
CPS 720 Artificial Intelligence Topics
with Agents
Fall 2001

Original notes by D. Grimshaw

This course focuses on software agents, particularly mobile agents. The programming language used is
Java. Several agent API's are discussed. These include Aglets, originally from IBM, now Open Source,
the Java Agent Development Environment (JADE) from the University of Parma, and Ascape, from the
Brookings Institute in Washington DC. Communication languages such as the Semantic Language (SL)
and XML will also be discussed.

Disclaimer

General Course Information
For last year's course (Fall 2000)●

Course Management Form (Fall 2001)●

Course Resources and References●

Assignments●

Exam ReadMe●

Course Topics
Introduction: what is an agent?

Agents: Natural and Artificial❍

Ferber's Discussion❍

Lange and Oshima❍

Nikolic❍

●

Situated Agents

Agent rationality❍

Agent autonomy❍

An Agent Classification Scheme❍

A Basic Reactive Agent Example❍

A Reactive Agent with state❍

Agent environments❍

●

CPS 720 Artificial Intelligence Programming

http://www.ryerson.ca/~dgrimsha/courses/cps720/index.html (1 of 3) [7/24/2002 9:54:41 PM]

Mobile Communicative Agents

The CERN CSC99 Agent Course

Lecture 1

Notes on Lecture 1■

■

Lecture 2

Notes on Lecture 2■

■

Lecture 3■

❍

The Agent and its environment❍

Seven Advantages of mobility❍

Mobile agents vs mobile objects❍

Agents and network computing paradigms❍

The question of location transparency in distributed systems❍

●

Aglets

What are Aglets?❍

Getting started with Aglets❍

The Aglet Model❍

The Aglet Package

Aglet Mobility■

Inter-Aglet Communication■

Cloning■

Aglet Design Patterns

Survey of Patterns■

The Master-Slave Pattern■

The Sequential Itinerary Pattern■

Combining the Master-Slave and Itinerary Patterns■

The SeqItinerary and SlaveItinerary patterns of the Aglets API■

■

❍

Aglets as Agents❍

●

Agent Communication

Multi-Agent Systems: example❍

The Semantic Web❍

Communicative Acts❍

Agent Communication Languages❍

ContentLanguages❍

Ontology❍

●

CPS 720 Artificial Intelligence Programming

http://www.ryerson.ca/~dgrimsha/courses/cps720/index.html (2 of 3) [7/24/2002 9:54:41 PM]

http://webcast.cern.ch/Projects/CSC99/lectures/1-agentintro/
http://webcast.cern.ch/Projects/CSC99/lectures/2-agentsystems/
http://webcast.cern.ch/Projects/CSC99/lectures/3-agentexamples/

JADE

Getting started with JADE❍

The FIPA Agent Model and JADE❍

The JADE 2.4 API and other docs (local)❍

Ontologies and JADE❍

Programming with JADE❍

●

XML

Survey

Introduction■

Using XML■

Document Type Definitions■

XML and Inter-Agent Communication■

❍

XML Interpretation using the DOM❍

Using the SAX API❍

XSL and XSLT❍

●

Agent Negotiations

Introduction❍

The Problem of Deception❍

Zero Sum Games❍

Cooperative Games❍

●

 Agents and Simulation

Ascape

Ascape Notes and Tutorials■

❍

●

CPS 720 Artificial Intelligence Programming

http://www.ryerson.ca/~dgrimsha/courses/cps720/index.html (3 of 3) [7/24/2002 9:54:41 PM]

http://www.scs.ryerson.ca/~dgrimsha/jade/doc/index.html

Disclaimer
The CPS720 notes are lecture notes. They have not been peer reviewed or published in book form. They
are meant to be helpful but are not necessarily complete or completely accurate. When in doubt, consult
the relevant textbooks or references.

The author is not responsible for any damages, direct or indirect, caused by the use of these notes.

disclaomer

http://www.ryerson.ca/~dgrimsha/courses/cps720/disclaimer.html [7/24/2002 9:54:42 PM]

Course Information from Fall 2000
Course Management Form●

Assignments●

Exam Readme, Fall 2000●

cps720 Info from Last Year (Fall 2000)

http://www.ryerson.ca/~dgrimsha/courses/cps720/InforF2000.html [7/24/2002 9:54:42 PM]

CPS 720 Course Management Form
Fall 2001

 Instructor: David
Grimshaw

 Office:
 Kerr Hall, QE 327A

 Phone: (416) 979-5000 #6973
 e-mail: dgrimsha@scs.ryerson.ca
 WWW: http://www.ryerson.ca/~dgrimsha
 Office Hours: See Teaching Timetable

 Textbook: Danny Lange & Mitsuru Oshima, Programming and Deploying

Java Mobile Agents with Aglets, Addison-Wesley, 1998, ISBN
0-201-32582-9 (Not compulsory)

 Evaluations:

 Type Weight
(%)

Due
Dates

Assignment 1 10 Fri. Sept. 28

Assignment 2 20 Fri. Oct. 19

Assignment 3 20 Fri. Nov. 30

Exam 50 Thu. Dec. 13, 9-11

 Notes: Students obtaining less than 40% of the total marks available from the

exam will automatically fail, regardless of their marks on the
assignments.

1.

Students obtaining tan exam mark between 40% and 50% will have
their final mark adjusted at the discretion of the instructor. This
adjustment will probably result in a lowering of the student's nominal
mark, but will unlikely result in a failing grade.

2.

The exam will be either all multiple choice, or multiple choice with a
few short answer or fill in the blank questions. A programming
question is possible.

3.

Dave Grimshaw's CPS 720 Course Management Form

http://www.ryerson.ca/~dgrimsha/courses/cps720/c720cmf99.html [7/24/2002 9:54:43 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/dgrimsha@scs.ryerson.ca
http://www.scs.ryerson.ca/~dgrimsha
http://www.ryerson.ca/~dgrimsha/timetableDavef00.html

CPS 720 Assignments, Fall 2001
Java Code Conventions

Assignment 1

Assignment 2

Assignment 3

Student Port Assignments

Marks

As of Dec. 11, 2001

.

http://www.ryerson.ca/~dgrimsha/courses/cps720/assignments.html [7/24/2002 9:54:44 PM]

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/CPS720PortsF01.txt
http://www.ryerson.ca/~dgrimsha/courses/cps720/c720currentMarks.csv

CPS 720 Assignment 1 A Simple Aglet
Due Friday, September 28, 2001, Midnight. 10 Marks

Please do this assignment individually.

In this assignment you develop an Aglet which carries some text to a remote host and writes it into a file
there. Of course the Aglet must have writer permission on the remote host.

The text should be your Aglet's own Java source code. On creation, your aglet should read its source
code into an aglet member (as a String or a Vector of Strings, perhaps). The data structure must be
serializable. On arrival, the aglet writes the text to a file in the directory
I:\coursesf01\cps720\assignment1 at atp://proton.scs.ryerson.ca:4434.

Note Sept. 12: Use 141.117.14.123. proton.scs.ryerson.ca is not working at present.)

Note Sept 19: Proton now seems to be ok. The address proton.scs.ryerson.ca is now valid.

The filename must be unique, so use the logon name, e.g., dgrimsha.java.

SCS contain both UNIX and Windows machines. This causes a potential portability problem. In UNIX
the file separator is '/' whereas for MS Windows it is '\'. (At the moment, proton is a Windows NT
machine.) Since your Aglet may not know in advance what kind of machine it lands on, you need to
build in flexibility. Fortunately, Java provides the System.getproperty() method which you can use to get
the value of the file.separator property for an OS. Also don't forget that '\' is an escape character in Java,
as in C.

When creae your Aglet in your "Tahiti" Aglet server using the Create button, your Aglet should be
created, and then automatically dispatched to proton. Then You can get your Aglet back too. (Retract
button) In fact you need to retract your Aglet in order to see if it successfully wrote the file. You will
need some extra coding on your Aglet to do this.

If the Aglet fails in its write operation on the remote host (proton) it is usually because of a security
exception (not an IOException as you might expect). You can set up a String field in the Aglet and have
it contain a failure or a success message depending on whether this exception is thrown or not.

The Tahiti server has a Dialog button which you can use to send the message string "dialog" to resident
Aglets. Use this feature with the handleMessage() method to have the retracted Aglet display the
success/failure message on stdout (or on the Tahiti window).

You should develop this assignment either on jupiter at school, or on your own PC at home. From home
the Aglet should dispatch itself through your ISP without problems. The retract button should also work.
(Trying to automatically have your aglet return to you, boomerang fashion) probably will not work with
a home connection although it would if you stay within the SCS domain. Unless you have your own fully
qualified domain name.)

CPS720 Assignment 1 Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a1_2001.html (1 of 2) [7/24/2002 9:54:44 PM]

CPS720 Assignment 1 Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a1_2001.html (2 of 2) [7/24/2002 9:54:44 PM]

CPS 720 Assignment 2 Moible Agent
Survey
Due Friday, Oct. 19, 2001. 15 marks.

This is a group assignment. Groups of up to 4 are allowed. Working alone is not recommended.

Overview
This assignment has some similarity with the lab done at the CERN CSC99 course. It simulates a survey.
The survey consists of a simgle statement to which respondants answer on a scale of 1 to 10. 10 means
completely agree; 1 means completely disagree; 5 or 6 means neutral, or no strong opinion.

For example, how would your rate the statement "Celine Dion is the best female vocalist today".

You can imagine each Aglet server (tahiti) represents a diffrent region or country where the survey takes
place. The idea is to have a mobile agent visit each of these servers in turn, combine the results, and
return to its origin. The total result is to be displayed as a histogram.

Specifics.

Packages

This assignment involves quite a few files so packaging is needed. You should have two packages,
cps720.assignment2m and cps720.assignment2.util.

All your code except two utilites should go in cps720.assignment2. A utility class needed to convert back
and forth between "csv String" histogram representaion, and array representation of histograms should be
put in cps720.assignment2.util. (See below for more on these representations.)

You will also be using a graphics package to draw the histogram. This package is called PtPlot and
comes from the Ptolemy project at the University of California, Berkeley. This system is in jar file called
plot.jar. If you want to copy it to your system, make sure you put it in the aglets/lib directory (where the
aglets jar file is) otherwise the tahiti server cannot find it.

To compile with PtPlot, you must import ptolemy.plot.*; into your code.

The data

Of course, we cannot conduct real surveys, so we have to fake it. You are supplied with a simple Java
program, cps720.assignment2.CreateSurvey. This allows you to "guide" the results. You answer the
question yourself and then the program uses a Gaussian distribution random number generator to
generate 'responses" with your answer as mean. You can adjust various parameters.

cps720 Assignment 2 Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a2_2001.html (1 of 3) [7/24/2002 9:54:45 PM]

http://ptolemy.eecs.berkeley.edu/java/ptplot5.1p1/ptolemy/plot/doc/index.htm
http://ptolemy.eecs.berkeley.edu/

The program generates a binary file containint ints. You need to look at the source code to see how to
write your own conde to read the data back in.

Architecture
You need to write 3 agents, two stationary and one mobile.

The service agent

At each server there is a stationary agent which can read the survey data and pass it in appropriate format
as a message in response to a message sent to it by a visiting mobile agent. (The mobile agent is not to
have direct access to the data file.)

This stationary service agent responds to the messsage, "histogram". Every system MUST use this
string since you want your service agent to respond to the visiting agents written by others.

When the service agent is created, it should read in the survey data file and create a histogram
representation. This datastructure is just a string containing comma separated values (csv). For example
you might wind up with "21,34,56,122,132,136,119,49,28,17". The numbers here represnt survey counts.
So, in the example, 21 people strongy disagreed with the statement (rating = 1), and 17 people strongly
agreed with the statement (rating =10).

This representation is used in the Aglet Message method sendReply(). You might find it more natural to
store the histogram results in an array of ints, due to a bug (?) in the Aglet API sendReply(Object o) does
not seem to work for user defined objects. The String type is safe, however. The use of this csv String
representation is compulsory for any histogram representations to be used in messages.

Converting from array to csv representation

The csv String representation is needed for Aglet messages, but of course it is not much use for
manipulation integers. To update the histogram data you need to add ints. So you also need to keep an
array of 10 int elements.

You should write a class with two static methods with signatures such as,

public static String arrayToCsv(int [] array)●

public static int [] csvToArray(String csv)●

To write thse you will find the classes String, String Buffer (with method append), and StringTokenizer
(in package java.util) useful.

Note that the class SurveyHistogram used to display the final result expects these conversion methods to
have exactly the signatures shown above. Also these methods must be in a class called Convert in a
package cps720.assignment2.util.

cps720 Assignment 2 Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a2_2001.html (2 of 3) [7/24/2002 9:54:45 PM]

The mobile agent

The mobile collector agent also must use the csv String representation. It starts with "0,0,0,0,0,0,0,0,0,0"
and updates the values at each stop on its jouney. It will make good use of your converter class!

You can write the code to control the mobile agent's itinerary from scratch, or you can use the
SlaveItinerary and Task classes form the package com.ibm.agletx.util (note the 'x').

This agent understands one message, "getHistogram". (You could use another string here. This message
is only used to communicate between your mobile agent, and your master agent.)

The Master Agent

This agent is a static agent. It is responsible for creating the mobile agent (which starts itself on its
itinerary).

The master agent responds to the Aglet "dialog" message sent by the Tahiti sever when the Dialog button
is clicked. In response to this message, the master agent sends the "getHistogram" to the mobile agent.
(Of course you don't send the "dialog" message until the travelling aglet returns, or is retracted.)

In response to the "getHistogram" message the returned mobile agent sends the csv String representaion
back to the Master agent. In response, the master agent displays the final histogram using PtPlot.

To avoid having to learn too much about the PtPlot API you can use SurveyHistogram.java.

How to submit this assignment
All your class and java files should be packaged in one Java jar file. Include also a readme file with
group names and brief descriptions of what your files do. Be sure to follow the package structure
described above.

Send your jar file as an attachment to david.grimshaw@sympatico.ca, NOT a Ryerson addresss. Include
group names in the main message text.

cps720 Assignment 2 Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a2_2001.html (3 of 3) [7/24/2002 9:54:45 PM]

http://ptolemy.eecs.berkeley.edu/java/ptplot5.1p1/doc/codeDoc/index.html

CPS 720 Assignment 3 A Supply and
Demand Simulation using JADE
Due: Friday, November 30, 2001, 20 Marks

This is a group assignment. Maximum group size is 4.

Introduction
In this assignment you are to create a simulation of supply and demand from basic economics. The
system consists of one producer of some product, and n consumers of the product. The producer can set a
price for its product and tell all the consumers the price. Consumers each have their own demand
schedule which determines how much of the product they will buy at the given price.

The consumers tell the producer how much of the product they want. The producer then calculates its
profit based on the total quantity sold, the unit price and the unit cost of production. Constant returns to
scale are assumed. That is, the producer can produce any amount of its product at the same unit cost.

If the producer does not like the profit at one price, it can try again with a different price. Of course a loss
might also be possible.

Economics
Profit is just the difference between revenue and costs. So, if the unit price of the product is p, and the
unit cost is c, and the amount sold is q, then

profit = (p - c) * q

A demand schedule is a plot of quantity demanded, q, vs. price, p. This curve has a negative slope. (Since
it is unlikely that a rational person would by more of a product the higher its price.) For the purposes of
this assignment you can assume a linear demand schedule.

q = m * p + b, where m is the (negative) slope and b is the intercept on the q axis. The slope m = -qmax /
pmax where pmax is the maximum price the consumer is willing to pay, and qmax is the gluttony value, the
amount the consumer can consume even if the product is mana from heaven (i.e., free).

The Simulation
The simulation is to run on the JADE platform. You only need one JADE container.

cps720 Assignment 3, Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a3_2001.html (1 of 2) [7/24/2002 9:54:45 PM]

The Producer Agent

You need two Java classes (at least). One is the producer agent proper, the other is a GUI for the
producer. (Call these Producer.java and ProducerGUI.java).

The GUI allows the user to set the name (just for decoration), unit price, and unit cost. The GUI should
also allow the user to input the number of consumer agents that will be created. It also allows the user to
see the total quantity sold and the amount of profit.

There are also two buttons. The first, when clicked, tells the Producer Agent to create the number of
Consumer Agents chose by the user. This button should be disabled after one click. The second button
should tell the Producer Agent to advertise the unit price and name of the product to the Consumer
Agents. It should become enabled only after the first button is clicked.

The Producer Agent itself is responsible for creating the Consumer Agents, sending them INFORM
messages containing price and name of product, and receiving a REQUEST message from each
consumer requesting to purchase so much of the product.

The Producer Agent also sums these quantities purchased and uses the result to calculate the profit.

The Consumer Agents

The Consumer Agents are created by the Producer Agent. These agents do not have a GUI. The respond
to an INFORM message containing price information form the producer. In response, the calculate a
purchase quantity using their demand schedule functions, and send this information to the Producer
Agent as a REQUEST message.

Ontology
The Producer and Consumer agents communicate using a special ontology as defined in
EconOntology.java and associated files. These are packaged in c720a3Ontology.jar.

What to submit
Your files should be packaged in a jar file with the package structure cps720.assignment3 and
cps720.assignment3.ontology, the latter containing the supplied ontology. Also include a readme.txt file
describing your Java files. Make sure all group names are on all source files. Call the jar file
cps720a3.jar.

Email the jar file as an attachment to david.grimshaw@sympatico.ca. Make sure all the group names are
listed in the body of the email.

cps720 Assignment 3, Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/cps720a3_2001.html (2 of 2) [7/24/2002 9:54:45 PM]

Exam Readme Fall 2000

Last Year's Exam
Fall 1999 Exam (Word 97 Format)

Fall 1999 Exam (HTML format)

Fall 2000 Exam
The exam is divided into three parts.

Part 1 consistes of 12 multiple choice questions worth 2 marks each.

Part 2 contains 5 "short answer" questions of which you are to answer two, worth 6 marks each. Some of
these questions involve short essays, some calculations and some programming.

Part 3 contains one question, an Aglet program. This program is not unlike those in assignments 1 and 2.

What to study
The exam is based on the notes and the assignments. Links to other sites are intended as supplementary
background material.

If you look at the index page for cps720 you see there are several subsections. Here are some highlights.

Ferber, Lange and Oshima on Agents. Characteristics of "agenthood".1.

Situated agents (really robotics) This is AI. The 4 levels of agent2.

The Aglet API. Aglets are communicative agents. Know the basics, Aglet,. AgleProxy,
AgletContext, Message.

3.

Agent communication. Basic facts about speech acts. Multi-agent architectures (e.g.
InfoSleuth). You will not be asked about KQML.

4.

XML. Relation with DTD. Read simple DTD, read/write XML. The two kinds of parser, DOM,
SAX. (You will not be asked to use theSAX or DOM API's nor about XSL.)

5.

Agent negotiation. Zero Sum games, prisoner's dilemma, problem of dishonesty and defection.6.

Remember, highlights are just that. You are responsible for the whole course!

cps720 Exam Readme Fall 2000

http://www.ryerson.ca/~dgrimsha/courses/cps720/examreadme2000.html (1 of 2) [7/24/2002 9:54:47 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/c720ex99.doc

Test Response Sheets
You will be given your test response sheet in class, or you can pick them up from Camille in V331. Take
good care of it and bring it to the exam together with an HB pencil.

[top] [previous] [next] Questions?

cps720 Exam Readme Fall 2000

http://www.ryerson.ca/~dgrimsha/courses/cps720/examreadme2000.html (2 of 2) [7/24/2002 9:54:47 PM]

mailto:dgrimsha@scs.ryerson.ca

Ryerson Polytechnic University

School of Computer Science
Final Examinations, Fall 1999

CPS 720 Artificial Intelligence Topics
Examiner: D. Grimshaw Time: 2 hours Closed Book

Part 1. Answer any four (4) questions (9 marks each).
What is an agent? Discuss from different perspectives.1.
What is an ontology? Define and discuss in relation to inter-agent communication.2.
Classify agents into 4 categories and discuss the Wall Following Agent in terms of one of
these categories.

3.

Describe the Aglet Mobile Agent Model. Discuss the principal components and
mechanisms of Aglets.

4.

Describe the InfoSleuth agent architecture.5.
Briefly describe the basic components of XML. Include a discussion of the DTD and DOM
in your answer. To illustrate your answer, create a short XML file including its DTD.

6.

Autonomous Internet agents will no doubt have to negotiate deals among themselves. In
this case, the problem of deception arises. Discuss this problem in the context of Game
Theory.

7.

Part 2. Aglet Program (14 marks)
Write an Aglet program which has two Aglets, a master and a slave. The master creates
the slave and dispatches it to a remote server. Upon arrival, the slave writes a message
to the console of the remote machine saying "Greetings from <your name>". The slave
then sends a message back to its master, saying "Your wish has been performed, O
Glorious Master!", and then disposes of itself.

1.

Ryerson Polytechnic University

http://www.ryerson.ca/~dgrimsha/courses/cps720/c720ex99.html [7/24/2002 9:54:48 PM]

CPS 720 Resources and References
Agents in general

The UMBC AgentWeb

A central reference point for everything about agents.

Internet Resources

CERN School of Computing Aglets Course 1999

This is a webcast of parts of the 2 week summer course sponsored by CERN in held in Poland, starting
Sept. 13 1999. The webcasts include video, sound and slides. A number of the lectures involve Java
Mobile Agents using IBM's Aglets API. Given the time zones, try afternoon or evening. You will
probably need rogers@home or Sympatico High Speed Edition to view them properly.

