Code and share them through
the Marketplace. You can basically build any type of supported extension,
such as language support, editing features, themes, code snippets,
debugger adapters, and key bindings. You will also need to register as a
publisher on the Visual Studio Marketplace, which requires you to have a
Microsoft account.

Extensions are usually written with TypeScript and, for most of them,
you can use an extension generator such as the Yeoman tool on Node.js.
As you can imagine, extension authoring is a complex task, and it is out of
scope in a book from the Distilled series. If you are interested in extension
authoring, you can walk through the official documentation (https://
code.visualstudio.com/docs/extensions/overview) which provides
examples and guidance for many scenarios.

Summary

Extensibility is a key feature in Visual Studio Code, because it allows
adding power to the development environment. Extensions can add new
languages (with or without rich editing support), debuggers, keyboard
shortcuts, themes, code snippets, and tools. You can install extensions
from the Visual Studio Marketplace or from within Visual Studio Code,
through the Extensions bar or the Command Palette.

122

https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview

CHAPTER 6 INSTALLING AND MANAGING EXTENSIONS

Visual Studio Code can also provide extension recommendations
based on the context, for example, when you open a file written in a
language for which there is no built-in support. Visual Studio Code makes
it also simple to manage extensions with shortcuts to disable and uninstall
extensions but also with configuring extensions’ behavior via the user
settings file. In the next chapter, you will see how to leverage extensions to
add features to Visual Studio Code to another core feature that makes it a
step forward compared to its competitors: version control with Git.

123

CHAPTER 7

Source Control
with Git

Writing software often involves collaboration. This is true if you are part of
a development team but also if you are involved in open source projects,
or if you are an individual developer who has interactions with customers.
Microsoft strongly supports both collaboration and open source, so Visual
Studio Code provides an integrated source control system based on Git
and that can be extended to other providers.

This chapter describes all the integrated tools for collaboration over
source code from within Visual Studio Code that are available out of the
box, but also how to use extensions that you will find very useful in the real
life to better review your code and to push your work to Visual Studio Team
Services.

Source Control in Visual Studio Code

Visual Studio Code supports different source control providers via
extensibility, but it offers integrated support for Git. Git (https://git-
scm.com/) is a very popular distributed, cross-platform version control
engine that makes collaboration easier for small and large projects. One of
the reasons for its popularity is that Git is open source, and therefore it has
always been loved by large open source communities.

© Alessandro Del Sole 2019 125
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_7

https://git-scm.com/
https://git-scm.com/

CHAPTER 7 SOURCE CONTROL WITH GIT

Visual Studio Code works with any Git repository, such as GitHub or
Visual Studio Team Services, and provides an integrated way to manage
your code commits.

Notice that this chapter is not a guide to Git; rather it is a place to learn
how Visual Studio Code works with it, so for further information, visit the
Git official page. Also, remember that Visual Studio Code requires the Git
engine to be installed locally, so make sure it is available on your machine
or download it from https://git-scm.com/downloads. In order to
demonstrate how Git version control works with Visual Studio Code, I will
use a small TypeScript project called Greeter, available in the TypeScript
Samples repository from Microsoft (https://github.com/Microsoft/
TypeScriptSamples). You can download the repository on your system
and extract the Greeter subfolder on your disk. Obviously, you are totally
free to use another example or another project of your choice, regardless of
the language. At this point, open the project in Visual Studio Code to start
collaborating over the source code.

Downloading Other Source Control Providers

As Imentioned earlier, VS Code supports additional source control
managers, also referred to as SCM, via extensibility. You can open the
Extensions bar and type SCM providers in the search box in order to find
third-party extensions that target other source control engines. Figure 7-1
shows an example, where you can see how an extension that adds
support for the Subversion engine (https://subversion.apache.org)
has been selected.

126

https://git-scm.com/downloads
https://github.com/Microsoft/TypeScriptSamples
https://github.com/Microsoft/TypeScriptSamples
https://subversion.apache.org

CHAPTER 7 SOURCE CONTROL WITH GIT

4] Extension: SYM - greeter - Visual Studic Code
File fdit Selection View Go Debug Terminal Help

] =

@) :

o Unefficial ClearCase SCM Commands 1 1
Unofficial support for IBM Rational ClearCase

-.._.J‘ OpenNingia [install |
Dynamics NAV SCM o2
Source Code Management for Dynamics NAV...

Cloud Ready Software
= Gulp Task Symbel Provider o1

[.J Adds gulp tasks to the symbol provider in yo.
Andreas Pazureck [Install |
MemFS5 - a file system provider sample 003
Showcase for the file system provider AP, als.
Johannes Rieken [instail |
Angular CLI Task Provider 10

This is used by Angular IDE by CodeMix (hitp.

Genuitec =m
‘Wren Language Provider 2.

sponge =m
Perforce for V5 Code 210

Perforce integration with VS Code’s SCM feat.
sdevesque

RCS Integration o3

SCM er f
Isasc Park =0
AdvaniaGIT oz
AdvaniaGIT SCM
AdvaniaGIT =
Terraform doc snippets 010

Es I Terratorm code snippets (> 1600) straight fro

Run at Scale Irstall

SVN

Chris Johnston Lk & & Repository

& 671,244

version source contrel

—
L

Details Contributions Changeleg

Subversion source control for VS Code

oo 562 voresoines o]

CodeFactor

Prerequisites

Note: This extension leverages your maching's SVN installation)) 5o you need to instal S\-°
first.

Praste D0 AO

Figure 7-1. Installing additional source control providers

Because VS Code provides in-the-box support only for Git, other

source control providers will not be discussed in this chapter. If you wish

to install SCM extensions, make sure you refer to the documentation

provided by the producer.

Managing Repositories

With Git, version control requires both a local and a remote repository to

work. This section explains how to create both, supplying information that

you will not find in the documentation especially for remote repositories.

127

CHAPTER 7 SOURCE CONTROL WITH GIT

Note A very popular abbreviation for repository is repo. This will not
be used in this book, but you will find it very often especially when
searching for information about open source projects.

Initializing a Local Git Repository

The first thing you need to do is creating a local repository for the current
project. This is accomplished by opening the Git tool from the side bar, as

shown in Figure 7-2.

) greeterts - greeter - Visual Studio Code

Eile Edt Selection View Go Debug Terminal Help

|ﬂ EC © greeterts ® ¢ M -
= e : ' 1___class Greeter { !
e :_‘;'_: e i alze Teposton’ | constructor{public greeting: string) { }
> i 3 greet() {

4 return “<h1>" + this.greeting + "</hl>";

5 & 5

? 6 b —
) 8 var greeter - new Greeter{"Hello, world!");
I.'j 18 document . body. innerHTML = greeter.greet();

1

=E A~ 0O x

Ln10,Col43 Spsces:d UTF-8 IF TypeSuipt 303 @ 41

Figure 7-2. Ready to initialize a local Git repository

128

CHAPTER 7 SOURCE CONTROL WITH GIT

Click the Initialize repository button at the top (see Figure 7-2). Visual
Studio Code will initialize the local repository and will show the list of files
that now are under version control but not committed yet (see Figure 7-3).

) greeterts - greeter - Visual Studio Code

- =] X
File Edit Selection View Go Debug Terminal Help
m 4 G o greetents * © @ m
= class Greeter { .
2 constructor(public greeting: string) { }
> 4 3 greet(} {
X return “<h1>" + this.greeting + "</hl>";
9 M _
/ ' W
- i b L
i) 8 var greeter = new Greeter(“Hello, world!™);
I.'”I 18 document . body. innerHTML = greeter.greet();
o 11
=E A~ 0O x

Ln10,Col43 Spaces:4 UTF-8 LF TypeScript 303 @ 4

Figure 7-3. Files are under version control but not committed yet

Notice how the Git icon shows the number of pending changes. This is
an important indicator that you will always see any time you have pending,
uncommitted changes. Write a commit description and then press
Ctrl+Enter. At this point, files are committed to the local repository, and
the list of pending changes will be cleaned. Now there is a problem: you
need a remote repository, but the official documentation does not describe
how to associate one to Code. Let’s see how to accomplish this too.

129

CHAPTER 7 SOURCE CONTROL WITH GIT

Creating a Remote Repository

Visual Studio Code works with any Git repository. There are plenty of
platforms that use Git as the version control engine, but probably the most
popular platforms are GitHub, Atlassian Bitbucket, and Microsoft Visual
Studio Team Services. In this section, you will see how to create a remote
repository on GitHub. This requires you to have an existing GitHub account,
otherwise you can create one for free at https://github.com/join. Once
signed in, create a new repository. Figure 7-4 shows an example for a new
repository called GreeterDistilled.

B & () Creste s NewRepositor % | 4+ - o x

- (9] & Gitrub, Inc [us] github.com u = £ &

Pull requests bisues Markelplace Explore

Create a new repository

Owmer

Ml AlessandrcDalsole = /| G

Grest repository names are short an 7 How about upgraded 1 otary. phone.

Dascription [options

& [public

Private

] Initiadize this repesitory with a README
This will let you immeciately cione the MepoEtorny 0 yo

oFgnone Tlame ™ Add s beense: Mone = | (D)

Figure 7-4. Creating a remote repository

130

https://github.com/join

CHAPTER 7 SOURCE CONTROL WITH GIT

Once the repository is ready, GitHub provides fundamental
information you need to associate the remote repository with the local
one. Figure 7-5 shows the remote address for the Git version control engine
and the command lines you have to type to perform the association.

T
(8 8|) alessandroDelsoicre x =

(9] & Gitrub, Inc. [US] hitps/github.com

Pull requests lssues Marketplace Explore

Ll AlessandroDelScle / GreeterDistilled Guemetch~ 1 WS 0 Y 0

< Code lssues 0 Pull requests 0 Projects 0 Wik Insights Sattings

Quick setup — if you've done this kind of thing before

[Setup inDusktop or | HITFS S5H B
We recommend every repository inchude 3 README. LICENSE. and gitignore.
...OF create a new repository on the command line
echo % GreeterDistillad™ »» README.nd |
git init
git add READHE.nd
git comit -m "first commit”
git remote add origin https:/Sgithub.com/alessandroDelSole/GreeterDistilled. git
git push -u origin master
...or push an existing repository from the ¢ d line
git remote add origin hutps://github.cos/AlessandroDelsole/GreeterDistilled. git &

g5t push -u origin master

...or import code from another repository
You can initialize this repository with code from 3 Subversion, Mescurial, or TFS project.

Import code

P T ST RRPEURPY T P AT e -y T o S,

Figure 7-5. The information you need to push the local repository

The next step is associating the local repository to the remote one by
typing some Git commands. This can be accomplished directly within
VS Code, through the Terminal (Terminal » New Terminal). When the
Terminal is ready, type the following command:

> git remote add origin https://github.com/YourAccount/
YourRepository.git

131

CHAPTER 7 SOURCE CONTROL WITH GIT

where YourAccount represents your GitHub account and YourRepository
represents the name of your repository, such as GreeterDistilled in the
current example. This command associates the local repository with the
remote repository. The next command you have to type is the following:

> git push -u origin master

This command makes a first synchronization between the local and
remote repositories, uploading files to a default branch called master. Now
you really have everything you need and you can start discovering the Git
integration that Visual Studio Code offers.

Handling File Changes

Git locally tracks changes on your code files, and the Giticon in VS Code
shows the number of files with pending changes. This number is actually
updated only after you save your files. In Visual Studio Code, handling
file changes is very straightforward. In Figure 7-6 you can see how the
number of changes is highlighted in the Git icon but also how files that
have changes are marked with a brown M (where M stands for Modified),
whereas deleted files are marked with a red D (where D stands for
Deleted).

132

CHAPTER 7 SOURCE CONTROL WITH GIT

) greeterts - greeter - Visual Studio Code - o 4
File Edit Selection View Go Debug Terminal Help
) SOURCE CONTROL: GIT 4 G e Tsgrestents X @ m
@) ' 1 class Greeter {
7~ CHANGES 2+03 2 constructor(public greeting: string) { }
e | S D 3 greet() {
Y, e abe bl 7 4 return "chi>” + this.greeting + "¢/h1>™;
TS greeter.ts .
I I
| var greeter = new Greeter("Hello, Code!");
E
18 document.body.innerHTHL = greeter.greet();
11

Pmaste & Q0AO

Ln10,Col28 Spacesd UTF-E LF TypeScipt 303 @ A

Figure 7-6. Getting the number of pending changes
By clicking a file in the list, you can see the differences between the

current and previous versions of the file with the Diff tool. Figure 7-7
shows an example.

133

CHAPTER 7 SOURCE CONTROL WITH GIT

=) gresterts (Working Tree) - grester - Visual Studic Code

File Edit Selection View Go Debug Terminal Help

j‘-l 3 t qgreeter.ts (Working Tree) % n 9 « = M -+
1 class Greeter { 1 class Greeter {

e Fi constructor(public greeting: string) { 2 constructor(public greeting: string) {

~ 3 greet() { greet() {
4 return "<hl>" + this.greeting + "&/ 4 return "<hl>" + this.greeting + "gf

L 5 H 5 }

e 5 % 6 k H
F) 7

L 8 =var greeter = new Greeter("Hello, norldl"}_; 8+ var greeter = new Greeter("Hello, Codel")§
a9 Q9

E..-I 18 document .body.innerHTHL = greeter.greet(); 18 document.body.innerHTML = greeter.greet();

o 11 11

In8 Col1 Spaces:d4 UTF-8 LF

TypeScript 303 @ A

Figure 7-7. Comparing file versions with the Diff tool

On the left side, you have the old version, while the new one is on the
right. The line highlighted in red represents code that has been removed,
whereas the line highlighted in green represents new code. This is a very
important tool when working with any version control engine.

