
Visual Studio
Code Distilled

Evolved Code Editing for Windows,
macOS, and Linux
—
Alessandro Del Sole

Visual Studio Code
Distilled

Evolved Code Editing for
Windows, macOS, and Linux

Alessandro Del Sole

Visual Studio Code Distilled: Evolved Code Editing for Windows,

macOS, and Linux

ISBN-13 (pbk): 978-1-4842-4223-0 ISBN-13 (electronic): 978-1-4842-4224-7
https://doi.org/10.1007/978-1-4842-4224-7

Library of Congress Control Number: 2018965198

Copyright © 2019 by Alessandro Del Sole

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference
our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4223-0.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alessandro Del Sole
Cremona, Italy

https://doi.org/10.1007/978-1-4842-4224-7

To Angelica, the love of my life.

v

About the Author ���xi

Acknowledgments ���xiii

Introduction ��xv

Table of Contents

Chapter 1: Introducing Visual Studio Code ���1

Introducing Visual Studio Code ���2

When and Why Visual Studio Code ��3

Installing and Configuring Visual Studio Code ��5

Installing Visual Studio Code on Windows ���6

Installing Visual Studio Code on macOS ��9

Installing Visual Studio Code on Linux ���10

Localization Support ��12

Updating Visual Studio Code ��13

Previewing Features with Insiders Builds ���15

Summary���17

Chapter 2: Getting to Know the Environment �������������������������������������19

The Welcome Page ��20

The Code Editor ���21

Reordering, Resizing, and Zooming Editor Windows �������������������������������������22

The Status Bar ��23

The Activity Bar ���24

vi

The Side Bar ��26

The Explorer Bar ��26

The Search Tool ���31

The Git Bar ���32

The Debug Bar ���34

The Extensions Bar ��35

The Settings Button ���36

Navigating Between Files ���36

The Command Palette ���37

The Panels Area ��38

The Problems Panel ���38

The Output Panel ���40

The Debug Console Panel ��41

Working with the Terminal ���42

Summary���43

Chapter 3: Language Support and Code Editing Features ������������������45

Language Support ���46

Working with C# and C++ ���47

Basic Code Editing Features ���48

Working with Text ��48

Syntax Colorization ��49

Delimiter Matching and Text Selection ��51

Code Block Folding ��51

Multicursors ��52

Reusable Code Snippets ��52

Word Completion ���54

Minimap Mode ���55

Table of ConTenTsTable of ConTenTs

vii

Whitespace Rendering and Breadcrumbs ���56

Markdown Preview ��58

Evolved Code Editing ���59

Working with IntelliSense ��60

Parameter Hints ���62

Inline Documentation with Tooltips ���62

Go To Definition ��63

Find All References ��65

Peek Definition ��66

Renaming Symbols and Identifiers ��67

Live Code Analysis ���68

Summary���76

Chapter 4: Working with Files and Folders���77

Visual Studio Code and Project Systems ��77

Working with Individual Files ��78

Creating Files ���79

File Encoding, Line Terminators, and Line Browsing �������������������������������������80

Working with Folders and Projects ���82

Opening a Folder ���84

Opening �NET Core Solutions ���86

Opening JavaScript and TypeScript Projects ���87

Opening Loose Folders ��88

Working with Workspaces ���89

Creating Workspaces ���91

Opening Existing Workspaces ���92

Workspace Structure ���92

Summary���93

Table of ConTenTsTable of ConTenTs

viii

Chapter 5: Customizing Visual Studio Code ���������������������������������������95

Customizations and Extensions Explained ��95

Customizing Visual Studio Code ��97

Theme Selection ��97

Customizing the Environment ��99

Customizing Key Bindings ���106

Summary���110

Chapter 6: Installing and Managing Extensions �������������������������������111

Installing Extensions ���111

Extension Recommendations ��115

Useful Extensions ��117

Managing Extensions ��118

Configuring Extensions ��120

Hints About Extension Authoring ���122

Summary���122

Chapter 7: Source Control with Git ���125

Source Control in Visual Studio Code ��125

Downloading Other Source Control Providers ���126

Managing Repositories ���127

Initializing a Local Git Repository ��128

Creating a Remote Repository ���130

Handling File Changes ��132

Staging Changes ���134

Managing Commits ���135

Working with the Git Command Line Interface ���137

Table of ConTenTsTable of ConTenTs

ix

Creating and Managing Branches ���138

Switching to a Different Branch ��140

Merging from a Branch ��140

Deleting Branches ���141

Adding Power to the Git Tooling with Extensions ��142

Git History ��142

GitLens ���144

GitHub Pull Requests ���148

Working with Azure DevOps and Team Foundation Server �������������������������������150

Summary���154

Chapter 8: Automating Tasks ���157

Understanding Tasks ���158

Tasks Types ���159

Running and Managing Tasks ��159

The Default Build Task ���164

Auto-Detected Tasks ��164

Configuring Tasks ��166

Running Files with a Default Program ���188

Summary���189

Chapter 9: Running and Debugging Code ���191

Creating Applications ��191

Creating �NET Core Projects ��192

Creating Projects on Other Platforms ��195

Debugging Your Code ��196

Configuring the Debugger ���198

Table of ConTenTsTable of ConTenTs

x

Managing Breakpoints���202

Debugging an Application ��203

Supporting Azure, Docker, and Artificial Intelligence ���207

Summary���209

 Index ���211

Table of ConTenTsTable of ConTenTs

xi

About the Author

Alessandro Del Sole is Senior Software Engineer for a healthcare company,

building mobile apps for doctors and dialysis patients. He has been in the

software industry for almost 20 years, focusing on Microsoft technologies

such as .NET, C#, Visual Studio, and Xamarin. He has been a trainer,

consultant, and a Microsoft MVP since 2008 and is the author of many

technical books. He is a Xamarin Certified Mobile Developer, Microsoft

Certified Professional, and a Microsoft Programming Specialist in C#.

xiii

Acknowledgments

Thanks to Joan Murray, Jill Balzano, Laura Berendson and to everyone at

Apress for the opportunity and the great teamwork on this book.

Special thanks to the technical editor, Dr. James McCaffrey, who

contributed to the quality and accuracy of the contents.

Special thanks to my girlfriend Angelica, who understands and never

complains about the time I spend on writing books.

xv

Introduction

One of the most common requirements in software development today

is building applications and services that run on multiple systems and

devices, especially with the continued expansion of cloud and artificial

intelligence services.

Developers have many options to build cross-platform and cross-

device software, from languages to development platforms and

tools. However, in most cases such tools rely on proprietary systems,

therefore creating strong dependencies. Moreover, most development

tools target specific platforms and development scenarios. Microsoft

Visual Studio Code makes a step forward, by providing a fully featured

development environment for Windows, macOS, and Linux that not

only offers advanced coding features but also integrated tools that span

across the entire application lifecycle from coding to debugging to team

collaboration. In this book, developers with any skill will learn how to

leverage Visual Studio Code to target scenarios such as web, cloud, and

mobile development with the programming language of their choice,

providing guidance to build apps for any system and any device.

1© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_1

CHAPTER 1

Introducing Visual
Studio Code
Visual Studio Code is not just another evolved notepad with syntax

colorization and automatic indentation. Instead, it is a very powerful

code-focused development environment expressly designed to make

it easier to write web, mobile, and cloud applications using languages

that are available to different development platforms and to support

the application development lifecycle with a built-in debugger and with

integrated support to the popular Git version control engine.

With Visual Studio Code, you can work with individual code files or

with structured file systems based on folders. This chapter provides an

introduction to Visual Studio Code giving you information on when and

why you should use it, as well as about installing and configuring the

program on the different supported operating systems.

Note Across the book, I will refer to the product with its full
name, Visual Studio Code, and its friendly names VS Code and Code
interchangeably.

2

 Introducing Visual Studio Code
Visual Studio Code has been the first cross-platform development tool

in the Microsoft Visual Studio family that runs on Windows, Linux, and

macOS. It is free, open source (https://github.com/Microsoft/vscode),

and it is definitely a code-centric tool, which makes it easier to edit code

files and folder-based project systems as well as writing cross-platform

web and mobile applications over the most popular platforms, such as

Node.js and .NET Core, with integrated support for a huge number of

languages and rich editing features such as IntelliSense, finding symbol

references, quickly reaching a type definition, and much more.

Visual Studio Code is based on Electron (https://electronjs.org/),

a framework for creating cross-platform applications with native

technologies, and combines the simplicity of a powerful code editor with

the tools a developer needs to support the application lifecycle development,

including debuggers and version control integration based on Git. It is

therefore a complete development tool, rather than being a simple code

editor. For more advanced coding and development, you will certainly

consider Microsoft Visual Studio 2017 on Windows and Visual Studio for Mac

on macOS, but Visual Studio Code can be really helpful in many situations.

In this book, you learn how to use Visual Studio Code and how to get

the most out of it, seeing how you can use it both as a powerful code editor

and as a complete environment for end-to-end development. Except

where necessary, figures are based on the Microsoft Windows 10 operating

system, but there is no difference on Linux and macOS. Also, Visual Studio

Code includes a number of color themes that style its layout. In this book,

figures are based on the so-called Visual Studio Light Theme, so you might

see different colors. Chapter 5, “Customizing Visual Studio Code,” explains

how to change the theme, but if you want to be consistent with the book’s

figures, simply select File ➤ Preferences ➤ Color Theme and select the

Visual Studio Light Theme. It is worth mentioning that the theme you

select does not affect at all the features described in this book.

ChApter 1 IntroduCIng VISuAl StudIo Code

https://github.com/Microsoft/vscode
https://electronjs.org/

3

 When and Why Visual Studio Code
Before you learn how to use Visual Studio Code, what features it offers, and

how it provides an improved code editing experience, you have to clearly

understand its purpose. Visual Studio Code is not a simple code editor;

rather it is a powerful environment that puts writing code at its center. The

main purpose of Visual Studio Code is making it easier to write code for

web, mobile, and cloud platforms for any developers working on different

operating systems, such as Windows, Linux, and macOS, making you

independent from proprietary development environments.

For a better understanding, let’s consider an example based on ASP.

NET Core, the cross-platform, open source technology able to run on

Windows, Linux, and macOS that Microsoft produced to create portable

web applications; forcing you to build cross-platform, portable web apps

with Microsoft Visual Studio 2017 would make you dependent on this

Integrated Development Environment (IDE). You could argue that the

Visual Studio 2017 Community edition is free of charge, but it only runs

on Windows. On the contrary, though it is not certainly intended to be

a replacement for more powerful and complete environments such as

its major brother, Visual Studio Code can run on a variety of operating

systems and can manage different project types, as well as the most

popular languages. To accomplish this, Visual Studio Code provides the

following core features:

• Built-in support for coding with many languages,

including those you typically use in cross-platform

development scenarios, with advanced editing features

and support for additional languages via extensibility

• Built-in debugger for Node.js, with support for

additional debuggers (such as .NET Core and Mono)

via extensibility

ChApter 1 IntroduCIng VISuAl StudIo Code

4

• Version control based on the popular Git engine, which

provides an integrated experience for collaboration

supporting code commits and branches, and that is the

proper choice for a tool intended to work with possibly

any language

In order to properly combine all these features into one tool, Visual

Studio Code provides a coding environment based on folders, which

makes it easy to work with code files that are not organized within projects

and offers a unified way to work with different languages. Starting from

this assumption, Code offers an advanced editing experience with features

that are common to any supported languages, plus some features that are

available to specific languages. As you learn throughout the book, Code

also makes it easy to extend its built-in features by supplying custom

languages, syntax coloring, editing tools, debuggers, and much more via

a number of extensibility points. It is a code-centric tool, with primary

focus on web, cross-platform code. That said, it does not provide all of the

features you need for full, more complex application development and

application lifecycle management and is not intended to be the proper

choice with some development platforms. If you have to make a choice,

consider the following points:

• Visual Studio Code can produce binaries and

executable files only if the language you use has

support to do so through a debugger. If you use a

language for which there is no extensive support (e.g.,

Visual Basic), Visual Studio Code is not able to invoke

a compiler. You can workaround this by implementing

task automation, discussed in Chapter 8, "Automating

Tasks," but this is different than having the compilation

process integrated.

ChApter 1 IntroduCIng VISuAl StudIo Code

5

• Visual Studio Code has no designers, so creating

an application’s user interface can only be done by

writing all of the related code manually. As you can

imagine, this is fine with some languages and for some

scenarios, but it can be very complicated with some

kinds of applications and development platforms,

especially if you are used to work with the powerful

graphical tools available in Microsoft Visual Studio.

• It is a general purpose tool and is not the proper choice

for specific development scenarios such as building

Windows desktop applications.

If your requirements are different, consider instead Microsoft Visual

Studio 2017 or Microsoft Visual Studio for Mac, which are optimized

for building, testing, deploying, and maintaining multiple types of

applications.

Now that you have a cleaner idea of Code’s goals, you are ready to learn

the amazing editing features that put it on the top of any other code editor.

 Installing and Configuring Visual
Studio Code
Installing Visual Studio Code is an easy task. In fact, you can simply visit

https://code.visualstudio.com from your favorite browser, and the

web page will detect your operating system, suggesting the appropriate

installer. Figure 1-1 shows how the download page appears on Windows.

ChApter 1 IntroduCIng VISuAl StudIo Code

https://code.visualstudio.com

6

In the next paragraphs, you will learn tips for installing Code on the

various supported systems.

Note the latest stable release at the time of this writing is version
1.27.2, released in August 2018 and called August recovery.

 Installing Visual Studio Code on Windows
Visual Studio Code can be installed on Windows 7, 8, and 10. For this

operating system, Visual Studio Code is available with two installers:

a global installer and a user-level installer. The first installer requires

administrative privileges for installation and makes Code available to all

Figure 1-1. The download page for Visual Studio Code

ChApter 1 IntroduCIng VISuAl StudIo Code

7

users. The second installer makes Code available only to the currently

logged user, but it does not require administrative privileges.

The latter is the choice I recommend, especially if you work within a

corporate environment and you do not have administrative privileges to

install software on your PC. The Download for Windows button that you

can see in Figure 1-1 will automatically download the global installer. If

you instead wish to download the user-level installer, click the arrow at the

right of the button and then click the User Installer hyperlink. It is worth

mentioning that Visual Studio Code is available in two versions, 32 bit

and 64 bit. The download page will automatically suggest the version that

matches your operating system architecture, but if you wish to download a

different installer, you can click the arrow and then click Other downloads.

Once the download has been completed, launch the installer and

simply follow the guided procedure as you are already used to do with

most of Windows programs. During the installation, you will be prompted

to specify how you want to integrate shortcuts to Visual Studio Code in the

Windows’ shell. In the Select Additional Tasks dialog, make sure you select

(at least) the following options:

• Add “Open With Code” action to Windows Explorer
file context menu, which allows for right-clicking a

code file in the Explorer and opening such a file with

VS Code.

• Add “Open With Code” action to Windows Explorer
directory context menu, which allows for right-

clicking a folder in the Explorer and opening such a

folder with VS Code.

• Add to PATH (available after restart), which adds

the VS Code’s pathname to the PATH environment

variable, making it easy to run Visual Studio Code from

the command line without typing the full path.

ChApter 1 IntroduCIng VISuAl StudIo Code

8

Note Some antivirus and system protection tools, such as
Symantec endpoint protection, might block the installation of some
files that are recognized as false positives. In most cases this will not
prevent Visual Studio Code from working, but it is recommended that
you disable the protection tool before installing Code or, if you do not
have elevated permissions, that you ask your administrator to do it
for you.

A specific dialog will inform you once the installation process has

completed. The installation folder for the user-level installer is C:\

Users\proga\AppData\Local\Programs\Microsoft VS Code, while the

installation folder for the global installer is C:\Program Files\Microsoft

VS Code on 64-bit systems and C:\Program Files(x86)\Microsoft VS

Code on 32-bit systems. You will find a shortcut to Visual Studio Code in

the Start menu and on the Desktop, if you selected the option to create

a shortcut during the installation. When started, Visual Studio Code

appears like in Figure 1-2.

ChApter 1 IntroduCIng VISuAl StudIo Code

9

 Installing Visual Studio Code on macOS
Installing VS Code on macOS is extremely simple. From the download

page, simply click the Download for macOS button and wait for the

download to complete. On macOS, Visual Studio Code works as an

individual program, and therefore you simply need to double-click the

downloaded file to start the application. Figure 1-3 shows Visual Studio

Code running on macOS.

Figure 1-2. Visual Studio Code running on Windows

ChApter 1 IntroduCIng VISuAl StudIo Code

10

 Installing Visual Studio Code on Linux
Linux is a very popular operating system and many derived distributions

exist, so there are different installers available depending on the

distribution you are using. For the Ubuntu and Debian distributions,

you will need the .deb installer. For the Red Hat Linux, Fedora, and

SUSE distributions, you will need the .rpm installer. This clarification is

important because, differently from Windows and macOS, the browser

might not be able to automatically detect the Linux distribution you are

using, and therefore it will offer both options.

Once installed, you will simply need to click the Show Applications

button on the desktop and then the Visual Studio Code shortcut. Figure 1-4

shows Visual Studio Code running on Ubuntu.

Figure 1-3. Visual Studio Code running on macOS

ChApter 1 IntroduCIng VISuAl StudIo Code

11

Note If you are a Windows user and want to try Visual Studio Code
on a linux distribution, you can create a virtual machine with the
hyper-V tool. For example, you might install the latest ubuntu version
(www.ubuntu.com/download/desktop) as an ISo image and
use it as an installation media in hyper-V. on macoS, you need to
purchase the Apple parallels desktop software separately in order to
create virtual machines, but you can basically do the same.

Figure 1-4. Visual Studio Code running on Ubuntu

ChApter 1 IntroduCIng VISuAl StudIo Code

http://www.ubuntu.com/download/desktop

12

 Localization Support
Visual Studio Code ships in English, but it can be localized in many other

supported languages and cultures. When started, VS Code checks for the

operating system language and, if different from English, it shows a popup

suggesting to install a language pack for the culture of your operating

system. The localization support can be also enabled manually.

To accomplish this, select View ➤ Command Palette. When the text

box appears at the top of the page, type the following command:

> Configure Display Language

This will open a file called locale.json, which is the place where Visual

Studio Code stores the localization information. Figure 1-5 shows how this

file appears in the editor. As you can see in the comments, there is a link to

the documentation that contains the full list of supported cultures.

Note the Command palette will be discussed thoroughly in the next
chapter.

Figure 1-5. Changing the localization for Visual Studio Code

ChApter 1 IntroduCIng VISuAl StudIo Code

13

For instance, if you wanted to change the localization from English

to Italian, you would replace en with it, saving your changes. At restart,

Visual Studio Code will apply the new localization downloading the

language pack it needs.

 Updating Visual Studio Code
Visual Studio Code is configured to receive automatic updates in the

background and, usually, Microsoft releases updates monthly.

Note Because VS Code receives monthly updates, some features
might have been updated at the time of your reading, and others
might be totally new. this is a necessary clarification you should keep
in mind while reading, and it is also the reason why I will also provide
links to the official documentation, so that you can stay up to date
more easily.

Additionally, you can manually check for updates with Help ➤ Check
for Updates on Windows and Linux and with Code ➤ Check for Updates

on macOS. If you do not want to receive automatic updates and prefer

manual updates, you can disable automatic updates by selecting File ➤

Preferences ➤ Settings and then, in the Update section, disable the

background updates option. Figure 1-6 shows an example.

ChApter 1 IntroduCIng VISuAl StudIo Code

14

You will follow the same steps to re-enable updates in the background.

Whenever Visual Studio Code receives an update, you will receive a

notification that suggests you to restart Code in order to apply changes.

The first time you restart Visual Studio Code after an update, you will see

the release note for the version that was installed, as demonstrated in

Figure 1-7.

Figure 1-6. Disabling automatic updates

ChApter 1 IntroduCIng VISuAl StudIo Code

15

Release notes contain the list of new and updated features, as well as

hyperlinks that will open the proper feature page in the documentation.

 Previewing Features with Insiders Builds
By default, the download page of the Visual Studio Code’s web site allows

you to download the latest stable build. However, Microsoft periodically

also releases preview builds of Visual Studio Code called Insiders builds

that you can download to have a look at new and updated upcoming

features before they are released to the general public.

Figure 1-7. VS Code release notes

ChApter 1 IntroduCIng VISuAl StudIo Code

16

Insiders builds can be downloaded from https://code.

visualstudio.com/insiders, and follow the same installation rules

described previously for each operating system. They have a different icon

color, typically a green icon instead of a blue icon, and the name you see in

the application bar is Visual Studio Code - Insiders instead of Visual Studio

Code (see Figure 1-8).

Insiders builds and stable builds can work side by side without

any issues. Because each lives in its own environment, your setting

customizations and extensions you installed on the stable build will not

be automatically available to the Insiders build and vice versa, so you will

need to provide them again.

Figure 1-8. Visual Studio Code Insiders builds

ChApter 1 IntroduCIng VISuAl StudIo Code

https://code.visualstudio.com/insiders
https://code.visualstudio.com/insiders

17

Insiders builds are a very good option to have a look at what is coming

with Visual Studio Code, but because they are not stable, final builds, it

is not recommended you use them in production or with code you will

release to production.

 Summary
Visual Studio Code is not a simple code editor but a fully featured

development environment optimized for web, mobile, and Cloud

development. In this chapter, you saw how to install Visual Studio Code

on Windows, macOS, and Linux distributions, learning how to select the

appropriate installers and fine-tune the setup process. You also saw how to

configure localization and updates. Finally, you had a look at the Insiders

build, which offer previews of upcoming, unreleased features.

Now that you have your environment ready for use, it is time to start

discovering the amazing features offered by Visual Studio Code. The next

chapter walks through the environment, then in Chapter 3, "Language

Support and Code Editing Features," you will see all the amazing code

editing features that make Visual Studio Code a rich, powerful cross-

platform editor.