CERN Agent Course

Aglet Resources

The Aglets Home Page (IBM Japan) The original Aglets page

The Aglets Portal (UK)

Open Source Aglets

(Source Forge) - beware, you could get hooked on this :)

The Aglet API Documentation (local)

JADE

JADE Home Page

JADE Documentation (on SCS server)

The Foundation for Intelligent Physical Agents (FIPA) Home Page

Agent Cities

cps720 resources and refrences

http://www.ryerson.ca/~dgrimsha/courses/cps720/courseRefs.html (1 of 3) [7/24/2002 9:54:49 PM]

http://www.csee.umbc.edu/agents/
http://webcast.cern.ch/Projects/CSC99/
http://www.trl.ibm.co.jp/aglets/index.html
http://www.aglets.org/
http://sourceforge.net/projects/aglets
http://sourceforge.net/
http://www.ryerson.ca/~dgrimsha/courses/cps720/api/index.html
http://sharon.cselt.it/projects/jade/
http://www.scs.ryerson.ca/~dgrimsha/jade/doc/index.html
http://www.fipa.org/index.html
http://www.agentcities.net/top.jsp

Ascape
Ascape Home Page

Some other agent systems

FIPA-OS

Zeurs

D'Agents

Agents in Distributed Systems

On the Structure of Distributed Systems, The Argument for Mobility

Todd Papaioannou's PHD Thesis. (PDF format - use Adobe Acrobat)

XML

Apache XML Project

Xerces API Docs●

The XML Portal

IBM's XML

Sun's XML

Robert Cover's XML and SGML Page - with introductions and FAQs

The Java /XML Tutorial from Sun

IBM XML Parser for Java

Microsoft XML

Books

AI Books

Nils Nilsson, Artificial Intelligence, A New synthesis, Morgan Kaufmann, 1998

Stuart Russell & Peter Norvig, Artificial Intelligence, A Modern Approach, Prentice-Hall, 1995

Jacques Ferber, Multi-Agent Systems, Addison-Wesley, 2000

cps720 resources and refrences

http://www.ryerson.ca/~dgrimsha/courses/cps720/courseRefs.html (2 of 3) [7/24/2002 9:54:49 PM]

http://www.brook.edu/es/dynamics/models/ascape/
http://fipa-os.sourceforge.net/
http://www.labs.bt.com/projects/agents/zeus/
http://agent.cs.dartmouth.edu/
http://xml.apache.org/
http://xml.apache.org/apiDocs/index.html
http://www.xml.org/
http://www.ibm.com/developer/xml/
http://java.sun.com/xml/
http://www.oasis-open.org/cover/
http://www.ryerson.ca/~dgrimsha/courses/cps720/Robert%20Cover%27s%20XML%20and%20SGML%20Page
http://www.oasis-open.org/cover/xml.html#faq
http://java.sun.com/xml/
http://www.alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain/F62DB5F8684DCF6A8825671B00682F34
http://msdn.microsoft.com/xml/default.asp

The Aglet Book

Danny Lange & Mitsuro Oshima, Programming and Deploying Java Mobile Agents with Aglets (course
text).

The code from Lange and Oshima's book.

XML Books

Brett McLaughlin, Java and XML, O'Reilly, 2000

Rich Eckstein, XML Pocket Reference, O'Relly, 1999

Hiroshi Maruhama, Kent Tamura, Naohiko Uramoto, XML and Java, Addison-Wesley, 1999

Games Theory Books

J. D. Williams, The Complete Strategyst, Dover, 1986

Steven Brams, Negotiation Games, Routledge, 1990

Robert Axelrod, The Complexity of Cooperation, Princeton University Press, 1997

William Poundstone, Prisoner's Dilemma, Doubleday, 1992

Jeffrey Rosenschein & Gilad Zlotkin, Rules of Encounter, MIT Press, 1994

Other Background Readings

[top] [previous] [next] Questions?

cps720 resources and refrences

http://www.ryerson.ca/~dgrimsha/courses/cps720/courseRefs.html (3 of 3) [7/24/2002 9:54:49 PM]

http://cseng.awl.com/bookdetail.qry?ISBN=0-201-32582-9&ptype=0
http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/agletbook-samples.jar
http://mitpress.mit.edu/book-home.tcl?isbn=0262181592
mailto:dgrimsha@scs.ryerson.ca

On the Structuring of

Distributed Systems:

The Argument for Mobility

By

Todd Papaioannou

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy

of Loughborough University
February 2000

Copyright © 2000, Todd Papaioannou. All Rights Reserved

For Jo

On the Structuring of Distributed Systems Acknowledgements

 iii

Acknowledgements
Undertaking a course of study that leads to the award of PhD is much like a journey of

exploration and discovery. Although you may have some idea of where it is you wish

to end up, the many rich experiences and pitfalls along the way are largely

unforeseen. It is certainly an experience that I would recommend to anyone who

believes they are capable. That is not to say, however, that it is a course suitable for

everyone. The road to travel is long and tough, and many fall by the wayside.

My own journey has been one of academic learning and self-discovery. During my

course of study, I have enjoyed incredibly the process of scaling new heights of

knowledge, of cutting a trail where others may have never been, of using and pushing

my mind to attack and answer the big questions. During this journey my mind has

been refined to a sharpness and focus hitherto unforeseen to me, and I feel I am now

able to wield my mind as a tool, in all situations. This has allowed me to look within,

and understand exactly whom I am. In addition, my character has grown and

expanded with a wealth of new experiences that have served to polish it.

I feel lucky to have undertaken my research in a relatively new field, where the

boundaries and rules have not been defined yet. This has afforded me an academic

freedom that many students do not enjoy, and allowed me to follow an academic path

out of the reach of many. This type of work cannot be done alone in isolation though,

and I would like to take this opportunity to thank those who have made it possible for

me to get this far.

Firstly I would like to thank all my family, especially Jill, Les and Yannis, for their

continued support throughout my many years of study. Without their help, I would

have been unable to complete my work. I hope my completion goes some way to

repaying their trust and support.

To study for a PhD requires a suitable environment and support in which to do so.

Most important in providing this has been my supervisor Dr. John Edwards. John

deserves special credit for having the patience to guide a determined and

unconventional student, even when many of the proposed ideas were contrary to his

own philosophies. I am sure the experience must have been challenging, but I believe

On the Structuring of Distributed Systems Acknowledgements

 iv

that we have both learnt greatly from it. I would also like to thank the other members

of the MSI Research Institute for providing a stimulating social environment, and in

particular Ian Coutts and Paul Clements for their support in hearing and critiquing my

research philosophies as they developed.

In addition, I would like to offer my thanks to many people around the world who

have had some input or influence over the course of my study. In particular, my friend

and colleague Nelson Minar, who has been a trusted source of advice throughout the

journey, and Dr. Danny Lange who has been an excellent mentor and font of wisdom.

Also, the members of the agents, mobility and dist-obj mailing lists have provided an

invaluable service as a community of peers amongst which to discuss my research.

Many of the ideas expressed in this thesis have been shaped and refined in those

forums.

One cannot work on anything exclusively for so long and so hard, without the need

for respite. I have many friends to who I owe thanks, who have allowed me to relax,

rage, or lose myself, away from grindstone. Some deserve special mention. Firstly,

my best friend Darren May, who has been there from the early years and will be there

at the end. Also, my friends Derek Woods and Andy Grant who have been my

partners in many misdemeanours at Loughborough through the years.

Lastly, but most importantly I would like to thank my partner, Joanna Henderson,

whose unswerving love, support and companionship have allowed me to concentrate

my efforts on achieving my goals. She truly is a wonderful person and I count myself

extremely lucky to be with her.

On the Structuring of Distributed Systems Abstract

 i

Abstract
The last decade has seen an explosion in the growth and use of the Internet. Rapidly

evolving network and computer technology, coupled with the exponential growth of

services and information available on the Internet, is heralding in a new era of

ubiquitous computing. Hundreds of millions of people will soon have pervasive

access to a huge amount of information, which they will be able to access through a

plethora of diverse computational devices. These devices are no longer isolated

number crunching machines; rather they are on our desks, on our wrists, in our

clothes, embedded in our cars, phones and even washing machines. These computers

are constantly communicating with each other via LANs, Intranets, the Internet, and

through wireless networks, in which the size and topology of the network is

constantly changing. Over this hardware substrate we are attempting to architect new

types of distributed system, ones that are able to adapt to changing qualities and

location of service. Traditional theories and techniques for building distributed

systems are being challenged. In this new era of massively distributed computing we

require new paradigms for building distributed systems.

This thesis is concerned with how we structure distributed systems. In Part I, we trace

the emergence and evolution of computing abstractions and build a philosophical

argument supporting mobile code, contrasting it with traditional distribution

abstractions. Further, we assert the belief that the abstractions used in traditional

distributed systems are flawed, and are not suited to the underlying hardware substrate

on which contemporary global networks are built. In Part II, we describe the

experimental work and subsequent evaluation that constitutes the first steps taken to

validate the arguments of Part I.

The experimental work described in this thesis has been published in [Clements97]

[Papaioannou98] [Papaioannou99] [Papaioannou99b] [Papaioannou2000]

[Papaioannou2000b]. In addition, the research undertaken in the course of this PhD

has resulted in the publication of [Papaioannou99c] and [Papaioannou/Minar99].

On the Structuring of Distributed Systems Contents

 ii

Contents

Acknowledgements... iii

List Of Tables ...vii

List of Figures... viii

Preface ..1

1 Abstraction..5

1.1 Introduction...5

1.2 A Brief History of Computing Time ..5

1.3 Procedural Abstractions...7

1.3.1 Commentary..11

1.4 Programming Abstractions ..12

1.4.1 Commentary..14

1.5 The Far Side..14

1.5.1 Commentary..16

1.6 Conceptual Abstractions..17

1.6.1 Commentary..19

1.7 Concluding Remarks ...19

2 Towers of Babel...21

2.1 Introduction...21

2.2 The Advent of Distribution..21

2.3 Distributed Communication...22

2.3.1 Commentary..25

2.4 Distributed Systems...25

2.4.1 Inter Process Communication ..26

2.4.1.1 Commentary..28

2.4.2 Remote Procedure Calls ..29

2.4.2.1 Commentary..31

2.4.3 RM-ODP...31

2.4.3.1 Commentary..32

2.5 Characterisation of Traditional Distribution Architectures...34

2.6 Commentary..35

2.7 Concluding Remarks ...40

On the Structuring of Distributed Systems Contents

 iii

3 Mobility ...42

3.1 Introduction...42

3.2 A Brief History of Code Mobility ..42

3.3 The Differences...44

3.4 Mobile Code Design Abstractions ...46

3.4.1 Remote Computation...46

3.4.2 Code on Demand...47

3.4.3 Mobile Agents...47

3.4.4 Client/Server ...48

3.4.5 Subtleties of the Mobile Agent abstraction48

3.5 Characterisation of Mobile Agent Systems ..49

3.6 Commentary..50

3.7 Concluding Remarks ...52

4 Mobility in the Real World ...55

4.1 Introduction...55

4.2 Research Motivation..55

4.2.1 Research Objectives ..57

4.2.2 Semantic Alignment ..58

4.2.3 Component Coupling...59

4.3 Research Statement ...60

4.4 Technical Issues and Enabling Technology ...61

4.4.1 Strong vs Weak Mobility...61

4.4.2 Interpretation vs Compilation ..62

4.4.3 Resource Management ..63

4.4.4 Security ...63

4.4.5 Communication ...64

4.5 Advantages Claimed for Mobile Code Systems ...65

4.5.1 Bandwidth Savings..65

4.5.2 Reducing Latency..66

4.5.3 Disconnected Operation ..66

4.5.4 Increased Stability ...66

4.5.5 Server Flexibility...67

4.5.6 Simplicity of Installed Server Base ..67

On the Structuring of Distributed Systems Contents

 iv

4.5.7 Support distributed computation ..68

4.5.8 Commentary..68

4.6 Survey of Mobile Agent Systems ..68

4.6.1 Java...69

4.6.2 D’Agents...69

4.6.3 Mole..70

4.6.4 Hive ..70

4.6.5 Voyager ..71

4.6.6 Jini ..71

4.6.7 Aglets..72

4.6.8 The Mobile Agent Graveyard: Telescript and Odyssey..................73

4.7 Choosing a Mobile Agent Framework ...74

4.8 Concluding Remarks ...75

5 I.T.L. : An Industrial Case Study...77

5.1 Introduction...77

5.2 Why a case study? ...77

5.3 Who are I.T.L.? ...78

5.3.1 What does I.T.L. do? ...78

5.3.2 How does I.T.L. work?..79

5.3.3 Commentary..80

5.4 Process Modelling ...81

5.4.1 A Walkthrough..84

5.4.2 Refining the Model..84

5.5 Concluding Remarks ...85

6 Implementation ...87

6.1 Introduction...87

6.2 The Model...87

6.3 The Bestiary ..89

6.3.1 OrderAgents..90

6.3.2 Order Objects ..91

6.3.3 SalesAgents...91

6.3.4 StockControlAgents ..92

On the Structuring of Distributed Systems Contents

 v

6.3.5 ManufacturingAgents, MaterialsAgents, PurchasingAgents and

DispatchAgents..93

6.4 Considering Lifecycle and Maintenance Issues..93

6.4.1 DataQueryAgent: A Proto-Pattern for Database Query93

6.4.1.1 The Infrastructure..94

6.4.1.2 The Identifier...94

6.4.1.3 The Communication Package ..94

6.4.1.4 Business Logic Unit ..95

6.4.1.5 The Database Handler ...95

6.4.2 The Data Connector Tool ..96

6.4.2.1 Benefits of DataConnector...97

6.5 Concluding Remarks ...97

7 Evaluation..99

7.1 Introduction...99

7.2 Generating Useable Metrics...99

7.2.1 The Goal ...99

7.2.2 The Questions ...100

7.2.3 The Metrics ...100

7.3 Evaluating Semantic Alignment ..102

7.3.1 Conceptual Diffusion...103

7.3.2 Semantic Alignment ..105

7.3.3 Commentary..106

7.4 Evaluating System Agility ...107

7.4.1 Change Capability ...107

7.4.2 Commentary..108

7.5 Evaluating Loose Coupling ...109

7.5.1 Evaluating Coupling in Mobile Code Systems.............................109

7.5.2 Commentary..110

7.6 Concluding Remarks ...113

8 Conclusions..115

8.1 Future work...117

8.2 Commentary..118

On the Structuring of Distributed Systems Contents

 vi

List of Publications...120

References...121

Appendices..137

Appendix A...137

Appendix B...142

On the Structuring of Distributed Systems Contents

 vii

List Of Tables
Table 1. Inter Process Communication Facilities...27

Table 2. Network Transparency ..32

Table 3. Problems of a Distributed System..37

Table 4. Summary of mobile agent security issues ..64

Table 5. Questions generated using the Basili GQM Method...........................101

Table 6. Metrics Generated using the GQM Method102

Table 7. Analysis of Conceptual Diffusion Present in Mobile Code104

Table 8. Results of Metrics (3) and (4) ..105

Table 9. Change Capability metric sets after “scenarios for change”108

Table 10. Requirement of Distributed Systems ...111

On the Structuring of Distributed Systems Contents

 viii

List of Figures
Figure 1. The von Neumann Computer Architecture...6

Figure 2. Early Layers of Abstraction...8

Figure 3. The layers of abstraction in the Procedural Abstraction Phase12

Figure 3. Layers of abstraction in the..14

Figure 4. Programming Abstraction Phase..14

Figure 5. The full Layers of Abstraction diagram ...18

Figure 6. The OSI Reference Model ...24

Figure 7. Inter Process Communication ..28

Figure 8. A Remote Procedure Call ..30

Figure 9. The evolution of Distribution Abstractions ..33

Figure 10. Request Broker providing location transparency................................34

Figure 11. Mobile Data in a Traditional Distributed System35

Figure 12. Back flips required by ORB to ensure location transparency..............38

Figure 13. Communcation across the network, and mobile agent migration.45

Figure 14. Examples of the different mobile code abstractions.47

Figure 15. Network routing of Client/Server and Mobile Agent architectures49

Figure 16. Mobile logic and data in the Mobile Agent Abstraction.....................49

Figure 17. A distributed system built with mobile code51

Figure 18. The Aglet Environment ...75

Figure 19. An overview of I.T.L. around the world...79

Figure 20. Information flow through I.T.L. on receiving an order.......................82

Figure 21. Abstract Process Model ...83

Figure 22. The Sales Order Process ..84

Figure 23. Modified Sales Order Process model ...85

Figure 24. Agent Sales Order Process Model..88

Figure 25. DataQueryAgent Architecture ...94

Figure 26. The DataQueryAgent ..96

On the Structuring of Distributed Systems Preface

 1

Preface
Mobile Code is a new and generally untested paradigm for building distributed

systems. Although garnering many plaudits and continually increasing in popularity,

the technology and research field remain relatively immature. So far, most research

has focused on the creation of mobile code frameworks, and as yet, there is no

conceptual framework with which to contrast results. Equally, there is no clear

understanding of the new abstractions offered by this paradigm. Further, many

conclusions drawn about the technology remain qualitative and subjective. This

dearth of quantitative results means as yet it has not been possible to evaluate the

potential of both the technology and the paradigm.

It is against this backdrop that the work described in this thesis has been conducted.

Before an accurate and informed decision about the suitability of mobile code

technology can be made, a fuller appreciation of the paradigm is required. It is the

author’s opinion that the central essence of a new paradigm is the abstraction it offers

to the designer. Therefore, the contribution of this thesis addresses the issues of

understanding and evaluating the design abstractions offered by mobile code.

The first part of this thesis is concerned with building an understanding of the

abstractions offered by mobile code, and the implications of using them. Certainly, it

would be impossible to undertake this research without a context within which to

analyse the new paradigm. To this end, we trace the emergence and evolution of

abstractions employed throughout the history of computing, in an attempt to

understand the reasons behind the existence of contemporary traditional distribution

abstractions. We also build a philosophical argument supporting mobile code,

contrasting it with traditional distribution abstractions. Further, we assert the belief

that the abstractions used in traditional distributed systems are flawed, and are not

suited to the underlying hardware substrate on which contemporary global networks

are built.

In chapter one, we review the history of computing, and the abstractions that have

been employed within this field. We begin our journey by examining the early years

of computing, and trace the consecutive developments that have shaped the evolution

of our present day computing landscape. We build a picture of the key phases in this

On the Structuring of Distributed Systems Preface

 2

evolution, and the gradual layering of abstractions, one atop another, that

characterises evolution in this area.

In chapter two, we return to focus more directly on the emergence of distribution. In

examining today’s distribution mechanisms we show that the fundamental abstraction

in these systems is one of location transparency. The chapter demonstrates that the

emergence of location transparency is a result of the layers of abstraction found

beneath it. We argue that by using the location transparency abstraction we are

attempting to impose an unsuitable abstraction onto the underlying computational

substrate.

In chapter three, we begin our examination of the new design abstractions offered by

Mobile Code. We discuss what makes mobile code systems different from

contemporary ones and characterise these new abstractions as embodying local

interaction. Finally, we argue that by employing this new paradigm we are using an

abstraction more wholly suited to the underlying computational substrate, and thus to

building distributed systems. This chapter concludes our philosophical argument

concerning the structuring of distributed systems.

The philosophical argument built in Part I is extensive, and a full experimental

investigation is beyond the scope and timescale of a PhD. Therefore, in Part II we

take the initial steps required to validate the arguments expressed in Part I. If Part I

was concerned with understanding the mobile code abstraction, then Part II is

concerned with using and evaluating it. The experimental work is conducted by

applying the new paradigm to a real world manufacturing system application, based

on data derived from an industrial case study.

In chapter four, we present the rational for the experimental research undertaken in

this thesis, and describe how it will support the arguments made in Part I. Further, we

describe the technical issues involved with implementing mobile code abstractions,

and discuss some of the advantages claimed for this new technology. Lastly, we

review several of the better-known mobile code frameworks available to researchers,

before presenting IBM’s Aglet Software Development Kit, the framework used in our

experimental work.

On the Structuring of Distributed Systems Preface

 3

In chapter five, we describe a case study undertaken in the UK. The case study has

been used to generate a real-world model of the Sales Order Process (SOP) of a

manufacturing enterprise that is used in the subsequent implementation work. In

addition, several requirements of the company were identified which will be used in

later chapters as “scenarios for change” with which to test and measure our

experimental implementations.

In chapter six, we describe the creation of two prototype mobile code systems. Their

common parts and differences are discussed, along with the supporting tools that have

been created.

In chapter seven, we begin our evaluation of the two prototype systems. Firstly, we

describe the process through which we have generated several tangible software

metrics. We then evaluate the prototypes through the “scenarios for change”, and

reflect on what has been learnt.

In chapter eight we conclude the research undertaken in this thesis, and discuss the

implications of the work, and avenues for further investigation.

