
www.it-ebooks.info

http://www.it-ebooks.info/

WPF in Action
with Visual Studio 2008

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

WPF in Action
with Visual Studio 2008

COVERS VISUAL STUDIO 2008 SP1 AND .NET 3.5 SP1

ARLEN FELDMAN
MAXX DAYMON

M A N N I N G
Greenwich

(74° w. long.)
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwich, CT 06830 Email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed elemental chlorine-free

Development Editor: Jeff Bleiel
Manning Publications Co. Copyeditor: Andrea Kaucher
Sound View Court 3B Typesetter: Dennis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-22-3
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 12 11 10 09 08
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents
PART 1 PAST, PRESENT, AND FUTURE ...1

1 ■ The road to Avalon (WPF) 3

2 ■ Getting started with WPF and Visual Studio 2008 22

3 ■ WPF from 723 feet 41

PART 2 THE BASICS ...63

4 ■ Working with layouts 65

5 ■ The Grid panel 94

6 ■ Resources, styles, control templates, and themes 119

7 ■ Events 147

8 ■ Oooh, shiny! 157

PART 3 APPLICATION DEVELOPMENT177

9 ■ Laying out a more complex application 179

10 ■ Commands 191

11 ■ Data binding with WPF 209

12 ■ Advanced data templates and binding 253
v

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTSvi
13 ■ Custom controls 299

14 ■ Drawing 315

15 ■ Drawing in 3D 352

PART 4 THE LAST MILE.. 371

16 ■ Building a navigation application 373

17 ■ WPF and browsers: XBAP, ClickOnce,
and Silverlight 390

18 ■ Printing, documents, and XPS 406

19 ■ Transition effects 427

20 ■ Interoperability 457

21 ■ Threading 474
www.it-ebooks.info

http://www.it-ebooks.info/

contents
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxv

PART 1 PAST, PRESENT, AND FUTURE1

1 The road to Avalon (WPF) 3
1.1 The past and the present 4

Why Windows drawing is the way it is 5 ■ How we currently create
Windows UIs 7 ■ Why the web is the way it is 9 ■ How UI is
created on the web 10

1.2 Why Avalon/WPF 11
Taking advantage of modern hardware 12 ■ Using modern
software design 13 ■ Separating presentation logic from
presentation 14 ■ Making it simpler to code GUIs 15

1.3 Creating UI using WPF 16
Defining WPF UI with XAML 16 ■ Defining WPF UI through
code 17 ■ Defining WPF UI with tools 18 ■ Who does the
drawing 19 ■ Pixels versus vectors 19

1.4 Summary 20
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
2 Getting started with WPF and Visual Studio 2008 22
2.1 Your grandpa’s Hello, World! 23

Adding a button and button-handler to the window 25
Running Hello, World! 27 ■ The TextBlock control 27

2.2 The application definition 30
Defining application startup in XAML 30
Why define the application in XAML? 31

2.3 A tour of WPF in Visual Studio 2008 34
The XAML designer 35 ■ The Properties grid 38
Selection controls in Visual Studio 39 ■ The Document
Outline 39

2.4 Summary 40

3 WPF from 723 feet 41
3.1 Where does WPF fit in Windows? 42

Red bits and green bits 42 ■ Silverlight 43

3.2 Framework services 44
Base services 44 ■ Media services 51 ■ User interface
services 55 ■ Document services 56

3.3 Necessary and useful tools 58
Microsoft Expression family 59 ■ Visual Studio 60
Other tools 60

3.4 Summary 61

PART 2 THE BASICS ...63

4 Working with layouts 65
4.1 The idea behind layout panels 66
4.2 The Canvas layout 68

Converting a Grid layout to a Canvas layout by modifying
the XAML 69 ■ Adding a Canvas to an existing layout 69
Using attached properties 72 ■ Setting up a Canvas
programmatically 73

4.3 The StackPanel layout 76
Adding scrolling support 80 ■ The Expander control 81
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
4.4 The DockPanel layout 83
Defining a DockPanel in XAML 84 ■ Setting up a DockPanel
programmatically 85

4.5 The WrapPanel layout 86
4.6 Other layout options 88

Specialized layout panels 89 ■ The FlowDocument 89

4.7 Summary 93

5 The Grid panel 94
5.1 Getting started with the Grid layout panel 95

Modifying the Grid 96 ■ Grid specific properties 100

5.2 Using the Grid layout to build a calculator UI 101
Planning the calculator 101 ■ Laying out the calculator 102
Tweaking appearance 104

5.3 The Grid and localization 107
5.4 UniformGrid 109
5.5 Making the calculator work 110

Handling operations 110 ■ Genericizing the handlers 114

5.6 Summary 117

6 Resources, styles, control templates, and themes 119
6.1 Resources 120

Using standalone resource dictionaries 122 ■ Using resources
from code 124 ■ Dynamic resources 125

6.2 Styles 131
Styles based on other styles 133 ■ Implicitly applying styles 135

6.3 Control templates 136
Creating a control template 137 ■ ContentPresenters 137
Template binding 138 ■ Triggers 139

6.4 Themes 140
Using a specific theme 142 ■ Changing themes from code 145

6.5 Summary 146

7 Events 147
7.1 Routed events 148

Bubbling events 149 ■ Tunneling events 151
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
7.2 Events from code 154
handledEventsToo 155 ■ Class events 156

7.3 Summary 156

8 Oooh, shiny! 157
8.1 Glass buttons 158

Styling the text 162 ■ Adding glow when over buttons 162
Handling the button click 164

8.2 Adding some simple animation 165
Animating button glow 165 ■ Animating a color 168

8.3 Reflections 169
8.4 Transforms 173
8.5 Summary 174

PART 3 APPLICATION DEVELOPMENT177

9 Laying out a more complex application 179
9.1 Creating the Desktop Wiki Project 181
9.2 Nesting layouts 182

Preparing the layout for menus and toolbars 183
Adding menubars, statusbars, and toolbars… 184

9.3 Nested layouts 186
Adding the first Grid 187 ■ Adding the second Grid 188
Using a StackPanel and Expander as navigation aids 189

9.4 Summary 190

10 Commands 191
10.1 A brief history of commands 192

Windows Forms and simple event handlers 192
Son of MFC 193

10.2 The WPF approach 194
The Command pattern 194 ■ WPF commands 195

10.3 Using the built-in system commands 196
ApplicationCommands 197 ■ NavigationCommands 198
EditingCommands 198 ■ Component and media
commands 200
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
10.4 Handling commands 200
Handling a built-in command 200 ■ Creating a custom
command 201 ■ Shortcuts and gestures 202

10.5 Command routing 203
10.6 A cleaner custom command implementation 204

Implementing a RoutedUICommand 204 ■ Adding a
CommandBinding 206

10.7 Summary 208

11 Data binding with WPF 209
11.1 WPF data binding 210
11.2 ProcessMonitor: A simple binding example 212

Binding Data with XAML 212 ■ Binding in code 217
Binding notation and options 219

11.3 Binding to XML 223
Creating the CVE Viewer application 225 ■ Binding controls
to XML 227 ■ XPath binding notation 228 ■ Path versus
XPath 229 ■ Understanding and using DataContexts 230
Master-Detail Binding 233

11.4 Binding to ADO.NET database objects 234
Creating a bookmark utility 236 ■ Creating the simple DAL 236
Laying out the UI and creating data bindings 238

11.5 Binding to business objects 242
Creating a WikiPage business object 242
ObservableCollection 243 ■ Create a model façade 244
Wiring business objects to presentation objects 246

11.6 Binding to LINQ data 250
11.7 Summary 252

12 Advanced data templates and binding 253
12.1 Data converters 254

Formatting bound data with StringFormat 255 ■ A number to
formatted string data converter 259 ■ Converter parameters 261

12.2 DataTriggers 263
12.3 CollectionViewSource 266

Sorting with CollectionViewSource 266 ■ Programatically sorting
with CollectionViewSource 268 ■ Filtering with
CollectionViewSource 270
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
12.4 Conditional templates 273
A more involved template 273 ■ Conditionally using
a template 275 ■ Templates based on type 277

12.5 Validators 278
The ExceptionValidationRule 278 ■ Custom
ErrorTemplates 280 ■ Custom validation rules 282

12.6 Model-View-ViewModel 283
12.7 Advanced binding capabilities 285

Hierarchical binding 285 ■ MultiBinding 289
PriorityBinding 295

12.8 Summary 298

13 Custom controls 299
13.1 Composing new user controls 301

Building a LinkLabel control 301
Testing the LinkLabel UserControl 304

13.2 Building custom controls 306
Building a control library 307 ■ Create the new custom
control 308 ■ Create the default template for the control 310
Testing the control 312 ■ Customizing a custom control with
a template 313

13.3 Summary 314

14 Drawing 315
14.1 Drawing with Shapes 317

Shapes in XAML 317 ■ Stupid shape tricks 321

14.2 Creating the graphing control 323
Building the GraphHolder control 323 ■ Graphing using
shapes 327 ■ Catching clicks 331 ■ The downside
of Shapes 332

14.3 Drawing with direct rendering 332
Recreating the graph control 333 ■ Pluses and minuses of
direct rendering 338

14.4 Drawing with Visuals 338
Control for display Visuals 339 ■ Hit testing with Visuals 342
Adding labels to our graph 344
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
14.5 Drawings and Geometries 345
GeometryDrawing 348 ■ Using Drawings 349

14.6 Summary 351

15 Drawing in 3D 352
15.1 Lights, camera… 353

Models 354 ■ Lights 357 ■ Cameras 358

15.2 Graphing in 3D 359
15.3 3D Transforms 365

A 3D Transform in XAML 366 ■ A 3D Transform
in code 366

15.4 Summary 369

PART 4 THE LAST MILE..371

16 Building a navigation application 373
16.1 When and where to use navigation applications 374
16.2 Creating a basic navigation application 375

Adding some navigation 378 ■ Implementing dictionary
lookup 379 ■ Navigating programmatically 381

16.3 Page functions 384
Creating a Page function 384 ■ Calling a page function 386

16.4 Summary 389

17 WPF and browsers: XBAP, ClickOnce, and Silverlight 390
17.1 Building an XBAP 391

XBAP security 394 ■ Deploying an XBAP 396
When to use XBAP 399

17.2 Using ClickOnce 400
Deploying a WPF application via ClickOnce 401
When to use ClickOnce 402

17.3 Using Silverlight 403
17.4 Summary 405
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv
18 Printing, documents, and XPS 406
18.1 Printing flow documents 407

Setting up to print 408 ■ Customizing the output 411
Printing asynchronously 413

18.2 Printing FixedDocuments 415
Adding some FlowDocument content to our FixedDocument 417
Matching resolution 420 ■ Printing Visuals 421

18.3 XPS 422
Saving an XPS document to a file 422 ■ The problem
with images… 424

18.4 Summary 426

19 Transition effects 427
19.1 Building the World Browser application 428

The DictionaryLookup class 428 ■ Working with the Application
object 431 ■ Our WorldListView user control 432
Populating the country list 433

19.2 Adding a simple transition 436
19.3 Building a generic transition control 439

Creating the transition control 439 ■ Using the transition
control 442 ■ Defining a ControlTemplate for our control 443
Using the ABSwitcher 445

19.4 Adding some interesting transition effects 445
The fade effect 446 ■ Wipe effect 448 ■ Adding a selector
for effects 453

19.5 Summary 454

20 Interoperability 457
20.1 Using Windows Forms controls in WPF 458

Using the Windows Forms DateTimePicker in WPF 458
Enabling Windows themes for Windows Forms control 461
What you can’t do with embedded Windows Forms controls 462
Using your own Windows Forms controls 463 ■ Popping up
Windows Forms dialogs 464

20.2 Embedding ActiveX and C++ in WPF 466
Embedding ActiveX controls in WPF 466 ■ Embedding C++
controls in WPF 468
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xv
20.3 Using WPF in Windows Forms 469
Using a WPF control inside of Windows Forms 469 ■ Popping up
WPF dialogs 472

20.4 Summary 473

21 Threading 474
21.1 Moving slow work into a background thread 476
21.2 Asynchronous calls 479
21.3 Timers 480
21.4 Summary 481

index 483
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

preface
A number of years ago, the two of us worked at the same company and had to design a
new form definition language for an entirely definitionally-driven system. The defini-
tions were to be stored in XML. They had to be loosely bound to data definitions, and
allow for complex behavior changes based on data. The individual elements of a form
had their own properties, but also had to store properties that they didn’t care about
but that were relevant to higher-level layout mechanisms. We built this long before
WPF was even a glimmer of a concept at Microsoft.

 We’d like to pretend that Microsoft saw our brilliant design and decided to copy it
when creating WPF, but that would be a lie, and we only lie when we’re fairly sure that
our facts can’t be verified elsewhere.

 Nonetheless, WPF does encapsulate all the basic design principles that we had for
our form definition language, and then goes soaring off to leave our pitiful efforts in
the dust. When we first started playing around with (extremely) early versions of what
was then called Avalon, we had a lot of “duh, why didn’t we do it that way” moments as
well as, to be kind to our battered egos, a few “yeah, that’s how we did it” moments.

 We’re both extremely comfortable in the Windows Forms (and the Windows SDK)
world, so moving to WPF was both a happy and sad experience—sad in that we watched
a lot of our hard-won knowledge become obsolete, but happy in that WPF made us way
more productive, and let us do things quickly and easily that we would have just skipped
with Windows Forms because they would have taken entirely too much effort.

 Not that everything was a bowl of things that you like to keep in bowls—particu-
larly with early betas and lack of documentation; we definitely spent time whining and
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExviii
banging our heads into walls. Overall, though, we are pretty happy with WPF, and are
looking forward to where it’s going to go in the future.

 Fast forward a year or two, and one of us foolishly answered a phone call from
Mike Stephens at Manning, asking about a completely different project. After many
abject refusals, the conversation turned to WPF and the fact that there weren’t many/
any books out there that covered both WPF and Visual Studio 2008. Some slightly less
abject refusals later, we suddenly discovered that we’d signed a contract to produce
said book and have it ready in time for the release of Visual Studio 2008.

 The astute reader might check when VS 2008 came out and the published date on
this book and realize that we didn’t quite make our original deadline. But, rather than
laziness on our part, this really speaks to our timing genius—we managed to com-
pletely revise the book to take into account the many changes in Visual Studio 2008
SP1, which was released not long before these words were typed.

 The goal of this book is to provide a practical guide to building WPF applications
using Visual Studio 2008 SP1. It isn’t intended to replace the MSDN reference mate-
rial, but to provide guidance on how to get started and what you need to know to be
productive in WPF. Productive is a relative term, of course—WPF has a lot of cool capa-
bilities that can enhance your apps in many ways—and suck up all your available time
with tweaking. It’s up to you whether you can really ship your application without that
flaming drop-shadow…
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
This book wouldn’t exist if it were not for a conversation many months (years?
decades?) ago with Mike Stephens at Manning on an entirely different topic. Whether
this warrants thanks or not remains to be seen, but we do have to thank him for being
a great person to work with and for being incredibly patient with us as we watched
deadlines sail majestically by (and for having a great sense of humor).

 We also have to thank our fantastic editor Jeff Bleiel, and our original editor
Douglas Pundick who left for reasons entirely unrelated to us (we hope). Also, thanks
to the rest of the production team at Manning: Andrea Kaucher, Mary Piergies,
Maureen Spencer, Karen Tegtmeyer, Dennis Dalinnik, Dottie Marsico, Tiffany Taylor,
Leslie Haimes, Gabriel Dobrescu, and Ron Tomich.

 We’d like to thank these reviewers for their valuable feedback on the manuscript
during the various stages of development. Their insights and comments helped make
it much, much better: Tim Sneath, Beatriz Costa, Patrick Long, Lester Lobo, Don
Burnett, Andrew Konkol, Alessandro Gallo, Bryce Darling, Frank LaVigne, Nishant
Sivakumar, Rama Krishna Vavilala, Barry Elzel, Joe Stagner, Ben Constable, David
Barkol, Cal Schrotenboer, Oliver Sturm, Scott Pugh, Nick Kramer, Scott Baldwin, Dave
Corun, Mark Mrachek, Riccardo Audano, Darren Neimke, Jeff Maurone, Michael
Feathers, Doug Warren, Radhakrishna M.V., Jon Skeet, Tomas Restrepo, Berndt
Hamboek, Aleksey Nudelman, Andrew Stopford, John Price, and Curt Christianson.

 We also have to thank the legion of reviewers who took the time to review early ver-
sions of the manuscript on the Manning Author Online forum and who helped test
drive the code. A big shout-out also goes to the WPF blogging community who were
xix

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxx
running into and through issues that had us stymied, and who gave us a number of
ideas and insights.

 At Microsoft, we have to first thank Luke Hoban, who was not only willing to
answer irritating questions but also to bother all sorts of other people on our behalf
to answer irritating questions. Thanks also to Mark Boulter, The Program Manager/
Tech Lead on the .NET Client Team, for answering pages of questions while trying to
get not one but two massive products out the door. Sam Bent on the data binding team
spent several days confirming that we had hit real bugs, and were not insane. Well, not
just insane. Charlie Calvert and Kevin Moore also gave us a hand, which we appreciate.

 In the category of blatant friend abuse, we have to thank our blog-compatriot at
www.exotribe.com, Tim Binkley-Jones, for being a sounding board and for eventually
ending up doing our technical review, as well as David Russell for general guinea-pig
services (and who probably now knows more about WPF than either of us. Sigh).

 We also have to thank our wives—Tami Wandell and Adriana Wood—for not mur-
dering either of us in our sleep, an act which would have been entirely warranted.

 Finally, we would like to thank Microsoft for creating WPF—without which this book
would have been a lot more confusing, and much less likely to have been published.
www.it-ebooks.info

www.exotribe.com
http://www.it-ebooks.info/

about this book
This book is designed to give you a working knowledge of Windows Presentation
Foundation (WPF). The assumption is that the reader is already a .NET developer with
some familiarity with other UI technologies (WinForms, MFC, HTML) but is new to
WPF. In particular, the book focuses on using WPF with Visual Studio 2008, which we
believe is the primary tool that most WPF developers will use, although we still spend
some time talking about other available tools.

 Throughout the book, your authors have injected some measure of their twisted
humor, and have been known, on occasion, to resort to irony and sarcasm. We truly
love WPF, but we also try not to take anything too seriously—and we hope that it makes
reading yet another technical book just that little bit less gnaw-your-own-leg-off boring.

Roadmap
This book is broken down into four main parts. Part 1 is mostly about history and
overviews. Chapter 1 starts this off by explaining how drawing in Windows and on the
web got to where they are today, and the general way in which WPF addresses some
existing problems. Chapter 2 is the first chance to get your feet wet with some simple
WPF code, and also provides a guided tour of WPF-specific features of Visual Studio
2008. Chapter 3 provides a reasonably detailed look at what WPF is made of, as well as
various surrounding technologies and acronyms that are likely to cross your path.

 Part 2 covers the core concepts and technologies of WPF, primarily through an
extremely brilliantly thought-out example application (OK, OK, a calculator). Chapter 4
is all about layouts and the general laying out of content in WPF. In chapter 5, we
xxi

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii
introduce the most complex of the layouts—the Grid—and use it to rough in the cal-
culator example. Chapter 6 demonstrates how to control the look of an application via
the use of resources, control templates, and themes. In chapter 7, we cover the new
eventing model of WPF. Finally, in chapter 8, we pull out all the stops to make the calcu-
lator sexy and demonstrate some of the hotness that is WPF.

 Part 3 focuses on building real-world applications. In chapter 9, we show how to
build the framework for a complex application, including menus and toolbars. Chap-
ter 10 demonstrates WPF command routing. Chapter 11 shows how to hook up data to
WPF applications via data binding, including pulling data from databases, XML, or
objects in general. Chapter 12 continues the binding conversation with more
advanced types of binding and with the use of data templates to control the way data is
handled. We also explain the new Model-View-ViewModel pattern.

 Chapter 13 is about building custom controls in WPF—either one-off combinations
of controls, or standalone controls designed to be distributed. In chapter 14, we dem-
onstrate various ways of doing drawing in WPF, and in chapter 15, the last chapter of
part 3, we extend that to the third dimension.

 Part 4 covers some additional topics likely to be relevant to developing WPF apps.
Chapter 16 demonstrates building navigation applications—apps with back/forward
and hyperlinking support, which is built into WPF. In chapter 17, we take the naviga-
tion application and demonstrate how it can be hosted inside a browser via the use of
XBAP. We also demonstrate ClickOnce deployment with a WPF application and touch
(briefly) on Silverlight—a third way in which WPF can take to the web.

 Chapter 18 is all about printing and documents. WPF has extensive support for
printing and for transferring content around via XPS. In chapter 19, we take a break
from the boring stuff and demonstrate how to add slick transitions to your applica-
tions. We also talk a fair amount about designing an application to support effects.
Chapter 20 is about using other stuff with WPF, such as Windows Forms and WPF, and
using WPF with Windows Forms. Finally, chapter 21 covers threading, including the
new WPF Dispatcher, and timers.

 Throughout the text, we’ve also sprinkled various tips and nags on WPF, UI design,
and whatever else we felt like at the time. The book is generally designed to be read
from start to finish, but you can certainly jump around to different topics and use the
various chapters for reference as needed.

Code
This book contains a number of examples written in C# and/or in XAML. Although we
did most of the work using the Professional version of Visual Studio 2008, you can do
almost everything here using Visual Studio 2008 Express, which can be downloaded
for free from Microsoft at www.microsoft.com/express. We’ve tried to indicate when
particular capabilities require one of the for-money versions. All the source code for
the book (and a few additional examples) can be downloaded from www.manning.
com/WPFinAction or from our blog at www.exotribe.com.
www.it-ebooks.info

www.microsoft.com/express
www.manning.com/WPFinAction
www.manning.com/WPFinAction
www.exotribe.com
http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii
 The following conventions are used throughout the book:

■ Courier typeface is used to denote code samples, as well as elements and
attributes, method names, classes, interfaces, and other identifiers.

■ Code annotations accompany many segments of code. Certain annotations are
marked with bullets such as b. These annotations have further explanations
that follow the code.

Author Online
The purchase of WPF in Action with Visual Studio 2008 includes free access to a private
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the authors and other users. You can
access and subscribe to the forum at www.manning.com/WPFinAction. This page pro-
vides information on how to get on the forum once you are registered, what kind of
help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue among individual readers and between readers and authors can take place. It
isn’t a commitment to any specific amount of participation on the part of the authors,
whose contributions to the book’s forum remain voluntary (and unpaid). We suggest
you try asking the authors some challenging questions, lest their interests stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

 There are a number of good WPF resources out on the web, including:

■ The authors’ blog, which covers a number of topics (including WPF), at www.
exotribe.com

■ Microsoft’s windowsclient.net, which is a good place for general WPF (and Win-
Forms) articles

■ The WPF team blog at wpf.netfx3.com/blogs/presentation_bloggers
■ The blog of Tim Sneath, a Technical Evangelist at Microsoft and the creator of

the famed WPF New York Times Reader, at http://blogs.msdn.com/tims
■ Beatriz Costa’s blog, which is the place to go for data binding info, at www.

beacosta.com/blog

About the authors
ARLEN FELDMAN has been developing software professionally for over 20 years, and
has been a Windows developer for the last 14. He was chief architect for the award-
winning HEAT software product, and has been working with .NET since its earliest
days, including working with Microsoft on the direction of .NET, the C# language, and
Visual Studio, as a member of the C# customer council. Arlen specializes in architect-
ing and building metadata-driven applications, particularly focusing on the usability
issues of such systems. Because of an accident involving rogue metadata retrieval, his
brain is now a five-dimensional hyper-cube.
www.it-ebooks.info

www.manning.com/WPFinAction
www.exotribe.com
www.exotribe.com
www.beacosta.com/blog
www.beacosta.com/blog
http://blogs.msdn.com/tims
http://wpf.netfx3.com/blogs/presentation_bloggers
http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv
 Arlen is the author of ADO.NET Programming (Manning, 2003), and is currently the
Chief Architect for Cherwell Software, builders of .NET-based support solutions. He
lives in Colorado Springs, Colorado.

MAXX DAYMON learned BASIC (on a Commodore VIC-20) before he learned English.
His extremely eclectic background has given him experience with virtually every type
of personal computer and a whole host of different industries; he’s considered an
expert in the back-end to the front-end of application design. To say that he’s some-
what obsessed with human factors engineering would be like saying that Ghengis
Kahn kind of liked fuzzy hats.

 Maxx is MCPD Certified for both Windows and web development, and has been
working with .NET since its preview releases. Maxx is currently a Software Archi-
tect at Configuresoft, a leading developer of configuration-management and com-
pliance software.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that, for
learning to become permanent, it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action book is that it’s example-driven. It
encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.
www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of WPF in Action with Visual Studio 2008 is captioned “Henri,
Seigneur de Metz.” A seigneur was a medieval lord, who was granted power and privi-
lege by the King, as well as large tracts of land which he, in turn, then leased to others.
Metz today is the capital of Lorraine, a district in northeastern France.

 The illustration is taken from the 1805 edition of Sylvain Maréchal’s four-volume
compendium of regional and historical dress customs. This book was first published in
Paris in 1788, one year before the French Revolution. Each illustration is finely drawn
and colored by hand. The colorful variety of Maréchal’s collection reminds us vividly of
how culturally apart the world’s towns and regions—as well as its inhabitants—were
centuries ago. You could tell where they lived and what their station in life was by their
dress alone.

 Dress codes have changed since then and the diversity by region and class has
faded away. It is now hard to tell apart the inhabitants of different continents, let
alone different countries, towns, or regions. Perhaps we have traded cultural diversity
for a more varied personal life--certainly for a more varied and fast-paced technologi-
cal life.

 At a time when it is hard to tell one computer book from another, we at Manning
celebrate the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of many centuries ago, brought back to life
by Maréchal’s pictures.
xxv

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Past, present, and future

Before we get into the nuts and bolts of WPF, we think it’s important to
explain where WPF came from and why. That is the topic of chapter 1, “The road
to Avalon (WPF).” This background will help developers using existing technolo-
gies—Windows or web—understand the whys and wherefores of WPF and, in
particular, some of the bigger differences.

 We’ll also explain where WPF fits in the grand scheme of things (at least rela-
tive to the latest version of .NET) and provide a breakdown of the technology
and tools that make up WPF. That’s the topic of chapter 3, “WPF from 723 feet.”
This overview will provide a framework for understanding how all the bits and
pieces tie together and, if nothing else, will provide the keywords you’ll need
when searching Google!

 Part 1 isn’t entirely devoid of code. In chapter 2, “Getting started with WPF
and Visual Studio 2008,” we’ll provide an obligatory (if much reviled) Hello,
World! to give you an idea of what WPF development looks like. That chapter
also includes a tour of Visual Studio 2008, focusing on the features built specifi-
cally to support WPF.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The road to
Avalon (WPF)
When the development team at Microsoft started to work on their brand-new
framework for developing user interfaces, they used the code name Avalon. Avalon,
in British mythology, is the island where King Arthur was taken under the care of
the Lady of the Lake—until the time when he will return. The name conjures up
images of user interfaces with glimmering water and misty backgrounds.

 The marketing department at Microsoft, whose job it is to make technology
appealing to the masses, decided that a better, more appealing name would be Win-
dows Presentation Foundation (WPF). Ah, well. If the name isn’t particularly appeal-
ing, the technology certainly is.

 Building user interfaces (UIs) is an often underappreciated facet of develop-
ment. We, the authors of this book, have architected systems, large and small, deal-
ing with everything from the database, security, and communication, all the way to

This chapter covers:
■ A brief history of Windows drawing
■ A briefer history of web UI design
■ The underlying theory and purpose of WPF
■ Some slightly intemperate comments about

Microsoft’s marketing department
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 The road to Avalon (WPF)
the UI. It’s hard to say that one part of the infrastructure of a system is more or less
important than any other. To the user, the interface is the application. It doesn’t mat-
ter how brilliantly you build stored procedures or how carefully you make sure your
communications are secure. If the UI is poor, the application is poor. Period.

 That’s where WPF comes in. WPF is the latest Microsoft technology for building
rich Windows applications. Rich is one of the terms used to differentiate Windows
applications from browser applications.1 They’re also sometimes called smart applica-
tions or (usually if you’re a web developer) fat applications. In this respect, WPF can
be seen as the latest in the line of technologies including the Windows SDK, MFC, and
Windows Forms. WPF does include several other technologies, which we’ll discuss in
more detail in chapter 3; but, when you get right down to it, WPF is mostly about build-
ing Windows applications.

 This book isn’t only about how to use WPF—it’s also about how to use WPF well.
Throughout the book, we provide suggestions on best practices and good UI design.

 This first chapter explains some of the motivations for building WPF in the first
place, and provides an extremely high-level view of how WPF works. But, before we get
to that, we want to provide some historical context, explaining some existing technol-
ogies and comparing them to WPF. We take this approach partially to help bridge the
gap between how you currently go about building UI and how it’s done in WPF. We
also believe strongly in the maxim that those who don’t remember the past are con-
demned to repeat it. (And it was painful enough the first time through.)

1.1 The past and the present
Up until now, developing for Windows and for the web required a completely differ-
ent set of tools and technologies. This is hardly surprising considering the target
and genesis of each, but as times have changed, there has been a huge demand for
Windows-like tools for the web and web-like tools for the desktop.

 The results have been, shall we say, mixed.
 Bringing functionality from one platform to the other has generally involved tack-

ing additional functionality semi-randomly onto existing tools and technologies—sort
of like mounting an oven on the top of your SUV so that you can have snacks while you
drive. WPF, on the other hand, has the advantage of being built from the ground up
with this problem in mind. It can address the needs of its target domain and learn the
lessons from all the other frameworks and technologies that have grown up in the last
few years.

 WPF is primarily a technology for building Windows applications, but it also has a
web story and a document-format story. All these stories fall under the aegis of presen-
tation—presenting content to a user, whether via a rich application, a browser, or a
piece of paper.

1 Although a new term has started floating around—RIA for Rich Internet Application—when we use the term
rich, we’re specifically talking about non-browser applications.
www.it-ebooks.info

http://www.it-ebooks.info/

5The past and the present
 The Foundation part of Windows Presentation Foundation comes in because WPF is
the base for presentation-based applications, just as Windows Communication Foun-
dation (WCF) is the base for communication between applications. The names may be
a tad on the pretentious side, but for those of us who survived the alphabet soup of
Microsoft DNA, it isn’t too bad.

 WPF had the opportunity to start from scratch and learn lessons from earlier technol-
ogies. Two of the strongest influences on WPF were existing Windows development meth-
ods and web development—and by influence, we mean “let’s not do that ever again.”

 To understand how revolutionary WPF is, we should look at how Windows develop-
ment and web development came into being and how they exist today. You’re proba-
bly already somewhat familiar with the details of one or both technologies, but we’ll
try to highlight their genesis and some of the specific issues that WPF addresses.

1.1.1 Why Windows drawing is the way it is

Time passes strangely in the computer world. We talk about last year’s technology
being obsolete and only fit for the rubbish heap. At the same time, we end up having
to do things in certain ways because of decisions made decades ago. Windows first
came out in 1985, and Windows 3.0 (the first popular version) came out in 1990.
Despite the many enhancements and new versions, some of that early Windows code
is still floating around behind the scenes; and, more scarily, the patterns of that code are
still around, like some sort of design virus, even when the code itself has been
replaced. Figure 1.1 shows a screen shot from Window 3.x. Although it looks quite dif-
ferent than Windows XP or Vista, it is easily recognizable as a forebear.

Figure 1.1 Although Windows 3.x came out more than 15 years ago, it has an
influence on the UIs of today.
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 The road to Avalon (WPF)
Drawing/painting in Windows is one area where those original decisions have a
strong influence. Think back to the computer you were using in 1985. In the fledgling
PC world, 4.77 megahertz (note the m) machines were all the rage, and 640K was
more memory than anyone would ever need.2 The machine on which this text is being
written is about twenty-thousand times faster and has around two-thousand times
more memory (although, sadly, it takes much longer to boot than our machines from
1985). It’s important to our story to note that those fancy 640x480 256-glorious-color
VGA cards didn’t come out until 1988.

 Even with all those limitations, the Windows designers attempted to think ahead by
making things as abstract as possible. You didn’t code directly to the screen’s memory
but to a device context, which might be the screen or a printer. Instead of plotting every-
thing directly to the screen, you created brushes, fonts, and pens, and worked with
handles that abstracted them slightly (although woe betide anyone who had more
than five declared at one time). Windows—and the controls within windows—were
even represented by object-orientedish structures called classes, and referenced by
pointers, Handles to WiNDows (HWNDs).

 All this history matters today because, up until WPF, nearly every drawing technol-
ogy on Windows has sat on top of this design. MFC, for example, was a thin wrapper.
.NET Windows Forms, which is much more robust, does a lot to hide the complexity
and the arcane rules of working with the low-level libraries. Even with Windows
Forms, the original design occasionally leaks through. Why, when you draw a line,
does it end one pixel shy of where you said? Because HP was a big customer of
Microsoft, and their plotters needed the pens to stop short to avoid getting a notice-
able blob at corners. Why do the rules for disabled text differ from the rules for reg-
ular text? Because the developers working on the original UI library didn’t want to
wait around for the Graphics Device Interface (GDI) people to add disabled text sup-
port to their TextOut() function, so they created their own DrawText() function. It
goes on and on.

 The biggest legacy of all this is the philosophy of drawing. Each window is responsi-
ble for drawing itself and refreshing itself when asked. Drawing is done by using vari-
ous methods that set the value of different pixels on a pixel-by-pixel basis. And all the
drawing is done by your computer’s processor. This point may seem obvious, but it’s
not. In this day and age, graphics cards are extremely powerful. In an average gamer’s
PC, the graphics card may have more computing power than the computer itself. Yet,
when you write a Windows Forms application, as Mark Boulter3 says, no matter how
complicated the graphics in your application, you’re barely lighting up one diode on
your graphics card.

 WPF is an almost complete departure from this legacy. It’s almost complete because
WPF still has to interact with existing technologies at some level, and there’s still a sin-
gle HWND lurking below the surface of WPF applications. The existence of this HWND

2 Bill Gates supposedly made this claim in 1981, although he denies it!
3 The Program Manager/Technical Lead on the .NET Client Team
www.it-ebooks.info

http://www.it-ebooks.info/

7The past and the present
has some implications for WPF development, particularly when interacting with non-
WPF code. But, as you’ll see throughout the rest of this book, WPF is a new beast, built
from the ground up. It takes the best ideas from Windows drawing, web presentation,
DirectX, and modern graphics theory, with only a minimal thread tying it to the limi-
tations of the technology and ideas that have ruled GUI development for the last
20 years.

 To see exactly how far we’ve come, we should look at how existing Windows appli-
cations work.

1.1.2 How we currently create Windows UIs

When you look at a Windows Forms application (or an MFC or ATL application, or
even one written using C and doing low-level message handling) you’re looking at
some number of windows. If you see a dialog with some text, a text box, and a couple
of buttons, you’re probably looking at five windows—one for the dialog, one for the
text, one for the text box, and one for each of the buttons.

 Each of those windows is responsible for painting itself and responding to mes-
sages. Messages might be things like “the mouse has moved over me” or “I just got
focus.” For some windows, such as buttons, Windows (capital W) knows what to do
and automatically provides basic handling. For others that do their own things or have
special behaviors (for example, a button that looks like glass), the applications are
responsible for handling everything themselves.

 The fact that each window is responsible for painting itself is important. If you
drag something over the top of the dialog and then move it, Windows doesn’t remem-
ber what that dialog looked like. Instead, it sends a message to the dialog, and to each
window within the dialog, telling them each to repaint themselves. The major reason
why Windows works that way is that there isn’t enough memory to store the bits repre-
senting each separate pixel on all the possible overlapping windows.

 To be consistent with this approach, when a window wants
to change the way it looks, it doesn’t just repaint the bit of
the screen that it occupies. For example, consider what hap-
pens when you click a button. When the mouse is pressed,
the button has to be drawn in a depressed (or happy but
pushed) state. Instead of painting over that bit of the screen,
this is more or less what happens (figure 1.2):

1 The user clicks the mouse over the button.
2 The button detects the mouse-down.
3 The button Invalidates the bit of the screen it occupies, telling Windows that it

needs to be repainted.
4 Windows (at some point in the future) sends a Paint message to the application,

telling it to repaint part of itself.
5 The application passes the message to the button.
6 The button draws a depressed version of itself.

Figure 1.2 To have a
control change state, you
have to force it to redraw
itself, as with these
buttons shown before
and during a click.
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 The road to Avalon (WPF)
There are two important points to remember about the way Windows UI works:

■ Each window is constantly redrawing itself—when it’s first created, when it’s
covered and then reexposed, or when something about the look-and-feel needs
to change.

■ Controls are responsible for receiving messages from Windows and handling
them appropriately. These messages are pretty low-level—“the mouse moved
over me,” “focus has changed from me,” and so on. Windows Forms does some
wrapping to make handling these messages as painless as possible, but rest
assured, messages are zipping merrily back and forth behind the scenes. If you
want to customize behavior or look-and-feel, even in Windows Forms, you need
to know a lot about handling messages.

Finally, there’s the drawing itself. When the application is told to paint something, it
works with a device context (wrapped in a Graphics object in Windows Forms). The
device context/Graphics object is an abstraction so that the same code can paint to a
printer, to different screens, to a bitmap, and so on. A good (but not entirely accu-
rate) way to think of the device context is as a surface on which you can draw.

 Drawing is a matter of calling various methods for things like rectangles, shapes, or
text. This is much like painting in a drawing program. Once you draw a circle on a
device context, it’s no longer a circle, but a bunch of dots with color values. The same
thing happens with drawing lines, dots, or even text—although text is special because
graphics cards and printers work better if they know that they’re printing text instead
of dots. But for all practical purposes, the text is just dots as far as any interface that
you can get to is concerned.

 If you’ve used fancy layout programs like CorelDRAW or Visio, you know that you
can click circles, for example, and move them around. The drawing program is doing
all the work, including determining whether your click was inside the circle or outside
it (which can get complicated with more complex shapes) and telling Windows to
redraw the parts of the screen where the circle was and where the circle has moved to.

 The way in which classic Windows draws is very different from the Visio approach,
bringing us to one final important point:

■ In classic Windows applications, everything you see, as far as Windows is con-
cerned, is a bunch of colored dots.

This statement is a ridiculously high-level overview of how classic Windows UIs are cre-
ated; but, when we talk about the way in which WPF handles drawing, you should
remember these three important points to see how different WPF is.

 Programming Windows UI is often about figuring out how to do things. At the
same time that Windows development was maturing, the World Wide Web came into
being. On the web, everything was about what you wanted to say, with the details of
presentation left to the browser. As the web developed, more and more effort went
into controlling how that content was presented.
www.it-ebooks.info

http://www.it-ebooks.info/

9The past and the present
1.1.3 Why the web is the way it is

In 1990, around the time Windows 3.0 was being released, Tim Berners-Lee was busy
creating the World Wide Web. Originally designed to author and disseminate docu-
ments, the web has grown into a multipurpose platform far beyond its original roots.
Through many incremental advances, the web has become an application platform,
although it’s still fundamentally document-centric. The evolution of the web into an
application platform is a testament both to the flexibility of the system and to the cre-
ativity of the developers who write applications for it.

 HTML is the means by which web content is created and displayed. Early HTML was
mostly semantic. Semantic HTML is HTML in which the tags describe the structure and
meaning of the content, not the way it’s presented. For example, rather than declar-
ing the font, size, and style of text as you might do in a word processor, you declare the
text as being a header, paragraph, a citation, and so on. The web client software then
determines the appropriate font, size, and style to render. This is particularly relevant
because control of the presentation of documents by the document authors wasn’t a
primary concern, and even something to be avoided.

 Then something happened that turned all of this on its head. War was declared!
THE FIRST GREAT BROWSER WAR

In the mid-1990s, seeing the potential of the web, Marc Andreessen and Jim Clark
formed Mosaic Communications Corporation (later to become Netscape). When
excitement around the web grew, it eventually caught the roving (Sauron-like) eye of
Microsoft, who then entered with their own web browser, Internet Explorer. The
increasingly tense competition resulted in a number of design decisions that would
simultaneously advance and drag down web development for years.

 The first casualty was the erratic and uncontrolled expansion of HTML. To gain
favor, Netscape and Microsoft both added tags to HTML that would describe, not only
what a given block of text was for, but also how to format the text. The most egregious,
shark-jumping example of these additions would have to be Netscape’s inclusion of
the <blink> tag. (And shame on you if you ever used it.)

 At the same time Netscape and Microsoft were battling it out, developers were pil-
ing onto the HTML bandwagon. In wild-west style, people were staking claims and fig-
uring out what worked and using it, even if it only worked because of an accident or
side effect of that week’s browser release.
TOO LATE FOR CONFORMANCE

By the time standards were starting to get nailed down, it was already too late. Too
many people were relying on the side effects. The solution? Make conformance
optional. An HTML document could violate the rules4 of HTML, and browsers would
simply do their best to display the document. The ability to render invalid HTML even
became a selling point. A great deal of energy today goes into browser development to

4 The rules around the HTML document structure are defined by a metalanguage called SGML, but even that
wasn’t true until HTML 2.0.
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 The road to Avalon (WPF)
make invalid documents display correctly. (Browsers to this day have things like quirks
mode and, we kid you not, almost-standards mode)

 In the last few years, there has been some improvement with the introduction of
Cascading Style Sheets (CSS). With CSS, the content to be rendered (in the HTML) is
separated from the instructions as to how it should be rendered (in the CSS). In addi-
tion to making things simpler, this approach provides significantly more control over
how content is rendered.5 HTML with CSS is an example of the concept of separation of
concerns, which we’ll touch on throughout this book.

 As with existing Windows technology, the WPF team looked thoroughly at how UI
works on the web, so it’s worth spending time talking about this ourselves.

1.1.4 How UI is created on the web

The basis for any true web application6 is HTML.
HTML provides for UIs indirectly through a subset
of native platform controls. This control support
was originally provided to enable form-based doc-
uments with fillable fields. By design, a limited
subset of controls is exposed by HTML for this
purpose (figure 1.3). One important goal of
HTML is to be usable across a wide variety of plat-
forms and devices, and that goal tends to gravitate
toward the lowest common denominator of the
platforms of interest. The lack of controls can be
problematic for developers. In particular, we’ve
seen the lack of tree controls, combo boxes, and
calendar controls cause many Windows develop-
ers confusion and grief when first introduced to web development.

 Though not essential, JavaScript is the second tool in the web UI designer’s tool-
box. JavaScript is an object-oriented7 (OO) scripting language that enables use of the
events on HTML elements and controls and allows behavior to be overridden to an
extent, providing a much richer user experience. Without JavaScript, web UIs are
extremely limited and largely only support the form-submission model from HTML,
where controls may either contain information (text box, radio button, check box),
send information to a server (via form button), or abandon a view entirely (by leaving
the page).

5 For a CSS tour-de-force, visit www.csszengarden.com. We haven’t seen a better site for demonstrating the
power of CSS as a theming device.

6 For the purposes of this discussion, a web application is one that doesn’t rely on any platform-specific tech-
nologies such as ActiveX or Flash, which should be considered to be Windows or Flash applications delivered
via HTTP.

7 Few statements in the book have generated more comments in the forums and from reviewers than this. Yes,
JavaScript is an object-oriented language, although it’s rarely used as such.

Figure 1.3 The set of available native
controls in HTML is limited. This image
shows most of them.
www.it-ebooks.info

www.csszengarden.com
http://www.it-ebooks.info/

11Why Avalon/WPF
 The third major tool, CSS, provides the developer with the ability to fine-tune the
look and behavior of the UI. CSS is used to define the way content should be pre-
sented by providing styles that are applied to various elements. The degree to which
the presentation can be altered lies within the constraints of CSS itself. Prior to wide-
spread support of CSS, web-based interfaces (and documents, for that matter) tended
to include an obscene number of tables to influence the layout of the UI. Like HTML,
CSS is oriented around the formatting of documents and tends to center around page-
layout instructions.

 To summarize, we want to emphasize two important points for web UI development:

■ Web UI is described using HTML and CSS. The browser then follows a set of inter-
nal rules to create the UI from the descriptions given to it. Describing what you
want, rather than specifically coding it, is the basis of declarative programming.
This approach can be extremely powerful, as it greatly simplifies UI design and
allows for dynamic UIs.

■ A web developer doesn’t have direct control over the UI. Through use of HTML, CSS,
and JavaScript, the web developer influences the UI, but ultimately, the browser
has the final word. If CSS doesn’t support a text style you want, you can’t add it. If,
for example, CSS didn’t support strikethrough, you’re pretty much out of luck
(barring some ugly image-based hack). Contrast this with native UI develop-
ment in which the developer may choose to take over virtually any aspect of pre-
sentation and behavior of a UI element.

Some web application frameworks overcome, in varying degrees, many of the limita-
tions discussed—albeit with considerable effort. The best of these frameworks typi-
cally create an entire presentation layer based on JavaScript, many generic HTML
<div> and tags, and extensive use of CSS. Although the results can be impres-
sive, the downside of this approach is that a tremendous amount of power is dedicated
to providing a user experience on par with Windows 3.1.

 Now, imagine a markup language with the simplicity and declarative style of HTML,
but expressly designed for describing applications rather than documents. Imagine a
framework that uses the massive power of modern Graphics Processing Units (GPUs) to
provide the next generation user experience. Enter Windows Presentation Foundation.

1.2 Why Avalon/WPF
Why did Microsoft decide that it was time to completely re-create the way in which UIs
were built? In many ways, the last two sections provide a lot of reasons—the technol-
ogy behind Windows UI is creaking. The technology behind web UI is being tortured
into something that can be used for building applications. Both have some powerful
capabilities and concepts, but the two certainly don’t play well together.

 Microsoft had big goals for Windows Vista, their new flagship OS. Sadly, a lot of
these goals have been missed, such as Windows Future Storage (WinFS), the SQL
Server-based replacement for the NTFS filesystem. As far as presentation is concerned,
WPF delivers on most of its promises (and doesn’t even require Windows Vista).
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 The road to Avalon (WPF)
 Obviously, some of the impetus for a new graphical system is market driven. Any-
one who has any familiarity with Macintosh OS X knows that it’s extremely slick, both
to use and to code. Although Apple’s market share is pretty small8 in comparison,
Microsoft knows a good idea when they see it. Even if keeping up with the Jobses was
one of the driving factors behind the decision to create WPF, there were also a lot of
specific technical goals, as follows:

■ To use modern hardware—Hardware has changed a lot in the last decade or two,
but taking advantage of the hardware requires extremely specialized coding.
WPF should make use of the underlying hardware by default.

■ To use modern software design —When the graphic subsystem of Windows was
first created, things like OO development, patterns, and garbage collection
were either nonexistent or bleeding edge. WPF should be built using mod-
ern software design and easy to access by programmers who use modern
software design.

■ To separate presentation from presentation logic —WPF should allow programmers to
develop the look-and-feel of an application independently from the logic that
makes it work.

■ To simplify coding —Doing simple things is pretty easy, but WPF should make
doing complex, formerly painful things relatively easy as well.

We’ll dig a little deeper into each of these goals.

1.2.1 Taking advantage of modern hardware

Earlier, we talked about how little advantage most Windows applications take of the
super-powered graphics cards in most of today’s PCs. Prior to WPF, to do any sort of
serious graphical UI, you were required to use DirectX or Open Graphics Library
(OpenGL). It’s ironic that programming games required doing some of the most
unpleasant types of programming. Making the standard library for Windows UI take
advantage of current and future graphics cards was important.

 But modern hardware refers to more than the graphics card. For example, tablet
PCs are becoming popular (well, more popular), and handheld devices in general are
everywhere. Handling their specialized input easily was important—which is where
Ink comes in. Ink is the technology that provides support for writing directly on
screens and converting that writing into text. WPF applications can get input from Ink,
merging it with standard mouse and keyboard input so that your applications work
reasonably, even if not built for tablets.

 Modern display devices also needed to be addressed. Multiple monitors are now
much more common, and high-definition displays will be the norm in the near future.
Even today, many machines ship with their dots per inch (DPI) set to 120, instead of
the standard 96 DPI to which most applications have been developed. Windows Forms

8 Apple’s handicap is its size, whereas Microsoft’s is its size.
www.it-ebooks.info

http://www.it-ebooks.info/

13Why Avalon/WPF
and other technologies play tricks to try to make things look the same when changing
DPI. But it doesn’t work all that well. It’s not uncommon for applications to wrap text
strangely or have oddly sized text when running at an alternative DPI (figure 1.4).
These approaches don’t take advantage of the better equipment; instead of having a
sharper UI, the UI just gets smaller.

 If Microsoft’s own applications don’t handle DPI changes well, what chance do we
have? To date, the most common solution has been to request that users not use the
fancy new modes of their equipment—not a popular workaround.

 WPF is built on top of Direct3D, which can take advantage of the features of cur-
rent and new graphics cards as they come out. As you’ll see, it also has a clean
approach for the DPI problem. WPF uses device independent pixels (DIPs). There are
always 96 pixels to an inch. If the DPI setting of the target device changes, everything is
automatically scaled up or down. The main reason that 96 was used is that most cur-
rent hardware uses 96 DPI. Also, it’s easy to scale from 96ths of an inch to 72nds of an
inch, which is what most fonts use.

1.2.2 Using modern software design

It’s a little odd to describe object-oriented programming (OOP) as modern, given that
it’s been around since the ’70s. It wasn’t until much later that the concepts and tech-
nology caught up with the promise of the early days. Windows Forms is OO, and MFC
is—um—MFC has things called classes. Both MFC and Windows Forms are wrappers
on low-level technology, and the underlying mechanisms have a lot of influence on
the higher-level design. Also, the non-OO stuff underneath peeks its head out rather
more than is desirable. WPF was built OO from the ground up.

 The WPF API is also completely managed, and almost all of WPF itself is written with
managed code. This is a major change for Windows. For the first time, there’s no
underlying C interface that you can call directly—the managed code is the code.
Some advantages to going managed are, as follows:

Figure 1.4
Most applications don’t
handle DPI changes
elegantly. These are
Windows programs running
at a higher DPI, with various
poor side effects. Vista
handles higher DPI settings
better than XP but still has
issues; for example, old
toolbars tend to be tiny.
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 The road to Avalon (WPF)
■ Managed WPF code operates extremely smoothly with applications that are
also managed.

■ Having a model that relies on garbage collection means that the design of the
framework isn’t driven by the need to clean up after resources.

■ Being able to use reflection to discover behavior means powerful tools that can
pick up new capabilities automatically.

■ Possibly the most important benefit of being managed is avoiding the serious
security issues of the older C APIs. It’s harder to exploit vulnerabilities, and you
can also safely run WPF over the web (picture this on Amazon.com) and know
that the code is limited to a properly secure sandbox.

NOTE Managed code is Microsoft’s term for code designed to operate with the
.NET Common Language Runtime (CLR). Before managed code, a pro-
gram was compiled directly to a machine-understandable format and did
what it liked. Now programs are compiled into an intermediate language
(called, cleverly, Intermediate Language) that’s processed by the CLR at
runtime. It’s beyond the scope of this book to go into a detailed explana-
tion of why managed code is a good idea and how it works in detail, but it
does provide a huge number of advantages including security, garbage
collection, interoperability between languages, reflection, better multiple
target support, and extra dessert on Tuesdays.

Being managed is hardly the only modern thing about WPF. The framework makes use
of best practices and patterns developed over the last umpteen years. WPF isn’t ham-
pered by limitations that no longer exist (640K, anyone?).

1.2.3 Separating presentation logic from presentation

Hard as it is to admit, most programmers are not artists. That
isn’t to say we don’t try; given six or seven hours, we can
come up with a 16x16 toolbar button that’s almost (but not
quite) recognizable. Design has become harder as resolu-
tions and user expectations have increased (figure 1.5).
Microsoft has recognized this difficulty and has built WPF
with the explicit idea that a developer will make things work,
but a UI designer will make things look nice. In WPF, the
graphic designer can take the description of the UI and
make it pretty without (we hope) breaking the behavior.

 The downside to this theory is that many companies don’t bother with a UI
designer, so developers are still responsible for the look-and-feel of many applica-
tions.9 We think it will be a long time before most companies have the resources to
create the desired separation of responsibilities suggested by Microsoft. Fortunately,
the default behavior for UI is reasonably sane with Visual Studio. The problem is

9 Although the design of WPF and Windows Vista may cause this to change.

Figure 1.5 Which one
requires an artist? Users
have a much greater
expectation for pretty
UIs these days.
www.it-ebooks.info

http://www.it-ebooks.info/

15Why Avalon/WPF
that, although Windows Forms was flexible, there was a limit on how horrible a UI
could be developed. With WPF, the opportunities for crimes against good taste have
expanded exponentially.

 One major benefit of separating the look-and-feel from the behavior is in prototyp-
ing UIs. Often, if a company does have a graphic artist, he’ll create mock-ups in tools
like Photoshop or Flash. The mock-ups may be pretty, but they have two big problems.
First, Photoshop can create pictures of anything. WPF is flexible, but replicating an art-
ist’s painted vision can be, shall we say, difficult. Second, the prototype is a throwaway;
it has nothing to do with the real application. With WPF and XAML, the graphic designer
can build his mock-up using tools that create real WPF UI elements. The developer can
take that UI and make it work. If things need to change, the mock-up just has to be
updated—a necessary task anyway because it’s now part of the application.

1.2.4 Making it simpler to code GUIs

This is one of those sections that can get you into a lot of trouble. WPF does simplify the
development of UIs. In particular, it makes it easier to do things that would have previ-
ously been extremely difficult and required an extensive knowledge of underlying
APIs. But in some respects, programming with WPF will make some things harder!

 The reason for this interesting contradiction isn’t so much WPF itself, but the
broader target of applications. It’s still possible to build a dialog by dragging a bunch
of controls onto a form, positioning them in a way that looks nice, and then going for-
ward. But if you want that form to adapt properly when the display device is at a differ-
ent DPI setting or automatically adjust when terminology changes or be set up
properly for your graphic artist to work out the ideal look-and-feel, you’ll have to
spend more time upfront planning and setting up your UI elements.

 In addition, WPF and Windows Vista will raise the bar on what’s considered accept-
able UI. The tools keep improving, but so do the targets. For example, a few years ago
(okay, a decade or so ago), features such as toolbars, context menus, and drag-and-
drop, weren’t expected. Now, they’re considered basic functionality. An application that
doesn’t take advantage of the richness of WPF will, in a few years, stand out starkly. We
have to do more work to provide the basics.

 Even so, WPF does make it easier to do most things. There’s also a great deal of tool sup-
port, both within Visual Studio and with tools like Expression Blend for graphic designers.
The tools will also improve with time, and third-party tools are already available.

 Overall, WPF has done a good job of addressing all of these goals and a host of
lesser goals including animation support, 3D drawing, style support, and a consistent
printing model. As you’ll see as we move forward, there are literally dozens of other
advantages to WPF.

 So, what is involved in building a WPF application? In the next chapter, we’ll show
a more complete example, but we first want to talk about the building blocks and
tools involved in creating a WPF application.
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 The road to Avalon (WPF)
1.3 Creating UI using WPF
In many respects, developing WPF UI is much more like building web UI than native
Windows development. WPF development is more about “what do I want” than “how
do I make it work.” You start by defining the elements that make up your UI and go
from there. There are also two (and one-half) different ways in which you can specify
what you want. One way is by writing code to create the various elements and appro-
priately associate them. The other way is by using XAML. The remaining one-half is to
use the designers and tools such as those in Visual Studio or Blend.

 In the next sections, we’ll talk about how to define UI in WPF, and then we’ll talk
about WPF’s approach to rendering that UI.

1.3.1 Defining WPF UI with XAML

XAML (pronounced zammel) is an acronym for eXtensible Application Markup Lan-
guage and is an XML-based specification for defining UIs.10 Although XAML was cre-
ated specifically for WPF, it’s possible that, in the future, it might be used for defining
UI for other things. It wouldn’t be too far-fetched, for example, to see some version of
XAML replace HTML!11

 Using XAML, you can describe what your user interface should look like. This is
technically called a declarative programming model. WPF will take that definition and
convert it into real elements on the screen. For example, let’s look at the canonical
(albeit somewhat dull) Hello, World! example (listing 1.1).

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
 <StackPanel>
 <Label>Hello, World!</Label>
 </StackPanel>
</Page>

If you’d like to see what it looks like (it will be a big surprise, we assure you), there’s a
great utility program called XAMLPad that comes with the Windows SDK. It should be
on the SDK menu, under Tools. Run XAMLPad and type in the example into the win-
dow at the bottom. You should see something like figure 1.6.

 The XML here is validated by a schema, which is referenced in the xmlns attribute
in the first line. The schema enforces the correctness of the XAML. The enforcement of
the schema goes extremely deep; XAML documents are strict XML. Every tag (for exam-
ple, StackPanel or Label) and attribute (for example, Margin or FontSize) must corre-
spond to a valid .NET type or property. If a tag has the wrong case or an unknown

10 Technically, XAML can also be used for other technologies, such as defining workflows, but its raison d’être is
for designing UI via WPF. In fact, XAML used to stand for eXtensible Avalon Markup Language, (remember:
Avalon was the code name for WPF), but they changed it to Application because Avalon wasn’t going to be
the public name.

11 What is far-fetched would be the W3C accepting a standard patented by Microsoft, and using it…

Listing 1.1 Hello, World! in XAML
www.it-ebooks.info

http://www.it-ebooks.info/

17Creating UI using WPF
attribute is used, the resulting XAML won’t work. The benefit of this validation is that
XAML won’t ever fall into the black hole of quirks, incompatibilities, and haphazard
development of HTML.

 There are a fair number of other markup languages for designing user interfaces,
such as MXML (Adobe Flex), XUL (Mozilla/Firefox), and GladeXML (GNOME/Linux).
Given the ubiquity of Windows, it’s likely that XAML will quickly become the most
widely deployed of these languages.

1.3.2 Defining WPF UI through code
You don’t have to use XAML to define UI elements. You can write code to define your
UI, much as you did with Windows Forms. This is the classic imperative programming
model that we all know and love. Alternatively, you can mix and match—define the
basics in XAML, but have some elements added in code. The following code does
exactly the same thing as the XAML in listing 1.2.

Window window1;
Page page1;
StackPanel stackPanel1;
Label label1;

public Procedural()
{
 window1 = new Window();
 page1 = new Page();
 stackPanel1 = new StackPanel();

 label1 = new Label();
 label1.Content = "Hello, World!";

Listing 1.2 Hello, World! in code

Figure 1.6 Hello, World! in XAMLPad. XAMLPad is a utility that can immediately
render XAML as you type.
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 The road to Avalon (WPF)
 stackPanel1.Children.Add(label1);
 page1.Content = stackPanel1;
 window1.Content = page1;
}

One thing should be immediately obvious: The declarative model (XAML) is much
more concise and easier to read. Declarative programming recognizes that domain-
specific problems (such as creating a UI) generally operate in a well-known and pre-
scribed fashion. Think about creating a form using Windows Forms. The designer cre-
ates procedural code that always does the exact same thing: It declares a set of
controls, sets the relevant properties on them, and adds them to each other as neces-
sary. Using XML to create a declarative UI language, the parenting of controls can be
implied based on the hierarchy of the XML, and each control is declared with the rel-
evant attributes set.

 But you can’t do everything in XAML. For example, if our Hello, World! had put a
button on the screen, you could, using XAML, completely change the way the button
looks and even make it do things like change color when the mouse moves over it. But
if you want the button to do something useful when the user clicks it, you have to add
code somewhere.

 Also, some things that can be done in either code or XAML are easier to read in
code. You’ll see this as we go through various examples. The nice thing is that you
have the choice.

 In this day and age, we don’t necessarily expect to have to write presentation code
from scratch; rather, we rely on tools.

1.3.3 Defining WPF UI with tools

We said that there are two and one-half ways to build user interfaces in WPF. The first
two are declarative (XAML) and imperative (coding). In all probability, much of your
work will be done using the half—Microsoft’s nifty tools for graphic designers, such as
Visual Studio 2008 and Microsoft Expression Blend.

 Visual Studio has a WPF form designer that’s similar to the one for Windows Forms.
But by switching to a declarative model, the tools can become much better and more
reliable. Prior to XAML, typical UI development involved a delicate editing dance
between the developer and IDE. Unfortunately, things could get out of hand (short-
hand for “the bloody designer ate my form again”) if the design view and code view
got out of sync. Partial classes were added to .NET 2.0 largely to support the IDE writ-
ing UI and web code. The core problem is that the imperative model doesn’t fit well
with the UI designer concept. Declarative models work extremely well—so well that
working on the UI and code independently is now not only possible but a reasonable
and recommended approach.

 Now that the look-and-feel of the UI can be defined in XAML, linked only by refer-
ences to the code, it becomes much easier to have different tools (such as Expression
Blend) for graphic designers that let them play with look-and-feel without messing up
the underlying code, and vice versa.
www.it-ebooks.info

http://www.it-ebooks.info/

19Creating UI using WPF
 Unfortunately, there’s a reason why we called using tools only half a method. WPF is
so flexible, and the tools are new enough, that there are severe limits to what they can
do. You’ll probably find yourself dropping into XAML often. We hope that, as the tools
mature, this will become less necessary, but it’s unlikely that the tools will ever be able
to handle everything that WPF can do.

 No matter how you choose to build your user interface—via XAML, code or with
the use of the provided tools—you still end up with a description of how your UI
should look. It’s then up to WPF to figure out how to present that UI and make it
behave appropriately.

1.3.4 Who does the drawing

As you may have noticed, XAML is a lot like HTML. Rather than specifically turning on
dots on the screen when you’re told that you need to repaint, you describe what you
want and get out of the way. Unlike HTML, you have extreme control over the way in
which everything is rendered.

 When using WPF, you describe the look-and-feel and the behavior of the UI. WPF
then takes care of making all that work. Then, you only have to worry about dealing
with application behavior. If you, via XAML, say that you want a video to show up on a
button whenever the user moves the mouse over it and then have the button change
color, WPF takes care of it for you. You don’t have to watch for mouse move events to
start and stop the video, manage the state of the button, and so on.

 You can look for and handle the low-level messages about mouse moves and other
messages, but the situations where you have to are rarer. WPF has an extremely power-
ful event model for dealing with the types of events that you do care about, which we’ll
discuss later in great detail.

 WPF works with your graphics card under the hood, offloading the heavy lifting of
drawing. This cooperation means that you can have a significantly more complex UI
that runs much more smoothly than a relatively simple Windows Forms application that
has to do the drawing, handle input, and do the dishes, as well as all the application-
specific work.

 We said that you describe the UI to WPF. This approach goes all the way from com-
plex control trees, right down to low-level drawing.

1.3.5 Pixels versus vectors

We haven’t discussed straight drawing much yet. When talking about classic Windows,
we pointed out that you’re drawing dots on a surface. If you draw a circle, it gets
turned into a set of dots. Nothing in the system is aware that those dots make up a cir-
cle. This approach is called immediate mode drawing.

 WPF, on the other hand, remembers what you’ve drawn. If you describe a circle, to
WPF it is a circle and can receive events and be scaled as a circle. This is part of how WPF
can do what it does—it doesn’t have to store each separate pixel and ask for more
information when sizes change. It only has to know a center point and a radius. This is
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 The road to Avalon (WPF)
called retained-mode drawing. Conveniently, modern graphics cards know how to draw
circles too, so WPF can pass that information to the card to do the work.

 But screens these days don’t know how to draw circles. Everything eventually does
get turned into dots, but it’s done at the last point of contact, not the first, and that
makes a huge difference. Interestingly, monitors used to be able to draw vector-based
images (although circles were pushing it). If you ever played some of the old video
games like Asteroids or Battle Zone, those games did everything by constantly redraw-
ing vectors to the screen.

1.4 Summary
In the section about Windows and web UIs, we brought up a number of important
points about the ways in which each work. Now that we’ve also talked about how WPF
works, we’d like to revisit those points and compare the old and new worlds:

■ In classic Windows, the application is responsible for drawing itself whenever
it’s told to do so. In WPF, the application describes how the UI should look and
then lets WPF do all the drawing work. Even if you decide to do the rendering
for a specialized control yourself, you don’t have to keep doing it. WPF will ask
your custom control to render (literally calling the OnRender method on your
control), you do the drawing once, and then WPF handles it from there, unless
you specifically indicate that something has changed and that you want to ren-
der the control differently. This approach is referred to as retained-mode drawing,
and we’ll go into much more detail about this topic when we talk about drawing.

■ In classic Windows, the application receives low-level messages from the OS.
The application must appropriately handle the messages to change appearance
and so forth, and to determine that an event that relates to the application logic
has taken place. (For example, the mouse was pushed down and then released
while over the button so that’s treated as a click.) In WPF, the low-level stuff is
taken care of. You only have to worry about events that relate to application
logic, and WPF provides lots of support for making handling application-level
events even easier.

■ In classic Windows, you draw dots on a surface. The dots are just dots with no
semantic meaning. In WPF, you draw shapes, and WPF intrinsically understands
that they’re shapes.

■ On the web, UI is described by HTML, just as WPF UI is described by XAML.
Unlike HTML, XAML is strongly typed and validated, so the description is reli-
able and consistent.

■ On the web, you’re extremely limited as to what you can control as far as the UI
is concerned. In WPF, you have control over everything.

■ Falling between the two sections, for both classic Windows and the web, the
look-and-feel and the behavior of the UI are tightly coupled. In WPF, you can
completely divorce the two so that a graphics designer builds the look-and-feel
and a developer makes the application operate.
www.it-ebooks.info

http://www.it-ebooks.info/

21Summary
Any one of these points would be enough to make WPF significantly superior. In addi-
tion, you’ll discover dozens of other smaller advantages to WPF throughout the book.
As we go through different facets of WPF, we’ll revisit these points to highlight advan-
tages (and potential pitfalls) of the WPF approach.

 In the next chapter, we’ll provide a simple demonstration of using WPF with Visual
Studio, and we’ll also tour Visual Studio 2008 and its WPF-specific features. After that,
in chapter 3, we’ll discuss all the various technologies that make up and surround WPF.
www.it-ebooks.info

http://www.it-ebooks.info/

Getting started with WPF
and Visual Studio 2008
We have a confession to make. We hate Hello, World! applications. When we first
started this book, we decided categorically that we were not going to put one in—
particularly not one that looks almost identical to one you might have built in any
other Windows presentation medium for the last decade.

 However…
 We need to accomplish a few things before we can move on to the interesting

stuff. First, we need to go through the basic steps for creating a project in the envi-
ronment to make sure that everything is set up and building correctly. Second, we
want to talk about some options related to applications with WPF, and doing that
with something simple is more straightforward. Finally, we want to point out the
various features of Visual Studio 2008 for working with WPF.

This chapter covers:
■ Building a simple WPF application
■ Targeting different versions of the .NET runtime
■ The joy of TextBlocks
■ A guided tour of Visual Studio 2008
■ Why Kernighan and Ritchie won’t return our

phone calls
22

www.it-ebooks.info

http://www.it-ebooks.info/

23Your grandpa’s Hello, World!
 Ignoring our cursing of Kernighan and Ritchie for starting the practice in the first
place, we present a Hello, World! application for your edification and enjoyment.

2.1 Your grandpa’s Hello, World!
Creating a WPF application in Visual Studio is pretty much the same as creating a
Windows Forms application. In fact, the process is similar enough that it’s easy to cre-
ate the wrong type of application—Visual Studio still contains complete support for
Windows Forms applications. This is a mistake that we, the authors, make continu-
ously when we’re not paying attention. As you can see in figure 2.1, it’s easy to confuse
the two.

 If you want to follow along, run Visual Studio 2008, and create a new project of
type Windows Application (WPF) as shown in figure 2.1.

 By the way, notice that in the upper-right corner of this dialog is a combo box that
says .NET Framework 3.5.1 A new feature of Visual Studio 2008 allows you to target dif-
ferent versions of the .NET Framework. This is incredibly handy because it means that

1 If you’re using the Express version of Visual Studio, this combo box isn’t shown, but you can still change the
target platform in the Project Properties page.

Windows Forms

WPF Application

Framework Target

Figure 2.1 Creating a new WPF Windows project via the New Project dialog in Visual Studio
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Getting started with WPF and Visual Studio 2008
you can use the latest tools even when building old applications. You have the follow-
ing options:

■ .NET 3.5 —The version of .NET that ships with Visual Studio 2008. New projects
should generally use this. Technically, the latest version of Visual Studio ships
with .NET 3.5 SP1, but this difference should rarely be an issue because anyone
who has .NET 3.5 will probably already have received 3.5 SP1 via Windows Update.

■ .NET 3.0 —The version of .NET that ships with Windows Vista. If you want to tar-
get Vista development without requiring a .NET install, this is what you should
choose. Note that a 3.5 application will run on Windows Vista without installing
.NET 3.0—right up until the point where you use something that’s only avail-
able in 3.5.

■ .NET 2.0 —The version of .NET associated with Visual Studio 2005. Use this for
backwards compatibility. If you select it, a number of options will go away.

For the moment, let’s leave this set to .NET Framework 3.5. If everything is working
correctly, you should get a window that looks something like figure 2.2.

 There are a couple of interesting things here. Notice the two tabs in the editor—
Design and XAML. Design and XAML provide two different views of the same thing.

Figure 2.2 A new WPF Windows application
www.it-ebooks.info

http://www.it-ebooks.info/

25Your grandpa’s Hello, World!
XAML is the raw XAML that describes the UI. Design is how that XAML will be ren-
dered. Changing one of these windows changes the other.

 You may also notice the file Window1.xaml.cs in the Solution Explorer. This file
contains any implementation code needed for Window1—what Microsoft calls the
interaction code. To open the file, you right-click in the Designer and select View Code,
or expand the Window1.xaml node in the Solution Explorer to access it directly. An
example of interaction code is putting a button onto a window—if you add an event
handler for the button being clicked, the definition for the button and the informa-
tion about the event will be stored in the XAML file, but the implementation for han-
dling the click will be in the cs file. We’ll show this whole process in the next section.

2.1.1 Adding a button and button-handler to the window

Adding a button to a window is as simple as dragging a button from the toolbox (in
the Controls section) onto the window. Let’s do this, and then double-click the but-
ton. This action creates the default event handler for the button. Inside of the click
method, we just put in a call to MessageBox, as shown in listing 2.1.

protected void button1_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Please don’t click this button again");
}

Now, if you move between the two different views, you have the visual Design view
shown in figure 2.3.

Listing 2.1 Handling a button click

Figure 2.3 Hello, World! Design view. This is a drag-and-drop editor for WPF controls.
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Getting started with WPF and Visual Studio 2008
The contents of the XAML tab will look like listing 2.2.

<Window x:Class="GoodbyeWorld.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="GoodbyeWorld" Height="300" Width="300">
 <Grid>
 <Button Height="23" Click="button1_Click"
 HorizontalAlignment="Left" Margin="38,35,0,0" Name="button1"
 VerticalAlignment="Top" Width="75">Button</Button>
 </Grid>
</Window>

The Grid element b defines the layout of the window. By default, a new window is set
up to use a Grid layout. Because the Grid, also by default, only has one row and one
column, it acts like a precisely positioned layout. Most of the properties of the button
are self-explanatory. Notice that the Click event attribute c specifies the method in
the code file that handles the Click event. (You can right-click the event handler
name in the XAML to navigate to the handler if you want to.)

 Finally, the contents for the Source tab (slightly edited for space) are shown in list-
ing 2.3.

using System.Windows;
...a bunch of other using statements...

namespace GoodbyeWorld
{
 /// <summary>Interaction logic for Window1.xaml</summary>
 public partial class Window1 : System.Windows.Window
 {
 public Window1()
 {
 InitializeComponent();
 }

 protected void button1_Click(object sender, RoutedEventArgs e)
 {
 MessageBox.Show("Please don’t click this button again");
 }
 }
}

Other than the massive number of using statements,2 one of the first things to
notice is that this is a partial class. Windows Forms did this as well (starting with .NET
2.0), separating the code that generated the UI from the implementation code. But
with Windows Forms, the code for generating the form was another code file. With

Listing 2.2 Hello, World!—XAML view

Listing 2.3 Hello, World!—Source view

2 Of which only System.Windows is used by the sample code!

b c
www.it-ebooks.info

http://www.it-ebooks.info/

27Your grandpa’s Hello, World!
WPF, there’s only the XAML file. The compiler generates the other part of the partial
class at compile time. It also generates the InitializeComponent() method called by
the constructor.

2.1.2 Running Hello, World!

If you hit Ctrl-F5, the application will be compiled and
run. You should get a window with a button. Go ahead,
hit the button. We’ll wait. Exciting, wasn’t it? If you’re
running on Vista, you’ll see something like figure 2.4.
On XP, it will be the old XP-style message box.

 So far, we haven’t done anything particularly spe-
cial. As we get deeper and deeper into WPF, you’ll
start to see the capabilities that differentiate WPF
from older technologies—both in the way that appli-
cations are built and in the capabilities that they
have. In the next section, we’ll add an additional con-
trol to the Hello, World! application that will provide
a glimpse of WPF’s power.

2.1.3 The TextBlock control

To get an idea of the power of WPF, we’d like to add a TextBlock control to the appli-
cation. The TextBlock, as its name implies, is a control that lets you put a block of text
onto a window. But because of the compositional nature of WPF, the TextBlock con-
trol can do so much more.

 If you’re following along, go ahead and drag a TextBlock onto the window
beneath the button. Just as with a Label, you could go to properties and enter a value
into the Text property. This will work, but completely misses the power of the Text-
Block. Instead, we want to set the TextBlock’s Content. The Content property isn’t
available in the properties list because, as you’ll see later, the content can be virtually
anything—and there’s no reasonable property editor for that. If you look at the
XAML, you’ll see something like:

<TextBlock Margin="50,123,108,118" Name="textBlock1" />

We just want to set the content to be some simple text, which will go into the Text-
Block element. The existing XML element is closed—the / before the closing > is the
XML way of indicating an element with no content. Using the closing slash is equiva-
lent to

<TextBlock Margin="50,123,108,118" Name="textBlock1"></TextBlock>

The TextBlock tag is still empty, but now we have a place to put content—between the
opening TextBlock and the closing /TextBlock tags. You can delete the slash and
then type the closing tag, or you can cheat and delete both the slash and the closing >.
Then, when you retype the > character, the editor will automatically create a closing

Figure 2.4 Pressing the button.
Note that this is how the message
box looks under Windows Vista. If
you’re using XP, it will look like the
old-style message box.
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Getting started with WPF and Visual Studio 2008
tag for you! Either way, after you have a closing tag, go ahead and enter some text like
the following:

<TextBlock Margin="50,123,108,118" Name="textBlock1">Hello,
 World</TextBlock>

By setting the content to a string, we get something that looks pretty much like a
label—in this case with the text Hello, World. But you can also do some more complex
things in the XAML.

<TextBlock FontSize="16" Name="textBlock1" VerticalAlignment="Center"
 HorizontalAlignment="Center"><Bold>Goodbye</Bold> world, hello
 <Italic>Mars!</Italic></TextBlock>

Note that you can set the FontSize and the verti-
cal and horizontal alignment. The thing that you
could not have done in Windows Forms is easily
mark part of the text as bold and part as italic.

<Bold>Goodbye</Bold> world, hello
<Italic>Mars!</Italic>

If you’re used to web development, this seems like
no big deal. However, for Windows Forms devel-
opers, it is ridiculously hard to do things like this
properly (see figure 2.5).

 There is one caveat to using the TextBlock—
handling whitespace. Let’s go back to the Text-
Block, and add some additional spaces after hello.

<TextBlock FontSize="16" Name="textBlock1"
VerticalAlignment="Center"

 HorizontalAlignment="Center">
<Bold>Goodbye</Bold> world, hello <Italic>Mars!</Italic></TextBlock>

If you run again, you’ll see that the extra space has been
ignored (figure 2.6).

 Notice that all the extra spacing has disappeared. This
is probably less of a surprise to web developers than to
Windows developers. XAML, like XHTML, uses normalized spacing. All whitespace
around tags (including carriage returns, spaces, and tabs) is reduced to a single space.
This is a compromise between the needs to have whitespace in content and the rules
for XML that allow it to be formatted in any way. For example, this version of the pre-
ceding XAML is exactly equivalent:

<TextBlock
 FontSize="16"
 Name="textBlock1"
 VerticalAlignment="Center"
 HorizontalAlignment="Center">
 <Bold>Goodbye</Bold>

Figure 2.5 A TextBlock with font
styles. Doing this in Windows Forms is
really hard.

Figure 2.6 Where have all
the spaces gone?
www.it-ebooks.info

http://www.it-ebooks.info/

29Your grandpa’s Hello, World!
 world, hello
 <Italic>Mars!</Italic>
</TextBlock>

If the spaces in the text were taken into account, the result would be quite different.
Normalized spacing is a pretty good compromise but can sometimes cause unex-
pected results.3

 Fortunately, there’s a simple way to tell XML to preserve the white space around tags.

<TextBlock FontSize="16" Name="textBlock1" VerticalAlignment="Center"
 HorizontalAlignment="Center" xml:space="preserve">
 <Bold>Goodbye</Bold> world, hello <Italic>Mars!</Italic> </TextBlock>

One caution: For the book, we had to wrap this text to fit.
If you put the linebreaks into the code, they would be pre-
served. Assuming you keep everything on one line, the
results should look like figure 2.7.

 For Windows Forms people, at least, this is pretty cool. In Windows Forms, you
have the following three choices for creating this text:

■ Create three label controls, set their font styles individually, and then position them to emu-
late space. If the text changed or the resolution was different or you wanted to
localize the text and so on and so forth, you’d be out of luck.

■ Create a custom control and define your own markup for specifying fonts. Aside from
this being a lot of work, you’d also have to rely on the notoriously inaccurate
methods for measuring the width of text (so that you could figure out where to
put the next word).

■ Use the RTF control. This is extremely heavy, and you’d end up spending a lot of
time making it look like text instead of an edit control, and you’d have to work
with RTF to get the text the way you wanted.

And this is only an example to show how tasks that used to be painful are now simple.
You can go even further with WPF. For example, what if you wanted a rectangle in the
middle of the text?

<TextBlock FontSize="16" Name="textBlock1" VerticalAlignment="Center"
 HorizontalAlignment="Center" xml:space="preserve">
 <Bold>Goodbye</Bold> world,
 <Rectangle Width="20" Height="20" Fill="Blue"/> hello
 <Italic>Mars!</Italic></TextBlock>

We shove the definition for a rectangle into the mid-
dle of the text and—voilá—figure 2.8!

 This is where you start to see the real power of
composition—although, arguably, you probably won’t
have many situations where you need to put shapes

3 An example of normalized spacing surprises was ASP.NET 1.1; the editor wrapped lines, causing spaces to be
added in the middle of literal text.

Figure 2.7 A TextBlock
with whitespace preserved

Figure 2.8 We now have a
rectangle in the middle of the text.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Getting started with WPF and Visual Studio 2008
into your text. The point is that whatever you need to accomplish, you can invariably
get the desired results by building up, or composing, a description in XAML. The
engine does all the heavy lifting for you.

 This is pretty much as far as we want to go with Hello, World! We do need to talk
about one last thing. Hello, World! is a window inside of an application, primarily writ-
ten as a definition. But what about the definition of the application itself?

2.2 The application definition
Up to this point, we’ve only had to write one line of code—the call to bring up the
message box when the button is pressed. Arguably, a few lines of autogenerated
code were also in the xaml.cs file, but they were just put there as a placeholder for
future implementation.

 But what about the startup code for the application itself? At some point, when a
program is run, Windows has to have some code to run that tells it to display the dia-
log and other stuff. When you execute a program, Windows looks for a function in
your executable either called Main() or WinMain(). In .NET, you have a static method
called Main(). This method usually sets some values, creates a new form, and tells it to
run. Well, with WPF, even that can be defined in XAML!

 In the next two sections, we’ll talk about how an application is defined in XAML
and why it’s done this way.

2.2.1 Defining application startup in XAML

If you look in the Hello, World! application, in the Solution Explorer, you’ll see a file
called App.xaml and its companion implementation file App.xaml.cs. If you look in
App.xaml.cs, you’ll see that it’s an empty shell. The application definition is all in the
XAML file, as shown in listing 2.4.

<Application x:Class="GoodbyeWorld.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

Aside from providing references to the appropriate namespaces and providing a place
to put resources (the Application.Resources tag), the important item here is the
StartupUri attribute. It tells WPF what window to start up. You can also provide other
attributes here—like the following:

 ShutdownMode="OnLastWindowClose"

This attribute sets the application property ShutdownMode, specifying that the applica-
tion should stop running when the last application window is closed.

Listing 2.4 Defining an application in XAML

StartupUri specifies
window to start
www.it-ebooks.info

http://www.it-ebooks.info/

31The application definition
NOTE XML is case-sensitive. If you put Shutdownmode or ShutDownMode, the
attribute won’t be recognized, and you’ll get a compile-time error.

You can also set properties or do other application startup in code. The Application
tag specifies a handler for the Startup event (the same way you caught the event for
the button click).

<Application x:Class="GoodbyeWorld.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml" Startup="Application_Startup">

If you type Startup=, IntelliSense gives you the option to create a <New Event Han-
dler>. If you hit the Enter key, a name is automatically assigned, and the event han-
dler is created. If you right-click the handler, you can select Navigate To Event
Handler to be taken to the code (listing 2.5). We add the line of code in the method.

protected void Application_Startup (object sender,StartupEventArgs e)
{
 this.ShutdownMode = ShutdownMode.OnLastWindowClose;
}

StartupEventArgs b provides the list of command-line arguments to the application.
If you want, you can launch a different window based on arguments or do any other
application setup. In this case, we only set the ShutdownMode property c. Doing this
here provides the identical result as defining the value in the XAML.

2.2.2 Why define the application in XAML?

There are a number of reasons for going to a XAML-based application definition,
instead of putting the initialization and launch code in a Main() method. First, you
could argue that it’s simpler to change a definition instead of modifying code.4 Work-
ing with definitions is also more familiar to web developers who are used to config files.
Second, by relying on the compiler to take the XAML and generate the appropriate
hunk of code, it gives some flexibility back to Microsoft to change behavior without
breaking code. Three bigger reasons for using XAML are declarative programming,
Windows Vista, and navigation hosting.
DECLARATIVE PROGRAMMING

Every application has certain characteristics that are basically the same. It used to be
that every developer had to build a message loop that was essentially identical—like-
wise, the startup code for applications. Until recently, the model was to autogenerate
the code but allow it to be modified. Because there might be slight differences in
implementation, there had to be a hook for that.

Listing 2.5 Handling the Startup event in code

4 Or you could argue the opposite. Real programmers like code. In fact, we’d prefer to write everything in
assembler. No, directly in binary code. And having 0s and 1s is overkill. We just need 1s!

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Getting started with WPF and Visual Studio 2008
 Ideally, you don’t need startup code; you need a place to tell the system what spe-
cial behavior you want. The application XAML is the perfect place to do that. In real-
ity, the amount of code involved in application startup is pretty minimal, but the idea
of doing everything declaratively—that is, describing what you want the system to do
rather than how it should be done—is the direction of WPF, and .NET development in
general. The future is now.
WINDOWS VISTA

WPF can run under Windows XP or Windows Server 2003, but it was built for Windows
Vista. A number of WPF features only work when running under Vista (like direct
access to the glass look-and-feel, which you can see in figure 2.9). Also, WPF can take
advantage of the more advanced graphics card support behind Vista, making Vista
smoother, prettier, and shinier.
NAVIGATION HOSTING

We are used to building applications either for Windows or the web, but WPF blurs the
distinction in several ways. The Hello, World! application we built was defined as a
Window but could’ve easily been defined as a Page. WPF has built-in support for page-
based applications, including automatic handling for navigating between pages and

Figure 2.9 The glass theme in Windows Vista makes the borders and titles of the windows
slightly transparent.
www.it-ebooks.info

http://www.it-ebooks.info/

33The application definition
back-and-forward navigation. By default, if
you set up a page-based application, you
automatically get a toolbar with web-style
navigation buttons (figure 2.10).

 To get this behavior, we change the
main element from Window to Page and
the base class of the supporting code. We
also specify that the startup item for the
application is a page instead of a window.
So we change

StartupUri="Window1.xaml"

to

StartupUri="Page1.xaml"

All the back-forward handling, and navigation (if you had hyperlinks, they could ref-
erence other pages), is provided by the application. To be more precise, it’s provided
by the appropriate NavigationService—the default application-based navigation ser-
vice. And, because the application is declared as XAML and not code, it’s easy for
other navigation services to provide different but comparable functionality. We’ll go
into detail about navigation-style applications in chapter 16.

 One of the coolest alternative navigation services comes by way of a technology
called XAML Browser APplication, or XBAP. You can take the same page and put it into
a browser (figure 2.11).

Figure 2.11 Hello, World! in a browser—how cool is that?

Figure 2.10 Hello, World! as a navigation-style
application
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Getting started with WPF and Visual Studio 2008
This isn’t a re-creation of the page in HTML. This is exactly the same page with the
same code, running hosted within Internet Explorer—not only that, but the applica-
tion XAML is also identical! XBAP takes advantage of an enhanced version of the exist-
ing ClickOnce technology that became available with .NET 2.0. For security reasons,
limitations are placed on what’s permitted within a hosted XAML application. By
default, the application is run with the permission given to applications in the Inter-
net Zone.5 For example, you can’t do the following:

■ Interact with the filesystem, registry, or other resources of the host machine
(except in some limited ways)

■ Pop up child windows (such as dialogs)
■ Interact with the web browser via script

Even so, you can do an awful lot; and, if your environment is one where applications
can be given greater trust, you can do even more. Also, XBAPs aren’t limited to Inter-
net Explorer—Firefox supports XBAP too. Another technology, called Silverlight, even
lets you use WPF on the Mac using Safari or Firefox. We’ll talk more about XBAP and
Silverlight in chapter 17.

 We’ve talked quite a bit about how to get started with WPF, as well as application
options with WPF, but this book isn’t only about WPF; it’s about using WPF with Visual
Studio 2008. Visual Studio 2008 is the primary tool you’ll most likely use when work-
ing with WPF, and it has a number of nice features for doing so. In the next section,
we’ll do a flyby and hit on the major ones.

2.3 A tour of WPF in Visual Studio 2008
Believe it or not, WPF has been around for a while. It shipped as part of Windows Vista
in January of 2007, and several of the utilities and system components of Vista make
use of it. But using WPF hasn’t been entirely practical, largely because there were few
tools to make it easier. You can build WPF applications by writing XAML in notepad
and manually compiling everything, but it isn’t fun or straightforward.

 Now Visual Studio 2008 is available, and that makes a huge difference. Finally,
building WPF applications is as straightforward as building Windows Forms or MFC
apps. There’s one caveat: The Windows Forms and MFC tools have been around for a
while and have had a chance to mature. The WPF tools are still relatively new, and
there are definitely some holes to be filled. Even so, WPF, with Visual Studio 2008 SP1,
is now ready for primetime.

 This section will highlight some of the primary tools in VS 2008 for working with
WPF. We’ll also point out where some of the duct tape is hiding and things that we
know the VS team is improving for the next version.

5 The default security context in Internet Explorer for evil, untrusted websites where most of us spend what is
supposed to be the productive part of our days.
www.it-ebooks.info

http://www.it-ebooks.info/

35A tour of WPF in Visual Studio 2008
2.3.1 The XAML designer

By far the most important WPF tool in Visual Studio 2008 is the XAML designer—the
combination control that lets you edit XAML directly or the visual representation of
that XAML. Figure 2.12 shows the designer.

 When the designer comes up, it defaults to show two different panes: the Design
pane and the XAML pane.
THE DESIGN PANE

The Design pane shows the visual representation of a XAML file and automatically
changes to reflect any changes to the raw XAML. It’s fully interactive, so you can
drag elements from the Toolbox. It’s also synchronized with the XAML pane, so if
you select something in the Design pane, it’s automatically selected in XAML, and
vice versa.

 One issue with the Design pane is that it only renders legal XAML. If you break the
XAML, you’ll either get a message at the top of the screen telling you that your

Design
Pane

Zoom
Control

Split
Mode

XAML
Pane

Swap
Panes

Figure 2.12 The Visual Studio XAML editor. We’ve labeled a few of the more
interesting elements.
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Getting started with WPF and Visual Studio 2008
“document contains errors that must be fixed before the designer can be updated,”
or, in very serious cases, you’ll get a big “Whoops” message up above until you correct
your problem. If you do get the error message, clicking it will take you to the Error
List, which will tell you what’s wrong. Most of the time, though, the designer does a
good job of reflecting what’s going on.

 The Design pane also features a Zoom control in the upper-left corner, which
allows you to zoom in and out on your current element. This feature can be handy
when you’re working on a large window that doesn’t quite fit or trying to line up items
that you can’t quite see in regular mode. The Zoom takes advantage of the vector
nature of WPF, so there are no pixilation effects; the control gets bigger or smaller
(figure 2.13). It’s also a good way to make sure that you haven’t done something to
break DPI independence!

 The designer has similar autoposition and autosize features to the Windows Forms
editor, where controls can be automatically snapped to reasonable places relative to
other controls, although there are differences because of the different positioning/
layout behavior of WPF versus WinForms, a topic we’ll discuss in a later chapter. The
positioning is also a little slicker than with WinForms—as well as snapping to reason-
able places, you also get snapping based on the margins of other controls and a dis-
play telling you the number of pixels between close-by items, In addition to context
menus, you also get little handles that let you pull up control-specific behavior—
again, pretty similar to WinForms.
THE XAML PANE

Because the semantics of XAML are so flexible, many things can’t be done directly in
the designer. As each new version of the editor comes out, more holes are filled, but
there are things that will probably never be available via property editors. You’ll have
to do some things directly in XAML.

Figure 2.13 When you zoom in and out in the editor, the quality of the various elements is maintained
because drawing in XAML is based on vectors, rather than on bitmaps.
www.it-ebooks.info

http://www.it-ebooks.info/

37A tour of WPF in Visual Studio 2008
It would be a mistake to dismiss the XAML editor as only a place to type raw XML.
Probably almost as much work has gone into the XAML editor as the designer for one
major reason: IntelliSense support. We started working with XAML back when there
was no Visual Studio release, and we used a generic XML editor. Believe us when we
say the difference is like night and day.

 The XAML editor is good at providing the list of available child tags and attributes
and attribute values; this isn’t trivial because, as we said, XAML is flexible. The editor
also manages to catch a large number of errors immediately. It does more than verify-
ing that you’re following the schema; it keeps track of the code and makes sure that
there aren’t illegal mismatches. The XAML editor also generates code stubs automati-
cally for things like event handlers.

 If we had the choice between either a 10-times-better visual editor with the require-
ment to use a regular XML editor or the XAML editor in Visual Studio, we’d take the
XAML editor.

 Now, with all of that said, the editor is still missing some things. One of the most
serious is something to help with binding (see chapter 11). Microsoft assures us that
this will be addressed in a future release.
SPLIT MODES

Although it isn’t a major feature, one nice thing about the editor is that you can move
the panes so that they’re split vertically instead of horizontally, or you can have either the
XAML or Design views take up the entire editor, swapping between the two by using
the tabs. This is nice if you’re about to do a bunch of edits to the XAML and don’t want
to wait for the Design view to catch up. Figure 2.14 shows the different modes.

 If you want to, you can also swap the panes so that, for instance, the XAML is at the
top and the Design view is at the bottom. One thing that the editor doesn’t currently
have good support for is multiple monitors. We’d love to be able to have the XAML on
one monitor and the Design mode on the other. A cute workaround is to split the
panes vertically and then stretch Visual Studio across both screens.

Figure 2.14 The designer lets you change the orientation of the panes or lets you collapse the panes
so that only one is visible at a time.
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Getting started with WPF and Visual Studio 2008
2.3.2 The Properties grid

Just as with Windows Forms, you can change the various properties of the currently
selected control(s) via the Properties grid. Similarly, there’s a list of events and event
handlers. But WPF has made a few changes (figure 2.15).

 These may seem like minor things, but the WPF Properties grid displays a preview
of the currently selected control in the upper-left corner. Also, the name of the cur-
rent control is now right at the top. The reason we like this change is that it’s much
easier to make sure you’re editing what you think you’re editing.

 Another cool thing they’ve added to the Properties grid is a Search control that
lets you narrow down the properties that are shown. For example, if you type TA, the
property list will be limited to those properties that contain the text TA (Tag, TabIndex,
HorizonTalAlignment). If you type TAB, the list will be narrowed down to IsTabStop
and TabIndex. Having spent a lot of time searching up and down the property list for
a particular property, we think the developer who added this should get a raise and a
corner office.

 On the downside of the WPF property editor, not all the properties have the ele-
gant editors that they used to have; often you have to type a string, get an error, and
then try again. For example, you can choose a named web color from a drop-down, but
there’s no color preview and no support for custom or system colors. Also, WinForms

Figure 2.15 The WPF Properties grid. It’s similar to the Windows Forms Properties grid
but adds a preview feature and a search option, as well as moving the name of the
selected control up to the top.
www.it-ebooks.info

http://www.it-ebooks.info/

39A tour of WPF in Visual Studio 2008
displayed help text for the selected property or event, but all you get with WPF is a
tooltip that tells you the type of the property.

 One thing that’s missing—deliberately—from the Properties grid is the combo
box that Windows Forms had listing all the controls on the form. Although the ability
to select a control without having to click it was handy, the implementation wasn’t
great. The combo box usually wasn’t wide enough, and it was easy to pick the wrong
control. In WPF, which uses composition to build up complex layouts, it would’ve been
inadequate. At the same time, being able to find the proper control whose property
you want to edit is important—so important that there are at least four different ways
to do it!

2.3.3 Selection controls in Visual Studio

When you want to get to the properties of a
particular control, one simple way is to click
the element within the XAML. This both
selects the control in the Design view and sets
that control as current in the property editor.

 If you don’t want to search through the
XAML but have a number of overlapping
elements, you can right-click an element in
the visual designer, and choose Select. This
gives you access to all the controls currently
under your cursor (figure 2.16).

 Another way of selecting is also pretty
cool. At the bottom of the XAML designer is
a Path control that shows the currently
selected element and lets you move to the
element’s ancestors (figure 2.17).

 This control is easy to miss, but it’s a gem.
First, each ancestor is a hyperlink that takes
you to that element. Second, you get a little
preview of the control so that you can easily
see which control you’re floating over, and
finally, the left/right buttons on the left let you move through a history of your selections.

 The final selection tool is equally cool: the Document Outline.

2.3.4 The Document Outline

The Document Outline is a tree view of all the elements on the window (figure 2.18).
 We have to admit—we love the Document Outline. Particularly when you get into

layout, being able to see what’s owned by whom is invaluable, and it’s a great way of
selecting controls that might not be easily accessible. When you click an item in the
Document Outline, you get a preview (again, easier to make sure you have the right

Figure 2.16 The Context menu’s Select
option lets you choose any of the controls
under your current location.

Figure 2.17 Path control shows the currently
selected element and all the element’s
ancestors.
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 Getting started with WPF and Visual Studio 2008
thing selected). Also, what you select in the Outline is automatically selected in the
designer and in XAML, and once selected, the context menu on the designer lets you
jump to the XAML or to the properties for the element.

 The one downside is that the Document Outline is read-only. We’d love to be able
to drag controls from the Toolbox onto the Outline and to rearrange controls right
there using drag-and-drop. The VS developers agree with us, so we hope to see that
functionality in the near future.

 These are the major WPF features in Visual Studio 2008 SP1, although there are a
lot of behind-the-scenes changes to add support. The nice thing is that, when you’re
writing WPF applications, you’re still writing .NET code; all the existing framework and
tools are there, along with the other new features of .NET 3.x like LINQ and WCF.

2.4 Summary
This chapter gives the most basic taste of WPF and Visual Studio 2008 and shows the
pieces that make up a simple WPF application. XAML provides the definition of the look-
and-feel and the details of the application, and then code provides the behavior—
although the behavior of the accursed Hello, World! application isn’t exactly impressive.

 Visual Studio 2008 is one of the most important tools you’ll use when building WPF
applications, but it isn’t the only one. There are a number of tools and technologies
that are related to WPF that you should at least be aware of, and we will cover these in
the next chapter. Don’t worry, though—we will start getting into some more signifi-
cant, useful (and pretty) applications in the near future.

Figure 2.18
The Document Outline.
A preview of the currently selected
item is automatically generated.
www.it-ebooks.info

http://www.it-ebooks.info/

WPF from 723 feet1
Think about how, prior to WPF, you might have approached an application with
respect to the user interface, multimedia, and document lifecycle. You might have
chosen Windows Forms to implement most of the UI, perhaps calling out to Adobe
Flash for the multimedia aspects, and using PDF or proprietary file formats to han-
dle the documentation artifacts. You may also have used Microsoft’s Windows
Media Player components or Apple’s QuickTime to embed video content for tuto-
rials or how-tos in your application. With WPF, Microsoft addresses all these con-
cerns with a single, unified base technology.

 One of the implications of this is that WPF is pretty extensive—extensive enough
that a quick glance won’t tell you what’s there and where to find it. The main

This chapter covers:
■ How WPF fits into Windows
■ All the various components and layers of WPF
■ Microsoft and third-party WPF tools
■ What Microsoft has learned from

Homeland Security

1 From 10,000 feet you can’t really read the screen.
41

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 3 WPF from 723 feet
purpose of this chapter is to provide an overview of all the pieces that make up WPF,
including many of the new acronyms. We’ll discuss many of these pieces in much
greater detail throughout the rest of the book, but we think it’s important to have a
mental framework for the whole technology.

 We’ll also discuss a number of tools that are relevant to WPF development.
Although this book is focused almost exclusively on the use of Visual Studio 2008 with
WPF, you should be aware of these other tools and know when they might be appropri-
ate for you to use.

 Before we get to all of that, we want to start by explaining where and how WPF fits
into .NET and Windows.

3.1 Where does WPF fit in Windows?
WPF is one of the four pillars of .NET 3.x (the other three being Workflow Foundation,
Windows Communication Foundation, and Windows CardSpace). One particularly
subtle but important note about .NET 3.x is that its release marks the first time that
the managed code world is a part of the primary Windows SDK. This is a tipping point
in the relationship between .NET and what’s been considered the native Windows plat-
form, rather than a wrapper around native code. WPF is a core part of Windows from
Vista forward and is available as an add-on to Windows XP and Windows Server 2003.

3.1.1 Red bits and green bits
Microsoft designed the .NET 1.0 and .NET 2.0 frameworks to be able to be installed side
by side. In theory, this capability was a good idea, but it caused various manageability
problems and concerns about what would happen when, say, .NET 8.0 came out and was
installed side by side with seven previous versions (and their service packs). .NET 3.0 and
.NET 3.5 take a different path. Although this explanation is something of an oversimplifi-
cation, you can think of 3.0 as a superset of 2.0 that includes a number of new things (like
WPF) and some changes to the existing 2.0 framework—changes that Microsoft assures us
are safely backwards compatible. Likewise, 3.5 is a superset of 3.0 with some (equally
backwards compatible) changes to 3.0 and to 2.0. The 3.5 Service Pack 1 just tweaks the
3.5 assemblies and is pushed out (drizzled is the word that Microsoft uses) via Windows
Update; anyone who has 3.5 should have 3.5 SP1, so it doesn’t really affect the picture. Fig-
ure 3.1 shows the relationship between the different versions and the new components.

 As scary as the backwards compatibility story sounds, Microsoft has come up with a
fairly good plan to make everything work, complete with a color coding system (à la
Homeland Security)! The bits2 that make up the framework are broken down as follows:

■ Green bits —New for the version. For example, WPF was new for 3.0, and so it was
safe for them to drop entirely new assemblies in (green == safe).

■ Red bits —Changed in the existing code for the new version. For example, for
3.5, WPF was no longer new, so any changes became riskier and had to be han-
dled with caution (red == dangerous).

2 All the cool kids (particularly at Microsoft) refer to code as bits.
www.it-ebooks.info

http://www.it-ebooks.info/

43Where does WPF fit in Windows?
How good an idea is this? It’s hard to say for sure, but it was obvious that the side-by-
side approach wasn’t going to work for the long term. Also, Microsoft has demon-
strated a great deal of ability in maintaining backwards compatibility in the past, so
we’re willing to give them the benefit of the doubt—for the moment.

3.1.2 Silverlight

A discussion of the makeup of WPF wouldn’t be complete without talking about Silver-
light. Whereas WPF is designed for building rich, Windows applications, Silverlight is
targeted at building browser-based rich internet applications, or RIAs. Silverlight com-
bines a stripped-down version of the .NET Framework and WPF and not only runs in
Internet Explorer but also supports Firefox and Safari on the Mac. Microsoft is also
supporting Moonlight—an effort to support Silverlight on Linux/UNIX platforms.

 Silverlight is very obviously designed to be a competitor to Adobe Flash, and
Flash is a good model to consider when thinking about the sort of things that Silver-
light is designed to do. Although this book is definitely not a book about Silverlight,
much of what you learn about XAML is directly applicable (just as much of what you
know about building .NET applications is applicable to building .NET Compact
Framework applications).

.NET 4.0

.NET 3.5

.NET 3.0

.NET 2.0

Framework 2.0
(Red)

Framework 2.0
(Green)

Framework 2.0
SP1 (Red)

Framework 2.0
SP? (Red)

WPF
(Green)

WCF
(Green)

LINQ
(Green)

WPF
(Red)

WCF
(Red)

WPF
(Red)

WCF
(Red)

LINQ
(Red)

Figure 3.1 Rather than being a complete replacement, .NET 3.0 adds capabilities on top of the existing
.NET 2.0 foundation. .NET 3.0 takes everything that already exists in .NET 2.0 and adds additional
capabilities to it. Likewise, .NET 3.5 adds on to 3.0. The green bits are new and considered safe, whereas
extra caution must be taken when modifying red bits—changes to existing code that have to be
backwards compatible.
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 WPF from 723 feet
 Silverlight only contains a portion of the capabilities of WPF, but both are based on
the same code and the same framework. In the next section, we’ll talk about the
pieces that make up the WPF framework.

3.2 Framework services
At the highest level, WPF is made of two main parts: the WPF Engine and the WPF
Framework. The WPF Engine deals with rendering graphics, as well as detecting and
enabling the accelerated features on various GPUs. The Engine has both managed
and unmanaged components, whereas the Framework is almost entirely managed.
The Framework is what you, as a developer, work with, and is divided into four pri-
mary service areas (table 3.1).

We’ll look at each of these services in more detail.

3.2.1 Base services

Base services are the fundamental services that the rest of the WPF Framework is built
upon. The WPF base services include XAML, the Dependency Property System, input
and events, and accessibility.
XAML
One of the more powerful aspects of web UI development is the declarative model
with which it’s designed. XAML brings the best of declarative user interface definitions
from web development and combines it with an application—rather than docu-
ment—focused architecture.

 XAML is nothing more than an XML representation of CLR types. Anything that
can be done in XAML can be written using .NET code as well.3 As we discussed in

Table 3.1 The four primary services provided by the WPF Framework are the base, media, document,
and user interface services.

Area Description

Base services The base services provide the infrastructure for the rest of the WPF Framework. These
services include XAML, the property and eventing systems, and accessibility.

Media services Media integration finally brings true multimedia support to the entire application devel-
opment space. These services include 2D and 3D rendering, special effects, profes-
sional typographical support, audio, video, animation, and the composition engine.

User interface
services

The user interface services are roughly equivalent to Windows Forms. These services
provide the controls, layouts and data binding, as well as nonvisible application ser-
vices and application deployment support.

Document
services

Document services include packaging and layout. These services provide a subset of
the full XAML specification tailored specifically to paginated documents.

3 Well, almost anything. The XAML compiler can convert some obscure things to code that you, as someone
who isn’t a framework developer, cannot.
www.it-ebooks.info

http://www.it-ebooks.info/

45Framework services
chapter 1, the declarative model saves a lot of time by providing boilerplate code but
also gives the flexibility to do things a little differently if necessary. Table 3.2 shows the rel-
ative simplicity and savings gained by taking a declarative approach to describing a UI.

 This example demonstrates how much XAML can reduce the length of UI code by
making simplifying assumptions about how UI is generally created. In the vast majority
of cases, UI is created by defining a set of controls, relating them to each other in a

Table 3.2 XAML can be much more concise than the equivalent imperative code. Because we’re taking
all the default behavior for adding the controls, XAML lets us leave out all the declarations and overhead
of the C# version.

Declarative using XAML Imperative using C#

<Window>
 <StackPanel>
 <TextBox>One</TextBox>
 <TextBox>Two</TextBox>
 <TextBox>Three
 </TextBox>
 </StackPanel>
</Window>

namespace ImperativeExample
{
 public class MyApp: Application
 {
 private Window window1;
 private StackPanel panel1;
 private TextBlock textBlock1;
 private TextBlock textBlock2;
 private TextBlock textBlock3;

 protected override void
 OnStartup(StartupEventArgs e)
 {
 base.OnStartup(e);

 window1 = new Window();
 panel1 = new StackPanel();
 textBlock1 = new TextBlock();
 textBlock2 = new TextBlock();
 textBlock3 = new TextBlock();

 textBlock1.Text = "One";
 textBlock2.Text = "Two";
 textBlock3.Text = "Three";

 panel1.Children.Add(textBlock1);
 panel1.Children.Add(textBlock2);
 panel1.Children.Add(textBlock3);
 window1.Content = panel1;
 window1.Show();
 }

 [STAThread]
 public static void Main()
 {
 Application app = new MyApp();
 app.Run();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 WPF from 723 feet
hierarchical fashion, and displaying them. Because this process is almost always the
same, the declarative approach internalizes these common operations and leaves only
the specifics to define.

 In XAML, you don’t have to declare variables for the controls, to instantiate them,
or explicitly parent them to each other. In the cases where some special logic is
desired, you can write code to handle your special case.

 Some might argue that developers don’t need to understand XAML because the
tools can hide the details and complexity of creating UI. A similar argument has been
made for browser developers, yet as long as the tools have been around, the need to
understand HTML certainly hasn’t gone away. Likewise, the need to understand XAML
won’t go away for WPF developers. Furthermore, the first few versions of the tools still
require a lot of trips to XAML to do anything substantial, and the tools may never
expose some of the more esoteric capabilities. XAML is a language you’ll want to
become very familiar with.

 Although XAML has the benefits of a well-defined XML schema, many of the things
you’ll do with XAML involve attribute and element values that are outside the scope
and control of the schema. XML schemas can enforce that an attribute has a value, but
it can’t enforce that the attribute is correct. Fortunately, Visual Studio 2008 is a big help
here because it can help make sure that attributes have legal values.
DEPENDENCY PROPERTY SYSTEM

In the design of WPF, the architects made a conscious decision to favor properties over
methods and events. A property-centric framework lends itself well to declarative pro-
gramming and allows for extensive reuse of boilerplate code.

 The property-centric focus of WPF requires richer properties than the CLR pro-
vides by default. A CLR property is nothing more than syntactic sugar to wrap get_X()
and set_X() methods for underlying fields. WPF needs more functionality from prop-
erties, including dependencies, two-way notification, optional inheritance, sparse stor-
age, composition, and attached properties.

 The dependency mechanism of the prop-
erty system allows for interested parties to
automatically be notified when a particular
property has changed. For example, if the
Font property is changed on a window, all
of its children that use that font need to be
notified about the change to refresh their
display (figure 3.2).

 Two-way notification enables properties
to publish and subscribe to events based
on established dependencies between prop-
erties. If a property is inherited from a
parent container, a change to the parent’s
property will notify its dependents. One of

FontFamily
Window

FontFamily
Grid

FontFamily
Label

Tahoma

Tahoma

Figure 3.2 Changing the FontFamily on the
Window notifies dependent children of the
change so that they can act on the change as
well. In this case, a user’s preference of font is
automatically carried through the application.
www.it-ebooks.info

http://www.it-ebooks.info/

47Framework services
the most common operations for a UI is to reflect the state of data from a data model in a
graphic control, and when the user changes the value in that control, to persist the data
back to the model. With two-way notification and dependency properties, setting up this
behavior becomes a trivial exercise for any control. As seen in figure 3.3, if anything
changes the value of the data, the control’s property is notified and updated, and when
the user changes the value of the control, the model is updated.

 Compositional and optional inheritance provide the ability for controls to pick up
property values and behavior from their owners. These types of inheritance are quite
different than normal inheritance, where items can come from a parent class but not
arbitrarily from an owner. A control can choose to override a particular property (say,
the font to use), but if it chooses not to do this, then it automatically gets the property
from its parent (perhaps, the form the control is on). Composition is the way in which
WPF user interfaces are built—by combining or composing the UI out of various sepa-
rate elements.

Compositional inheritance versus class inheritance
Speaking of compositional inheritance, this is a great time to point out the distinction
between the classic OO inheritance you typically see in C++ and C# and the type of
compositional inheritance we’ll often be talking about in WPF. When you think of clas-
sic inheritance, you might think of a Label control deriving from a ContentControl
control deriving from a Control. The visual properties of the Control are inherited
and used by the Label through classic inheritance. If the font of the Control is
changed, the Label inherits the behavior. Although class inheritance is certainly
present and widely used in WPF, there’s also a great deal of compositional inherit-
ance. Through composition, the Label can inherit other properties from entirely un-
related controls that it’s composed with, such as a Window or Style object. Label
isn’t derived from Style, but if you combine (through composition) a Label with a
Style, you get different behavior. This type of inheritance is important for theming,
consistency, and greater flexibility with a minimum of programming effort and code.

Name
Customer

Arthur Pendragon

Textbox

User changes name

New name loaded

.NET Object

Figure 3.3 With dependency properties, any UI elements can subscribe to the
changes made on a data model to reflect the latest state of the system, and
the data model is easily and quickly updated from the UI.
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 WPF from 723 feet
The WPF Property System also addresses the issue of how many properties tend to get
associated with UI controls. If you’ve done much with Windows Forms or third-party
controls, you’ve dealt with dozens or even hundreds of properties on any given con-
trol. Most of the time, the majority of these properties will be inherited or defaulted in
some way, but every instance of the control carries the entire set of properties with it
(the properties of the control, the properties of the control’s parent, the parent’s par-
ent, and so on). Sparse property storage allows WPF controls to carry only those proper-
ties set explicitly by the developer, creating a far more efficient model for a UI with
hundreds of individual controls.4

 Another compositional pattern in WPF is seen with attached properties. Think about
docking. In the past, each control with docking support exposed a number of proper-
ties around docking. WPF also has the concept of docking, but docking in WPF doesn’t
require each individual control to support it. The DockPanel has a number of proper-
ties around docking behavior (left, right, full, and so on). Controls that are children
of the DockPanel can attach these properties to themselves to describe how they
should behave in the docking system, even though the controls themselves don’t care
or even know about the property values at all! It’s the DockPanel itself that maintains
the dock-specific property data associated with each of the various controls. When the
DockPanel goes to lay out its children, it checks internally for each child control to see
if it has a Dock value stored for it.

 By using attached properties, developers can come up with their own layout con-
cepts and allow layout specific properties to be set on controls that have no knowledge
of the new system. In figure 3.4, the Label control knows nothing about docking from
its inheritance chain but is able to set a docking-specific property as defined by the
DockPanel and, from the XAML at least, it looks like the Label was dynamically given a
new property.

 The last topic of the Property System we’ll discuss is the property expression. You can
think of a property expression as the bit of code that determines how to get a value for

4 .NET 2.0 started along this road with the use of ambient properties.

Dock
DockPanel

DockPanel.Dock
FontFamily

Label

FontFamily
Control

Attached from DockPanel
Inherited from Control

Figure 3.4 In this example, the Label object has two properties: FontFamily and
DockPanel.Dock. Label is derived from Control and gets the FontFamily property
from there. Label is not derived from DockPanel in any way—it’s contained within the
DockPanel. It’s still legal to set the DockPanel.Dock property on the Label, The
property will only be used by the DockPanel.
www.it-ebooks.info

http://www.it-ebooks.info/

49Framework services
a property and what to do when that property’s value changes. Property expressions
enable many of the behaviors we just discussed—styling, compositional inheritance,
default values, and so on. For example, a property expression is used to decide what
background color to use when drawing a control. Is the control using the defaults
(and if so, what’s the default?) set from a style, or is it explicitly defined? The property
expression defines the order in which these decisions are applied. Property expres-
sions also support the changing of property values in data binding, and inheritance of
properties between objects.

 We’ve barely touched on the WPF Property System, and you can see how complex
properties have become. Properties are extremely powerful and important through-
out WPF, and understanding how they work is critical to understanding WPF. As we
develop applications, we’ll definitely be looking at these mechanisms and how they
work in more depth.
INPUT AND EVENTS

Eventing in WPF was obviously influenced by the web, and is much richer than the tra-
ditional Win32/WinForms model. In a traditional WinForms event, only explicit sub-
scribers are notified when an event is fired. If you want to pass a standard event on,
you must write specific code to do so. WPF introduces a new type of .NET event called
a routed event. Like the web event model, routed events can automatically tunnel down
and bubble up the visual tree. As compared with the OO parent-child relationship
through class definitions, the visual tree describes the parent-child relationship of
controls as composed in the UI. Figure 3.5 shows the path of events bubbling and tun-
neling through a hierarchy of controls.