ChApter 1 IntroduCIng VISuAl StudIo Code

19© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_2

CHAPTER 2

Getting to Know
the Environment
Before you use Visual Studio Code as the editor of your choice, it is

convenient for you to know how the workspace is organized and what

commands and tools are available, in order to get the most out of the

development environment.

The VS Code’s user interface and layout are optimized to maximize the

space for code editing, and it also provides easy shortcuts to quickly access

all the additional tools you need in a given context. More specifically, the

user interface is divided into five areas: the code editor, the status bar, the

activity bar, panels area, and the side bar. This chapter explains how the user

interface is composed and how you can be productive getting the most of it.

Note All the features discussed in this chapter apply to any file in
any language, and they will be available regardless of the language
you see in the figures (normally C#). You can open one or more code
files via File ➤ Open File to get some editor windows active and
understand the features discussed in this chapter. Then in Chapter 4,
“Working with Files and Folders,” I will discuss more thoroughly how
you can work with individual files and multiple files, in one or more
languages concurrently.

20

 The Welcome Page
At startup, Visual Studio Code shows the Welcome page, visible in

Figure 2-1.

On the left side of the page, under the Start group, you will find

shortcuts for creating and opening files and folders. Under the Recent

group, you will find a list of recently opened files and folders that you will

be able to click for fast opening. Under the Help group, there are useful

links to cheat sheets, introductory videos, product documentation, and

other learning resources about Visual Studio Code. On the right side,

under the Customize group, you can find shortcuts to customize Visual

Studio Code by installing extensions, changing keyboard shortcuts and

Figure 2-1. The Welcome page

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

21

color themes. Under the Learn group, you will find additional shortcuts

to learning resources about commands and the user interface. Most of

the features highlighted in the Welcome page will be discussed across

this book. By default, the Welcome page is set to show up every time you

launch Code. You can remove the flag from the Show welcome page on
startup checkbox to change this behavior.

 The Code Editor
The code editor is certainly the area where you spend most of your time

in VS Code. The code editor becomes available when you create a new file

or open existing files and folders. You can edit one file at a time as well as

multiple files side-by-side concurrently. Figure 2-2 shows an example.

Figure 2-2. The code editor and multiple file views

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

22

To do this, you have a couple options:

• Right-click a file name in the Explorer bar and then

select Open to Side.

• Ctrl-click a file name in the Explorer bar.

• Ctrl+\ (or ⌘+\ on macOS) to split the editor in two.

Notice that if you already have three files open and you want to open

another file, the editor that is active will display that file. You can quickly

switch between editors by pressing Ctrl + 1, 2, and 3. The code editor is

the heart of Visual Studio Code and provides tons of powerful productivity

features that will be deeply discussed in the next chapter. For now, it is

enough to know how to open and arrange editor windows.

 Reordering, Resizing, and Zooming Editor
Windows
Editor windows can be reordered and resized based on your preferences.

Reordering editors can be done by clicking the editor’s header (which is

where you see the file name) and moving it to a different position. Resizing

an editor can instead be accomplished by clicking the mouse left button

over the editor’s border, when the pointer appears as a left/right arrow pair.

You can also zoom in and out the active editor by clicking Ctrl++ and

Ctrl+-, respectively. As an alternative, you can select View ➤ Zoom in and

View ➤ Zoom out.

Note In visual Studio Code, the zoom is actually an accessibility
feature. As an implication, when you zoom the code editor, the activity
bar and side bar will also be zoomed.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

23

 The Status Bar
The status bar contains information about the current file or folder and

provides shortcuts for some quick actions. Figure 2-3 shows an example of

how the status bar appears.

The status bar contains the following information, from left to right:

• Git version control information and options, such as

the current branch.

• Errors and warnings detected in the source code.

• The cursor position expressed in line and column.

• Indentation information, in this case Spaces: 4. You

can click this to change the indentation size and to

convert indentation to tabs or spaces.

• The encoding of the current file.

• The current line terminator.

• The language for the open file. By clicking the current

language name, you will be able to change the language

from a dropdown list that will pop up.

• The project name, if you open a folder that contains

a supported project system. It is worth noting that, in

case the folder contains multiple project files, clicking

this item will allow switching between projects.

Figure 2-3. The status bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

24

• The feedback button, which allows sharing your

feedback about Visual Studio Code on Twitter.

• The notification icon, which shows the number of new

notifications (if any). Notification messages typically

come from extensions or they are about product

updates.

It is worth mentioning that the status bar color changes depending

on the situation. For example, it is violet when you open a single file,

blue when you open a folder, and orange when Visual Studio Code is in

debugging mode.

 The Activity Bar
The Activity bar is at the left side of the workspace and can be considered a

collapsed container for the side bar. Figure 2-4 shows the Activity bar.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

25

The Activity bar provides shortcuts for the Explorer, Search, Git, Debug,

Extensions, and Settings tools, each described in the next section. When

you click a shortcut, the side bar related to the selected tool becomes

visible. You can click again the same shortcut to collapse again the side bar.

Figure 2-4. The Activity bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

26

 The Side Bar
The Side bar is one of the most important tools in Visual Studio Code,

certainly the tool you will interact more with together with the code editor.

It is made of five tools, each enabled by the corresponding icon, described

in the next subsections.

 The Explorer Bar
The Explorer bar is enabled by clicking the first icon from the top and

provides a structured, organized view of the folder or files you are working

with. The OPEN EDITORS subview contains the list of active files,

including open files that are not part of a project or folder or files that have

been modified. These are instead shown in a subview whose name is the

folder or project name. Figure 2-5 provides an example of Explorer.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

27

Note You must hover over the folder name (APP1 in Figure 2-5) in
order to get the four buttons visible.

Figure 2-5. The Explorer bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

28

The subview that shows a folder structure provides four buttons (from

left to right): New File, New Folder, Refresh, and Collapse All, each

self-explanatory. The OPEN EDITORS subview has instead three buttons

(which you get when hovering over with the mouse): Toggle Vertical/
Horizontal Editor Layout, Save All, and Close All Files. Right-clicking

a folder or file name in Explorer provides a context menu that offers

common commands (such as Open to Side you saw at the beginning

of this chapter). A very interesting command is Reveal to Explorer (or

Reveal to Finder on Mac and Open Containing Folder on Linux), which

opens the containing folder for the selected item. Notice that the Explorer

icon in the Activity bar also reports the number of modified files.

 The Outline View

The bottom of the Explorer bar contains another group called OUTLINE.

This group provides a hierarchical view of types and members defined

within a code file or of tags within defined in a markup file. Figures 2-6

and 2-7 show the OUTLINE based on a TypeScript file and on a HTML file,

respectively.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

29

Figure 2-6. The Outline view on a TypeScript file

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

30

You can expand types and members to see what other objects they

define, and you can click each item and get the cursor over the selected

item definition in the source code. Also, you can type in the Filter text

box to restrict the list of items based on a search criterion. It is worth

mentioning that Visual Studio Code highlights with a different color (red

in the case of the Visual Studio Light Theme) items that have potential

problems and that are highlighted with squiggles in the code editor.

Figure 2-7. The Outline view on a HTML file

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

31

 The Search Tool
The Search tool, enabled with the search icon, allows for searching and

optionally replacing text across files. You can search for one or more words,

including special characters (such as * and ?), and you can even search

based on regular expressions. Figure 2-8 shows the Search tool in action,

with advanced options expanded (files to include and files to exclude).

Search results are presented in a hierarchical view that groups all the

files that contain the specified search key, showing an excerpt of the line

of code that contains it. Occurrences are also highlighted in both the list

of files and in the code editor. You can finally clean up search results by

clicking the Clear Search Results button. If you instead wish to replace

Figure 2-8. The Search tool

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

32

some text with a new text, you can do this by entering the new text into the

Replace text box and then by clicking the Replace All button.

 The Git Bar
The Side bar provides access to Git integration for version control. Git

integration is a core topic and will be thoroughly discussed in Chapter 7,

“Source Control with Git,” but a quick look is provided here for the sake of

completeness about the Side bar.

The Git bar can be enabled by clicking the third button from the top

(with a kind of fork icon) and provides access to all of the common source

control operations, such as initializing a repository, committing code files,

and synchronizing branches. The Git icon also shows the number of files

that have been modified locally. Figure 2-9 shows an example.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

33

The Git bar also provides a popup menu that you can see by clicking

the … button at the top-right corner of the bar and that contains the list

of supported Git commands in Visual Studio Code. As I said before, Git

integration will be described later in the book.

Figure 2-9. The Git bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

34

 The Debug Bar
Visual Studio Code is not a simple code editor, but it is also a fully featured

development tool that ships with an integrated debugger for .NET Core and

that can be extended with third-party debuggers for other platforms and

languages. Chapter 9, "Running and Debugging Code," describes in more

detail such an important part of Visual Studio Code, but for now you have

to know that the debugging tools can be accessed by clicking the fourth

icon from the top. This will open the Debug bar, shown in Figure 2- 10.

Figure 2-10. The Debug bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

35

In Chapter 9 you will see how powerful the debugging tools are in

Visual Studio Code and how easy is installing additional debuggers.

 The Extensions Bar
The Extensions bar can be enabled by clicking the fifth button from the top

in the Activity bar and allows for searching and installing extensions for

Visual Studio Code, which include additional languages, debuggers, code

snippets, and much more. Extensibility will be discussed in Chapter 6,

"Installing and Managing Extensions," but Figure 2-11 provides an example

of how the Extensions bar appears.

Figure 2-11. The Extensions bar

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

36

Not only you can search online for extensions, but you can see the list

of installed extensions as well as disabled and recommended extensions.

 The Settings Button
The Settings button is represented with the gear icon, at the bottom of

the Activity bar. If you click it, you will see a popup menu with a list of

commands that represent shortcuts for customizing Visual Studio Code

and that will be discussed more thoroughly in Chapter 5, "Customizing

Visual Studio Code." Among the others, a command in the menu allows for

manually searching for product updates.

 Navigating Between Files
Visual Studio Code provides two ways of navigating between files. The

quickest way is pressing Alt+Left or Alt+Right to switch between active files.

If you instead press Ctrl+Tab, you will be able to browse the list of files

that were opened since VS Code was launched, and you will be able to

select one for editing, as shown in Figure 2-12.

Figure 2-12. Navigating between active files

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

37

 The Command Palette
Together with the code editor and the activity and side bars, the Command

Palette is another very important tool in Visual Studio Code, which allows

for accessing Visual Studio Code built-in commands and also commands

added by extensions via the keyboard. The Command Palette can be

opened with View ➤ Command Palette or via the Ctrl+Shift+P keyboard

shortcut (⌘+P on macOS), and Figure 2-13 shows how it looks like.

The Command Palette is not just about menu commands or to user

interface instrumentation but also to other actions that are not accessible

elsewhere. For instance, the Command Palette allows installing extensions

as well as restoring NuGet packages over the current project or folder. You

can simply move up and down to see the full list of available commands,

and you can type in some characters to filter the list. You will notice how

many of them map actions available within menus and that, for many

of them, there is a keyboard shortcut available. Other commands, such

as extension, debug, and Git commands, will be discussed in the next

chapters, so it is important that you get started with the Command Palette

at this point.

Figure 2-13. The Command Palette

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

38

 The Panels Area
Visual Studio Code will very often need to display information about

source code but also information coming from the Git engine, external

tools, or debuggers. To accomplish this in an organized way, the

environment provides the so-called Panels area, which appears by default

at the bottom of the user interface.

The Panels area is made of four built-in panels: Problems, Output,

Debug Console, and Terminal, each discussed in this section. The Panels

area is not visible by default, and it usually pops up when the information

they represent becomes available (such as the debugger sending

information about symbols in the source code). Additionally, by default it

appears at the bottom of the VS Code’s user interface, but you can move it

to the side of the workspace with a button called Move to Right that each

panel provides, and then you can restore the original layout with another

button called Move to Bottom. Let’s now discuss each panel in more detail.

 The Problems Panel
With languages that have built-in enhanced editing support, such as

TypeScript (www.typescriptlang.org), or for which an extension has

been added to provide advanced editing features, such as C#, Visual Studio

Code can detect code issues as you type. In the code editor, these are

usually highlighted with red squiggles (for blocking errors) and in green

(for warnings). The list of errors, warnings, and informational messages is

also displayed in the Problems panel. This can be enabled by clicking the

number of errors at the bottom-left corner of the status bar (see Figure 2- 11).

The Problems panel makes it easy to distinguish between errors and

warnings due to different icons (a white x over red background for errors

and a black exclamation mark over yellow background for warnings).

Figure 2-14 shows an example based on some C# code that contains an

unused variable (warning) and a syntax error.

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

http://www.typescriptlang.org

39

In case you have multiple files opened, the Problems panel will group

problems by file name. Also, for each problem, you will be able to see the

folder name and the position within the source code file. Just double-click

a problem, and VS Code will move the cursor to the selected item in the

code editor.

Figure 2-14. The Problems panel

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

40

Note The code editor also provides a way to quickly fix code issues
while typing, but this is not related to the problems panel and will
instead be discussed in the next chapter.

 The Output Panel
The Output panel is the place where Visual Studio Code displays messages

from internal and external tools, such as runtime tools, Git commands,

extensions, and tasks. Figure 2-15 shows an example based on the output

of .NET’s NuGet package manager.

Because multiple tools might run concurrently during an operation

against source code files (e.g., package restore and then compilation) or

during the Visual Studio Code lifetime (such as extensions), you can use

the dropdown box in the panel to change the view and see the output of

each tool. This tool is particularly useful if the execution of external tools

fails and you want to get more information about what happened.

Figure 2-15. The Output panel

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

41

 The Debug Console Panel
As the name implies, the Debug Console panel is a specialized panel used

by debuggers to display information about code execution. Figure 2-16

shows an example based on the execution of a simple C# application.

Not only the Debug Console shows information about code execution,

debug symbols, and any other information a debugger needs to display, but

it also acts as an interactive console where you can evaluate expressions.

If you take a look at Figure 2-16, you can see how a mathematical

expression has been manually evaluated using variables defined in the

code. Debugging is a very important topic in Visual Studio Code and is

thoroughly discussed in Chapter 9, "Running and Debugging Code," where

you will find additional information about the Debug Console.

Figure 2-16. The Debug Console panel

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

42

 Working with the Terminal
Visual Studio Code allows executing commands against the operating

system directly from within the development environment. In fact, you can

select the Terminal ➤ New Terminal command to open a new terminal

instance in a panel at the bottom of the work area. Figure 2-17 shows an

example based on Windows.

On macOS and Linux, the terminal tool is based on the bash shell

of each system. On Windows, the terminal is based on PowerShell by

default. However, when you open a terminal instance, a popup message

will tell you that you can select a different tool by clicking the Customize

button on the popup itself. At this point you will be able to select, from

the Command Palette, one among the Windows command prompt,

PowerShell, and the Git bash command line tool. You can also open

multiple terminal instances by clicking the New Terminal button (the icon

with the + symbol). The Terminal panel is also used by Visual Studio Code

to launch automatic scripts and commands against the operating system.

For example, when you build a C# application, Visual Studio Code starts

the .NET Core compiler whose output is displayed in the Terminal panel,

as shown in Figure 2-18.

Figure 2-17. The Terminal panel

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

43

 Summary
In this chapter, you got an overview of the workspace in Visual Studio Code

and of the tools you will interact more with. You saw how to take advantage

of quick shortcuts in the Welcome page and how you can arrange editor

windows.

You saw how the status bar provides information about the active

file and how the Activity bar is a collapsed container of shortcuts for the

tools contained in the Side bar: the Explorer bar, the Search tool, the Git

bar, the Debug bar, the Extensions bar, and the Settings button. You saw

how to quickly navigate between files and how the Command Palette

provides a way for accessing commands via the keyboard, both Visual

Studio Code commands and extensions’ commands. You have also

walked through another important area in the environment, the Panels

area, where you can get information about code issues, messages from

internal and external tools and debuggers, and where you can execute

commands and scripts via the Terminal. Now that you have seen how

the environment is organized, it is time to get fun walking through all the

powerful productivity features in the code editor. This is the topic of the

next chapter.

Figure 2-18. The Terminal panel used for automatic scripting

ChApTer 2 GeTTInG TO KnOW The envIrOnmenT

45© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_3

CHAPTER 3

Language Support
and Code Editing
Features
Visual Studio Code is not just another evolved text editor with syntax

colorization and automatic indentation. Instead, it is a very powerful code-

focused development environment expressly designed to make it easier

to write web, mobile, and cloud applications using languages that are

available to different development platforms.

With the ambition to provide a powerful, rich development

environment, Visual Studio Code integrates a number of editing features

that are focused on improving the productivity and quality of your

code. This chapter discusses what languages are supported in Visual

Studio Code and all the available code editing features, starting from the

most basic that are available to all the supported languages to the most

advanced productivity tools that are available to specific languages such as

C# and TypeScript.

Note Keyboard shortcuts used in this chapter are based on the
default settings in Visual Studio Code.

46

 Language Support
Out of the box, Visual Studio Code has built-in support for many

languages. Table 3-1 groups supported languages by editing features.

Visual Studio Code can be extended with additional languages

produced by the developer community and that can be downloaded from

the Visual Studio Marketplace. This is discussed in more detail in Chapter 6,

“Installing and Managing Extensions,” but, in the meantime, you can have

a look at the available languages.

Table 3-1. Language Support by Feature

Languages Editing Features

Batch, C, C#, C++, Clojure, CoffeeScript,

Diff, Dockerfile, F#, Go, HLSL, Jade, Java,

HandleBars, Ini, Lua, Makefile, Objective-C,

Objective-C++, Perl, PowerShell,

Properties, Pug, Python, R, Razor, Ruby,

Rust, SCSS, ShaderLab, Shell Script, SQL,

Visual Basic, XML

Common features (syntax coloring,

bracket matching, basic word

completion)

Groovy, Markdown, PHP, Swift Common features and code snippets

CSS, HTML, JSON, JSON with Comments,

Less, Sass

Common features, code snippets,

IntelliSense, Outline

TypeScript, TypeScript React, JavaScript,

JavaScript React

Common features, code snippets,

IntelliSense, Outline, parameter hints,

refactoring, Find All References, Go To

Definition, Peek Definition

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

47

 Working with C# and C++
The C# programming language deserves a more detailed version, because

of its popularity and because it is now a cross-platform language that you

can use not only on Windows but also on macOS and Linux. As you can

see from Table 3-1, the editing experience that Visual Studio Code offers

out of the box for C# is limited to common features.

However, full and rich support for the coding experience with C#

is offered via the Microsoft C# free extension (https://marketplace.

visualstudio.com/items?itemName=ms-vscode.csharp). This provides

an optimized experience for .NET Core development and includes all

the support and tools you need to build apps with C#, including the

necessary support for the .NET Core debugger. With this extension, you

will basically get the same experience available to TypeScript, including

advanced editing capabilities based on the .NET Compiler Platform (also

known as Roslyn) that makes it easier to fix code issues as you type. If you

plan to work with C#, I definitely recommend you to install this extension,

especially because this chapter discusses some editing features that are

available only through the extension. Extensibility is explained in more

detail in Chapter 6, "Installing and Managing Extensions," so the easiest

way to get the extension installed without further information is opening

any C# code file (.cs) and following the instructions shown by Visual Studio

Code when it detects that a proper extension is available for that file type.

Similarly, you might want to install the Microsoft C/C++ extension

that adds enhanced editing features to the C and C++ languages, plus

debugging support for Windows (PDB, MinGW, Cygwin), macOS, and

Linux. The extension is available at https://marketplace.visualstudio.

com/items?itemName=ms-vscode.cpptools, and you can follow the same

steps described before about the C# extension for easy installation, of

course opening a .c, .h, or .cpp file.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

48

 Basic Code Editing Features
Visual Studio Code provides many of the features you would expect from

a powerful code editor. This section describes what editing features make

your coding experience amazing with this new tool. If you are familiar with

Microsoft Visual Studio 2017, you will also see how some features have

been inherited from this IDE. It is worth mentioning that Visual Studio

Code provides keyboard shortcuts for almost all the editing features, giving

you an option to edit code faster. For this reason, the keyboard shortcut is

also mentioned for many of the described features.

Note Features described in this section apply to all the supported
languages described in Table 3-1, except where expressly specified.

 Working with Text
As you would expect, the code editor in VS Code offers commands for

text manipulation and text selection. The Edit menu provides the Undo,

Redo, Copy, Cut, Paste, Find, Replace, Find in Files, and Replace in Files

commands. These commands are available in every text editor and do not

require any further explanation, except for the find and replace tools that

were described in the previous chapter.

The Edit menu also includes the Toggle Line Comment and Toggle
Block Comment commands, which add a single line comment or a block

comment, respectively, depending on the language. For instance, in C# the

first command would comment a line like this:

// int a = 0;

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

49

Instead, the block comment tool would add a multiline comment as

follows:

/* */ int a = 0;

The Edit menu also provides two commands to work with code

snippets, Emmet: Expand Abbreviation and Emmet…. The first

command is the menu representation of keyboard shortcuts offered by

code editor to add a code snippet, whereas the second command opens

the Command Palette and shows the list of code snippets that you can

add. Code snippets are discussed in more detail in the “Reusable Code

Snippets” section in this chapter.

The Selection menu not only provides commands for text selection

but also commands that make it easier to move or duplicate lines of code

above and below the current line. The Add Cursor Above, Add Cursor
Below, and Add Cursors To Line Ends commands allow working with

multicursors, described in the “Multicursors” section in this chapter.

If you click an identifier, reserved word, or type name in the editor, you

can use the Add Next Occurrence, Add Previous Occurrence, and Select
All Occurrences commands that allow to quickly select occurrences of

the selected word, and occurrences will be highlighted in a different color,

which differs depending on the current theme.