Staging Changes

You can promote files for staging, which means marking them as ready for
the next commit. This is actually not mandatory, as you can commit directly,
but it is useful to have a visual representation of your changes. You can stage
a file by simply clicking the + symbol near its name, or you can stage all files
by right-clicking the CHANGES title and then select Stage All Changes.
Visual Studio Code organizes staged files into a logical container, as you can
see in Figure 7-8. Similarly, you can unstage files by clicking the - symbol.

134

CHAPTER 7 SOURCE CONTROL WITH GIT

ﬂ] greeter.ts - greeter - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

SOURCE CONTROL: GIT v (v}

TS greeter,ts M
CHANGES 2
i READHAT M D

<> greeter.html M

Pmaster*s & QO0AD
Figure 7-8. The view of staged and unstaged changes

The workflow based on staging is very convenient, because if you no
longer want to commit a file, you can simply unstage it before the code
goes to the server.

Managing Commits

The ... button provides access to additional actions, such as Commiit,
Sync, Pull, Stash, and Pull (Rebase). Figure 7-9 shows the full list of built-
in Git synchronization commands available in VS Code.

135

CHAPTER 7 SOURCE CONTROL WITH GIT

4] greeter.ts - greeter - Visual Studio Code - m) X

File Edit Selection View Go Debug Terminal Help
Ll?l SOURCE CONTROL: GIT P I TS greeterts X ¢ terht R M

Message (press Crl+Enter to commit) Pull
(@] ol iz r{
2 i tor(public greeting: string) { }
TS greeter.ts Pull from...
CHANGES Push Fn “<h1>" + this.greeting + "</h

i) REABMEmMd Push to..

<» greeter.html Syne

new Greeter("Hello, Code!");
Publish Branch i (! b

Commit All y.innerHTML = greeter.greet();

Commit All (Amend)
Commit All (Signed Off)
Commit Staged

Commit Staged (Amend)
Commit Staged (Signed Off)

Undo Last Commit

Discard All Changes
Stage All Changes

Unstage All Changes

Pop Latest Stash
Pop Stash...
Stash

Stash (Include Untracked)

o2 Show Git Output

Pmaster's & ©0AD Ln10,Col 28 Spacess4 UTF-8 LF TypeScript 303 @ A&

Figure 7-9. Shortcuts to commit and synchronize changes

When you are satisfied with your work on the source code, you can
select the Commit All command to commit your changes. Remember that
this action commiits files to the local repository. You have to use the Push
command in order to send changes to the remote repository. You also have
an option to undo the last commit and revert to the previous version with
the Undo Last Commit command. Pull and Pull (Rebase) allow to merge
a branch into another branch; Pull actually is nondestructive and merges
the history of the two branches, while Pull (Rebase) rewrites the project
history by creating new commits for each commit in the original branch.
The Sync command performs a Pull first and then a Push operation, so
that both the local and remote repositories are synchronized. There is

136

CHAPTER 7 SOURCE CONTROL WITH GIT

also a command called Stash, which allows for storing modified tracked
changes and staged changes in a cache, so that you can switch to another
branch while having unfinished work on the current branch. Then, with
the Pop Latest Stash and Pop Stash commands, you can retake the latest
version of your unfinished work and a specific version of the unfinished
work, respectively. Every time you work with Git commands, such as
Commit and Push, Visual Studio Code redirects the output of the Git
command line to the Output panel. Figure 7-10 shows an example.

UTPUT DEBUGCONSOLE TERMINA Git vE $ N oA DO X

> git add -A -- c:\TypeScriptSamples-master\greeter\greeter.ts

warning: LF will be replaced by CRLF in greeter.ts.

The file will have its original line endings in your working directory.

» git status -z -u

> git symbolic-ref --short HEAD

> git rev-parse master

> git rev-parse --symbolic-full-name master@{u}

fatal: no upstream configured for branch ‘master’

> git for-each-ref --format X(refname) X(objectname) --sort -committerdate
':E > git remote --verbose

o bens osanss -
Pmaster & Q040 Ln11,Col1 Spaces:4 UTF-8 LF TypeSeript 303 @ A

Figure 7-10. Messages from the Git command line are shown in the
Output panel

You will need to select Git from the dropdown in the Output panel
in order to see the Git output. You can also open the Output panel using
the Show Git Qutput command from the popup menu as you can see in
Figure 7-9.

Working with the Git Command Line
Interface

The Command Palette has support for specific Git commands which you
can type as if you were in a command line terminal. Figure 7-11 shows
the list of available Git commands, which you can see by typing Git in the
Command Palette. The list is quite long and cannot be totally included in
Figure 7-11, but you can scroll it to see all available commands.

137

CHAPTER 7 SOURCE CONTROL WITH GIT

4] greeterts - greeter - Visual Studio Code =~ o x

File Edit Selection View Go Debug Terminal Help

s 3[>gi o

* Git Add Fil
Git: C

} Git Clone
} Git Clo r
4 Git: Commit
f Var B Git commit Al
18 disciind Git: Commit Al o
11 Git: Commit

Git: Commit
Git: Commit
Git Commit Sta

Figure 7-11. Supported Git commands in the Command Palette

For instance, you can use Git Sync to synchroniz the local and remote
repositories, or you can use Git Push to send pending changes to the
remote repository. A common scenario in which you use Git commands is
with branches.

Creating and Managing Branches

For a better understanding of what a branch is, suppose you have a project
that, at a certain point of its lifecycle, goes to production. You need to
continue the development of your project, but you do not want to do it
over the code you have written so far.

You can create two histories by using a branch. When you create a
repository, you also get a default branch called master. Continuing with
the example, the master branch could contain the code that has gone to
production, and now you can create a new branch, such as development,
based on master but different from it. In Visual Studio Code, you have
different options to create a new branch. The first option allows creating a

138

CHAPTER 7 SOURCE CONTROL WITH GIT

branch from the Command Palette, where you can type Git branch. Then
select the Git: Create branch option, and you will be asked to specify a
new branch name, such as development. This will create a new branch
locally, based on master. The second option is clicking the current branch
name in the status bar (master in this case) and then click the Create new
branch command (see Figure 7-12).

4] greeterts - greeter - Visual Studio Code = O x

File Edit Selection View Go Debug Terminal Help
|—?| SOURCE CONTRO | Felect a ref to checkout @ M e
Messane ipress T+ Create new branch
v master dda8fa65 T e
S CHANGES) seting + "</h
see o i
8 var greeter = new Greeter(“"Hello, Code!");

18 document.body.innerHTML = greeter.greet();

Pmaster & Q040 Ln11,Col1 Spacess4 UTF-8 LF TypeSeript 303 @ A

Figure 7-12. Creating a branch

You will need to enter the new branch name, and then press Enter.
When a new branch is created, the status bar shows it as the active branch;
when you are ready, you can publish the new branch to the remote
repository with the Publish Changes button, represented by the cloud
icon (see Figure 7-13).

P development & ©0AO0

Figure 7-13. The new branch is set as active and ready to be
published

139

CHAPTER 7 SOURCE CONTROL WITH GIT

Switching to a Different Branch

Switching to a different branch is very easy. Simply click the name of the
active branch, and VS Code will display the list of branches, as shown in
Figure 7-14.

4] greeterts - greetes - Visual Studic Code - 0 o

File Edit Selecton View Go Debug Terminsl Help

CHANGES i o
; . - T
¥ s)
6 };
> 3 var greeter = new Greeter(“Hello, Code!");

L.j 12 document.tody.innerHTML = greeter.greet();
11

n11,Col1 Spaces:4 UTF-8 IF TypeScipt 303 @ 4

Figure 7-14. Selecting a different branch

Click the desired branch, and VS Code will check it out and set it as the
active branch.

Merging from a Branch

Suppose you have completed and tested some work on the development
branch and you want this work to be published to production. Because the
production code is on the master branch, you must bring all the work from
the development branch to the master branch. This is a merge operation.
You can merge from a branch into another one via the Command Palette,
using the Git: Merge Branch command. VS Code will show the list of
branches, and you will need to select the branch you want to merge from
into the current branch (see Figure 7-15).

140

CHAPTER 7 SOURCE CONTROL WITH GIT

Note Remember that the branch that receives the merge is the
active branch, so make sure you have switched to the proper branch
before starting a merge operation.

] greeterts - greetes - Visual Studic Code - 0 :

File Edit Selecton View Go Debug Terminal Help

ErEETCT T
? a retern "<hl>” + this.greeting + "</h1>7;

i
3 var greeter = new Greeter(“Hello, Code!");

E.j 12 document.tody.innerHTML = greeter.greet();

Praster ® ©0 40 n11,Col1 Spaces:d4 UTF-8 IF TypeScipt 303 @ 4

Figure 7-15. Merging from a branch

Once the merge operation is completed, remember to push your
changes to the remote repository.

Deleting Branches

Deleting a branch is not very common, because branches help keep

the history of the source code, but sometimes you might have branches
that have been created only for testing some code and that are not really
necessary in the application lifecycle management. In this case, in the
Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-15, VS Code shows
the list of branches. Select the branch you want to delete and press Enter.
Remember that the active branch cannot be deleted, and you first need to
switch to a different branch.

141

CHAPTER 7 SOURCE CONTROL WITH GIT

Adding Power to the Git Tooling
with Extensions

The integrated tools for Git cover all the needs that you, as a developer,
can have when working with local and remote repositories to manage your
source code, but there are extensions that provide additional power to the
integrated tools.

This section describes the most useful free extensions that will improve
your collaboration experience in Visual Studio Code.

Git History

Git History is a free extension that adds the option to get a very detailed
view of the history of your source code, such as information and author
about each commit and that can display how a file has gone through
branches; plus it adds commands that make it easier to manage your code
against Git. Assuming you have installed the extension, for example, you
can right-click a file and select Git: View File History.

Figure 7-16 shows an example based on a file that has three commits.
If available, the view shows the branches where the file has been included,
comments and author for the commit, and the commit ID, and it allows for
searching and filtering contents by branch and author.

142

CHAPTER 7 SOURCE CONTROL WITH GIT

4] File History (greeterts) - greeter - Visual Studio Code = w]

File Edit Selection View Go Debug Terminal Help

:Tl T§ greetert File History (greeterts) x < ¢ M -

- Second commit [k < 52d3618
= Alessandro Del Sole on Tue, Sep 11, 2018 252 PM
—
First Commit S [< b4fddl3
Alessandro Del Sole on Tue, Sep 11, 2018 225 PM

Comments & 1000
Alessandre Del Sole o Sep 11, 2018 418 P

smmmmm Q greeterts

Pmaster & @041

Figure 7-16. Viewing the history of commits with Git History

Note If the commit authors have associated a picture to the Git
credentials, Git History will show the picture near the author name.

Ifyou click the icon at the left of the commit ID, a menu will appear
showing a number of very useful commands that will make it easier to
work with commits (see Figure 7-17).

143

CHAPTER 7 SOURCE CONTROL WITH GIT

4] File History (greeter ts) - greeter - Visual Studio Code - = X

File Edt Selection View Go Debug Terminal Help

1? Branch from here
I Cherry

11 Select t

% Revert

S«ondc_ommit = Merge t it it Drancs 2 o 52d3618
Alessandro Del Sole | rent ct to t & commut
Alessandro Del Sole T

Figure 7-17. Git History provides commands that make it easier to
work with commits

At the bottom of the view, you will see the list of files involved in
the selected commit. If you click a file name, another menu will appear
providing shortcuts to compare the file with the previous version and to view
the history of that file. Git History is a very useful extension especially when
your team works with the Agile methodologies, and for each task in the
backlog, a new branch is created and then merged into one branch at the
end of the sprint, making it easier to walk through the history of the work.

GitLens

Another extremely useful that will boost your productivity is called
GitLens. GitLens adds many features and commands to Visual Studio
Code about Git. For example, it adds a new bar called GITLENS (see
Figure 7-18) that you enable by clicking the GitLens icon in the side bar
(typically the last one, below the Extensions icon).

144

CHAPTER 7 SOURCE CONTROL WITH GIT

2] greeter.ts - greeter - Visual Studio Code

File Edit Selection View Go Debug Terminal Help

4 EXPLORER
» EJ master
4 7 Branches
4 B v master
4 E (development }» Comments adde...
@ greeterits
4 [G) Third commit + You, 2 hours ago (...
m greeter.html
@) README.md
4 E] Second commit « You, 2 hours ago...
@ greeterts
» [G] First Commit - You, 2 hours ago (..
4 P development
b m { master }» Comments added -« Y...
b E Third commit = You, 2 hours ago (...
» [B) second commit - You, 2 hours ago...
» [G] First Commit - You, 2 hours ago (..
4 & Remotes
4 () origin — GitHub = YourAccount/Yo...
4 {J Stashes
No stashed changes
4 $ Tags
No tags yet

4 FILE HISTORY (oI L
4 D greeter.ts
[E] comments added « You, 35 minu... T
[E] second commit + You, 2 hours ago (...
[G] First Commit « You, 2 hours ago (b4...

Pmaster & ©241

Figure 7-18. The GitLens bar with the Explorer and File History

145

CHAPTER 7 SOURCE CONTROL WITH GIT

The GitLens bar is divided into two areas: EXPLORER and FILE
HISTORY. EXPLORER shows the list of both local and remote branches,
and, for each branch, it displays the list of commits. For each commit,
it displays the commit message, the list of files involved in the commit,
and an icon that represents the operation made on the file, such as M
for Modified and D for Deleted. Not limited to this, it also shows stashed
changes (if any). The FILE HISTORY area shows the list of commits for a
file, once you click it in the EXPLORER. For each commit, you can see the
name, the author, and the time of last edit. The status bar in VS Code now
provides, with GitLens, a field containing the current commit’s author
name and time of last edit. If you click this information, VS Code will show
a list of commands as shown in Figure 7-19.