 To discuss routed events, we must clarify the difference between implementation
inheritance relationships and compositional relationships. In figure 3.5, the Button is
the child of the DockPanel, which is the child of the Grid. In this case, the relation-
ship described by the visual tree describes how the event will propagate. Contrast this
to how an event is handled in a class hierarchy, where the Button may override the
parent (superclass) control’s event handler. In effect, you must think about events
both from a classic inheritance perspective, as well as from a compositional approach.
The three types of routed events in WPF are:

Grid

DockPanel

Button

Bubble

Bubble

Tunnel

Tunnel

Figure 3.5 Routed events may bubble
and tunnel through the visual tree. In this
example, an event starts at the Grid and
tunnels the events down to the Button, and
the Button bubbles the events back up to
the DockPanel and then the Grid.
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 WPF from 723 feet
■ Bubble events —Bubble up the tree to the root node at the top. The naming con-
vention for bubbled events is the event name such as Click. Event bubbling
allows each control to respond in turn to the various events that can occur.

■ Tunnel events —Tunnel down from the root of the visual tree. The naming con-
vention for this type of event is Preview plus the event name, such as PreviewClick.
As you may have surmised, a control higher up the tree can potentially hide an
event from the element that generated it.

■ Direct events —Operate as traditional events do. Only the specific control is noti-
fied; parents and children aren’t. As discussed previously, if this were a Special-
Button that derived from Button, it would still be able to take part in the event
via an overridden event-handler method of the base Button class.

Without routed events, controls would need to manually call other related controls;
each control in the chain would have to support the event, or the bubble/tunnel
would stop. Because composition is so prevalent throughout WPF, being able to rely
on event tunneling and bubbling is an important aspect of the system’s flexibility. Like
properties, events in WPF are greatly enhanced, allowing controls to respond to events
without any special work to propagate the notifications.
ACCESSIBILITY

Accessibility is about making it possible for people with various disabilities to use sys-
tems that they otherwise wouldn’t be able to access. In 1998, the U.S. Congress
amended the Rehabilitation Act. This act now requires federal agencies to ensure
information technology systems be accessible to people with various forms of disabili-
ties and any systems purchased by the federal government be the same. The laws cre-
ated by this amendment are commonly referred to as Section 508. Both the web and
Windows already have specific Section 508 accessibility support to enable screen read-
ers, Braille output, high contrast, programmatic control of UI elements, and so on.

 Accessibility doesn’t just benefit the disabled. Programmatic control of UI ele-
ments allows for script and test automation. Keyboard access ensures that power users
aren’t held up by switching to and from the mouse constantly.5 Display scaling and
zooming is useful to a normal-sighted audience in a presentation or pair-program-
ming exercise. Software that supports alternative input can support new input systems
like Tablet PC Ink without changing a single line of code. Even if Section 508 support
isn’t a specific goal, developing toward an accessible UI is good for everyone.

 WPF enhances accessibility in a number of ways. One of the most obvious immedi-
ate advantages is that people with low vision are able to seamlessly scale WPF UI to
whatever clarity they need. WPF has also been built with accessibility in mind, so every
control and aspect of the framework is enabled for accessibility.

 The WPF base services—XAML, the property and eventing systems, and accessibility
support—make up the core shell of WPF upon which everything else is based. You
might be forgiven if you’re already going cross-eyed at this point. We promise that

5 Yes, we are that lazy.
www.it-ebooks.info

http://www.it-ebooks.info/

51Framework services
once you get out of theory and into implementation, the value of all this stuff will be
evident. Before we get to that, we need to cover the higher-level services, starting with
media services.

3.2.2 Media services

Media services are concerned with audio, video, imaging, animation, and so on. Media
services encompass all that you’d expect from a multimedia API, and a bit more. Many
of the components in the media services layer support the type of presentation nor-
mally done with a product such as Adobe Flash, through custom code, or through
interoperability to individual multimedia controls.

 Overall, the media services layer brings true multimedia development to mainstream
UI creation, while avoiding the often Frankensteinian complexity of incorporating dis-
parate media technologies. It also allows much finer-grained integration of media func-
tionality into UI controls than existing technologies tend to allow. The media services
are comprised of drawing (2D), typography, audio/video, WPF Imaging Components
(WIC), 3D rendering, animation, bitmap effects, and the composition engine.
DRAWING (IN 2D)
2D drawing in WPF is a considerable leap from previous frameworks. In fact, the 2D
elements of XAML are comparable to full-featured Scalable Vector Graphics (SVG), a
format created to describe complex vector drawings. Complex 2D XAML drawings can
be created in specialized software for the specific purpose of graphic design, or pro-
grammatically created by a developer. We’ll explore 2D drawing in detail in chapter 14,
but for now, it will suffice to say that the 2D API is rich enough to be the basis for dedi-
cated drawing software.
TYPOGRAPHY

WPF gives a much needed boost to typography. Although typography has long been
available via specialized applications, WPF brings it to all applications, enabling the
best the OpenType format offers. Various controls have been available to edit and dis-
play rich text, but full typographic support has never been available across the board.
WPF brings rich, professional typographic support across the entire framework.

 Some of the advanced features of
OpenType available to the entire frame-
work include ligatures, swash variants,
superscript, subscript, and small caps.
Some of these capabilities are demon-
strated in figure 3.6.

 By the way, if you install the Windows
SDK, you get several OpenType fonts to
play with in one of the samples. Look in
the following directory:

\Program Files\Microsoft SDKs\Windows\v6.1\
 Samples\WPFSamples.zip\GraphicsMM_Text\OpenTypeFontsSample\xaml\fontlibrary

Figure 3.6 WPF has access to advanced
OpenType features. In the top line, ligatures are
enabled. (Note how ff and fi are joined together.)
The rest of the first line is fairly ordinary. In the
second line, swash alternative capitals are on.
(note the N in No and S in Style), and numbers are
using an old style offset pattern (note the 3).
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 WPF from 723 feet
These fonts were designed by a company called Ascender. For more information, look
at their website at http://www.ascendercorp.com/WPF_fonts.html.
AUDIO/VIDEO

Traditionally, audio is not something that comes to mind when thinking about UI
frameworks. Audio’s inclusion in WPF is an example of multimedia becoming a first-
class citizen in the user experience for Windows applications. As previously men-
tioned with typography, when adding audio and video in a Windows application, you
had to use some embedded component that invariably took longer to integrate and
debug than the rest of the application took to write. The video content rarely inte-
grated smoothly, and you were severely limited in how you could tie it in.

 Combined with the acceleration afforded by modern GPUs, the audio/video capa-
bilities of WPF provide a platform where media integration is more and more practi-
cal. The value of this can be seen on Apple’s OS X, where the GPU power is available
across the entire UI framework through Quartz and Quartz Extreme, and applications
take extensive advantage of it.

 Some of the obvious uses of a/v include tutorials and training videos, but many
more subtle uses of this power exist. For example, think of the (nicer) menu systems
on DVDs or the screens in kiosk-style applications. Video brushes could be applied to a
set of buttons to select from a set of vacation packages in a kiosk-style application.
Another example of a tasteful use of video is the header of the Copy Files dialog in
Windows Vista. Small, simple videos can communicate to the user the nature of activ-
ity being performed by the system.
WINDOWS IMAGING COMPONENT (WIC6)
For a long time, dealing in anything other than bitmap (.bmp) images was a chore in
Windows because supporting any other format required various third-party compo-
nents—or a lot of home-grown code. GDI+ (and .NET in general) alleviated this some-
what with an extended set of supported file formats, but WPF finally nails this problem
by providing a rich, extensible imaging API. You former Amiga users can rest easy now
that the Windows equivalent of the Amiga Datatype system has arrived—well, at least
the imaging aspect of it has arrived.

 WIC provides several managed and unmanaged components for encoding and
decoding images, color transforms, pixel format conversion, scaling, and clipping.
THE 3RD DIMENSION

Although most of WPF is designed around two dimensions, under the hood, it makes
extensive use of Direct3D. This has made it easy for WPF to provide support for work-
ing in 3D, although currently only a subset of 3D capabilities is directly available. WPF’s
3D support is useful for visualizations and lighter duty gaming. (Think along the lines
of chess, mahjong, solitaire—not Halo 3.) A potential business use would be an inte-
grated 3D map of an office building, showing the path you might take to find a confer-
ence room or emergency exit. Another good example of 3D in day-to-day applications

6 Also, also wic!
www.it-ebooks.info

http://www.ascendercorp.com/WPF_fonts.html
http://www.it-ebooks.info/

53Framework services
is Eric Sink’s furniture construction application.7 Product visualization is another
potential aspect of integrated 3D support, allowing users to explore their content.

 Unfortunately, a lot of 3D has resulted in horribly unusable interfaces. There are
definitely challenges in making the 3D capabilities increase usability and efficiency.
Many attempts at adding 3D to file and document management make us want to run
screaming back to the physical world where we at least have more precise control.
Years ago there was a movie about bringing dinosaurs back to life. The most terrifying
part of the movie was when a UNIX 3D filesystem interface went horribly wrong…or
maybe the dinosaur experiment went horribly wrong. In any case, it was all very horri-
fying to see.
THE 4TH DIMENSION: ANIMATION

In the early days of Windows, animation referred to the two states an object might have.
Later on, file operations in Explorer gained simple animations of papers being tossed
between folders, duplicated, and otherwise manipulated in all their eight-frame glory—
even the animation support of Windows Forms centers around the animated GIF or per-
forming some ugly interop to external components with varying degrees of success.

 WPF supports animation to the degree that today’s hardware deserves. Rather than
providing specific frames, the WPF animation model takes direction on what should
be where and how it should get there. The WPF animation engine then does the job of
calculating how to achieve the animation with the hardware and resources available.
On lower-end machines, an animation might result in five frames over five seconds,
whereas a top-of-the-line system may have fifty frames in the same amount of time.

 Animation is another one of those wonderful capabilities that can greatly enhance
a UI by providing visual cues and affordances or destroy an otherwise respectable
application with overzealous use.
BITMAP EFFECTS

Bitmap effects allow WPF interfaces to be altered after the fact by low-level filters that
enhance or change the UI in some way. Some of the effects supported out of the box
include bevel, blur, glow, and drop shadow. Although these effects are pretty cool,
they’re one of the few parts of WPF which uses unmanaged code. This is relevant
because some of the effects are software rendered, which can have a significant impact
on performance. Prior to SP1, all the effects were usually software rendered, but now
the most commonly used effects—blur and drop shadow—are hardware rendered.
COMPOSITION ENGINE

Prior to WPF, UI graphics were generally rendered directly to the frame buffer (video
card) memory. If an application obscured another application’s window and you
moved it, the obscured application would be asked to draw the area that was cov-
ered. Also, when the controls drew themselves, they didn’t know anything about the
pixels behind them. In figure 3.7, if you moved the window of App2, App1 would
have to redraw itself in the area exposed by the movement, and App2 would have to

7 http://sawdust.com/p1/index.html
www.it-ebooks.info

http://sawdust.com/p1/index.html
http://www.it-ebooks.info/

54 CHAPTER 3 WPF from 723 feet
redraw the area revealed after moving out
from under App3.

 In WPF, rather than drawing to the frame
buffer directly, each application draws to a sur-
face. WPF then takes care of all the mechanics of
composing the final presentation without requir-
ing the applications to get involved. Vista takes
this even further. The Vista Desktop Window
Manager (DWM) can handle surfaces with dif-
ferent DPI levels and different contrast levels. As
seen in figure 3.8, by using composition, entirely
new approaches to desktop management are
afforded without any need for the applications
to specifically support or be aware of them.
Drawing in WPF is much lighter-weight than Win32 drawing, at least for the CPU. The
GPU performs many of the drawing operations directly on the graphics card, so the
CPU is free to spend more time on application logic and processing. Furthermore,
unless you’re interoperating with legacy UI, WPF isn’t limited by scarce Windows
resources such as handles.

 In WPF, you’re given a surface to work with (although you’re unaware of this 98%
of the time). Typically, this is a DirectX surface; and, depending on the OS, it may be
directly in the frame buffer, or it may be rendered offscreen. The important point is
that, like the DeviceContext of the past, you don’t know where you’re drawing; you
deal with your application’s surface and let the engine composite it in an appropriate
manner for the environment.

 All the elements we’ve discussed so far have been fairly low level. When it comes to
application development, there are certain elements that you expect to find—controls
and layout, for example. These lie in the domain of user interface services.

Video card framebuffer

App 1

App 2

App 3

App 2
(Surface)

App 1
(Surface)

App 3
(Surface)

Figure 3.8 Composition allows more flexibility than drawing directly.

Video card framebuffer

App 1

App 2

App 3

Figure 3.7 Applications are drawn
directly into the frame buffer of the
video card.
www.it-ebooks.info

http://www.it-ebooks.info/

55Framework services
3.2.3 User interface services

We’ve seen quite a bit so far without talking about UIs directly. If you were looking for
the successor to Windows Forms (and then some), this layer contains most of the clas-
sic functions of a UI framework—application services, deployment, controls, styles,
layout, and data binding. Like the Document-View architecture of MFC, WPF provides
a lot more around the application framework than WinForms did. If you have an MFC
background, you might notice some of the application framework support coming
back as well.
APPLICATION SERVICES

We previously saw in table 3.2 how encoding the logic and plumbing common to
almost every application results in a tremendous reduction of code (and, therefore,
maintenance cost) of UI. Typically, you’ll specify what type of application you want,
and WPF will generate the plumbing for you. Some of the application services of WPF
provide lifetime management, navigation infrastructure, and application resources.
The application services also provide the event model that replaces the old Windows
message pump.
DEPLOYMENT

WPF has considerable changes and improvements to the deployment process. In par-
ticular, web deployment of smart applications is a first-class citizen in WPF. A major dif-
ference between targeting an application for web deployment versus installer-based
deployment is in the much more restricted security environment the web model
entails. Other than security, the difference between WPF web applications and standa-
lone applications is minimal.

 In the web deployment model, applications are packaged as XBAPs and run in a
sandbox, which by default provides limited access to local resources and doesn’t per-
mit unmanaged code. Browser-based WPF applications can’t run offline, so access to
the deployment site is necessary to execute the application.

 Standalone applications potentially have full trust and are ideal for applications
that are being migrated from unsafe/unmanaged code or for applications used
offline. Standalone applications may also be deployed over the web using ClickOnce.
When a user browses to a standalone application, it will be installed on the end user’s
system and may be executed offline as well.
CONTROLS

What is a UI without controls? If anything is fundamental to a user interface (besides
the user), it would have to be the controls. Controls are the basic unit of interaction
for any graphic interface. Most of the usual suspects are all present (for example: but-
tons, tab controls, labels), as well as some new entries (such as layout containers, flow
document, and document viewers).

 In previous frameworks, changing the look of a control required a developer to
write a custom control and take over the entire drawing process. Unlike previous con-
trols, WPF controls are extremely malleable. Altering a control’s appearance is built in
and fundamental to WPF. In fact, most WPF controls have no visible component at all;
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 WPF from 723 feet
they draw based on the themes and styles in effect at the time they’re rendered. Con-
trols are also extremely composable. In the legacy Windows UI, adding graphic treat-
ment to a control frequently required a developer to implement owner-drawing code.
The level of effort to add a simple embellishment wasn’t justified.
STYLES

Think of WPF Styles as being analogous to CSS on the web (except not in a bizarre
made-up language). Styles are the means by which UIs are themed. Styles and themes
(a collection of styles) are pervasive and supported throughout WPF. You can (and
should) define the styles completely separately from the controls, providing an
extremely custom look for your application or allowing the system-wide theme to
define the exact look.
LAYOUT

In traditional Win32 UI development, there was little concept of layout. In general,
you placed controls where you wanted them, and the entire design surface was based
on absolute positioning of UI elements. Windows Forms added rudimentary layout
concepts of anchoring and docking but lacked full layout support (and fairly horrible
performance for anything remotely complex). The web does Windows Forms one bet-
ter by providing three forms of layout: document flow, table, and absolute positions
(via Positional Cascading Style Sheets, or CSS-P). Java UI programmers know all about
layout managers, and may be happy to know that WPF finally brings the concept to
Windows development. Microsoft provides a collection of built-in layout managers
with WPF and, as importantly, allows developers to create their own layout strategies.
DATA BINDING

The purpose of virtually any UI is to present some sort of underlying data model. In
WinForms, data binding was often used to connect some sort of dataset to a control,
typically a grid or list, and automatically render the results. The purpose of data bind-
ing in WPF remains the same but becomes far more powerful.

 Data binding in WPF involves two things: a target and a source. A data binding tar-
get is any dependency property on a control. Given that most properties in WPF are
dependency properties, this means that almost anything in WPF can be bound to a
data source. The aptly named source of the data binding is where the data comes
from. The source can be any of a number of things including any public property, any
CLR object, as well as specialized data sources such as DataSets and XML. Throughout
the book, we’ll use data binding extensively to develop our working applications.

 The services we’ve looked at so far (base, user interface, and media services) are
the sorts of services you’d expect to find in a new presentation library. Less obvious is
the inclusion of document services in WPF.

3.2.4 Document services

Presentation isn’t limited to presenting content on a screen for a user. It also includes the
ability to create and share documents—either by printing them, or by packaging them in
a format that can be transferred to other users. In WPF, document services address
www.it-ebooks.info

http://www.it-ebooks.info/

57Framework services
printing, packaging, and document lifecycle. The centerpiece of the document services
layer is the XML Paper Specification (XPS), which is defined as a subset of XAML.
XML PAGE SPECIFICATION (XPS)
XPS is Microsoft’s entry into the paginated document format. XPS describes paginated
data in a cross-platform portable XML document. If you think this sounds a lot like
PDF, you’d be right. One interesting point is that XPS is available to systems without
.NET 3.x installed; the XPS viewer doesn’t use .NET 3.x because it’s an independent
XAML engine, making the format reasonably portable. The specification is available
via the ECMA for third-party implementations.

 WPF has several different controls that allow for easily displaying XPS documents,
depending on your need—from lightweight to a complete editor with searching. The
standalone viewer generally comes up in your browser and has the various tools that you’d
expect, including searching, zooming, and printing. Figure 3.9 shows an XPS document.

Figure 3.9 An XPS document in the viewer is embedded inside of Internet Explorer.
www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 WPF from 723 feet
Like PDF documents, an XPS document can be as simple or as complex as required. A
companion technology to XPS is Open Packaging, which is used for storing and trans-
mitting XPS documents.
OPEN PACKAGING

The 2007 Microsoft Office System introduced the Open Packaging Conventions
(OPC), which is also a part of WPF. Open Packaging is a set of conventions around the
use of XML, zip archives, resources, and metadata for document interchange. Like
XPS, this format is also being standardized through the ECMA.

 Open Packaging is designed to provide a generic way of storing all the various
resources that might make up a document, including images and fonts. Open Packag-
ing can be used without XPS, but XPS uses Open Packaging for documents.

 Now that we’ve seen an overview of the base, media, user interface, and document
services provided in WPF, let’s take a look at some helpful tools that make develop-
ment of WPF applications easier and more efficient.

3.3 Necessary and useful tools
Without a good tool box, trying to meet the product requirements that your CEO hap-
pily promised at the last customer forum is analogous to cutting down a mighty tree
while armed with a very unhappy herring.8 The fundamental purpose of software is to
create tools that increase the reliability, accuracy, and speed of some manual process.
Yet many times, we neglect to create or use tools in our own process of creating soft-
ware. It’s strange, but we run into developers all the time who claim that they have no
need of specialized tools—they have Notepad, after all. In our opinion, these develop-
ers are implying that what they do for a living is a waste of time.

 We’re more in line with the idea of the “lazy” developer who will spend three days
building a tool to avoid having to spend five minutes doing something every day. The
even lazier developer hopes that someone else will spend three years building a tool
that will save five minutes.

 Microsoft has created a number of tools to make our lives easier (okay, program-
mers in general, but we mostly care about ourselves here). They’ve also gone a step
further by making sure that the framework exists for other companies to provide tools
as well.

 The principal tool from Microsoft for developers to work with WPF is Visual Studio
2008. In addition, they’ve created a series of applications under the general name of
Expression. One of these tools—Expression Blend—is specifically designed to work with
XAML and WPF, and another—Expression Design—can be used to export XAML images.
None of the other Expression applications have anything to do with WPF or XAML, but
you’ll likely see them grouped together, so we’ve provided some quick definitions.

8 The CEO bought you that herring, and he expects you to make good use of it.
www.it-ebooks.info

http://www.it-ebooks.info/

59Necessary and useful tools
3.3.1 Microsoft Expression family

The Microsoft Expression family of products introduces tools aimed not at the devel-
oper, but at the supporting roles around the developer, including graphic designers,
designer-developers, and human factors engineers. The assumption is that an entire
team is now involved in the building of applications, of which the classic developer is a
part. The two primary tools are:

■ Expression Blend —The primary tool for designers and human factors engineers
to participate in the development workflow. Blend is also unique in among the
Expression line because it’s written with WPF. Any resemblance to Adobe Flash
is not coincidental. Blend is definitely in the Flash space and, with Silverlight,
may prove to be a significant challenger. Although Adobe Flash and its new
framework, Flex, work toward providing a web-application development plat-
form, Microsoft is combining a significantly more mature and complete back-
end to WPF to create a compelling answer to Flash/Flex. Figure 3.10 shows the
Expression Blend designer.

■ Expression Design —The basis of Microsoft’s vector and graphics editing tools for
WPF. Expression Design started life as Creature House Expression, a vector graph-
ics editor. In 2003, Microsoft acquired the product, company, and developers.

Figure 3.10 Expression Blend is a more designer-oriented way of building WPF applications. It’s
definitely more of a tool for artists and designers than for developers.
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 3 WPF from 723 feet
Microsoft has added raster image capabilities and XAML export, although
XAML isn’t the native format. Expression Design is roughly in a similar market
as Adobe Illustrator (at the low end), Photoshop, Inkscape, and CorelDRAW/
PhotoPaint.

In addition, the following Expression tools are only vaguely related to WPF:

■ Expression Web —Primarily an HTML/ASP.NET authoring system. It’s slated to
replace FrontPage as Microsoft’s professional web-design tool.

■ Expression Media —Primarily a tool for managing images and other media. It
does have the ability to export directly to Silverlight via a plug-in called Expres-
sion Encoder.

■ Expression Encoder —A tool for encoding audio and video for use with Silverlight.
■ Expression Studio —The combined package of Expression products: Web, Design,

Blend, and Media.

3.3.2 Visual Studio

As you might expect (if for no other reason than the cover of the book), Visual Studio is
the primary tool that we’ll be using to develop and demonstrate WPF. Visual Studio 2008
was the first version that provides support for WPF, although there were some exper-
imental Community Technology Previews (CTPs) available as plug-ins for VS 2005.
This book primarily uses Visual Studio 2008 SP1, which has added a number of fixes
and improvements.

 The WPF editor within Visual Studio handles the basics fairly well, and this defi-
nitely speeds up WPF development. That said, with the scope of WPF and the fact that
it’s so new, there are still a lot of things that the designer can’t do. As we go through
the book, we’ll point these things out and demonstrate workarounds as necessary.

 By the way, you don’t need the full-blown $12,000 Team Edition of Visual Studio to
work with WPF. Visual Studio Express is available at no cost and also supports WPF.

3.3.3 Other tools

Some other tools from the Microsoft SDK are also useful as you develop WPF applica-
tions. These are some that we use daily.
XAMLPAD

XAMLPad is a fantastic tool included with the Windows SDK to test WPF markup that
really shows off the power of a declarative approach to UI work. XAMLPad combines a
validating XAML text editor with a real-time preview of the resulting UI. You can run a
number of the simpler examples in the book in XAMLPad without having to create an
entire Visual Studio project.
UI SPY

UI Spy gives managed code developers a tool to externally inspect and manipulate UIs.
This tool can also be used to verify programmatic accessibility.
www.it-ebooks.info

http://www.it-ebooks.info/

61Summary
THIRD-PARTY TOOLS

XAML opens up the opportunities for third-party tools to join the development work-
flow. You should definitely have a validating XML editor to work with XAML. There are
also a number of third-party, XAML-aware tools such as ZAM3D by Electric Rain and
Aurora by Mobiform Software. For a great list of available WPF related tools, check out
Mike Swanson’s tools page at

http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx

3.4 Summary
WPF is a massive framework. It provides a complete toolset for presentation layer
development with a great deal of capability and power, and will certainly enable new
UI ideas that were previously too time-consuming or difficult to create. By emphasiz-
ing a declarative model, tools should become more reliable than the traditional code
generation approach employed by the WinForms designers, and will also allow third
parties to join the WPF process through an XML contract via XAML.

 Aside from being large, WPF is also extremely ambitious. It aims to provide a toolkit
for completely replacing the way that Windows UI is developed. Although WPF is already
capable, the first few releases can’t possibly address every possible contingency. We’d
argue that, until there’s feedback from real-life implementers, it’s generally not wise to
even try. But it’s critical to have a framework that can be extended and expanded, and
Microsoft has definitely done a good job laying groundwork for the future.

 These first three chapters have tried to provide some context for WPF, starting with
the motivations behind WPF, some simple examples, and ending, in this chapter, with a
description of the parts of the WPF framework and the available toolset. This overview
provides a general framework for the more specific elements discussed throughout
the rest of the book. Starting with the next chapter, we’ll get into the real nuts and
bolts of using WPF.
www.it-ebooks.info

http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

The basics

So far we’ve been long on theory and
short on code. Well, that’s all about to
change. In the next five chapters, we’re
going to build a real, working application
in WPF—a calculator.

 Granted, what you were looking for in
your life was probably not another calcula-
tor implementation, but the calculator is
good for covering the core concepts of
WPF. Before we get to the calculator, in
chapter 4, “Working with layouts,” we’ll dis-
cuss ways of laying out WPF applications.
Then, in chapter 5, “The Grid panel,” we’ll
introduce the most powerful layout control
in WPF and use it to build the calculator.

 Chapter 6, “Resources, styles, control templates, and themes,” will demon-
strate how you can use the style mechanisms of WPF to make the calculator a lit-
tle prettier (although we’ll pass through several phases of uglier on the way).

 In chapter 7, “Events,” we’ll show the new event capabilities of WPF (such as
bubble-up and tunnel-down events) that make the calculator more responsive.

 Finally, in chapter 8, “Oooh, shiny!” (our favorite chapter of the entire
book), we’ll demonstrate how to soup up the calculator by adding glass buttons
that glow when you press them and some reflections and other effects.

The calculator demonstrates the basics of
WPF development.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with layouts
Starting in the next chapter, we’re going to build a calculator. We know it’s boring
and all, but it demonstrates a lot of concepts relative to WPF, and is a simple
enough example that the implementation details won’t get too much in the way of
what we’re doing. As with any application, one of the key elements is figuring out
how to handle the layout of the various controls. Unlike in previous MS frame-
works, the idea of layout is a concrete concept in WPF, and there are a number of
predefined layouts.

 The most powerful layout is the Grid layout, which is big enough to warrant its
own chapter (chapter 5). Before we get to that, we’ll explain the idea behind lay-
outs and demonstrate a number of the other built-in WPF layouts. We’ll also talk a
bit about some controls and concepts that aren’t technically layouts but have much
to do with laying out content.

This chapter covers:
■ Laying out controls with Panels
■ The different layout panels in WPF
■ The FlowDocument
■ Things named poorly in order to confuse

and confound
65

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 Working with layouts
4.1 The idea behind layout panels
Suppose you wanted to build something like the calculator
from figure 4.1 using Windows Forms. You would probably
start dragging controls onto a form and then use the various
alignment tools to line everything up. Of course, if you decided
that you wanted the buttons to be a different size, you’d have to
resize the buttons and then re-lay them out. If you wanted the
controls and buttons to automatically resize based on the size
of the parent, then things would get difficult. You could write
custom code to do the resizing, or you could attempt to use
docking and anchoring, adding lots of different, layered pan-
els. Either of these approaches might work, but the form would
be hard to edit and would draw slowly.

 In WPF, you can drag controls onto a form and position them
by hand, but there’s a far better way—layout panels. Layout pan-
els let you define how you want things to be arranged. You put
your content into the layout and let it handle all of the work of
positioning and sizing your controls. There are also various generic properties to con-
trol the behavior of the layout, and each layout also has its own specific properties.

 All layout panels have a collection of children. The management of these children
is handled by the base class for all the panels (called, cleverly enough, Panel), so add-
ing and removing children is identical from panel to panel, although, as you’d expect,
the way in which the children are handled is different for each type of panel. Children
can be anything—controls, objects, even other layout panels. It’s up to the layout
panel to figure out the best way to arrange the contained items. This can be simple,
such as just stacking its children one-on-top-of-the-other, or complicated, involving a
grid of rows and columns to hold different items.

NOTE If you’re familiar with Windows Forms, you’ll know that Panel is also the
name of a Windows Forms class. There’s no relationship between the
two. In fact, a lot of WPF classes have exactly the same name as Windows
Forms classes. You’ll rarely run into problems, though, because of the dif-
ferent namespaces—System.Windows.Forms for Windows Forms and
System.Windows.Controls for WPF. The place where you’re most likely
to run into trouble is when looking things up in Help. In the Help file,
you’ll have to make sure you’re looking at the System.Windows.Controls
version of a control and not the Windows Forms version or the web form
version, which also has the same name!

There are five main layout panels available, as well as some custom ones for special
purposes. Table 4.1 shows each of the major layout panels.

 Each of these different layouts is designed to serve a different purpose, although
there’s a lot of overlap. In particular, the Grid layout can provide the same functionality
as a StackPanel, DockPanel or even a Canvas. As we’ll show in the next few sections,

Figure 4.1 The simple
version of the calculator
example that we’ll start
to build in the next
chapter. It uses the
Grid layout.
www.it-ebooks.info

http://www.it-ebooks.info/

67The idea behind layout panels
Table 4.1 The major layout panel types

Layout name Description Example

Canvas A Canvas is most like a standard form from
Windows Forms. You provide the specific loca-
tion and size for controls, and that’s where they
stay. This is obviously the most flexible layout,
but gives you the least help.

StackPanel A StackPanel, as the name implies, takes all
your content and puts it into a stack, one item
above another or one item to the right of the
next, depending on whether the panel is stacked
horizontally or vertically.

The example shows how the calculator might
be reimagined using a stack panel.

DockPanel A DockPanel lets you arrange items against
the edges of the window. This is close to the way
in which docking works in Windows Forms—you
specify docking for controls, and those controls
are put against the appropriate edge.

As you can see from the example, it’s proba-
bly not the most appropriate layout to use for our
calculator.

WrapPanel The WrapPanel works sort of like word wrap in
a word processor. As many items as possible are
put in a line. When there’s no more space, the
next item is pushed onto the next line, and so
on. Once again, not exactly perfect for our calcu-
lator.

Grid The Grid layout is the most complex of the lay-
outs, and the most powerful. A Grid can have
any number of rows and columns, and content
can be placed into individual cells or span multi-
ple cells. This is similar to the table layout in
HTML.

The example shows our calculator. The head-
ing (WPF In Action Calculator) and the current
value text box span several columns. Each but-
ton is in an explicit column and row. Chapter 5
will show how the calculator layout was created.
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4 Working with layouts
there are reasons to use each of the different types of layout. The different layouts are
also designed to be used together. For example, the main part of your application
might use a DockPanel to arrange the big pieces but, within that, a StackPanel for
one component and a Grid for another.

 You can also create your own custom layout panel if you so desire, by deriving
from Panel and overriding the methods that handle the measuring and laying out of
children. It’s also likely that third-party companies will start to provide specialized lay-
out controls.

 Each of the next sections goes through each type of layout container in detail. We
start with the Canvas because it’s the simplest. While discussing the Canvas, we’ll also
talk about a lot of things that apply to the other layouts as well.

4.2 The Canvas layout
There are times when you want to set up all or part of the UI of your application pre-
cisely—you want control X to be at a particular point with a particular size, and shape
Y to be at a different point. For example, your application is some form of visual
designer (like Visio), or you are representing data graphically (like a chart), or you
are building a game. In these cases, you’ll probably want to use the Canvas layout.

 The Canvas is a fixed-position layout—where you drop
your controls is where they stay. The Canvas doesn’t ever
change the location or size of the controls (figure 4.2).

 Sometimes you may want to set up your UI quickly, drag-
ging controls onto the panel and aligning them, the way you
might have done with Windows Forms or with MFC. You can
do this, but we strongly recommend that you don’t. This
approach may initially be quicker, but you’ll end up with a
much more brittle UI than if you use an appropriate layout
panel. It will save you time up front but cost you later.

 If you do decide to use a Canvas layout, it does have
some nice features. To use them, you first have to set up a
Canvas layout to work with. You might think, based on its
behavior, that when you create a new Window, it’s set up as a
Canvas layout; after all, you drag on controls, and they
stick where you put them. But it’s a trick, a lie, a con—the
default layout for a new Window (or Page) is a Grid!

 Earlier, we mentioned that the Grid is flexible enough to provide the functionality
of other layout mechanisms. In this case, the controls are being positioned within a
Grid with a single row and a single column, and margins are set to emulate positioning.
This automatic behavior is clever because it allows the same editor to support layout-
managed editing and also fixedish positioning layout. It’s also problematic because
the editor can’t necessarily tell when you’re trying to put something into a properly
layout-managed space versus when you are trying to fix-position something.

Figure 4.2 One reason to
use a Canvas layout might
be if the user can drag on
items. For example, a simple
drawing program might allow
shapes to be dragged onto
a Canvas.
www.it-ebooks.info

http://www.it-ebooks.info/

69The Canvas layout
 So, how do you set up the editor to work with a Canvas? It would be nice if the edi-
tor had a simple way to switch the top-level layout to use any particular layout, but it
doesn’t. You have two ways to make a Window use a Canvas: edit the XAML directly or
put a Canvas inside the Grid cell.

 Because there are so many layout options, it’s expected that developers will have to
go back and forth between the editor and the XAML for a number of operations. This
is in contrast to the Windows Forms editor, which worked on the (faulty) assumption
that the autogenerated code wouldn’t be touched by the developer.

4.2.1 Converting a Grid layout to a Canvas layout by modifying the XAML
When you look at the XAML for a new Window, you’ll see a Grid tag already in place:

<Grid>
</Grid>

The tag is empty because there’s no content and no setup for the grid. To switch to a
Canvas, we delete the Grid tags and add a Canvas tag:

<Canvas>
</Canvas>

Now we can drag controls onto the Canvas, and they’ll stick where we put them. Of
course, it is more likely that you’ll be adding items to a Canvas programmatically; we’ll
show how to do that later.

 Note that for all the other non-Grid layouts, if you want to use them as top-level
controls, you’ll have to make a similar change. It’s usually easier to leave them inside
the existing Grid control.

4.2.2 Adding a Canvas to an existing layout
It’s fairly unlikely that you’ll want the top-level of your Window to be a Canvas; it’s far
more likely that you’ll have a Canvas inside a different layout. For example, you may
use docking for your application layout, but have a panel in the middle that shows
precisely positioned items, as in figure 4.3.

Figure 4.3 Controls around the edges use
a DockPanel layout; the Canvas in the
middle allows for precisely positioned items.
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 Working with layouts
The easiest way to add a Canvas to a layout is to drag a
Canvas control from the control palette. If you drag it
onto the empty Grid control, it would ideally take up
all the available space (based on properties that we’ll
talk about later). But for the purposes of discussing the
Canvas, it doesn’t matter if it takes up all the space, so
long as it’s big enough to work with.

 Go ahead and drag a couple of Buttons (or other
controls) onto the Canvas (something like figure 4.4).

 Listing 4.1 shows what the XAML looks like after
dragging on the controls. Extra credit will be awarded
if you get your Buttons to stop in exactly the same spots
as ours.

<Window x:Class="CanvasTest.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Canvas" Height="244" Width="242">
 <Canvas>
 <Button Canvas.Left="119" Canvas.Top="24"
 Height="23" Name="button1" Width="75">Button</Button>
 <Button Canvas.Left="44" Canvas.Top="69"
 Height="23" Name="button2" Width="75">Button</Button>
 <Button Canvas.Left="78" Canvas.Top="119"
 Height="23" Name="button3" Width="75">Button</Button>
 </Canvas>
</Window>

The XAML for the Buttons is pretty reasonable—Left, Right, Width, Height, Name,
and the text to display inside the element. You may notice something odd about the
way that the Left and Top properties are defined, but we’ll get to that in a moment.

 Right now the Width and Height are set to default values by the editor. What hap-
pens if we remove the XAML for Width and Height? If this were Windows Forms, the
Buttons would disappear, but in WPF, something different happens. We could either
delete the XAML for the Width and Height attributes or clear the values in the prop-
erty editor. Either way, the result looks like figure 4.5.

 Instead of disappearing, the Buttons have shrunk until they’re just big enough to
hold their content. This behavior is standard throughout WPF. If you don’t specify a par-
ticular size, then controls will generally be sized to their content. This is true with lay-
outs other than the Canvas, except that the other layouts also have additional influence
on the size of the controls, as you’ll see in the next sections.

 You can do other things to the Buttons’ properties that have an influence on their
sizes. Figure 4.6 shows the result of some of these options.

 Listing 4.2 shows the updated XAML that generated figure 4.6.

Listing 4.1 XAML for dragged-on Buttons

Figure 4.4 We dragged a few
Buttons onto a Canvas. Their
positions are fixed.
www.it-ebooks.info

http://www.it-ebooks.info/

71The Canvas layout
<Canvas>
 <Button Canvas.Left="119" Canvas.Top="24" Name="button1"
 Width="70" Height="23" >Button</Button>
 <Button Canvas.Left="44" Canvas.Top="69"
 Name="button2" >Button2 is quite wide</Button>
 <Button Canvas.Left="78" Canvas.Top="119" Name="button3"
 Padding="10 2" >Button</Button>
/Canvas>

As you can see, all the Buttons are now different sizes. In each case, the sizing has
been accomplished in a different way. For button1 b, we set the width and height. If
the text didn’t fit, it would be truncated. For button2 c, we make the text longer. The
Button automatically increases its size to accommodate the new text. In some scenar-
ios, this is desirable. In others, such as when you have a stack of Buttons that should
all be the same size, it’s quite annoying.

 For button3 d, we add padding. Padding is another property present on all con-
trols. It says, “Add this much space (in pixels) around the contents of this control.”
Note the way in which the value for Padding is specified:

Padding="10 2"

You’ll see this notation wherever multiple values
need to be specified. In this case, the padding is set
to 10 pixels on the left and right, and 2 pixels on
the top and bottom. For the Padding property, you
can specify 1, 2, or 4 different values. Table 4.2
shows the different options.

 The values here are space-delimited, but you can
also comma-delimit them if you prefer:

Padding="10,2,12,4"

Figure 4.7 shows how the value will appear if you set it through the designer.

Listing 4.2 XAML for Canvas with additional properties set

Figure 4.5 If we remove the
Width and Height, controls are
automatically sized based on
their contents.

Figure 4.6 Buttons gone
wild—with some additional
properties.

Sets Width
and Height

b

Adds more textc

Adds
paddingd

Figure 4.7 You can set padding in
the XAML editor or in the property
designer. The editor defaults to
comma-delimiting the values.
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Working with layouts
Properties like Padding, Width and many of the other properties that show up in the
Properties grid are pretty straightforward. Not all WPF properties work the same way
though…

4.2.3 Using attached properties

You may have noticed an interesting thing about the property values in listing 4.2.
Properties such as Width and Padding look like regular XML attributes. But the Left
and Top properties’ notation is a little different:

<Button Canvas.Left="40" Canvas.Top="40" >

Button does not have properties for Left and Top. Unlike Windows Forms, which
assumed that everything has an explicit location, the working assumption for WPF is
that the parent is responsible for the placement of each control. You’ll see this with the
other layout types. In the case of a Canvas, each control has to have its explicit loca-
tion set. Because it is the Canvas layout that requires this information, it is up to the
Canvas layout to handle this information.

 In “classic” XML (that is, XML that could be validated by a Schema), you’d nor-
mally have to introduce an element around each child to specify the properties spe-
cific to the parent—something like listing 4.3.

<Canvas>
 <CanvasItem Left = "40" Top="40">
 <Button>Button1</Button>
 </CanvasItem>
</Canvas>

This approach would work but is quite verbose, particularly when you have a lot of
nested items. It also implies a hierarchy that doesn’t really exist. Rather than requiring
more verbose XML and making Canvas follow a structure that it probably doesn’t
need, XAML introduces a notation that allows properties that belong to the parent to
be defined on the child, via the use of the dot notation:

Table 4.2 Different ways for providing multiple values for properties like padding or margins

Value Meaning

Padding="10" The same value will be used for all sides—Left, Right, Top, and
Bottom. In this case, 10 pixels of padding will be placed on each side of
the control’s content.

Padding="10 2" The first value (10) will be used for the left and right sides. The second
value (2) will be used for the top and the bottom.

Padding="10 2 12 4" All four values are explicitly specified in the order of Left (10), Top (2),
Right (12), and Bottom (4). If you have a web development back-
ground, you should note that the order here is different.

Listing 4.3 A way to set properties for children (but not supported by WPF)
www.it-ebooks.info

http://www.it-ebooks.info/

73The Canvas layout
<Canvas>
 <Button Canvas.Left="40" Canvas.Top="50">Button1</Button>
</Canvas>

This should be read as “When you add the
Button to the Canvas, tell the Canvas that the But-
ton should be positioned at Left 40 and Top 40.”
These properties are called attached properties
because they’re attached to the child to which
they refer, even though they belong to the con-
taining control (the Canvas in this case). You’ll
see this notation throughout XAML for all sorts of properties. You just need to remem-
ber that properties with dots in the middle are really setting values that are used by the
containing control. The nice thing is that, when you’re editing the properties of
the control in the property editor, attached properties are displayed as part of the set
of the control’s properties (figure 4.8).

 In the case of the Canvas, there are only 4 attached
properties: Left, Right, Top, and Bottom. These prop-
erties don’t act precisely as you’d expect. Rather than
providing an explicit location, they specify the dis-
tance from the particular edge. So, if you set Left to
40, the left edge of the control will be 40 pixels from
the left edge, but if you set Right to 40, the right
edge will be positioned 40 pixels away from the right
edge (figure 4.9).

 The nice thing about setting the Right value is that the control will move with the
right edge of the parent control, so if you resize, it will move with the edge. This is sort
of like anchoring in Windows Forms. Unlike anchoring, you cannot set both the Left
and the Right values and have the control automatically expand. If you set both Left and
Right, then the Right value will be ignored. Similarly, if you set both Top and Bottom,
Bottom will be ignored.

 It would be nice if this worked the way you’d expect—sticking to both edges and
expanding when the parent changes size. We suspect that the reason it doesn’t might be
to discourage people from using the Canvas for building forms instead of more appro-
priate layouts. We considered hiring a private investigator to trail behind the WPF team
with cameras to figure it out, but our publisher wouldn’t spring for the expense.

 Attached properties aren’t used only for the Canvas; they’re used throughout WPF
and by most of the other layouts as well. It’s the standard way for WPF to provide prop-
erties on a child that are important to the parent.

4.2.4 Setting up a Canvas programmatically

If you’re using the Canvas the way it’s designed to be used, you’ll rarely be dragging
controls onto the editor. You are much more likely to have code that adds items

Figure 4.8 The property editor displays
attached properties as part of the set of
the control’s properties.

40
px

Figure 4.9 If you set Canvas.
Right, the control will move with
the right edge of the parent.
www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Working with layouts
directly. All the different layout controls allow their properties and children to be set
programmatically. The Canvas will almost always be set programmatically.

 To demonstrate how to programmatically add controls and set their properties,
you first need to set up a place for the code. In a real application (as you’ll see later),
this could happen based on a button click or part of some other initialization. For our
purposes, you’ll add the controls as part of the initialization of the Window.

 We want to add the controls right after the XAML has been processed. We could do
this in two different ways. The first would be to put the code in the constructor of the
class. If you create a new Window and go the Window1.xaml.cs file, you’ll see a con-
structor with a call to the method InitializeComponent(), as in listing 4.4.

public partial class Window1 : System.Windows.Window
{
 public Window1()
 {
 InitializeComponent();

 // You could put your code right here
 }
...

InitializeComponent() calls a method automatically created by the compiler when it
compiles the XAML file. This method does all the work described in the XAML defined
in Window1.xaml. In the example, it creates the Canvas and then adds the three
Buttons. At the moment, the XAML file is empty, so initialization is minimal.

 The second way to execute code after initialization is to catch the Loaded event.
This event is triggered after the Window has been set up. To do this, we need to add a
reference to the event in the XAML and then put the event handler in the code file.
Listing 4.5 shows the XAML with the reference to the Loaded event.

<Window x:Class="Layouts.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Layouts" Height="300" Width="300" Loaded="Window_Loaded">
 <Canvas Name="canvas1">
 </Canvas>
</Window>

Notice that we manually change the default Grid to a Canvas. We also give the Canvas
a name b by defining a value for the Name attribute. Why do we do this now, when
we didn’t earlier? Earlier, we didn’t need to talk to the Canvas. Everything we wanted
to do was defined in the XAML, and the items in the Canvas knew they were part of
it because they were nested inside of its XML tag. Now, we’re going to programmati-
cally add things to the Canvas, and to do that, we need a way to reference it. The
name we give it will end up as the name of a member of the Window1 class that we can

Listing 4.4 Placing code to run after initialization in constructor

Listing 4.5 XAML for a Window that has registered for the Loaded event

Names
Canvasb
www.it-ebooks.info

http://www.it-ebooks.info/

75The Canvas layout
reference, as you’ll see in a moment.1 Note that virtually all XAML elements can be
given names.

 We also add the Loaded="Window_Loaded" attribute value. When the Loaded event
is fired, the Window_Loaded method in Window1 will be called. You can see the format
of the event handler in listing 4.6, along with the implementation for adding all
the controls.

Button button1 = null;
Button button2 = null;
Button button3 = null;

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 button1 = new Button {Content="Button", Width=70, Height=23};
 Canvas.SetLeft(button1,119);
 Canvas.SetTop(button1,24);
 canvas1.Children.Add(button1);

 button2 = new Button {Content="Button2 is quite wide"};
 Canvas.SetLeft(button2,44);
 Canvas.SetTop(button2,69);
 canvas1.Children.Add(button2);

 button3 = new Button {Content="Button"};
 Canvas.SetLeft(button3,78);
 Canvas.SetTop(button3,119);
 button3.Padding = new Thickness(10,2,10,2);
 canvas1.Children.Add(button3);
}

Because we didn’t define any of our Buttons in the XAML, we create our own declara-
tions for them b. If we had created them in the XAML and given them names, we
could have referenced them by those names.

 The declaration for the event handler c follows the standard pattern for routed
events. Many WPF events look like this, although there are certainly a number of
exceptions where special handling is required. We’ll talk about RoutedEventArgs
when we talk about events in more detail in chapter 7.

 Creating a control and setting its properties is pretty much the same as with Win-
dows Forms. We create a new instance d, and set values for properties such as Width
or Content. The code uses object initializers. This is a new feature of .NET 3.0 that lets
you assign values to members of an object when you declare it. It would have been just
as legal (but more verbose) to have a separate line to set each property.

 One noticeable difference in this code from Windows Forms is that, instead of set-
ting a Text property for the text to display, we set the Content of the control. As you’ll
see, content can be text, nested controls, or any object.

1 It also gives the Canvas a greater sense of self-worth. How would you like it if everyone just went around calling
you Person, instead of by your name?

Listing 4.6 Catching Loaded event and programmatically adding controls

b

c

d

e
f

g

h

i

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 Working with layouts
 When setting the Left and Top positions in XAML, it more or less looked like we
were setting properties on the Button, even though we knew that the properties
belonged to the Canvas. When we’re writing code, we can no longer hide this fact e.
The Button does not have a Left or Top property. You may notice, though, that we’re
not exactly setting the Left on the Canvas (canvas1) either; we’re calling a static
method on the Canvas class called SetLeft().

 SetLeft() takes the Control and the value for Left as arguments, but note that it
doesn’t take a reference to the Canvas. It’s decorating the Button with some information
that doesn’t mean anything to the Button. When the Canvas looks at the Button, it
looks at that decoration and says, “Aha, this Button wants to be positioned 119 pixels
from the left edge.” You’ll see this throughout WPF—property values that don’t belong
to a control are nonetheless attached to the control for another control’s consumption.

 Finally, we add the Button to the collection of Children for the Canvas f. All the
layout Panels have a Children collection to contain the controls they own. We then
add the other two Buttons g, h with slightly different property values. Note that the
Padding property i takes a Thickness object that holds values for each edge.

 If you now run the application, you’ll get
something like figure 4.10.

 Note that this looks exactly the same as fig-
ure 4.6. This could be because we figured we
could get away with copying and pasting the
same screenshot, but it’s mainly because there’s
no functional difference between the XAML
approach and the programmatic approach.

 In a real-world example, it’s unlikely that
you’d only create standard controls to add to a
Canvas. It’s more likely that you’d respond to
events and method calls and dynamically cre-
ate appropriate content. The way you’d do
this is much the same as you see here.

 Even though the Canvas layout panel is the
simplest of the panels to understand, we’ve
spent more time talking about it than we’ll
spend on the other layout panels. We spent so much time on this panel because we
wanted to talk about and show the mechanisms behind the panels. No matter how com-
plex the layout, these concepts won’t change. But each of the following layout panels
does have its own set of properties and behaviors.

4.3 The StackPanel layout
Sometimes, the name of a class pretty much tells you all you need to know about it.
The StackPanel is a panel that stacks things. Well, now for the next section…

 Okay, so maybe a few more details.

Figure 4.10 The Canvas layout with child
elements added programmatically
www.it-ebooks.info

http://www.it-ebooks.info/

77The StackPanel layout
As with the other layout panels, the StackPanel has a collection of Children that it lit-
erally shoves one after the other. You set the orientation to either horizontal or verti-
cal to control where the items go (figure 4.11).

 You might use the StackPanel if you have a series of controls with a set width or
height that you want to show up in a row. For example, you might use StackPanel
when you have a series of controls in a side panel (like the accordion control in
Microsoft Outlook—you can expand/contract sections for mail, calendar, tasks, and
so on). The controls can all change size, and the other controls will automatically be
moved to accommodate the space.

 Another scenario might be an options dialog where you have a series of subcon-
trols. Additional controls can be added easily; and, once again, if the size of a particu-
lar control changes, the rest of the display will adapt.

 Figure 4.12 shows a dialog that could be built using stack panels. A horizontally ori-
ented stack panel could hold the selector control on the left and another stack-panel
on the right. That stack panel would hold all the other controls such as the authenti-
cation and user-information controls.

 If you need another control, it can be added to the stack without requiring any
special handling. Figure 4.13 shows the way the dialog from 4.12 might be constructed
using stack panels.

NOTE One major advantage that WPF has over Windows Forms is that the cost of
having multiple layers of panels and controls is considerably lower. With
Windows Forms, each Panel and each Control would be associated with a
Window handle. The more layers, the more handles, the more resources,
and the worse the performance. With WPF, there’s no such overhead.

Figure 4.13 shows one of several ways you could accomplish this same layout. As you’ll
see, the DockPanel or the Grid or some combination could also be used. To set the
orientation, we select the panel and change the Orientation property in the Proper-
ties grid (figure 4.14).

 To add controls to the StackPanel, we drag them from the toolbox. When we
added controls to the Canvas, the default behavior was for the controls to take up the
minimum space, although we could change that by explicitly setting the width, pad-
ding, and so on. You may have noticed in figure 4.11 that the default behavior for con-
trols in the StackPanel is different; in the direction of stacking, controls behave the
same way—taking up the minimum space—but in the other direction, the control is

Figure 4.11 StackPanel oriented
vertically and horizontally
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Working with layouts
stretched to take up the maximum amount of space, so long as we don’t provide an
explicit width or height to limit it.

 As before, we can change the behavior by setting properties on the controls. Fig-
ure 4.15 shows the StackPanel when some properties are explicitly set on the controls.

 Listing 4.7 is the XAML for figure 4.15. We can set all these properties in the Prop-
erties grid or directly in XAML.

<StackPanel Orientation="Vertical">
 <Button Width="200">First</Button>
 <Button HorizontalAlignment="Left">Second</Button>
 <Button Padding="10 4">Third</Button>
 <Button Margin="20 20">Fourth</Button>
 <Button Padding="10 4" HorizontalAlignment="Right">Fifth</Button>
 <Button HorizontalAlignment="Stretch">Sixth</Button>
</StackPanel>

Listing 4.7 XAML for StackPanel with various attributes set

Figure 4.12 An example of an option dialog with multiple stacked items. The different authentication
sections and the user information are each independent controls stacked one above the other.

b

c d
e

f

www.it-ebooks.info

http://www.it-ebooks.info/

79The StackPanel layout
If you look at all the attributes, you’ll see that
none of them use the dot notation (such as
Canvas.Left). We make all the behavior
changes by setting properties available on the
controls themselves. The StackPanel auto-
matically takes these properties into account
when laying out the controls. We’ve high-
lighted some of the specific properties.

 On the first control, we set an explicit
width b. The layout panel still tries to stretch
the control (because Stretch is the default
alignment), but it can’t quite reach all the way
across now. The control appears centered but
with the specified Width of 200.

 On the second control c, we set Horizon-
talAlignment to Left, rather than letting it
default to Stretch. The HorizontalAlign-
ment property tells the containing layout how
it would prefer to be positioned. Because the
control is now left-justified, it takes on its
default sizing behavior.

 As you’ve probably guessed, there’s also a
VerticalAlignment property. Because of the
current orientation of the StackPanel, setting VerticalAlignment would have no

Figure 4.14 Setting the StackPanel
orientation in the Properties grid

Figure 4.15 StackPanel with some
values set explicitly on the controls

Horizontal Stack Panel

Selector
Control

Vertical Stack Panel

Control #1

Control #2

Control #3

Figure 4.13 This is one way in
which stack panels could be used
to set up a dialog like that in
figure 4.12
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Working with layouts
effect. If the orientation were set to Horizontal, the VerticalAlignment property
value would become meaningful. These properties can cause different behavior on
other layouts.

 Here d we set padding, as we did when working with the Canvas layout. As you
can see, although the vertical padding has an obvious impact, the horizontal padding
doesn’t show up. It is being applied, but then the control is stretched to fill the space,
so you can’t see any meaningful effect.

 We’ve not yet seen the Margin property e, but it’s present on all controls. Whereas
padding is used to set space inside a control, the margin controls spacing around the
control. The margin was meaningless when using the Canvas, but the StackPanel
automatically adds 20 pixels on each side of the control.

 Margins are unbelievably handy. If you look at the screen shot in figure 4.12, you
can see space between each of the sections. With Windows Forms,2 you’d either have
to add a spacing control between each section (meaning the use of yet another Win-
dow handle) or include extra space in each control. To adjust the spacing, you’d have
to modify each and every control and, if you used the same control in more than one
place, you’d have to have the same spacing—or add nasty hacks. With WPF, we just set
the margin and sit back while the appropriate layout handles everything for us.

 Here f we explicitly set the horizontal alignment to Stretch, which means that the
layout panel should make the control take up all available space in the horizontal direc-
tion. Because Stretch is the default, it looks like it would if we had said nothing at all.

 Using the StackPanel is easy, and you can see how it would work for layouts like
that shown in figure 4.12. But it’s possible that not all the controls in the stack will fit
into the available space. Right now, if we reduce the size of the window, the bottom-
most controls will get chopped off. A scrollbar here would be lovely.

4.3.1 Adding scrolling support

Adding scrolling is easy, and, once you get used to the idea of control composition,
fairly intuitive. We simply put the StackPanel (or anything else we want to automati-
cally scroll) inside a ScrollViewer, as shown in listing 4.8.

<ScrollViewer>
 <StackPanel Orientation="Vertical">
 <Button Width="200" >First</Button>
 <Button HorizontalAlignment ="Left">Second</Button>
 <Button Padding="10 4">Third</Button>
 <Button Margin="20 20">Fourth</Button>
 <Button Padding="10 4" HorizontalAlignment="Right">Fifth</Button>
 <Button HorizontalAlignment="Stretch">Sixth</Button>
 </StackPanel>
</ScrollViewer>

2 As it happens, Windows Forms controls do have a Margin property. Unfortunately, it’s almost universally
ignored.

Listing 4.8 Adding scrolling to a WPF element with ScrollViewer
www.it-ebooks.info

http://www.it-ebooks.info/

81The StackPanel layout
We know we keep harping on this, but the idea of
composition is extremely powerful and core to the
whole makeup of WPF. In the past, you might have
expected StackPanel to have some scrolling options,
but every single container control would have to
have the same options. Sure, there could be a base
class; but, if everything had to be derived from that,
you’d end up with duplicate properties everywhere
and be limited to a single derivation tree.

 Composition does away with all of that.
ScrollViewer handles scrolling. Nothing else has
to care. We wrap it and forget it. Figure 4.16 shows
the Buttons with a scrollbar.

 By default, a ScrollViewer adds a vertical
scrollbar that’s always present but no horizontal
scrollbar. This works well for the current example
but would be less useful if we had set the orienta-
tion to horizontal. It is also slightly annoying that a
scrollbar is displayed even if there is enough space
for everything (figure 4.17).

 Fortunately, it’s trivial to make the scrollbar
only show if it’s needed (figure 4.18).

 Selecting Auto makes the scrollbar show only if
it’s needed. Similarly, to have a horizontal scroll-
bar and no vertical is also easy. Here it is in XAML:

<ScrollViewer VerticalScrollBarVisibility="Hidden"
 HorizontalScrollBarVisibility="Auto">

We could also explicitly set the size of Scroll-
Viewer and programmatically control it.

 While we’re talking about dealing with
space management, it might be nice to take a
brief detour and talk about a fairly handy con-
trol that lets the user hide and show pieces of
content as desired—the Expander control.

4.3.2 The Expander control

Earlier, we suggested that one place to use a
StackPanel is with expanding panels—when
the panels expand or contract, everything else
changes size automatically. The WPF team has
been nice enough to provide an expanding/contracting control which makes this
behavior easy to demonstrate. (We assume they put it in for the convenience of the

Figure 4.16 Adding a ScrollViewer
around the StackPanel automatically
adds scrolling behavior.

Figure 4.17 The scrollbar shows up
even if it’s not needed—at least it’s
disabled, though.

Figure 4.18 Setting the vertical
scrollbar’s visibility
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Working with layouts
authors of this book.) The Expander control works similarly to the sections in Windows
Explorer that allow you to show or hide different sections. Figure 4.19 shows our sample
with an Expander bar added.

 We put a thick border around the Expander so it would be easier to see. Also
notice that, as well as moving everything down, we got our automatic scrollbar after
expanding. Listing 4.9 shows the XAML for the Expander.

<ScrollViewer VerticalScrollBarVisibility="Auto">
 <StackPanel Orientation="Vertical">
 <Button Width="200" >First</Button>
 <Expander Header="Expand me"
 BorderThickness="3" BorderBrush="Black">
 <StackPanel>
 <Button>Second</Button>
 <Button>Third</Button>
 <Button>Fourth</Button>
 </StackPanel>
 </Expander>
 <Button Padding="10 4" HorizontalAlignment="Right">Fifth</Button>
 <Button HorizontalAlignment="Stretch">Sixth</Button>
 </StackPanel>
</ScrollViewer>

As you can see, we add the definition for an Expander panel into the StackPanel b.
The Header defines the text that appears at the top of the section. We also set the bor-
der thickness and color to make the content a little easier to see.

 Note that we can’t put the buttons directly inside the Expander. As with most con-
trols, the Expander can only contain one thing: its contents. If we want to add multiple
items, we have to put something inside the Expander that can hold some number of
other things. The StackPanel, as with all the other layout panels, can hold multiple
items, so we can add another StackPanel c.

 The StackPanel itself solves some specific layout scenarios, but it’s quite flexible. It
could be used, for example, to build a calculator. You should be able to see how this
would work—one vertical StackPanel containing a number of vertical StackPanels

Listing 4.9 Expander added to StackPanel

Figure 4.19 Expander shown unexpanded and expanded

Adds
Expander

b

Adds panel in
Expanderc
www.it-ebooks.info

http://www.it-ebooks.info/

83The DockPanel layout
for the buttons. It wouldn’t be easy, but it would be possible. In the next section, we
will talk about the DockPanel. The DockPanel can be used to solve some of the same
problems but in a different way. As with the StackPanel, the DockPanel, while flexi-
ble, is designed to handle a different set of scenarios.

4.4 The DockPanel layout
A DockPanel is useful when you want to position various elements on the edges of your
window. For example, you might put a menu and a toolbar at the top, an explorer bar at
the left, and a status bar at the bottom. The remaining space would contain the main
content with which the user interacts. As with a StackPanel, if you put a series of items
on the same side, they will stack one after the other. In fact, if you add all the items at
the top or the left, the behavior will be similar to that of a StackPanel.

 Similar but not identical. The big difference is
that a StackPanel keeps taking up space as you
add more items (the reason we added a scrollbar),
whereas a DockPanel tries to constrain all its con-
tent in the available space. Figure 4.20 shows what
happens when we take some of the content from
the example StackPanel and put it into a Dock-
Panel, but with everything docked to the top.

 Notice that the Sixth button has been
expanded to fill the remaining available space. By
default, the last control always takes up all the
remaining space, although you could change that
behavior by setting the LastChildFill property:

<DockPanel LastChildFill="False">

If LastChildFill is turned off (it defaults to True), then the last control is docked
like any other control, and nothing fills any remaining space. If you do this and
then set the Sixth button to be docked to the top, then the result would look simi-
lar to a StackPanel; but, if you want that type of behavior, the StackPanel is obvi-
ously a better fit. Also, notice that the properties we’d set previously for some of the
controls are applied on the DockPanel as well—properties such as Width, Padding,
and HorizontalAlignment.

 Of course, the more common use of a DockPanel is to lay out a number of differ-
ent controls on different edges of the screen, as seen in figure 4.21.

 If you were brave, you could probably emulate all this docking with the use of a
series of nested StackPanels, but the DockPanel is rather more appropriate. Let’s see
how all of this is defined.

Figure 4.20 By default, a DockPanel
tries to use up the available space.
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Working with layouts
4.4.1 Defining a DockPanel in XAML

Listing 4.10 contains the XAML for the layout shown in figure 4.21. We can either
manually type the XAML or use the editor, although we’d have to clear some proper-
ties that the editor puts into place.

<DockPanel x:Name="dockPanel1">
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File"/>
 <MenuItem Header="_Edit"/>
 <MenuItem Header="_Help"/>
 </Menu>
 <ToolBarTray Background="White" DockPanel.Dock="Top">
 <ToolBar Band="1" BandIndex="1">
 <Button>A</Button>
 <Button>B</Button>
 <Separator/>
 <Button>C</Button>
 </ToolBar>
 </ToolBarTray>
 <StatusBar DockPanel.Dock="Bottom">
 <StatusBarItem>
 <TextBlock>Ready</TextBlock>
 </StatusBarItem>
 </StatusBar>
 <StackPanel DockPanel.Dock="Left">
 <Expander Header="Useful">
 <StackPanel>
 <Button>Don't</Button>
 <Button>Press</Button>
 <Button>Me!</Button>
 </StackPanel>
 </Expander>

Listing 4.10 XAML for a DockPanel with a number of real-looking controls

Docked Top

Docked Left Not Docked

Docked Bottom

Figure 4.21 A DockPanel with items docked to most sides and a control in the
remaining space

Docks menu
at top

Docked
top

Toolbar tray
holds toolbar

Docks status
bar at bottom

StackPanel with several
expanders on left
www.it-ebooks.info

http://www.it-ebooks.info/

85The DockPanel layout
 <Expander Header="Less useful"></Expander>
 <Expander Header="Silly"></Expander>
 </StackPanel>
 <Button Padding="10 10">
 <TextBlock TextWrapping="Wrap" TextAlignment="Center">This is all
 of the remaining space that is not docked</TextBlock>
 </Button>
</DockPanel>

Once again, we’re setting properties on the controls that don’t belong to the controls
themselves, but are used by the parent:

DockPanel.Dock="Top"

Dock is also an attached property, as we
talked about when discussing the Canvas in
section 4.2.3, and can be set to Top, Bottom,
Left, or Right. The order in which the con-
trols are listed is also important. For example, if
we put the status bar after the StackPanel on
the left that’s designed to look like an explorer
bar, we’d get a result like that in figure 4.22.

 See how the status bar no longer goes all
the way across the bottom. WPF has some nice
support for menus, toolbars, and the like. We’ll
see much more of this in chapter 10.

 We can also add items to a DockPanel
programmatically.

4.4.2 Setting up a DockPanel programmatically
Setting up the DockPanel programmatically is similar to the way we set up the Canvas.
Listing 4.11 shows some code added to the Loaded event handler of the Window that
adds a right-docked control.

protected void Window_Loaded(object sender, RoutedEventArgs e)
{
 Button buttonRight = new Button{Content = "Right"};
 DockPanel.SetDock(buttonRight, Dock.Right);
 dockPanel1.Children.Insert(0,buttonRight);
}

To make this work, we register for the Loaded event in the Window:

Loaded="Window_Loaded"

We could also have gone to the Events page of the properties editor and double-
clicked the Loaded event to have our handler be automatically created.

 On the DockPanel, there are similar methods to the Canvas.SetLeft method. In
particular, SetDock b is a static method on Canvas that sets the dock side.

Listing 4.11 Adding a control to DockPanel programatically

Control takes up remaining
space and isn’t docked

Figure 4.22 If we order controls differently
in a DockPanel, we’ll get different results.

Sets
Docking

b

Adds controlc
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Working with layouts
 To add the control to the DockPanel, we put
it in the Children collection c. We give the
DockPanel the name of dockPanel1 by adding
a Name=”dockPanel1” attribute to the XAML.
Although we could Add the Button to the
Children collection, we instead call Insert
and force the Button to be at the beginning.
We do this because the order within the collec-
tion changes the docking behavior, as you
saw earlier.

 Figure 4.23 shows the DockPanel with the
new, added Button.

 It would be possible to build the calcula-
tor with a DockPanel, but boy, would it hurt.
It might make sense to use a DockPanel if, for
example, you want to add a menu to the top
of the calculator and some extra slide-out
advanced functionality. The display and buttons for the calculator are best left to a dif-
ferent type of layout. In most applications, you’ll likely use multiple layouts together.

 The next section introduces the WrapPanel layout. The WrapPanel is probably the
most specific of the standard layouts and would, arguably, be the hardest to use to
build the calculator—unless you really like strange wrappy calculators.

4.5 The WrapPanel layout
As the name implies, the WrapPanel wraps its children, sort of like word wrap in a doc-
ument. It shoves as many things on a line as possible and then moves the next item to
the next line. A good example of this type of functionality is Photoshop’s control pal-
ette. The palette contains a series of tools, and as you size the palette, the palette’s
contents get moved around, as in figure 4.24.

 The XAML for a WrapPanel is pretty straightforward—just the WrapPanel tag and
its list of children.

Figure 4.23 A complex demonstration of
docking with the DockPanel. Everything
was done in XAML except adding the
Right control.

Figure 4.24 All the Buttons are in a WrapPanel. As the available space changes, the
Buttons wrap accordingly.
www.it-ebooks.info

http://www.it-ebooks.info/

87The WrapPanel layout
<WrapPanel>
 <Button Width="30">A</Button>
 <Button Width="30">B</Button>
 ...
 <Button Width="30">P</Button>
</WrapPanel>

We can also have the WrapPanel wrap vertically instead of horizontally:

<WrapPanel Orientation="Vertical">

This snippet gives the expected result shown in figure 4.25.
 By default, each item takes up the amount of space

that it desires based on its content, margins, padding,
and so on. But the WrapPanel lets us specify the amount
of space that every item should take up. If the space spec-
ified is bigger than the items would be, the items are
placed appropriately in the space (based on the align-
ment properties). If, on the other hand, the items don’t
fit, they will be cut off. For example, if we specify a width for all items (using the Item-
Width property), the Buttons will all get cut off. Here’s the XAML:

 <WrapPanel ItemWidth="20">

And figure 4.26 shows the results.
 Kind of a neat effect, but probably not that desirable.

The XAML in listing 4.12 sets the spacing to a larger
value, but also sets some options on the Buttons to show
the effects. The results are shown in figure 4.27.

<WrapPanel ItemWidth="40" ItemHeight="40">
 <Button Width="30">A</Button>
 <Button Padding="10 10">B</Button>
 <Button Padding="30 30">C</Button>
 <Button Margin="10 10">D</Button>
 <Button HorizontalAlignment="Right">E</Button>
 <Button HorizontalAlignment="Left" >F</Button>
 <Button HorizontalAlignment="Stretch">G</Button>
 <Button Width="30" VerticalAlignment="Top"
 HorizontalAlignment="Left">H</Button>
 <Button Width="30" VerticalAlignment="Bottom"
 HorizontalAlignment="Right">I</Button>
 <Button Width="60" Height="60">J</Button>
 <Button Width="30">K</Button>
...
 <Button Width="30">P</Button>
</WrapPanel>

Every item will be provided with exactly 40 pixels of width and height b. The proper-
ties on each Button determine how that space is used.

Listing 4.12 Specifying Width and Height for items and then setting different properties

Figure 4.25 WrapPanel
with vertical orientation

Figure 4.26 Limiting all items
to less space than they require

b
c

d
e

f
g

h
i

j

1)

1!

1@
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Working with layouts
 We explicitly set the width of the Button c.
Because the width is less than the space provided,
space appears on either side of the Button.

 We add padding around the content d.
This makes the Button almost fill the avail-
able space.

 We add a lot more padding e. Because
the Button is still just taking up the available
40x40 space, the text is pushed off of the
Button, so it appears blank.

 We add a margin around the Button f,
shrinking its size.

 We tell the Button to be aligned horizontally to the right g, moving the Button to
the right edge of the space.

 We tell the Button to be aligned horizontally to the left h, moving the Button to
the left edge of the space.

 We tell the Button to stretch horizontally i, making it take up the entire width.
This is the default behavior.

 By setting the vertical and horizontal alignment j, we move the Button to the
upper-left corner of the available space.

 This 1) is similar to the previous Button, except that we move the Button to the
lower-right corner.

 By explicitly setting the width and height to values greater than the available space
1!, the Button no longer fits in the provided space and so is cut off.

 The last Button 1@ isn’t fancy—a truly boring button.
 We’d like to keep talking about the WrapPanel (and, if we were paid by the word,

we probably would). But that’s pretty much all there is to say. When we started out, we
didn’t think that there were that many uses for the WrapPanel, but it has turned out to
be surprisingly useful. For example, we often use it to hold the content within List-
Boxes when we want to show several different values. If the ListBox is wide enough,
the items all fit on one line, but if not, each item wraps onto a second line.

 There is one more major layout panel—the Grid. It has a large number of options,
so we moved it to its own chapter, chapter 5. (We are paid by the chapter.)

 But, before we get to that, we want to talk about a few more layout-type things. The
next section covers some items that don’t exactly fit into our discussion of layout pan-
els but are, nonetheless, related to laying out content.

4.6 Other layout options
In addition to the Grid panel, which we’ll spend most of chapter 5 discussing, a hand-
ful of other controls fall roughly into the categorization of layout. They either are spe-
cialized panels of one sort or another or provide layout-like functionality. We’ll start by
(briefly) talking about some of the specialized layout panels that exist for specific

Figure 4.27 The results from listing 4.12.
Setting the space to use for each item and
then setting properties.
www.it-ebooks.info

http://www.it-ebooks.info/

89Other layout options
scenarios, and then we’ll talk about the FlowDocument, which isn’t a layout panel, per
se, but a mechanism for laying out content in the manner of a word processor.

4.6.1 Specialized layout panels

In addition to the panels we’ve discussed, there’s also a handful of other layout panels,
which are all extremely specialized. Some things also have names that would imply that
they’re layout panels, but they are often unrelated.

 Of the ones that are layout panels, you’ll see things like TabPanel and Virtualiz-
ingStackPanel. These are primarily used by specific controls. For example, TabPanel
handles the tabs that appear above a TabControl, wrapping or scrolling them as
appropriate. VirtualizingStackPanel is a special control used by controls like List-
Boxes to hold all the child items.

 Back in the olden days (last year), the idea that you’d use a control that held con-
trols representing each item in a ListBox would have caused serious laughter. The
performance hit would have caused trouble somewhere around item 20. No longer—
composition in WPF is so lightweight as to make it completely practical. Even so, you
may have noticed the Virtualizing in VirtualizingStackPanel. That’s because, with
data binding, you might not want to create a control for every row of your one-million-
row database.3 There are also some pretty nifty features related to Virtualizing-
StackPanel, such as the ability to recycle containers that aren’t on the screen or to
defer scrolling until the user releases the scrollbar.

 We’re not going to go into any real detail on these other panels—just enough to
let you know that they’re there and you might want to use them for specialized pur-
poses. More often you’ll end up using them indirectly, via the controls they support.

 You may also see, in your travels, reference to something called InkPanel. This is
called InkPanel to confuse you because it isn’t a layout panel—it’s a control designed
to collect input from users of tablet PCs. Ink is the tablet PC entry system.

 Finally, you can also create your own layout panels. If you have a specific scenario,
it isn’t terribly hard to create a panel with its own rules and behaviors. But that’s
beyond the discussion of this chapter.

 We do want to cover one other control in some detail—the FlowDocument. It works
completely differently than all the layout panels we’ve discussed so far and, ostensibly,
has a completely different purpose. But its purpose in life is to handle the layout and
presentation of rich content, and for this reason, we think that this is a good place to
mention it.

4.6.2 The FlowDocument

Rich application developers tend to look down a little on browser application develop-
ers. After all, Windows developers have the full power of the machine at their disposal,
whereas browser developers are limited to whatever the browser is willing to expose.

3 Stamps, movies, tooth collection, whatever—who are we to judge?
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 4 Working with layouts
For that reason, it’s irritating to rich Windows application developers when there’s
something that can be done in a browser that’s really difficult to do in rich applications.

 One thing that’s trivial in a browser and a royal pain in Windows is building
document-flow-like UIs—a user interface where everything fills in the available space,
wraps and flows like, well, a web page. Figure 4.28 shows an example of a FlowDocument.

 You can put text, formatting, controls, lists, draw-
ing, and just about anything else in a FlowDocument. If
you resize the available space (figure 4.29), the con-
tent will automatically be recalculated.

 As you can see, it automatically repaginates. Also
notice that there’s a page count on the automatic
toolbar that appears at the bottom. This is pretty
cool—it lets you zoom in and out, change between
different views, and move between pages, much like
print preview. This isn’t a coincidence. There’s also
a search feature (the magnifier on the left)—all
for free.

 Listing 4.13 shows the XAML for the FlowDocument
shown in figures 4.28 and 4.29. We pretty much have
to use XAML for this. The editor doesn’t help at all
with FlowDocuments, although that will hopefully
change in the future (much the way that editors work
directly with HTML today).

<FlowDocumentReader>
 <FlowDocument FontSize="12" xml:space="preserve">

Listing 4.13 XAML for FlowDocument in previous figures

Figure 4.28 An example of a
FlowDocument with some
arbitrary content

Figure 4.29 FlowDocument
shrunk down

Reader holds documentb Preserves
whitespace

c

www.it-ebooks.info

http://www.it-ebooks.info/

91Other layout options
 <Paragraph TextAlignment="Center" FontSize="18">
 <Bold>Flow Document</Bold></Paragraph>
 <Paragraph>A FlowDocument lets you put in arbitrary content,
 with <Italic>formatting</Italic>, and it automatically lays out the
 content based on the available space - sort of like an HTML
 page.</Paragraph>
 <Paragraph>I would also like to have a button here, like this:
 <Button>Push me</Button> Wouldn't that be cool?
 <RadioButton IsChecked="True">Yes</RadioButton>
 <RadioButton>No</RadioButton> <RadioButton>Unsure</RadioButton>?
 (Did you make a selection)?</Paragraph>
 <Paragraph><Bold>You can also have lists:</Bold></Paragraph>
 <List>
 <ListItem><Paragraph>This is the first item</Paragraph></ListItem>
 <ListItem><Paragraph>This is the second item</Paragraph></ListItem>
 <ListItem><Paragraph>This item has a circle! <Ellipse Fill="Red"
 Width="20" Height="20"></Ellipse></Paragraph></ListItem>
 <ListItem><Paragraph>And this one has a square! <Rectangle
 Fill="Blue" Width="20" Height="20"></Rectangle>
 </Paragraph></ListItem>
 </List>
 </FlowDocument>
</FlowDocumentReader>

You can’t just shove a FlowDocument directly into XAML. Instead, you have to put it
into one of several container controls provided by WPF. In the example, we use a
FlowDocumentReader b, which is a fairly rich document container—it provides the
search, paging, and zoom controls.

 You may remember the discussion on whitespace from chapter 3. The FlowDocument
doesn’t quite behave like regular XAML. By default, it does not use normalized spacing
but automatically removes spacing around tags. Setting space to be preserved c gives
us a much better result but also means that we can’t wrap lines. If you take the version
of the listing as wrapped for the book, it gets seriously ugly.

 All the content we put into a FlowDocument has to be inside of some sort of a con-
tainer, such as a Paragraph d or a List. Paragraph is a lot like a TextBlock, and we
can add items in a similar way. FlowDocument also has support for tables, sections, and
other word-processy things.

 As with a TextBlock, we can add controls e. In this example, we add a button and
some radio buttons. Later on, we add some shapes as well. To the layout manager, it’s
all the same.

 One of the really, really cool things about WPF—something that we can’t empha-
size enough4—is that the whole system is based on composition. In the past, you might
have bought a third-party control that let you deal with rich text, or, if desperate,
made use of the built-in RTF control in Windows. That control did its own thing. Here,
you have a control that lets you arbitrarily embed any type of control within it and
handles it appropriately. More than that, the FlowDocument is held in a container

4 Although you may feel that we’ve come close.

Places content in
Paragraph tag

d

Adds controlse
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Working with layouts
that’s also a control, like any other, and can be used as one. Figure 4.30 shows the
FlowDocument as the content of a (quite large) Button.

 This was accomplished by putting in a panel (in this case a DockPanel), then a
Button, and then putting the FlowDocument within it, as you can see in listing 4.14.

<DockPanel>
 <Button Padding="20" Margin="40">
 <FlowDocumentReader>
 <FlowDocument FontSize="12" xml:space="preserve">
 <Paragraph TextAlignment="Center" FontSize="18">
 <Bold>Flow Document</Bold></Paragraph>
...other content here...
 </FlowDocument>
 </FlowDocumentReader>
 </Button>
</DockPanel>

There are also some issues to consider when controls are combined in this way. For
example, the FlowDocument is a control that expects input, as is the Button. If you try
clicking the Button over the area where the FlowDocument is located, you’ll end up
interacting with the FlowDocument instead.

Listing 4.14 Embedding a FlowDocument within a Button within a DockPanel

The danger of creating custom behavior
The ability to compose controls arbitrarily is a double-edged sword. Just because you
can do something doesn’t mean that it makes good UI. In particular, you should avoid
presenting users with completely unfamiliar controls in places where they’re unex-
pected. That said, there are some places where this capability might make things
clearer. For example, adding a slider to a button that controls what the button does
might be a good way of making the behavior of the button clearer, but you have to
weigh whether it will require additional dexterity of the user and whether the UI will
be clearer by putting the slider next to the control (see figure 4.31)

Figure 4.30 Controls can be
composed with one another
arbitrarily, such as putting a
FlowDocument on a Button.
www.it-ebooks.info

http://www.it-ebooks.info/

93Summary
We’ll return to the FlowDocument in later chapters. One place where the FlowDocument
really shines is when we want to print, which we will cover in chapter 18. The impor-
tant thing to know is that it’s an option for laying out content.

4.7 Summary
If you have come from the Windows Form or Windows SDK world, where you could
just drag stuff onto a form and be done with it, all of this layout kerfuffle may seem
like a major pain. In some respects, it is—particularly when you’re first creating a UI.
But the more you play around with your UI, and the more options you want to sup-
port, the more layout will make your life easier. In fact, once you get used to it, you
may find, as we did, that using layout panels can be quicker than dragging and align-
ing controls.

 We’ve yet to discuss one major layout panel in detail—the one that, frankly, you’ll
probably use more than any other—the Grid. A lot of concepts that applied to the
other layouts also apply to the Grid. In chapter 5, we’ll show you the Grid, and we’ll
use it to build our first real application.

Figure 4.31 The Button with the slider is cooler, but which is more usable?
www.it-ebooks.info

http://www.it-ebooks.info/

The Grid panel
So far we’ve spent a lot of time talking about all the different layout controls avail-
able—except the one that you’re likely to use much of the time! The Grid panel
control is the most powerful and, except for the Canvas which has no real rules, the
most flexible. The Grid can be used to emulate the behavior of many of the other
layout options, but it’s easier to use the more appropriate layout panel.

 Aside from being the default layout used by Visual Studio, the Grid is a good lay-
out for things like dialogs with a number of interactive controls (text boxes, radio
buttons, and so on). The Grid panel can also behave like a Canvas “explicit posi-
tion” control with pseudo-docking abilities—although using the Grid in this way
loses some of the advantages of layout.

 This chapter will cover the Grid control fairly thoroughly, demonstrating how to
use the Grid layout to lay out the calculator. So, why are we building a calculator?

This chapter covers:
■ The Grid layout
■ Localizing with the Grid
■ The UniformGrid
■ Turning your $2000 computer into a

$5 pocket calculator
94

www.it-ebooks.info

http://www.it-ebooks.info/

95Getting started with the Grid layout panel
After all, the operating system has one, and it’s certainly not the most exciting applica-
tion ever. The answer is that a calculator is complex enough to make use of a number
of WPF capabilities and simple enough that the implementation won’t get in our way
or require a bunch of pages of code to make it work. The calculator also lends itself
well to a Grid, although, as you’ll see, the Grid is a good layout for many standard
forms and dialogs.

5.1 Getting started with the Grid layout panel
The Grid layout, as its name implies, lays out con-
trols in a grid, with rows and columns. Children
can be placed within specific cells or can cross
between cells. When you create a new Window, it
automatically creates a new Grid panel. In fact, let’s
do that now—create a new WPF application. The
application will come up with a default Window1
window that has a Grid on it. The Grid has exactly
one row and one column, so you’d be forgiven for
mistaking it for a blank Canvas. The Canvas-like
behavior is taken a step further if you drag a con-
trol (such as a Button) onto the form—it stays
where you drop it (figure 5.1).

 The short lines that appear between the left edge of the window and the button,
and the top edge and button, indicate a type of anchoring. If you move closer to the
right edge, you’ll get a line there indicating that you’re anchored to that edge, and
so on. You click the little circles to anchor to the associated edge, or the triangles
to unanchor.

 As we mentioned earlier, this behavior is a sort of con, and it’s a con that might
cause you all sorts of problems down the road. It seems as though the Visual Studio
developers wanted people to use layouts but were afraid that most wouldn’t be both-
ered, so the Grid editor is a hybrid. It emulates fixed-position (Canvas) layout, but also
acts as a Grid layout. If this were a Canvas layout, the XAML would look something
like this:

<Canvas>
 <Button Canvas.Left="61" Canvas.Top="34"
 Width="75" Height="23">Button</Button>
</Canvas>

This provides the location and size of the Button in a fairly easy-to-follow format.
Because we’re using the Grid layout, though, the XAML looks like this:

<Grid>
 <Button Height="23" Margin="61,34,0,0" Name="button1"
 VerticalAlignment="Top" HorizontalAlignment="Left"
 Width="75">Button</Button>
</Grid>

Figure 5.1 When we drop a control on
the Grid editor, it acts as though it
has been precisely positioned.
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 The Grid panel
Behind the scenes, the editor is using the
Height, Width, Alignment, and Margin prop-
erties to force the Button to be positioned
where it was dropped on the Grid. The edi-
tor does a nice job with this. If, for example,
we want the button to stretch with the
screen, we click the little circle on the right
(figure 5.2).

 See the line stretching to the right edge.
Now when the window gets wider, so will the
button. Look at the XAML for this change:

<Grid>
 <Button Height="23" Margin="61,34,142,0" Name="button1"
 VerticalAlignment="Top">Button</Button>
</Grid>

Looking for an Anchor="Left,Right" property? It’s not there. Instead, the editor
removes the HorizontalAlignment and the Width properties and sets the right mar-
gin to 142. This works. (In fact, it works rather more smoothly than Windows Forms
anchoring.) But it isn’t remotely intuitive. You can figure out what’s going on outside
the editor, but it’s tricky. And if you want to make your own changes, you’ll likely do a
lot of head-scratching and experimenting to get the settings right.

 There’s another downside to this automatic Grid-panel behavior. When you start
using the Grid as a grid—when you’ve added multiple rows and columns—you almost
always want items to take up all the space within their individual cells (or have a partic-
ular margin). Unfortunately, the editor is busy trying to figure out clever margins and
spaces, so it’s a bit trickier to use the Grid layout in the way it’s intended.

5.1.1 Modifying the Grid

When you do want to use the Grid “properly,” you can either use the editor or
directly edit the Grid’s XAML. In our experience, it’s likely that you’ll end up doing
both—using the editor to roughly get the right things in place and then editing the
XAML to get rid of extraneous attributes and set things the way you’d like. This is
true when setting up the basic row/column layout and also when adding items to
the layout.
ADDING ROWS AND COLUMNS TO A GRID

We can add rows and columns either using the editor or directly via XAML. To use the edi-
tor, we click the top of the grid, and a thick border appears with a number at the top
and a number at the left side. These numbers indicate the width and height of the
current cell. If we click somewhere on the top, a column separator appears, allowing
us to drag it back and forth and position it as we prefer (figure 5.3).

 Note the small numbers above each column indicating its size. Now that there’s a
separator, there are two column definitions, as you can see if you look at the XAML:

Figure 5.2 The Button is now anchored to
the left and right edges. The arrows running
from button to the sides indicate the edges
against which the button is anchored.
www.it-ebooks.info

http://www.it-ebooks.info/

97Getting started with the Grid layout panel
<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="146*" />
 <ColumnDefinition Width="146*" />
 </Grid.ColumnDefinitions>
</Grid>

The 146 is the number of pixels, but notice the * after each number? That’s the editor
being clever. This asterisk notation is used to imply a part of the available space. With
the asterisk, the width of the column automatically changes proportionally to the lead-
ing number. Because the numbers in front of each column are the same, each column
gets exactly half of the space available. In fact, we can change the values to make this a
little more obvious:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.5*" />
 <ColumnDefinition Width="0.5*" />
 </Grid.ColumnDefinitions>
</Grid>

This change has no effect on the width of the columns. If we make the entire window
bigger, each column continues to take up half of the available space. This mechanism
works in a similar manner to an HTML table, although the notation is more flexible. If
we don’t want the width to change, we can specify an explicit number of pixels:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="146" />
 <ColumnDefinition Width="146" />
 </Grid.ColumnDefinitions>
</Grid>

With this change, the columns are now exactly 146 pixels each and don’t change size
when the parent does. Alternatively, we can mix the two formats. The following XAML
makes the first column stay the same size, but makes the second column take up all
remaining space:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="146" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
</Grid>

Figure 5.3 Clicking on the Grid control’s
header adds a separator, creating two separate
column definitions.
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 The Grid panel
We can specify other values to create different proportional relationships. For exam-
ple, the following XAML makes the second column take up twice the space as the first:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*" />
 <ColumnDefinition Width="2*" />
 </Grid.ColumnDefinitions>
</Grid>

Figure 5.4 shows the result.
 To determine the percentage of the

space used by a column using this notation,
we take the number in front of the asterisk
and divide it by the total of all the numbers
in front of all the asterisks. The total in the
example is 1 + 2 = 3, so the first column
takes up one-third and the second takes up
two-thirds. Amazing how first grade math
comes in useful again.1

 You can either drag all the columns onto the grid and then manually edit them,
or you can add them directly to the XAML. (It’s often easier to add the first one via
the editor and then do the rest in XAML by copying.) You can also edit the Columns
property in the Properties grid by clicking the … button next to ColumnDefinition
(figure 5.5).

1 Also very useful when making bets while playing poker.

Figure 5.4 The asterisks in the column widths
make the sizes proportional, so column 2 takes
up twice the space as column 1.

Figure 5.5 You can edit the column (and row) definitions in the interactive editor.
www.it-ebooks.info

http://www.it-ebooks.info/

99Getting started with the Grid layout panel
As you’ve probably guessed, adding rows is exactly the same, except you click the left
edge instead of the top of the grid, and you have to turn your head sideways to read
the little numbers. Here’s the XAML for a grid with two rows and two columns:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
</Grid>

Note that an asterisk by itself "*" b is equivalent to 1*.
ARRANGING CONTENT IN THE GRID

Having an empty grid is fun and all, but
unless you can put some content into it, it
isn’t very useful. If you’re following along, go
ahead and drag a Button into the lower-right
square (figure 5.6).

 As you can see, the editor is trying to be
helpful again by automatically figuring out
margins to keep the control where you
dropped it. But if you’re using a Grid layout,
chances are that you want the Grid to do the
laying out, rather than relying on fixed posi-
tioning. The main thing you need to do to
fix this is to set the Margin property to 0,
although if you’ve done any playing, you may
have to set a few other properties, as shown
in table 5.1.

Table 5.1 Properties that need to be changed to make a control take up the entire cell

Property Value

Height Auto—Tells the control to figure out its height based on content and
layout, rather than a fixed value

Width Auto (Should already be set to this)

VerticalAlignment Stretch—Takes up all the available space.

HorizontalAlignment Stretch

Margin 0 (The main way in which the editor positions controls within
a grid cell)

b

Figure 5.6 Dragging content into a cell of a
Grid doesn’t entirely do what we’d like.
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 The Grid panel
Fortunately, all these properties are together
in the Layout section of the Properties grid
(figure 5.7), so it’s not too tough to set them
all in one go.

 When you’ve done all that, you should
have something that looks like figure 5.8.

 If you look at the XAML, you’ll see the
following:

<Button Grid.Row="1" Name="button1"
Grid.Column="1">Button</Button>

Although, if you’ve set and then unset some
properties, it may look like this:

<Button Grid.Row="1" Height="Auto"
Margin="0,0,0,0" Name="button1"

 VerticalAlignment="Stretch"
Grid.Column="1">Button</Button>

This is equivalent to the first example, but it shows default values for some addi-
tional properties.

5.1.2 Grid specific properties

A couple of properties we haven’t discussed yet are Grid.Row
and Grid.Column. As you’ve probably surmised, these specify
which row and column the item should go into. These are
attached properties, like Canvas.Left on the Canvas and
DockPanel.Dock on the DockPanel. The values are 0-based, so
specifying 1 means that you want to put something into the
second row or column.

 If you ever want to drop content into a cell and be done
with it, these would be the only properties that you’d need.
But suppose you want content to be contained within more
than one cell? For example, in the calculator, if we had only
buttons, we could easily shove them into the appropriate cells,
but we also have some header text and the output display
going all the way across the calculator (see figure 5.9).

 It’s easy to do this with a grid. All you have to do is to tell the control to span multi-
ple cells:

Figure 5.8 Making content take up all
available space

Figure 5.7 All the properties you need to set to make
a control take up an entire grid cell are grouped
together in the Layout section of the editor.

Figure 5.9 The header
text and the output
display for the calculator
go all the way across
the Grid.
www.it-ebooks.info

http://www.it-ebooks.info/

101Using the Grid layout to build a calculator UI
<Button Grid.Row="0" Name="button1" Grid.Column="0"
 Grid.ColumnSpan="2">Button</Button>

ColumnSpan says that the content should span this many columns. Note that we
moved the button to the upper-left cell so that there’s space for the button to expand.
The span starts with the specified cell and moves over as many additional cells as spec-
ified in the ColumnSpan attribute (minus one for where it started). Figure 5.10 shows
the results.

 At the risk of belaboring the point—To make the content span multiple rows, we
specify a value for the RowSpan attribute:

<Button Grid.Row="0" Name="button1" Grid.Column="0"
 Grid.RowSpan="2">Button</Button>

The result is shown in figure 5.11.

We can also span both columns and rows. This isn’t particularly interesting yet, we
admit, but in the next section we’ll make use of all these properties to build the initial
calculator UI. This will, no doubt, send you into paroxysms of excitement.

5.2 Using the Grid layout to build a calculator UI
It seems like we’ve been hinting about this calculator thing for a long time now. We’re
finally going to start building it! Rather than jumping nostrils-first into the XAML,
though, let’s first do a little bit of planning.

5.2.1 Planning the calculator

With Windows Forms or MFC, you’d probably have just started dragging buttons onto
a form—and be done by now. But if you decided you wanted to change the way your
buttons looked, you’d have had to spend quite a bit of time fiddling around. With

Figure 5.10 The button spans two columns. Figure 5.11 The button spans two rows.
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 The Grid panel
WPF, the planning up front takes more time, but changing things later will usually be
quite a bit easier.

 If you look at a simple calculator, with the standard numbers 0-9, the four standard
operators, and an equals button, you can probably visualize how that would go onto a
grid. But we went ahead and sketched it out on the grid before creating the control.
It’s probably overkill in this example, but, with more complicated UIs, a few sketches
on a whiteboard up front can save a bunch of time later. A sketch for the calculator
looks something like figure 5.12.

 As you can see, we have six rows and four columns. We want the title and the dis-
play to span all four columns. Each button is in a cell by itself. We can start with all the
rows and columns being the same size, although later on we might want the display to
be a little narrower. Because the calculator is fairly simple, the up-front planning
doesn’t take long, but it will save some time when we set up the layout.

5.2.2 Laying out the calculator

We’re finally ready to start creating some XAML. If you want, you can use the Window1
window that WPF creates when you create a new WPF application, or you can create a
new window called Calculator. If you do the latter, you need to change the startup URI
in App.xaml to point to the right place.

 You can use the editor to set up the rows and columns, add the buttons, and then
edit the XAML to get rid of extraneous attributes. Listing 5.1 shows the XAML for our
first rough attempt.

Title Title Title Title

0 . = +

1 2 3 -

4 5 6 X

7 8 9 /

Display Display Display Display

Figure 5.12 This is
one possible way to
lay out the calculator
on a grid.
www.it-ebooks.info

http://www.it-ebooks.info/

103Using the Grid layout to build a calculator UI
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="4" FontSize="24"
 VerticalAlignment="Center">
 <Bold>WPF</Bold> <Italic>In Action</Italic> Calculator
 </TextBlock>
 <TextBox Name="textBoxDisplay" Grid.Column="0" Grid.ColumnSpan="4"
 Grid.Row="1" VerticalContentAlignment="Center"
 HorizontalContentAlignment="Right">12345</TextBox>
 <Button Grid.Column="0" Grid.Row="2" Name="button7" >7</Button>
 <Button Grid.Column="1" Grid.Row="2" Name="button8" >8</Button>
 <Button Grid.Column="2" Grid.Row="2" Name="button9" >9</Button>
 <Button Grid.Column="3" Grid.Row="2" Name="buttonDivide" >/</Button>
 <Button Grid.Column="0" Grid.Row="3" Name="button4" >4</Button>
 <Button Grid.Column="1" Grid.Row="3" Name="button5" >5</Button>
 <Button Grid.Column="2" Grid.Row="3" Name="button6" >6</Button>
 <Button Grid.Column="3" Grid.Row="3" Name="buttonTimes" >X</Button>
 <Button Grid.Column="0" Grid.Row="4" Name="button1" >1</Button>
 <Button Grid.Column="1" Grid.Row="4" Name="button2" >2</Button>
 <Button Grid.Column="2" Grid.Row="4" Name="button3" >3</Button>
 <Button Grid.Column="3" Grid.Row="4" Name="buttonMinus" >-</Button>
 <Button Grid.Column="0" Grid.Row="5" Name="button0" >0</Button>
 <Button Grid.Column="1" Grid.Row="5" Name="buttonDecimal" >.</Button>
 <Button Grid.Column="2" Grid.Row="5" Name="buttonEquals" >=</Button>
 <Button Grid.Column="3" Grid.Row="5" Name="buttonPlus" >+</Button>
</Grid>

In addition to setting up the TextBox b to span four columns, we also set its value to
12345, so it can be easily seen. Obviously, when we make the calculator work for real,
this value will be the current calculated value.

 If you notice, each button has a row and a column specified c. These are attached
properties that the Grid panel uses to figure out where to place each control. We’ve
also customized each Button’s name. This step isn’t strictly required but makes refer-
ring to the controls from code easier, if we want to do that later.

 If you run the program at this point, without doing much more than dropping a
bunch of controls onto a form, you have something that looks remarkably close to a cal-
culator (figure 5.13).

Listing 5.1 Creating a calculator laid out in XAML

Defines
six rows

And four
columns

TextBlock with header
text spans four columns

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 The Grid panel
Also, because of the use of the Grid layout, the calculator automatically handles siz-
ing—whether we stretch the dialog or whether we constrain the whole grid in some
other container. Figure 5.14 shows the calculator shrunk down.

 As we’ll demonstrate in the next section, you can also use all the other formatting
options you’ve seen.

5.2.3 Tweaking appearance
We already have something that looks much like a calculator, but we can improve the
look-and-feel with a few simple tweaks. For example, we can put some margins around
the display and the buttons to make things more appealing (listing 5.2). Note that the
easiest way to do this is to select all the buttons in the editor, and then set the Margin
in the Properties grid.

<TextBox Name="textBoxDisplay" Margin="5" Grid.Column="0"
Grid.ColumnSpan="4"

 Grid.Row="1" VerticalContentAlignment="Center"
 HorizontalContentAlignment="Right">12345</TextBox>
<Button Grid.Column="0" Grid.Row="2" Margin="5" Name="button7">7</Button>
<Button Grid.Column="1" Grid.Row="2" Margin="5" Name="button8" >8</Button>
...
<Button Grid.Column="3" Grid.Row="5" Margin="5" Name="buttonPlus" >+</

Button>

This addition gives a slightly more attractive output, as shown in figure 5.15.
 We’ve truncated listing 5.2, but we added the same margin value to every single

button—a pain. If we want to change the value (say to 10 pixels instead of 5), we have
to go through and update every margin statement—even more of a pain. Fortunately,
there are several ways in which we can define those margins generally and have them
apply to the buttons, via the use of styles and control templates. That’s the topic of
chapter 6, so we won’t spend much time tweaking the look-and-feel of the buttons at
the moment.

Listing 5.2 Adding margins around text display and buttons

Figure 5.13 This is a first pass at
creating a calculator using a Grid layout
to hold the various buttons and controls.

Figure 5.14 Iddy-biddy
calculator. Note that, except
for the fonts, everything is
automatically scaling.
www.it-ebooks.info

http://www.it-ebooks.info/

105Using the Grid layout to build a calculator UI
 There are a few things that we’d like to show
you to give a hint about what you can do cosmet-
ically with WPF and also to demonstrate some
more variants on XAML. For a start, let’s change
the background of the calculator to blue and
the title text to white (so that it’s easier to read
on the blue):

<Grid Background="Blue">
...
 <TextBlock Foreground="White"

Grid.Column="0" Grid.Row="0"
 Grid.ColumnSpan="4" FontSize="24"

VerticalAlignment="Center">
 <Bold>WPF</Bold> <Italic>In

Action</Italic> Calculator
 </TextBlock>
...

Simple enough—we set the Background property of the entire grid to Blue and the
Foreground property on the TextBlock to White. These, by the way, are from the web
list of colors that you might recognize from HTML or the color selector from Windows
Forms. We can also specify colors in Hex:

<Grid Background="#0000FF">

is equivalent to

<Grid Background="Blue">

The # notation expects either three or four two-digit hex num-
bers to follow it. Three values represent the Red, Green and
Blue values for an RGB color (#RRGGBB). Four values add a pre-
ceding Alpha value for transparency (#AARRGGBB). Figure 5.16
shows the blue calculator.

 Although the calculator is more colorful in blue (If you
aren’t coding along, you can see the results with a pair of 3D
glasses—just look through the blue side. You might also want
to keep them handy for chapter 15 on drawing in 3D where we
make extensive use of the red side.), the main reason we wanted
to show you this was to talk about properties like Background.
The format (Background="Blue") is a shorthand for

<Grid>
 <Grid.Background>
 <SolidColorBrush>Blue</SolidColorBrush>
 </Grid.Background>
 ...
</Grid>

Figure 5.15 Adding margins to
the button

Figure 5.16 This
calculator is blue, even
though it looks gray in
black-and-white!
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 The Grid panel
When you provide a single color value, the XAML interprets this to mean that you
want a solid brush of that particular color for the entire background. If you want to do
something more elaborate, you have to use the more verbose format. You may be
familiar with brushes from Windows Forms or SDK programming. The idea is that you
set up your brush the way you want to use it (think: dipping it in blue paint) and then
use it to paint various things such as the background of a control.

 When the concept of brushes was first created, the metaphor was good.—a brush
could have a texture (a pattern) and a color. Brushes have evolved since then, so the
metaphor is a little stretched but still mostly works. Now, for example, you can have gra-
dient brushes that start with one color and change to another, image brushes that paint
using pictures, or even specialized brushes that paint using controllable surfaces.

 We’ll show many more examples using more complex painting and brushes as we
go, but let’s look at an example of using a radial gradient brush. (A linear gradient
brush starts at one point with one color and goes to another point with another color,
whereas a radial gradient starts at one point and radiates outwards to a secondary
color.) Here’s the XAML:

<Grid.Background>
 <RadialGradientBrush>
 <GradientStop Offset="0" Color="Blue"/>
 <GradientStop Offset="1" Color="White"/>
 </RadialGradientBrush>
</Grid.Background>

Here there are only have two gradient stops, but
you can add as many as you like. You can also set
where the center of the gradient starts and a
whole host of other options. Figure 5.17 shows
the calculator with the gradient (although it’s a
little hard to see under the buttons).

 Throughout XAML, properties often have a
shorthand and a verbose way of being expressed.
There’s also a whole notation for referring to
resources and data in properties. For example, if
we want the gradient color to be based on the
desktop color, we write:

<Grid.Background>
 <RadialGradientBrush>
 <GradientStop Offset="0"
 Color="{DynamicResource {x:Static SystemColors.DesktopColorKey}}"/>
 <GradientStop Offset="1" Color="White"/>
 </RadialGradientBrush>
</Grid.Background>

That whole mess for the Color attribute says something to the effect of “tie the color
of the gradient stop to the DesktopColor system color, and dynamically update it if

Figure 5.17 Calculator with a radial
gradient
www.it-ebooks.info

http://www.it-ebooks.info/

107The Grid and localization
the color changes.” It’s a little ugly,2 but the automatic power is quite something. In
chapter 6, we’ll talk more about the property system, which is a powerful mechanism
tied to properties that lets you do some really cool things such as automatically ani-
mating properties without writing code or binding the value to resources or proper-
ties of objects. But we did want to give you a glimpse of it now.

 One last comment on the editor: The editor lets you set a control to use a particu-
lar color, but if you want to do anything fancier (a gradient, for example), you have to
drop down to XAML.

5.3 The Grid and localization
One major advantage of using the Grid layout versus dumping controls onto a Win-
Forms Form is evident when you translate your application into other languages. If
you spend some time up front, you can make your UI so that, once the strings have
been localized, your UI automatically adapts to other languages.

 We’re not going to go extremely deep into localization here, but we do want to
show some features of the Grid panel that are handy for localized applications. We’d
use the calculator to demonstrate this, but because it already handles scaling pretty
well, we’d have to break it to make the point (and that would be silly). Instead, we’ll
create a simple dialog in a more likely scenario (figure 5.18).

So far, so good. But what happens if we translate the strings in this dialog to another lan-
guage such as German, which tends to be a lot more verbose? Take a look at figure 5.19.

As you can see, the text is truncated on the label and on the buttons. The default
behavior of controls is to fit their content, provided you don’t force a size. We could
remove the Width from the label and the buttons (figure 5.20).

2 Okay, it’s very ugly.

Figure 5.18 A dialog in English.
Nothing to worry about.

Figure 5.19 When we translate to German,
the label and the text are cut off. We’re
cheating a bit to make our point because the
Help button reads Please Help in German. The
Germans are nothing if not polite.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 The Grid panel
As you can see, the buttons are now big enough, but this is hardly the result we want.
We want the buttons to be big enough and to be spaced appropriately, and ideally, we
want all the buttons to be the same size, instead of having a tiny OK button and a huge
Abbrechen button. Fortunately, a feature of the Grid is designed to handle this situa-
tion—SharedSizeGroups. We can indicate that a set of columns (or rows) should all
be the same size. Listing 5.3 shows the XAML for a Grid for the buttons. (The Grid
itself also has to be in some form of layout, such as a StackPanel.)

<Grid Grid.Row="1" IsSharedSizeScope="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" SharedSizeGroup="A"/>
 <ColumnDefinition Width="Auto" SharedSizeGroup="A"/>
 <ColumnDefinition Width="Auto" SharedSizeGroup="A"/>
 </Grid.ColumnDefinitions>
 <Button Grid.Column="1" Margin="3,0" Name="button1"
 Height="23" VerticalAlignment="Center" >OK</Button>
 <Button Grid.Column="2" Margin="3,0" Name="button2"
 Height="23" VerticalAlignment="Center">Abbrechen</Button>
 <Button Grid.Column="3" Margin="3,0" Name="button3"
 Height="23" VerticalAlignment="Center">Bitte Hilfe</Button>
</Grid>

Sharing sizing between columns or rows isn’t enabled by default (for performance
reasons). We have to turn it on by setting the IsSharedSizeScope to true b. Then we
define four columns—the first to hold all the space that doesn’t contain Buttons c
and the next three for each Button d. We set the Width to Auto. This means that the
column should be sized based on its content, but we also set the SharedSizeGroup
property to the same value on each of the columns with buttons. The name can be
anything (within reason)—it just has to be the same between the shared columns.

 For each of the Button definitions e, you’ll see that we have a) specified the col-
umn it will appear in, b) gotten rid of any fixed width, and c) given it a margin—so
that the Buttons won’t be crammed up against each other. We also set the Vertical-
Alignment to Center so that the Buttons are vertically centered within the Grid.

 When the layout manager sizes the columns, it first figures out the size of the larg-
est button, based on its text, margin, and other properties. It then makes all the col-
umns in the shared size group that size. Figure 5.21 shows the resulting dialog.

Listing 5.3 Using SharedSizeGroups to make buttons the same size

Figure 5.20 Without Width being set,
the label now works, but the buttons—
not so much.

Enables
sharingbc

Shares
sizingd

e

www.it-ebooks.info

http://www.it-ebooks.info/

109UniformGrid
The WPF team spent a lot of time thinking about localization, and a lot of built-in fea-
tures support it. For example, we can make your entire window size itself based on its
contained content, if it happens to get bigger or smaller, by adding SizeToContent=
"WidthAndHeight" to our window element.3 We can also give all our elements unique
IDs so that a Satellite resource assembly can replace all our strings based on the cur-
rent language.

NOTE When you write .NET code, you put that code into an assembly. That
assembly will also contain various resources such as all your strings. When
you localize, you put your localized resources into a satellite assembly. If
your main assembly is called MyCode.dll and you localize for Brazilian
Portuguese, you’d have a satellite assembly called MyCode.pt-BR.dll; or, if
you wanted to translate from American into English, you’d have an
assembly called MyCode.en-UK.dll.

Unfortunately, the Visual Studio team didn’t have time to wrap this for Visual Studio
2008, so we end up having to manually edit project files and run command-line utili-
ties. Still, we expect that this issue will be addressed in the not-to-distant future.

5.4 UniformGrid
What makes the Grid layout so useful is its flexibility, but there are times when you
don’t need anything so complex. WPF has a much simpler grid control that can occa-
sionally be useful. We already discussed several specialized layout panels in the previ-
ous chapter. The UniformGrid is another, but we wanted to wait to introduce it until
we had discussed the real Grid. The UniformGrid is a simple grid where we just specify
the number of rows and columns that we want:

<UniformGrid Name="uniformGrid1" Rows="2" Columns="2">

All the rows and the columns are exactly the same size. Also, we can’t specify the loca-
tion of content explicitly. The first child we add goes in the first cell, the second in the
second cell and so on. For example, the XAML

<UniformGrid Rows="2" Columns="2">
 <Button>Button 1</Button>
 <Button>Button 2</Button>

3 Although if you don’t plan well, the results might not be what you expect!

Figure 5.21 The buttons are all the same
size, based on the size of the largest button.
We could add some padding to the buttons to
make them a little nicer.
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 The Grid panel
 <Button>Button 3</Button>
 <Button>Button 4</Button>
</UniformGrid>

gives an output something like figure 5.22.
 We could have used the UniformGrid for

the buttons of our calculator, although we
would then also have had to use an addi-
tional layout mechanism for the rest of the
controls. In general, we prefer the flexibility
of the Grid, but sometimes a UniformGrid is
all that’s needed.

5.5 Making the calculator work
At this point, we have something that looks
like a calculator, but it isn’t particularly use-
ful. At some level, we don’t really care—this
is a book on WPF, not Math 101. But a little
bit of our souls cries out when we see an
application that doesn’t do something. More importantly, implementing a WPF applica-
tion brings up some specific issues—such as hooking into events and tying application-
specific values to XAML.

 The nuts-and-bolts implementation for the calculator we’re providing here is rela-
tively naïve. If you’re the sort of person who likes to break things, you can certainly
find things that won’t work;4 but, if you follow along, you’ll have a calculator that does
something calculatory.

5.5.1 Handling operations

A good place to start with the calculator is with the various operations we want to sup-
port. Because we’re lazy, the calculator can only do four things: add, subtract, multi-
ply, and divide. For convenience, we’ll define an enum with all the operators:

public enum Operator
{
 None,
 Plus,
 Minus,
 Times,
 Divide,
 Equals
}

Note the inclusion of equals as an operator because we have to handle the equals but-
ton somewhat as if it’s an operator. We put this enum at the top of the Window1.
xaml.cs file, within the namespace for the class. We could create a new file—and, if

4 Although this probably says more about you than about the calculator…

Figure 5.22 Controls in a UniformGrid.
The controls are put into cells based on the
order they are added. Each row is the same
height, and each column the same width.
www.it-ebooks.info

http://www.it-ebooks.info/

111Making the calculator work
this was production code, we’d suggest that—but putting it in the same file will work
for now.

 Inside of the Window1 class, we also need to create a few member variables:

private Operator lastOperator = Operator.None;
private decimal valueSoFar = 0;
private bool numberHitSinceLastOperator = false;

Table 5.2 explains what each variable is for.

Now, we need a method to handle the execution of operators. This method, shown in
listing 5.4, takes the operator just hit as an argument but executes the last operator.

private void ExecuteLastOperator(Operator newOperator)
{
 decimal currentValue = Convert.ToDecimal(textBoxDisplay.Text);
 decimal newValue = currentValue;

 if (numberHitSinceLastOperator)
 {
 switch (lastOperator)
 {
 case Operator.Plus:
 newValue = valueSoFar + currentValue;
 break;
 case Operator.Minus:
 newValue = valueSoFar - currentValue;
 break;
 case Operator.Times:
 newValue = valueSoFar * currentValue;
 break;
 case Operator.Divide:
 if (currentValue == 0)
 newValue = 0;

Table 5.2 Member variables used in the Calculator class

Member variable Purpose

lastOperator If you think about how a calculator operates, when you hit an
operator (or equals), the calculator executes the last operator
hit between the value entered before the last operator, and the
currently entered value. We use lastOperator to hold the
operator that was last entered. If the user hits 1 + 2 =, the last
operator will be + at the point when the user hits =.

valueSoFar This variable holds the value entered before the last operator
was hit. For 1 + 2 =, the value so far will be 1 before = is hit,
and 3 after it’s hit.

numberHitSinceLastOperator This Boolean is used to determine if the last key hit was an
operator versus a number.

Listing 5.4 ExecuteLastOperator method

b

c

d

Handles divide-by-
zero problems
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5 The Grid panel
 else
 newValue = valueSoFar / currentValue;
 break;
 case Operator.Equals:
 newValue = currentValue;
 break;
 }
 }

 valueSoFar = newValue;
 lastOperator = newOperator;
 numberHitSinceLastOperator = false;
 textBoxDisplay.Text = valueSoFar.ToString();
}

We get the current entered value by converting the value stored in the text box into a
number b.

 This check c is here to handle the situation of a user hitting an operator and then
hitting another operator without entering a number in between. Because the calcula-
tor is so cheesy, we could have let this go, but it’s pretty easy to handle. The behavior
this check gives us is that, if a user hits two operators in a row, we forget about the first
one and use the second one.

 For each operator, we take the old value (the value so far) and the current value from
the TextBox and apply the operator appropriately d. We treat equals e as another oper-
ator. The operation we apply is to take the current value and make it the old value.

 We also need a method to handle digits. Listing 5.5 shows this fairly simple method.

private void HandleDigit(int digit)
{
 string valueSoFar = numberHitSinceLastOperator ?
 textBoxDisplay.Text : "";
 string newValue = valueSoFar + digit.ToString();

 textBoxDisplay.Text = newValue;
 numberHitSinceLastOperator = true;
}

All this method does is add the digit to the right of the text in the text box. If this is
the first digit hit after an operator, it first clears the existing text. Note that this is a
fairly naïve implementation—it doesn’t handle overflows, and you could hit a bunch
of zeros before typing a number, for example. But as we said, the point isn’t to make
the perfect calculator; it’s to get the thing working.