Part I

Understanding

On the Structuring of Distributed Systems Abstraction

 5

1 Abstraction

1.1 Introduction

Computers are fulfilling an increasingly diverse set of tasks in our society. They are

silently assuming many mundane but key tasks, providing seamless assistance to

support our lifestyles. They control our car engines, our environmental climate and

even our toasters. Increasingly, sophisticated hardware is the supporting substrate for

increasingly complex software. Yet despite major advances in our understanding of

the construction of software, building flexible and reliable systems remains a

considerable task. Increasingly powerful abstractions are employed by software

engineers in an attempt to reduce the cognitive complexity of such tasks.

The emergence of computing abstractions has been instrumental in defining today’s

computing landscape. To fully understand its present day shape, we must first

understand the forces and issues that influenced its evolution. This chapter presents a

brief history of computing and the levels of abstraction developed and employed

within this field, and discusses the emergence of each abstraction.

1.2 A Brief History of Computing Time

“In the beginning there was binary. And 'lo, von Neumann did say 'that's too

damn tough to understand! Can't we make it any simpler?’”

In the 1940’s, the mathematician John von Neumann pioneered research into

formalising the basic architecture for a computing machine. The Von Neumann

architecture specified a computer in terms of three main components:

• A Memory: a large store of memory cells that contain data and instructions

• An Input/Output unit: to enable interaction and feedback with the user

• A Central Processing Unit (CPU): responsible for reading and writing instructions
or data from the memory cells or from the I/O unit

During execution, the CPU takes instructions and data from the memory cells one at a

time, storing them in local cells known as registers. The instructions cause the CPU

to manipulate the data via arithmetic or logic operations, before assigning any results

back to memory. Thus, the execution of instructions results in a change in the state of

On the Structuring of Distributed Systems Abstraction

 6

the machine [Burks46]. The three components of a computer are able to interact via a

communications bus (see Figure 1).

Figure 1. The von Neumann Computer Architecture

Von Neumann’s research was based on the earlier theoretical work of Church and

Turing on state machines [Church41] [Turing36]. Importantly though, it established a

hardware architecture for a computing machine that would serve as a reference

platform for decades to follow. Although we are generally accustomed to thinking of

computers as extremely complex machines, the central architecture itself is quite

simple. At the most basic level Harel states:

“A computer can directly execute only a small number of extremely trivial

operations, like flipping, zeroing, or testing a bit” [Harel87]

Nonetheless, von Neumann had taken the first step along a long path of evolution that

would culminate in the computer systems we take for granted today. This evolution

could not have taken place without advances in hardware design and manufacture,

however, for the scope of this thesis we are interested only in the abstractions and

technologies that have evolved to support the construction of software.

Since its creation, the von Neumann architecture has fundamentally influenced the

way we think about and build our computing systems. Most contemporary

programming languages can be viewed as abstractions of the underlying von

Neumann architecture. These languages retain as their computational model that of

the von Neumann architecture, but abstract away the details of execution. The

sequential execution of language statements (instructions) changes the state of a

program (computational machine) through assignment and manipulation of variables

(memory cells). These languages, known as imperative languages, have developed

through the addition of layers of increasingly high levels of abstraction [Ghezzi98].

In the next section we examine the emergence and evolution of imperative languages,

I/O CPU

bus bus

Memory

On the Structuring of Distributed Systems Abstraction

 7

and discuss the ascending tower of abstractions that we use to construct software

systems.

1.3 Procedural Abstractions

Programming a computer to perform a particular task in the early years of computing

was extremely difficult and time consuming [MacLennan87]. The von Neumann

architecture provided a computational model that programmers could use to

manipulate physical memory locations. Nevertheless, this was still an arduous task,

as each memory location was identified by a long binary string. Humans do not

naturally think in binary, and programming in this manner was not only complex but

also prone to error [Hopper68].

To alleviate the inherent difficulties with working in binary a new family of

languages, known as assembly languages [Harel96], were developed. Assembly

languages served as a primitive form of abstraction, which masked the architecture of

the underlying hardware. With this new abstraction, programmers were able to

specify memory locations symbolically, rather than with an unwieldy binary string.

The creation of assembly languages was the next step towards unlocking the full

potential of the computer. Using them, programmers were no longer concerned with

the location of individual registers and memory cells. They were able instead to

program with symbolic representations of their computing machines. From here, it

was a relatively simple matter to begin constructing repeatable computing algorithms

from assembler symbols [Wexelblat81]. These algorithms became a layer of

abstraction above the assembly symbols, which themselves were a layer of abstraction

above the hardware. Quickly, the pattern for computing evolution had been defined:

it would evolve through the gradual layering of ever subtler and complex levels of

abstraction. Each layer abstracting away the minutiae whilst retaining as their

underlying computational model the von Neumann architecture. Figure 2 shows the

abstractions of assembly languages, and then computing algorithms layered over the

underlying von Neumann computational model.

On the Structuring of Distributed Systems Abstraction

 8

Figure 2. Early Layers of Abstraction

These early layers of abstraction were a considerable improvement in the way

computer programs were constructed. However, even more significant improvements

in the usability of computers would occur with the arrival of programming languages.

A programming language is a formal notation for describing algorithms for execution

by a computer [Ghezzi98]. They provide abstractions to overcome the complexities

involved in constructing a software program, so that a programmer does not need to

be capable of manually producing the many machine level instructions that are

required to get a computer to perform a particular task. The first types of

programming languages developed were known as pseudo code languages.

Pseudo codes arose because in some instances programmers found that the hardware

specific instructions available on their particular computing architecture were not

sufficient to support the range of operations they required. Pseudo codes are machine

instructions that differ to those provided by the native hardware on which they are

being executed. They are invariably executed within an interpreter [MacLennan87], a

software simulation of a computational machine, a virtual machine, whose machine

language is the pseudo codes. The virtual machine would normally offer facilities

that were not available in the real computer, for example, new data types (e.g. floating

point) or operations (e.g. indexing). Ergo, pseudo codes added yet another, higher

layer of abstraction, and were the initial steps taken in moving towards a tool that

allowed a programmer to construct software in a language that bore no resemblance to

its machine code representation [Hopper68]. Unfortunately, pseudo code languages

Programmer’s
perspective

Assembly Languages

Computing Algorithms

Von Neumann Machine

On the Structuring of Distributed Systems Abstraction

 9

were hampered by slow execution speeds, since the interpreter had to first convert the

codes to native instructions prior to execution. To overcome this inefficiency a new

tool known as a compiler was produced. A compiler is a computer program that

translates programs specified in high-level languages, for example pseudo codes, into

the native hardware’s assembly language [Harel93]. The program need only be

translated once, but could be executed at native speeds many times, which was a

distinct advantage over programs that had to be interpreted every time.

The advent of compilers led to the creation of new programming languages, known as

1st generation languages. The best known of these are IBM's Mathematical FORmula

TRANslating system (FORTRAN) [IBM56], COmmon Business Oriented Language

(COBOL) [DoD61], and ALGOrithmic Language (ALGOL) [Perlis58] which

appeared in the mid to late 1950's respectively. These languages allowed a

programmer to use a mathematical notation in order to solve a problem. FORTRAN

and ALGOL were defined as tools for solving numerical scientific problems, those

that required complex computations on relatively simple data, for example simulating

numerically the effects of a nuclear reaction. COBOL was developed as a tool for

solving business data-processing problems, those that required computations on large

amounts of structured data, for example a payroll application. It was able to satisfy

the needs of the bulk of the applications of the day, and its success has meant it

remains in use over thirty years after its introduction [Wilson93].

The advent of compilers and 1st generation languages meant it was possible to develop

computer programs without any knowledge of how your program was actually

transformed into the native instruction set required by the machine upon which it was

intended to execute; the translation was automatically performed by the compiler.

One of the most important concepts embodied in the abstractions offered by 1st

generation languages was the separation of a program into two distinct parts. The

description of the data contained within the program was known as the declarative

part, and the program logic that controlled the execution of the program and

manipulation of the data was known as the imperative part.

Once begun, the development of programming languages progressed rapidly, and

soon 2nd generation languages would emerge. These new languages were generally

descendants of 1st generation languages, influenced by the lessons learnt in the early

On the Structuring of Distributed Systems Abstraction

 10

years. They are characterised by offering a much higher level of structured flow

control to the programmer whilst simultaneously introducing new techniques to aid

the composition of computer programs. Typical of this set of languages is ALGOL 60

[Naur63]. The product of a committee, ALGOL 60 introduced major new concepts

such as syntactic language definition [Backus78], the notion of block structure

[Wilson93] and recursive programming [Ghezzi98]. Further improvements to

structured flow in languages such as loops, conditional statements, sequential

constructs and subroutines [Harel93] meant that some of the hardware-influenced

instructions prevalent in 1st generation languages, such as the infamous GOTO1

statement [Dijkstra68], could be removed.

By the 1970's it was becoming clear that the need to support reliable and maintainable

software had begun to impose more stringent requirements on new programming

languages [Ghezzi98]. Programming language research in this period emphasised the

need for eliminating insecure programming constructs. Among the most important

language concepts investigated in this period include: strong typing [Cardelli85],

static program checking [Abadi96], module visibility [Parnas72a], concurrency [Ben-

Ari90] and inter-process communication [Simon96]. Greater significance was now

placed on building reliable software, and the term software engineering [Naur68] was

used to describe an emerging methodology for dealing with the full lifecycle of

software development, from specification to production. In general, it is fair to say

that 3rd generation languages built on the previous generation by working at

improving the software engineering principles inherent, and enforced by the

languages. Some important examples of 3rd generation languages are Euclid

[Lampson77], Mesa [Geschke77] and CLU [Liskov81]. The development of these

languages was directly influenced by the need to improve systems programming

[Wilson93], the creation of operating systems and tools such as compilers, and to

produce verifiable programs.

In the last half of the 1970’s new languages such as Pascal [Jensen85] [ISO90b] and C

[Kernighan78] were developed. Both offered the programmer power, efficiency,

modularisation and availability on a wide array of platforms. With Pascal though,

Wirth aimed to create a language that would also be suitable for teaching

1 Strangely, the much maligned GOTO statement continues to exist in many languages

On the Structuring of Distributed Systems Abstraction

 11

programming as a logical and systematic discipline, thus encouraging well-structured

and well-organised programs. C on the other hand combines the advantages of a high

level language with the facilities, flexibility and efficiency of an assembly language.

However, to ensure the degree of flexibility required by systems programmers C does

not include type checking, meaning that it is much easier to write erroneous programs

in C than in Pascal [Wilson93]. Both languages continue to be widely and

successfully employed today.

1.3.1 Commentary

When von Neumann first specified his computing architecture, he set the direction in

which our computing landscape would evolve. Since then, we have evolved through

the gradual layering of increasingly powerful abstractions upon each other. The

progressive development of programming techniques that ascended via early

unwieldy bit strings, through assembly mnemonics, pseudo codes, compilers and three

generations of programming languages signified the first phase of our evolution. In

this phase programmers were gradually lifted out of the mire, and spared the task of

remembering the location of each cell or register they wish to use. They were now

able to specify programs in powerful and efficient languages, without requiring any

hardware specific knowledge of the computer they were using. By progressively

exploring and building up the layers of abstraction, the computer had been

transformed from a slow and cumbersome behemoth to a powerful, flexible tool.

In this thesis we term this period of computing the procedural abstraction phase. It is

characterised by the development of new computing abstractions and new techniques

for controlling program structure and flow. Figure 3 illustrates the individual layers

of abstraction discussed in the previous section. Each box roughly represents the

beginning of each abstraction, and is intended to depict the progressive layering of

abstractions as programming languages were developed. Certainly each box should

not be interpreted as a finite lifetime for each abstraction. For example, assembler

continues to be heavily used in modern military aircraft systems [Bennet94].

On the Structuring of Distributed Systems Abstraction

 12

Figure 3. The layers of abstraction in the Procedural Abstraction Phase

1.4 Programming Abstractions

“Show me your [code] and conceal your [data structures], and I shall

continue to be mystified. Show me your [data structures], and I

won't usually need your [code]; it'll be obvious.” [Raymond98]

citing and re-interpreting [Brooks95]

The mid to late 1970’s saw a new trend develop within the world of computing.

Supported by more powerful tools and languages programmers began to build

increasingly large and complex programs [DeRemer76]. These programs were no

longer standalone edifices, capable of performing a single task. Rather, they were

systems, capable of a multitude of tasks.

The sheer size of these systems meant that for reasons of clarity and maintenance it

was becoming increasingly important to organise programs into discrete modules

[Knuth74]. With the Modula-2 language [Wirth77], Wirth attempted to extend Pascal

Layers of
Abstraction

Assembler

Pseudo code

1st Gen
Lang

2nd Gen Langs

Algorithms

Time 60’s 50’s 1940’s

Procedural Abstractions

3rd Gen Langs

vNM

On the Structuring of Distributed Systems Abstraction

 13

with modules and while not wholly successful the experiment was an indication of the

possible advantages [Wilson93]. Language researchers soon realised that it was not

only advantageous to separate programs into discrete modules, but also to

conceptually encapsulate data and logic within larger entities. Such encapsulations

were known as abstract data types [Hoare72] and enabled the programmer to specify

new data types in addition to those primitives already supported by the language. For

these new abstractions, programmers could define operations through which they

could be manipulated, while the data structure that implements the abstraction

remained hidden. Information or data hiding [Parnas72a] ensures that the internal

data of a new type will only be manipulated in ways that are expected. The late

1970's and early 80's saw an explosion of new programming abstractions, such as type

extensions [Wirth82], concurrent programming [Andrews83] and exception handling

[Goodenough75]. Again, the motivation was to make software more maintainable in

the long term. A resulting synthesis of many of these new techniques is the language

Ada [DoD80], which can be viewed as the state-of-the-art for that time.

The 1980's saw the arrival of Object-oriented Programming (OOP), the origins of

which can be traced back to Simula 67 [Birtwistle73]. An object is an encapsulation

of some data, along with a set of operations that operate on that data. Operations are

invoked externally by sending messages to the object [Blair91]. Thus, each object is

an abstraction that both encapsulates and acts upon its logic and data respectively.

This allows a programmer to view their system as being composed of conceptually

separate entities, or objects. The OOP abstraction also builds on the previously

discussed advances in modularity, data abstraction and information hiding, by

including facilities for software reuse [Ghezzi98]. Newly created objects in the

system are not implemented from scratch, rather they may inherit pre-existing

behaviour from a parent object, and implement only the required new behaviour.

OOP initially became popular through the success of Smalltalk [Goldberg83], but was

more widely accepted with the advent of C++ [Stroustrup92], an extension of C.

Other popular OO languages include Dylan [Apple92], Emerald [Raj91], Modula-3

[Nelson91] and more recently Java [Gosling96].

On the Structuring of Distributed Systems Abstraction

 14

1.4.1 Commentary

In this thesis we term this ascendance from building programs, to architecting systems

as the programming abstraction phase. It is characterised by the development of new

techniques for modularity, data abstraction and software reuse, and would result in

systems that were easier to change and maintain [DeRemer76] and were more reliable

[Horowitz83]. In Figure 4 below we see the programming abstraction phase continue

the gradual layering of abstractions.

Figure 4. Layers of abstraction in the Programming Abstraction Phase

1.5 The Far Side

So far, we have concentrated solely upon the ascending layers of abstractions that are

present and supported by imperative or procedural languages. These languages

employ the von Neumann architecture as their underlying computing model, and are

greatly influenced by the necessity for efficient execution.

Layers of
Abstraction

Procedural
Abstractions

Concurrent
Programming

Time 80’s 70’s 1960’s

Programming Abstractions

OOP

Explosion of
experimental
abstractions

Exceptions

Modules

Strong Typing Synchronisatio
n

IPC

Abstract
Data Types

On the Structuring of Distributed Systems Abstraction

 15

With the decreasing costs of computer hardware, however, radically different designs

of computing machine have become possible. This has opened up the possibility that

other computational models could be found, and that it may be possible to design the

computer hardware to fit the model, rather than the other way round [Wilson93]. As

early as the 1960’s there have been attempts to define programming languages whose

computational models were based upon well-characterised mathematical principles,

rather than on efficiency of implementation [Ghezzi98]. These alternative camps can

be split into functional and logic programming languages.

Functional languages use as their basis the theory of mathematical functions, and they

differ greatly from imperative languages as they do not support the concept of

variable assignment. Assignment causes a change in value to an existing variable,

whereas the application of a function causes a new value to be returned. This has

important implications for the problem of concurrency, since in an imperative

language it is possible to refer to a variable or object that has been reassigned without

your knowledge. In a functional language, a function may be called at any time, and

will always return the same value for a given parameter [Hudak89]. Further, since

variables cannot be altered by assignment, the order in which a program’s statements

are written and evaluated does not matter; they can be evaluated in many different

orders. Thus, programs can be modified as data and data structures can be executed

as programs. The key concept in functional programming is to treat functions as

value, and vice versa [Watt96].

The archetypal functional programming language is generally considered to be LISP

[McCarthy60], which was developed in the late 1950’s. It is based upon the theory of

recursive functions and lambda calculus, work that was developed in the early 1940's

by Church [Church41]. Since its creation LISP has become one of the most widely

used programming languages for artificial intelligence and other applications

requiring symbolic manipulation [Pratt84], for example symbolic differentiation, and

has spawned a plethora of individual dialects. As with the imperative camp, there

have been several other implementations of functional languages during the following

years, for example APL [Iverson62], ML [Milner90], Miranda [Turner85] and Haskell

[Thompson96]. Latterly, the competing dialects of LISP were unified in Common

LISP [Bobrow88].

On the Structuring of Distributed Systems Abstraction

 16

Another variant in the field of programming languages are those defined as logic

programming languages. The main difference between functional and logic

programming languages is that programs in a pure functional programming language

define functions, whereas pure logic programming defines relations [Ghezzi98].

Logic programming languages first appeared in the late 1970's and are based on the

principles of first order predicate calculus [Mendelson64] and eschew all relation to

the underlying machine hardware. In contrast to other styles of programming, a

programmer using a logic language is more involved in describing a problem in a

declarative fashion than in defining details of algorithms to provide a solution

[Callear94]. The knowledge about a problem and the assumptions about it are stated

explicitly as logical axioms [Kowalski79]. This problem description is then used by

the language’s computational machine to find a solution. To denote its distinctive

capabilities, in this case a computational machine that can execute a logical language

is often referred to as an inference engine. Synonymous with logic programming, and

the ancestor of all logic languages is PROLOG [Clocksin87].

1.5.1 Commentary

The genres of functional and logic programming languages are an important

contribution to our computing landscape. Both are declarative languages and are

characterised as being independent of the underlying hardware upon which they are

executed; they are abstractions that are not influenced by the von Neumann

architecture. However, to achieve this independence efficiency has been sacrificed

[Wilson93]. This, and the fundamental change of programming mindset required for

those accustomed to the imperative style has been detrimental to their widespread

acceptance and deployment outside of the artificial intelligence and expert systems

communities.

Perhaps most revealing in the functional vs imperative language debate is the 1978

Turing Award lecture given by John Backus [Backus78]. In this, and his paper,

Backus argues that conventional programming languages are fundamentally flawed in

their design since as they are inherently linked to the underlying von Neumann

architecture. Backus goes on to demonstrate the advantages of functional languages

over imperative ones, and further introduces a new functional language, FP. His

On the Structuring of Distributed Systems Abstraction

 17

assertion is that the underlying abstractions we use are important, and can affect the

way we think, use and build computer systems and software.

1.6 Conceptual Abstractions

In the last decade, software engineering has been scaling new heights of abstraction.

Program development has undergone a tremendous revolution; in the way that

programs are entered into the computer, and the way programs are assembled from

existing parts [Ghezzi98]. Programmers are now able to use integrated development

environments and libraries of predefined modules to rapidly compose software

systems visually [Zak98].

Recent developments such as Components [Sun97] allow developers to view their

systems with a larger granularity than objects. Components may be large, for

example a Request Broker consisting of hundreds of objects, or as a small as a GUI

widget consisting of only a few objects. In addition, techniques such as Software

Patterns [Gof93] enforce a rigid literary methodology for expressing the essence of a

recurring software abstraction. A pattern may be viewed as a monograph on the

particular abstraction, and describes the many facets required to consistently select

and use an appropriate abstraction, what issues are involved and when not to use this

pattern. It is a distillation of knowledge gained by many experts over the years.

Aspect Oriented programming [Kiczales97], Actors [Agha97], and Agent Oriented

Programming [Wooldridge99] are examples of techniques that attempt to remove any

notion of hardware from the abstraction. In fact, one may view them as attempts to

personify software. In particular, the autonomous agent community appears to be

having much success with its approach, allowing designers to view and build systems

in a new manner, with new perspectives [Jennings et al98].

These new abstractions are no longer merely based on technological developments in

language or compiler design. They are conceptual abstractions, allowing the software

designer to view their system at a level completely removed from any of the

underlying hardware issues. Figure 5 is the culmination of this chapter’s examination

of the gradual layering of abstractions. It illustrates chronologically all three phases

of abstraction we have identified: procedural, programming and conceptual, and how

each individual abstraction has been layered over those preceding it.