 Syntax Colorization
For all the languages summarized in Table 3-1, the code editor in Visual

Studio Code provides the proper syntax colorization. Figure 3-1 shows an

example based on a TypeScript code file.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

50

Syntax colorization is available for other languages via extensibility.

If you need to work with a language that is not included out of the box,

you can check the Visual Studio Marketplace and see if an extension

is available to support such a language. See Chapter 6, "Installing and

Managing Extensions," for information about extensibility. As a side note,

syntax colorization is the minimum that an extension must provide to add

support for a new language.

Figure 3-1. Syntax colorization

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

51

 Delimiter Matching and Text Selection
The code editor can highlight matching delimiters such as brackets and

parentheses (both square and round). This feature is extremely useful to

delimit code blocks and is triggered once the cursor gets near one of the

delimiters. Figure 3-2 shows an example based on bracket matching in a

constructor definition.

This feature is also very useful when you need to visually delimit

nested blocks and with complex and long expressions. It is worth

mentioning that you can press Ctrl+D to fast select a word or identifier at

the right of the cursor and that you can also easily expand (Shift+Alt+Right)

and shrink (Shift+Alt+Left) text selection within enclosing delimiters of a

code block.

 Code Block Folding
The code editor allows folding delimited code blocks. Just hover line

numbers and the - symbol will appear near the start of a code block.

Simply click to fold, and you will see the + symbol at this point, which you

click to unfold the code block. Figure 3-3 provides an example.

Figure 3-2. Delimiter matching

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

52

 Multicursors
The code editor supports multicursors. Each cursor operates

independently, and you can add secondary cursors by pressing Alt-Click

at the desired position. You will see that secondary cursors will be

rendered thinner. The most typical situation in which you want to use

multicursors is when you want to add (or replace) the same text in different

positions of a code file.

 Reusable Code Snippets
Visual Studio Code ships with a number of built-in code snippets that you

can easily add by using the Emmet abbreviation syntax and pressing Tab.

See the “Language Support” section to discover what languages support

code snippets natively. For instance, in a Swift file, you can easily add

a do..catch block definition by using the do code snippet, as shown in

Figure 3-4.

Figure 3-3. Code block folding

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

53

Code snippets are available as you type within the code editor, and you

can recognize them by the icon representing a small, white sheet. Notice

how a tooltip shows a preview of the code snippet. Pressing Tab over the

previous snippet produces the result shown in Figure 3-5.

Figure 3-4. Adding code snippets

Figure 3-5. A newly added code snippet with a variable name
highlighted

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

54

Notice that if the code snippet contains variable names or identifiers,

these might be highlighted suggesting that you should give them a

different name (like for the error identifier in Figure 3-5). When you

rename a highlighted identifier, all occurrences will be also renamed.

Visual Studio Code is not limited to built-in code snippets. You

can download code snippets produced by other developers for many

languages from the Visual Studio Marketplace. Actually, most of the

extensions that introduce or extend support for programming languages

also include a number of code snippets.

 Word Completion
Out of the box, the code editor in Visual Studio Code implements basic

word completion for all the supported languages. This feature helps you

complete words and statements as you type. For example, if you look

at Figure 3-6, you can see how the code editor suggests terminating a

statement with the Class keyword in a Visual Basic file, based on what the

developer is typing.

Figure 3-6. Completing a statement with word completion

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

55

Simply press Enter or Tab to insert the suggested word. The word

completion engine learns as you code and can provide suggestions based

on variables and member names you declare. For example, Figure 3-7

demonstrates how the editor suggests adding the name of a variable called

Test, declared previously in the code.

 Minimap Mode
Sometimes it is difficult to have an idea of the position of the cursor inside

a source code file, especially with very long files. Visual Studio Code

provides the Minimap, a small preview of the source code file on the code

editor’s scrollbar. Figure 3-8 provides an example.

Figure 3-7. The code editor can suggest identifiers declared in the
code

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

56

If you click the Minimap, the portion of source code that is visible in

the code editor is highlighted in the scrollbar, so that you can have a better

perception of the current position of the cursors. The Minimap can be

disabled and enabled using the View ➤ Toggle Minimap command.

 Whitespace Rendering and Breadcrumbs
A very common feature with text editors is the possibility of showing light

dots instead of white spaces. In Visual Studio Code, this is possible for

white spaces within indentations. To accomplish this, you select View ➤

Toggle Render Whitespace. Figure 3-9 shows an example of how white

spaces for indentations are replaced with dots.

Figure 3-8. The Minimap allows for previewing source code on the
scrollbar

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

57

Simply use again the same command to return to white spaces.

Another very useful command is Toggle Breadcrumbs, available in the

View menu. With supported languages, such as JavaScript, TypeScript, and

C# with the extension installed, it shows an icon at the upper left corner of

the code editor, which you can expand to see the definition of types and

members, as shown in Figure 3-10.

Figure 3-9. Rendering indentation spaces with dots

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

58

By clicking a type or member name, the cursor will be moved to its

definition, making code navigation much easier.

 Markdown Preview
Visual Studio Code supports the Markdown syntax for producing

documents in the very popular .md file format. Other than syntax

colorization, for this particular language Visual Studio Code also provides

a preview of how the document will look like. Simply press Ctrl+Shift+V

(Cmd+Shift+V on macOS) in the code editor, and the preview will appear

in a separate window, as demonstrated in Figure 3-11.

Figure 3-10. Navigating between types and members with
breadcrumbs

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

59

This feature is very useful because it allows to preview your documents

without the need of an external program such as a web browser.

 Evolved Code Editing
Visual Studio Code is an extremely powerful code editing tool and brings

to a cross-platform and multilanguage environment many features that

have been available in Microsoft Visual Studio since many years, providing

what is called evolved code editing. This section explains all the advanced

code editing features that are available, out of the box, to languages such as

TypeScript and JavaScript and to languages like C#, C++, and Python with

the appropriate extensions installed.

Figure 3-11. Integrated Markdown preview

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

60

 Working with IntelliSense
IntelliSense provides rich, advanced word completion via a convenient

popup that appears as you type. In the developer tools from Microsoft,

such as Visual Studio, IntelliSense has always been one of the most

popular features, and the reason is that it is not simply word completion.

In fact, IntelliSense provides suggestions as you type, showing the

documentation about a member (if available) and displaying an icon

near each suggestion that describes what kind of syntax element a word

represents. Figure 3-12 shows IntelliSense in action with a C# code file.

As you can see in Figure 3-12, IntelliSense shows the list of available

members as you write, for the given type (in this case Console). When

you select a word from the completion list, Visual Studio Code shows the

member documentation.

Figure 3-12. IntelliSense showing suggestions as you type and
advanced word completion

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

61

Note The documentation for a type or member will only be
available if it has been supplied by the developers. For example, in
C# the documentation for types and members must be provided with
XML comments. This will enable IntelliSense to display it in a tooltip,
like in Figure 3-12.

Press either Tab or Enter to complete the word insertion. Not limited to

this, IntelliSense in Visual Studio code supports suggestion filtering: based

on the CamelCase convention, you can type the uppercase letters of a

member name to filter the suggestion list. For instance, if you are working

against the System.Console type and you write cv, the suggestion list will

show the CursorVisible property, as demonstrated in Figure 3-13.

IntelliSense also provides the foundation for other advanced features

in the code editor that depend on it, described in the next subsections.

Figure 3-13. Suggestion filtering in IntelliSense

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

62

 Parameter Hints
When you write a function invocation, IntelliSense also shows a tooltip

that describes each parameter. This feature is called parameter hints and

is available only if the documentation for function parameters has been

implemented. An example is visible in Figure 3-14.

For languages such as C# and TypeScript or, more generally, with

languages that allow for function overloads, parameter hints show the

description for the parameters of each overload. You can also scroll the

list of overloads with the up and down arrow keys to select a different

overload.

 Inline Documentation with Tooltips
If you hover types, variables, and type members, Visual Studio Code will

show a tooltip that contains the documentation for the selected object.

Figure 3-15 provides an example.

Figure 3-14. IntelliSense shows parameter hints

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

63

Like parameter hints, this feature is available only if the documentation

has been implemented. If you instead hover a variable name, the tooltip

will only show the type for the variable.

 Go To Definition
Visual Studio Code provides another interesting feature called Go To

Definition. You can hover over a symbol with the mouse and, if you press

Ctrl (or ⌘ on macOS), the symbol will appear as a hyperlink; also, a tooltip

will show the code that declares that symbol. You click the type name while

pressing Ctrl, and you will be redirected to the code that defines that type.

Figure 3-16 shows how the code editor appears when you press Ctrl and

hover over a type name.

Figure 3-15. Tooltips provide quick, inline documentation

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

64

The same tool is available if you select a type name and press F12 or

if you right-click a type name and then select Go To Definition from the

context menu. This is an extremely useful feature that lets you quickly

browse between type definitions that are in different code files.

Note For C#, Go To Definition can also open the definition of a type
exposed by the .NeT Core libraries, not just your code.

Figure 3-16. Ctrl + hovering over a type enables Go To Definition

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

65

 Find All References
Find All References is a very useful feature that makes it easy to see

how many times and where a type or member has been used across the

code. For each type or member, the code editor shows how many times

a member has been referenced and in which files. Figure 3-17 shows an

example based on finding all references of a type called Startup.

If you click an occurrence in the list on the right, the code editor brings

up a popup containing the code where that occurrence has been found. It

is very important noting that this popup is interactive, which means that

you can edit the code directly, without the need of opening the containing

code file separately. This allows keeping your focus on the code, saving

time. Also, notice that the interactive popup shows, at the top, the file

name that contains the selected reference.

Figure 3-17. Finding all references of types and members

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

66

 Peek Definition
Suppose you have dozens of code files and that you want to see or edit the

definition of a type you are currently using. With other editors, you should

search among the code files, which not only can be annoying but that

would also move your focus away from the original code. Visual Studio

Code brilliantly solves this problem with a feature called Peek Definition.

You can simply right-click a type name and then select Peek
Definition (the keyboard shortcut is Alt+F12); an interactive popup

window appears, showing the code that defines the type, giving you not

only an option to look at the code but also of direct editing. Figure 3-18

shows the peek window in action.

Figure 3-18. Working on a type defined in another file with Peek
Definition

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

67

As you can see, the peek window is very similar to the Find All

References feature, and it still shows the file name that defines the type at

its top. Simply click the file name to open the code file in a separate editor.

 Renaming Symbols and Identifiers
It is very frequent to rename a symbol, so Visual Studio Code offers

a convenient way to accomplish this. If you press F2 over the symbol

you wish to rename or right-click and then select the Rename Symbol
command, a small interactive popup appears. Figure 3-19 shows an

example based on a symbol called app. There you can write the new name

without any dialogs, keeping your focus on the code.

Figure 3-19. Renaming symbols

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

68

All references of that symbol will be renamed accordingly. Additionally,

you can rename all the occurrences of an identifier. You simply right-click

the identifier, then select Change All Occurrences (or press Ctrl+F2

on Windows/Linux and ⌘+F2 on macOS); all the occurrences will be

highlighted and updated with the new name as you type.

 Live Code Analysis
With C#, TypeScript, and with languages whose support can be enhanced

via extensions like Python, Visual Studio Code can detect code issues as

you type, suggesting fixes and offering code refactorings. This is one of

the most powerful features in this tool, which is something that you will

not find in most other code editors. The next examples are based on the

C# programming language, since (together with TypeScript) this supports

the richest experience possible in Visual Studio Code, and therefore it is a

good choice to discuss the powerful coding features available. Of course,

everything discussed here applies to all other languages that support the

same enhanced features.

According to the severity level of a code issue, Visual Studio Code

underlines with squiggles the pieces of code that need your attention.

Green squiggles mean a warning; red squiggles mean an error that must

be fixed. If you hover over the line or symbol with squiggles, you will get

a tooltip that describes the issue. Figure 3-20 shows two code issues, one

with green squiggles (an unused local variable) and one with red squiggles

(a symbol that does not exist), plus the tooltip for the code issue with the

higher severity level.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

69

Code issues are detected as you type and they are also listed in the

Problems panel. If you look at Figure 3-20, you can also see an icon with

the shape of a light bulb. This icon is a shortcut for a tool called Light Bulb.

When you click the Light Bulb, Visual Studio Code shows possible code

fixes for the current context. For example, if you look at Figure 3-21, you

can see the suggestions that the Light Bulb provides to fix the missing

symbol underlined with red squiggles.

Figure 3-20. Code issue detection as you type

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

70

In this particular case, the editor suggests four options, such as

creating a field, a read-only field, a property, or a local variable. In this

particular case, a field would be created as follows:

private static bool welcomeMessage;

Instead, a property would be generated like this:

public static bool welcomeMessage { get; private set; }

Probably bool is not the type you would expect here, but Visual Studio

Code has not enough information to infer a different type. However, when

the code contains some information that Visual Studio Code could use to

Figure 3-21. Potential fixes suggested by the Light Bulb

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

71

understand the proper type, properties, fields, and local variables would

be generated of the expected type. With the Light Bulb, it is also easier to

generate types on the fly. Figure 3-22 shows an example based on an object

called person, for which a type has not been defined yet. As you can see, for

this context the code editor shows a larger list of possible fixes, including

generating a new class, either in the current file or in a separate file.

Figure 3-22. Generating types on the fly

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

72

Not limited to this, the Light Bulb can help you refactor your code and

keep it cleaner. For example, you can click any of the using directives (or

equivalent in other languages) and, when the Light Bulb appears, you can

see how it offers to remove unused code, as shown in Figure 3-23.

Actually, there is even more power. Suppose you want to create a class

that implements the IDisposable interface. As you can see in Figure 3-24,

the code editor cannot find the definition of such interface and shows a

red squiggle, but the Light Bulb provides shortcuts for quickly fixing this

issue. For example, it suggests adding a using System; directive, which is

what the code needs.

Figure 3-23. Code refactoring made easy

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

73

At this point, IDisposable will be still underlined with a red squiggle

because the code is not implementing the interface yet. If you still enable

the Light Bulb, you will see how the code editor suggests potential fixes

based on the current context, such as implementing the interface in

different ways (see Figure 3-25).

Figure 3-24. Adding missing directives

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

74

Just to give you an idea of the power of this tool, following is the code

that is generated if you choose to implement the interface with Dispose

pattern:

using System;

public class Person: IDisposable

{

 #region IDisposable Support

 private bool disposedValue = false; // To detect redundant

calls

Figure 3-25. The Light Bulb provides suggestions based on the
current context

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

75

 protected virtual void Dispose(bool disposing)

 {

 if (!disposedValue)

 {

 if (disposing)

 {

 // TODO: dispose managed state (managed objects).

 }

 // TODO: free unmanaged resources (unmanaged objects)

 // TODO: set large fields to null.

 disposedValue = true;

 }

 }

 // TODO: override a finalizer only if Dispose(bool

disposing) above

 // has code to free unmanaged resources.

 // ~Person() {

 // // Do not change this code. Put cleanup code in

Dispose(bool disposing) above.

 // Dispose(false);

 // }

 // This code added to correctly implement the disposable

pattern.

 public void Dispose()

 {

 // Do not change this code. Put cleanup code in

Dispose(bool disposing) above.

 Dispose(true);

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

76

 // TODO: uncomment the following line if the finalizer

is overridden above.

 // GC.SuppressFinalize(this);

 }

 #endregion

}

You would get a similar result, but with different implementation, if the

choice was one of the other possible code fixes. Though it is not possible

to show examples for all the code fixes that Code can apply, what you have

to keep in mind is that suggestions and code fixes are based on the context

for the code issue, which is a very powerful feature that makes Visual

Studio Code a unique editor.

 Summary
Visual Studio Code is a code-centric tool that supports out of the box

a wide variety of languages, offering coding features such as syntax

colorization, delimiter matching, code block folding, multicursors, code

snippets, and code completion that are common to all the supported

languages.

In addition, languages such as TypeScript and C# provide the so- called

evolved code editing experience via integrated tools such as IntelliSense,

Go To Definition and Peek Definition, Find All References, and the

extremely powerful Light Bulb that detects code issues as you type and

that suggests potential fixes based on the context. Now that you have

knowledge of the powerful coding features that Visual Studio Code offers,

it is time to see how to use them with individual source code files and

structured folders.

CHAPTeR 3 LANGuAGe SuPPORT AND CODe eDITING FeATuReS

77© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_4

CHAPTER 4

Working with Files
and Folders
Being the powerful editor it is, Visual Studio Code provides a convenient

way of working with code files and folders containing both loose files and

projects. In this chapter you will learn how to work with individual files,

with folders containing source code files, and with workspaces. You will

also learn about VS Code’s independency from proprietary project systems

as well as the built-in support for a few, popular project types.

 Visual Studio Code and Project Systems
Visual Studio Code is file and folder based. This means that you can open

one or more code files distinctly, but it also means that you can open

a folder that contains source code files and treat them in a structured,

organized way. When you open a folder, Visual Studio Code searches for

one of the following files:

• Tsconfig.json

• Jsconfig.json

• Package.json

• Project.json

• .sln Visual Studio solutions for .NET Core with the C#

extension installed

78

If Code finds one of these files, it is able to organize the file structure

into a convenient editing experience and can offer additional rich editing

features such as IntelliSense and code refactoring. If a folder only contains

source code files, without any of the aforementioned .json or .sln files,

it still opens and shows all the source code files in that folder, providing

a convenient way to switch between all of them. This chapter describes

how to work with individual files and with folders in Visual Studio Code,

and more details about how it manages projects will be provided in the

subsection “Working with Folders and Projects.”

 Working with Individual Files
The easiest way to get started editing with Visual Studio Code is working

with one code file. You can open an existing supported code file with File

➤ Open (Ctrl+O or ⌘+O on macOS). Visual Studio Code automatically

detects the language for the code files and enables the proper editing

features. Of course, you can certainly open more files and easily switch

between files by pressing Ctrl+Tab (or ^+Tab on macOS). As you can see in

Figure 4-1, a convenient popup will show the list of open files; by pressing

Ctrl+Tab, you will be able to browse files, and when you release the keys,

the selected file will become the active editing window.

Figure 4-1. Quickly navigating between open editors

Chapter 4 Working With Files and Folders

79

Simply close an editor by using the Close button at the upper right

corner, or use the Close All Files command in the File menu.

Note in the Visual studio Code terminology, it is common to refer
to open files as active editors or open editors. this is because editor
windows are not limited to code files, but they can also display
documentation files or provide formatted previews of the content of
other types of files (e.g., images and spreadsheets).

 Creating Files
You have several ways to create a new file:

• Via File ➤ New File

• By pressing Ctrl+N (⌘+N on macOS)

• By using the New File shortcut in the Welcome page

• By clicking the New File button in the Explorer bar

when a folder is currently opened

By default, new files are treated as plain text files. In order to change

the language for a new file, click the Select Language Mode item in the

right corner of the status bar, near the smile icon. In this case, you will see

Plain Text as the current mode, so click it. As you can see in Figure 4-2, you

will be presented with a list of supported languages where you can select

the new language for the current file. You can also start typing a language

name to filter the list.

Chapter 4 Working With Files and Folders

80

When you select a new language, the Select Language Mode item is

updated with the current language, and the editor enables the supported

features for the selected language, such as syntax colorization, word

completion, and code snippets.

Obviously, you can change the language of any open code file, not just

new files.

 File Encoding, Line Terminators, and Line
Browsing
Visual Studio Code allows you to specify an encoding for new and existing

files. Default encoding for new files is UTF-8. You can change the current

encoding by clicking the Select Encoding item in the status bar (in the

previous figures, it is represented with UTF-8, the current encoding). You

Figure 4-2. Selecting the language for a new file

Chapter 4 Working With Files and Folders

81

will be presented with a long list of supported encodings and a search box

where you can filter the list as you type (see Figure 4-3).

Similarly, you can change the line terminator by clicking the Select
End of Line Sequence item (in previous figures it’s represented by CRLF).

Visual Studio Code supports CRLF (Carriage Return and Line Feed) and

LF (Line Feed), and the default selection is CRLF. You can also move fast

to a line of code by clicking the Go to Line item, represented by the line

number/column group in the status bar. This will open up a search box

where you can write the line number you want to go to, and the line of

code will be immediately highlighted as you type (see Figure 4-4).

Figure 4-3. Selecting the file encoding

Chapter 4 Working With Files and Folders

82

 Working with Folders and Projects
Differently from other development environments, such as Microsoft

Visual Studio, Visual Studio Code is folder based, not project based.

This makes Visual Studio Code independent from proprietary project

systems. VS Code can open folders on disk containing multiple code files

and organize them the best way possible in the environment, and it also

supports a variety of project files. More specifically, when you open a

folder, VS Code first searches for:

• MSBuild solution files (.sln): In this case, Visual Studio

Code expects to find a .NET Core solution made of C#

projects, so it scans the referenced projects (*.csproj

files) and organizes files and subfolders in the proper

Figure 4-4. Quickly moving to a specific line of code with Go to Line

Chapter 4 Working With Files and Folders

83

way. Remember that Visual Studio Code needs the

Microsoft C# extension installed in order to properly

treat solution files. It is worth mentioning that VS Code

can open any .sln solution, but full support is currently

offered only for .NET Core. An example of this scenario

will be offered in Chapter 8, “Automating Tasks.”

• tsconfig.json files: If found, Visual Studio Code knows

this represents the root of a TypeScript project, so it

scans for the referenced files and provides the proper

file and folder representation.

• jsconfig.json files: If found, Visual Studio Code knows

this represents the root of a JavaScript project. So,

similarly to TypeScript, it scans for the referenced files

and provides the proper file and folder representation.

• package.json files: These are typically included with

JavaScript projects and .NET Core projects, so Visual

Studio Code automatically resolves the project type

based on the folder’s content.

• project.json files: If found, Code treats the folder as

a legacy DNX project written in C#. DNX stands for

.NET Execution Environment and represents the

runtime with Software Development Kit (SDK) built

on top of .NET Core 1.0 and 1.1. Project.json has been

discontinued as a project system starting with .NET

Core 2.0 so, if you have projects written with earlier

versions, I recommend you to read the migration guide

from Microsoft (https://docs.microsoft.com/en-us/

dotnet/core/migration/from- dnx).