 We need one final method—to handle the decimal point. The method for this is
shown in listing 5.6.

private void HandleDecimal()
{

Listing 5.5 The HandleDigit method

Listing 5.6 HandleDecimal method

e

Remembers
result as
value so far

Remembers
operator as new
last operator Puts value so

far back into
text box
www.it-ebooks.info

http://www.it-ebooks.info/

113Making the calculator work
 string valueSoFar = numberHitSinceLastOperator ?
 textBoxDisplay.Text : "";
 string newValue = "";

 if (valueSoFar.IndexOf(".") < 0)
 {
 if (valueSoFar.Length == 0)
 newValue = "0.";
 else
 newValue = valueSoFar + ".";
 }
 else
 newValue = valueSoFar;

 textBoxDisplay.Text = newValue;
 numberHitSinceLastOperator = true;
}

This method is similar to the HandleDigit method, except that it handles a few spe-
cial situations such as if the user hits the decimal before hitting a digit or if the user
hits the decimal more than once.

 So, now we have all these fancy methods to make the calculator work—except that
we don’t currently call any of them. We need to catch the clicks of the various buttons
and provide methods to be called. For the moment, we’ll create a different method
for each digit and each operator button. Listing 5.7 shows the calculator XAML with
the Click attribute set, although we pulled the other attributes (Grid.Column,
Grid.Row, and Margin) off of the XML for readability.

<Button Name="button7" Click="OnClick7">7</Button>
<Button Name="button8" Click="OnClick8">8</Button>
<Button Name="button9" Click="OnClick9">9</Button>
<Button Name="buttonDivide" Click="OnClickDivide">/</Button>
<Button Name="button4" Click="OnClick4">4</Button>
<Button Name="button5" Click="OnClick5">5</Button>
<Button Name="button6" Click="OnClick6">6</Button>
<Button Name="buttonTimes" Click="OnClickTimes">X</Button>
<Button Name="button1" Click="OnClick1">1</Button>
<Button Name="button2" Click="OnClick2">2</Button>
<Button Name="button3" Click="OnClick3">3</Button>
<Button Name="buttonMinus" Click="OnClickMinus">-</Button>
<Button Name="button0" Click="OnClick0">0</Button>
<Button Name="buttonDecimal" Click="OnClickDecimal" >.</Button>
<Button Name="buttonEquals" Click="OnClickEquals">=</Button>
<Button Name="buttonPlus" Click="OnClickPlus">+</Button>

If you thought it was tedious adding all those attributes, now you need to add a han-
dler for each one. If you don’t care about the names of the methods so much, you can
double-click each button in turn. Listing 5.8 shows the add button handler, the deci-
mal button handler, and a handler for one of the digits. The other handlers are virtu-
ally the same, except that they pass a different operator or digit.

Listing 5.7 Click handlers for each Button
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5 The Grid panel
private void OnClick7(object sender, RoutedEventArgs e)
{
 HandleDigit(7);
}

private void OnClickDecimal(object sender, RoutedEventArgs e)
{
 HandleDecimal();
}

private void OnClickPlus(object sender, RoutedEventArgs e)
{
 ExecuteLastOperator(Operator.Plus);
}

Other than changing the default text for the TextBox to 0 instead of 12345 (and a
whole bunch of cutting and pasting), that’s all that’s needed to make the calculator
operate. If you’ve been coding along, go ahead and run the calculator. It should now
do more calculator-like things (figure 5.23).

Pretty snazzy, eh? Having to create all those separate handlers was kind of irritating,
though. We’re programmers—which means that we’re lazy—which means that we’ll
go to any amount of effort to avoid spending a few minutes copying and pasting. To
avoid this annoyance, we can make the handlers more generic.

5.5.2 Genericizing the handlers

We can eliminate the handlers in several different ways. For example, we could write a
generic digit handler that figured out which digit was hit based on the text of the but-
ton (listing 5.9).

private void OnClickDigit(object sender, RoutedEventArgs e)
{
 Button btn = sender as Button;

Listing 5.8 Calculator click handlers

Listing 5.9 Generic digit handler

Figure 5.23 The calculator in action
www.it-ebooks.info

http://www.it-ebooks.info/

115Making the calculator work
 int digit = Convert.ToInt32(btn.Content.ToString());
 HandleDigit(digit);
}

Because the first argument sent to the click event handler is the button itself
(although it’s sent as a generic sender), we can get the content of the button, convert
it to a string, and then to an integer. We then pass that value to the HandleDigit
method. Now, we can make all the digit buttons call the generic handler:

<Button Name="button7" Click="OnClickDigit">7</Button>
<Button Name="button8" Click="OnClickDigit">8</Button>
<Button Name="button9" Click="OnClickDigit">9</Button>
...

This approach is better because we only have a single handler to worry about now, but
we still have to put in a click handler for every single button (although if we type
Click= in the XAML, we can choose the existing handler from the context menu). In
the next two chapters, we’ll show two different approaches for avoiding hooking up
individual handlers—by using a style in chapter 6 and through alternative ways of
catching events in chapter 7.

 It’s easy to convert the numeric text into a digit, but not so easy with the operator
buttons. We could do a couple of ugly things, such as comparing the text on the button:

if(string.Compare(sender.Content.ToString(),"=") == 0)
 HandleOperator(Operator.Equal);
...

Or, being slightly less dependent on arbitrary text, we could check for a specific button:

if(sender == buttonEquals)
 HandleOperator(Operator.Equal);
...

But neither of these solutions is particularly clean. What would be nice is if we could
associate an object with the button that we could check with the handler. Fortunately,
as with Windows Forms, controls have a Tag property, which is ideal for this. We can
put in an on-load handler for the Window:

<Window x:Class="Calculator.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Calculator" Height="300" Width="300" Background="Transparent"
 Loaded="Window_Loaded">

And in the handler, we can associate an appropriate value with each button:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 buttonPlus.Tag = Operator.Plus;
 buttonMinus.Tag = Operator.Minus;
 buttonTimes.Tag = Operator.Times;
 buttonDivide.Tag = Operator.Divide;
 buttonEquals.Tag = Operator.Equals;
}

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 The Grid panel
Now we can make all the operator buttons call a generic OnClickOperator method:

private void OnClickOperator(object sender, RoutedEventArgs e)
{
 Button btn = sender as Button;
 if(btn.Tag != null)
 {
 Operator op = (Operator)btn.Tag;
 ExecuteLastOperator(op);
 }
}

One issue with this method is that we’re setting the
tag in code away from where we define the buttons. It
would be better if we could set the tag in the
designer. In the designer, we can easily set the tag to
be a string (figure 5.24).

 And then we can modify the OnClickOperator to convert it into an Operator
enum value:

private void OnClickOperator(object sender, RoutedEventArgs e)
{
 Button btn = sender as Button;
 if (btn.Tag is string)
 {
 Operator op = (Operator)Enum.Parse(typeof(Operator),
 btn.Tag.ToString());
 ExecuteLastOperator(op);
 }
}

This code will work, and it puts the definition of the operator with the definition of
the button—a much cleaner process. One drawback is that, as we’re storing a string,
it’s easy to mistype something or have something mismatch if the enum changes.
Because the value is a string, the error won’t show up at compile time and will only
blow up when the user hits the button with the problem.

NOTE Some purists dislike the use of the Tag property and suggest that other
approaches are more appropriate—such as creating a derivation of But-
ton that has an appropriate property to store the value of the Tag. We
respectfully disagree. Programming always involves trade-offs, but we
always incline to the trade-off that provides the simplest, most easily
maintainable code. Using the Tag property is a little ambiguous, but cre-
ating additional classes every time we want to store additional properties
can dramatically increase code complexity.

It isn’t too hard to store the real enum value in XAML because XAML can reference
any CLR type. But before we can do that, we have to reference the namespace that
contains the Operator enum. To do this, we have to map the C# namespace to an XML
namespace. We do this in the main element for the calculator’s Window:

Figure 5.24 It’s easy to set the
Tag property to a string.
www.it-ebooks.info

http://www.it-ebooks.info/

117Summary
<Window x:Class="Calculator.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Calculator"
 Title="Calculator" Height="300" Width="300" Background="Transparent"
 Loaded="Window_Loaded">

The important line here is the one that starts with xmlns:local=. What this says is “map
the XML namespace called local to the .NET Calculator namespace.” Because we aren’t
adding a reference to a particular assembly, it’s assumed that we mean the namespace in
the current assembly. We don’t have to type this whole line. Once we type the equals
sign, we can select the namespace from the IntelliSense drop-down menu.

 Using local as the namespace for the local code is a convention. It now means that
we can reference classes from the Calculator namespace in XAML. For example, to ref-
erence the Operator enum, we could write:

local:Operator

Now, you might think that we could update the XAML for each button to reference
the right value:

<Button Name="buttonEquals" Tag="local:Operator.Equals"/>

But this doesn’t work. The XAML compiler has no way to tell that we mean to refer-
ence a class, rather than a string that looks like one. Instead, we have to use a special
notation. We won’t go into a lot of detail about this now, but it’s a notation you’ll
become painfully familiar with in the next few chapters. When we want to reference a
static property (an enum value can be considered a static property of the enum, at least
as far as XAML is concerned), we use curly braces to tell XAML that we’re trying to get a
value (versus setting a string) and Static to indicate that we want the static value:

<Button Name="buttonEquals" Tag="{x:Static local:Operator.Equals}"/>

This XAML is equivalent to the code in the Window_Loaded method:

buttonEquals.Tag = Operator.Equals;

The Tag property is set to the enum value, and the click handler can cast it to an
Operator value to use it.

 You’ll be seeing the namespace references and the curly-brace notation over and
over again throughout the rest of the book. It’s so fundamental that we think it’s
worth emphasizing whenever we get the chance.

5.6 Summary
We chose to use a calculator for our utility sample because it shows the power of the
Grid layout. The speed with which you can lay out fairly complex sets of controls, and
have them automatically size and scale, is impressive.

 We spent two chapters on layout because it’s such a key component of WPF. No
matter what you’re doing, deciding on a layout approach is almost always going to be
one of your first steps.
www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 The Grid panel
 By taking advantage of the Grid layout and basic properties, we managed to put
together a UI that looks like a calculator in no time. We even spent a little time mak-
ing the calculator act like a calculator as well.

 The next chapter will focus on the look-and-feel of the calculator via the use of
styles and control templates. Then, in chapter 7, we’ll come back to events and look at
some different approaches to handling behavior.
www.it-ebooks.info

http://www.it-ebooks.info/

Resources, styles, control
templates, and themes
Even the title for this chapter is exhausting. It isn’t as bad as it sounds, though—all
these topics are related. Styles let you combine a set of attributes together and give
them a name. You can then apply that style to an element (such as a control). Con-
trol templates are special styles that apply to the look-and-feel and behavior of con-
trols. Resources are blobs of content that you can store in your XAML. They relate to
the other topics because styles are stored in resources, and control templates are just
types of styles. A theme is a collection of styles that control the look-and-feel of an
entire application, such as the Aero theme, which is the default for Windows Vista.

 The topics in this chapter also form much of the basis for one of the key capabil-
ities of WPF—the ability to easily separate UI from behavior. A graphic artist can
provide a theme, a collection of styles and templates stored as resources that can be

This chapter covers:
■ Resources
■ Styles
■ Control templates
■ Themes
■ The similarities between Windows XP and a

certain children’s program
119

www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Resources, styles, control templates, and themes
referenced by your code or can even override behavior of particular types of controls.
The artist can edit these properties without touching code, and vice versa. You could
give your XAML to your artist and let them edit that while you keep the supporting
code separate, but that’s more risky. It would be too easy for important properties or
handlers to go missing.

 But we’re getting ahead of ourselves. We first need to talk about resources and how
to use them, before worrying about letting other people play with them. We’ll return to
the calculator for this—first for a little abuse, but later to improve the way it looks.

6.1 Resources
At the most basic level, resources are nothing more than values stored in a dictionary.
Generally, you provide a key and get back some sort of object. You most often define
resources directly within XAML, as shown in listing 6.1.

<Window.Resources>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
</Window.Resources>

These resources are in a Window.Resources element because they belong to our main
window. Resources can be associated with any framework element or framework con-
tent element. These elements include things like controls, so, in theory, you can asso-
ciate resources with each and every control you define. But you’re more likely to
associate resources with higher-level items such as Windows, Pages, or even the appli-
cation itself. Listing 6.1 defines a resource with the key myBrush set up to paint with
the solid color red.

Now that we have a resource defined, we can reference it from within our XAML like this:

<Button BorderBrush="{StaticResource myBrush}" ...>7</Button>

Listing 6.1 A simple Window-level resource

FrameworkElement and FrameworkContentElement
It isn’t easy to give a one sentence definition for a framework element—other than
to say that it’s the base class for a lot of the visual elements of WPF, such as Window,
Panel, and Control. FrameworkElement is itself derived from UIElement, which
provides the most basic support for mouse and keyboard events and layout support.
FrameworkElement then extends this by adding support for styles, data binding, dy-
namic properties, and a number of other things. Most important for this section is
that it adds support for resources.

FrameworkContentElement comes from a different derivation tree, but also pro-
vides resource support. The Content classes are used by things like FlowDocument,
where you can put together documents. Things like Paragraphs and Lists are
FrameworkContentElements.
www.it-ebooks.info

http://www.it-ebooks.info/

121Resources
The blob of text inside the BorderBrush

attribute is one of the special markup extension
notations used by XAML—a shorthand for speci-
fying how to find a value that would be
extremely cumbersome if it had to follow the
standard rules of XML. This markup should be
read as “Find the static resource called myBrush
and set the BorderBrush to its value.” A static
resource is one that doesn’t change, as opposed
to a dynamic resource that can (we’ll discuss
dynamic resources in the near future). Figure 6.1
shows the calculator with the 7 button with a red
border. Because the book is in black and white,
it may not be too easy to see!

 By moving the definition of the brush into a
resource and referencing it, we’ve already made the UI slightly easier to modify. Each
button could have set its border to use myBrush, and then you could be able to change
the border style of all the buttons at once. This is handy, but it has several drawbacks.
For one, you’d have to go through and set up each of these properties on each button
manually. Also, the only properties that you could change in this way are ones that you
happened to have thought to pull out and put into resources. As you’ll see later, styles
will let you work around both of these issues. Styles, in fact, are just another type of
thing you can shove into a resource dictionary.

 But, before we get to styles, we still need to discuss a number of other things about
resources in general. For example, how does the system locate resources? The button
can have its own resources but, in this case, does not. (In fact, the button does have a
resource dictionary, but it’s empty.) The answer is that WPF automatically steps up the
ownership chain until it finds the requested resource. Figure 6.2 shows the search
order from the example.

 As you might imagine, resources are only available to objects at or below the level
where they’re defined, so the Window couldn’t access resources that belong only to the

Figure 6.1 The 7 button uses a resource-
based brush to set its border.

Button Resource on button?

Grid

Window

Application

No? Check the parent, the Grid layout panel.

If not, check with the Grid panel's parent,
the Window.

If still not found, finally check with
the application resources.

Figure 6.2 WPF searches for resources in the object, and then steps up through
parents until it finds the referenced resource.
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Resources, styles, control templates, and themes
Grid, for example.1 Also, unlike in code, order matters. The XAML that defines your
resources must be found before the place where it’s referenced. The format for the
resources is the same, no matter where it’s defined. For example, we could move
the brush up to the application:

<Application x:Class="Calculator.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml"
 >
 <Application.Resources>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
 </Application.Resources>
</Application>

By defining a resource at the application level, it will be available to everything in the
application. If you’re sure you want everything to see the resource, this is a good
choice, although there will be a slight performance hit. Also, there can be side
effects of doing this. If this was a control template, for example, that template would
apply everywhere in the application, whereas you might only want to use it on a par-
ticular Window.

 In addition to embedding resources directly in your XAML files, you can also cre-
ate standalone resource dictionaries and reference those dictionaries as needed.

6.1.1 Using standalone resource dictionaries

A resource dictionary is just an XML file that contains a ResourceDictionary element.
We can create one by adding a new project item (figure 6.3).

 Listing 6.2 shows the solid-color brush moved into a new standalone resource
dictionary.

<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 >
 <SolidColorBrush x:Key=" myBrush" Color="Yellow"/>
</ResourceDictionary>

Creating resource dictionaries is pretty easy and also a pretty good idea. We can create
multiple styles and resources and then reference them in multiple projects as needed.
To use the resources, we do have to put in a reference, sort of like a using statement
in C# code. Listing 6.3 shows how to reference a single standalone resource dictionary
from within the Window.

1 At least not automatically. You could write code at the Window level that asked the Grid for a resource directly.

Listing 6.2 Standalone resource dictionary
www.it-ebooks.info

http://www.it-ebooks.info/

123Resources
<Window.Resources>
 <ResourceDictionary Source="Dictionary1.xaml"/>
</Window.Resources>

This works, but it only allows a single reference. We can’t, for example, also reference
Dictionary2. Worse, we also can’t reference one dictionary and have other local
resource definitions. Fortunately, we can create a merged dictionary, which combines
the contents of multiple dictionaries into one. Listing 6.4 shows how to include multi-
ple standalone dictionaries.

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Dictionary1.xaml"/>
 <ResourceDictionary Source="Dictionary2.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

The MergedDictionaries tag allows for any number of dictionaries to be referenced and
then merged together. A dictionary can be a reference to a standalone dictionary or can
be a dictionary declared directly in the XAML. The latter is how we go about including
references to standalones combined with local resources, as you can see in listing 6.5.

Listing 6.3 Referencing a single resource dictionary

Listing 6.4 Referencing multiple standalone dictionaries

Figure 6.3 Adding a new resource dictionary to our project
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Resources, styles, control templates, and themes
<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Dictionary1.xaml"/>
 <ResourceDictionary>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
 </ResourceDictionary>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

You can see how the second dictionary only contains resources b including the brush
we’ve been working with. This notation is a little bulky, and it would be nice if Microsoft
had provided some sort of reference tag that could be put inside a regular resource dic-
tionary instead. Hopefully, when they get around to building a GUI editor for resources,
they will make it easy to reference standalones along with the local resources.

 By the way, you may have noticed that there are now two definitions for myBrush—
one local and one in the standalone dictionary. The way the conflict is handled is
fairly egalitarian—the last one defined wins. In listing 6.5, the local version is listed
second, so the border will be red. If we turn around the XAML

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
 </ResourceDictionary>
 <ResourceDictionary Source="Dictionary1.xaml"/>
 </ResourceDictionary.MergedDictionaries>

then we’d get the yellow version defined in Dictionary1.

6.1.2 Using resources from code

Anything we can do in XAML, we can also do in code.2 XAML is a shortcut to code—
the appropriate objects get constructed based on the XAML, and then their code is
executed. This is true for resources as well. The resource dictionary is available for
each object, and can be referenced and modified as needed. Let’s start with accessing
existing resources.

 Resources are available via the Resources property of framework elements and
framework content elements. Resources are exposed as a collection, so we can add,
iterate, and do other collection-y things. But, when we look for resources, we generally
don’t hit the collection directly. We use the FindResource method instead:

button9.BorderBrush = (Brush)FindResource("myBrush");

This method searches resources in the same way as if we had put the declaration in
XAML. It searches the local resources first, then steps up the chain to the parent, and

Listing 6.5 Referencing a standalone dictionary and local resources

2 Although there are a few things that would be really painful to do in code.

b

www.it-ebooks.info

http://www.it-ebooks.info/

125Resources
so on. If it fails to find the resource, then it throws an exception—the same as the
XAML version. If we don’t want the code to throw an exception if it fails to find the
resource, there’s another version of FindResource called TryFindResource:

button9.BorderBrush = (Brush)TryFindResource("myBrush");

This version returns null if the resource isn’t found. If null isn’t a supported value for the
particular property, then we end up with an exception anyway. For brushes in general,
this isn’t a problem—null means that the value isn’t set, so go with the default behavior.

 Adding and updating resources is as simple as updating any dictionary. For exam-
ple, to change the myBrush brush to a different color, we write:

this.Resources["myBrush"] = new SolidColorBrush(Colors.Green);

The this in this case is the Window, so we’re updating the Window’s resources. We could
as easily update the resources for the Grid or one of the buttons. By the way, it’s pretty
easy to update the Application’s resources as well—the Application object has a
static property that exposes the current application:

Application.Current.Resources["myBrush"] = new
SolidColorBrush(Colors.Green);

One caveat here is that we’re updating a specific resource dictionary. So, if the brush
you’re using is in the application and you set the value on the Window’s resource dic-
tionary, you end up with two different versions of the brush at two different levels.
This may or may not cause problems, depending on your goals.

 In the examples so far, we’ve retrieved values from the resource dictionary and set
a property as a one-off thing. It’s more important to update the proper resources if
you want properties to change dynamically when the resource value changes.

6.1.3 Dynamic resources

Much of the time, when you set the value of a property, you’re done. The background
is going to be blue, so you set the background to blue. But there are times when it isn’t
a one-off thing. For example, suppose you want to set the background based on a user
preference. In yon olden days, when the user changed the preference, the fastidious
programmer would write code to step through all the UI and update the value, or
destroy the UI elements and re-create them with the new color.3

 To plan for a lot of such changes, you might build some sort of dictionary for look-
ing up colors. You could then update the dictionary and tell all the UI elements to
redraw themselves, causing them to look up the new color. Because all the built-in ele-
ments wouldn’t know about your dictionary, you’d have to build support code to pass
on values, and you’d have to make sure that every color that might change was appro-
priately redirected. Quite a bit of work.

3 The lazy programmer would tell the user to restart the application, but the rest of us would be required to
heap scorn upon such an approach.
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6 Resources, styles, control templates, and themes
 Now that WPF is here, you don’t have to mess around with any of that. You can still
set properties to specific values, but you can also set a property’s value to depend on
the value of something that might change. If your background points at a particular
resource dictionary, by changing the value in that dictionary, anything that references
that value can be set to automatically change.

Because WPF handles properties in a consistent way, it’s easy to set up this dynamic
behavior. Let’s take the border example from before, where we referenced a brush
from a resource:

<Button BorderBrush="{StaticResource myBrush}" ...>7</Button>

The use of StaticResource means that the value for the brush will be retrieved once
and then used from that point forward. When the XAML is read, the system immedi-
ately retrieves the value for myBrush, sets the border appropriately, and then forgets
about it. If we change static to dynamic, we get different behavior:

<Button BorderBrush="{DynamicResource myBrush}" ...>7</Button>

DynamicResource is fancier. When the system goes to handle this XAML, it doesn’t
assign a value immediately; instead, it puts in an expression. That expression isn’t eval-
uated until the value is needed. This is an important distinction: The Dynamic-
Resource is lazy-loaded, so the item referenced doesn’t have to exist at the point when
the XAML is read. With a StaticResource, if the item referenced doesn’t exist when the
XAML is read, an exception is thrown. In the case of the example, that’s not a prob-
lem, but the resource could be something you create at runtime (maybe it’s a user
preference). The same approach is used for data binding, where it’s less likely that the
data is available before the XAML is read.

 The behavior of a DynamicResource goes further than lazy loading. Instead of hav-
ing a value assigned to the property, a connection is made such that, if the referenced

The Property System
You might think that there is a member variable behind each property you set on a control
or other WPF object. Given the number of properties available, though, even if each vari-
able only took up 4 bytes, each control would end up eating a fair amount of memory,
and that memory would be used even if you never set the value away from the default.

Instead, each WPF object has its own dictionary of property values. This way, objects
only use memory when the property has been set, a much more efficient approach.
The Property System also provides a whole bunch of other capabilities, including the
automatic retrieval of parent values and the ability to handle dynamic properties that
change automatically when their dependency changes.

Attached properties also depend on the use of this dictionary. The property dictionary
can hold property values even if the particular control doesn’t understand what
they’re for (like Dock.Left).
www.it-ebooks.info

http://www.it-ebooks.info/

127Resources
value changes, the property also changes with it. Let’s modify the calculator so that
one button uses a static resource and one a dynamic:

<Button BorderBrush="{DynamicResource myBrush}" ...>7</Button>
<Button BorderBrush="{StaticResource myBrush}" ...>8</Button>

Now, we can add some code to the OnClickOperator (from the last chapter) method
to change the brush when the user hits any operator button (listing 6.6). This might
seem like a silly example. Okay, this is a silly example. But, if we took it a little further,
it could be made into a nice little UI hint—it isn’t always obvious that the user has hit
the button and the color change could be used to indicate the last button pressed.

private void OnClickOperator(object sender, RoutedEventArgs e)
{
 Button btn = sender as Button;
 OperatorHolder holder = btn.Content as OperatorHolder;
 ExecuteLastOperator(holder.Operator);

 this.Resources["myBrush"] = new SolidColorBrush(Colors.Gray);
}

All we’re doing here is updating the Window’s
myBrush resource to be a gray brush instead of
the red brush we already had. Note that we
aren’t doing anything to tell the system to
redraw the buttons or update their values, yet
the dynamically set button gets updated anyway
(figure 6.4). Notice also that the static button’s
color doesn’t change.

 If you want to set up a dynamic property
value via code, it’s fairly straightforward. Instead
of setting the property value directly, you have to
use a special method on the control, called Set-
ResourceReference. For example, if we want
the 9 button to use the brush dynamically, we’d
do the following:

button9.SetResourceReference(Button.
BorderBrushProperty,"myBrush");

This sets the button’s border color to the value in myBrush, and that value is updated
whenever the myBrush resource changes. Notice that we’re passing Button.Border-
BrushProperty as the property to set. This is a dependency property, and we’ll
explain what that means in the next section.
DEPENDENCY PROPERTIES

Although not all properties on controls and other WPF elements are dependency
properties, the vast majority are. A dependency property is a property that participates in

Listing 6.6 Changing Brush when user hits an operator

Figure 6.4 The border around the 7
button changes automatically when we
update the resource. The color around the
8 button doesn’t because it uses a static
resource reference.
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6 Resources, styles, control templates, and themes
the WPF Property System. We’re sure you’re used to properties exposing a backing
member variable, like this:

private Color backColor;

public Color BackColor
{
 get {return backColor;}
 set
 {
 backColor = value;
 Invalidate(); // Force repaint
 }
}

This certainly works, but if you think of all the properties available for controls, that’s
a lot of member variables. Even if each variable only takes up, say, 4 bytes, you’re
potentially talking about hundreds of bytes for each control—whether or not the
value is ever set. This might not be a big deal for the average dialog, but WPF uses
composition for everything. Each ListBox entry, for example, is a control that can
contain controls. A few hundred bytes for each item can quickly add up to a huge
memory footprint.

 To work around this, WPF takes a different approach to properties. There’s a dic-
tionary of property values associated with each object. The dictionary only has entries
for property values that have been set. If you could look inside the real BackColor
property implementation,4 you’d see something much more like this:

public Color BackColor
{
 get {return (Color)GetValue(BackColorProperty);}
 set {SetValue(BackColorProperty,value);}
}

The GetValue and SetValue methods are accessing the dictionary of properties. This
is immediately more efficient because it’s much more likely that you’ll only set three
or four properties (or none, for that matter). The official name for this is sparse stor-
age. Each property takes up a little more space, but overall, the savings are enormous.
But the benefits don’t stop there.

 Because the implementation of properties is a dictionary, it’s possible to put things
into that dictionary that aren’t understood by the object directly. For example, sup-
pose a control is within a DockPanel. The dictionary can hold a DockLocation prop-
erty, with a value like Dock.Left. This is meaningless to the control itself but useful to
the parent. This is how attached properties are implemented.

 The generic nature of the dictionary of properties also makes it easy for other
things to set properties without necessarily understanding what they’re doing. This is
how styles can set properties. The style has a setter that says, “Set arbitrary property X

4 As it happens, Microsoft has released the source code for .NET, so you can look at the implementation if you
want to!
www.it-ebooks.info

http://www.it-ebooks.info/

129Resources
to value Y.” The same mechanism can set the background color, the foreground color,
or any other property with a color value, without having to resort to reflection tricks.
This approach is also used for animation. A property’s value can be animated over
time without any particular regard to what the animation does (figure 6.5).

 On top of the value of the property dictionary, several other services are provided
by the Property System. For one thing, it’s possible for a property to get its value from
its parent within the tree of objects. For example, if the font is set on a Window, all the
children can automatically pick up that font without having to explicitly set it. They
pick up these values from the visual tree, rather than just from the derivation tree.
Another set of capabilities that the Property System provides are data binding and
dynamic properties.

 In the previous section we set up the border color to be dynamically tied to a value
from a resource—you get this capability for free on any dependency property. This
same basic mechanism can be used to arbitrarily tie a property to a data source, which
we’ll demonstrate in chapter 11.

 In general, properties are exposed via standard get/set methods. There’s also a
static property for each dependency property, named, by convention, as propertyname-
Property. From the example for the BorderBrush, the static property is named Border-
BrushProperty. This static value is of type DependencyProperty and performs double
duty—it’s the key into the property dictionary, and it also holds information about the
behavior of the property. In chapter 13, we’ll create some custom controls that have
their own dependency properties, so you’ll be able to see what options are available.

 This section has a lot of text without much code, but understanding what is going
on under the hood with properties will pay off when we start talking about styles.
Before we get to that, there’s one last thing to mention about resources: dynamically
using system colors and other system resources.
REFERENCING NON-RESOURCES FROM XAML
You can reference things other than resources in XAML. For example, in WPF there’s a
class called SystemColors that has things, like the current Window background color,
foreground color, and so on, from system settings. This class isn’t a resource, but it’s

Figure 6.5 Because of the generic mechanisms within the WPF Property System, it’s easy to
automatically animate a property. In this case, the rectangle’s color is automatically fading
from black to gray to white, back to gray and finally back to black.
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 6 Resources, styles, control templates, and themes
still possible to reference these colors from XAML. This is good because a good UI will
play nice with the operating system and the user’s color selections. This is especially
important for users who have vision problems and rely on high-contrast modes to be
able to read their screens.

 Technically, hooking up to SystemColors makes use of binding. Binding is the
underlying technology used to tie data sources to data users. A data source could be a
database or an XML document or a particular property on a class. You’ll be unsur-
prised to learn that pulling data from a resource is a specialized type of binding. Bind-
ing is the primary topic for both chapters 11 and 12.

 We’re bringing it up briefly because we’re talking about referencing colors, and
the discussion would be pretty incomplete if we didn’t mention accessing system col-
ors. Because we’re referencing the SystemColors class, rather than a resource, the
syntax is different. If we want to tie our background, for example, to the default
Window background color, we do the following:

<Rectangle Fill="{x:Static SystemColors.WindowBrush}" />

You may recognize this notation from the previous chapter, where we referenced the
value from a value from the Operators enum. What this says is to tie the rectangle’s
Fill color to the value stored in the SystemColors.WindowBrush property. The rea-
son for the different syntax is that we’re setting the Fill color to come from the static
property on the SystemColors object, which is different from setting the Fill based
on a value in a resource dictionary.

 You could equally tie this to a property of one of your own classes. You’d first have
to make that class available via a namespace in your XAML, again as we did with the
Operators enum. SystemColors is available because it’s referenced by one of the stan-
dard XAML namespaces already.

 Setting the property in the way shown will work, but there’s a problem. If the user
changes the system colors while the application is running, the rectangle’s fill color
won’t change. That’s because the value has been set statically. If we want it to change
dynamically, we have to set up a dynamic association and, you guessed it, the notation
is slightly different again:

<Rectangle
 Fill="{DynamicResource {x:Static SystemColors.WindowBrushKey}}" />

There’s a lot going on here. First off, we’re back to the DynamicResource statement of
yore, but instead of providing the name of a resource, we use the curly-brace notation to
indicate that the value we want to bind to is coming from elsewhere. Second, and this is
easy to miss, notice that instead of WindowBrush, we’re referencing WindowBrushKey. The
SystemColors class has a second property for each color, with the word Key appended.
We aren’t binding to the color, but to the key which can be used to find the color.

 This is an example where the added flexibility of WPF really makes things more
complicated. In Windows Forms, most controls automatically handled changing color
when the system changed color. This was all done behind the scenes. Granted, it was
www.it-ebooks.info

http://www.it-ebooks.info/

131Styles
painful for the Windows Forms developers to make it work, but that is, as they say,
their problem. Also, there were a few controls that didn’t behave properly, and it was
often a pain to handle the exceptions. Even so, there was a fairly reasonable 80% solu-
tion that required almost no effort on the part of the average coder.

 Now, if you want to do something that used to be simple, you have to spew some
fairly icky-looking XAML. We hope that in the next version of Visual Studio the
designer will hide some or all of this, but at the moment, it seems like a step backward.

 Overall, the Property System makes our lives much easier, and the resource mecha-
nism is flexible and straightforward. The real power comes in when you start playing
with styles.

6.2 Styles
If you’ve worked much with the web or created any complex word-processing docu-
ments, the concept of styling should be familiar to you. A style represents a series of
properties that can be applied to items. On the web, Cascading Style Sheets (CSS) can
be used to control the look-and-feel of pages by formatting their content. In a word
processor, styles can be applied to sections of text or paragraphs. When the style is
applied, it can set the font, spacing, and various other properties.

 The buttons on the calculator provide a perfect example of a situation where a
style would be useful. Right now we have a margin defined for each button that’s
always the same. Because of some of the experiments, the border of a couple of the
buttons uses a color, but not all of them. If we set up a style for the buttons, then we
can change all the buttons to use it; and then we can tweak the style and have it auto-
matically change all the buttons. Listing 6.7 shows the resource section for the Window,
including the old brush that we were using for borders, and also a new button style.

<Window.Resources>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
 <Style x:Key="CalcButtonStyle" TargetType="Button">
 <Setter Property="Margin" Value="5"/>
 <Setter Property="BorderBrush" Value="{DynamicResource myBrush}"/>
 </Style>
</Window.Resources>

The x:Key is the “name” of the style. This is how we’ll reference the style later. All
styles (like all resources) have to have a name, although, as you’ll see later, there are
situations where the name (or the key) is implied. The TargetType is the type of con-
trol you want the style to apply to. You don’t have to specify the target type, but if you
don’t, you have to provide more information for the setters. For example, we’re set-
ting the Margin property. Because TargetType is set to Button, this is effectively setting
the Button.Margin property. If we hadn’t specified a target type, then we’d have had
to fully qualify the setter’s property:

<Setter Property="Button.Margin" Value="5"/>

Listing 6.7 Style for calculator buttons
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 6 Resources, styles, control templates, and themes
Or, if we want to use the style more generally, we can use the following:

<Setter Property="Control.Margin" Value="5"/>

Then this style will work with anything derived from Control. Setters pretty much do
what their name implies; they set a property on the styled control to the specified
value. Once again we see the benefits of the Property System—even though the style
itself knows nothing about the target object, it’s trivial for it to set the property.

 By the way, it’s perfectly legal to provide setters in a style that don’t apply to all the
targets. For example, suppose we want to use the same style for both text boxes and
buttons. We could specify a MaxLength property setter in the style:

<Style x:Key="ButtonOrTextBox" TargetType="Control">
 <Setter Property="Margin" Value="5"/>
 <Setter Property="BorderBrush" Value="{DynamicResource myBrush}"/>
 <Setter Property="TextBox.MaxLength" Value="100"/>
</Style>

If we use this style with a TextBox, the maximum length is set to 100. If we use this style
with a Button, because a Button doesn’t have a MaxLength property, the setter doesn’t
do anything.

 To use the style, we provide a value to the Style property of the target control:

<Button Grid.Column="0" Grid.Row="3"
 Style="{StaticResource CalcButtonStyle}"
 Name="button4" Click="OnClickDigit">4</Button>

The syntax for the Style property is the same as
for any other resource reference. In this case,
we’re saying that we want the style to be set stati-
cally to the CalcButtonStyle resource. We
could go ahead and set all our buttons to use the
style, and get rid of all the margin and border
properties. Then we could, for example, change
the margin to be 10 instead of 5 in one place,
and have it change all the buttons (figure 6.6).

 In addition to properties, the buttons also
have something else in common—events. All
the digits call a common handler for processing,
as do all the operators. It might be nice if we
could add the event handler to the style so that
we wouldn’t have to specify it for every single
button. Adding an event handler to a style is sim-
ilar to adding a property. We add an EventSetter:

<Style x:Key="CalcButtonStyle" TargetType="Button">
 <Setter Property=" Margin" Value="10"/>
 <Setter Property="BorderBrush" Value="{DynamicResource myBrush}"/>
 <EventSetter Event="Click" Handler="OnButtonClicked"/>
</Style>

Figure 6.6 We’ve applied a style to all
the buttons that sets the margins and the
border color.
www.it-ebooks.info

http://www.it-ebooks.info/

133Styles
This does exactly what you’d expect—every button using this style automatically calls
the OnButtonClicked method when the user clicks the button. Although the event
handler works, it doesn’t entirely fit in with the calculator. We have a different handler
for digits than for operators. Also, we’re mixing two different things here—look-and-
feel and behavior. We’re back to the scenario where changing the appearance might
break the way things work. We recommend that you use events in styles only for pre-
sentation handling (for example, if you want to customize the presentation of a con-
trol based on an event taking place). In chapter 7, we’ll show you better ways of
handling events without sticking them in styles.

6.2.1 Styles based on other styles

Sometimes, you might have multiple items that are similar, but have some minor dif-
ferences. For example, you might want all the buttons to have the same margins and
basic properties but a different border color for operators than for digits. Ideally,
you’d have a basic style that has the common attributes in it and then specialized styles
that contain the differences. For example, we can do this via the use of the BasedOn
property of a style, as shown in listing 6.8.

<Window.Resources>
 <SolidColorBrush x:Key="myBrush" Color="Red" />
 <Style x:Key="CalcButtonStyle" TargetType="Button">
 <Setter Property="FrameworkElement.Margin" Value="10"/>
 <Setter Property="BorderBrush" Value="{DynamicResource myBrush}"/>
 </Style>
 <Style x:Key="DigitButtonStyle"
 BasedOn="{StaticResource CalcButtonStyle}"
 TargetType="Button">
 </Style>
 <Style x:Key="OperatorButtonStyle"
 BasedOn="{StaticResource CalcButtonStyle}"
 TargetType="Button">
 <Setter Property="BorderBrush" Value="Green"/>
 <Setter Property="FontWeight" Value="UltraBold"/>
 </Style>
</Window.Resources>

DigitButtonStyle b is derived from, or based on, the CalcButtonStyle. The value
for the BasedOn attribute is the same as for any other static resource reference.
Because DigitButtonStyle is based on CalcButtonStyle, it automatically contains all
the setters from CalcButtonStyle, as well as its own properties. At the moment, Digit-
ButtonStyle doesn’t provide any specialized behavior; it’s only a placeholder. We also
create an OperatorButtonStyle derivation c with different setters.

 Notice that the OperatorButtonStyle provides a setter for the BorderBrush d. As
you’d expect, the version in the derived style overrides the value in CalcButtonStyle,
so the border for the operator buttons is green. We also set the FontWeight to be

Listing 6.8 Two styles derived from a base

Original
style

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6 Resources, styles, control templates, and themes
UltraBold to make them stand out. We could’ve just used Bold, but why be bold when
you can be ultra bold!

NOTE EventSetters in derived styles. You might think that you can override Event-
Setters in the same way you override property setters. But event setters
work differently. If you have a setter in the base and in the derived version,
both methods are called. Properties have a single value, whereas events can
have any number of subscribers. You could argue as to whether this is good
or not. For some events, you might always want to get a notification, no
matter what the child does with it. For others, you might want to provide
default behavior that can be overwritten. We would have suggested that
they add an Overridable property to control this behavior, but we (prob-
ably for good reasons) aren’t in charge.

To get the styles to show up appropriately, we have to make sure that the right buttons
have the right styles. Digits look like this:

<Button Grid.Column="0" Grid.Row="3"
 Style="{StaticResource DigitButtonStyle}" Name="button4">4</Button>

And operators like this:

<Button Grid.Column="0" Grid.Row="3"
 Style="{StaticResource OperatorButtonStyle}"
 Name="buttonTimes">X</Button>

Figure 6.7 shows the calculator with the new styles applied. As you can see, the opera-
tors have the different style.

 Styles are just resources, so we access them
from code the same way we access any other
resource:

button1.Style =
(Style)FindResource("DigitButtonStyle"
);

Simple enough. One caveat is that, once a style
has been applied, it can no longer be changed—
so you can’t update the style’s properties and
have it automatically change all the styled items.
But you can switch between different styles by
changing the value of the Style property.

 If you don’t want to have to set the style for
every single button, you can easily write code
that steps through all the buttons and assigns
the style programmatically. But there’s another
way that you can have a style automatically apply
to controls.

Figure 6.7 We explicitly used a different
style for the operators to differentiate
them from the digits. The operator style
has bolded text and a green border
(although that is hard to see in black and
white—but we are not bitter about that—
not at all.)
www.it-ebooks.info

http://www.it-ebooks.info/

135Styles
6.2.2 Implicitly applying styles

When we created our styles before, we gave them a key and a target type. The key is
the name by which you reference the style to use it with controls. But if you exclude
the key from a style, the system assumes you want to automatically apply the style to all
objects of the target type. For example, the following style has a TargetType of button,
but no key:

<Style TargetType="Button">
 <Setter Property="FrameworkElement.Margin" Value="10"/>
 <Setter Property="BorderBrush" Value="{DynamicResource myBrush}"/>
</Style>

Because there’s no key, this style is automatically applied to all the buttons below the
resource. If this style is defined at the Window level, all the buttons on the Window pick
up this style. If you define the style at the Grid-panel level, only buttons in the Grid get
it; and, if you define it at the Application level, every single button in the application
picks up the style—unless a different button style is applied at a lower level. Controls
pick up the style defined closest to them, so a style on the button overrides one on the
Grid, which would override one on the window, and so on.

 Earlier, we said that styles, like any other resource, have to have a key such as
DigitButtonStyle. This is sort of a cheat because there’s no explicit key. Instead, WPF
figures out a name automatically. If we need to reference this style, we can reference it
by that implicit name:

{x:Type Button}

The name is the type turned into a key. We can reference the style in XAML like this:

<Button Style="{StaticResource {x:Type Button}}" />

Although in this case, it would be a silly thing to do because the style is automatically
going to be applied to all buttons. A more reasonable example would be using this
notation in a based-on clause to derive a new style from it.

 If you’re coding along and have gone to all the effort of referencing your custom
styles for each button, you can go ahead and take all those references out and,
instead, create a single style that applies to them all automatically.

 This won’t quite work for the calculator, will it? There’s a different style for opera-
tors than for digit buttons. Well, there are a couple of possible solutions. For one
thing, we could pull the generic elements into the style that’s applied to every button
and then override the specific properties we want to be different:

<Button Grid.Column="2" Grid.Row="5" BorderBrush="Green"
FontWeight="UltraBold"

 Name="buttonEquals">=</Button>

We explicitly set the Brush and the FontWeight. The Brush was also set by the style,
but the local setting automatically overrides the style. This is true of properties in gen-
eral—setting a property on an item directly always beats setting a property via a style.
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Resources, styles, control templates, and themes
 This would work, but it means that a bunch of the buttons would be hardcoded
instead of based on a style. Instead, we could derive the style for the operators from
the generic style:

<Style x:Key="OperatorButtonStyle"
 BasedOn="{StaticResource {x:Type Button}}"
 TargetType="Button">
 <Setter Property="BorderBrush" Value="Green"/>
 <Setter Property="FontWeight" Value="UltraBold"/>
</Style>

Notice the use of the implicit name for the automatic button style. Now, we can make
the operator buttons use this style. Here’s the XAML for a digit button and for an
operator button:

<Button Grid.Column="0" Grid.Row="3" Name="button4">4</Button>
<Button Grid.Column="0" Grid.Row="3"
 Style="{StaticResource OperatorButtonStyle}" Name="buttonTimes">X</

Button>

Notice that button4 doesn’t reference a style at all. It’s automatically using the
implicit button style without having to do anything. For the operators, though, we
have to explicitly use the OperatorButtonStyle. Because an object can only have one
style at a time, the buttonTimes uses the operator style, overriding the implicit style.

 This approach is better still—at least we only have to provide styles for 5 of the 16
buttons. This is one of those cases where it might be better to explicitly use a style for
every button. Implicit styles work better when there’s a generic look-and-feel always
implied. When there are divergent styles for similar items, explicit references are gen-
erally better.

 Speaking of which, you can do more with styles than setting a few properties. You can
also override the control’s template to completely change the look-and-feel of a control.

6.3 Control templates
As strange as it may sound, controls in WPF are look-less. They have defined behavior
but no appearance. This gives ultimate flexibility because you can completely control
the way that a control is presented. If you had to define the way every single control
looked before you could use it, you wouldn’t be terribly productive. You don’t have to
do this, though, because every control has a default control template—a definition of
how the control should be displayed.

 The default control template controls how the button should be drawn in its nor-
mal state, as well as in special states such as mouse over, clicked, that sort of thing. The
default templates are defined as part of themes and so can be different depending on
the currently selected theme—we’ll talk about that later. Although you can override the
template for an individual control, you’ll more often create a style that overrides
the look-and-feel.
www.it-ebooks.info

http://www.it-ebooks.info/

137Control templates
6.3.1 Creating a control template

One of the properties of a control is its template, which defines how it looks and
behaves in general. We say in general because the template still takes some directing.
For example, the template might say that the control has a rectangle as its background,
but the color or fill of that rectangle might be overridden by any particular control.

 Because the template is a property, it can be set as part of a style. In fact, this is the
most common way of defining a new control template. For example, we can modify
the Button style to change all the buttons into ellipses (listing 6.9).

<Style x:Key="CalcButton" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Ellipse Fill="LightGreen" />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 <Setter Property="Control.Margin" Value="10"/>
</Style>

All we’re doing here is setting the Template
property b via the style. In this case, we set the
content to be a light green ellipse c. When the
code is run, any controls that use this style
replaces their control templates with the tem-
plate here (figure 6.8).

 Depending on how late you were up last
night, you may or may not notice a slight prob-
lem with the calculator. In fact, there are several
problems. Aside from the obvious—there’s no
longer text on the buttons—the buttons no
longer act like buttons. There are no visual clues
when you move over the button or click the but-
ton. The buttons do still work, though—you can
click them and do calculations—provided you
have a good memory for where the various digits
and operators are located.

6.3.2 ContentPresenters

To make the text show up again, we need to tell the system where to put that content.
Fortunately, this is pretty easy. There’s a special framework element called a Content-
Presenter. When you put a ContentPresenter into a control template, WPF shoves
the control’s content wherever the content presenter says. As always, there’s a wrinkle.
A template can only hold a single framework element. You can put an ellipse there, or

Listing 6.9 Style that makes buttons ellipses

Sets template
propertyb

Sets content
to ellipsec

Figure 6.8 We’ve replaced the Button
style to use an ellipse. Unfortunately,
we’ve now lost the text from the buttons.
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6 Resources, styles, control templates, and themes
a rectangle, or any one thing, but you can’t put an ellipse and a rectangle or, most
importantly for our purposes, an ellipse and a content presenter.

 This is the same issue you have when you’re adding controls anywhere. Most places
only support a single control, but that single control can be anything—including a lay-
out panel. And a layout panel can hold any number of children. For simplicity, let’s
use a Grid layout panel (because this is the default) without adding any rows or col-
umns so that it behaves like a Canvas, but with more support for positioning. Here’s
the XAML for the ControlTemplate (the rest of the style definition is unchanged):

<ControlTemplate TargetType="Button">
 <Grid>
 <Ellipse Fill="LightGreen"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
</ControlTemplate>

By adding the Grid, we can add two controls; the
ellipse and the ContentPresenter. The Content-
Presenter has both horizontal and vertical align-
ment set to center, so the content will be centered.
Now if we run the calculator, we get our text back
(figure 6.9).

 It is worth mentioning that the content pre-
senter presents whatever content the button
had. For example, if we were drawing pictures
on the buttons, or had other embedded con-
trols, they would count as the content and would
appear where the content presenter said. This is
a key mechanism behind composition.

6.3.3 Template binding
In the example so far, we’ve hardcoded the color for the buttons to a fairly ugly shade of
green. If you wanted to add a border, you could also hardcode that, say, to the red used
for the button border. You also have another option—you can bind any of the properties
to the value set on the control. If there’s code already setting a particular color on the but-
ton, you can use that color in the control presenter. For example, we already went to some
effort to set a border brush for different controls. Let’s use that to set the border around
the ellipse. We just have to change the line in the XAML that draws the ellipse:

<Ellipse Fill="LightGreen" Stroke="{TemplateBinding Control.BorderBrush}"/>

Stroke is the property on an ellipse that controls the outline color. We’re using the
curly-brace notation again; but this time, instead of binding to a resource, we’re binding
to a property of the template—the border brush. The buttons now pick up the brush
that’s set on each button and use that to draw the outline of the ellipse. Figure 6.10
shows the results.

Figure 6.9 By using a content presenter,
we now get the text to show up on the
ellipse buttons.
www.it-ebooks.info

http://www.it-ebooks.info/

139Control templates
 We can’t say that this has improved the
appearance of the calculator, but it’s at least
doing what we told it to do. But we still have the
problem of the buttons not reacting like but-
tons. We’d at least like the buttons to change
color or something when the user clicks them.

6.3.4 Triggers

We can make the buttons react to the user by
adding triggers to the control template. A trig-
ger does something when an event occurs or a
property value changes. We aren’t going to go
into a huge amount of detail about triggers at
this point But we will give you a simple example.
Listing 6.10 sets a trigger on the IsPressed state
of the Button.

<Style x:Key="CalcButton" TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid>
 <Ellipse x:Name="theEllipse" Fill="LightGreen"
 Stroke="{TemplateBinding Control.BorderBrush}"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="Button.IsPressed" Value="True" >
 <Setter TargetName="theEllipse"
 Property="Fill" Value="Yellow"/>
 </Trigger>
 </ControlTemplate.Triggers>
 </ControlTemplate>
 </Setter.Value>
</Setter>

We went ahead and gave our ellipse a name—theEllipse b. We did that because the
trigger needs to be able to reference the thing to change, and an easy way to do this is
by name. If the template was more complex, we could give names to any element we
want to change.

 We then added a collection of triggers c to the template. We could have any num-
ber of triggers, checking for things like focus changes, or mouse over; but, in this case,
we only have the one. The trigger itself d watches the IsPressed property on the con-
trol. The trigger fires when the value of the property becomes true (when the button is

Listing 6.10 Trigger on IsPressed state of Button

Figure 6.10 The ellipse border is now
picking up the brush set for each
individual button. It may be hard to see,
but digits have a red outline, whereas
operators have a dark green outline.

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Resources, styles, control templates, and themes
pressed). What the trigger does is controlled by
setters—much like a general style setter. It finds
the target object to change (theEllipse) and
sets the Fill property to Yellow.

 We don’t have to worry about unsetting the
color when the button is released. By default,
WPF takes care of that for us—restoring the
properties to their original values. Figure 6.11
shows the calculator with one of the buttons
being pressed.

 It isn’t perfect, but at least there’s some reac-
tion when the button is pressed, providing an
affordance to the user. In chapter 9, we’ll play
around with making this behavior a little fancier.

Styles and control templates are extremely powerful. In addition to some of the capabil-
ities we’ve shown so far, you can even add things like animation based on styles, which
we’ll demonstrate in chapter 8. To take styles to their logical conclusion, you can create
a series of related styles for different types of controls and build them into a theme.

6.4 Themes
When Windows XP first came out, we thought it looked like a cartoon—big green but-
tons, blue gradients, curved edges everywhere. The Microsoft usability engineers
apparently knew what they were doing,5 because now, a few years later, the formerly
sharp-looking Windows 2000 now looks dowdy and old. The new look-and-feel of Win-
dows XP was driven by themes. The default Luna theme even has three versions—the

Affordances
Affordances are characteristics of interfaces that provide clues and guidance to us-
ers. The classic example of an affordance is a doorknob. Because you see a knob on
a door, you get a clue that you can manipulate the door. But if, instead of opening
the door, it gives you, say, a million-volt electric shock, it would be a poor affor-
dance—implying one capability but providing another.

Many UIs go the way of the million-volt electric shock by not clearly providing guidance
to the user as to how to manipulate things and whether they’re being successful. This
is particularly troublesome because computer UI isn’t natural to begin with. Providing
feedback on things like button clicks is important because the feedback lets users
know they’re successfully operating within the virtual environment.

5 One of us had the opportunity of sitting down with one of the Microsoft usability engineers. She had advanced
degrees in computer science and psychology.

Figure 6.11 The 5 button is being
pressed, triggering a color change.
www.it-ebooks.info

http://www.it-ebooks.info/

141Themes
default blue, the futuristic silver (Metallic, shown in figure 6.12), and the slightly nau-
seating green (Homestead).

 Unfortunately, the implementation of themes was, shall we say, ugly. The themes
had to work with existing applications that knew nothing about themes, as well as
allow new applications to take advantage of the themed elements. In addition to its
Byzantine coding style, it was also very much tied to the Win32 HWND model. This fact
is quite relevant to our current topic because WPF isn’t. When you run a WPF applica-
tion, the main frame of your window is still a Window as far as Windows is concerned,
and the theme code can paint the title bar and the borders of your window. But every-
thing inside your window is WPF-only, and it isn’t possible (or particularly desirable)
for the Windows theme code to do any of the drawing.

 Fortunately, where implementing themes in classic Windows was a nightmare, WPF
is built around the idea of styling. And what is a theme but a collection of styles? Pro-
viding a theme for WPF is as simple as building a resource dictionary and referencing
it. Unfortunately, WPF doesn’t rule the world (yet), so WPF applications are caught
between the Windows themes and WPF styles.

 The WPF team worked (hacked?) around the problem by implementing a series of
WPF styles that mimic all the common Windows themes. When your WPF application

Figure 6.12 Windows XP with the Metallic version of the Luna theme and the default background image.
Does anyone else think that hill looks like something out of the Teletubbies?
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Resources, styles, control templates, and themes
starts up, WPF figures out which Windows theme is running and then loads one of its
own themes that matches the look-and-feel around it. That way, your application looks
like other running applications—provided you’re using one of the standard Windows
themes. This approach has already broken down to some extent. Microsoft shipped a
new theme to go with the release of the Zune—called the Zune theme. WPF doesn’t
know about it, so WPF applications running under the Zune theme revert to the classic
Windows 2000 look-and-feel. (So far, though, we haven’t heard complaints from
either of the people who bought Zunes.)

6.4.1 Using a specific theme

You don’t have to rely on the automatic behavior for choosing a theme. If you want to,
you can explicitly use one of the existing themes (or a theme built by someone else).
You reference a theme more or less the same way that you reference any other standa-
lone resource dictionary. The only difference is that you have to reference the theme
via the assembly that contains it, and you have to use the assembly’s complete name,
including its strong key token. Listing 6.11 shows the resource section from a window
that references the new Windows Vista Aero theme.

<Window.Resources>
 <ResourceDictionary Source="/PresentationFramework.Aero, Version=3.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35
 ;component/themes/aero.normalcolor.xaml" />
</Window.Resources>

This code references an assembly that Microsoft provides called PresentationFrame-
work.Aero, which contains the theme. The
Version, Culture, and PublicKeyToken are all
part of the fully qualified strong name of the
assembly. (Theme assemblies have to be
strongly named.) The theme itself is a resource
dictionary stored in the resource component/
themes/aero.normalcolor.xaml. Figure 6.13
shows an XP dialog with a few controls and
with the theme explicitly set to use Aero.

 The window in figure 6.13 is running on
Windows XP, but the controls look how they
would when running on Windows Vista. You
can’t see it in the picture, but the controls have
all sorts of little animations as well. For exam-
ple, when you click a check box, the check
slowly fades in. The bits drawn by Windows
directly—the title bar and the border—still
look like the style for Windows XP.

Listing 6.11 Referencing the Vista Aero theme

Figure 6.13 Even though this window is
running on Windows XP (note the XP-style
title bar and border), the theme has
explicitly been set to use the Windows Vista
Aero style.
www.it-ebooks.info

http://www.it-ebooks.info/

143Themes
Microsoft provides support for six different themes. Table 6.1 shows how to reference
them and what they look like. We do need to warn you that manually switching
between the built-in themes is considered a no-no by Microsoft. They claim the right
to change the references at any time, although we think this is unlikely.6

When to use a different theme
In general, it’s a good idea for applications to be consistent with their operating en-
vironment. When applications look (or, worse, work) in a different manner than the
rest of a user’s applications, it makes it harder for the user to adapt.

Sometimes it’s okay to vary from this, within reason. The look of an application can
be one of its selling points, and building a theme for your applications is perfectly
fine—so long as it’s consistent within itself and reasonably consistent with other ap-
plications. For example, in figure 6.13, the controls are using a different style, but
there’s no question that a button is a button or a text box is a text box.

It’s also sometimes easier and quicker to build an application if you can rely on par-
ticular elements. For example, if you have a number of graphics on the page, having
to create a different version of each graphic that looks good with green controls or
blue controls or silver controls can be extremely onerous.

Table 6.1 WPF-supported themes

Theme Image

Aero—The default theme for Windows Vista
<ResourceDictionary
 Source="/
 PresentationFramework.Aero,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
aero.normalcolor.xaml" />

Luna, Default—The XP theme in the regular blue
color mode
<ResourceDictionary
 Source="/
 PresentationFramework.Luna,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
luna.normalcolor.xaml" />

6 In fact, there are a couple of scenarios where you really need to be able to reference the existing assemblies
explicitly—for instance, if you want to extend an existing style.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6 Resources, styles, control templates, and themes
It’s likely that a whole lot of other themes will be available either for download or for
sale in the near future. You can also create your own by creating a resource dictionary
in an assembly (although you must strongly sign the assembly). But we’re not going to
go into the specific details here.

Table 6.1 WPF-supported themes (continued)

Theme Image

Luna, Metallic—The XP theme with the silver styling
<ResourceDictionary
 Source="/
PresentationFramework.Luna,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
luna.metallic.xaml" />

Luna, Homestead—The green XP theme
<ResourceDictionary
 Source="/
 PresentationFramework.Luna,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
luna.homestead.xaml" />

Royale—The theme used by Windows Media Center
edition
<ResourceDictionary
 Source="/
 PresentationFramework.Royale,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
royale.normalcolor.xaml" />

Windows Classic—The Windows 2000/2003 look
<ResourceDictionary
 Source="/
 PresentationFramework.Classic,
 Version=3.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
;component/themes/
Classic.xaml" />
www.it-ebooks.info

http://www.it-ebooks.info/

145Themes
6.4.2 Changing themes from code

As well as setting the theme via XAML, it’s easy to change the theme programmatically.
You could, for example, allow your users to choose a theme for your application from
either the system or custom theme assemblies. You could also programmatically set a
default theme if the appropriate theme wasn’t found, although the code to do this
would be tricky (and, frankly, is something that WPF should support directly).

 To set a theme in code, you have to load the resource dictionary from its assembly
and then make it your resource dictionary. Listing 6.12 changes the theme for the
Window to the Aero theme.

Uri uriToTheme = new Uri("/PresentationFramework.Aero,
 Version=3.0.0.0,Culture=neutral,
 PublicKeyToken=31bf3856ad364e35
 ;component/themes/aero.normalcolor.xaml",UriKind.Relative);

object theme = Application.LoadComponent(uriToTheme);
this.Resources = (ResourceDictionary)theme;

In this code, we create a URI that points to the resource. You may notice that the
contents of the URI are exactly the same as the XAML we used to point to the theme.
Then we load the theme and literally replace the Window’s resources with the
loaded resources.

 In fact, just for fun, we hooked up the button on the form to a method that cycled
between different themes. Clicking the button was way more fun than it should have
been. We really should get out more.

 Although this code works, there are a couple of issues. First of all, we’re changing
the Window’s resources instead of the entire application’s. This is an easy fix—we just
change where we store the resources, and what we update:

Application.Current.Resources = (ResourceDictionary)theme;

Now, when you click the button, every control in the entire application changes (so
long as it isn’t overridden with a custom style). The second problem is a little trickier;
when you replace the Resources collection on the window or the app, you’re blowing
away any of your own local resources. This was fine when the entire Window’s resources
were pointing at the theme, but more of a problem when you’re merging multiple dic-
tionaries. Fortunately, the problem is also the solution; instead of replacing the entire
resource dictionary, you can work with the merged dictionary.

 For example, suppose we have a theme reference and a reference to a local
resource dictionary:

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="/PresentationFramework.Classic,
 Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35

Listing 6.12 Changing the theme to Aero
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Resources, styles, control templates, and themes
 ;component/themes/Classic.xaml" />
 <ResourceDictionary Source="MyLocalResources.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

This is nothing new, except that one of the merged resource dictionaries is coming from
a system theme assembly. Now, instead of replacing the entire ResourceDictionary, we
can update the Resource’s collection of merged dictionaries:

if(this.Resources.MergedDictionaries.Count > 0)
 this.Resources.MergedDictionaries[0] = (ResourceDictionary)theme;

This changes the theme reference, while leaving our local resources alone. You may
notice that we’re relying on the specific position of the theme reference in the
MergedDictionaries collection. Unfortunately, there’s no built-in way to tell which is
a theme resource dictionary and which is the local collection. To the system, there’s
no real difference. You could try a few tricks such as storing a particular resource in
your own resource dictionaries that wouldn’t be present in the system ones. You could
also check the Source property of the ResourceDictionary, which contains the URI,
to look for system references.

 The nice thing about themes is that they’re nothing special—they’re resource dic-
tionaries that have been shoved into their own assemblies. The power of this is that
you don’t have to do anything different to work with a system theme, your own theme,
or your own locally-defined resources.

6.5 Summary
Sometimes, when you look at a piece of code or a design, you see an element of ele-
gance. Even with the most complex systems, that elegance tends to come from a sim-
ple, clean idea that has been well executed. We wouldn’t want to imply that everything
about WPF is that way,7 but both the Property System and the resource mechanisms of
WPF have that core simplicity that makes them flexible and powerful. If you think
about it, they’re both built around simple dictionaries, yet they empower the rest of
the system.

 But the real world intrudes. The simple cores can’t do everything, particularly
when working with existing systems. That’s how you end up with duplicate (Windows/
WPF) theme mechanisms or a bunch of different ways to refer to different types of
things in XAML. Nevertheless, the approach to properties, styles, and resources in WPF
seems superior to any of the competing mechanisms we’ve seen so far, and much of
that is due to its core simplicity.

 The event system in WPF is also simple yet flexible. It addresses some of the issues
of events in Window Form implementations, as well as some of the unique issues that
WPF, by its compositional nature, creates for itself. The next chapter will go into detail
about the event system.

7 After all, we didn’t write it. Everyone knows that only their own code is truly perfect.

Reference to Classic theme
Reference
to some
local
resources
www.it-ebooks.info

http://www.it-ebooks.info/

Events
If you’ve used both MFC and Windows Forms, you’ll know that the event model in
Windows Forms was a major improvement over the message-map model used by
MFC. Controls in Windows Forms exposed events that could be subscribed to by
code that cares, and that code was called when appropriate. The classic example is
a user clicking a button, resulting in the appropriate handler being called. Many
other events work in the same way.

 Classic Windows Forms events did have some issues. The most problematic was
that the code that cared about the event either needed to have direct access to the
event generator, or the event had to be manually passed up the chain. For example,
picture a button on a user control on a form in an application. If the application
needs to know about the event, the application either needs to know about the

This chapter covers:
■ Bubble-up events
■ Tunnel-down events
■ Handling events even when they’ve already

been handled
■ Class-level events
■ Clever ways to annoy your users
147

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 7 Events
button (breaking encapsulation), or the button needs to tell the user control, which
needs to tell the form, which needs to tell the application—which is a pain in the neck.

 WPF adds an additional complication—composition. Before WPF, a radio button
was just a radio button—a control that had behavior. With WPF, you can think of a
radio button as a series of shapes joined together cooperatively (a circle, a dot to indi-
cate checked, the text, the focus rectangle, and so on). Each of these needs to know
what’s going on in some manner; which “bit” of the control gets the click that eventu-
ally generates an event can vary. If you had to subscribe to an event on the circle, the
dot, and the text in order to determine if someone had clicked the radio button, it
would get seriously tedious. This nesting can be taken arbitrarily further—the circle
for the radio button could be replaced with a 3D animation, itself made up of differ-
ent elements.

 To address these and other issues, WPF has a number of new (and very cool) event-
based capabilities. The most powerful and useful of these are routed events, the primary
topic of this chapter.

7.1 Routed events
In a classic .NET event, an interested party has to
directly subscribe to an event in order to be noti-
fied. For non-UI code, this makes a lot of sense.
After all, there’s no particular way for regular code
to know who else might care and what legitimate
rules may exist for passing events to other objects.
With UI, events have a pretty clear path—below
the top level, each control is owned by another
control. When you look at the XAML for a Window,
the natural nesting of items defines that path. In
Visual Studio 2008, you can look at the document
outline for our calculator (figure 7.1), for exam-
ple, by selecting View > Other Windows > Docu-
ment Outline from the menu.

 Notice how the Window holds the Grid which,
in turn, holds the various text controls and all the
buttons. It would be fairly natural to expect that, if
a button click wasn’t handled by the button itself,
perhaps the Grid or the Window might handle it.

 Routed events give us this capability. An event can
be defined to bubble up to its parents in the element
tree. Events can also be defined to tunnel down,
which is the exact opposite. If the Window doesn’t han-
dle the event, then the Grid is given the chance, and
then, finally the children are given a shot (figure 7.2).

Figure 7.1 The Document Outline for
the calculator shows the natural tree
of controls.
www.it-ebooks.info

http://www.it-ebooks.info/

149Routed events
 The decision of an event’s routing strategy—
whether an event should bubble up or tunnel
down—is made when the event is defined.
Click, for example, is a bubble-up event, so it
can be caught by elements higher up in the ele-
ment tree. PreviewDragEnter is a tunnel-down
event sent when a user drags something over a
Window. If the highest level doesn’t want to han-
dle it, a lower level can be asked, and so on.
There’s also one additional routing strategy:
direct. Direct events work pretty much like stan-
dard .NET events. A direct event can only be handled by subscribing to the specific
element that raises it.

 Routing events follow a similar pattern, and are implemented in a similar way, to
properties in the WPF Property System. We associate events with objects that don’t
know what they’re for. We’ll demonstrate this in the next section.

7.1.1 Bubbling events
Wouldn’t it be nice if, in our calculator, we didn’t have to specify a handler for every sin-
gle button? Well, because the Click event on a button is a bubble-up event, we can
remove all the individual Click=“OnClick” handlers from the buttons and, instead, put
a single handler on one of the higher-level containers such as the Window or the Grid:

<Grid Button.Click="OnAnyButtonClick">

We have to manually add the event handler—the Properties grid list of events will only
show us those events that are directly exposed by the Grid. If the Properties grid had
to show all the events of all the children, it would get quite messy (although a tree that
showed children and their events might not be a bad UI).

 Anyway, the Button.Click handler does exactly what you’d expect—it waits to be
told that a button has been clicked and then calls the OnAnyButtonClick method. It
gets called if any button contained within the Grid is clicked. Just as with attached
properties, we have to be more explicit in our declaration because Grid doesn’t
expose a Click event—we have to say Button.Click instead of just Click. Let’s look
at the implementation of OnAnyButtonClick (listing 7.1).

private void OnAnyButtonClick
 (object sender, RoutedEventArgs e)
{
 Button btn = e.OriginalSource as Button;
 if (btn.Tag is Operator)
 OnClickOperator(e.OriginalSource, e);
 else
 OnClickDigit(e.OriginalSource, e);
}

Listing 7.1 OnAnyButtonClick implementation

Window
(Parent)

Grid

Button (Child)

Bubble

Bubble

Tunnel

Tunnel

Figure 7.2 Events can be set up to
bubble up to their parents in the element
tree or tunnel down to their children.

Routed event
arguments

b

Event
originatorcDetermines

the button
typed
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 7 Events
As we’ve mentioned before, instead of the old, dowdy EventArgs that used to be passed,
routed events pass a RoutedEventArgs object b instead. RoutedEventArgs have several
useful properties, including the OriginalSource property c that contains the object
that originally generated the event. The original source has to be passed because the
object handling the event is no longer required to be the object generating the event. If
we were to look at the sender, we’d see that it’s the Grid rather than a button.

 Now we have a problem, though. Before, we simply hooked up a different handler
for operators than for digits, so we knew that the proper event handler would end up
being called. Now, the same handler is responsible for both types of buttons, so we
need to determine if the button is an operator or a digit.

 In this case, we’re relying on the fact that we’re storing an Operator in the Tag of
operator buttons d. This approach isn’t super elegant, but it works. For a more com-
plex implementation, we might have created a custom object and associated an
instance with each button that made it clear which was which. Our cheap implementa-
tion looks for an Operator in the Tag. If it’s an Operator, we assume the button is an
operator. Otherwise, we assume it’s a digit. We then call the appropriate handler for
each. Because we’re being cheap, we didn’t bother creating methods that just took the
button, but we could have done that too.

 Those of you who are paying close attention will have noticed that there’s one but-
ton we aren’t handling—the decimal point, which is neither a digit nor an operator.
We could put another case in the OnAnyButtonClick() handler, something like:

if (btn == buttonDecimal)
 HandleDecimal();
else if (btn.Tag is String)
 ...

But it seems odd to add in a single case here, when we could simply leave the handler
in place for the decimal button:

<Button Name="buttonDecimal" Click="OnClickDecimal">.</Button>

The OnClickDecimal() method handles the decimal click as before. The only prob-
lem is that we now have the OnAnyButtonClick() handler in place. Unlike properties,
events aren’t overridden; instead, all specified handlers are called. When the user hits
the decimal point, the OnClickDecimal() method properly handles the decimal
point, and then OnAnyButtonClick() assumes that the decimal is a digit and calls the
OnDigit() method, which will snort milk out of its nose and crash.

 Fortunately, WPF has a simple and elegant way of handling this situation. Once a
handler has handled an event, it can say so, stopping it from doing any more bub-
bling. We can modify the OnClickDecimal() handler to indicate that it has handled
the event by setting the appropriate property on the RoutedEventArgs:

private void OnClickDecimal(object sender, RoutedEventArgs e)
{
 HandleDecimal();
 e.Handled = true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

151Routed events
Setting the Handled property to true stops the event from bubbling any further. The
same property prevents additional tunneling, as you’ll see in the next section. We’re
now handling all our buttons in a much more elegant way even if, from a user’s per-
spective, nothing has changed. In the next section, we’ll do something that adds func-
tionality to our long-suffering utility.

7.1.2 Tunneling events

When you think about it, making a calculator that looks like a real, physical calculator
is a little bit silly. Although it has the advantage of instant recognizability, making the
user use a mouse to click buttons in rough mimicry of what he could do far more
quickly with his finger on a real calculator isn’t the best UI strategy—particularly if the
user has a perfectly serviceable keyboard with a numeric keypad and (presumably) a
perfectly serviceable finger.

 If we’re going to make a UI that looks like a real-world object, the least we can do is
make it possible for the user to also use his numeric keypad or other keys on his keyboard.

 To do this properly, we’ll make use of a different type of event—a tunneling (or
tunnel-down) event. Now, it may seem greedy to want yet another type of event, con-
sidering that, before WPF, we didn’t even have bubbling (or bubble-up) events; but, if
you look at how implementing this functionality works using bubble-up events, you’ll
see where the need to tunneling comes in.

 An event called KeyDown is triggered when a key on the keyboard is pressed, and a
matching KeyUp when the key is released. Conceptually, these events are familiar to
you if you’ve used Windows Forms, MFC, or the raw Windows SDK. If you’re familiar
with those older technologies, you’ll also now probably experience a slight twinge of
pain that goes by the name of focus.

 In Windows, only one widget at a time has focus, and that widget is the one that
Windows thinks you’re most likely working with—the one that, for instance, sends all
keyboard events. For example, if you click the 2 button on the calculator, you notice
that it gets a little dotted square around the button to let you know that the 2 button
has focus. When you press a keyboard button (say, 3), the keystroke is sent to the 2
button, which happily ignores it.

 This is where WPF events can shine. We don’t care what has focus, so long as it’s
somewhere on the calculator—we want to catch keys and act appropriately when
they’re hit.

 We could do exactly the same thing we did earlier with the Click event and catch it
on the Grid. In that case, if the 2 button has focus and the user hits another number,
the event first gives the 2 button a shot of handling it and then passes it up the chain.
But what would happen if the text box where we’re displaying our results has focus
(figure 7.3)?

 Using a bubble-up event, we hit the 2 button, set focus to the TextBox, and then hit
the number 3 one time. The TextBox gets the first chance at the event and handles it
normally. Then our handler catches it at the Grid and inserts it at the end. Obviously,
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 7 Events
we could have made the TextBox read-only, but
in some situations, we might want to allow direct
editing (for example, to allow the user to clear
the value).

 What we need is a chance to handle the event
before the TextBox. So, instead of waiting for an
event to bubble up from where it originated in
the hopes that we’re the first to handle it, we want
to be the first to catch it before it gets given to
some nasty control that might do something
unspeakable to it before we have our chance.

 With many input events (keyboard, mouse,
Ink, and so on), in addition to the bubble-up
event, there is also a second event that, rather
than bubbling up, tunnels down, starting with the
top of our visual tree and working down to the
control with focus. For the keyboard, these events
are called PreviewKeyDown and PreviewKeyUp. It’s
a convention for tunnel-down events to be prefixed with the word Preview and to have a
matching bubble-up event without the word Preview to allow for complete flexibility. All
the higher-level controls have a chance to preview the event and handle it if they see fit. If
it isn’t handled, then the regular bubbling event is fired and bubbles up until it is han-
dled. Table 7.1 shows how a keystroke is routed if not handled.

Table 7.1 Routing of a keyboard event

User hits the 3 key >

Window is sent the PreviewKeyDown event.

Grid is sent the PreviewKeyDown event.

Focused button is sent the PreviewKeyDown event.

Focused button is sent the KeyDown event.

Grid is sent the KeyDown event.

Window is sent the KeyDown event.

Window is sent the PreviewKeyUp event.

Grid is sent the PreviewKeyUp event.

Focused button is sent the PreviewKeyUp event.

Focused button is sent the KeyUp event.

Grid is sent the KeyUp event.

Window is sent the KeyUp event.

Figure 7.3 Using a bubble-up event when
focus is on the text box causes a bad side
effect—the text box gets the keystroke
and enters the key, and then our handler
gets it and handles the key properly.
www.it-ebooks.info

http://www.it-ebooks.info/

153Routed events
Of course, if any of the handlers mark the event as handled, it isn’t sent to any of the
remaining handlers.

NOTE Even though the tunnel-down and bubble-up events are paired, they are
two separate events. The RoutedEventArgs sent to the PreviewKeyDown
and to KeyDown are two different objects. Marking PreviewKeyDown pre-
vents KeyDown from being fired purely because of logic built into the
event handler and not because of generic behavior related to paired
events. Usually, this behavior is consistent, but it’s possible for the behav-
ior to be different for some events.

To handle the keyboard, we want to catch the PreviewKeyDown event at the Grid level:

<Grid Button.Click="OnAnyButtonClick" PreviewKeyDown="OnKeyDown">

Then we need to define the OnKeyDown handler (listing 7.2).

private void OnKeyDown(object sender, KeyEventArgs e)
{
 if((e.Key >= Key.D0) && (e.Key <= Key.D9))
 {
 int digit = (int)(e.Key - Key.D0);
 HandleDigit(digit);
 }
 else if ((e.Key >= Key.NumPad0) && (e.Key <= Key.NumPad9))
 {
 int digit = (int)(e.Key - Key.NumPad0);
 HandleDigit(digit);
 }
 else
 {
 switch (e.Key)
 {
 case Key.Add:
 ExecuteLastOperator(Operator.Plus);
 break;
 case Key.Subtract:
 ExecuteLastOperator(Operator.Minus);
 break;
 case Key.Divide:
 ExecuteLastOperator(Operator.Divide);
 break;
 case Key.Multiply:
 ExecuteLastOperator(Operator.Times);
 break;
 case Key.OemPlus:
 case Key.Enter:
 ExecuteLastOperator(Operator.Equals);
 break;
 case Key.Decimal:
 HandleDecimal();
 break;

Listing 7.2 OnKeyDown handler

Key event
argumentsb

Regular
keyboard
digitc

Numeric
keypad
digitd

Handles
other keys

e

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 7 Events
 }
 }

 e.Handled = true;
}

We aren’t going to go into a huge amount of detail about the method itself, but there
are a few things worth noting. First, we’re getting a KeyEventArgs b instead of a
RoutedEventArgs. KeyEventArgs is derived from RoutedEventArgs but adds a few
additional details (like the key that’s hit). We check to see if the key hit is a digit c or
a numeric keypad digit d based on the enum value, and then convert to a digit and
call the digit handler. It’s kind of cool that we can easily tell digits and operators apart
without worrying about scan codes, but it’s also a pain that there’s no easy way to ask:
“Is this a digit?” Then we look for other keys e—operator, decimal, and so on—and
handle them appropriately.

 Finally, we mark the event as handled f—no matter what. For our calculator,
we’re saying that we want the final word on all keystrokes and don’t want anything else
to handle keys. We could be a bit more flexible and only mark the event as handled if
we, you know, handle it, but this way we don’t allow any extraneous, unplanned key-
board behavior.

 This is a pretty low-level way of handling keystrokes. There is another mechanism
in WPF that we could use—we could associate keystrokes with Commands. Whereas
events tend to be more low level (mouse moved, key was hit), Commands are more like
the options you see on a menu or toolbar, such as Save or Print. Often with Commands,
you don’t care whether a command came from a menu, toolbar, hot-key, or some-
where else, and the command mechanism in WPF is built to handle these scenarios.
We’ll demonstrate that mechanism in chapter 10. But there are still many situations
where you’ll want to do things at the lowly event level.

 One thing that we’ve left out is making the buttons provide feedback when the
associated key is detected. This would be a nice affordance, but because the appear-
ance of the digit in the output provides some feedback, we lazed out on that.

 So far we’ve defined all our events via XAML; but, in the real world, there are often
situations where you want or need to subscribe to events via code, such as when you’re
dynamically creating controls.

7.2 Events from code
As with properties, and WPF in general, anything you can do in XAML, you can also
do in code, although the reverse isn’t always true. If you want to subscribe to a
routed event on the object that exposes it, you can use the traditional event subscrip-
tion mechanism:

button1.Click += new RoutedEventHandler(OnButton1Clicked);

This is fine if you want to directly subscribe to the object that contains the event, but it
won’t work if you want to catch the event at a higher level. Grid, for example, doesn’t
have a Click event exposed, and it wouldn’t make much sense for it to do so because

Marks event
as handled

f

www.it-ebooks.info

http://www.it-ebooks.info/

155Events from code
it isn’t a button. Nor could Grid, Window, or any of the containing classes practically
expose all the possible events of all possible children.

 Instead, you can call a method called AddHandler to indicate your interest in an
event. This method takes a RoutedEvent which is generally available as a static mem-
ber on the class that exposes the event. This parallels the Property System mechanism.

 For example, let’s add a handler to our top-level Window to catch the Click event, as
well as the beep every time a user clicks a button. You might want to do this, say, if you
really hate your users. A good place to do this would be in the Window_Loaded() han-
dler. (In your code, make sure you’ve subscribed to the Loaded event on the Window.)

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 AddHandler(Button.ClickEvent, new RoutedEventHandler(OnAnyClickOnForm));
}

Button.ClickEvent is the static RoutedEvent for the Click event that lets the system
hook into the appropriate event. The second argument is the handler for the method
we want to call, which plays a beep:

private void OnAnyClickOnForm(object sender, RoutedEventArgs e)
{
 System.Media.SystemSounds.Beep.Play();
}

Go ahead and run the calculator. As you click the buttons, if everything is working,
you should get really annoyed. Note that using the keyboard doesn’t cause the beep.
We’re explicitly dealing with the button clicks. Something odd that you may notice:
You get a beep for almost all the buttons, but not the decimal point. Strange, no?

 Actually, it isn’t that strange. We already have a handler for the decimal point, and
that handler marks the event as Handled. It needs to do this to stop the generic grid-
button handler from getting confused. Fortunately, there’s a nice, simple fix.

7.2.1 handledEventsToo

Sometimes a property or parameter has a name that pretty much tells you everything
you need to know. handledEventsToo is a flag you can specify if you want to handle
the event too, even if it has been marked as handled. The flag is a parameter on the
AddHandler method—we pass true as a third argument to have the handler be called
even if another handler has marked the event as handled:

AddHandler(Button.ClickEvent,
 new RoutedEventHandler(OnAnyClickOnForm),true);

Now, when we run the code, we get a nice, irritating beep even when the decimal
point is clicked. By the way, we have to set this flag via the AddHandler call; there’s no
way to set it via XAML.

 This code catches all buttons clicks that belong to the object and objects below on
the visual tree. Sometimes, you want to catch an event for all instances of that object.
There’s a way of doing that too.
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 7 Events
7.2.2 Class events

WPF allows you to register for an event for all instances of a particular class. For exam-
ple, you could catch the Click event for all buttons, no matter where they are. There
are several advantages to this approach versus putting a handler at the top-level con-
trol. One is that this handler is called first before all the specific handlers, so you have
the first crack at dealing with the event. Another is that it avoids cluttering up the top-
level object and lets you encapsulate the handlers more appropriately—particularly
useful with your own custom controls. Also, it’s a little bit faster because it doesn’t
have to navigate the tree.

 You have to register for class events in a static constructor. The following code reg-
isters for the ClickEvent on all buttons:

static Window1()
{
 EventManager.RegisterClassHandler(typeof(Button), Button.ClickEvent,
 new RoutedEventHandler(ClassButtonHandler));
}

Here, we specify the type of the class for which we’re registering, the specific event
and the method to call. The method (ClassButtonHandler) looks much like any
other routed event handler, except that it has to be static:

private static void ClassButtonHandler(object sender, RoutedEventArgs e)
{
 System.Media.SystemSounds.Beep.Play();
}

If you’re following along, make sure that you remove the OnAnyClickOnForm registra-
tion and handler before you run this code or clicking buttons might lead to tempo-
rary two-beep insanity.

 By the way, you could also mark the event as handled here, in which case none of
the other handlers will be called, unless they’ve set handledEventsToo to true.

7.3 Summary
When we start talking about custom controls, we’ll need to look into how events are
implemented and new events are defined. Overall, the event system is fairly nice, and
the ability to bubble-up and tunnel-down is extremely handy.

 We’ve improved the calculator by adding keyboard support and made it more
annoying by adding beeps when you click keys. But the calculator is still pretty plain
vanilla. Given all the hype about WPF, we should be able to make the calculator a lot
cooler—and that’s the subject of the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Oooh, shiny!
Unless you build games or screensavers for a living, chances are that your applica-
tions are, well, a little boring. After all, they have work to do, and it’s pretty hard to
justify spending an extra month adding flare and élan to that time-sheet entry pro-
gram. WPF is as much about those time-sheet programs as anything else—as merely
the next generation technology for building applications.

 But WPF has another side as well—it isn’t all about property systems and lay-
out composition—WPF is hot! Or at least it can be. This chapter shows how you
can add some glitter to your applications. Some things are easy, and others
tricky—but still considerably easier than they would’ve been before WPF. As you’ll
see, half the problem is figuring out how to approach a problem; the solutions
themselves tend to be relatively easy to implement once the approach has been
figured out.

This chapter covers:
■ Layered effects
■ Animation
■ Transforms
■ A poor attempt at counting the dimensions

of a page
157

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 8 Oooh, shiny!
 Some people, including many people at Microsoft, will say that Visual Studio isn’t the
appropriate tool for creating effects like the ones shown in this chapter. The new model
is to have a graphic artist use a tool like Expression Blend to do the fancy stuff while the
developers toil in an underground bunker doing all the boring “application” work.

 From our perspective, there are several problems with this model. First of all, this
is a book about using WPF with Visual Studio 2008, so going off into Expression Blend
would be quite a departure from the topic of the book. But, more practically speaking,
we don’t have a graphic designer, and we know that most development shops don’t
either. Expression Blend is an artist’s tool and isn’t remotely intuitive to developers.1

Unless you do have the resources to have a dedicated graphic designer, switching
between paradigms for development isn’t necessarily a good idea.

 Anyway, enough of our ranting. In this chapter, we’ll give our long-suffering calcu-
lator a makeover. We’ll give it some snazzy-looking glass buttons that glow when
pressed, and also use a simple transform to create a cool reflection effect (and also
talk about some other transform options). Although we’ll be covering a number of
different, unrelated technologies here, the thing that brings them together (other
than their general shininess) is that they’re all about how you can combine some sim-
ple underlying capabilities to create some impressive effects.

 There is a serious side to this chapter as well. For commercial software, having a
modern, sexy look-and-feel can have a significant impact on customer impressions
and, therefore, on sales. For non-commercial software, a good looking application,
rightly or wrongly, is less likely to be thought of as buggy, so users tend to try to solve
problems themselves before blaming the software.

 That means you can spend more time making the application shiny and ignore all
those bugs that keep deleting the user’s data.

8.1 Glass buttons
There’s something about glass that looks mod-
ern and cool. Some operating systems under-
stand that and make their buttons look like glass
from the get-go. Well, that’s fine and all, but if
everyone has glass buttons, then what makes
your application special? The lack of built-in
glass buttons in Vista is obviously there to give
programmers the opportunity to make their
own applications stand out by implementing the
effect themselves.

 So, we’ll start punching up the calculator by
giving it glass buttons (figure 8.1). In fact, a lot of
the chapter is given over to glass buttons because

1 Developers who do web development will have less trouble here because Expression Blend isn’t a million
miles away from some web-development or Flash tools.

Figure 8.1 Calculator with glass
buttons. The 6 is glowing because it
has focus.
www.it-ebooks.info

http://www.it-ebooks.info/

159Glass buttons
they’re relatively time-consuming, but we’ll also demonstrate several interesting capa-
bilities along the way.

 There are a lot of different ways to draw glassy buttons, and many of them are
likely better looking than our way, but ours has the advantage of being (relatively) sim-
ple to create, scales easily, and is easy to recolor. Users of Expression Blend with some
artistic talent can create some stunning effects. But we specifically want to create our
effects inside Visual Studio.

 So, our effects are created entirely using Visual Studio. Unfortunately, the designer
gives you almost zero help here—you pretty much have to edit XAML directly to do
this. At least XAML does have IntelliSense, so it isn’t all bad. Also, the Visual Studio
team has made the property editor work on items that you select in the XAML. For
example, if you click a Rectangle XAML element, the property window shows its prop-
erties and allows them to be changed.

 The glass-button look is based on a ControlTemplate just like we used in chapter 6.
To get started, let’s set up a basic lozenge-shaped button by creating a Control-
Template with a rounded rectangle (listing 8.1).

<Window.Resources>
 <Style TargetType="Button">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid Margin="3">
 <Rectangle Fill="Purple" RadiusX="10" RadiusY="10"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</Window.Resources>

If you’re coding along, this code goes into the calculator code from where we left
it at the end of the chapter 7 (or, if you didn’t bother with the event code, from
the end of chapter 6). Depending on how fastidious you’ve been, this XAML will
either go into the Resources section of Window1.xaml or Calculator.xaml. The
XAML itself should all be fairly familiar from chapter 6. The style b doesn’t have
a name but does have a target type of Button, so the style is automatically applied
to all buttons on the Window. The ControlTemplate can only hold a single thing;
but, because we need to have multiple things, we have the ControlTemplate hold-
ing a Grid layout c, which holds multiple children. A Grid with one cell and one
column (the default) is quite convenient for multiple items that sit on top of each
other. We’ve also taken the opportunity to set a margin to give some space around
our shape.

Listing 8.1 Lozenge-shaped button

b

c

d

Where
content goes
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 8 Oooh, shiny!
 The lozenge d is a rectangle with rounded cor-
ners. Finally, we provide a place to shove the con-
tent of the buttons—the numbers, operators, and
so on—by putting in a ContentPresenter and
telling it to center whatever content the buttons
have. Figure 8.2 shows the final result.

 We now have the desired shape. Notice how
much like glass the buttons don’t look? You prob-
ably can’t tell from the picture, but with the pur-
ple shade, it looks a bit like the buttons are cut
out of Barney’s hide. The trick to making the
buttons look glassy is in layers and transparency.
Figure 8.3 shows all the layers that make up our
particular glass effect.

Obviously, most of these layers are somewhat transparent, or you wouldn’t see much.
Listing 8.2 shows the XAML for all these layers. We’ve excluded the resource and style
tags and are just showing the layout grid and its contents.

<Grid Margin="3">
 <Rectangle x:Name="backGlow" Fill=
 "#FFEE08" RadiusX="10" RadiusY="10"/>
 <Rectangle x:Name="backDark" RadiusX="10" RadiusY="10">
 <Rectangle.Fill>
 <RadialGradientBrush GradientOrigin="0.9,0.9">
 <GradientStop Color="Black" Offset="0"/>
 <GradientStop Color="Black" Offset="0.1"/>
 <GradientStop Color="Transparent" Offset="0.8"/>
 </RadialGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle x:Name="mainButton" Fill="Purple" Opacity="0.75"
 RadiusX="10" RadiusY="10"/>
 <Rectangle x:Name="mainButtonBorder" Stroke="Purple"

Listing 8.2 All layers for glass button

Figure 8.2 The calculator with lozenge-
shaped “Barney” buttons

Background glow

Dark highlights

Main button

Button border

Content

Shine on button

Provides some glow from behind object

Adds some depth—you can sort of see images in the object

The existing button shape

Border around the edge of the button

Text/content of the button

Highlights that make the button look real

Figure 8.3 The layers that make up the glass button

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

161Glass buttons
 StrokeThickness="2" RadiusX="10" RadiusY="10"/>
 <ContentPresenter HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
 <Rectangle x:Name="buttonTopShine" Grid.ColumnSpan="3"
 RadiusX="10" RadiusY="10">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=
 "0,0" EndPoint="0,1" Opacity="0.8">
 <GradientStop Color="White" Offset="0"/>
 <GradientStop Color="Transparent" Offset="0.3"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
</Grid>

The XAML mirrors the diagram from figure 8.3. The glow is accomplished by creat-
ing a rounded rectangle the same size as the button b but with a bright yellow color
(#FFEE08). This hex color code is somewhat brighter than just Yellow, albeit harder
to read.

 The next element is a dark object c. Again, it’s another rounded rectangle, but
instead of being a solid color, it uses a radial gradient that starts out black and then
goes to transparent. By having two gradient stops that are black, we get a slightly big-
ger dark area before the gradient drops off. We also set the origin of the object at
0.9,0.9, putting it toward the lower-right corner. You can play with all these numbers to
try and get slightly different effects.

 Next is our button d. The only change is to make it somewhat translucent by setting its
Opacity to 75%. Otherwise, we wouldn’t be able to see the glow or the dark highlights
behind it. Next we have the border for the button e. We could make a border on the but-
ton directly, but the button is slightly transparent, and we want the border to be solid.
Immediately after that, we have our button content f. We put it behind the shine to try
and make it seem a little bit buried. In a moment, we’ll also change the content slightly to
make it look like it’s further behind the surface.

 Finally, we have the button shine g. This is
what makes the nice glow at the top of the but-
ton. Again, it’s a rounded rectangle with a gradi-
ent, although this time, the gradient is linear.
We set the StartPoint and EndPoint of the gra-
dient h to make it be vertical. We also set the
transparent gradient offset at 30%; in effect, we
have a white-to-clear gradient at the top 30% of
the shape.

 You can spend a lot of time tweaking all
these values, playing with different gradients, and
so on. In fact, that’s precisely how we achieved
our effect. Figure 8.4 shows the result of all
these changes.

e

f

g

h

Figure 8.4 Calculator with glassy
buttons but no effects
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 8 Oooh, shiny!
 This isn’t bad, but there are a few things missing. For one thing, the text on the
buttons is a little lackluster. Also, the buttons don’t react to anything. If you move over
the buttons or click the buttons, they just lie there looking pretty, even though the
click events do happen and the calculator does work. Without feedback, the buttons
feel wrong. We’ll rectify these issues in the next few sections.

8.1.1 Styling the text

This one is pretty easy. All we’re going to do is make the text a bit transparent and also
bold it to make it more visible. This will make it seem as though the text is within the
buttons instead of on top. We add a couple of additional setters to our style.

<Setter Property="FontWeight" Value="Bold"/>
<Setter Property="Foreground" Value="#AF000000"/>

The font weight is pretty self-explanatory. For
the foreground, we set the font color to black,
but a slightly transparent version of black. The #
format is #AARRGGBB, where AA is the alpha
value, followed by the values for red, green, and
blue. FF is fully opaque, and 00 is fully transpar-
ent. So our black is only slightly transparent. Fig-
ure 8.5 shows the results.

 The effect is subtle but, we think, nice. Now,
on to something a little flashier.

8.1.2 Adding glow when over buttons

When the user is over a button, we’d like it to
glow slightly. We could do this in a couple of
ways. The easiest would be to make use of the
built-in WPF glow effect by setting a property
when an event is triggered (listing 8.3).

<ControlTemplate.Triggers>
 <Trigger Property="Button.IsMouseOver" Value="True">
 <Setter Property="BitmapEffect">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Violet" GlowSize="10"/>
 </Setter.Value>
 </Setter>
 </Trigger>
</ControlTemplate.Triggers>

The ControlTemplate.Triggers section needs to be added within the Control-
Template. We put it right under the </Grid> element. The effect is triggered when

Listing 8.3 Adding a glow

Figure 8.5 Text on the buttons is slightly
transparent to make the text look like it’s
floating within the buttons.
www.it-ebooks.info

http://www.it-ebooks.info/

163Glass buttons
IsMouseOver is true. So, when the mouse is over
the button, the BitmapEffect property is set.
BitmapEffect allows one of a number of built-in
effects, such as drop-shadows, embossing, and—
the one we’re using—outer glow. Violet is used
as a bright version of the button’s purple color.
Figure 8.6 shows the glow effect.

 This isn’t too bad—it creates a pretty effect.
But even though there’s a glow around the but-
ton, the button itself isn’t glowing. There are
also some issues with the bitmap effects.

NOTE WARNING. Although the bitmap
effects are pretty cool, some of them
come with a cost—they aren’t effi-
cient. They cause everything around
them to suffer as well because WPF usually tries to do everything on the
graphics card, but the bitmap effects are often done in memory. As a
result, the whole area has to be rendered in memory—which is much,
much slower. The blur and drop-shadow effects are hardware rendered,
but the other effects (including glow) are generally software rendered. In
fact, on Windows XP, these other bitmap effects are always rendered in
memory. On Vista, if you have the right graphics card and the stars are
appropriately aligned, then they might be rendered on the graphics card,
but there are no guarantees. Use these effects sparingly; and, if perfor-
mance becomes an issue, drop them like a pretty, glowing hot potato.

Another way we can make a glow effect is by adding a highlight to the button when
the mouse moves over—like the highlight at the top of the button, but only visible
sometimes. We can do this easily by adding a new highlight. This highlight will be
completely transparent until the mouse moves over, at which time it will show up.
Here is yet another layer to add to our XAML. This one comes right after the top high-
light (buttonTopShine):

<Rectangle x:Name="buttonHoverGlow" Opacity="0" RadiusX="10" RadiusY="10">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Color="White" Offset="0"/>
 <GradientStop Color="White" Offset="0.1"/>
 <GradientStop Color="Transparent" Offset="0.6"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Yes, yet another rounded rectangle with a gradient. This rectangle uses another linear
gradient, but we aren’t setting the end points, so it will have the default angle. How do
you determine the values for the stop offsets? You play with the values until they look

Figure 8.6 Glow on the 6 button as the
user moves over it
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 8 Oooh, shiny!
right. Even though you can’t edit the properties in the property editor, the designer
shows the changes as they’re made in the XAML, so it’s pretty easy to experiment.
Notice that the Opacity of this rectangle is 0, meaning that it’s invisible. To make it
show up, we add another Setter to our IsMouseOver trigger. For the moment, we left
the outer glow bitmap effect as well because it’s pretty, and our calculator is simple
enough that we don’t mind spending a few cycles on it. For a real application, we’d
probably either implement the outer glow ourselves in some manner or live without it.

<ControlTemplate.Triggers>
 <Trigger Property="Button.IsMouseOver" Value="True">
 <Setter Property="BitmapEffect">
 <Setter.Value>
 <OuterGlowBitmapEffect GlowColor="Violet" GlowSize="10"/>
 </Setter.Value>
 </Setter>
 <Setter TargetName="buttonHoverGlow" Property="Opacity" Value="1"/>
 </Trigger>
</ControlTemplate.Triggers>

The Setter references our new shape by name
and sets the Opacity to 1, which is completely
opaque (although, because the object is partially
transparent, it’s still see-through in places). Fig-
ure 8.7 shows a button with the hover glow and
the bitmap outer glow.

 We think this looks pretty cool. Now, when
the user moves over the button, it’s pretty obvi-
ous. The last thing to handle is when the user
clicks the button.

8.1.3 Handling the button click

It’s pretty obvious when the user is over a but-
ton, but clicking still has no visual effect. A sim-
ple but effective approach is to change the color of the button from purple to a
lighter purple so that it looks like it’s glowing even more. We can do this easily by add-
ing another trigger for when the IsPressed property becomes true:

<Trigger Property="Button.IsPressed" Value="True" >
 <Setter TargetName="mainButton" Property="Fill" Value="Violet"/>
</Trigger>

All we are doing here is changing the color of the button from Purple to Violet,
which, we’re reliably informed, is a lighter shade of purple. While the button is
pressed, the color changes to be brighter, as you can see in figure 8.8.

 Notice that we still have our glow and the white highlight. By definition, if the but-
ton is being clicked the mouse is also over the button, so we get the combination of
effects. You could also override effects if you wanted to. For example, you could make

Figure 8.7 Now button 6 has the hover
glow showing as well as the outer glow.
www.it-ebooks.info

http://www.it-ebooks.info/

165Adding some simple animation
the outer glow bigger when the button is pressed.
The definition in the second handler would over-
ride the first, and you’d get a brighter glow.

 We’re not quite done with the glow. Impres-
sive though it is, it’s pretty static. We can make it
nicer by adding some simple animation.

8.2 Adding some simple animation
If a thing is worth doing, it’s worth overdoing.
One thing that we don’t like about the glow on
our button is the speed it starts to glow—a glow
should spread, not suddenly be there. You’d
think that light traveled at the speed of, well,
uh…we just think it would look better.

 So far, with all our event triggers, we have set
a property to a different value and relied on the handlers to automatically set it back
when we left. But we can also launch an animation when the trigger is fired.

8.2.1 Animating button glow

In yon olden days, if you wanted to animate something in your UI, you had a choice
between a number of fairly bad options: You could play a canned animation—an AVI
or an animated GIF—or you could create it yourself, using Windows timers and a lot
of playing.

 WPF has animation support built in that takes advantage of the Property System.
For example, suppose you want a background color to change from red to green over
a period of time. WPF has its own built-in timing mechanism and, because the proper-
ties are generic, can automatically set the value of the background color to all the col-
ors in between, starting with red, going through shades until it gets to green, breaking
down the duration into some number of time slices to make the change. It doesn’t
care what it’s changing; it’s setting a value in a property, but changing that property
automatically updates the UI with the change.

 Right now, when the user moves over one of our buttons, we change the opacity of
our hover glow from 0 (invisible) to 1 (fully visible). Instead of changing the value
immediately, we can start an animation that changes the value from 0 to 1 over a
period of time.

 We’ll set up the animation to start when the mouse enters the space of the but-
ton. We need a real event to trigger our animation, rather than depending on the
state of a flag (IsMouseOver). You can set animations to trigger when the state of
IsMouseOver changes, but this way you’ll see some additional options. Listing 8.4
shows the code to make the Opacity change when the mouse first moves over
the button.

Figure 8.8 Button gets brighter when
it‘s clicked.
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 8 Oooh, shiny!
<EventTrigger RoutedEvent="Button.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="buttonHoverGlow"
 Storyboard.TargetProperty="Opacity" To="1"
 Duration="0:0:0.1" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

The EventTrigger b is a trigger fired when an event takes place. It can be added to
the Triggers collection along with the existing property-based triggers. By the way,
make sure you remove the setter from the IsMouseOver trigger, or the animation will
act strangely.

 <Setter TargetName="buttonHoverGlow" Property="Opacity" Value="1"/>

(Take this line out to avoid strange problems.)
 Now we have a collection of actions to take c when the event is triggered. We want

to launch a storyboard d. Storyboards are the details of an animation. Picture the
preparation for a big Hollywood movie, where they draw out what happens first, then
next, and so on. Same idea, except that in an animation storyboard you are instruct-
ing WPF what to do. Our storyboard is simple since it only contains one thing, but it
could be arbitrarily complex (make the object visible, then change its color, then
make it spin around, and so on).

 The content of our storyboard is a DoubleAnimation e. The name doesn’t imply
that it will do everything twice—rather it indicates that the property whose value is
being animated is of type double. Opacity is a number. If we were animating a color,
we’d be using a ColorAnimation here, and so on. We tell the animation what object
we want to change (TargetName), and what property (Opacity). We also specify a
value for To, the final value we want the Opacity to be set to, as well as the Duration,
the amount of time we want the animation to take. The format is hours:minutes:sec-
onds, so we’re specifying a duration of a tenth of a second. You may wonder why we
have a To value and not a From value. We’ll explain that in a moment.

 If you go ahead and run the application now, you get half of the behavior we
want—when you move the mouse over a button, the glow appears slowly over a tenth
of a second. But when you move off the button, the glow doesn’t go away. Figure 8.9
shows the calculator after we’ve floated over a few buttons.

 If you’re coding along, you’ll see the nice fade-up of the glow effect. In the book,
of course, you can’t because we couldn’t convince the publisher to spring for four-
dimensional paper. We couldn’t even get them to go with color and had to fight to get
both black and white.

Listing 8.4 Animation when mouse enters our button

b

c d

e

www.it-ebooks.info

http://www.it-ebooks.info/

167Adding some simple animation
The way to make the glow go away is to add another animation that gets executed
when the mouse leaves the button. It’s similar to the existing one, except that it sets
the Opacity to 0 instead of 1. We also made the duration a bit longer because a fading
glow tends to last longer than a rising one:

<EventTrigger RoutedEvent="Button.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="buttonHoverGlow"
 Storyboard.TargetProperty="Opacity" To="0" Duration="0:0:0.25"/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

We could put up another picture here, but it would look exactly like figure 8.7
because of the boringly three-dimensional nature of the publishing industry. Once
again, we specify a To value but no From value. DoubleAnimation supports a From
value, so you might think that the MouseEnter animation would have values like this:

From="0" To="1"

And the MouseLeave animation the opposite:

From"1" To="0"

This would work—it would set the Opacity to 0 when it first started (which is where it
was, so no big deal) and then animate the value until equal to 1. But there’s one situa-
tion where the animation wouldn’t behave as desired. Suppose the user moves the
mouse over the button and then moves off before the animation is finished? It’s hard
to see the problem when the duration is a tenth of a second, but imagine that the ani-
mation was running over 10 seconds. Assuming the user moves over the control and
then moves off after each second, the opacity would look like this:

 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Figure 8.9 Thanks to our animation, the glow
on the buttons shows up slowly, but it doesn’t
go away. We need to add another animation
effect to make the glow go away when the
mouse is no longer over the button.
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 8 Oooh, shiny!
But if the user moves off of the button after five seconds, the opacity would look
like this:

0.1 0.2 0.3 0.4 0.5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Notice how the value suddenly jumps from 0.5 to 1.0? If we set the From value of the
leaving animation, it will set the starting value immediately when the user starts to
leave. We don’t see this when we let the first animation finish, but it’s fairly noticeable
when the animation is only half-finished. Fortunately, WPF handles this situation nicely
if we exclude the From value. If From isn’t specified, then the From value is assumed to
be the current value in the control, and everything becomes nice and smooth.

 There are lots of little things you can do with this simple animation. For example,
you could make the glow wait a moment before appearing (or disappearing). You
could make animations repeat some number of times, or indefinitely. Using the
AutoReverse property, you could make the animation automatically return the prop-
erty to its original state. The Property System is incredibly powerful, but, unfortu-
nately, we can only scratch the surface here. We will provide one more example—this
time a color change.

8.2.2 Animating a color

The buttons are reacting nicely now, but we also allow users to enter values via the key-
board. When the value changes in the text box at the top of the calculator, you can tell
because, well, the value has changed. But we can add some emphasis by having the
text in the text box change color whenever its value changes.

 Instead of creating a style, we’re going to define this behavior directly on the Text-
Box element. Generally, you’d define something like this in a style, but you should be
aware that you can do all these things directly and there are situations where that
makes sense—for instance, if the behavior is something that needs to happen even if
styles are changed.

 Listing 8.5 shows the XAML for the TextBox with all the handling for the event and
the animation.

<TextBox FontSize="18" Name="textBoxDisplay" Grid.Column="0"
 Grid.ColumnSpan="4" Grid.Row="1" VerticalContentAlignment="Center"
 HorizontalContentAlignment="Right">0
 <TextBox.Triggers>
 <EventTrigger RoutedEvent="TextBox.TextChanged">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName="textBoxDisplay"
 Storyboard.TargetProperty="Foreground.Color"
 To="Gold" Duration="0:0:0.2" AutoReverse="True"/>
 </Storyboard>
 </BeginStoryboard>

Listing 8.5 Animating text color

b

c

d

e

www.it-ebooks.info

http://www.it-ebooks.info/

169Reflections
 </EventTrigger.Actions>
 </EventTrigger>
 </TextBox.Triggers>
</TextBox>

The TextBox definition b is pretty much unchanged except for increasing the font
size to make it more obvious that it’s changing (and to make it look better). We put
the collection of Triggers c right below the TextBox definition and define a trigger
for whenever the text changes d. The ColorAnimation e looks similar to the Dou-
bleAnimation from before, except that our To value is a color instead of a number. We
also specify AutoReverse to tell the system to restore the color back to its original
value when the animation is done.

 Once you get the hang of these types of ani-
mations, they end up being fairly simple. The
trickiest thing tends to be figuring out the Target
property. For example, here we’re specifying the
Color property of the Foreground property via
the dot notation.

 Figure 8.10 shows the results of this code,
caught mid-flash.

 We’ll revisit animation in (a little) more
detail in chapter 19, but it’s a topic that could
easily make up its own book. Before we leave
the calculator, there’s one more effect we’d like
to demonstrate.

8.3 Reflections
The header for our calculator is okay, but kind
of boring. Even with knowing that having bold
and italic text mixed in a regular block of text
would’ve been quite painful without WPF, it still
isn’t that cool. What would be nice is if we could
do something that would be really hard to do
without WPF or evil hackery—for example, hav-
ing our header look like it has a reflection like
in figure 8.11.

 The purpose of this section isn’t only to dem-
onstrate some of the things that WPF makes
fairly easy but also to introduce a few new con-
cepts and ideas. Before we get to that, we first
need to make the space for our header bigger
and set up a space to hold the reflection. The
easiest way to give more space is to increase the size of the row in the Grid that holds
the title. We could add another row to the Grid to hold the reflection, but then we’d

Figure 8.10 Display caught mid-flash by
our lightning reflexes

Figure 8.11 Really cool header with
reflected text
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 8 Oooh, shiny!
have to go through and change all our controls and buttons, and there’s no easy way
to do that. (Hint, Microsoft: an insert row/column feature would be awfully nice.)
Anyway, we’ll set up the row to be one-and-a-half times bigger than all the other rows.

<Grid.RowDefinitions>
 <RowDefinition Height="1.5*" />
 <RowDefinition />
 <RowDefinition />
 ...

Now, for a place to put the reflection. Right now, the first row only contains the Text-
Block. We’ll replace that with a StackPanel and then put the TextBlock in the Stack-
Panel first, followed by a Rectangle to hold the reflection. We’ll also set a few
properties while we’re in there (listing 8.6).

<StackPanel Grid.Column="0" Grid.Row="0" Grid.ColumnSpan="4"
 VerticalAlignment="Center">
 <TextBlock Height="25" x:Name="titleBlock" Foreground="White"
 FontSize="24" HorizontalAlignment="Left">
 <Bold> WPF</Bold> <Italic>In Action</Italic> Calculator
 </TextBlock>
 <Rectangle Height="25"/>
</StackPanel>

We create a StackPanel b and set its grid positioning to be what we formerly used for
the TextBlock—Row 0, Column 0, spanning all four columns. Then we put the Text-
Block into the StackPanel c, but we have to make a few changes. First, we set the
foreground color to white and give the block a name (which we’ll use later). Next, we
set an explicit height for the TextBlock so that the text fills the control from top to
bottom. Finally, we set the horizontal alignment to left so that the TextBlock is only as
wide as the text it contains, instead of stretched all the way across the available space.

 We also add a Rectangle d to the Stack-
Panel. By the nature of the StackPanel, it exists
immediately below the TextBlock, although you
won’t currently see anything because it has no fill
or border. We also set the Height explicitly, to be
the same as the TextBlock. Figure 8.12 shows the
way the top of the calculator now looks.

 Not too bad, but now we need to put some-
thing into our empty rectangle. We’ve used solid
brushes and various gradients before to paint the
background of something. Now we’re going to
use another type of brush called a VisualBrush.2

Listing 8.6 Preparing for reflection

2 Visual is the base class for everything in WPF that can be drawn, so a VisualBrush can paint with anything
you can draw in WPF.

b

c

d

Figure 8.12 We’ve added space for the
reflection underneath the title text, but
haven’t yet put anything interesting there
to fill the space.
www.it-ebooks.info

http://www.it-ebooks.info/

171Reflections
The VisualBrush is very cool. It takes the content from whatever it’s pointing to and
uses that to paint with. So, if we point it at the TextBlock, it will use the image of the
TextBlock to paint with. We could use that for any type of painting, but we only want
to make the background of our rectangle be painted with the visual image from the
TextBlock. It’s fairly easy to do.

<Rectangle Height="25" >
 <Rectangle.Fill>
 <VisualBrush Visual="{Binding ElementName=titleBlock}"
 Stretch="None" AlignmentX="Left" />
 </Rectangle.Fill>
</Rectangle>

We specify the fill in the usual way, except we use a VisualBrush. The Visual property
points to the source of the visual to display. This could literally come from anywhere,
but we’re binding it to the titleBlock element (our TextBlock). We’ll discuss this
notation in more detail in the chapter on binding (chapter 11), but for now, just rec-
ognize that this says, “Get your content from the thing called titleBlock.” We also set
the following properties on the VisualBrush:

■ Stretch="None"—Tells the VisualBrush to keep the content its original size.
By default, a VisualBrush stretches its content to fill the available space. A
VisualBrush can also be set to tile its contents—which would also be bad.

■ AlignmentX="Left"—Tells the VisualBrush to start painting the content at the
left edge instead of centering the content.

It might be a good idea to play with some of the
different values for Stretch and Alignment to
see what happens if they aren’t set this way. With
the current settings, we get something that looks
like figure 8.13.

 Well, so far, so good, but as you may have
noticed, our reflection is the wrong way up, in
that it’s currently the right way up. We need to
flip it over. We can do this with a transform.
Transforms are various operations—including
scaling, moving, skewing, and rotating—that can
be applied to virtually any element in WPF. You can also do fancy higher-math matrix
transforms, although for the unprepared they’re apt to make your brain explode.
We’ll talk about all the different transforms available in the next section, but for the
moment, we’re going to use only one: the scale transform. Scaling is usually used to
make things bigger or smaller; but, by using a negative value, it can also be used to flip
something over, such as our text.

<Rectangle Height="25" >
 <Rectangle.Fill>
 <VisualBrush Visual="{Binding ElementName=titleBlock}"

Figure 8.13 We’re now populating our
rectangle with the contents of the
TextBlock.
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 8 Oooh, shiny!
 Stretch="None" AlignmentX="Left" >
 <VisualBrush.Transform>
 <ScaleTransform ScaleX="1" ScaleY="-1.1" CenterY="12.5"/>
 </VisualBrush.Transform>
 </VisualBrush>
 </Rectangle.Fill>
</Rectangle>

We’re setting the transform property on the brush, but we could also set a similar
property on other elements as well. For example, we could’ve set the Layout-
Transform property of the rectangle to get the same effect. The transform takes the
following properties to control its behavior:

■ ScaleX="1"— Stretches, shrinks, or flips the content along the X-axis. In our
case, we don't want change the scale at all. 1 means multiply everything by 1,
doing nothing.

■ ScaleY="-1.1"— -Stretches, shrinks, or flips content along the Y-axis. Here, we
want to flip the content over. To do that, we would choose -1. But we also want
our reflection to be a little taller than the original image, so we use -1.1. Read
this as multiplying everything by -1.1 in the Y direction.

■ CenterY="12.5"—Controls where we want the flip to be centered. Because we
know our image is 25 pixels high, we’ve selected the exact middle. If we’d cho-
sen a different center, the image would still be flipped but would be moved up
or down based on the center. Again, experiment with this to see what it does.

What does this look like? Something very much
like figure 8.14.

 The last step for the reflection effect is to
make the reflection look like it’s disappearing
toward the bottom. We can do this by making it
fade toward transparent. But there’s no particu-
lar element that we can make fade (we’re
already using a brush with our visual content).
Instead, we can use something called an opacity
mask. This property specifies how an element
(such as our rectangle) sets its visibility. You provide a brush to use for the mask.
Where the brush is solid, the element is solid; where the brush is transparent, the ele-
ment is transparent. If we use a solid brush with a partially transparent color, the
entire element will be partially transparent. If we use a gradient brush (as we intend to
do) the transparency of the element will vary with the gradient.

<Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Offset="0" Color="Black"></GradientStop>
 <GradientStop Offset="0.2" Color="#7F000000"></GradientStop>
 <GradientStop Offset="1" Color="Transparent"></GradientStop>
 </LinearGradientBrush>
</Rectangle.OpacityMask>

Figure 8.14 Our upside-down text is now
the right way up!
www.it-ebooks.info

http://www.it-ebooks.info/

173Transforms
We put this below the close of the Rectangle.
Fill element. Note that we’re specifying our start
and end points the same way we did for the top
shine on the buttons so that our gradient goes
top to bottom. Then we go from full solid to
slightly transparent to fully transparent. Again,
we played with the values until they looked
pleasing. The specific color we use isn’t impor-
tant; only the transparency value of the color is
used by the mask. Now we finally have our fin-
ished reflection (figure 8.15).

 That should pretty much do it, although, honestly, we could go on tweaking the
visuals forever. For example, we could use a Skew transform as well to make the reflec-
tion go off at a slight angle, and then animate the skew so that the image floats gently
back and forth, and then…well, you get the point. Transforms are extremely power-
ful, and WPF has built-in support for all the standard ones.

8.4 Transforms
We used the Scale transform to flip over our text. WPF supports a number of different
transforms, and they can be used against most elements. Table 8.1 shows the effects of
the different transforms supported by WPF. In each case, the gray A shows the original
position of the transform.

 There are two additional transforms: TransformGroup, which allows for multiple
transforms to be combined, and MatrixTransform, which lets you do more advanced

Table 8.1 WPF 2D Transforms

Effect Transform

ScaleTransform—Changes the size of the object. In this case, we‘ve shrunk
the object by 60% in each direction.

TranslateTransform—Moves the object. We’ve moved the object over by 20
pixels and down by 20 pixels.

RotateTransform—Rotates the object. The A has been rotated here by 110
degrees.

SkewTransform—Skews the object by a specified angle. This sort of allows for
a 3D-like effect.

Figure 8.15 Our finished reflection
www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 8 Oooh, shiny!
transforms if you’re a math wonk. The property you set to control the transform dif-
fers depending on what type of element you’re transforming and how and when you
want the transform to be done. With the VisualBrush on the calculator, the Brush has
a single Transform property. On things like controls, there are multiple properties.
When we rotated the A in the example, we used a LayoutTransform.

<Label VerticalAlignm.nt="Center"
 HorizontalAlignment="Center" FontSize="100" Foreground="Blue">
 <Label.Content>A</Label.Content>
 <Label.LayoutTransform>
 <RotateTransform Angle="110"/>
 </Label.LayoutTransform>
</Label>

LayoutTransforms are applied when the layout is calculated. The A was rotated, and
then, because the label was centered horizontally and vertically, the rotated A was cen-
tered. The LayoutTransform was fine for all our examples except for the Translate
transform because the transform moved the A, and then the layout engine proceeded
to re-center it for us. Instead, for the Translate, we used a RenderTransform:

<Label VerticalAlignment="Center"
 HorizontalAlignment="Center" FontSize="100" Foreground="Blue">
 <Label.Content>A</Label.Content>
 <Label.RenderTransform>
 <TranslateTransform X="20" Y="20"/>
 </Label.RenderTransform>
</Label>

RenderTransforms are applied when the object is rendered, independently of layout, so
the transform wasn’t hidden by the centering options. Being able to provide render-
ing options is handy if you want effects that ignore the layout—for example, if you
wanted a button to rotate when the user clicked it, you wouldn’t want it to be con-
strained to the location where layout puts the button, and you wouldn’t want the lay-
out engine to constantly rearrange all the other elements around the rotating button.

 There’s another set of transforms that, although similar, are used when working
with 3D elements. We’ll see those in chapter 15.

8.5 Summary
This chapter was a lot of fun to write—in the real world, you often don’t get the
chance to play with cool effects while deadlines are looming. We did, though, have
several serious reasons for covering what we did here.

 First, we wanted to provide a taste of the power of WPF. None of the things we did
here was particularly hard, yet the results were far beyond what could have easily been
accomplished without WPF. We also wanted to introduce, albeit briefly, a bunch of
concepts: complex styles, event triggers, animation, visual brushes, transforms, and so
on. This chapter was obviously not a detailed examination of any of these topics, but it
should at least give you an idea of where to start looking when you have a particular
goal in mind.
www.it-ebooks.info

http://www.it-ebooks.info/

175Summary
 Second, we wanted to talk about some of the dangers of WPF. Aside from the obvi-
ous—that you can get sucked into spending all your time trying to get an effect right
instead of doing real work—there are two more dangers. One is procedural; there are
a lot of different ways to get to a particular result in WPF, but it’s also easy to end up
going a long way down the wrong road. Make sure that you make frequent copies of
your code while you’re experimenting because you may find that bits of approaches
will often be helpful. Also, if you get stuck, spend some time thinking about what
you’re trying to accomplish. WPF will help you if you go with the flow and get in your
way continuously if you fight it. If something seems really hard, you may be going the
wrong way.

 The other danger of WPF we were trying to demonstrate is that it lends itself to
cuteness. Just because you can do some sort of effect doesn’t mean it’s necessarily a
good idea. For example, feedback on our buttons definitely made sense. Having a
header that takes up a massive amount of space in our utility purely because it looks
cool? Well, it was a small application, so not too big a deal, but in a full-screen applica-
tion full of data—not so much.

 Make sure you think about the balance between cool, cute, and useful. When in
doubt, go with useful!

 This is the last chapter focusing on the calculator. We will miss the thing. Although
the last thing most people need in their life is another calculator implementation, it
was a great sample for the topics we covered throughout this section: layouts,
resources, styles, and events. It also lent itself well to being turned into an Xmas tree
for this chapter. In fact, Microsoft ships a calculator sample to demonstrate some simi-
lar concepts, and we can honestly say that ours is a lot better looking.

 All the concepts that we’ve covered through Part 2 (except, perhaps, the shiny
bits) are the necessary building blocks for almost any application. In Part 3, we’ll move
into the areas related to more real-world application development, such as commands
and data binding.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Application development

Sad to say, most of the day-to-day work we all do is less about zip-lining across
the Grand Canyon, and more about hooking up real-world applications. The
nature of those applications differs from place to place, but there are a lot of
common threads. In part 3, we’ll talk about the WPF capabilities designed to
help build these applications, and also show a number of examples. Although we
obviously couldn’t have very deep implementations on any of the examples,
we’ve tried to make them as real-worldish as we could, and, where possible, at
least vaguely useful.

 The first chapter in part 3, chapter 9 —“Laying out a more complex applica-
tion”—goes through the up-front work of designing a WPF application. It also
introduces our first new application, a Desktop Wiki for note taking.

 This application appears in several chapters, including chapter 10 —“Com-
mands,” which explains the unified approach to commands (like File >Print)
within WPF—and chapter 11—“Data binding with WPF.” Data Binding is such a
large topic, that it spills over into chapter 12—“Advanced data templates and
binding,” which covers more advanced binding capabilities and controlling the dis-
play of data. Both of these chapters introduce several other sample applications.

 The last three chapters are a little more low level. Chapter 13—“Custom con-
trols”—shows how to build reusable controls and components. Chapter 14 —
“Drawing”—and chapter 15—Drawing in 3D”—demonstrate how to add drawing
to your applications, using a graphing application as an example.
www.it-ebooks.info

http://www.it-ebooks.info/

178 PART 3 Application development
The Wiki in Action application is used to demonstrate more advanced application
concepts such as command routing and binding.

The graphing application demonstrates several low-level drawing mechanisms including
drawing in 3D.
www.it-ebooks.info

http://www.it-ebooks.info/

Laying out a more
complex application
It’s no secret that many applications are based on design concepts users are already
familiar with. Some of this approach is purely practical—users can’t be expected
(and typically don’t want) to learn significantly different ways of interacting with
every program they use. Changing the fundamental building blocks of an applica-
tion is a sure way to create some disenchantment with your users, and WPF gives a
dangerous1 level of ability to do that.

 WPF certainly provides the ability to easily create applications with completely
novel presentations, and we’re sure that’s going to happen. Depending on what
you’re creating, that may be something you want to look into; but there are only a
few companies with the market penetration to successfully drive entirely new

This chapter covers:
■ Planning a WPF application
■ Layering multiple layouts
■ Setting up menus and toolbars
■ The reason fast-food restaurants always give

you 5 million napkins

1 Maybe dangerous is a little strong, but then, if you’re writing a UI for a nuclear power plant or tanker nav-
igation system, maybe it isn’t.
179

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 9 Laying out a more complex application
design approaches, and when they do, they tend to spread like wildfire. We can’t
count how many times we’ve heard an executive or manager ask for a Money-like
interface; and within weeks of the first Ribbon, every component vendor in the market
had a Ribbon-like UI to offer. By the way, Microsoft has finally added a Ribbon control
to Visual Studio 2008. It didn’t ship with SP1, but, as of late 2008, it should be available
as a download.

 In this chapter, we’re going to walk you through designing and laying out a more
complex application—a Desktop Wiki2 application that allows for entering and
searching information. The application will have a number of the “classic” applica-
tion items—menus, icons, and toolbars—but with a less traditional wiki back-end.
This will give us the opportunity to explore the process involved with creating applica-
tions in WPF.

 Particularly when designing a layout-manager-based UI, we find it useful to sketch
some ideas on a whiteboard, notebook, napkin, or whatever else happens to be within
marking distance. Even with XAMLPad, we aren’t going to be able to accomplish
quickly some of what we can accomplish in the sketch (figure 9.1). It’s surprising how
many people skip this step.

 You may notice a certain resemblance to a popular email client and just about
every RSS newsreader ever made. This isn’t accidental. Because of this common
design, we won’t need to explain the expected behavior too much, and users should
be able to start using the application right away.

2 If you haven’t heard of wikis, you should check out Wikipedia (http://www.wikipedia.com) for more informa-
tion and an example of a large, successful wiki.

Figure 9.1 We worked hard to create a (very) rough sketch of our proposed UI.
www.it-ebooks.info

http://www.wikipedia.com
http://www.it-ebooks.info/

181Creating the Desktop Wiki Project
9.1 Creating the Desktop Wiki Project
Now that we have our really elegant design (presumably approved by marketing and
product management), we can get started building it. In previous chapters, we’ve
bounced back and forth between the visual designer and the XAML view. Although
we’ll still do that elsewhere in the book, for this chapter, we’re going to do everything
that we can in the visual designer to demonstrate that it is both possible and practical.

 If you want to follow along, start by creating a new .NET Framework 3.5 WPF Appli-
cation Project called Desktop Wiki. This brings you to an empty Window called Window1
with an empty Grid of one column by one row.

 Pardon the rant, but it seems rather obvious that we don’t want something called
Window1 and probably never will. Nonetheless, Visual Studio has seen fit to create the
files Window1.xaml, Window1.xaml.cs, and has named our class Window1, and proba-
bly registered it with the local sheriff’s office. (For some reason, we’re required to reg-
ister at the sheriff’s office whenever we visit a new city—not sure why.) The first order
of business is to simply delete it.3 Now that we have a clean slate, right-click on the
Desktop Wiki solution in the Solution Explorer and select Add/Window (figure 9.2).

 Now Visual Studio does the right thing and asks what to call this thing. Ours is
called WikiWindow.xaml. Then, select Add. Now there’s only one thing to fix: Like the
Main method defines the entry point in a traditional C/C++/C# program, the Startup-
Uri defines the entry point of a WPF application, so we need to open up App.xaml and
find the StartupUri attribute and change it to our new Window (listing 9.1).

3 If you have a nice refactoring tool such as CodeRush!, ReSharper, or C# Refactory, you might go ahead and
just rename it, but our approach is to delete the thing and create the new window that we want.

Figure 9.2 To add a new Window, right-
click on the Desktop Wiki solution and
choose add a new Window to the project.
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 9 Laying out a more complex application
<Application x:Class="Desktop_Wiki.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="WikiWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

This is the one thing that we must do in XAML. After
this, everything else will be via the visual designer—
we promise. The next step is to set some reasonable
properties for the new window. First, right-click the
titlebar of the WikiWindow and select the Properties
menu item. Find the Title property and change it to
Wiki In Action (figure 9.3).

 You should keep one important point in mind
when using the Properties window. Once you edit a
property, it sets that property explicitly in the XAML.
For example, while watching the XAML view, check
the item Topmost and then uncheck it. When you
check Topmost, it adds an attribute of Topmost set
to True; when you uncheck it, it changes the value to
False, but left the attribute in.

 Once a property is touched, that property will
always be explicitly set on the object. Imagine how
frustrating this would be if you had a visual tree of
hundreds of WPF elements, all inheriting the FontFamily as specified by the Window,
but someone inadvertently touched the FontFamily property on an element halfway
through and, in a well meaning way, changed it back to Tahoma. If at some later
point, you changed the FontFamily to a different font at the root level, you might pull
your hair out trying to figure out why some controls picked up the new face and some
didn’t. If you do accidentally set a property away from its default, make sure you clear
it out of the XAML to avoid such frustrations.

 Now that we have a basic application, it’s time to put some stuff into it.

9.2 Nesting layouts
If you’re new to layout managers, you might be wondering which layout manager to
choose. Except for very simple applications, you’ll generally use many layout manag-
ers and combine them in ways that meet your design and behavior goals. This isn’t a
far cry from the previous approaches; and, for web developers, it’s standard operat-
ing procedure. 4

Listing 9.1 App.xaml

Changes StartupUri=”Window1.xaml”
to StartupUri=”WikiWindow.xaml”

Figure 9.3 Use the Properties
editor to change the Title
attribute of the WikiWindow class.
www.it-ebooks.info

http://www.it-ebooks.info/

183Nesting layouts
In our application, the layouts are nested, mirroring the structure of the XAML, so
we’ll have to start from the outside and work toward the center. Because we’re going
with a more traditional look, the first thing we need to do is structure the menus
and toolbars.

9.2.1 Preparing the layout for menus and toolbars

If you don’t have the toolbox open, select View/Toolbox to bring it up. If you don’t
see a set of controls, click in the middle of the WikiWindow and they should appear.

 The first thing we need is a DockPanel. The DockPanel will control the position
of the menu bar, status bar, and hold the main layout panel of our application.
Expand the Common section of the Toolbox to get a DockPanel and drag it to the
WikiWindow (figure 9.4).

 Adding the DockPanel doesn’t behave quite as we’d like. As you can see in figure 9.5,
the designer positions a small rectangle in the middle of the Grid element, using mar-
gins to control position and size.

 This is fairly easy to correct; go to the XAML view and delete all the attributes of the
DockPanel or set the margin to 0 in the property editor.

<DockPanel Margin="130,107,112,110" Name="dockPanel1" />

4 Well, that isn’t strictly true. Windows Live Messenger hides all the menus behind a single icon on the titlebar
area; pressing the Alt key exposes the menu in IE 7, and there are many context menus throughout the appli-
cations. But the writing is on the wall.

Menus, icons, and toolbars
In some circles, menus are falling out of favor. One big member of that circle appears
to be Microsoft. Looking at Office 2007, MSN Messenger, or Internet Explorer 7, one
thing you won’t see are a lot of menus.4 Menus do have a few drawbacks. Like any
UI element, menus can end up holding more information than they can reasonably
support. When this happens, some users may consider the menus overwhelming and
may find it difficult to understand them. Menus certainly can be abused; submenus
can be particularly difficult to use, especially with every increasing level of depth.
Poorly organized menu structures can irritate users and prevent them from finding the
functions they need. At the same time, some people really love menus. Some use
menus as a discovery tool to explore what’s possible in an application. Menus also
offer a known geography of features that users can memorize, allowing them to be-
come comfortable and efficient in an application. Menus that present options in a
clear and consistent manner can be a great benefit as well.

From our standpoint, menus have proven to be useful, and a not insignificant num-
ber of users are fairly upset with the trend away from menus, so we think covering
both approaches is appropriate. We’ll leave it to you to decide how far you want to
go with it.
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 9 Laying out a more complex application
Now that we have a DockPanel on top of a Grid, this is a good time to note that Visual
Studio 2008 has a number of ways to select the various elements in your WPF classes.
Typically, you click the element you want and interact with it. As you start nesting
controls, that isn’t as easy as it sounds. Clicking the middle of the form selects the
DockPanel, and clicking the window edge selects the Window, but how do you select
the Grid?

 Aside from selecting the XAML, there are three primary methods: A context-menu
click on any element above the desired element, the Document Outline window, and
the location bar. Figure 9.6 shows all three methods at once.

 Not all of these are new ways of selecting UI elements in the designer, but these
methods become far more important with the deeply nested hierarchies in WPF. It
isn’t uncommon to have five or ten elements on top of each other in a deeply com-
posed design.

9.2.2 Adding menubars, statusbars, and toolbars…

Now that the DockPanel is set up, we’re ready to add the menus and toolbars. In the
Toolbox, open the section titled Controls and find the Menu item. Drag the Menu
over to the newly created DockPanel. Note that the menu now has an attached prop-
erty from the Dock called DockPanel.Dock. Set this property to Top. Now we need
some menu items. Click the … button next to Items in the property editor. This will
bring up an interactive dialog where you can add and edit the commands. Go ahead
and just add the top-level menu items for File, Edit, Format, Tools and Help. For the
moment, we’re just going to set the Header Text—the text to display for the menu—
and the Name for each MenuItem. Figure 9.7 shows the interactive menu editor.

Figure 9.4 The
WPF DockPanel
can be found in
the Common
Containers section
of the ToolBox.

Figure 9.5 By default, the DockPanel is
positioned uselessly in the main window.
www.it-ebooks.info

http://www.it-ebooks.info/

185Nesting layouts
Context Menu Document Outline

Location Bar

Figure 9.6 There are three methods to select obscured elements.

Figure 9.7 The interactive Menu Item editor. We’re just setting the Name and the Header text for
the moment.
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 9 Laying out a more complex application
Next up is the toolbar. ToolBars are a little special—we need a ToolBarTray to host it.
Drag on a ToolBarTray, and set it to dock to the top. Unfortunately, the ToolBar editor
is a little persnickety. Ideally, you could just drag a ToolBar onto the tray and go from
there, but that doesn’t work. Instead, you either have to manually add the ToolBar via
XAML or click the … button next to ToolBars in the ToolBarTray’s properties and hit
Add. This approach doesn’t work for adding Buttons to the ToolBar—The Add button
in the Items collection editor isn’t enabled (probably because you can put arbitrary
controls onto a ToolBar). In this case, you have to drop down to XAML and manually
insert Button elements inside of the ToolBar. Once you’ve done this, though, you can
hit the … button next to Items in the Properties grid and edit the properties on the
added buttons. Go ahead and add buttons for New, Print, Spell Check, and Options.

 The StatusBar is going to be fun when we
get to data binding. Drag a StatusBar over and
dock it to the bottom of the window. We’re not
going to put anything on the StatusBar yet, so
leave it blank.

 Finally, add a Grid as the last element of the
DockPanel. By default, the last child of a Dock-
Panel fills it, (You may have noticed there’s no
Dock property of Fill.) Because we don’t want
this behavior to accidentally change on us, go
to the properties of the DockPanel and explic-
itly set LastChildFill to True. If all is well, you
should have something that looks a lot like fig-
ure 9.8.

 With that, all our basic controls are set up
and we’re ready to lay out some more interest-
ing parts.

9.3 Nested layouts
In our sketch, we have a navigation bar extended from the top to the bottom on the
left (the label navigation area), and a horizontal split in the view on the right (a classic
summary on top, details on bottom view). In HTML, you might think about creating
some table data and table row tags with colspan and rowspan attributes, and in HTML
that would probably be a good idea.5

 Back in chapter 5, we discussed how the Grid panel pushes the responsibility of
defining the spanning into the child elements. In the calculator, we went ahead
and spanned the elements, but that makes our design a bit brittle. What happens
when you add a row or a column? Do you really want to track how and where each

5 Well, actually, it would be a horrible idea if you were using a table to control the layout. You should use styled
divs and spans to control your layout, but XAML is layout markup, not document markup, so using the Grid
is perfectly ok.

Figure 9.8 This is what we have so far for
Wiki In Action; a menu, a toolbar, and a
status bar, all waiting for action.
www.it-ebooks.info

http://www.it-ebooks.info/

187Nested layouts
item should span? We’re going to avoid that
whole mess by creating a two-cell grid split ver-
tically to divide our labels from our summary-
detail view, and we’ll use another grid split
vertically to divide the summary items from
the detail items.

9.3.1 Adding the first Grid

To create the columns, select the Grid to bring
up the designer adornments. A light blue mar-
gin appears above the Grid specifying the cur-
rent width of the single column in the Grid, as
shown in figure 9.9.

 We need three columns in all: one column
each for the navigation side and summary/
detail, and one column for the splitter. You can
quickly create columns by putting the pointer
in the light blue margin area above the grid
and clicking. For now, let’s divide the area
evenly; we’ll fine tune the columns in a
minute. Do this twice to have three columns as
shown in figure 9.10.

 The next thing we need from the Grid is
splitter behavior. In the pre-WPF days, the splitter was
a complicated thing, and if you added things in just
the wrong way, you lost your splitter content in the
designer. Because WPF is focused around layout man-
agers, splitter behavior is little more than tweaking a
panel to respond to sizing changes at runtime. Also,
whereas splitters were designed around docking
behavior prior to WPF, splitters are an aspect of the
Grid layout.

 To get our first splitter, go to the Toolbox and
under the section Controls select the GridSplitter
and drop it in the middle column. Unfortunately, the
default properties of our splitter aren’t very useful, so
we’ll need to tweak them. First, erase the Margin and
Name properties. The Margin is unnecessary, and we
don’t need a name for this splitter. Next, because this is
a vertical splitter, set the HorizontalAlignment to Cen-
ter and the VerticalAlignment to Stretch. Finally, set
the GridSplitter’s Width to 5 (figure 9.11).

Figure 9.10 Here’s the Wiki In
Action window after multiple columns
are created.

Figure 9.9 We zoomed the Wiki In Action
window 200% to make it easier to see the
Grid margin adornments.

Figure 9.11 The GridSplitter
properties that need changing are
in the Layout section of the
Properties Grid.
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 9 Laying out a more complex application
 That should do it for the GridSplitter itself. Now we need to tune our columns.
For our left-side label column, specify a width of 1* and a MinWidth of 50 and, for the
right-side column, a Width of 2* and, again, a MinWidth of 50. As you may remember
from chapter 5, this notation results in a nice one-third to two-thirds split between the
navigation area and data area. This also ensures that we can’t lose either column by
shrinking it down too far.

 This brings us to the column hosting the GridSplitter. Because we’ve already
explicitly set the GridSplitter’s width, all we need to do with this column is set its
width to Auto, and the column will simply size to whatever the splitter control is set to.
That should tighten up the middle column to the GridSplitter; we’ve now finished a
basic Explorer-style navigation window, as shown in figure 9.12.

 If you’re following along (and haven’t already), now would be a good time to
run the project and see the splitter in action, as it were. The first thing you may
notice is that the behavior is much more sensible than the splitter from the Win-
Forms days, and as you move the splitter and resize the window, the relative size
behavior is followed.

9.3.2 Adding the second Grid
We still need our summary-detail view, so go back to the toolbox and get another
Grid, but this time drag it into the right column of the interface. Like we just did,
erase the Margin and Name properties and create three rows this time. The only differ-
ence from what we did previously is that we click along the left edge of the Grid to cre-
ate the rows (figure 9.13).

 We need another splitter control, too, so drag a GridSplitter to the middle row and
erase the Margin and Name, but set the properties slightly inverted as compared with the
vertical splitter. For a horizontal splitter, set HorizontalAlignment to Stretch and set
VerticalAlignment to Center; rather than setting the Width, set the Height to 5.

Figure 9.12 The Wiki In Action window
now has the finished Explorer-style split
using the Grid and GridSplitter
elements.

Figure 9.13 We need three rows in the data
area of the application on the nested Grid
element.
www.it-ebooks.info

http://www.it-ebooks.info/

189Nested layouts
Finally, we need to adjust the rows as we did for the columns; but, instead of a one-
third to two-thirds split, we’ll do an even half and half. Again, as before with an ever so
slight twist: Set the Height to 1* and the MinHeight to 50 for both the top and bottom
rows and the middle row’s Height to Auto. That’s all we need for the Grids—now to
fill in a little detail for the navigation.

9.3.3 Using a StackPanel and Expander as navigation aids

The last thing we need to do is create the Favorites and All Labels groups for our nav-
igation area—a look-and-feel common to the Windows environment. You can see vari-
ations of this in the Task Pane of folders, the Outlook bar, and the Microsoft Money
sidebar. Two panels provide the behavior we need for this: The first is the StackPanel.
The StackPanel arranges elements next to or above each other, automatically grow-
ing or shrinking as necessary. The second is the Expander. As you’ve seen previously,
the Expander shrinks and grows depending on whether you want to see what’s in it or
not. In the web environment, this ability isn’t very exciting—the flow layout model of
web pages lends itself well to reformatting automatically; but, for rich client develop-
ment, this is a powerful combination, and something that used to require a fair bit
more effort than it does now.

 Back to the Toolbox, and we’re
almost done! The StackPanel is
with the rest under Common, so
drag one over to the left column and
delete the Margin and Name proper-
ties (again…) and that’s all we need
to do. Next drag a couple of Expand-
ers over to the newly created Stack-
Panel. We want a clean slate, so
delete all the attributes Visual Studio
created, and you should have a set of
stacked Expanders. To see them
work, we can put some fake data in,
so open properties, set the Header
for the first to Favorites and the sec-
ond to All Labels, and set IsEx-
panded to True for both Expanders.

 Finally, so we can see the Expand-
ers work, let’s add a ListBox to each
Expander and some text to each ListBox. If all goes well when you run the applica-
tion, you should have something a lot like figure 9.14, with working expanders and
splitters that’s ready to hook up to some business logic.

 At this point, we’ve combined a DockPanel, StackPanel, and multiple Grids and
Expanders to create a resolution-independent UI. It personally took us less than

Figure 9.14 Voila! Here’s the final Wiki In Action
application window.
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 9 Laying out a more complex application
20 minutes, and we even had to write about it while we were doing it! Now it’s time to
think about making this UI do something…

9.4 Summary
Except for truly trivial applications or, perhaps, simple dialogs within other applica-
tions, you’ll invariably build your UI by combining multiple different layouts together.
The power of this technique is unmistakable, but we can’t stress enough how impor-
tant preplanning is here. If you don’t think through your basic design up front, you’ll
end up doing a lot of tedious cutting, pasting, and correcting.

 So far, we haven’t hooked up any actual functionality to our presentation, and
that’s exactly how it should be. In the next chapter, we’ll explore WPF’s built-in com-
mand routing to add both custom and system commands for our wiki, and show how
to hook them to our presentation layer. The benefits of keeping presentation separate
from business logic will become even more apparent later, but unlike the calculator,
we aren’t going to leak any business logic back into this application’s UI.
www.it-ebooks.info

http://www.it-ebooks.info/

Commands
In the last chapter, we created a simple application shell, but it doesn’t do anything.
In this chapter, we’ll look at how WPF approaches the interaction between the pre-
sentation and business logic, and implement some custom business logic as well.
Unlike the calculator, the implementation of the wiki in this chapter will show how
WPF applications should be hooked together—no cheating by putting business logic
in the UI.

 Fortunately, WPF provides a lot of tools to accomplish a properly separated busi-
ness logic layer—although, like Windows Forms, you can easily slide into allowing
business logic in the UI. Even though commands are nothing new to Windows
development, WPF marks the official introduction of commands into the .NET
world (and about time too). This isn’t to say we can’t all create our own command

This chapter covers:
■ Approaches to command handling
■ The command pattern
■ System commands
■ Custom commands
■ Us gesturing at our application and our

application gesturing back
191

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 10 Commands
models in .NET; but, without a common model to work around, this can lead to some
pretty horrible-looking code when trying to integrate many third-party components,
all taking similar but slightly varying approaches to the problem.

10.1 A brief history of commands
To some people, the WPF command model will appear a bit heavy and complex, so
we’ll go through a brief bit of history about commands and demonstrate why a small
investment in the command pattern does pay off over time. The commanding system
of WPF is based on both the Command pattern and the MFC command model.

10.1.1 Windows Forms and simple event handlers

In Windows Forms, a common (and unfortunate) approach for connecting the UI to trig-
ger behavior in the application was through event handlers. This has two bad side effects:

■ Business logic leaked into the presentation tier.
■ The UI was required to drive the application, making automation and service-

orientation an expensive retrofit.

Imagine adding a print command to an existing Windows Forms application.1 You
might have some code that starts out innocently enough:

private void printButton_Click(object sender, EventArgs e)
{
 document.Print();
}

Invariably the code isn’t going to remain this simple. Over time, you’ll add security
checks, make sure the document is valid, and run it through some process. It’s proba-
bly going to end up looking a lot more like this code:

private void printButton_Click(object sender, EventArgs e)
{
 if (document != null)
 {
 if (!SecurityManager.IsTrue(PrintingPermission))
 throw new SecurityException(Resources.PrintingNotPermitted);

 PrintTemplate template = new PrintingTemplate(document);
 template.Print();
 }
 else
 {
 MessageBox.Show(Resources.NoDocumentToPrint);
 }
}

At this point, we have a problem. Actually, we have two problems. The first is that our
business logic now lives in the UI. Some form class somewhere is deciding whether or

1 Or imagine adding an implementation to a WPF calculator…
www.it-ebooks.info

http://www.it-ebooks.info/

193A brief history of commands
not it’s OK to print a document. If we want to print from somewhere besides the print
button, perhaps from a menu, we’re likely to either miss this security check, or we’ll
end up copying and pasting code–a serious offense.

 The second problem is that, at some point, someone is going to want to use auto-
mation to tell the application to print, or a customer is going to want to use an API to
control the application, and the only API we now have is the UI. We also have a fair
number of other minor problems cropping up, such as, if we throw a security excep-
tion and want to retry printing after the user enters credentials, we lose the original
requests, and the users must set everything up again as they want. If this were a differ-
ent type of command, such as cut or paste, we wouldn’t have any way to undo that
operation either.

 Again, via RoutedEvents, WPF has full support for this model, as you’ve seen in the
calculator and other examples. In fact, if you do use events for handling commands,
the ability to bubble up and tunnel down makes it superior to the WinForms model
because you can at least move your handlers up a few levels. But it isn’t recommended
for any but the most trivial of applications.

10.1.2 Son of MFC

If you have any experience with MFC, you’ll undoubtedly notice that the WPF com-
mand model is heavily influenced by it. Given that this is a book on WPF, we won’t go
into a tremendous amount of detail on the MFC implementation. If you’re familiar
with MFC, consider this a refresher or, if not, an interesting bit of trivia.

 Command routing in MFC was based around the idea of the Message Map. At a low
level, everything in Windows is driven by messages. If the user clicks the mouse, a
WM_LBUTTONDOWN is sent to the application, followed by a WM_LBUTTONUP. (The L is for
the left button). If part of the screen needs to be repainted, a WM_PAINT message is
sent. And, if a command needs to be executed, such as something from a classic Win-
dows menu, a WM_COMMAND message is sent.

 In MFC, the trick was to make sure that the appropriate code got called when one
of these messages was sent. This was generally done by putting a Message Map in the
file, with entries for each message and command to be handled.

BEGIN_MESSAGE_MAP(CMyClass, CFrameWnd)
ON_LBUTTONDOWN()
ON_WMPAINT()
ON_COMMAND(IDC_DoSomething, OnDoSomething)
ON_COMMAND(IDC_DoSomethingElse, OnDoSomethingElse)
END_MESSAGE_MAP()

All the capitalized terms in a message map are C++ macros—at compile time this block
got turned into a hunk of code that generated a static array in the class that mapped
messages to a bit of code that mapped to a pointer to each function. The IDC_Do-
Something values were defined as particular numbers. If you wanted to add a com-
mand, you would create a new value defined in a constants file, and implement the
appropriate method in your class. When the command was executed (for example,
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 10 Commands
the user clicked a toolbar button), MFC would convert it into a message, and Windows
would route it to the appropriate application window, which would then each check
its static arrays of commands and call the appropriate methods.

 The best that could be said for this approach is that it (mostly) worked and was
fairly fast. The real fun came when you wanted to handle enabling and disabling com-
mands—for example, if you wanted to gray out toolbar buttons. During idle process-
ing (maybe 10 to 20 times a second), a WM_UPDATE_COMMAND message would be sent for
every single command on the toolbars asking if they should be enabled or grayed out.
So, 10 to 20 times a second (or more) each of these methods would be called saying,
“Should I gray this one out now? How about now? How about now?” Invariably, some
junior coders would end up putting in a database query in one of these handlers, and
suck the entire bandwidth for the Eastern Seaboard whenever their applications ran.

 Unlike MFC, every element and control in WPF can have commands, and many
already understand existing system commands. Also, although the process is similar,
the implementation varies greatly (and for the better) by using events and objects
instead of macros and message maps. If you know the MFC commanding system, you
may get a sense of déjà-vu as we go through WPF commands.

10.2 The WPF approach
Now that we’ve talked about some of the historical influences on WPF commands,
we’ll talk about how WPF handles them. Like many modern command models, the
WPF model has been influenced by the classic Gang-of-Four (GoF) Command pattern,
so let’s start there.

10.2.1 The Command pattern

The WPF approach to commands is definitely related to the traditional Command pat-
tern, but there are some issues with the classic pattern, and the WPF design takes this
into account.

 In a nutshell, the idea behind the Command pattern is to encapsulate a method call
and its parameters so that you can treat the method call itself as an object in the system.

 This leads to interesting possibilities such as easily implemented undo, script auto-
mation, and macro capabilities all for free (free as in “after you’ve spent the time
implementing the pattern itself”).

 Things that cause commands to be executed—menus, toolbars, and so on—have a
reference to a Command object. The Command object knows how to do whatever it’s sup-
posed to do via the Execute() method. If undo is supported, then it also keeps track of
how to reverse what it does. The menus and toolbars only have to know to call the Exe-
cute() method. Anything else that needs to execute commands—ribbons, macro-lan-
guages, and so on—gets a reference to the appropriate Command and to call Execute().

 There are some issues with this pattern. For one thing, it can be fiddly trying to
create a distinct Command class for every different command. Also, strangely enough, it
can cause encapsulation issues—if you have a series of related commands that rely on
www.it-ebooks.info

http://www.it-ebooks.info/

195The WPF approach
a particular infrastructure, you don’t want to break up the execution code across a
whole bunch of helper objects.

 The WPF infrastructure does allow for a classic implementation of the Command
pattern, but that isn’t the default way WPF implements command handling. Nonethe-
less, WPF does make use of certain facets of the pattern. It’s important to keep in mind
that the patterns are more guidelines than implementation advice, so the precise
implementations will vary.

10.2.2 WPF commands

WPF command handling has elements from all three of the previous models. Follow-
ing the Command pattern, there is an object that represents each command. Instead
of there being a different type of class for each command, the commands are static
instances of one or two preexisting classes. Like MFC, there are command generators
and subscribers; but, instead of requiring a painful mapping function, the tie-ins are
more like the WinForms event model.

 Think about our earlier printing example. In Windows Forms, we called docu-
ment.Print() from the OnClick handler of a button control to print our document.
In WPF, we still catch the command in an event, but the command is encapsulated, so
we can send it on to someone else to handle or handle it right there if appropriate.

 In WPF, if you want a print command, you’ll really have an object called PrintCom-
mand, although it will probably only be an instance of a class called RoutedCommand —
you don’t have to create a whole new custom class. The things that can cause a com-
mand to be executed—menus, toolbars, and so on, referred to as the command
sources —are associated with those commands.

 In the places where you want to catch the command, you create a command bind-
ing. This is usually a bit of XAML (a little bit like the MFC Message Map) that says
which command you care about and what method in your code to call when the com-
mand is received.

 Multiple different classes can have command bindings to the same command. For
some commands this is silly—you only want to implement one About box handler, for
example. For others, like cut and paste, you want the current control (or something
acting on its behalf) to be the one that handles the command. The class that handles
the command is called the command target. You can specify a particular command target
to always be used. If you don’t, then the control that currently has focus is the target. If
the current control doesn’t handle the command, then it bubbles up until something
finally does handle it (for example, Control, Layout, Window, Application). Figure 10.1
shows the different pieces that come together to handle a command.

 Before we dive deeper into the routing model and custom commands, we’ll warm
up by hooking in some existing system commands. This will get our application doing
something very quickly. After that, we’ll take a look at the WPF command implementa-
tion (so that we can start adding our own custom commands), going into depth on
the specific types of commands in WPF and how to register for and handle commands.
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 10 Commands
10.3 Using the built-in system commands
WPF ships with many (156 at last count) commands built in, and many of the various
elements of WPF already respond appropriately to them; in many cases, wiring com-
mands is sinfully trivial. The commands are divided into five categories and are
defined in the classes described in table 10.1.

Each of these classes has a number of static properties—one for each of the com-
mands. If we were using the classic Commands pattern, this would be a threading
issue, but because the classes are only being used for routing, this isn’t a big deal. If
you do decide to implement your own command strategy, the statics are something to
keep in mind.

Table 10.1 Categories of built-in Commands

Command class Description

ApplicationCommands The category contains various commands you might expect in any sort of
productivity application, as well as the high-level general purpose com-
mands such as activating a context menu, closing the document or appli-
cation, and so on.

NavigationCommands Commands in this class primarily support the Navigation model that we’ll
be looking at later. For the most part, if you aren’t using the WPF Naviga-
tion model, you won’t be interested in these.

EditingCommands These are what they sound like: commands around editing behavior. Inter-
estingly, some commands you’d expect to find here, like cut, copy, and
paste, are in ApplicationCommands.

ComponentCommands Probably the least obvious, this set of commands relates to interaction
with UI components—movement through the component and to other
components.

MediaCommands If you plan on integrating audio, video, or that sort of thing,
MediaCommands will come in useful.

Command Binding
(Window1.xaml)

Command Source Command Target
(Window1.xaml.cs)

Print Command Print Command

Figure 10.1 Handling a command in WPF. A command source (the menu) is associated with the
appropriate Command object (PrintCommand). When a source goes to execute the command, the
routing mechanism determines the appropriate target. The command binding in that target (in this case,
our main Window) specifies how the command should be handled. Here it indicates that an appropriate
method in the command target should be called.
www.it-ebooks.info

http://www.it-ebooks.info/

197Using the built-in system commands
10.3.1 ApplicationCommands

Like many types in .NET, most of the commands are extremely well named; it’s pretty
obvious what they’re intended for without further explanation. ApplicationCommmands
is the set of commands that you’d likely encounter in an application. Here’s what is in
ApplicationCommands:

■ New, Close, Save, SaveAs
■ Cut, Copy, Paste, Delete, SelectAll
■ Print, CancelPrint, PrintPreview
■ Properties
■ Find, Replace
■ ContextMenu
■ NotACommand2

We haven’t yet created any data storage for our wiki pages, but if we drop a RichText-
Box below the splitter on the right, we can hook up some of the application com-
mands right away. Because they’ll do something, we’re going to hook up the cut, copy,
and paste commands right now.
ADDING CUT, COPY, PASTE, AND DELETE SUPPORT

The menu items are already created, but they don’t do anything yet. If you’re follow-
ing along, open your WikiWindow.xaml, and we’ll add this functionality remarkably
quickly with the following steps:

1 Right-click the Edit menu (in the application, not the Visual Studio edit menu).
2 Select Properties.
3 Click the ellipses next to the Items property.
4 Add the commands and set the Command property for each item as described in

table 10.2.

Once you’re finished, your XAML should look like this:

<MenuItem Header="_Edit">
 <MenuItem Header="Cut" Command="ApplicationCommands.Cut" />
 <MenuItem Header="Copy" Command="ApplicationCommands.Copy" />
 <MenuItem Header="Paste" Command="ApplicationCommands.Paste" />

2 Yes, there’s really a NotACommand command…

Table 10.2 Command assignments for MenuItems

MenuItem Command property

Cut ApplicationCommands.Cut

Copy ApplicationCommands.Copy

Paste ApplicationCommands.Paste
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 10 Commands
 <MenuItem Header="Delete" Command="ApplicationCommands.Delete" />
</MenuItem>

Go ahead and run the application and type some things into the text box. Not only do
cut, copy, and paste all work now, you may also notice that they enable and disable cor-
rectly depending on whether or not the RichTextBox control is active and whether or
not it has a selection. Now tell your boss you need a couple more days to implement
the feature and catch up on all those movies you’ve been missing.

 By the way, we’re fully qualifying the names here (ApplicationCommands.Cut and
so forth); but, for the built-in commands, it’s also legal to just say Cut because the Com-
mand property has a converter that knows the built-in commands and can automati-
cally find them by their shortened name. (The WPF developers were careful to avoid
any dupes in the built-in commands.) When you implement your own commands, you
do have to fully qualify them.

10.3.2 NavigationCommands

If you were writing a web browser, you’d probably find what you need in Navigation-
Commands. These commands include BrowseForward, BrowseBack, Favorites, His-
tory, and so on. We aren’t going to be using any of these commands in this particular
application, but we could use them, for instance, in the navigation application we
build in later chapters.

10.3.3 EditingCommands
Think about creating a word processor and you’ve got a good idea of what lives in the
EditingCommands class. There are many commands in this class, including commands
such as SelectUp, SelectRight, ToggleCenter, MoveUpLine, MoveToDocumentStart,
MoveToDocumentEnd, and the list goes on. These commands are a lot more interesting;
if you think about our RichTextBox, it’s a lot like a miniature word processor. It stands
to reason that it probably implements many of these commands (and it does), so we
can hook these up quickly and turn our RichTextBox into a respectable control.

 We don’t need to add a lot right now, but it would be good if we had alignment
(left, right, justify, and center), text effects (bold, underline, italic)—and that’s proba-
bly enough. This time we’ll hook the commands up to the toolbar we created above
the RichTextBox.

 As we mentioned earlier, you can’t add buttons through the toolbar’s properties,
but you can put buttons in place in XAML (put in seven), then open the Collection
Editor (figure 10.2) for the toolbar by clicking the ellipsis button of the Items prop-
erty. Set the properties for each button to represent the commands we want to have
on our RichTextBox (table 10.3).

 On each Button, we set the Command to the respective command in the Editing-
Commands class. After the properties have been set, the XAML looks like this:

<ToolBar>
 <Button Command="EditingCommands.AlignLeft">Left</Button>
 <Button Command="EditingCommands.AlignCenter">Center</Button>
www.it-ebooks.info

http://www.it-ebooks.info/

199Using the built-in system commands
 <Button Command="EditingCommands.AlignRight">Right</Button>
 <Button Command="EditingCommands.AlignJustify">Justify</Button>
 <Button Command="EditingCommands.ToggleBold">Bold</Button>
 <Button Command="EditingCommands.ToggleItalic">Italic</Button>
 <Button Command="EditingCommands.ToggleUnderline">Underline</Button>
</ToolBar>

That’s it! Because the RichTextBox element already understands all these com-
mands, it will enable them when it has focus, and our text editor has some nice
functionality very quickly. In some ways, the real advantage we get from using these
built-in commands is the direct support built directly into the RichTextBox. If we
had a simple text control that didn’t implement any of these commands, it would still
take a great deal of effort to implement everything EditingCommands already has to

Table 10.3 Command assignments for toolbar above the RichTextBox

MenuItem Command property

Left EditingCommands.AlignLeft

Center EditingCommands.AlignCenter

Right EditingCommands.AlignRight

Justify EditingCommands.AlignJustify

Bold EditingCommands.ToggleBold

Underline EditingCommands.ToggleUnderline

Italic EditingCommands.ToggleItalic

Figure 10.2 The Collection Editor displays a list of elements you can add to other framework elements
as well as a property editor.
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 10 Commands
offer.3 This counts as another advantage of the command mechanism—the fact that
a large number of .NET controls are already command aware, and third-party con-
trols are also likely to support the default commands out of the box.

10.3.4 Component and media commands

There are two more built-in command classes, but we’re not going to hook them up
right now. The first is the ComponentCommands class. These commands are all centered
around scrolling, moving, and selecting objects in the UI. Certainly interesting, but
the keyboard bindings are already hooked up for most of the controls, so we can tab
through, page up, page down, and so on. The majority of the ComponentCommands are
bound through the keyboard or accessibility devices, not directly exposed by menus
or buttons.

 The last class is the MediaCommands class. The commands in this class are focused
on controlling volume, play, pause, turning on and off the microphone, and the sort
of commands you’d find a lot of use for in a media player or slide presentation appli-
cation. If we added the ability to embed video clips in our wiki pages, we could find a
good use for this set of commands.

 So far, we’ve put some commands on a menu and allowed the built-in controls to
handle them. In the next section, we’ll demonstrate how to handle one of the com-
mands ourselves.

10.4 Handling commands
It’s a simple example, but suppose we want to hook up the About box on our applica-
tion. There’s no ApplicationCommands.About, but there is an ApplicationCommands.
Help, which we can use. Let’s add an About… menu item on the Help menu in the
wiki, setting its command to ApplicationCommands.Help.

10.4.1 Handling a built-in command

To handle the command, we have to create a binding to that command. In a UI class
(anything derived from UIElement or ContentElement), it’s easy to do this via XAML.
For example, if we want to handle the command in our main window, we could add
the binding shown in listing 10.1.

<Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Help"
 Executed="HelpExecuted"/>
</Window.CommandBindings>

The Command is the command we want to handle, and the Executed attribute points to
the handler in our code, which looks like this:

3 Feel free to implement the other 50 or so EditingCommands if you so desire.

Listing 10.1 Adding a command binding to our main window
www.it-ebooks.info

http://www.it-ebooks.info/

201Handling commands
private void HelpExecuted(object sender, ExecutedRoutedEventArgs e)
{
 MessageBox.Show("Welcome to WikiInAction");
}

The ExecutedRoutedEventArgs has
some useful things in it, such as the
Command object and the Source of the
event. It also has a Handled property
that, like a RoutedEvent, is used to
make sure that no one else handles the
command after us. Figure 10.3 shows
the menu and the command in action.

 Nothing to it. We could have used an event to get a similar effect because we’re
handling the command in the same class where we have our menu defined, but com-
mands are a lot more flexible, as you saw with the RichTextBox, and as you will in our
future examples.

 You may have noticed that the menu added an F1 shortcut to our About… menu
item. It did this because the built-in Help command has an associated keyboard gesture
that it automatically hooks up. If you hit F1 in the application, you’ll also see the
About box. We’ll talk more about gestures and keyboard shortcuts in a moment. But
we don’t really want F1 to bring up the About box—that’s an artifact of using the built-
in Help command. It would be better if we created our own.

10.4.2 Creating a custom command
Creating a command and referencing it is easy. At the moment, we’re going to imple-
ment the command right in our Window class, although that’s a bad thing to do from a
code separation standpoint. Don’t worry, though—we’ll show how to do this more
cleanly in the next section.

 To create the command, we have to create our own instance of a RoutedCommand
object. Like the built-in commands, we’ll make this static. We put the following line
into the Window1 class:

public static RoutedCommand About = new RoutedCommand();

We’re creating a public static variable here—really this should be a property exposing
a backing field, but this will work fine for now. The next thing is to put our command
on the menu; but, before we can do that, we have to worry about namespaces—our
Window doesn’t know about our code yet. By now, you should know the drill—add the
local namespace into the main Window tag:

xmlns:local="clr-namespace:WikiInAction"

Now we can use our command on the menu:

<MenuItem Header="About..." Command="local:WikiWindow.About" />

Other than the namespace reference, this looks like any other command reference,
although the fact that we’re referencing it from WikiWindow, instead of a commands

Figure 10.3 Our About menu option in action.
Notice the F1 shortcut appearing on the menu.
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 10 Commands
class of some sort, is pretty ugly. To bind to the command, we do almost what we did
before, although the notation for using our own commands isn’t quite as simple:

<CommandBinding Command="{x:Static local:WikiWindow.About}"
 Executed="AboutExecuted"/>

We use the special notation to bind to a static member of our class. This notation
would also work for all the built-in commands, but they have special handling which
allows that to be skipped. We also rename our handler AboutExecuted, instead of
HelpExecuted, to be more accurate.

 When you run, you should get almost exactly the same behavior as before. The one
difference is that we no longer have the F1 shortcut showing up on our menu. If you
do want to add a shortcut key, that’s also pretty straightforward.

10.4.3 Shortcuts and gestures

One of the properties of a RoutedCommand is a collection of InputGestures. Gesture is a
generic term for something that the user can do that elicits a response from the com-
puter.4 Examples might be the user hitting Alt-F5 or clicking the right mouse button
while holding down the Ctrl key. We wouldn’t be surprised if, in the future, gestures
also include special mouse moves—for example, if you swoop the mouse to the left,
you get a control palette, and if you swoosh to the right, it goes away.

 We’ve worked on computers that have gesture software installed that does this sort
of thing. It’s definitely an acquired taste. A better example, that doesn’t rely on super-
human mouse control, is Apple’s iPhone that uses various motions to do things like
zoom and scroll. Many laptops now have similar (although slightly less cool and
trendy) touchpad options.

 Anyway, the much simpler gesture we’re interested in is the user hitting a key—
say, F3—to execute our command. All we have to do is to add the appropriate gesture
to our static Command, and the easiest place to do that is in a static constructor:

static WikiWindow()
{
 About.InputGestures.Add(new KeyGesture(Key.F3));
}

The KeyGesture class also lets us specify modifier keys (Shift, Alt, Ctrl). In fact, if we
want to use a key like the letter A, we have to specify modifiers—you aren’t allowed to
hook up regular input keys as gestures.

 If you run the application again, you’ll notice that F3 now
appears next to the About menu item (figure 10.4) and that hit-
ting F3 brings up the About box.

 This is a much superior way of handling shortcuts. Because
the shortcut is associated with the command instead of the
menu item, we could add the command to multiple places and

4 We were going to put a joke in here, but that hardly seems necessary.

Figure 10.4 Our new
F3 shortcut shows up
next to the menu item.
www.it-ebooks.info

http://www.it-ebooks.info/

203Command routing
not have to worry about it executing multiple times. In fact, we don’t have to have the
command on a menu (or other selector control) at all—even if we remove About
from the menu, F3 will still bring it up.

 Because InputGestures is a collection, there can also be more than one for a par-
ticular command. For example, if we also want Ctrl-right-mouse-double-click to bring
up the About box (why not?), we write this:

About.InputGestures.Add(new KeyGesture(Key.F3));
About.InputGestures.Add(new
 MouseGesture(MouseAction.RightDoubleClick,ModifierKeys.Control));

Now you can either hit F3 or double-click the right mouse button while holding down
the Ctrl key to show the About box. Of course, this type of operation would only
appeal to Emacs users. Let’s reign things in a bit and talk about how commands work
under the hood and how they should be handled in a real application.

10.5 Command routing
Arguably, the most interesting and powerful concept of the WPF Command imple-
mentation is the command routing process. Command routing enables at least two
important things:

■ The UI element that triggers a process is completely separated from the objects
that perform the actions. This enables much more loosely coupled designs.

■ Elements and classes can enlist in command processing without explicitly know-
ing how or whom to pass commands on to. UI controls can respond to com-
mands visually to give additional cues to the user about what happens. For
example, a window could flash after a snapshot command is executed to indicate
to the user that a capture took place. Used sparingly, these kinds of cues can
greatly enhance understanding of what the application is doing for the user.

Microsoft has obviously spent a lot of time thinking through their approach to com-
mand handling, and it’s incredibly flexible. Although, as always, we have some com-
plaints (which we’ll discuss later), overall we’re pretty happy with the approach. The
next section goes into the implementation in some detail.

 The following three major types represent commands in WPF:

■ ICommand
■ RoutedCommand
■ RoutedUICommand

ICommand is the base interface for all commands. Technically, ICommand is generic
enough that it can be used regardless of whether you’re using WPF or not, and is the
interface you’d extend to support your own non-UI related back-end commanding sys-
tems (for example, if you wanted your web services to use commands as well). The
ICommand interface follows the traditional GoF pattern closely with an Execute
method, a CanExecute method, and also a CanExecuteChanged event.
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 10 Commands
 Notably absent is the Undo method. A bit disappointing… To have commands with-
out building in Undo is like getting one of those RC cars that only turns in reverse. Any-
how, this almost immediately calls for an IUndoableCommand interface, or an Undo
command. We suppose it wouldn’t be any fun if Microsoft solved everything for us.
Interestingly, some of the controls support undo internally, but don’t expose any stan-
dard mechanism for dealing with it.

 The RoutedCommand class could be called the WPF implementation of ICommand. It’s
called RoutedCommand because this class is designed to support the WPF framework
RoutedEvents, as well as the tunneling and bubbling of commands throughout the
visual tree. Anything that has CommandBindings (which happens to be every WPF class
derived from UIElement and ContentElement) is a potential direct or indirect com-
mand receiver of these types of commands. Most of the time, when we’re talking
about commands, we’re referring to RoutedCommands.

 RoutedUICommand is derived from RoutedCommand, and adds a Text property that’s
useful for presenting localized text for display in a UI. Every command defined in WPF
has its Text property set, so the built-in commands even come with their own labels. Obvi-
ously from a localization standpoint, this is a real time-saver and just kinda nice to have.

 As far as structure goes, WPF commands aren’t quite singletons. By definition, a
singleton prevents more than a single instance of a particular class from being instan-
tiated. WPF commands are all instances of RoutedUICommand,5 and we can create
instances of those classes willy-nilly.

 The approach for ensuring a single Copy command, for example, is to create a
well-known static instance library class (ApplicationCommands, in this case) and put
a property on it for a Copy command instance. As long as everyone agrees to call
ApplicationCommands.Copy, they’ll all be sure to be dealing with the same command.
Likewise, with our About command, all code that wants to use it must refer to the
instance in the WikiWindow class. This isn’t ideal (in fact, it’s downright ugly). In our
next example, we’ll provide a much cleaner implementation of a custom command.

10.6 A cleaner custom command implementation
We can go pretty far with the built-in set of commands, but if we wanted, for some
crazy reason, to add some custom functionality to our application, we’d like a clean
way to do it. One thing that we’d like to do, for example, is provide a way of turning
the currently selected text in our wiki into a new link. We checked—there’s no built-in
command for that.

10.6.1 Implementing a RoutedUICommand

In a traditional wiki, a link is created by Pascal-casing a word. For example, if you were
to write RoutedCommand, it would become a link automatically because .NET classes are
Pascal-cased by the same convention. It’s also useful (and arguably more friendly) to

5 They are often instances of SecureUICommand, which is a RoutedUICommand with some Permission stuff sprin-
kled on, but that’s a secret type we don’t get to use!
www.it-ebooks.info

http://www.it-ebooks.info/

205A cleaner custom command implementation
select some text and turn it into a document link, and we want to create a command
to do that.

 Because we’re a rich client with a Rich (with a capital R) text box, we may also want
to handle our wiki conventions beyond simple character conventions. We need the
following characteristics from this command:

■ The command should be unavailable when no text is highlighted.
■ The command text should display a portion of the text to turn into a link when

text is selected.
■ Only text selected in the RichTextBox for editing pages should make the com-

mand available.

CREATING A STATIC CLASS TO HOLD THE COMMAND

The first step is to give our command a new home. Instead of shoving the command
into our main window as we did before, we’ll follow the pattern established by WPF
and create a static command class, with our command as a member. To do this, we add
a new class to the WikiInAction project, call it WikiCommands, and add the code from
listing 10.2.

using System.Windows.Input;

namespace WikiInAction
{
 public static class WikiCommands
 {
 private static RoutedUICommand createLinkFromSelection;

 static WikiCommands()
 {
 createLinkFromSelection = new RoutedUICommand(
 "Create Link from Selection",
 "CreateLinkFromSelection",
 typeof(WikiCommands));
 }

 public static RoutedUICommand CreateLinkFromSelection
 {
 get { return createLinkFromSelection; }
 }
 }
}

We have a static RoutedUICommand b to hold the single instance of the command. Unlike
our previous example, this is a private member variable, and we’re exposing the com-
mand as a property d. Because we’re using a property, we could lazy-initialize the
command—only create it when it’s needed—but we’d have to make sure the code was
thread-safe and so on; because we don’t have many commands, we’re keeping it simple.

 The initialization of our command is being done in the static constructor for our
class c. Although not strictly required, we’re passing several arguments to the

Listing 10.2 Our custom commands class

Our
command

b

Initializes the
command

c

Command
property

d

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 10 Commands
constructor—default descriptive text for the command, a name for the command,
and the class that’s registering the class.

 Now that we’ve got our custom command, we need to figure out how to hook it up
and make it work with a control that’s never heard nuthin’ ‘bout no wikis.

10.6.2 Adding a CommandBinding
Every UIElement and ContentElement in WPF (which is essentially everything you can
see and much of what you can’t) can receive a command. Obviously, our RichTextBox
knows commands, but it doesn’t know our command. We’re going to graft our com-
mand on after the fact. Now we could be lazy and graft it onto the main Window ele-
ment—after all, the command will bubble up and eventually reach the RichTextBox.
But that’s pretty inefficient because we know that it’s the only control that will be
involved in this command.
PUTTING THE COMMAND ON THE MENU

If you’re following along and didn’t add the namespace earlier, go ahead and add the
following now:

xmlns:local="clr-namespace:WikiInAction"

Otherwise, you won't be able to reference our class. As we saw before, adding it to the
menu is trivial. Add a menu item as follows:

<MenuItem Header="Make Link"
 Command="local:WikiCommands.CreateLinkFromSelection" />

This is the same notation we used before, but it’s much clearer because we’re refer-
encing WikiCommands instead of the generic WikiWindow. Note that ours is added on
the Edit menu.
BINDING THE COMMAND TO A CONTROL

The command is available, but nobody cares about it (sniff). Until someone cares, it
will never be available (because nobody will ever respond to the CanExecute method).
This is the part where we bind it up to the RichTextBox (listing 10.3).

<RichTextBox>
 <RichTextBox.CommandBindings>
 <CommandBinding
 Command="{x:Static local:WikiCommands.CreateLinkFromSelection}"
 Executed="CreateLinkFromSelectionExecuted"
 CanExecute="CreateLinkFromSelectionCanExecute"/>
 </RichTextBox.CommandBindings>
</RichTextBox>

We bind the command to the RichTextBox b instead of to the Window because we
only want the command to be available for the RichTextBox. Again, we have to use the
Static notation to reference our command c. We have a handler for when the com-
mand is Executed d, but we also have a handler for the CanExecute property e. This
handler is how we’ll enable and disable the command.

Listing 10.3 Binding the command to the RichTextBox

b
Binds to our

command
c

d

e

www.it-ebooks.info

http://www.it-ebooks.info/

207A cleaner custom command implementation
ENABLING AND DISABLING THE COMMAND

There are two factors involved in enabling and disabling a command. The first is the
current target. Because we didn’t explicitly specify a target on the menu, the target is
the currently focused control. Because no other control than the RichTextBox has a
handler for CreateLinkFromSelection, the command is disabled until the RichText-
Box gets focus. At that time, WPF calls our registered CanExecute method to see if the
command should be enabled. Note that, if we hadn’t specified a CanExecute method,
the presence of an Executed method would be enough to convince WPF that the com-
mand should be available.

 The second factor is the behavior of the CanExecute method. We said that we only
want this command available if something is selected in the RichTextBox. Because we
can’t easily change the RichTextBox code, we define the handlers in our custom win-
dow class. This is a simple bit of code to ensure our command isn’t called when noth-
ing can be done about it (listing 10.4).

public void CreateLinkFromSelectionCanExecute(object sender,
 CanExecuteRoutedEventArgs args)
{
 RichTextBox wikiEditor = sender as RichTextBox;
 args.CanExecute = !wikiEditor.Selection.IsEmpty;
 args.ContinueRouting = false;
 args.Handled = true;
}

The control that the command is bound to is passed to our handler as the sender b.
Because we bound to the RichTextBox, that’s what is passed. The main thing we have
to do in this method is set the CanExecute flag on the passed event arguments c. True
means the command should be allowed, and we’re setting the value based on the con-
venient method on the RichTextBox that tells us if any text is selected.

 We next set a flag to indicate that there’s no point continuing to route the request
to any other handlers because we’ve handled it here d. Doing this isn’t really
required in this case, but might if there were a higher-level handler. Finally, we set the
Handled flag to true e. This is inherited from RoutedEventArgs, and it isn’t strictly
necessary to set it, except for some very weird scenarios.

 Figure 10.5 shows the Create Link from
Edit menu item enabled and disabled as we
change focus to and from the RichTextBox.

 One thing you might not expect is that,
when the selection in the RichTextBox
changes, the menu item also automatically
enables and disables—yet, we aren’t doing
anything to make this happen! The first horrible thought might be that, like MFC,
WPF is continuously calling our handler. Don’t worry, though—nothing so extreme is
going in.

Listing 10.4 CanExecute handler

Bound
controlbc

de

Figure 10.5 If the RichTextBox doesn’t have
focus, the Make Link option is grayed. Once
it has focus, it must also have a selection to
be enabled.
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 10 Commands
 Instead, many of the built-in controls automatically notify the command handling
framework when things that commonly effect commands change. These include the
selection in controls, which is why our selection is updating the menu. Commands are
also updated when focus changes or after any command has finished being executed.

 This automatic behavior is a pretty good balance between convenience and perfor-
mance. Unlike MFC, you aren’t constantly having all your handlers called, but you also
don’t have to worry about manually enabling/disabling items as you did in WinForms.
If a situation arises where you want to manually force commands to be refreshed, you
can call the following:

CommandManager.InvalidateRequerySuggested();

Which is, in fact, what all those other controls are doing. This method forces all the
commands to be reevaluated.

10.7 Summary
Command handling was a major missing piece from Windows Forms, and we’re happy
that WPF hasn’t let it slide. Using the command model buys a lot of flexibility in appli-
cations, so going that little extra bit further is worth it over allowing your business
logic to start filling up event handlers. Our one big grumble is that, to use the built-in
handling, we have to be in a class derived from UIElement, and we’d like to be able to
implement commands in a completely standalone way. But this isn’t too big a price
to pay, considering that commands do primarily originate from the UI.

 The Make Link handling we’ve shown here is a good example of the command
infrastructure, even though we haven’t made it do anything. Although we probably
won’t get as far as making the page links work, the version of the wiki application on
our website has this implemented if you’d like to see it.

 Our wiki application is shaping up pretty well, but this rather nagging problem has
come up. We haven’t hooked up any data to this application, and we have no behavioral
model to act upon. Even if we type some gibberish and highlight it, there’s nothing we
can do with it.6 We’re going to have to add some sort of back-end to this application.

 Fortunately, that happens to be the topic of the next chapter. We aren’t going to
spend a lot of time making anything fancy; the point of the chapter will be to under-
stand data binding, not how to write a wiki storage engine, but we’re going to end up
with one at the end.

6 We suppose we could put up a message box. If that would help, go ahead and put a MessageBox.Show in the
handler. Feel better?
www.it-ebooks.info

http://www.it-ebooks.info/

Data binding with WPF
Now that we have a user interface and a way to drive it, we need to put some data
behind it—otherwise, it isn’t likely to be terribly useful. Before we get to modifying
the Desktop Wiki application, we first want to explore data binding more generally;
the easiest way is to build some small utilities that will make use of data binding.
Once we’ve done that we’ll return to the wiki and give it some data. The first exam-
ple we’ll show is a process monitor (figure 11.1). It binds to the list of processes cur-
rently running on the system. This first version of the process monitor is relatively
ugly, but we’ll return to it in chapter 12, where we’ll make it really ugly.

 Next, we’ll demonstrate binding to XML with our Common Vulnerabilities and
Exposures (CVE) viewer. As you’ll see, binding to XML in WPF is extremely easy. Bind-
ing to ADO.NET data, such as from a DataTable, will be demonstrated using a simple
Bookmark application. We’ll also talk a bit about binding to data returned from a

This chapter covers:
■ Binding to objects
■ Binding to XML
■ Binding to ADO.NET
■ Binding to LINQ
■ Binding spells for system daemons
209

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 11 Data binding with WPF
LINQ query. Finally, we’ll get back to the Desktop Wiki application that allows various
notes to be entered, categorized, and stored.

 The idea behind data binding isn’t all that complex. Given that essentially all appli-
cations are some sort of user interface over some kind of data, the problem of connect-
ing that data to the interface is one that virtually every application must handle. This is
precisely the problem that data binding addresses—connecting data instances to user
interfaces quickly and in a way that requires a minimum of effort and code. As usual,
the devil lies in the details.

 For the longest time, every application had its own approach for tying data to UI.
Over time, different frameworks have tried to genericize the problem—with various
degrees of success. Windows Forms became the first Microsoft UI technology to have a
solid data binding model by baking binding deep into the framework. WPF takes this
even further. Data binding has the status of a first-class citizen in WPF, and support is per-
vasive and flexible.

 In Windows Forms, certain properties of certain objects were set up to allow data
binding, and only that limited subset of properties supported binding. In WPF, almost
every property you can think of can be bound—certainly every property that partici-
pates in the Property System. Some of the examples of this may seem silly, but this
ubiquitous support provides enormous opportunities for making the UI subtly (or
not) reflect the user’s data.

11.1 WPF data binding
Before we get into any examples, it’s worth going over some terminology that we’ll be
using throughout. Three important elements that make up data binding in WPF are:

Figure 11.1 The Process Monitor
application demonstrates binding to a
collection returned by a method call.
www.it-ebooks.info

http://www.it-ebooks.info/

211WPF data binding
■ Source—The authoritative data, the stuff we want to display.
■ Target—The object that will reflect the data in some manner, such as a control

that displays values or changes color based on the values and so on.
■ Binding—The rules around how the data will be reflected. For example, is the

source or target read-only? Does the source change? When does it change? How
often does it change? Is the source a list? Is the target a list?

You can think of the Binding as the bridge between the Source and the Target. Par-
ticularly when using XAML, you define the Binding as the value of the property on the
target—something like:

<TextBlock Text="{Binding Path=ProcessName}"

The important part is determining where your data is coming from—the binding source.
BINDING SOURCES

There are four sources that WPF can bind to out of the box. These four sources are
broad enough that they cover virtually any type of thing you’d care to bind to. They are
the following:

■ CLR objects —Individual objects or collections.
■ ADO.NET data types —DataTable, DataView, DataSet, and so on. There’s also

direct support for binding to LINQ to SQL.
■ XML data —Via XPath or LINQ to XML.
■ DependencyObjects—WPF objects that participate in the WPF property system.

You might look at the first item on the list and say that all these sources are CLR
objects, and that would be true. In more practical terms, the binding system has
increasing support to bind to objects as they implement and use various existing and
new interfaces. For ordinary CLR objects that don’t implement any WPF interface or
pattern, the binding capabilities are more limited; not all binding modes are sup-
ported, for example. But, WPF can do at least simple binding against any .NET object—
which is pretty cool.

 Support for binding against ADO.NET objects obviously continues. Although .NET
3.5 adds some types to System.Data, the existing .NET 2.0 types aren’t replaced, so
WPF binds to the same DataSet, DataTable, and so on, that Windows Forms binds to.

 Binding to XML is done via the XmlDataProvider class, which can point to an XML
file or URI, an XMLDocument, or can contain XML directly.

 The native WPF data binding mode uses the DependencyObjects and Dependency-
Properties that are pervasive throughout the entire WPF framework. As you’ll see,
using the native approach yields the most flexibility and benefits.
BINDING MODES

There are four binding modes in WPF: OneTime, OneWay (to target), OneWayToSource,
TwoWay, and Default. We know what you’re probably thinking—that we can’t count.
You’re suspicious because we listed five items. Default isn’t a mode per se—it figures
out the most appropriate of the other modes to use. Table 11.1 describes the different
modes in a little more detail.
www.it-ebooks.info

http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/data/downloads/index.html
http://www.it-ebooks.info/

212 CHAPTER 11 Data binding with WPF
Not setting the binding mode and setting it to Default have the same effect. In either
case, the target DependencyProperty is examined, and the system automatically
selects the most appropriate mode. In our first example, the ProcessMonitor, we’re
presenting a read-only list of values, so our binding will be OneWay.

11.2 ProcessMonitor: A simple binding example
Our first binding example is like a little TaskManager, in that it shows a list of all the
processes; it’s also unlike TaskManager, in that you can’t do anything with the list of
processes—like shutting things down. Figure 11.2 shows what the final application will
look like.

 To follow along, create a new WPF Application called ProcessMonitor. Then, create
a new Window called Monitor.xaml. This is our main window, so you’ll need to update
the StartupURI in App.xaml to point to Monitor.xaml instead of Window1.xaml. If
you’re feeling especially tidy, you can go ahead and delete Window1.xaml—it’s kind of
annoying anyway.

 With that done, we’re ready to get started.

11.2.1 Binding Data with XAML

The first thing we need is some data. It turns out that System.Diagnostics has a
class for manipulating process information called, cleverly enough, Process. Process

Table 11.1 Binding modes

Mode Description

OneTime OneTime does just as the name implies; it copies the source data value to the
target of the data binding operation once. The advantage here is performance
because, once the data is copied, the framework can forget that the binding
exists. For data sources that aren’t expected to change during the execution of
the program (like the operating system version or, perhaps, certain machine con-
figuration settings) or where manually forcing the binding to update is reason-
able, this may be the best mode to bind with.

OneWay There are two OneWay modes. OneWay (or more precisely: One-
WayToTarget) never tries to write the value back to the source. For the cases
when you want to expose some underlying data in the UI, but the data is read-
only or otherwise not meaningful to modify, OneWay is the one true way. One-
Way is the most common OneWay binding mode.

OneWayToSource The cases for OneWayToSource are rare, but when you need it, it’s
nice to have. Whenever the binding target changes, OneWayToSource
copies the data to the source, effectively making this a reverse binding.
OneWayToSource allows data binding with a target that isn’t a
DependencyProperty.

TwoWay TwoWay represents the common business logic scenario in which you have
some business data to load and reflect in the UI; when the data is changed in
the UI, the changes are automatically propagated back to the business object.
This mode saves a lot of manual updating of values to and from data objects.
www.it-ebooks.info

http://www.it-ebooks.info/

213ProcessMonitor: A simple binding example
has a static method, GetProcesses, on it that gives back an array of Processes.
Sounds perfect.
BINDING A LIST SOURCE TO A LIST TARGET

Because we have a list of data for the source, we’ll also want a list control to show it.
We drag a ListView over from the Toolbox, remove the automatically created Margin
attribute, and split the tag because we’re going to be doing some XAML surgery soon.

<ListView Name="listView1">
</ListView>

Now we need access to that Process class from the XAML. This class is available in the
System.Diagnostics namespace of the System assembly, so we add the assembly via
the XML namespace using statement xmlns:diag="clr-namespace:System.Diagnos-
tics;assembly=System." The Window tag should look like this:

<Window x:Class="ProcessMonitor.Monitor"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:diag="clr-namespace:System.Diagnostics;assembly=System"
 Title="Monitor" Height="400" Width="400">

WPF provides two classes to help bind data: ObjectDataProvider and XmlDataProvider.
These classes are derivations of DataSourceProvider. This is the class that we’d extend
if we want to expose some custom form of data that isn’t supported in the way we want.
We’ll try the XmlDataProvider a little later, but for this task, we need the ObjectData-
Provider. These classes are adapters that WPF uses to bind to particular types of data,
and are designed so that they can be described declaratively in XAML. They also allow
asynchronous binding so that the UI can operate while data is being loaded.

Figure 11.2 ProcessMonitor uses
data binding to tie a list of processes to
a ListView.
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 11 Data binding with WPF
 Setting up an ObjectDataProvider is easy. We give it enough information to get to
the data we need, and declare it as a resource somewhere in the XAML. In this case,
we’ll create the resource in the Grid element (listing 11.1).

<Grid.Resources>
 <ObjectDataProvider x:Key="processes"
 MethodName="GetProcesses"
 ObjectType="{x:Type diag:Process}"/>
</Grid.Resources>

We use the key processes b so that we can reference the resource later. Because the
goal is to bind from the array returned from a method on that object, not the object
itself, we need another attribute to specify the MethodName to call—in this case, Get-
Processes c. If we wanted to bind to a static property instead of a static method, we
wouldn’t have specified a MethodName, but the name of the property we wanted later
on when doing the binding.1

 Finally, we need to use a markup extension d to specify the Process class type, as
opposed to an instance of a class. The x:Type indicates that we’re passing a type,
and diag:Process specifies the Process class. This is equivalent to the C# code
typeof(Process).

 Now that we’ve created our ObjectDataProvider, the next step is to bind to it.
SETTING UP BINDINGS

There are slight differences in the way you bind for different controls—primarily
related to the way in which the data will be used. For a TextBlock, we’d most likely
bind to the Text property. For the ListView, the property to specify the source of the
items is called ItemsSource because it’s the source for the list of items. Because we
declared our resource in XAML, we can add an ItemsSource attribute like this:

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource processes}}">

We set the ItemSource property using the XAML’s special binding notation. We’ll go
into the binding notation in a lot more detail later, but we’ll talk you through what
we’re doing right here. The curly-brace notation indicates that some form of reference
is going on. {Binding} means that we’re doing data binding. This will create, behind
the scenes, an object of type Binding. For the Binding to be useful, it needs to have
some properties set, and the particular property we’re setting is the Source property.

 Fortunately, the curly-brace notation allows nesting because we want to set the
value of the Source property to reference the processes resource we created earlier.
This uses the StaticResource reference that we’ve been seeing for a while now.

Listing 11.1 Binding to the process list of the Process object

1 In fact, as you’ve seen in previous chapters, we can bind to a Static property without using an ObjectData-
Provider at all, using the {Static class.property} notation.

b
c

d

www.it-ebooks.info

http://www.it-ebooks.info/

215ProcessMonitor: A simple binding example
The ListView now has a scroll bar as shown in figure 11.3. But the ListView itself is
empty—the data is there, but we still can’t see it.

 The problem is that we have an array
of Process objects, but the ListView has
no idea how we want them displayed. We
need a template. ASP.NET developers
should feel right at home here because
WPF templates are similar to ASP.NET
templates. Visual Studio 2008 doesn’t
have a template editor, so it’s time to
expand the XAML editor.

 To explain what we want to see and
how we want to see it to this ListView,
we need to create a DataTemplate

describing it. ListView has a property
called ItemTemplate that lets us tell the
control how we want our data displayed.
We add the following XAML within the
ListView tag:

Debugging bindings
Given the declarative nature of WPF, debugging can be frustrating. When data binding
works, it’s lovely; but, when it doesn’t, it can be an extremely frustrating experience.
Fortunately, there’s at least some help. By default, if there’s a binding problem, some
information will be written to the output window. You can increase the amount of in-
formation written out via WPF’s support for debugging bindings. It isn’t a debugger in
the traditional sense because you can’t step through the XAML to see what’s hap-
pening, but it will write out a bunch of extra information about what’s going on when
you run.

To enable debug assistance, you need to add another reference to the XAML. Add
the following namespace on the Window element:

xmlns:debug="clr-namespace:System.Diagnostics;assembly=WindowsBase"

When you want to debug a particular binding, you can add a tracelevel to the state-
ment, like this:

ItemsSource="{Binding Source={StaticResource processes},
 debug:PresentationTraceSources.TraceLevel=High}"

Now when you run, a whole host of useful messages will be written to the output win-
dow, telling you step-by-step what’s happening during the bind. It isn’t guaranteed to
help, but it’s better than guessing!

Figure 11.3 The window shows evidence of data
with a scrollbar, but nothing is showing up.
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 11 Data binding with WPF
<ListView.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=ProcessName}"/>
 </DataTemplate>
</ListView.ItemTemplate>

Here we use the expanded form of a XAML property setter to declare and instantiate a
DataTemplate object that contains a single TextBlock. The Text property of the
TextBlock is bound to a property called ProcessName. Path references the particular
property that we want to access. Because we aren’t specifying a Source this time, the
binding mechanism assumes that we want to bind to whatever object we have avail-
able—in this case, the Process object in the current row of the ListView. Once the
designer refreshes, the process names should be on the system as in figure 11.4.

Now we’re getting somewhere, but the name of the process by itself isn’t overly interest-
ing. It would be nice to have the ID and, perhaps, the WorkingSet as well. The Process
class has a lot of properties, so we should hook up at least a couple more (listing 11.2).

<ListView.ItemTemplate>
 <DataTemplate>
 <WrapPanel>
 <TextBlock Text="{Binding Path=Id}" MinWidth="80" />
 <TextBlock Text="{Binding Path=ProcessName}" MinWidth="180" />
 <TextBlock>
 <TextBlock.Text>
 <Binding Path="WorkingSet" />

Listing 11.2 DataTemplate that pulls multiple properties from data source

Figure 11.4 With a DataTemplate
in place, the ListView now shows
our running processes.

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

217ProcessMonitor: A simple binding example
 </TextBlock.Text>
 </TextBlock>
 </WrapPanel>
 </DataTemplate>
</ListView.ItemTemplate>

As you can see, the DataTemplate can be as complex as we like. For example, here
we’re using a WrapPanel b. We could just as easily use a Grid or other layout, put in
drawings, set colors and backgrounds, and so on. In chapter 12, we’ll demonstrate
some more elaborate data templates.

 You may also notice that, although we’re using the string notation (called the
MarkupExtension) for two of our TextBlocks, for the third one, we’re using a slightly dif-
ferent notation c. The two are functionally equivalent. Whereas the MarkupExtension is
more compact, the expanded Binding element is easier to read and allows you to do a
few things you can do only with the longhand notation.

 In any case, now we’ve got some nice data in figure 11.5.
 If we were to carry on with this application, we’d probably prefer a more flexible

set of views with columns, sorting, and grouping.
 Now that we’ve got all the data binding figured out using XAML, how would we do

it with code?

11.2.2 Binding in code

So far, all the binding we’ve done has been through XAML. Sometimes binding in
code is necessary or simpler. If you want to bind against instances that are controlled
and exposed via a strong business logic layer, you’ll probably want to bind in code.
XAML bindings prefer XAML declarations and tend toward statics and widely shared

Figure 11.5 With a more
sophisticated template, we get
more appealing results.
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 11 Data binding with WPF
instances, which may be contrary to threading or isolation goals. In any case, we can
do everything we just did in code.

 First, we remove everything we just did (or save it off and start a new project). The
XAML should look like this:

<Window x:Class="ProcessMonitor.Monitor"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Monitor" Height="400" Width="400">
 <Grid>
 <ListView Name="listView1">
 <ListView.ItemTemplate>
 <DataTemplate>
 <WrapPanel>
 <TextBlock Text="{Binding Path=Id}" MinWidth="80" />
 <TextBlock Text="{Binding Path=ProcessName}" MinWidth="180" />
 <TextBlock>
 <TextBlock.Text>
 <Binding Path="WorkingSet" />
 </TextBlock.Text>
 </TextBlock>
 </WrapPanel>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </Grid>
</Window>

Notice that, although we’ve removed all the binding, we left the ItemTemplate in
place. Given that the ItemTemplate is all about how to display our data, it makes sense
to leave it in XAML. The DataTemplate does have specific bindings to specific proper-
ties; but, if they aren’t found, they’ll simply fail quietly. In fact, although it’s possible to
create a DataTemplate with code, it’s fairly tricky and somewhat discouraged.

 Anyway, on to the code. We right-click Monitor.xaml and select View Code and
then create a new method called BindProcessesToListView (listing 11.3).

public Monitor()
{
 InitializeComponent();
 BindProcessesToListView();
}

private void BindProcessesToListView()
{
 ObjectDataProvider provider = new ObjectDataProvider();
 provider.ObjectType = typeof(Process);
 provider.MethodName = "GetProcesses";

 Binding binding = new Binding();
 binding.Source = provider;
 binding.Mode = BindingMode.OneWay;

Listing 11.3 Binding in code

Calls method to
create Binding

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

219ProcessMonitor: A simple binding example
 PresentationTraceSources.SetTraceLevel(binding,
 PresentationTraceLevel.High);

 listView1.SetBinding(ListView.ItemsSourceProperty, binding);
}

The code here mostly mirrors what we did in XAML. First, we create the ObjectData-
Provider b, pointing it to the Process object and the GetProcesses method. Next,
we create the Binding object c. The data source for the Binding is the ObjectData-
Provider we just created. We also specify that the binding is only going to go one
way—from the DataProvider to the ListView.

 We also enable debug tracing d to write out information for us about what’s
going on the binding. Finally, we associate the binding to the ListView’s ItemsSource
property e.

If you run this code, it will look exactly like figure 11.5.

11.2.3 Binding notation and options

Binding is used all over the place in WPF. It’s used to get data, as we’ve seen, but it’s
also used in tons of other things such as sizing (to bind the width of one control to the
width of another control), animation (to get to the properties that are being ani-
mated), and control templates (to tie pieces of the template to specific properties).

 The great thing is that the binding notation is really flexible. The downside is that
the binding notation is really flexible. WPF hasn’t been out for very long. We suspect

Binding performance
Under the hood, binding to CLR uses a lot of reflection, and wherever there’s reflec-
tion, there are potential performance problems. Fortunately, Microsoft’s API philoso-
phy of “make the simple things simple and make the complex things possible” is in
full force here. In the simple case, the framework gets Type and Property descrip-
tors on the CLR objects and sets up the binding appropriately. In the case where per-
formance is more critical, .NET and WPF provide the following interfaces (neither of
which is new to WPF) to increase binding speed:

■ ICustomTypeDescriptor—Provides a way for the binding code to find out about
the object and its properties without using reflection. If you haven’t used binding
in the past due to performance or functionality limitations, this is an interface
you’ll want to get cozy with.

■ INotifyPropertyChanged—Provides an interface to implement a custom
scheme for notifying the property system that the source data has been updated.
WPF native DependencyProperties already provide this notification logic (al-
though they don’t use INotifyPropertyChanged).

In most cases, you’ll probably find that you don’t even need these optimizations, but
if you do, it’s nice to know that they are there.

d

e

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 11 Data binding with WPF
that, if all the time spent debugging and fixing bindings could be harnessed, we would
have, as a species, solved global warming and world hunger, and figured out a way of
getting your food delivered before the toast gets cold.

 The source of a binding can be broken down into two things: where the data is
coming from and what bit of data you want from there. The where can be one of four
different things (table 11.2).

Table 11.2 Where the data comes from in a Binding

Property Description

Source You use Source when you want to bind to a particular object. Invariably, that
object is defined as a resource, so the notation looks like this (from our
ListView example):

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource
 processes}}">

ElementName You use ElementName when you want to bind to a property on some other ele-
ment in your UI. For example, if there were a control called someListBox and you
wanted a TextBox to be the same color as the list box, you’d write this:

<TextBox Background=
 "{Binding ElementName=someListBox, Path=Background}"
/>

RelativeSource RelativeSource is used when you don’t know the specific element you want
to reference, but you know where that element is relative to where you are now—
that is, relative to the element that you’re currently binding. There are several dif-
ferent modes for RelativeSource that control its behavior.

Mode Behavior

FindAncestor In this case, the RelativeSource is the first ances-
tor element that meets a particular condition. You can
specify the ancestor you want based on how many lev-
els up it is.

{Binding RelativeSource=
 {RelativeSource FindAncestor,
 AncestorLevel=2}}

This statement says to find the element two levels up
from where you are (parent’s parent). Or you can specify
that you want the first element of a particular type.

{Binding RelativeSource=
 {RelativeSource FindAncestor,
 AncestorType={x:Type GroupBox}}}

This says find the first parent element of type
GroupBox. You can also combine Level and
Type—you could bind to the third parent of type
GroupBox, for example.
www.it-ebooks.info

http://www.it-ebooks.info/

221ProcessMonitor: A simple binding example
RelativeSource
(continued)

Self This is used to bind to a property on the current ele-
ment. For example, suppose that you want to set your
border color to be the same as your text color, you’d do
something like this:

<TextBox BorderBrush=
 {Binding RelativeSource=
 {RelativeSource Self},
 Path=Foreground} />

TemplatedParent This is a special reference used when you’re defining
ControlTemplates or DataTemplates.
When you’re writing a control template (for example),
there are two different places where you might want to
bind—to something in the control that’s using the con-
trol template or from something in the control template
itself.
For example, you might have a control template that
defines the look-and-feel of a button. The content of the
template might well be driven off of the data associated
with the button, but the control template can have sev-
eral animations that need to depend on properties in
the template. The notation for TemplatedParent is
as follows:

{Binding RelativeSource=
 {RelativeSource TemplatedParent},
 Path=somethingInTemplate}

We aren’t showing a real-world example here because it
would be meaningless without an entire template and
an example, but we make use of this capability in the
chapter on transition effects. To give you an idea of how
well used this version of RelativeSource is,
there’s a custom notation for it.

{TemplateBinding somethingInTemplate}

This notation does almost exactly the same thing.
(We’ve run into few situations where only one or the
other works.)

PreviousData PreviousData is only used when you’re binding to
something like a ListBox that has a currently
selected item and a previously selected item. As you
can guess, PreviousData returns the last selected
value before the current value. This might be used to
display history or if you want to build a transition from
the old value to the new value.

{Binding
 RelativeSource={Relative Source
 PreviousData},Path=Value}

Table 11.2 Where the data comes from in a Binding (continued)

Property Description
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 11 Data binding with WPF
Once you’ve figured out where you’re getting your data, you can use the Path prop-
erty to specify the path to the bit of data in that object. If you exclude Path, then
you’re binding to the entire object. (For example, if you want to bind a ListBox to a
collection, you want the entire collection.) Otherwise, Path can point to a property or
indicate the path to data in more complex ways. Here are some examples:

■ Path=SelectedItem

■ Path=SelectedItem.Tag

■ Path=SelectedItem.Tag[30]

■ Path=SelectedItem.Tag[30].Name

■ Path=SelectedItem.Tag[30].(Parent.Element).Name

If you think that this is scary, you should try debugging some of the code we’ve written
that uses stuff like this. The point that we want to make is that Path is very flexible and
has a rich syntax. In practice, if you’re doing things like some of the worst examples
here, you might want to reconsider your design. (Often, you can create a simple inter-
mediate object in code that will make most of this nastiness go away.)

 Binding also has several other features. For example, we can specify a converter
that can take the value returned by the binding and change it to be something else.

{Binding Path=ActualWidth,Converter={StaticResource AddPadding}}

The AddPadding resource points to an object that implements the IValueConverter
interface—a simple interface with only the two methods Convert and ConvertBack
(and no one ever bothers implementing the ConvertBack method). The AddPadding
resource looks like this:

<Window.Resources>
 <local:AddPaddingValueConverter x:Key="AddPadding"/>
</Window.Resources>

Where local is the namespace for our local code. The AddPaddingValueConverter
looks something like this:

public class AddPaddingValueConverter: IValueConverter
{
 public AddPaddingValueConverter () {}

Nothing No, there isn’t a property called nothing. If you don’t specify a Source,
RelativeSource, or ElementName, their absence means something to
the binding code—that the data will be determined based on the data context of
the current item.

We’ll talk about data contexts in a lot more detail later, but they’re explicitly or
implicitly set locations to retrieve data. If the data context isn’t set for a particu-
lar element, then that element determines it based on its parent.

Table 11.2 Where the data comes from in a Binding (continued)

Property Description
www.it-ebooks.info

http://www.it-ebooks.info/

223Binding to XML
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 double d = System.Convert.ToDouble(value);
 return d + 20;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 double d = System.Convert.ToDouble(value);
 return d - 20;
 }
}

See, nothing to it! But now, when the value is retrieved from the ActualWidth prop-
erty, it’s passed to the converter, and 20 is added to the value that’s used. Even though
we’ve shown all the different properties that you can set on a binding, we’re only
scratching the surface on binding notations and options. You’ll be seeing many, many
examples both throughout this chapter and throughout the book. For example, the
next section talks about binding to XML.

11.3 Binding to XML
We’re not sure. Our track record with technology is somewhat hit-and-miss, littered
with Betamax tapes and Amiga computers, but we’ve had a look at this whole XML
thing, and we think it has a chance of catching on. No promises, though.

 Seriously, XML is everywhere now, and WPF supports binding directly to XML
objects, as we’ll demonstrate in this section. For this exercise, we wanted to push the
binding system, so we found some nice, large XML examples.

 MITRE is a federally funded research lab. One of the projects MITRE works on is
called the Common Vunerabilities and Exposures (CVE) list. This list provides a single
source to identify and describe vulnerabilities and exposures in computer systems, and
it so happens that the list is published as an XML file. The latest version of the XML, as of
this writing, weighed in at around 30MB. That sounds like a nice chunk of XML to give
the binding engine to chew on. In effect, the XML is going to be our model.

 But even for something like a web browser, an intermediate object model2 is gener-
ally used to encapsulate behavior. For all but the simplest applications, using a data for-
mat as the abstraction for your model is almost certainly a lousy idea. If we were to
write an application around CVEs, like a CVE editor for instance, we’d build business
objects with interactive behavior, and the details of how we stored it would be invisible
from the UI.

 That all being said, sometimes a light wrapping over XML or SQL is all you need.
Along those lines, we’re going to create a little application to view the data in these
XML files (figure 11.6).

2 If you were writing an XML editor, these would be ideal domain objects.
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 11 Data binding with WPF
The CVE XML also provides some nested data, which is something we’re after for this
example. Before we get too far, though, we need the XML data file—the CVE list from
MITRE. The main site for CVE is located at

http://cve.mitre.org/

and the CVE list downloads are available at

http://cve.mitre.org/data/downloads/index.html

There are three files: All, CANs, and Entries. The Entries file is smaller (about 2MB),
whereas the All and CANs files are closer to 30MB. For the purpose of this exercise, we
want to see how the data binding holds up under some pressure, so we downloaded
the All file (allitems.xml) for our experiment. Feel free to choose the smaller file if
you desire. Here’s a sample entry from the allitems.xml:

<cve>
 <item type="CVE" name="CVE-1999-0002" seq="1999-0002">
 <status>Entry</status>
 <desc>Buffer overflow in NFS mountd gives root access to remote
 attackers, mostly in Linux systems.</desc>

Figure 11.6 The finished CVE Viewer utility
www.it-ebooks.info

http://cve.mitre.org/
http://cve.mitre.org/data/downloads/index.html
http://www.it-ebooks.info/

225Binding to XML
 <refs>
 <ref source="CERT">CA-98.12.mountd</ref>
 <ref source="BID" url="http://www.securityfocus.com/bid/121">121</ref>
 <ref source="XF">linux-mountd-bo</ref>
 </refs>
 </item>

 "A billion more items here"
</cve>

NOTE There’s one problem with the way that the CVE files are set up. Inside the
<cve> tag, there are references to various namespaces that cause .NET’s
XML parser to have problems. To simplify matters, the easiest thing to do
is to remove the namespace references and reduce the main cve tag
down to <cve>.

We’ll be displaying the list of items in the lefthand column, and the details from the
various tags on the right.

11.3.1 Creating the CVE Viewer application

Once we have the files, we create a new WPF Application project called CVE Viewer,
delete Window1.xaml as usual, create a new window called CveViewer.xaml, and point
the StartupUri to it. The layout here is going to be a bit more involved than the
ProcessMonitor, so we need to do a bit more setup than we did before. The final lay-
out appears in figure 11.7.

Grid

ListBox

G
ridS

plitter

GroupBox

StackPanel

Description

References

Comments

Figure 11.7 The basic layout of the CVE Viewer application
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 11 Data binding with WPF
To set up this layout, we do the following:

1 We divide the grid into three columns with widths of 120, 5, and 1*.
2 In the first column, we create a DockPanel.
3 We add a TextBox followed by a ListBox in the DockPanel.
4 In the second column, we add a GridSplitter. Although the CVE names are

currently a predictable width, we don’t want the app to behave poorly if more
verbose names are used.

5 In the third column, we add a GroupBox.
6 In the GroupBox, we want some areas for description, references, and com-

ments. We add a StackPanel, and then add the controls shown in listing 11.4.

The StackPanel is going to give us the document effect for this part of the UI, and
we’ll style the TextBlock elements to look like headers. We also need a TextBlock ele-
ment and some ListBoxes to display the nested lists of data for references and com-
ments. Listing 11.4 shows the XAML for the layout, along with the controls we need.

<Window x:Class="CVE_Viewer.CveViewer"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:debug="clr-namespace:System.Diagnostics;assembly=WindowsBase"
 Title="Common Vulnerabilities and Exposures Viewer"
 Width="600" Height="400">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120" />
 <ColumnDefinition Width="3" />
 <ColumnDefinition Width="1*" />
 </Grid.ColumnDefinitions>

 <DockPanel>
 <TextBox Name="filter" DockPanel.Dock="Top" />
 <ListBox Name="listBox1" />
 </DockPanel>

 <GridSplitter Grid.Column="1"
 VerticalAlignment="Stretch" HorizontalAlignment="Stretch" />

 <GroupBox Grid.Column="2" Header="CVE Details">
 <StackPanel>
 <WrapPanel>
 <Label Height="23">Name:</Label>
 <Label FontWeight="Bold" Height="23" MinWidth="100" />
 <Label Height="23">Status:</Label>
 <Label FontWeight="Bold" Height="23" MinWidth="80" />
 </WrapPanel>
 <TextBlock FontSize="12" FontWeight="Bold" Background="SteelBlue"
 Foreground="White" Padding="10,2,2,2">Description</TextBlock>
 <TextBlock TextWrapping="Wrap" Margin="10,10,10,20" />
 <TextBlock FontSize="12" FontWeight="Bold" Background="SteelBlue"
 Foreground="White" Padding="10,2,2,2">References</TextBlock>

Listing 11.4 XAML for CVE Viewer

Splitter
Controls
on left

Detail
data

Banners are
wide blue

TextBlocks

b

www.it-ebooks.info

http://www.it-ebooks.info/

227Binding to XML
 <ListBox Margin="10,10,10,20" BorderThickness="0" />
 <TextBlock FontSize="12" FontWeight="Bold" Background="SteelBlue"
 Foreground="White" Padding="10,2,2,2">Comments</TextBlock>
 <ListView Margin="10,10,10,20" BorderThickness="0" />
 </StackPanel>
 </GroupBox>
 </Grid>
</Window>

You may notice that there are a number of controls that don’t have any value b.
That’s because we’re going to eventually bind their values to our source XML.

11.3.2 Binding controls to XML

For the next task, we’re going to use the XmlDataProvider. Like the ObjectData-
Provider, the XmlDataProvider allows simple XAML-based declaration of XML
resources for use in a WPF application. In this case, we’re going to declare it as a
resource on the top-level Window element. Also, we need to bring in a namespace to
enable the PresentationTraceSources attribute on the Window element itself.

xmlns:debug="clr-namespace:System.Diagnostics;assembly=WindowsBase"

Now, we’ll add the XmlDataProvider to the Window element (listing 11.5).

<Window.Resources>
 <XmlDataProvider x:Key="cve"
 Source="X:\Path\to\allitems.xml"
 XPath="/cve/item"
 IsAsynchronous="False"
 IsInitialLoadEnabled="True"
 debug:PresentationTraceSources.TraceLevel="High"
 />
</Window.Resources>

If you’re coding along, make sure that you specify the correct path to the XML file in
the Source attribute b. There are a few interesting attributes on this DataProvider.
IsAsynchronous enables asynchronous loading of the XML document d. We also tell
the provider to automatically load the XML when the window is created using the
IsInitialLoadEnabled attribute e. The last line enables debugging on the provider
to make our lives easier later.

 This is pretty much all we have to do to make the XML available to our application.
We could’ve, just as easily, pointed the provider to a valid URI, or brought in an Xml-
Document or XmlReader. One attribute we haven’t mentioned, though, is the XPath
attribute c.

 XPath is a standard for defining selections within XML. The standard is maintained
by the W3C and is one of the most common ways of selecting items from within an
XML document. The particular expression here, /cve/item, says to select all the item
elements underneath the root cve element. This is our initial data set.

Listing 11.5 Adding the XmlDataProvider

b

c d
e

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 11 Data binding with WPF
11.3.3 XPath binding notation
In the previous section, we used Path
to specify the specific property we
wanted to bind to. With the XmlData-
Provider, Path is still in play, but an
additional property, called XPath, is
going to be more interesting. The first
binding we want is on the lefthand
side ListBox. This will display all the
CVEs in the XML data source:

<ListBox Name="listBox1"
 ItemsSource="{Binding Source=
 {StaticResource cve}}">

So far, the only difference between the
object binding and XML binding is the
configuration of the data source. You
may also notice in the designer that
our ListBox now contains items from
the live XML file. This can certainly be
annoying at times, especially if the UI
binds to a remote data source at design
time. At the same time, it’s rather convenient to see the effects of binding without hav-
ing to run the program (figure 11.8).

NOTE If your list is empty, make sure you removed the namespaces from the
<cve> tag.

Now we’ve got a rather ugly list because it’s a list of
the InnerText of the XmlElements. In the list on
the left, we want the values from the name
attributes of each item tag. As we did before, we
need to set up a DataTemplate. We enter the follow-
ing XAML within the ListBox tags:

<ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding XPath=@name}" />
 </DataTemplate>
</ListBox.ItemTemplate>

@name is the XPath syntax to request an attribute called
name from within the current element. Figure 11.9
shows the ListBox after the template has been defined.

 Much better—now our list is a lot more sensible.
This is a good time to take a closer look at what’s hap-
pening between the source (the XmlDataProvider)

Figure 11.8 The binding is executed in real time
against our data in the editor. It only looks like a
bunch of errors because it’s, well, a list of a bunch
of errors.

Figure 11.9 Now that we have a
DataTemplate, the ListBox data
is much more readable.
www.it-ebooks.info

http://www.it-ebooks.info/

229Binding to XML
and the target (the ListBox) in this example. XML is a particularly good medium for
exploring the relationship between sources and targets.

 With this setup, the XPath we specified in the XmlDataProvider is exposing the
XML document as a collection of XmlElements—the XPath defines the set of item
nodes under the root cve node. Our source is a collection of XmlElements of type item.
Because ListBoxes can handle collections, all is well.

 But, if we wanted to, we could change the source by removing the XPath expres-
sion. If you’re following along, go ahead and remove the XPath="/cve/item"
attribute from the XmlDataProvider. The list in the designer is now empty. The rea-
son is that, without any XPath, the XmlDataProvider provides the root element (the
cve element) of the document. The ListBox attempts to display a collection with one
item in it, but because the cve element doesn’t have a name attribute, it doesn’t display
anything at all.

 To fix this, we can modify the ItemsSource attribute of the ListBox:

<ListBox Name="listBox1"
 ItemsSource="{Binding Source={StaticResource cve}, XPath=/cve/item}">

We’ve got elements again because we’re now telling the ListBox to bind to the speci-
fied XPath within the data provided by the data source. This change gets us back to the
same data we had before.

 All we’re demonstrating here is that, particularly with the power of XPath, there’s
no single, right way to accomplish any particular binding. It’s the binding itself that
understands both sides of the relationship and does the mapping, so you can convert
the source into a list of XmlNodes and take them as the default binding, or have the
target do the job by applying an XPath to something XPathable.

 Now let’s take a look at how you use Path versus XPath.

11.3.4 Path versus XPath

Both Path and XPath provide a way to reference the bit of data we want out of our
current item, but they have somewhat different applications. For example, you can
think of our ListBox as showing a list of XmlNodes. We use the XPath notation to
select the name attribute from each of those nodes. But XmlNode is an object with
properties. If we wanted to access the value of a property of the XmlNode object (ignor-
ing the fact that it happens to hold XML), we could use the Path notation. For exam-
ple, if we wanted to get the OuterXml (a property of XmlNode), we could do it by
specifying the following:

<TextBlock Text="{Binding Path=OuterXml}" />

This is something that would be hard to do using XPath.
 If you’re coding along, you should have a list showing each ref XML item in the list.

Among other things, this happens to be a convenient way to quickly visualize which
XML elements are bound in a particular context and what’s available on them. When
we first set up the XML bindings, we bound to the OuterXml everywhere to watch as
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 11 Data binding with WPF
the context of the data changed. Before we head to the next section, the binding
needs to be set back to using XPath.

<TextBlock Text="{Binding XPath=@name}" />

One thing that might not be entirely clear is how the binding knows what to execute
the Path or the XPath against. The way this works is based on the current Data-
Context, which is what we’ll cover next.

11.3.5 Understanding and using DataContexts

Whenever you specify a binding, you implicitly set up a data context. A data context is
the data source at any given visual element, and it’s used by every subsequent element
up the tree until it changes. For example, the ListBox’s data context is the collection
of elements returned from the XmlDataProvider. Because the ListBox is designed to
work with lists, it automatically doles out each element in the collection to each list
item, so the data context for an individual item in the ListBox is the element from
the collection.

 We’ll take this a little bit farther by hooking up some of the controls in the right-
hand pane—the details from the currently selected item in the list box. UIElements
all have a DataContext property that specifies where they’ll go looking for data if no
explicit source is specified as part of a Binding operation. We could set the Data-
Context on each of the controls that we want to bind; but, because the DataContext is
inherited, if we set it on the GroupBox that holds all the controls, they’ll automatically
have the same context.

<GroupBox.DataContext>
 <Binding ElementName="listBox1" Path="SelectedItem" />
</GroupBox.DataContext>

This says that the DataContext for the GroupBox (and its children) is the Selected-
Item property on the listBox1 ListBox control. Now, when we bind the individual ele-
ments, we only have to specify the binding relative to that data context. Figure 11.10
shows a visual representation of this. If we had an even deeper hierarchy, we could
repeat this process ad nauseam.

 We have four labels set up across a WrapPanel to show the name and status of each
item as we click it. Without defining any sources on the Label controls themselves, we
can specify Path or XPath bindings as if we specified the XML element. We add the fol-
lowing Content tags to the Labels:

<WrapPanel>
 <Label Height="23">Name:</Label>
 <Label FontWeight="Bold" Height="23" Content="{Binding XPath=@name}"
 MinWidth="100" />
 <Label Height="23">Status:</Label>
 <Label FontWeight="Bold" Height="23" Content="{Binding XPath=status}"
 MinWidth="80" />
</WrapPanel>
www.it-ebooks.info

http://www.it-ebooks.info/

231Binding to XML
We bind the first label to the value from the name attribute and the second label to the
value of the status element. (Because there’s no @ sign in front of status, XPath inter-
prets that to mean that we want the contents of a child element.) Directly after the
WrapPanel, we can now bind our description as well.

<TextBlock Margin="10,10,10,20" TextWrapping="Wrap"
 Text="{Binding XPath=desc}" />

Because there’s no selected item in the designer, the property will be null, and we
won’t see anything as we set all these up. But when you run the application, you
should be able to click through the list and see the name, description, and status fields
all populated. When the SelectedItem changes, the Binding we set on the Data-
Context property of the GroupBox catches the PropertyChanged event fired from the
first ListBox and sets the DataContext accordingly. When the DataContext changes,
the subsequent controls are then notified, and all the bindings we just defined are
reevaluated and updated. Beautiful.

 The next thing we want to do is to populate the ListBox that shows all the refs from
the item xml. The refs are references to relevant data about the particular problem,
and most of them include URLs to more detailed documentation. Listing 11.6 shows
the XAML for binding the ListBox in the middle-right to the list of refs.

<ListBox ItemsSource="{Binding XPath=refs/ref}
 "Margin="10,10,10,20" BorderThickness="0" BorderBrush="Transparent">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <WrapPanel>

Listing 11.6 Binding to the list of refs

Application Model

Application View

Item List Detail View

XML Document

Source

Selected Item

Source

Target

Target

Figure 11.10 Because a
binding target can be a
source as well, the detail
view can bind to the
SelectedItem of the UI
list, rather than working out
how to track the active item
in the XML source itself.

Binds to
list of refs b
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 11 Data binding with WPF
 <TextBlock MinWidth="50" Text="{Binding XPath=@source}" />
 <TextBlock>
 <Hyperlink NavigateUri="{Binding XPath=@url}"
 RequestNavigate="Hyperlink_RequestNavigate">
 <TextBlock Text="{Binding Path=InnerText}" />
 </Hyperlink>
 </TextBlock>
 </WrapPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

A fair amount is going on here, so we’ll take it slow. First of all, we set the ItemsSource
for the ListBox to use the XPath “refs/ref” b. Because we’re inside the DataContext set
on the GroupBox, this XPath is relative to that and so returns all the ref elements under
the refs element under the current item (no, really). Further, because we’re setting the
Source, we’re implicitly setting a new DataContext that applies to all the items in
the ListBox. Any binding that we do within an item is relative to the current ref object.

 The first control we put in our template is a TextBlock bound to the source
attribute c. This is an attribute on ref elements. The next thing we want to do is cre-
ate a hyperlink based on the data in the ref tag d. This is tricky because not every-
thing inside a Hyperlink can be directly bound. Let’s take the pieces one at a time.

NavigateUri="{Binding XPath=@url}"

This first piece is the easy one—we want the value from the URL attribute in the ref to
be the location to which the hyperlink navigates us.

RequestNavigate="Hyperlink_RequestNavigate"

This is just an event handler. The Hyperlink_RequestNavigate method gets the Nav-
igateUri from the passed Hyperlink and then does a Process.Start(). We haven’t
bothered showing the code, but it’s in the online version.

<TextBlock Text="{Binding Path=InnerText}" />

Because we can’t bind to the contents of a Hyperlink directly, we have to put some-
thing inside the Hyperlink to display the text we want to display. We’re putting a Text-
Block inside the Hyperlink (which is inside a TextBlock) so that we can bind the
TextBlock’s Text property. Notice that we’re using Path instead of XPath here
because we want the InnerText of the XmlElement.

 The binding for the comments ListView is pretty similar, albeit simpler (listing 11.7).
We’re using a ListView instead of a ListBox to demonstrate that there’s no particular
difference in the approach for binding to different list controls.

<ListView ItemsSource="{Binding XPath=comments/comment}"
 Margin="10,10,10,20" BorderThickness="0" >
 <ListView.ItemTemplate>
 <DataTemplate>

Listing 11.7 Binding the list of comments

d

Source from
under ref c

Collects all
comments
from itemb
www.it-ebooks.info

http://www.it-ebooks.info/

233Binding to XML
 <TextBlock Text="{Binding Path=InnerText}"/>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

At this point, we have a functional CVE viewer that binds XML remarkably fast. With
the XML support in WPF, creating custom editors for XML is extremely easy and can be
used to mitigate the pain of manually editing XML configuration files.

11.3.6 Master-Detail Binding
As you saw in figure 11.10, the list is driven from the data source, but the detail view is
driven off of the list, rather than the data. From the user’s perspective, this is irrele-
vant, but there are certainly situations where you want to make sure that what the user
is viewing is tied to the data and not a selected control (for example, if there are multi-
ple controls that can potentially control the current record). Also, from a purist’s per-
spective, it’s more correct to tie to data if possible (although not, perhaps, as simple).

 The nice thing is that WPF data binding has automatic handling for master-detail
binding. If you bind a list data source to a list control, as we’ve done in our previous
example—tying the list of Items to the ListBox—then the list control shows a list of val-
ues. If you bind a non-list control to a list, like a TextBox, the binding mechanism auto-
matically associates the binding with the current record in the list. Instead of doing this:

<GroupBox.DataContext>
 <Binding ElementName="listBox1" Path="SelectedItem" />
</GroupBox.DataContext>

We could do this:

<GroupBox.DataContext>
 <Binding Source="{StaticResource cve}"/>
</GroupBox.DataContext>

(provided we change the XPath tag in the XmlDataProvider back to XPath="/cve/item").
 Our individual controls are now bound to exactly the same thing as the list. If you

run the application with this binding, you’ll notice two things. First of all, the controls
on the right of the application will all be populated even before you select a record in
the list; second, changing the current selection in the list does not change what’s dis-
played on the right.

 So, the cool thing is that the binding code automatically knows what to do as far as
figuring out how to hand the current record to all our controls on the right. The rea-
son we have data automatically is that the binding automatically assumes that the first
record is the selected record. The downside is that, because we’re no longer binding
to the selected item in the ListBox, we need to somehow let the binding know that
the “current” record has changed when the value changes in the ListBox. We easily
do this by setting a property on the ListBox.

 <ListBox Name="listBox1"
 ItemsSource="{Binding Source={StaticResource cve}}"
 IsSynchronizedWithCurrentItem="True">

Binds comment
text—nothing
fancyc
www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 11 Data binding with WPF
IsSynchronizedWithCurrentItem tells the ListBox to update the binding source
with the currently selected item—assuming that the binding source is one that can
handle that (which is most). Now, if you run, everything will work as it did before,
except that you’ll be tied to the data source for the current item, rather than the
ListBox. Figure 11.11 shows how this binding is working.

 Both approaches (binding to the selected item in a list or relying on master-detail
support to automatically bind to the data source) produce the same results. For sim-
ple UI, the first approach makes it easier to see what’s going on, whereas the second
approach is more “correct.” For more complex situations, this correctness can often
help make things work a little more cleanly.

 We’ve covered a lot of ground so far—not only the theory behind binding, but also
the specifics related to binding to static properties and to XML. We’ll soon be return-
ing to our Desktop Wiki application, but before we do, we have an example for bind-
ing to ADO.NET.

11.4 Binding to ADO.NET database objects
OK, so we need to talk.

 WPF lets you bind data directly from a database to your UI. We’re going to show
you how to do that. We have to do this because a) there are situations in which this is
an appropriate thing to do and b) it’s a scenario you will see in many places. We really,
really, really3 would like to encourage you to think carefully before you do. Although

3 Really, really, really…

Application Model

Application View

Item List
(Target is Collection)

Detail View
(Target is item)

XML Document

Source

Target Target

Figure 11.11 It’s
perfectly legal to bind
controls that can only
handle a single item to a
multiple-item data source.
The master-detail support
in WPF Binding
automatically associates
those controls with the
currently selected item.
www.it-ebooks.info

http://www.it-ebooks.info/

235Binding to ADO.NET database objects
we may sound (or be) OO bigots, we’d like to point out that many of the “magical”
things that WPF does involve nothing more than applying good OO design.

 Many applications today are written directly to a database. They have either no
business objects or have things that look like business objects4 but only ferry data blobs
from the database to the UI and back again. Some of the signs that you aren’t gaining
the benefits of OO design are “business objects” that are nothing more than get/set
methods for a set of properties, and a presentation layer with SQL strings, SqlConnec-
tion, and SqlCommand objects floating through it.

That all being said, some simple applications do little more than present data from a
database (or XML) and write it back; in these cases, binding UI directly to ADO.NET
objects may be the best approach.5 One example where this makes sense is if you need
to show a list of available business objects—it may be inefficient to create a collection
of instances of each business object, so you may populate a list of employees directly
from a DataTable. To do anything with an employee, you’d create the business object

4 Martin Fowler calls this an Anemic Domain Model.

What is a business object?
Business objects are often misunderstood. For the sake of discussion, we need to
clarify what we mean when we say business object. In the terms of C# programming,
any instance of a class is an object. This definition is so broad as to have little mean-
ing in practical use. In terms of OO design, an object encapsulates both the data and
behavior of an entity that has meaning to your application. For example, imagine a
business object that represents an employee. The employee has a first name, last
name, and title.

One of the behaviors around the business object might be that the employee’s title
can’t change without an associated Approval business object, which itself has a rule
that it can only be created by an employee with a higher title. In this case, the Title
property of the Employee class has code to ensure that only permitted title changes
are made. Now imagine that the Employee class is only a set of simple getter and
setter methods. This is called a Data Transfer Object, or DTO, and requires the pre-
sentation layer (or other code such as a web service layer) to check for the approval
itself, comparing titles, and so on. This is an example of unencapsulated behavior,
and the risk of another bit of code changing the object without following the rules, or
following slightly different rules, is high.

By putting the rules with the data itself, it isn’t possible to change the employee’s
title without the rules being enforced uniformly. Because database objects are essen-
tially data transfer objects, using them makes it terribly easy to update the data with-
out the safety and consistency of encapsulation.

5 No, we don’t really mean it.
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 11 Data binding with WPF
as needed, by passing a DataRow from the list to a factory method on the business
object. In fact, this is going to be our first example.

11.4.1 Creating a bookmark utility

To demonstrate binding to data, we want to show data that would make sense as some-
thing stored in a database. Our example will be a simple bookmark manager. Book-
marks could well be stored in a database—particularly if multiple users can store their
own bookmarks and if the bookmarks need to be available to multiple machines.
Because we aren’t writing a book about database access, we’re only going to create a
mock database by creating some DataTables and DataSets programmatically. To
emphasize proper separation of the data layer, this will all be done using a simple
Data Access Layer (DAL). Even though we’re pretending, our binding code will be
identical to the binding code we would use if the DAL was really pulling the data from
a database.

 We’ll get started by creating a new WPF application called Librarian.