On the Structuring of Distributed Systems Abstraction

 18

Figure 5. The full Layers of Abstraction diagram

S
tr

on
g
 T

yp
in

g

M
od

u
le

s
E
xc

ep
ti
on

s
S
yn

ch
ro

n
is

at
io

n

IP
C

A
b
st

ra
ct

 D
at

a
T
yp

es

La
ye

rs
 o

f
ab

st
ra

ct
io

n

vo
n
 N

eu
m

an
n

 A
ss

em
b
le

r

Ps
eu

d
o

co
d
e

1
st

 G
en

 L
an

g

2
n
d
 G

en
 L

an
g
s

3
rd

 G
en

 L
an

g
s

C
on

cu
rr

en
t

Pr
og

ra
m

m
in

g

O
O

P

A
lg

or
it
h
m

s

Ti
m

e
90

’s

70
’s

80

’s

Lo
g
ic

 P
ro

g
ra

m
m

in
g

Fu
n
ct

io
n
al

 P
ro

g
ra

m
m

in
g

Pr
oc

ed
ur

al
 a

bs
tr

ac
tio

ns

Pr
og

ra
m

m
in

g
ab

st
ra

ct
io

ns

A
g
en

ts

A
sp

ec
ts

A
ct

or
s

C
on

ce
pt

ua
l

ab
st

ra
ct

io
ns

E
vo

lu
ti
on

 o
f

im
p
er

at
iv

e
la

n
g
u
ag

es

60
’s

50

’s

On the Structuring of Distributed Systems Abstraction

 19

1.6.1 Commentary

The computers we build are no longer merely high-powered calculating machines;

they are useful tools that can be both incredibly flexible, and stubbornly inflexible at

the same time. Our on-going affair with computers has been characterised by our

attempts to harness their power, and apply them to ever more diverse situations. This

affair has been tempered, however, by the complexity inherent in a computing system.

The complexity involved has forced us to continually refine the languages and tools

we use to build software systems. In our efforts to understand and use the technology

we abstract away the details, pasting on ever more elaborate facades to hide us from

the true complexities involved in creating software. Gradually we have layered

increasingly complex abstractions over those lying beneath, until it is no longer even a

requirement to be aware of those early abstractions. Modern day programmers have

rapid development tools and libraries with which to build software. They employ

conceptual abstractions that bear no resemblance to underlying hardware upon which

their creations will be executed. These layers of abstraction mean that modern day

programmers are not required to be aware of the abstractions that lie below, that they

depend on to deliver their creation.

1.7 Concluding Remarks

“Each successive language incorporates, with a little cleaning up, all the

features of its predecessors plus a few more” [Backus78].

“Appropriate abstractions and proper modularisation help us confront the

inherent complexities of large programs” [Ghezzi98]

Abstractions are an immensely powerful tool. They allow us to manage the

complexity of a situation, and to rationalise about it by removing those details we

consider inessential. Further, as we attain understanding of complex issues, we

construct additional layers of abstraction over those beneath, continually ascending.

If we are to consider abstractions that exist within these layers we must understand the

reasons for their existence, and the base abstractions that support the grand edifice.

This chapter has presented a brief history of our progress up the computing

abstraction tower. It has examined the chronological development of computing

On the Structuring of Distributed Systems Abstraction

 20

architectures and programming languages, and presented a brief explanation of their

existence. Latterly, the discussion continued by examining more recent programming

and conceptual abstractions and their position in the Tower of Abstractions. Although

the functional and logic programming camps offer us a declarative alternative they are

in the minority. The overwhelming majority of languages in use today are imperative.

They are powerful abstractions whose roots are found in the pioneering work of John

von Neumann in the first half of this century. Our computing evolution has been

characterised and dictated by the von Neumann architecture. It has influenced the

design of all imperative languages to follow, and therefore those abstractions

subsequently attained by using the languages.

The aim of this thesis is to understand the mobile agent abstraction, a new technology

and abstraction for building distributed systems. The review in this chapter has

provided a context and history in which new and existing abstractions can now be

reviewed. In the next chapter we examine the abstractions currently used in building

contemporary distributed systems.

On the Structuring of Distributed Systems Towers of Babel

 21

2 Towers of Babel

2.1 Introduction

In the 1970’s, networking began to emerge as an important aspect of computer

systems. Driven by applications in the military and airline industries, computer

systems were connected and inter-operation became widespread [Cerutti83]. During

the 1980’s, distributed computing became a vital aspect of many computer systems.

In the early 2000’s, we are beginning to see the emergence of ubiquitous computing:

characterised as a massive heterogeneous “sea” of disparate computational devices,

with varying connection bandwidths and an ever-changing topology of connections

[Weiser91].

This chapter examines the emergence of distribution and discusses the path of its

evolution. In examining today’s distribution mechanisms we show that the

fundamental abstraction in these systems is one of location transparency. Further, we

demonstrate that the emergence of location transparency is a result of the layers of

abstraction found beneath it. We argue that by using this approach we are attempting

to impose an unsuitable abstraction onto the underlying hardware substrate.

2.2 The Advent of Distribution

Before the invention of computers, processing information was both slow and tedious

[Rose90]. The advent of computers has transformed the world, and the way in which

we work with information [Simon96]. However, using and storing this information in

isolation, like any expensive resource, is inefficient [Peters85]. Ergo, unless our

computers are to exist in isolation, we require methods that allow computers to

meaningfully interact [Cerutti83], and ways of transferring information between them.

Communication networks, which interconnect computers and allow them to work in

concert, are a common solution to this problem [Sloman87].

However, merely physically connecting computers is not enough to achieve logical

interaction in its own right. Computers must adhere to a common set of rules or

protocols for defining their interactions [Rose90]. By connecting separate computers,

we make it possible for the programs executing on those computers to interact. When

On the Structuring of Distributed Systems Towers of Babel

 22

processes on separate computers interact, we term the whole a distributed system. In

the next section, we examine the software architectures used in building networks,

which ultimately support any communication between networked computers.

2.3 Distributed Communication

A network is an interconnected collection of two or more autonomous

computers [Tanenbaum96].

Distributed computing as we understand it today is a far cry from the limited facilities

of early distributed systems, such as remote job entry handlers [Boggs73]. Their role

however was simple - to allow scarce and expensive information and resources to be

shared by users. Ever since computer users began accessing central processor

resources from remote terminals over 40 years ago, computer networks have become

more versatile, more powerful and inevitably more complex [Green80].

At the heart of distributed computing are communication networks. They are the

infrastructures that support information flow between computers. The initial

development of such networks was fostered through experimental networks such as

ARPANET [Roberts70] [Cerf74] and CYCLADES [Pouzin73]. ARPANET, which

went live in December 1969, was initially motivated by the requirements of the US

Military for a communications network that could survive a nuclear war

[Tanenbaum96]. This early work established the procedures for connecting

computers and facilitating their interaction. Just physically connecting computers was

not sufficient to ensure successful interaction though. Two computers wishing to

communicate must adhere to a common set of rules for defining their interactions.

This rule set is termed a protocol, and is an agreement between the communicating

parties on how communication is to proceed [Rose90].

To reduce their design complexity, network architectures are organised as a series of

layers or levels of abstraction, each built upon the preceding one. Whilst the number

and nature of these layers may differ between architectures, their purpose is similar: to

offer services to the higher layers, shielding them from the details of how the offered

services are actually implemented [Tanenbaum96]. Each layer has its own particular

On the Structuring of Distributed Systems Towers of Babel

 23

communication protocol, and collections of protocols defined in terms of a common

framework are known as a protocol suite or stack [Rose90].

In early computer systems, it was common for each application found on a computer

to employ its own protocol stack. This communication support was usually built into

the application, and was not available for use by any other applications. This

approach therefore had the inherent disadvantages of duplicated functionality and

inefficient resource usage. To alleviate this undesirable situation, research focused on

providing communication mechanisms at the operating system level through the

provision of shared communication suites [Sloman87].

Although a vast improvement, facilities provided by the operating system were

invariably specific to the particular type of computer on which they were executing.

In the mid 1970s, computer vendors began to develop their own network

architectures, to enable communication between their own ranges of machines.

Important examples of this period are the Internet model [Metcalfe76] [Comer91] that

emerged from ARPANET [McQuillan77], IBM’s Systems Network Architecture

(SNA) [McFadyen76] [Cypser78] [Gray83] and Digital’s DECnet [Wecker80]

[Malamud91]. This meant however, that since each suite was developed for the

vendors’ own machines, they were usually composed of proprietary (closed)

protocols. This situation posed two considerable problems:

• Systems from competing vendors were not able to interoperate

• The communication specification was controlled by a single organisation

Since the vendors controlled the protocol specification, they also had the power to

change the specification at their discretion [Cerutti93]. Understandably, this made

third party developers very nervous in adopting and working to a standard whose

specification might be changed at any given moment. Although subsequent

publishing of the protocol specifications aided their widespread adoption, the issue

remained [Rose90]. Further, as each proprietary communication suite evolved,

systems from competing manufacturers became even more incompatible.

The splintered evolution of incompatible communication suites forced the computing

community to realise that standards were required to enable interaction between

different types of computer [Mullender93]. In 1977, the International Standards

On the Structuring of Distributed Systems Towers of Babel

 24

Organisation (ISO) began working towards defining a non-proprietary (open) suite of

protocols. The resulting standard is known as the ISO Open Systems Interconnection

(OSI) reference model [Zimmermann80] [ISO83] [OSI84] [STA87], and is jointly

defined by ISO and the International Telecommunications Union (ITU-T)2. Most of

the proprietary suites that preceded the OSI model have since undergone modification

and are now considered as specialised incarnations of the OSI model.

Figure 6. The OSI Reference Model

The OSI Reference model is structured into seven layers that represent the logical

sequence of functions carried out when messages are constructed for transmission,

dispatched, and then dismantled on arrival [Simon96]. It also serves to provide a

common basis for the co-ordination of communication systems standards

development and to allow existing standards to be placed into perspective

[Sloman87]. An example of the OSI Reference Model is shown in Figure 6. Data at

Host A is translated by the OSI stack into a form that can be communicated over the

wire. It is then sent over the wire (perhaps via some network nodes), before it is

reconstituted at Host B by the corresponding protocol suite, before finally being made

available to the destination application.

2 Formerly the Consultative Committee for International Telegraph and Telephones (CCITT)

Physical

Data Link

Network

Transport

Session

Presentation

Application

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Computer A Computer B

Network Node

Data Data

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

On the Structuring of Distributed Systems Towers of Babel

 25

Of particular interest to this thesis is Layer 7 – the Application layer. The Application

layer is the highest level of abstraction defined in the OSI model and is ultimately

responsible for managing the communications between applications. It provides

programming primitives that a developer is able to use to access the communication

facilities offered by the full protocol suite.

2.3.1 Commentary

In the previous section, we have briefly examined the emergence of communication

protocols, and protocol suites, that support distributed computing. Their role and

existence has been vital in ensuring we are able to successfully network our

computers. In themselves, protocol suites form a hierarchy of abstractions. They

provide a mechanism for translating a signal on the wire up through the layers of

abstraction until at the application layer the information can be manipulated via

programming primitives. These primitives bear little resemblance to their

representation ‘on the wire’ but a developer is able to call upon the communication

facilities with relative ease. The advent of the OSI model, and particularly the

Internet incarnation of that model, has made communication between distributed

computers much simpler. There are now a number of well-known and widely

deployed communication suites in existence [Tanenbaum96].

The OSI model, and the many incarnations of protocol suites in existence are

important in that they allow computers to communicate in an agreed manner. They do

not address how a distributed application may be constructed. These suites are only

the enabling infrastructure. Further techniques and technology are required. In the

next section, we examine the emergence of distributed systems and concentrate on

developments within the application layer of the OSI model.

2.4 Distributed Systems

“A distributed system is one in which several autonomous processors and

data stores supporting processes and/or databases interact in order to co-

operate and achieve an overall goal. The processes co-ordinate their

activities and exchange information by means of information transferred over

a communications network.” [Sloman87]

On the Structuring of Distributed Systems Towers of Babel

 26

To understand the evolution of distributed systems, we must briefly return to examine

the history of computing systems. As discussed in Chapter 1, the end of the

procedural abstraction phase indicates a paradigm shift in the way software was

constructed. Instead of just building monolithic standalone programs that ran in

isolation, it became evident that building systems composed of smaller co-operating

programs was a more effective way to construct software. Software architects began

to divide their systems into discrete elements. These elements were programs in their

own right, and became known as processes. A process is a running program that

consists of an environment for execution and at least one thread of control

[Coulouris94]. They are smaller, more manageable entities that still execute within

the same computational machine, but are separately autonomous3.

Dividing monolithic software systems into distinct processes had advantages for

manageability, but meant a method was required that would allow executing

processes to communicate with each other. Finding a solution to this problem became

a widely researched issue with many languages gaining new facilities and

programming primitives. These new facilities became known as Inter Process

Communication (IPC) [Cashin80] [Fukuoka82].

2.4.1 Inter Process Communication

An early method for communication between separate processes was a unidirectional

stream of bytes, known simply as a pipe [Coulouris94]. On a UNIX machine, for

example, a pipe can be used to join the ls and more commands, e.g. ‘ls –l | more’.

The output of the ls process is piped as input to the more process.

Pipes were designed as a method for linking chains of simple data-transforming

programs. Initially though, they did not support networked communication, and were

not able to handle large volumes of data4 [Tanenbaum96]. A further drawback was

that the pipes were bound to a specific source and target process (ls and more

respectively in the above example). Named pipes subsequently overcame this latter

limitation, allowing pipes to exist independently of any particular process.

3 With respect to the other processes. The operating system still controls all of the processes.
4 Local files are able to overcome this problem.

On the Structuring of Distributed Systems Towers of Babel

 27

Since all interacting processes are local to each other in IPC, it is also possible to use

the computer’s RAM to implement a shared memory facility - a common region of

memory addressable by all concurrent processes. Shared memory has become an

important technique for use between communicating local processes. Unfortunately,

there is no inherent synchronisation in this mechanism and it is easy for one process to

write a value to memory for storage, and have another process overwrite it with a new

value, or even erroneous data. To combat this problem, new techniques for

synchronisation between processes were developed such as semaphores [Dijkstra68b],

monitors [Hoare74] and sequences [Reed79].

A further communication mechanism developed was known as a Message queue.

Message queues allow any process to write to a named queue and for any process to

read from the queue. Synchronisation is inherent in the read/write operations and the

message queue, which between them can support asynchronous communication

between many different processes [Simon96]. Messages are distinguished by a

unique identifier or message type, but are limited by being able to hold relatively

small amounts of data. Table 1 lists the early IPC communication facilities, and

details their advantages and disadvantages.

Table 1. Inter Process Communication Facilities

As the use of these facilities proliferated, it became increasingly useful to provide

them as standard components of the operating system. This was normally achieved

Method Advantages Disadvantages

Pipes Simple to use; easy to chain
multiple pipes;

No network support;
insecure communication;

Named Pipes Can exist unconnected to a
process;

As above;

Local Files Can handle large volumes of
data; Simple to use;

Synchronisation problems;
inefficient due to repeated
disk access;

Shared Memory Very fast; very efficient;
Cannot handle large
volumes of data; no
inherent synchronisation

Message
Queuing

Inherent synchronisation;
unique identifiers;

Can only hold relatively
small amounts of data;

On the Structuring of Distributed Systems Towers of Babel

 28

by providing programming primitives that system builders could then employ

[Coulouris94]. An early and well-known example are the IPC primitives provided in

the BSD 4.x [Leffler89] versions of the UNIX [Ritchie74] operating system. These

are implemented as a software layer over the underlying transport and network layers

and are based on socket pairs, one belonging to each of a pair of communicating

processes. Sockets provide a simple way of programming distributed applications

using indirect message passing communication [Simon96].

Figure 7. Inter Process Communication

In Figure 7 we see an example of IPC. Two processes are communicating by using a

combination of the techniques mentioned in Table 1. By employing both local files

and shared memory an optimum balance can be struck between volume of data and

speed of access. Importantly, these techniques are ideal for communicating processes

that exist within the same von Neumann machine.

2.4.1.1 Commentary
IPC was successful because it provided:

• simple yet effective facilities

• facilities designed for the local computing context

• facilities that were able to take advantage of local resources, e.g. memory
and file space

The major factor in the success of IPC however, stemmed from the abstraction it

embodies. The IPC abstraction takes full advantages of the constituent elements of

the von Neumann architecture. Therefore, it is ideally suited to the underlying

Process A Process B

vNM A

Shared file
Shared memory

On the Structuring of Distributed Systems Towers of Babel

 29

hardware upon which it is used. IPC was only useful, however, for communication

between processes that are executing within the same computing machine. As

computer networks increased in number and size, resources were scattered even

further. This distribution of resources meant that it was increasingly useful for a

process on one machine to be able to access a process or resource that was located on

another. Unfortunately, the existing IPC mechanisms were designed for

communication between local processes only. They were complex and difficult to use

in a networked manner. There was therefore a clear need for a simple mechanism to

allow two networked machines to interact.

In a seminal paper, Birrel and Nelson [Birrel84] described a new mechanism, Remote

Procedure Calls (RPC), which they built for the Cedar [Teitelman84] programming

environment to allow remote communication.

2.4.2 Remote Procedure Calls

At their simplest, Remote Procedure Calls (RPC) are a mechanism that facilitate a

request/reply interaction between two distributed processes [Simon96]. This is

similar to the traditional mechanism of procedure calls [Harel93] found in high-level

programming languages. The fundamental difference is that the calling procedure

executes in one computing machine, and the called procedure executes in another

[Cerutti93], whilst data is exchanged between the two communicating parties.

Birrel and Nelson’s goal was to provide a mechanism through which remote processes

could interact. They also aimed to make this mechanism transparent to the

programmer by ensuring it was syntactically similar, and as simple for the

programmer to use as ordinary procedure calls [Simon96]. Consequently, the

mechanism for RPC was modelled directly on the IPC facilities found in the Mesa

programming language [Mitchel79]. Indeed, so successful were they that RPC has no

distinction in syntax between a local and a remote procedure call [Colouris94].

During an RPC call there are five separate modules that interact to enable the call.

They are the client, the client-stub, the RPC communications package (RPC

Runtime), the server-skeleton and the server (see Figure 8). When the client wishes to

call a procedure that exists on a remote machine, it invokes the appropriate method in

the client-stub. To the client, this resembles a normal local procedure call. The

On the Structuring of Distributed Systems Towers of Babel

 30

client-stub then assembles one or more data packets that include the target procedure

and the required arguments. These packets are then passed to the local RPC Runtime,

which transmits them to the remote Runtime. On receipt, these packages are passed

to the server-skeleton, where they are unpacked and passed to the target procedure in

the server. Once this procedure has been executed, any results are packaged up and

the process repeated in reverse. RPC is synchronous in nature, so while the server

procedure is executing, the client is suspended, awaiting the result. The RPC Runtime

(or request broker) establishes a client/server relationship between the interacting

parties, removing the need for each party to be aware of the other’s location.

Figure 8. A Remote Procedure Call

Many RPC systems have subsequently been built, and they fall into two categories:

1] The RPC mechanism is integrated with a particular programming language that
includes a notation for defining interfaces between communicating processes

2] A special purpose interface definition language that is used for describing the
interfaces between clients and servers

In the first instance, languages such as Cedar, Argus [Liskov88] and Arjuna

[Shrivastava89] achieve close language integration so that the requirements of remote

procedure calls are handled by the language constructs themselves. The second

instance includes examples such as Sun RPC [Sun89] and the Matchmaker interface

language [Jones86], which have the advantage of not being tied to a specific language

environment. This is achieved by having a platform neutral language that can be used

to specify the names of procedures, and their required arguments, which the server is

making available to the client. These specifications are known as interfaces, and are

specified with an Interface Definition Language (IDL) [OMG99].

Computer B

RPC Runtime

Server Skeleton

Server

Computer A

RPC Runtime

Client Stub

Client

Request

Reply

On the Structuring of Distributed Systems Towers of Babel

 31

Due to its request/reply nature RPC is an extremely good way of doing Client/Server

application work [Crichlow88]. Client/Server is a particular paradigm for distributing

a system, where the server is a manager of one or more resources and a client is a user

of that resource. The paradigm was used extensively in the 1970’s to structure

operating system level process interaction [Simon96] [Walsh85], and is still in

extensive use today. One of the best contemporary examples being the World Wide

Web [Berners-Lee92].

2.4.2.1 Commentary
The major tenets of RPC can be summarised as:

• The syntax for calling a local or remote procedure is identical

• The location of a resource is transparent to the programmer and user

• Communication is synchronous, and engenders the client/server paradigm

The early 1980’s saw many breakthroughs in the distributed systems arena. Some

were influenced by earlier theoretical propositions, such as communication between

sequential processes [Hoare78], which were now being supported by the increasingly

widespread adoption of the OSI networking suite. There were also attempts to

incorporate RPC into existing programming languages, such as CONIC [Kramer83],

whilst new programming languages that included distribution facilities were also

developed, for example SR [Andrews82]. Again, so many proprietary and differing

RPC solutions meant that the computing landscape became fractured.

In the same way that the chaos of competing, incompatible and proprietary

communication protocols necessitated the creation of the OSI model, the need for a

standardised model for distributed applications was recognised. In 1987, ISO began

work on a Reference Model for Open Distributed Processing (RM ODP) [Brenner87]

[Hutchison91] [ISO92].

2.4.3 RM-ODP

The RM-ODP model provides a framework for ODP standardisation and for the

specification of systems using ODP standards [Cerutti93]. RM-ODP was an attempt

to unify proprietary RPC systems, and distributed application creation. As a model, it

describes in detail the application layer of the OSI model (see Figure 6). The driving

On the Structuring of Distributed Systems Towers of Babel

 32

objective behind its creation was to develop a distribution infrastructure that would

compliment and support the existing computing infrastructures.