] greeter.ts - greeter - Visual Studio Code - = X

File Edit Selection View Go Debug Terminal Help

B p @ © & m -
S tert
).";. Y
1 class I .
. 2 [
Y 3 gt
O & <
o 5 } Ul Open Dire & with < iy -
& 6) 12 Open Dir o A
7 [Copy Commit ID to =
[-] : s 2 Copy Commit Message to Clipboard
S var g1 _
. 1e =
I:-), 11 // sel

12 documi

HEEE

Pmaster ® QO0AO ©VYoundayago Lnl2,Cold3 Spacesd UTF-8 CRIF TypeScript 303 @ A

Figure 7-19. GitLens commands

146

CHAPTER 7 SOURCE CONTROL WITH GIT

These commands allow you to open the commit in your remote
repository but also to open the commit revisions. Additionally, it allows
copying the commit ID or message to the clipboard. You can also expand
the file names below and see individual details for the current code
commit. GitLens also adds summary information about edits made on a
specific code snippet, right above the code snippet itself. Figure 7-20 shows
an example.

) greeter.ts - greeter - Visual Studio Code - o x
File Edit Selection \iew Go Debug Terminal Help

TS gresterts X sconfi; @ R © & @M -
4 OPEN EDITORS TS5

<» greeter.htm| I I
T1ass Greeter 1
constructor(public greeting: string) { }

X TS greeterts

tsconfig,son 1
2 greet() {
4 GREETER - " 5 3 e -
return “<h1>" + this.greeting + "</h1»";
<» greeterhtml
TS greeterts 6 };
tsconfigjson 1

8 // Create a new greeter instance
=l var greeter = new Greeter("Hello, Code!™); -

11 // Set the greeter as the HTML body
12 document.body.innerHTML = greeter.greet();

13|

Figure 7-20. GitLens adds summary information about a code
snippet

Ifyou click at the left side of the divider, you will get to the menu shown
in Figure 7-19. If you instead click the author name, VS Code will show a
popup that contains the list of commits made by the selected author and,
if you hover over a commit name, you will see the full commit details (see
Figure 7-21).

147

CHAPTER 7 SOURCE CONTROL WITH GIT

) gresterts - grester - Visual Studio Code - a b

File Edt Selection View Go Del

¢ @ e om -

w07 ¥ You 39 minutes ago (September 11th 2018 £:78pm)

Comments added

In13Col1 Spacesd UTF-E CRIF TypeScript 303 @ &

Figure 7-21. GitLens shows information about a commit

Other commands are available in the context menu when you right-click
the code editor, such as Copy Commit ID To Clipboard, Copy Message To
Clipboard, and Copy Remote File URL To Clipboard, all self-explanatory.

Note All the preceding commands described are also available
via shortcuts that you can find on the upper right corner of the code
editor bar (see Figure 7-21).

GitHub Pull Requests

Pull requests in Git make it easier to perform code reviews. With pull
requests, your code is not automatically merged into a branch until
someone else in the team reviews the code and accepts it. If you use
GitHub for your repositories, an extension called GitHub Pull Requests

is available to introduce support for pull requests in Visual Studio Code.
When you first install the extension (and reload the environment), you will

148

CHAPTER 7 SOURCE CONTROL WITH GIT

be asked to sign into GitHub. After you provide your GitHub credentials
and open a folder that is associated to a remote repository hosted on
GitHub, you will see a new treeview called GITHUB PULL REQUESTS in
the Git bar (see Figure 7-22).

4 GITHUB PULL REQUESTS
b Local Pull Request Branches
» Waiting For My Review
b Assigned To Me
b Created By Me
b All

Pmaster @ @O0 A0 () AlessandroDelSole

Figure 7-22. The GitHub Pull Requests view

Currently, the extension does not support submitting pull requests
from VS Code, but you can manage existing pull requests submitted by
other tools such as Microsoft Visual Studio or GitHub itself. When pull
requests are available, you will see them listed in the view. If you select a
pull request, a new editor window will appear showing all the pull request
details, and you will have the option of add a comment and then close,
reject, or approve the pull request (see Figure 7-23).

149

CHAPTER 7 SOURCE CONTROL WITH GIT

Pull Request =1 X ¢ M -
4 GREETER Giv

Update README.md (#1) Chackout
- T

CHANGES ants to merge changes from Ales sandrobelSale:dos to

Documentation updated

Pmaster @ Q040 ()MessandroDeiSole

Figure 7-23. Managing a pull request from VS Code

You will also be able to work on the pull request locally if you click the
Checkout button, and it will be displayed under the Local Pull Request
Branches node in the treeview. This is a very useful extension especially if you
work within Agile teams, but remember it only supports GitHub as the host.

Working with Azure DevOps and Team
Foundation Server

Azure DevOps (https://azure.microsoft.com/en-us/solutions/
devops), formerly Visual Studio Team Services, and Team Foundation
Server are the complete solutions from Microsoft to manage the entire
application lifecycle, from development to testing to continuous

150

https://azure.microsoft.com/en-us/solutions/devops
https://azure.microsoft.com/en-us/solutions/devops

CHAPTER 7 SOURCE CONTROL WITH GIT

integration and delivery. Azure DevOps is a cloud service, whereas Team
Foundation Server works on premises. Among the many features, they
both provide source control capabilities based on two engines: Git and the
Microsoft Team Foundation Server engine.

In this section I will explain how to configure a Git repository that
you can use for source control with Visual Studio Code. I will use Azure
DevOps so that you do not need to have an on-premise installation of
Team Foundation Server.

Before going on reading, you will need to install the Visual Studio
Team Services extension for Visual Studio Code, following the steps you
are already familiar with. This extension suits for both Azure DevOps and
Team Foundation Server.

Note According to the extension documentation, you will also
need the Team Foundation command line client installed. If you have
Visual Studio 2017 on Windows or Visual Studio for Mac installed,
you already have all you need. If not, or if you are on Linux, visit
https://bit.1ly/2x99fEH and search for the most appropriate
installer based on your system.

You obviously need an account on Azure DevOps, which you can create
by using a Microsoft account. If you do not have one, you can get a Microsoft
account at www.outlook.com, and then you can get an account on Azure
DevOps at https://aka.ms/SignupAzureDevOps. Follow all the instructions
required to configure your account for the first time. When in the home
page, click the Create Project button. As you can see in Figure 7-24, you will
need to supply a team project name, a source control engine, and a work
item process.

151

https://bit.ly/2x99fEH
http://www.outlook.com
https://aka.ms/SignupAzureDevOps

CHAPTER 7 SOURCE CONTROL WITH GIT

eon I ana

Create new project

ts contain your source code, work items, automated builds and more,

Project name *

V5 Code v

Description
| 1
Visibility
®) & prevare
Version contral
Git w
Wosk iem process
Agile * w

Figure 7-24. Creating a team project in Azure DevOps

Enter a project name of your choice, such as VS Code in the example,
and make sure that Git is selected as the source control engine. Leave Agile
as the choice for the work item process, and finally click Create. After a
few seconds, your new team project will be ready. At this point, the Azure
DevOps site will show a page with all the information about your new Git
repository. Before cloning the repository on your local machine, a good
idea is providing your Azure DevOps credentials to Visual Studio Code.

To accomplish this, in VS Code open the Command Palette and type

> Team Signin. The login popup will appear, so enter the Microsoft
account credentials you used to set up your Azure DevOps workspace and
wait for VS Code to authenticate. Now, if you go back to the web portal, you
will simply need to click the Clone in VS Code button (see Figure 7-25).

152

CHAPTER 7 SOURCE CONTROL WITH GIT

O G v S s com 55 Tae] [o-
£ Cverees - Visual Shudio Te. *
Ble dt Yiew Fpvortes Jook Hep

Full access to Bulld and Release for Stakeholders: Give Stakeholders full access to Build and Releass for private projects. Leam more Tryidt Not now
& Frive Members (1)
Ve VS Code et
Briwfly describe your project o
< A Activity TDays -
Get started with your new project!
Repos Add Code
v Clone to your computer
Pipelines
ﬂ S5H hetesy, I vsoalstudio comVSR20Code)_gitVE%20lode v OR E
Generate Git credentials Boards Add ‘Work

2 Clore in VS Code s

Wittt commard bne

* or push an existing repasitory from command line
* or import a repository
** o initialize with a README or gitignore

~ or build code from an external repository

Figure 7-25. Cloning a repository from Azure DevOps

By clicking this button, you will be asked to grant VS Code the
permission to open the remote repository. When permission is granted, VS
Code will ask you to specify a local folder for cloning the remote repository.
Once you have specified the folder, the cloning process will start, and after
it completes, you will have both a remote and a local repository. The target
folder will be opened in Visual Studio Code after cloning the repository,
and you will now be able to use all the Git capabilities described in the
previous sections. Moreover, the extension adds a few shortcuts to the
status bar, as you can see in Figure 7-26.

Pmaster © VSCode 10 M- #0 <k

Figure 7-26. The Team Services buttons in the status bar

153

CHAPTER 7 SOURCE CONTROL WITH GIT

More specifically, from left to right, after the branch name and the
Synchronize Changes button, you can see the name of the team project,
then a shortcut that allows for browsing pull requests on the web portal,

a shortcut for opening build definitions on the web portal, a shortcut for
viewing pinned work items, and a feedback button you can use to share
your thoughts about the extension.

Though most of the operations that are not strictly related to Git, such
as opening build definitions and work items, must be done in the web
portal, both Azure DevOps and Team Foundation Server are very popular
and widely used services among enterprises, so having an option to
connect them to Visual Studio Code so easily will save you a lot of time.

Summary

Writing software involves collaboration. This is true if you are part of a
development team but also if you are involved in open source projects, or
if you are an individual developer who has interactions with customers.
In this chapter you have seen how Visual Studio Code provides integrated
tools to work with Git, the popular open source and cross-platform source
control provider.

You have seen how to create a local repository with the Git bar and how
to associate it to a remote repository with a couple of commands from the
integrated terminal. Then you have seen how you can handle file changes,
including commits, and how you can create and manage branches directly
from within the environment. In addition, you were introduced to some
useful extensions, such as Git History, Git Lens, and GitHub Pull Requests,
that will boost your productivity by adding important features that every
developer needs when it comes to team collaboration. Finally, you have
seen how easy it is to open in VS Code a Git repository hosted on Azure

154

CHAPTER 7 SOURCE CONTROL WITH GIT

DevOps, the premiere cloud solution from Microsoft to manage the whole
application lifecycle. Behind the scenes, Visual Studio Code invokes the
Git command in order to execute operations over your source code, and it
is preconfigured to work with this external tool.

However, it is not limited to work with a small set of predefined tools,
rather it can be configured to work with basically any external program.
This is what you will learn in the next chapter.

155

CHAPTER 8

Automating Tasks

When talking about Visual Studio Code, you will often hear that it is not

a simple code editor. This is certainly true, and the reason is that it allows
executing operations such as compiling and testing code by running
external tools. In this chapter you will learn how Code can execute external
programs via tasks, by both learning about existing tasks and configuring
custom tasks. In order to run the examples provided in this chapter, you
will need the following software:

e Node.js, a free and open source JavaScript runtime
based upon Chrome’s JavaScript engine that can be
downloaded from https://nodejs.org

e The TypeScript compiler (tsc), which you install via the
Node.js command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript will help you to avoid dependencies
on the operating system and proprietary development environments.
Obviously, all the topics discussed in this chapter apply to other languages
and platforms as well. For the last example about MSBuild tasks on
Windows, you instead need Microsoft Visual Studio 2017. The Community
edition is available for free at waw.visualstudio.com.

© Alessandro Del Sole 2019 157
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_8

https://nodejs.org
http://www.visualstudio.com

CHAPTER 8 AUTOMATING TASKS

Note If you have worked with the first Visual Studio Code releases,
it is important for you to know that the way tasks are handled has
changed. If this is your case, you might want to read the migration
guide for tasks written with older versions to the last version:
https://code.visualstudio.com/docs/editor/tasks#
convert-from-010-to-200.

Understanding Tasks

At its core, Visual Studio Code is a code-centric tool, so it often requires
executing external programs to complete operations that are part of the
application lifecycle, such as compilation, debugging, and testing.

In the Visual Studio Code terminology, integrating with an external
program within the flow of the application lifecycle is a fask. Running a
task not only means executing an external program but also getting the
output of the external program and displaying it in the most convenient
way inside the user interface.

Note Tasks are only available with folders, not individual code files.

A task is basically a set of instructions and properties represented with
the JSON notation, stored in a special file called tasks.json. If VS Code is
able to detect the type of project or source code inside the folder, a tasks.
json file will not always be necessary, and VS Code will do all the job for
you. If it cannot detect the type of project or source code, or if you are
not satisfied with the default settings of a task, under the current folder, it
generates a hidden subfolder called .vscode, and, inside this folder, it also
generates a tasks.json file. If VS Code is able to detect the type of project or
source code inside the folder, it will also prefill the tasks.json content with

158

https://code.visualstudio.com/docs/editor/tasks#_convert-from-010-to-200
https://code.visualstudio.com/docs/editor/tasks#_convert-from-010-to-200

CHAPTER 8 AUTOMATING TASKS

the proper information, otherwise you will need to configure tasks.json
manually. For a better understanding, I will explain tasks that VS Code can
detect and that it configures on your behalf, and then I will discuss how to
create and configure tasks manually.