11.4.2 Creating the simple DAL

There are some wonderful books on ADO.NET.6 This isn’t one of them. As such, we
won’t be going too much into the DAL code other than to explain how to hook it up
to WPF. The DAL class creates a DataSet with two DataTables, and exposes the Data-
Table through a property—not unlike the sort you’d get back from an SQL database.
If there’s no existing XML file, the DAL populates a few sample bookmarks and saves
the entire thing to an XML file, which is loaded on subsequent executions of the pro-
gram. If you haven’t downloaded the code, you’ll have to create a new class called
Library and enter the code from listing 11.8.

public class Library : INotifyPropertyChanged
{
 private DataSet library;
 private int bookmarkIdentity = 0;
 private string libraryFilename = "bookmarks.library";

 public Library()
 {
 CreateDataSource();

 if (!File.Exists(libraryFilename))
 {
 CreateDefaultBookmarks();
 Save();
 }
 else
 {
 Load();

6 We might recommend ADO.NET Programming by Arlen Feldman, also from Manning.

Listing 11.8 Library class that’s a fake Data Access Layer

b

www.it-ebooks.info

http://www.it-ebooks.info/

237Binding to ADO.NET database objects
 }
 }

 private void CreateDataSource()
 {
 library = new DataSet("Librarian");

 DataTable bookmarks = new DataTable("Bookmarks");
 bookmarks.Columns.Add("Id", typeof(Int32));
 bookmarks.Columns.Add("Title", typeof(string));
 bookmarks.Columns.Add("Uri", typeof(string));
 bookmarks.Columns.Add("Category", typeof(string));
 bookmarks.Columns.Add("LastMod", typeof(DateTime));

 DataTable identity = new DataTable("Ident");
 identity.Columns.Add("Name", typeof(string));
 identity.Columns.Add("Count", typeof(Int32));

 library.Tables.Add(bookmarks);
 library.Tables.Add(identity);
 }

 public DataTable Bookmarks
 {
 get { return library.Tables["Bookmarks"]; }
 }

 public void AddBookmark(string name, string url, string category)
 {
 Bookmarks.Rows.Add(new object[]
 { bookmarkIdentity++, name, url, category, DateTime.Now });
 library.AcceptChanges();
 NotifyPropertyChanged("Bookmarks");
 }

 #region DataStore operations

 private void CreateDefaultBookmarks()
 {
 library.Tables["Ident"].Rows.Add(new object[]
 { "bookmarks", bookmarkIdentity });

 AddBookmark("Manning", "http://www.manning.com/", "Books");
 AddBookmark("Cherwell", "http://www.cherwellsoftware.com/", "Sites");
 AddBookmark("Exotribe", "http://www.exotribe.com/", "Sites");

 library.AcceptChanges();
 }

 public void Load()
 {
 library.ReadXml(libraryFilename, XmlReadMode.ReadSchema);
 }

 public void Save()
 {
 library.AcceptChanges();
 library.WriteXml(libraryFilename, XmlWriteMode.WriteSchema);
 }

 #endregion

Datasource has
two DataTables

c

Access
to data

d

e

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 11 Data binding with WPF
 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(String propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }

 #endregion
}

Note that rather than using the ObjectDataProvider, we implement the INotify-
PropertyChanged b interface on our DAL. The INotifyPropertyChanged interface
exposes a single event that WPF subscribes to in order to know when to update data
bound values f. All we have to do is fire this event (PropertyChanged) to tell sub-
scribers what has changed, as we do in the AddBookmark method d. This is the same
interface used by ObjectDataProvider and ObservableCollection—see, no magic—
the data source just pops up its hand to say when its data has changed.

 Beyond this, the code is pretty straightforward. We have code to create the Data-
Tables c and set up some default values e, as well as to load and save the DataSet
to disk.

 To make our DAL available to the entire application, we open App.xaml and add
the local namespace.

xmlns:local="clr-namespace:Librarian"

And under the Application.Resources tag, we add:

<Application.Resources>
 <local:Library x:Key="library" />
</Application.Resources>

Now that we have a DAL, we can lay out our UI and bind it. Because we’ve covered
many of the fundamentals, we’re going to focus on specifics around database bind-
ings. Because we’re using a DAL component, we’ll use the ObjectDataProvider to cre-
ate our DAL as we did with the CLR binding examples.

11.4.3 Laying out the UI and creating data bindings

We’re going to do a simple UI for this piece, with a master-detail form. We create a
brand-new WPF application called BookmarkLibrary, blow away window1, and create
a new Window called BookmarkLibrary.xaml (and update the StartupUri). Next, we
delete the Grid element and create a DockPanel, with LastChildFill set to True.

<DockPanel LastChildFill="True">
</DockPanel>

We’re going to use a number of DockPanels to design our detail view. This will ensure
proper scaling to high DPI monitors and maximize usable text input areas given any
window size. Figure 11.12 shows the layout we’re shooting for.

f

www.it-ebooks.info

http://www.it-ebooks.info/

239Binding to ADO.NET database objects
Unfortunately, most of this will require XAML surgery. We could drag these controls
all in using the designer, but achieving the result would take a lot of trips to the prop-
erty editor. Listing 11.9 shows the XAML for the BookmarkLibrary class.

<DockPanel LastChildFill="True">
 <Grid DockPanel.Dock="Bottom"
 DataContext="{Binding ElementName=bookmarks, Path=SelectedItem}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="1*" />
 <ColumnDefinition Width="1*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="1*" />
 <RowDefinition Height="1*" />
 </Grid.RowDefinitions>
 <DockPanel Grid.Column="0" Grid.Row="0">
 <Label MinWidth="50" DockPanel.Dock="Left" Content="Title:" />
 <TextBox Text="{Binding Path=Title}" />
 </DockPanel>
 <DockPanel Grid.Column="1" Grid.Row="0">
 <Label MinWidth="50" DockPanel.Dock="Left" Content="Category:" />
 <TextBox Margin="0,0,10,0" Text="{Binding Path=Category}" />
 </DockPanel>
 <DockPanel Grid.Column="0" Grid.Row="1" Grid.ColumnSpan="2">
 <Label MinWidth="50" Content="URL:"/>
 <TextBox Margin="0,0,10,0" Text="{Binding Path=Uri}"/>
 </DockPanel>
 </Grid>

 <ListView Name="bookmarks"
 ItemsSource=
 "{Binding Source={StaticResource library}, Path=Bookmarks}">
 <ListView.View>
 <GridView>

Listing 11.9 XAML for BookmarkLibrary class

Figure 11.12 Layout of the bookmark application. The list at the top shows all of
the bookmarks, and the pane at the bottom shows the details of the current row.

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 11 Data binding with WPF
 <GridViewColumn Header="Name"
 DisplayMemberBinding="{Binding Path=Title}"/>
 <GridViewColumn Header="URL"
 DisplayMemberBinding="{Binding Path=Uri}"/>
 <GridViewColumn Header="Last Modified"
 DisplayMemberBinding="{Binding Path=LastMod}"/>
 </GridView>
 </ListView.View>
 </ListView>
</DockPanel>

The first thing to realize about this listing is that it’s backwards! The first control, the
ListView d, is listed second. That’s because we want it to take up the remaining
space in the DockPanel. Note that order of elements in WPF often matters; be careful
when you’re using Z-Order controls in the designer because Z-Order and functionality
are both controlled by element ordering—we think this is quite a serious issue because
it mixes two sometimes opposing purposes.

 Let’s talk about the second thing first—the ListView d lets us present a list of
data with some number of columns. It’s amazingly easy to bind to the DataTable. The
Source is our library object that we add to the Application object. By referencing it
there, an instance is automatically created. The Path points to the Bookmarks object
exposed on the Library class instance, which returns our Bookmarks DataTable.

 The ListView has a GridView that defines its columns, and we have columns for the
Name, URL, and the Last Modified Date/Time. As you can see, each GridViewColumn
definition has a property called DisplayMemberBinding e. We’re setting the Path to
the name of the column in the DataTable we want to reference. Because we aren’t spec-
ifying a Source, the source is automatically the current row in the Grid, and the Data-
Table is capable of taking the name and returning the right bit of data. Simple.

 Binding to the controls at the bottom (but listed first in the XAML) is also fairly
straightforward. The Grid control we put together to hold the controls b has its
DataContext set, which provides the DataContext to all its children. It points to the
ListView (bookmarks) because we want to tie it to the list’s SelectedItem, which is
set as the path.

 The individual TextBoxes are bound to elements by specifying the column name
again c. The default binding is two-way, so editing the text in the TextBoxes automat-
ically updates the DataTable and, therefore, the Grid.

 If you’re coding along and want to add support for the various buttons at the bot-
tom of the control, you can add the following XAML for them at the top of the Dock-
Panel, before the Grid with the DockPanels:

<StackPanel Orientation="Horizontal" DockPanel.Dock="Bottom"
 FlowDirection="RightToLeft">
 <Button MinWidth="60" Content="Close" Click="Close_Click" />
 <Button MinWidth="60" Content="Save" Click="Save_Click" />
 <Button MinWidth="60" Content="Delete" Margin="30,0,0,0"
 Click="Delete_Click" />
 <Button MinWidth="60" Content="Add" Click="Add_Click" />
</StackPanel>

e

www.it-ebooks.info

http://www.it-ebooks.info/

241Binding to ADO.NET database objects
Most of the XAML is for spacing, and so on. Notice that there are handlers for the
Click event on each button.7 Listing 11.10 shows the event handlers from the Book-
markLibrary.xaml.cs file.

private void Close_Click(object sender, RoutedEventArgs e)
{
 Close();
}

private void Save_Click(object sender, RoutedEventArgs e)
{
 Library library = (Library)FindResource("library");
 library.Save();
}

private void Delete_Click(object sender, RoutedEventArgs e)
{
 DataRowView row = (DataRowView)bookmarks.SelectedItem;
 row.Delete();
}

private void Add_Click(object sender, RoutedEventArgs e)
{
 Library library = (Library)FindResource("library");
 library.AddBookmark("New Bookmark", "url", "");
}

Clicking Save calls the Save() method on the Library class b. The library instance
was defined in XAML, but we can call it from code with no problem by calling Find-
Resource. The Delete method c gets the currently selected row and calls its
Delete() method, which marks the row as deleted. Even though we don’t explicitly
create a DataView, the binding operation does it for us. The DataView implements the
PropertyChanged event.

 The Add button handler calls the AddBookmark method on the library object d,
which adds a new row with some placeholder data to the DataTable and fires the
PropertyChanged event. This is how the Grid knows to update itself.

 Because we have two-way binding throughout, we don’t have to do anything special
other than save the XML out at the end. All our updates to the detail view are automat-
ically done to the DataRows themselves (or sometimes through the DataView, which is
directly tied to the DataTable). It’s so easy that you can see how easy it is to fall into
the trap of the missing business logic layer. Because WPF has such rich data binding
capabilities with objects, there’s little reason not to use business objects, and we’ll look
into that next.

7 We should really be using commands, but this takes up less space in the book!

Listing 11.10 Handlers for button click events

Closes the app

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 11 Data binding with WPF
11.5 Binding to business objects
If you’ve made it this far, give yourself a pat on the back because we’re almost to the
end. WPF support for binding to business objects is terrific and the right choice for
our Wiki application. Go ahead and reload the Wiki application from chapters 9 and
10. Much like the previous example, we’re going to create our own model to get
access to the data; but, rather than exposing a data layer directly to the UI, we’re going
to expose a business object layer. First, we’ll need some business objects.

11.5.1 Creating a WikiPage business object

Our first business object will be a WikiPage. A WikiPage will have a name and a Flow-
Document associated with it. Because the FlowDocument isn’t directly serializable, we have
to use the XamlReader and XamlWriter classes to support serialization (listing 11.11).

[Serializable]
public class WikiPage
{
 public WikiPage()
 {
 Document = new FlowDocument();
 }

 public WikiPage(string name)
 {
 Name = name;
 Document = new FlowDocument();
 }

 private string pageName;
 public string Name
 {
 get { return pageName; }
 set { pageName = value; }
 }

 private FlowDocument document;
 internal FlowDocument Document
 {
 get { return document; }
 set { document = value; }
 }

 public string XamlDocument
 {
 get { return XamlWriter.Save(Document); }
 set
 {
 using (MemoryStream stream =
 new MemoryStream(Encoding.UTF8.GetBytes(value)))
 {
 Document = (FlowDocument)XamlReader.Load(stream);

Listing 11.11 WikiPage business object

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

243Binding to business objects
 }
 }
 }
}

Other than the serialization section, this looks like a fairly standard Data Transfer
Object (DTO). Don’t worry—we’ll be adding business logic to it a little later. Normally,
we’d probably implement custom serialization to handle the document data; but, in
this case, we’re taking advantage of the fact that the XML serializer serializes public
properties. By making our FlowDocument an internal property b, the XML serializer
bypasses it. (We could use the Binary serializer to serialize even private fields, but we
wouldn’t have a human readable data file, which we want to be able to see the effects
of the XamlWriter.)

 The XamlDocument property c is public and so is serialized. Notice that it’s of type
string, and we have some code to convert the document back and forth to a string.
This version exists to make it easy to save the data, whereas the FlowDocument Docu-
ment property is what we use for binding.

 This is good enough for now; it stores our wiki pages and gives us a place to put
our wiki page data. Now we need a model façade8 to expose to the presentation layer.
The heart of that façade will be an ObservableCollection.

11.5.2 ObservableCollection

Our wiki has a concept of directories—we want to provide categories for our various
wiki pages such as home, work, school, and so on. We will use an ObservableCollec-
tion to hold our WikiPage objects. An ObservableCollection is a generic collection
that implements the INotifyCollectionChanged and INotifyPropertyChanged

interfaces. An ObservableCollection is handy for binding because the collection
fires events when it’s modified. Rather than deriving from ObservableCollection,
we’ll compose it into our next custom business object, PageDirectory (listing 11.12).

[Serializable]
public class PageDirectory
{
 public PageDirectory() { }
 public PageDirectory(string name)
 {
 Name = name;
 pages = new ObservableCollection<WikiPage>();
 }

 private string collectionName;
 public string Name
 {
 get { return collectionName; }

8 The façade pattern presents a single unified interface that represents an entire subsystem.

Listing 11.12 PageDirectory business object

Creates WikiPage
collection
www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 11 Data binding with WPF
 set { collectionName = value; }
 }

 private ObservableCollection<WikiPage> pages;
 public ObservableCollection<WikiPage> Pages
 {
 get { return pages; }
 set { pages = value; }
 }
}

At the moment, the PageDirectory is pretty simple—it only has a name and the col-
lection of WikiPages. We expose the WikiPage collection in order to be able to bind
to it. We have limited control over what’s added and when, but we could rectify that by
using a more involved collection, or by subscribing to the events on the collection and
preventing unwanted operations (such as adding a page with the same name as an
existing page).

11.5.3 Create a model façade

Now that we have our business objects, we need a model façade. The façade is a single
point of entry for the presentation layer to deal with our business layer, and can be cre-
ated easily as a resource in the XAML. This is like our Library class from before, but will
use ObservableCollections of business objects rather than ADO.NET objects. As with
the Library class, we will need to implement our own INotifyPropertyChanged inter-
face, although the ObservableCollections we will be hosting implement the interface
themselves, so we don’t need to do anything special with them (listing 11.13).

[Serializable]
public class Wiki : INotifyPropertyChanged
{
 private string wikiDataFile = "wikiPages.xml";

 public Wiki()
 {
 if (!File.Exists(wikiDataFile))
 {
 CreateDefaultDirectory();
 Save();
 }
 else
 {
 Load();
 }
 }

 private void CreateDefaultDirectory()
 {
 wikiDirectories = new ObservableCollection<PageDirectory>();
 wikiDirectories.Add(new PageDirectory("Home"));
 }

Listing 11.13 The Wiki façade

Exposes WikiPage
collection

Creates default
file on first runb

Or loads
existing filec
www.it-ebooks.info

http://www.it-ebooks.info/

245Binding to business objects
 private ObservableCollection<PageDirectory> wikiDirectories;
 public ObservableCollection<PageDirectory> Directories
 {
 get { return wikiDirectories; }
 }

 private PageDirectory currentDirectory;
 public PageDirectory CurrentDirectory
 {
 get { return currentDirectory; }
 set
 {
 currentDirectory = value;
 NotifyPropertyChanged("CurrentDirectory");
 }
 }

 public void AddPage()
 {
 CurrentDirectory.Pages.Add(new WikiPage("New Page"));
 }

 public void AddDirectory()
 {
 PageDirectory newDirectory = new
 PageDirectory(Guid.NewGuid().ToString());
 Directories.Add(newDirectory);
 CurrentDirectory = newDirectory;
 }

 public void Load()
 {
 XmlSerializer serializer = new
 XmlSerializer(typeof(ObservableCollection<PageDirectory>));
 using (FileStream stream = new FileStream(wikiDataFile, FileMode.Open))
 {
 if (stream.CanRead)
 {
 wikiDirectories =
 (ObservableCollection<PageDirectory>)serializer.Deserialize(stream);
 NotifyPropertyChanged("Directories");
 }
 }
 }

 public void Save()
 {
 XmlSerializer serializer =
 new XmlSerializer(typeof(ObservableCollection<PageDirectory>));
 using (FileStream stream = new FileStream(wikiDataFile,
 FileMode.Create))
 {
 serializer.Serialize(stream, wikiDirectories);
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

Collection of
directoriesd

Currently selected
directorye

Adds new page
to directory

f

Adds new directoryg

Loads from XML fileh

Saves to
XML file

i

Property
Change
event

j

www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 11 Data binding with WPF
 private void NotifyPropertyChanged(String propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

The Wiki object represents the core of our application. When first instantiated, it
either creates a default, empty Wiki b or loads existing data c. It contains a collec-
tion of PageDirectory objects d where each directory contains some number of
WikiPages. It also keeps track of the currently selected directory e.

 For functionality, the Wiki object allows a new page to be added to the current
directory f or an entirely new directory to be created g. Because we’re exposing
default collections, the caller of the code could violate our business rules, and that’s
something that we would address in a more fleshed-out example.

 The Wiki object also can read h and write i itself out to an XML file. This might
be a reasonable representation for a single-user application, or it might need to pass a
representation of itself to a DAL for storage in a database. Again, in a more fleshed-out
example, the Wiki object wouldn’t know about how it was stored—it would pass a rep-
resentation to the code that does.

 We also implement the INotifyPropertyChanged interface and expose the Property-
Changed event j to let subscribers know when something has changed.

 We’re on the home stretch now. All we need to do is tie our business objects to
the UI.

11.5.4 Wiring business objects to presentation objects

As we did with the Library, we need to make our Wiki business layer available to the
presentation. Figure 11.13 shows what’s bound to whom.

 Before we can bind to the business objects, we need to create an instance. We’ll do
this via XAML. In App.xaml, we add the local namespace (as with previous examples)
and the following resource:

<Application.Resources>
 <local:Wiki x:Key="wiki" />
</Application.Resources>

This causes a new instance of the Wiki business object to be instantiated at application
scope. We can locate it in the code via the key wiki and store a local reference. The
first thing we need to bind is the list of directories on the left side of the browser (list-
ing 11.14). Because we did everything through the designer in chapter 9, we never
really looked at the XAML. The ListBox we’re referencing here is the All Labels List-
Box that we added under the second Expander.

www.it-ebooks.info

http://www.it-ebooks.info/

247Binding to business objects
<ListBox Name="WikiDirectories" BorderThickness="0"
 ItemsSource=
 "{Binding Source={StaticResource wiki}, Path=Directories}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Name}" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

We’re binding the entire list to the Directories property of the Wiki object instance
b. We also create a DataTemplate for the ListBox so that we can bind each entry in
the list to the Name property of the directory c.

 Next, the list of pages in the directory needs to be bound. Before we can do that,
we need a control to hold the list. Just drag a ListView into the upper-right cell of the
Grid and make it take up all of the available space (by deleting the margin tag). Then,
we add the XAML shown in listing 11.15.

Listing 11.14 Binding the list of directories

Application Model

Application View

Wiki Directories
(ListView)

Pages
(ListView)

Wiki
(Business Model Façade)

DirectoriesSource

ItemsSource

Target

SelectedItem

ItemsSource

WikiPage

DataContext

Source

Target

SelectedItem
Source

TargetSource

All child controls
on WikiPage Figure 11.13 The various

bindings used within the Wiki
application. This is much like
the CVE bindings, but taken
down another level. Also note
that DataContext is defined
as both a source and target of
data binding.

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 11 Data binding with WPF
<ListView Name="pageList" ItemsSource=
 "{Binding ElementName=WikiDirectories, Path=SelectedItem.Pages}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Name}" />
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

The ListView is supposed to show all the pages in the currently selected directory
from the WikiDirectories list on the left. We’re binding the ListView to the Wiki-
Directories’ SelectedItem property b. Because the WikiDirectories list is a list of
PageDirectory objects, that’s what SelectedItem returns. But we’re binding to a list,
and PageDirectory itself isn’t a list but contains one. We have to reference the Pages
collection of the PageDirectory, which is our collection of WikiPages. Notice how
nicely the binding notation lets us handle this situation. (There are other situations
where it isn’t so friendly.)

 And we’re again using a DataTemplate to determine what data to display from the
WikiPage. For the moment, we’re only going to bind the display to the Name property
of the WikiPage c.

 Earlier we just had a RichTextBox in the lower-right cell of the Grid. Now, we want
to add a few more things. We’ll add a DockPanel and a TextBox to hold the title of our
page. We’ll insert the XAML around the original RichTextBox; but, if you want to, you
can do this with the editor. Listing 11.16 shows the XAML for our changes and the
binding to set the text in the TextBox to show the title of the currently selected page.
We’ll worry about the RichTextBox later.

<DockPanel LastChildFill="True">
 <DockPanel.DataContext>
 <Binding ElementName="pageList" Path="SelectedItem" />
 </DockPanel.DataContext>
 <TextBox DockPanel.Dock="Top" Name="wikiTitle"
 HorizontalAlignment="Stretch" Text="{Binding Path=Name}" />
 <RichTextBox Name="activePage"
 DataContextChanged="activePage_DataContextChanged">
 </RichTextBox>
</DockPanel>

Much of this code is what you’d expect. We’re setting the DataContext on the Dock-
Panel to the SelectedItem on the pageList b. When the currently selected page
changes, all the items in the DockPanel are updated. For example, we’re binding the
page’s title TextBox control to the Name property of the WikiPage c. For the Rich-
TextBox we use for editing, we have to do something different d.

 The problem is that the Document property on RichTextBox isn’t a bindable prop-
erty. This is probably because it has to do a lot of conversion back and forth between

Listing 11.15 Binding the list of pages

Listing 11.16 Binding the WikiPage properties

b

c

Sets data
context

b

Binds
name

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

249Binding to business objects
the RichTextBox’s internal representation and the FlowDocument representation. But
this puts us into a bind.9 Not to worry, though—all dependency objects have an event
called DataContextChanged, which is fired whenever the value in the data context is,
well, changed. We can catch that event and write a bit of code to set and retrieve the
document (listing 11.17).

private void activePage_DataContextChanged(object sender,
 DependencyPropertyChangedEventArgs e)
{
 RichTextBox wikiEditor = sender as RichTextBox;

 WikiPage page = e.NewValue as WikiPage;
 if (page != null)
 {
 wikiEditor.Document = page.Document;
 }
}

The DependencyPropertyChangedEventArgs that are passed to the event handler tell
us what the old DataContext was and what the new Context now is b. Because we
have a list of WikiPages, we know that the context will be a WikiPage. All the code has
to do is set the current document in the RichTextBox c.

 Now, you might be wondering why we don’t have to retrieve the value from the
RichTextBox first and put it into the old WikiPage. The reason is that the RichText-
Box is just holding a reference to that document—the same reference held by the old
WikiPage—so it’s automatically up-to-date. Now you might further be wondering, if
that’s the case, why Microsoft didn’t make the Document a dependency property. We
wonder that too.

 Figure 11.14 shows the Wiki application in action.
 Although not a perfect example, the Wiki application demonstrates how you can

have a real business-object model, and then leverage the binding capabilities of WPF to
do much of the heavy lifting for you. The nice thing is that you could change the look-
and-feel of the application entirely with relative ease and, so long as you’ve designed
your business objects well, your application will still enforce all its rules.

 All the binding sources that we’ve discussed so far are data sources that could
have existing before .NET 3.x. There is an additional way that you might get data that
is new.

9 Did you catch that? We’re clever.

Listing 11.17 DataContextChanged event handler

NewValue is new
DataContextb

c

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 11 Data binding with WPF
11.6 Binding to LINQ data
One of the new features of .NET 3.x is LINQ, which stands for Language INtegrated
Query, and adds querying capabilities directly to .NET. For instance, if we have a col-
lection of values, such as

string[] zoo = { "Elephant", "Ant", "Duck", "Aardvark", "Donkey",
 "Anteater", "Antelope", "Newt"};

we can now write a query right in C# to, say, return all the animals whose name starts
with the letter A and put the items into alphabetic order.

var results = from a in zoo
 where a[0] == 'A'
 orderby a
 select a;

There are also special providers that are part of LINQ, the two most important being
LINQ to SQL, or DLINQ—which allows querying against SQL databases—and LINQ to
XML, or XLINQ—which allows queries against XML data. LINQ is a move toward add-
ing functional programming constructs into .NET. But both functional programming
and LINQ in general are well beyond the scope of this book.

 We do want to mention that you can bind to LINQ data (and by extension SQL or
XML data) from WPF fairly easily because LINQ is built around the IEnumerable<type>

Figure 11.14 The Wiki application. Binding is being used to tie most of the
elements together.
www.it-ebooks.info

http://www.it-ebooks.info/

251Binding to LINQ data
interface. Binding to LINQ data is as simple as binding to any other collection. For
example, suppose we have an object called AnimalView that has a property called
JustTheAs that returns the results of our previous query.

class AnimalView
{
 string[] zoo = { "Elephant", "Ant", "Duck", "Aardvark", "Donkey",
 "Anteater", "Antelope", "Newt"};

 public IEnumerable<string> JustTheAs
 {
 get
 {
 return from a in zoo
 where a[0] == 'A'
 orderby a
 select a;
 }
 }
}

We could then bind a ListBox to the results from that collection pretty easily. We’d
create a static instance of our object as a resource.

<local:AnimalView x:Key="zoo"/>

And then we bind as normal.

<ListBox Name="listBox1"
 ItemsSource="{Binding Source={StaticResource zoo},Path=JustTheAs}" />

WPF neither knows nor cares that the data came from LINQ. It
just happily displays the data from the collection (figure 11.15).

 If we were using LINQ to SQL, the collection would probably
be of useful entities (customers, for example), and we could use
binding and data templates to pull whatever data we liked. If we
were using LINQ to XML, we would get back XElement objects
and could work with them via an XmlDataProvider. (The Xml-
DataProvider understands XElements as well as XmlElements.)

 There is one downside to binding to results that come back
from LINQ. You generally get back an IEnumerable collection,
which does not implement the INotifyCollectionChanged inter-
face. If items are added or removed from results (or, more likely,
from the underlying data store that the query was run against),
the binding won’t know about it and so won’t be updated. This is a pretty serious limi-
tation. The most common workaround is to create a wrapper object that implements
the interface itself and watches the data source to check for changes, but this is kind
of a pain.

 There are also several people/groups who are working on a more LINQish solu-
tion. One good example is by an Australian developer, Paul Stovell. He’s working on

Figure 11.15 The
data from binding to
a LINQ result. WPF is
unaware that the
data came from
LINQ—it’s just
another collection.
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 11 Data binding with WPF
something called SyncLINQ that, by adding an additional term to a LINQ query, makes
the result support synchronization. He has also added the ability to do asynchronous
queries and several other cool things. We definitely recommend checking this out.

 Obviously, this isn’t meant to be a detailed exploration of LINQ, but before we
moved on, we wanted to at least make sure you were aware that a) you can bind to
LINQ results and b) it’s no more complicated than binding to anything else.

11.7 Summary
Binding is a big topic because it’s completely pervasive in WPF—it’s used for tying data
to UI, for tying elements of the UI to each other, and even for animation. The idea at
Microsoft is to go beyond thinking of binding as a service that you occasionally use,
and get to the point where binding is the core glue of your applications.

 In many ways, the WPF binding system makes this possible—it’s incredibly robust,
flexible and fast, and has built-in support for binding to databases, XML, collections,
or any object you want to expose to it. Also, once you get comfortable with the nota-
tion, you’ll discover that a single line of XAML can replace a ton of regular code and,
similarly, make your UI data-sensitive and responsive in ways that wouldn’t have been
practical in most applications.

 All this power has a downside as well. When you start doing more complex bind-
ings, it can be hard to debug when things don’t work, even with the trace mechanism
in place. Also, it’s so easy to bind directly to data that you may find yourself building
applications where your business logic seeps (or floods) into the UI. Fortunately, it’s
pretty easy to handle both these situations—and in the same way. Don’t be afraid to
build some helper, business logic, or façade objects. These can expose the objects to
bind in ways that are much simpler to access, and can provide the appropriate loca-
tions to put your business logic.

 We’re not done with data binding yet. In the next chapter, we’re going to explore
some more advanced binding scenarios. We’re also going to show how we can make
data drive the look-and-feel of an application via the use of data templates.
www.it-ebooks.info

http://www.it-ebooks.info/

Advanced data
templates and binding
The idea of data binding has been around in one form or another for a long time.
Arguably, the WPF model is better in many respects, but something that really makes
WPF binding shine (sometimes literally) is the ability to create complex templates
that control the way data is displayed, based on that data, via data templates. There
were some simple examples in the previous chapter, but we’re going to get a lot
fancier (figure 12.1).

 While we’re about it, we’re also going to show some additional binding capabil-
ities such as binding to hierarchical data, doing virtualized binding, and even bind-
ing to more than one thing at a time.

This chapter covers:
■ Data templates
■ StringFormat

■ Sorting and filtering data
■ Validating data
■ Model-View-ViewModel
■ Hierarchical, multiple, and priority binding
■ Making your computer sound like Tinky Winky
253

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 12 Advanced data templates and binding
It’s easy to think of binding as just another tool in the toolkit that you use when you
need it; but, in many ways, binding in WPF is more a philosophy than a tool. In fact,
Microsoft has developed a new variant of the Model-View-Controller pattern, called
Model-View-ViewModel, that’s entirely dependent on a fully featured binding engine
such as the one in WPF. We’ll provide a brief description of this pattern, and where it is
appropriate to use it.

 That’s pretty deep, though. Before we get to that, we’re going to concentrate on
demonstrating some of the visual goodness of WPF data templates.

12.1 Data converters
A data converter is a chunk of code that converts one value into another. For example,
we can take a number like 3723264 and convert it to 3 MiB, or we could take the same
number and, via some algorithm, convert it to a color. Data converters add a huge
amount of power to what you can do with XAML; XAML will do simple conversions for
you—for example, a number to a string, a string to a particular enum. But, for any-
thing beyond the simple, you need a custom converter.

 In this section, we’re going to return to one of the examples from the previous
chapter—the Process Monitor. When last we left our hero, he was languishing with an
appallingly ugly and hard-to-read UI (figure 12.2).

 Now, one thing that we could do to improve things is to use columns, as we did
with the book list application. But, that will limit us later, so we’re going to stick with

Figure 12.1 The Process Monitor
application from the last chapter, but
with a much fancier template for
displaying the tasks as cards, as well as
nicer displays for numbers. High priority
tasks are shown in red, and the user can
choose how to sort the items and filter
them based on priority—all done with
data templates and features of binding.
www.it-ebooks.info

http://www.it-ebooks.info/

255Data converters
our current approach. There are still several other things that we can do to improve
our look-and-feel. For example, the memory size is pretty hard to read as a huge num-
ber. Let’s try fixing that up first.

12.1.1 Formatting bound data with StringFormat

Often, when you have some data, you can make it look much better by adding some sim-
ple formatting. For example, the memory size would be easier to read if it had commas.
Via the use of StringFormat, this type of formatting is very easy to do (listing 12.1).

<TextBlock>
 <TextBlock.Text>
 <Binding Path="WorkingSet" StringFormat="N0"/>
 </TextBlock.Text>
</TextBlock>

Note that we’ve gone back to the version of the Process Monitor that’s bound in XAML
rather than in code. All we have to do is add a StringFormat to the binding of the
WorkingSet. StringFormat uses the same format as String.Format, so N indicates
that a number should be displayed using Number format, which gives us the number
with commas separating thousands. The 0 after the N indicates that we don’t want to
display any decimal places (figure 12.3).

 You can use any of the standard formatting options for numbers here. Table 12.1
shows the standard number formatting options.

Listing 12.1 Using StringFormat

Figure 12.2 The Process Monitor is
currently fairly ugly. We aren’t going
to help matters.
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 12 Advanced data templates and binding
You aren’t limited to a single formatting option. As with String.Format, you can put
in additional text and other options. For example, we could add the word bytes after
the display to indicate units. The format requires a little more work in that case, but as
you’ll see, the format is basically the same as when formatting strings in code.

 <Binding Path="WorkingSet" StringFormat="{}{0:N0} bytes"/>

Because we’re providing more than just a format, we have to specify where the value
should appear in the string; in this case, we use {0}. The :NO after the 0 indicates the
formatting to use on the number. The word bytes will be displayed in the string as
expected. One thing that you’ve probably noticed is the {} in front of the string. This is
a special escape notation required in order to not confuse the parser into thinking

Table 12.1 Number formatting options

Format Description Example

C Currency format "C" $258,048.00

D Decimal format "D6" 00258048

E Scientific "E" 2.580480E+005

F Fixed-point "F" 258048.00

G General (default) "G" 258048

N Number "N" 258,048.000

X Hexadecimal "X" 3F000

Figure 12.3 The memory display is now
formatted with commas.
www.it-ebooks.info

http://www.it-ebooks.info/

257Data converters
that the use of curly braces for the format is an indication of a binding or something
like that. You generally only need to do this if the placeholder (the {0}) is at the begin-
ning of the string. In fact, you can also just put in a blank space, which also seems to
satisfy the parser. Figure 12.4 shows the results of our line of code.

 Because we’ve used the expanded format for binding the WorkingSet, we’re obvi-
ously setting the StringFormat as an attribute on the Binding. The same options are
all available if we use the MarkupExtension notation.
STRINGFORMAT WITH THE MARKUPEXTENSION NOTATION

As you’ll recall from the previous chapter, the MarkupExtension notation for binding
allows us to specify the binding inline. For example, we could write our binding to
WorkingSet like this:

<TextBlock Text="{Binding Path=WorkingSet}/>

We can still specify a StringFormat by adding an additional clause to the Binding.

<TextBlock Text="{Binding Path=WorkingSet,StringFormat=N0}" />

This will give us the same results as shown in figure 12.3. But, to get the results from
figure 12.4, where we include the units (bytes), it’s a little trickier. Here’s the format:

<TextBlock Text="{Binding Path=WorkingSet,StringFormat=\{0:N0\} bytes}" />

The format is almost the same, but notice that we have to escape the curly braces. Note
that the escaping format is different here—a leading slash versus a leading {}. In this
context, the {} would cause the parser even more woes. We’re a little sad about the dif-
ferent formats for escaping the curly braces; but, because the original releases of WPF
didn’t have support for StringFormat at all, we’ll take what we can get.

Figure 12.4 The memory display now
indicates the units in use.
www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 12 Advanced data templates and binding
FORMATTING OTHER DATA TYPES

String formatting isn’t limited to numeric data types. You can also format other data
types such as DateTime. For example, Processes have a StartTime property that we
can add to the display.

<TextBlock Text="{Binding Path=StartTime,StringFormat=d}" />

The d format indicates that we want the short date format. Figure 12.5 shows the results.
 DateTimes support a large number of formats. Table 12.2 shows a few of the

more common.

As well as DateTimes, you can format any other data type using the appropriate for-
mats, including strings—if, for example, you want to include text in front of or behind
the string, you write the following:

<TextBlock Text="{Binding Path=ProcessName,StringFormat=Process \{0\}}" />

This puts the word Process in front of the name of each process.

Table 12.2 A few DateTime formatting options

Format Description Example

D Short date 7/4/2008

T Short time 5:16 PM

D Long date Friday, July 04, 2008

F Full date and time Friday, July 04, 2008 5:16:11 PM

Figure 12.5 The StartTime of the
Process is now shown, formatted to
show the short version of the date.
www.it-ebooks.info

http://www.it-ebooks.info/

259Data converters
 StringFormats, as you can see, are fairly flexible. But, there are definite limits to
what you can do with them. If you want to do some form of calculation against the dis-
played value, or any sort of specialized parsing, you have to use a data converter.

12.1.2 A number to formatted string data converter

A data converter is just a little lump of code for doing a conversion. You need a con-
verter if you want to do some form of conversion or formatting that’s beyond the capa-
bilities of StringFormat. To create a data converter, you create a class that implements
the IValueConverter interface. Listing 12.2 shows the code for a converter that takes
a number of bytes and produces a string version of the number using IEC notations.

using System;
using System.Windows.Data;

namespace ProcessMonitor
{
 public class NumberToFormattedTextValueConverter: IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 Int64 size = System.Convert.ToInt64(value);
 size = size / 1024;

 if (size < 1024)
 return size.ToString() + " KiB";
 else
 return (size / 1024).ToString() + " MiB";
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

Our converter has to implement the IValueConverter interface b so that WPF knows
what to do with it. IValueConverter has two methods: Convert c and ConvertBack f.
The Convert method takes an object and returns an object—it’s up to us to make sure
that the right thing is passed and passed back. Because we know that the number being
passed will be a number, we can convert the passed value directly to an integer d.

 The rest of the code in the Convert method takes that number and does some sim-
ple formatting—either setting it to return a number of kibibytes or mebibytes—and
then returns the appropriate string e. You may notice that we haven’t bothered to
implement the ConvertBack method f. In theory, this method would be able to take
a value in the IEC format (for example, 3 MiB) and return the number of bytes,

Listing 12.2 NumberToFormattedTextValueConverter

Implementing
IValueConverter interface

b

Value passed
as an objectde

Convert
method c

Non-implemented
convert method f
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 12 Advanced data templates and binding
although this would be a lossy transaction because we don’t have all the decimal
places. In practice, though, we only need to be able to convert back if we’re using
some form of two-way binding—for example, if we were putting the value into a text
box that could be edited by a user and set back to our data source. Because that isn’t
the case here, we won’t bother with the implementation. Over time you’ll see that a
large number of value converters don’t bother to implement ConvertBack.

Now that we have our converter, we need to put it to use. In XAML, we need to create
a named instance of the converter—which we do as a resource.

<Window.Resources>
 <ObjectDataProvider x:Key="processes" MethodName="GetProcesses"
 ObjectType="{x:Type diag:Process}" />
 <local:NumberToFormattedTextValueConverter x:Key="numberToText" />
</Window.Resources>

If you’re following along, don’t forget to add the local namespace referencing the appli-
cation. Now we can go ahead and update the binding for our size to use the converter.

<TextBlock Name="workingSet" MinWidth="60" TextAlignment="Right">
 <TextBlock.Text>
 <Binding Path="WorkingSet64"
 Converter="{StaticResource numberToText}" />

Kibibytes, Mebibytes, and IEC
The terms kilobyte and megabyte are familiar, but over time their meanings have be-
come a little bit confused. How big is a kilobyte? Most computer people would say
that it is 1024 bytes, but the notation k is also commonly used to mean 1000. Like-
wise, 10M could be 10 x 1024 x 1024 (10,485,760), or it could mean 10 million
(10,000,000). Often this isn’t a big deal, but there are situations were the odd
485,760 bytes might be important. When you get to the gigabyte or terabyte level,
the difference between the two interpretations is pretty impressive.

To work around the dual-meaning issue, a group called the IEC (the International Elec-
trotechnical Commission—you may not have heard of them, but they’ve been around
for more than 100 years) came up with a new notation. The notation basically adds
an i to the existing terms (KB becomes KiB, MB becomes MiB, and so on), and has
a new set of names (Kibibyte, Mebibyte) and these terms always always always refer
to power-of-two values. A Kibibyte is 1024, and a Mebibyte is 1,048,576. (The bi in
the names is there to indicate base-2.)

The notation hasn’t yet gained a great deal of acceptance. Despite the fact that we’re
using the notation here, we’re still on the fence as to whether it’s really needed and
whether or not it’s just a tad pretentious. But, because there have been several law-
suits against drive manufacturers shipping, for example, a 256 MB flash drive that
only had 244 MiBs of memory (because of the conversion), the terminology may be-
come more relevant. The biggest downside of the notation is that, when you’re using
it, you tend to sound like a Teletubby.
www.it-ebooks.info

http://www.it-ebooks.info/

261Data converters
 </TextBlock.Text>
</TextBlock>

We could also have used the following inline notation:

<TextBlock Name="workingSet" MinWidth="60" TextAlignment="Right"
 Text="{Binding Path=WorkingSet64,
 Converter={StaticResource numberToText}}"/>

This approach is more concise, but it’s harder to read. In either case, we get the
results we want (figure 12.6). You might also notice that we’ve added a MinWidth and a
Right TextAlignment so that our values will line up on the right edge.

This is definitely a step in the right direction. We’re also pretty taken with the whole
Kibibyte-Mebibyte thing, but others may not like it. It might be nice if choosing
between the two formats was an option.

12.1.3 Converter parameters

Our NumberToFormattedTextValueConverter takes a number and gives us back a
string in IEC format. But, some people might not like that format, and might want to
use something more traditional. We could accommodate that wish by writing multiple
converters (NumberToIecValueConverter, NumberToSiValueConverter, and so on),
but it would be nice if we could use the same converter and pass a parameter for the
format to use. In fact, we can do just that—one of the values passed to the Convert
method of IValueConverter is called parameter. We can modify our Convert method
to look at that value and use it (listing 12.3).

Figure 12.6 The size display
now uses our value converter to
go from a huge number to an
easier-to-read IEC notation.
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 12 Advanced data templates and binding
public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
{
 Int64 size = System.Convert.ToInt64(value);
 string units = (parameter != null) ? parameter.ToString() : "IEC";

 switch (units)
 {
 case "IEC":
 size = size / 1024;
 if (size < 1024)
 return size.ToString() + " KiB";
 else
 return (size / 1024).ToString() + " MiB";

 case "BINARYSI":
 size = size / 1024;
 if (size < 1024)
 return size.ToString() + " KB";
 else
 return (size / 1024).ToString() + " MB";

 case "SI":
 size = size / 1000;

 if (size < 1000)
 return size.ToString() + " KB";
 else
 return (size / 1000).ToString() + " MB";
 }

 return "Bad Param";
}

The main thing we’re doing is checking the passed parameter and, if it isn’t null, con-
verting it to a string b. If it is null, we default to the IEC format. Otherwise, our switch
statement checks the type and does the appropriate conversion. If some other value
were passed, we’d return a value indicating that the parameter wasn’t legal c.

 This code could be significantly more elegant and could handle a bad parameter
better, but you get the point. We can now specify the parameter to pass in our XAML.

<TextBlock.Text>
 <Binding Path="WorkingSet64" Converter="{StaticResource numberToText}"
 ConverterParameter="SI"/>
</TextBlock.Text>

Or, we could use the following inline notation:

<TextBlock Name="workingSet" MinWidth="60" TextAlignment="Right"
 Text="{Binding Path=WorkingSet64,
 Converter={StaticResource numberToText},ConverterParameter=BINARYSI}"/>

Either way, we can pass IEC, BINARYSI or SI. Figure 12.7 shows the three different ver-
sions side by side.

Listing 12.3 Convert method with parameter

Get parameter bIEC
version

Binary SI
version

SI version

Bad value passedc
www.it-ebooks.info

http://www.it-ebooks.info/

263DataTriggers
Pretentious or not, the IEC units are much clearer than the Système International
d’Unités (SI) units—notice the 11MB difference for Dev Studio (devenv) from the
binary SI version to the standard SI version. The nice thing about parameters with value
converters is that they can make the same converter much more powerful and flexible.

 As time goes on, you’ll tend to build up a fairly extensive library of data converters
for various purposes. An example that we didn’t include here, but is available with the
downloadable code, is a converter that takes the size and returns a color—that’s more
or less red depending on how big the value is—that could be used for the text color,
or the background, or anything you like. You’ll see other examples of converters
throughout the book, and later in this chapter, you’ll also see converters that work
with multiple values.

 Converters and StringFormats aren’t the only ways of changing/controlling the
display of data. We can also cause the display to change based on some value, via the
use of data triggers.

12.2 DataTriggers
In earlier chapters, we demonstrated triggers—using them, for example, to make a
control glow when the mouse moved over it. A DataTrigger is similar, except that, as
its name suggests, it’s triggered based on a data value of some kind. For example, if a
particular threshold is passed, then your text turns red—that sort of thing.

 For an example, we’ll go back to the Process Monitor. Processes have a priority—
high, medium, low, and so on, so let’s put a red gradient behind high priority pro-
cesses to make them stand out (listing 12.4).

<ListView.ItemTemplate>
 <DataTemplate>
 <WrapPanel Name="wrapPanel1">

Listing 12.4 Priority DataTrigger

Figure 12.7 Via the use of a parameter, we can specify whether the display should use (respectively)
IEC, BINARYSI, or SI units. Notice that the figures for the first two are pretty similar, but that, despite
using the same units, there’s quite a big difference between the BINARYSI and SI units. This is pretty
much why the IEC standard was suggested.

Names our
panel

b

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 12 Advanced data templates and binding
 <TextBlock Text="{Binding Path=Id}" MinWidth="80" />
 <TextBlock Text="{Binding Path=PriorityClass}" MinWidth="80" />
 <TextBlock Text="{Binding Path=ProcessName}" MinWidth="140" />
 <TextBlock Name="workingSet" MinWidth="60" TextAlignment="Right">
 <TextBlock.Text>
 <Binding Path="WorkingSet64"
 Converter="{StaticResource numberToText}"

ConverterParameter="SI"/>
 </TextBlock.Text>
 </TextBlock>
 </WrapPanel>
 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding Path=PriorityClass}" Value="High">
 <Setter TargetName="wrapPanel1" Property="Background">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Color="Salmon" Offset="0" />
 <GradientStop Color="Salmon" Offset="0.4" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </DataTrigger>
 </DataTemplate.Triggers>
 </DataTemplate>
</ListView.ItemTemplate>

We’ve included the XAML for the entire ListView template to make what’s happening
clearer. The first change we make is to give our panel a name b. We need to do this
so that we can refer to it from our trigger. Our DataTemplate has a collection of trig-
gers c, although we only have one. The trigger itself d has two attributes: the Bind-
ing—this provides the data we want to trigger off of—and the Value—the value that
we want to compare the result to.

 In our example, we’re binding to our data source’s PriorityClass, which will be
High, Medium, Low, and so on. Our trigger will fire if the binding value is an exact
match for the value “High”. If the condition is met, then some number of setters will
be executed, just as with a control template. In this case, we’re setting the Background
property of our wrap panel e to be a linear gradient brush that goes from salmon to
white. Why salmon? Because catfish are really ugly.

 Anyway, figure 12.8 shows our trigger in action.

Triggers on
high priority

dCollection of
triggers

c

Sets background e

Figure 12.8 Our DataTrigger puts a
red-to-white gradient behind all the
processes that have a high priority.
www.it-ebooks.info

http://www.it-ebooks.info/

265DataTriggers
The fact that you can only do a single comparison for a trigger may seem like a serious
limitation, but it truly isn’t much of one because the Value is provided via a binding,
and bindings, as you’ve seen, can use converters. For example, if we want to highlight
rows that have a memory size greater than a certain size, we can create an IsLargeV-
alueConverter that checks for a particular value and returns true if the size is
reached. Listing 12.5 shows what such a converter might look like.

using System;
using System.Windows.Data;

namespace ProcessMonitor
{
 public class IsLargeValueConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 Int64 convertedValue = System.Convert.ToInt64(value);

 Int64 threshold = 1000;
 if (parameter != null)
 threshold = System.Convert.ToInt64(parameter);

 return (convertedValue > threshold);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

This value converter takes the value passed in b and compares it against the value
passed as a parameter c to see if it’s big or not. This is one of those converters that
goes well in a library because it can be used for lots of different situations. To use it, all
we have to do is create an instance in resources.

<Window.Resources>
 ...
 <local:IsLargeValueConverter x:Key="isLarge" />
</Window.Resources>

And then we change our trigger to use it.

<DataTrigger Binding="{Binding Path=WorkingSet64,
 Converter={StaticResource isLarge},ConverterParameter=20000000}"
 Value="true">

The binding now uses our converter; 20MB (the SI version) is our threshold. Because
our converter returns either true or false, we’re checking for a return value of true.
The setter is the same one we’ve been using. Figure 12.9 shows the results.

Listing 12.5 IsLargeValueConverter

Value to
checkb

Value to check
againstc
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 12 Advanced data templates and binding
If we wanted to be more clever, instead of calling our converter IsLargeValue, we could
call it something like CompareValues and have it return -1, 0, or 1 (or “smaller”,
“equals”, “bigger”) depending on the comparison. In fact, this is the sort of thing that
we wish they’d built into the framework because it’s so likely to be useful.

 There are also other options for data triggers. For example, there’s a Multi-
DataTrigger that only fires when a number of comparisons are true. Setters can also
be as complex as you like and can include triggering storyboards and animations.
These capabilities aren’t that useful with our static data; but, if the values could
change behind us (say, if we bothered to make the display refresh), then having an
animation fire when a threshold is crossed or a particular value becomes true, could
be quite useful. Because we’ve talked about triggers when used with control templates,
we won’t go into them in detail here.

 We aren’t sure that the gradient improves the appearance of our display, but it at least
provides some useful feedback. Thanks to our IEC converter, the value is also a lot easier
to read. One thing we haven’t addressed, though, is the order of our data in the list.

12.3 CollectionViewSource
Right now, our list view is bound directly to the list of processes from the Processes.
GetProcesses() method, so the list is in the order that the data is provided. If we want
to sort the data, then we need to put something between the list view and our data
source—something that will let us control the order of our data. That is precisely what
the CollectionViewSource object is for.

12.3.1 Sorting with CollectionViewSource
At its most basic, a CollectionViewSource has two things: a Source—where to get the
data—and a SortDescription—details of how to sort the data. These details include

Figure 12.9 Our new data trigger
puts a gradient behind rows whose
sizes are at least 20MB.
www.it-ebooks.info

http://www.it-ebooks.info/

267CollectionViewSource
the name of the property to sort by, and the direction (Ascending or Descending).
Actually, there’s a collection of SortDescriptions, so it’s possible to define fairly com-
plex sorts.

 Once a CollectionViewSource has been created, the display (for example, our list)
can be pointed at the CollectionViewSource instead of the raw data. The Collection-
View will provide the data in the appropriate order. We can create a CollectionView-
Source instance in XAML as a resource. But, we first have to add a new namespace to
our header. This isn’t for the CollectionViewSource; it’s for the SortDescription,
without which the CollectionViewSource is useless but which is, for some reason, in a
different namespace. If you’re following along, go ahead and add the following
namespace declaration to the main Window tag:

xmlns:scm="clr-namespace:System.ComponentModel;assembly=WindowsBase"

Now we can create our CollectionViewSource object (listing 12.6).

<Window.Resources>
 <ObjectDataProvider x:Key="processes"
 MethodName="GetProcesses" ObjectType="{x:Type diag:Process}" />

 <CollectionViewSource x:Key="processesView"
 Source="{StaticResource processes}" >
 <CollectionViewSource.SortDescriptions>
 <scm:SortDescription PropertyName="ProcessName" />
 </CollectionViewSource.SortDescriptions>
 </CollectionViewSource>
 ...
</Window.Resources>

No matter what we do, we still need our original data source—the list of processes b.
This is unchanged. But, we now create a CollectionViewSource with the key “pro-
cessesView” c. The CollectionViewSource has a Source property that references
the processes’ data provider. Note that the resources have to be defined in order—you
can’t reference the processes’ provider until it has been defined.

 The CollectionViewSource has a collection of SortDescriptions, and we have a
single SortDescription d. The description has a PropertyName property that speci-
fies the property in the data source to use for ordering. We could have also specified a
Direction attribute to, for example, reverse the order. We could have also added addi-
tional SortDescriptions if we wanted to sort by more than one property.

 The last step is to make our list point at the CollectionViewSource instead of
directly at the processes’ data source.

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource processesView}}" >

That’s it. Now, when we run, the list will ask the CollectionViewSource for data. The
CollectionViewSource will ask the processes’ data source for data, retrieve it, order it

Listing 12.6 Creating a CollectionViewSource object in XAML

Our original
data source

b

Collection-
ViewSource
pointing to
datac

Sort orderd
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 12 Advanced data templates and binding
by the process name property, and then provide it to the ListView. Figure 12.10 shows
the results.

 Not too shabby. But, you do need to consider some performance implications. In
order to sort, the CollectionViewSource has to step through the entire list and hold
an ordered set of references. So, even if your original data source is virtual in some
way, using the CollectionViewSource causes the whole list to be pulled.

 Hardcoding a sort order is OK, but there are times when you want to allow the user
to choose the order of the data. We’ll update the UI to allow the user to choose a sort
order, and demonstrate changing the order programmatically.

12.3.2 Programatically sorting with CollectionViewSource

If we were using a proper Grid layout, then we’d probably set things up so that the
user could click a column header to sort a particular row. But, because we’re still stub-
bornly sticking to our existing structure, we don’t have column headers. Even if we did
have column headers, though, we’d still need to write some code to make sorting take
place—there’s no automatic free sort tied into the list view.

 Fortunately it’s pretty easy to implement dynamic sorting. Let’s start by putting a
ComboBox at the top of the Grid with a list of the fields that we want to allow the user to
sort by (listing 12.7).

<DockPanel>
 <StackPanel DockPanel.Dock="Top" Orientation="Horizontal">
 <Label>Sort Order: </Label>
 <ComboBox Width="100" x:Name="sortOrderCombo" SelectedIndex="0"

Listing 12.7 Adding an order-by combo

Figure 12.10 The same list, but thanks
to the CollectionViewSource, the
list is now in alphabetical order of
process names.

DockPanel to hold everythingb
c

www.it-ebooks.info

http://www.it-ebooks.info/

269CollectionViewSource
 SelectionChanged="sortOrderCombo_SelectionChanged">
 <ComboBoxItem>ProcessName</ComboBoxItem>
 <ComboBoxItem>Id</ComboBoxItem>
 <ComboBoxItem>WorkingSet64</ComboBoxItem>
 </ComboBox>
 </StackPanel>
 <Grid>
 <ListView Name="listView1">
 ...
 </ListView>
 </Grid>
</DockPanel>

As is often the case with layout, there are many different ways to accomplish the same
thing. The approach we take is to wrap the original Grid inside a DockPanel b, then put
in a StackPanel docked at the top, and then our original Grid and ListView e. Because
the Grid doesn’t have docking set, it automatically takes up all remaining space.

 Our StackPanel c is oriented horizontally so that we can put a label in front of
the ComboBox. This combo is fairly straightforward d—just a list of fields we want to
allow to be used for sorting. We’re using the exact property names because we’re
lazy—if this were a better UI, we’d display a friendlier name and map to the property
name. (Actually, if this were a better UI, we’d just use a Grid and sort using column
headers.)

 One thing of note about the ComboBox: We hooked up an event to the Selection-
Changed event. We’ll use that event handler to do our reordering (listing 12.8).

private void sortOrderCombo_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 SetNewSortOrder();
}

private void SetNewSortOrder()
{
 string newSortOrder =
 ((ComboBoxItem)sortOrderCombo.SelectedItem).Content.ToString();
 SortDescription sortDesc =
 new SortDescription(newSortOrder, ListSortDirection.Ascending);

 CollectionViewSource src =
 (CollectionViewSource)FindResource("processesView");
 src.SortDescriptions.Clear();
 src.SortDescriptions.Add(sortDesc);
}

Whenever the selection in the sort-order combo changes, our event handler method
will be called b which does nothing more than turn around and call a SetNewSort-
Order() method. We’ve broken this out to make our lives easier for the next sample.

 The SetNewSortOrder() method first gets the name of the property to sort by
from the ComboBox c. This would be where a nicer app would do some mapping. We

Listing 12.8 Changing order programmatically

ComboBox for order d

The original Grid with
original ListViewe

ComboBox event handler b

Creates new
SortDescription

d

Gets order name c

Replaces
SortDescriptionf

Gets CollectionViewSource e
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 12 Advanced data templates and binding
then create a new SortDescription object d using the name of the property from
the combo. For the example, we’re only allowing ascending sorts, but it would be triv-
ial to also support descending ones.

 The next step is to get a hold of the CollectionViewSource. Because it’s defined
as a resource, we can use the handy-dandy FindResource method to get it e. Then,
we clear out the SortDescriptions collection and add in our new SortDescription
f. Figure 12.11 shows the Process Monitor with our ordering combo in action.

As well as supporting simple sorting, the CollectionViewSource also has several addi-
tional abilities. It supports grouping (à la report writers) and also, as we’ll demon-
strate next, filtering.

12.3.3 Filtering with CollectionViewSource
Filtering a list with CollectionViewSource is simple. We add a handler for the Filter
event on the CollectionViewSource.

<CollectionViewSource x:Key="processesView"
 Source="{StaticResource processes}"
 Filter="CollectionViewSource_Filter">

Then we implement the event handler.

private void CollectionViewSource_Filter(object sender, FilterEventArgs e)
{
 Process p = e.Item as Process;
 e.Accepted = (p.BasePriority >= 8);
}

The event handler will be called once for each row in the data source. FilterEvent-
Args contain the current item (e.Item) and an Accepted property. If we set that to
true, the item will be included. If not, it will be left out. The example here excludes
all low priority processes from the list (figure 12.12).

Figure 12.11 When the user
changes the sort order in the combo,
the list is automatically resorted.
www.it-ebooks.info

http://www.it-ebooks.info/

271CollectionViewSource
We only lost a couple of processes, but it still shortens our list. By the way, the filtering
can only be done programmatically—there’s no XAML way of defining a filter. But,
our filter can look at other elements to provide whatever functionality we desire. For
example, we could add another ComboBox to choose how the filtering should be done.
We aren’t going to show all the XAML, but we’ve added a ComboBox called priority-
FilterCombo with the following values: All, High, Normal, and Low (figure 12.13).

Now we have to change our filter code to take the priority option into account
(listing 12.9).

private void CollectionViewSource_Filter(object sender, FilterEventArgs e)
{
 Process p = e.Item as Process;

 int mode = (priorityFilterCombo != null) ?

Listing 12.9 Fancier filter code

Figure 12.12 We’re filtering out
all low priority processes via a
CollectionViewSource filter.

Figure 12.13 We’ve added a
ComboBox to let the user choose
the shown priority options.
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 12 Advanced data templates and binding
 priorityFilterCombo.SelectedIndex : 0;
 switch (mode)
 {
 case 1:
 e.Accepted = (p.BasePriority > 12);
 break;
 case 2:
 e.Accepted = (p.BasePriority >= 8 && p.BasePriority <= 12);
 break;
 case 3:
 e.Accepted = (p.BasePriority < 8);
 break;
 default:
 e.Accepted = true;
 break;
 }
}

For reasons of laziness, we’re determining the order by the index of the entries in the
ComboBox b. We’re also doing a null check because the filter might end up getting
called before the ComboBox has come into being.

 Next, we have a switch statement that determines whether the entry is appropriate
for our current filter. Priority isn’t entirely reliable, so we’re using ranges (and, in
fact, the ranges aren’t reliable either—items with different priorities might have the
same base priority value). This isn’t a book about processes, though, so we aren’t
going to worry too much about the workings of the Process object.

 The only thing left for us to do is to make the list get filtered again whenever the
user changes the value in the priority ComboBox, but there’s no “refresh” method on
the CollectionListView. Instead, we have to make a change to the CollectionList-
View to convince it that it needs to change. Fortunately, we already have a tailor-made
method for doing just that—SetNewSortOrder(). We can put a call into that method
from the SelectionChanged handler for the priority combo.

private void priorityFilterCombo_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 SetNewSortOrder();
}

Now, when the user changes the priority option, the list will be refreshed appropri-
ately (figure 12.14).

Determines selection b

High
priority

Normal priority

Low
priority

All
priorities

Figure 12.14 When the user changes
the Priority value in the combo, the list
is automatically refiltered.
www.it-ebooks.info

http://www.it-ebooks.info/

273Conditional templates
We can now sort and filter our list. But, our list still looks like a pretty basic grid. With
WPF, though, lists aren’t limited to being displayed as grids—we can choose any type
of display we like. As we’ll show in the next section, we can even make different items
in the list display in completely different ways based on some condition.

12.4 Conditional templates
At the moment, the data template for displaying our items is directly inside the List-
View’s ItemTemplate property. But, we could just as easily move it, say, into the Grid’s
resources.

<Grid.Resources>
 <DataTemplate x:Key="NormalTemplate">
 <WrapPanel Name="wrapPanel1">
 <TextBlock Text="{Binding Path=Id}" MinWidth="80" />
 ...
 </DataTemplate>
</Grid.Resources>

Now that we’ve given it a name (NormalTemplate), we can reference it in ListView.

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource processesView}}"
 ItemTemplate="{StaticResource NormalTemplate}"/>

One benefit of moving the template is that it makes it much easier to read the XAML
for our presentation. We could even move the details to a standalone resource dictio-
nary, which would improve things even more. It also makes it easier for us to work with
different templates.

12.4.1 A more involved template

Now that we’ve pulled out the template, we can easily replace it with a more involved
example. For example, suppose we create a card view template in resources (listing 12.10).

<DataTemplate x:Key="CardViewTemplate">

 <GroupBox Header="{Binding Path=ProcessName}" Width="350"
 BorderThickness="2">
 <StackPanel Name="stackPanel1">
 <WrapPanel Orientation="Vertical" Name="wrapPanel1">
 <WrapPanel Orientation="Horizontal">
 <TextBlock MinWidth="80" Text="Id: " xml:space="preserve"/>
 <TextBlock MinWidth="80" Text="{Binding Path=Id}" />
 </WrapPanel>
 <WrapPanel Orientation="Horizontal">
 <TextBlock MinWidth="80" Text="Priority: " xml:space="preserve"/>
 <TextBlock Text="{Binding Path=PriorityClass}" MinWidth="80" />
 </WrapPanel>
 <WrapPanel Orientation="Horizontal">
 <TextBlock MinWidth="80" Text="Name: " xml:space="preserve"/>
 <TextBlock Text="{Binding Path=ProcessName}" MinWidth="140" />

Listing 12.10 A card view template

CardViewTemplate

GroupBox
for card b
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 12 Advanced data templates and binding
 </WrapPanel>
 <WrapPanel Orientation="Horizontal">
 <TextBlock MinWidth="80" Text="Working Set:"

xml:space="preserve"/>
 <TextBlock Name="workingSet" Text="{Binding
 Path=WorkingSet64,Converter={StaticResource numberToText}}"/>
 </WrapPanel>
 </WrapPanel>
 ... We added a number of additional properties. You can add them
 yourself, or download the version that includes them...
 </StackPanel>
 </GroupBox>
 <DataTemplate.Triggers>
 <DataTrigger Binding="{Binding Path=PriorityClass}" Value="High">
 <Setter TargetName="stackPanel1" Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="1.0,0.5" EndPoint="0.5,1.0">
 <GradientStop Color="White" Offset="0.0" />
 <GradientStop Color="Salmon" Offset="1.0" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </DataTrigger>
 </DataTemplate.Triggers>
</DataTemplate>

Although this is a much longer template, it isn’t significantly more complicated than
the other one. The template has a GroupBox b that contains a bunch of label/value
items, each bound to an appropriate item in the data source. In fact, we added a
bunch more label/value items, but we’ve excluded them from the code shown to save
some space. (We assume we’ll sell so many copies of this book that, by excluding one
page of XML, we’ve effectively saved the entire Amazon Rain Basin from destruction.)
Here, we also include a trigger that makes our background red for high priority pro-
cesses c.

 Now that we have a second template, we can swap out the item template in the
ListView.

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource processesView}}"
 ItemTemplate="{StaticResource CardViewTemplate}"/>

When we run now, instead of a simple list, we get a card for each entry (figure 12.15).
Our plan to eventually switch to a card view is the reason we didn’t go with a classic
grid from the beginning.

 We’re swapping out the template for the entire list, but suppose we want to condi-
tionally choose a template. For example, what if we want a simple one-line entry for
small processes, but a card for larger processes?

Priority
trigger

c

www.it-ebooks.info

http://www.it-ebooks.info/

275Conditional templates
12.4.2 Conditionally using a template

To conditionally choose a different template for each item in our list, we can make use
of a DataTemplateSelector. A DataTemplateSelector is a piece of code that, sort of
like a filter, is called for each data item. It’s passed the item, and asked which template
to return. Listing 12.11 shows a selector that returns a different template based on
whether the size of a process is above or below a particular threshold.

using System;
using System.Windows.Controls;
using System.Diagnostics;
using System.Windows;

namespace ProcessMonitor
{
 public class ProcessInterestSelector : DataTemplateSelector
 {
 public Int64 Threshold { get; set; }
 public DataTemplate NormalTemplate { get; set; }
 public DataTemplate InterestingTemplate { get; set; }

 public override System.Windows.DataTemplate SelectTemplate(object item,
 System.Windows.DependencyObject container)
 {
 Process process = (Process)item;

 if (process.WorkingSet64 > Threshold)

Listing 12.11 DataTemplateSelector

Figure 12.15 The list is now using a
different template that provides a card
view of each process.

Derives from
DataTemplateSelector

b

Automatic property
for Threshold

c

Automatic
properties
for templates

d

Selects
template
methode

f

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 12 Advanced data templates and binding
 return InterestingTemplate;

 return NormalTemplate;
 }
 }
}

To create a custom selector, we have to derive from DataTemplateSelector b. Our
derivation is called ProcessInterestSelector because it decides which processes are
more interesting. To store the threshold c and the templates to return d, we’re
using automatic properties. Automatic properties are a new feature of C# 3.0. In the past,
we would’ve created a private member variable and then written the get and set code
to set/return the value. But, if we don’t put in any implementation, the compiler will
automatically generate the variable and the get/set code for us.

 Automatic properties are good in situations where you need no custom behavior
around your properties; if, in the future, you decide you need more functionality, you
can put it in place. We’ll get values into our properties when we create an instance in
a little while.

 The heart of our class is an override of the SelectTemplate method e. This
method gets the current item as an argument and returns an appropriate template.
Our logic looks at the memory size of the process f and, if it’s big, returns the
InterestingTemplate (meaning that the data is more interesting). Otherwise, it
returns the NormalTemplate.

 Now that we have our class, we need to create an instance of it. We do that, as per
usual, in resources.

<Grid.Resources>
 ...
 <local:ProcessInterestSelector x:Key="ProcessTemplateSelector"
 NormalTemplate="{StaticResource NormalTemplate}"
 InterestingTemplate="{StaticResource CardViewTemplate}"
 Threshold="20000000" />
</Grid.Resources>

We create an instance of the ProcessInterestSelector with the key “ProcessTem-
plateSelector”. In the declaration, we also set our properties for the Threshold,
NormalTemplate, and InterestingTemplate. The two templates reference our two
existing templates, and the threshold is set to 20MB. The last bit (which is pretty
straightforward) is to make the ListView use our selector:

<ListView Name="listView1"
 ItemsSource="{Binding Source={StaticResource processesView}}"
 ItemTemplateSelector="{StaticResource

ProcessTemplateSelector}"/>

Instead of specifying an ItemTemplate, we’re now specifying an ItemTemplateSelector.
When we run, our code will be called for each item—small items will get a single line,
and bigger items will get a card (figure 12.16).
www.it-ebooks.info

http://www.it-ebooks.info/

277Conditional templates
This isn’t, perhaps, the most attractive UI, and it would probably be a good idea to
keep your various templates relatively similar. For example, displaying a card no matter
what, but having more information on the card for the larger processes.

12.4.3 Templates based on type

In our list, all the items are of the same type—Process. But, it isn’t uncommon to
have a list of different types of objects (although usually with a common base). For
example, you might have a list that includes both Directories and Files.

 In that situation, you don’t need to create a DataTemplateSelector. Instead, you
can specify a DataType for your DataTemplate.

<DataTemplate DataType="{x:Type io:Directory}">
 ...
</DataTemplate>
<DataTemplate DataType="{x:Type io:File}">
 ...
</DataTemplate>

This approach is similar to the use of styles. When a DataTemplate is needed for the
specified type, the template targeted at that type will automatically be picked up. In
fact, another advantage of this approach is that you don’t have to specify a template to
use at all in your controls (for example, the ListView).

 We’ve talked a lot about data templates, and a lot of the little utility capabilities
and methods you can use with them. In most of our examples, though, we’ve been
worrying more about displaying data. When the user can enter data back, we then
have to worry about whether the data being entered is valid.

Figure 12.16 The template that is
displayed for each item is conditional
based on the size of the process. Our
DataTemplateSelector does the
evaluation work.
www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 12 Advanced data templates and binding
12.5 Validators
In the last chapter, we created a simple little bookmark manager that let you add
bookmarks and stored the data in a DataTable. The application was pretty trusting—it
let you type anything you liked in, and assumed it was correct. Ideally, we’d add some
code to the application to make sure that the users are entering reasonable data. Con-
veniently, WPF binding has the concept of validation built in, so we can tie Validators
to the appropriate places to make sure users are entering reasonable data, as well as
provide feedback if they aren’t. We’re going to revisit the bookmark application now,
and add in some validation handling to make sure that the data isn’t horribly bogus.

In an ideal world, your data model is responsible for validating its own data. If an ille-
gal value is entered, it would reject it. Our back-end store for the bookmark applica-
tion is a simple DataTable, but even that can do some basic sanity checking.

12.5.1 The ExceptionValidationRule

If you’re following along, bring up the Librarian application. The first thing we want
to do is put a constraint on our table—one that prevents the entry of a duplicate title.
We can do this by modifying the CreateDataSource() method in Library.cs. We want
to add one line to the code that creates the bookmarks table.

DataTable bookmarks = new DataTable("Bookmarks");
bookmarks.Columns.Add("Id", typeof(Int32));

Overzealous over validation
Validation is important to keep the system usable, but...

Be careful of overzealous validation. You certainly want to put reasonable checks in for
data; but, if those checks are overly complex, you can make a system unusable. As an
example, one of the writers of this book had his zip code changed by the post office.
Many online stores have old copies of zip codes and, rather than allowing the entry of
a correct zip code, the sites would not allow a purchase to be made. Net result? Those
sites lost business. This sort of thing happens all the time—a recent survey of e-mail
address regular expressions determined that 90% rejected valid e-mail addresses.

Beyond out-of-date or incorrect validation, another common problem is to require us-
ers to fill in a set of information in a particular order and with the correct values—
even if the user doesn’t yet know how to answer those questions. The developers
forget that the software is there to help the user, not the other way around, and the
result is that those users find ways to circumvent the system—either by not using it
or by picking bogus values to get past the requirements.

That doesn’t mean that you shouldn’t validate, just that you shouldn’t overdo it. If
you’re doing nothing more than storing a value as a blob, maybe you can warn the
user that the value doesn’t look valid, but let them enter it anyway. Also, if possible,
avoid forcing users to enter data that they don’t have.
www.it-ebooks.info

http://www.it-ebooks.info/

279Validators
bookmarks.Columns.Add("Title", typeof(string));
bookmarks.Columns.Add("Uri", typeof(string));
bookmarks.Columns.Add("Category", typeof(string));
bookmarks.Columns.Add("LastMod", typeof(DateTime));
bookmarks.Constraints.Add("UniqueTitle", bookmarks.Columns[1], false);

The last line is the new one. It says is that the value in column 1 (“Title”) must be
unique for all rows in the table. If you add that and run the application, when you hit
add and type in a duplicate name, the value won’t get set (figure 12.17).

Even though we’ve tabbed out of the Title control, the Name in the list isn’t updated
because, when an attempt is made to set a Title to a duplicate value, the Constraint
throws an exception. This is good because it stops an illegal value from being set; but
it’s less good that the user gets no obvious feedback—if the list were not displayed, the
user would never know that the value was invalid.

 Fortunately, there’s a built-in mechanism for handling validation and informing
the user that an error has occurred. As part of a binding, you can specify any number
of validation rules, and there’s even a handy one built in for responding to excep-
tions. We can specify that it be used by updating the binding on our TextBox.

<TextBox>
 <Binding Path="Title">
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
</TextBox>

Now, if the user enters a duplicate name, when the user leave the TextBox, the excep-
tion validation rule will cause an alternative error template to be defined. The default
error template puts a red border around the TextBox (figure 12.18).

 We have to give kudos to the WPF team for providing some reasonable default
behavior here. But, one flaw with the default behavior is that, although it tells you that

Figure 12.17 Even though we’ve entered a value for Title and left the control, the
DataTable won’t allow the entry, so the Name stays as the default.
www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 12 Advanced data templates and binding
something is wrong, it doesn’t tell you what. Fortunately, it’s relatively easy for us to
provide our own error template to do just that.

12.5.2 Custom ErrorTemplates

Somewhere in the bowels of WPF is the resource for a default error template that
defines the red-border behavior. That template looks something like this:

<ControlTemplate x:Key="defaultErrorTemplate">
 <Border BorderThickness="1" BorderBrush="Red">
 <AdornedElementPlaceholder Name="controlWithError" />
 </Border>
</ControlTemplate>

This is a fairly standard control template. The one thing that is a little special is the
AdornedElementPlaceholder. This is sort of like a ContentPresenter—it’s where
the element that has the error will be placed—so a red border will be put around
whatever has the problem. If we want to create our own—say, to put in a blue border,
we can define our own template in our own resources.

<Window.Resources>
 <ControlTemplate x:Key="customErrorTemplate">
 <Border BorderThickness="1" BorderBrush="Blue">
 <AdornedElementPlaceholder Name="controlWithError" />
 </Border>
 </ControlTemplate>
</Window.Resources>

Then, we specify that it should be used as part of our binding.

<TextBox Validation.ErrorTemplate="{StaticResource customErrorTemplate}">
 <Binding Path="Title">
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
</TextBox>

Now, when we run, we’ll get a blue border instead of a red one, although, given the
black-and-white nature of the book, we aren’t going to bother doing another screen-
shot. Beside anything else, we haven’t really improved the situation—a blue border
doesn’t tell us any more about the error than the red border did. Let’s create a more
complex template—one that provides a little more information (listing 12.12).

Figure 12.18 The Title TextBox now has a red border indicating that the value
entered isn’t valid.
www.it-ebooks.info

http://www.it-ebooks.info/

281Validators
<Window.Resources>
 <ControlTemplate x:Key="customErrorTemplate">
 <DockPanel LastChildFill="True">
 <TextBlock DockPanel.Dock="Right" FontSize="20" Foreground="Red"
 ToolTip="{Binding ElementName=controlWithError,
 Path=AdornedElement.(Validation.Errors)[0].ErrorContent}"
 Margin="0,1,0,0" >*</TextBlock>
 <Border BorderThickness="1" BorderBrush="DarkRed">
 <AdornedElementPlaceholder Name="controlWithError" />
 </Border>
 </DockPanel>
 </ControlTemplate>
</Window.Resources>

The idea behind this template is to put a large asterisk to the right of the control. If
the user floats over the asterisk, he gets a tooltip with the error message displayed. To
make this work, we start with a DockPanel b holding two controls—a TextBlock with
an asterisk c that’s docked right, and our familiar red border with its placeholder d.
Because it doesn’t have docking set, it will take up the remaining available space.

 The big scary bit in this code is the way that we get the text for the tooltip.

ToolTip="{Binding ElementName=controlWithError,
 Path=AdornedElement.(Validation.Errors)[0].ErrorContent}"

The element that the data is coming from is the adorned element—the TextBox that has
the error. Because of the error that’s occurred, an attached property has been associ-
ated with the TextBox. The parenthesis notation references an attached property
(Validation.Errors). But, this property is an array, so we need to get the first ele-
ment out of the array ([0]); the property we want from the first element is the
ErrorContent. See, nothing to it! Don’t ask us how long we spent figuring it out…

 Now, if we run again and enter a duplicate, the application is much more helpful
(figure 12.19).

 This setup is kind of like the InfoProvider capability of WinForms. In fact, if this
were a production app, we’d probably use an icon like the InfoProvider rather than
an asterisk. Also, rather than explicitly assigning our error template to each individual
control, we’d use a style—something like:

<Style TargetType="TextBox">
 <Setter Property="Validation.ErrorTemplate"
 Value="{StaticResource customErrorTemplate}"/>
</Style>

Listing 12.12 A fancier custom error template

b

Asterisk with ToolTip c

Control with red border d

Figure 12.19 Our new custom error template puts an asterisk at the end of the TextBox. If you
float over the asterisk, you get a Tooltip with the details of the error.
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 12 Advanced data templates and binding
This would make any validated text box use our new custom error template, but this is
all based on the idea that the data source will throw an exception when something
goes wrong. That isn’t always the case.

12.5.3 Custom validation rules

When you have a well-defined data model, the model will always protect itself. But, a
well-defined model is often not the case. In fact, our DataTable is a good example of
where making the model defend itself properly isn’t realistically possible—you can set
up some simple constraints, but the DataTable has no facility for complex rules. In
this situation, we need to provide some custom validation logic. We can do this by writ-
ing a custom ValidationRule.

 ValidationRules are simple. Like converters, ValidationRules take a data object,
analyze it in some way, and return a result. The result object contains the result of the
validation and, optionally, a description of what’s wrong. Ideally, the description
should tell the user exactly what’s wrong with the input. For example, we allow the
user to enter a URI. We might want to make sure that what the user enters is a valid
URI. To do that, we’d create a URI validation rule (listing 12.13).

using System;
using System.Windows.Controls;

namespace Librarian
{
 public class UriRule : ValidationRule
 {
 public override ValidationResult Validate(object value,
 System.Globalization.CultureInfo cultureInfo)
 {
 bool uriIsValid = false;
 string message;
 try
 {
 Uri uri = new Uri((string)value, UriKind.Absolute);
 uriIsValid = true;
 message = "URI is valid";
 }
 catch (Exception ex)
 {
 message = ex.Message;
 }
 return new ValidationResult(uriIsValid, message);
 }
 }
}

Our new rule is derived from the ValidationRule class b and overrides the Validate
method c. The validation itself relies on the Uri class, which will throw an exception if
an invalid URI is specified d. If no exception is thrown, we assume that our URI is okay.

Listing 12.13 A custom URI validation rule

Derives from
ValidationRule

b

Validates method c

Invalid URI
throws an
exceptiond

Returns
resulte
www.it-ebooks.info

http://www.it-ebooks.info/

283Model-View-ViewModel
Otherwise, we get the message from the thrown exception. In either case, we wrap the
result (success or failure) and the message into a ValidationResult object e.

 Unlike the approach we used with converters, we don’t need to create an instance
of the class as a resource. To use it, we can reference it directly in the binding’s valida-
tion rules.

<TextBox Margin="0,0,10,0" >
 <TextBox.Text>
 <Binding Path="Uri">
 <Binding.ValidationRules>
 <local:UriRule/>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

Now, when we run, if we enter a bogus URI, we get an error (figure 12.20).

You can also combine Validators. For example, if we want to display an error if the
URI isn’t legal or if an exception is thrown, we can add an additional validation rule.

<Binding.ValidationRules>
 <local:UriRule/>
 <ExceptionValidationRule/>
</Binding.ValidationRules>

Overall, the validation model is pretty flexible,
although life is still much simpler if your data model
enforces rules! In general, by mixing what you can do
with styles, data templates, binding, and validation,
you can create very complex applications very quickly.
In fact, this approach is at the heart of WPF, and is
called Model-View-ViewModel.

12.6 Model-View-ViewModel
Before we go into binding any more, we think it might
be worth mentioning a new design pattern that
Microsoft has put forth—one built around the idea of
binding. You’re probably familiar with the traditional
Model-View-Controller pattern (MVC), as shown in
figure 12.21.

Figure 12.20 Our custom validator yells at us if the URI isn’t legal.

View

Model

Controller

Actions
and

Events

Figure 12.21 In the classic MVC
pattern, the Model represents the
data, the View represents the UI
elements for presenting the data,
and the Controller handles events
from the user and adapts the
model as appropriate to the needs
of the View(s).
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 12 Advanced data templates and binding
 MVC has been around since the late 1970s. The Model is your data source—some
set of business objects or even a straight representation of your data—although, ide-
ally, the Model maintains its own data integrity (that is, it doesn’t let you set bogus val-
ues). The View (or Views) is responsible for the presentation—usually some set of
widgets. In theory, there can be any number of views on the same set of data; there
could be forms, grids, graphs, and so on.

 The purpose of the Controller is twofold. First, it’s responsible for taking input from
the user (menu commands, for example) and making sure that the UI and the model
respond appropriately. Second, it’s responsible for mapping between the View and the
Model—doing conversions and combining data in various ways as appropriate.

 The most important aspect of all this stuff is to keep a clear separation between the
Model and the View. It’s OK for the View to pull data directly from the Model, but it’s
strictly forbidden for the Model to know anything about the View (or the Controller, for
that matter). The purpose of the Controller is to make this separation possible. Because
there are a lot of ways of doing this, there are a lot of variations of the MVC pattern.

 In fact, when teaching this stuff, we often find that developers don’t really know
what the Controller is for; it’s like the spleen—everyone has one, and it’s important
for something, but we aren’t really sure for what. There’s a reason for this confusion—
as the development frameworks have evolved, they’ve taken on more and more of the
responsibility of Controllers themselves—particularly the event and command han-
dling aspects. When you do need to do some form of mapping (say, splitting the data
from an address field into several different pieces), it isn’t always clear where to do it.

 The Model-View-ViewModel (MVVM) pattern came out of an understanding of this
issue. In MVVM, the Model and the View(s) are exactly the same as in classic MVC. But,
rather than there being a single Controller object, the responsibility for what the Con-
troller used to do is split up. For example, many frameworks, including WPF, take care
of input and command handling automatically, without requiring a Controller.

 And what about the responsibility for converting and massaging data back and
forth between Model and View? Well, instead of a single object for that, there’s any
number of smaller objects that take over the responsibility. These are objects that
we’ve been using all along—Bindings. Although a View element (such as a control)
can pull a value from the Model, it can also have a Binding defined between the two.
Although you don’t have to explicitly create it, a Binding is a real object that exists
between the View element and some part of the Model—sort of like a baby Controller
(figure 12.22).

 The MVVM pattern is only workable if there’s a fairly robust binding-like mechanism
available—ideally one that does a lot of work automatically, or else you’d end up spend-
ing all your time building connectors for everything. In WPF, you just declare the behav-
ior you want, usually in XAML. You only have to write code for specialized situations—
when you have to convert the data’s format, or combine values, that sort of thing. The
nice thing is that the converters that you build can be reused; and, once you have a
library of them, you often just have to find the one you need, and you’re done.
www.it-ebooks.info

http://www.it-ebooks.info/

285Advanced binding capabilities
Given the atrophying of the Controller in recent frameworks, but the clear need for a
consistent place to mediate between the Model and the View, we think that the MVVM
pattern is a pretty good one. The one downside we see with the pattern is that it’s
somewhat tricky to debug (particularly with the automatically created objects), and
responsibility is a little more confusing (OK—two downsides). But, without a pattern
like MVVM, the WPF declarative model wouldn’t really be possible.

 We won’t reference the MVVM pattern a whole lot, although we’ll be using it. In
the next section, you’ll see examples of specialized bindings, where the framework
provides automatic mediation between Model and View for complex situations (such
as with hierarchical binding) or situations where custom mediation is needed (such as
with MultiBinding and PriorityBinding.)

12.7 Advanced binding capabilities
Binding is an incredibly wide topic—which explains why it makes up the two longest
chapters in the book. In addition to the powerful binding notations, there are a num-
ber of specialized classes for handling specific situations such as when you have hierar-
chical data or when you need to bind a number of different values to a single control.
In this section, we’ll explore some of these classes and capabilities.

12.7.1 Hierarchical binding

Data is only useful to the extent to which it can be found. One of the primary ways we
find and classify information is through the use of hierarchies. The Windows registry
and filesystem are both examples of using hierarchies to classify, store, and find informa-
tion. XML (and, therefore, XAML) are both storage systems for such forms of infor-
mation as well. WPF provides for binding to information stored in this way through the
use of HierarchicalDataTemplates.

View ViewModel Model

BindingsBindings

EventsEvents

ValidatorsValidators ConvertersConverters

CommandsCommands

Various plain
old .NET classes

Various XAML
Windows, Pages,

etc.

Figure 12.22 In the Model-View-ViewModel pattern, the Model and the View are the same as in classic
the MVC pattern. But, the Controller is replaced by a combination of underlying framework support,
commands, and a number of “mini” Controllers that provide specific bits of Controller functionality. These
mini-Controllers are often Bindings that have been automatically created by WPF.
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 12 Advanced data templates and binding
 HierarchicalDataTemplates differ from flat templates primarily through a single
property: ItemsSource. The idea here is that for any given bound object, it may have a
collection of child objects. (For example, directories have directories, and registry
keys have registry keys, and great fleas have little fleas upon their backs to bite ’em,
and so on, ad infinitum.) ItemsSource allows you to specify what property you need to
get to the children. By adding this property, HierarchicalDataTemplates can go into
a bound data object recursively. Other than that, everything about standard DataTem-
plates applies, so for this sample, we’ll just focus on how to use ItemsSource.

 For this example, we’re going to use a new sample application that displays some
XML (actually, some XAML). If you’re following along, go ahead and create a new
project called XamlBrowser. In resources, create an XmlDataProvider. We aren’t
going to load it in the XAML yet, though.

<Window.Resources>
 <XmlDataProvider x:Key="xaml" />
</Window.Resources>

Next, set up three columns for our traditional “LeftNav” UI. Drop a TreeView on the
left column, and a TextBox on the right, with a splitter in the middle (figure 12.23).

Now we need to give the XmlDataProvider some XML. Conveniently enough, our own
program is a treasure trove of XML. Double-click the title bar of the window to create
a Window_Loaded event, and enter the following code:

private void Window_Loaded(object sender, RoutedEventArgs e)
{

XML Detail ViewTreeView

Figure 12.23 Creating a simple “LeftNav” application with a Tree on the left, a splitter
in the middle and a TextBox on the right.
www.it-ebooks.info

http://www.it-ebooks.info/

287Advanced binding capabilities
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(XamlWriter.Save(this));

 XmlDataProvider provider = (XmlDataProvider)FindResource("xaml");
 provider.Document = doc;
 provider.Refresh();
}

We’re just creating an XmlDocument, loading our own Window’s XAML into it, and then
setting the XmlDataProvider to our program. Pretty clever, eh?

 Now we’re ready to populate the TreeView:

<TreeView Grid.Column="0" Name="treeView1"
 ItemsSource="{Binding Source={StaticResource xaml}, XPath=*}">
</TreeView>

The data source for the root of the tree is the “xaml” static resource we declared ear-
lier. Because we populated it during the Window_Loaded event, it will have data for us.
Using the splat XPath (splat is geek speak for asterisk) selects all the root nodes. You
may remember the XPath binding property from the previous chapter. Note that the
ItemsSource here is only providing data for the tree. It’s the ItemsSource that we’ll
be setting on our template in a moment that’s special.

 Now that we’re tied to data, we need to provide an appropriate template to use.
We’ll set this directly on the tree.

<TreeView.ItemTemplate>
 <HierarchicalDataTemplate ItemsSource="{Binding XPath=*}">
 <TextBlock Text="{Binding Path=Name}" />
 </HierarchicalDataTemplate>
</TreeView.ItemTemplate>

The template here is like any other template, except for the ItemsSource. The tree is
bound to an ItemsSource, which returns a list of nodes—but how does each node get
its children? The answer is that it has its own ItemsSource, which knows to pull a set
of children of its own. Each child then has its own ItemsSource, and so on, ad infini-
tum. Figure 12.24 shows what’s going on.

 In our example, we’re only providing one data template, and that template will be
used no matter what the type of child. But, we could also use a DataTemplateSelector
to provide a different template for different values, and the different templates could
get their children in different ways.

 We’re done populating the nodes for the tree—we’re only displaying the node
name, but we could have done anything we liked here, making things as ugly as our
Process Monitor, for example. But, we also want to display something in the text box
on the right. We’ll bind that to the outer XML of the currently selected node.

<TextBox Grid.Column="2" TextWrapping="Wrap"
 Text="{Binding ElementName=treeView1, Path=SelectedItem.OuterXml,
 Mode=OneWay}" />

That’s pretty much it. If we run the application now, we’ve created a perfect navel-
gazing application that looks at itself (figure 12.25).
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 12 Advanced data templates and binding
The XMLDataProvider makes displaying XML extremely easily, and the use of tem-
plates allows for a lot of flexibility in the way each node is displayed, as well as the way
that children are retrieved. Make sure that you don’t point the nested ItemsSource at
a static data source, though, unless you want to go horribly recursive.

XML Document

Binds to XML

XML Element

XML Element

XML Element

Populates from XPath
query in template

Created from template

XML Element

XML Element

XML Element

ItemsSource

TreeView

ItemsSource

TextBox

ItemsSource

TextBox

ItemsSource

TextBox

XML Element

Binds to XPath in template

Binds...

Results...

Created...

Result elements

Figure 12.24 Each node in the tree uses a template, which knows how to get its children via the
ItemsSource property.

Figure 12.25 The XML browser application looks at its own XAML hierarchically.
www.it-ebooks.info

http://www.it-ebooks.info/

289Advanced binding capabilities
Even with hierarchical binding, we’re still only binding a single value to a single user. In
the next section, we’ll show how you can combine a number of values in various ways.

12.7.2 MultiBinding

In the ValueConverter examples so far, we’ve taken a single value (such as a size) and
converted it into another single value (such as a color). There are times, though,
when you want to use multiple values together. For example, you might have several
fields in your data model that represent an address (address 1, city, state, and zip) that
you want to combine into a single entry in a grid.

 That’s precisely what MultiBinding lets you do—it lets you take a number of values
and combine them (somehow) into a single value. But, when you have multiple val-
ues, there’s no default way of shoving things together. There are two ways of specifying
the way to combine the values—by either using a StringFormat or by providing a con-
verter that combines the values in some way. The converter is more interesting, so
we’ll start with that first.

 The converter must be derived from IMulti-
ValueConverter and is very similar to a con-
verter derived from IValueConverter except
that, instead of having a single value as an argu-
ment, it takes multiple arguments. Let’s set up
an example. Figure 12.26 shows the basic lay-
out for an application that has three sliders—
one each for Red, Green, and Blue. We’ve put
a Grid panel at the bottom that will change
color based on the position of the sliders.

 Go ahead and create a new sample applica-
tion (ours is called ColorConverter), and set it
up to look like figure 12.26. The three sliders
have minimum/maximum values of 0/255,
and are called redSlider, greenSlider, and
blueSlider (you get to guess which is which).
The Grid panel is called colorBlock. You’ll see
why we used a Grid in a while, but for now, it’s just a convenient thing whose back-
ground color can be changed.

 Before we can go much further, we need to create our MultiValueConverter that
will take the values from each of the three sliders and convert them into a single color.
Listing 12.14 shows the code for our converter.

using System;
using System.Windows.Data;
using System.Windows.Media;

Listing 12.14 MultiValueConverter

Figure 12.26 The controls for our
MultiBinding example. The three
sliders will allow the color of the Grid at
the bottom to be changed.
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 12 Advanced data templates and binding
namespace ColorConverter
{
 class ColorMultiConverter : IMultiValueConverter
 {
 public object Convert(object[] values, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 byte R = System.Convert.ToByte((double)values[0]);
 byte G = System.Convert.ToByte((double)values[1]);
 byte B = System.Convert.ToByte((double)values[2]);

 Color newColor = Color.FromRgb(R, G, B);

 return newColor;
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

As you can see, this class is similar to an IValueConverter, except that it’s derived
from IMultiValueConverter b and the Convert method c gets an array of objects
instead of a single object. The converter assumes that three double values will be
passed as the first three arguments of the array d. If the binding was done incorrectly,
we might not get three doubles—we could get pretty much anything, which would
cause this code to crash.

 But, assuming the binding is done right, we’ll get three values that we convert to
bytes and then use to build up a color value e. As with most converters, the imple-
mentation is pretty simple. Note that we didn’t bother implementing the ConvertBack
method f because we aren’t using it. It would be pretty simple to do, though—we’d
have to pull the R, G, and B values out of the color passed as the value, and return
them as a collection of values.

 Now that we have a MultiValue converter, we need to create an instance of it in a
XAML resource (again, as with a regular ValueConverter):

<Window x:Class="ColorConverter.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:ColorConverter"
 Title="Colors" Height="300" Width="300">
 <Window.Resources>
 <local:ColorMultiConverter x:Key="colorConverter"/>
 </Window.Resources>
 ...

We put in the main Window tag to remind you to put in the local namespace. Then
we instantiate the converter as a resource with a name. Now, we can go ahead and do
our multibinding.

b Convert
method

c

Retrieves
valuesd

Converts
valuese

ConvertBack
method f
www.it-ebooks.info

http://www.it-ebooks.info/

291Advanced binding capabilities
<Grid Name="colorBlock" >
 <Grid.Background>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 <MultiBinding Converter="{StaticResource colorConverter}">
 <Binding ElementName="redSlider" Path="Value"/>
 <Binding ElementName="greenSlider" Path="Value"/>
 <Binding ElementName="blueSlider" Path="Value"/>
 </MultiBinding>
 </SolidColorBrush.Color>
 </SolidColorBrush>
 </Grid.Background>
</Grid>

We’re binding to the color of a solid brush for
the background of the Grid. Instead of a single
binding, though, we have a MultiBinding ele-
ment. The Converter property takes the refer-
ence to our MultiValueConverter. The children
of the MultiBinding element are all regular
Bindings. The MultiBinding will get the value
from each binding in turn, put them into an
array, and pass that array to our converter, which
will return a single value back—a color. If you
slide the sliders back and forth, the color in the
Grid will change automatically (figure 12.27).

 The converter doesn’t care where it gets its val-
ues, so we could’ve easily had text boxes with
numbers or any other type of UI. Over time, you’ll
probably end up with a fairly significant library of
IValueConverters and IMultiValueConverters that you can plug in as needed.
MULTIVALUE PARAMETERS

As with IValueConverters, IMultiValueConverter can take a parameter to change
its behavior. We’ve come up with a need to do this with our sample—adding a Label
to the Grid to display the color. We’ve set the label up to be centered and bound its
value to the color of the background of the Grid:

<Label Name="label4" HorizontalContentAlignment="Center"
 VerticalContentAlignment="Center" >
 <Label.Content>
 <Binding ElementName="colorBlock" Path="Background.Color"/>
 </Label.Content>
</Label>

Simple enough—but as you can see in figure 12.28, there’s a slight problem.
 Aside from the fact that we’re displaying the ultra-friendly hex version of our

color, an observant reader might notice a problem reading the text when the text
color and the background are the same. To work around this, we could create another

Figure 12.27 When any of the sliders are
moved, the multibinding automatically
updates the color of the Grid.
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 12 Advanced data templates and binding
MultiValueConverter that takes the colors and produces a color that’s visible on
the particular background, or we could pass a parameter to our existing converter
telling it to create an inverse color.

 The following XAML binds the foreground color of the label in exactly the same
way as the background of our color block—except that it passes a parameter:

<Label.Foreground>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 <MultiBinding Converter="{StaticResource colorConverter}"
 ConverterParameter="inverse">
 <Binding ElementName="redSlider" Path="Value"/>
 <Binding ElementName="greenSlider" Path="Value"/>
 <Binding ElementName="blueSlider" Path="Value"/>
 </MultiBinding>
 </SolidColorBrush.Color>
 </SolidColorBrush>
</Label.Foreground>

Note the ConverterParameter="inverse" attribute in the MultiBinding element. Now
we have to modify the code in the converter to look for the parameter (listing 12.15).

public object Convert(object[] values, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
{
 bool inverse =(parameter != null) &&
 (string.Compare(parameter.ToString(), "inverse", true) == 0);

 byte R = System.Convert.ToByte((double)values[0]);
 byte G = System.Convert.ToByte((double)values[1]);
 byte B = System.Convert.ToByte((double)values[2]);

 Color newColor;
 if (inverse)

Listing 12.15 MultiValueConverter with parameter

Figure 12.28 When the color is white, we can read the color; but, when the color is
black, our display turns ultra-Goth and is completely unreadable.

Checks for parameterb

Creates
inverse color

c

www.it-ebooks.info

http://www.it-ebooks.info/

293Advanced binding capabilities
 newColor = Color.FromRgb((byte)(255-R), (byte)(255-G), (byte)(255-B));
 else
 newColor = Color.FromRgb(R, G, B);

 return newColor;
}

We’ve added a check to see if a parameter has been passed and if the parameter is the
string value “inverse” b. If it is, then we invert the color c before returning it.
Pretty easy. Now, when we run, we can always read the text (figure 12.29), although
sometimes the colors are a little ugly.

We’re passing a pretty simple parameter to get our result, but the parameter could be
any value and could be used in any way by the converter.

 One flaw with our display is that it’s showing an ugly hex value for our color, whereas,
for some colors at least, they have real names. (In our book, of course, the names will
always be black, white, or gray —still not bitter about the color thing, though.) One way of
cleaning this up is by using a StringFormat with our MultiBinding.

STRINGFORMAT AND MULTIBINDING

It isn’t always necessary to build a converter to combine values in some way. You saw
earlier how it’s possible to format a single bound value using StringFormat;we can do
the same thing with a MultiBinding (listing 12.16).

<Label.Content>
 <TextBlock>
 <TextBlock.Text>
 <MultiBinding StringFormat="Red={0}, Green={1}, Blue={2}">
 <Binding ElementName="redSlider" Path="Value"/>
 <Binding ElementName="greenSlider" Path="Value"/>
 <Binding ElementName="blueSlider" Path="Value"/>
 </MultiBinding>

Listing 12.16 StringFormat with MultiBinding

Figure 12.29 Using the parameter of the MultiValueConverter, we have the color of our label
changing inversely to the color of the background. Better (or at least more diligent) coders might have
come up with an algorithm that avoided uglier text colors.

b
MultiBinding with

StringFormat
c

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 12 Advanced data templates and binding
 </TextBlock.Text>
 </TextBlock>
</Label.Content>

The code replaces the Label.Content block from earlier. The MultiBinding should
be familiar, except that we’ve added a StringFormat attribute c. As with a String.
Format, the {0}, {1}, {2} values will be replaced at runtime with the first, second, and
third values available—our red, green, and blue values.

 You’ve probably also noticed that we put the MultiBinding inside a TextBlock
inside the Label b. This seems silly, given that we could dump our text inside the
Label’s content directly. But, there’s a problem; StringFormat works when we’re pro-
viding a bound value to a Text property, but it doesn’t always work when our bound
result is being used for Content.

 StringFormat does work when used inline for a Content property, but we can’t put
a MultiBinding inline, so that doesn’t help us. A number of controls, including
Label, have a ContentStringFormat property that allow for the formatting of their
content, no matter where it came from, but we can’t use this either because the
MultiBinding, without a format, isn’t legal.

 There are arcane reasons why Text and Content behave differently for format-
ting—which can be explained with much hand-waving and resorting to white boards
at late-night Microsoft parties; but, to our limited imaginations, it should be consid-
ered a bug that needs to be corrected. And that’s probably why we don’t get invited to
late-night Microsoft parties anymore.

 Anyway, the easy way to avoid the problem is to shove in a control that does have a
Text property inside the Label—and so we use the TextBlock.

 Figure 12.30 shows the StringFormat in action.
 The StringFormat could be considered an improvement on the display of the

color, but we can probably do better—at least some of the time.

Figure 12.30 Using
StringFormat to
combine the values from
a MultiBinding.
www.it-ebooks.info

http://www.it-ebooks.info/

295Advanced binding capabilities
12.7.3 PriorityBinding

You know how, when you go to a web page, before a picture has been downloaded it
first puts in a placeholder for the picture, then displays a brief description, and then
finally displays the real image? Think about that as a binding scenario—you have a
control that you want to eventually hold a picture. If you already had the picture, then
you could bind to that picture and be done. But, because the picture will take a while
to download, you don’t have that option.

 You could build some sort of generic store and bind to that and then have your own
background code replace the value in that store whenever the data became available.
In fact, that’s probably the sort of thing that the browsers do. But, it seems that you
have to circumvent the binding system to do that, rather than letting it handle things.

 What you want is to provide a number of different sources for the item to display—
the picture, the caption text, and the default image. If one isn’t available, then the
code can fall back on the next and so on. This scenario is precisely the type of prob-
lem that PriorityBinding was built to solve.

 Another scenario where PriorityBinding is useful is when you have some form of
scoping. If the user has specified a value, use that. If not, if the administrator specified
a value, use that. If not, then use the default.

 As with a MultiBinding, you can use a PriorityBinding in place of any regular
Binding. The PriorityBinding contains a list of other bindings, which it steps
through one at a time, until it gets one that returns data. Because of the underlying
Property System, if one of the bindings eventually gets data (for example, the image is
loaded), it will automatically update the property.

 Because we have already got our color selector, let’s use that for an example. Right
now we’re displaying the color as a hex value, but it would be nice if, when the selected
color has a name, we displayed the name instead of the hex. We could build a single
value converter that did one or the other, but that would limit us to whatever approach
that converter took to format the value. This way we can have any number of converters
in place, and the result will be displayed based on the “best” (or, at least, the first) display.

 The first thing we’ll need is a value converter that can take a color and tell us
whether a color is a named color or not. The code in the converter (listing 12.17) is a
little ugly because it uses reflection to determine whether a color is named or not;
because that isn’t really what we’re writing about, we can live with a little ugly.

using System;
using System.Collections.Generic;
using System.Windows.Data;
using System.Windows;
using System.Windows.Media;
using System.Reflection;

namespace ColorConverter
{

Listing 12.17 ColorNameConverter
www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 12 Advanced data templates and binding
 class ColorNameValueConverter : IValueConverter
 {
 private Dictionary<Color, string> namedColors =
 new Dictionary<Color, string>();

 public ColorNameValueConverter()
 {
 PropertyInfo[] colorProperties =

typeof(Colors).GetProperties(BindingFlags.Static|BindingFlags.Public);

 Color stepColor;
 foreach (PropertyInfo pi in colorProperties)
 {
 if (pi.PropertyType == typeof(Color))
 {
 stepColor = (Color)pi.GetValue(null, null);
 namedColors[stepColor] = pi.Name;
 }
 }
 }

 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 Color col = (Color)value;
 if(namedColors.ContainsKey(col))
 return namedColors[col];

 return DependencyProperty.UnsetValue;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
 }
}

This code populates a dictionary b of colors to names using reflection c. The con-
vert method d looks up the color in the dictionary and, if it’s found, returns the
color’s name. If it isn’t found, then a special value is returned—DependencyProp-

erty.UnsetValue e. This value is interpreted by the binding system as “no value
available” or, more succinctly, as “dunno.” Note that returning null wouldn’t be suffi-
cient here. Null is a perfectly valid (albeit unhelpful) value.

 As usual, we need to create an instance of our converter as a resource.

<Window.Resources>
 <local:ColorMultiConverter x:Key="colorConverter"/>
 <local:ColorNameValueConverter x:Key="colorNameConverter"/>
</Window.Resources>

We add our new converter underneath our multi converter. Now we can finally create
our priority binding (listing 12.18).

Dictionary
of named
colors

b

Populates dictionary
using reflection

c

Convert
method

d

e

Unimplemented
ConvertBack method
www.it-ebooks.info

http://www.it-ebooks.info/

297Advanced binding capabilities
<Label.Content>
 <PriorityBinding FallbackValue="Unknown">
 <Binding ElementName="colorBlock" Path="Background.Color"
 Converter="{StaticResource colorNameConverter}"/>
 <Binding ElementName="colorBlock" Path="Background.Color"/>
 </PriorityBinding>
</Label.Content>

As you can see, we replace single binding for the Label’s content with a Priority-
Binding statement b. The FallbackValue is the value that will be used if none of the
bindings in the PriorityBinding list return a value, but in our example, this will
never happen.

 We’ve ditched the MultiValueBinding/StringFormat to save space, although it
would have worked if we wanted to keep the TextBlock. We’ve put back our original
binding that returns the hex value d, but it’s listed second in the list of bindings. That
means that it will only be used if none of the bindings before it return a value. The
first binding c passes the background color to our new converter that will either return
the name of a color or DependencyProperty.UnsetValue. If it returns Dependency-
Property.UnsetValue, then the old binding will be used. Otherwise, the color name
will be used. Figure 12.31 shows the priority binding in action.

This example is a fairly trivial one, and obviously we could have done this without using
a priority binding, but the priority binding makes this type of thing easy. It’s particu-
larly useful in the cases where an operation might take a long time—generally with
that operation being done asynchronously.

 Both MultiBinding and PriorityBinding are tools that you’ll probably only use
occasionally; but, when they are needed, they’re handy. The binding system is quite
thorough in this respect and provides a great deal of flexibility and power. We also like
writing little applications for playing with colors, so these samples have been satisfying
in that respect as well, but you’ll probably be relieved to hear that this is the last topic

Listing 12.18 PriorityBinding

b

c

d

Figure 12.31 When a color is a named color, the highest priority binding, our named color converter
provides the name. Otherwise, we fall back to our old hex autoconversion binding.
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 Advanced data templates and binding
on binding that we’re going to cover (although you’ll see binding throughout much
of the rest of the book).

12.8 Summary
Binding is definitely here to stay. The benefits of using data binding, particularly in a
system such as WPF, are simply too great to not make use of it. WPF’s data binding is
extremely rich and extremely powerful. This comes at a cost—it can sometimes be
overly complex. At least in most cases, though, the complexity comes when you’re try-
ing to do complex things. Simple to medium-simple things tend to be quite easy to
accomplish, once you get the right mindset.

 This is good, considering that Microsoft’s new model for development—Model-
View-ViewModel—is only practical if you have a good binding system to base it on. So
far, MVVM seems to be holding its own, although only time will tell if it’s here to stay.
When implemented correctly, it provides the appropriate separation between model
and display and, via the use of data templates, allows for extremely complex presenta-
tion of the model.

 Using raw data templates isn’t your only option for displaying data or making it
interactive. There are times when you need to build more complex controls—either
by combining existing controls or by building something completely new—which is
the topic of the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Custom controls
With Windows Forms, MFC, or even straight SDK programming, you often ended up
building custom controls to create a particular look-and-feel or type of behavior that
the built-in controls didn’t provide. More often, though, you ended up not building
custom controls, and making do with built-in behavior because building those con-
trols was a royal pain. Building controls was generally all or nothing—either you used
all the built-in handling or you built everything from scratch for your control.

 WPF changes all that. First, you don’t even need to bother building custom con-
trols for most things because the system is so flexible—you can customize the look-
and-feel of virtually every aspect of every control, as well as easily changing much of
the behavior. Second, if you do need to do something special, you can often do it
by combining existing elements (compositing) to get the behavior that you want.

 There are still many situations, though, where it’s more convenient to build the
control once and reuse it, or where you want to do the low-level stuff for some custom

This chapter covers:
■ Creating user controls
■ Creating custom controls
■ Changing the template on custom controls
■ Making a hyperlink happy and then sad
299

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 13 Custom controls
behavior. You’ll see both approaches throughout this chapter and the next. In the two
main examples in this chapter, the LinkLabel control and the ConditionalGroupBox,
we’re really just combining existing elements and adding a few properties. In the next
chapter, “Drawing,” we’ll start with this approach, but then build controls that do their
own low-level drawing.

 It’s hard to talk about building custom controls as a standalone topic, because, by
taking advantage of the compositional nature of WPF, new “controls” are created all
the time. HTML has some similar capabilities via the use of templates, but not to the
same scale.

 One thing is for sure—WPF is going to change the landscape for third-party con-
trol vendors. One of the primary justifications for third-party control libraries is the
time and money saved by not having to implement difficult-to-achieve behaviors. WPF
lowers the bar for what difficult-to-achieve means. Although we know third-party con-
trols vendors aren’t going away, they’ll necessarily have to start producing much more
sophisticated controls by leveraging the power of WPF themselves. Vendors will still
add a lot of things. (For example, do a search for WPF grid controls.) In fact, there’s
now a whole new market for vendors to fill—building nice-looking styles and effects
that can be plugged into WPF applications.

 Vendors aside, there are lots of situations where developers will want to build custom
controls for use in-house. WPF provides three methods to create reusable controls:

■ User controls —The simplest form of WPF reusability. User controls might also be
called aggregate controls or control collections. User controls are the preferred way
of avoiding cutting and pasting identical XAML across your applications. User
controls aren’t intended for commercial re-use, and are fairly limited. For
example, they lack template support, so you may need to implement a full cus-
tom control.

■ Custom controls —Custom controls are more complex to create, but allow for
most of the functionality missing from a user control, such as templates and
themes. Many of the controls in WPF derive from Control, so this approach is
generally flexible enough for most uses. In WPF, a proper control has no “look,”
so controls tend to be focused on behavior. Custom controls also define the
command handling (for example, cut, copy, and paste) and dependency prop-
erties and events.

■ FrameworkElement controls —Sometimes you need to do something more low-
level, where you do your own drawing and interaction behavior. In these situa-
tions, the built-in stuff for CustomControl or UserControl gets in your way.
Instead, you can derive from a lower-level class, such as FrameworkElement,
which still gives you support for things like DependencyProperties, but doesn’t
have a lot of built-in behavior.

In this chapter, we’re concentrating on user and custom controls; in the next chapter,
we’ll demonstrate building a lower-level control that does graphing.
www.it-ebooks.info

http://www.it-ebooks.info/

301Composing new user controls
13.1 Composing new user controls
Building new controls from existing controls is the most common form of control
reuse. For the next section, go ahead and create a new WPF application called Con-
trolsInAction. This is where we’ll test our new controls.

13.1.1 Building a LinkLabel control

The built-in Hyperlink class in WPF is nice and all, but sometimes it’s a bit too flexible.
For example, in the context of an XBAP or Silverlight application, it will respond to its
RequestNavigate by going to a web page, but, in a standalone WPF application,
RequestNavigate is undefined—which is sensible because we may be navigating
within the application, but a hassle when we have to continuously reimplement the
event handler every time we use it.

 Also, the Hyperlink isn’t a control, but a Span, and so it can’t be used in all the
places you can use a control. Often (but not always), it has to be hosted in something
like a TextBlock or FlowDocument—also a pain if we only want to shove a link onto a
form somewhere. We just want a nice simple control that lets us specify the text for
a link and where you go when the link is clicked—we can always use the Hyperlink if
we need more.

 We could implement a LinkLabel control in a couple different ways, but the
approach we’re going to take is to build a user control that holds a real Hyperlink, but
exposes some simple properties to make it easier to use. For our new LinkLabel con-
trol, we’re going to want two properties:

■ Text—The text to display for the link
■ URI—Where to navigate to when the link is clicked

We want both of these properties to be bind-
able so that we can use the new control in the
context of an application data-binding target.

 In your new application, right-click your
project and select Add User Control. Name
the new control LinkLabel. In the designer,
you’ll now be faced with something similar to
what you see when you create a new applica-
tion, but there’s no window frame around it
(figure 13.1).

 We don’t really need the Grid at all, and the
Hyperlink isn’t available in the Toolbox, so we
need to go to the XAML to set up this control.
Most user controls will consist of a number of
controls put together with a layout, but ours is
just a specialized Hyperlink with predefined
behavior. Remove the Grid elements from the

Figure 13.1 Initially the UserControl is
an empty 300x300 Grid, as seen in the
designer.
www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 13 Custom controls
XAML, and replace them with a Hyperlink. Let Visual Studio help you by creating the
event handler when you set the RequestNavigate attribute.

<Hyperlink Name="webLink" RequestNavigate="Hyperlink_RequestNavigate" />

Next, get rid of the Width and Height of the user control. We want the LinkLabel to
take up only the space that it needs to display the Hyperlink. Now your XAML should
look like this:

<UserControl x:Class="ControlsInAction.LinkLabel"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Hyperlink Name="webLink" RequestNavigate="Hyperlink_RequestNavigate" />
</UserControl>

All you’ll see in the designer is a vertical bar with crosses on each end. This is OK because
there’s nothing for it to display. Now it’s all about the code. Right-click the LinkLabel.xaml
file and select View Code. Because we want to use this control to bind to URIs, the first
thing we’ll need are properties for the text of the link and the URI itself (listing 13.1).

public static readonly DependencyProperty TextProperty =
 DependencyProperty.Register("Text", typeof(string),
 typeof(LinkLabel), new FrameworkPropertyMetadata(
 new PropertyChangedCallback(OnTextChanged)));

public string Text
{
 get { return (string)GetValue(TextProperty); }
 set { SetValue(TextProperty, value); }
}

public static readonly DependencyProperty UriProperty =
 DependencyProperty.Register("Uri", typeof(string),
 typeof(LinkLabel),
 new FrameworkPropertyMetadata(new

PropertyChangedCallback(OnUriChanged)));

public string Uri
{
 get { return (string)GetValue(UriProperty); }
 set { SetValue(UriProperty, value); }
}

This is rather more involved than the old field with a getter and setter for a property
that you might normally write in C#. The complexity is needed for the properties to
play nice with the Property System.

 Let’s look at the Text property in detail—the Uri property is nearly identical e. If
you look at the Text property declaration d, you’ll see that getter and setters are call-
ing GetValue and SetValue, rather than returning the value from some private mem-
ber variable (technically referred to as a backing field) such as

private string textValue = "";

Listing 13.1 Adding dependency properties to LinkLabel.xaml.cs

Establishes
custom
dependency
propertyb

Uses metadata to
create callbackc

No backing fieldd

URI
propertye
www.it-ebooks.info

http://www.it-ebooks.info/

303Composing new user controls
The GetValue and SetValue reference the dictionary of property values held by the
object. To look things up in that dictionary, we have to have a key. Now, if the world
were a simple place, that key would be a string of the name of the property or some-
thing like that, but the world isn’t a simple place. The key used by the Property System
has to do double duty—not only is it the key, but it also defines a whole bunch of
behavior about the property; this behavior is held in an object of type Dependency-
Property. By convention, the DependencyProperty is named PropertyNameProperty; in
this case, the DependencyProperty is called TextProperty b.

 Now, in its simplest form, the definition for a DependencyProperty can be reason-
ably straightforward. For example, we could do this:

public static readonly DependencyProperty TextProperty =
 DependencyProperty.Register("Text", typeof(string),typeof(LinkLabel));

The DependencyProperty key objects are almost always static members of the class
that defines the property—they need to be static so that they exist before they’re used,
and so that the same instance is used by all code that references the property. To cre-
ate a new DependencyProperty, the minimum we have to do is call the Dependency-
Property’s Register method and pass the name of the property (Text), the type of
data held by the property (string), and the name of the class registering the property
(LinkLabel).