Chapter 4 Working With Files and Folders

https://docs.microsoft.com/en-us/dotnet/core/migration/from-dnx
https://docs.microsoft.com/en-us/dotnet/core/migration/from-dnx

84

Note opening a .sln or .json file directly will result in editing the
content of the individual file. For this reason, you must open a folder,
not a solution or a project file.

Additional project systems might be supported via extensibility. If

no one of the supported projects is found, Visual Studio Code loads all

the code files in the folder as a loose assortment, organizing them into a

virtual folder for easy navigation. Now let’s discover how Visual Studio

Code allows you to work with folders and supported projects providing

appropriate examples.

 Opening a Folder
You open a folder via File ➤ Open Folder or via the Open Folder shortcut

in the Welcome page. You can also drag and drop a folder name from

Windows’ Explorer or macOS’ Finder onto Visual Studio Code.

Note on Windows, the Vs Code installer will also provide an option
to enable a shortcut called Open With Code when you right-click a
folder or file name in File explorer.

Whatever folder you open, VS Code organizes files and subfolders into

a structured view represented in the Explorer side bar. Figure 4-5 shows an

example based on a C# project.

Chapter 4 Working With Files and Folders

85

The root container is the folder name. Nested you see files and

subfolders, and you can expand each subfolder to browse every file it

contains. Simply click a file to open an editor window on it.

Figure 4-5. The structured view of files and folders inside the
Explorer

Chapter 4 Working With Files and Folders

86

 Opening .NET Core Solutions
When you open a folder that contains a .NET Core solution based on

the MSBuild project system (.sln file), Visual Studio Code organizes all

the code files into the Explorer bar and enables all the available editing

features for C#. Figure 4-6 shows an example.

Notice how the root level in Explorer is the project name. You can browse

folders, code files, and edit anything that Visual Studio Code can properly

recognize. It is worth mentioning that Visual Studio Code can certainly

open any MSBuild solution, not only .NET Core solutions, but it will only

be able to run and debug .NET Core applications. For instance, if you open

a Windows Presentation Foundation (WPF) solution in VS Code, you will

Figure 4-6. A .NET Core solution opened in Visual Studio Code

Chapter 4 Working With Files and Folders

87

still benefit the structured folder view in the Explorer bar and then full C#

language support, but you will not be able to build, run, and debug the code.

Instead, with .NET Core you also have integrated debugging support which

allows running, debugging, and testing code directly within VS Code. This

will be discussed in Chapter 9, "Running and Debugging Code."

 Opening JavaScript and TypeScript Projects
Similarly to .NET Core solutions, Visual Studio Code can manage

JavaScript folders by searching for jsconfig.json or package.json files. If

found, Code organizes the list of folders and files the proper way and

enables all the available editing features for all the files it supports, as

shown in Figure 4-7.

Figure 4-7. A JavaScript project opened in Visual Studio Code

Chapter 4 Working With Files and Folders

88

TypeScript projects’ behavior is the same as for JavaScript, except that

Visual Studio Code will search for a file called tsconfig.json as the root.

 Opening Loose Folders
Visual Studio Code allows opening folders that contain unrelated, loose

assortments of files. Visual Studio Code creates a logical root based on the

folder name, showing files and subfolders. Figure 4-8 shows an example

based on a sample folder called MyFiles that contains files in different

languages.

Figure 4-8. A folder containing a loose assortment of files

Chapter 4 Working With Files and Folders

89

With this option, you can basically open any folder in VS Code and edit

all supported files taking advantage of the code editing features for each

file individually.

 Working with Workspaces
Visual Studio Code has recently introduced the concept of workspace.

A workspace can be thought of as a logical container of folders.

Note if you have experience with Microsoft Visual studio, a
workspace in Visual studio Code can be compared to a Visual studio
solution as a container of projects.

Workspaces are extremely useful to organize multiple projects and/

or folders into one place. For example, you might have a .NET Core

Web API project, a JavaScript application that consumes such API and

a folder containing documentation. Instead of working on each folder

separately, you can put them all under the same workspace and have them

all available in Visual Studio Code at the same time. Figure 4-9 shows a

workspace, called SampleWorkspace, which includes the projects and

folders shown in the previous figures.

Chapter 4 Working With Files and Folders

90

The multeor-master folder is referred to a sample open-source project

called multeor that you can download for instructional purposes from

https://github.com/filidorwiese/multeor. The Explorer bar shows the

name of the workspace in uppercase together with the (WORKSPACE)

literal so that it’s easier to recognize it. In the next paragraphs, I will

explain in more detail how to create and open workspaces and what is the

structure of a workspace file.

Figure 4-9. A workspace can group multiple projects and folders into
one logical container

Chapter 4 Working With Files and Folders

https://github.com/filidorwiese/multeor

91

 Creating Workspaces
Creating a workspace can be done whether you already have any folders

opened or not. If you already have any folders opened, you can select File

➤ Save Workspace As. VS Code will ask you to specify the location and file

name for the new workspace. A workspace is represented by a JSON file

with .code-workspace extension, whose structure will be explained shortly.

The workspace name is simply the file name without the .code-

workspace extension and will be shown in the Explorer bar (see Figure 4- 9).

Then you can add other folders to the workspace by selecting File ➤ Add
Folder to Workspace or via the Add workspace folder shortcut in the

Welcome page. Added folders will be displayed in the Explorer bar under

the workspace root. If you do not have any folders already opened, you

can either start with File ➤ Save Workspace As or with File ➤ Add
Folder to Workspace. With the first option, you will basically create an

empty workspace with a name, and then you will add folders as described

in the preceding text. With the second option, you will instead create an

empty, untitled workspace starting from an existing folder. In this case,

in fact, the Explorer bar will show UNTITLED (WORKSPACE) as the

new workspace name. When you save the workspace like described in

the preceding text, the Explorer bar will show the new name based on

the workspace file name. Remember that workspaces are only logical

containers and do not affect the structure or behavior of your projects and

folders in any manner.

Note Folders you add to a workspace can be anywhere on disk;
Visual studio Code will be able to group their content under the
workspace root and let you work like if they were in the same location.

Chapter 4 Working With Files and Folders

92

 Opening Existing Workspaces
You can open an existing workspace via File ➤ Open Workspace. You

can also drag and drop a workspace file name from your operating

system’s file browsing program onto the Visual Studio Code surface.

Opening a .code- workspace file directly will simply result in viewing the

file content, not opening the workspace. Similarly, opening a folder that

contains a .code- workspace file will only result in opening the folder, not

the workspace. You can only use the specific commands described at the

beginning of this paragraph.

 Workspace Structure
The information of a Visual Studio Code workspace is stored inside a file

with .code-workspace extension. A workspace file is a JSON file with a root

element called folders. This is an array of path elements, each assigned

with the name of a folder that is included in the workspace. The following

JSON markup represents the workspace file of the example shown in

Figure 4-9:

{

 "folders": [

 {

 "path": "MyFiles"

 },

 {

 "path": "ExpenseReport"

 },

Chapter 4 Working With Files and Folders

93

 {

 "path": "C:\\Users\\adelsole\\Downloads\\

multeor- master"

 }

]

}

Notice that the full pathname of a folder is only provided if such a

folder is not in the same location of the workspace file. In this case, the

.code-workspace file, the MyFiles folder, and the ExpenseReport folders

are all in the same location; instead, the multeor-master folder is located

under a different folder, C:\Users\adelsole\Downloads. If you want to see

yourself the structure of a workspace file, you can open it within Visual

Studio Code via File ➤ Open File.

 Summary
Visual Studio Code is file and folder based, and it allows for working with

individual files as well as with folders that contain source code files and

treat them in a structured, organized way.

It also supports a number of project systems such as .NET Core,

TypeScript, and JavaScript, and it allows for creating and managing

workspaces, logical containers of folders that make it easy to have multiple

projects and folders under the same visual root. Visual Studio Code is

not only a very powerful code editor but also a very flexible environment

which can be customized in many ways. Customization is the topic of the

next chapter.

Chapter 4 Working With Files and Folders

95© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_5

CHAPTER 5

Customizing Visual
Studio Code
Visual Studio Code is an extremely versatile development tool that can

be customized and extended in many ways. In fact, you can customize

its appearance, the code editor, and key shortcuts to make your editing

experience extremely personalized.

Additionally, you can install third-party extensions such as new

languages, debuggers, themes, linters, and code snippets. This chapter

explains how to customize Visual Studio Code, explaining the difference

between customizations and extensions. Then, in the next chapter, you will

learn how to work with extensions.

 Customizations and Extensions Explained
You can personalize the environment of Visual Studio Code with both

customizations and extensions. The difference is that extensions add

new instrumentation or they add functionalities to a tool or change the

behavior of existing functionalities. Implementing IntelliSense for a

language that does not have it by default, adding commands to the status

bar, and adding custom debuggers are examples of extensions.

Customizations are instead related to environment settings and do not

add functionalities to a tool. Table 5-1 summarizes customizations and

extensions in VS Code.

96

Table 5-1. Customizations and Extensions

Feature Description Type

Color themes Style the environment layout with

different colors.

Customization

User and workspace

settings

Specify environment preferences. Customization

Key bindings Redefine keyboard shortcuts. Customization

Language grammar

and syntax colorizers

Add support to additional languages with

syntax colorizers.

Customization

Code snippets Add TextMate and Sublime Text snippets

and write repetitive code faster.

Customization

Debuggers Add new debuggers for specific

languages and platforms.

Extension

Language servers Implement your validation logic for files

opened in VS Code.

Extension

Activation Load an extension when a specific file

type is detected or when a command is

selected in the Command Palette.

Extension

Editor Work against the code editor’s content,

including text manipulation and selection.

Extension

Workspace Enhance the status bar, working file list,

and other tools.

Extension

Eventing Interact with Code’s lifecycle events such

as open and close.

Extension

Evolved editing Improve language support with

IntelliSense, Peek Definition, Go To

Definition, and all the advanced,

supported editing capabilities.

Extension

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

97

In this chapter, you will see how to customize Visual Studio Code

by changing the existing preferences. Then in the next chapter, you

will see how to install extensions, including extensions that add new

customizations to the development environment, such as themes and

key bindings.

 Customizing Visual Studio Code
In this section, you will discover how easy it is customizing Visual Studio

Code, walking through the customization types described in Table 5-1.

 Theme Selection
You can select among several themes to give Visual Studio Code a different

look and feel. You select a color theme with File ➤ Preferences ➤ Color
Theme or by clicking the Settings button and then Color Theme. The list

of available color themes will be shown in the Command Palette, as you

can see in Figure 5-1.

Figure 5-1. Selecting a theme

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

98

Once you select a different color theme, this will be applied

immediately. Also, you can get a preview of the theme as you scroll the

list with the keyboard. Figure 5-2 shows the Dark (Visual Studio) theme

applied to VS Code, which is a very popular choice, while you can try

yourself the other themes.

Figure 5-2. The Dark (Visual Studio) theme applied to Visual Studio
Code

As you might expect, applying a theme also affects colors used in

the code editor so that there is an appropriate brightness and contrast

balance. In the next chapter, you will see how to install additional themes

as extensions.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

99

 Customizing the Environment
In most applications, including other IDEs, you set environment settings

and preferences via a convenient user interface, and VS Code is no less.

There are two different types of settings: user settings and workspace

settings. User settings apply globally to the development environment,

while workspace settings only apply to the current project or folder. I will

now cover both user and workspace settings.

 Understanding User Settings

User settings globally apply to the VS Code’s development environment.

Customizing user settings is accomplished by selecting File ➤

Preferences ➤ Settings. When you do this, the settings editor appears, as

represented in Figure 5-3.

Figure 5-3. Working with user settings

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

100

On the left side of the editor, settings are grouped by category. In the

Search settings bar, you can quickly search settings based on what you

type, and you can also see the number of total settings found, which varies

depending on the version of VS Code and on the number of extensions

you have installed. You can manually expand setting categories manually,

or you can just scroll the list of settings, and the related category is

automatically expanded as you scroll. For instance, you could control the

behavior of the Explorer bar by locating and selecting Explorer under

the Features category, and here you could change the current settings, as

shown in Figure 5-4.

Figure 5-4. Changing user settings

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

101

Similarly, you could change settings and preferences for the text editor,

the whole application, and extension settings. In fact, extensions that allow

for customizing preferences store their settings in the same place as VS

Code does, so that you have a unique settings editor. There are hundreds

of settings and the number varies depending on your configuration and

installed extensions, so it’s not possible to list all settings here. For more

details about available settings, visit the official documentation (https://

code.visualstudio.com/docs/getstarted/settings).

Note Remember that changes will be applied only after you save
your edits with File ➤ Save.

Behind the Scenes: The settings.json File

Behind the scenes, VS Code (and extensions) stores settings inside a file

called settings.json. In this file, each key/value pair represents a specific

setting and its value. Before Visual Studio Code 1.27.1, settings could only

be edited manually by modifying the settings.json file, and only in version

1.27.1, the editor discussed in the previous section was introduced.

It is important to understand how this file works, so click the … button

below the number of settings displayed in the search bar, and then click

Open settings.json. Figure 5-5 shows how the editor appears at this point.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

102

As you can see, the editor view is split in two areas: the DEFAULT
USER SETTINGS on the left and the USER SETTINGS on the right.

Default user settings relate to Visual Studio Code’s environment

and tools but also to supported languages and to installed extensions’

behavior (if any). The default settings view provides detailed comment

for each available setting expressed with JSON format so that you can

easily understand what setting a particular line applies to. You can easily

provide custom settings by overriding one or more default settings, writing

inside settings.json. Figure 5-5 shows an example where you can see how

to change the theme, how to control white characters, how to control

characters and breadcrumbs in the code editor, and how to enable the

Minimap mode. Also, you will see how IntelliSense helps you choose

Figure 5-5. Working with the settings.json file

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

103

among available settings as you type. It is worth mentioning that you can

search for settings by typing a search key in the Search Settings box. The

settings editor will highlight occurrences of the search key as you type.

IntelliSense also allows you to get more information about a given

settings by clicking the information icon, which shows hints about the

setting with a convenient tooltip exactly as you would expect after learning

about IntelliSense’s features in Chapter 3, “Language Support and Code

Editing Features.” When done, do not forget to save settings.json otherwise

your changes will be lost.

A Real-World Example: Working with Proxies

If you work for an enterprise, the network might probably be behind a

proxy server. In this case, you or the system administrator might need to

configure Visual Studio Code to work with the proxy. If you do not, you

will not be able to download packages, extensions, and product updates.

Visual Studio Code should automatically detect proxies and ask for your

credentials, but this does not always happen, so you might need some

manual steps.

The first thing to do is making sure that the following sites are in the

allowed applications list of the firewall:

• vscode-update.azurewebsites.net

• vscode.blob.core.windows.net

• marketplace.visualstudio.com

• *.gallerycdn.vsassets.io

• rink.hockeyapp.net

• vscode.search.windows.net

• raw.githubusercontent.com

• vsmarketplacebadge.apphb.com

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

104

The next step is configuring Code to work with the proxy. Actually,

if the http_proxy and https_proxy environment variables have been

defined at the system level, Visual Studio Code will use their values. If

these variables have not been set, you must provide the proxy address in

the user settings. In the settings editor, locate Proxy under the Application

category. Then, as you can see in Figure 5-6, enter the proxy address in the

Proxy text box.

Figure 5-6. Configuring VS Code to work behind a proxy server

If your proxy also requires an authorization header, this must be

specified in the settings.json file, so you have to click the Edit in settings.
json hyperlink and then enter the value supplied by your network

administrator as the value for http.proxyAuthorization key. Also, flag the

Proxy Strict SSL option if the certificate should be verified against the list

of supplied certification authorities.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

105

Save your changes and try to see if Visual Studio Code is able to

download extensions, packages and libraries required by some languages,

and product updates. If you still encounter network issues, you should ask

your network administrator to help you configure the proxy settings.

Note Some protection programs such as Symantec Endpoint
Protection block some Visual Studio Code installation (and update)
files because they are recognized as Cryptolocker virus instances.
obviously, these are false positives, but you might want to talk to
your network administrator to review the protection rules for Visual
Studio Code.

 Understanding Workspace Settings

Differently from user settings, which globally apply to VS Code’s

environment, workspace settings only apply to the current folder. As an

implication, you first need to open an existing folder in order to customize

workspace settings.

Next you still select File ➤ Preferences ➤ Settings. At this point

the settings editor will show two tabs, one for user settings and one for

workspace settings, as demonstrated in Figure 5-7.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

106

You customize workspace settings exactly as you do with user settings,

so you have not only a second view in the settings editor but also another

settings.json file where you can specify your preferences. The settings.

json for workspace settings is saved under the .vscode subfolder that

Visual Studio Code creates inside the opened folder, restricting settings

availability to the current folder only.

 Customizing Key Bindings
In the VS Code terminology, key bindings represent shortcuts you use to

invoke commands and actions from the keyboard instead of using the

mouse. Visual Studio Code includes a huge number of keyboard shortcuts

that you can override with custom values. This is particularly useful if you

used to work with other development tools and you want to get the same

Figure 5-7. Customizing workspace settings

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

107

keyboard shortcuts in Visual Studio Code. You will see how to accomplish

this by downloading ready-to-use key binding extensions, but it’s

important for you to know how key bindings work.

Like user and workspace settings, key bindings are represented with

JSON markup, and each is made of two elements: key, which stores

one or more keys to be associated to an action, and command, which

represents the action to invoke. In some cases, VS Code might offer the

same shortcuts for different scenarios. This is the typical case of the escape

key, which targets a number of actions depending on what you are working

with, such as the code editor or a tool window. In order to identify the

proper action, key binding settings support the when element, which

specifies the proper action based on the context. You can quickly get the

list of current key bindings by selecting File ➤ Preferences ➤ Keyboard
Shortcuts. At this point, Visual Studio Code will display a nicely formatted

list of commands and shortcuts, as you can see in Figure 5-8.

Figure 5-8. The list of current key bindings

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

108

In order to customize key bindings, all you need to do is clicking

the keybindings.json hyperlink under the search box and edit the

keybindings.json file that Code generates for you. The code editor gets

split into two views: on the left view, you can see the full list of default key

bindings, whereas on the right view, you can override default shortcuts

with custom ones (see Figure 5-7).

Note Remember that Visual Studio Code has (and allows for
customizing) different default key bindings depending on what
operating system it is running on.

You can quickly add a custom key binding by clicking the Define
Keybinding button or use the shortcut suggested in the button text (which

varies depending on your operating system). When you do this, a popup

appears and asks you to specify the key binding, as shown in Figure 5-9.

Figure 5-9. Adding a keyboard shortcut

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

109

When you press Enter, the JSON markup for the new keyboard shortcut

is added, as shown in Figure 5-10.

Figure 5-10. Editing the new keyboard shortcut

You will need to edit the command and when elements with the

command you want to map and for which scenario. You can look at the

original markup on the left to get them both. Actually, the when element

is optional. Save your changes to the keybindings.json file to get your new

keyboard shortcuts ready.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

110

 Summary
Visual Studio Code allows for several customizations that will help you

feel at home especially if you used to work with other development tools

or code editors. You can select a different color theme from a list, you can

customize the environment settings globally or for a specific folder, and

you can even create custom keyboard shortcuts.

But the very good news is that customizations can also be downloaded

as extensions, as well as new languages, debuggers, and tools. Extensibility

is discussed in the next chapter.

ChAPTER 5 CUSToMIzInG VISUAL STUDIo CoDE

111© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_6

CHAPTER 6

Installing and
Managing Extensions
Extensibility is one of the key features in Visual Studio Code, because

you can add tools, languages, code snippets, debuggers, key bindings,

and themes. Especially about languages, Visual Studio Code allows for

extending the code editor with specific syntax support, which can also

include IntelliSense, code snippets, and code refactoring.

This all means that Visual Studio Code has open support for any

language and any tool on any platform, opening to infinite development

scenarios. This chapter explains how to find and install extensions and

how to manage extensions on your system.

 Installing Extensions
You have two ways of browsing and installing extensions: from the Visual

Studio Marketplace and from within Visual Studio Code. The Visual Studio

Marketplace is a web site that contains extensions for the most popular

Microsoft development tools and services, such as Visual Studio, Visual

Studio Code, and Visual Studio Team Services. It is available at https://

marketplace.visualstudio.com, and you will need to click the Visual

Studio Code tab to see a list of extensions for Visual Studio Code. Figure 6- 1

shows the Marketplace for Visual Studio Code.

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

112

You can search for extensions by typing in the search box, or you can

use the groups below, such as Featured, Trending, Most Popular, and

Recently Added. Once you have found an extension of your interest, click

its name and you will see a detail page. Figure 6-2 shows an example based

on the C# extension by Microsoft.

Figure 6-1. The Visual Studio Marketplace

Chapter 6 InstallIng and ManagIng extensIons

113

An extension’s page provides a detailed description and guidance

about using the extension, often providing links to additional

documentation, resources, and to the source code (if open source).

I strongly recommend you to read the detail page to get information about

what the extension includes, especially with extensions that add language

support, because it is important to know if there is only support for a new

syntax or also for IntelliSense, code snippets, and debugging.

If you click the Install button, the download link will be opened by

Visual Studio Code for easy installation. You can also download the offline

installer of the extension for later reuse. To do so, click the Download
Extension hyperlink under the Resources group, on the right of the page.

In this way you will be able to download a .vsix installer file that you can

then launch manually.

Figure 6-2. Detail page for an extension

Chapter 6 InstallIng and ManagIng extensIons

114

Note If you have experience with the Microsoft Visual studio
development environment, you probably know that VsIx is the format
used by Microsoft for extension installer files. however, the VsIx
format for Visual studio Code is not the same. extensions for Visual
studio Code are packaged with a tool called vsce and cannot work
with Visual studio 2017 on Windows and with Visual studio for Mac.