Tasks Types

There is no limit to how many types of tasks could be available for a source
code folder, but the most common are the following:

e Build task: A build task is configured to compile the
source code, assets, metadata, and resources into a
binary or executable file, such as libraries or programs.

o Test task: A test task is configured to run unit tests in the
source code.

o Watch task: A watch task starts a compiler in the so-
called watch mode. In this mode, a compiler always
watches for changes to any unresolved files after the
latest build and will recompile them at every save.

Visual Studio Code provides built-in shortcuts to execute a build task.
When new tasks are added, VS Code updates itself to provide shortcuts for
the new tasks. Additionally, you can differentiate tasks of the same type.
For example, you can have a default build task and other custom build
tasks that can be executed only with specific situations.

Running and Managing Tasks

The first approach to understanding tasks in practice is running existing,
preconfigured tasks. For the sake of simplicity, start Visual Studio Code
and open the project folder called simple from the collection of examples
you downloaded previously from the TypeScript Samples repository on
GitHub (https://github.com/Microsoft/TypeScriptSamples).

159

https://github.com/Microsoft/TypeScriptSamples

CHAPTER 8 AUTOMATING TASKS

Visual Studio Code detects it as a TypeScript project, and therefore
it will preconfigure some tasks (in the next section, I will provide more
details about task auto-detection). Now open the Terminal menu. As you
can see, there are several commands related to tasks, as you can see in
Figure 8-1.

f
|) animalz.ts - simple - Visual Studio Code

o ®
File Edit Selection View Go Debug Terminal Help
@ EXPLORER Mew Terminal ; @\
5 4 T
4 OPEN EDITORS =Pt Mook
‘L"'- o T8 animalils Run Task_ {publi o) ()
4 "(PUDLLC nan
S Alun Build Task. i
=) {
Run Acteve File je. log(this. name + ~ moved * + meters + “m.");
Run Selected Text
Terminate Task
Restart Running Task tends dnimal {
a
[] Show Running Tasks.
] 9 e log("Slithering...");
Configure Tasks.. ove(s):

Configure Default Build Task.-

=

15 class Horse extends Animal {

16 move() {

17 console.log("Galloping...");

18 super.move(as);

2@)

2z var sam = new Snake(“Sammy the Python™)

23 var tom: Animal = new Horse(“Tommy the Palomino”)
24

25 sam.move()

26 tom.move(34)

» OUTLINE

Q0AD

Ln1,Coll Spacesd UTF-8 IF TypeScrpt 303 @ A

Figure 8-1. Commands for running and managing tasks in the
Terminal menu

160

CHAPTER 8 AUTOMATING TASKS

An explanation of each command is provided in Table 8-1.

Table 8-1. Commands for Task Execution and Management

Command Description

Run Task Shows the list of available tasks in the Command Palette and

runs the selected task.

Run Build Task Runs the default, preconfigured build task (if any).

Terminate Task Forces a task to be stopped.

Restart Running Restarts the currently running task.

Task

Show Running Task Shows the output of the currently running task in the Terminal

panel.

Configure Tasks Shows the list of available tasks in the Command Palette and

allows editing the selected task inside the tasks.json file editor.

Configure Default ~ Shows the list of available tasks in the Command Palette and
Build Task allows selecting for the task that will be used as the build task.

If you select Run Task, VS Code will open the Command Palette

showing the list of available tasks, as represented in Figure 8-2.

] Welcome - simple - Visual Studic Code = o x

e Edit

4 OPEN EDITORS

4 SIMPLE

Selection View Go Debug Terminal Help

x) welcome

Figure 8-2. Running a task from the Command Palette

As you can see, there are two tasks: tsc build and tsc watch, both

pointing to the tsconfig.json project file. This means that either task
will run against the specified file. tsc is the name of the command line
TypeScript compiler, whereas build and watch are two preconfigured

161

CHAPTER 8 AUTOMATING TASKS

tasks whose description has been provided previously. If you select tsc
build, Visual Studio Code will launch the tsc compiler and will compile the
TypeScript code into JavaScript code, as shown in Figure 8-3.

Note In the case of TypeScript, the build task will compile
TypeScript code into JavaScript code. In the case of other languages,
the build task will generate binaries from the source code. More
generally, a build task will produce the expected output from the
compilation process depending on the language. Also, the list of
available tasks varies depending on the type of project or folder you
are working with. For example, for .NET Core projects, only a task
called build is available.

) anienals:ts - simple - Visual Studic Code - o X

File Edit Selection View Go Debug Terminal Help

@ EeLoRER TS grimaolsts X ¢ @
4 OPEN EDITORS TS animalits ¢ 2 Snake ¢)

~ ¥ T8 gnimals.ts 1 class Animal {
4 SIMPLE 2 constructor{public name) { }

move(meters) {
console. log(this.name + ~ moved " + meters ¢+ "m.”); -

:)

sconfig jsc class Snake extends Animal {
E-] g move() {
18 consale.log("Slithering...");
11 super.move(s);
}
class Horse extends Animal {
move() {
console. log("Galloping...");
super.move(4s);
TERMINAL =+ 1:Task-build-tsconfx ™ 4 @M @@ ~ O %

» Executing task: tsc -p c:\TypeScriptSamples-masterisimple\tsconfig.json <

Terminal will be reused by tasks, press any key to close it.

+ OUTLINE

Ln10,Col 17 Spacesd UTF-E8 LF TypeScipt 303 @ A

Figure 8-3. Executing a build task

162

CHAPTER 8 AUTOMATING TASKS

The Terminal panel shows the progress and result of the task
execution. In this case, the result of the task is also represented by the
generation of a .js file and a .js.map file, now visible in the Explorer bar. You
can stop and restart a task using the Terminate Task and Restart Running
Task commands, respectively, both described in Table 8-1. Now suppose
there is a critical error that prevents the build task from completing
successfully. For demonstration purposes, remove a closing bracket from
the code of the simple.ts file and run again the build task. At this point,
Visual Studio Code will show the detailed log from the tsc tool in the

Terminal panel, as shown in Figure 8-4, describing the error and the line of
code that caused it.

) animals.ts - simple - Visual Studic Code
File Edin Selection View Go Debug Terminal Help
@ EXPLORER TS anmmakds X
4 OPEN EDITORS TS an

(@) * 15 animals.ts 1 1 class Animal {
) 3
< 4 SIMPLE 2 constructor{public name) { }
= 3 move(meters) {
console. log(this.name & ~ moved ™ + meters + “m.”);

; } —

class Snake extends Animal {
E-] move() {

18 consale.log("Slithering...");
11 super.move(5);

class Horse extends Animal {
move() {
console. log("Galloping...");
super.move(4s);
s @ TERMENAL e 1:Task-build-tsconfx ™ 4 @M @@ ~ O %
» Executing task: tsc -p c:\TypeScriptSamples-masterisimple\tsconfig.json <

animals.ts:15:1 - error TS1868: Unexpected token. A constructor, method, accessor, or p
roperty was expected.

I class Horse extends Animal {
The terminal process terminated with exit code: 1
Terminal will be reused by tasks, press any key to close it.

+ OUTLINE

Ln13,Col1 Spacessd UTFE LF TypeScipt 303 @ A

Figure 8-4. Visual Studio Code shows the output of the external tool
in a convenient way

163

CHAPTER 8 AUTOMATING TASKS

In the real world, this error would not probably happen because you
have the Problems panel and red squiggles in the code editor that both
highlight the error. But this is actually an example of how Visual Studio
Code integrates with an external tool and shows its output directly in
the Terminal panel, helping to solve the problem with the most detailed
information possible.

The Default Build Task

Because building the source code is the most frequently used task, Visual
Studio Code provides a built-in shortcut to run this task in the Terminal
menu, called Run Build Task (Ctrl+Shift+B on Windows and {}+38+B on
macOS). However, you first need to set a default build task, otherwise the
Run Build Task command will behave like the Run Task command.

To accomplish this, select Terminal » Configure Default Build Task.
When the Command Palette appears, select the task you want to be set as
the default build task, in this case select tsc build. When you do this, Visual
Studio Code is actually changing its default configuration and therefore
will generate a new tasks.json file under the .vscode folder, and it will open
this file in a new editor window. The content and structure of tasks.json file
will be discussed shortly in this chapter, so for now let’s focus on the new
default build task. If you now select Terminal » Run Build Task, or use the
keyboard shortcut, you will see how the default build task will be executed,
without the need of specifying it every time from the Command Palette.

Auto-Detected Tasks

Visual Studio Code can auto-detect tasks for the following environments:
Grunt, Gulp, Jake, and Node.js. Auto-detecting tasks means that Visual
Studio Code can analyze a project built for one of the aforementioned
platforms and generate the appropriate tasks without the need of creating
custom ones. Figure 8-5 shows an example based on the Node debugger

164

CHAPTER 8 AUTOMATING TASKS

extension for Visual Studio Code, whose source code is available at
https://github.com/Microsoft/vscode-node-debug.

4] Welcome - vscode-node-debug-master - Visusl Studie Code

- o x
File Edit Selection View Go Debug Terminal Help
Ly - L
+ OPEN EDITORS asks
% 9] Welcome
VSCODE-NODE-DEBUG-M detected tasks
¥
ava t, TypeScrip
o
CH
cEt #: 7
pace
et =
3 the
-

» OUTLINE

Figure 8-5. Auto-detected tasks

The source code of this extension is made of JavaScript and TypeScript
files and is built upon the Node.js runtime. So Visual Studio Code has been
able to detect a number of tasks that work well with this kind of project,
including tasks to run npm (the command line tool for Node.js) and the
tsc TypeScript compiler.

Auto-detected tasks are very useful because they allow to save a lot of
time in terms of task automation. However, more often than not, you will

have needs that are not satisfied by existing tasks, so you will need to make
your own customizations.

165

https://github.com/Microsoft/vscode-node-debug

CHAPTER 8 AUTOMATING TASKS

Note In order to auto-detect tasks, behind the scenes VS Code
requires that specific environments are installed. For example, VS
Code can auto-detect tasks based on Node.js only if Node.js is
installed; similarly, it can auto-detect tasks based on Gulp only if Gulp
is installed and so on.

Configuring Tasks

When Visual Studio Code cannot auto-detect tasks for a folder, or when
auto-detection does not satisfy your needs, you can create and configure
custom tasks by editing the tasks.json file. In this section I will go
through two examples that will help you understand how to configure
your own tasks.

More specifically, I will explain how to compile Pascal source code files
using the OmniPascal extension and the Free Pascal compiler, available
to all operating systems, and how to build a Visual Studio solution based
on the full .NET Framework on Windows by invoking the MSBuild.exe
compiler.

In order to complete both the examples, you will need the following:

o The OmniPascal language extension for Visual Studio
Code, which you can download via the Extensions
panel. This extension is useful to enable Pascal syntax
highlighting and code navigation, though you can still
compile source files without it.

o The Free Pascal compiler, which includes all you need
to develop applications using Pascal and that provides
a free command line compiler. Free Pascal is available
for Windows, macOS, Linux, and other systems, and it
can be downloaded from www. freepascal.org.

166

http://www.freepascal.org

CHAPTER 8 AUTOMATING TASKS

e On Windows only, download the latest version of the
NET Framework (4.7.2 at this writing), which includes
the MSBuild.exe tool.

Let’s start with an example based on the Pascal language.

First Example: Compiling Pascal Source Code

In this section, I will explain how to create a custom task that allows for
compiling Pascal source code files by invoking the Free Pascal command
line compiler from VS Code. Assuming you have downloaded and installed
the required software as listed in the preceding text, locate the Free Pascal
folder installation on disk (usually /FPC/version number), then open the
examples folder. In Visual Studio Code, open any folder containing some
Pascal source code. I will use one called fcl-json.

Figure 8-6 shows how Visual Studio Code appears with Pascal source
files currently opened.

|
|) confdeme.pp « fel-jsen « Visual Studio Code - o 4

4 OFEN ENTORS
% 3 confdemopp

4 FOL-BON

True);
Create;

r I:e@ to L.Coun
Writeln(isl,":
as finally
L.Free;
end;
/f Write all in-memary changes to disk
€.Flush;
Finally
C.Free;
end;

begin
TestConf;
end.

b DUTLIME

OmniPascak No project loaded Ln1,Col 1 Spaces2 UTF-8 CRIF Objectfoscal @ 4

Figure 8-6. Editing Pascal source code

167

CHAPTER 8 AUTOMATING TASKS

The OmniPascal extension installed previously enables syntax
colorization and the other common editing features. Now imagine you
want to compile the source code into an executable binary by invoking the
Free Pascal command line compiler. This can be accomplished by creating
a custom task. Follow these steps to create a new tasks.json file and set up
the custom task:

1. Select Terminal » Configure Task: When the
Command Palette appears asking for a task to
configure, select Create tasks.json from template
(see Figure 8-7). There is no existing task to
configure at this particular point, so the only thing
you can do is creating a new tasks.json file.

2. The Command Palette will now show the list of
available task templates: MSBuild, maven, .NET
Core, and Others (see Figure 8-8). Select Others
to create a new task that is independent from
other systems.