Table 2. Network Transparency

Like the OSI model, RM-ODP was purely a reference model. Its specification

however, extends the concepts of transparency first visited by RPC, and identifies

eight separate forms of transparency. These are discussed further by [Colouris94], but

for the purpose of this thesis, it is suffice to demonstrate that transparency is a

fundamental tenet of the RM-ODP model. We are only concerned with access and

location transparency, collectively known as network transparency (see Table 2).

Their presence or absence most strongly affects the utilisation of distributed resources

[Colouris94].

Since its specification there have been a number of distributed infrastructures created

that are based upon the RM-ODP model. These include the Open Software

Foundation (OSF)’s Distributed Computing Environment (DCE) [OSF92], the

Computer Integrated Manufacturing – Building Integrated Open SYStems framework

(CIM-BIOSYS) [Gascoigne94], Sun’s Remote Method Invocation (RMI) [Sun98],

Microsoft’s Distributed Component Object Model (DCOM) [Redmond97] and the

Object Management Group’s (OMG) Common Object Request Broker Architecture

(CORBA) [OMG94]. Some of the more recent infrastructures integrate RPC with the

object paradigm in an attempt to combine the benefits of the latter, in terms of

modularity, with the established communication mechanism of the former [Picco98].

2.4.3.1 Commentary
In a manner similar to the process observed in Chapter 1, the abstractions that have

been created to support the construction of distributed systems have gradually been

layered upon each other, continually reaching ever higher.

Transparency Type Proposed Advantages

Access Transparency Enables local and remote information objects to be
accessed using identical operations

Location
Transparency

Enables information objects to be accessed without
knowledge of their location

On the Structuring of Distributed Systems Towers of Babel

 33

In Figure 9 we see the evolution of distribution abstractions. IPC first came into

existence as an abstraction to enable communication between processes executing

within the same computer, or von Neumann machine (vNM). So successful was this

abstraction that Birrel and Nelson designed RPC in an attempt to enable remote and

local calls to appear identical. Out of the confusion of proprietary RPC

implementations, the RM-ODP model was born, which in turn has led to

contemporary distribution infrastructures such as CORBA or RMI.

Figure 9. The evolution of Distribution Abstractions

By following the location transparency abstraction, contemporary distribution

infrastructures in effect attempt to provide a virtual von Neumann machine. That is,

by trying to fool every component in the system that they exist within the same

address space, the overall effect is the creation of a virtual machine. Figure 10 shows

an example of a distributed system built with the RM-ODP abstraction. The request

broker provides a “plane of transparency” to the interacting processes.

Layers of
Abstraction

IPC

RM-ODP

RPC

Time

Distribution Abstractions

vNM

CORBA

RMI

DCOM

On the Structuring of Distributed Systems Towers of Babel

 34

Figure 10. Request Broker providing location transparency

In reality, processes A and B exist within two complete separate vNMs, as do the

resources they share. However, the infrastructure attempts to create the illusion that

they exist within the same vNM. It also ensures that any required resources appear to

each process as if they were in their local computing machine, thus achieving the

location transparency described above.

We have now examined the emergence of contemporary abstractions and

infrastructures for distribution. If we are to compare and contrast them with the

Mobile Code abstraction then they must be generically categorised.

2.5 Characterisation of Traditional Distribution Architectures

So far in this chapter, we have discussed the history and emergence of contemporary

distribution infrastructures. Although vendor specific (with the exception of

CORBA), these infrastructures are competing implementations of the same generic

type of distributed system. They share a common heritage and are each instantiations

Process A Process B

Virtual vNM

vNM B

Process B

vNM A

Process A

Reality

Software view

Request Broker

Communication
via request
broker

On the Structuring of Distributed Systems Towers of Babel

 35

of the RM-ODP abstraction, which itself can be traced back to RPC. For example,

CORBA IDL is directly modelled on RPC.

Figure 11. Mobile Data in a Traditional Distributed System

In this thesis, these systems will be characterised as distributed system infrastructures

whose fundamental tenet for distribution is one of location transparency. They

achieve this by allowing distributed systems to interact via an intermediary

communications bus. The bus (or request broker) establishes a client/server

relationship between the interacting parties, removing the need for each party to be

aware of the other’s location. The underlying communication mechanism supporting

distribution will be characterised as mobile data.

2.6 Commentary

We have seen in Chapter 1 that modern day computing abstractions can trace their

ancestry back to the original von Neumann architecture. As each abstraction has

emerged, bringing with it new facilities and technologies, it has added a new layer to

the continually ascending edifice. At their root though, the von Neumann architecture

remains, influencing modern day designs even from the past. It is the base

abstraction, the underlying model for our computational machines. As each new

abstraction is layered onto the others, it must take into account those that preceded it.

When Birrel and Nelson first designed RPC in 1984, their intention was to allow the

programmer to access and communicate with processes on remote machines, in the

same easy manner in which they were able to access local processes. They wished to

make calls to remote processes appear identical to those made locally, thereby making

the location of the process transparent to the programmer (and ultimately the user). It

should not matter if the process was being executed locally or on a machine on the

other side of the world, it would appear exactly the same in both cases.

This phase in the development of distributed systems is pivotal. RPC was directly

modelled on IPC, which had been an extremely successful mechanism for enabling

Client

Message

Server Data

On the Structuring of Distributed Systems Towers of Babel

 36

processes to communicate, and so Birrel and Nelson’s intentions were not without

merit. However, IPC had evolved by extending the abstractions offered by existing

programming languages and by taking advantage of local facilities such as memory or

file space, each fundamental constituents of the vNM. IPC therefore was a perfect

abstraction for communication between processes executing in the same

computational machine, i.e. in the same von Neumann machine.

RPC on the other hand attempts to mask any details of location from communicating

processes. In effect, blurring the demarcation between separate vNMs to make local

and remote calls look identical. The technique required to achieve this is complex; for

two processes to communicate, a set of five separate modules is required (see Figure

8). Nonetheless, this technique was successful for the time, and the central tenet of

the abstraction, location transparency, became one of the underlying principals for the

RM-ODP model, and consequently most contemporary distribution infrastructures.

Part of the reason behind the success of RPC is because it is perfectly suited to

building client/server software systems. At the time, business software was

predominately hosted on centralised mainframe computers, computer networks were

predominately LANs or WANs and the number of personal computers was

dramatically lower than today. Equally, concurrent programming was slowly

becoming a reality and objects were only just gaining momentum. Thus, is it is not

difficult to see why the RPC abstraction was employed successfully for the types of

software system being constructed at the time. Further, it follows that such a

successful technique would be used as the baseline for newer distribution

infrastructures such as CORBA. These new infrastructures take this issue further,

creating what in effect is a virtual vNM, where the illusion is created that all

components in the system exist within the same computational machine (see Figure

10).

Since that time, the nature of the environment in which these distributed systems exist

has been changing. Fuelled by the Microsoft vision of a PC on every desk, personal

computers have taken over many of the responsibilities that used to be the domain of

the mainframe. The network has also seen a dramatic enlargement with the explosion

of the Internet, but has also suffered from quality of service issues. Object-oriented

programming has fundamentally changed the way we view software systems, moving

On the Structuring of Distributed Systems Towers of Babel

 37

us away from the synchronous single threaded model, to one that includes

asynchrony, multi-threading, encapsulation and component reuse. In short, many of

the assumptions made in the creation of RPC have now become erroneous. For

example, RPC implicitly assumes that the network is 100% reliable, and thus that

remote procedures will always be available. Anyone who has used the Internet will

attest this as a fallacy.

By 1994, the first strong doubts over the validity of the RPC approach were being

raised. In a seminal paper, Waldo et al [Waldo94] argue that objects5 acting in a

distributed system are intrinsically different to those in a local system and therefore

must be treated very differently. They identify four major problem areas when

comparing local and distributed systems (see Table 3).

Table 3. Problems of a Distributed System

In particular, partial failure is identified as an extreme problem for distributed

computing. Sloman had earlier expressed the view that:

“If the programmer is to take advantage of location transparency, this means

that the behaviour must be the same in both cases [local and remote]. This

can be costly and difficult to achieve, especially in the face of failures”

[Sloman87]

5 This applies equally to processes and procedures, etc

Problem Details

Latency
• Can be up to a difference of 4-5 orders of magnitude
• Most obvious
• Least worrisome

Memory
Access

• Unable to use pointers
• Because memory is both local and remote, call types

have to differ
• No possibility of shared memory

Partial Failure
• Is a defining problem of distributed computing
• Not possible in local computing

Concurrency
• Adds significant overhead to programming model
• No programmer control of method invocation order

On the Structuring of Distributed Systems Towers of Babel

 38

In addition, even before the Waldo paper, Nelson himself had suggested that:

“If the aim is to provide location transparency then we must aim to provide

the same behaviour as in the case of a failure in a local procedure call,

although this can be costly.” [Nelson81]

In Figure 12, we see a software system built with the RM-ODP abstraction distributed

over three vNMs. Each component has access to certain resources, but of course,

there is no way for the component to tell if the resource is local (within the same

vNM) or remote. In the case of remote resources, the request broker is required to

support the illusion that they are indeed local, by providing the relevant connections

“behind the scenes”. This is depicted by the lines flowing through the plane of

transparency. From this very simple hypothetical system, it is evident just how many

lines cross the boundaries of vNMs. At each crossing, the system is subject to the

types of problem identified in Table 3.

Figure 12. Back flips required by ORB to ensure location transparency

The central thesis of the Waldo paper is that local and remote computing are just plain

different, and should be treated as such. They argue that distributed systems should

be built with the premise that there are two distinct types of objects: local objects and

Von Neumann
Machine C

Von Neumann
Machine A

Von Neumann
Machine B

Operating System Operating System

Network
Stack

Operating System

Network
Stack

Network
Stack

Distribution Infrastructure

Plane of Transparency

Component C Component A Component B

Inter-component
communication

On the Structuring of Distributed Systems Towers of Babel

 39

remote objects. Although Waldo et al identify the key differences between local and

distributed computing, their discussion of why these make distributed computing

different are pragmatic. The differences are eloquently stated, but there is no reason

given for exactly why these differences are evident, just that they are – and that the

two types of computing should be treated differently. In this part of the thesis, we go

further and present an argument as to the cause of these differences.

We have seen that IPC was an ideal abstraction for interacting processes within the

same vNM. Its success was built on the fundamental elements of a vNM, i.e. a single

memory (that could be shared), a single CPU and local files (I/O). RPC attempts to

take this effective abstraction and make it apply to many vNMs, by making location

transparent. This is similar to many contemporary distribution infrastructures.

Indeed, the stated goal of the Millennium experiment undertaken at Microsoft

Research is:

“… to eliminate completely the distinction between distributed and local

computing … by raising the level of abstraction so that programmers are not

even aware of distribution” [MSR98]

However, practice has shown that this approach is fraught with difficulties [Waldo94],

and the discontinuation of this project serves as a clear indication.

Certainly then, there are two diametric views as to how we may build reliable

distributed systems.

1] Use an abstraction that completely removes any knowledge of location

2] Use an abstraction that views remote and local objects as completely different

This thesis supports the assertions of Waldo et al, i.e. that we should treat local and

remote objects differently. However, we go further and argue that the fundamental

reason that RPC, and thus contemporary distributed systems based on the RM-ODP

abstraction, suffer from the problem mentioned above is because of the underlying

abstraction they embody. The RPC abstraction pays little regard to the supporting

layers beneath it; rather it attempts to strike out on a new course of its own and is

unsuitable for the underlying hardware substrate. Instead of continuing the long line

of abstractions that have served so well, RPC attempts to impose an abstraction that is

perfect for one vNM onto many. It pays little attention to the underlying hardware

On the Structuring of Distributed Systems Towers of Babel

 40

abstraction, which as we have seen is the vNM. RPC has broken the abstraction

tower, and it is this fact that causes the acute problems associated with distributed

systems that Waldo et al have identified. While the RPC approach has been, and

continues to be, useful under certain circumstances, it no longer supports the type of

distributed system we wish to build in today’s networks with current software

engineering techniques and technologies.

2.7 Concluding Remarks

“It can be argued that RPCs should not be entirely transparent as their

semantics and performance differ from those of local procedure calls.”

[Colouris94]

“… a number of distributed systems have attempted to paper over the

distinction between local and remote objects [and failed]. These failures have

been masked in the past by the small size of the systems.” [Waldo94]

As computers have become more prevalent, and the resources they represent the

lifeblood of business, we have developed methods for connecting computers and

enabling them to communicate with each other. Once communication was achieved it

was only natural that we pursue techniques for building software systems that span

multiple hosts, allowing us to harness the additional power and multiple resources

made available.

In this chapter, we have examined the emergence of distribution, and traced the

evolution of abstractions used to build networks. Networks are an essential

constituent of distribution, they enable communication between computers. They are

the substrate over which distributed systems can be built. Next, we have examined

the evolution of abstractions used in contemporary distributed systems. We have seen

how RPC attempts to extend the extremely successful IPC abstraction, ultimately

leading to the location transparency abstraction, embodied in many contemporary

distributed infrastructures. In effect, these infrastructures attempt to create a virtual

von Neumann machine. This approach has been shown to be unreliable.

The central thesis in this chapter is that by attempting to create the illusion that all

components exist within the same machine, location transparency is breaking the

On the Structuring of Distributed Systems Towers of Babel

 41

layers of abstractions upon which computing has been built since the dawn of

computing. The abstraction is unsuitable for the underlying computational machine

upon which it must execute. We need new techniques and abstractions for distributed

computing that do not break our layers of abstraction, rather they continue to

appreciate what has preceded them, and are suited to the underlying computational

machine. In the next chapter, we review mobile code, a new technology that promises

to fulfil these requirements.

On the Structuring of Distributed Systems Mobility

 42

3 Mobility

3.1 Introduction

Code mobility is not a completely new idea. There have been several widely used and

successful mechanisms for moving code around a network previously employed,

perhaps the best known being the PostScript language [Adobe85] that is used to

control printers.

Recently though, mobility has been examined from a different perspective, and has

become a burgeoning topic for discussion in mainstream distributed systems research.

Mobility currently boasts a flourishing research community dedicated to investigating

the potential of this new paradigm [Mobility99]. So far in this thesis, we have built an

argument against using location transparency, the abstraction embodied in

contemporary distributed systems. We have identified the need for new abstractions

for distribution, which are entirely suited to the underlying computational machine,

and are able to distinguish between local and remote resources.

In this chapter, we conclude Part I of the thesis, the philosophical argument

concerning the abstractions employed in building distributed systems. We begin by

reviewing mobile code abstractions and examining the differences between systems

built with these abstractions and contemporary distributed systems. Finally, we

discuss what makes mobile code systems different, and why the abstractions they

embody are more suited to distribution than location transparency.

3.2 A Brief History of Code Mobility

There have been previous examples of code mobility. One of the earliest being

remote batch job submission [Boggs73]. Employed at the time of hugely expensive

central mainframes, batch job submission allowed users to submit code for execution

on the server. Although working at a very basic level, this technique was a mainstay

of computing life when both processor time and core resources were scarce. In effect,

batch job submission allowed computation to be moved from one location to another

to take advantage of local resources, although the movement required manual

intervention by the user.

On the Structuring of Distributed Systems Mobility

 43

This basic concept was the seed for further research, and out of it grew projects such

as Accent [Rashid81] and RIG [Rashid86], which culminated in the MACH

[Accetta86] operating system. These were experiments in building distributed

operating systems, which attempted to present the same abstractions regardless of the

underlying hardware substrate. Latterly, this work has been embodied in migratory

systems such as Locus [Thiel91] and Cool [Lea93], which support process and object

migration respectively. Both systems provide mobility at the operating system level,

and therefore any migration is transparent to the user and system programmer. As

argued in Chapter 2 though, complete transparency can be counter-productive.

Certainly, the designers of Emerald [Jul88] concur, as they offer the programmer

explicit control over migration, as well as automatic migration.

Thus far, the techniques described have been positioned at the operating system level

and are particularly useful when dealing with small scale distributed systems. They

do not tend to be suitable for large-scale networks and systems, particularly those of

the scale of the Internet, and have mainly been used for techniques such as load

balancing [Picco98]. Although process migration never took off as a commercial

reality, the research was widely regarded as successful [Milojicic99].

The notion of mobile computation at a higher level of abstraction was first suggested

in “Objectworld” [Tsichritzis85], a hypothetical computing environment geared

towards information dissemination in which all objects could be mobile. This, and the

ideas embodied in migratory systems have spawned a new field of research that is

investigating similar solutions but on a much larger scale and at a higher level of

abstraction. This field has many names, amongst them mobile code systems, mobile

object systems, active networks and mobile agents. For the remainder of this thesis,

we use the terms interchangeably unless explicitly stated otherwise. Unfortunately,

there is still no consensus among the mobility research community as to what exactly

each term refers to, or a standard definition for each to which everyone subscribes.

Therefore, in this thesis we define a mobile agent as:

“a software agent that is able to autonomously migrate from one host to

another in a computer network.” [Papaioannou99]

On the Structuring of Distributed Systems Mobility

 44

The notion of a mobile agent was first established in 1994 with the release of a white

paper by White [White94] that described a computational environment known as

“Telescript” [White96]. In this environment, executing programs were able to

transport themselves from one node to another in a computer network, in order to

interact locally with resources at those nodes. Telescript was never a commercial

success, but it did generate a lot of academic interest.

Since that time, this field has exploded in popularity, with a plethora of new

frameworks and infrastructures appearing almost continually [MAL99]. This

profusion of experimental frameworks is reminiscent of the explosion of new

programming languages in the early days of computing (see Chapter 1) and is

indicative of a new and immature research field. Although we review some of the

more popular mobile code systems in the next chapter, to fully understand this new

paradigm we must first examine the differences between contemporary and mobile

code based distributed systems.

3.3 The Differences

In Chapter 2, we saw that the central tenet and abstraction of contemporary distributed

systems is location transparency, with inter-component communication being

achieved via an intermediary communications broker. For both the programmer and

the system components, this abstraction provides no notion of location. Instead, the

distribution infrastructure enforces a “plane of transparency” in an attempt to create a

virtual computational machine above the network layer. The abstraction hides any

details of the underlying hardware, and attempts to create the illusion that every

component of a distributed system exists within the same computational machine.

Unfortunately, this approach is subject to the many problems identified by Waldo et

al (see Section 2.6). This thesis argues that the location transparency abstraction is

fundamentally flawed, as it breaks the Tower of Abstractions by attempting to impose

an unsuitable abstraction on the underlying computational substrate.

Distributed systems built around the tenet of mobile code are quite different. Instead

of masking the physical location of a component, mobile code infrastructures make it

evident. These systems embody a completely different abstraction. Each node in the

network has an Executing Environment (EE) through which components are able to

On the Structuring of Distributed Systems Mobility

 45

access the facilities of the network layer. These facilities can then be used to

communicate with other remote components as normal. However, if components

require access to a resource that is not located at their current host, or wish to interact

locally with another component, they are able to migrate to the new host. In Figure

13, we see examples of the mobile code paradigm. Component A is in

communication with Component B, both of which have references to local resources.

However, in contrast to contemporary distributed systems, A requires explicit

knowledge of the location of B so that they may communicate. There is no request

broker to mediate the communication. Component C is separate, and demonstrates

the mobility aspect of this approach. Instead of communicating with a data source

across the network, C is able to migrate to the data source’s host, and interact with it

locally. In a contemporary system, C would not even be aware that the data source

resided on a different host.

Figure 13. Communcation across the network, and mobile agent migration.

The major differences between mobile and contemporary distributed systems are well

described by Picco [Picco98] and are summarized here:

• Code mobility is geared for Internet-scale systems – systems such as Emerald and
Locus were designed with small-scale networks in mind. Thus, they assume high

Reality

Software View

EE A

Component A

Component C

EE B

Component B

Component C

vNM B

Component B

Component C

vNM A

Component A

Component C

Component
migration

Component
Communication

On the Structuring of Distributed Systems Mobility

 46

bandwidth, reliable networks, small latency, trust, and homogeneity. Mobile agents
on the other hand are built with the opposite criteria in mind.

• Programming is location aware – mobile agent systems provide an abstraction in
which the notion of location is available to the programmer and the constituent
components of the system.

• Mobility is a choice – migration is controlled by the programmer or at runtime by the
agent, instead of being triggered transparently by the system.

• Load balancing is not the driving force - process and object migration operating
systems were primarily designed to assist with resource and load balancing. Mobile
agents are used to design systems supporting flexibility, autonomy and disconnected
operation.

Mobile code is a powerful programming abstraction offering many possibilities. To

fully appreciate and employ successfully, it is important to understand all the nuances

of the different architectural abstractions afforded to the system designer. In the

following sections, we describe the different flavours of the mobile code paradigm.

3.4 Mobile Code Design Abstractions

To discuss differences in design abstraction we require a context in which to examine

each abstraction. Further, we must define common concepts that may be used to

perform our analysis. In the following examples, Components are the constituent

parts of a software system. They execute within an execution environment at a

particular Host. Components may contain Logic, an encapsulation of the knowledge

required to perform a certain Task. Completion of this task may also require access to

a Resource. Components may interact with each other via Message passing, in which

each message may contain pure data, logic or both. In addition, components are able

to migrate to a new host if they so desire. Examples of each abstraction are shown in

Figure 14.