 But, we want to do one more thing than the minimum—we want to know whenever
the value of the property has changed so that we can update our UI. One easy way to do
this is to register an event handler with the property c. The notation for this is a little
odd because the register method doesn’t have an overload that takes the handler.
Instead, we can pass a FrameworkPropertyMetadata object that describes additional
things about the property, including a callback for when the property has changed.

 Listing 13.2 shows the event handlers for when the Text and the Uri properties change.

private static void OnTextChanged(DependencyObject sender,
 DependencyPropertyChangedEventArgs e)
{
 LinkLabel label = (LinkLabel)sender;
 label.webLink.Inlines.Clear();
 label.webLink.Inlines.Add(new Run(e.NewValue.ToString()));
}

private static void OnUriChanged(DependencyObject sender,
 DependencyPropertyChangedEventArgs e)
{
 LinkLabel label = (LinkLabel)sender;
 Uri newUri;
 try
 {
 newUri = new Uri(label.Uri);
 label.webLink.NavigateUri = newUri;
 label.webLink.ToolTip =

Listing 13.2 Event handlers for property changes

Called when
the Text
property
changesbc

d

Called when
the Uri
property
changese

f

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 13 Custom controls
 String.Format("Open a new browser to {0}",(label.Uri));
 }
 catch(UriFormatException ex)
 {
 label.webLink.ToolTip = String.Format("{0} ({1})", ex.Message,
 label.Uri);
 }
}

OnTextChanged() b is the event handler called when the Text property changes
on our object. Notice that it’s a static method—it has to be because the Dependency-
Property is static. But, the specific instance whose Text property has changed is
passed as the sender, which we can easily cast to be our LinkLabel c. The other thing
passed to the handler is a DependencyPropertyChangedEventArgs object that has,
among other things, the old and new values of the property.

 At this point, we update the content of the Hyperlink to contain the new value of
the property d. The Hyperlink makes us do this by updating its Inlines collection
(which is part of the reason we decided we needed a custom control for LinkLabel in
the first place). Note that we’re accessing the private members of the LinkLabel
here—we can do that because we are a static inside the same class.

 The OnUriChanged() method e is pretty similar. But, we have to do a few extra
things to turn the Uri string of LinkLabel into the Uri object of Hyperlink f. Notice
that we’re doing the conversion in a try/catch because, if the UI string isn’t legal, an
exception will be thrown. We’re also setting the tooltip of the link to show the under-
lying URI g, or an error message if it isn’t legal h.

 The last thing we need to do is handle the user clicking the link. You should
already have a method defined called Hyperlink_RequestNavigate, so all we need is
this one line:

private void Hyperlink_RequestNavigate(object sender,
 RequestNavigateEventArgs e)
{
 System.Diagnostics.Process.Start(e.Uri.ToString());
}

The Hyperlink control raises the RequestNavigate event, and sends a Uri along for
the ride. This is a bit of a security nightmare because the user could enter any file:///
URI and potentially launch any process on the box. In reality, there are two things we
wouldn’t do; first, potentially acting upon user data without validating it and, second,
making the decision to launch a process in a UI element. In a real-world application,
the business logic should receive a command with the request to open a browser and
navigate to a page and validate it. When you’re developing a control, it’s nice to be
able to test it outside the context of an application. We’ll do that next.

13.1.2 Testing the LinkLabel UserControl

Now that we have our control, we need a place to test it. Fortunately, we already created
our test harness when we started the chapter. How convenient. So it’s time to try this

g

h

www.it-ebooks.info

http://www.it-ebooks.info/

305Composing new user controls
control. Open Window1.xaml and drag a couple of TextBox controls to it. In the first
TextBox, set the Text property to Manning and, in the second TextBox, set the Text
property to http://www.manning.com. You should now have something like figure 13.2.

 Next, we need to add our local namespace to get access to our new LinkLabel, so
add the xmlns line to Window1.xaml.

<Window x:Class="ControlsInAction.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:ControlsInAction"
 Title="Window1" Height="300" Width="500">

And add a LinkLabel bound to the test TextBox controls.

<Grid>
 <local:LinkLabel Margin="63,111,221,129"
 Text="{Binding ElementName=textBox1, Path=Text}"
 Uri="{Binding ElementName=textBox2, Path=Text}" />
 <TextBox Margin="63,51,221,0" Name="textBox1" Height="20"
 VerticalAlignment="Top">Manning</TextBox>
 <TextBox Height="21" Margin="63,81,221,0" Name="textBox2"
 VerticalAlignment="Bottom">http://www.manning.com/</TextBox>
</Grid>

Note that the Text property of the LinkLabel is bound to the Text in the first text
box, and the Uri is bound to the Text in the second. We don’t have to bind these val-
ues; we can also hardcode them.

<local:LinkLabel
 Text="Manning"
 Uri="http://www.manning.com" />

But, we wanted to demonstrate that the properties are fully bindable. When you run,
you should now have a LinkLabel with the Manning website linked; when it’s clicked,
it should open your default web browser (figure 13.3).

Figure 13.2 Setting up a harness to
test the LinkLabel UserControl
www.it-ebooks.info

http://www.manning.com
http://www.it-ebooks.info/

306 CHAPTER 13 Custom controls
If you change the URI to simply http://, you can try the sad path tooltip as well (fig-
ure 13.4).

 That completes our UserControl, but
there are some issues. First, we can use
this control as is, but the XAML behind it
is hardcoded. We can’t apply our own tem-
plate to the LinkLabel control because it
effectively is the template. Also, although
we can use this control in our test applica-
tion project willy-nilly, it would be some-
what more useful if it were available to
other application projects as well. We can
do that by using custom controls.

13.2 Building custom controls
Once you create new controls, you almost certainly want to make them reusable for
other projects. After all, if you’re only going to use them once, why even bother? In
this section, we’re going to create a new control designed to be reused from a library.
This new control will be a checked GroupBox. In the place where, on a regular Group-
Box, there’s a label, there will be a check box that enables and disables the content of
the GroupBox (figure 13.5).

 As you’ll see as we move forward, the way in which the control will be built will not
only allow the text of the CheckBox and the content of the GroupBox to be changed
easily but, via control templates, will even allow different controls to be used for the
CheckBox and the GroupBox.

 If you went only by the names, it isn’t entirely clear why you’d use a CustomControl ver-
sus a UserControl. Technically, there’s no class in WPF called CustomControl, although
you can create a Custom Control Library. In the end, all controls are custom controls in that

Figure 13.3 The rather ugly, but
functional, test harness for the
LinkLabel control is showing
the happy path tooltip.

Figure 13.4 The sad path tells the user what’s
wrong with the URI—for example, if the user
enters an invalid URI in a bookmark utility.
www.it-ebooks.info

http://www.it-ebooks.info/

307Building custom controls
they’re customized versions of some other control, whether that be a ControlTemplate
as applied to an existing control, a new control derived from a UserControl, Control,
TextBox, or even a FrameworkElement. When we talk about a custom control in WPF
terms, we’re referring to controls derived from the Control class. Many of the built-in
controls in WPF derive from this class, so you’re getting the same basic control that
Microsoft uses, in most cases. The phrase is a bit overloaded, so all you really need to
think about are the limitations and allowances that each of the specific classes give you.

 At the FrameworkElement class level, you have to do a significant amount of work
yourself, but that also gives you tremendous flexibility. At the UserControl and Control-
Template levels, you can put together existing pieces quickly, but you run into limits a
lot sooner.

 Before we worry about building the control, let’s create a Control Template
Library so that we can reference it from multiple places.

13.2.1 Building a control library

Right-click the ControlsInAction solution, and select Add New Project. Select WPF
Custom Control Library (as opposed to WPF User Control Library), and name this
new project WpfInActionControls (figure 13.6).

 We should point out the following things about the project:

■ You don’t get a designer. Yes, custom controls start with code. XAML is still
involved, but we’ll approach it differently.

■ There’s a Themes folder. In this folder is a file called generic.xaml, which we’ll be get-
ting to in a moment. The existence of this folder is highly related to the first point.

■ There’s no app.xaml. This is related to the first and second points. Maybe this
was all one point after all…

Now we’re ready to create the control.

Figure 13.5 The checked GroupBox control automatically enables and disables the
GroupBox content depending on the checked state of the CheckBox in the title.
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 13 Custom controls
13.2.2 Create the new custom control
Before we create the control and give it a name, we should think a little about the
nature of the control. One of the reasons for creating a custom control rather than a
user control is for the purpose of enabling control templates. In general, we’re creat-
ing a GroupBox with a CheckBox in the header. But, WPF allows for a very strong separa-
tion of behavior and look, so concentrating on the behavior will help us make a better
control. Let’s think about what we want from our control in the most general sense:

■ Two states for all the contained controls: enabled and disabled
■ A way to toggle the state
■ An indicator of the grouping of the controls

Given the first point, we should have a property on the control called IsContent-
Enabled. If the property is set to true, the content will all be enabled; if it’s false, it
will be disabled (clever, eh?). The second attribute leads us to the check box idea, but
we could also use a ToggleButton, or even a couple of RadioButtons. We don’t need
anything more than the IsContentEnabled property for this functionality, but we do
need to be sure that we can hook it up to whatever control happens to be used.

 The third quality is purely aesthetic—nesting provides the logical grouping we
need. We’re assuming a GroupBox, but any control that has a header and a place for
content would work (for example, the Expander control). That being said, we’re
going to call the control a ConditionalGroupBox. This name avoids building in expec-
tations of what sort of control will be used to toggle the state. It definitely implies that
the grouping control is a GroupBox, but giving the control a name like Conditional-
ContentHolder makes us a little queasy because it’s so ambiguous.

Figure 13.6 Creating a control library
www.it-ebooks.info

http://www.it-ebooks.info/

309Building custom controls
Select Add New Item, and create a Custom Control (WPF) (figure 13.7) called Condi-
tionalGroupBox.

 You’ll be presented with a large comment explaining how to use this control that’s
from another project. The details of the comment are relevant because Visual Studio
2008 has some limitations that make control reuse a little rough around the edges. We
imagine that, in a future version, you’ll be able to drag the control from the toolbox,
and it will automatically add appropriate namespaces to the XML, enable IntelliSense
for it, and all those nice1 things. Until then, the comment will have to do.

 Other than the comment, the file is pretty empty. There’s a single static construc-
tor with a call to DefaultStyleKey.OverrideMetadata. With all these static proper-
ties, this constructor gives us a way to declare that our new class derivation needs its
own styling, as well as where to look for the default style. If we were creating a deriva-
tion of a Button and only adding behaviors, we probably wouldn’t override the style
key—we’d inherit the styles of a Button.

 Because we want to host content (other UIElements), we technically need to
derive from ContentControl, but we also have the concept of a grouping mechanism,
so we’ll end up deriving from HeaderedContentControl. WPF has a number of helpful
base classes for controls that aren’t controls an end-developer would generally use
directly in a designer. HeaderedContentControl is one of those; it’s used for any con-
trols that have some sort of header with some sort of content (like GroupBox or
Expander).

 We only need one DependencyProperty on this control—IsContentEnabled. Add
the following code to the ConditionalGroupBox class (as we did in the UserControl,
except this time with a default value of true).

public class ConditionalGroupBox : HeaderedContentControl
{
 static ConditionalGroupBox()
 {
 …
 }

 public static readonly DependencyProperty IsContentEnabledProperty =
 DependencyProperty.Register("IsContentEnabled",
 typeof(bool),
 typeof(ConditionalGroupBox),
 new PropertyMetadata(true,

1 And hug it, and pet it, and call the namespace “xmlns:George”.

Figure 13.7 Select the
WPF Custom Control
from the Installed
Templates list.
www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 13 Custom controls
 new PropertyChangedCallback(OnIsContentEnabledChanged)));

 public bool IsContentEnabled
 {
 get { return (bool)GetValue(IsContentEnabledProperty); }
 set { SetValue(IsContentEnabledProperty, value); }
 }
}

And now, to set up the control logic for the callback, add the method from listing 13.3.

private static void OnIsContentEnabledChanged(DependencyObject sender,
 DependencyPropertyChangedEventArgs e)
{
 bool enabled = (bool)e.NewValue;
 ConditionalGroupBox groupBox = (ConditionalGroupBox)sender;

 UIElement content = groupBox.Content as UIElement;
 if (content != null)
 content.IsEnabled = enabled;
}

This method will be called when the IsContentEnabled property’s value changes. We
don’t yet know who is setting that property, but we also don’t care. We get the value from
IsContentEnabled b from the passed arguments, and then use that value to enable or
disable the content of our control c—although, again, we don’t know what type of con-
trol it is. The nice thing is that we only have to enable or disable the main control and all
the children in the visual tree will automatically be enabled or disabled.

 The control is done! Well, sort of. This is where templating comes in. The control
itself is technically done—we could use it in an application, but the application devel-
oper would have to write the control’s template. That isn’t very nice. But, we can pro-
vide a simple default template for the control through Generic.xaml.

13.2.3 Create the default template for the control

We’ve made much of the fact that all (or most) controls in WPF are lookless—that is,
their look-and-feel isn’t tied to the control, and so can be completely customized via
control templates. But, when you drag a Button (for example) onto a form, it obvi-
ously has a look, or you wouldn’t see anything. In fact, it has a fairly elaborate style that
draws the button, makes it change when the mouse moves over, and so on.

 The reason for this is that Button (and all the other controls) has a default control
template that defines the way it should look. We’ll do the same thing with our control.
For our default template, we’ll put a CheckBox in the header (our conditional con-
trol) and use a GroupBox for the, uh, GroupBox.

 Open the Themes folder and the file Generic.xaml. You’ll find that Visual Studio
has helpfully started your template for you. It creates a border element and binds it to
the parent control’s Background, BorderBrush, and BorderThickness properties. We
need to create the default template for this control, and we’re going to have to do it

Listing 13.3 OnIsContentEnabledChanged event handler

Who sets this?b

Only needed on
one element

c

www.it-ebooks.info

http://www.it-ebooks.info/

311Building custom controls
without any help from a visual designer because it can’t currently handle templates.
Listing 13.4 shows what the final style should look like.

<Style TargetType="{x:Type local:ConditionalGroupBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type local:ConditionalGroupBox}">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <GroupBox>
 <GroupBox.Header>
 <CheckBox IsChecked=
 "{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=IsContentEnabled}"
 Content=
 "{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Header}"/>
 </GroupBox.Header>
 <ContentPresenter Content="{TemplateBinding Content}" />
 </GroupBox>
 </Border>
 </ControlTemplate>
 </Setter.Value>
</Setter>
</Style>

As with any other template, we’re associating this template b to our control. We’d
have at least one style entry for each control in this project. We’re using a Setter to
set the Template property c on any newly created instances of ConditionalGroupBox
to our ControlTemplate definition d.

 Visual Studio gave us a nice little Border for free e, so we’re keeping it (but we
don’t have to). Our template really begins with the definition of the GroupBox f. A
GroupBox is a header control; it has header content as well as general content—the
stuff in the GroupBox itself.

 We’ve put a CheckBox into the header g. This is where we wire up the behavior that
makes everything work. The IsChecked property of the CheckBox is bound to our cus-
tom control’s IsContentEnabled dependency property. When the check state changes,
it will automatically update the property, causing our event handler to be called.

 We’re also binding the Content of the CheckBox to the Header property of our con-
trol. This property is inherited from HeaderedContentControl. When someone uses
our control, he can set its header, and whatever he sets it to will appear next to the
check box.

 Finally, we bind the Content h specified on the control (also inherited from
HeaderedContentControl) to present in the GroupBox using a ContentPresenter.
Now we can truly say the control is finished.

Listing 13.4 The ConditionalGroupBox style from Generic.xaml

Assigns template
to new controlb

c

e

GroupBox to
outline controlsf

CheckBox to enable/
disable controls

g

Creates ControlTemplate d

Directs content to be
within GroupBox h
www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 13 Custom controls
13.2.4 Testing the control

Saying the control is finished is nice and all, but we want to see it work before we’ll
sign any checks. As the comment in the code said, we can’t pop this control into the
designer and have Visual Studio work out the nuances—we first have to do some prep
work. Add a reference to the WpfInActionControl project to the ControlsInAction
project. This reference will make the code available. We also have to manually add a
namespace to the main Window in the test application.

xmlns:remote=
 "clr-namespace:WpfInActionControls;assembly=WpfInActionControls"

Although “local” is a customary namespace for locally defined resources, we know of
no standard convention for naming external libraries. At least, once you’ve typed the
opening double-quote, IntelliSense should show the WpfInActionControls namespace
and assembly (once the assembly has been referenced). Now add an instance of the con-
trol to the Window (you’ll have to manually put in the XAML), and put a Grid inside it.

<remote:ConditionalGroupBox Header="Transmogrify" Margin="20,20,20,20">
 <Grid>
 </Grid>
</remote:ConditionalGroupBox>

Once you have this in place, you can drag some controls onto the Grid for testing
purposes.

 Our new control acts like a regular GroupBox, but also exposes a CheckBox to
enable or disable the entire Content of the GroupBox. Have as much fun as you like
playing with the busy-box. Figures 13.8, and 13.9 show the application as you click
madly between states.

 Before we lose you to the fun of playing with the new control, we need to cover one
last thing. Remember that the entire point of this exercise is to build a control with full
template support, so let’s see if we can customize the control by changing its template.

Figure 13.8 All controls are disabled
with transmogrify off.

Figure 13.9 All systems are go with
transmogrify turned on.
www.it-ebooks.info

http://www.it-ebooks.info/

313Building custom controls
13.2.5 Customizing a custom control with a template

In our default template in Generic.xaml, we created some XAML markup to describe
how we wanted our control to look by default. Applying the template is going to follow
the same basic pattern, but we’ll define the template right here in our application—
right where we use the control. Add the following XAML directly after the open tag of
the ConditionalGroupBox:

<remote:ConditionalGroupBox.Template>
 <ControlTemplate TargetType="remote:ConditionalGroupBox">
 </ControlTemplate>
</remote:ConditionalGroupBox.Template>

In the designer, our control just disappeared. When we explicitly set the Template
property, we override the Generic.xaml template even if our new template does noth-
ing. That isn’t interesting, though, so let’s change the CheckBox to a ToggleButton
(listing 13.5).

<ControlTemplate TargetType="remote:ConditionalGroupBox">
 <GroupBox>
 <GroupBox.Header>
 <ToggleButton
 IsChecked=
 "{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=IsContentEnabled}"
 Content="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Header}" />
 </GroupBox.Header>
 <ContentPresenter Content="{TemplateBinding Content}" />
 </GroupBox>
</ControlTemplate>

All we have to replace from the Generic.xaml
template is the element name CheckBox with the
element name ToggleButton. Now we have the
same behavior and functionality, but with a but-
ton (figure 13.10).

 What makes these controls so powerful and
flexible is the absolute separation of look from
behavior. By not thinking in terms of assembling
controls and, instead, dividing behavior from
functionality, we’ve created a control that can be
used and presented in many ways—particularly
ones that we haven’t thought of yet. It would be
interesting to give this control to some interac-
tion designers and see what they come up with.
Because we didn’t put anything in our template

Listing 13.5 Custom template for ConditionalGroupBox

ToggleButton instead
of CheckBox

Figure 13.10 The checked
GroupBox can easily be changed to a
ToggleButton instead.
www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 13 Custom controls
that would have tied us strongly to structure or naming of the controls, you can imag-
ine a designer could take a few rules around the template and design something
entirely new from it.

13.3 Summary
As you’ve seen, the amount of work for creating a user control versus a custom shar-
able control is considerable. Most of the time, you don’t need the overhead associated
with custom controls, whereas you’re likely to create user controls at the drop of a hat.
Often you’ll just group a bunch of existing controls together, without even adding
your own properties—but the ability to do so adds a whole lot of power. Some of the
complexity of developing custom controls can be mitigated by prototyping them as
user controls first, dividing behavior from appearance, and then splitting your user
control into a template and a good old-fashioned C# file.

 The next chapter is all about drawing, but we’ll do the drawing inside a user con-
trol. We’ll also demonstrate creating controls that are derived from Framework-
Element, which is much higher up in the derivation chain than UserControl, and are
much lighter weight.
www.it-ebooks.info

http://www.it-ebooks.info/

Drawing
It’s interesting that, in most applications—particularly business applications—there
isn’t much straight drawing. Yeah, technically, everything is being drawn on the
screen, but because of the wealth of built-in controls and third-party controls, you
generally don’t do too much shoving stuff on the screen yourself.

 In Windows Forms, the most common scenarios for drawing (outside of graphi-
cal applications) were to create custom controls or to create a custom look-and-feel
for an existing control. We (the authors) have done a lot of this, and it has been a
bit of culture shock to know that, most of the time when we want to customize look-
and-feel, we don’t have to do low-level drawing code anymore.

 But that doesn’t mean that you never have to worry about drawing things. For
one thing, if you want to customize the look-and-feel of a control, you’re generally

This chapter covers:
■ Drawing with Shapes
■ Drawing using direct rendering
■ Drawing with Visuals
■ Drawing with Geometries
■ How to use good pictures to make horrendously

ugly backgrounds
315

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 14 Drawing
defining a template that uses drawing elements (rectangles, ellipses, lines, and so on)
to get what you want. Also, invariably, a few places in even the most staid and boring
business application might require some drawing code. For example—in fact, the one
we’re going to use throughout this chapter—you might want to provide a graph of
some data (figure 14.1).

 We’re going to demonstrate creating this graph not once, not twice, but three
times because there are three distinct ways of doing drawing in WPF. And those ways
don’t even include 3D drawing, which is also somewhat different. Before you start
wondering if the WPF team has gone mad, though, there are valid reasons for all three
different approaches, and they leverage each other—the developers have just pro-
vided flexible wrappers for different scenarios. The three approaches are:

■ Shapes—The Shape class and its derivations (Rectangle, Ellipse, Line, and so
on) form a set of classes that work much like controls. You can define them, set
their sizes, locations, colors, and so on, as you would with a TextBox, and they
interact with layout as a control does, supporting styles and events, and so on.
We used shapes (Ellipses and Rectangles) when we were building the UI for
the calculator.

■ Direct rendering—With direct rendering, you take over (sort of) the drawing of
your control, and explicitly draw lines and shapes and things directly onto a sur-
face that represents the control. This is the most like classic Windows drawing—
with one very big difference that we’ll discuss later.

Figure 14.1 One version of the graphing control we’re going to build in this chapter.
We’re going to provide three different versions of the drawing code, each using a different
approach to create the graph.
www.it-ebooks.info

http://www.it-ebooks.info/

317Drawing with Shapes
■ Visuals—With Visuals, you build up the way your controls should look using
low-level primitives (Rectangles, Lines, and so on, but simpler versions than
the Shapes we’ve already mentioned). Visuals don’t have all the automatic
behavior of Shapes, but you can do simple things such as hit tests.

We’ll start off by talking about Shapes. One note, though: Throughout the book,
we’ve striven to present useful information without duplicating the material easily
available through MSDN. Likewise, in this chapter, we won’t try to provide an exhaus-
tive guide to all the classes and properties available with drawing. Instead, we’ll show
the primary classes and properties, as well as some of the more interesting things you
can do. We figure you can look up the details of each enum as you need it1 without us
repeating it all ad nauseam.

14.1 Drawing with Shapes
Using Shapes is probably the simplest way of “drawing” in WPF. In some cases, you can
literally drag a Shape from the Toolbox onto your window, set a few properties, and
voilà, you have a shape. Of course, the situations where this solves a useful program-
ming problem are vanishingly small, but it’s still quite useful to be able to manipulate
shapes in this manner. Also, the same properties and behaviors apply whether you’ve
dragged a Shape onto your designer, whether it’s part of a control template, or
whether you’re programmatically creating and manipulating Shape objects.

14.1.1 Shapes in XAML

There are six shape classes in WPF. Figure 14.2
shows an example of them all. Although they all
work in more or less the same way, they each
have their own different properties and behav-
iors. When doing any serious graphic work,
you’re likely to use a combination of the differ-
ent shapes.

 We’ve created this beautiful application by
creating a new WPF app and replacing the Grid
with a Canvas—it’s slightly easier to read the
properties that way. We’re going to run through
each shape in turn and show some of the vari-
ous properties and options. In the Visual Studio
2008 editor, by default, you can only drag a cou-
ple of the shapes (Rectangle and Ellipse)
onto the form. But, if you manually add the oth-
ers to your XAML, you can then edit their properties in the property editor. Also, if
you expect to do a lot of work with Shapes, you can right-click the Toolbox, select

1 Or do what we do—use IntelliSense and experiment.

Figure 14.2 There are six shape classes
in WPF. It might interest you to know that
Triangle isn’t one of them.
www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 14 Drawing
Choose Items…, then switch to the WPF components, and add the other shapes to add
to the Toolbox (figure 14.3).

 In the real world, it isn’t often that you need to be able to drag, say, a Polygon onto
a form, so it’s quite reasonable that the default is to not show all the shapes. Once they
are there though, we’d probably never bother to remove them.
RECTANGLE

We hope you learned about this one in kindergarten. Our rectangle has
the same height and width, making it a square. You can either enter the
XAML or, in the case of a Rectangle, drag the thing off the Toolbox. Here’s
the XAML:

<Rectangle Fill="Blue" Canvas.Left = "40" Canvas.Top="40"
 Width="40" Height="40"/>

As you can see, the properties are pretty straightforward. The Canvas.Left and Can-
vas.Top properties set where the Shape goes, and the Width and Height specify its size.
The Fill property is the brush to use to fill the shape. If you don’t specify a Fill, the
shape will be invisible. Fill can be any brush. For our example, we could use a gradient.

<Rectangle Canvas.Left = "40" Canvas.Top="40" Width="40" Height="40">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Blue"/>

Figure 14.3 You can add the remaining Shape classes to the Toolbox by right-clicking the
Toolbox and selecting Choose Items… Here you can see the Path, Polygon, and
Polyline Shapes are now checked. We’ve also added Line, although it’s offscreen.
Rectangle and Ellipse are already in the Toolbox by default.
www.it-ebooks.info

http://www.it-ebooks.info/

319Drawing with Shapes
 <GradientStop Offset=".8" Color="Yellow"/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

You could animate this shape, bind properties, catch events, and do just about any-
thing with this shape that you can do with any other UIElement, such as a Button,
although the shape doesn’t do too many interesting things by itself. One cool thing is
that WPF can automatically round the corners of the Rectangle by specifying values
for the RadiusX and RadiusY properties.

<Rectangle Canvas.Left = "40" Canvas.Top="40" Width="40" Height="40"
 RadiusX="10" RadiusY="10">

Figure 14.4 shows the rectangle with the gradient
and with the rounded corners.

 We’d say more about rectangles, but, well,
they’re boxes.
ELLIPSE

An ellipse is a, well, it’s a curvy-roundy shaped thing. The proper definition
has all sorts of hard words about multiple foci and such, but all you really need
to know is that it’s basically a circle or a stretched circle. You define an Ellipse
in WPF by providing the rectangle that it needs to fit in. Here’s the XAML:

<Ellipse Fill="Green" Stroke="Black" StrokeThickness="2"
 Canvas.Left = "60" Canvas.Top="120" Width="40" Height="40"/>

One thing you might notice is that the ellipse has a border around the edge. We’ve
done that by specifying the Stroke and the StrokeThickness. Stroke is the color of the
pen to use to draw the edge and StrokeThickness is how big to make it. As you’ll see a
bit later, there are all sorts of other properties you can specify here, such as making the
Stroke dashed. And the Stroke is a brush, so it can also be any valid type of brush.
POLYGON

No, WPF does not have a triangle shape. What it does have is a Polygon,
where you can specify multiple lines to make up the shape. Here’s the
XAML for our triangle:

<Polygon Fill="Red" Canvas.Left = "100" Canvas.Top="30"
 Points="20 0 40 40 0 40"/>

Notice the Points property? This is a handy shortcut that XAML allows for specifying a
series of values like points. We could have also written this out the long way:

<Polygon Fill="Red" Canvas.Left = "100" Canvas.Top="30" >
 <Polygon.Points>
 <Point X="20" Y="0"/>
 <Point X="40" Y="40"/>
 <Point X="0" Y="40"/>
 </Polygon.Points>
</Polygon>

Figure 14.4 Rectangle
with a gradient and
rounded corners
www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 14 Drawing
This code would do exactly the same thing. Notice that we don’t have to close the
shape (by adding in the starting point at the end). Polygons are always closed shapes.
The Points collection does show up in the property editor; but, if you use the single-
line notation, it isn’t editable.
LINE

OK, so this one is pretty obvious, even in this list of pretty obvious
things. But, it does have one thing that might be tricky. Here’s
the XAML:

<Line Stroke="Purple" X1="40" X2="0" Y1="0" Y2="120"
 Canvas.Top="40" Canvas.Left="151" />

A line is drawn from the first point (X1, Y1) to the second point (X2, Y2). But, notice
that we’re also setting the Canvas.Top and Canvas.Left properties. We have two dif-
ferent sets of coordinates to deal with here. The Canvas coordinates can be thought of
as positioning a rectangular shape, The line is drawn inside that rectangle. The upper-
left corner of that rectangle is position 0, 0 as far as the line is concerned; as long as
no overriding Width and Height are specified, the rectangle will be as big as it needs
to be to hold the entire line.
POLYLINE

A Polyline is much like a Polygon, except that the shape doesn’t
have to be closed. As with a single line, the points are relative to a
rectangle that’s moved by setting the Canvas Left and Top proper-

ties. For our example, we use the verbose notation:

<Polyline Stroke="Brown" StrokeThickness="4" StrokeDashArray="1 1"
 Canvas.Left="119" Canvas.Top="170" >
 <Polyline.Points>
 <Point X="0" Y="0"/>
 <Point X="30" Y="30"/>
 <Point X="60" Y="20"/>
 <Point X="100" Y="50"/>
 </Polyline.Points>
</Polyline>

Notice that we specify a StrokeDashArray to get the dash effect. The units in the dash
array are based on the thickness of the Stroke; they say something like “have a dash as
long as the line is thick, and then a space as long as the line is thick.” If we changed
the values to “2 1”, that would give us a dash twice as long as the dash is thick (8 pix-
els) and a space 1 thickness wide (4 pixels). It’s an array, so you can do things like “2 1
4 2 8 4” if you have the desire to do so.

 You can also specify a bunch of other things, via other Stroke properties, about the
pen2 used to draw the lines. You can add end caps to the lines, control what happens at
the join points, and so on. Just look at all the StrokeXXX properties via IntelliSense.

2 There really is a Pen object used for drawing the border. We’ll talk about it in more detail later.
www.it-ebooks.info

http://www.it-ebooks.info/

321Drawing with Shapes
 If you want to make a Polyline act like a Polygon, you can add a final point
that’s the same as the starting point. You might not think that you can fill in a
Polyline unless you do that, but you can. The fill acts as though that last line
exists. You can also control (to some extent) the algorithm used to fill in the shape;
this fact matters when you have lines that cross one another. You can control the
behavior by setting the FillRule. But, this isn’t something you usually have to
worry about.
PATH

Just as there’s no built-in triangle shape in WPF, there’s also no built-in
squished lemon. If you want one, you have to create it yourself using a
Path. A Path is the most powerful of the drawing shapes, as well as the
hardest to use. A Path is sort of like a Polyline, except that the individ-

ual segments can be things other than lines, such as arcs and curves. For example,
here’s the XAML for our shape:

<Path Stroke="Black" StrokeThickness="3" Fill="Yellow"
 Canvas.Left="21" Canvas.Top="188" >
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint="0,0">
 <PathFigure.Segments>
 <LineSegment Point="20 30"/>
 <ArcSegment Size="30,30" IsLargeArc="False"
 SweepDirection="CounterClockwise" Point="50,40" />
 <ArcSegment Size="10,10" IsLargeArc="False"
 SweepDirection="CounterClockwise" Point="10,0" />
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

The shape is made up of a series of segments—a straight line and two arcs. Notice that
we’re filling the shape, even though the shape isn’t closed (although there’s a prop-
erty on PathFigure called IsClosed that, if set to true, will automatically close the
shape for us).

 We’re only scratching the surface of Paths. As well as lines and arcs, you can draw
Bézier curves, and even full shapes such as ellipses and rectangles. But, we aren’t
going to go into a great deal of detail here because we’ll be discussing the underlying
capabilities in a later section.

14.1.2 Stupid shape tricks

One of the cool things about Shapes is that they’re UIElements and behave like other
things you can drag onto a layout. For example, if we change the layout from a Canvas
to a StackPanel, our shapes will line up appropriately (figure 14.5).
www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 14 Drawing
Also, at least for the Shapes that don’t have explicit points set, you can have the layout
control size for you in certain ways. For example, if we remove the Height property
values from the Rectangle and the Ellipse, the layout will automatically make the
shapes take up all available space (figure 14.6).

 Shapes also can handle events such as mouse events. For example, we could add a
handler to the MouseDown event on the Polygon.

<Polygon Fill="Red" Canvas.Left = "100" Canvas.Top="30"
 MouseDown="Polygon_MouseDown" >

Note that we can’t catch a Click event. Certain controls, such as Button, define a
Click event, but we can get at all the slightly lower-level mouse operations like mouse
down, mouse move, and so on. We implement the handler as we would any other.

private void Polygon_MouseDown(object sender, MouseButtonEventArgs e)
{
 MessageBox.Show(
 "You clicked on the triangle. Please don't do that again.");
}

Figure 14.7 shows what happens when we click the Polygon.
 The point is that Shapes are pretty capable objects. They have all the things that

the various controls we’ve used have, such as binding and layout support, events, and
so on, which makes them pretty easy to work with. They also work nicely with control
templates, as we demonstrated with the calculator. But, there’s a downside to using

Figure 14.5 The same shapes in a StackPanel
with the Orientation set to Horizontal

Figure 14.6 By removing the Height property
from the Rectangle and the Ellipse, we let the
layout control the height of the Shapes.

Figure 14.7 We add a handler to the
Polygon for when the user clicks it.
We can do this because Shapes are
full-blown UIElements.
www.it-ebooks.info

http://www.it-ebooks.info/

323Creating the graphing control
Shapes—they’re also fairly heavy. If you want to do a complex drawing with dozens or
hundreds of shapes, you’ll end up putting a lot of overhead on WPF, making your UI
memory-intensive and sluggish. If you’re going to do more than put a few shapes in a
UI, you should probably consider one of the other available approaches.

 For the moment, we’ll demonstrate using Shapes to create a first version of a
graphing control.

14.2 Creating the graphing control
In this section, we’re going to create a graphing user control. The control will have a
place to enter names and values that will appear in a list and will automatically be
graphed as they’re entered (figure 14.8). Because of the nature of the graph, we’ll be
using mostly Rectangle shapes, but we could do line charts using lines or pie charts
using ellipses and arcs. In theory, this control could be integrated into the Desktop
Wiki application as an alternative type of data to store.

To get started, create a new WPF application, and add a user control called Graph-
Holder. This will hold the Add a value stuff on the left and a swappable control on the
right that holds our various graphing displays. The next section will go into the imple-
mentation of the control.

14.2.1 Building the GraphHolder control

The UI for GraphHolder has a Grid panel with two columns—one for the list and one
for the graph. On the side with the list, there’s a DockPanel that holds the ComboBox, a

Figure 14.8 We’re building the graphing control in a standalone application first. In the
online version, we’ve integrated this control into the Wiki application.
www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 14 Drawing
GroupBox with the Add A Value options, and a ListBox. We’ve used a DockPanel so
that we can have the ListBox easily take up the remaining space. Listing 14.1 shows
the entire XAML for the GraphHolder control.

<UserControl x:Class="GraphingWithShapes.GraphHolder"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:GraphingWithShapes"
 Height="342" Width="565" Loaded="UserControl_Loaded">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <DockPanel Name="dockPanel1" Grid.ColumnSpan="1">
 <ComboBox DockPanel.Dock="Top" SelectedIndex="0" Height="21">
 <ComboBoxItem>Column</ComboBoxItem>
 </ComboBox>
 <GroupBox DockPanel.Dock="Top" Header="Add a value" Height="75"
 Name="groupBox1" Width="200">
 <Grid Name="grid1">
 <Label Height="23" Name="label1" VerticalAlignment="Top"
 HorizontalAlignment="Left" Width="53">Name:</Label>
 <TextBox Height="21" Margin="46,3,11,0" Name="addValueNameTextBox"
 VerticalAlignment="Top" />
 <Label Margin="2.9,27,0,0" Name="label2" HorizontalAlignment="Left"
 Width="50.09" Height="22.723" VerticalAlignment="Top">Value:</

Label>
 <TextBox Margin="46,29,59,0" Name="addValueValueTextBox"

Height="20.723"
 VerticalAlignment="Top" />
 <Button HorizontalAlignment="Right" Margin="0,29,11,0"
 Name="addValueBtn" Width="40" Height="22.723"
 VerticalAlignment="Top" Click="addValueBtn_Click">Add</Button>
 </Grid>
 </GroupBox>
 <ListBox Name="valuesList" Height="Auto"
 KeyDown="valuesList_KeyDown"/>
 </DockPanel>
 <local:ColumnGraphCtrl x:Name="graphCtrl" Grid.Column="1"
 Height="Auto" Width="Auto"/>
 </Grid>
</UserControl>

We’re adding a namespace to reference our local code b as you might expect. Also,
we’ve added a handler for the Loaded event because we need to do some initialization.
As we said, the UI is a two-column Grid c with a DockPanel d on the lefthand side,
which contains a ComboBox for the type of graph (although we’re only worrying about
column graphs for now) and a GroupBox e for the Add a value controls. We’ve used
drag-and-drop to add a Grid to the GroupBox, and then to position the controls. This
is part of the reason why the XAML is so verbose.

Listing 14.1 The GraphHolder control

Namespace
for local
codebTwo-column

Gridc

DockPaneld

GroupBox for Add A Value controls e

List of
values

f Non-
existent
control
for graph

g

www.it-ebooks.info

http://www.grafile.com
http://www.it-ebooks.info/

325Creating the graphing control
 The last control in the DockPanel is the ListBox f. Because it has no Dock posi-
tion set, it takes up the remaining space in the DockPanel. In the second column of
the Grid, we have a ColumnGraphCtrl g. We haven’t yet built this control, which will
do our drawing, so this won’t compile at the moment.

 Before we get to the graphing control, let’s spend a little time on our ListBox. It’s a
list—but of what? Let’s create a small object that can hold a Name and a Value. Our graph
will then be a graph of NameValuePairs. Listing 14.2 shows the NameValuePair class.

namespace GraphingWithShapes
{
 public class NameValuePair
 {
 public NameValuePair() { }

 public NameValuePair(string newName, double newValue)
 {
 Name = newName;
 Value = newValue;
 }

 public string Name { get; set; }

 public double Value { get; set; }

 public object Tag { get; set; }
 }
}

Not much to this class—it’s pretty much a string for a Name and a double for a Value.
We’ve also added a Tag property that holds an object, which we’ll use later to refer-
ence elements in the graph. One problem, though, is that a ListBox can’t display
NameValuePair objects. If we add them to the ListBox, then the ListBox will call the
ToString() method, and we’ll have a bunch of rows that say {GraphingWithShapes.
NameValuePair}.

 Fortunately, we can provide a DataTemplate for the ListBox telling it how we want
it to display each item (listing 14.3).

<ListBox Name="valuesList" Height="Auto" KeyDown="valuesList_KeyDown">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="140"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Column="0" Text="{Binding Path=Name}"/>
 <TextBlock Grid.Column="1" Text="{Binding Path=Value}"/>
 </Grid>

Listing 14.2 The NameValuePair class

Listing 14.3 DataTemplate for ListBox

Regular
constructor

Takes Name
and Value

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 14 Drawing
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Just as we can provide a ControlTemplate to direct how a regular control is drawn,
we can also provide an ItemTemplate b for controls, such as ListBox and Combo-
Box, to indicate how each individual item in the list should be drawn. We’re provid-
ing a DataTemplate made up of a Grid with two columns c. In each column, we
have a TextBlock. We use binding to tell the TextBlocks where to get their content
d. The first one gets the value from the Name property, and the second from the
Value property.

 Note that we aren’t specifying an object type—just a property. The binding code
will automatically search the contained object for a property called Name (or Value).

 Now we can add NameValuePairs to the ListBox, and they will display in two
columns, as you can see in figure 14.8. But, we don’t want to only display the list of
NameValuePairs; we want to graph them as well. It would be convenient if we had
them in some sort of collection that we could easily pass to the graphing control.
Rather than storing the list in two places (the ListBox and a collection for graph-
ing), why don’t we use a collection of some sort and bind the contents of the List-
Box to that collection? That way we won’t have to worry about keeping both places
up to date.

 To hold our collection, we could use an ArrayList or a generic collection like
List<NameValuePair>. The binding code will let us use these collections because they
both implement IEnumerable. But, when the list changes, we want the ListBox to
automatically be updated, and neither of these collections is smart enough to tell the
ListBox when it has changed. Fortunately, WPF has a collection object specifically for
this purpose: ObservableCollection. We used this same collection in the Wiki appli-
cation to hold our pages.

 ObservableCollection implements an interface called INotifyCollection-
Changed. This is nothing particularly magical. All it does is fire an event when an item
is added or removed from the collection. The binding code subscribes to the event
and tells the bound control: “Hey, the data you’re using has changed; maybe you
should do something about this.”

 We’re also doing the binding to the ListBox in code, rather than in XAML. We
could have declared the list in XAML, and done the binding that way, but sometimes
it’s cleaner to do that from code. Listing 14.4 shows the declaration of our collection
and the code to bind it to our ListBox from GraphHolder.xaml.cs.

using System.Collections.ObjectModel;

 ObservableCollection<NameValuePair> dataPoints =
 new ObservableCollection<NameValuePair>();

 private void UserControl_Loaded(object sender, RoutedEventArgs e)

Listing 14.4 Bindable collection

Goes at top of fileb

Creates collectionc
www.it-ebooks.info

http://www.it-ebooks.info/

327Creating the graphing control
 {
 Binding binding = new Binding();
 binding.Source = dataPoints;
 valuesList.SetBinding(ListBox.ItemsSourceProperty, binding);
 }

Obviously this isn’t a complete code listing. The using statement b is needed for
ObservableCollection and has to go at the top of the file with the other using state-
ments. ObservableCollection is a generic collection, so it takes the type of the item
we want to collect—NameValuePair c. We then do the binding in the class’s Loaded
event handler d.

 What we’re doing here is more or less what the XAML compiler ends up doing
behind the scenes. We have to create a Binding object and specify its source (the col-
lection). Then we call SetBinding on our ListBox, specifying that we’re binding the
ItemSource property of the ListBox to our newly created Binding object, which
points to our collection.

 Now, if we add an item to the collection, it will automatically show up in the ListBox.

dataPoints.Add(new NameValuePair("First", 10));

We want to add an item to the ListBox when the user hits the Add button after typing
in a name and a value. To handle the operation, we add a handler for the Click event
on the button and implement it like this:

private void addValueBtn_Click(object sender, RoutedEventArgs e)
{
 string name = addValueNameTextBox.Text.Trim();
 string valueAsString = addValueValueTextBox.Text.Trim();
 double valueAsDouble = Convert.ToDouble(valueAsString);

 NameValuePair nvp = new NameValuePair(name, valueAsDouble);
 dataPoints.Add(nvp);

 addValueNameTextBox.Text = "";
 addValueValueTextBox.Text = "";
}

To save space, we’ve omitted the validation code that should be here. In the version
on the web, we also have code to edit and remove items, but none of that is related to
drawing, so we won’t bother showing it here.

 Congratulations! If you’ve followed along, you’ve now successfully built a control
that, uh, lets you add values to a ListBox. Your mother would be very proud. Of
course, the point of this whole exercise was to demonstrate using shapes to graph our
data points. We’ll implement that now.

14.2.2 Graphing using shapes

In listing 14.1, we had a reference to a control called ColumnGraphCtrl that we hadn’t
yet defined. Let’s go ahead and create it now by adding a new user control. We’re
going to concentrate on the column chart for the moment. We could take a couple of
different approaches here. For example, we could use a StackPanel, and then put on

Bindsd
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 14 Drawing
a series of rectangles to represent the values. That setup would work fairly well for col-
umn or bar charts, but not so well for line or pie charts.

 Instead, we’re going to use a Canvas layout and calculate the sizes and positions
ourselves. This may not be the best approach for a column chart, but it will serve us
well later when we discuss other drawing approaches. It also means that the XAML for
the control will be simple because we’re going to drag on a Canvas and make it take
up the entire available space.

<UserControl x:Class="GraphingWithShapes.ColumnGraphCtrl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="300" Width="300">
 <Grid>
 <Canvas x:Name="main" SizeChanged="main_SizeChanged"/>
 </Grid>
</UserControl>

We’ve renamed the Canvas as “main” and also added an event handler for the
SizeChanged event. The bulk of the implementation, though, resides in the code file
(listing 14.5).

NOTE It can get a little confusing figuring out whether to use Name or x:Name.
Determining which is appropriate is largely driven by the namespace con-
taining the element. But, there’s a handy trick—anything that supports
Name also supports x:Name; if you always use x:Name, you’ll always be OK.

using System;
...bulk of using statements omitted...
using System.Collections.ObjectModel;
using System.Collections.Specialized;

namespace GraphingWithShapes
{
 public partial class ColumnGraphCtrl : UserControl
 {
 private ObservableCollection<NameValuePair> dataPoints = null;
 private List<Color> columnColors =
 new List<Color>() { Colors.Blue, Colors.Red, Colors.Green };

 public ColumnGraphCtrl()
 {
 InitializeComponent();
 }

 public void SetData(ObservableCollection<NameValuePair> data)
 {
 dataPoints = data;
 dataPoints.CollectionChanged += new
 NotifyCollectionChangedEventHandler(DataChanged);
 Update();
 }

Listing 14.5 ColumnGraphCtrl implementation

Collection must
be passed in

b

www.it-ebooks.info

http://www.it-ebooks.info/

329Creating the graphing control
 void DataChanged(object sender, NotifyCollectionChangedEventArgs e)
 {
 Update();
 }

 public void Update()
 {
 Rectangle rect;
 foreach (NameValuePair nvp in dataPoints)
 {
 if (nvp.Tag == null)
 {
 rect = new Rectangle();
 rect.Stroke = Brushes.Black;
 rect.StrokeThickness = 1;
 main.Children.Add(rect);
 nvp.Tag = rect;
 }
 }

 CalculatePositionsAndSizes();
 }

 public void CalculatePositionsAndSizes()
 {
 if (dataPoints == null)
 return;

 double spaceToUseY = main.ActualHeight * 0.8;
 double spaceToUseX = main.ActualWidth * 0.8;

 double barWidth = spaceToUseX / dataPoints.Count;
 double largestValue = GetLargestValue();
 double unitHeight = spaceToUseY / largestValue;

 double bottom = main.ActualHeight * 0.1;
 double left = main.ActualWidth * 0.1;

 Rectangle rect;
 int nIndex = 0;
 foreach (NameValuePair nvp in dataPoints)
 {
 rect = nvp.Tag as Rectangle;
 rect.Fill =
 new SolidColorBrush(columnColors[nIndex++ % columnColors.Count]);

 rect.Width = barWidth;
 rect.Height = nvp.Value * unitHeight;
 Canvas.SetLeft(rect, left);
 Canvas.SetBottom(rect, bottom);
 left += rect.Width;
 }
 }

 public double GetLargestValue()
 {
 double value = 0;
 foreach (NameValuePair nvp in dataPoints)
 {

Called when
collection changes cHandles changes

to collection
d

Creates Rectangle for
each NameValuePair

e

Does real
work

f

g

h

i

j

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 14 Drawing
 value = Math.Max(value, nvp.Value);
 }

 return value;
 }

 private void main_SizeChanged(object sender,
 SizeChangedEventArgs e)
 {
 CalculatePositionsAndSizes();
 }
 }
}

There’s a fair amount of code here, but it’s more straightforward than it might seem.
The SetData method b will need to be called by our owning code to pass in the col-
lection of NameValuePairs. We could have created a property for this, and done the
binding in XAML; but, because we have so much of the rest of the implementation as
real code, we might as well just pass it in. When the collection is passed in, we sub-
scribe to the event that says that its content has changed—the same event that the
binding code uses! The handler for the event c calls our Update() method.

 The Update() method d steps through the collection and makes sure that there’s
a Rectangle object for each NameValuePair.3 The Rectangle is given a 1-pixel-thick
black border, and is set as the Tag on the NameValuePair so that we can find it easily
later. We also have to add it to the Canvas, or WPF will never bother drawing it.

 What’s more important is what we are not doing when we create the Rectangle—
we aren’t setting its size, its location, or even the fill color. This is all done in the
CalculatePositionsAndSizes() method e. This method is called when the collec-
tion is updated, and it’s also called when the whole control’s size changes 1) so that
the graph remains proportional.

 CalculatePositionsAndSizes() has a bunch of math in it, but it’s only figuring
out how big to make each bar. First, we calculate how much of the entire space we
want to use f. We don’t want the chart filling up the entire window because that
would be ugly. Then, we figure out how wide each bar should be g and how big each
unit of the bar should be, based on the largest value. We get the largest value via a
method j that steps through all the values and checks to see which is the biggest; the
assumption is that the biggest value will take up the entire space. Note that this
method will not handle negative numbers.

 Next, we step through the entire collection of NameValuePairs h, get the Rectangle
that we shoved into the Tag property, and set its Height and Width and the Canvas’s
Top and Bottom properties. It’s pretty handy being able to set the Bottom because this
will force all the Rectangles to line up properly without us having to calculate
the position.

3 In the fancier version of the application that you can download, we also have code here to get rid of Rectan-
gles for NameValuePairs that have been deleted from the collection.

Catches
SizeChanged
event

1)
www.it-ebooks.info

http://www.it-ebooks.info/

331Creating the graphing control
 We’re also doing something clever(ish) with the Fill color of our Rectangles i.
We defined an array of colors earlier, and we’re cycling through that collection,
assigning the colors in order to each of the Rectangles. We could have assigned a
color when we created the Rectangle; but, if we removed a value from the collection
or inserted a new value in the middle, the colors would be wrong.

 All that’s left is for us to add a call at the bottom of the GraphHolder’s
UserControl_Loaded to pass in the collection of NameValuePairs.

graphCtrl.SetData(dataPoints);

And now run the application. If you add a few values, the application should look like
the picture from figure 14.8 at the beginning of this section.

14.2.3 Catching clicks
One of the nice things about the fact that each of our bars is a full-blown UIElement is
that we have support for all the standard UIElement behaviors such as Dependency-
Properties and Events. For example, if we want to catch a double-click on a column
and display its details, we can do that fairly easily. First, we add a couple of lines to the
place where we create the Rectangles in the Update() method.

rect.MouseDown += new MouseButtonEventHandler(rect_MouseDown);
rect.Tag = nvp;

We’ve added a handler for the MouseDown event, and we’ve also set the Tag property of
the Rectangle to point to the NameValuePair that the Rectangle represents so that
we can easily find it. Then, we can implement the MouseDown handler (listing 14.6).

private void rect_MouseDown(object sender, MouseButtonEventArgs e)
{
 if (e.ClickCount == 2)
 {
 Rectangle rect = sender as Rectangle;
 NameValuePair nvp = rect.Tag as NameValuePair;

 if (nvp != null)
 MessageBox.Show(
 "Name: " + nvp.Name + ", Value: " + nvp.Value.ToString());
 }
}

Shapes don’t have a DoubleClick event, but one of the properties passed to the han-
dler is the number of times the button has been clicked b, so we can easily wait for
the second click. You could also implement a triple-click option or, if you really hate
your users, a quadruple-click feature.

 We’re using the same handler for all our Rectangles, but the specific one that is
clicked will be passed as the sender to the handler c. We then get the associated
NameValuePair out of the Tag d, where we stuck it earlier, and then pop up a func-
tional, if banal, message e. Figure 14.9 shows the results.

Listing 14.6 Rectangle MouseDown handler

b
c

d

e

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 14 Drawing
We could take this further, if we wanted, by allowing the user to drag columns, resize
them, and so on.

14.2.4 The downside of Shapes

At the moment, our graph is pretty simple, but we could make it as complex as we
liked. We could add axes, labels, a legend, text on the columns, and other nifty things.
And we could implement them all as Shapes and Labels, and so on. But, because
Shapes are UIElements, they have a fair amount of overhead to provide all the sup-
port for the UIElement features and capabilities. Once the drawing gets more com-
plex (figure 14.10), you might begin to notice some performance issues.

 Now, to give the WPF developers their due, you have to add a lot of Shapes before
you’ll even notice any slowdown at all. Nonetheless, for complex drawing applications,
there are better approaches to take that have much less overhead. In the first half of this
chapter, we’ve concentrated on Shapes. Moving forward, we’ll look at a couple of lighter-
weight approaches. In fact, if you dig deep enough into the code, you’d discover that the
Shape classes all rely on the lower-level drawing approaches such as direct rendering.

14.3 Drawing with direct rendering
Another approach that we can take to drawing is to directly render our graph when
it’s needed. This approach is the most similar to classic Windows drawing, where
you’d catch the WM_PAINT message and redraw your application. For this reason, if
you’ve done SDK controls or Windows Forms custom controls, this, in many ways, will
feel the most comfortably familiar.

Figure 14.9 Because the columns are full-blown UIElements, we can subscribe to
events. For example, we can catch clicks on the column.
www.it-ebooks.info

http://www.it-ebooks.info/

333Drawing with direct rendering
But, there’s a major difference between the WPF approach and the old stuff. In classic
Windows drawing, when a section of the screen needed to be redrawn, a message was
sent to your Window, and you were expected to redraw the screen right away. If a user
moved another Window on top of your Window and then moved it off again, you’d have
to re-redraw that bit of the screen. This is referred to as immediate mode drawing
because you have to immediately redraw everything as needed.

 In contrast, WPF uses retained-mode drawing. When WPF tells you to draw some-
thing, it only tells you once. You then describe your UI to WPF (albeit in a way that
seems similar to the immediate-mode approach). The difference, though, is that WPF
remembers (or retains) the description of your UI and doesn’t ask you to redraw any-
thing when, for example, part of the Window is covered and then uncovered. The only
time you have to redescribe your UI is if something changes (for example, if the
Window is resized or if you want to change what it looks like).

 Aside from being more convenient for the developer, this approach helps make it
possible for WPF to take advantage of graphics card capabilities, handle complex
transparency situations, and so on—because it controls the rendering.

14.3.1 Recreating the graph control

To demonstrate direct rendering, let’s create an entirely new version of our Column-
GraphCtrl called ColumnGraphRenderCtrl that, instead of creating Shape objects, ren-
ders the graph as it’s needed. Then we can swap out the controls and see what happens.
As with the Shape-based graph, we’ll be doing almost everything programmatically
rather than with the Visual Studio designer. When we were using Shapes, if we’d known
the Shapes we wanted ahead of time, we could have dragged them onto our control in

Figure 14.10 When you start adding lots of Shapes, performance and memory usage will begin to
suffer. For example, resizing may get a little sluggish.
www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 14 Drawing
the designer. But, with direct rendering, we have no such option; this is fairly normal—
if we were using WinForms or MFC, we wouldn’t get any designer help either.

 The XAML for ColumnGraphRenderCtrl is even simpler than for ColumnGraphCtrl.
We not only don’t have to bother with a Canvas but we can get rid of the Grid as well.

<UserControl x:Class="GraphingWithShapes.ColumnGraphRenderCtrl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="300" Width="300" >
</UserControl>

That’s the whole thing. And we can swap out the old ColumnGraphCtrl with the Column-
GraphRenderCtrl in the GraphHolder control by changing the one line of XAML:

<local:ColumnGraphRenderCtrl x:Name="graphCtrl" Grid.Column="1"
 Height="Auto" Width="Auto"/>

We’ve given the control the same name, and we’ll have a method in ColumnGraph-
RenderCtrl called SetData(), as we did in the old control, so we won’t even have to
change that. Listing 14.7 has most of the code for the ColumnGraphRenderCtrl.

using System;
...bulk of using statements omitted...
using System.Collections.ObjectModel;
using System.Collections.Specialized;

namespace GraphingWithShapes
{
 public partial class ColumnGraphRenderCtrl : UserControl
 {
 private ObservableCollection<NameValuePair> dataPoints = null;
 private List<Color> columnColors =
 new List<Color>() { Colors.Blue, Colors.Red, Colors.Green };

 public ColumnGraphRenderCtrl()
 {
 InitializeComponent();
 }

 public void SetData(ObservableCollection<NameValuePair> data)
 {
 dataPoints = data;
 dataPoints.CollectionChanged += new
 NotifyCollectionChangedEventHandler(dataPoints_CollectionChanged);

 InvalidateVisual();
 }

 void dataPoints_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
 {
 InvalidateVisual();
 }

 public double GetLargestValue()

Listing 14.7 ColumnGraphRenderCtrl.xaml.cs

Gets reference to
list of values

b

c

d
Works the same
as before
www.it-ebooks.info

http://www.it-ebooks.info/

335Drawing with direct rendering
 {
 // Implementation is the same as for the ColumnGraphCtrl
 }

 protected override void OnRender(DrawingContext drawingContext)
 {
 // Implementation will be shown later
 }
 }
}

We have a SetData method b as we did before, and we subscribe to the Collection-
Changed event in the same way. The only other thing we’re doing is calling Invali-
dateVisual() c. In fact, if you look at the handler for the collection changed event,
you’ll see that, unlike before, all we’re doing here is calling InvalidateVisual()d.
So, what’s a Visual, and why would we want to Invalidate it? In this case, Visual
refers to the visual representation of our control. There’s also a class called Visual,
which we’ll discuss later, but that isn’t what we’re talking about here.

 Invalidate is a term left over from the old Windows days. In yon olden days, you’d
Invalidate a region of the screen, telling Windows that it needed to be repainted.
InvalidateVisual is similar—it’s saying that something has changed, and the visual
representation of the control needs to be updated. When the representation is no
longer valid, WPF will make a call to the OnRender() method e to ask it to render
itself again. Notice, by the way, that we don’t have any handling anymore for resizing
the control because resizing automatically invalidates the rendered version of the con-
trol, causing OnRender to be called.
IMPLEMENTING RENDERING

How do we render a control? (Hint: It does not involve big saws and men in bloody
aprons.) If you’re used to drawing in the Windows SDK or Windows Forms, this will
seem spookily familiar (listing 14.8).

protected override void OnRender(DrawingContext drawingContext)
{
 if (dataPoints != null)
 {
 double spaceToUseY = ActualHeight * 0.8;
 double spaceToUseX = ActualWidth * 0.8;
 double barWidth = spaceToUseX / dataPoints.Count;
 double largestValue = GetLargestValue();
 double unitHeight = spaceToUseY / largestValue;

 double bottom = ActualHeight * 0.9;
 double left = ActualWidth * 0.1;

 Brush fillBrush;
 Pen outlinePen = new Pen(Brushes.Black, 1);
 int nIndex = 0;
 Rect rect;
 double height;

Listing 14.8 The OnRender method

The important
method e

More boring
math stuff

b

Calculates
the bottomc

d

www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 14 Drawing
 foreach (NameValuePair nvp in dataPoints)
 {
 fillBrush =
 new SolidColorBrush(columnColors[nIndex % columnColors.Count]);

 height = (nvp.Value * unitHeight);
 rect = new Rect(left, bottom - height, barWidth, height);
 drawingContext.DrawRectangle(fillBrush, outlinePen, rect);

 left += rect.Width;
 nIndex++;
 }
 }
}

This code looks a lot like the code from our CalculateSizes method from before,
including most of the same math b, although we have to calculate the bottom differ-
ently now c because we don’t have that handy Canvas.Bottom method to do it for us.

 We’re also stepping through all the NameValuePairs as before e; but, instead of
positioning Shapes, we’re determining the color to use from our handy little color
collection f, then determining the rectangle where the column should be, and call-
ing a method called DrawRectangle() on the passed DrawingContext g.

 This is where the old Win SDK stuff and the WPF stuff both converge and diverge.
In drawing code with the Win SDK, you’d work with something called a Device Con-
text (same initials as a DrawingContext even). You’d call methods on the Device
Context for operations such as “Draw a Rectangle,” “Draw a Line,” or “Draw some
text.” And then the DC would do it. Immediately. Oh, there were a bunch of other
things going on, as far as dealing with clipping and converting units and such, but,
when you said “Draw a Rectangle,” a rectangle would be drawn.

 A DrawingContext is a little different. When you say “Draw a Rectangle,” it says,
“Uh huh, you want a rectangle, got it. Draw a line, uh huh, I remember.” But it doesn’t
do any drawing. But, it retains a list of everything you want drawn. When WPF feels like
it, it will get around to rendering the description of your drawing. In fact, the drawing
will be done by another thread.

 The delay between the commands and the rendering is short enough that it
appears as though your drawing is done immediately, but you can do a little test—put
a breakpoint in the OnRender method. Other than at startup, that breakpoint will only
be hit when InvalidateVisual() is called or you resize the window. Had this been the
old immediate-style code, the method would be called continuously to keep refresh-
ing things, particularly as the debugger popped up on top to cover your drawing.

 If you run the application now, it will look exactly the same as when we used shapes
(figure 14.11). It isn’t surprising that everything looks the same because, under the
hood, WPF is using the same code to draw the rectangles. All we’ve changed is how
we’re providing the instructions.

 We want to mention a couple of other things from the example before moving on.
For one thing, notice that we’re using a Pen d to draw the border around the shape,
rather than setting a Brush and Stroke details as we did with Shape. This is another

e Gets different
colors

f

g

www.it-ebooks.info

http://www.it-ebooks.info/

337Drawing with direct rendering
concept borrowed from the Win SDK. Things like lines are drawn with Pens, although
the color and content of those lines are defined by a Brush (which can be any brush,
including gradients). A Pen also has properties like Thickness, DashStyle—in fact, all
the properties exposed as StrokeXXX on Shape. It should come as no surprise that,
behind the scenes, Shape takes all those properties and creates a Pen to draw the out-
line. Shape exposes the Pen properties in this way to make binding easier.

 In the example, we’re only using a single method on DrawingContext—Draw-

Rectangle g. But, there are a bunch of other methods. Table 14.1 shows a handful of
the more useful and interesting ones.

 As per usual, you can check the doc or use IntelliSense to see all the other avail-
able methods.

Table 14.1 Some useful and interesting properties on DrawingContext

Method Description

DrawRectangle Already seen this one. Draws a rectangle.

DrawEllipse Draws an ellipse.

DrawLine Draws a line.

DrawGeometry Draws a complex shape. This can include well-known shapes such as ellipses,
rectangles, lines, curves, and so on.

DrawText Draws text.

DrawVideo Yes, you can draw video onto a surface!

PushTransform Adds a Transform to the DrawingContext. After the Transform is added,
everything added after it will be transformed appropriately (for example, rotated
or skewed).

Figure 14.11 We’re now using direct rendering instead of Shapes, but the graph looks
the same.
www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 14 Drawing
14.3.2 Pluses and minuses of direct rendering

Using direct rendering is definitely faster than using Shapes because we’ve eliminated
tons of overhead. Also, in many ways the code seems quite a bit simpler—particularly
if, like us, you’re comfortable with Win SDK drawing. But, there are some drawbacks.

 First, do you remember how easy it was to implement the Click handler for
Shapes? Now that we don’t have any objects, we don’t have any way to handle that—
we’re clicking one big picture. This is the same problem we would’ve had with Win
SDK drawing. We have some nice rectangular areas, so we could certainly do the math
to figure out where the user clicked, but what if we had a pie chart—the math would
be somewhat harder—or some arbitrarily complex shape using Bézier curves? The
math would get really ugly really fast.

 A second drawback is more subtle. We’re used to wanting to get a drawing up on
the screen, but a drawing can be used in other ways in WPF. Aside from drawing on the
screen, we might want to draw to an image that we can save, or we might want to print.
Also, with WPF, we can use drawings as brushes; we might make a design that we want
to use, say, as a tiled background or texture. But, if we render everything directly, we
can’t do any of those things.

 What we need is a representation that gives us some of the capabilities of a Shape—
for example, knowing where it is so that we can tell that it has been clicked on, but still
keep the fast rendering capabilities. This is where Visuals come in.

14.4 Drawing with Visuals
The Visual class is the lowest-level class for putting things on the screen. In some
respects, it’s the WPF equivalent of a Windows handle without all the overhead.
UIElements, Controls, 3D stuff—these are all derived from the Visual class.

 The Visual class itself is abstract, but there’s a derivation of the Visual class called
DrawingVisual, which is a lightweight class for handling drawing. In fact, it’s so light-
weight that it can’t even draw by itself—it can be used to describe a drawing, but it needs
to be hosted by something else in order to be rendered to the screen—or wherever.

 In the previous section, we overrode the OnRender() method of our control and
painted our UI using the DrawingContext passed into that method. To use a Drawing-
Visual we do something similar—except that we get a DrawingContext out of the
DrawingVisual—something like:

DrawingVisual vis = new DrawingVisual();
DrawingContext drawingContext = vis.RenderOpen();
drawingContext.DrawRectangle(useful arguments here);
drawingContext.Close();

This code leaves us with a DrawingVisual object that contains all the instructions to
render itself. But, as we said, we need a class to draw the Visual. One built-in way is
to create a class called RenderTargetBitmap. With this class, we can have our Visual
render itself out, and then put the Bitmap into an Image object, which can be put any-
where because it’s a Control. We’d do that like this:
www.it-ebooks.info

http://www.it-ebooks.info/

339Drawing with Visuals
RenderTargetBitmap bmp =
 new RenderTargetBitmap(100, 100, 96, 96, PixelFormats.Pbgra32);
bmp.Render(drawingVisual);

Image img = new Image();
img.Source = bmp;

We’d then add the Image object to a layout, or do whatever we wanted to with it. The
downside of this is that we’re adding a picture (a bitmap) of our rendered Visual—the
Visual itself is lost, so we lose the ability to do hit testing or otherwise manipulate
the drawing. Instead, we want something that renders the Visual(s) on demand, but
doesn’t lose track of them.

14.4.1 Control for display Visuals

Unfortunately, there’s no built-in class in WPF for rendering Visuals in the way
described (although there probably should be), but it’s pretty easy to build one our-
selves. Listing 14.9 shows a class we’ve created for that purpose.

using System;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;
using System.Windows.Media;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System.Globalization;

namespace GraphingWithShapes
{
 public class ColumnGraphVisualCtrl : FrameworkElement
 {
 private VisualCollection visuals;

 public ColumnGraphVisualCtrl()
 {
 visuals = new VisualCollection(this);
 }

 protected override int VisualChildrenCount
 {
 get {return visuals.Count;}
 }

 protected override Visual GetVisualChild(int index)
 {
 return visuals[index];
 }
 }
}

Notice that our new class is derived from FrameworkElement b. It isn’t a User-
Control. In fact, if you create it as a UserControl you’ll run into trouble, because

Listing 14.9 Visual Control

Derives from
FrameworkElement

b

Collection
of Visualsc

d

Number
of Visualse

Gets each
Visualf
www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 14 Drawing
UserControls expect the Visuals that they contain to be a little higher-level than the
ones we intend to give it. We’ve created the ColumnGraphVisualCtrl as a regular class
and added the base class reference ourselves—there’s no XAML file associated with
this control at all.

 The whole purpose of this class is to render one or more Visuals, so we need a
place to store them. VisualCollection c is a special collection class for that pur-
pose. Notice that we’re passing a reference to our class when we initialize the Visual-
Collection d. Because the VisualCollection knows about our class, the collection
will automatically do a bunch of housekeeping for us, making sure that the base
FrameworkElement class knows about the Visuals in all the appropriate ways.

 The Visuals that we add will be considered children of our control. All that we
need to do to get WPF to render them for us is override a couple of methods—one
that tells the class how many children we have e and one that provides each individ-
ual child as it’s requested f.

 That’s pretty much all we have to do—except to somehow provide the Visuals we
want displayed.

 To add the Visuals, we’re going to add code to this class that does what we did
with the other versions of the graphing control for setting and holding onto data.
We’ll add the same collection of NameValuePairs, and the same initialization and
event methods.

private ObservableCollection<NameValuePair> dataPoints = null;
private List<Color> columnColors =
 new List<Color>() { Colors.Blue, Colors.Red, Colors.Green };

public void SetData(ObservableCollection<NameValuePair> data)
{
 dataPoints = data;
 dataPoints.CollectionChanged += new
 NotifyCollectionChangedEventHandler(dataPoints_CollectionChanged);
 Update();
}

void dataPoints_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
{
 Update();
}

This code should be familiar, except that we’re calling an Update() method instead
of InvalidateVisual(). The Update() method is where all the work takes place (list-
ing 14.10).

protected void Update()
{
 visuals.Clear();

 if (dataPoints != null)

Listing 14.10 Update() method

Clears existing
Visuals

b

www.it-ebooks.info

http://www.it-ebooks.info/

341Drawing with Visuals
 {
 double spaceToUseY = ActualHeight * 0.8;
 double spaceToUseX = ActualWidth * 0.8;
 double barWidth = spaceToUseX / dataPoints.Count;
 double largestValue = GetLargestValue();
 double unitHeight = spaceToUseY / largestValue;

 double bottom = ActualHeight * 0.9;
 double left = ActualWidth * 0.1;

 Brush fillBrush;
 Pen outlinePen = new Pen(Brushes.Black, 1);
 int nIndex = 0;
 Rect rect;
 double height;
 DrawingVisual visual;
 foreach (NameValuePair nvp in dataPoints)
 {
 visual = new DrawingVisual();
 using (DrawingContext drawingContext = visual.RenderOpen())
 {
 fillBrush =
 new SolidColorBrush(columnColors[nIndex % columnColors.Count]);

 height = (nvp.Value * unitHeight);
 rect = new Rect(left, bottom - height, barWidth, height);
 drawingContext.DrawRectangle(fillBrush, outlinePen, rect);
 }

 visuals.Add(visual);
 nvp.Tag = visual;

 left += rect.Width;
 nIndex++;
 }
 }
}

Much of this code is unchanged from our last implementation. But, we are doing a
few things differently. First, we’re getting rid of any existing Visuals each time the
method is called b. Unlike with a Shape, we can’t change the properties of an exist-
ing Visual.

 We create a new DrawingVisual for each NameValuePair c. This Visual is what
will eventually get rendered for each bar. We could put all the bars into a single
Visual, but if we did that, then we wouldn’t be able to tell them apart for things like
click-handling. To “draw” into the DrawingVisual, we have to get a DrawingContext,
which we get by calling RenderOpen(). Note that we’re making use of a using state-
ment here d; it makes sure that visual.Close() is called when we’re done. We
could have easily called that method explicitly, but this approach is a little safer and
more elegant.

 We then draw our Column onto the DrawingContext e. Finally, we add our new
DrawingVisual to our collection of Children f. Note that we don’t have to do any-
thing special to make the Visual redraw itself. When the VisualCollection is

Same old math

Method copied
from previous
implementation

New Visual for
each Column

c

d

e

AddsVisual to
collectionfg
www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 14 Drawing
updated, it automatically handles that for us. We’re also storing a reference to the
DrawingVisual in the NameValuePair g so that we can use it for hit testing later.

 We need to do one more thing to our control—we need to make sure that our dis-
play is appropriately updated when it’s resized. To do that, we subscribe to the
SizeChanged event, which we can do in the constructor.

SizeChanged += new SizeChangedEventHandler(OnSizeChanged);

And then we add the handler.

private void OnSizeChanged(object sender, SizeChangedEventArgs e)
{
 Update();
}

The last step is to update the XAML for GraphHolder to use the new control.

<local:ColumnGraphVisualCtrl x:Name="graphCtrl" Grid.Column="1"
 Height="Auto" Width="Auto"/>

If you’re following along, go ahead and run. The application should look just like the
direct rendering version shown in figure 14.11, or for that matter, the Shapes version
from figure 14.8. But, this version is much lighter-weight than the Shapes version,
which would matter more if our display was more complex. Also, unlike the direct-
rendering version, we can do things like hit testing, which we’ll talk about in the
next section.

14.4.2 Hit testing with Visuals

Shapes are Visuals, but Visuals are not Shapes. (We’re going for the profound state-
ment of the year with that one.) The point, though, is that the ability to catch events
that exists on Shapes isn’t available on our DrawingVisuals, but Visuals do support a
hit-test mechanism that can tell us whether they’ve been clicked on or not. This is a
much lower-level mechanism, but it is, in fact, the mechanism that Shapes use to
expose events.

 Our ColumnGraphVisualCtrl is a FrameworkElement, so we can catch the Mouse-
Down event on that class. Rather than subscribing to the event, we can override the
OnMouseDown() method on the class to save a step. Then, in that handler, we can
use the low-level hit testing to see which (if any) of our Visual children was hit.
Listing 14.11 shows the implementation of the OnMouseDown method.

protected override void OnMouseDown(MouseButtonEventArgs e)
{
 if (e.ClickCount == 2)
 {
 Point pt = e.GetPosition(this);

 HitTestResult result = VisualTreeHelper.HitTest(this, pt);
 if (result != null)

Listing 14.11 Hit testing with Visuals

Checks for double-clickb
Converts point to
proper coordinates

c
Does
hit test

d

www.it-ebooks.info

http://www.it-ebooks.info/

343Drawing with Visuals
 {
 foreach (NameValuePair nvp in dataPoints)
 {
 if (nvp.Tag == result.VisualHit)
 {
 MessageBox.Show("Name: " + nvp.Name + ", Value: "
 + nvp.Value.ToString());
 break;
 }
 }
 }
 }
}

When the user clicks anywhere on our entire control, this method will be called. We’re first
making sure that the user double-clicked b. Then we have to convert the point the
user clicked into units relative to our control c. The real work, though, is done by
the static HitTest method d on a class called VisualTreeHelper. This class has vari-
ous methods for helping out with Visuals. The HitTest method looks through all the
child Visuals of the class to see if the passed point intersects any of the Visuals that
are children of our control. If one is found, we step through all the NameValuePairs
to find the one associated with the hit Visual e. Unfortunately, Visual doesn’t have
a Tag, so we can’t associate the NameValuePair directly with the object. In a more
sophisticated example, we’d use some form of dictionary to facilitate quick lookup of
the appropriate NameValuePair.

 That’s pretty much it. Again, though, the behavior will look as it did in figure 14.9,
so we aren’t going to bother with a screenshot.
HANDLING MULTIPLE HITS

In our example, our shapes don’t overlap, so there’s no chance for more than one
Visual to be hit with the same click, but in other scenarios, it would be quite possible for
this to happen. The version of HitTest() that we’re using will stop as soon as any child is
found. But, another overload of HitTest() will handle multiple hits. It’s a little more
complex to use because you have to pass an event handler, which will be called each time
a hit takes place. We could rewrite our code to use this overload (listing 14.12).

protected override void OnMouseDown(MouseButtonEventArgs e)
{
 if (e.ClickCount == 2)
 {
 Point pt = e.GetPosition(this);

 VisualTreeHelper.HitTest(this, null,
 new HitTestResultCallback(OnVisualHit),
 new PointHitTestParameters(pt));
 }
}

protected HitTestResultBehavior OnVisualHit(HitTestResult result)

Listing 14.12 Handling multiple hits

e

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 14 Drawing
{
 foreach (NameValuePair nvp in dataPoints)
 {
 if (nvp.Tag == result.VisualHit)
 {
 MessageBox.Show("Name: " + nvp.Name + ", Value: "
 + nvp.Value.ToString());
 break;
 }
 }

 return HitTestResultBehavior.Continue;
}

We’re using a version of HitTest() that takes a callback method b. The method also
takes various other arguments that would, for example, let us control the way the hit
test takes place, but we aren’t going to worry about that right now. The handler c will
get called for every Visual that’s hit. We’re doing the same thing here we did before
in the OnMouseDown method—find the associated NameValuePair and display its data.

 We can return two different values from our handler: HitTestResultBehavior.
Continue d, which says move on to the next Visual that’s hit, or HitTestResult-
Behavior.Stop, which would stop looking for any more hits.

 Because we have no overlap, we’ll only get one hit, so the behavior will be exactly
the same. By the way, the reason that the hit test uses a callback instead of, say, return-
ing a collection, is for performance and efficiency. If there were a lot of overlapping
shapes, memory would have to be reserved to hold the entire collection and the hit
testing would keep going even if the caller was looking for the first or second hit.

14.4.3 Adding labels to our graph

So far our chart hasn’t changed its look from implementation to implementation.
But, we’d like to add a little bit to this version by displaying the name beneath each
column. We want to do this for the following reasons:

■ We want to show that a Visual isn’t tied to a single shape.
■ We want to demonstrate that the hit testing is fancy enough to handle com-

plex shapes.
■ We want an opportunity to put in another screenshot that doesn’t look like one

we’ve already done.

As it happens, it’s easy to add labels to our chart. In the Update() method, directly
beneath the DrawRectangle call, we add the following:

FormattedText ft = new FormattedText(nvp.Name,
 CultureInfo.CurrentCulture,
 FlowDirection.LeftToRight,
 new Typeface("Verdana"), 12,

fillBrush);
ft.TextAlignment = TextAlignment.Center;
drawingContext.DrawText(ft,
 new Point((left + rect.Width / 2), bottom + 5));

d

www.it-ebooks.info

http://www.it-ebooks.info/

345Drawings and Geometries
The DrawText() method, like the DrawRectangle() method, adds something to the
Visual. The argument that it takes is a FormattedText object, which describes the text
we want to add, the font to use, the brush, and so on. We’re specifying that the
text should be drawn 5 pixels below the bottom of our columns and centered on
the bar. Figure 14.12 shows the results.

 Aside from making our graph a little more readable, we can now demonstrate
something pretty cool. Because we’ve added the labels to the same visuals as the col-
umn, clicking the labels will also count as a hit on the Visuals. If we wanted to do this
with the Shape implementation, we’d either have to create some Labels and handle
clicks on those separately, or we’d have to use a Path Shape that includes both the col-
umn and the Label—which would have been quite tricky.

 All the drawing that we’ve done so far has been quite simplistic, which is largely a
function of our own artistic abilities (or lack thereof)—and, to be fair, a column chart
doesn’t inspire our internal muses as much as it might. If we were doing something
more impressive, the approach would have been the same. And, as you’ll see in the
next section, WPF will let you do arbitrarily complex drawing.

14.5 Drawings and Geometries
So far we’ve demonstrated drawing by shoving together some number of elements,
such as rectangles, ellipses, text, and so on, in some way that the user can interact with
them. This approach works well for the scenarios we’ve explored so far, but we might
want to work with more complex things. For example, we might want to include bitmaps
or video clips in what we’re rendering. Also, we might want to have more elaborate

Figure 14.12 We’ve added labels to our graph, although our implementation won’t be
quite so pretty if there are a lot of rows.
www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 14 Drawing
clip-art-style drawings. In this section, we’ll talk about the steps involved in creating
and using more elaborate drawings.

 Now, with the techniques we’ve shown so far and with access to the various primi-
tives, we could obviously create complex drawings. For example, suppose we wanted
to draw a magnifying glass like the one in figure 14.13. We could write code to draw
some ellipses, create some polygons to represent the handle, add some more shapes
to fill in the shadows, and so on. By writing the code to draw onto a Visual, we could
even treat the shape as a whole unit to catch clicks on it, and so on.

However—and it’s a big however—this would be a terrible way of doing drawings.
First, artists aren’t known for their expertise in procedural code. They want to use
drawing tools. Second, code isn’t a good transfer medium for drawing. It would be far
more convenient if we could define the drawing in XAML, so that it could easily be
moved about, referenced, changed without changing code, and so on. Last, we don’t
want to have to mess with doing the math to resize the magnifying glass (or other
images) for different uses—we want the system to handle that for us.

 This is where Drawings come in. A Drawing can define a complex image that can
easily be referenced from multiple places. It can be defined in XAML (or in code),
and there are multiple tools designed for artists to create drawings, including
Microsoft Expression Design, an Illustrator-like tool that exports XAML. The best part
is that Drawings can be automatically sized and the resized image is very high qual-
ity—it isn’t just a zoomed-in version of a bunch of pixels (figure 14.14).

The abstract Drawing class in .NET has several different derivations for different pur-
poses (table 14.2).

 These different types of Drawings can be defined in XAML. For example, an
ImageDrawing might look like this:

<ImageDrawing Rect="0,0,100,100"
 ImageSource="C:\WINDOWS\Web\Wallpaper\Bliss.bmp"/>

Figure 14.13 A drawing of a magnifying glass could be created by using the drawing
primitives we’ve discussed so far. This image was created by a company called Grafile,
who has given us permission to use it here. You can download the XAML for this and
another 30+ free images from their website at www.grafile.com.

Figure 14.14 Drawings can automatically
adjust their size, but the quality of the images
remains intact. This is the same technology
that underlies the high-quality icons used in
Windows Vista.
www.it-ebooks.info

www.grafile.com
http://www.it-ebooks.info/

347Drawings and Geometries
Note that the details will be different for each type of Drawing. But, you can’t use a
Drawing directly—it has to be contained in something. Three different things can
hold a Drawing (and the first one will blow your mind):

■ DrawingImage—An Image (like a bitmap) whose contents are defined by one of
the Drawing classes. You can use a DrawingImage in most of the places where
you can use an ImageSource, such as in an Image class. And, yes, you’re reading
correctly—you can put an ImageDrawing into a DrawingImage! Someone at
Microsoft was cackling maniacally after coming up with that one. Fortunately,
when you’re working in XAML, it will yell at you if you try to use the wrong class
in the wrong place, so it ends up not being too hard to figure out which class you
want. Most of the time, when you are working with drawings, you’ll end up using
a DrawingImage to host it.

■ DrawingBrush—A Brush that lets you use a picture to paint things. You can use
this brush as you would a solid color brush or a gradient brush. One common
use of a DrawingBrush is to fill in a shape with a pattern. Figure 14.15 shows our
graph using the magnifying glass as a brush.

■ DrawingVisual—A Visual whose content is a Drawing. As we’ve covered in
some detail already, Visual is the base class of virtually everything you can draw
on the screen. A DrawingVisual is a lightweight representation of a drawing
but, as you’ve seen, you have to have something else to hold onto the Visual. We
could, for example, add a DrawingVisual directly to our VisualCollection in
the ColumnGraphVisualCtrl, although that wouldn’t be a useful thing to do.

The effect in figure 14.15 was accomplished by defining a DrawingBrush, setting its
TileMode to Tile, ViewPortUnits to Absolute, and the ViewPort to “0,0,16,16”. We
then set the Drawing of the DrawingBrush to the ImageDrawing of the magnifying glass.

Table 14.2 Types of Drawings

Class Purpose

ImageDrawing Used to hold a graphic, such as a bitmap. This is the low-level, lower-over-
head class to use to hold an Image—versus the Image class, which has
all the event support, layouts, and so on.

VideoDrawing Lets you “draw” a video clip that can be played, started, stopped, and so on.

GeometryDrawing A drawing made up of various shapes such as curves. This is what was used
to create the magnifying glass from figure 14.13.

GlyphRunDrawing Lets you draw text with extreme accuracy—you’d use this if you were going to
build a typesetting application.

DrawingGroup Groups multiple drawings together.
www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 14 Drawing
14.5.1 GeometryDrawing

Of the five drawing classes, GeometryDrawing is the most interesting because it lets
you create arbitrarily complex drawings. A GeometryDrawing is made up of a series of
Geometry elements of different types, such as Ellipses and Rectangles (sound
familiar?). One of the most important Geometry classes is PathGeometry, which we
saw earlier for the Path Shape. The Shape classes all really just wrap Drawings dis-
played on Visuals.

 A PathGeometry is made up of a set of PathSegment classes—ArcSegment, Bezier-
Segment, LineSegment, and so on. You can build a GeometryDrawing in code by creat-
ing these classes and adding them appropriately, or you can build them in XAML—
something like this:

<GeometryDrawing>
 <GeometryDrawing.Geometry>
 <PathGeometry>
 <PathFigure>
 <LineSegment Point="100,0" />
 <BezierSegment Point1="100,0" Point2="200,200" Point3="300,100" />
 </PathFigure>
 </PathGeometry>
 <GeometryDrawing.Drawing>
</GeometryDrawing>

This is a simple drawing, and there’s already a fair amount of XAML. For complex
drawings, there could be hundreds of elements, making the XAML very unwieldy. For
this reason, there’s a shorthand notation defined for geometries that allows them to

Figure 14.15 Using the magnifying glass as a brush. Notice that we’re also using it to
draw the text, which isn’t terribly readable.
www.it-ebooks.info

http://www.it-ebooks.info/

349Drawings and Geometries
be specified as long strings of instructions. For example, the previous example could
be represented like this:

<GeometryDrawing Geometry="L 100,0 C 100,0 200,200 300,100" />

You can find the details of both the full notation and the shorthand notation in the
MSDN documentation, so we won’t bother to reiterate it here; but, to give you an idea of
what we’re doing, note that L stands for Line and C for Curve. Even with the shorthand
notation, complex drawings can be very verbose. For example, the magnifying glass is
95 lines of XAML, even using the shorthand notation. Here’s the beginning of it:

<DrawingImage x:Key="Horizon_Image_Search">
 <DrawingImage.Drawing>
 <DrawingGroup>
 <DrawingGroup.Children>
 <GeometryDrawing Brush="#FF8D8AA1" Geometry="F1 M 186.689,185.664C

186.689,125.155 235.918,76.1029 296.648,76.1029C 357.378,76.1029
406.609,125.155 406.609,185.664C 406.609,246.174 357.378,295.226
296.648,295.226C 235.918,295.226 186.689,246.174 186.689,185.664 Z M
209.061,185.664C 209.061,233.862 248.274,272.934 296.648,272.934C
345.024,272.934 384.237,233.862 384.237,185.664C 384.237,137.465
345.024,98.3949 296.648,98.3949C 248.274,98.3949 209.061,137.465
209.061,185.664 Z "/>

 <GeometryDrawing Brush="#FF8D8AA1" Geometry="F1 M 237.133,297.975C
214.116,334.721 186.581,371.926 154.528,409.579C 152.716,412.254
145.576,420.27 134.722,416.4C 130.458,414.879 117.658,405.728
115.005,399.912C 113.265,396.098 111.197,384.04 117.872,378.33C
143.848,344.773 174.48,311.106 209.75,277.327C 213.31,264.522
208.849,269.049 220.792,256.186C 230.661,269.312 239.817,274.231
254.506,281.607C 254.506,281.607 249.67,288.171 247.89,290.352C
241.554,298.11 242.781,294.211 237.133,297.975 Z "/>

 …89 more lines of XAML to follow…
 Of course, the artist who created the magnifying glass didn’t hand-code this XAML,

and it would be very unusual for that to ever be done. Instead, he used a tool like
Microsoft Expression Design, and then exported the image as XAML. Expect to see
more tools for doing this, as well as more precreated libraries.

14.5.2 Using Drawings
Creating Drawings is obviously not trivial, but using them is. The images from Grafile,
such as the magnifying glass, are distributed as a XAML resource dictionary, although they
could be distributed as a standalone DLL, like the dictionary of Windows styles. The sim-
plest way to use the third-party pictures is to use the DrawingImage in an Image, like this:

<Image Source="{StaticResource Horizon_Image_Search}" />

Now you’re back to having a Control with all its overhead, but it isn’t too bad, consider-
ing it’s containing all the separate elements. If you’re doing direct rendering or using
Visuals, you can get the resource in code, and then draw it to the DrawingContext.

DrawingImage img =
 Application.Current.FindResource("Horizon_Image_Search") as DrawingImage;
drawingContext.DrawImage(img, rect);
www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 14 Drawing
This code makes it pretty obvious that the image is being stored as a DrawingImage,
but it doesn’t have to be—the resource could be the GeometryDrawing. But, that
would mean you’d have to wrap the GeometryDrawing, so it’s pretty common to go the
DrawingImage route. This isn’t a major problem, even if you want to use the Geometry
in another way. For example, this is how we used the magnifying glass as a brush in fig-
ure 14.15:

DrawingImage img =
 Application.Current.FindResource("Horizon_Image_Search")
 as DrawingImage;
DrawingBrush drawBrush = new DrawingBrush(img.Drawing);
drawBrush.TileMode = TileMode.Tile;
drawBrush.Viewport = new Rect(0, 0, 16, 16);
drawBrush.ViewportUnits = BrushMappingMode.Absolute;
drawingContext.DrawRectangle(drawBrush, outlinePen, rect);

This code extracts the Drawing out of the DrawingImage and passes it into the Drawing-
Brush. We could also have done that in XAML. This Brush could go anywhere you
might put any other brush. For example, we’ve set the background of the ListBox of
NameValuePairs to use the magnifying glass as a brush.

<ListBox.Background>
 <DrawingBrush Opacity="0.2" TileMode="Tile"
 ViewportUnits="Absolute" Viewport="0,0,16,16" Drawing=
 "{Binding Source={StaticResource Horizon_Image_Search},Path=Drawing}"/>
</ListBox.Background>

As you can see in figure 14.16, the result is fairly hideous, although we’ve set the Opacity
of the brush to 0.2 to make it slightly less obnoxious.

Figure 14.16 The DrawingBrush behind the ListBox was done with XAML. The
DrawingBrush in the columns was done in code. If you run this application and then
resize the window repeatedly, you’ll be hypnotized into going out and buying another 30
copies of this book…
www.it-ebooks.info

http://www.it-ebooks.info/

351Summary
With great power comes great responsibility. Before shipping your application, make
sure that you find someone with a modicum of taste. If he immediately passes out
from seeing your UI, you should maybe consider going with a solid color. We hope
that, in this section (and chapter), we’ve given you a good feel for the sorts of things
that are possible with WPF drawing.

14.6 Summary
All in all, this chapter has been fun to write—we got to play with pretty shapes and col-
ors, and we’re pretty easily amused. We were limited by our lack of artistic ability, but
managed to work around this by leveraging the work of real artists. This is a core
design goal of WPF—to let the artists and the domain experts work independently, but
to end up with a unified application. But, as the programmers, we do have the final
word on the evil ways in which the artist’s work gets used!

 Although, in some respects, we’ve barely scratched the surface of drawing in WPF,
you should have enough of an understanding of the framework that you’ll know where
to go and what to look for. We couldn’t possibly cover all the myriad properties of all the
different drawing classes without dedicating the entire book to the one topic. MSDN is
much better at providing lists of properties, but not so good at the big picture.

 We aren’t quite done with our graphing application. In the next chapter we’re
going to explore yet another way of drawing our chart—this time in 3D. If nothing else,
it will at least look different from the three versions in this chapter!
www.it-ebooks.info

http://www.it-ebooks.info/

Drawing in 3D
When we first saw that WPF had extensive support for 3D, we immediately started
talking about some of the cool things we expected to be able to do, such as having
controls angling off into the distance on a pane to the side of the screen to take up
less real estate or creating some really cool 3D transitions.

 It turns out that, although it’s possible to do these things, it isn’t the primary tar-
get for 3D in WPF. The 3D support in WPF is reasonably extensive and pretty cool,
but it’s quite distinct from the 2D world we’ve inhabited so far. The general
approach for 3D is to put a special container into your application and then put 3D
content into that. An example would be building a 3D model of your office and
allowing the user to fly through it. Adding a maniac with a gun, à la Quake XVII, is
an optional extra. When WPF first came out, thinking about anything approaching
a Quake-like game would have been unthinkable, but as the technology has pro-
gressed, it has become more and more reasonable. WPF still isn’t the platform of
choice for high-speed games, but it’s getting there...

This chapter covers:
■ Building a 3D world
■ 3D Transforms
■ Our ponderings on the thoughts of

electronic monks
352

www.it-ebooks.info

http://www.it-ebooks.info/

353Lights, camera…
The 3D support in WPF is a relatively thin wrapper on Direct3D, the 3D portion of
DirectX. This isn’t surprising, considering that WPF uses Direct3D for pretty much
everything —most of the 2D stuff uses Direct3D under the hood, although it’s wrapped
so well that you’d never know it. With 3D, the implementation isn’t so well hidden,
making it a little more complex to use; it does still use things like XAML and the Prop-
erty System, so it’s not too much of a departure from what you’re used to.

 Going through all the concepts needed to handle 3D is a book by itself—one with
lots of cool pictures and ugly math. The 3D capabilities in WPF, though simple (for 3D
implementations), could equally take up another book. In this chapter, we’re going to
breach the surface of 3D to give a taste of what’s possible and how it’s approached.
We’ll take the graphing example from the previous chapter and make a 3D version of
the graph (figure 15.1).

15.1 Lights, camera…
Working with 3D is much like working on a movie set. You have to create a simulated
world of three-dimensional models that represent the things that you want to show
up. You have to position a camera and point it in an appropriate direction to control
what you see, and you have to put in lights or you won’t be able to see anything. Based
on all these things, WPF will create a two-dimensional image that simulates what you’d
see if you were looking through the viewfinder of the camera onto the scene.

 The viewfinder is represented via the use of a class called Viewport3D.
Viewport3D is another FrameworkElement that you can position in your layout like
any control. Inside the Viewport3D is where all your 3D elements reside. This is one
of the biggest limitations of the 3D support in WPF—although you can easily put 3D

Figure 15.1 In this chapter, we’ll re-create the graph from chapter 14 but in 3D.
www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 15 Drawing in 3D
content in the middle of your 2D application, the 3D elements are limited to their
own sandbox.

 In the Viewport3D sandbox, the coordinate system is different than what we’re
used to in the 2D world, as you can see from figure 15.2.

 If you were more or less awake during your geometry classes, you should recognize
a three-dimensional Cartesian coordinate system; the central point where all the axes
cross is 0,0,0, with the values increasing to the right, top, and toward the viewer. Also,
like the real universe, but unlike the two-dimensional space, there’s no explicit edge
based on the width and height of the available space (other than those limits imposed
by the numbering system). You can create arbitrarily large or small three-dimensional
models, and they will be visible (or not) depending on where and how you set up
your camera.

 We’ll start by creating a model so that we have something to look at. Then we’ll set
up lighting and cameras so that we can see our models. As with the more low-level
drawing in the last chapter, Visual Studio 2008 won’t help us out too much, although
other tools are often used to create 3D models and scenes and we expect a number of
them to support exporting to XAML in the near future.

15.1.1 Models

Models, as in real life, are what we look at in a 3D world. Unlike in the real world (with
some very disturbing runway exceptions), WPF models are made up of little triangles
because you need a minimum of three points to define a surface in a 3D world, and
when you join the three points together, you get a triangle. Once the triangle is
defined (by its points) and is covered in some material (say, the color blue), the sys-
tem can calculate, based on the position of the camera and the available lights, how it
should look on a 2D screen.

 But, the fact that a model is made up of triangles can make building them fairly
tedious, and it’s relatively unusual to build models manually. Usually a 3D design tool

-Z-Z

+X

+
Y

(0,0) Origin
+X

-Y

-X

+
Y

+Z

(0,0,0) Origin

2D Coordinate System 3D Coordinate System

Figure 15.2 In 2D, the coordinates all start in the upper-left corner and go from there. In 3D, the
coordinates start at a central point and radiate outward, with right and up being positive, and down
and left being negative. On the Z-axis, positive is toward the viewer, and negative is away. This
order for the Z-axis follows what’s called the righthand rule, once again demonstrating the bias
against lefthanded people.
www.it-ebooks.info

http://www.it-ebooks.info/

355Lights, camera…
(such as ZAM3D from Electric Rain) would be used to create the models, just as a design
tool would be used to build 2D XAML icons. The design tool would export the model by
breaking it down into appropriate little triangles for use by the WPF 3D system.

Listing 15.1 shows the XAML for a simple (flat) rectangle.

<Viewport3D>
 <Viewport3D.Children>
 <ModelVisual3D>
 <ModelVisual3D.Content>
 <GeometryModel3D>
 <GeometryModel3D.Geometry>
 <MeshGeometry3D Positions="-2,-2,0 2,-2,0 -2,2,0 2,2,0"
 TriangleIndices="0,1,2 1,3,2" />
 </GeometryModel3D.Geometry>
 <GeometryModel3D.Material>
 <DiffuseMaterial>
 <DiffuseMaterial.Brush>
 <SolidColorBrush Color="Blue" />
 </DiffuseMaterial.Brush>
 </DiffuseMaterial>
 </GeometryModel3D.Material>
 </GeometryModel3D>
 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
</Viewport3D>

We’re defining a type of model called a Geometry (because it’s all geometrical and
stuff). A Geometry is built by creating a mesh, which is sort of like a fishing net. Each
place where the line crosses is a point, and there’s a line between each point. And all
the lines end up making lots and lots of little triangles.

Curves with triangles?
You might be wondering if everything in 3D is done using triangles. For example, if
you want to create a sphere, triangles might not seem to be ideal, but even things
like spheres are built using triangles. The smoother that you want the curves, the
more triangles you have to use. Other 3D technologies, such as ray tracing, work in
a different way. With ray tracing, if you want a sphere, you provide the formula for a
sphere, and the computer calculates every bit of light intersecting that formula, as
well as colors, shadows, and reflections. Whenever you see a detailed 3D computer-
generated image with beautiful shadows and reflections, it’s almost always done with
ray tracing.

Unfortunately, ray-tracing is fairly slow, and the 3D engine behind WPF is more designed
for creating 60 frame-per-second animations than really detailed images. It uses trian-
gles and a bunch of tricks to simulate a reasonable facsimile of a 3D image.

Listing 15.1 XAML for a 3D rectangle

ViewPortb

Points c

Trianglesd

Materiale
www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 15 Drawing in 3D
 The first thing that we have to specify for our mesh is
the points that make it up—this is the set of positions
b. Figure 15.3 shows the positions relative to our three-
dimensional coordinate plane.

 Now, you might think that, because we’re defining tri-
angles, we’d pass a number of sets of three points to
define each triangle, but that would be fairly inefficient
because a lot of the points would end up being reused—
which would matter a lot for a more complex model.
Instead, we pass one collection of points and then another
collection of TriangleIndices c that specify which
points to use from our collection of points to make up the
shape we want. In the example, we only have to pass four points, instead of six, because
the first triangle is made up of the 0th, 1st, and 2nd points, and the second is made up of
the 1st, 3rd, and 2nd points. Figure 15.4 shows how the triangles are defined.

By the way, you may be wondering if the order that the indices are specified in matters.
The answer is yes—from a three-dimensional perspective, the order in which you specify
the points can control which way the shape is facing and whether you’re seeing its front
or its back. We could also specify a collection of Normals for each of our triangles to tell
more exactly which way the shape is facing and how light should bounce off of it. Normals
are vectors perpendicular to the surface. The easiest way of thinking about them is as
arrows sticking out from the shape in the direction they’re pointing. For complex mod-
els they matter quite a bit; but, for our simple examples, we can mostly ignore them.

 One last thing we need for our shape is a material d. The material covers our
shape. We’re using a DiffuseMaterial. A diffuse material is one that, when light hits
it, it spreads out evenly. Here’s a list of the three options for materials:

■ Diffuse—Spreads out the light over the whole surface
■ Specular —Makes the surface reflective and shiny
■ Emissive —Treats the material as though it has a glow

Beyond specifying that the material is diffuse, we also provide a brush to use e. This
can be any WPF brush—gradients, images, visuals, and so on—so the approach is

(-2,-2,0)

(-2,2,0) (2,2,0)

(2,-2,0)

Figure 15.3 The four points
we’ve defined for our rectangle.
Note that the Z coordinate is 0
for all values, so the rectangle
is flat.

0

2 3

1 0

2 3

1

Figure 15.4 Our model is made up of two triangles. One that uses points 0, 1,
and 2, and one that uses points 1, 3, and 2.
www.it-ebooks.info

http://www.it-ebooks.info/

357Lights, camera…
pretty flexible. You can also do some fancy things with mapping—for example, posi-
tioning an image quite precisely over a model. This is the sort of thing you’d do in a
3D program when creating your model.

 When you build a model, you can build it out of a single mesh, but you’ll more
often build it by combining a series of meshes into a group of meshes. This approach
tends to be simpler and gives better lighting effects. Usually, in 3D environments, for
the environment to provide a collection of primitives—lines, cubes, spheres, and so
on. Unfortunately, WPF doesn’t ship with any primitives, which is a bit of a disappoint-
ment, but this does make it easier for book writers to provide examples that would be
silly if you could say, “Give me a cube.”

 If you took the XAML from our example and dumped it into a layout, you’d
see…absolutely nothing. We’ve built the equivalent of a 2001 monolith—without light,
it’s a black cube against a black background. But, you have to bring your own apes.

15.1.2 Lights
With 2D, you specify the color or brush you want to use, and voilà, things appear. In
3D, things are more complicated. In a 3D scene, the way in which the model reacts to
light helps to make it realistic. For instance, the part of a model directly in a light will
be brighter, and the part not in the light will be dimmer, as will parts of the model fur-
ther away from a light.

 Lights are another type of model, so you can put them into your scene and posi-
tion them like your various other objects. For example, if you create a model of a car,
you could put lights in as the headlights, and whatever they hit would be lit as appro-
priate. WPF currently has the following types of lights:

■ Ambient—Glows from everywhere. Light comes from all directions equally. This
tends to be a fairly boring way to light scenes, although it can be handy to lessen
shadows when mixed with other lighting.

■ Directional —Comes from a particular direction and points in a specific way. This
type of light isn’t part of the scene per se. It’s sort of like having the sun in your
scene—it’s so far off that it doesn’t matter where it is.

■ Point —Comes from a specific point and glows equally in all directions. This is
sort of like gluing Tinker Bell into the scene.

■ Spot —Comes from a specific point and shines in a particular direction. This
would be the one you’d use for the headlight effect.

Listing 15.2 Shows the XAML for a directional light. The XAML would be another
child in the Viewport3D.Children collection.

<ModelVisual3D>
 <ModelVisual3D.Content>
 <DirectionalLight Color="White" Direction="-2,-3,-1" />
 </ModelVisual3D.Content>
</ModelVisual3D>

Listing 15.2 XAML for a directional light
www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 15 Drawing in 3D
We’re using a White light here, but you can use any color you like. Red is particularly
good for horror-movie scenes. The Direction is the direction that the light is point-
ing. The light would be pointing straight back into the scene if we’d used 0,0,-1. By
offsetting it slightly, we get some more interesting shadow effects. These values have
the light pointing down and to the left, as well as toward the distance on the Z-axis.

 The other lights have various other properties and, once again, when you work
with a design tool, you can play with the lights easily to get the effect you want.

 Now that we have light, you can run our application—and still you’ll see nothing…

15.1.3 Cameras
If a tree falls in the forest and there isn’t anyone around to see it, does it really fall? In
WPF 3D, the answer is no—whatever your local cybernetic Buddhist monk has to say
on the issue. You have to define a camera and specify which way it’s looking to be able
to see anything. WPF has two types of cameras: Orthographic and Perspective. Both
show a representation of a scene as seen from a particular place. The Perspective cam-
era foreshortens items—things get smaller as they disappear into the distance. Using
this camera makes sense for things like realistic animation. The Orthographic camera
puts everything in the right place, but doesn’t shrink things into the distance. Using
this camera makes more sense for things like graphs or other visual representations of
data. Listing 15.3 shows the XAML for an Orthographic camera. The XAML should
appear below the Viewport3D opening tag, but above the models.

<Viewport3D.Camera>
 <OrthographicCamera Position="0,0,3" LookDirection="0,0,-1" Width="5" />
</Viewport3D.Camera>

The Position is the three-dimensional point where the camera is located. The Look-
Direction controls the way it’s facing. It isn’t a point, but a 3D vector. A good way of
thinking about LookDirection is to think of a short line from the origin (0,0,0) to a
point defined by the vector. In the example, we have a line going straight back from
the origin that’s 1 unit long. Moving the line so that it starts at the Position of the
camera gives the way the camera is facing.

 The Width property controls the aperture of the camera. The bigger the width, the
more stuff you can see, but the smaller it will all be.

 Now that we have a model, some lights, and a camera, we can unveil our exciting
3D shape (figure 15.5).

 Not very exciting. But, to prove that we are really in a 3D world, we can move our
camera, changing its angle to something like this:

<Viewport3D.Camera>
 <OrthographicCamera Position="3,3,3"
 LookDirection="-1,-1,-1" Width="5" />
</Viewport3D.Camera>

And, now, if you run, things are a little different (figure 15.6).

Listing 15.3 XAML for a camera
www.it-ebooks.info

http://www.it-ebooks.info/

359Graphing in 3D
It’s still not terribly impressive, but you can now see that we can control what we see by
moving our camera and that we’re undoubtedly working in 3D. In the next section,
we’ll create some 3D objects that are really 3D.

15.2 Graphing in 3D
In the previous chapter, we showed three different ways of creating the same chart.
In this section, we’ll add a fourth: a 3D version of our graphing control. The
approach is most similar to the Visual approach in 2D except that, when the graph
changes, we’ll create 3D models to represent each column in the chart, instead of a
simple visual shape.

 If you’re following along, open up the graphing sample and then add a new User-
Control called ColumnGraph3DControl. Listing 15.4 shows the XAML for the control.

<UserControl x:Class="GraphingWithShapes.ColumnGraph3DControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="300" Width="300">
 <Grid>
 <Viewport3D x:Name="main" ClipToBounds="True">

 <Viewport3D.Camera>
 <OrthographicCamera
 Position="0,0,3" LookDirection="-0.5,-0.5,-1" Width="10" />
 </Viewport3D.Camera>

 <Viewport3D.Children>
 <ModelVisual3D>
 <ModelVisual3D.Content>

Listing 15.4 ColumnGraph3DControl XAML

Figure 15.5 We’ve cleverly created a 3D
shape that looks like something we could
have done far more easily in 2D. For our
next trick, we’ll turn water into water.

Figure 15.6 By moving our camera, it’s
suddenly obvious that we’re in a 3D world,
even though our shape is flat.

3D Viewportb

Camera c
www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 15 Drawing in 3D
 <DirectionalLight Color="White" Direction="-2,-3,-1" />
 </ModelVisual3D.Content>
 </ModelVisual3D>
 </Viewport3D.Children>
 </Viewport3D>
 </Grid>
</UserControl>

First, we add a Viewport3D to our Grid b to hold our 3D elements. The Viewport3D
isn’t included in the Toolbox by default, so we have to add it directly via XAML, although
we could easily customize the Toolbox and then drag a ViewPort3D onto the Grid.

 Next, we set up a camera c and a light d. Note that we are not creating any mod-
els. The models will all be created on the fly in code. Listing 15.5 shows the basic setup
of our implementation file.

using System;
...Rest of standard using statements...

using System.Windows.Media.Media3D;
using System.Collections.ObjectModel;
using System.Collections.Specialized;

namespace GraphingWithShapes
{
 public partial class ColumnGraph3DControl : UserControl
 {
 private ObservableCollection<NameValuePair> dataPoints = null;
 private List<Color> columnColors = new List<Color>()
 { Colors.LightBlue, Colors.Red,
 Colors.LightGreen, Colors.Yellow };

 public ColumnGraph3DControl()
 {
 InitializeComponent();
 }

 public void SetData(ObservableCollection<NameValuePair> data)
 {
 dataPoints = data;
 dataPoints.CollectionChanged += new
 NotifyCollectionChangedEventHandler(dataPoints_CollectionChanged);
 Update();
 }

 void dataPoints_CollectionChanged(object sender,
 NotifyCollectionChangedEventArgs e)
 {
 Update();
 }

 public double GetLargestValue()
 {
 // Code is identical to implementation in the last chapter
 }

Listing 15.5 ColumnGraph3DControl code

Light d

b

dataPoints c

Better
colors!d

e

www.it-ebooks.info

http://www.it-ebooks.info/

361Graphing in 3D
 protected void Update()
 {
 ClearModels();

 // Details to follow
 }

 private void ClearModels()
 {
 ModelVisual3D model;
 for (int i = main.Children.Count - 1; i >= 0; i--)
 {
 model = (ModelVisual3D)main.Children[i];
 if (!(model.Content is Light))
 main.Children.RemoveAt(i);
 }
 }
 }
}

Most of the using statements are standard, but we do need to add a using statement
for 3D elements b, as well as for our specialized collection. We have our usual
ObservableCollection from the previous chapter c and a SetData method e for
passing in the collection. When the collection changes, the Update() method will be
called f. We’ll get to the implementation of that method in a little while. At the
moment, all the method does is call the ClearModels() method g. We can’t clear
the entire collection because we don’t want to delete our lights every time we re-create
our models, so the method steps through the collection and gets rid of any models
that are not lights.

 We’ve also changed the colors that we’re going to use for our graph d because
lighter colors tend to come out better in 3D.

 Now that we have our new control, we can put it into the GraphHolder control in
place of any of the 2D implementations. Because it implements the SetData method,
all we have to do is change the XAML.

<local:ColumnGraph3DControl x:Name="graphCtrl" Grid.Column="1"
 Height="Auto" Width="Auto"/>

If you run now, you still won’t see any sort of graph
because we haven’t yet implemented the code to
create our columns. Instead of rectangles, each bar
will be a 3D shape1 (figure 15.7).

 Listing 15.6 shows the code for the Update()
method.

1 Officially called a cuboid or a rectangular prism if you want to get technical.

Does the
workf

g

Figure 15.7 Each
data point will be
represented by a 3D
cuboid on our graph.
www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 15 Drawing in 3D
protected void Update()
{
 ClearModels();

 if (dataPoints != null)
 {
 double spaceToUseY = 5;
 double spaceToUseX = 5;
 double barWidth = spaceToUseX / dataPoints.Count;
 double largestValue = GetLargestValue();
 double unitHeight = spaceToUseY / largestValue;

 double bottom = -spaceToUseY;
 double left = -spaceToUseX ;
 double height;
 int nIndex = 0;

 foreach (NameValuePair nvp in dataPoints)
 {
 height = (nvp.Value * unitHeight);
 Color col = columnColors[nIndex % columnColors.Count];

 Model3D column =
 CreateColumn(left, bottom, height, barWidth, 0, barWidth, col);
 ModelVisual3D model = new ModelVisual3D();
 model.Content = column;
 main.Children.Add(model);

 left += barWidth;
 nIndex++;
 }
 }
}

A lot of this should look familiar. But, instead of calculating the size of the bars based
on the size of the control, we’re hardcoding sizes for the available space b because
our sizes are relative to the position of the camera and the location of our models.
We’re positioning our shapes down and to the left of the origin c—which will work
well with where our camera is positioned.

 The creation of the columns is pushed into another method d. We are passing the
left, bottom, height, and width for the column. We’re also passing a Z position (0)
and a depth (barWidth), as well as the color.

 The CreateColumn method returns a Model3D, which we put into a ModelVisual3D
object in order to add to the Viewport3D e. ModelVisual3D is the 3D equivalent of a
Visual, except that the Viewport3D can handle them directly.

 The real 3D stuff is in the CreateColumn method (and its helpers), which is shown
in listing 15.7.

protected Model3D CreateColumn(double left, double bottom, double height,
 double width, double front, double depth, Color col)

Listing 15.6 Update() method

Listing 15.7 CreateColumn method

Hardcoded
sizes

b

Method from
previous examples

c

d

Creates 3D
columne
www.it-ebooks.info

http://www.it-ebooks.info/

363Graphing in 3D
{
 Model3DGroup modelGroup = new Model3DGroup();

 Point3D p0 = new Point3D(left, bottom, front);
 Point3D p1 = new Point3D(left + width, bottom, front);
 Point3D p2 = new Point3D(left, bottom + height, front);
 Point3D p3 = new Point3D(left + width, bottom + height, front);
 Point3D p4 = new Point3D(left, bottom, front - depth);
 Point3D p5 = new Point3D(left + width, bottom, front - depth);
 Point3D p6 = new Point3D(left, bottom + height, front - depth);
 Point3D p7 = new Point3D(left + width, bottom + height, front - depth);

 modelGroup.Children.Add(CreateSide(p0, p1, p2, p3, col)); // Front
 modelGroup.Children.Add(CreateSide(p0, p4, p2, p6, col)); // Left
 modelGroup.Children.Add(CreateSide(p4, p5, p6, p7, col)); // Back
 modelGroup.Children.Add(CreateSide(p1, p5, p3, p7, col)); // Right
 modelGroup.Children.Add(CreateSide(p2, p3, p6, p7, col)); // Top
 modelGroup.Children.Add(CreateSide(p0, p1, p4, p5, col)); // Bottom

 return modelGroup;
}

Have you ever noticed that, in OO code, you often keep writing methods that don’t
really do anything, but keep calling into more and more methods? It seems like
there’s one perfect method at the bottom of every system with two lines of code that
does absolutely everything.

 Anyway, we’re once again doing some setup and
then pushing off the real work to another method.
In this method, we create a Model3DGroup that
holds a number of different Models—one for each
side of the bar b. Then we create points that rep-
resent each of the eight points that make up each
corner c—the four corners of the front and back
of the shape. Figure 15.8 shows the relative posi-
tion of the points.