4] felgson - Visual Studhe Code - o X

Fle fdt Selection View Go Debug Terminal Help
4 OPEN EDITORS aohs tesk fie from te
4 FQL-JSON

Figure 8-7. Creating a new task from scratch

) fel-json - Visual Studio Code = =] *®

File Edit Selaction \View Go Debug Terminal Hslp

4 OPEN EDITORS

4 FCL-1SON

> simpledemo.pp

Figure 8-8. Selecting a task template

168

CHAPTER 8 AUTOMATING TASKS

Visual Studio Code generates a subfolder called .vscode and, inside
this folder, a new tasks.json file whose content at this point is the following:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "echo",
"type": "shell",
"command": "echo Hello"

The core node of this JSON file is an array called tasks. It contains a
list of tasks, and for each tasks, you can specify the text that VS Code will
use to display it in the Command Palette (label), the type of task (type),
and the external program that will be executed (command). An additional
JSON property called args allows for specifying command line arguments
for the program you invoke. The list of supported JSON properties is
available in Table 8-2 and will be discussed later in this chapter, but if you
are impatient, you can quickly look at the table and then get back here.
Now suppose you want to create a build task which, by convention, is the
type of task you use to compile source code. This can be accomplished by
modifying tasks.json as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [

169

CHAPTER 8 AUTOMATING TASKS

{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"]
}

The key points are the following:

e The label property value is now build so that the task
is clearly provided as the build task.

o The type property value is shell, meaning it will be
executed by the operating system’s shell.

o The command property value is fpc, which is the file
name of the Free Pascal compiler.

o The args property value is an array of command line
arguments to be passed to the external program; in this
case there is only one argument that is the active source
file, represented by the $(file) variable.

Note As a general rule, an external program can be invoked without
specifying its full path only if such a path has been registered in the
operating system’s environment variables, such as PATH on Windows.
In the case of Free Pascal, the installer takes care of registering the
program’s path, but remember to have a look at the environment

variables for other programs.

170

CHAPTER 8 AUTOMATING TASKS

You could certainly specify the name of the file you want to compile,
but using a variable is more flexible so that you can simply compile any
file that is currently active in the code editor. In addition to the properties
in tasks.json, variables are also discussed shortly and will be summarized
in Table 8-3. Notice how IntelliSense helps you find the appropriate
properties in tasks.json, as shown in Figure 8-9.

) tasksjson - fel-json - Visual Studio Code = =} x
File Edit Selection View Go Debug Terminal Hslp
[} EXPLORER tasksjson @ ¢ @D -
1
4 OPEN EDITORS | 1LNSAVID: wscode + {1} tasksjson » [Jtasks » {)
0O @ [} tasksjson wvscode 2 1 {
. oson 2 // See https://go.microsoft.com/fulink/?LinkId=733558
4 ysoode s 3 ff for the dog tion about the tasks.json format
A% = t:asks o 5 4 ersion 2.8.9
i - 5 asks™: [
v . {
. edemo.pp 4 7 "label™: "build”, 1
o simpledemo.pp 3 8 “type”: “shell”,
= g "command”: “fpc”
L]
& 18 o
Foargs Arguments passed to the command when this %
& dependson task is invoked.
J group

& identifier

& isBackground
A linux

A options

& oosx

A presentation
& problemMatcher
& promptonClose
& windows

¥ QUTUNE

OmriPascak No project loaded Ln10,Col 14 Speces:d UTF-8 LF SSOMwith Comments @ M

Figure 8-9. IntelliSense helps defining tasks properties

Save and close tasks.json, then open one of the Pascal source files. Now
you can run the newly created build task. Select Terminal » Run Task,
and from the Command Palette, select the build task (see Figure 8-10).

| !JU‘.IS;%:H fel-pon - Visual Studio Code - o x

Fle fdt Selection Yiew Go Debug Terminal Help

4 OPEN EDITORS
b

Figure 8-10. Selecting the new task

171

CHAPTER 8 AUTOMATING TASKS

At this point, VS Code will ask you what would you like to do to detect
any problems encountered during the execution of the external program
so that they can be displayed in the Problems panel. Detecting problems
in the program’s output is the job of a so-called problem matcher. This is a
more complex topic and will be discussed in a dedicated section. For now,
select Continue without scanning the task output (see Figure 8-11).

) tasksjsen - fel-json - Visusl Studio Code - o X

File Edit Selection View Go Debug Terminal Halp

InkId=733558
json format

associate

¥ QUTUNE

OmniPascak No project losded Ln 1, Col 1 (304 sefected) Spaces:4 UTF-8 LF JSONwith Comments @ A

Figure 8-11. Selecting a problem matcher

The Free Pascal compiler will be executed in the Terminal panel,
where you also see the program output as demonstrated in Figure 8-12.

172

CHAPTER 8 AUTOMATING TASKS

TERMINAL ~ ses 1: Task - build v o4+ M @ A~ O x

> Executing task: fpc c:\FPC\3.0.4\examples\fcl-json\simpledemo.pp <

Free Pascal Compiler version 3.0.4 [2017/18/06] for 1386
Copyright (c) 1993-2017 by Florian Klaempfl and others

Target 0S: Win32 for 1386

Compiling c:\FPC\3.0.4\examples\fcl-json\simpledemo.pp

Linking c:\FPC\3.0.4\examples\fcl-json\simpledemo.exe

331 lines compiled, ©.4 sec, 234368 bytes code, 8916 bytes data

Terminal will be reused by tasks, press any key to close it.

OmniPascak No project loaded Ln87,Col 25 Spaces:2 UTF-8 CRLF ObjectPascal @ A

Figure 8-12. Executing the Free Pascal compiler

If the execution succeeds, you will find a new binary file in the source
code’s folder. If it fails, the compiler’s output displayed in the Terminal
panel will help you understand what the problem was. Before moving
to a second example, I will now explain more about default tasks, task
templates, JSON properties in tasks.json, and variables.

Multiple Tasks and Default Build Tasks

Tasks.json can define multiple tasks. At the beginning of this chapter,
I told you that, among the others, common tasks are build and test, but you
might want to implement multiple tasks that are specific to your scenario.
For example, suppose you want to use the Free Pascal compiler to build
Delphi source code files.

The Free Pascal command line compiler provides the -Mdelphi option,
which enables compilation based on the Delphi compatibility mode. You
can therefore modify tasks.json as follows:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",

173

CHAPTER 8 AUTOMATING TASKS

"tasks": [
{
"label": "build",
"type": "shell",
"command": "fpc",
"args": ["${file}"]

})
{
"label": "Delphi build",
"type": "shell",
"command": "fpc",
"args": ["${file}", "-Mdelphi"]
}

Asyou can see, there is a new custom task called Delphi buildin the
tasks array which still invokes the Free Pascal compiler on the active file,
but with the -Mdelphi option being passed as a command line argument.
Now if you select Terminal » Run Task again, you will see both tasks in
the Command Palette, as demonstrated in Figure 8-13.

) tasks son - fk-jron - Visual Studic Code - c x

fle fdt Jelecton Yew Go Debup Ierminal Help

4 OPEN EDITORS L ent ed tasks @
x k
4 FOLISON InkId-

Figure 8-13. All defined tasks are displayed in the Command
Palette

It is common to have multiple build tasks, and even multiple tasks
of the same type, but in most cases, you will usually run the same task
and keep other tasks for very specific situations. Related to the current
example, you will usually build Pascal source files and sometimes build

174

CHAPTER 8 AUTOMATING TASKS

Delphi source files, so a convenient choice is configuring a default build
task for Pascal files. As you learned in the “The Default Build Task” section
previously, this can be easily accomplished with the following steps:

1. Select Terminal » Configure Default Build Task.

2. Inthe Command Palette, select the build task
defined previously.

3. With a Pascal source file active, select Terminal >
Run Build Task, or press the keyboard shortcut for
your system.

This command will automatically start the default build task, without
the need of manually selecting a task every time.

Understanding tasks.json Properties and Substitution
Variables

There are a number of properties available to customize a task. Table 8-2
provides a summary of common properties you use with custom tasks.

Table 8-2. Available Properties for Task Customization

Property Name Description

label A string used to identify the task (e.g., in the Command Palette).

type Represents the task type. For custom tasks, supported values are
shell and process. With shell, the command is interpreted
as a shell command (such as bash, cmd, or PowerShell). With
process, the command is interpreted as a process to be executed.

command The command or external program to be executed.
args An array of command line arguments to be passed to the
command.

(continued)

175

CHAPTER 8 AUTOMATING TASKS

Table 8-2. (continued)

Property Name Description

windows Allows specifying task properties that are specific to the Windows
operating system.

Osx Allows specifying task properties that are specific to macOS.

Linux Allows specifying task properties that are specific to Linux and its
distributions.

Group Allows for defining task groups and for specifying to which group
a task belongs to

Presentation Defines how Visual Studio Code handles the task output in the
user interface (see the following example).

Options Allows for providing custom values about the cwd (current

working directory), env (environment variables), and shell
(default shell) options.

The windows, osx, and linux properties will be discussed separately in

the next section. The group property allows grouping tasks by category. For

instance, if you consider the two multiple tasks created previously, they

are both related to building code, so they might be grouped into a category

called build. This is accomplished by modifying tasks.json as follows:

{

// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format

"version"

: "2.0.0",

"tasks": [

{

176

"label™: "build",
"type": "shell",

CHAPTER 8 AUTOMATING TASKS

"args": ["${file}"],
"group": "build",

"label": "Delphi build",

"type": "shell",

"command": "fpc",

"args": ["${file}", "-Mdelphi"],
"group": "build"

Notice how IntelliSense shows the built-in supported values for the
group property (see Figure 8-14).

] « tasksjson - Fel-json - Visual Studie Code - o x

File Edit Selection \iew Go Debug Terminal Help

I:-‘\ EXPLORER tasksjson @ € m -
4 OPEN EDITORS |1 UNSAVED vscods » tasksjson ¢ [Ttasks » {}

@) ® [} tasksjson de 2 1 |

4 4 FOL-1SON 2 /f See https://go.microsoft.com/Fwlink/?LinkIds733553

ocumentation about the tasks.json format

4 VICo0e

tasksjson

1@
“build”
“none”
“test”
{"kind":"build","isDefault”:true} uild”,
{"kind":"test","isDefault™:true}

16 “command”: “fpc”,

17 ~args™: ["${file}", "-Mdelphi”]

18 }

19 1

@)

simpledemo.pp
Marks the task as a build task accesible through ™
the ‘Run Build Task' command.

s @ TERMmAL e 1: powershell 4%+ T A~ O %

Windows PowerShell
Copyright (C) Microsoft Corporation. &1l rights reserved.

PS5 C:\FPC\3.0.4\examples\fcl-json>

b OUTLINE

n10,Col22 Spacend UTF-8 LF JSONwithComments @ &

Figure 8-14. IntelliSense helping with groups
177

CHAPTER 8 AUTOMATING TASKS

Notice how you can also specify additional values to individual tasks
in a group. For example, if you want to set a task as the default one in the
group, you might change the JSON as follows:

"groupll: {
"kind": "build",
"isDefault": true

The kind property represents the group name and isDefault is self-
explanatory. You can also customize the way VS Code handles the task
output via the presentation property. When you type presentation and
then press Enter, IntelliSense adds a number of key/value pairs with some
default values, as follows:

"presentation”: {
"echo": true,
"reveal”: "always",
"focus": false,
"panel": "shared",
"showReuseMessage": true

Following is the description of each key and its values:

o echo can be true or false and specifies whether the
task output is actually written to the Terminal panel.

o reveal canbe always, never, or silent and specifies
whether the Terminal panel where the task is running
should be always visible, never visible, or visible only
when a problem matcher is not specified and some
errors OCCur.

178

CHAPTER 8 AUTOMATING TASKS

o focus can be true or false and specifies if the Terminal
panel should get focused when the task is running.

o panel can be shared, dedicated, or new, and it
specifies if the terminal instance is shared across tasks
or if an instance must be dedicated to the current task
or if a new instance should be created at every task run.

o showReuseMessage can be true or false and specifies
whether a message should be displayed to inform that
the Terminal panel will be reused by a task and that
therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In
case of default values, a key can be omitted. For example, the following
markup demonstrates how to create a new Terminal panel at every run

without showing a reuse message:

"presentation”: {
“panel”: "new",
"showReuseMessage": false

Other values can be omitted because we are okay with the default
values seen in the preceding text.

Note The list of supported properties is much longer, but most of
them are not of common use. If you want to get deeper knowledge
about the full list of available properties, you can look at the tasks.
json schema, which provides detailed comments about each property
and that is available at https://code.visualstudio.com/
docs/editor/tasks-appendix.

179

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

CHAPTER 8 AUTOMATING TASKS

Visual Studio Code also offers several predefined variables that you can

use instead of regular strings and that are useful to represent file and folder

names when passing these to a command. Table 8-3 provides a summary

of supported variables.

Table 8-3. Supported Substitution Variables

Variable

Description

${workspaceFolder}

${workSpaceFolderBasename}

${file}
${relativeFile}

${fileBaseName}

${fileBaseNameNoExtension}

${fileDirname}

${fileExtname}
${cwd}
${1ineNumber}

${selectedText}
${env.VARIABLENAME}

Represents the path of the currently opened
folder.

Represents the path of the currently opened
folder without any slashes.

The active code file.

The active code file relative to
${workspaceFolder}.

The active code file’s base name.

The active code file’s base name without the
extension.

The name of the directory that contains the
active code file.

The file extension of the active code file.
The current working directory of the task.

The currently selected line number in the
active file.

The currently selected text in the active file.

References an environment variable, such as
{$env.PATH}.

180

CHAPTER 8 AUTOMATING TASKS

Using variables is very common when you run a task that works
at the project/folder level or against file names that you either cannot
predict or that you do not want to hardcode. You can check the variables
documentation for further details at https://code.visualstudio.com/
docs/editor/variables-reference.