3.4.1 Remote Computation

In remote computation, components in the system are static, whereas logic can be

mobile. For example, component A, at Host HA, contains the required logic L to

perform a particular task T, but does not have access to the required resources R to

complete the task. R can be found at HB, so A forwards the logic to component B,

which also resides at HB. B then executes the logic before returning the result to A.

This is how the aforementioned remote batch entries [Boggs73] work.

On the Structuring of Distributed Systems Mobility

 47

Figure 14. Examples of the different mobile code abstractions.

3.4.2 Code on Demand

In Code on Demand, component A already has access to resource R. However, A (or

any other components at Host A) has no idea of the logic required to perform task T.

Thus, A sends a request to B for it to forward the logic L. Upon receipt, A is then

able to perform T. An example of this abstraction is a Java applet, in which a piece of

code is downloaded from a web server by a web browser and then executed.

3.4.3 Mobile Agents

With the mobile agent paradigm, component A already has the logic L required to

perform task T, but again does not have access to resource R. This resource can be

found at HB. This time however, instead of forwarding/requesting L to/from another

component, component A itself is able to migrate to the new host and interact locally

Host A

Host B

Host B

Host B

Host B

Host A

Host A

Host A

Component A

L R

Component B
L

L

Component A

L R

Component B

L L

Component A

L R

Component A

L

Component A

R

Component B

L

Remote Computation

Code on Demand

Mobile Agents

Client Server

Message between
communicating
components

Mobile agent migration

On the Structuring of Distributed Systems Mobility

 48

with R to perform T. This method is quite different to the previous two examples, in

this instance an entire component is migrating, along with its associated data and

logic. This is potentially the most interesting example of all the mobile code

abstractions. There are currently no contemporary examples of this approach, but we

examine its capabilities in the next section.

3.4.4 Client/Server

Client/Server is a well known architectural abstraction that has been employed since

the first computers began to communicate. In this example, B has the logic L to carry

out Task T, and has access to resource R. Component A has none of these, and is

unable to transport itself. Therefore, for A to obtain the result of T, it must resort to

sending a request to B, prompting B to carry out Task T. The result is then

communicated back to A when completed.

3.4.5 Subtleties of the Mobile Agent abstraction

Although all of the mobile code abstractions are ostensibly similar, there are some

fundamental differences, which have substantial implications for which particular

abstraction to employ. In this section, we highlight one of the key issues that

differentiate the abstractions, multi-hop mobility. Multi-hop mobility refers to the

ability of a mobile agent to migrate to more than one host, taking action at successive

hosts in order to fulfill some goals. The destination of the next host may only be

determined at the present host, and does not have to be known at the outset of the

journey. In contrast, the other mobile code abstractions are utilized at best as mobile

messengers, that do not continue to further hosts once they have performed their tasks,

or at worst as techniques for shipping code around a network. For example, let us

hypothesize a situation where a BookAgent has queried all StoreFrontAgents and is

unable to fulfil its Order. It then has to contact the WarehouseAgent to ask whether a

copy can be allocated from there, or when the next copy will arrive. In a

contemporary client/server architecture, this would require many calls to remote

processes before the task had been complete. Each time a call is made across the

network the system runs the risk of the Waldo problems. On the other hand, a mobile

agent is able to migrate from host to host, and interact with the StoreFrontAgents

locally, before finally arriving at the host of the WarehouseAgent. Once there, it can

On the Structuring of Distributed Systems Mobility

 49

begin a new dialogue with the WarehouseAgent to establish when the required book

will become available. This scenario is depicted in Figure 15 below.

Figure 15. Network routing of Client/Server and Mobile Agent architectures

From these diagrams, it is evident that a mobile agent architecture involves less

recourse to network communication than a client/server architecture in this particular

scenario. In addition, each time the mobile agent is using the network it is to transport

itself, not make a remote call to a component on another machine. If we imagine that

each interaction entailed more than a simple request/reply dialogue then the

client/server diagram would quickly become littered with communication arrows,

whilst the mobile agent one would remain identical. The ability to move the

computation to the data source and continue locally is one of the biggest advantages

of mobile agents.

3.5 Characterisation of Mobile Agent Systems

Although we have examined several abstractions that are part of the mobile code

family, the one with the greatest potential is undoubtedly the mobile agent abstraction.

In this thesis, mobile agent systems will be characterised as enabling distributed

systems by supporting local interaction and mobile logic and data.

Figure 16. Mobile logic and data in the Mobile Agent Abstraction

This is very different to the characterisation in Section 2.5 of the messaging in a

distributed system built with the location transparency abstraction.

Client

 Message

Server Data Logic

Path of
Communication

Client Server Architecture

BA

SFA SFA SFA

WA BA

SFA SFA SFA

WA

Mobile Agent Architecture

Path of mobile
agent

On the Structuring of Distributed Systems Mobility

 50

3.6 Commentary

In Chapter 1, we traced the evolution of computing from the early work of von

Neumann through to the present day. We followed the emergence of computing

abstractions, and saw how those we employ have been gradually layered upon each

other, forming a continually ascending tower of abstractions, whilst retaining as their

underlying computational model and base abstraction the von Neumann machine.

In Chapter 2, we examined the emergence of distribution. We saw how RPC attempts

to extend the successful abstraction of IPC onto many computational machines by

promoting location transparency, an abstraction that would manifest itself in

distributed systems built around the tenets of RM-ODP. Ultimately, distributed

systems built with this abstraction suffer from several major problems (see Table 3).

We have argued and demonstrated that this is due to the location transparency

abstraction breaking the Tower of Abstractions that has been built to enable and

support computing. In short, we argue that location transparency is an unsuitable

abstraction for distribution for the underlying computational model.

In this chapter, we have reviewed a new paradigm, with new abstractions, that

potentially fulfils the requirements for a distribution abstraction put forward earlier in

Chapter 2. Our requirements may be summarised as follows.

A distribution abstraction:

• that remains faithful to the underlying von Neumann machine

• that does not break the tower of abstractions

• that is able to differentiate between local and remote components

It is precisely these requirements that the mobile code paradigm fulfils. As we have

seen, its central tenet is one of local interaction. Components in a distributed system

that wish to communicate are able to transport themselves across the network so they

may interact locally at the same host. In addition, components are also able to

communicate by exchanging messages across the network.

In each case, the core abstraction remains faithful to the underlying von Neumann

machine and the Tower of Abstractions. Instead of attempting to remove location

from the abstraction, and build a virtual computational machine, mobile code makes

On the Structuring of Distributed Systems Mobility

 51

location evident. It is a central aspect of the abstraction, and enables designers to

make a judgement on how components might communicate. Indeed, the execution

environment of a mobile code system may itself be viewed as an additional virtual

computational machine being added to the Tower, but it remains consistent with the

underlying base abstraction. By ensuring that any protracted communication is done

locally, components are able to return to the successes of IPC by taking advantage of

the core facilities of the vNM, e.g. shared memory and files. Instead of attempting to

achieve distribution by imposing an unsuitable abstraction across many machines,

mobile code simply layers a new abstraction upon the existing tower; a time honoured

route to success. In fact, we argue that local interaction as embodied in mobile code

systems should be viewed as a successful adaptation of IPC to distribution.

Figure 17. A distributed system built with mobile code

In Figure 17, we see the same hypothetical distributed system that was first

encountered in Chapter 2. However, this time the system has been built with the

mobile code paradigm. Again, each process has access to certain resources, but this

time there is clear knowledge of the location of each resource, i.e. in which vNM it

resides. Local references are shown in yellow, whilst remote references are shown in

red. Knowledge of the location of a resource, allows each component to make a

judgement about the type of reference it holds to that resource. In comparison to the

RM-ODP version of this model, there is no illusion being created by the “plane of

transparency”. While network references may still suffer from the problems depicted

in Table 3, the components themselves are aware that this is a potential problem. In

Von Neumann
Machine C

Operating System

Network Stack

Executing
Environment

Von Neumann
Machine B

Operating System

Network Stack

Executing
Environment

Von Neumann
Machine A

Operating System

Network Stack

Executing
Environment

 Component B Component A Component C

On the Structuring of Distributed Systems Mobility

 52

addition, if a component decides it would be beneficial to be located at the same host

as a resource it may migrate to take advantage of local interaction. For example, in

the case of component C, when it has finished interacting with the green cube, it may

migrate to vNM A to communicate locally with the red triangle.

The major conceptual difference between the two distribution abstractions is clear,

location. With location transparency, location is removed from the abstraction and a

virtual computational machine is created which attempts to create the illusion that all

components in a system reside within the same address space. The illusion, however,

can be shattered by any number of problems associated with trying to create a rock

solid abstraction across the network.

In contrast, local interaction makes location evident and components are able to make

a judgement themselves about how to communicate with other components. It is this

fundamental difference that the author believes is vitally important. In Chapter 1, we

discussed how abstraction is an immensely powerful tool. It allows us to manage the

complexity of a situation, and to rationalise about it by removing those details we

consider inessential. It is the author’s belief that when it comes to distribution,

location is a vital piece of information. We are no longer attempting to build

distributed systems in networks in which location can be papered over, in which the

size of the system can mask the fallacies in the paradigm. We are now building large

systems in which the network is unreliable, in which the topology of the network or

availability of resources may change rapidly. In such an environment, information

about location becomes essential. If we examine perhaps the most successful

distributed system of all time, the Internet, we see that location is central to its

success. The URL [Berners-Lee92b] abstraction is purely a reference to location, but

has been fundamental to the evolution and success of the web. We must learn from

these lessons.

3.7 Concluding Remarks

“Keep design as simple as possible, but no simpler” [Einstein39]

"A designer knows that he has arrived at perfection not when there is no

longer anything to add, but when there is no longer anything to take away”

[Antoine de Saint-Exupery]

On the Structuring of Distributed Systems Mobility

 53

We have seen throughout Part I of this thesis how important abstraction is to

computing. It is the central essence of an idea or design. Abstractions allow us to

remove the details and focus on the essence of a situation. Any specific example of a

technology is merely an instantiation of the abstraction. The majority of the history

and evolution of computing has been concentrated on the development of new

abstractions. Our current abstractions for distribution have proved limiting and

unreliable. We require new abstractions to support distributed computing on a

hitherto unforeseen scale. Mobile Code systems are one such solution.

In Part I of this thesis we have built a philosophical argument concerning the

abstractions used in building distributed systems. It is our belief that the location

transparency abstraction, as embodied in the RM-ODP model, is fundamentally

unsuited to the underlying hardware substrate. Instead of attempting to utilise the

strengths of preceding abstractions, location transparency enforces a “plane of

transparency” whose purpose is to create the illusion of co-location and to mask any

details of distribution from components in the system. The abstraction views location

as a detail that can be removed.

Local interaction on the other hand remains faithful to the core abstraction, and makes

use of the core facilities embodied in IPC. Instead of masking location, it makes it

evident. Communicating components are aware if they are local or remote to each

other, and are able to make a judgement about how to communicate. By utilising the

strengths of the von Neumann machine and the network, the local interaction

abstraction allows us to build distributed systems that do not suffer from the Waldo

[Waldo94] problems.

The central argument of Part I is that local interaction should be the abstraction of

choice for building distributed systems. In hindsight, we should view location

transparency as an evolutionary blip, a wrong fork in the road. If we are to build

successful distributed systems in the myriad of new networks, we must be bold and

admit our mistakes of the past.

Part II

Using and Evaluating

On the Structuring of Distributed Systems Mobility in the Real World

 55

4 Mobility in the Real World

4.1 Introduction

Mobile Code is a new and generally untested paradigm for building distributed

systems. Although garnering many plaudits and continually increasing in popularity,

the technology and research field remain relatively immature [Picco98]. To date,

most research has focused on the creation of mobile code frameworks, and as yet

there is no consensus on a conceptual framework with which to compare results.

Further, there is no clear understanding of the new abstractions offered by this

paradigm. Part I of this thesis aspires to address the conceptual deficiencies of the

research field by offering a philosophical argument and critique of mobility.

In Part II we begin our study of mobility in the real world. In later sections of the

chapter, we will see that there are many advantages claimed for mobile code systems.

Unfortunately, these claims remain qualitative and subjective in their nature. The

dearth of quantitative results, however, means it has not yet been possible to properly

evaluate the potential of either the technology or the paradigm. In the last year a

trickle of results is beginning to validate some of the claims [Papastavrou99]

[Picco98b], and these results are certainly important in establishing the credibility of

mobile code systems. Nonetheless, it is the author’s belief that these types of

improvement are optimisations, or incremental improvements. The true benefit of the

paradigm is in the type of software architecture that can be built. In support of our

arguments presented in Part I, in Part II we provide an insight into how well mobile

code architectures respond to real world pressures.

4.2 Research Motivation

In Part I, Understanding, we have presented an argument built around a philosophical

understanding and critique of the abstractions used to build distributed software

systems. The central thesis is that contemporary distributed systems built with the

location transparency abstraction are fundamentally flawed and that we require new

abstractions for distribution. Our proposal is that a new abstraction, local interaction,

is better suited to the underlying hardware substrate upon which distributed systems

are built. To demonstrate this we have traced the emergence and evolution of

On the Structuring of Distributed Systems Mobility in the Real World

 56

computing, and the abstractions that exist in this field, beginning with the early

pioneering work of John von Neumann. We believe that Part I contributes to raising

the level of conceptual understanding surrounding the mobile code paradigm,

especially when examined in the wider context of the different abstractions embodied

by distributed systems.

Although we believe the essence of any technology is the core abstraction it

embodies, we understand that pure academic reasoning is never sufficient to make a

valid judgement about a new technique or technology. What is required is first hand

experience. Therefore, in addition to our philosophical argument, we aim to support

these arguments by investigating the application of mobile code in the real world. We

wish to demonstrate the feasibility of actually building distributed systems with this

technology. Certainly, the arguments presented in Part I are extensive, and a full

experimental investigation is beyond the scope and timescale of a PhD6. Instead, we

must shorten our horizons and take the first steps along the long path of validation.

Part II is therefore a report on our experiences of Using and Evaluating mobile code

in the real world.

As we have seen, the technology base in the field of mobile code remains immature.

Whilst the plethora of new frameworks continues to increase, the amount of real

distributed systems built with this technology remains low [Milojicic99]. Although

abstractions are the central essence of a paradigm, the technological instantiation of

that abstraction must successfully embody it. To support our argument of Part I, we

must prove that mobile code can be used to build real world systems. Thus, our

research motivation is to investigate and use mobile code, as it would be in the real

world, and to analyse the issues involved and the lessons that can be learnt.

In Chapter 3, we described the choice of design abstractions available to the system

architect who wishes to employ mobile code. These were Remote Computation, Code

on Demand, Mobile Agents and Client/Server. Since many examples of Code on

Demand currently exist [Hopson96], and Client/Server architectures are an extremely

well known approach, we feel these abstractions are of less interest to this study.

Therefore, the implementation described in this thesis will encompass prototype

6 Indeed, an entire academic career could be pursued with these arguments!

On the Structuring of Distributed Systems Mobility in the Real World

 57

systems of the Remote Computation and Mobile Agent abstractions. We have gained

an understanding of each abstraction, and have been able to compare the two. For

ease of use, and because of the conceptual abstraction they support, from herein we

refer to the former as the Mobile Object system, and the latter as the Mobile Agent

system.

4.2.1 Research Objectives

As the software systems that underpin industry have become ever more complex and

interlinked, the inherent flexibility of the underlying software designs has been

compromised. On the small scale and under the right circumstances software systems

can be extremely responsive, flexible and easy to change, for example the existence of

the requisite skills. Therefore, matching a change in business practice should not be a

problem. However, when examined in the large this is not the case. As observed by

Cox:

"There was a time when the virtue of software over physical media like paper

and pencil was in its very responsiveness … Although this may be to some

extent true for small projects (program building), it is not (and has never

been) true for ambitious undertakings (system building). In fact, software

systems are usually the least responsive element in many organisations today.

The organisation as a whole is able to adapt more fluidly than the software

upon which it has grown dependent.” [Cox87]

Recent experience has shown that attempts to create large scale supporting

infrastructures have resulted in complex monolithic systems that are the least flexible

element within an enterprise [Barber98]. Most companies require a change in their

software at some point, and so software change is one of the most important issues

currently facing the software industry [Booch94]. A software system will have a

limited lifetime if it cannot be altered to accommodate a change in the business

process it is intended to support.

This issue is well known to the software engineering community, and in this thesis we

refer to it as System Agility. There already exists a substantial body of work relating

to the issue of system agility, e.g. [ICSE’99], and the full variety of issues is vast. We

On the Structuring of Distributed Systems Mobility in the Real World

 58

cannot hope to consider them all in our experimental study, so we initially select two

broad but vitally important factors on which to focus:

1] How easy the system is to understand

2] How easy it is to modify

These are still broad issues, with many factors contributing to each, so we refine our

focus even further. To represent each facet, we have selected the specific issues of

Semantic Alignment (SA) and Component Coupling (CC). System integration and

agility has been one of the main issues of research at the MSI Research Institute for

nearly a decade, and therefore SA and CC augment the research undertaken by other

members of the institute [MSI99] [Coutts98b]. In the next sections, we briefly review

both concepts.

4.2.2 Semantic Alignment

The ability to communicate ideas clearly and effectively was a concern for the human

race even before written records began [Pinker95]. Whenever two people talk, they

have only an approximate understanding of each other. When they speak the same

language, share intellectual assumptions, and have common backgrounds and training,

the alignment may be closer. As these factors diverge, there is an increasing need to

put effort into constant calibration and readjustment of interpretations, since ordinary

language freezes meanings into words and phrases, which then can be

"misinterpreted" (or at least differently interpreted). Clear communication requires a

shared understanding of the meaning of terms; and this understanding is known as

Semantic Alignment [Clark96]. While this term has its roots in linguistics, it is also

applied to software engineering. For example, if information is being shared between

two company databases that have a table for "employee," they are apparently in

alignment. However, if one was created for facilities planning and the other for tax

accounting, they may not agree on the status of part-time, off-site, on-site contract, or

other such “employees.”

A software system is invariably built to support a business process. Therefore, in the

context of system agility we define Semantic Alignment as:

On the Structuring of Distributed Systems Mobility in the Real World

 59

“Semantic Alignment refers to how successfully a software system embodies

the real world business process is it intended to support, i.e. how well the

software models the real world.”

For example, if in the real world a business process contained the concepts of Apples,

Oranges, Potatoes and Tomatoes, but the software model only contained the concept

of Food, then this system would not be as successfully aligned as a system that

contained the concepts of Fruit and Vegetables.

4.2.3 Component Coupling

Component Coupling was first defined in the 1970’s by Constantine and Yourdon

[Yourdon79]. It is a technique for measuring the inherent maintainability and

adaptability of a software system, both of which are important issues that directly

affect the overall agility of a software system. In short, component coupling measures

the dependencies between two software components, i.e. how many times a

component depends on the functionality of another object to perform its role. It is

considered desirable to limit the number of inter-object dependencies in a system,

since this not only affords greater flexibility to the designer during construction, but

also ensures the system remains easy to change in the future. Therefore, the objective

of a designer is to limit these dependencies, thus making the system "loosely"

coupled, so that objects can be interchanged or updated more easily.

The benefits of loose coupling are potentially huge and include [Clark96]:

• Higher component reuse

• Higher productivity

• More robust systems, since failures cascade less

• Fewer bugs, as increased reuse means what is reused needs less testing.

• Complex systems become easier to alter, due to higher component reuse.

• Easier component enhancement, modification and bug fixing

Coupling is usually associated with cohesion [Yourdon79], which is a measure of the

inter-relationships between functions of a single component. Since our study is to

examine distributed systems, we feel cohesion is of secondary interest in this case.

Therefore, we concentrate on how component coupling is affected by the choice of

mobile code abstraction, and define coupling as:

On the Structuring of Distributed Systems Mobility in the Real World

 60

“A measure of the external dependencies of a component defined by the number

of links that component has to other components within a software system.”

4.3 Research Statement

The main aims of the research undertaken in Part II can be summarized as follows:

1] To demonstrate mobile code can be used to build real world software systems

We describe the construction of two prototype mobile code systems. They are used to

investigate the effectiveness of the two selected abstractions in building real world

distributed systems. To simulate real world software problems the prototypes are

constructed to support the Sales Order Process of a UK manufacturing enterprise.

This real world business process was identified during an industrial case study (for

further details see Chapter 5).

2] To learn how mobile code responds to real software problems

Merely building proof-of-concept systems is a worthy exercise, but systems in the real

world very rarely fulfil all the requirements of a business for any length of time. In

the majority of cases, the capabilities of a software system will need to be later

upgraded to support new functions or features, usually due to a change in a business

process. In addition to their creation, we aim to evaluate the prototypes with respect

to the issues of understanding and changing a system that currently confront system

designers. To achieve this we have extracted several “Scenarios for Change” from

data collected during our case study, which will be used to evaluate how well the

prototypes respond to change. Three common and related problems facing the

software industry today have been identified as candidates for examination. These

are:

• System agility – how well a system responds to change

• Semantic alignment – how well a system embodies the business process it is
intended to support

• Component coupling - how intermeshed the components of a software system are

From the experiments, we hope to gain an insight into how successful mobile code

systems are when subjected to the kinds of pressures prevalent in industry.