The second way of installing extensions is from within Visual Studio

Code. You can open the Extensions bar and search for an extension, then

you can click a specific extension to get the details, as shown in Figure 6-3.

You can click the Install button when ready. You will need to click the

Reload button (that appears once the installation completes) to enable the

extension in VS Code. You can also filter the search results; for instance,

if you type category:linters in the search box, Visual Studio Code will list

Figure 6-3. Installing extensions from within Visual Studio Code

Chapter 6 InstallIng and ManagIng extensIons

115

all the extensions that provide linting support with syntax colorization to

specific languages. You can use the same category names you see in the

Visual Studio Marketplace.

As an alternative, you can use the Command Palette to download (and

manage) extensions. You can open the Command Palette, type in ext, and

a list of self-explanatory commands related to extension management will

appear. You will typically prefer working with extensions from the Command

Palette when you do not want to lose focus on the active editor window,

otherwise using the Extensions bar’s user interface is definitely easier.

Note Many extensions, especially extensions that provide full
language support such as C# and C/C++, rely on additional tools
like debuggers and libraries. these additional tools are usually
downloaded the first time you use the extension. For example, in the
case of the C# extension, required tools and libraries are downloaded
the first time you create or open a C# file. also, newly downloaded
extensions might need some initial configuration. In this case, a
popup will appear explaining what you need to do to get started.

 Extension Recommendations
Visual Studio Code can provide suggestions about recommended

extensions based on your activity. When you open the Extensions bar, you

will see a group called RECOMMENDED EXTENSIONS, under the list of

installed extensions.

The list of recommended extensions varies on your activity and might

be empty the first times you work with Visual Studio Code. Not limited to

this, Visual Studio Code can suggest extensions based on the file you open.

For example, suppose you open a code file written with the Go language

but you do not have installed any Go extension yet. Visual Studio Code has

Chapter 6 InstallIng and ManagIng extensIons

116

built-in support for the Go language syntax, so the editor provides syntax

colorization and basic word completion, but you might want to work with

a richer editing experience that includes code snippets, code navigation,

and rich IntelliSense support. In this case, Code will suggest that an

extension is available to help you work with Go files and will offer to install

it, as represented in Figure 6-4.

You can click Install and Visual Studio Code will automatically install

the extension that it thinks to be the most appropriate, or you can click

Show Recommendations to see a list of possible extensions. In both cases,

the Extensions bar will be opened and you will see the list of available

recommended extensions, but when you click Install, the proposed

extension will be already installing.

Figure 6-4. Extension recommendations based on the current file

Chapter 6 InstallIng and ManagIng extensIons

117

 Useful Extensions
The Visual Studio Marketplace contains tons of useful extensions, but

there is a set that I personally recommend after using Visual Studio Code

for a long time in my daily job. Table 6-1 summarizes a list of useful

extensions, with the description.

Table 6-1. Recommended Extensions for Visual Studio Code

Name Description Type

C# C# full language support language,

debugger, editing

C/C++ C and C++ full language support language,

debugger, editing

python python full language support language,

debugger, editing

language support

for Java

Java full language support language, editing

Microsoft sQl

server

sQl server support language, editing,

tools

debugger for

Chrome

Javascript debugging with the Chrome

browser

debugger

debugger for Java Java debugging support debugger

debugger for edge Javascript debugging with the edge

browser

debugger

Cordova tools Mobile development with apache Cordova editing, tools

node debug debug support for node.js debugger

Visual studio

Keymap

Keyboard shortcuts based on Microsoft

Visual studio

Key binding

(continued)

Chapter 6 InstallIng and ManagIng extensIons

118

As you work with Visual Studio Code on your projects and on the

operating system of your choice, you will be able to find and fine-tune

extensions that will help you be more productive.

 Managing Extensions
The Extensions bar allows you to quickly manage extensions. It shows

the list of installed extensions, as shown in Figure 6-5. Then, for each

extension, the button with the gear icon opens a popup menu that

contains commands for disabling or uninstalling an extension.

Table 6-1. (continued)

Name Description Type

atom Keymap Keyboard shortcuts based on atom Key binding

notepad++ Keymap Keyboard shortcuts based on notepad++ Key binding

docker language support for dockerfile language, editing,

tools

vscode-icons Colored icons for the explorer bar tools

gitlens extend git integrated features for Visual

studio Code

tools

powershell powershell scripting support language, editing,

tools

Visual studio team

services

Integrated git support for the Visual

studio team services platform

tools

Chapter 6 InstallIng and ManagIng extensIons

119

You can also click an extension name, and the detail page will show

the Disable and Uninstall buttons. Notice that every time you disable or

uninstall an extension, you will need to click a button called Reload (that

appears when the extension has been disabled or uninstalled) to refresh

the development environment. It is worth mentioning that you can change

the default view of the Extensions bar (displaying the list of installed

extensions) by clicking the … button at the top of the EXTENSIONS group.

When you click this button, a popup menu appears showing different

options, such as viewing popular extensions, as well as commands for

searching extension updates and installing extensions from .vsix files.

Note shortcuts for extension management are also available in the
Command palette.

Figure 6-5. Shortcuts for extension management

Chapter 6 InstallIng and ManagIng extensIons

120

 Configuring Extensions
Visual Studio Code has some options that allow you to control the global

behavior of extensions. You can see these options in the user settings,

under the Extensions group, as shown in Figure 6-6.

Figure 6-6. Customizing options about extension management

Chapter 6 InstallIng and ManagIng extensIons

121

There are detailed comments that explain what each option is about.

Additionally, each extension might allow for customizing its own behavior

in the user settings. For instance, suppose you have the C# extension

installed. If you look in the user settings, you will find a group called C#

Configuration. If you expand this group, you will see the full list of options

about the C# extension, which include options for code editing and for

tools the extensions add. Figure 6-7 shows these options.

Figure 6-7. Customizing extension options

Chapter 6 InstallIng and ManagIng extensIons

122

Normally, extension authors provide detailed comments that explain

what an option is about so that it is easier for you to fine-tune an extension

behavior, such as in the case of the C# extension.

 Hints About Extension Authoring
You can build extensions for Visual Studio Code and share them through

the Marketplace. You can basically build any type of supported extension,

such as language support, editing features, themes, code snippets,

debugger adapters, and key bindings. You will also need to register as a

publisher on the Visual Studio Marketplace, which requires you to have a

Microsoft account.

Extensions are usually written with TypeScript and, for most of them,

you can use an extension generator such as the Yeoman tool on Node.js.

As you can imagine, extension authoring is a complex task, and it is out of

scope in a book from the Distilled series. If you are interested in extension

authoring, you can walk through the official documentation (https://

code.visualstudio.com/docs/extensions/overview) which provides

examples and guidance for many scenarios.

 Summary
Extensibility is a key feature in Visual Studio Code, because it allows

adding power to the development environment. Extensions can add new

languages (with or without rich editing support), debuggers, keyboard

shortcuts, themes, code snippets, and tools. You can install extensions

from the Visual Studio Marketplace or from within Visual Studio Code,

through the Extensions bar or the Command Palette.

Chapter 6 InstallIng and ManagIng extensIons

https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview

123

Visual Studio Code can also provide extension recommendations

based on the context, for example, when you open a file written in a

language for which there is no built-in support. Visual Studio Code makes

it also simple to manage extensions with shortcuts to disable and uninstall

extensions but also with configuring extensions’ behavior via the user

settings file. In the next chapter, you will see how to leverage extensions to

add features to Visual Studio Code to another core feature that makes it a

step forward compared to its competitors: version control with Git.

Chapter 6 InstallIng and ManagIng extensIons

125© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_7

CHAPTER 7

Source Control
with Git
Writing software often involves collaboration. This is true if you are part of

a development team but also if you are involved in open source projects,

or if you are an individual developer who has interactions with customers.

Microsoft strongly supports both collaboration and open source, so Visual

Studio Code provides an integrated source control system based on Git

and that can be extended to other providers.

This chapter describes all the integrated tools for collaboration over

source code from within Visual Studio Code that are available out of the

box, but also how to use extensions that you will find very useful in the real

life to better review your code and to push your work to Visual Studio Team

Services.

 Source Control in Visual Studio Code
Visual Studio Code supports different source control providers via

extensibility, but it offers integrated support for Git. Git (https://git-

scm.com/) is a very popular distributed, cross-platform version control

engine that makes collaboration easier for small and large projects. One of

the reasons for its popularity is that Git is open source, and therefore it has

always been loved by large open source communities.

https://git-scm.com/
https://git-scm.com/

126

Visual Studio Code works with any Git repository, such as GitHub or

Visual Studio Team Services, and provides an integrated way to manage

your code commits.

Notice that this chapter is not a guide to Git; rather it is a place to learn

how Visual Studio Code works with it, so for further information, visit the

Git official page. Also, remember that Visual Studio Code requires the Git

engine to be installed locally, so make sure it is available on your machine

or download it from https://git-scm.com/downloads. In order to

demonstrate how Git version control works with Visual Studio Code, I will

use a small TypeScript project called Greeter, available in the TypeScript

Samples repository from Microsoft (https://github.com/Microsoft/

TypeScriptSamples). You can download the repository on your system

and extract the Greeter subfolder on your disk. Obviously, you are totally

free to use another example or another project of your choice, regardless of

the language. At this point, open the project in Visual Studio Code to start

collaborating over the source code.

 Downloading Other Source Control Providers
As I mentioned earlier, VS Code supports additional source control

managers, also referred to as SCM, via extensibility. You can open the

Extensions bar and type SCM providers in the search box in order to find

third-party extensions that target other source control engines. Figure 7-1

shows an example, where you can see how an extension that adds

support for the Subversion engine (https://subversion.apache.org)

has been selected.

Chapter 7 SourCe Control with Git

https://git-scm.com/downloads
https://github.com/Microsoft/TypeScriptSamples
https://github.com/Microsoft/TypeScriptSamples
https://subversion.apache.org

127

Because VS Code provides in-the-box support only for Git, other

source control providers will not be discussed in this chapter. If you wish

to install SCM extensions, make sure you refer to the documentation

provided by the producer.

 Managing Repositories
With Git, version control requires both a local and a remote repository to

work. This section explains how to create both, supplying information that

you will not find in the documentation especially for remote repositories.

Figure 7-1. Installing additional source control providers

Chapter 7 SourCe Control with Git

128

Note a very popular abbreviation for repository is repo. this will not
be used in this book, but you will find it very often especially when
searching for information about open source projects.

 Initializing a Local Git Repository
The first thing you need to do is creating a local repository for the current

project. This is accomplished by opening the Git tool from the side bar, as

shown in Figure 7-2.

Figure 7-2. Ready to initialize a local Git repository

Chapter 7 SourCe Control with Git

129

Click the Initialize repository button at the top (see Figure 7-2). Visual

Studio Code will initialize the local repository and will show the list of files

that now are under version control but not committed yet (see Figure 7-3).

Notice how the Git icon shows the number of pending changes. This is

an important indicator that you will always see any time you have pending,

uncommitted changes. Write a commit description and then press

Ctrl+Enter. At this point, files are committed to the local repository, and

the list of pending changes will be cleaned. Now there is a problem: you

need a remote repository, but the official documentation does not describe

how to associate one to Code. Let’s see how to accomplish this too.

Figure 7-3. Files are under version control but not committed yet

Chapter 7 SourCe Control with Git

130

 Creating a Remote Repository
Visual Studio Code works with any Git repository. There are plenty of

platforms that use Git as the version control engine, but probably the most

popular platforms are GitHub, Atlassian Bitbucket, and Microsoft Visual

Studio Team Services. In this section, you will see how to create a remote

repository on GitHub. This requires you to have an existing GitHub account,

otherwise you can create one for free at https://github.com/join. Once

signed in, create a new repository. Figure 7-4 shows an example for a new

repository called GreeterDistilled.

Figure 7-4. Creating a remote repository

Chapter 7 SourCe Control with Git

https://github.com/join

131

Once the repository is ready, GitHub provides fundamental

information you need to associate the remote repository with the local

one. Figure 7-5 shows the remote address for the Git version control engine

and the command lines you have to type to perform the association.

The next step is associating the local repository to the remote one by

typing some Git commands. This can be accomplished directly within

VS Code, through the Terminal (Terminal ➤ New Terminal). When the

Terminal is ready, type the following command:

> git remote add origin https://github.com/YourAccount/

YourRepository.git

Figure 7-5. The information you need to push the local repository

Chapter 7 SourCe Control with Git

132

where YourAccount represents your GitHub account and YourRepository

represents the name of your repository, such as GreeterDistilled in the

current example. This command associates the local repository with the

remote repository. The next command you have to type is the following:

> git push -u origin master

This command makes a first synchronization between the local and

remote repositories, uploading files to a default branch called master. Now

you really have everything you need and you can start discovering the Git

integration that Visual Studio Code offers.

 Handling File Changes
Git locally tracks changes on your code files, and the Git icon in VS Code

shows the number of files with pending changes. This number is actually

updated only after you save your files. In Visual Studio Code, handling

file changes is very straightforward. In Figure 7-6 you can see how the

number of changes is highlighted in the Git icon but also how files that

have changes are marked with a brown M (where M stands for Modified),

whereas deleted files are marked with a red D (where D stands for

Deleted).

Chapter 7 SourCe Control with Git

133

By clicking a file in the list, you can see the differences between the

current and previous versions of the file with the Diff tool. Figure 7-7

shows an example.

Figure 7-6. Getting the number of pending changes

Chapter 7 SourCe Control with Git

134

On the left side, you have the old version, while the new one is on the

right. The line highlighted in red represents code that has been removed,

whereas the line highlighted in green represents new code. This is a very

important tool when working with any version control engine.

 Staging Changes
You can promote files for staging, which means marking them as ready for

the next commit. This is actually not mandatory, as you can commit directly,

but it is useful to have a visual representation of your changes. You can stage

a file by simply clicking the + symbol near its name, or you can stage all files

by right-clicking the CHANGES title and then select Stage All Changes.

Visual Studio Code organizes staged files into a logical container, as you can

see in Figure 7-8. Similarly, you can unstage files by clicking the – symbol.

Figure 7-7. Comparing file versions with the Diff tool

Chapter 7 SourCe Control with Git

135

The workflow based on staging is very convenient, because if you no

longer want to commit a file, you can simply unstage it before the code

goes to the server.

 Managing Commits
The … button provides access to additional actions, such as Commit,

Sync, Pull, Stash, and Pull (Rebase). Figure 7-9 shows the full list of built-

in Git synchronization commands available in VS Code.

Figure 7-8. The view of staged and unstaged changes

Chapter 7 SourCe Control with Git

136

When you are satisfied with your work on the source code, you can

select the Commit All command to commit your changes. Remember that

this action commits files to the local repository. You have to use the Push

command in order to send changes to the remote repository. You also have

an option to undo the last commit and revert to the previous version with

the Undo Last Commit command. Pull and Pull (Rebase) allow to merge

a branch into another branch; Pull actually is nondestructive and merges

the history of the two branches, while Pull (Rebase) rewrites the project

history by creating new commits for each commit in the original branch.

The Sync command performs a Pull first and then a Push operation, so

that both the local and remote repositories are synchronized. There is

Figure 7-9. Shortcuts to commit and synchronize changes

Chapter 7 SourCe Control with Git

137

also a command called Stash, which allows for storing modified tracked

changes and staged changes in a cache, so that you can switch to another

branch while having unfinished work on the current branch. Then, with

the Pop Latest Stash and Pop Stash commands, you can retake the latest

version of your unfinished work and a specific version of the unfinished

work, respectively. Every time you work with Git commands, such as

Commit and Push, Visual Studio Code redirects the output of the Git

command line to the Output panel. Figure 7-10 shows an example.

You will need to select Git from the dropdown in the Output panel

in order to see the Git output. You can also open the Output panel using

the Show Git Output command from the popup menu as you can see in

Figure 7-9.

 Working with the Git Command Line
Interface
The Command Palette has support for specific Git commands which you

can type as if you were in a command line terminal. Figure 7-11 shows

the list of available Git commands, which you can see by typing Git in the

Command Palette. The list is quite long and cannot be totally included in

Figure 7-11, but you can scroll it to see all available commands.

Figure 7-10. Messages from the Git command line are shown in the
Output panel

Chapter 7 SourCe Control with Git

138

For instance, you can use Git Sync to synchroniz the local and remote

repositories, or you can use Git Push to send pending changes to the

remote repository. A common scenario in which you use Git commands is

with branches.

 Creating and Managing Branches
For a better understanding of what a branch is, suppose you have a project

that, at a certain point of its lifecycle, goes to production. You need to

continue the development of your project, but you do not want to do it

over the code you have written so far.

You can create two histories by using a branch. When you create a

repository, you also get a default branch called master. Continuing with

the example, the master branch could contain the code that has gone to

production, and now you can create a new branch, such as development,

based on master but different from it. In Visual Studio Code, you have

different options to create a new branch. The first option allows creating a

Figure 7-11. Supported Git commands in the Command Palette

Chapter 7 SourCe Control with Git

139

branch from the Command Palette, where you can type Git branch. Then

select the Git: Create branch option, and you will be asked to specify a

new branch name, such as development. This will create a new branch

locally, based on master. The second option is clicking the current branch

name in the status bar (master in this case) and then click the Create new

branch command (see Figure 7-12).

You will need to enter the new branch name, and then press Enter.

When a new branch is created, the status bar shows it as the active branch;

when you are ready, you can publish the new branch to the remote

repository with the Publish Changes button, represented by the cloud

icon (see Figure 7-13).

Figure 7-12. Creating a branch

Figure 7-13. The new branch is set as active and ready to be
published

Chapter 7 SourCe Control with Git

140

 Switching to a Different Branch
Switching to a different branch is very easy. Simply click the name of the

active branch, and VS Code will display the list of branches, as shown in

Figure 7-14.

Click the desired branch, and VS Code will check it out and set it as the

active branch.

 Merging from a Branch
Suppose you have completed and tested some work on the development

branch and you want this work to be published to production. Because the

production code is on the master branch, you must bring all the work from

the development branch to the master branch. This is a merge operation.

You can merge from a branch into another one via the Command Palette,

using the Git: Merge Branch command. VS Code will show the list of

branches, and you will need to select the branch you want to merge from

into the current branch (see Figure 7-15).

Figure 7-14. Selecting a different branch

Chapter 7 SourCe Control with Git

141

Note remember that the branch that receives the merge is the
active branch, so make sure you have switched to the proper branch
before starting a merge operation.

Once the merge operation is completed, remember to push your

changes to the remote repository.

 Deleting Branches
Deleting a branch is not very common, because branches help keep

the history of the source code, but sometimes you might have branches

that have been created only for testing some code and that are not really

necessary in the application lifecycle management. In this case, in the

Command Palette, you can use the Git: Delete Branch command.

With a user interface like what you see in Figure 7-15, VS Code shows

the list of branches. Select the branch you want to delete and press Enter.

Remember that the active branch cannot be deleted, and you first need to

switch to a different branch.

Figure 7-15. Merging from a branch

Chapter 7 SourCe Control with Git

142

 Adding Power to the Git Tooling
with Extensions
The integrated tools for Git cover all the needs that you, as a developer,

can have when working with local and remote repositories to manage your

source code, but there are extensions that provide additional power to the

integrated tools.

This section describes the most useful free extensions that will improve

your collaboration experience in Visual Studio Code.

 Git History
Git History is a free extension that adds the option to get a very detailed

view of the history of your source code, such as information and author

about each commit and that can display how a file has gone through

branches; plus it adds commands that make it easier to manage your code

against Git. Assuming you have installed the extension, for example, you

can right-click a file and select Git: View File History.

Figure 7-16 shows an example based on a file that has three commits.

If available, the view shows the branches where the file has been included,

comments and author for the commit, and the commit ID, and it allows for

searching and filtering contents by branch and author.

Chapter 7 SourCe Control with Git

143

Note if the commit authors have associated a picture to the Git
credentials, Git history will show the picture near the author name.

If you click the icon at the left of the commit ID, a menu will appear

showing a number of very useful commands that will make it easier to

work with commits (see Figure 7-17).

Figure 7-16. Viewing the history of commits with Git History

Chapter 7 SourCe Control with Git

144

At the bottom of the view, you will see the list of files involved in

the selected commit. If you click a file name, another menu will appear

providing shortcuts to compare the file with the previous version and to view

the history of that file. Git History is a very useful extension especially when

your team works with the Agile methodologies, and for each task in the

backlog, a new branch is created and then merged into one branch at the

end of the sprint, making it easier to walk through the history of the work.

 GitLens
Another extremely useful that will boost your productivity is called

GitLens. GitLens adds many features and commands to Visual Studio

Code about Git. For example, it adds a new bar called GITLENS (see

Figure 7-18) that you enable by clicking the GitLens icon in the side bar

(typically the last one, below the Extensions icon).

Figure 7-17. Git History provides commands that make it easier to
work with commits

Chapter 7 SourCe Control with Git

145

Figure 7-18. The GitLens bar with the Explorer and File History

Chapter 7 SourCe Control with Git

146

The GitLens bar is divided into two areas: EXPLORER and FILE
HISTORY. EXPLORER shows the list of both local and remote branches,

and, for each branch, it displays the list of commits. For each commit,

it displays the commit message, the list of files involved in the commit,

and an icon that represents the operation made on the file, such as M

for Modified and D for Deleted. Not limited to this, it also shows stashed

changes (if any). The FILE HISTORY area shows the list of commits for a

file, once you click it in the EXPLORER. For each commit, you can see the

name, the author, and the time of last edit. The status bar in VS Code now

provides, with GitLens, a field containing the current commit’s author

name and time of last edit. If you click this information, VS Code will show

a list of commands as shown in Figure 7-19.