Operating System-Specific Properties

Sometimes you might need to provide task property values that are
different based on the operating system. In Visual Studio Code, you can
use the windows, osx, and 1inux properties to specify different values of a
property, depending on the target.

For example, the following tasks.json implementation shows how to
explicitly specify the path of an external tool for Windows and Linux (the
directory names might not be the same on your machine):

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"args": ["${file}"],
"windows": {
"command": "C:\\Program Files\\FPC\\fpc.exe"
})
"linux": {
"command": "/usr/bin/fpc"

181

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

CHAPTER 8 AUTOMATING TASKS

More specifically, you will need to move the property of your interest
under the operating system property and provide the desired value. In the
preceding code, the command property has been moved from the higher
level down to the windows and linux property nodes. All supported
properties can have different values, not only command.

Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you have
seen how to create a custom task from scratch. However, for some
particular scenarios, you can leverage existing task templates, which
consists of tasks.json files already preconfigured to work with specific
command and settings.

The list of task templates may vary depending on the extensions you
have installed, but assuming you have installed only the C# extension, your
list should look like in Figure 8-8. The first template is called MSBuild and
generates the following tasks.json file:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"command": "msbuild",
"args": [
// Ask msbuild to generate full paths for file
names.
"/property:GenerateFullPaths=true",
"/t:build"

1,

182

CHAPTER 8 AUTOMATING TASKS

"group": "build",
"presentation”: {
// Reveal the output only if unrecognized
errors occur.
"reveal”: "silent"
}J
// Use the standard MS compiler pattern to detect
errors, warnings and infos
"problemMatcher": "$msCompile"

This template is very useful if you want to work with Microsoft Visual

Studio solutions inside VS Code, and a more specific example is coming

in the next subsection. It is worth mentioning that this template has been

included thinking about C# solutions (such as web applications and

Xamarin projects), but MSBuild can build any kind of solution so it can be

reused for different purposes.

The second template is called Maven and is tailored to work with the

same-named build automation tool for Java. Such a template generates the

following tasks.json file:

{

// See https://go.microsoft.com/fwlink/?LinkId=733558
// for the documentation about the tasks.json format
"version": "2.0.0",

"tasks": [

"label": "verify",

"type": "shell",

"command": "mvn -B verify",
"group": "build"

183

CHAPTER 8 AUTOMATING TASKS

{
"label": "test",
"type": "shell",
"command": "mvn -B test",
"group": "test"

}

Obviously, Maven must be installed on your machine (you can find
itathttps://maven.apache.org). The third template is called .NET Core
and, as the name implies, it generates a tasks.json file which is tailored to
automate the build of .NET Core projects. The configuration looks like the
following:

{
// See https://go.microsoft.com/fwlink/?LinkId=733558

// for the documentation about the tasks.json format
"version": "2.0.0",
"tasks": [
{
"label": "build",
"command": "dotnet build",
"type": "shell",
"group": "build",
"presentation”: {
"reveal": "silent"

1

"problemMatcher": "$msCompile"

184

https://maven.apache.org

CHAPTER 8 AUTOMATING TASKS

In this case, the command is not MSBuild; instead it is dotnet. These
templates are useful for at least two reasons:

o They provide ready-to-use configurations for projects
of the targeted type, where you might need only a few
adjustments.

e They provide a complete task structure, where you only
need to replace the command and target and optionally
the presentation and the problem matcher.

You will now see an example based on the MSBuild task template.

Second Example: Building a MSBuild Solution
(Windows Only)

MSBuild has been the Microsoft build engine since the very first release of
the .NET Framework back in 2002. It is a very powerful tool, because it can
build a Visual Studio solution with no effort. So, a very nice to have feature
would be the possibility of compiling your solutions and projects inside
Visual Studio Code.

You can configure a task to run MSBuild.exe, the build engine used by
Visual Studio. In the next example, you will see how to compile an MSBuild
solution made of a Visual Basic project based on Windows Presentation
Foundation (WPF), but of course all the steps apply to any .sln file and to
any supported languages. If you do not have one, in Visual Studio 2017
create a blank WPF project with Visual Basic as the language. There’s no
need of writing code, as I focus on the project type. Save the project, then
open the project folder in VS Code.

Before configuring a task, it is worth mentioning that, by default, the
MSBuild path is not registered in the Windows’ environment variables, so
you have two possible alternatives:

185

CHAPTER 8 AUTOMATING TASKS

e Add the MSBuild directory to the PATH environment
variable via Control Panel » System » Advanced
system settings » Environment Variables.

o Specify the full MSBuild pathname in tasks.json. This is
the quickest option and the one I will use.

Select Terminal » Configure Task. Select the MSBuild template from
the list of templates. When tasks.json has been created, change the value of
the command property as follows, also replacing Enterprise with the name
of the Visual Studio edition you have on your machine, for example:

"command": "C:\\Program Files (x86)\\Microsoft Visual
Studio\\2017\\Enterprise\\MSBuild\\15.0\\Bin\\msbuild"

Also, change the value of the reveal property from never to always
for demonstration purposes, so that you can see the output of MSBuild in
the Terminal panel. Now if you select Terminal » Run Task and select the
preconfigured build task, MSBuild will be started and the solution will be
built, as you can see in Figure 8-15.

PROBLEMS TERMINAL oe 1: Task - build v 4+ M B ~ O x

Done Building Project "C:\Users\adelsole\source\repos\WpfAppl\hpfappl\kpfappl.vbproj”

(default targets).

Done Building Project "C:\Users\adelsole\source\repos\Wpfappl\Wpfappl.sln™ (build targ
et(s)).

® Warning(s)
@ Error(s)

Time Elapsed 0@:00:01.71

Terminal will be reused by tasks, press any key to close it.

Ln 18 Col 34 Spaces:4 UTF-8 LF JSON with Comments [2°] A

Figure 8-15. Compiling a WPF project written in Visual Basic with
the MSBuild task

186

CHAPTER 8 AUTOMATING TASKS

The preconfigured MSBuild task uses the $msCompile problem
matcher to detect problems related to C# and Visual Basic in the build
output, so that they can be presented in a convenient way in the user
interface. Let’s spend some more words about problem matchers.

Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error
strings and report these inline in the editor and in the Problems panel.
Visual Studio Code ships with a number of built-in problem matchers
for TypeScript, JSHint, ESLint, Go, C# and Visual Basic, Lessc, and Node
Sass (see https://code.visualstudio.com/docs/editor/tasks#
processing-task-output-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the
aforementioned environments, VS Code can present problems that
occurred at build time in the Problems panel, but it can also highlight the
line of code in the code editor that caused the problem.

You can also define custom problem matchers to scan the output of an
external program. For instance, a problem matcher for scanning the Free
Pascal compiler could look like the following:

"problemMatcher": {
"owner": "external",
"filelocation": ["relative", "${workspaceRoot}"],
"pattern”: {
"regexp": "((([A-Za-z]) :\\\\(2:[M\\/ ¥\ "
< INNNTHNNN)*) 21\ /\\ s\
CENN"O NN ((\W\d+)) ¢
\\s.*(fatal|error|warning|hint)\\
s(.*):\\s(.*)",
// The first match group matches the file name which is
relative.

187

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

CHAPTER 8 AUTOMATING TASKS

"file": 1,

// The second match group matches the line on which the
problem occurred.

"line": 2,

// The third match group matches the column at which
the problem occurred.

"column": 3,

// The fourth match group matches the problem's
severity. Can be ignored. Then all problems are
captured as errors.

"severity": 4,

// The fifth match group matches the message.
"message": 5

}

The owner property represents the language service, which is external
in this case, but it could be, for example, cpp in the case of a C++ project.
But the most important property is pattern, where you specify a regular
expression (regexp) to match error strings sent by the external program.
Also notice, with the help of comments, how matches are grouped by
target. Building problem matchers can be tricky and it is out of the scope of
this book, so I recommend you to read the official documentation available
athttps://code.visualstudio.com/docs/editor/tasks#_processing-
task-output-with-problem-matchers.

Running Files with a Default Program

In case you are editing in VS Code a file whose type is associated with the
operating system, you do not need to create custom tasks to run it. For
example, a batch program (.bat) in Windows or a shell script file (.sh) on
macOS can be run by simply clicking Terminal » Run Active File.

188

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

CHAPTER 8 AUTOMATING TASKS

The file name will be passed to the current terminal program on your
system (PowerShell on Windows or the bash on Linux and macOS) so
that the operating system will try to open the file with the program that
is registered with the file extension, if any. In the case of a batch or shell
script file, the operating system will execute the file. The output will be
displayed in the Terminal panel.

Note Only the output of the operating system or of command line
tools will be redirected to the Terminal panel. For instance, if you try
to edit a .txt file and then select Terminal » Run Active File, such a

file will be opened inside the default text editor on your system, and
there will be no additional interactions with the Terminal panel.

Summary

There are many features in Visual Studio Code that make it different from
a simple code editor. Tasks are among these features. With tasks you can
attach external programs to the application lifecycle and run tools like
compilers. VS Code ships with task auto-detection for some environments,
but it allows for creating custom tasks when you need to associate specific
tools to a project or folder.

By working on the tasks.json file and with the help of IntelliSense,
you will be able to include the execution of any external program in your
folders. The execution of external programs like compilers is certainly
useful, but it would not be so important if VS Code could not make a step
forward: debugging code, which is discussed in the next chapter.

189

CHAPTER 9

Running and
Debugging Code

Being an end-to-end development environment, Visual Studio Code
offers opportunities that you will not find in other code editors. In fact, in
Visual Studio Code, you can work with many project types and debug your
code in several languages. This chapter explains how to scaffold projects
supported in Visual Studio Code and how to use all the built-in, powerful
debugging features.

Creating Applications

Visual Studio Code is independent from proprietary project systems and
platforms and, consequently, it does not offer any built-in options to create
projects. This means that you need to rely on the tools offered by each
platform. In this section, I will explain how to scaffold projects based on
.NET Core, but you can similarly create projects with the command line
interface offered by other platforms.

It is also recommended to create a dedicated folder on disk for the next
examples. With the help of the file manager tool on your system (Windows
Explorer on Windows, Finder on macOS, and Nautilus on Ubuntu), create
a folder called VSCode under the root folder, such as C:\VSCode or
~/Library/VSCode. In this folder, you will shortly create new applications.

© Alessandro Del Sole 2019 191
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_9

CHAPTER9 RUNNING AND DEBUGGING CODE

Creating .NET Core Projects

.NET Core is the cross-platform, open-source, modular runtime from
Microsoft to build applications using C#, F#, and Visual Basic that run on
Windows, macOS§, and Linux distributions. With .NET Core, you can create
different kinds of applications such as web applications, Web APT REST
services, Console applications, and class libraries. Plans are to support
desktop technologies as well.

.NET Core ships with a rich command line interface, which provides
many options to create different kinds of applications. Discussing all
supported project types is not possible here, so you can refer to the official
documentation available at https://dot.net.

In this section I will show an example based on an ASP.NET Core web
application built upon the model-view-controller (MVC) pattern. Creating
a .NET Core application is accomplished via the command line. Open a
command prompt or a terminal instance on the VSCode folder created
previously, depending on your system.

Type the following command to create a new empty folder called
HelloWeb:

> mkdir HelloWeb

Then, move into the new directory. On Windows and Linux, you can
type
> chdir HelloWeb

On macOS, the command is instead cd. Next, type the following
command to scaffold a new .NET Core web application using C#:

> dotnet new mvc

The mvc command line switch specifies that the new web application
is based on the MVC pattern and the .NET Core SDK will generate all
the plumbing code for some controllers and views. You could also use

192

https://dot.net

CHAPTER9 RUNNING AND DEBUGGING CODE

the web switch and create an empty web application, but having some
autogenerated pages will help with describing the debugging features.
Once the project has been created, .NET Core will automatically restore
NuGet packages for the solution. You could also do this manually by typing
the following command:

> dotnet restore

If you typed dotnet run, the application would run in the default
web browser. However, the goal is understanding how to run and debug
the application in Visual Studio Code. So, open the project folder with
VS Code. You can also type code . to open Visual Studio Code from
the command line. Thanks to the C# extension, VS Code will recognize
the presence of the .csproj project file, organizing files and folders and
enabling all the powerful code editing features you learned previously.

The next step is running the application. As a general rule, in Visual
Studio Code you have two options:

e Running the application with an instance of the
debugger attached, where a debugger is available for the
current project type. In the case of .NET Core, this ships
with its own debugger that integrates with VS Code.

¢ Running the application without an instance of the
debugger attached.

Let’s start with the second option, and then the debugging features
are described in detail in the next section. You can select Debug » Start
Without Debugging. Visual Studio Code will first start the default build
task, and then it will start the application. Figure 9-1 shows the web
application scaffolded previously.

193

CHAPTER9 RUNNING AND DEBUGGING CODE

ﬁﬂlﬂﬂmm-mhxl-l-v - O x
&« = 0O & & conificate emor hitps: docalhostsoo1) + e Lo .
© o oy [

ASP.NET Core | Windows Linux OSX

Leam how to build ASP.NET apps that can run anywhere.
*00

Application uses How to Overview Run & Deploy
« Sample pages using ASP.NET » Add a Controlier and View « Conceptual overdow of what is + Aun your app
‘Core MVC * Manage User Secrots using ASP.NET Core + Run tools such as EF migrations.