On the Structuring of Distributed Systems Mobility in the Real World

 61

However, before proceeding with the construction of the prototype systems, it is

important to first examine the technical issues associated with using mobile code. To

support our philosophical understanding, we must also appreciate the requirements

and consider the limitations of mobile code infrastructures before employing them.

For the remainder of this chapter we focus on issues relating to mobility in the real

world.

4.4 Technical Issues and Enabling Technology

We have seen in Chapter 3 that distributed systems built with mobile code technology

usually consist of execution environments that are hosted at different nodes of a

network. Mobile agents are able to migrate between these hosts in order to interact

locally with static resources and other static agents resident at the hosts. This hosting

and migration can be achieved through several different mechanisms, and

combinations thereof. In this section, we examine several of the key issues and

decisions that must be taken when implementing and using a mobile agent framework.

4.4.1 Strong vs Weak Mobility

The terms strong and weak mobility refer to the method and nature of the mobile

agent migration. In strong mobility, the entire computational entity, i.e. its code, data,

execution state and program counter migrate to the new host. There are two ways of

achieving this, firstly by true migration and secondly by remote cloning. With true

migration, the mobile agent is suspended before being transferred in its entirety to the

new host. Upon arrival, the agent is restarted and is able to continue its execution at

exactly the point at which it was suspended. Remote cloning on the other hand

achieves migration by stopping the entity at the first host before creating a copy at the

new host. Indeed, some might argue that since computers can only copy and delete

[Cox98], both methods are actually the same. Some important examples of mobile

agent frameworks that exhibit strong mobility include Agent Tcl [Gray97], Ara

[Peine97] and Telescript [White].

Weak mobility on the other hand is only able to migrate the code associated with the

entity across the network. Any state or non-constant data that is required by the entity

must be packaged up for travel before migration. The onus of this packaging is

On the Structuring of Distributed Systems Mobility in the Real World

 62

placed upon the programmer at design time. Weak mobility is generally easier to

achieve technically, especially with programming languages such as Java available,

but is burdened by its limitations when complex applications are considered. The

programmer must be fully aware of any data that may be required after migration and

take care to package it, or it will be lost. The majority of (if not all) mobile agent

frameworks based on Java are weakly mobile (see Section 4.6. for examples)

4.4.2 Interpretation vs Compilation

By their very nature, mobile agents are inherently distributed [Clements97]. As such,

they must be executable across a variety of platforms and operating systems to

achieve their full potential, although in a closed and privately controlled network they

may benefit from homogeneity. Their true advantage however, comes from being

able to migrate and continue functioning in a heterogeneous network of systems. This

advantage is implementation dependent and has greatly influenced the way in which

mobile agent systems are created. To enable heterogeneous execution it is usual for

these frameworks to be written in some type of script or bytecode that can

subsequently be interpreted, usually by a dedicated executing environment. Indeed,

the spiralling popularity of Java, combined with its platform independence, has made

it the de facto language for mobile agent systems. Interpretation removes the need to

recompile an agent at a new host and instead places the onus on merely ensuring an

environment exists at the new host that is capable of uniformly executing the agent on

arrival. Most examples of this type of system have a server or some type of executing

environment in which the mobile agents are executed [Lange98][Gray97].

Interpretation does of course have the previously discussed limitation of execution

speed, but this is often seen as a minor trade-off, due to the ease in which portability is

achieved.

Compilation is not particularly popular in the field of mobile agents, since it forces the

sending machine to be aware of the platform and hardware architecture of the

receiver, so that it may choose the appropriate compiler or the appropriate library of

native code. As the number of different platforms being supported increases the

complexity is wont to spiral out of control. Compilation does however have the

advantage of speed of execution. Some examples are [Knabe96] [UCI96].

On the Structuring of Distributed Systems Mobility in the Real World

 63

4.4.3 Resource Management

When a mobile agent migrates to a remote host, any references it has to local

resources are likely to become invalid. Before execution can be resumed, all its

references must be evaluated and reassigned. This problem can be overcome in a

number of ways:

• Copy - If the resource can be copied, then the mobile agent can take a copy of the
resource with it to the new host.

• Move - The mobile agent can take the only copy of the resource along with it.

• Network reference - If the resource is static, then the reference can be changed into a
network reference that points back over the network to the resource.

• Reference removal – If the reference is no longer needed, or cannot be accessed
remotely via a network reference, it can be removed.

• Rebinding of reference – If another copy or instance of the resource, or a similar
resource, is found at the new host, the reference can be rebound to it.

Which tactic to adopt is often determined by the nature of the resource in question,

and the programming language being employed. For example, it would be

nonsensical to copy or move an entire database to a new host.

4.4.4 Security

Security is one of the most emotive issues raised when discussing mobile agent

systems. It is often quoted [Johansen99] as the major reason mobile agent systems

have not taken off in the mainstream. There is currently a wealth of research being

done on this particular subject [Vigna98]. A brief summary of the most important

security issues are describe below in Table 4.

The work described in this thesis is concerned with private networks, in which all the

hosts and agents are trusted and their origins known. Thus, the only class of

applicable attack is that of a third party eavesdropping on a transmission. This could

be overcome by the usual cryptographic techniques employed in such exchanges as

email, for example. Therefore, the issues of security are considered external to the

scope of this thesis.

On the Structuring of Distributed Systems Mobility in the Real World

 64

Table 4. Summary of mobile agent security issues

4.4.5 Communication

Communication among mobile agents in a network can take several different forms.

Since there is no guarantee that there is actually another agent at the present node, the

most basic inter-agent communication usually begins by using the executing

environment to pass messages to another agent. This can be achieved directly, if the

agent’s identity is known, or can be broadcast to the entire node. Once the presence

of the agent is established, communication can then proceed more privately with both

agents being involved in a one-to-one dialogue.

Mobile agents are also able to communicate over the network, in a similar way to

traditional Internet applications, such as ftp, telnet, etc. Once again, the initial

establishment of a dialogue between agents is achieved via the hosting executing

environments. Communication with remote mobile agents does have associated

problems, caused by the mobility of the agent. Passing messages between two agents

requires some type of address, which refers to the receiving agent’s location.

Attacked Type of Attack Explanation

Host compromised by
arriving agent

An incoming agent may try to access and
corrupt the host’s local files, resources or even
try stopping the server in a denial of service
attack.

Host

Host compromised by
external third party

Someone who wishes to bring down the host
may send a huge number of agents to the host
to tie up all the resources, or even crash the
host

Agent is compromised
by the new host

If the host is untrusted it may try to access
private information, e.g. a credit card number,
a password, etc, for later use, or replay.

Agent is compromised
by another agent

During an inter agent conversation the other
agent again tries to access private information,
or to crash the agent to stop it fulfilling its task Agent

Agent is compromised
by a third party

Since some inter agent comm’n takes places
over the network a third party may try to alter
exchanged messages for their own benefit,
e.g. to recommend their host instead of
another, or to reveal content of agent

Network Network compromised
by incoming agent

An incoming agent attempts to flood the
network with copies of itself

On the Structuring of Distributed Systems Mobility in the Real World

 65

Obviously, this can cause problems if the receiver is able to move to a new location,

as the address is no longer valid. New techniques for overcoming this particular

problem are in the early phases of research and development, but include multicast

messaging, where a message is broadcast to the entire network, instead of just to the

local node.

At the higher levels of abstraction, communicating mobile agents will usually do so

by purely message passing. However, at lower levels of abstraction, for example

communicating mobile objects, some sort of remote procedure call mechanism is

usually provided, that allows objects to interact in the same manner as contemporary

systems.

4.5 Advantages Claimed for Mobile Code Systems

In the previous section, we examined several key technical issues that shape how we

may utilise and implement mobile code infrastructures. Simply understanding the

technological issues however, will not allow us to make an informed judgement of

this new technology. We must also understand what advantages mobility might

bestow upon distributed systems built with this new paradigm.

So far, there have been many advantages claimed for mobile agents

[Chess97][Lange99]. These claims are usually in the form of qualitative assessments

but unfortunately, very few quantitative measures exist to support these claims.

However, a summary of some of the more frequently quoted and accepted claims are

described in the following sections.

4.5.1 Bandwidth Savings

Distributed systems by their nature are required to communicate over the network.

This communication can sometimes be in the form of multiple consecutive

interactions between two components, for example, a query client and a database.

This type of data querying can result in heavy network traffic. Mobile agents are able

to overcome this problem by relocating to the host of the database. Instead of

shipping data back and forth across the network, they are able to migrate the required

business logic to the data source. Once in situ, they can perform any required queries

and process the returned information without saturating the network. After

On the Structuring of Distributed Systems Mobility in the Real World

 66

processing, they are able to continue with their work, transporting merely the result to

a new host, if it is in fact needed.

4.5.2 Reducing Latency

Many manufacturing and robotic systems must be controlled in real time. Controlling

these systems through a factory wide network can be affected by latency and data

timeliness. Mobile agents are able to overcome this problem by migrating to be local

to the process and control it in real time, thus bypassing the problems of latency.

4.5.3 Disconnected Operation

As the amount of Internet traffic increases, the response from the telecommunications

companies in installing new carrier infrastructure is immense [Kotz99]. Nevertheless,

this effort may still not be enough to satisfy the expanding base of users. Moreover,

many users will not have access to the high-speed bandwidth available to wealthy

corporations. Currently, most home users in the UK still connect via a modem and

copper telephone lines. Further, the proliferation of mobile devices, such as palm top

computers, which employ wireless networks implies that many users and devices will

be extremely limited in the bandwidth available to them. This disparity in quality of

connection means that performing tasks that require a continuous connection to the

network will be probably not be feasible financially, if not technically.

Mobile agents are a solution to this problem. A particular task can be encapsulated

within a mobile agent. The agent is then dispatched to a host that is part of the

network backbone, and enjoys massive bandwidth access. Once there, the mobile

agent is able to carry out its task in the resource rich environment before returning

home. A further advantage of this paradigm is that since the mobile agent is now

independent of the device, the device can go offline, or even be switched off, before

again connecting later for the agent to return with the results.

4.5.4 Increased Stability

One of the major problems with distributed systems is failure, and the identification of

the particular type of failure. Traditional distributed systems are built with the

philosophy that the network is permanent, and any failure is unexpected. When it

does happen it is very difficult to tell whether the network has failed, the machine that

On the Structuring of Distributed Systems Mobility in the Real World

 67

was hosting the component you were communicating with has died or the component

itself has frozen.

One of the underlying philosophies behind mobile agents is that the network is not a

permanent resource. By building software with mobile agents, distributed systems

can be less dependent on the network, since the underlying tenet is local interaction.

Discovering the nature of a failure in a local context is a much easier proposition, and

so systems built this way can be more stable. Mobility can also be used to achieve

replication for fault tolerance, and support robust distributed systems. If a host is

being shut down, or experiencing problems, an agent is able to react to this by

migrating to a new host where it can continue with its operations.

4.5.5 Server Flexibility

In contemporary distributed systems, when data is exchanged between

communicating hosts, each host owns a copy of the code that is required to package

outgoing and interpret incoming messages. As protocols are evolved to better support

efficiency and security, the effort required to upgrade protocols becomes immense.

By using mobile agents, the protocols can be encapsulated within the agents, and

removed from the servers. Thus, if a protocol requires an upgrade the mobile agent

population can be upgraded gradually as and when required, instead of the entire

server base.

Further, since mobile agents are able to carry around their own code, the distributed

system can become more flexible since the mobile agent is not merely limited to the

functions a server predefines. It is able to bring along new or improved code and can

extend the functionality of the server in which it is executing.

4.5.6 Simplicity of Installed Server Base

An additional advantage of relocating the computational logic and protocols within

the mobile agent is that the installed servers become much simpler. Effectively, a

server becomes merely an executing environment for hosting mobile agents. As this

requires far less functionality pre-engineered into the software from the outset, it can

help with preventing legacy. Further capabilities can be added by mobile agents at a

later date.

On the Structuring of Distributed Systems Mobility in the Real World

 68

4.5.7 Support distributed computation

Mobile agents are inherently distributed, and as such can be a fundamental enabler for

distributed computation. However, they are also heterogeneous, often separated from

both hardware and software dependencies by their executing environment. This

means they are an ideal technology for integrating disparate legacy systems that have

dependencies already.

4.5.8 Commentary

The advantages we have seen described for mobility are certainly exciting. Whilst

very few quantitative results exist to verify the claimed advantages, the overall picture

painted is one of a completely new paradigm for building distributed systems. Such is

the excitement that many research labs have already begun to produce mobile code

infrastructures [Lange98] [Concordia]. In later years, this initial group may become

known as 1st generation infrastructures.

As the mobile code research field has matured, a few quantitative measures are

beginning to be published [Picco98b]. Papastavrou et al [Papastavrou99] have shown

that using mobile agents to perform your database queries locally can have a dramatic

affect on system performance. Johansen has shown that bandwidth usage can indeed

be reduced by significant levels by using mobile agents when compared to traditional

client/server architectures [Johansen99].

It is the author’s belief, however, that the majority of advantages discussed in the

previous sections are merely optimisations. Many of these advantages could be

achieved with contemporary distributed systems, for example by redesigning

communications protocols. The true advantage of this new paradigm is the types of

distributed system that can be built: ones that do not suffer from the Waldo problems.

In the next section, we review some of the well-known frameworks to see how these

new abstractions are manifesting themselves.

4.6 Survey of Mobile Agent Systems

The rapid explosion of interest in this field of research means that there are a large

number of new mobile agent frameworks appearing, almost continually. The Mobile

Agent list [MAL99] currently numbers the known packages at 64. In this section, we

On the Structuring of Distributed Systems Mobility in the Real World

 69

review some of the better-known frameworks and analyse how they embody the

mobile code abstractions discussed in Chapter 3.

4.6.1 Java

Although not marketed as a mobile agent framework, the Java [Gosling96]

Development Kit does provide enough native facilities to support weakly mobile

code. This should not be a surprise since the original goal of Java’s designers was to

provide a portable, easy to learn, network aware object-oriented language. To ensure

portability, Java was designed to be platform independent. Instead of compiling Java

into native instruction codes, it is compiled into an intermediary format known as

bytecodes. The bytecodes can then be interpreted on any platform that has a suitable

java interpreter; the interpreter is known as the Java Virtual Machine (JVM)

[Lindholm99]. By having the intermediary bytecode stage, Java is an ideal language

for weak code mobility. The most widely known examples of Java’s mobile code

capabilities are probably applets and servlets [Hopson96], mobile snippets of code

that can be transferred over the network in an asynchronous manner. Applets and

servlets should not be viewed as mobile agents however, since they are merely single-

hop pieces of code that contain no notion of autonomy. They do embody the Remote

Computation (RC) and Code on Demand (CoD) design abstractions (see Section 3.4).

Inherent platform independence supported through interpretation has made Java an

extremely popular choice among mobile agent framework implementers. One might

even argue it is the de facto language. These facilities in conjunction with its security

model [Gong99] and object serialisation [Sun98b] make it a particularly useful

technology base from which to begin.

4.6.2 D’Agents

Developed at Dartmouth College, D’Agents [Rus97] is one of the new breeds of

mobile agent framework. In its first incarnation as Agent Tcl [Gray97], D’Agents

employed a Tcl [Ousterhout94] interpreter, extended to support strong mobility.

When an agent wishes to migrate to another machine it need only call a single

function, agent_jump, which triggers the interpreter to package up the complete state

of the agent and send it to a destination machine. Strong mobility has always been a

design goal of the Dartmouth Group and recently, D’Agents has been updated to be a

On the Structuring of Distributed Systems Mobility in the Real World

 70

multi-language framework and now supports strong mobility in Java. However, this

facility has come with a price; in order to support strong mobility in Java the

D’Agents team had to modify the JVM, which means that the framework will only

work with the specialised JVM. With the current rate of change in the Java world,

this means that the D’Agent interpreter can quickly become out of date.

4.6.3 Mole

Mole [Straßer96] was the first mobile agent framework developed in Java, and was

initially released in 1995 by the IPVR group of Stuttgart University. Mole supports

weak mobility only, a choice the designers justify in [Baumann97]. Interestingly, the

Mole group assert that their choice of weak mobility was to avoid the problems of

using a modified JVM that quickly became out of date. Their goal was to provide a

pervasive framework the worked ‘out-of-the-box’ with any standard JVM. This is in

contrast to the D’Agents group and demonstrates the generally unexplored nature of

the research field. Whether strong or weak mobility is the correct methodology

remains an open question within the mobility community.

Mole provides the notions of places, the executing environment, where user agents

are able to meet and communicate. They can interact with the underlying operating

system resources via service agents, which are always stationary. Mole supports a

number of communication mechanisms including badges, sessions and events. An

ascending hierarchy of increasingly anonymous and wider scope of influence

mechanisms, they are fully described in [Baumann97].

4.6.4 Hive

Hive is a distributed agents platform, a decentralized system for building applications

by networking local system resources, and taking advantage of mobile code

[Minar99]. Its designers, a group at the MIT Media lab, are using it to provide the

infrastructure for connecting their many Things That Think [Gershenfeld99] research

initiatives. Hive is built using the standard Java features of object serialisation and

interpretation used by so many mobile agent frameworks and therefore supports weak

mobility.

On the Structuring of Distributed Systems Mobility in the Real World

 71

The Hive architecture consists of the following three abstractions: cells, shadows and

agents. A cell is the executing environment in which agents are hosted. Cells also

contain shadows, which are placeholders for local resources, for example a display or

printer. The designers of Hive have made particular efforts to address the problems of

agent description and Hive supports both a syntactic and semantic ontology.

Inter-agent communication in Hive has been achieved by using RMI as the

communication mechanism. This allows the methods of Hive agents to be executed

remotely. While this approach is simple, and uses built in capabilities of the Java

language, it has the disadvantages of loss of control and security. In the author’s

opinion, it also blurs and lowers the abstraction level of the mobile agent to one of

merely a mobile object. If an agent’s methods can be called and executed remotely,

then any notion of autonomy for the agent has been lost. Hive thus embodies a hybrid

abstraction, drawing elements from the autonomous agents research arena, and from

contemporary RPC distributed systems. This hybrid abstraction has caused the Hive

team some considerable headaches in achieving their goals [Minar99b]. This is a

shame, since the ontological descriptions supported by Hive are superior to many if

not all of the other frameworks reviewed.

4.6.5 Voyager

ObjectSpace’s Voyager platform is a one-size-fits all communication infrastructure.

At the time of writing Voyager currently supports EJB [Sun99], CORBA, DCOM,

and RMI. In its early days ObjectSpace promoted the capability of Voyager to take

existing CORBA IDL classes and “virtualise” them, effectively making them weakly

mobile. This was a major selling point for Voyager, but recently the company has

been playing down these capabilities [Glass99]. Voyager should really be viewed as a

Java based messaging broker that has some added capabilities from the mobile agent

field. This allows programmers to create network applications by choosing between

traditional and mobile distribution technologies, and has been a widely successful

product.

4.6.6 Jini

Jini [Arnold99] is Sun Microsystem’s proposed architecture for embedded network

applications. It is built using Java and RMI in much the same way as Hive. Jini

On the Structuring of Distributed Systems Mobility in the Real World

 72

provides simple mechanisms that enable devices to plug together to form an

impromptu distributed system. Each device provides services that other devices in the

system may use. These devices provide their own interfaces, which Sun claims

“ensures reliability and compatibility”. Much to the chagrin of the Hive team, Jini is a

very similar framework, although it does not have the shadow/agent conceptual split.

Most important however is that Jini’s creators do not consider location to be an

important part of the abstraction. Where a particular service resides in the network is

not of importance to Jini, the interfaces and lookup services are intended to handle

this sort of issue. Further, Jini only supports single-hop mobility, and as such can be

categorized as embodying merely the CoD abstraction. This continued support of the

location transparency abstraction and only a basic mobile code abstraction are

surprising as Waldo is one of the authors of the Jini specification.

4.6.7 Aglets

The Aglet Software Development Kit (ASDK) [Lange98] has been developed by

IBM’s Tokyo Research Labs, and was one of the first and most publicised Java based

mobile agent frameworks released. The core abstractions supported by the ASDK are

that of an aglet, a proxy and a context.

An aglet is a mobile autonomous agent, whose structure can be considered to consist

of two distinct parts, the aglet core and the aglet proxy. The core is the heart of the

aglet and contains all of the aglet's internal data and logic. It provides interfaces

through which the aglet may communicate with its environment. The aglet core is

then encapsulated by an aglet proxy that acts as a shield against any attempt to

directly access any of the aglet’s private internals, and can hide the real location of the

aglet from malicious aglets.

The aglet context is the executing environment in which the aglets exist. It provides

an interface to the underlying operating system through which aglets are able to

access core facilities, and gain references to other aglets’ proxies. The context also

manages the lifecycle of an aglet. Since the ASDK only provides weak mobility, this

lifecycle is one of the ASDK’s most valuable features since it allows the programmer

to describe behaviour an aglet should perform in reaction to certain events, for

example, the shutdown of the current host, or a request to migrate to a new host. This

On the Structuring of Distributed Systems Mobility in the Real World

 73

lifecycle is supported through an event-based scheme that is well known in the

window system programming world. Aglets implement a number of event handling

methods that can be customized by the programmer. These methods cover all the

important events in the life cycle of an aglet (creation, dispatch, arrival, deletion, etc.).