Figure 7-19. GitLens commands

Chapter 7 SourCe Control with Git

147

These commands allow you to open the commit in your remote

repository but also to open the commit revisions. Additionally, it allows

copying the commit ID or message to the clipboard. You can also expand

the file names below and see individual details for the current code

commit. GitLens also adds summary information about edits made on a

specific code snippet, right above the code snippet itself. Figure 7-20 shows

an example.

If you click at the left side of the divider, you will get to the menu shown

in Figure 7-19. If you instead click the author name, VS Code will show a

popup that contains the list of commits made by the selected author and,

if you hover over a commit name, you will see the full commit details (see

Figure 7-21).

Figure 7-20. GitLens adds summary information about a code
snippet

Chapter 7 SourCe Control with Git

148

Other commands are available in the context menu when you right- click

the code editor, such as Copy Commit ID To Clipboard, Copy Message To

Clipboard, and Copy Remote File URL To Clipboard, all self- explanatory.

Note all the preceding commands described are also available
via shortcuts that you can find on the upper right corner of the code
editor bar (see Figure 7-21).

 GitHub Pull Requests
Pull requests in Git make it easier to perform code reviews. With pull

requests, your code is not automatically merged into a branch until

someone else in the team reviews the code and accepts it. If you use

GitHub for your repositories, an extension called GitHub Pull Requests

is available to introduce support for pull requests in Visual Studio Code.

When you first install the extension (and reload the environment), you will

Figure 7-21. GitLens shows information about a commit

Chapter 7 SourCe Control with Git

149

be asked to sign into GitHub. After you provide your GitHub credentials

and open a folder that is associated to a remote repository hosted on

GitHub, you will see a new treeview called GITHUB PULL REQUESTS in

the Git bar (see Figure 7-22).

Currently, the extension does not support submitting pull requests

from VS Code, but you can manage existing pull requests submitted by

other tools such as Microsoft Visual Studio or GitHub itself. When pull

requests are available, you will see them listed in the view. If you select a

pull request, a new editor window will appear showing all the pull request

details, and you will have the option of add a comment and then close,

reject, or approve the pull request (see Figure 7-23).

Figure 7-22. The GitHub Pull Requests view

Chapter 7 SourCe Control with Git

150

You will also be able to work on the pull request locally if you click the

Checkout button, and it will be displayed under the Local Pull Request

Branches node in the treeview. This is a very useful extension especially if you

work within Agile teams, but remember it only supports GitHub as the host.

 Working with Azure DevOps and Team
Foundation Server
Azure DevOps (https://azure.microsoft.com/en-us/solutions/

devops), formerly Visual Studio Team Services, and Team Foundation

Server are the complete solutions from Microsoft to manage the entire

application lifecycle, from development to testing to continuous

Figure 7-23. Managing a pull request from VS Code

Chapter 7 SourCe Control with Git

https://azure.microsoft.com/en-us/solutions/devops
https://azure.microsoft.com/en-us/solutions/devops

151

integration and delivery. Azure DevOps is a cloud service, whereas Team

Foundation Server works on premises. Among the many features, they

both provide source control capabilities based on two engines: Git and the

Microsoft Team Foundation Server engine.

In this section I will explain how to configure a Git repository that

you can use for source control with Visual Studio Code. I will use Azure

DevOps so that you do not need to have an on-premise installation of

Team Foundation Server.

Before going on reading, you will need to install the Visual Studio
Team Services extension for Visual Studio Code, following the steps you

are already familiar with. This extension suits for both Azure DevOps and

Team Foundation Server.

Note according to the extension documentation, you will also
need the team Foundation command line client installed. if you have
Visual Studio 2017 on windows or Visual Studio for Mac installed,
you already have all you need. if not, or if you are on linux, visit
https://bit.ly/2x99fEH and search for the most appropriate
installer based on your system.

You obviously need an account on Azure DevOps, which you can create

by using a Microsoft account. If you do not have one, you can get a Microsoft

account at www.outlook.com, and then you can get an account on Azure

DevOps at https://aka.ms/SignupAzureDevOps. Follow all the instructions

required to configure your account for the first time. When in the home

page, click the Create Project button. As you can see in Figure 7- 24, you will

need to supply a team project name, a source control engine, and a work

item process.

Chapter 7 SourCe Control with Git

https://bit.ly/2x99fEH
http://www.outlook.com
https://aka.ms/SignupAzureDevOps

152

Enter a project name of your choice, such as VS Code in the example,

and make sure that Git is selected as the source control engine. Leave Agile

as the choice for the work item process, and finally click Create. After a

few seconds, your new team project will be ready. At this point, the Azure

DevOps site will show a page with all the information about your new Git

repository. Before cloning the repository on your local machine, a good

idea is providing your Azure DevOps credentials to Visual Studio Code.

To accomplish this, in VS Code open the Command Palette and type

> Team Signin. The login popup will appear, so enter the Microsoft

account credentials you used to set up your Azure DevOps workspace and

wait for VS Code to authenticate. Now, if you go back to the web portal, you

will simply need to click the Clone in VS Code button (see Figure 7-25).

Figure 7-24. Creating a team project in Azure DevOps

Chapter 7 SourCe Control with Git

153

By clicking this button, you will be asked to grant VS Code the

permission to open the remote repository. When permission is granted, VS

Code will ask you to specify a local folder for cloning the remote repository.

Once you have specified the folder, the cloning process will start, and after

it completes, you will have both a remote and a local repository. The target

folder will be opened in Visual Studio Code after cloning the repository,

and you will now be able to use all the Git capabilities described in the

previous sections. Moreover, the extension adds a few shortcuts to the

status bar, as you can see in Figure 7-26.

Figure 7-25. Cloning a repository from Azure DevOps

Figure 7-26. The Team Services buttons in the status bar

Chapter 7 SourCe Control with Git

154

More specifically, from left to right, after the branch name and the

Synchronize Changes button, you can see the name of the team project,

then a shortcut that allows for browsing pull requests on the web portal,

a shortcut for opening build definitions on the web portal, a shortcut for

viewing pinned work items, and a feedback button you can use to share

your thoughts about the extension.

Though most of the operations that are not strictly related to Git, such

as opening build definitions and work items, must be done in the web

portal, both Azure DevOps and Team Foundation Server are very popular

and widely used services among enterprises, so having an option to

connect them to Visual Studio Code so easily will save you a lot of time.

 Summary
Writing software involves collaboration. This is true if you are part of a

development team but also if you are involved in open source projects, or

if you are an individual developer who has interactions with customers.

In this chapter you have seen how Visual Studio Code provides integrated

tools to work with Git, the popular open source and cross-platform source

control provider.

You have seen how to create a local repository with the Git bar and how

to associate it to a remote repository with a couple of commands from the

integrated terminal. Then you have seen how you can handle file changes,

including commits, and how you can create and manage branches directly

from within the environment. In addition, you were introduced to some

useful extensions, such as Git History, Git Lens, and GitHub Pull Requests,

that will boost your productivity by adding important features that every

developer needs when it comes to team collaboration. Finally, you have

seen how easy it is to open in VS Code a Git repository hosted on Azure

Chapter 7 SourCe Control with Git

155

DevOps, the premiere cloud solution from Microsoft to manage the whole

application lifecycle. Behind the scenes, Visual Studio Code invokes the

Git command in order to execute operations over your source code, and it

is preconfigured to work with this external tool.

However, it is not limited to work with a small set of predefined tools,

rather it can be configured to work with basically any external program.

This is what you will learn in the next chapter.

Chapter 7 SourCe Control with Git

157© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_8

CHAPTER 8

Automating Tasks
When talking about Visual Studio Code, you will often hear that it is not

a simple code editor. This is certainly true, and the reason is that it allows

executing operations such as compiling and testing code by running

external tools. In this chapter you will learn how Code can execute external

programs via tasks, by both learning about existing tasks and configuring

custom tasks. In order to run the examples provided in this chapter, you

will need the following software:

• Node.js, a free and open source JavaScript runtime

based upon Chrome’s JavaScript engine that can be

downloaded from https://nodejs.org

• The TypeScript compiler (tsc), which you install via the

Node.js command line with the following command:

> npm install -g typescript

Using Node.js and TypeScript will help you to avoid dependencies

on the operating system and proprietary development environments.

Obviously, all the topics discussed in this chapter apply to other languages

and platforms as well. For the last example about MSBuild tasks on

Windows, you instead need Microsoft Visual Studio 2017. The Community

edition is available for free at www.visualstudio.com.

https://nodejs.org
http://www.visualstudio.com

158

Note If you have worked with the first Visual Studio Code releases,
it is important for you to know that the way tasks are handled has
changed. If this is your case, you might want to read the migration
guide for tasks written with older versions to the last version:
https://code.visualstudio.com/docs/editor/tasks#_
convert-from-010-to-200.

 Understanding Tasks
At its core, Visual Studio Code is a code-centric tool, so it often requires

executing external programs to complete operations that are part of the

application lifecycle, such as compilation, debugging, and testing.

In the Visual Studio Code terminology, integrating with an external

program within the flow of the application lifecycle is a task. Running a

task not only means executing an external program but also getting the

output of the external program and displaying it in the most convenient

way inside the user interface.

Note Tasks are only available with folders, not individual code files.

A task is basically a set of instructions and properties represented with

the JSON notation, stored in a special file called tasks.json. If VS Code is

able to detect the type of project or source code inside the folder, a tasks.

json file will not always be necessary, and VS Code will do all the job for

you. If it cannot detect the type of project or source code, or if you are

not satisfied with the default settings of a task, under the current folder, it

generates a hidden subfolder called .vscode, and, inside this folder, it also

generates a tasks.json file. If VS Code is able to detect the type of project or

source code inside the folder, it will also prefill the tasks.json content with

ChapTer 8 auTomaTIng TaSkS

https://code.visualstudio.com/docs/editor/tasks#_convert-from-010-to-200
https://code.visualstudio.com/docs/editor/tasks#_convert-from-010-to-200

159

the proper information, otherwise you will need to configure tasks.json

manually. For a better understanding, I will explain tasks that VS Code can

detect and that it configures on your behalf, and then I will discuss how to

create and configure tasks manually.

 Tasks Types
There is no limit to how many types of tasks could be available for a source

code folder, but the most common are the following:

• Build task: A build task is configured to compile the

source code, assets, metadata, and resources into a

binary or executable file, such as libraries or programs.

• Test task: A test task is configured to run unit tests in the

source code.

• Watch task: A watch task starts a compiler in the so-

called watch mode. In this mode, a compiler always

watches for changes to any unresolved files after the

latest build and will recompile them at every save.

Visual Studio Code provides built-in shortcuts to execute a build task.

When new tasks are added, VS Code updates itself to provide shortcuts for

the new tasks. Additionally, you can differentiate tasks of the same type.

For example, you can have a default build task and other custom build

tasks that can be executed only with specific situations.

 Running and Managing Tasks
The first approach to understanding tasks in practice is running existing,

preconfigured tasks. For the sake of simplicity, start Visual Studio Code

and open the project folder called simple from the collection of examples

you downloaded previously from the TypeScript Samples repository on

GitHub (https://github.com/Microsoft/TypeScriptSamples).

ChapTer 8 auTomaTIng TaSkS

https://github.com/Microsoft/TypeScriptSamples

160

Visual Studio Code detects it as a TypeScript project, and therefore

it will preconfigure some tasks (in the next section, I will provide more

details about task auto-detection). Now open the Terminal menu. As you

can see, there are several commands related to tasks, as you can see in

Figure 8-1.

Figure 8-1. Commands for running and managing tasks in the
Terminal menu

ChapTer 8 auTomaTIng TaSkS

161

An explanation of each command is provided in Table 8-1.

If you select Run Task, VS Code will open the Command Palette

showing the list of available tasks, as represented in Figure 8-2.

As you can see, there are two tasks: tsc build and tsc watch, both

pointing to the tsconfig.json project file. This means that either task

will run against the specified file. tsc is the name of the command line

TypeScript compiler, whereas build and watch are two preconfigured

Table 8-1. Commands for Task Execution and Management

Command Description

run Task Shows the list of available tasks in the Command palette and

runs the selected task.

run Build Task runs the default, preconfigured build task (if any).

Terminate Task Forces a task to be stopped.

restart running

Task

restarts the currently running task.

Show running Task Shows the output of the currently running task in the Terminal

panel.

Configure Tasks Shows the list of available tasks in the Command palette and

allows editing the selected task inside the tasks.json file editor.

Configure Default

Build Task

Shows the list of available tasks in the Command palette and

allows selecting for the task that will be used as the build task.

Figure 8-2. Running a task from the Command Palette

ChapTer 8 auTomaTIng TaSkS

162

tasks whose description has been provided previously. If you select tsc

build, Visual Studio Code will launch the tsc compiler and will compile the

TypeScript code into JavaScript code, as shown in Figure 8-3.

Note In the case of TypeScript, the build task will compile
TypeScript code into JavaScript code. In the case of other languages,
the build task will generate binaries from the source code. more
generally, a build task will produce the expected output from the
compilation process depending on the language. also, the list of
available tasks varies depending on the type of project or folder you
are working with. For example, for .neT Core projects, only a task
called build is available.

Figure 8-3. Executing a build task

ChapTer 8 auTomaTIng TaSkS

163

The Terminal panel shows the progress and result of the task

execution. In this case, the result of the task is also represented by the

generation of a .js file and a .js.map file, now visible in the Explorer bar. You

can stop and restart a task using the Terminate Task and Restart Running
Task commands, respectively, both described in Table 8-1. Now suppose

there is a critical error that prevents the build task from completing

successfully. For demonstration purposes, remove a closing bracket from

the code of the simple.ts file and run again the build task. At this point,

Visual Studio Code will show the detailed log from the tsc tool in the

Terminal panel, as shown in Figure 8-4, describing the error and the line of

code that caused it.

Figure 8-4. Visual Studio Code shows the output of the external tool
in a convenient way

ChapTer 8 auTomaTIng TaSkS

164

In the real world, this error would not probably happen because you

have the Problems panel and red squiggles in the code editor that both

highlight the error. But this is actually an example of how Visual Studio

Code integrates with an external tool and shows its output directly in

the Terminal panel, helping to solve the problem with the most detailed

information possible.

 The Default Build Task
Because building the source code is the most frequently used task, Visual

Studio Code provides a built-in shortcut to run this task in the Terminal

menu, called Run Build Task (Ctrl+Shift+B on Windows and ⇧+⌘+B on

macOS). However, you first need to set a default build task, otherwise the

Run Build Task command will behave like the Run Task command.

To accomplish this, select Terminal ➤ Configure Default Build Task.

When the Command Palette appears, select the task you want to be set as

the default build task, in this case select tsc build. When you do this, Visual

Studio Code is actually changing its default configuration and therefore

will generate a new tasks.json file under the .vscode folder, and it will open

this file in a new editor window. The content and structure of tasks.json file

will be discussed shortly in this chapter, so for now let’s focus on the new

default build task. If you now select Terminal ➤ Run Build Task, or use the

keyboard shortcut, you will see how the default build task will be executed,

without the need of specifying it every time from the Command Palette.

 Auto-Detected Tasks
Visual Studio Code can auto-detect tasks for the following environments:

Grunt, Gulp, Jake, and Node.js. Auto-detecting tasks means that Visual

Studio Code can analyze a project built for one of the aforementioned

platforms and generate the appropriate tasks without the need of creating

custom ones. Figure 8-5 shows an example based on the Node debugger

ChapTer 8 auTomaTIng TaSkS

165

extension for Visual Studio Code, whose source code is available at

https://github.com/Microsoft/vscode-node-debug.

The source code of this extension is made of JavaScript and TypeScript

files and is built upon the Node.js runtime. So Visual Studio Code has been

able to detect a number of tasks that work well with this kind of project,

including tasks to run npm (the command line tool for Node.js) and the

tsc TypeScript compiler.

Auto-detected tasks are very useful because they allow to save a lot of

time in terms of task automation. However, more often than not, you will

have needs that are not satisfied by existing tasks, so you will need to make

your own customizations.

Figure 8-5. Auto-detected tasks

ChapTer 8 auTomaTIng TaSkS

https://github.com/Microsoft/vscode-node-debug

166

Note In order to auto-detect tasks, behind the scenes VS Code
requires that specific environments are installed. For example, VS
Code can auto-detect tasks based on node.js only if node.js is
installed; similarly, it can auto-detect tasks based on gulp only if gulp
is installed and so on.

 Configuring Tasks
When Visual Studio Code cannot auto-detect tasks for a folder, or when

auto-detection does not satisfy your needs, you can create and configure

custom tasks by editing the tasks.json file. In this section I will go

through two examples that will help you understand how to configure

your own tasks.

More specifically, I will explain how to compile Pascal source code files

using the OmniPascal extension and the Free Pascal compiler, available

to all operating systems, and how to build a Visual Studio solution based

on the full .NET Framework on Windows by invoking the MSBuild.exe

compiler.

In order to complete both the examples, you will need the following:

• The OmniPascal language extension for Visual Studio

Code, which you can download via the Extensions

panel. This extension is useful to enable Pascal syntax

highlighting and code navigation, though you can still

compile source files without it.

• The Free Pascal compiler, which includes all you need

to develop applications using Pascal and that provides

a free command line compiler. Free Pascal is available

for Windows, macOS, Linux, and other systems, and it

can be downloaded from www.freepascal.org.

ChapTer 8 auTomaTIng TaSkS

http://www.freepascal.org

167

• On Windows only, download the latest version of the

.NET Framework (4.7.2 at this writing), which includes

the MSBuild.exe tool.

Let’s start with an example based on the Pascal language.

 First Example: Compiling Pascal Source Code

In this section, I will explain how to create a custom task that allows for

compiling Pascal source code files by invoking the Free Pascal command

line compiler from VS Code. Assuming you have downloaded and installed

the required software as listed in the preceding text, locate the Free Pascal

folder installation on disk (usually /FPC/version number), then open the

examples folder. In Visual Studio Code, open any folder containing some

Pascal source code. I will use one called fcl-json.

Figure 8-6 shows how Visual Studio Code appears with Pascal source

files currently opened.

Figure 8-6. Editing Pascal source code

ChapTer 8 auTomaTIng TaSkS

168

The OmniPascal extension installed previously enables syntax

colorization and the other common editing features. Now imagine you

want to compile the source code into an executable binary by invoking the

Free Pascal command line compiler. This can be accomplished by creating

a custom task. Follow these steps to create a new tasks.json file and set up

the custom task:

 1. Select Terminal ➤ Configure Task: When the

Command Palette appears asking for a task to

configure, select Create tasks.json from template

(see Figure 8-7). There is no existing task to

configure at this particular point, so the only thing

you can do is creating a new tasks.json file.

 2. The Command Palette will now show the list of

available task templates: MSBuild, maven, .NET
Core, and Others (see Figure 8-8). Select Others

to create a new task that is independent from

other systems.

Figure 8-7. Creating a new task from scratch

Figure 8-8. Selecting a task template

ChapTer 8 auTomaTIng TaSkS

169

Visual Studio Code generates a subfolder called .vscode and, inside

this folder, a new tasks.json file whose content at this point is the following:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "echo",

 "type": "shell",

 "command": "echo Hello"

 }

]

}

The core node of this JSON file is an array called tasks. It contains a

list of tasks, and for each tasks, you can specify the text that VS Code will

use to display it in the Command Palette (label), the type of task (type),

and the external program that will be executed (command). An additional

JSON property called args allows for specifying command line arguments

for the program you invoke. The list of supported JSON properties is

available in Table 8-2 and will be discussed later in this chapter, but if you

are impatient, you can quickly look at the table and then get back here.

Now suppose you want to create a build task which, by convention, is the

type of task you use to compile source code. This can be accomplished by

modifying tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

ChapTer 8 auTomaTIng TaSkS

170

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"]

 }

]

}

The key points are the following:

• The label property value is now build so that the task

is clearly provided as the build task.

• The type property value is shell, meaning it will be

executed by the operating system’s shell.

• The command property value is fpc, which is the file

name of the Free Pascal compiler.

• The args property value is an array of command line

arguments to be passed to the external program; in this

case there is only one argument that is the active source

file, represented by the $(file) variable.

Note as a general rule, an external program can be invoked without
specifying its full path only if such a path has been registered in the
operating system’s environment variables, such as PATH on Windows.
In the case of Free pascal, the installer takes care of registering the
program’s path, but remember to have a look at the environment
variables for other programs.

ChapTer 8 auTomaTIng TaSkS

171

You could certainly specify the name of the file you want to compile,

but using a variable is more flexible so that you can simply compile any

file that is currently active in the code editor. In addition to the properties

in tasks.json, variables are also discussed shortly and will be summarized

in Table 8-3. Notice how IntelliSense helps you find the appropriate

properties in tasks.json, as shown in Figure 8-9.

Save and close tasks.json, then open one of the Pascal source files. Now

you can run the newly created build task. Select Terminal ➤ Run Task,
and from the Command Palette, select the build task (see Figure 8-10).

Figure 8-9. IntelliSense helps defining tasks properties

Figure 8-10. Selecting the new task

ChapTer 8 auTomaTIng TaSkS

172

At this point, VS Code will ask you what would you like to do to detect

any problems encountered during the execution of the external program

so that they can be displayed in the Problems panel. Detecting problems

in the program’s output is the job of a so-called problem matcher. This is a

more complex topic and will be discussed in a dedicated section. For now,

select Continue without scanning the task output (see Figure 8-11).

The Free Pascal compiler will be executed in the Terminal panel,

where you also see the program output as demonstrated in Figure 8-12.

Figure 8-11. Selecting a problem matcher

ChapTer 8 auTomaTIng TaSkS

173

If the execution succeeds, you will find a new binary file in the source

code’s folder. If it fails, the compiler’s output displayed in the Terminal

panel will help you understand what the problem was. Before moving

to a second example, I will now explain more about default tasks, task

templates, JSON properties in tasks.json, and variables.