+ Theming using Boolstrap ‘Socrot Managor., + Fundamentals of ASP.NET Core and mone
* Uso logging 10 kg 3 Mossago. Such a5 Startup and midalwan, + Publish 1o Microsoft Arune Wob
= Add packagos using MuGatl., = Working with Data Apps
= Targel dovelopmaont, staging or = Security

production environment. » Cliont shdo devoloprment

* Devedop on different platforms
* Read more on the documentation
site

© 2018 - halloweb

Figure 9-1. The .NET Core web application running

ASP.NET Core web applications use an open-source development
server called Kestrel (https://github.com/aspnet/KestrelHttpServer),
which allows for independency from proprietary systems. By default,
Kestrel listens for the application on port 5001, which means your
application can be reached at http://localhost:5001. The default port
setting can be changed inside a file called launch.json, which I will discuss
more thoroughly in the next paragraphs.

With simple steps, you have been able to create and run a .NET
Core project in VS Code that you can certainly edit as you need with the
powerful C# code editing features.

194

https://github.com/aspnet/KestrelHttpServer

CHAPTER9 RUNNING AND DEBUGGING CODE

Creating Projects on Other Platforms

Obviously, .NET Core is not the only platform you will use with VS Code.
Depending on the platform, you will use specific command line tools to
scaffold a new project. For example, with Node.js you can use the Express
generator which you install with the following command:

> npm install -g Express-generator
Next, you generate a project with the following line:
> Express ProjectName

You can then type code . to open the new project in Visual Studio Code.
Similarly, you will do with other command line tools that allow for generating
projects, such as the Yeoman generator, still available for Node.js, and that
also allow for generating ASP.NET Core projects and VS Code extensions. For
example, you could create mobile apps with the Apache Cordova framework
(https://cordova.apache.org). Cordova is a JavaScript-based framework,
and it works very well with Node.js. Apps you build with Cordova are based
on JavaScript, HTML, and Cascading Style Sheets (CSS). First, you can
install Cordova with the following command line:

> npm install -g Cordova
Then you can easily scaffold a Cordova project with the following line:
> cordova create MyCordovaProject

where MyCordovaProject is the name of the new project. Once you have

a new or existing Cordova project, you can install the Cordova Tools
extension for Visual Studio Code (https://marketplace.visualstudio.
com/items?itemName=vsmobile.cordova-tools). This extension will

add support for Cordova projects to the integrated debugger for Node.js,
providing specific configurations to target Android and iOS devices, as well

as simulators.

195

https://cordova.apache.org
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools

CHAPTER9 RUNNING AND DEBUGGING CODE

Note You will also need some additional specific tools for Cordova,
depending on what system you intend to target. For iOS, you will
need to install the tools described in the i0S Platform Guide from
Apache Cordova (https://cordova.apache.org/docs/en/
latest/guide/platforms/ios/index.html). For Android, you
will need to install the tools described in the Android Platform Guide
from Apache Cordova (https://cordova.apache.org/docs/
en/latest/guide/platforms/android/index.html).

Debugging Your Code

The ability of debugging code is one of the most powerful features in Visual
Studio Code and probably the one that makes it a step forward if compared
to other code editors. Visual Studio Code ships with an integrated
debugger for Node.js applications and can be extended with third-party
debuggers. For instance, if you have .NET Core installed, the C# extension
for Visual Studio Code detects the availability of a compatible debugger
and takes care of attaching it to VS Code.

Let’s consider C# and .NET Core as the example on how debugging
works, so reopen the HelloWeb folder created previously.

Note All the features discussed in this chapter apply to all the
supported debuggers (both built-in and via extensibility), so they are
not specific to C# and .NET Core.

The Debug view provides a way to interact with the debugger. Figure 9-2
shows how it appears at this point.

196

https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

CHAPTER9 RUNNING AND DEBUGGING CODE

A Program.cs - helloweb - Visual Studic Code - o 4
File Edin Selection View Go Debug Terminal Help
P | .MET Core Launch (web) ¥ | & [E C Progromcs X ¢ M -

4 VARIABLES CF : ’
1 using System; i
2 using System.Collections.Generic; S
3 using System.IO;
using Systea.Ling;
using System.Threading.Tasks;
using Microsoft.Asphetlore;
using Microsoft.AspMetCore.Hosting;
using Microsoft.Extensions.Configuration;
9 using Microsoft.Extensions.Logging;
11 namespace helloweb
12
= 13 public class Program
{
15 public static veoid Main{string[] args)
16 r
16 {
17 CreateWebHostBuilder(args).Build().Run{);
18 }
19
+ CALL STACK
b} public static IhebHostBuilder CreatebebHostBuilder(s
21 WebHost.CreateDefaultBuilder{args)
22 .UseStartup<startup>();
23 }
24}

4 BREAKPOINTS

=4 han tions

Q740 P NET Core Launch fweb) (helloweb) o In1,Col1 Spacess4 UTFSwithBOM CRIF C2 @ A

Figure 9-2. The Debug view

At the top of the view, you can see the DEBUG toolbar, which provides
the following items:

e The Start Debugging button, represented with the
green play icon. By clicking this button, you will start
the application with an instance of the debugger
attached.

e The configuration dropdown box. Here you can select a
debugger configuration for running the application.

o The settings button, represented with the gear icon and
whose tooltip says Open launch.json (details coming
shortly).

197

CHAPTER9 RUNNING AND DEBUGGING CODE

e The Debug Console button, which opens the Debug
Console panel where you see the output messages from
the debugger.

After this quick overview, you will now learn about debugger
configurations, and then you will walk through the debugging tools
available in VS Code.

Configuring the Debugger

Before a debugger can inspect an application, it must be configured. For
Node.js and for platforms like .NET Core, where an extension takes care
of everything, default configurations are provided. If you take a look at
Figure 9-2, you can see how there are two predefined configurations, .NET
Core Launch (web) and .NET Core Attach.

The first configuration is used to run the application within the proper
host, with an instance of the debugger attached. For an ASP.NET Core
web application like in the current example, the host is the web browser.
In the case of a Console application, the host would be the Windows’
Console or the Terminal in macOS and Linux. The second configuration
can be instead used to attach the debugger to another running .NET Core
application.

Note Actually, there is a .NET Core Launch configuration that is
different for each kind of application you create with .NET Core. For
example, the configuration for Console applications is called .NET
Core Launch (Console). The concept to keep in mind is that a Launch
configuration is provided to attach an instance of the debugger to the
current project.

198

CHAPTER9 RUNNING AND DEBUGGING CODE

Debugger configurations are stored inside a special file called launch.

json. Visual Studio Code stores this file inside the .vscode subfolder,
exactly like for tasks.json. This special JSON file contains the markup

that instructs Visual Studio Code about the output binary that must be

debugged and about the application host. The content of launch.json for
the current .NET Core sample looks like the following:

{

// Use IntelliSense to find out which attributes exist for
C# debugging
// Use hover for the description of the existing attributes
// For further information visit
// https://github.com/OmniSharp/omnisharp-vscode/blob/
master/debugger-launchjson.md
"version": "0.2.0",
"configurations": [
{

"name": ".NET Core Launch (web)",

"type": "coreclr",

"request": "launch",

"preLaunchTask": "build",

// If you have changed target frameworks, make sure

to update the program path.

"program": "${workspaceFolder}/bin/Debug/

netcoreapp2.1/helloweb.d1l",

"args”: [1,

"cwd": "${workspaceFolder}",

"stopAtEntry": false,

"internalConsoleOptions": "openOnSessionStart",

"launchBrowser": {

"enabled": true,
"args": "${auto-detect-url}",

199

CHAPTER9 RUNNING AND DEBUGGING CODE

"windows": {

"command": "cmd.exe",
"args": "/C start ${auto-detect-url}"
b
"OSX“: {
"command": "open"
b
"linux": {
"command": "xdg-open"
}
b
"envll: {
"ASPNETCORE_ENVIRONMENT": "Development"
b

"sourceFileMap": {
"/Views": "${workspaceFolder}/Views"

}
})
{

"name": ".NET Core Attach",

"type": "coreclr",

"request”: "attach",

"processId": "${command:pickProcess}"
}

]

As you can see, the syntax of this file is similar to the syntax of tasks.
json. In this case you have an array called configurations. For each
configuration in the array, the most important properties are

e name, which represents the configuration friendly
name.

200

CHAPTER9 RUNNING AND DEBUGGING CODE

» type, which represents the type of runtime the
debugger is running on.

o request (launch or attach), which determines whether
the debugger is attached to the current project or to an
external application.

o prelaunchTask, which contains any task to be executed
before the debugging session starts. Usually, this
property is assigned with the default build task.

o program, which represents the binary that will be the
subject of the debugging session.

o launchBrowser, where operating system-specific
properties contain the command that will be executed
to start the application.

e env, which represents the environment. In the case of
.NET Core, a value of Development instructs VS Code to
run the Kestrel development server.

If you wanted to implement custom configurations, launch.json is the
place where you would add them. Because these two configurations, and
more generally default configurations, are enough for most of the common
needs, custom configurations will not be covered in this book. The
documentation provides additional details about this topic (https://code.
visualstudio.com/docs/editor/debugging# add-a-new-configuration).

Note If you click the Add Configuration command in the
configuration dropdown box, you will be able to select from a built-
in list of configurations that you can add to launch.json. This can
be useful especially in those cases where VS Code should detect a
project type and its configuration, but actually doesn’t.

201

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration

CHAPTER9 RUNNING AND DEBUGGING CODE

Managing Breakpoints

Before starting a debugging session, it is useful to place one or more
breakpoints to discover the full debugging capabilities in VS Code. You place
breakpoints by clicking the white space near the line number. For instance,
place a breakpoint on line 19 of the Startup.cs file, as shown in Figure 9-3.

4] Startup.cs - helloweb - Visual Studio Code — o x

File Edit Selection \View Go Debug Terminal Help

4 OPEN EDITORS o St
% C Stortup.cs 1; TR A T sy awiny i
S HELOWES 13 namespace helloweb
4 wscode 14 {

15 public class Startup
16 {

public Startup(IConfiguration configuration)

Configuration = configuration;

Figure 9-3. Adding breakpoints

You can remove a breakpoint by simply clicking it again, or you can
manage breakpoints in the Breakpoints area of the Debug view (see
Figure 9-4).

4 BREAKPOINTS + ¢ @
All Exceptions
#| User-Unhandled Exceptions
@ |# Startup.cs 19

0 P .NET Core Launch (web) (helloweb) B helloweb

Figure 9-4. Managing breakpoints

Here you can see the list of files that contain any breakpoint and
the line numbers. You can also cause the debugger to break on user-
unhandled exceptions (default) and on all exceptions. You can click the
Add Function Breakpoint (+) button. Instead of placing breakpoints

202

CHAPTER9 RUNNING AND DEBUGGING CODE

directly in source code, a debugger can support creating breakpoints by
specifying a function name. This is useful in situations where source is not
available but a function name is known.

Debugging an Application

Now it is time to start a debugging session, so that you will be able to see
in action all the debugging tools and make decisions when breakpoints
are hit. In the Debug view, make sure the .NET Core Launch (web)
configuration is selected, then click the Start button or press F5. Visual
Studio Code will launch the debugger, and it will display the output of the
debugger in the Debug Console panel.

It will also break when it encounters an exception or a breakpoint, like
in the current example. Figure 9-5 shows Code hitting a breakpoint and all
the debugging instrumentation.

=] Startup.cs - hellowsb - Visual Studio Code - (w] x
Fle Edwt Selection View Go Debug Termiral Help

P MET Core Launch (web) * £ c [e T i, 2 B | ® M -
4 VARIABLES C* Startup.cs # {}helloweb » % helloweb.Start @ Startup
Locals 1 |: K

Providers [IEnumerable]: Count

public Startup(ICoenfiguration configuration)
Configuration = configuration;
}
prl public IConfiguration Configuration { get; }
// This method gets called by the runtime. Use this method

public void ConfigureServices(IServiceCollection services)

{
2 services ConfigurecCooklePolicyOptions>(options =>
4 CALL STACK 28 {
4 Main Theead SALITED O BREARBSNT 29 // This lasbda determines whether user consent for
helloweb. dL1he Lloweh. Startup. Startup (Hicroso 3 options.CheckConsentNeeded = context => true;
DEBL E A~ 0 x

helloweb.dll!helloweb. Progras.Main(string[] »

PAVTED

procussing thread NG

Ln 19, Col 43 (30 sedacted) Spacecd UTF-EwithBOM CRIF C¢ @ &4
Figure 9-5. The debugging tools while a breakpoint is being hit

203

CHAPTER9 RUNNING AND DEBUGGING CODE

Notice how the status bar becomes orange while debugging and how

the Debug Console window shows information about the debugging

process. On the left side, the Debug view shows a number of tools:

VARIABLES, which shows the list of variables that are
currently under the debugger control and that you can
investigate by expanding each variable.

WATCH, a place where you can evaluate expressions.

CALL STACK, where you can see the stack of method
calls. If you click a method call, the code editor will
bring you to the code that is making that call.

BREAKPOINTS, where you can manage breakpoints.

At the top of the window, also notice the debugging toolbar (see

Figure 9-5) called Debug action pane, made of the following commands
(from left to right):

Continue, which allows continuing the application
execution after breaking on a breakpoint or an exception

Step Over, which executes one statement at a time
except for method calls, which are invoked without
stepping into

Step Into, which executes one statement at a time,
including statements within method bodies

Step Out, which executes the remaining lines of a
function starting from the current breakpoint

Restart, which you select to restart the application

execution

Stop, which you invoke to stop debugging

These commands are also available in the Debug menu, together with

their keyboard shortcuts. If you hover a variable name in the code editor,

204

CHAPTER9 RUNNING AND DEBUGGING CODE

a convenient popup will make it easy to investigate values and property
values (depending on the type of the variable), as shown in Figure 9-6
where you can see a popup showing information about the Configuration
variable. You can expand properties and see their values, and you can also
investigate properties in the VARIABLES area of the Debug side bar.