 The front of the shape is made up of a rectangle
with points 0, 1, 2, and 3. The top uses points 2, 3,
6, and 7. We pass these points on to yet another
method (CreateSides) d that will finally create
the side. This method returns a Model3D object that we can add to our Model3DGroup.
The six sides together make up the column. Listing 15.8 shows the code that creates
the side.

protected Model3D CreateSide(Point3D pA, Point3D pB,
 Point3D pC, Point3D pD, Color col)
{
 GeometryModel3D model = new GeometryModel3D();

Listing 15.8 CreateSide method

Group of modelsb

Points for
columnc

Creates sides d

10

2 3

54

76

Figure 15.8 The points that make up
the cuboid shape

Our modelb
www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 15 Drawing in 3D
 model.Material = new DiffuseMaterial(new SolidColorBrush(col));
 model.BackMaterial = model.Material;

 MeshGeometry3D mesh = new MeshGeometry3D();
 mesh.Positions.Add(pA);
 mesh.Positions.Add(pB);
 mesh.Positions.Add(pC);
 mesh.Positions.Add(pD);

 mesh.TriangleIndices.Add(0);
 mesh.TriangleIndices.Add(1);
 mesh.TriangleIndices.Add(2);

 mesh.TriangleIndices.Add(1);
 mesh.TriangleIndices.Add(3);
 mesh.TriangleIndices.Add(2);

 model.Geometry = mesh;

 return model;
}

This code does the same thing as the XAML we used for creating a rectangle earlier.
We specify a GeometryModel3D b and a bunch of points that make up the important
positions for the shape e. Remember that shapes are made up of triangles that use
each of the points. We add the indices for the first triangle f, then the second g,
and then assign the mesh we’ve created as the Geometry for the Model h. If you look
back at the XAML for the rectangle earlier, you’ll see that the hierarchy of objects
we’ve created mirrors the XAML version.

 Now, you may be wondering why we created 6 different meshes to create our shape,
rather than 1 single mesh made up of a bunch of individual triangles (that is, 1 shape
with 8 points and 12 triangles). There are two reasons. First, this code is much simpler
to read and understand. The second reason has to do with lighting—the lighting
works better with individual shapes than it does with complicated meshes. On higher-
end graphics cards, this is less of an issue, but with the more complex mesh, the dis-
tinction between the sides isn’t as clear.

 We’re setting the material of our side to be a DiffuseMaterial in the color passed
in c. Note that all sides are given the same color; but, if you look back at figure 15.7,
you’ll notice that the different sides are different colors. This is all because of light-
ing—the sides in the light are brighter and the sides in the shade are darker.

 You may also notice that we’re setting the color for the BackMaterial of our side
d. This is what the side would look like if you saw it from behind—which is entirely
possible in a 3D world. Technically, if we built our shape correctly, the back of each
side would be hidden inside the shape, and you’d never see it; but, by setting the back
material, we don’t have to worry about the order we pass the points or about defining
Normals—it’s one big cheat. Particularly with finicky things like 3D, we like cheats! If
you were building complex 3D models, this would be inefficient, and you’d want to
make sure the model was correct—but that’s something that the 3D modeling soft-
ware would handle for you, and it’s almost certainly better at math than we are.

d
Positionse

Material c

Indexes for
triangle 1f

Indexes for
triangle 2g

h

www.it-ebooks.info

http://www.it-ebooks.info/

3653D Transforms
Anyway, umpteen pages later, we’re finally done! We have a 3D version of our graph
(figure 15.9).

 Depending on your graphics card, the graph may look better or worse—features
such as anti-aliasing are controlled by the video card. Our new graph is kind of cool
and all, but we’d like to take things a little bit further—perhaps by adding some trans-
forms to our example.

15.3 3D Transforms
As with the 2D world, it’s possible to manipulate things in the 3D world via the use of
Transforms. In fact, Transforms play a more important role in 3D—it’s pretty incon-
venient to modify all the points in a model, but trivial to use a Transform to move the
model around. Also, the use Transforms isn’t limited to models—you can move lights
and cameras with Transforms as well.

 The Transforms in 3D parallel their 2D counterparts, except that they tend to take
rather more arguments:

■ TranslateTransform3D—Moves a 3D object some distance on any of the three axes
■ ScaleTransform3D—Changes the size of a 3D object
■ RotateTransform3D—Rotates a 3D object
■ MatrixTransform3D—Modifies the object via fancy matrix mathematics
■ Transform3DGroup—Combines multiple transforms

A simple example would be to translate the camera along the Z-axis to make the
graph bigger or smaller.

Figure 15.9 The graph is now a 3D model. Adding and removing points works as before.
www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 15 Drawing in 3D
15.3.1 A 3D Transform in XAML

Adding a transform to a model or to a camera in XAML is pretty straightforward. For
example, to translate the camera along the Z-axis, all we have to do is specify the
Transform to use.

<OrthographicCamera
 Position="0,0,3" LookDirection="-0.5,-0.5,-1" Width="10" >
 <OrthographicCamera.Transform>
 <TranslateTransform3D OffsetX="0" OffsetY="0" OffsetZ="4"/>
 </OrthographicCamera.Transform>
</OrthographicCamera>

This code moves the camera 4 units forward along the Z-axis. By itself, this would be
silly—it would be easier to change the camera position to 0,0,7 and not bother with
the Transform. But, with the Transform, we can do some more interesting things.
Let’s add a slider to the side of our graph. Then we can bind the slider’s value to the
offset value, and we can control the camera’s position. First, we add a couple of col-
umns to the Grid holding the Viewport3D.

<Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="20"/>
</Grid.ColumnDefinitions>

Notice that the second column is 20 pixels wide, and the first one (the one that still
contains the Viewport3D) takes up the rest of the space. Now add another child to the
Grid—a Slider.

<Slider x:Name="distanceSlider" Grid.Column="1" Orientation="Vertical"
 Minimum="0" Maximum="10" Value="4" />

This vertical slider is in the second column. It has a range from 0 to 10, and defaults to
4 (for no other reason than we think that’s a good place for it to start). Now we have
to bind our Transform to the value in the Slider. 3D stuff supports binding in exactly
the same manner as anything else.

<TranslateTransform3D OffsetX="0" OffsetY="0"
 OffsetZ="{Binding ElementName=distanceSlider,Path=Value}"/>

Now, if you run, you can move the slider and effectively make the graph appear closer
or further away (figure 15.10).

 We could easily move in other directions, scaling or rotating the camera in the
same way. Rotating the camera would be pretty silly; we’d simply spin the camera until
it could no longer see the graph. If we want something to rotate, we should rotate the
graph itself…

15.3.2 A 3D Transform in code

Because we’ve created the graph bars in code, if we want to be able to rotate them, we
have to specify the Transform in code as well; if we want to do some form of binding,
that also needs to be done in code. If we want to do this the same way that we did the
www.it-ebooks.info

http://www.it-ebooks.info/

3673D Transforms
translate (with a slider), we can add the slider pretty easily in the designer by adding
another row.

<Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="20" />
</Grid.RowDefinitions>

And then we add the slider in the bottom row.

<Slider x:Name="rotateSlider" Grid.Row="1" Orientation="Horizontal"
 Minimum="0" Maximum="360" Value="0" />

This horizontal slider has values going from 0 to 360 because we want to be able to
rotate the graph 360 degrees. The real work, though, will take place in the Update()
method. The code in listing 15.9 should go inside the for loop in the Update() method,
right after the model is added to the ViewPort’s Children collection.

AxisAngleRotation3D angleRot =
 new AxisAngleRotation3D(new Vector3D(0, 1, 0), 0);
RotateTransform3D rot =
 new RotateTransform3D(angleRot,
 new Point3D(-spaceToUseX + (spaceToUseX / 2), 0, -(barWidth / 2)));

Binding rotBind = new Binding("Value");
rotBind.Source = rotateSlider;
BindingOperations.SetBinding(angleRot,
 AxisAngleRotation3D.AngleProperty, rotBind);
model.Transform = rot;

This looks uglier than it really is, particularly for our simple example. The first thing
we have to define is the type of rotation we want. WPF supports two types: Axis and
Quaternion. If you want to know what a Quaternion rotation is, you need to find
someone smarter than us to explain it. An Axis rotation, though, is relatively straight-
forward. Picture an infinite line going through the shape somewhere. The shape will

Listing 15.9 Rotation transform in code

Figure 15.10 Moving the slider moves the camera so that the graph appears to move closer or further
away from the viewer. Insert your own Sesame Street bigger/smaller commentary as desired.

Rotation typeb

Bindingd Transform c

Sets
Transform

e

www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 15 Drawing in 3D
be rotated around that line. In our case, we’re rotating around the Y-axis b. We’re
using a Vector3D to define the axis. Again, the easiest way to picture this is to imagine
a line going from the origin (0,0,0) to the point used by the vector (0,1,0), and that
tells you the direction of the Vector. Ours is pointing straight up.

 We pass the rotation object we just created to the RotateTransform3D c, which
is the actual Transform. We also have to pass a point we want the axis to go through.
We’re calculating the center of our graph on the fly based on the values we’ve
already calculated.

 We want to tie the angle of the rotation to our slider. The next bit of code d cre-
ates a Binding object tied to the Value property of the slider and to the Angle prop-
erty of the Axis rotation. Finally, we assign the newly created transform to our model’s
Transform property e. Voilà, we’re done! Figure 15.11 shows the rotation slider
in operation.

 Pretty slick, eh? We have to admit to spending some time moving the sliders back
and forth. It’s strangely hypnotic, as well as a great way to kill time while avoiding
working on a book. We highly recommend it.

 We could also add another slider to, for example, scale the graph and another to
play around with the lights. The techniques for doing this would be about the same as
what we’ve already shown.

Figure 15.11 We can now use the slider to rotate our graph completely, making it impossible to know
which bar represents which data point.
www.it-ebooks.info

http://www.it-ebooks.info/

369Summary
15.4 Summary
Even though we’ve only scratched the surface of the edge of WPF’s 3D support, we
think that we’ve provided enough of an overview as to what is and isn’t possible, as
well as how to get started with 3D. The 3D support in WPF is fairly nice—for classic 3D
applications. If you’re so inclined, implementing standard primitives or even building
a ray-tracing engine in WPF would be quite straightforward (and we suspect that there
will be a bunch of them available in the near future).

 One very cool thing added to WPF 3.5 is Viewport2DVisual3D. The whole purpose
of this class is to allow the 2D worlds and 3D worlds to interact. With this class, it’s pos-
sible to do some of the things we originally wanted to do with 3D, such as rotating con-
trols in the third dimension while still allowing them to be interactive. It works via
some clever math that figures out where the control would be in two dimensions and
creates an invisible version of it that, nonetheless, gets feedback. It isn’t perfect, but it
is pretty cool. SP1 also added a lot of things to WPF 3D, including shaders and custom
effects and more ways to combine 2D and 3D. This is all, unfortunately, beyond the
scope of this book, but it’s quite interesting if you like playing with the third dimen-
sion! They’ve also improved performance in lots of different ways.

 This is the last chapter on straight “application” development and core WPF capa-
bilities. In the next section, we’ll look at some other types of applications and some
abilities that can add some polish and finish to your WPF applications.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 4

The last mile

In the telecommunication industry, they often refer to the last mile problem—it
doesn’t matter that there’s shiny fiber-optic cable run everywhere in the country
if the connection between the fiber and your house is a piece of string with a
pair of tennis shoes hanging from it.

 In development, the distance between getting a basically working application
and a finished, shippable application is similar (although perhaps not quite
so extreme).

 In this section, we’ll cover some of the topics that, although not required to
get an application working, help finish the application or make it available in a
different way. We’ll start by talking about an alternative type of application that
WPF supports in chapter 16, “Building a navigation application.” Navigation
applications are kind of like browser apps, with back and forward navigation,
but they can be standalone. As you’ll see in chapter 17—“WPF and browsers:
XBAP, ClickOnce, and Silverlight”—navigation applications (and other WPF
applications) can be run directly within a browser, or they can be deployed over
the web via ClickOnce.

 Each of the rest of the chapters demonstrates a particular capability that
might be necessary for completing an application. Chapter 18—“Printing, docu-
ments, and XPS”—demonstrates how to add printing capabilities to an applica-
tion. Chapter 19—“Transition effects”—demonstrates how to add some snazzy
effects to your app. Chapter 20—“Interoperability”—shows how to embed non-
WPF controls into WPF and vice versa, and chapter 21—“Threading”—shows
some new WPF-specific threading capabilities.
www.it-ebooks.info

http://www.it-ebooks.info/

372 PART 4 The last mile
A WPF Navigation application hosted inside a browser
www.it-ebooks.info

http://www.it-ebooks.info/

Building a
navigation application
It’s one of those strange ironies that, as web browser application developers are
doing their best to provide more Windows-like functionality to their applications,
Windows application developers are trying to make their apps more “webby.” This
has led to Windows applications that have back and forward buttons, that never
pop up child windows, and that are often quite difficult to use.

 The fact is that there are situations where browser concepts fit quite well into
Windows applications, just as there are situations where Windows metaphors fit
well into browser applications—it all comes down to the purpose of the applica-
tion. Browsers were designed for navigating content—moving through documents.
In such a context, the ability to move back and forward, for example, fits very well.
On the other hand, when trying to build a data-entry application in a browser, mov-
ing back and forward is, at best, ambiguous, and, at worst, a good way of annoying
your customers as their data disappears into the ether.

This chapter covers:
■ The purpose of navigation applications
■ Building a navigation application
■ Page functions
■ Finally, a definition for lactucarium
373

www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 16 Building a navigation application
 Microsoft is obviously aware of the desire to build webby apps, and has provided
capabilities within WPF for building navigation-style applications. These are applica-
tions that operate somewhat like a browser, in that you can navigate between pages via
hyperlinks, move back and forward, and so on, but you can also have any WPF controls
you like on the different pages. In this chapter, we’ll demonstrate building a naviga-
tion application—a program that uses the DICT protocol to look up words (and other
things) and display their definitions. Before we get to that, though, we want to talk a
little bit about when it’s appropriate to use nav apps.

16.1 When and where to use navigation applications
In general, there are two situations in which navigation applications are appropriate:

■ Document/data browsing —If you have interlinked data that you want to be able to
easily move through and then back to where you were, this model works well.
This should be unsurprising because it’s what browsers do best.

■ Inductive user interfaces —This is the type of interface popularized by applica-
tions like Microsoft Money and TurboTax. Users are only doing one thing at a
time, often moving step by step (like in a wizard), but they can also jump off to
another point if desired. Again, this is much like many browser applications.

It’s interesting that Microsoft obviously thought that one of the most common ways
you’d want to use a navigation application is by hosting it inside a browser—a tech-
nique we’ll demonstrate in the next chapter. This is arguably the main reason that
WPF has support for navigation applications, but it ends up giving you an application
designed to look like a browser application, being run inside a browser (figure 16.1).
Strange, no?

 As it happens, there’s at least one good reason why you’d want to do this. Even with
ASP.NET, AJAX, and a whole host of other acronym-powered technology, building
browser applications is a pain in the neck; because browsers weren’t designed for
applications, a large part of making browser applications work is based on hacks and
side effects. If there were a clean way of building applications that behaved like
browser applications are expected to act (that is, in an inductive manner), and yet had
a proper programming model behind it, it would be the best of both worlds.

 Unfortunately, this is where it all breaks down. Apparently, in an effort to build a pro-
gramming model that emulated the inductive style of the web, the developers felt the
need to emulate some of the more egregious annoyances from browser-development.
For instance, there’s no clear control point in the applications, so you end up having
to pass information between pages by either forever passing it every time you do some-
thing or by storing it in a set of properties, something like session state in a browser.
Also, although there are nice clear events for things like Navigating to let you know
that the user is trying to leave a page, and to give you an opportunity to prevent it, you
can’t catch these events on the page itself, and you can’t easily get to the instance of
the page from the places where you can catch it.
www.it-ebooks.info

http://www.it-ebooks.info/

375Creating a basic navigation application
We can think of no technically coherent reason why these flaws exist, and it’s sad
because the addition of a very few things would make the navigation application
model quite nice.

 All that aside, for certain types of applications, the navigation application model
does have some useful benefits. In the next section, we’re going to develop a dictio-
nary lookup application that uses the DICT protocol to look up definitions for words
via TCP over the web. This type of app jibes well with a navigation-style interface because
it allows the user to move back and forth among definitions, as well as to double-click an
arbitrary word and navigate to its definition. The navigation gives us all the back and
forth handling more or less for free.

16.2 Creating a basic navigation application
The first thing we’re going to do is create a Page that allows us to search for words. A
Page is much like a Window, and we can put in all the various WPF elements that we
might want. If you’re following along, create a new WPF application (ours is Dictionary-
Pages) and then add a WPF Page named SearchPage.xaml (figure 16.2).

 The editor, unsurprisingly, looks like the editor for a Window, and is already set up
with a Grid layout panel. We set up the grid with three rows—controls at the top, a
DocumentReader in the middle, and a space for some links (that we’ll add later) at the
bottom. We’re relying on the automatic pseudo-docking capability that the editor

Figure 16.1 A WPF navigation application running inside a browser. The back and forward buttons in
IE 7 move between pages within the application.
www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 16 Building a navigation application
provides in order to make the controls show up in the right place. Figure 16.3 shows
our SearchPage in the editor.

 Listing 16.1 shows the XAML for this page. It’s relatively straightforward.

<Page x:Class="DictionaryPages.SearchPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Search"
 WindowTitle="Dictionary Search">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition Height="*" />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
 <TextBox Name="searchText" Margin="9,5.36,91,5.36" />
 <Button Name="searchButton" Click="OnSearch"

HorizontalAlignment="Right"
 Width="75" Height="23" Margin="0,3.5,9,3.5">Search</Button>
 <FlowDocumentReader Grid.Row="1" Name="searchResults" />
 </Grid>
</Page>

Nothing here is particularly new, except that, instead of a <Window> tag, everything is
inside a <Page>. Also, notice that we’ve added an OnSearch Click handler to the
Search button because we know we’ll need it. We also set the WindowTitle property of
the page—this will be used as the main page title when we run.

Listing 16.1 SearchPage XAML

Figure 16.2 Adding a Page to the Dictionary application
www.it-ebooks.info

http://www.it-ebooks.info/

377Creating a basic navigation application
 The next step is to make the application use this page at startup, instead of the
default form. We do this by editing the XAML for the application.

<Application x:Class="DictionaryPages.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="SearchPage.xaml">
 <Application.Resources>
 </Application.Resources>
</Application>

All we’ve done is change the StartupUri to
point to a Page instead of a Window. When we go
ahead and launch the application, though, WPF
recognizes the change and automatically adds a
navigation framework for us (figure 16.4).

 Notice how we have back and forward but-
tons, although they’re currently disabled
because we have nowhere to go back/forward
to—WPF automatically created a Navigation-
Window. The NavigationWindow class provides
all the basic navigation support. We could also
have explicitly created a NavigationWindow
and told it to navigate to our search page.
A situation where you might want to create
your own NavigationWindow might be a pop-
up wizard—wizards generally have back/for-
ward navigation, so you can piggyback on the

Figure 16.3 The SearchPage created in
the editor

Figure 16.4 By changing the application StartupURI to a Page, we let
WPF know that we want navigation handling.
www.it-ebooks.info

www.manning.com/feldman2
www.manning.com/feldman2
http://www.it-ebooks.info/

378 CHAPTER 16 Building a navigation application
NavigationWindow functionality for the behavior. There’s also a lighter-weight naviga-
tion class called Frame, which you can use to provide navigation inside another control.

 Navigation implies that we have somewhere to go; right now, our application is
pretty uni-locational. We need at least one more page to make navigation worthwhile.

16.2.1 Adding some navigation
When we hook up the dictionary
search, we’ll have lots of places to go.
Before we worry about that, let’s add
a simple Help page to our applica-
tion and put a link to it at the bot-
tom of the page so that we have
somewhere to navigate to. If you’re
following along, create a new page
called HelpPage and set it up to look
something like figure 16.5.

 Now we need to create a link on our main page to the Help page. With Windows
Forms applications, there was a Hyperlink control, which could be used like a Label.
WPF doesn’t have a standalone control, but it does have a content control that can be
used in places that take content, such as a TextBlock. We’ll add a TextBlock to the
empty row of our Grid and put a hyperlink in it.1

<TextBlock Margin="10 0 0 0" VerticalAlignment="Center" Grid.Row="2">
 <Hyperlink NavigateUri="HelpPage.xaml">Help</Hyperlink></TextBlock>

Most of this is pretty standard stuff. The interesting thing is the value of the Navigate-
Uri—we’re referencing the XAML page for our Help page. This is sufficient to tell
WPF what we want. Figure 16.6 shows the main page with the link, as well as the Help
page after we click the link.

1 If you want to, you could also use the LinkLabel control from chapter 13 here.

Figure 16.5 Make a HelpPage that looks something
like this.

Figure 16.6 Clicking the Help link navigates to another page.
www.it-ebooks.info

http://www.it-ebooks.info/

379Creating a basic navigation application
Notice how the back arrow is now available. Clicking it returns to
the Search page. You can also click the little arrow to the right of
the back/forward controls to get a navigation history (figure 16.7).

 The navigation framework gives us back/forward handling for
free—well, almost for free, as you’ll see later. First, let’s make our
search actually do something.

16.2.2 Implementing dictionary lookup

This is a book about WPF, not TCP, so we’ll provide the code for the dictionary lookup
with no explanation, other than for some of the WPF-specific items. We’re also putting
the implementation directly in the Search page. As the dictionary lookup opens and
ends its session as part of the process, this isn’t a big deal. If this was, say, a database
query where there was a held connection, this would be a problem. Unfortunately, the
navigation structure doesn’t provide any clean way of separating logic, but it would be
possible to store a controller object in the Application’s properties collection, and
then have the pages retrieve it.

 Listing 16.2 shows the Search.xaml.cs code in its entirety, including all the code to
do the search.

using System;
...Rest of default using statements removed for space...

using System.Net.Sockets;
using System.IO;

namespace DictionaryPages
{
 public partial class SearchPage : System.Windows.Controls.Page
 {
 private Encoding conversationEncoding = Encoding.UTF8;
 private string defaultServer = "test.dict.org";
 private readonly int defaultPort = 2628;
 private const int bufferSize = 4096;

 public SearchPage()
 {
 InitializeComponent();
 }

 protected void OnSearch(object sender, RoutedEventArgs e)
 {
 Mouse.OverrideCursor = Cursors.Wait;
 string word = searchText.Text.Trim();
 if (word.Length > 0)
 DefineWord(word);
 Mouse.OverrideCursor = null;
 }

 private void DefineWord(string word)
 {

Listing 16.2 Dictionary lookup code

Figure 16.7 We
get search history
for free!

Using statements
used by TCP code

Various values
for DICT
protocol call

b

WPF way to set
a wait cursorc

Restores cursor
when done
www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 16 Building a navigation application
 string command = "DEFINE * " + word;
 string strResult = ExecuteCommand(command);

 FlowDocument doc = new FlowDocument();
 Paragraph para1 = new Paragraph();
 para1.FontSize = 18;
 para1.Inlines.Add(new Bold(new Run(word)));
 doc.Blocks.Add(para1);
 Paragraph para2 = new Paragraph();
 para2.Inlines.Add(new Run(strResult));
 doc.Blocks.Add(para2);
 searchResults.Document = doc;
 }

 private string ExecuteCommand(string command)
 {
 StringBuilder response = new StringBuilder();
 using (TcpClient client = new TcpClient())
 {
 client.Connect(defaultServer, defaultPort);
 using (Stream clientStream = client.GetStream())
 {
 response.Append(GetResponse(command + "\r\n", clientStream));
 response.Append(GetResponse("QUIT\r\n", clientStream));
 }
 }
 return response.ToString();
 }

 private string GetResponse(string requestString, Stream clientStream)
 {
 byte[] request = conversationEncoding.GetBytes(requestString);
 clientStream.Write(request, 0, request.Length);
 clientStream.Flush();
 byte[] response = new byte[bufferSize];
 StringBuilder sb = new StringBuilder();
 int currentPosition = 0, bytesRead = 0;
 while((bytesRead = clientStream.Read(response,0, bufferSize)) > 0)
 {
 sb.Append(conversationEncoding.GetString(response, 0, bytesRead));
 currentPosition += bytesRead;
 if (bytesRead < bufferSize)
 break;
 }
 return sb.ToString();
 }
 }
}

As we said, most of this code is about using the DICT protocol to get a definition, so we
won’t spend a lot of time on it. The OnSearch method b is called when the Search
button is hit, and passes the text from the search box to the appropriate methods to
do the lookup. Because the operation might take a moment, we’re setting a wait cur-
sor c. This way is a little bit different than how it was done with Windows Forms—the
Mouse.OverrideCursor is a cursor that overrides the cursor set on any particular child

Sets up
result textd
www.it-ebooks.info

http://www.it-ebooks.info/

381Creating a basic navigation application
WPF elements. Even if elements have particular specialized cursors, we want the whole
application to show a wait cursor when the mouse is over it.

 The result from the dictionary call is straight text, but we need to format it appro-
priately for the FlowDocumentViewer we’re using to display the text (so that we get the
nifty, built-in zooming, page breakdowns and searching, and so on). A FlowDocument-
Viewer displays a FlowDocument, so we have to create a FlowDocument for our text.
The FlowDocument holds elements like Paragraphs, so we create a couple of Para-
graph objects d—one for a title, which is a large, bold repeat of the word for which
we searched, and one for the text. Note that Paragraph is flexible enough to handle
text with carriage returns and the like—unlike, say, the <p> tag in a browser.

 Now that we have put all this code in place, we should be able to run, type in a
word, and voilà (figure 16.8).

So far, so good. But, if you look up a few words, you may notice something—unlike
after hitting the Help button, you aren’t being given the option to go back. That’s
because we’re just doing stuff within our page. If we want to get navigation behavior,
we need to make our search go somewhere.

16.2.3 Navigating programmatically

To build up a search history, we need to make the search button take us to a new page,
rather than searching within the current page. This is quite easy. We can programmati-
cally navigate to a page via a URI, or we can provide a specific page to navigate to. The
following code would be used to programmatically navigate to the Help page via its URI:

NavigationService.Navigate(new Uri("HelpPage.xaml",UriKind.Relative));

The NavigationService handles all navigation activity. Within a page, we’re referenc-
ing a property that references the NavigationService currently being used by that

Figure 16.8 Looking up a definition in the dictionary program
www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 16 Building a navigation application
page. (Note that there can be multiples.) The Navigate method takes us to the place
where we want to go. We don’t want to go to a fixed URL, though—we want to go to a
version of the Search page populated with a search for the word we want. Fortunately,
we can do that too; we can create an instance of the Search page specifically and navi-
gate to it. We need to change the OnSearch method to create the new page and popu-
late it (listing 16.3).

protected void OnSearch(object sender, RoutedEventArgs e)
{
 Mouse.OverrideCursor = Cursors.Wait;
 string word = searchText.Text.Trim();
 if (word.Length > 0)
 {
 SearchPage page = new SearchPage(word);
 NavigationService.Navigate(page);
 }
 Mouse.OverrideCursor = null;
}

The big change is that, instead of calling the DefineWord() method directly here, we’re
creating a new SearchPage and passing the word in the constructor. Then, we call the
Navigate method on the NavigationService, but instead of passing a URI, we pass
the page to which we want to navigate. One problem is that SearchPage doesn’t have a
constructor that takes a search word. We can add that easily enough (Listing 16.4).

public SearchPage(string word)
{
 InitializeComponent();

 searchText.Text = word;
 DefineWord(word);
 Title = "Search - " + word;
}

The constructor has to call InitializeComponent() to set up the
page. We then set the text in the searchText TextBox. We don’t
have to do this, but it would look odd if the word disappeared
after the search is finished. Next we call DefineWord(). This
method will do the lookup and populate the document with the
definition. Finally, we set the Title of the page. The Title will be
used within the search history to identify our location. This is one
of several places where the navigation service will look for text for
the search history; it’s the easiest to set for the moment.

 Now if we run and do a couple of different searches, the back arrow will become
enabled and, if we hit the search history button, we’ll see all our searches (figure 16.9).

Listing 16.3 New OnSearch method

Listing 16.4 Constructor that takes a word

Figure 16.9 Each
search now shows up in
the search history.
www.it-ebooks.info

http://www.it-ebooks.info/

383Creating a basic navigation application
 Not too shabby. If you hit the back button, you will see the previous pages with
their definitions. This brings up an interesting question, though: Is the application
holding on to all the pages, or is it reloading them each time? The answer could have
a major impact on performance and memory usage. A simple change to our applica-
tion will make it easy to tell—we’ll add a timestamp to our results. If the data is being
queried again, then we’ll get a new timestamp; otherwise, it will hold the old value. To
add a timestamp, we add the following code in the DefineWord() method, between
the title paragraph and the definition paragraph:

Paragraph paraDate = new Paragraph();
paraDate.Inlines.Add(new Run("Looked up: " + DateTime.Now.ToString("T")));
doc.Blocks.Add(paraDate);

Now if we run, look up a word, and then go back, we can see more clearly what’s hap-
pening (figure 16.10).

It probably isn’t a big shock, but the matching timestamps demonstrate that this is, in
fact, the same page. This makes sense, considering that we never wrote any code to
make a page reconstitute itself. In fact, the default caching behavior for navigation
applications isn’t entirely obvious. If you navigate via a URI, the page is not cached by
default, and will be re-created every time it’s accessed. This behavior can be changed
via the use of the KeepAlive property. But, if you pass an explicit page, that page is
always cached because there’s no way to refer to the page.

 Re-creating pages could get very painful for a complex application. If you want to
avoid caching your pages, you need to write some somewhat involved code, following
one of several approaches:

■ You can always navigate via URI and make your URIs contain enough information to
identify their content.

■ You can take advantage of the Journal object to create your pages with appropriate
state. The back and forward stacks are made up of JournalEntry objects,
which can hold state for a page so; assuming you got to a page via a URI, you can

Figure 16.10 When we go back to the page, we can see that the timestamp hasn’t changed, so the
page hasn’t been reloaded.
www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 16 Building a navigation application
store details of your page to appropriately rehydrate your page as needed. In
fact, a number of controls, such as Textboxes, will automatically have their
states stored in the JournalEntry for non-KeepAlive pages, so you only have to
hold onto specialized data.

■ You can build your own mechanism based on the NavigationService events. When
you enter or leave a page, a series of events is generated that provides the
opportunity to, for example, clean up or re-create your page. But, these events
are on the NavigationService in general and aren’t available at the Page, mak-
ing them somewhat painful to use.

None of these are great solutions, and all are beyond the scope of what we’re going to
cover. There’s one more capability of navigation applications that we do want to cover,
page functions.

16.3 Page functions
In a “regular” application, it’s pretty normal, when you need information from the
user, to pop up a dialog and ask for it. We’d argue that, much of the time, this is a rea-
sonable workflow—you’re going somewhere else to get information, it’s obvious that
you’re somewhere else, and then you return.

 But, there are some drawbacks to using dialogs. For one thing, it somewhat violates
the spirit of an inductive UI (and violating spirits is bad, right?). A more serious issue
has to do with deploying applications over the web—one of the many rights that a
browser-hosted application doesn’t usually have is the right to pop up dialogs. This is
to prevent some nefarious ad-ware creator from using WPF to pop up ads all over your
screen. We’ll discuss security in greater detail in the next chapter.

 If we want to add a setting to our dictionary application for the particular dictio-
nary to use, and we don’t want to pop up a dialog for options, we can create a Settings
page and provide a way to navigate to it. But, we then have to figure out how to get
back to where we were. This is a common problem with browser applications—a sub-
routine has to know a lot about the calling code in order to return.

 This problem, at least, is something that navigation applications handle quite well,
via the use of page functions. Think of a page function like a subroutine you can call.
When you call it, the application navigates to that Page, but when that Page is finished,
you’re automatically returned to the calling Page without having special logic in the
subroutine Page and without the back/forward handling being messed up. We’ll go
ahead and use the Settings page as an example.

16.3.1 Creating a Page function

To get started with our Settings page, we need to create a Settings page function,
which is another option on the Add New Item list when we choose to add a new item
to our product. Ours is cleverly called SettingsPageFunction. When you create a page
function, you get a designer as with any other page. Go ahead and lay out the page
something like figure 16.11.
www.it-ebooks.info

http://www.it-ebooks.info/

385Page functions
Add a Click handler for the OK and Cancel buttons and a handler for the Loaded
event for the page. Listing 16.5 shows all the code for the Settings page. Note that if
you use different names for your controls and handlers, you’ll have to adjust the code
appropriately. We call our ComboBox dictionaryCombo, and the Click handlers for the
buttons OnOK and OnCancel.

using System;
...Rest of using statements omitted...

namespace DictionaryPages
{
 public partial class SettingsPageFunction :
 System.Windows.Navigation.PageFunction<String>
 {
 private string currentDictionary = "";

 public SettingsPageFunction()
 {
 InitializeComponent();
 }

 public SettingsPageFunction(string strCurrent)
 {
 currentDictionary = strCurrent;
 InitializeComponent();
 }

 private void OnLoaded(object sender, RoutedEventArgs e)
 {
 dictionaryCombo.Items.Add("All");
 dictionaryCombo.Items.Add("moby-thes");
 dictionaryCombo.Items.Add("vera");
 dictionaryCombo.Items.Add("jargon");
 dictionaryCombo.Items.Add("easton");
 dictionaryCombo.Items.Add("bouvier");
 dictionaryCombo.Items.Add("devils");

Listing 16.5 Settings page code

Figure 16.11 The Settings page for the
dictionary application

b

Custom
constructorc

Some supported
dictionariesd
www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 16 Building a navigation application
 dictionaryCombo.Items.Add("world02");

 if (currentDictionary.Length > 0)
 dictionaryCombo.SelectedItem = currentDictionary;
 else
 dictionaryCombo.SelectedIndex = 0;
 }

 private void OnOK(object sender, RoutedEventArgs e)
 {
 string value = dictionaryCombo.SelectedItem.ToString();
 OnReturn(new ReturnEventArgs<String>(value));
 }

 private void OnCancel(object sender, RoutedEventArgs e)
 {
 OnReturn(new ReturnEventArgs<String>(null));
 }
 }
}

The first interesting thing about this class is what it’s derived from b. It’s called a
PageFunction because it’s a page that acts like a function (profound, no?). And, like
a function, the PageFunction returns a value. In this case, we’re returning a string,
and the class uses generics to specify this. The return could be any .NET type, so you
could create a custom object to return more complex data.

 It’s stretching the metaphor a bit, but we also have a custom constructor c that
takes the arguments we want to pass to the “function.” In fact, we could have set prop-
erties on the class, or the class could have retrieved the values themselves, but this
works well for us. We’re passing in the name of the currently selected dictionary.

 In the OnLoaded method d, we’re adding a list of supported dictionaries into the
ComboBox on the page. In the full version of the application (available on our website
at www.manning.com/feldman2), we shove a helper object in with friendly names for
the dictionaries, but to save space we’re using the somewhat cryptic names that we
need to pass to the dictionary service. Then we select the current dictionary e.

 Finally, we return the selected value to the calling page by using the OnReturn()
method f. OnReturn takes an instance of a ReturnEventArgs generic instance—one
specific to the expected return type, which is string for us. The OnReturn method does
all the work of returning to the previous page and firing an event on that page to let it
know what has happened. We do the same thing for the Cancel button, except we pass
back null to indicate that the user canceled g.

 Now that we have the page, we need to call it.

16.3.2 Calling a page function
We need a method to be called to activate our function. For simplicity, we’ve added
another hyperlink next to the Help link at the bottom of the page, inside the Text-
Block, except, instead of navigating, it calls a method when it’s clicked. The XAML
looks like this:

<Hyperlink Click="OnSelectDictionary">Choose Dictionary</Hyperlink>

e

f

g

www.it-ebooks.info

www.manning.com/feldman2
http://www.it-ebooks.info/

387Page functions
Listing 16.6 shows the code for the OnSelectDictionary method.

private static string dictionaryToUse = "";

protected void OnSelectDictionary(object sender, RoutedEventArgs e)
{
 SettingsPageFunction pageFunction = new
 SettingsPageFunction(dictionaryToUse);
 pageFunction.Return += new
 ReturnEventHandler<String>(OnSettingsPageFunctionReturned);

 NavigationService.Navigate(pageFunction);
}

Most of the code here is like any other navigation call. We’re creating the new page
b, passing it the currently selected dictionary, and we’re navigating to the page using
the NavigationService d. The only different thing is that we’re subscribing to the
Return event on the page c. This event will be fired when the OnReturn method is
called within the other page. Here’s the code for the return event handler:

protected void OnSettingsPageFunctionReturned(object sender,
 ReturnEventArgs<String> e)
{
 if (e.Result != null)
 dictionaryToUse = e.Result;
}

All the method does is look to see if the return value isn’t null (which is how we indi-
cate that the user canceled) and, if not, stores the dictionary. The last change we need
to make is to the DefineWord method to make it use the selected dictionary. Here’s
what we’ve changed:

private void DefineWord(string word)
{
 string dictionary = "*";
 if (dictionaryToUse.Length > 0)
 dictionary = dictionaryToUse;
 string command = "DEFINE " + dictionary + " " + word;

 string strResult = ExecuteCommand(command);
 ...Rest of method is unchanged...
}

Time to try it out. Run the application, click the Choose Dictionary link, and choose a
different dictionary (figure 16.12). Then click the OK button.

 Now, when you do a search, only the specified dictionary (in this case, the Jargon
File) will be used (figure 16.13).

Listing 16.6 The OnSelectDictionary method

Static to hold dictionary name

b

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 16 Building a navigation application
The lookup runs against the specified dictionary. Also, notice that the forward button
is grayed out—going to the search page doesn’t count as a repeatable navigation, an
ideal scenario for this type of operation. Overall, the page function capability is one of
the nicer features of navigation applications.

Figure 16.12 Choosing a different dictionary via a page function

Figure 16.13 Looking up a word in a single dictionary (the Jargon File)
www.it-ebooks.info

http://www.it-ebooks.info/

389Summary
16.4 Summary
You may have picked up a slight bias from us against the navigation application imple-
mentation in WPF. (If you didn’t, you might want to use the dictionary application to
look up Irony and Sarcasm.) It isn’t that we don’t think that there’s a place for induc-
tive UI applications or for document navigation applications, but it seems that the
implementation pulled over too many of the problems associated with browser appli-
cations for no clear reason.

 That doesn’t mean that there’s no place for these types of applications, and we
think that the dictionary application is a pretty good example of where it can be used
in a valid way. We’re hopeful that the major shortcomings will be addressed in a future
version. Also, we have yet to demonstrate one of the cooler things you can do with
these applications—running them directly from within a browser. We’ll show that in
the next chapter. While we’re at it, we’ll also show how you can autodeploy applica-
tions in general.
www.it-ebooks.info

http://www.it-ebooks.info/

WPF and browsers:
XBAP, ClickOnce,

and Silverlight
Although WPF is mainly about building Windows applications, there are many ways
in which WPF can be used with browsers. WPF certainly isn’t going to replace
ASP.NET any time soon, but there are several scenarios where you might want to use
WPF when building applications that will be accessed via a browser. Three different
technologies in WPF/.NET 3.x provide different mechanisms for accessing WPF
applications over the web—XBAP, ClickOnce, Silverlight. We’re going to provide a
brief summary of each technology here, and then go into more detail throughout
the chapter, using the dictionary application as an example.
XBAP
XBAP, short for XAML Browser APplication, allows WPF applications to be run
directly from within your browser. This is sort of like using ActiveX controls; you
can have arbitrary code be downloaded and executed on the client machine inside

This chapter covers:
■ XBAPs
■ ClickOnce
■ Silverlight
■ Our whining about security and why other

technologies have cooler names
390

www.it-ebooks.info

http://www.it-ebooks.info/

391Building an XBAP
the browser. The key difference is that, unlike ActiveX, .NET has a robust security
model, so it’s possible to control what an XBAP is allowed to do. The ActiveX security
model had two modes—don’t allow or (as one of our colleagues describes it) party on
your hard drive.

 As it happens, the ability to run .NET code within a browser has been around for a
while, but WPF makes it much easier to create and deploy apps. It’s even possible for
a browser to automatically render loose XAML files.

 In this chapter, we’ll take our dictionary application, host it inside a browser, and
tackle some of the security issues. While we’re at it, we’ll also demonstrate some fea-
tures of navigation applications that lend themselves to being hosted within a browser.
CLICKONCE

ClickOnce is another technology that has been around for a while with .NET, but has
been improved. ClickOnce is a deployment technology for automatically shipping out
and then updating your applications. The user goes to a website and clicks a link for
your application. Unlike XBAP, the application isn’t hosted in the browser, but runs as
a free-standing application. ClickOnce can even set up desktop icons to run your
application again without going to the website. It will also detect changes from that
website and automatically download newer versions as they become available.

 Almost all the caveats of XBAP exist for ClickOnce as well, although ClickOnce does
have the ability to install .NET if required. It does the install via the use of an ActiveX
control, so this may not be the best choice in a security-conscious environment.
SILVERLIGHT

Microsoft Silverlight1 is a new technology designed specifically for building browser
components. It’s aimed at the same market as Adobe Flash or Sun’s JavaFX. Unlike
XBAP, it doesn’t need to have .NET 3.x installed because it comes with its own (much
reduced) version of the runtime, and it’s installed, like Flash, as a browser plug-in.

 Currently, Silverlight only works on the PC or the Mac, but Microsoft has partnered
with the Mono team and Novell to provide Linux support via a project called Moon-
light, which is an open source version of Silverlight.2 For Silverlight to compete with
Adobe Flash, it will need to be as ubiquitous, so it’s a good thing that it will operate in
a number of places.

 A number of books are dedicated to Silverlight, including Silverlight 2 in Action
(Chad A. Campbell and John Stockton), so we aren’t going to cover it in depth. None-
theless, we’ll provide a small demonstration later in this chapter. Before we get to that,
we’ll start by turning our dictionary application into an XBAP.

17.1 Building an XBAP
In the scenarios where it can be used, XBAP provides the best of both worlds—the easy
access and deployment of a browser application with a real programming model. But,
before deciding on using XBAP, you should be aware of the following limitations:

1 See http://silverlight.net for the official details.
2 See http://www.mono-project.com/Moonlight.
www.it-ebooks.info

http://silverlight.net
http://www.mono-project.com/Moonlight
http://www.it-ebooks.info/

392 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
■ The users have to have .NET 3.0 or 3.5 installed on their machines already. If
they have Vista, they already have 3.0. Otherwise, you need to somehow make
it available.

■ You have to dedicate the remainder of your life to the study of security to get
the appropriate permissions for your application configured. OK, this is a bit of
an exaggeration, but it is a little tricky.

Creating an XBAP application with Visual Studio 2008 is pretty easy. You create a new
project of type WPF Browser Application (figure 17.1).

 Now, we need to copy all the files from our standalone dictionary application into
the browser application and add them as Existing Items. (Right-click the project, and
Add Existing—add the xaml files, and the xaml.cs will be automatically picked up.)
The last step is to edit the App.xaml file to point to the Search start page.

<Application x:Class="DictionaryForBrowser.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="SearchPage.xaml">

Now, go ahead and hit F5 to launch the application. As you can see from figure 17.2,
our application is running inside Internet Explorer!

 This is real .NET code running inside IE. You can click the Help link, for example, and
use the arrows at the top of the window to navigate. Figure 17.2 shows the application run-
ning in IE 6. If you happen to be using IE 7, things look a little bit different (figure 17.3).

 Something interesting happens when we run inside IE 7—the navigation but-
tons disappear. IE 7 is WPF savvy and understands navigation applications. The

Figure 17.1 Creating a WPF Browser Application
www.it-ebooks.info

http://www.it-ebooks.info/

393Building an XBAP
Figure 17.2 The dictionary application, running inside Internet Explorer 6. Looks good,
unless you try to search…

Figure 17.3 The dictionary application running in IE 7. Notice the back/forward buttons
have disappeared.
www.it-ebooks.info

http://www.it-ebooks.info/

394 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
browser’s navigation buttons provide the back/forward functionality for the applica-
tion, so the ones in the browser window are superfluous. You might be wondering if
you can end up hitting back right out of your application—well, IE 7’s security
forces WPF applications to be opened in new windows, in which case over-backage is
less of a problem. One thing that is a problem, though, is searching. Go ahead and
type in a word, and hit the Search button. Chances are you’ll see something like fig-
ure 17.4.

 On one hand, it’s nice to know that .NET security is working well—preventing us
from opening a TCP connection from a hosted application. On the other hand, it
does tend to limit the functionality of the application. We’ll demonstrate how to get
the application working again next.

17.1.1 XBAP security

By default, hosted .NET applications are allowed to do certain things, such as put
things on the screen and interact with the user, and aren’t allowed to do, well, almost
anything else. Thanks to pop-up ads, by default a hosted application can’t even pop
up a dialog (except for some system dialogs like the File Open/Save dialogs). If you
want your application to do more, you have to do two things:

1 Indicate to .NET what you want permission to do.
2 Get the hosting system to agree to allow you to do those things.

Asking for permission is pretty straightforward. Right-click the project, select proper-
ties, and then switch to the Security tab. You’ll see something like figure 17.5.

 When this page is first displayed, it shows the default security rights that we’ll have.
Here we can specify exactly what rights we want. In fact, via the very handy Calculate
Permissions button, we can have Visual Studio run through the application and figure
it out for us. Unfortunately, when we run Calculate Permissions on this application, it
comes up saying that we need Full Trust, which means that users have to give us god-
like rights to their systems in order to look up words in a dictionary!

Figure 17.4 Security exception trying to do a dictionary search
www.it-ebooks.info

http://www.it-ebooks.info/

395Building an XBAP
In reality, we almost certainly do not need uber rights, but we’ll go ahead and set this
up as a full trust application anyway. This isn’t because we’re lazy (although we are);
it’s to make a point about security in the sidebar. If you recompile and then run again,
everything will now work (figure 17.6).

 Cool, eh? But, you may have noticed that we’ve only completed one of our steps—
asking for permission. We haven’t given permission, and yet things are working. The
reason is that the built-in web server that Visual Studio uses for debugging ignores all
that annoying security stuff and assumes that we have rights to do what we’ve said we
want rights to do. If we want to see what happens in the real world, we’ll have to
deploy our application.

Security ≠ usability
The world would be a much simpler place if we could just trust one-another. We could
pop up a dialog that says, “Is this OK?” and assume that no one would do anything
he wasn’t supposed to do. Unfortunately, our original specification for Windows se-
curity based on the ITOLM (Is This OK? Lan Manager) concept was rejected.

Figure 17.5 Security properties for our XBAP
www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight

17.1.2 Deploying an XBAP

Assuming that you have IIS installed on your system, it’s pretty easy to deploy your
application. Browse to the bin/debug directory under your project, right-click, and

Security has a big impact on whether it’s practical to use XBAP or similar technolo-
gies. If you can restrict your application to the subset of functionality available by de-
fault, then it’s a good fit. If, on the other hand, you need additional rights, you’ll need
to figure out how to push out certificates and tune your application to request the min-
imum number of rights.

It’s our guess that most people won’t bother. If they want to deploy applications via
XBAP, they’ll flick the full trust switch and require their users to let them do any-
thing. And, if the functionality is desirable enough, users will do just that. This is the
big problem with security—it’s a pain for everyone involved, and it’s easier to not
worry about it. If you’re in an extremely controlled environment, this may be OK, but
the added convenience to your users of easing their install won’t gain you any
points if your approach ends up frying their systems or letting in someone else to fry
their systems.

As with everything else, security is a trade-off. You need to figure out what’s appro-
priate. But hey, we aren’t your mother—go ahead, full trust is easy…

Figure 17.6 We now have appropriate rights to look up words!
www.it-ebooks.info

http://www.it-ebooks.info/

397Building an XBAP
bring up properties.3 Then go to the Web Sharing page, click the Share This Folder
button, and type in a reasonable alias (figure 17.7).

 Now, in your browser, go to the appropriate URI, which will be something like:

http://localhost/Dictionary/DictionaryForBrowser.xbap

And, voilà—uh, pfft… (figure 17.8).
 After a brief message telling you

that the application is being down-
loaded, you get the unfriendly (but
quite pretty—note the reflection
under the X) message telling you
that the application is untrusted and
possibly tricksy. In the real world, to
get around this, you’d have to pur-
chase a certificate from a trusted authority, and then arrange to have it pushed out to
your users. But, for testing purposes, Visual Studio 2008 makes life easier by generat-
ing a default test key when you create an XBAP.

 If you look in the directory for your project, you will see a file with a name like:

DictionaryForBrowser_TemporaryKey.pfx

3 If you’re using Vista, the Web Sharing page isn’t available. You’ll have to go into IIS and add a new Virtual
Directory to the primary website.

Figure 17.7 Deploying the dictionary. This is
much easier in XP (pictured here) than in Vista.
With Vista you have to create the virtual
directory using IIS.

Figure 17.8 The application isn’t worthy to be run.
www.it-ebooks.info

http://localhost/Dictionary/DictionaryForBrowser.xbap
http://www.it-ebooks.info/

398 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
This temporary key can be used for testing, but you can’t use it for deployment unless
you have a lot of very trusting customers. On the machine that wants to run the appli-
cation, you have to indicate that any applications signed with this key have rights. You
can do this either by using the CertMgr tool, or by double-clicking the file in Explorer
and running through the wizard (figure 17.9).

 You can leave everything as it is until you get to the Certificate Store page. On that
page, click the Place All Certificates In The Following Store radio button, browse the
list, and select Trusted Root Certification Authorities. After that, click Next and then
Finish. You’ll get a nasty message about how your filthy certificate is certainly not trust-
worthy, and what are you thinking about trying to give it rights? Say Yes, and ignore
the annoyed sniff from your computer. Hey, your computer works for you.

 Now, try browsing to the dictionary application again. Not only does it come up in
the browser, but, as you can see from figure 17.10, you can look up words again!

Figure 17.9 The Certificate Import Wizard pages
www.it-ebooks.info

http://www.it-ebooks.info/

399Building an XBAP
We’ve just given anything signed with this key rights to do pretty much anything on
the target system, but you can’t have everything.

17.1.3 When to use XBAP
Given the security implications of using XBAP, it’s worth spending a few moments dis-
cussing situations where XBAP is appropriate to use. Assuming that you want to pro-
vide rich functionality within a browser, you have two overarching considerations:

■ Can you accomplish what you need within the subset of available functionality
with standard rights?

■ Do you have control over your environment such that you can provide addi-
tional rights to users?

That isn’t to say that there aren’t situations where you might want to sign an applica-
tion and hope people will trust it; but, in general, if neither of these points is true,
we’d recommend against using XBAP.

Figure 17.10 The application is now working in a hosted manner.
www.it-ebooks.info

http://www.it-ebooks.info/

400 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
 There’s a further consideration: If you can live with a subset of capabilities, can you live
with a smaller subset of functionality? If so, you might want to look at Silverlight. It has
more restrictions; but, as we’ll discuss later in this chapter, it also has a number of benefits.

 By the way, just because we showed a hosted Navigation Application, that doesn’t
mean that you’re limited to only Navigation Applications. WPF will cheerfully let you
host any type of application, although all the same caveats still apply. If the goal,
though, is to get functionality to users, and you don’t particularly want the application
to be hosted in IE, you might want to consider ClickOnce.

17.2 Using ClickOnce
ClickOnce isn’t new for WPF or .NET 3.x, but it’s another way of deploying WPF appli-
cations. The biggest difference with using ClickOnce versus XBAP is that the applica-
tion isn’t hosted inside a browser. The idea is that you do start inside a browser; you
click a link to run your application (see figure 17.11), but once you launch the appli-
cation, it comes up in its own window. Further, if so configured, the application will
now be on the users’ start menus for future use. But, if a newer version of the applica-
tion becomes available, users can be asked if they want to automatically retrieve it.

 Publishing a basic WPF application via ClickOnce is almost childishly simple. The
tricky part is dealing with additional options and components—and security. In some
ways, though, security is a little more straightforward than XBAP. Technically, you’ll want
to get a proper, authorized certificate and, in a corporate environment, push that certif-
icate out to users as required. But, the default behavior with ClickOnce is to ask the
users if they want to go ahead and install. For example, if you click the Install button
from figure 17.11, after a brief Downloading dialog, you’ll get a dialog like figure 17.12.

Figure 17.11 The
automatically created web
page from which the
application can be
downloaded. The wizard
autogenerated this page, but
it can be made prettier or
embedded within other
content as required. Also, if
the appropriate version of
.NET isn’t installed, the
option to first install it will
also be presented.
www.it-ebooks.info

http://www.it-ebooks.info/

401Using ClickOnce
Notice that this isn’t a million miles away from the
ActiveX “Trust me?” approach. If, your application
limits itself to the same subset of functionality we dis-
cussed under XBAP, you wouldn’t get any warning. If
you go ahead and say Install, the application will be
installed (to a special cache location) and then will
start up. Further, the application will now show up on
the start menu (figure 17.13).

 We’re a little backwards here, though. We’ve
shown what a ClickOnce deployment looks like, but
we haven’t shown how you set it up.

17.2.1 Deploying a WPF application via ClickOnce

We need to go back to the non-XBAP version of the
dictionary, and the first thing we need to do is set up
security. As with the XBAP, you go to the Security tab
on the assembly’s properties, and turn on full trust
(figure 17.14). Ideally you’d go through and figure out the specific rights, but this will
work for our example.

 Now, we need to set up a place to publish to. Visual Studio could automatically
publish to a website for us; for simplicity, let’s create a subdirectory called Dictionary-
ClickOnce, right-click to bring up its properties, and, on the Web Sharing page, share
the application as DictionaryClickOnce. Believe it or not, this is the hard part. All we
have to do now is run through the Publish Wizard, which is available by selecting
Publish from the Build menu. Figure 17.15 shows the pages of the wizard with
our selections.

Figure 17.12 Security warning when running ClickOnce. If you click Install, you’re
implicitly trusting the application.

Figure 17.13 ClickOnce can
automatically add your application
to the start menu. The containing
folder defaults to the name under
which Visual Studio was installed,
but it can be changed.
www.it-ebooks.info

http://www.it-ebooks.info/

402 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
Once you’ve run the wizard, you can go to the appropriate URI and see the web page
from figure 17.11. This is pretty much as deep as we’re going to get into ClickOnce.
The basics are pretty straightforward. Things get trickier when you want to deal with
more complex scenarios, such as allowing communication back to your server, push-
ing out configuration files, and that sort of thing, but none of that’s particularly differ-
ent for WPF as for any other ClickOnce applications.

17.2.2 When to use ClickOnce

Although XBAPs are pretty cool, ClickOnce is arguably more commonly useful. A
common reason why ASP.NET is used for complex applications is to avoid having to
deploy a rich application. In a better world, the ease of deployment would be bal-
anced against the much poorer usability of many ASP.NET applications (even with AJAX
and every modern trick). Ah well. In any case, ClickOnce does a lot to level the play-
ing field here. Users can still go to a web page and click a link, but then they get the
full experience of a Windows application and automatic updates.

 That being said, there are still plenty of caveats. Security is one, although not as
severe as with XBAPs. Additional concerns are bandwidth and deployment models.

Figure 17.14 We’re turning on full trust for the application. This isn’t ideal, but even the Calculate
Permissions mechanism thinks we need it, and who are we to argue?
www.it-ebooks.info

http://www.it-ebooks.info/

403Using Silverlight
For occasional-use applications or intensely content-driven applications, such as shop-
ping carts, ASP.NET is a better choice. Also, if users might not have .NET installed, or if
the application is likely to be large and users are unlikely to have much bandwidth,
ClickOnce loses some of its appeal. On the other hand, if most of your users have
good bandwidth, ClickOnce supports a CD deployment model as well, so you can just
ship media to the few laggards.

 One final caveat has to do with the type of software you’re building—if you’re
building commercial software, and the intent is to install an application on a cus-
tomer’s server that’s then deployed to end users at that company, things can get com-
plicated. Things can get particularly complicated if you need to modify the contents
of what you’re deploying (based on some customer configuration) because this
requires resigning the deployment package when the changes are made.

17.3 Using Silverlight
In a chapter about WPF running over the web, we couldn’t possibly not talk about Sil-
verlight. Silverlight is a technology designed for building rich internet applications, or
RIAs. Silverlight is a head-to-head competitor with Adobe Flash and its successor, Flex.

Figure 17.15 The ClickOnce Publish Wizard. For simple deployment situations, the wizard pretty much
handles everything. Other than choosing the directory, we’ve gone with the defaults for everything else.
www.it-ebooks.info

http://www.it-ebooks.info/

404 CHAPTER 17 WPF and browsers: XBAP, ClickOnce, and Silverlight
 Many books are being written about Silverlight, including Silverlight 2 In Action by
Chad A. Campbell and John Stockton from your friendly neighborhood Manning book
dealer, and it is really a book unto itself, so all we’re going to do is touch on it briefly.

 Unlike XBAPs, which assume that .NET 3.x is already
installed on your computer, Silverlight uses a plug-in model
(again, like Flash) and has a (very) stripped-down version of
.NET and WPF. The installation of the Plug-In is relatively
quick and painless end users will generally click an icon to
install it the first time they need it (figure 17.16).

 This quick and easy deployment is really the major benefit
to using Silverlight. Also, Silverlight isn’t limited to Internet
Explorer—it will work in Firefox, and Safari on the Macintosh
via the appropriate plug-in models. There’s an open source project called Moonlight that
Microsoft is cooperating with that will allow Silverlight applications to run on Unix/
Linux browsers. Figure 17.17 shows a Silverlight application running on a Macintosh.

 Silverlight uses a subset of the XAML we’ve been talking about throughout the
book. For the code behind the XAML, the language used differs greatly depending on

Figure 17.16 This icon (or
one similar) will appear on
web pages with Silverlight
content so that users can
download/install the plug-in.

Figure 17.17 This is a Silverlight sample application running under Safari on a Macintosh. Silverlight
Pad is sort of like XAMLPad, but for Silverlight. The tab at the bottom shows the rather painful XAML for
drawing the camera; this drawing was probably done inside Microsoft Expression Blend.
www.it-ebooks.info

http://www.it-ebooks.info/

405Summary
the version of Silverlight. Version 1.0 only supported Javascript. Version 2.0 allows for
any .NET language to be used, including the new dynamic languages IronPython and
IronRuby. Although you can build Silverlight applications in Visual Studio 2008 (by
installing an add-on to Visual Studio called Microsoft Silverlight Tools), Expression
Blend is the primary tool designed for building Silverlight applications—this makes
sense, given the graphical focus of Silverlight.

 Our one big beef with Silverlight is the name—why did Avalon become the
intensely boring Windows Presentation Foundation, whereas Silverlight got to be,
well, Silverlight?4

17.4 Summary
It’s funny that, in a book about building Windows applications, there’s so much to say
about working with browsers. WPF has a lot of options for providing functionality in a
browser, whether it be through XBAP hosting, Silverlight applications, or easier
deployment via ClickOnce.

 As technologies converge, it’s clear that the line between smart and browser appli-
cations will blur more and more—and that security will ever be the biggest challenge
to overcome to make the transition a smooth one. We don’t know for sure how this
will finally play out, but XAML and WPF seem destined to play a part.

 We aren’t quite done with our dictionary application. In the next chapter, we’ll
add the ability to print out definitions and discuss printing in general.

4 We’re told that a new marketing head honcho took over and had the previous marketing team’s heads stuck
on pikes outside MS HQ, but we haven’t confirmed the last part.
www.it-ebooks.info

http://www.it-ebooks.info/

Printing,
documents, and XPS
Do you remember the paperless office? We were reading about it in our flying car
the other day and decided that it was one of those concepts that sounded good, but
never quite got off the ground. Whether this is because too many people aren’t yet
comfortable giving up paper or the technology isn’t yet quite a reasonable replace-
ment, we aren’t sure.

 The fact is that most applications have to provide some mechanism for printing.
Even for applications that eschew paper, there’s often a need to provide data in an
easily transferable format such as Adobe’s PDF format. Yet, we’ve noticed that most
Windows programming guides manage to skirt talking about printing. We think we
know the reason for this—up until now, printing from Windows has been a royal
pain. Even with Windows Forms, which made things a little better, printing was

This chapter covers:
■ Printing FlowDocuments
■ Synchronous and asynchronous printing
■ Printing FixedDocuments
■ Saving XPS documents
■ Exploring modern art
406

www.it-ebooks.info

http://www.it-ebooks.info/

407Printing flow documents
always one of those tasks to assign to the developer you liked least and who you could
then happily blame for your whole schedule slipping.1

 As with many things in Windows, the reason that printing has been so painful is tied
to 20+ year-old technology, in a time where every printing device worked in its own way
and Microsoft wasn’t big enough to bully hardware companies into consistency.

 WPF, in many ways, makes printing simpler—particularly for simple scenarios like
printing a document with some data. But, printing has to handle a lot of specialized
scenarios. Think about the needs of desktop publishing applications that write to
high-end typesetters, or printing color-corrected proofs from a drawing program, or
even creating a paperless document that can be easily shared à la PDF. Also, even low-
end devices now have a whole plethora of options, and the printing mechanism has to
handle all of them.

 What this means is that WPF has to have a lot of underlying support for different
needs, making WPF printing seem somewhat confusing. The trick is to focus on the
bits that are relevant to your needs and to know which classes you can ignore. In this
chapter, we’ll demonstrate a subset of the printing capabilities of WPF—a subset
because we could easily fill two books the size of this one to do the subject justice.

 We’ll also discuss XML Paper Specification (XPS), which sits at the heart of
WPF printing.

18.1 Printing flow documents
The most straightforward way to print in WPF is to create a document and then send it
to the printer (or wherever). Prior to WPF, this wouldn’t have been terribly effective,
but WPF provides for the ability to build extremely rich documents. Conveniently, our
dictionary application already uses a document—the one that displays the results of a
search. We aren’t doing much with it; it’s just a large font title and some paragraphs,
but we could easily put in tables, images, built-in or custom controls, or anything else
our little hearts desire.

 The document in the dictionary application is an example of a FlowDocument. WPF
has support for two different types of documents:

■ FlowDocuments—Content is added, and the FlowDocument figures out how to
position it based on the available space and options such as the number of
pages to display, the current zoom level, and so on. This type of document is
most appropriate for display in applications where you want to get the content
out and printed in the most appropriate manner for the display or print device.

■ FixedDocuments—Content is more precisely placed for a particular type of tar-
get, such as a specific page format. This type of document is what you would use
for printing forms or desktop publishing or for creating transferable documents.

1 One of these days we might be compelled to write a book about the silliness of most software schedules and
how to really plan and deliver software. You should call our publisher and tell them you want that book!
www.it-ebooks.info

http://www.it-ebooks.info/

408 CHAPTER 18 Printing, documents, and XPS
Because we already have a FlowDocument in our dictionary application, let’s look at
printing that first.

18.1.1 Setting up to print

The first thing we need to do is provide a way for users to say that they want to print.
The easy way is to add another hyperlink to the bottom of the page and hook it up to
a Click handler. We won’t bother showing the details of doing this because it’s some-
thing we’ve shown a number of times before. The link should look something like fig-
ure 18.1.

Before we can make printing work, we have to add a reference to the appropriate
assembly. By default, WPF applications don’t reference the System.Printing assembly
that contains the basic printing support. If you’re following along, right-click the Ref-
erences folder under the Dictionary application, and select Add Reference. Then,
scroll down until you find System.Printing, and say OK (figure 18.2).

Figure 18.1 We have, very excitingly, added a Print Hyperlink to our
application. We’ve also added an OnPrint method to the code to handle
the click.

Figure 18.2 Adding a reference to the System.Printing assembly. You can
get to this dialog by right-clicking the References folder underneath your project
in the solution explorer and selecting Add Reference.
www.it-ebooks.info

http://www.it-ebooks.info/

409Printing flow documents
Now we need the printing code. Listing 18.1 shows our first version of the printing
method. We’ve shoved the using statement at the top of the listing, but it really goes at
the top of the file.

using System.Printing;

protected void OnPrint(object sender, RoutedEventArgs e)
{
 PrintDialog printDialog = new PrintDialog();
 bool? print = printDialog.ShowDialog();
 if (print == true)
 {
 IDocumentPaginatorSource paginatorSource =
 searchResults.Document as IDocumentPaginatorSource;

 printDialog.PrintDocument(paginatorSource.DocumentPaginator,
 "Dictionary");
 }
}

The first thing we do here is pop up a print dialog b to determine the printer we
want, the pages to print, and so on. We could have also set some options to customize
behavior. Behind the scenes, the print dialog is setting up two important things for us:

■ PrintQueue—Where we are going to send our print job. It sort of represents
the printer, and lets us determine the capabilities of the printer, and so on; but
it also represents the queue, so you can do things like cancel jobs.

■ PrintTicket—Instructions to the printer about how we want our job to be
printed, information such as quality, color, and even if we want the printer to
put a staple in the middle of the page and immediately jam.2 The PrintTicket
is more complex than this because any individual print job could contain multi-
ple tickets (for example: page 1 is landscape, page 2 is portrait, and so on), but
this description gets the general idea across.

Because we’re using the PrintDialog, we don’t need to directly interact with either of
these objects, but they’re exposed as properties off the PrintDialog if we need them.
Later on, we’ll show printing without using the PrintDialog, at which time we’ll have
to be a little more hands-on.

 By the way, notice that the PrintDialog’s Show() method returns a bool? c
instead of a DialogResult, as dialogs used to do in days of yore? You may remember
that bool? is a nullable bool, which can have values of either true, false, or null. Why
a dialog would need to be able to return null is unclear—the doc lyingly claims that
the dialog will return null if the user exits in some way other than clicking true or
false. It won’t—it always returns either true or false. Personally, we think that they

Listing 18.1 Printing code

2 Not supported on all printers.

Using goes at top of file
Chooses
printer
and so on

b

bool? Why?
Why not?c

d

Does printing e
www.it-ebooks.info

http://www.it-ebooks.info/

410 CHAPTER 18 Printing, documents, and XPS
should have stuck with a DialogResult (which was nice and flexible). It’s too easy for
coders to abuse the nullable return to fake a third option.

 Anyway, back to the plot. The next thing we have to do is get hold of a paginator d,
which is responsible for figuring out how to break up our content into pages. This is
an example of one of those things that needs to be present for flexibility, but we nor-
mally don’t care about. The document has hold of the paginator it’s using, and we can
grab that by casting our document into the interface that knows how to give us the
paginator to use.

 If we wanted to customize how pages were set up, we’d probably want to create a
custom paginator. For example, if we wanted to insert a header and a footer for each
page, we’d have to create a custom paginator.3 Right now, we want to do something
simple, though, so we’re doing the minimum to get hold of the default paginator,
which we get from the cast paginator source (our lowly document) and pass to the
PrintDialog’s handy Print method e.

 If you go ahead and run, look up a word, and then click Print, you’ll get a print
dialog that lets you select the printer. Then your document will print (something like
figure 18.3).

 So far, so good. And, other than having to know one esoteric thing (how to get to the
paginator), the code is pretty simple. But, there are some minor issues. For example, we
could use some margins, and we’d prefer that the text go all the way across the page.

3 You could argue that wanting to add headers and footers is so common that it should be handled easily and
by default. Unfortunately, that isn’t the case. It’s likely, though, that code snippets will show up all over the
place for tasks like this.

Figure 18.3 Printout of a looked-
up word. Not bad, but it could use
some margins and so on.
www.it-ebooks.info

http://www.it-ebooks.info/

411Printing flow documents
18.1.2 Customizing the output

Because we have a Document, we can go ahead and set properties on that Document.
For example, we could set the margin on the document.

searchResults.Document.PagePadding = new Thickness(96);

Page padding might not be the most obvious way of referring to a margin, but this will
work. We’re using the value 96 because units are in device independent pixels (DIPs);
there are 96 dips in an inch, so we’re setting the margin to 1 inch all the way around.

 But, there’s one problem. We’re setting the property on the same document that
we’re currently viewing in the application. This means that our printout will have a 1-inch
margin, and so will our document in the application—which won’t look very good.
Also, if we make any additional changes, they’ll also show up in the document, and we
don’t want that either.

 We could set the properties, print, and then restore the properties, but that
approach is pretty ugly, particularly if we make more and more changes. Also, in a lit-
tle while, we’ll demonstrate printing asynchronously, so that really won’t work.

 Instead, the most straightforward solution is to make a copy of our document and
make the changes to that. This approach makes a lot of sense anyway because you often
don’t want your printout to be exactly what you have on the screen. It isn’t entirely trivial
to copy a FlowDocument—we’d prefer a Copy method (hint, hint MS). Listing 18.2 has
the simplest code we could come up with for creating a copy of a FlowDocument.

protected FlowDocument CopyFlowDocument(FlowDocument originalDoc)
{
 string xmlDoc = XamlWriter.Save(originalDoc);

 StringReader stringReader = new StringReader(xmlDoc);
 XmlReader xmlReader = XmlReader.Create(stringReader);
 FlowDocument newDoc = (FlowDocument)XamlReader.Load(xmlReader);

 return newDoc;
}

This code writes everything in the original document to a string as XAML and then
creates a new FlowDocument by reading in the contents of that string. It uses two very
useful classes—XamlWriter and XamlReader. Now all we have to do is change our print
code to make a copy and print that (listing 18.3).

protected void OnPrint(object sender, RoutedEventArgs e)
{
 PrintDialog printDialog = new PrintDialog();
 bool? print = printDialog.ShowDialog();
 if (print == true)
 {
 FlowDocument docCopy = CopyFlowDocument(searchResults.Document);

Listing 18.2 Copying a FlowDocument

Listing 18.3 Printing copy

b

www.it-ebooks.info

http://www.it-ebooks.info/

412 CHAPTER 18 Printing, documents, and XPS
 docCopy.PagePadding = new Thickness(96);
 docCopy.ColumnWidth = double.NaN;

 IDocumentPaginatorSource paginatorSource =
 docCopy as IDocumentPaginatorSource;
 printDialog.PrintDocument(paginatorSource.DocumentPaginator,
 "Dictionary");
 }
}

This code is pretty similar to the old version. The big difference is that we call our
copy method b and then set a few properties on the copy c, including the margin
and the column width. By setting the column width to “Not a Number”, we’re saying
that we want the column to take up all available space. Everything else is the same—
except that we’re printing our copy instead of the original. Figure 18.4 shows our page
with the nicer formatting.

Setting properties
on copyc

Figure 18.4 First page of our printout using a copy of the document with
margins set and the text forced into a single column. This page comes from the
CIA’s The World Factbook, one of the alternative dictionaries.
www.it-ebooks.info

http://www.it-ebooks.info/

413Printing flow documents
This certainly looks better. In fact, if you don’t set the margins, the defaults will print
outside the legal printing area of many printers, cutting off some of the text and look-
ing pretty cheesy.

18.1.3 Printing asynchronously

Now that we have a copy of our document to work with, it would be nice if we could
print in the background, instead of making the user wait for the operation to com-
plete. Otherwise, he might get bored and go play Solitaire, hurting the delicate ego of
our application.

 It’s easy to switch to printing asynchronously, but we can’t use the Print() method
on the PrintDialog anymore—that’s a one-size-fits-one solution. Instead, we have to
create an XPS document writer. (We bet you were wondering when XPS would show
up—well, keep waiting.) For the moment, don’t worry too much about the XPS-iveness
of the class, and focus on the writer bit. We create the writer based on the PrintQueue;
but, before we do that, we have to add an additional using statement.

using System.Windows.Xps;

Once that’s in place, we need to modify the OnPrint method (listing 18.4).

protected void OnPrint(object sender, RoutedEventArgs e)
{
 PrintDialog printDialog = new PrintDialog();
 printDialog.UserPageRangeEnabled = true;
 if (printDialog.ShowDialog() == true)
 {
 FlowDocument docCopy = CopyFlowDocument(searchResults.Document);
 docCopy.PagePadding = new Thickness(96);
 docCopy.ColumnWidth = double.NaN;

 IDocumentPaginatorSource paginatorSource =
 docCopy as IDocumentPaginatorSource;

 XpsDocumentWriter docWriter =
 PrintQueue.CreateXpsDocumentWriter(printDialog.PrintQueue);

 docWriter.WritingCompleted += new
System.Windows.Documents.Serialization.

 WritingCompletedEventHandler(docWriter_WritingCompleted);

 docWriter.WriteAsync(paginatorSource.DocumentPaginator);
 }
}

void docWriter_WritingCompleted(object sender,
 System.Windows.Documents.Serialization.WritingCompletedEventArgs e)
{
 MessageBox.Show("Done Printing!","Dictionary");
}

Listing 18.4 Printing asynchronously

Allows choice of
pages to printb

Creates writer c

Subscribes to completed event d

Printse

Completed
event handler

f

www.it-ebooks.info

http://www.it-ebooks.info/

414 CHAPTER 18 Printing, documents, and XPS
By default, the PrintDialog doesn’t allow the user to print only certain pages. This
isn’t a big deal, but we thought we’d turn on the option b. After that, things are
about the same until we’re ready to print. Now, instead of calling the Print() method
on the dialog, we’re calling a static method on the PrintQueue class that takes a
PrintQueue as an argument and returns a writer set to print to that queue c.

 The next step is optional, but nice. We’re subscribing to an event to tell us when
printing is complete d. There’s also an event that tells when each bit of the docu-
ment has been printed, in case you want to update a progress display, or if the print
job has been canceled. As you can see, our handler for when printing is completed
pops up a message box f.

 Finally, we call the WriteAsync() method to do the actual printing e. We could
instead called Write(), which would have printed synchronously, just as if we’d used
the Print() method on the PrintDialog().

 When we run the code, we get
the print dialog as usual, but
there’s no delay after we click OK.
Instead, a few moments later, our
message box pops up (figure 18.5).
Because we’re only printing a cou-
ple of pages, the dialog comes up
very fast indeed. In fact, you may
note that WPF printing is noticeably faster than, say, Windows Forms.

 It’s nice how easy it is to print in the background. Also, now that we’re no longer
relying on the PrintDialog’s Print method, we could, if we choose, skip the dialog
altogether and go straight to the default printer (listing 18.5).

protected void OnPrint(object sender, RoutedEventArgs e)
{
 FlowDocument docCopy = CopyFlowDocument(searchResults.Document);
 docCopy.PagePadding = new Thickness(96);
 docCopy.ColumnWidth = double.NaN;

 IDocumentPaginatorSource paginatorSource = docCopy as
 IDocumentPaginatorSource;

 PrintQueue queue = LocalPrintServer.GetDefaultPrintQueue();
 XpsDocumentWriter docWriter = PrintQueue.CreateXpsDocumentWriter(queue);

 docWriter.WritingCompleted += new System.Windows.Documents.Serialization.
 WritingCompletedEventHandler(docWriter_WritingCompleted);
 docWriter.WriteAsync(paginatorSource.DocumentPaginator);
}

We’ve dropped all the print dialog code, and, instead got the default queue. You
might want to do this if you want your application to operate like MS Word, where the
Print toolbar button prints to the default printer, whereas the Print… option from

Listing 18.5 Printing without using PrintDialog

Figure 18.5 Very exciting
notification about our background
print job being done. We should
print something a bit more complex
to make the asynchronous
approach really show off.

Gets
default
Queue
www.it-ebooks.info

http://www.it-ebooks.info/

415Printing FixedDocuments
the file menu gives you a dialog and options. You can also step through all the print
queues and find the one you want.

18.2 Printing FixedDocuments
So far, our printing has been via the use of a FlowDocument, which works well for our
particular content. But, often you want a very specifically formatted printout. We men-
tioned a couple of examples of this earlier—printing a form or doing desktop publish-
ing. For these applications, you want a lot more control over how a page is laid out,
and that’s precisely what a FixedDocument gives—each page is laid out and added
independently, and then the whole document is printed.

 That isn’t to say that you have to lay out each letter in each word—WPF will handle
standard things like paragraphs and word-wrapping, but will give you the ability to
specify, for example, where the paragraphs will go. And, if you’re picky enough, you
really could specify the exact location for each letter in each word.

 A FixedDocument is made up of pages, and each page can have any XAML content
on it you like; it can use layouts to handle positioning, and any sort of controls you like—
although, because this is for printing, you can’t interact with the controls, so you really
end up with pictures of controls.

 We’ve gone ahead and added another hyperlink to our application—with the label
Print Fixed—and then put in a basic implementation. Our first version (listing 18.6)
demonstrates putting some items in specific places on the printout. We’ll look into
adding content from our application in a little while.

protected void OnPrintFixed(object sender, RoutedEventArgs e)
{
 PrintDialog printDialog = new PrintDialog();
 if (printDialog.ShowDialog() == true)
 {
 FixedDocument fixedDocument = new FixedDocument();
 fixedDocument.DocumentPaginator.PageSize = new Size
 (printDialog.PrintableAreaWidth,
 printDialog.PrintableAreaHeight);

 PageContent firstPage = new PageContent();
 FixedPage fixedPage = new FixedPage();

 Canvas canvas = new Canvas();
 canvas.Width = fixedDocument.DocumentPaginator.PageSize.Width;
 canvas.Height = fixedDocument.DocumentPaginator.PageSize.Height;
 fixedPage.Children.Add(canvas);

 TextBlock tb = new TextBlock();
 tb.Foreground = Brushes.Black;
 tb.FontFamily = new System.Windows.Media.FontFamily("Arial");
 tb.FontSize = 36.0;
 tb.Text = "Hello";
 Canvas.SetTop(tb, 70);

Listing 18.6 Printing a FixedDocument

Our
FixedDocument

b

c Page of
content

d

Needs
layout

e

Adds
TextBlock

f

www.it-ebooks.info

http://www.it-ebooks.info/

416 CHAPTER 18 Printing, documents, and XPS
 Canvas.SetLeft(tb, 70);
 canvas.Children.Add(tb);

 Ellipse ell = new Ellipse();
 ell.Width = 400;
 ell.Height = 400;
 ell.StrokeThickness = 3;
 ell.Stroke = new SolidColorBrush(Colors.Black);
 Canvas.SetTop(ell, 200);
 Canvas.SetLeft(ell, 300);
 canvas.Children.Add(ell);

 ((System.Windows.Markup.IAddChild)firstPage).AddChild(fixedPage);
 fixedDocument.Pages.Add(firstPage);

 PrintQueue queue = printDialog.PrintQueue;
 XpsDocumentWriter docWriter =
 PrintQueue.CreateXpsDocumentWriter(queue);
 docWriter.Write(fixedDocument.DocumentPaginator);
 }
}

This code is quite straightforward. No, really—it’s just that FixedDocuments are very
hierarchical, so we have to create a number of nested objects to hold our content (fig-
ure 18.6).

 The first thing we have to do is create a FixedDocument b. We’re setting its size
based on the printable area of the printer c. If we want margins, though, we’ll have
to make sure that we place our content appropriately (that is, inside the margin). The
next thing we create is a PageContent object d. The FixedDocument holds a collec-
tion of PageContent objects, with each one representing a page. Each PageContent
object has a FixedPage object, which will eventually hold the content. The FixedPage
primarily deals with breaking the page; it’s one of those details that you have to have,
but generally don’t have to worry too much about.

 Now, we have to create the content for our page. This is where the nature of WPF
stands us in good stead—we can put just about any WPF content here. We could put in
a Grid layout, or a Dock layout, or some custom layout, and then use that layout to
automatically format for us. But, because we’re interested, at the moment, in demon-
strating fine control, we’ll use a Canvas layout e so that we can precisely position our
content. To start with, our content is a TextBlock f and an Ellipse g, which is
somewhat silly. But, we’ll put in some more meaningful content in the near future.

Adds
Ellipse

g

Adds page to document h

The printing
bit

i

FixedDocument

PageContent (pages)

FixedPage

Content

Stuff on page

This is the document.

A FixedDocument holds a collection of PageContent objects. Each one represents a page.

A FixedPage bridges between the PageContent and the actual content.

The page content–in this case, a Canvas layout.

TextBlock, Ellipse, or any other controls.

Figure 18.6 The layers in a FixedDocument
www.it-ebooks.info

http://www.it-ebooks.info/

417Printing FixedDocuments
 The Canvas has already been added to
the FixedPage. Now we have to add the
FixedPage to the PageContent h using a
rather inconvenient notation, and then add
the PageContent to the Pages collection of
the FixedDocument. You can tell this was
designed by people thinking about XML. In
fact, you can create documents in XAML (or
with the designer) and then update the con-
tent and print them if you want to.

 The last step is the printing i. This is no
different than printing a FlowDocument,
except that the FixedDocument is nice enough
to let us have the Paginator without requiring
us to do a cast to an interface. Figure 18.7
shows our remarkably lovely printout.

 To be complete, let’s take some of the
text from the dictionary definition, and put
it onto our page as well.

18.2.1 Adding some FlowDocument content to our FixedDocument

Because we can arbitrarily add WPF controls to the Canvas in the FixedDocument, one
way to put some of our FlowDocument’s content onto the page would be to literally
dump a viewer on the page with the content. This does work—although you end up
with a picture of the search and zoom controls as well! There are also some lighter-
weight controls for displaying FlowDocument content, such as the FlowDocument-
ScrollViewer and, if we remember to turn off the scroll bars, we can use that to kind
of get what we want.

 But, these are all pretty ugly approaches—particularly if we’re likely to pull out
particular pages of content from the FlowDocument. The ScrollViewer will just dis-
play the first section of text. If we want to print the second page later, what would we
do? Try to figure out how far to scroll? Ick.

 The better way is to take advantage of the FlowDocument’s own rendering capabil-
ity to have it break itself into pages. Let’s say that we want to put the first page of the
FlowDocument’s content in a 4x6 inch box on the page. Why would we want to do that?
Well, perhaps we’re doing some sort of fancy page layout with artistic designs and
titles, and we want our content to take up a small area of the page.

 Let’s start with the box. Adding a box to the form, at least, should be pretty easy.
Well, instead of adding a box, let’s add a border. A Border is a control whose purpose in
life is to border things. The nice thing about it is that it holds some content. Listing 18.7
shows the creation of the Border control.

Figure 18.7 It isn’t much, but it’s ours—a
printout of a FixedDocument
www.it-ebooks.info

http://www.it-ebooks.info/

418 CHAPTER 18 Printing, documents, and XPS
Border border = new Border();
border.BorderBrush = Brushes.Black;
border.BorderThickness = new Thickness(1);
border.Width = (4 * 96);
border.Height = (6 * 96);
Canvas.SetLeft(border, 96);
Canvas.SetTop(border, 3 * 96);
canvas.Children.Add(border);

This code is put into the OnPrintFixed() method after the creation of the Ellipse
and before the print operation. There’s nothing very spectacular here, although you
may notice the preponderance of values based on the number 96. Although it’s, coin-
cidentally, our lucky number, the real reason we use 96 is because the default WPF
units are dips, and there happen to be 96 dips in an inch. Our border is 4 inches wide,
6 inches tall, one inch in from the left, and 3 inches down from the top.

 If we run the print operation, we’d now get an empty box of the described dimen-
sions. But, we’d like something in that box. Listing 18.8 shows how to get the first 4x6
page of the contents from our definition.

FlowDocument docCopy = CopyFlowDocument(searchResults.Document);
docCopy.ColumnWidth = double.NaN;
docCopy.PageWidth = border.Width - 2;
docCopy.PageHeight = border.Height - 2;
IDocumentPaginatorSource paginatorSource =
 docCopy as IDocumentPaginatorSource;
DocumentPage docPage = paginatorSource.DocumentPaginator.GetPage(0);

Much of this code should be familiar—we make a copy of the FlowDocument and set its
size, although we’re using the size of the Border control to determine the width and
height b, minus a little bit to make up for the lines on either size. Then we get a pag-
inator as if we’re going to print. Instead of printing, though, we ask the paginator for
the first page c. If we were going to put more content on multiple pages or multiple
locations, the paginator could be used to provide the pages as needed.

 A DocumentPage isn’t terribly useful, though. It has virtually no properties or meth-
ods, and it can’t do very much. We need to get the page into a format that we can put
onto our page. An easy way to do this is to draw the page out onto a bitmap, and then
put the bitmap on our page. Listing 18.9 shows how to do that.

RenderTargetBitmap renderTarget = new RenderTargetBitmap
 ((int)docCopy.PageWidth,(int)docCopy.PageHeight,96,96,
 System.Windows.Media.PixelFormats.Default);

renderTarget.Render(docPage.Visual);

Image img = new Image();

Listing 18.7 Adding an empty Border

Listing 18.8 Getting a page from a FlowDocument

Listing 18.9 Rendering to a bitmap

What’s
with 96?

Border, minus
space for linesb

c

Creates
targetb

Renders
pagecImage holderd
www.it-ebooks.info

http://www.it-ebooks.info/

419Printing FixedDocuments
img.Width = docCopy.PageWidth;
img.Height = docCopy.PageHeight;
img.Source = renderTarget;
border.Child = img;

The first thing we do is create a RenderTargetBitmap of the appropriate size and with
the appropriate resolution b. The whole purpose of a RenderTargetBitmap is to
make it possible to convert a Visual object into a bitmap. As you probably remember
from chapter 14, Visual is a pretty high-level class that provides basic low-level sup-
port for things that need to be able to render themselves (as well as support for hit
testing, and so on). Controls are, eventually, derived from Visual, because they’re
derived from UIElement. If the document page exposed a UIElement, we could add it
directly to our Canvas; but, unfortunately, DocumentPage only exposes a Visual
object, so we have to first render the Visual into something else before we can add it.

 The Render c method on RenderTargetBitmap causes the passed object to render
itself out to the bitmap or, in English, to draw our page. Then, all we have to do is shove
our bitmap into an Image control and put the Image control inside our Border d.

 We wouldn’t say that this is all trivial, but it isn’t ridiculously complex either. Fig-
ure 18.8 shows the results of all our machinations.

 Very avant-garde, wouldn’t you say? One thing, though, is that the page we’ve
printed is a little fuzzy—much more so than the Hello at the top of the page. The reason

Figure 18.8 We’ve pulled
out a page from our
FlowDocument and
rendered it as part of our
printout. The page is a little
bit fuzzy—we need to do
something about that.
www.it-ebooks.info

http://www.it-ebooks.info/

420 CHAPTER 18 Printing, documents, and XPS
for the fuzziness is the resolution we used for our bitmap. In the next section, we’ll
improve on this.

18.2.2 Matching resolution

When we rendered the page from our FlowDocument, we set the resolution to 96,
which is pretty standard for screen resolution. For a printer, though, that’s fairly low.
Printers these days generally work in resolutions of 300dpi, 600dpi, or higher. Our
code should get the resolution that we’re going to print at and use that for the bit-
map. This is pretty easy, but there’s one caveat—the resolution information is stored
in the PrintTicket, which we have. But, the PrintTicket class isn’t part of the System.
Printing assembly; it’s part of an assembly called ReachFramework. Before we can access
members of the PrintTicket, we have to add a reference to the ReachFramework assem-
bly. Right-click the References node of the project, select Add Reference, and then
scroll down until you find ReachFramework. Note that it is not System.ReachFramework
or Microsoft.ReachFramework—just ReachFramework.

Once the reference has been added, we have to change the code to use the resolution
(listing 18.10).

int xPixels = (int)printDialog.PrintTicket.PageResolution.X;
int yPixels = (int)printDialog.PrintTicket.PageResolution.Y;
RenderTargetBitmap renderTarget = new RenderTargetBitmap
 (xPixels * 4, yPixels * 6, xPixels, yPixels,
 System.Windows.Media.PixelFormats.Default);

renderTarget.Render(docPage.Visual);

We’re getting the PrintTicket from the PrintDialog b, but we could also get it
from the PrintQueue. The PageResolution property holds the resolution that has
been set for our printing operation—this isn’t specifically the resolution of the
printer, but the resolution specified by printer defaults (or overridden values set by
the user).

 Now we set the resolution of the bitmap and set its size based on that resolution.
Now, when we print, (figure 18.9) the text should be sharper.

Why ReachFramework?
You might be wondering why PrintTicket isn’t in the System.Printing assembly,
and why, for that matter, it’s called ReachFramework. The ReachFramework holds
various features and functions related to XPS, which we’ll talk about in more detail
in the near future. XPS is a format for sharing documents and, importantly, is de-
signed to work on a number of different platforms. XPS has to have support outside
the normal .NET framework for those other platforms, so it’s reaching out. Get it?

Listing 18.10 Rendering at right resolution

Gets
resolutionb

More
appropriate
bitmap
www.it-ebooks.info

http://www.it-ebooks.info/

421Printing FixedDocuments
The higher the resolution of your output device, the more noticeable the difference.

18.2.3 Printing Visuals

Throughout this section, we’ve gone to a lot of effort to create a FixedDocument and
populate it with pages. It’s worth noting that there’s a way to cheat. WPF will let you
print a Visual object such as the Visual we got from the DocumentPage. But, because
controls and layouts are also Visuals, we can take a layout and print it directly.

 We could simplify our code by eliminating the document, like in listing 18.11.

protected void OnPrintVisual(object sender, RoutedEventArgs e)
{
 PrintDialog printDialog = new PrintDialog();
 if (printDialog.ShowDialog() == true)
 {
 Canvas canvas = new Canvas();
 canvas.Width = printDialog.PrintableAreaWidth;
 canvas.Height = printDialog.PrintableAreaHeight;

 ...Code to populate the canvas goes here...

 printDialog.PrintVisual(canvas, "Dictionary");
 }
}

This approach is really a shortcut method. Behind the scenes, the document is still cre-
ated. If you run this code, you’ll get exactly the same printout as before. So, why do it
the hard way? It gives you much more control and, if you have more than one page,
it handles that too. Still, if you have a fairly simple 1-page scenario, PrintVisual is
pretty handy. You can also print a Visual to a PrintQueue without using the PrintDialog

PrintQueue queue = LocalPrintServer.GetDefaultPrintQueue();
XpsDocumentWriter docWriter = PrintQueue.CreateXpsDocumentWriter(queue);
docWriter.Write(canvas);

Again, for simple needs, this isn’t a bad approach—and, if you have to switch to the
more complex approach later, it isn’t a big jump.

 We’ve now demonstrated printing FlowDocuments and FixedDocuments and Visuals
directly. Throughout all of this, there have been little hints of something called XPS, in
class names if nothing else. It’s about time that we explain what XPS is and how it
relates to anything.

Listing 18.11 Printing a Visual directly

Figure 18.9 The text at the bottom was rendered at a higher resolution;
it’s sharper than the text at the top.

Prints Visual
directly
www.it-ebooks.info

http://www.it-ebooks.info/

422 CHAPTER 18 Printing, documents, and XPS
18.3 XPS
XPS stands for the XML Paper Specification. Although it includes a number of differ-
ent technologies, it can be thought of as “a way of defining everything related to print-
ing.” At the core of XPS is a document format that defines what goes on which pages
and where. The fact that this format is tightly related to XAML isn’t a coincidence.

 In Windows Vista, the whole print queue mechanism now uses XPS. Even if you
print from old applications, the output is converted to XPS and sent to the print
drivers in that format. The idea is for XPS to replace all the old formats such as WMF
and RTF.4

 There’s another format that, arguably, XPS also hopes to replace: PDF. It’s very easy
to save XPS to a file and then transfer it on. There are XPS viewers available for a vari-
ety of browsers now—PC, Mac, and, UNIX flavors. In fact, after installing .NET 3.5, you
may have noticed a new printer automatically installed for you—Microsoft XPS Docu-
ment Writer. If you select that printer, you’re prompted for a filename and end up
with an XPS document that you can email to your heart’s delight, whether or not the
application from which you’re printing supports XPS.

18.3.1 Saving an XPS document to a file

You might be wondering at this point: If XPS is so important, how come we’ve waited
so long before bringing it up. Well, the truth is that all the printing we’ve done so far
has been via XPS. The occasional XPS namespace hinted at this; but, to make it really
obvious, let’s modify our printing code so that, instead of printing, we save to an XPS
file (listing 18.12).

using Microsoft.Win32;
using System.Windows.Xps.Packaging;

protected void OnSaveFile(object sender, RoutedEventArgs e)
{
 SaveFileDialog saveDialog = new SaveFileDialog();
 saveDialog.Filter = "XPS Document (*.XPS)|*.XPS|All Files (*.*)|*.*";
 if(saveDialog.ShowDialog() == true)
 {
 FixedDocument fixedDocument = new FixedDocument();
 fixedDocument.DocumentPaginator.PageSize =
 new Size(96 * 8.5, 96 * 11);

 PageContent firstPage = new PageContent();
 ...The rest of the existing code for creating our document goes here...

 XpsDocument doc =
 new XpsDocument(saveDialog.FileName, FileAccess.ReadWrite);

 XpsDocumentWriter docWriter =

4 There’s a point in a sentence when you’ve reached your third acronym, where you start to wonder if, perhaps,
there isn’t something seriously wrong with the world.

Listing 18.12 Saving XPS document to file

Goes at the top!b

Lets user
choose file

c

File to save d
www.it-ebooks.info

http://www.it-ebooks.info/

423XPS
 XpsDocument.CreateXpsDocumentWriter(doc);
 docWriter.Write(fixedDocument.DocumentPaginator);
 doc.Close();
 }
}

First, we need to add a couple of additional namespaces to the top of our file b. We
need Microsoft.Win32 for the Save dialog. The Packaging namespace is for packag-
ing up documents as files. Instead of a choose printer dialog, we’re now using a
choose file dialog.

 After that, we do almost exactly the same thing that we did before for printing. The
only thing we do differently is to hardcode the page dimensions c (and, later on, the
resolution for our image). When writing to a transferable file, we have no particular
requirement to have a particular page size or resolution—we can go crazy (although,
later, if the user wants to print the file, some conversion would have to take place).

 Once we’ve put together our content, we need some place to write it to. We create
a new XpsDocument d with the filename provided from the file dialog. Then we get a
writer from the document e, just as, earlier, we created a writer from the PrintQueue.
Then we write our content to the writer f again, as before. Finally, we close the file.

 The fact that, other than acquiring our writer, the writing process itself is identical
is very important. We could, just as easily, have written our FlowDocument content or a
Visual. Writing to an XPS file is no different than writing to a printer. Pretty slick, eh?
If we now run, then double-click the file we’ve created, we’ll see our document in the
XPS document viewer (figure 18.10).

Another
writeref

Figure 18.10 Viewing a
document in the XPS viewer
www.it-ebooks.info

http://www.it-ebooks.info/

424 CHAPTER 18 Printing, documents, and XPS
And now we could go ahead and print out document from here as well!

18.3.2 The problem with images…

Even though we’ve designed our output as though we’re going to print it, it isn’t
uncommon to transfer documents around that are generally only read online. One
nice thing about the online version is that you can copy the content out of the docu-
ment for use elsewhere. If you try this with our test document, you can highlight the
word Hello at the top and copy it to the clipboard. But, if you try to do that with the text
from our document, you can’t.

 We’ve converted the text into a bitmap, so it’s only a picture of the text. This is no
big deal when we’re printing, but it’s quite annoying when we’re transferring the doc-
uments. To fix this, we should ditch the bitmap and use a control that holds a Visual,
the Visual we got out of our FlowDocument.

 You may remember from chapter 14 that a Visual is a low-level class used to repre-
sent “stuff you can put on the screen.” Further, you may remember that there’s no
handy container control for holding a Visual, but that it’s pretty easy to create one.
Listing 18.13 shows a VisualHolder control that holds a single Visual.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Media;

namespace DictionaryPages
{
 class VisualHolder : FrameworkElement
 {
 VisualCollection visuals;

 public VisualHolder()
 {
 visuals = new VisualCollection(this);
 }

 public Visual HeldVisual
 {
 get {return (visuals.Count > 0) ? visuals[0] : null;}
 set
 {
 visuals.Clear();
 visuals.Add(value);
 }
 }

 protected override int VisualChildrenCount
 {
 get { return visuals.Count; }
 }

Listing 18.13 VisualHolder control

Collection
of Visualsb

Property exposing
single Visual

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

425XPS
 protected override Visual GetVisualChild(int index)
 {
 return visuals[index];
 }
 }
}

We’re cheating here a little by using a collection of Visuals b instead of just holding
a single Visual. We’re doing this because the collection handles some behind-the-
scenes stuff for us and also lets us steal the implementation of VisualChildrenCount
d and GetVisualChild e from our sample from chapter 14.

 The only thing we really care about is the HeldVisual property c, which gives us
access to a single held Visual (that we make sure is the only thing in our collection).
Now that we have our holder, we can put our Visual in it and, because our Visual-
Holder control is a FrameworkElement, we can put it either in our Border or directly
on our Canvas. We can now replace the bitmap code in SearchPage.xaml.cs with the
VisualHolder (listing 18.14).

VisualHolder holder = new VisualHolder();
holder.Width = docCopy.PageWidth;
holder.Height = docCopy.PageHeight;
holder.HeldVisual = docPage.Visual;
border.Child = holder;

This code goes below where we got the
docPage and replaces all the code to cre-
ate the BitmapImage and the Image con-
trol. If we run now, the results look just
like figure 18.10, except that we can now
select text in the definition (figure 18.11).

 There’s quite a bit more to the XPS
format. We could talk a lot about the fact
that it can carry with it all the font infor-
mation it needs, as well as various other
information. Also, there’s a FixedDocu-
mentViewer control that makes it easy to
display XPS documents in your own
applications. But, we’ve taken printing
about as far as we can reasonably do
without dedicating the rest of the book
to the topic, and, as you’ve seen, using
the core capabilities of WPF printing is
pretty straightforward.

Listing 18.14 Using VisualHolder

e

Figure 18.11 Using the VisualHolder control.
Now the text in our box is selectable.
www.it-ebooks.info

http://www.it-ebooks.info/

426 CHAPTER 18 Printing, documents, and XPS
18.4 Summary
Between the two of us, we’ve probably done printing from just about every scenario:
Windows Forms/MFC, writing printer codes to output, even writing custom drivers for
obsolete plotters. Looking at printing from WPF, as well as the XPS system, it seems like
Microsoft has a good balance between flexibility and straightforwardness—you can do
simple things simply and complex things, er, complexly?

 Being us, that doesn’t mean that we don’t want a few changes and improvements.
There are some things that should be simple that are tricky (such as adding headers
and footers to an existing document), and there should be a built-in control that
allows for a Visual to be hosted without, for example, requiring its content to be writ-
ten to a bitmap. Overall, though, for us, we’re pretty happy.

 Also, we’ve taken our little dictionary application just about as far as it will go. In
the next chapter, we intend to suck out some of the guts of the dictionary (vampire-
like) for another purpose. In homage to spy movies, we’ll build an application that
pulls data from the CIA (really) and uses glitzy transition effects while doing it!
www.it-ebooks.info

http://www.it-ebooks.info/

Transition effects
There’s an old, not very good, joke about a man talking to a genie. “Genie,” he says,
“make me a sandwich.”

 “Poof,” says the genie, “you’re a sandwich.”
 As we said, it’s not a very good joke. Sometimes, though, working with WPF is

like that. Unless you get your incantations exactly right, you suddenly find yourself
looking out from between two slices of Wonder Bread, wondering what happened.

 This chapter is about two things. First, it’s about adding some cool transition
effects, such as fades and wipes, into your applications. Second, it’s about balancing
XAML and code, and putting together applications in a way that makes it possible
for you to have a shot at getting things to work, while being as understandable and
maintainable as possible.

 We aren’t trying to take a potshot at XAML or declarative programming per se,
but we’d like to point out something about the nature of the technology. Via XAML,

This chapter covers:
■ Building a cleaner application
■ Using the Application object
■ Lots of spiffy transitions
■ Getting as close to a James-Bond-like life as

we’re ever likely to
427

www.it-ebooks.info

http://www.it-ebooks.info/

428 CHAPTER 19 Transition effects
it’s possible to specify incredibly complex behavior with only a few lines. At the same
time, XAML isn’t strongly typed—even with IntelliSense, it’s possible to write and com-
pile XAML that isn’t strictly legal, and it’s certainly easy to have legal XAML that does
things completely differently than what you expect. Add to this the fact that it isn’t
currently possible to debug XAML—to step line by line as it executes to see what’s
really going on.1

 Often, this isn’t that big a deal—after all, when you’re defining a bunch of controls
on a form, it’s pretty hard to go wrong. But, when you’re trying to create effects, these
issues can be extremely frustrating. For this reason, effects often requires a lot more
upfront planning and the occasional brain twist. The rewards, though, are worth it.
Adding effects to your WPF applications can punch up your UI, and it often takes only
a few lines of XAML to do things that previously would have taken massive amounts of
code to do smoothly.

 Before we get into the really nifty effects, we need a new application to work with.
We could add effects to one of the existing applications, but we want to build a new
application from scratch, this time paying more attention to the details and having a
place for logic, separate controls, and so on. We’re doing this because one of the
points of this chapter is to emphasize the “proper” way to separate out responsibilities
within a WPF application. Also, we want an application that lends itself to transitions.
Our new application will borrow quite a bit from the Dictionary application—one of
the supported dictionaries is the CIA’s The World Factbook, which has facts about every
country (or at least every country that existed when the data was imported about five
years ago). The application we’re going to build will let us double-click on any country
and see the information about that country.

19.1 Building the World Browser application
Before we can add a bunch of effects to our application, we first have to have an appli-
cation. Figure 19.1 shows more or less what the working application will look like. This
application will show a list of countries (broken out by continent) in the left column
and the details about the currently selected country in a FlowDocument on the right.
When we’re finished, it will also have a ComboBox that allows us to choose the particu-
lar transition effect to use when switching between countries.

 To get started, create a new solution/project of type WPF Application. Ours is
called World Browser. The first thing we want to do in our new project is create a class
that handles looking up data.

19.1.1 The DictionaryLookup class

In the Dictionary application, we shoved the logic for looking up words into the code
behind our Search page. We did this to save time, but it’s obviously not world-class
design. We’ll rectify this (at least a little) in the World Browser program by putting

1 Well, it is sort of possible to do this now—you can download the source code for WPF and step through the
WPF code to see what’s going on, but that isn’t the same as stepping through your XAML.
www.it-ebooks.info

http://www.it-ebooks.info/

429Building the World Browser application
the lookup code in a standalone class called DictionaryLookup. Listing 19.1 shows
the code for the DictionaryLookup class. But, we’ve omitted the implementation
from several of the methods because they’re exactly the same as they were in the Dic-
tionary application.

using System;
...Additional using statements...

namespace WorldBrowser
{
 public class DictionaryLookup
 {
 private Encoding conversationEncoding = Encoding.UTF8;
 private string defaultServer = "test.dict.org";
 private readonly int defaultPort = 2628;
 private string dictionaryToUse = "world02";
 private const int bufferSize = 4096;

 public FlowDocument DefineWord(string word)
 {

Listing 19.1 DictionaryLookup.cs

Figure 19.1 The World Browser application lets us look up information on any country from The
World Factbook.

Defaults to The
World Factbook

b

www.it-ebooks.info

http://www.it-ebooks.info/

430 CHAPTER 19 Transition effects
 string dictionary = "*";
 if ((dictionaryToUse.Length > 0) ||
 (string.Compare(dictionaryToUse, "all", true) == 0))
 dictionary = dictionaryToUse;
 string command = "DEFINE " + dictionary + " " + '"' + word + '"';

 string result = ExecuteCommand(command);

 return TextToFlowDocument(word, result);
 }

 public FlowDocument TextToFlowDocument
 (string word, string result)
 {
 FlowDocument doc = new FlowDocument();
 ...Code to build flow document here...
 (was in DefineWord code in the Dictionary application)

 return doc;
 }

 private string ExecuteCommand(string command)
 {
 ...Code is the same as from Dictionary application...
 }

 private string GetResponse(string requestString, Stream clientStream)
 {
 ...Code is the same as from Dictionary application...
 }
 }
}

Nothing in this code should be revelatory—it’s about encapsulating the lookup code.
Note that we haven’t even renamed the DefineWord() method b to LookupCountry()
or anything like that. This way, the code stays a little more generic.

 We’ve also gone ahead and broken out the code that generates the FlowDocument
into its own method c. Now, given that this code isn’t related to a particular UI anymore,
you could argue that we should be returning the text, and not a UI element. But, a Flow-
Document isn’t precisely a UI element, and it’s a reasonable intermediary format for us.
Probably, in a more formal application, this class would return a structure with informa-
tion on the results, but we could still argue for this format in a number of circumstances.

 By the way, although we aren’t showing it, we’ve done a little clean-up work in the
ExecuteCommand method—adding some error handling (in case the connection fails)
and getting rid of the server-header data—so we end up with only the definition. If
you care deeply about this, you can see exactly what we’ve done by downloading the
full version of the application from our website.

 Now, because this class is essentially stateless, we could either create a new instance
of it every time that we need to use it, or make the methods all static. But, it would be
better if we have a single instance that we reuse. This way we could, for instance, add
caching to the class, or implement a stateful version without breaking the rest of the
code. We’ll show the best place to put our class.

Code for building
FlowDocument

c

www.it-ebooks.info

http://www.it-ebooks.info/

431Building the World Browser application
19.1.2 Working with the Application object

It may not seem worth having an entire section on adding a member variable to the
Application class, except that the best way of dealing with application data and
objects might not be entirely obvious. The first thing we want to do is to add a handler
for the Startup event on the application.

<Application x:Class="WorldBrowser.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="WorldBrowserMain.xaml" Startup="Application_Startup">

IntelliSense makes adding this handler pretty easy. If you just start typing Startup, the
rest will be filled in for you, and you’ll automatically be offered the choice to create a
New Default Handler. Once you choose this option, Visual Studio will create the
Application_Startup method in the App.xaml.cs file. You can right-click the Startup
attribute and select Navigate To Handler to automatically be taken to the method
in code.

 Listing 19.2 contains the code from App.xaml.cs for the Startup method, includ-
ing the creation of our instance of the DictionaryLookup class.

using System;
...Additional using statements...

namespace WorldBrowser
{
 public partial class App : Application
 {
 public DictionaryLookup Lookup { get; private set; }

 private void Application_Startup(object sender, StartupEventArgs e)
 {
 Lookup = new DictionaryLookup();
 }

 }
}

Pretty straightforward. We’ve added an automatic property with a private setter b and
initialized it in the Startup method c. It’s slightly less clear how we’ve retrieved the
property from elsewhere in our code—because creation and navigation to other Windows
and Pages is done for us, we can’t easily pass a reference to the application around.

 Fortunately, WPF solves the problem for us by providing a static member called
Current so that we can get hold of the application that way.

Application.Current

This approach is good, but it returns the base Application object; if we want to access
our Lookup property, we’ll have to cast

 ((App)Application.Current).Lookup

Listing 19.2 App class

Automatic
property
with private
setter

b

Creates
instancec
www.it-ebooks.info

http://www.it-ebooks.info/

432 CHAPTER 19 Transition effects
This is a little ugly. Instead, let’s add our own static member to the App object that
returns the proper type.

public static new App Current
{
 [System.Diagnostics.DebuggerStepThrough]
 get { return (App)Application.Current; }
}

All we’re doing here is adding a property called Current that does the cast for us.
Note that we have to use the new keyword because we’re using the same name as the
static property of Application. Also, we’ve added the DebuggerStepThrough attribute
so that, when debugging, we don’t constantly end up stepping into the property. Now,
when we want to refer to the Lookup property, we can just do this:

App.Current.Lookup

Much better. Now, though, we need some UI to make use of our code.

19.1.3 Our WorldListView user control

Up until now, we’ve mostly been creating our UI in the main window. For simple appli-
cations, this is fine, but it isn’t maintainable or extensible. In this application, we’re
going to create the bulk of our display in a user control called WorldListView. Why
WorldListView? Well, this will provide a list of countries that you can select. Later on,
if we want to add, say, a WorldMapView, it would be easy to swap out the view or even
allow the user to select between them.

 To get started, create a new UserControl (WPF) called WorldListView. We’re
going to make something that looks like figure 19.2.

 You’ve probably noticed that the list on the left is a little bare. We’re going to generate
the list programmatically. Listing 19.3 shows the XAML for the WorldListView control.

Figure 19.2 The
WorldListView user
control. We’ll add the list on
the left programmatically.
www.it-ebooks.info

http://www.it-ebooks.info/

433Building the World Browser application
<UserControl x:Class="WorldBrowser.WorldListView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Height="334" Width="551" Loaded="UserControl_Loaded">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <ScrollViewer Name="continentScrollViewer"
 VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch" Grid.ColumnSpan="1">
 <StackPanel Name="continentStackPanel" />
 </ScrollViewer>
 <FlowDocumentReader Name="docReaderA" Grid.Column="1"
 Background="LightGoldenrodYellow">
 <FlowDocument Background="LightGoldenrodYellow">
 <Paragraph>Double-click on a country for details</Paragraph>
 </FlowDocument>
 </FlowDocumentReader>
 <FlowDocumentReader Name="docReaderB" Grid.Column="1"
 Opacity="0" Background="LightBlue"/>
 </Grid>
</UserControl>

There’s nothing too outrageous here, we hope. The UI is primarily a Grid b with two
columns. The first column, which will hold our list of countries, has a set width, and
the second column takes up the remaining space. For our list, we’ve put in a Scroll-
Viewer c holding a StackPanel. We’ll populate this list with a series of Expanders,
but we’re going to do this with code. (We’ll explain why in a moment.) Next, we have
a FlowDocumentReader d to hold the details of our country. And then we have another
FlowDocumentReader e. Why? One big reason for this application is to demonstrate
transitions. To have a transition, we have to have something to transition from and
something to transition to. We’ll end up switching back and forth between the two
FlowDocumentReaders.

19.1.4 Populating the country list

As we mentioned before, we’re going to populate our list of countries in code. We
don’t have to do this—we could create a bunch of Expanders in XAML and put all the
countries underneath them. But, this wouldn’t be easy to maintain and update, and it
definitely violates any reasonable data versus UI separation.

 We should go a step farther than we do; we’re still putting the list of countries into
the code-behind instead of inside some data provider. Again, from a real-world per-
spective, we should be reading in this list and providing it to the UI in a data con-
tainer; it should be obvious by now how that would be done, and so we went cheap
to save a little space. Listing 19.4 shows the relevant code from the WorldListView.
xaml.cs file.

Listing 19.3 The WorldListView user control

Grid with two
columnsb

Place to
hold list

c

FlowDocumentReader
for content

d

Another FlowDocumentReader?! e
www.it-ebooks.info

http://www.it-ebooks.info/

434 CHAPTER 19 Transition effects
private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 LoadContinents();
}

private void LoadContinents()
{
 AddContinent("Africa", false, new string[] { "Algeria", "Angola",
 "Benin", "Botswana", "Burkina", "Burundi", ...rest of countries... });
 AddContinent("Asia", false, new string[] { "Afghanistan", "Bahrain",
 "Bangladesh", "Bhutan", "Brunei", ...rest of countries...});
 AddContinent("Europe", true, new string[] { "Albania", "Andorra",
 "Armenia", "Austria", "Azerbaijan", ...rest of countries... });
 AddContinent("North America", false, new string[] { "Bahamas",
 "Barbados", "Belize", "Canada", "Costa Rica", ...rest of countries...});
 AddContinent("Oceania", false, new string[] { "Australia", "Fiji",
 "Kiribati", "Marshall Islands","Micronesia", ...rest of countries... });
 AddContinent("South America", false, new string[] { "Argentina",
 "Bolivia", "Brazil", "Chile", "Colombia", ...rest of countries... });
}

private void AddContinent(string continent,bool open,
 string[] countryList)
{
 Expander exp = new Expander();
 exp.Header = continent;
 exp.IsExpanded = open;

 ListBox lb = new ListBox();
 lb.BorderThickness = new Thickness(0);
 lb.MouseDoubleClick +=
 new MouseButtonEventHandler(lb_MouseDoubleClick);
 foreach (string country in countryList)
 lb.Items.Add(country);
 exp.Content = lb;

 continentStackPanel.Children.Add(exp);
}

First, we add a call to our method for adding the list of continents to the Loaded()
event handler b. You may have noticed in listing 19.3 that we had already included
the handler in the definition. LoadContinents calls the AddContinent method multi-
ple times—once for each continent c. If you want to include the entire list of coun-
tries, you can download the sample from our website, or get an atlas, or just add your
favorite countries from each continent.

 The AddContinent method d takes three arguments—the name of the continent,
whether the continent’s display should initially be expanded (open) or not, and the list
of countries as a string array. The first thing the method does is create the Expander
control e. We then use a ListBox f to hold the individual countries. We also sub-
scribe to the DoubleClick event on the ListBox g so that we can initiate the lookup
when the user double-clicks on a country. Then we add the ListBox to the Expander,
and the Expander to the StackPanel we defined in XAML.

Listing 19.4 Populating the country list

b
Abridged list
of countries

c

d

e

f

g

www.it-ebooks.info

http://www.it-ebooks.info/

435Building the World Browser application
 All that’s left is to implement the handler that does the lookup. We aren’t going to
worry about transitions for the moment—let’s set up the code to load the country into
our main FlowDocumentReader (listing 19.5).

private void lb_MouseDoubleClick(object sender, MouseButtonEventArgs e)
{
 Mouse.OverrideCursor = Cursors.Wait;
 try
 {
 ListBox lb = sender as ListBox;
 if (lb.SelectedItem != null)
 {
 string country = lb.SelectedItem.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

 docReaderA.Document = doc;
 doc.Background = docReaderA.Background;
 }
 }
 finally
 {
 Mouse.OverrideCursor = null;

 }
}

This code shouldn’t be too surprising after the Dictionary application. We get the
name of the country from the ListBox passed as the sender to our event b and then
pass it to our DictionaryLookup class via the App.Current property we created earlier
c. We’re also setting the color of the document’s background to be the same as the
color of our reader d. We’re using colors so that the transitions are a little more obvi-
ous. If you want to have a standard white background, then you should explicitly set
the background to white here instead of relying on default behavior, which will end
up giving a transparent background!

 Our WorldListView class is finished, but it isn’t going to show up anywhere unless
we add it to our main window. There are two steps to this. First, we have to add the
namespace for our application so that we can reference our user control.