 Multiple Tasks and Default Build Tasks

Tasks.json can define multiple tasks. At the beginning of this chapter,

I told you that, among the others, common tasks are build and test, but you

might want to implement multiple tasks that are specific to your scenario.

For example, suppose you want to use the Free Pascal compiler to build

Delphi source code files.

The Free Pascal command line compiler provides the -Mdelphi option,

which enables compilation based on the Delphi compatibility mode. You

can therefore modify tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

Figure 8-12. Executing the Free Pascal compiler

ChapTer 8 auTomaTIng TaSkS

174

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}"]

 },

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}", "-Mdelphi"]

 }

]

}

As you can see, there is a new custom task called Delphi build in the

tasks array which still invokes the Free Pascal compiler on the active file,

but with the -Mdelphi option being passed as a command line argument.

Now if you select Terminal ➤ Run Task again, you will see both tasks in

the Command Palette, as demonstrated in Figure 8-13.

It is common to have multiple build tasks, and even multiple tasks

of the same type, but in most cases, you will usually run the same task

and keep other tasks for very specific situations. Related to the current

example, you will usually build Pascal source files and sometimes build

Figure 8-13. All defined tasks are displayed in the Command
Palette

ChapTer 8 auTomaTIng TaSkS

175

Delphi source files, so a convenient choice is configuring a default build

task for Pascal files. As you learned in the “The Default Build Task” section

previously, this can be easily accomplished with the following steps:

 1. Select Terminal ➤ Configure Default Build Task.

 2. In the Command Palette, select the build task

defined previously.

 3. With a Pascal source file active, select Terminal ➤

Run Build Task, or press the keyboard shortcut for

your system.

This command will automatically start the default build task, without

the need of manually selecting a task every time.

 Understanding tasks.json Properties and Substitution
Variables

There are a number of properties available to customize a task. Table 8-2

provides a summary of common properties you use with custom tasks.

Table 8-2. Available Properties for Task Customization

Property Name Description

label a string used to identify the task (e.g., in the Command palette).

type represents the task type. For custom tasks, supported values are

shell and process. With shell, the command is interpreted

as a shell command (such as bash, cmd, or powerShell). With

process, the command is interpreted as a process to be executed.

command The command or external program to be executed.

args an array of command line arguments to be passed to the

command.

(continued)

ChapTer 8 auTomaTIng TaSkS

176

The windows, osx, and linux properties will be discussed separately in

the next section. The group property allows grouping tasks by category. For

instance, if you consider the two multiple tasks created previously, they

are both related to building code, so they might be grouped into a category

called build. This is accomplished by modifying tasks.json as follows:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

Property Name Description

windows allows specifying task properties that are specific to the Windows

operating system.

Osx allows specifying task properties that are specific to macoS.

Linux allows specifying task properties that are specific to Linux and its

distributions.

Group allows for defining task groups and for specifying to which group

a task belongs to.

Presentation Defines how Visual Studio Code handles the task output in the

user interface (see the following example).

Options allows for providing custom values about the cwd (current

working directory), env (environment variables), and shell

(default shell) options.

Table 8-2. (continued)

ChapTer 8 auTomaTIng TaSkS

177

 "args": ["${file}"],

 "group": "build",

 },

 {

 "label": "Delphi build",

 "type": "shell",

 "command": "fpc",

 "args": ["${file}", "-Mdelphi"],

 "group": "build"

 }

]

}

Notice how IntelliSense shows the built-in supported values for the

group property (see Figure 8-14).

Figure 8-14. IntelliSense helping with groups

ChapTer 8 auTomaTIng TaSkS

178

Notice how you can also specify additional values to individual tasks

in a group. For example, if you want to set a task as the default one in the

group, you might change the JSON as follows:

"group": {

 "kind": "build",

 "isDefault": true

 }

}

The kind property represents the group name and isDefault is self-

explanatory. You can also customize the way VS Code handles the task

output via the presentation property. When you type presentation and

then press Enter, IntelliSense adds a number of key/value pairs with some

default values, as follows:

"presentation": {

 "echo": true,

 "reveal": "always",

 "focus": false,

 "panel": "shared",

 "showReuseMessage": true

}

Following is the description of each key and its values:

• echo can be true or false and specifies whether the

task output is actually written to the Terminal panel.

• reveal can be always, never, or silent and specifies

whether the Terminal panel where the task is running

should be always visible, never visible, or visible only

when a problem matcher is not specified and some

errors occur.

ChapTer 8 auTomaTIng TaSkS

179

• focus can be true or false and specifies if the Terminal

panel should get focused when the task is running.

• panel can be shared, dedicated, or new, and it

specifies if the terminal instance is shared across tasks

or if an instance must be dedicated to the current task

or if a new instance should be created at every task run.

• showReuseMessage can be true or false and specifies

whether a message should be displayed to inform that

the Terminal panel will be reused by a task and that

therefore it is possible to close it.

The values you see in the preceding snippet are the default values. In

case of default values, a key can be omitted. For example, the following

markup demonstrates how to create a new Terminal panel at every run

without showing a reuse message:

"presentation": {

 "panel": "new",

 "showReuseMessage": false

}

Other values can be omitted because we are okay with the default

values seen in the preceding text.

Note The list of supported properties is much longer, but most of
them are not of common use. If you want to get deeper knowledge
about the full list of available properties, you can look at the tasks.
json schema, which provides detailed comments about each property
and that is available at https://code.visualstudio.com/
docs/editor/tasks-appendix.

ChapTer 8 auTomaTIng TaSkS

https://code.visualstudio.com/docs/editor/tasks-appendix
https://code.visualstudio.com/docs/editor/tasks-appendix

180

Visual Studio Code also offers several predefined variables that you can

use instead of regular strings and that are useful to represent file and folder

names when passing these to a command. Table 8-3 provides a summary

of supported variables.

Table 8-3. Supported Substitution Variables

Variable Description

${workspaceFolder} represents the path of the currently opened

folder.

${workSpaceFolderBasename} represents the path of the currently opened

folder without any slashes.

${file} The active code file.

${relativeFile} The active code file relative to

${workspaceFolder}.

${fileBaseName} The active code file’s base name.

${fileBaseNameNoExtension} The active code file’s base name without the

extension.

${fileDirname} The name of the directory that contains the

active code file.

${fileExtname} The file extension of the active code file.

${cwd} The current working directory of the task.

${lineNumber} The currently selected line number in the

active file.

${selectedText} The currently selected text in the active file.

${env.VARIABLENAME} references an environment variable, such as

{$env.PATH}.

ChapTer 8 auTomaTIng TaSkS

181

Using variables is very common when you run a task that works

at the project/folder level or against file names that you either cannot

predict or that you do not want to hardcode. You can check the variables

documentation for further details at https://code.visualstudio.com/

docs/editor/variables-reference.

 Operating System-Specific Properties

Sometimes you might need to provide task property values that are

different based on the operating system. In Visual Studio Code, you can

use the windows, osx, and linux properties to specify different values of a

property, depending on the target.

For example, the following tasks.json implementation shows how to

explicitly specify the path of an external tool for Windows and Linux (the

directory names might not be the same on your machine):

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "args": ["${file}"],

 "windows": {

 "command": "C:\\Program Files\\FPC\\fpc.exe"

 },

 "linux": {

 "command": "/usr/bin/fpc"

 }

 }

]

}

ChapTer 8 auTomaTIng TaSkS

https://code.visualstudio.com/docs/editor/variables-reference
https://code.visualstudio.com/docs/editor/variables-reference

182

More specifically, you will need to move the property of your interest

under the operating system property and provide the desired value. In the

preceding code, the command property has been moved from the higher

level down to the windows and linux property nodes. All supported

properties can have different values, not only command.

 Reusing Existing Task Templates

In the previous example about compiling Pascal source code, you have

seen how to create a custom task from scratch. However, for some

particular scenarios, you can leverage existing task templates, which

consists of tasks.json files already preconfigured to work with specific

command and settings.

The list of task templates may vary depending on the extensions you

have installed, but assuming you have installed only the C# extension, your

list should look like in Figure 8-8. The first template is called MSBuild and

generates the following tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "type": "shell",

 "command": "msbuild",

 "args": [

 // Ask msbuild to generate full paths for file

names.

 "/property:GenerateFullPaths=true",

 "/t:build"

],

ChapTer 8 auTomaTIng TaSkS

183

 "group": "build",

 "presentation": {

 // Reveal the output only if unrecognized

errors occur.

 "reveal": "silent"

 },

 // Use the standard MS compiler pattern to detect

errors, warnings and infos

 "problemMatcher": "$msCompile"

 }

]

}

This template is very useful if you want to work with Microsoft Visual

Studio solutions inside VS Code, and a more specific example is coming

in the next subsection. It is worth mentioning that this template has been

included thinking about C# solutions (such as web applications and

Xamarin projects), but MSBuild can build any kind of solution so it can be

reused for different purposes.

The second template is called Maven and is tailored to work with the

same-named build automation tool for Java. Such a template generates the

following tasks.json file:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "verify",

 "type": "shell",

 "command": "mvn -B verify",

 "group": "build"

 },

ChapTer 8 auTomaTIng TaSkS

184

 {

 "label": "test",

 "type": "shell",

 "command": "mvn -B test",

 "group": "test"

 }

]

}

Obviously, Maven must be installed on your machine (you can find

it at https://maven.apache.org). The third template is called .NET Core

and, as the name implies, it generates a tasks.json file which is tailored to

automate the build of .NET Core projects. The configuration looks like the

following:

{

 // See https://go.microsoft.com/fwlink/?LinkId=733558

 // for the documentation about the tasks.json format

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet build",

 "type": "shell",

 "group": "build",

 "presentation": {

 "reveal": "silent"

 },

 "problemMatcher": "$msCompile"

 }

]

}

ChapTer 8 auTomaTIng TaSkS

https://maven.apache.org

185

In this case, the command is not MSBuild; instead it is dotnet. These

templates are useful for at least two reasons:

• They provide ready-to-use configurations for projects

of the targeted type, where you might need only a few

adjustments.

• They provide a complete task structure, where you only

need to replace the command and target and optionally

the presentation and the problem matcher.

You will now see an example based on the MSBuild task template.

 Second Example: Building a MSBuild Solution
(Windows Only)

MSBuild has been the Microsoft build engine since the very first release of

the .NET Framework back in 2002. It is a very powerful tool, because it can

build a Visual Studio solution with no effort. So, a very nice to have feature

would be the possibility of compiling your solutions and projects inside

Visual Studio Code.

You can configure a task to run MSBuild.exe, the build engine used by

Visual Studio. In the next example, you will see how to compile an MSBuild

solution made of a Visual Basic project based on Windows Presentation

Foundation (WPF), but of course all the steps apply to any .sln file and to

any supported languages. If you do not have one, in Visual Studio 2017

create a blank WPF project with Visual Basic as the language. There’s no

need of writing code, as I focus on the project type. Save the project, then

open the project folder in VS Code.

Before configuring a task, it is worth mentioning that, by default, the

MSBuild path is not registered in the Windows’ environment variables, so

you have two possible alternatives:

ChapTer 8 auTomaTIng TaSkS

186

• Add the MSBuild directory to the PATH environment

variable via Control Panel ➤ System ➤ Advanced
system settings ➤ Environment Variables.

• Specify the full MSBuild pathname in tasks.json. This is

the quickest option and the one I will use.

Select Terminal ➤ Configure Task. Select the MSBuild template from

the list of templates. When tasks.json has been created, change the value of

the command property as follows, also replacing Enterprise with the name

of the Visual Studio edition you have on your machine, for example:

"command": "C:\\Program Files (x86)\\Microsoft Visual

Studio\\2017\\Enterprise\\MSBuild\\15.0\\Bin\\msbuild"

Also, change the value of the reveal property from never to always

for demonstration purposes, so that you can see the output of MSBuild in

the Terminal panel. Now if you select Terminal ➤ Run Task and select the

preconfigured build task, MSBuild will be started and the solution will be

built, as you can see in Figure 8-15.

Figure 8-15. Compiling a WPF project written in Visual Basic with
the MSBuild task

ChapTer 8 auTomaTIng TaSkS

187

The preconfigured MSBuild task uses the $msCompile problem

matcher to detect problems related to C# and Visual Basic in the build

output, so that they can be presented in a convenient way in the user

interface. Let’s spend some more words about problem matchers.

 Understanding Problem Matchers

Problem matchers scan the task output text for known warning or error

strings and report these inline in the editor and in the Problems panel.

Visual Studio Code ships with a number of built-in problem matchers

for TypeScript, JSHint, ESLint, Go, C# and Visual Basic, Lessc, and Node

Sass (see https://code.visualstudio.com/docs/editor/tasks#_

processing- task- output-with-problem-matchers).

Built-in problem matchers are extremely useful, because for the

aforementioned environments, VS Code can present problems that

occurred at build time in the Problems panel, but it can also highlight the

line of code in the code editor that caused the problem.

You can also define custom problem matchers to scan the output of an

external program. For instance, a problem matcher for scanning the Free

Pascal compiler could look like the following:

 "problemMatcher": {

 "owner": "external",

 "fileLocation": ["relative", "${workspaceRoot}"],

 "pattern": {

 "regexp": "((([A-Za-z]):\\\\(?:[^\\/:*?\\\"

<>|\\r\\n]+\\\\)*)?[^\\/\\s\\

(:*?\\\"<>|\\r\\n]*)\\((\\d+)\\):

\\s.*(fatal|error|warning|hint)\\

s(.*):\\s(.*)",

 // The first match group matches the file name which is

relative.

ChapTer 8 auTomaTIng TaSkS

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

188

 "file": 1,

 // The second match group matches the line on which the

problem occurred.

 "line": 2,

 // The third match group matches the column at which

the problem occurred.

 "column": 3,

 // The fourth match group matches the problem's

severity. Can be ignored. Then all problems are

captured as errors.

 "severity": 4,

 // The fifth match group matches the message.

 "message": 5

 }

The owner property represents the language service, which is external

in this case, but it could be, for example, cpp in the case of a C++ project.

But the most important property is pattern, where you specify a regular

expression (regexp) to match error strings sent by the external program.

Also notice, with the help of comments, how matches are grouped by

target. Building problem matchers can be tricky and it is out of the scope of

this book, so I recommend you to read the official documentation available

at https://code.visualstudio.com/docs/editor/tasks#_processing-

task- output-with-problem-matchers.

 Running Files with a Default Program
In case you are editing in VS Code a file whose type is associated with the

operating system, you do not need to create custom tasks to run it. For

example, a batch program (.bat) in Windows or a shell script file (.sh) on

macOS can be run by simply clicking Terminal ➤ Run Active File.

ChapTer 8 auTomaTIng TaSkS

https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers
https://code.visualstudio.com/docs/editor/tasks#_processing-task-output-with-problem-matchers

189

The file name will be passed to the current terminal program on your

system (PowerShell on Windows or the bash on Linux and macOS) so

that the operating system will try to open the file with the program that

is registered with the file extension, if any. In the case of a batch or shell

script file, the operating system will execute the file. The output will be

displayed in the Terminal panel.

Note only the output of the operating system or of command line
tools will be redirected to the Terminal panel. For instance, if you try
to edit a .txt file and then select Terminal ➤ run active File, such a
file will be opened inside the default text editor on your system, and
there will be no additional interactions with the Terminal panel.

 Summary
There are many features in Visual Studio Code that make it different from

a simple code editor. Tasks are among these features. With tasks you can

attach external programs to the application lifecycle and run tools like

compilers. VS Code ships with task auto-detection for some environments,

but it allows for creating custom tasks when you need to associate specific

tools to a project or folder.

By working on the tasks.json file and with the help of IntelliSense,

you will be able to include the execution of any external program in your

folders. The execution of external programs like compilers is certainly

useful, but it would not be so important if VS Code could not make a step

forward: debugging code, which is discussed in the next chapter.

ChapTer 8 auTomaTIng TaSkS

191© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7_9

CHAPTER 9

Running and
Debugging Code
Being an end-to-end development environment, Visual Studio Code

offers opportunities that you will not find in other code editors. In fact, in

Visual Studio Code, you can work with many project types and debug your

code in several languages. This chapter explains how to scaffold projects

supported in Visual Studio Code and how to use all the built-in, powerful

debugging features.

 Creating Applications
Visual Studio Code is independent from proprietary project systems and

platforms and, consequently, it does not offer any built-in options to create

projects. This means that you need to rely on the tools offered by each

platform. In this section, I will explain how to scaffold projects based on

.NET Core, but you can similarly create projects with the command line

interface offered by other platforms.

It is also recommended to create a dedicated folder on disk for the next

examples. With the help of the file manager tool on your system (Windows

Explorer on Windows, Finder on macOS, and Nautilus on Ubuntu), create

a folder called VSCode under the root folder, such as C:\VSCode or

~/Library/VSCode. In this folder, you will shortly create new applications.

192

 Creating .NET Core Projects
.NET Core is the cross-platform, open-source, modular runtime from

Microsoft to build applications using C#, F#, and Visual Basic that run on

Windows, macOS, and Linux distributions. With .NET Core, you can create

different kinds of applications such as web applications, Web API REST

services, Console applications, and class libraries. Plans are to support

desktop technologies as well.

.NET Core ships with a rich command line interface, which provides

many options to create different kinds of applications. Discussing all

supported project types is not possible here, so you can refer to the official

documentation available at https://dot.net.

In this section I will show an example based on an ASP.NET Core web

application built upon the model-view-controller (MVC) pattern. Creating

a .NET Core application is accomplished via the command line. Open a

command prompt or a terminal instance on the VSCode folder created

previously, depending on your system.

Type the following command to create a new empty folder called

HelloWeb:

> mkdir HelloWeb

Then, move into the new directory. On Windows and Linux, you can

type

> chdir HelloWeb

On macOS, the command is instead cd. Next, type the following

command to scaffold a new .NET Core web application using C#:

> dotnet new mvc

The mvc command line switch specifies that the new web application

is based on the MVC pattern and the .NET Core SDK will generate all

the plumbing code for some controllers and views. You could also use

Chapter 9 running and debugging Code

https://dot.net

193

the web switch and create an empty web application, but having some

autogenerated pages will help with describing the debugging features.

Once the project has been created, .NET Core will automatically restore

NuGet packages for the solution. You could also do this manually by typing

the following command:

> dotnet restore

If you typed dotnet run, the application would run in the default

web browser. However, the goal is understanding how to run and debug

the application in Visual Studio Code. So, open the project folder with

VS Code. You can also type code . to open Visual Studio Code from

the command line. Thanks to the C# extension, VS Code will recognize

the presence of the .csproj project file, organizing files and folders and

enabling all the powerful code editing features you learned previously.

The next step is running the application. As a general rule, in Visual

Studio Code you have two options:

• Running the application with an instance of the

debugger attached, where a debugger is available for the

current project type. In the case of .NET Core, this ships

with its own debugger that integrates with VS Code.

• Running the application without an instance of the

debugger attached.

Let’s start with the second option, and then the debugging features

are described in detail in the next section. You can select Debug ➤ Start
Without Debugging. Visual Studio Code will first start the default build

task, and then it will start the application. Figure 9-1 shows the web

application scaffolded previously.

Chapter 9 running and debugging Code

194

ASP.NET Core web applications use an open-source development

server called Kestrel (https://github.com/aspnet/KestrelHttpServer),

which allows for independency from proprietary systems. By default,

Kestrel listens for the application on port 5001, which means your

application can be reached at http://localhost:5001. The default port

setting can be changed inside a file called launch.json, which I will discuss

more thoroughly in the next paragraphs.

With simple steps, you have been able to create and run a .NET

Core project in VS Code that you can certainly edit as you need with the

powerful C# code editing features.

Figure 9-1. The .NET Core web application running

Chapter 9 running and debugging Code

https://github.com/aspnet/KestrelHttpServer

195

 Creating Projects on Other Platforms
Obviously, .NET Core is not the only platform you will use with VS Code.

Depending on the platform, you will use specific command line tools to

scaffold a new project. For example, with Node.js you can use the Express

generator which you install with the following command:

> npm install -g Express-generator

Next, you generate a project with the following line:

> Express ProjectName

You can then type code . to open the new project in Visual Studio Code.

Similarly, you will do with other command line tools that allow for generating

projects, such as the Yeoman generator, still available for Node.js, and that

also allow for generating ASP.NET Core projects and VS Code extensions. For

example, you could create mobile apps with the Apache Cordova framework

(https://cordova.apache.org). Cordova is a JavaScript-based framework,

and it works very well with Node.js. Apps you build with Cordova are based

on JavaScript, HTML, and Cascading Style Sheets (CSS). First, you can

install Cordova with the following command line:

> npm install -g Cordova

Then you can easily scaffold a Cordova project with the following line:

> cordova create MyCordovaProject

where MyCordovaProject is the name of the new project. Once you have

a new or existing Cordova project, you can install the Cordova Tools

extension for Visual Studio Code (https://marketplace.visualstudio.

com/items?itemName=vsmobile.cordova-tools). This extension will

add support for Cordova projects to the integrated debugger for Node.js,

providing specific configurations to target Android and iOS devices, as well

as simulators.

Chapter 9 running and debugging Code

https://cordova.apache.org
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools
https://marketplace.visualstudio.com/items?itemName=vsmobile.cordova-tools

196

Note You will also need some additional specific tools for Cordova,
depending on what system you intend to target. For ioS, you will
need to install the tools described in the ioS platform guide from
apache Cordova (https://cordova.apache.org/docs/en/
latest/guide/platforms/ios/index.html). For android, you
will need to install the tools described in the android platform guide
from apache Cordova (https://cordova.apache.org/docs/
en/latest/guide/platforms/android/index.html).

 Debugging Your Code
The ability of debugging code is one of the most powerful features in Visual

Studio Code and probably the one that makes it a step forward if compared

to other code editors. Visual Studio Code ships with an integrated

debugger for Node.js applications and can be extended with third-party

debuggers. For instance, if you have .NET Core installed, the C# extension

for Visual Studio Code detects the availability of a compatible debugger

and takes care of attaching it to VS Code.