- a X
Jip 2 ¥ 1T O © m
Cr Sta cs » {}helloweb ¢ *z helloweb.Sta 2 Co ation at
14 {
15 public class Startup
16 {
fer {Microsoft.extensions.Configuration.Configuration.
17 public | |4 Providers [IEnumerable]: Count 5
18 { 4 [@] [IConfigurationProvider]: {Microsoft.E -
® 19 Con | “4MNon-Public members

20 } |7 nfiguration]: {Mic
21 » [1] [IC gurationProvider]:

— b [2] [IConfigurationProvider]:
23 pl..!blic- b [3] !ECa—ﬁ%gura:%onPro-. %c’er]:
23 b [4] :_-:CJ.'.ﬁgura::or.Pro'-.-‘-.cer]:

b Raw View

24 /1 This b Non-Public members . metnod
25 public void ConfigureServices(IServiceCollection services)
26 {
27 services.Configure<CookiePolicyOptions>(options =>
28 {
29 // This lambda determines whether user consent for
30 | options.CheckConsentheeded = context => true;

Figure 9-6. Investigating property values at debugging time

Evaluating Expressions

You have an option to use the Watch tool to evaluate expression. While
debugging, click the Add Expression (+) button in the Watch box,

then type the expression you want to evaluate. For instance, if you type
Configuration != null, the Watch tool will return true or false depending
if the object has an instance or not. Figure 9-7 shows an example.

205

CHAPTER9 RUNNING AND DEBUGGING CODE

4 WATCH

Configuration != null: true

Figure 9-7. Evaluating expressions

The Call Stack

The debugger also offers the Call Stack feature, which allows stepping
through the hierarchy of method calls. When you click a method call in
the stack, the code editor will open the containing file, highlighting the
method call (see Figure 9-8).

=) Program.cs - hellowet - Visusl Studio Code - o ®

Fle Edwt Selection View Go Debug Termiral Help

P NETCoeLaunchiwe)y & B c¢E P 2 ¢+ T O ®m €« M -
4 VARIABLES € Program.cs * () hefioweb » % helloweb.Frogram » @ Maingstring(] args
* Localy 9 using Microsoft.Extensions.Logging; W
args [string[]]: {string[@]} 1@ =

11 namespace helloweb
17
13 public class Program
14 {
15 public static vold Main(string[] args)

4 WATCH 16 {

Configuration != null: error CSO10%: The name. 17 CreatedebHostBuilder(args).Build().Run();

18 }

public static IWebHostBuilder CreateNebHostBuilder(string[

71 WebHost .CreateDefaultBuilder{args)
22 .UseStartup<Startup»();
4 CALLSTACK "
Main Theead PALISED OM ITED 5
helloweb .dll!helloweb. Startup.Startup(Microso
DEBUG CONSOLE E A~ 0 x

helloweb.dl1ihelloweb. Progras.Main(string[]

PAVTED

¥ Queus processing thread LT

Ln 17, Col $4 {41 selected) Spacesd UTF-EwithBOM CRIF ¢ @ &

Figure 9-8. Walking through method calls

206

CHAPTER9 RUNNING AND DEBUGGING CODE

The code editor can highlight method calls only if it is part of the
source code, but this feature is very useful especially when you encounter
errors and you need to step back through the code.

The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the
debugger output but, as the name implies, it is also an interactive panel
where you can evaluate expressions. You can type the expression near the
> symbol and then press Enter.

Figure 9-9 shows an example that evaluates if the Configuration
variable is not null.

PROBLEMS DEBUG CONSOLE TERMINAL =2 A0 x
configuration != null
true

>

Ln 19, Col 43 (30 selected) Spaces:4 UTF-8withBOM CRIF C¢ @ A

Figure 9-9. Evaluating expressions in the Debug Console panel

Supporting Azure, Docker, and Artificial
Intelligence

Microsoft has made many investments in the last couple of years to
add to Visual Studio Code support for the most modern technologies
and development scenarios. In fact, Microsoft has developed several
extensions that allow for integrating with Microsoft Azure, Docker, and
artificial intelligence services.

207

CHAPTER9 RUNNING AND DEBUGGING CODE

About Azure, you might want to consider the following extensions:

e Azure Functions, which allows for developing Azure
functions in VS Code and publishing to Azure directly

from the environment

e Azure App Service, which allows for deploying and
scale web and mobile apps to Azure directly from VS
Code

e Azure CLI Tools, which provides interaction with the
Azure command line interface from Visual Studio Code

Obviously, you need an active Azure subscription to use these
extensions. Not limited to this, Microsoft has developed a Docker
extension, which not only brings syntax highlighting for Docker files but
that also adds commands and support to create and publish containerized
applications to Azure. As you can understand, Azure is at the core of
Microsoft’s business, and this includes artificial intelligence services
available on the cloud. For this reason, Microsoft has also developed
an extension called Visual Studio Code Tools for Al, which allows for
building, testing, and deploying deep learning and other Al solutions. For
developers using Python, this extension also makes it easier to consume Al
services with this language. The official documentation provides detailed
tutorials that help address these particular development scenarios, more
specifically you can read

« Deploying Applications to Azure (https://code.
visualstudio.com/docs/azure/deployment)

o Working with Docker (https://code.visualstudio.
com/docs/azure/docker)

o Visual Studio Code Tools for AI (https://github.com/
Microsoft/vscode-tools-for-ai)

208

https://code.visualstudio.com/docs/azure/deployment
https://code.visualstudio.com/docs/azure/deployment
https://code.visualstudio.com/docs/azure/docker
https://code.visualstudio.com/docs/azure/docker
https://github.com/Microsoft/vscode-tools-for-ai
https://github.com/Microsoft/vscode-tools-for-ai

CHAPTER9 RUNNING AND DEBUGGING CODE

Visual Studio Code, with its extensibility model and being independent
from proprietary systems, can target an incredible number of development
scenarios, from web to mobile to cloud.

Summary

The power of Visual Studio Code as a development environment comes
out when you work with real applications. With the help of specific
generators, you can easily generate .NET Core projects using C# or Node.js
projects. This chapter described how you can leverage a powerful, built-in
debugger that offers all the necessary tools you need to write great apps,
such as breakpoints, variable investigation, call stack, and expression
evaluators.

You finally saw how VS Code can target advanced scenarios such as
deploying applications and functions to Azure, packaging Docker images,
and consuming artificial intelligence services.

By completing this chapter, you have walked through all the most
important and powerful features you need to know to write great cross-
platform applications using Visual Studio Code.

209

Index

A, B

Activity bar, 24-25

Apache Cordova framework, 195
Auto-detecting tasks, 164-165
Azure DevOps, 150-154

C

Code block folding, 51-52

Code editing features
breadcrumbs, 57-58
built-in code snippets, 52-54
code block folding, 51-52
delimiter matching, 51
Markdown preview, 58-59
Minimap mode, 55-56
multicursors, 52
syntax colorization, 50
text manipulation and text

selection, 48-49

whitespace rendering, 56-57
word completion, 54-55

Code editor, 21-22

Code refactoring, 78

Code snippets, 53-54

Color theme, 97

Command Palette, 37

© Alessandro Del Sole 2019

Customizations
and extensions, 95-97
keyboard shortcuts
adding, 108
commands and actions, 106
keybindings.json file, 108
list of commands, 107
new, 109
theme selection
color themes, 97
Dark (Visual Studio), 98
user settings (see User settings)
workspace settings, 105-106
Customize group, 20

D

Dark (Visual Studio), 98

Debug bar, 34-35

Debug Console panel, 41

Debugger
adding breakpoints, 202
Call Stack, 206-207
commands, 204
configuration

commands, 199-201

Debug Console panel, 207
Debug view, 196-197

211

A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7

https://doi.org/10.1007/978-1-4842-4224-7

INDEX

Debugger (cont.)
evaluate expression, 205-206
.NET Core Launch (web), 198
tools, 203-204

Delimiter matching, 51

E

Editor windows, 22
Evolved code editing
code issue detection

adding missing directives, 73

code refactoring, 68, 72
generating types, 71
[Disposable, 72, 73
interface with dispose
pattern, 74-75
light bulb, 69, 72, 74
potential fixes, 70
find all references, 65
Go To Definition, 63-64
identifier, 68
inline documentation with
Tooltips, 62-63
IntelliSense, 60-61
parameter hints, 62
peek definition, 66
renaming symbols, 67
Explorer bar, 26-28
Extensibility, 111
Extensions
authoring, 122
customizing options, 120-121
Git History, 142-144

212

GitHub Pull Requests, 148-150

GitLens, 144, 146-147

installation, 111, 113-114

recommendations, 115-116

shortcuts, 119

Visual Studio

Marketplace, 111-112

Extensions bar, 35-36

F

Find All References
feature, 65, 67
Folders and projects
extensibility, 84
files, 82-83
JavaScript project,
opening, 87
loose assortments of files, 88
.NET Core solution, 86
opening folder, 84-85
structured view, 85
TypeScript projects, 88
Free Pascal compiler, 166

G

Git
Command Palette, 137-138
file changes, 132-134
local repository, 128-129
manage commits, 135-137
remote repository, 130-131
staging changes, 134-135

Git bar, 32-33
GitLens, 144
Go To Definition, 63-64

H

Help group, 20
https_proxy environment
variables, 104

Individual files
creation, 79-80
editing window, 78
encoding, 80-81
Go to Line item, 81-82
line terminator, 81
IntelliSense, 60-61, 78, 103

J

jsconfig.json files, 83

K

Kestrel server, 194
Keyboard shortcut, 45, 109

L

Language support, editing
features, 46-47

Learn group, 21

Light Bulb, 69-70, 72-74, 76

INDEX

Markdown syntax, 58

Microsoft Azure, 208-209
Minimap mode, 55-56
Model-view-controller (MVC), 192
MSBuild solution files (.sln), 82
Multeor-master folder, 90
Multicursors, 52

N

Navigating between files, 36
.NET Core

creation, 192

MVC, 192

running, 194

solution, 86
Node.js, 157

O

OmniPascal extension, 166
Outline view, 28-30
Output panel, 40

PQ

package.json files, 83

Panels area, 38
Debug Console panel, 41
output panel, 40
problems panel, 38-39
terminal panel, 42-43

213

INDEX

Parameter hints, 62
Peek Definition, 66
Problems panel, 38-39
project.json files, 83
Proxy Strict SSL, 104

R

Recent group, 20
Recommended
extensions, 115, 117-118

S

Search settings, 100
Search tool
Clear Search Results, 31
Replace All, 32
Replace text, 32
Selection menu, 49
Settings button, 36
settings.json file, 101-103
Side bar
debug bar, 34-35
explorer bar, 26-28
extensions bar, 35-36
git bar, 32-33
outline view, 28-30
search tool, 31-32
settings button, 36
Source control managers
(SCM), 126
Start group, 20

214

Status bar, 23-24
Syntax colorization, 50

T

Task
building, 164
commands, 161
compiling Pascal source
code, 167-172
customization properties,
175-176, 178
default build task, 173-175
Free Pascal compiler, 173
JSON notation, 158-159
key and values, 178-179
MSBuild solution, 185-187
operating system-specific
properties, 181-182
problem matchers, 172, 187-188
running, 159-160
templates, 182-183, 185
terminal panel, 163-164, 188
types, 159
variable, 180-181
Terminal panel, 42-43
Toggle Block Comment, 48
Toggle Breadcrumbs, 57
Toggle Line Comment, 48
Toggle Render Whitespace, 56
Tooltips, 63
tsconfig.json files, 83
TypeScript compiler (tsc), 157

U

User interface, 19, 21, 37-38
User settings
changing, 100
default, 102
editor, 99, 101
explorer, 100
IntelliSense, 103
Minimap mode, 102
proxies, 103-104
search, 100
settings.json file, 101-103

\'

Visual Studio Code, 77
automating tasks, 4
branch

creation, 139
deleting, 141
merging, 140
switching, 140
browser, 5-6
built-in debugger, 3
built-in support, 3
code-centric tool, 4
color themes, 2
cross-platform development
tool, 2
definition, 2
download for macOS, 9

INDEX

download for Windows, 7
end-to-end development, 2
features, 3-5
insiders builds, 15-17
installation
macOS, 9-10
Ubuntu, 10-11
Windows, 6-9
localization, 12-13
needs, 2
SCM providers, 125-127
updation, 13-15
user installer, 7
version control, 4
Visual Studio Marketplace, 111-112

W, X
Windows Presentation Foundation
(WPF), 86, 185, 186
Word completion, 54-55
Workspace
creation, 91
multiple projects and
folders, 89-90
opening, 92
settings, 105-107
structure, 92-93

Y,Z

Yeoman tool, 122

215

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Introducing Visual Studio Code
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View

	The Search Tool
	The Git Bar
	The Debug Bar
	The Extensions Bar
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go To Definition
	Find All References
	Peek Definition
	Renaming Symbols and Identifiers
	Live Code Analysis

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Core Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies

	Understanding Workspace Settings

	Customizing Key Bindings

	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Hints About Extension Authoring
	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests

	Working with Azure DevOps and Team Foundation Server
	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	First Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties and Substitution Variables
	Operating System-Specific Properties
	Reusing Existing Task Templates
	Second Example: Building a MSBuild Solution (Windows Only)
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Running and Debugging Code
	Creating Applications
	Creating .NET Core Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Supporting Azure, Docker, and Artificial Intelligence
	Summary

	Index