<Window x:Class="WorldBrowser.WorldBrowserMain"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:WorldBrowser"
 Title="World Browser">

Nothing new here—we’re using the default namespace local. We’ve let IntelliSense
do most of the work for us here. The second step is to add an instance of our control
to the XAML for the Window. Again, it’s pretty straightforward.

<Grid>
 <local:WorldListView x:Name="worldListView" Width="Auto" Height="Auto"/>
</Grid>

Listing 19.5 Retrieving data

Could take
a while

b
Uses Current
App property

c

d

www.it-ebooks.info

http://www.it-ebooks.info/

436 CHAPTER 19 Transition effects
That should do it. If you run the application now, you should get something like fig-
ure 19.3.

 So far, so good. We have a reasonably well-architected application that provides some
useful functionality. But, it’s a little boring. In the next section, we’ll spice it up a little by
adding some transitions—which is, after all, what this chapter is supposed to be about.

19.2 Adding a simple transition
Transitions can punch up the user’s interactions with an application, provided they
aren’t overdone. In many ways, WPF is really good at handling things like transitions.
Once you tell WPF what you want it to do, it takes care of all the details. On the other
hand, it’s sometimes quite difficult to tell WPF what it is that you want.

 We’re going to start out by building a fade transition to switch between our two
document viewers whenever a different country is selected. The details of the effect
will be written in XAML, but we’ll launch the transition manually whenever we change
the country to make what’s going on a little clearer.

 In fact, we’re going to build two different transitions: one for fading from docu-
ment viewer A to document viewer B and one to go the other way. We’ll talk a little
more about why we’re doing this later. Listing 19.6 shows the resource section of
WorldListView.xaml, which is where we’re temporarily putting our transition.

<UserControl.Resources>

 <Duration x:Key="animationTime">0:0:0.5</Duration>

 <BeginStoryboard x:Key="FadeInA">

Listing 19.6 Fade transition

Figure 19.3 First version of the WorldBrowser application. Unless you’re somewhat obsessive, you’ll
probably have fewer countries in your list.

Define a duration
we can reuse

b

Fades from A to Bc
www.it-ebooks.info

http://www.it-ebooks.info/

437Adding a simple transition
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="docReaderA"
 Storyboard.TargetProperty="Opacity"
 From="0.0" To="1.0" Duration="{StaticResource animationTime}" />
 <DoubleAnimation Storyboard.TargetName="docReaderB"
 Storyboard.TargetProperty="Opacity"
 From="1.0" To="0.0" Duration="{StaticResource animationTime}" />
 </Storyboard>
 </BeginStoryboard>

 <BeginStoryboard x:Key="FadeInB">
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="docReaderB"
 Storyboard.TargetProperty="Opacity"
 From="0.0" To="1.0" Duration="{StaticResource animationTime}" />
 <DoubleAnimation Storyboard.TargetName="docReaderA"
 Storyboard.TargetProperty="Opacity"
 From="1.0" To="0.0" Duration="{StaticResource animationTime}" />
 </Storyboard>
 </BeginStoryboard>
</UserControl.Resources>

We start by creating a definition for a duration called animationTime b. We’ve
defined this so that, if we want to change the length of the animation, we don’t have to
change the value in four different places. You can see how we’re referencing the value
as a StaticResource in each of our animations.

 The first storyboard is called FadeInA c and is made up of two different anima-
tions. The first of these d changes the Opacity (or see-through-ed-ness?) of docRead-
erA from completely transparent (0) to completely solid (1), taking the amount of
time defined in animationTime, which is currently set to half of one second. The sec-
ond animation changes docReaderB from fully solid to fully transparent e.

 We also have another storyboard called FadeInB that does the exact opposite f.
 So far, so good. But, we have to execute the animations at the appropriate times

for them to be of any use. We also have to make our lookup code populate the proper
flow document viewer before the animation starts. To do this, we’ll restructure the
lb_MouseDoubleClick method (listing 19.7). Note that we’ve omitted the wait cursor
code to save space.

private bool showingA = true;

private void lb_MouseDoubleClick(object sender, MouseButtonEventArgs e)
{
 ListBox lb = sender as ListBox;
 if (lb.SelectedItem != null)
 {
 string country = lb.SelectedItem.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

Listing 19.7 Launch animation from lb_MouseDoubleClick

Fades from B to Ad

e

f

Keeps track of current viewerb
www.it-ebooks.info

http://www.it-ebooks.info/

438 CHAPTER 19 Transition effects
 if (showingA)
 {
 docReaderB.Document = doc;
 doc.Background = docReaderB.Background;
 BeginStoryboard storyboard =
 FindResource("FadeInB") as BeginStoryboard;
 BeginStoryboard(storyboard.Storyboard);
 }
 else
 {
 docReaderA.Document = doc;
 doc.Background = docReaderA.Background;
 BeginStoryboard storyBoard =
 FindResource("FadeInA") as BeginStoryboard;
 BeginStoryboard(storyBoard.Storyboard);
 }
 showingA = !showingA;
 }
}

The code for determining our current viewer is a little ham-fisted, but it works. We
have a bool b that we swap each time to indicate whether we’re showing viewer A or
viewer B. If we’re showing viewer A c, we set the content from our last query in viewer
B because we want it to be set before viewer B becomes visible. Then we find the
appropriate Storyboard from resources using FindResource d. Next we launch
the Storyboard e. This will execute the details that we’ve defined in XAML.

 The rest of the code does the exact opposite if we’re currently viewing viewer B f
and then switches the current viewer g. Now, if we run the application, when we
double-click between countries we get a nice fade effect between viewers (figure 19.4).

 This is a pretty nice effect, but there some issues. For one thing, the code isn’t ter-
ribly elegant—we have to go searching for the proper effect to launch. That isn’t a big
deal when we have a fade; but what if we want to have a few other effects that we can
choose between? Also, the effects are tied pretty specifically to docViewerA and doc-
ViewerB. If we want to use the effects against, say, a couple of pictures or other con-
tent, we’d have to re-create our effects with different targets.

 In the next section, we’ll present a more generic approach, one where we can arbi-
trarily plug in different content and different effects!

c

Finds
animation

d

Launches ite
f

Switches
current viewg

Figure 19.4 Fading from A to B. The transition takes one half of a second to go from one pane to
the other.
www.it-ebooks.info

http://www.it-ebooks.info/

439Building a generic transition control
19.3 Building a generic transition control
XAML is incredibly powerful, but it can also be quite difficult to work with, particularly
when doing things like transition effects. For one thing, not everything in XAML is
checked at compile time, and so some things often fail—noisily or silently—when you
run. Also, there isn’t currently any sort of debugger for XAML; when things don’t
work, you’re often reduced to trial and error to figure out why.

 Even though it might be possible to completely create a framework for doing transi-
tions in XAML, it probably isn’t the best approach. In this section, we’ll demonstrate a
different approach that we believe makes creating and testing transitions easier. We’ll
build a control that lets us plug in transition effects and the items we want to transi-
tion from and to.

 We want to separate our implementation into three parts:

■ A transition control —A control written in C# (or your favorite .NET language2)
■ Some number of effects —Primarily written in XAML
■ Binding between content and the transition control —Written in XAML

In case you haven’t guessed by now, this section is going to cover a lot more ground
than building some pretty transitions. We’ll end up talking about custom controls,
defining and working with properties, animation, and a lot about binding—this is a lit-
tle different than the binding we were doing in chapter 11 because we aren’t binding
to data sources, but are, instead, binding between controls and templates.

 We’ll start with the transition control.

19.3.1 Creating the transition control

As we showed in earlier chapters, it’s possible to create a Style for a particular type of
control, and then tie things like animations to various property changes on that con-
trol. In theory, if we had the right type of control, we could define a control template
that used animation to implement our transitions. Further, we could have multiple
different control templates with different animations, and could change the current
template on that control to switch to a different animation effect.

 The control we’d need for this would need to be able to hold two different things
that we could transition between. We could probably make use of one of the existing
controls, such as the Grid, which can hold any number of children. But, that would be
awkward—referring to the children within a template would be a nuisance, and it
would never be really clear which child was which.

 Instead, we’re going to build our own control—one that has two clearly named
things that we can switch between, and one that we can specifically target with our con-
trol template. Let’s call the control ABSwitcher. This is sort of a reference to the old AB
video switchers of yore. We then need to figure out what the things are. Technically,

2 If you’re interested, there is a COBOL.NET...
www.it-ebooks.info

http://www.it-ebooks.info/

440 CHAPTER 19 Transition effects
they’re elements, so we’ll call them ElementA and ElementB. Then we can set things
up to switch between them.

 The easiest way to create the ABSwitcher class is to add a new item of type class
and then modify it. Listing 19.8 contains the entire code for the ABSwitcher class.

using System;
using System.Windows;
using System.Windows.Controls;

namespace WorldBrowser
{
 public class ABSwitcher : ContentControl
 {
 public enum Elements
 {
 ElementA,
 ElementB
 }

 public static DependencyProperty ElementAProperty;
 public static DependencyProperty ElementBProperty;
 public static DependencyProperty CurrentElementProperty;

 public ABSwitcher()
 {
 }

 static ABSwitcher()
 {
 ElementAProperty = DependencyProperty.Register("ElementA",
 typeof(object), typeof(ABSwitcher));
 ElementBProperty = DependencyProperty.Register("ElementB",
 typeof(object), typeof(ABSwitcher));
 CurrentElementProperty =

DependencyProperty.Register("CurrentElement",
 typeof(Elements), typeof(ABSwitcher));
 }

 public object ElementA
 {
 get { return GetValue(ElementAProperty); }
 set { SetValue(ElementAProperty, value); }
 }

 public object ElementB
 {
 get { return GetValue(ElementBProperty); }
 set { SetValue(ElementBProperty, value); }
 }

 public Elements CurrentElement
 {
 get { return (Elements)GetValue(CurrentElementProperty); }
 set { SetValue(CurrentElementProperty, value); }

Listing 19.8 ABSwitcher class

Derives from
ContentControl

b

Differentiates
between elementsc

Dependency
properties

d

Initializes dependency
properties

e

Exposes
properties

f

Properties for
convenience

g

www.it-ebooks.info

http://www.it-ebooks.info/

441Building a generic transition control
 }

 public object SelectedElement
 {
 get {return(CurrentElement==Elements.ElementA) ? ElementA : ElementB;

}
 }

 public object UnselectedElement
 {
 get {return(CurrentElement==Elements.ElementA) ? ElementB : ElementA;

}
 }

 public void Switch()
 {
 if (CurrentElement == Elements.ElementA)
 CurrentElement = Elements.ElementB;
 else
 CurrentElement = Elements.ElementA;
 }
 }
}

We’re afraid that this is going to be a fairly lengthy explanation, but we want to be
thorough. First, our class, ABSwitcher, is going to be a type of ContentControl b.
This will let the class be used like any other content control and will give us, among
many other things, support for dependency properties.

 Our class has three dependency properties d: ElementA, ElementB, and Current-
Element. If these were regular properties, then we’d define the properties, and be done.
But, for dependency properties, there’s somewhat more work. The benefit of using
dependency properties, though, is that we get to participate in the dependency system,
and our properties can be accessed from XAML. We start by creating static member vari-
ables that will be used to reference our dependency properties d, and then we initialize
them inside a static constructor e that will only be called once at system startup.

 We’re passing three arguments to the DependencyProperty.Register method—
the name of the property, the type of the property, and the type of the class that owns
the property. We could also pass additional arguments here. For example, we could
register a method that would be called whenever the property’s value changes, but we
don’t need to do anything that fancy for the moment.

 The ElementA and ElementB properties are registered as type object—we want to
be flexible, and you can’t get much more flexible than that. The CurrentElement
property returns the value from an enum we defined earlier c. We could have used a
Boolean value here because we’re swapping between two things; but, trust us, the
enum will make the code clearer, and will leave us some flexibility for later.

 We also have standard property accessors for our two elements f and for the
CurrentElement value g. If you look at the implementation, you’ll see that the get
and set methods call GetValue and SetValue, passing our static DependencyProperty
variables. These methods access the dictionary of properties for our object.

h

Switches between
A and B

i

j

www.it-ebooks.info

http://www.it-ebooks.info/

442 CHAPTER 19 Transition effects
The CurrentElement property is the one we’ll use for our triggers later. When the cur-
rent element changes, we’ll activate our animation.

 The SelectedElement h and UnselectedElement i are there for convenience.
When we update the lookup code, we’ll want to make sure that we set our text on the
element that is not currently visible (the UnselectedElement). This way, we keep the
code for getting the proper element in our switcher, rather than having to put condi-
tional statements all over the place. The Switch method j is likewise a convenient
method for switching the CurrentElement from ElementA to ElementB.

 Well, that’s pretty much all there is to creating our custom control. Now, we have to
use it.

19.3.2 Using the transition control

With the one caveat that we have to use a namespace reference, using our new control
is just like using any other WPF control. The namespace reference is the same as the
one we used in our main application window.

<UserControl x:Class="WorldBrowser.WorldListView"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:WorldBrowser"
 xmlns:system="clr-namespace:System;assembly=mscorlib"
 Height="334" Width="551" Loaded="UserControl_Loaded">

Then we replace the content of the Grid with our control and two FlowDocumen-
tReaders (listing 19.9).

<local:ABSwitcher x:Name="Switcher" Grid.Column="1" >
 <local:ABSwitcher.ElementA>
 <FlowDocumentReader Name="docReaderA"
 Background="LightGoldenrodYellow" >
 <FlowDocument Background="LightGoldenrodYellow">
 <Paragraph>Double-click on a country for details</Paragraph>
 </FlowDocument>

Catching property changes
A common mistake is for developers to assume that the property code (for example:
ElementA, ElementB) will be called when properties are accessed. The Property Sys-
tem goes directly to the property dictionary without passing go—or your breakpoints.
The only time these accessors will be hit is if they’re referenced by your code directly.

If you want a guaranteed notification when a property is changed, you have to attach
an event to the dependency property. For existing controls, a lot of common proper-
ties have a directly exposed event. For custom properties, you have to register a han-
dler when you register the property (or modify the existing metadata). For an example
of this, look in chapter 13.

Listing 19.9 Using the ABSwitcher in code

b
c

www.it-ebooks.info

http://www.it-ebooks.info/

443Building a generic transition control
 </FlowDocumentReader>
 </local:ABSwitcher.ElementA>
 <local:ABSwitcher.ElementB>
 <FlowDocumentReader Name="docReaderB" Background="LightBlue"/>
 </local:ABSwitcher.ElementB>
</local:ABSwitcher>

It looks uglier than using a built-in control because of the namespace references, but
otherwise it’s pretty straightforward. We’re inserting an ABSwitcher called Switcher
and specifying (as we did when we had the Grid) that it should be in Grid.Column
“1” b. Then we set the value of the ElementA property to be a FlowDocumentReader
c. For our application, this is what we want, but we could put any valid XAML element
here. We’re setting the background to be light goldenrod, and we’re putting in a
FlowDocument with some introductory text in the reader.

 We’re also setting the value for ElementB to be another FlowDocumentReader d.
This one is light blue to make the transitions more visible. We aren’t bothering to set
any introductory text for this one because it won’t initially be visible.

 This will compile; but, if you run it, you won’t see anything. Unlike built-in con-
trols, there is no default style for how to display an ABSwitcher, and we haven’t
defined one. That will be our next step.

19.3.3 Defining a ControlTemplate for our control

We can define a ControlTemplate as just another resource. The template is going to
have two jobs. First, it needs to define where and how to display our two different ele-
ments: ElementA and ElementB. Second, it has to contain the definition for how to
transition between the elements.

 To implement multiple effects, we’ll end up implementing multiple control tem-
plates; each one will contain both things: the “where to put stuff” instructions and the
“how to transition” instructions.

 Let’s start simply, with a template that makes one control visible and one hidden.
Later on, we’ll move the resources into a standalone dictionary for easier mainte-
nance; for the moment, we can put them into the resources of the WorldListView
xaml file (listing 19.10).

<ControlTemplate TargetType="{x:Type local:ABSwitcher}"
 x:Key="SimpleTemplate">
 <Grid>
 <ContentPresenter Name="ElementAPresenter" Visibility="Hidden"
 Content="{TemplateBinding ElementA}"/>
 <ContentPresenter Name="ElementBPresenter" Visibility="Hidden"
 Content="{TemplateBinding ElementB}"/>
 </Grid>

 <ControlTemplate.Triggers>
 <Trigger Property="local:ABSwitcher.CurrentElement"
 Value="ElementA">

Listing 19.10 Simple transition template

d

Template for
the ABSwitcher

b

Grid holding our contentc

d

Triggers for
transitions

e

f

www.it-ebooks.info

http://www.it-ebooks.info/

444 CHAPTER 19 Transition effects
 <Setter TargetName="ElementAPresenter" Property="Visibility"
 Value="Visible"/>
 </Trigger>
 <Trigger Property="local:ABSwitcher.CurrentElement"
 Value="ElementB">
 <Setter TargetName="ElementBPresenter" Property="Visibility"
 Value="Visible"/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

The ControlTemplate that we’ve defined b has the key “SimpleTemplate”, so we can
refer to it later, and the target type of ABSwitcher. By specifying the target type, we’ll
automatically have access to all the properties of the ABSwitcher.

 The main display is a Grid layout panel for convenience. If we don’t specify any
additional properties, our content will automatically fill up all the available space in
the one and only cell. In the Grid, we have two ContentPresenters c.

 Now, as you might remember from earlier, a ContentPresenter is a specialized ele-
ment that indicates where content should be positioned. In our earlier examples,
though, we only had a single ContentPresenter, whereas here we have two. This is
allowed, as long as we indicate what content needs to be presented. We do this by
binding the Content property of the ContentPresenter to the thing we want to
present d. TemplateBinding is a special type of binding that says “bind to something
on the object of which this is a template.” In this case, we’re binding one of our Con-
tentPresenters to ElementA and the other to ElementB.

 You might also have noticed that we’ve deliberately set the visibility of both Con-
tentPresenters to Hidden. In theory, neither of them will show up. But, that reckons
without the triggers we’ve defined e.

 The first trigger f looks for the value of the CurrentElement property to be set to
“ElementA”. When it is, it sets the Visibility property of the ElementAPresenter to
be Visible. The second trigger g does the same thing, but for ElementB.

 By assigning this template to our ABSwitcher, WPF will display it as a Grid panel
with two hidden children (ElementA and ElementB). But, if CurrentElement is set to
ElementA (which it will be to start with), the trigger will make ElementA visible. If
CurrentElement is changed to ElementB, then it will make ElementB visible. We don’t
have to worry about re-hiding ElementA because, if you remember the behavior of
Triggers, once the condition is no longer true, WPF will automatically revert the
value of the property.

 There are still two things left to do before we can run this thing. First, we need to
use this template on our ABSwitcher, so we set the property on the ABSwitcher.

<local:ABSwitcher x:Name="Switcher"
 Template="{StaticResource SimpleTemplate}" Grid.Column="1" >

The second thing we have to do is to change the code in our WorldListView to use the
ABSwitcher instead of the hardcoded FlowDocuments. We’ll do that in the next section.

g

www.it-ebooks.info

http://www.it-ebooks.info/

445Adding some interesting transition effects
19.3.4 Using the ABSwitcher

Earlier, in the lb_MouseDoubleClick method, we had a fair amount of code to set the
document on the proper viewer, and retrieve and then launch the animation. We have
to update this code, but it gets quite a bit simpler. Listing 19.11 shows the new version
of the DoubleClick handler.

private void lb_MouseDoubleClick(object sender, MouseButtonEventArgs e)
{
 ListBox lb = sender as ListBox;
 if (lb.SelectedItem != null)
 {
 string country = lb.SelectedItem.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

 FlowDocumentReader reader =
 Switcher.UnselectedElement as FlowDocumentReader;
 doc.Background = reader.Background;
 reader.Document = doc;

 Switcher.Switch();
 }
}

This code starts out the same way—retrieving the appropriate country data. After that,
though, it ends up being quite a bit simpler. We first get hold of the control that is not
selected b. This is easy because we’ve added a property to the ABSwitcher for that.
We can refer to the switcher by the name we gave it in XAML—Switcher. We have to cast
the UnselectedElement to be a FlowDocumentReader because we allow any type of
objects to be held by the ABReader. Once we have the FlowDocumentReader, we set the
background of our document and then add it to the reader.

 The next step is to call the Switch method on the Switcher c. Remember that all
this does is change the CurrentElement property to be either ElementA or ElementB.
The triggers we built in to our ControlTemplate take over after that. Now if we run,
the transition isn’t particularly exciting, but we can tell by the background color
change that it worked (figure 19.5).

 So far, so good—but pretty boring. In fact, we’re moving backwards. We’ve even lost
our fade transition because we replaced our hardcoded effect with our new control. In
the next section, we’ll add a number of different effects, starting with the fade effect.

19.4 Adding some interesting transition effects
Now that we have a framework for effects, we only have two things to do to change
effects—create a new control template, and then change the template on our
ABSwitcher element in XAML to use it. We’ll start by re-creating our fade effect, this
time using a ControlTemplate.

Listing 19.11 New version of DoubleClick handler

b

c

www.it-ebooks.info

http://www.it-ebooks.info/

446 CHAPTER 19 Transition effects
19.4.1 The fade effect

Listing 19.12 shows the XAML for the fade effect ControlTemplate. This needs to be
put into the resource section of our WorldListView control.

<ControlTemplate TargetType="{x:Type local:ABSwitcher}"
x:Key="FadeTemplate">

 <Grid>
 <ContentPresenter Name="ElementAPresenter" ContentPresenter.Opacity="1"
 Grid.ZIndex="1" Content="{TemplateBinding ElementA}"/>
 <ContentPresenter Name="ElementBPresenter" ContentPresenter.Opacity="0"
 Grid.ZIndex="0" Content="{TemplateBinding ElementB}"/>
 </Grid>

 <ControlTemplate.Triggers>
 <Trigger Property="local:ABSwitcher.CurrentElement"
 Value="ElementA">
 <Setter TargetName="ElementAPresenter"
 Property="Grid.ZIndex" Value="1"/>
 <Trigger.EnterActions>
 <BeginStoryboard >
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="ElementAPresenter"
 Storyboard.TargetProperty="Opacity"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"
 FillBehavior="HoldEnd" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>

Listing 19.12 Fade effect ControlTemplate

Figure 19.5 We now have a simple transition that changes the visibility of each pane. You can only tell
that we’ve swapped controls because of the different colored backgrounds—given that the book is in
black-and-white, you might not even be able to tell at all!

Grid holding
content

b

Fades to
ElementA

Sets
ZOrderc

Holds on the
end valued
www.it-ebooks.info

http://www.it-ebooks.info/

447Adding some interesting transition effects
 <Trigger Property="local:ABSwitcher.CurrentElement"
 Value="ElementB">
 <Setter TargetName="ElementBPresenter"
 Property="Grid.ZIndex" Value="1"/>
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="ElementBPresenter"
 Storyboard.TargetProperty="Opacity"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"
 FillBehavior="HoldEnd" />
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

Just as with our simple transition template, we have two content presenters in a Grid
b. The slight difference is that we’re explicitly setting the ZOrder of the controls so
that the one in front will allow the user to interact with it. When a control isn’t visible,
it doesn’t interfere with focus in any way, but an invisible control will get mouse and
keyboard events if it’s in front,3 possibly confusing the user. To avoid the problem, we
make sure that the visible control is in front of the invisible one. In fact, when our trig-
ger is fired, the first thing we do is change the ZOrder via a setter c.

 The rest of the code is pretty much a combination of the simple transition and our
old hardcoded fade transition. We trigger on the current element change, and then
do our cross-fade animations. One thing we’re doing slightly differently, though, is
specifying the HoldEnd FillBehavior d. We don’t need to do this because HoldEnd
is the default for FillBehavior, but we want to explain FillBehavior. FillBehavior
controls what happens when the animation finishes; it has two legal values:

■ HoldEnd—Instructs the engine to hold the animated value at its final value. In
the example, once the Opacity reaches 1, it will stick there as long as the anima-
tion is active (which is true as long as the trigger expression is true). Obviously,
in the case of our fade, this is what we want.

■ Stop—Means that, as soon as the animation is finished, the value of the ani-
mated value will revert to its original value. In the case of our example, this
would mean that the Opacity would snap back to 0. This would be pretty unde-
sirable in our situation, but not in all scenarios.

HoldEnd doesn’t just mean that the last value isn’t reset. It means that the value will be
held. If you have other code that attempts to programmatically set the Opacity to another
value while the animation is in progress, it won’t do anything. The animation will set it
back to its hold value. If you want to change the value later, you either need to use a

3 In fact, there are several techniques for WPF UI development that rely on this.

Fades to
ElementB
www.it-ebooks.info

http://www.it-ebooks.info/

448 CHAPTER 19 Transition effects
different type of animation (such as a Keyframe animation) or manually stop the anima-
tion (programmatically) before changing the value. Just something to keep in mind.

 Anyway, the last step is to change our template binding on the ABSwitcher to use
the fade effect.

<local:ABSwitcher x:Name="Switcher"
 Template="{StaticResource FadeTemplate}"
 Grid.Column="1" >

Figure 19.6 shows the application in mid-fade.

The fade effect is a nice, subtle effect that’s pleasing and not too distracting. Our next
effect is also relatively subtle—a simple wipe.

19.4.2 Wipe effect

A wipe effect, another common video effect, starts making the second image visible at
one edge and then moves to the other edge, making the second image visible as it
goes. Listing 19.13 has the XAML for the wipe ControlTemplate. As you can see, it’s
rather more involved than the fade effect.

Figure 19.6 Fading from Lebanon to Nepal—the only way to travel
www.it-ebooks.info

http://www.it-ebooks.info/

449Adding some interesting transition effects
<ControlTemplate TargetType="{x:Type local:ABSwitcher}"
x:Key="WipeTemplate">

 <Grid>
 <ContentPresenter Name="ElementAPresenter" Visibility="Visible"
 Content="{TemplateBinding ElementA}"/>
 <ContentPresenter Name="ElementBPresenter" Visibility="Visible"
 Content="{TemplateBinding ElementB}"/>
</Grid>
 <ControlTemplate.Triggers>
 <Trigger Property="local:ABSwitcher.CurrentElement" Value="ElementA">
 <Setter TargetName="ElementAPresenter" Property="Grid.ZIndex"

Value="1"/>
 <Setter TargetName="ElementAPresenter" Property="OpacityMask" >
 <Setter.Value>
 <LinearGradientBrush StartPoint="1,0" EndPoint="0,0">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="0" Color="Transparent" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Trigger.EnterActions>
 <BeginStoryboard >
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="ElementAPresenter"
 Storyboard.TargetProperty =
 "OpacityMask.(LinearGradientBrush.GradientStops)[0].Offset"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"/>
 <DoubleAnimation Storyboard.TargetName="ElementAPresenter"
 Storyboard.TargetProperty =
 "OpacityMask.(LinearGradientBrush.GradientStops)[1].Offset"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"/>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>

 <Trigger Property="local:ABSwitcher.CurrentElement" Value="ElementB">
 <Setter TargetName="ElementBPresenter" Property="Grid.ZIndex"

Value="1"/>
 <Setter TargetName="ElementBPresenter" Property="OpacityMask" >
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="0" Color="Transparent" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Trigger.EnterActions>
 <BeginStoryboard >
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="ElementBPresenter"

Listing 19.13 Wipe ControlTemplate

Same old Grid
with controls

b

Wipes from
B to A

c

d

e
f

g

Wipes from
A to B

h

i

www.it-ebooks.info

http://www.it-ebooks.info/

450 CHAPTER 19 Transition effects
 Storyboard.TargetProperty=
 "OpacityMask.(LinearGradientBrush.GradientStops)[0].Offset"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"/>
 <DoubleAnimation Storyboard.TargetName="ElementBPresenter"
 Storyboard.TargetProperty=
 "OpacityMask.(LinearGradientBrush.GradientStops)[1].Offset"
 From="0.0" To="1.0"
 Duration="{StaticResource animationTime}"/>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

This template starts out more or less the same way as the fade—with a Grid containing
our controls b and a trigger catching the current element change c. But, instead of
animating the Opacity property of the element to go from transparent to visible,
we’re using an OpacityMask d. This lets us specify which bits of the element are
opaque or transparent, rather than the whole thing. The OpacityMask uses a Brush;
instead of drawing anything, it indicates which bits of the control are visible: If the
OpacityMask Brush draws something as transparent, then you can’t see that bit. If it
draws something as black, then you can see that bit.

 The color isn’t really the important bit. Each color has four components: Red,
Green, Blue, and Alpha. Alpha is the alpha channel that controls visibility. An alpha
value of 0 means completely transparent, no matter what values RGB has. A value of
255 means completely solid, and values in between indicate relative transparency.
We’re using black which has a value of 255 for Alpha, and values of 0 for Red, Green,
and Blue, but we could use any solid color.

 More interestingly, though, is that we’re setting up an OpacityMask as part of a set-
ter d. This is more involved than, say, setting visibility, but it’s the same concept—
when the event fires, the OpacityMask property of the presenter will be set to a linear
gradient brush that goes from solid to transparent. You may have noticed that the off-
set for both gradient stops is 0. We’re relying on a side effect of the gradient brush to
continue the last “color” all the way to the end of our area. For all intents and pur-
poses, we have a gradient brush that goes like this:

■ 0—Solid
■ 0—Transparent
■ 1—Transparent

At the moment, the solid has no effect, and the entire element will have a transparent
OpacityMask, and so will be entirely invisible. But, we then add a storyboard to ani-
mate the gradient stops. The notation to reference the properties is pretty scary f.

OpacityMask.(LinearGradientBrush.GradientStops)[0].Offset
www.it-ebooks.info

http://www.it-ebooks.info/

451Adding some interesting transition effects
It should be read like this: The OpacityMask property needs to be changed. We need to
reference the GradientStops collection of the LinearGradientBrush that’s the value of
the OpacityMask property. We want to reference the first element in the GradientStops
collection (item 0), and we want to reference the Offset property of that element.

 This should give you a hint as to the power and flexibility of the binding notation
within XAML—although it often will twist your brain figuring out exactly what you
need to do, and there are limits to what’s possible.

 Anyway, we’re changing the offset of both gradient stops, animating them from 0 to
1, so we have two animations e, g. At the end of the animation, the gradient stops
will look like this (including the implied gradient stop):

■ 0—Solid
■ 1—Solid
■ 1—Transparent

Now the transparent at the end has no meaning, and the entire image is visible. Dur-
ing the animation, different parts of the image will show up. Figure 19.7 shows the
effect part of the way through.

Figure 19.7 Wipe effect. New Zealand is about to be wiped out by Palau. Who would have guessed?
www.it-ebooks.info

http://www.it-ebooks.info/

452 CHAPTER 19 Transition effects
Because we have two animations operating at the same time, we’re moving both the
solid and transparent gradient stops exactly in sync. But, we can make the effect a lit-
tle more interesting by offsetting the times a little. We can make the animation mov-
ing the solid gradient stop start a fraction of a second later.

<DoubleAnimation
 Storyboard.TargetName="ElementAPresenter"
 Storyboard.TargetProperty=
 "OpacityMask.(LinearGradientBrush.GradientStops)[0].Offset"
 From="0.0" To="1.0"
 BeginTime="0:0:0.1"
 Duration="{StaticResource animationTime}"
 />

By adding in the BeginTime clause on the first animation, we’re saying that we don’t
want it to start until a tenth of a second after the other one. This will give us a little bit
of a leading edge effect (figure 19.8).

 We think this makes the effect look a little bit spiffier. It also demonstrates the
giant time hole that WPF can open up as days and days of your previously productive
life are spent tweaking effects.

Figure 19.8 Wipe effect with a slight trailing edge. By varying the begin time of the animation, you can
alter the size of the edge.
www.it-ebooks.info

http://www.it-ebooks.info/

453Adding some interesting transition effects
WHY TWO VERSIONS OF THE EFFECT?
In listing 19.13, we have two triggers: one going from ElementA to ElementB h and
one going from ElementB to ElementA c. This dramatically increases the amount of
XAML. Doubles it, you might say. Not only that, but if you have to fix something, you
have to fix it in two places.

 Normally, we’d go to extraordinary effort to be able to reuse the same XAML.
There are two different approaches to this:

■ We could modify our ABSwitcher so that, instead of having an ElementA and an Ele-
mentB, it had something like a CurrentElement and an OldElement, and we could
bind to those. The problem with this approach is that, particularly with more
complex effects, it gets tricky to make sure that the elements are properly posi-
tioned without getting one or the other element to flash up on the screen. If
you’re really good at XAML4, you could probably handle this, but it does mean
that you’ll have to handle it for every type of effect.

■ We could store the effect itself as a resource and then bind the appropriate elements within
our control template. The problem with this approach is that it makes the XAML
really hard to read. Because the goal of combining the effects is to improve
maintainability, we think that this is going in the wrong direction.

We’ve decided that the most maintainable choice is, in this case, to duplicate the
effect. We think it’s more readable. Also, it gives us the opportunity to vary the back-
and-forth effects a little bit. For example, with the wipe, you may have noticed that the
LinearGradientBrush defined for our B-to-A effect d looks like this:

<LinearGradientBrush StartPoint="1,0" EndPoint="0,0">

Whereas the A-to-B effect i looks like this:

<LinearGradientBrush StartPoint="0,0" EndPoint="1,0">

The exact reverse. We wipe in opposite directions each time.

19.4.3 Adding a selector for effects

Now that we have three different effects (and plan to add more), it would be nice if we
had a way to choose between them. This might be something that we’d normally con-
figure as a user option; but, for the purposes of this sample, how about if we put in a
ComboBox that lists all the effects and lets us choose the one we want?

 To position the ComboBox at the top of the country list, but prevent it from scroll-
ing with the list, we need to put a StackPanel in where the ScrollViewer is now, put
the ComboBox at the top, and then the ScrollViewer below it. Unfortunately, the
designer won’t help us much with this, so we need to edit the XAML directly. But, once
the controls are in place, we can use the property editor to set the various properties if
we like. Listing 19.14 shows the XAML to include the ComboBox.

4 Or at least better than us.
www.it-ebooks.info

http://www.it-ebooks.info/

454 CHAPTER 19 Transition effects
<StackPanel Grid.ColumnSpan="1">
 <ComboBox SelectedIndex="0" Name="TransitionCombo">
 <ComboBox.Items>
 <TextBlock Tag="{StaticResource SimpleTemplate}">Simple</TextBlock>
 <TextBlock Tag="{StaticResource FadeTemplate}">Fade</TextBlock>
 <TextBlock Tag="{StaticResource WipeTemplate}">Wipe</TextBlock>
 </ComboBox.Items>
 </ComboBox>
 <ScrollViewer Name="continentScrollViewer" VerticalAlignment="Stretch"
 HorizontalAlignment="Stretch" >
 <StackPanel Name="continentStackPanel" />
 </ScrollViewer>
</StackPanel>

We could store only strings in the ComboBox, but we’re using TextBlocks so that we
can store a reference to our templates. As you can see, we’ve set the Tag property
of each item to be bound to the associated ControlTemplate b. If we add more
effects, we can add more items to the ComboBox. Now, all we have to do is make it
so that the effect used is the one selected in the ComboBox. We can do this via bind-
ing as well.

<local:ABSwitcher x:Name="Switcher" Grid.Column="1"
 Template="{Binding ElementName=TransitionCombo,Path=SelectedItem.Tag}" >

This code says that the template to use for the control
is the one stored in the SelectedItem’s Tag property
from the TransitionCombo ComboBox. Figure 19.9 shows
the ComboBox in place.

 We aren’t going to show the implementation for all
the other effects, but you can download the full sample
from our website. We’ve included some extensive com-
ments to explain how they work.

19.5 Summary
In many ways, we’ve only scratched the surface of ani-
mation effects—we were more interested in exploring
the building of a framework to simplify effects than
with the effects themselves. (OK, we were pretty inter-
ested in the effects too.) Although WPF is pretty new, a number of companies are
already producing third-party support; one of the popular things is—you guessed it—
transition controls. Page turns, cube rotates, you name it—many of them done by peo-
ple with far greater artistic ability than us. An example would be Jared Bienz’s Transi-
tional project at http://www.codeplex.com/transitionals.

 This is a good thing because—we’ll let you in on a secret—creating transitions can
be a real pain in the neck, particularly using Visual Studio. For one thing, Visual Stu-
dio gives you very little assistance, beyond IntelliSense, for building effects. This is

Listing 19.14 Adding an effects ComboBox

b

Figure 19.9 ComboBox for
choosing the transition effect to
use. The downloadable version
has a few additional effects.
www.it-ebooks.info

http://www.codeplex.com/transitionals
http://www.it-ebooks.info/

455Summary
particularly an issue when dealing with the binding notation. Microsoft Expression
Blend has a built-in bind builder, but Visual Studio doesn’t.

 A second problem is that it’s tricky to debug effects that aren’t working correctly,
although you do get occasional messages in the Output window (which are worth
looking for).

 The final problem is that WPF is still fairly new—new enough that not all the kinks
have been worked out yet. For example, one of our effects is a push effect (figure 19.10).
We like this effect and got it working pretty quickly.

 But, when we went to use binding to get the proper width of the page so that the
effect started and ended in the right place (instead of hardcoding it), we couldn’t get
it to work. It turned out, after much crying on our part, that this was because of a bug
in WPF—one that Microsoft didn’t have a chance to fix before the release.5 We could
work around the problem, but it makes things much more complicated.

 The point of this isn’t to pick on Microsoft, but to forewarn you that you might run
into problems you wouldn’t expect. Nor is it to dissuade you from using WPF—the

5 Although we have to thank Sam Bent, who is a Dev Lead on the WPF team and who spent two days confirming
that this was a bug and that we weren’t crazy. (He obviously doesn’t know us that well.)

Figure 19.10 The push effect pushes the old page off one edge while the new page pushes in from
the side.
www.it-ebooks.info

http://www.it-ebooks.info/

456 CHAPTER 19 Transition effects
problems we encounter are generally doing things that would be very difficult to do
smoothly without using WPF. Although it’s disappointing that everything isn’t perfect
for the Visual Studio 2008 and the 2008 SP1 release, we know that the plans for
Hawaii6 will include major improvements to both the tools and the technology. In the
meantime, you can do some stunning effects without much effort; and, if you do run
into roadblocks, there are a lot of companies rushing to help you out.

 This has been a fairly lengthy chapter, but we’ve accomplished quite a bit. First, we
have an application that’s put together reasonably “properly”—that is, it isn’t a
hacked-together example; it has an application object, a separated-out data-access
component, and a framework that allows us to easily swap out some cool effects. We
won’t pretend that this has everything you need for your line-of-business applications,
but it isn’t bad. In a future chapter, we’ll also revisit this application by making it
thread-aware.

 All the topics in this last section of the book are orphans to a certain extent—they
cover topics that don’t directly occur along the way to getting started with WPF, but
address particular subjects likely to come up when you start implementing real-world
applications. This is even truer of the next two chapters. Chapter 20 talks about
interoperability—using WPF with WinForms and vice versa—and chapter 21 covers
threading issues in WPF.

6 Hawaii is the code name for the next release of Visual Studio after 2008 SP1. We have reason to believe that
the VS team is hopeful that this will get them a trip to Hawaii when they finish. But, given that they didn’t get
a trip to Orcas Island when they finished the Orcas release (VS 2008) and they could just about wade there
from Redmond, we don’t have much hope for them.
www.it-ebooks.info

http://www.it-ebooks.info/

Interoperability
In a perfect world, there would be no legacy. Roving bands of highly intelligent
lemurs would rewrite all your code in the middle of the night using the latest tech-
nology, and would leave a mint on your chair. To date, though, we’ve barely man-
aged to train the lemurs to retype the works of Shakespeare. And they keep
misspelling Hamlet.1

 So, here we are. You might want to use WPF for some things, but either you have
an old application that’s too big to rewrite right now, or you have one or two cus-
tom controls that you want to use in our new WPF application. These are the sce-
narios we’re going to address in detail:

This chapter covers:
■ Using Windows Forms controls in WPF
■ Using ActiveX and C++ in WPF
■ Using WPF in Windows Forms
■ Using Apple IIe software via Amiga emulation of

a PDP-11

1 We think this is more spite than inability.
457

www.it-ebooks.info

http://www.it-ebooks.info/

458 CHAPTER 20 Interoperability
■ Using Windows Forms controls inside WPF
■ Using other stuff (ActiveX, C++/MFC) inside WPF
■ Using WPF inside Windows Forms

Aside from the obvious usefulness of being able to do these things, there’s another
reason why interoperability is important—it makes it possible to start using WPF now,
rather than waiting until you can do a full rewrite.

 There are other scenarios that we are not going to cover here. For example, there
are people out there who are probably pretty excited about using WPF inside their
MFC applications (or their assembly applications for that matter). Although it’s cer-
tainly possible (and not that difficult) to do that, we think the scenarios are rare
enough and complex enough that we’ve decided that they’re beyond the scope of
what we would cover here.

20.1 Using Windows Forms controls in WPF
Generally, the reason you’d want to use a Windows Forms control in WPF is because
there’s something in Windows Forms that WPF doesn’t have. Often this will be some
custom functionality that you already built—or it might be one of the controls that
WPF doesn’t have. For example, WPF doesn’t yet have a DateTimePicker or a Masked-
TextBox.

 We’ll start out with a simple example—a dialog that allows the entry of a person’s
name and birthdate—but we’ll use the Windows Forms DateTimePicker because WPF
doesn’t have one.

20.1.1 Using the Windows Forms DateTimePicker in WPF

Go ahead and create a new WPF Application, and set it up something like figure 20.1.
 Now we want to get the Windows Forms DateTimePicker onto the form. Before we

can do that, we need to add a few references to our code. Right-click the References

Figure 20.1 Building a dialog that
collects some personal information.
Unfortunately, WPF doesn’t have a
DateTime control for us to use.
www.it-ebooks.info

http://www.it-ebooks.info/

459Using Windows Forms controls in WPF
node under your assembly in the Solution Explorer, and add references to the follow-
ing two assemblies:

■ System.Windows.Forms—The Windows Forms assembly, which has, among other
things, the DateTimePicker control in it. WPF applications don’t normally
bother to reference it.

■ WindowsFormsIntegration—A new assembly for .NET 3.x that contains the code
related to using Windows Forms with WPF and vice versa.

Once WindowsFormsIntegration has been linked in, you can drag a handy control off
the toolbox—the WindowsFormsHost. WindowsFormsHost is another one of those
classes whose name pretty much says it all—it hosts Windows Forms stuff.

 Drag the WindowsFormsHost control into position where you want the date control
to reside. It will act like any other WPF control as far as things like positioning, mar-
gins, docking, and so on, are concerned (figure 20.2).

To put something into the host, we’ll have to drop down to the XAML editor; the tool-
box isn’t smart enough to switch to show us Windows Forms controls here. As per
usual, we first have to worry about namespaces. Our XAML doesn’t know anything
about System.Windows.Forms until we tell it:

<Window x:Class="Interop3.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:wf=
 "clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms"
 Title="Enter Personal Data" Height="300" Width="398">

We’ve added a wf namespace that references System.Windows.Forms, although we let
IntelliSense fill in the details of the reference for us. Now we can add a DateTime-
Picker to the WindowsFormsHost.

<WindowsFormsHost Margin="85,65,150,0" Height="23"
 VerticalAlignment="Top" >
 <wf:DateTimePicker x:Name="birthday" />
</WindowsFormsHost>

Figure 20.2 The
WindowsFormsHost control
acts like any other WPF control,
at least until you put something
into it.
www.it-ebooks.info

http://www.it-ebooks.info/

460 CHAPTER 20 Interoperability
We’re referencing the DateTimePicker from the wf space and giving the control a
name so that we can refer to it as needed. In earlier CTP releases of Visual Studio 2008,
the designer would show you the control you selected displayed inside the Windows-
FormHost, and you could even edit the contained control’s properties in the Proper-
ties grid. Unfortunately, this capability obviously caused some problems because, in
the final release, all you get is a pretty box with the text WindowsFormsHost, which is
accurate but not nearly as cool or useful (figure 20.3).

Even though we don’t have the property editor, we can set properties on the Windows
Forms controls directly in XAML. For example, we don’t want the long date/time for-
mat for the control; we want the short date format.

<WindowsFormsHost Margin="85,65,150,0" Height="23"
 VerticalAlignment="Top" >
 <wf:DateTimePicker x:Name="birthday" Format="Short"/>
</WindowsFormsHost>

We’re setting the Format to DateTimePickerFormat.Short. The enum conversion is
automatically handled for us. We can also reference our control in code as we would
in Windows Forms. For example, if we add a button to our form and then put in a
Click handler, we can do this in the code (listing 20.1).

private void button1_Click(object sender, RoutedEventArgs e)
{
 string name = textBox1.Text;
 DateTime born = birthday.Value;

 MessageBox.Show(name + " was born on " + born.ToLongDateString());
}

Note how we’re getting the name from the WPF text box and the birthday from the
Windows Forms DateTimePicker with no special handling. It makes sense that we can

Listing 20.1 Referencing WPF and Windows Forms together

Figure 20.3 The
WindowsFormsHost doesn’t
show us specifically what it’s
hosting in the designer, but the
Windows Forms control will
show up at runtime.
www.it-ebooks.info

http://www.it-ebooks.info/

461Using Windows Forms controls in WPF
do this because they’re both .NET controls. If you want to do data binding, you have to
use Windows Forms binding for the DateTimePicker and WPF binding for the Text-
Box, but you can still bind them to the same source. Figure 20.4 shows the application
running, along with the message displayed after hitting the Accept button.

 There’s one issue with what we’ve done that you may have noticed. The Birthday
control doesn’t look right—it’s using the classic Windows look-and-feel, rather than
picking up the XP or Vista style. In the next section, we’ll rectify that.

20.1.2 Enabling Windows themes for Windows Forms control
The reason that the Windows Forms controls aren’t properly themed for the operat-
ing system is that we haven’t enabled theming. This is something done automatically
when you create a Windows Forms application, but WPF applications don’t bother
because they don’t use the operating system theme mechanism at all. But, to enable
the theme is pretty easy. We want to enable visual styles at startup, so we add a handler
to the Startup event in the application.

<Application x:Class="Interop3.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="Window1.xaml" Startup="Application_Startup">

And we need to add one line of code to the Startup handler.

private void Application_Startup(object sender, StartupEventArgs e)
{
 System.Windows.Forms.Application.EnableVisualStyles();
}

If you look inside a Windows Forms application, you’ll see this same line of code. Now,
if we run the application, it will look more like figure 20.5.

 Much better. Note that, if we had applied some sort of clever WPF style, the
DateTimePicker would absolutely not use it—Windows Forms controls know nothing
about WPF styles.

Figure 20.4 Running with an
embedded Windows Forms
control. Notice that the
DateTimePicker is using
the classic Windows style,
rather than the Vista style
used by the TextBox.
www.it-ebooks.info

http://www.it-ebooks.info/

462 CHAPTER 20 Interoperability
20.1.3 What you can’t do with embedded Windows Forms controls

As well as not being able to style controls, there are a few other things that you cannot
do with embedded controls. For example, most transforms won’t work. You can’t rotate
or scale the controls using WPF transforms. Likewise, if you put a Windows Form con-
trol into a ViewBox, it won’t automatically expand—which makes sense, given that the
ViewBox uses transforms to accomplish what it does.

 On the other hand, translate transforms, which move the container will work. The
control will also play fairly well with layout. In fact, if you resize the Personal Data dia-
log, you’ll see that the Birthday control automatically resizes, even though we haven’t
explicitly set docking options on the control, because the WindowsFormsHost automat-
ically translates that behavior for us.

 You do need to be careful about overlapping hosted controls and WPF controls.
Windows Forms controls all have an HWND—a handle to a Window. Individual WPF
controls don’t. From a practical perspective, this means that Windows Forms controls
will always be on top of WPF controls, no matter how you lay them out.

 Also, Windows Forms uses completely different libraries for things like colors and
alignment, and you can’t mix and match them with WPF’s libraries. For example, suppose
you want to set one of the color properties on the DateTimePicker. You cannot do this:

birthday.CalendarTitleBackColor = Colors.Blue;

Colors.Blue is really a System.Windows.Media.Color value, whereas the DateTime-
Picker is expecting a System.Drawing.Color value. You’d either have to add a refer-
ence to System.Drawing to your project and do this:

birthday.CalendarTitleBackColor = System.Drawing.Color.Blue;

Or, if you want to convert an existing color, you’d have to do something like this:

Color myColor = Colors.Blue;
birthday.CalendarTitleBackColor =
 System.Drawing.Color.FromArgb(myColor.R, myColor.G, myColor.B);

Figure 20.5 Now that
VisualStyles are enabled,
notice the border of the control and
the button are using the Vista style.
We’ve also dropped down the
calendar to show that the control
works entirely as expected.
www.it-ebooks.info

http://www.it-ebooks.info/

463Using Windows Forms controls in WPF
Other things are more of a pain to convert.

In general, most Windows Forms functionality works fairly well in the host control.
Microsoft has done a nice job with this one. Your users can tab between WPF and Win-
dows Forms and back again without knowing that they’re doing it. But, embedding
Windows Forms (or anything) in WPF does come at a cost—as well as losing some
capabilities, there’s a performance impact, which can be significant. It’s obviously bet-
ter to stick to a single technology if you can.

20.1.4 Using your own Windows Forms controls

In our example, we used one of Microsoft’s Win-
dows Forms controls that, all things being equal,
we’d expect to work. Using your own (or third-
party) Windows Forms controls is just as easy. All
you have to do is reference the appropriate assem-
bly, add the namespace, and use the control. For
example, we’ve gone ahead and created an assem-
bly with a (very ugly) Windows Forms user control
(figure 20.6).

 Now, all you have to do is add a reference to the
assembly under References, and add the appropri-
ate namespace in the Windows tag:

xmlns:mwfl=
 "clr-namespace:MyWindowsFormsLibrary;assembly=MyWindowsFormsLibrary"

Then, drag another WindowsFormsHost onto the dialog and set its content appropriately.

<WindowsFormsHost Height="99" Margin="34,0,99,27"
VerticalAlignment="Bottom">

 <mwfl:MyWindowsFormsControl />
</WindowsFormsHost>

And, voilà, you’ve embedded a custom user control (figure 20.7).
 The WindowsFormsHost has even automatically set the background properly.

Fonts and pixels in WPF and Windows Forms
One thing that might get you in trouble is that WPF and Windows Forms have a differ-
ent approach for pixels. In Windows Forms, Pixels are device-dependent; in WPF, a
Pixel always takes up 1/96th of an inch. This isn’t normally a problem; but, if it is,
you’ll have to do the conversion yourself.

Also, fonts in WPF are based on the 1/96th value, whereas Windows Forms’ fonts
are based on a 1/72nd value. Fortunately, 72 is precisely 3/4ths of 96, so you can
easily convert back and forth by multiplying or dividing by 0.75.

Figure 20.6 This is a classic
Windows Forms user control.
Obviously, in real life, you’d have some
more useful functionality—at least, we
hope you would. The control is called
MyWindowsFormsControl and is in
an assembly called
MyWindowsFormsLibrary.
www.it-ebooks.info

http://www.it-ebooks.info/

464 CHAPTER 20 Interoperability
20.1.5 Popping up Windows Forms dialogs

Another scenario for using existing Win-
dows Forms functionality is one where you
have an entire dialog already set up, and
you want to use it in its entirety. As an
example, we’ll create a Windows Forms
Form to display our results when the user
hits the Accept button (figure 20.8).

 To bring this up as a modal dialog, we
do exactly what we would have done in a
classic Windows Forms application.

private void button1_Click(object sender, RoutedEventArgs e)
{
 string name = textBox1.Text;
 DateTime born = birthday.Value;

 MyWindowsFormsLibrary.BirthdayDetails dlg
 = new MyWindowsFormsLibrary.BirthdayDetails();
 dlg.SetDetails(name + " was born on " + born.ToLongDateString());

 dlg.ShowDialog();
}

We’ve added a method to our dialog called SetDetails() to populate the details text.
The big thing is that we call ShowDialog() and the dialog pops up. It will even auto-
matically stay on top of our main window until we dismiss it. We can also make the dia-
log modeless by calling Show() instead of ShowDialog().

dlg.Show();

This is more impressive than it sounds. Windows Forms controls need a message
pump to make modeless forms works, but this is all taken care of for us. But, there is

Figure 20.7 A custom, embedded
Windows Forms control

Figure 20.8 An ugly but serviceable Windows
Forms dialog
www.it-ebooks.info

http://www.it-ebooks.info/

465Using Windows Forms controls in WPF
one issue. If we bring up the pop-up dialog and then click back on the main dialog,
something like figure 20.9 happens.

 As you can see, the Windows Forms control has slipped behind the WPF window.
This may be what you want; but, if you want it to always be on top, you have to set the
owner of the Windows Forms control. This is tricky because the expected owner is an
IWin32Window, and we don’t have one of those. Fortunately, WPF provides a helper
class that will help us solve this problem. Listing 20.2 shows how.

using System.Windows.Interop;

WindowInteropHelper helper = new WindowInteropHelper(this);

System.Windows.Forms.NativeWindow nw =
 new System.Windows.Forms.NativeWindow();
nw.AssignHandle(helper.Handle);

dlg.Show(nw);

WPF provides a handy class called the WindowInteropHelper b for just this situation.
You may remember when we mentioned, about 18 chapters ago, that WPF code does
still have one HWND running around for each window.2 The WindowInteropHelper lets
us get at it via the Handle method.

 Next we put the handle into a Windows Forms class called NativeWindow c. The
purpose of NativeWindow is to provide a simple wrapper for a low-level handle. Most

Listing 20.2 Getting parent window from WPF

2 We’re surprised that we even remember!

Figure 20.9 The control
in the background is a
Windows Forms dialog.
Because it has no owner, it
has disappeared behind
the other dialog.

Goes at top of the file Helper
class

b

Control we
can passc
www.it-ebooks.info

http://www.it-ebooks.info/

466 CHAPTER 20 Interoperability
importantly, it implements the IWin32Window interface, so we can pass it to the Show()
method of our class.

 Now, when we run, the dialog won’t be allowed to go behind our main form.
 As you’ve seen, embedding Windows Forms controls in WPF is pretty straightforward,

but what about embedding other technologies such as ActiveX or straight C++ code?

20.2 Embedding ActiveX and C++ in WPF
It isn’t that surprising that embedding Windows Forms code in WPF is fairly straight-
forward. After all, they’re both .NET technologies using the .NET runtime. Even
though it’s a little bit harder to embed things like ActiveX (or even straight C++ con-
trols), it isn’t that much harder—at least for simple cases.

20.2.1 Embedding ActiveX controls in WPF

For many years, ActiveX was the primary technology for interoperability and for third-
party controls. For this reason, a lot of ActiveX controls are still running around, caus-
ing havoc, and people are still using them. WPF doesn’t have any direct support for
using ActiveX controls. But, Windows Forms does; and, as you’ve just seen, WPF can use
Windows Forms relatively easily.

 We think you know where this is going…
 Yes, we first create a Windows Forms control that contains our ActiveX control.

Then we embed the Windows Forms control into our WPF code using the Windows-
FormsHost. To add an ActiveX to a Windows Forms control is pretty easy with Visual
Studio. First, create a new UserControl called SystemMonitorHolder. Why? Because
the ActiveX control we’re going to embed is the SystemMonitor control, which should
already be available on your system.

 Next, right-click the Toolbox, and select Choose Items… The dialog takes a while
to come up. When it does, switch to the COM Components tab (figure 20.10).

 Scroll down in the list until you find the System Monitor Control, check it, and
then click OK. Again, it will take a little while, but then System Monitor Control will
show up in the Toolbox. Now you can drag it on to the user control you just created
(figure 20.11).

 We’ve made the user control a little bit bigger to accommodate the ActiveX con-
trol. We’ve also set the Dock property of the control to Fill so that it takes up the
entire user control. When we put the control into the WPF window, the user control
will automatically be sized based on layout, but that won’t do us any good if the con-
trol on the user control isn’t set to size with it.

 We’re halfway there. Now you have to put the control onto the WPF dialog. Again,
you drag a WindowsFormsHost onto the window, position it appropriately, and then
manually set its content in XAML.

<WindowsFormsHost Margin="20,130,9,8" Name="windowsFormsHost2">
 <mwfl:SystemMonitorHolder />
</WindowsFormsHost>
www.it-ebooks.info

http://www.it-ebooks.info/

467Embedding ActiveX and C++ in WPF
That’s it. Now, if you run, you should get something like figure 20.12.
 You’ll still have to set the properties on your ActiveX control appropriately to be

useful, but still, it’s pretty nifty. Also, all the Windows Forms caveats still apply, plus any
additional limitations related to COM usage. Still, if you’re stuck with having to use an
ActiveX control, it isn’t all that hard.

Figure 20.10 Adding the System Monitor Control to the Toolbox. Once you check the item
and say OK, Visual Studio will do all the appropriate wrapping for you.

Figure 20.11 The
System Monitor ActiveX
control on a Windows
Forms UserControl.
Don’t forget to set the
Dock to fill.
www.it-ebooks.info

http://www.it-ebooks.info/

468 CHAPTER 20 Interoperability
20.2.2 Embedding C++ controls in WPF

The last thing we want to talk about is using legacy C++ controls from within WPF. We’re
only going to talk about the approach, rather than demonstrate it, because we think it’s
an edge-case; but, at least, this section should point you in the proper direction.

 WPF has a class called HwndHost whose purpose is to allow WPF to host anything
represented by a HWND. WindowsFormsHost is derived from HwndHost, and adds a
bunch of additional functionality to make Windows Forms controls play nicely in WPF.
If you want to embed existing C++ code into WPF, you need to derive from HwndHost.
In your derivation, you’ll need to do some of the following:

■ Create your HWND-based window using appropriate flags.
■ Handle tabbing into and out of the control.
■ Handle mnemonics.
■ Handle sizing.

For the average C++ developer, it’s pretty straightforward to do all these things. There
are methods to override for most of them. But, because C++ tends to be fairly verbose,
we’ve decided to not include an example.

 So much for using other things in WPF—what about going the other way?

Figure 20.12 WPF window with an embedded ActiveX control. The joys of interop:
We have WPF running Windows Forms running ActiveX. If we just had an ActiveX
control that was an Apple IIe emulator, we’d be over the moon.
www.it-ebooks.info

http://www.it-ebooks.info/

469Using WPF in Windows Forms
20.3 Using WPF in Windows Forms
Let’s face it—unless you’re writing something from scratch, it’s pretty hard to justify
completely rebuilding your UI in WPF. There are some things that are so much easier/
better/prettier in WPF, that it would be nice if you could use it for just those things.

 Fortunately, providing that you’re using Windows Forms, it’s just as easy to use WPF
in Windows Forms as it is the other way around.

20.3.1 Using a WPF control inside of Windows Forms

Rather than putting together some ugly set of WPF controls, we thought we might as
well use something we’ve already created, so we’ve taken the calculator application
from earlier and converted the calculator to be a WPF User Control. To do this, we
first create a WPF User Control Library, and then copy over the Window1 class from
the calculator application, and add it. Then we rename Window1 to CalculatorCon-
trol and change it from a Window to a UserControl, and update the namespaces, and
so on. We aren’t going to show every single change because it would just fill up pages.
But here’s an example of the types of changes to make.

 This XAML:

<Window x:Class="Calculator.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:calc="clr-namespace:Calculator;assembly="
 Title="Calculator" Height="300" Width="300" Background="Transparent"
 Loaded="OnLoaded">
 <Window.Resources>
 ...

becomes

<UserControl x:Class="MyWPFControlLibrary.CalculatorControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:calc="clr-namespace:MyWPFControlLibrary"
 Height="300" Width="300" Background="Transparent"
 Loaded="OnLoaded">
 <UserControl.Resources>
 ...

Notice that

■ Window has been replaced with UserControl in several places.
■ x:Class has a different namespace and class name.
■ The calc namespace has been changed to MyWPFControlLibrary.
■ The Title attribute has been removed because UserControls don’t have titles.

We also have to update the code in similar ways. For example:

namespace Calculator
{
 ...
www.it-ebooks.info

http://www.it-ebooks.info/

470 CHAPTER 20 Interoperability
 public partial class Window1 : System.Windows.Window
 {
 ...

 public Window1()
 {
 ...

becomes

namespace MyWPFControlLibrary
{
 ...

 public partial class CalculatorControl : UserControl
 {
 ...

 public CalculatorControl()
 {
 ...

Anyway, you should get the idea. If you can’t be bothered to do this yourself, you can
always download it from our site or create some ugly set of WPF controls as a UserControl
for experimental purposes. The important thing is to create the WPF User Control
Library with a control in it.

 The next step is to create a Windows Forms Application. Once you’ve done this,
you need to add a few references (sound familiar?). The first is to the same Windows-
FormsIntegration assembly we referenced earlier. The second is to the WPF User
Control Library we just created. Assuming you’ve built the assembly, you can right-
click References and then browse for it (figure 20.13). Note that you might also have
to add references to PresentationCore, PresentationFramework, and WindowsBase.

Figure 20.13 Adding
a reference to the
WPF User Control
Library we just
created. Because WPF
is still .NET, you could
also add the library
project to your
Windows Forms
solution and then do a
Project reference.
www.it-ebooks.info

http://www.it-ebooks.info/

471Using WPF in Windows Forms
When you created the Windows Forms application,
it automatically created a form for you with the
clever name of Form1. Go ahead and bring up
the editor for the form, and make it a little bigger.
Then, from the Toolbox, open the section titled
WPF Interoperability (figure 20.14), and drag an
ElementHost onto the Form.

 ElementHost is the opposite of WindowsForms-
Host; it allows WPF elements to be hosted. You can
set the host’s properties in the same way as any other Windows Form control, such as
making it dock, and so on. You can also set the element that it hosts by clicking the lit-
tle arrow that appears at the upper-right corner of the ElementHost (figure 20.15).
Notice that the list includes all the user controls in our control library. If you select
CalculatorControl, it will automatically appear in the ElementHost. Now, if you run
the Windows Forms application, the calculator will not only be visible, but all its WPF
behavior will be intact (figure 20.16).

 In some ways, it’s even easier to embed WPF inside Windows Forms. The ability to
do this is pretty compelling, although, as with going the other way, there are perfor-
mance issues—and you don’t necessarily want to cover a Windows Forms control with
a dozen WPF elements.

Figure 20.14 When working with
Windows Forms, there’s now a
section on the Toolbox called WPF
Interoperability that gives access to
the ElementHost control.

Figure 20.15 The little arrow at the upper-right corner of the ElementHost
provides a way of selecting the appropriate WPF element to display. The drop-down
menu shows all the available elements from referenced WPF assemblies.
www.it-ebooks.info

http://www.it-ebooks.info/

472 CHAPTER 20 Interoperability
20.3.2 Popping up WPF dialogs

Just as we can launch Windows Forms dialogs from WPF code, we can launch WPF dia-
logs from Windows Forms. In fact, the code is virtually the same. For example, to
launch the window version of our calculator (not the user control because that can’t
stand by itself), we only have to do this:

MyWPFControlLibrary.CalculatorWindow calc =
 new MyWPFControlLibrary.CalculatorWindow();
calc.ShowDialog();

And this works as expected. But, just as when we went the other way, we do have
potential issues with ownership, particularly when the launched dialog is modeless.
Fortunately, the same WindowInteropHelper we used before helps us solve the prob-
lem going the other way (listing 20.3).

MyWPFControlLibrary.CalculatorWindow calc =
 new MyWPFControlLibrary.CalculatorWindow();
WindowInteropHelper helper = new WindowInteropHelper(calc);
helper.Owner = this.Handle;
calc.Show();

We create the helper, passing the WPF window to it b. Note that you’ll need a using
System.Windows.Interop statement in your code somewhere for this to work. Then
we set the handle of our class as the owner of the helper c that will become the
owner of the window when it appears. Note that the this in this case is the Windows
Forms Dialog launching the dialog.

Listing 20.3 Setting ownership on a WPF window

Figure 20.16 The WPF
Calculator is now embedded
inside a Windows Forms dialog.
Everything (including styles and
animations) works exactly as it
would in a native WPF app.

b
c

www.it-ebooks.info

http://www.it-ebooks.info/

473Summary
 All in all, not too difficult. That’s all there is to using WPF with Windows Forms. We
expect to see a lot of Windows Forms application start sprouting some pretty slick
embedded controls in the very near future.

20.4 Summary
Both of us are professional developers and architects, so we spend much of our time
justifying our decisions to other people and/or to ourselves. Convincing the powers
that be that a new platform should be considered when you have perfectly operational
code working in the old stuff isn’t an easy sell.

 There are times, though, when you know that something you really need to do
would take two days in the new technology versus five weeks in the old. But, moving
your entire legacy app to the new technology might take you two years, so it isn’t
entirely a good trade-off.

 The interop capabilities of WPF and Windows Forms can help out in this situation.
You can leave your existing application alone, except for the one bit that needs to be
in WPF, or you can build your new UI in WPF, but call into your legacy code for every-
thing you don’t have time to replace. It’s entirely likely that this capability will be what
makes WPF take off in a year or two, instead of in five years.

 Our next topic, threading, is something relevant for Windows Forms applications,
as well as for WPF applications, but WPF has added a number of useful capabilities for
making threading easier.
www.it-ebooks.info

http://www.it-ebooks.info/

Threading
In Windows Forms, the cardinal rule for threading was that all UI operations had to
take place on the same thread—or, at least, on the thread that created the window
with which you were working. Although the mechanics are a little bit different, the
same exact rule applies to WPF.

 WPF has two UI threads: the main UI thread and a rendering thread, which
does the real rendering, animation, and so on. But, you can almost never interact
with the rendering thread; for practical purposes, you can ignore it. In threading
situations, you have to make sure that all your UI calls take place on the main
UI thread.

 There are a several reasons why you might want to use threads within your appli-
cation. The biggies are:

■ Responsiveness —So that your application doesn’t appear to lock up while
operations take place

This chapter covers:
■ The Dispatcher
■ Asynchronous calls
■ Timers
■ Making our CIA application more insulting
474

www.it-ebooks.info

http://www.it-ebooks.info/

475Threading
■ Handling slow operations —So that users can work on other things while slow ops,
such as queries, take place

While discussing threading in general, we’ll also demonstrate how to make asynchro-
nous calls with WPF and to use the new DispatchTimer mechanism.

 For this chapter, we’re going to return to the CIA World Browser application. This is
a good candidate for threading because, when the application does a query against a
DICT server, it can take several seconds, making the application appear non-responsive.
If something goes wrong, then it can take even longer. It’s conceivable that a lookup
could take a much longer time (which we may fake a bit), in which case we want to let
the user do other things. To demonstrate the responsiveness issue, we’ve added a
Thread.Sleep call inside the DictionaryLookup in WorldBrowser and then performed
a lookup. Figure 21.1 shows the result.

 Notice how the application is completely failing to refresh the screen. The main
UI, which is responsible for making that happen, is busy doing our query. Fortunately,
it isn’t hard to move the code to do the lookup into another thread.

Figure 21.1 While the lookup is going on, the application is completely non-responsive. Note that this
is an XP screenshot. Vista handles this a little bit better by putting up a picture of your original
application; but, rest assured, your application isn’t really responding.
www.it-ebooks.info

http://www.it-ebooks.info/

476 CHAPTER 21 Threading
21.1 Moving slow work into a background thread
You may remember from the WorldBrowser application that we did the query in the
lb_MouseDoubleClick method. Anyway, the method in the WorldListView class in
WorldBrowser got the name of the country, looked it up, loaded the document, and
then caused the transition animation to get executed—all in a very non-thready way.

 If we didn’t have to worry about UI code running on the same thread, then we
could rewrite the code like listing 21.1 to make it do the work in a thread.

using System.Threading;
using System.Windows.Threading;

private void lb_MouseDoubleClick(object sender, MouseButtonEventArgs e)
{
 ListBox lb = sender as ListBox;
 if (lb.SelectedItem != null)
 {
 string country = lb.SelectedItem.ToString();
 ThreadPool.QueueUserWorkItem(
 new WaitCallback(LookupThreadMethod), country);
 }
}

protected void LookupThreadMethod(object state)
{
 string country = state.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

 FlowDocumentReader reader =
 Switcher.UnselectedElement as FlowDocumentReader;
 doc.Background = reader.Background;
 reader.Document = doc;
 Switcher.Switch();
}

We’ve taken all the code that does the lookup and UI work and moved it into a
method called LookupThreadMethod(). We’re launching that method using a thread
pool b. We could also have created a regular thread and done a Start(), but the
thread pool is rather more efficient.

 We’ve passed the name of the country to the Thread method as a state object,
which we convert back to a string in the method c. Then we do our slow lookup d.
So far, so good. The application is completely responsive while this is going on—
we can move it, resize it, drag things over it to cause repaints, and so on, all with
no problems.

 No problem, at least, until we try to do something with our result. As soon as we try
to get the value from the UnselectedElement property e, the system throws an
InvalidOperationException with the descriptive text “The calling thread cannot
access this object because a different thread owns it.” Although we expected this, it
still makes us sad.

Listing 21.1 First attempt at background lookup

Goes at top of file

Launches
thread

b

c Does
slow
work

d

Blows up!e
www.it-ebooks.info

http://www.it-ebooks.info/

477Moving slow work into a background thread
 In fact, WPF is more stringent than Windows Forms. With Windows Forms, you
could usually get a value from a property in another thread, although it wasn’t recom-
mended. WPF won’t even let us do that. We need to make the update take place back
on the main UI thread. We can do that using a WPF class called the Dispatcher (list-
ing 21.2).

protected void LookupThreadMethod(object state)
{
 string country = state.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

 Dispatcher.Invoke(DispatcherPriority.Normal,
 new WaitCallback(FinishLookup), doc);
}

protected void FinishLookup(object state)
{
 FlowDocument doc = state as FlowDocument;

 FlowDocumentReader reader =
 Switcher.UnselectedElement as FlowDocumentReader;
 doc.Background = reader.Background;
 reader.Document = doc;
 Switcher.Switch();
}

We’ve have added yet another method, FinishLookup c, which is designed to be run
on the main UI thread. To call this method on the right thread, we have to Invoke it.
If you did threading in Windows Forms, you may remember the Invoke() method
that existed on controls. This method forced a call to the control on the thread that
created that control.

 The problem with the Invoke mechanism in Windows Forms was that it was some-
what limited. For example, you could only Invoke methods on Controls. This may
not sound like much of a limitation, but it caused some difficulties—it was not uncom-
mon to have to create an invisible control for no other purpose than for getting a mes-
sage on the proper thread. WPF, in contrast, allows you to Invoke a method on any
class derived from DispatcherObject. DispatcherObject is close to the top of the
derivation chain for WPF—several levels even above Visual—and it’s relatively light-
weight, so you can derive from it without too much overhead.

 To invoke a method on a DispatcherObject, we don’t call a method directly.
Instead, we use the Dispatcher class b. It has a number of overloads that support dif-
ferent arguments, but they all come down to forcing a call to be made on the appropri-
ate thread. Notice that we’re setting a priority on the Invoke call. A nice feature of the
Dispatcher is that we can specify the importance of the invoke, and have it be high pri-
ority, or only get called when the UI thread is idle, or one of a number of other settings.

 The Invoke method takes a delegate. We’re using the WaitCallback delegate for
no other reason than that it takes a single argument, but we could use any existing or

Listing 21.2 Second attempt at background lookup

Invokes
method on
main UI threadbc

d

Blows up!e
www.it-ebooks.info

http://www.it-ebooks.info/

478 CHAPTER 21 Threading
custom delegate that we wanted to here. The argument that we’re passing is the Flow-
Document returned from the DictionaryLookup class.

 So far, so good. When the lookup is complete, the Invoke will cause the Finish-
Lookup method to get called, which will get the document out of the passed argument
d, and then do the update stuff—except that, as soon as we try to do something with
the passed document e, we get another exception!

 What’s wrong this time? Well, we created the FlowDocument on our background
thread, and now we’re trying to change it on the main thread. That’s as forbidden as
going the other way!

 This is a good reminder about how much thought needs to go into adding threading
to an application. The proper fix would be to change our DictionaryLookup class to
return some sort of structure that holds the data, and then to build our FlowDocument on
the main thread. But, a quicker (albeit uglier) fix is to convert the FlowDocument into a
string, pass the string to the main thread, and then turn it back into a FlowDocument. If
nothing else, this demonstrates the rather cool ability to go back and forth to XAML (list-
ing 21.3).

using System.Windows.Markup;
using System.IO;
using System.Xml;

protected void LookupThreadMethod(object state)
{
 string country = state.ToString();
 FlowDocument doc = App.Current.Lookup.DefineWord(country);

 string str = XamlWriter.Save(doc);
 Dispatcher.Invoke(DispatcherPriority.Normal,
 new WaitCallback(FinishLookup), str);
}

protected void FinishLookup(object state)
{
 string xamlDoc = state.ToString();

 StringReader stringReader = new StringReader(xamlDoc);
 XmlReader xmlReader = XmlReader.Create(stringReader);
 FlowDocument doc = (FlowDocument)XamlReader.Load(xmlReader);

 FlowDocumentReader reader =
 Switcher.UnselectedElement as FlowDocumentReader;
 doc.Background = reader.Background;
 reader.Document = doc;
 Switcher.Switch();
}

We need to add several using statements to our file b to be able to do the conversion.
Converting the FlowDocument to a XAML string is easy. We pass it to the static Save()
method on the XamlWriter class c. Then we pass it via the dispatcher and get the
XAML string back on the other end d.

Listing 21.3 Final attempt at background lookup

Goes at top
of fileb

Converts
FlowDocument

to XAML

c

d
Converts XAML
back to
FlowDocument

e

www.it-ebooks.info

http://www.it-ebooks.info/

479Asynchronous calls
 Getting a FlowDocument from the passed XAML is a little more work e because we
have to get an XmlReader to pass to the XamlReader’s Load method, but this isn’t too
bad either. One warning, though: There are limitations as to what the XamlWriter and
XamlReader classes can do. This technique works for a simple control; but, when you
start getting control templates with animations, and so on, you’ll quickly exceed the
serialization capabilities of the classes.

 Anyway, now that we’ve made these changes, everything finally works the way we
want. The UI is responsive during the lookup, but the lookup happens, and the docu-
ments are updated. We’ve written the code so that the thread calls back to the UI
thread synchronously, meaning that the thread will wait until the UI thread is ready to
do the work and then will wait while the work happens before it goes on. Because our
thread is going to go away when the call is complete, this doesn’t really matter, but
there are times when you don’t want to wait for the target operation to complete.

21.2 Asynchronous calls
When we used the Dispath.Invoke method earlier, it was a synchronous call—the
code in our thread will sit and wait until the method we invoked is done processing.
This is often quite desirable, particularly if you want to get a return result from the
method. But, sometimes you just want to tell the UI something and then let the thread
get on doing what it was doing. For this scenario, the Dispatcher has the ability to do
an asynchronous invoke. For example, we could make our Invoke from listing 21.3
be asynchronous.

DispatcherOperation op =
 Dispatcher.BeginInvoke(DispatcherPriority.Normal,
 new WaitCallback(FinishLookup), str);

Unlike Invoke, BeginInvoke will return immediately. So, any code after the Begin-
Invoke will start to be executed, but you can check up on how the method is doing via
the DispatcherOperation object that BeginInvoke returns. For example, you can
check the value of the Status property to see how things are going. Status will return
one of three values (table 21.1).

Once the operation has completed, you can get the value that the delegate method
returned via the Result property. You can also subscribe to events on the Dispatcher so
that you get notified when the operation has been completed (or has been aborted).

Table 21.1 Possible values of DispatcherOperation.Status

Value Meaning

Pending The method hasn’t yet been invoked.

Executing The method is in the process of being executed.

Completed The method has completed running.
www.it-ebooks.info

http://www.it-ebooks.info/

480 CHAPTER 21 Threading
 If you’ve used the old WinForms Invoke mechanism, you’ll see how much more
thought-out and robust the WPF mechanism is.

 Whether you’re working synchronously or asynchronously, the code execution is
(relatively) linear—you launch a thread, it does stuff, and then it calls back to the orig-
inal thread. Sometimes, though, you want things to happen at certain intervals; this is
where timers come in.

21.3 Timers
Another scenario that often comes up when discussing threading is using timers to
make something happen after X amount of time. Now, in .NET and Windows Forms,
there are about a billion different timer classes (OK, three). The timer often used within
WinForms controls doesn’t use threads at all, but passes messages; it’s very inaccurate.

 WPF has its own, very clean timer model. It uses threads, but takes advantage of the
Dispatcher framework, so you know that your code will be called on the proper
thread. To demonstrate using the timer, we’ll add some code to our class to automati-
cally clear the displayed document after 30 seconds—the data is, after all, from the
CIA. Listing 21.4 shows how to set up the timer.

private DispatcherTimer clearTimer = null;

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 LoadContinents();

 clearTimer = new DispatcherTimer(DispatcherPriority.Normal);
 clearTimer.Interval = new TimeSpan(0, 0, 30);
 clearTimer.Tick += new EventHandler(clearTimer_Tick);

 clearTimer.Start();
}

Using a DispatcherTimer is ridiculously easy. By the way, the class is in the Sys-
tem.Windows.Threading namespace. There should already be a using statement in
place from the previous example; but, if not, you’ll need to add one. We create an
instance of DispatcherTimer b. We’re setting the priority to Normal—we don’t need
to do this because it’s the default, but it shows that the timer class is using the Dis-
patcher behind the scenes.

 We set the interval for the timer (in this case, 30 seconds), provide an event han-
dler to call when the timer should fire, and then kick the timer off c. Listing 21.5
shows our event handler.

void clearTimer_Tick(object sender, EventArgs e)
{
 FlowDocument doc = new FlowDocument();
 Paragraph para1 = new Paragraph();

Listing 21.4 Setting up a DispatcherTimer

Listing 21.5 Tick event handler

Our Timer object

b

Starting the timer goingc

Creates documentb
www.it-ebooks.info

http://www.it-ebooks.info/

481Summary
 para1.FontSize = 18;
 para1.Inlines.Add(new Bold(
 new Run("You are not authorized to view this data. Get out.")));
 doc.Blocks.Add(para1);

 FlowDocumentReader reader =
 Switcher.UnselectedElement as FlowDocumentReader;
 doc.Background = reader.Background;
 reader.Document = doc;
 Switcher.Switch();
}

All this code does is create a new FlowDocument saying that the data is being hidden
b and then sets it the same way we would have set it if the user had double-clicked an
entry in the list c. In more polished code, we would’ve pulled the setting code into its
own method, but you get the idea. Figure 21.2 shows the application after 30 seconds.

This is a pretty simple example, but it demonstrates the power of the Dispatcher-
Timer. The important thing is that, although the timers use threads to keep time, they
invoke your code on the main thread, so you don’t have to worry about threading
issues when you use them.

21.4 Summary
Obviously, this chapter isn’t meant to be an authoritative guide to threading. Thread-
ing can be incredibly complex to use correctly, and chances are that two out of every
three systems that use threading to any significant degree are doing something that
will randomly crash for no obvious reason.

 That said, so long as you obey a few simple rules, threading can make your applica-
tion much more responsive, and WPF has done a good job of making it easy to follow
those rules.

Sets documentc

Figure 21.2 After 30 seconds, our timer automatically clears the text displayed by
the application.
www.it-ebooks.info

http://www.it-ebooks.info/

482 CHAPTER 21 Threading
 Throughout this book, we’ve tried to give our unvarnished opinion of WPF, even
when we know that it will make some of our visits to the Microsoft cafeteria just a tad
awkward. It’s only fair, then, when something is done really well that we acknowledge
it, and we think that the threading support is one of those areas.

 Despite some frustrations, overall we really love WPF. We truly believe that, in a year
or two, it will be the only serious way to build Windows UI (and possibly UI for other
platforms as well). The speed and ease with which you can build spectacular useful
applications is truly incredible; once the after-market hits its stride with controls,
effects, and libraries, it will transform user’s expectations and experiences.
www.it-ebooks.info

http://www.it-ebooks.info/

index
Numerics

3D 52, 352

A

Accepted property 270
accessibility 50
accordion control 77
ActiveX 10, 390, 458, 466
AddHandler 155
ADO.NET 234
Adobe Flash 43, 391, 403
Adobe Flex 17
Adobe PDF 406
AdornedElementPlaceholder

280
Aero theme 119, 142–143
affordances 140
AJAX 374, 402
AlignmentX 171
almost-standards mode 10
Alpha 450
Ambient light 357
Amiga Datatype system 52
Anchor 96
anchoring 73
Andreessen, Marc 9
animated GIF 165
animation 53, 165–169, 448
App.xaml 392
Apple 12
application 30, 125

object 431
services 55

Application tag 31
Application.Current 125, 145,

431
Application.Resources 30
ApplicationCommands 196–

197, 200
arcs 321
ArcSegment 348
ARGB Colors 162
Ascender 52
ASP.NET 374, 390
Asynchronous calls 479
ATL 7
attached properties 48, 72–73,

128
audio 52
Aurora 61
automatic properties 276
AutoReverse 168
Avalon 3, 405
AVI 165
Axis rotation 367

B

BackColor 128
background threads 476
backing field 302
BackMaterial 364
bandwidth 402
base services 44, 51
BasedOn 133
BeginInvoke 479
BeginStoryboard 436, 438
BeginTime 452

Berners-Lee, Tim 9
Bézier curves 321
BezierSegment 348
binding 130, 211

modes 211
performance 219
sources 211

Bitmap effects 53
downside 163

BitmapEffects 163
blink tag 9
Bold 199
Border 311, 417
BorderBrush 121, 126, 129
BorderBrushProperty 129
BorderColor 82
BorderThickness 82
Boulter, Mark 6
BrowseBack 198
BrowseForward 198
browsers 390
Brush 337
brushes 6, 106
bubble up 148
bubble-up events 49–50
bubbling 49
bubbling events 149–151
Business objects 235

C

C APIs 14
C++ 458, 466, 468
Calculate Permissions 394
calculator 101
483

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX484
cameras 358
CancelPrint 197
CanExecute 203
CanExecuteChanged 203
Canvas 67–76, 318

adding 69
converting Grid to 69

Cascading Style Sheets 10–11,
131

Center 199
CenterY 172
certificate 397, 400
Certificate Store 398
CertMgr 398
CheckBox 306
Children 66
CIA World Factbook 428
Clark, Jim 9
class events 156
class inheritance 47
classes 6
Click event 26, 113
ClickOnce 34, 55, 390–391, 400

deploying 401
publishing 400
when to use 402

Close 197
CLR. See Common Language

Runtime
COBOL.NET 439
CollectionListView 272
CollectionView 267
CollectionViewSource 266, 270
Color

System.Drawing 462
System.Windows.Media 462

ColorAnimation 166, 169
Column 100
ColumnDefinition 97
ColumnSpan 101
COM Components 466
command binding 195
Command pattern 194
command sources 195
command target 195
CommandBinding 202, 204, 206
CommandManager 208
Commands 154, 191

built-in 196–200
custom 201
disabling 207
enabling 207
handling 200

Common Language Runtime
14, 44, 46

Community Technology Pre-
view 60

Component Commands 196,
200

composing 30, 301
composition 148
Composition Engine 53
compostional inheritance 47
conditional templates 273
ConditionalGroupBox 300, 308
conformance 9
content 75, 444
ContentControl 441
ContentPresenter 138, 160, 280,

311
ContentPresenters 137, 444
ContentStringFormat 294
ContextMenu 197
control library 307
Control Templates 159
control templates 119, 136–140
Controller 284
Controls 55
ControlTemplate 307, 443
Convert 222, 259
ConvertBack 222, 259
Copy 197
CorelDRAW 8
CreateXpsDocumentWriter 414,

423
CSS. See Cascading Style Sheets
CTP 460
Currency format 256
Current 431
cursor 380
Cursors.Wait 435
Custom Control Library 306
custom controls 299–300, 306
custom validation 282
Cut 197

D

DAL. See Data Access Layer
Data Access Layer 236
data binding 56, 209
data converters 254
data templates 253
Data Transfer Object 235
DataContextChanged 249
DataContexts 230
DataSet 211
DataTable 211
DataTemplate 248
DataTemplateSelector 275, 277

DataTriggers 263
DataType 277
DateTime formatting 258
DateTimePicker 458
DateTimePickerFormat 460
DebuggerStepThrough 432
debugging

bindings 215
Decimal format 256
declarative programming 11,

16, 18, 31, 45, 427
DefaultStyleKey 309
DefaultStyleKey.OverrideMeta-

data 309
Delete 197
dependency properties 127
Dependency Property System

44, 46
DependencyObjects 211
DependencyProperty 129, 302–

303, 440
DependencyProperty.Register

441
DependencyProp-

erty.UnsetValue 296–297
DependencyPropertyChanged-

EventArgs 249, 304
deployment 55, 402
derivation tree 129
Design pane 24, 35
desktop publishing 407
Desktop Window Manager 54
Device Context 336
device context 6, 8
device independent pixels 13,

411, 418
DialogResult 410
Dialogs

Windows Forms 464
WPF 472

DICT 374
DICT protocol 380
Diffuse 356
DiffuseMaterial 356
DIPs. See device independent

pixels
Direct events 50
direct rendering 316, 332
Direct3D 13, 52, 353
Directional light 357
DirectX 7, 12, 54
Dispatcher 477
DispatcherObject 477
DispatcherOperation 479
DispatcherTimer 480
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 485
DispatchTimer 475
DLINQ 211, 250
Dock 85
DockPanel 48, 67, 83–86, 183
document browsing 374
document navigation applica-

tions 389
Document Outline 39, 148
document services 44, 56–58
DocumentPaginator 415, 418
DocumentReader 375
documents 406
Document-View 55
dot notation 72
DoubleAnimation 166, 437
DPI 12, 36
DrawEllipse 337
DrawGeometry 337
drawing 51, 315
DrawingBrush 347, 350
DrawingContext 336
DrawingGroup 347
DrawingImage 347
DrawingVisual 338, 347
DrawLine 337
DrawRectangle 336–337
DrawText 6, 337, 345
DrawVideo 337
drop-shadows 163
Duration 166, 437
DWM. See Desktop Window Man-

ager
dynamic resource 121, 125–131

E

ECMA 57
EditingCommands 196, 198
ElementHost 471
ElementName 220
Ellipse 138, 319
embossing 163
Emissive 356
EnableVisualStyles 461
EndPoint 161
ErrorTemplates 280
EventArgs 150
EventManager 156
events 49, 132, 147, 192
EventSetter 132
EventSetters

in derived styles 134
ExceptionValidationRule 278
Execute 194, 203
ExecutedRoutedEventArgs 201

Expander 189
Expander control 81
Expanders 433
Expression 58
Expression Blend 405
Expression Blend. See Microsoft

Expression Blend
Expression Design. See Microsoft

Expression Design
Expression Media. See Microsoft

Expression Media
Expression Web. See Microsoft

Expression Web

F

façade pattern 244
Fade effect 446
FallbackValue 297
fat applications 4
Favorites 198
Fill 130, 318
FillBehavior 446–447
FillRule 321
FilterEventArgs 270
filtering 270
Find 197
FindAncestor 220
FindResource 124, 270, 438
Firefox 17, 34, 404
FixedDocument 407, 415
FixedDocumentViewer 425
FixedPage 415
Fixed-point format 256
Flash 10, 15
Flex 403
FlowDocument 89–93, 430

Copying 411
FlowDocuments 407
FlowDocumentScrollViewer 417
FlowDocumentViewer 381
focus 151
FontFamily 182, 415
fonts 6, 463
FontSize 28
FontWeight 133, 135, 162
Foreground 162
FormattedText 345
Framework services 44
FrameworkContentElement 120
FrameworkElement 120, 300
FrameworkPropertyMeta 303
From 167
Full date and time format 258
full trust 395

G

Gang-of-Four 194
garbage collection 14
GDI+ 52
GDI. See Graphics Device Inter-

face
General format 256
Generic.xaml 310
Geometry 345, 355
GeometryDrawing 347–348
gestures 202
GetDefaultPrintQueue 414
GetPage 418
GetValue 128, 303
GetVisualChild 425
GladeXML 17
glass 32
glass buttons 158–165
GlyphRunDrawing 347
GNOME/Linux 17
GoF. See Gang-of-Four
GPU. See Graphics Processing

Unit
GradientStops 451
Grafile 346
graphic designer 158
Graphics Device Interface 6
Graphics object 8
Graphics Processing Unit 11
Great Browser War 9
green bits 42
Grid 26, 65, 67, 94, 159
grid layout 26
grids

nesting 184–190
GridSplitter 187
GroupBox 306

H

Handle method 465
Handled property 151, 201
handledEventsToo 155
Handles to Windows. See HWND
Hawaii 456
Header 82
HeaderedContentControl 309
Height 70, 99
Hello, World! 22
Help 200
Hexadecimal format 256
Hierarchical binding 285
HierarchicalDataTemplates 285
History 198
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX486
HitTest 343
HitTestResultBehavior 344
HoldEnd 446–447
Homestead theme 141
HorizontalAlignment 28, 79,

187
HorizontalScrollBarVisibility 81
HP 6
HTML 9
HWND 6, 462, 465
HwndHost 468
Hyperlink 301, 378
hyperlinks 374

I

ICommand 203
icons 180, 183
ICustomTypeDescriptor 219
IDocumentPaginatorSource

413
IE 7 392
IEC 260
IEnumerable 251
IIS 396
ImageDrawing 347
ImageSource 347
immediate mode drawing 19,

333
imperative programming 17–

18, 45
IMultiValueConverter 289

parameters 291
inductive UI 384, 389
Inductive user interfaces 374
InfoProvider 281
inheritance 47
InitializeComponent 27, 74, 382
Ink 12, 89
InkPanel 89
INotifyCollectionChanged 243,

326
INotifyPropertyChanged 219,

238
input 49
InputGestures 202
IntelliSense 31, 37, 159, 428, 459
interaction code 25
Intermediate Language 14
Internet Explorer 9, 183, 392,

404
Internet Zone 34
interoperability 457
InvalidateRequerySuggested

208

InvalidateVisual 335
Invoke 477
IsExpanded 189
IsMouseOver 163–164
IsPressed 139, 164
IsSharedSizeScope 108
IsSynchronizedWithCurrent-

Item 234
Italic 199
ItemsSource 286
ItemTemplate 218, 326
ItemTemplateSelector 276
ItemWidth 87
IValueConverter 222, 259

parameters 261
IWin32Window 465

J

Jargon File 387
JavaScript 10
Journal 383
JournalEntry 383
Justify 199

K

KeepAlive 383
Kernighan and Ritchie 23
KeyDown 151
KeyEventArgs 154
Keyframe animation 448
KeyGesture 202
KeyUp 151
Kibibytes 260

L

LastChildFill 83, 186
layout 26, 56, 65
layout panel

types 67
layouts

nesting 182–186
LayoutTransform 172
Left 70, 199
legacy 457
lights 357
Line 320
LinearGradientBrush 451
LineSegment 348
LinkLabel 300–301
LINQ 40, 250
LINQ to SQL 250

LINQ to XML 250
Linux 404
List 91
ListView 213
Loaded event 74
local 435
localization 107
Long date format 258
LookDirection 358
look-less controls 136
Luna theme 140, 143

M

Macintosh 404
Macintosh OS X 12
Main 181
Main() 30–31
managed code 13–14
Margin 80, 132
MarkupExtension 217, 257
MaskedTextBox 458
Master-Detail Binding 233
Material 364
MatrixTransform 173
MatrixTransform3D 365
MaxLength 132
Mebibytes 260
Media services 44, 51–54
MediaCommands 196, 200
menubars 184
menus 180, 183
merged dictionary 123
MergedDictionaries 123, 145
Message Map 193
message-map model 147
messages 7
Metallic theme 141
MFC 4, 6–7, 34, 147, 193, 458
Microsoft .NET 2.0 42
Microsoft .NET 3.0 42
Microsoft .NET 3.5 42
Microsoft DNA 5
Microsoft Expression Blend 15,

18, 59, 158, 455
Microsoft Expression Design

59
Microsoft Expression Family

59–60
Microsoft Expression Media 60
Microsoft Expression Web 60
Microsoft Money 180, 374
Microsoft Office System 58
Microsoft XPS Document Writer

422
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 487
Microsoft.Win32 422
MinHeight 189
MITRE 223
Model 284, 354–357
Model-View-Controller 254
Model-View-ViewModel 254,

283
Moonlight 43, 391, 404
Mosaic Communications Corpo-

ration 9
Mouse.OverrideCursor 380, 435
MouseAction 203
MouseEnter 166
MoveToDocumentEnd 198
MoveToDocumentStart 198
MoveUpLine 198
Mozilla 17
MSN Messenger 183
MultiBinding 289
MultiDataTrigger 266
MVC pattern 284
MVVM. See Model-View-View-

Model
MXML 17

N

Name 70
namespace 117, 435
NativeWindow 465
Navigate 382
Navigate To Event Handler 31
NavigateUri 232
navigating programmatically

381
navigation application 32–34,

373
NavigationCommands 196, 198
NavigationService 33, 381, 384
NavigationWindow 377
nested grids 184–190
.NET Framework 2.0 24
.NET Framework 3.0 24
.NET Framework 3.5 23
Netscape 9
New 197
New Event Handler 31
normalized spacing 28, 91
Normals 356
NotACommand 197
NTFS 11
Number format 256

O

object initializers 75
ObjectDataProvider 213
object-oriented programming

13
ObservableCollection 238, 243,

326
Office 2007 183
OneTime 211
OneWay 211
OneWayToSource 211
OnRender 335
OnReturn 386
OOP. See object-oriented pro-

gramming
Opacity 161, 437
opacity mask 172
OpacityMask 450
OPC 58
Open Graphics Library 12
Open Packaging 58
OpenGL. See Open Graphics

Library
OpenType 51
optional inheritance 47
Orientation 87
Orthographic camera 358
OS X 12
Outer glow 163
OverrideCursor 380

P

Padding 71, 76
Page 32, 375

caching 383
page functions 384

calling 386
PageContent 415
PagePadding 411
PageResolution 420
Pages 120
paginator 410
paired events 153
Panel 66
Paragraph 91
partial classes 18
Paste 197
Path 216, 321
Path control 39
PathFigure 321
PathGeometry 348
PathSegment 348
PDF 57, 406, 422

Pen 336
pens 6
Perspective camera 358
Photoshop 15, 86
Pixels 463
pixels 19
Point light 357
pointers 6
Polygon 319
Polyline 320
presentation logic 14
PresentationTraceSources

227
preserve 29
PreviewKeyDown 152
PreviewKeyUp 152
PreviousData 221
primitives 357
Print 197, 410
PrintDialog 409
Printing 406
printing 57

asynchronously 413
FixedDocuments 415
FlowDocuments 407
Visuals 421

PrintPreview 197
PrintQueue 409, 414, 416
PrintTicket 409, 420
PrintVisual 421
PriorityBinding 295
Process Monitor application

254
Properties 197

catching changes 442
Properties grid 38, 77, 460
Properties window 182
property expression 48
Property System 126, 303
PropertyChanged 231, 241
PushTransform 337

Q

Quartz 52
Quaternion rotation 367
QueueUserWorkItem 476
quirks mode 10

R

RadialGradientBrush 106, 160
ReachFramework 420
Rectangle 29, 318
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX488
red bits 42
reflections 169–173
RegisterClassHandler 156
Rehabilitation Act 50
RelativeSource 220, 311
Render 335, 419
rendering thread 474
RenderOpen 341
RenderTargetBitmap 338, 419
RenderTransform 174
Replace 197
RequestNavigate 232, 301–302
resolution 420
ResourceDictionary 121–122,

146
resources 119–131
Result 479
retained-mode drawing 20, 333
Return 387
ReturnEventArgs 386
RGB Colors 162
RIAs. See Rich Internet Applica-

tions
Ribbon control 180
rich applications 4
rich documents 407
Rich Internet Applications 4,

43, 403
RichTextBox 198
Right 70, 199
RotateTransform 173
RotateTransform3D 365
Routed events 148–154
RoutedCommand 195, 201, 203
RoutedEvent 155
RoutedEventArgs 75, 150
RoutedEventHandler 154
RoutedEvents 193
RoutedUICommand 203
routing strategy 149
Row 100
RowDefinition 99
RowSpan 101
Royale theme 144
RTF 422

S

Safari 34, 404
Save 197
SaveAs 197
ScaleTransform 173
ScaleTransform3D 365
ScaleX 172
ScaleY 172

schema 16
Scientific format 256
scrolling 80
ScrollViewer 81, 433
Search control 38
Section 508 50
security 14, 394–396
SelectAll 197
SelectedItem 230
selecting controls 184
selection controls 39
SelectRight 198
SelectTemplate 276
SelectUp 198
Self 221
session state 374
SetDock 85
SetLeft() 76
SetResourceReference 127
Setter 132, 162
SetValue 128, 303
SGML 9
Shapes 316
SharedSizeGroups 108
Short date format 258
Short time format 258
Shortcuts 202
Show 464
ShowDialog 464
ShutdownMode 30
Silverlight 34, 43, 390–391,

403
Silverlight 2 in Action 391,

404
SizeToContent 109
SkewTransform 173
smart applications 4
SolidColorBrush 105, 120
Solution Explorer 25
SortDescriptions 267
sorting 266
Source 211, 216
Source tab 26
Span 301
sparse property storage 48
sparse storage 128
Specular 356
Split modes 37
splitter 187
Spot light 357
StackPanel 67, 76–83, 189
StartPoint 161
Startup 431, 461
StartupEventArgs 31
StartupUri 30, 33, 181, 377

static resource 121
StaticResource 120, 437, 454
Status 479
StatusBar 186
statusbars 184
Stop 447
Storyboard 166, 438
Stretch 79, 171
StringFormat 255, 293

MultiBinding 293
Stroke 138, 319
StrokeDashArray 320
StrokeThickness 319
Style 439
styles 56, 119, 131–136

implicitly applying 135
SyncLINQ 252
System.Drawing.Color 462
System.Printing 408
System.Windows.Controls 66
System.Windows.Forms 66,

459
System.Windows.Interop 472
System.Windows.Media.Color

462
System.Windows.Threading

480
System.Windows.Xps.Packag-

ing 422
SystemColors 129
SystemMonitor 466

T

tablet PCs 12
TabPanel 89
Tag 115–116
Target 211
TargetType 131, 135
TCP 375, 379
template

binding 138
default 310

Template property 137
TemplateBinding 138, 311
TemplatedParent 221, 311
temporary key 398
TextBlock 27, 378
TextOut 6
themes 119, 140–146, 307
theming 461
Thickness 76, 411
Thread.Sleep 475
threading 474
ThreadPool 476
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 489
timers 480
To 167
ToggleButton 313
ToggleCenter 198
toolbars 180, 183–184
ToolbarTray 186
tools 18
ToolTip 281
TraceLevel 215
Transform3DGroup 365
TransformGroup 173
transforms 171, 173–174

3D 365
with Windows Forms 462

Transition effects 427
Transitional project 454
transitions

generic 439
simple 436

TranslateTransform 173
TranslateTransform3D 365
TriangleIndices 356
triggers 139–140
trusted authority 397
Trusted Root Certification

Authorities 398
TryFindResource 125
tunnel down 49, 148
Tunnel events 50
tunneling 49
tunneling events 151–154
TurboTax 374
TwoWay 211
Two-way notification 46
Typography 51

U

UI Spy 60
UIElements 321
UltraBold 134
Underline 199
UniformGrid 109
URI 383
Uri 304
usability 395
User controls 300
user interface services 44,

55–56
user interfaces, 3
UserPageRangeEnabled 413

V

validation 278
ValidationRules 282
Validators 278
Vector 358
vectors 19–20
VerticalAlignment 28, 79, 187
VerticalScrollBarVisibility 81
VGA 6
video 52
VideoDrawing 347
View 284
ViewBox 462
Viewport2DVisual3D 369
Viewport3D 353
Virtualizing 89
VirtualizingStackPanel 89
Visio 8
Vista 5, 11, 158, 163, 392
Vista Aero theme 142
Vista Theme 461
Visual 171
Visual Studio 18, 60
Visual Studio 2008 18, 22, 34–

40, 58, 158
visual tree 129
VisualBrush 171
VisualChildrenCount 425
VisualCollection 340
VisualHolder 424
Visuals 317, 338
VisualTreeHelper 343

W

WaitCallback 477
WCF. See Windows Communica-

tion Foundation
web 8
web browser 373
Web Sharing 397
whitespace 28
WIC. See WPF Imaging Compo-

nents
Width 70, 97
Wiki 180
Window 32
Window.Resources 120
WindowBrushKey 130
WindowInteropHelper 465, 472
Windows 120
Windows 3.0 5
Windows CardSpace 42
Windows Classic theme 144

Windows Communication Foun-
dation 5, 40, 42

Windows drawing 5
Windows Forms 4, 6–7, 18, 23,

34, 66, 147, 458
Windows Future Storage 11
Windows Imaging Component

52
Windows Presentation Founda-

tion. See WPF
Windows SDK 4, 16
Windows themes 461
Windows UI 7
Windows Vista 32, 119
Windows XP 5, 119
WindowsFormsIntegration 459,

470
WindowTitle 376
WinFS 11
WinMain() 30
Wipe effect 448
wizards 374
WMF 422
Workflow Foundation 42
World Wide Web 8
WPF 3, 22
WPF commands 195
WPF Engine 44
WPF form designer 18
WPF Framework 44
WPF Imaging Components 51
WrapPanel 67, 86–88
WriteAsync 413
WritingCompleted 413

X

x:Key 131
XAML 16–18, 44, 427
XAML Browser Application. See

XBAP
XAML designer 35
XAML pane 24, 36
XAMLPad 16, 60, 180
XamlReader 479
XamlWriter 478
XBAP 33, 55, 390

building 391
deploying 396
security 394
when to use 399

XLinq 211
XML 27
XML Paper Specification. See

XPS
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX490
xml:space 29
XmlDataProvider 211, 213, 227,

286
xmlns 16, 117
XP themes 461
XPath 211, 227, 229
XPS 57, 406, 422

XPS document viewer 423
XPS document writer 413
XpsDocument 422
XpsDocumentWriter 413, 416,

422
XUL 17

Z

ZAM3D 61, 355
Zoom control 36
Z-Order 240
ZOrder 447
Zune theme 142
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	preface
	acknowledgments
	about this book
	Roadmap
	Code
	Author Online
	About the authors
	About the title

	about the cover illustration
	Part 1 - Past, present, and future
	The road to Avalon (WPF)
	1.1 The past and the present
	1.1.1 Why Windows drawing is the way it is
	1.1.2 How we currently create Windows UIs
	1.1.3 Why the web is the way it is
	1.1.4 How UI is created on the web

	1.2 Why Avalon/WPF
	1.2.1 Taking advantage of modern hardware
	1.2.2 Using modern software design
	1.2.3 Separating presentation logic from presentation
	1.2.4 Making it simpler to code GUIs

	1.3 Creating UI using WPF
	1.3.1 Defining WPF UI with XAML
	1.3.2 Defining WPF UI through code
	1.3.3 Defining WPF UI with tools
	1.3.4 Who does the drawing
	1.3.5 Pixels versus vectors

	1.4 Summary

	Getting started with WPF and Visual Studio 2008
	2.1 Your grandpa’s Hello, World!
	2.1.1 Adding a button and button-handler to the window
	2.1.2 Running Hello, World!
	2.1.3 The TextBlock control

	2.2 The application definition
	2.2.1 Defining application startup in XAML
	2.2.2 Why define the application in XAML?

	2.3 A tour of WPF in Visual Studio 2008
	2.3.1 The XAML designer
	2.3.2 The Properties grid
	2.3.3 Selection controls in Visual Studio
	2.3.4 The Document Outline

	2.4 Summary

	WPF from 723 feet
	3.1 Where does WPF fit in Windows?
	3.1.1 Red bits and green bits
	3.1.2 Silverlight

	3.2 Framework services
	3.2.1 Base services
	3.2.2 Media services
	3.2.3 User interface services
	3.2.4 Document services

	3.3 Necessary and useful tools
	3.3.1 Microsoft Expression family
	3.3.2 Visual Studio
	3.3.3 Other tools

	3.4 Summary

	Part 2 - The basics
	Working with layouts
	4.1 The idea behind layout panels
	4.2 The Canvas layout
	4.2.1 Converting a Grid layout to a Canvas layout by modifying the XAML
	4.2.2 Adding a Canvas to an existing layout
	4.2.3 Using attached properties
	4.2.4 Setting up a Canvas programmatically

	4.3 The StackPanel layout
	4.3.1 Adding scrolling support
	4.3.2 The Expander control

	4.4 The DockPanel layout
	4.4.1 Defining a DockPanel in XAML
	4.4.2 Setting up a DockPanel programmatically

	4.5 The WrapPanel layout
	4.6 Other layout options
	4.6.1 Specialized layout panels
	4.6.2 The FlowDocument

	4.7 Summary

	The Grid panel
	5.1 Getting started with the Grid layout panel
	5.1.1 Modifying the Grid
	5.1.2 Grid specific properties

	5.2 Using the Grid layout to build a calculator UI
	5.2.1 Planning the calculator
	5.2.2 Laying out the calculator
	5.2.3 Tweaking appearance

	5.3 The Grid and localization
	5.4 UniformGrid
	5.5 Making the calculator work
	5.5.1 Handling operations
	5.5.2 Genericizing the handlers

	5.6 Summary

	Resources, styles, control templates, and themes
	6.1 Resources
	6.1.1 Using standalone resource dictionaries
	6.1.2 Using resources from code
	6.1.3 Dynamic resources

	6.2 Styles
	6.2.1 Styles based on other styles
	6.2.2 Implicitly applying styles

	6.3 Control templates
	6.3.1 Creating a control template
	6.3.2 ContentPresenters
	6.3.3 Template binding
	6.3.4 Triggers

	6.4 Themes
	6.4.1 Using a specific theme
	6.4.2 Changing themes from code

	6.5 Summary

	Events
	7.1 Routed events
	7.1.1 Bubbling events
	7.1.2 Tunneling events

	7.2 Events from code
	7.2.1 handledEventsToo
	7.2.2 Class events

	7.3 Summary

	Oooh, shiny!
	8.1 Glass buttons
	8.1.1 Styling the text
	8.1.2 Adding glow when over buttons
	8.1.3 Handling the button click

	8.2 Adding some simple animation
	8.2.1 Animating button glow
	8.2.2 Animating a color

	8.3 Reflections
	8.4 Transforms
	8.5 Summary

	Part 3 - Application development
	Laying out a more complex application
	9.1 Creating the Desktop Wiki Project
	9.2 Nesting layouts
	9.2.1 Preparing the layout for menus and toolbars
	9.2.2 Adding menubars, statusbars, and toolbars…

	9.3 Nested layouts
	9.3.1 Adding the first Grid
	9.3.2 Adding the second Grid
	9.3.3 Using a StackPanel and Expander as navigation aids

	9.4 Summary

	Commands
	10.1 A brief history of commands
	10.1.1 Windows Forms and simple event handlers
	10.1.2 Son of MFC

	10.2 The WPF approach
	10.2.1 The Command pattern
	10.2.2 WPF commands

	10.3 Using the built-in system commands
	10.3.1 ApplicationCommands
	10.3.2 NavigationCommands
	10.3.3 EditingCommands
	10.3.4 Component and media commands

	10.4 Handling commands
	10.4.1 Handling a built-in command
	10.4.2 Creating a custom command
	10.4.3 Shortcuts and gestures

	10.5 Command routing
	10.6 A cleaner custom command implementation
	10.6.1 Implementing a RoutedUICommand
	10.6.2 Adding a CommandBinding

	10.7 Summary

	Data binding with WPF
	11.1 WPF data binding
	11.2 ProcessMonitor: A simple binding example
	11.2.1 Binding Data with XAML
	11.2.2 Binding in code
	11.2.3 Binding notation and options

	11.3 Binding to XML
	11.3.1 Creating the CVE Viewer application
	11.3.2 Binding controls to XML
	11.3.3 XPath binding notation
	11.3.4 Path versus XPath
	11.3.5 Understanding and using DataContexts
	11.3.6 Master-Detail Binding

	11.4 Binding to ADO.NET database objects
	11.4.1 Creating a bookmark utility
	11.4.2 Creating the simple DAL
	11.4.3 Laying out the UI and creating data bindings

	11.5 Binding to business objects
	11.5.1 Creating a WikiPage business object
	11.5.2 ObservableCollection
	11.5.3 Create a model façade
	11.5.4 Wiring business objects to presentation objects

	11.6 Binding to LINQ data
	11.7 Summary

	Advanced data templates and binding
	12.1 Data converters
	12.1.1 Formatting bound data with StringFormat
	12.1.2 A number to formatted string data converter
	12.1.3 Converter parameters

	12.2 DataTriggers
	12.3 CollectionViewSource
	12.3.1 Sorting with CollectionViewSource
	12.3.2 Programatically sorting with CollectionViewSource
	12.3.3 Filtering with CollectionViewSource

	12.4 Conditional templates
	12.4.1 A more involved template
	12.4.2 Conditionally using a template
	12.4.3 Templates based on type

	12.5 Validators
	12.5.1 The ExceptionValidationRule
	12.5.2 Custom ErrorTemplates
	12.5.3 Custom validation rules

	12.6 Model-View-ViewModel
	12.7 Advanced binding capabilities
	12.7.1 Hierarchical binding
	12.7.2 MultiBinding
	12.7.3 PriorityBinding

	12.8 Summary

	Custom controls
	13.1 Composing new user controls
	13.1.1 Building a LinkLabel control
	13.1.2 Testing the LinkLabel UserControl

	13.2 Building custom controls
	13.2.1 Building a control library
	13.2.2 Create the new custom control
	13.2.3 Create the default template for the control
	13.2.4 Testing the control
	13.2.5 Customizing a custom control with a template

	13.3 Summary

	Drawing
	14.1 Drawing with Shapes
	14.1.1 Shapes in XAML
	14.1.2 Stupid shape tricks

	14.2 Creating the graphing control
	14.2.1 Building the GraphHolder control
	14.2.2 Graphing using shapes
	14.2.3 Catching clicks
	14.2.4 The downside of Shapes

	14.3 Drawing with direct rendering
	14.3.1 Recreating the graph control
	14.3.2 Pluses and minuses of direct rendering

	14.4 Drawing with Visuals
	14.4.1 Control for display Visuals
	14.4.2 Hit testing with Visuals
	14.4.3 Adding labels to our graph

	14.5 Drawings and Geometries
	14.5.1 GeometryDrawing
	14.5.2 Using Drawings

	14.6 Summary

	Drawing in 3D
	15.1 Lights, camera…
	15.1.1 Models
	15.1.2 Lights
	15.1.3 Cameras

	15.2 Graphing in 3D
	15.3 3D Transforms
	15.3.1 A 3D Transform in XAML
	15.3.2 A 3D Transform in code

	15.4 Summary

	Part 4 - The last mile
	Building a navigation application
	16.1 When and where to use navigation applications
	16.2 Creating a basic navigation application
	16.2.1 Adding some navigation
	16.2.2 Implementing dictionary lookup
	16.2.3 Navigating programmatically

	16.3 Page functions
	16.3.1 Creating a Page function
	16.3.2 Calling a page function

	16.4 Summary

	WPF and browsers: XBAP, ClickOnce, and Silverlight
	17.1 Building an XBAP
	17.1.1 XBAP security
	17.1.2 Deploying an XBAP
	17.1.3 When to use XBAP

	17.2 Using ClickOnce
	17.2.1 Deploying a WPF application via ClickOnce
	17.2.2 When to use ClickOnce

	17.3 Using Silverlight
	17.4 Summary

	Printing, documents, and XPS
	18.1 Printing flow documents
	18.1.1 Setting up to print
	18.1.2 Customizing the output
	18.1.3 Printing asynchronously

	18.2 Printing FixedDocuments
	18.2.1 Adding some FlowDocument content to our FixedDocument
	18.2.2 Matching resolution
	18.2.3 Printing Visuals

	18.3 XPS
	18.3.1 Saving an XPS document to a file
	18.3.2 The problem with images…

	18.4 Summary

	Transition effects
	19.1 Building the World Browser application
	19.1.1 The DictionaryLookup class
	19.1.2 Working with the Application object
	19.1.3 Our WorldListView user control
	19.1.4 Populating the country list

	19.2 Adding a simple transition
	19.3 Building a generic transition control
	19.3.1 Creating the transition control
	19.3.2 Using the transition control
	19.3.3 Defining a ControlTemplate for our control
	19.3.4 Using the ABSwitcher

	19.4 Adding some interesting transition effects
	19.4.1 The fade effect
	19.4.2 Wipe effect
	19.4.3 Adding a selector for effects

	19.5 Summary

	Interoperability
	20.1 Using Windows Forms controls in WPF
	20.1.1 Using the Windows Forms DateTimePicker in WPF
	20.1.2 Enabling Windows themes for Windows Forms control
	20.1.3 What you can’t do with embedded Windows Forms controls
	20.1.4 Using your own Windows Forms controls
	20.1.5 Popping up Windows Forms dialogs

	20.2 Embedding ActiveX and C++ in WPF
	20.2.1 Embedding ActiveX controls in WPF
	20.2.2 Embedding C++ controls in WPF

	20.3 Using WPF in Windows Forms
	20.3.1 Using a WPF control inside of Windows Forms
	20.3.2 Popping up WPF dialogs

	20.4 Summary

	Threading
	21.1 Moving slow work into a background thread
	21.2 Asynchronous calls
	21.3 Timers
	21.4 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