Let’s consider C# and .NET Core as the example on how debugging

works, so reopen the HelloWeb folder created previously.

Note all the features discussed in this chapter apply to all the
supported debuggers (both built-in and via extensibility), so they are
not specific to C# and .net Core.

The Debug view provides a way to interact with the debugger. Figure 9- 2

shows how it appears at this point.

Chapter 9 running and debugging Code

https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/ios/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/latest/guide/platforms/android/index.html

197

At the top of the view, you can see the DEBUG toolbar, which provides

the following items:

• The Start Debugging button, represented with the

green play icon. By clicking this button, you will start

the application with an instance of the debugger

attached.

• The configuration dropdown box. Here you can select a

debugger configuration for running the application.

• The settings button, represented with the gear icon and

whose tooltip says Open launch.json (details coming

shortly).

Figure 9-2. The Debug view

Chapter 9 running and debugging Code

198

• The Debug Console button, which opens the Debug

Console panel where you see the output messages from

the debugger.

After this quick overview, you will now learn about debugger

configurations, and then you will walk through the debugging tools

available in VS Code.

 Configuring the Debugger
Before a debugger can inspect an application, it must be configured. For

Node.js and for platforms like .NET Core, where an extension takes care

of everything, default configurations are provided. If you take a look at

Figure 9-2, you can see how there are two predefined configurations, .NET
Core Launch (web) and .NET Core Attach.

The first configuration is used to run the application within the proper

host, with an instance of the debugger attached. For an ASP.NET Core

web application like in the current example, the host is the web browser.

In the case of a Console application, the host would be the Windows’

Console or the Terminal in macOS and Linux. The second configuration

can be instead used to attach the debugger to another running .NET Core

application.

Note actually, there is a .net Core Launch configuration that is
different for each kind of application you create with .net Core. For
example, the configuration for Console applications is called .net
Core Launch (Console). the concept to keep in mind is that a Launch
configuration is provided to attach an instance of the debugger to the
current project.

Chapter 9 running and debugging Code

199

Debugger configurations are stored inside a special file called launch.
json. Visual Studio Code stores this file inside the .vscode subfolder,

exactly like for tasks.json. This special JSON file contains the markup

that instructs Visual Studio Code about the output binary that must be

debugged and about the application host. The content of launch.json for

the current .NET Core sample looks like the following:

{

 // Use IntelliSense to find out which attributes exist for

C# debugging

 // Use hover for the description of the existing attributes

 // For further information visit

 // https://github.com/OmniSharp/omnisharp-vscode/blob/

master/debugger-launchjson.md

 "version": "0.2.0",

 "configurations": [

 {

 "name": ".NET Core Launch (web)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 // If you have changed target frameworks, make sure

to update the program path.

 "program": "${workspaceFolder}/bin/Debug/

netcoreapp2.1/helloweb.dll",

 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 "internalConsoleOptions": "openOnSessionStart",

 "launchBrowser": {

 "enabled": true,

 "args": "${auto-detect-url}",

Chapter 9 running and debugging Code

200

 "windows": {

 "command": "cmd.exe",

 "args": "/C start ${auto-detect-url}"

 },

 "osx": {

 "command": "open"

 },

 "linux": {

 "command": "xdg-open"

 }

 },

 "env": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 },

 "sourceFileMap": {

 "/Views": "${workspaceFolder}/Views"

 }

 },

 {

 "name": ".NET Core Attach",

 "type": "coreclr",

 "request": "attach",

 "processId": "${command:pickProcess}"

 }

 ,]

}

As you can see, the syntax of this file is similar to the syntax of tasks.

json. In this case you have an array called configurations. For each

configuration in the array, the most important properties are

• name, which represents the configuration friendly

name.

Chapter 9 running and debugging Code

201

• type, which represents the type of runtime the

debugger is running on.

• request (launch or attach), which determines whether

the debugger is attached to the current project or to an

external application.

• preLaunchTask, which contains any task to be executed

before the debugging session starts. Usually, this

property is assigned with the default build task.

• program, which represents the binary that will be the

subject of the debugging session.

• launchBrowser, where operating system-specific

properties contain the command that will be executed

to start the application.

• env, which represents the environment. In the case of

.NET Core, a value of Development instructs VS Code to

run the Kestrel development server.

If you wanted to implement custom configurations, launch.json is the

place where you would add them. Because these two configurations, and

more generally default configurations, are enough for most of the common

needs, custom configurations will not be covered in this book. The

documentation provides additional details about this topic (https://code.

visualstudio.com/docs/editor/debugging#_add-a-new- configuration).

Note if you click the Add Configuration command in the
configuration dropdown box, you will be able to select from a built-
in list of configurations that you can add to launch.json. this can
be useful especially in those cases where VS Code should detect a
project type and its configuration, but actually doesn’t.

Chapter 9 running and debugging Code

https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration
https://code.visualstudio.com/docs/editor/debugging#_add-a-new-configuration

202

 Managing Breakpoints
Before starting a debugging session, it is useful to place one or more

breakpoints to discover the full debugging capabilities in VS Code. You place

breakpoints by clicking the white space near the line number. For instance,

place a breakpoint on line 19 of the Startup.cs file, as shown in Figure 9-3.

You can remove a breakpoint by simply clicking it again, or you can

manage breakpoints in the Breakpoints area of the Debug view (see

Figure 9-4).

Here you can see the list of files that contain any breakpoint and

the line numbers. You can also cause the debugger to break on user-

unhandled exceptions (default) and on all exceptions. You can click the

Add Function Breakpoint (+) button. Instead of placing breakpoints

Figure 9-3. Adding breakpoints

Figure 9-4. Managing breakpoints

Chapter 9 running and debugging Code

203

directly in source code, a debugger can support creating breakpoints by

specifying a function name. This is useful in situations where source is not

available but a function name is known.

 Debugging an Application
Now it is time to start a debugging session, so that you will be able to see

in action all the debugging tools and make decisions when breakpoints

are hit. In the Debug view, make sure the .NET Core Launch (web)

configuration is selected, then click the Start button or press F5. Visual

Studio Code will launch the debugger, and it will display the output of the

debugger in the Debug Console panel.

It will also break when it encounters an exception or a breakpoint, like

in the current example. Figure 9-5 shows Code hitting a breakpoint and all

the debugging instrumentation.

Figure 9-5. The debugging tools while a breakpoint is being hit

Chapter 9 running and debugging Code

204

Notice how the status bar becomes orange while debugging and how

the Debug Console window shows information about the debugging

process. On the left side, the Debug view shows a number of tools:

• VARIABLES, which shows the list of variables that are

currently under the debugger control and that you can

investigate by expanding each variable.

• WATCH, a place where you can evaluate expressions.

• CALL STACK, where you can see the stack of method

calls. If you click a method call, the code editor will

bring you to the code that is making that call.

• BREAKPOINTS, where you can manage breakpoints.

At the top of the window, also notice the debugging toolbar (see

Figure 9-5) called Debug action pane, made of the following commands

(from left to right):

• Continue, which allows continuing the application

execution after breaking on a breakpoint or an exception

• Step Over, which executes one statement at a time

except for method calls, which are invoked without

stepping into

• Step Into, which executes one statement at a time,

including statements within method bodies

• Step Out, which executes the remaining lines of a

function starting from the current breakpoint

• Restart, which you select to restart the application

execution

• Stop, which you invoke to stop debugging

These commands are also available in the Debug menu, together with

their keyboard shortcuts. If you hover a variable name in the code editor,

Chapter 9 running and debugging Code

205

a convenient popup will make it easy to investigate values and property

values (depending on the type of the variable), as shown in Figure 9-6

where you can see a popup showing information about the Configuration

variable. You can expand properties and see their values, and you can also

investigate properties in the VARIABLES area of the Debug side bar.

 Evaluating Expressions

You have an option to use the Watch tool to evaluate expression. While

debugging, click the Add Expression (+) button in the Watch box,

then type the expression you want to evaluate. For instance, if you type

Configuration != null, the Watch tool will return true or false depending

if the object has an instance or not. Figure 9-7 shows an example.

Figure 9-6. Investigating property values at debugging time

Chapter 9 running and debugging Code

206

 The Call Stack

The debugger also offers the Call Stack feature, which allows stepping

through the hierarchy of method calls. When you click a method call in

the stack, the code editor will open the containing file, highlighting the

method call (see Figure 9-8).

Figure 9-7. Evaluating expressions

Figure 9-8. Walking through method calls

Chapter 9 running and debugging Code

207

The code editor can highlight method calls only if it is part of the

source code, but this feature is very useful especially when you encounter

errors and you need to step back through the code.

 The Debug Console Panel

The Debug Console is certainly the place where VS Code shows the

debugger output but, as the name implies, it is also an interactive panel

where you can evaluate expressions. You can type the expression near the

> symbol and then press Enter.

Figure 9-9 shows an example that evaluates if the Configuration

variable is not null.

 Supporting Azure, Docker, and Artificial
Intelligence
Microsoft has made many investments in the last couple of years to

add to Visual Studio Code support for the most modern technologies

and development scenarios. In fact, Microsoft has developed several

extensions that allow for integrating with Microsoft Azure, Docker, and

artificial intelligence services.

Figure 9-9. Evaluating expressions in the Debug Console panel

Chapter 9 running and debugging Code

208

About Azure, you might want to consider the following extensions:

• Azure Functions, which allows for developing Azure

functions in VS Code and publishing to Azure directly

from the environment

• Azure App Service, which allows for deploying and

scale web and mobile apps to Azure directly from VS

Code

• Azure CLI Tools, which provides interaction with the

Azure command line interface from Visual Studio Code

Obviously, you need an active Azure subscription to use these

extensions. Not limited to this, Microsoft has developed a Docker

extension, which not only brings syntax highlighting for Docker files but

that also adds commands and support to create and publish containerized

applications to Azure. As you can understand, Azure is at the core of

Microsoft’s business, and this includes artificial intelligence services

available on the cloud. For this reason, Microsoft has also developed

an extension called Visual Studio Code Tools for AI, which allows for

building, testing, and deploying deep learning and other AI solutions. For

developers using Python, this extension also makes it easier to consume AI

services with this language. The official documentation provides detailed

tutorials that help address these particular development scenarios, more

specifically you can read

• Deploying Applications to Azure (https://code.

visualstudio.com/docs/azure/deployment)

• Working with Docker (https://code.visualstudio.

com/docs/azure/docker)

• Visual Studio Code Tools for AI (https://github.com/

Microsoft/vscode-tools-for-ai)

Chapter 9 running and debugging Code

https://code.visualstudio.com/docs/azure/deployment
https://code.visualstudio.com/docs/azure/deployment
https://code.visualstudio.com/docs/azure/docker
https://code.visualstudio.com/docs/azure/docker
https://github.com/Microsoft/vscode-tools-for-ai
https://github.com/Microsoft/vscode-tools-for-ai

209

Visual Studio Code, with its extensibility model and being independent

from proprietary systems, can target an incredible number of development

scenarios, from web to mobile to cloud.

 Summary
The power of Visual Studio Code as a development environment comes

out when you work with real applications. With the help of specific

generators, you can easily generate .NET Core projects using C# or Node.js

projects. This chapter described how you can leverage a powerful, built-in

debugger that offers all the necessary tools you need to write great apps,

such as breakpoints, variable investigation, call stack, and expression

evaluators.

You finally saw how VS Code can target advanced scenarios such as

deploying applications and functions to Azure, packaging Docker images,

and consuming artificial intelligence services.

By completing this chapter, you have walked through all the most

important and powerful features you need to know to write great cross-

platform applications using Visual Studio Code.

Chapter 9 running and debugging Code

211© Alessandro Del Sole 2019
A. Del Sole, Visual Studio Code Distilled, https://doi.org/10.1007/978-1-4842-4224-7

Index

A, B
Activity bar, 24–25
Apache Cordova framework, 195
Auto-detecting tasks, 164–165
Azure DevOps, 150–154

C
Code block folding, 51–52
Code editing features

breadcrumbs, 57–58
built-in code snippets, 52–54
code block folding, 51–52
delimiter matching, 51
Markdown preview, 58–59
Minimap mode, 55–56
multicursors, 52
syntax colorization, 50
text manipulation and text

selection, 48–49
whitespace rendering, 56–57
word completion, 54–55

Code editor, 21–22
Code refactoring, 78
Code snippets, 53–54
Color theme, 97
Command Palette, 37

Customizations
and extensions, 95–97
keyboard shortcuts

adding, 108
commands and actions, 106
keybindings.json file, 108
list of commands, 107
new, 109

theme selection
color themes, 97
Dark (Visual Studio), 98

user settings (see User settings)
workspace settings, 105–106

Customize group, 20

D
Dark (Visual Studio), 98
Debug bar, 34–35
Debug Console panel, 41
Debugger

adding breakpoints, 202
Call Stack, 206–207
commands, 204
configuration

commands, 199–201
Debug Console panel, 207
Debug view, 196–197

https://doi.org/10.1007/978-1-4842-4224-7

212

evaluate expression, 205–206
.NET Core Launch (web), 198
tools, 203–204

Delimiter matching, 51

E
Editor windows, 22
Evolved code editing

code issue detection
adding missing directives, 73
code refactoring, 68, 72
generating types, 71
IDisposable, 72, 73
interface with dispose

pattern, 74–75
light bulb, 69, 72, 74
potential fixes, 70

find all references, 65
Go To Definition, 63–64
identifier, 68
inline documentation with

Tooltips, 62–63
IntelliSense, 60–61
parameter hints, 62
peek definition, 66
renaming symbols, 67

Explorer bar, 26–28
Extensibility, 111
Extensions

authoring, 122
customizing options, 120–121
Git History, 142–144

GitHub Pull Requests, 148–150
GitLens, 144, 146–147
installation, 111, 113–114
recommendations, 115–116
shortcuts, 119
Visual Studio

Marketplace, 111–112
Extensions bar, 35–36

F
Find All References

feature, 65, 67
Folders and projects

extensibility, 84
files, 82–83
JavaScript project,

opening, 87
loose assortments of files, 88
.NET Core solution, 86
opening folder, 84–85
structured view, 85
TypeScript projects, 88

Free Pascal compiler, 166

G
Git

Command Palette, 137–138
file changes, 132–134
local repository, 128–129
manage commits, 135–137
remote repository, 130–131
staging changes, 134–135

Debugger (cont.)

Index

213

Git bar, 32–33
GitLens, 144
Go To Definition, 63–64

H
Help group, 20
https_proxy environment

variables, 104

I
Individual files

creation, 79–80
editing window, 78
encoding, 80–81
Go to Line item, 81–82
line terminator, 81

IntelliSense, 60–61, 78, 103

J
jsconfig.json files, 83

K
Kestrel server, 194
Keyboard shortcut, 45, 109

L
Language support, editing

features, 46–47
Learn group, 21
Light Bulb, 69–70, 72–74, 76

M
Markdown syntax, 58
Microsoft Azure, 208–209
Minimap mode, 55–56
Model-view-controller (MVC), 192
MSBuild solution files (.sln), 82
Multeor-master folder, 90
Multicursors, 52

N
Navigating between files, 36
.NET Core

creation, 192
MVC, 192
running, 194
solution, 86

Node.js, 157

O
OmniPascal extension, 166
Outline view, 28–30
Output panel, 40

P, Q
package.json files, 83
Panels area, 38

Debug Console panel, 41
output panel, 40
problems panel, 38–39
terminal panel, 42–43

Index

214

Parameter hints, 62
Peek Definition, 66
Problems panel, 38–39
project.json files, 83
Proxy Strict SSL, 104

R
Recent group, 20
Recommended

extensions, 115, 117–118

S
Search settings, 100
Search tool

Clear Search Results, 31
Replace All, 32
Replace text, 32

Selection menu, 49
Settings button, 36
settings.json file, 101–103
Side bar

debug bar, 34–35
explorer bar, 26–28
extensions bar, 35–36
git bar, 32–33
outline view, 28–30
search tool, 31–32
settings button, 36

Source control managers
(SCM), 126

Start group, 20

Status bar, 23–24
Syntax colorization, 50

T
Task

building, 164
commands, 161
compiling Pascal source

code, 167–172
customization properties,

175–176, 178
default build task, 173–175
Free Pascal compiler, 173
JSON notation, 158–159
key and values, 178–179
MSBuild solution, 185–187
operating system-specific

properties, 181–182
problem matchers, 172, 187–188
running, 159–160
templates, 182–183, 185
terminal panel, 163–164, 188
types, 159
variable, 180–181

Terminal panel, 42–43
Toggle Block Comment, 48
Toggle Breadcrumbs, 57
Toggle Line Comment, 48
Toggle Render Whitespace, 56
Tooltips, 63
tsconfig.json files, 83
TypeScript compiler (tsc), 157

Index

215

U
User interface, 19, 21, 37–38
User settings

changing, 100
default, 102
editor, 99, 101
explorer, 100
IntelliSense, 103
Minimap mode, 102
proxies, 103–104
search, 100
settings.json file, 101–103

V
Visual Studio Code, 77

automating tasks, 4
branch

creation, 139
deleting, 141
merging, 140
switching, 140

browser, 5–6
built-in debugger, 3
built-in support, 3
code-centric tool, 4
color themes, 2
cross-platform development

tool, 2
definition, 2
download for macOS, 9

download for Windows, 7
end-to-end development, 2
features, 3–5
insiders builds, 15–17
installation

macOS, 9–10
Ubuntu, 10–11
Windows, 6–9

localization, 12–13
needs, 2
SCM providers, 125–127
updation, 13–15
user installer, 7
version control, 4

Visual Studio Marketplace, 111–112

W, X
Windows Presentation Foundation

(WPF), 86, 185, 186
Word completion, 54–55
Workspace

creation, 91
multiple projects and

folders, 89–90
opening, 92
settings, 105–107
structure, 92–93

Y, Z
Yeoman tool, 122

Index

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Introducing Visual Studio Code
	Introducing Visual Studio Code
	When and Why Visual Studio Code
	Installing and Configuring Visual Studio Code
	Installing Visual Studio Code on Windows
	Installing Visual Studio Code on macOS
	Installing Visual Studio Code on Linux
	Localization Support
	Updating Visual Studio Code
	Previewing Features with Insiders Builds

	Summary

	Chapter 2: Getting to Know the Environment
	The Welcome Page
	The Code Editor
	Reordering, Resizing, and Zooming Editor Windows

	The Status Bar
	The Activity Bar
	The Side Bar
	The Explorer Bar
	The Outline View

	The Search Tool
	The Git Bar
	The Debug Bar
	The Extensions Bar
	The Settings Button

	Navigating Between Files
	The Command Palette
	The Panels Area
	The Problems Panel
	The Output Panel
	The Debug Console Panel
	Working with the Terminal

	Summary

	Chapter 3: Language Support and Code Editing Features
	Language Support
	Working with C# and C++

	Basic Code Editing Features
	Working with Text
	Syntax Colorization
	Delimiter Matching and Text Selection
	Code Block Folding
	Multicursors
	Reusable Code Snippets
	Word Completion
	Minimap Mode
	Whitespace Rendering and Breadcrumbs
	Markdown Preview

	Evolved Code Editing
	Working with IntelliSense
	Parameter Hints
	Inline Documentation with Tooltips
	Go To Definition
	Find All References
	Peek Definition
	Renaming Symbols and Identifiers
	Live Code Analysis

	Summary

	Chapter 4: Working with Files and Folders
	Visual Studio Code and Project Systems
	Working with Individual Files
	Creating Files
	File Encoding, Line Terminators, and Line Browsing

	Working with Folders and Projects
	Opening a Folder
	Opening .NET Core Solutions
	Opening JavaScript and TypeScript Projects
	Opening Loose Folders

	Working with Workspaces
	Creating Workspaces
	Opening Existing Workspaces
	Workspace Structure

	Summary

	Chapter 5: Customizing Visual Studio Code
	Customizations and Extensions Explained
	Customizing Visual Studio Code
	Theme Selection
	Customizing the Environment
	Understanding User Settings
	Behind the Scenes: The settings.json File
	A Real-World Example: Working with Proxies

	Understanding Workspace Settings

	Customizing Key Bindings

	Summary

	Chapter 6: Installing and Managing Extensions
	Installing Extensions
	Extension Recommendations
	Useful Extensions

	Managing Extensions
	Configuring Extensions

	Hints About Extension Authoring
	Summary

	Chapter 7: Source Control with Git
	Source Control in Visual Studio Code
	Downloading Other Source Control Providers

	Managing Repositories
	Initializing a Local Git Repository
	Creating a Remote Repository

	Handling File Changes
	Staging Changes

	Managing Commits
	Working with the Git Command Line Interface
	Creating and Managing Branches
	Switching to a Different Branch
	Merging from a Branch
	Deleting Branches

	Adding Power to the Git Tooling with Extensions
	Git History
	GitLens
	GitHub Pull Requests

	Working with Azure DevOps and Team Foundation Server
	Summary

	Chapter 8: Automating Tasks
	Understanding Tasks
	Tasks Types
	Running and Managing Tasks
	The Default Build Task
	Auto-Detected Tasks
	Configuring Tasks
	First Example: Compiling Pascal Source Code
	Multiple Tasks and Default Build Tasks
	Understanding tasks.json Properties and Substitution Variables
	Operating System-Specific Properties
	Reusing Existing Task Templates
	Second Example: Building a MSBuild Solution (Windows Only)
	Understanding Problem Matchers

	Running Files with a Default Program

	Summary

	Chapter 9: Running and Debugging Code
	Creating Applications
	Creating .NET Core Projects
	Creating Projects on Other Platforms

	Debugging Your Code
	Configuring the Debugger
	Managing Breakpoints
	Debugging an Application
	Evaluating Expressions
	The Call Stack
	The Debug Console Panel

	Supporting Azure, Docker, and Artificial Intelligence
	Summary

	Index