For example, if you move an aglet it will be notified upon leaving its host and upon

arrival at the new host. Of all the frameworks reviewed, Aglets enforces the mobile

agent abstraction and metaphor most strongly. In contrast to Hive, all communication

between aglets is via messaging. On receipt of a message, an aglet is able to decide

what to do with the message, and when, thus sustaining the autonomy of the agent.

4.6.8 The Mobile Agent Graveyard: Telescript and Odyssey

Developed by General Magic Telescript [White96] was an object-oriented

programming language designed for the development of Personal Intelligent

Communicators (PICs). PICs were defined as being handheld palmtop-like devices

with little memory and low bandwidth capability. Telescript was the first of its kind

to appear and ground breaking in the facilities it offered.

Telescript was an interpreted language that supported strong mobility. There were

actually two levels of the language: High Telescript, the actual language used for

implementation, and Low Telescript, a Postscript like language which could be

interpreted better by the top level executing environment, the engine.

Other abstractions supported by Telescript included agents, mobile agents that were

able to migrate on a single command of go; places, stationary processes that provide

interfaces to services, and were normally inhabited by agents; tickets, objects that

describe an agents journey; permits, objects that define the capabilities and resource

constraints of an agent.

There is an important programming paradigm difference between Aglets and

Telescript that demonstrates the differences between strong and weak mobility:

Telescript is focused on process migration that allows you to "go" in the middle of a

loop and resume the execution in the middle of that loop on another machine. Aglet

developers must consider how to deal with migration of non-static data.

On the Structuring of Distributed Systems Mobility in the Real World

 74

Sadly, Telescript is no longer available, having gone to the Mobile Agent Graveyard7.

Odyssey was General Magic’s attempt to revive its flagging fortunes with a Java

based mobile agent framework that resembled Telescript. It never made it out of beta.

4.7 Choosing a Mobile Agent Framework

Whilst there are an increasing number of mobile agent frameworks, when the study

described in this thesis began the choice was limited to perhaps half a dozen. From

those available, IBM’s Aglet framework was selected. It would be appealing to be

able to demonstrate a methodology employed for selecting the framework, but there is

none. The Aglets package was chosen due to the connections of Danny Lange, the

inventor and chief architect of Aglets, to researchers at MSI. However, in defence,

several important factors support the choice of the ASDK:

• it was one of the first to use the Java programming language;

• it contains the notion of agent itinerary which systems such as Telescript did not
support;

• it is being proposed for submission to the Object Management Group (OMG) Mobile
Agent Facility RFP;

• it includes a fine grained security model

• aglets has proven to be an extremely popular framework in the mobile agent
community for its clear agent abstractions and lifecycle facilities

Actual mobility in the ASDK is enabled by the provision of two facilities:

• the Agent Transfer Protocol (ATP)

• the Java Agent Transfer and Communication Interface (J-ATCI).

The ATP is an application level protocol for distributed agent based information

systems and facilitates migration of the aglets over a network. Based on the naming

conventions of the Internet, ATP uses the Universal Resource Locator (URL)

[Berners-Lee92b] for specifying host locations, whilst maintaining a platform

independent protocol for enabling the transfer of mobile agents between networked

computers. Although this protocol has been released with the ASDK, its domain of

use is by no means exclusive to aglets, as it offers the opportunity to handle mobile

7 It lives on though, through furtively copied gold CD’s!

On the Structuring of Distributed Systems Mobility in the Real World

 75

agents from any programming language and a variety of agent systems, as long as

they implement the protocol interfaces.

Reinforcing the ATP at a higher communication level is J-ATCI, an independent

agent protocol enabling agents to move and communicate within a network. J-ATCI

is a simple and flexible programming interface that enables programmers to develop

platform independent agents without having to build into them the necessary protocols

for wire communication. By ensuring a native implementation of the J-ATCI

designers can expect their agents to function on any platform. The J-ATCI has also

been submitted to the OMG.

Figure 18. The Aglet Environment

4.8 Concluding Remarks

Pure academic thought might have been encouraged in the classical world, but in ours,

we require facts too. To support the philosophical argument of Part I, we construct

two prototype distributed systems with mobile code technology. To evaluate the

systems we have identified several issues that are constantly engaging the software

industry: system agility, semantic alignment and component coupling. The business

process our systems are intended to support has been extracted from an industrial case

study. The prototypes will be subjected to several Scenarios for Change, which will

allow us to gain an insight into how well they perform.

This chapter also contains a review of the technical issues involved with

implementing the mobile code abstractions, a summary of many of the claimed

advantages for mobile code and a roundup of several of the more established mobile

code infrastructures. In the following chapters, we report on the implementation and

Aglet Context B

Aglet-Aglet
Communication

Message
object

Aglet Migration

Aglet Context A

Aglet-Context
Communication

Aglet Core

Aglet Proxy

On the Structuring of Distributed Systems Mobility in the Real World

 76

evaluation of our prototypes. Before that however, we describe the case study that

was used to generate a business model and process for the prototypes to support.

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 77

5 I.T.L. : An Industrial Case Study

5.1 Introduction

This chapter describes the industrial case study undertaken in the course of the

research described in this PhD. It was performed at Instrument Technology Ltd

(ITL), a high performance vacuum component manufacturer based on the south coast

of the UK, in Q1 1997. In the next section, we discuss the methodology and the

objectives of the case study.

5.2 Why a case study?

"A case study is an exploration of a question or phenomenon when little is

known in advance, and where the situation may be complex." [Yin94]

Case studies are able to examine processes within a specific context, draw on multiple

sources of information, and relate a story, usually in a chronological order. In case

studies, we are able to ask: "How or why does this occur?" We can create a rich,

textured description of a social, economical or infrastructural process [Scanlon97].

This information can give an insight into how to gain answers to more specific

questions, or produce conceptual models of a business process.

It has already been shown that the mobile code community recognises the lack of real

world examples of their technology [Picco98] [Milojicic99]. We aim to prove that

mobile code can be used to build real software systems. Therefore, the scope of this

particular study was to gain an insight into I.T.L. and identify a suitable business

process. The extraction of an industrial process model would provide a suitable

reference around which the subsequent prototype implementations could be built.

Further, the case study allows us to generate real world scenarios that can be used to

evaluate the prototype systems after their construction.

When performing a case study it is extremely important to select an appropriate

methodology [Jones97]. To achieve our objectives, the methodology selected was to

carry out a qualitative, exploratory case study. Qualitative studies are particularly

useful in attempting to answer questions such as 'Why?' or 'How?’ [Strauss90], while

exploratory studies are those that attempt to gain an initial insight into a situation.

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 78

Together they allow the examiner to create a 'snap-shot' in time of a particular process

or situation. The methodology was considered appropriate, as it was capable of

fulfilling our requirements:

1] To produce an SOP model,

2] which was based on a real world example,

3] upon which a set of experimental scenarios could be based.

The models generated from the case study are presented and discussed later in the

chapter, following an overview of I.T.L.

5.3 Who are I.T.L.?

Instrument Technology Limited (I.T.L.) is a British manufacturing company based in

East Sussex. It has been established for over twelve years, and usually performs

steadily. A recent diversification in product range had reaped benefits however, and

at the time of the case study, the company had shown a growth in turn-over from

£500k to nearly £10m in five years, whilst concurrently developing an extensive,

global customer and distributor base. More recently, the company has been affected

by the crash of the Asian tiger economies.

5.3.1 What does I.T.L. do?

I.T.L.'s core business is manufacturing high performance vacuum components,

primarily for the semi-conductor industry. The scope of the product range ensures

that there are few other companies in the world that manufacture a greater diversity of

standardised vacuum components. At the time of the case study, there were over

2,000 modular products and almost 7,000 items in the product catalogue. In an

interview with the managing director [Barlow97] it became clear that these figures

were expected to increase. The company has been quick to recognise the trend

towards customer-driven specialised services and part production. This is supported

by an extremely flexible design service offering almost unlimited choice to customers,

who are able to submit their own specifications for product manufacture. Co-existing

with the standardised product group is the specialised vacuum chamber division,

which builds intricate, high pressure chambers and vacuum chambers, usually for

advanced research facilities such as CERN.

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 79

5.3.2 How does I.T.L. work?

Until 1997, I.T.L. perceived8 its largest market to be in the UK and Export direct

sales, in which they have a substantial market share. However, the emphasis for the

company is now shifting to much larger, more lucrative contracts with several

international OEM's. Deals with a number of multinationals have consolidated

previously successful working relationships, and ensured good market standing for

I.T.L., which is now emerging as a global “player” in the vacuum component market.

For direct sales, a network of Sales agents deals with the promotion and marketing of

brand products. The network encompasses Europe, the Far East and Central and

Southern Africa, with several more slated for adoption in the short term. All orders

are still supplied from I.T.L.’s headquarters in the UK. OEM partners are offered

exceptional configurability in delivery and service. For example, specialised

packaging, branding or invoicing.

Figure 19. An overview of I.T.L. around the world.

I.T.L. now perceives the greatest potential for sustained growth in expanding its net-

work of Sales Agents into new markets, whilst attempting to broker new OEM deals

with further American companies [Barlow97]. Consolidation with its oriental

partners has also brought new opportunities in reducing manufacturing costs, and the

company is investigating the viability of investing in new manufacturing facilities in

the Far East.

8 The term “perceived” used here is factually correct, at the time of writing no one at I.T.L. was able to give exact figures for any
of their markets.

HQ

Manufacturing

Sales

Stock Control

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 80

Finally, I.T.L. has settled on a long-term strategy of expanding its global presence. In

doing so, I.T.L. has realised that it will no longer be economical to continue with

centralised stock control since transportation of its products is expensive. Ergo, the

company is considering adding new stock control centres or warehouses at globally

strategic locations.

5.3.3 Commentary

With the increasingly extensive portfolio of products and parts, the configurability

that I.T.L. offers to its customers, coupled with the long term strategy of expansion

and the need to remain responsive in the market place, it is clear that I.T.L. requires a

high degree of flexibility from both its business practices and the supporting IT

infrastructure.

I.T.L. is also hoping to expand both its network of Sales Agents and its stock control

centres. This requires a radical change in the company’s business practices. It must

transform from a central and localised operating model to a distributed one. The

pitfalls and problems associated with transformations of this kind are well

documented [Peters82] [Hammer93] [Goldman95].

Equally, as the Asian Tiger economies example demonstrates, I.T.L. is competing in a

fluctuating market. Responding to such problems as, for example, changing suppliers

or meeting 'Just In Time' (JIT) manufacturing requirements mean the company must

strive to remain agile. Here, agility is considered the ability to respond quickly to

market pressures. For example, both up and downturns in orders, adding or removing

suppliers, adding or removing sales agents, etc.

It was our aim to generate a process model from a real company. This would then

form the basis for our implementations, and would allow us to evaluate their

performance when subjected to the kinds of pressures a real software system may

experience. From the case study, it is clear that I.T.L. is a prime example of a

manufacturing enterprise facing the very real pressures of remaining agile and

competitive. The requirements of I.T.L. can be summarised as:

• It requires a high degree of flexibility in its IT infrastructure

• It must be able to add new sales agents quickly

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 81

• It needs to add new stock control centres

• It must be able to upsize and downsize with equal ease

5.4 Process Modelling

Having established I.T.L. was a suitable candidate upon which to base our

implementations it was important to identify a suitable business process. The

requirements of I.T.L. listed in the previous section all pertain to the Sales Order

Process (SOP). Indeed, the SOP plays a pivotal role in any business that relies on

constant orders for survival, and involves links to customers, distributors and

suppliers throughout the world. This is a perfect process to support with a distributed

software system, and therefore, the decision was taken to use I.T.L.’s SOP as the

process model.

Understanding the internal process of a company can be complex. A simple but

effective tool that is often used for this purpose is a data flow diagram (DFD)

[DeMarco78]. Using DFDs, the core business processes of I.T.L. were modelled in

an attempt to understand how I.T.L. responds to a new order (see Figure 20). In this

diagram, the many processes are defined by the senior management figures that are

responsible for those particular areas. Each core process is surrounded by a dotted

line for further clarification.

From this rather complex diagram, it is possible to extract the core business processes

and represent them in a higher level, abstract view. Figure 21, the Abstract Process

Model (APM), shows this simplified view and depicts the interactions between the

each process upon receipt of a new order. The decision branch shown in Figure 21

has been intentionally omitted from Figure 20 for reasons of clarity. By examining

the interactions between the major components of the APM a basic visual model was

generated to represent the entire process. This can be seen in Figure 22. To better

understand this model we will walk through an example of a new order being placed.

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 82

Figure 20. Information flow through I.T.L. on receiving an order

Tom Dick Harry Jane

Order is
Manufactured

Order In

Jack
Sales

Jill
Production Planner

John
Production Administrator

Invoices &
delivery notes

Accounts

Inputs data to
Package2

Inputs data to
Package1

Prints out list of
new orders

Extracts data from
Package1 using Excel

Sales

Dispatch

Packing

Dispatch

Julie

Purchaser

Purchasing

Stock
Control

Darren
Stock Controller

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 83

Figure 21. Abstract Process Model

Order

Production

Planning

Purchasing

Dispatch

In Stock?

Manufacture

Stock

Control

Yes

No

Sales

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 84

Figure 22. The Sales Order Process

5.4.1 A Walkthrough

A new Customer Order is placed with a Sales Agent. The Sales Agent then

interrogates Stock Control to see if the order can be fulfilled from the existing stock.

If it can, a new Order is raised and the items are allocated to that order number before

being dispatched to the customer, along with an invoice.

If the items are not in stock, then the order is passed to production control where

again, an Order is raised. Accompanying this Order is a new Works Order for the

required manufacturing of the requested products, or product parts. The Works Order

is then passed to manufacturing for completion, and if necessary purchasing for

replacement of raw materials. Once the product or parts are completed, they are

booked into Stock Control before being checked out again for dispatch. The standard

delivery time at I.T.L. is three weeks, unless the order is being specially manufactured

to specifications submitted by the customer.

5.4.2 Refining the Model

Implementation of two software systems to support in full the Sales Order Process of

a manufacturing enterprise is beyond the scope and time frame of a PhD. Therefore,

 Sales
Agent

 Sales
Agent

 Sales
Agent

Customer
Order

Stock
Database

Stock Control

Purchasing

Manufacturing

Dispatch

Production

Control

Raise New
Order

Initial stock
request and

reply

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 85

we decided to concentrate on the interactions of sales agents handling order requests

and the stock control centres. These particular facets are fundamental to the SOP as a

whole, and are intrinsically associated with the issues of building distributed software

systems. Thus, these processes form the major components of the subsequent

prototype implementations.

The Production Control process was removed from the model since scheduling is an

entire field of research in its own right and was deemed external to the objectives of

this thesis. In addition, the greyed out areas of Dispatch and Manufacturing represent

processes that were considered of secondary importance to the requirements identified

in Chapter 4. These would make excellent candidates for investigation and expansion

in any future work. The finalised model used in the implementation can be seen in

Figure 23.

Figure 23. Modified Sales Order Process model

5.5 Concluding Remarks

Gaining an insight from a real world manufacturing enterprise is an invaluable tool for

developing a model from which to base experimental work. This chapter has

presented the case study undertaken at the vacuum component manufacturer

Instrument Technology Ltd. Examination of I.T.L.'s core business processes has

yielded a high level abstract model based around the Sales Order Process. This model

will be used as the basis for the prototype implementations described in the next

chapter. In addition, the company's background and operations were examined,

Stock
Database

Dispatch

Manufacturing

Prod
u
ction

 C
on

trol

 Sales
Agent

 Sales
Agent

 Sales
Agent

Stock Control

On the Structuring of Distributed Systems I.T.L. : An Industrial Case Study

 86

resulting in the identification of a set of requirements that I.T.L. had of their software

system. These are summarised below.

I.T.L.:

• requires a high degree of flexibility in its software systems

• must be able to add new sales agents quickly

• needs to add new stock control centres

• must be able to remove new additions with equal ease.

In the next chapter we describe the implementation of our two prototype systems.

On the Structuring of Distributed Systems Implementation

 87

6 Implementation

6.1 Introduction

It has been stated that the field of mobile code research lacks examples of real world

applications [Picco98]. Therefore, the work in Part II of this thesis has been

undertaken with that fact in mind. In support of our philosophical argument for

mobile code, we wish to demonstrate the feasibility of actually building real

distributed systems with this technology.

In the previous chapter, we described the generation of a Sales Order Process model,

which we aim to support with mobile code technology. We have further refined the

model to focus our investigative work on those aspects that depend on distribution by

choosing to concentrate on the interactions of sales agents dealing with order requests

and the stock control centres.

In this chapter, we describe the implementation of our two prototype systems, a

mobile object version of the business model and a mobile agent version. First, we

begin by presenting a top down view of the implemented SOP model, before going on

to discuss the common parts of the two prototype systems and detail their differences.

6.2 The Model

Figure 24 depicts the implemented mobile agent model of the SOP. The fundamental

operation of the process is as follows: following an enquiry from a customer to a

SalesAgent (SA), an OrderAgent (OA) is dispatched to the StockControlAgent (SCA)

where it requests the fulfilment of its order by passing an Order object. The

StockControlAgent, which is resident at a distribution point, queries the stock

database to see if enough products are in stock. If there are enough products, the

StockControlAgent then returns a DeliveryDate object to the OrderAgent. The

OrderAgent then returns and reports to its parent SalesAgent, which is then able to

notify the customer of the delivery date.

On the Structuring of Distributed Systems Implementation

 88

Figure 24. Agent Sales Order Process Model – with example routes for OrderAgents

If there are not enough products in stock to satisfy the order, the OrderAgent migrates

to the manufacturing plant where it uses the Product ID encapsulated in the Order

object and queries the BOM database for a list of sub-parts or raw materials required.

This is then encapsulated within the OrderAgent, which is dispatched to

manufacturing to deliver it, before returning to the SalesAgent with a DeliveryDate

{

u
z

y

v

÷

Sales agents distributed around the globe

Stock
Control
Agent

Stock Control ASIA

Stock Database

Order Agent

Order Agent
Order

Manufacturing

Manufacturing
Agent

Order Agent
Works Order

Stock
Control
Agent

Stock Control USA

Stock Database

Order Agent

Sales
Agent

Sales
Agent

Sales
Agent

Sales
Agent

Possible routes include:

u-v - in stock

u-y-x-{ - get order made

u-z-| - order externally

u-w-}-{ - check 2nd stock

w

|

}

Purchasing

Purchasing
Agent

Order Agent

Purchase

BOM

Database
 Materials Stock

Order Agent
Mat'l Allocation

Purchasing
Agent

⊆

Order Agent
Delivery Date

On the Structuring of Distributed Systems Implementation

 89

object containing a standard delivery date. If there are not enough raw materials in

stock, agents within the manufacturing plant server generate a PurchaseOrderAgent

that encapsulates details of all the required materials.

The mobile object model is very similar to that described above, the key difference

being that the results from stock database queries are gathered from remote

StockControlAgents by a mobile OrderObject guided by a specific itinerary. Instead

of processing this information locally to the data source, it is returned to the

SalesAgent for processing. At arrival, the OrderObject delivers the results before

being terminated. If further excursions are necessary, the SalesAgent creates new

mobile objects and dispatches them as required. The mobile object does not make

autonomous decisions based on the acquired information.

6.3 The Bestiary

The implementation work described in this thesis was undertaken using IBM's Aglet

Software Development Kit [Lange98], a mobile agent development framework that

was extensively described in Section 4.6.7. This framework has been used as the base

upon which to implement the two different versions of the SOP model. Each major

process has been embodied as an agent, and there is quite a large overlap in

commonality between the two systems. Similar amongst both models are the static

agents consisting of SalesAgents, StockControlAgents, ManufacturingAgents,

PurchasingAgents and DispatchAgents. As one might expect, there are also mobile

components to the systems, and it is here that each system differs from the other. In

the mobile agent system, there are OrderAgents, whilst in the mobile object system

there are OrderObjects. Generically, we will refer to these as the Order components

of the systems. This is primarily, although not entirely, where the distinction between

the Remote Computation and Mobile Agent abstraction is evident. It should be noted

that in a static analysis of the system, the mobile Order components are a single entity

in the design. However, during execution the number of migrating mobile

components in the system would be significantly more than the number of static

components. In the following sections, we discuss each agent type and its relationship

to other agents.

On the Structuring of Distributed Systems Implementation

 90

6.3.1 OrderAgents

OrderAgents represent the mobile components in the Mobile Agent system. The

agents discussed in this paper can be classified in line with Franklin and Graesser

[Franklin96] as goal oriented, communicative, and mobile i.e.:

• Goal oriented – they do not simply act in response to the environment

• Communicative – they are able to communicate with other agents

• Mobile – they are able to transport themselves from one host to another.

On creation, each OrderAgent is given a copy of a new Order and an Itinerary

that contains details of which hosts they must visit to enquire about completion of

their Order. Encapsulated within the Itinerary are Tasks, which the OrderAgent

carries out on arrival at a new host. Once the OrderAgents have been given an

Order, they are then responsible for completion of that order. Some example

program listings of an OrderAgent and a Task can be found in the Appendices.

After creation, the OrderAgents migrate to the first host in their Itinerary to interact

with the resident StockControlAgent. This interaction will involve the OrderAgent

querying the StockControlAgent as to whether the Order it is carrying can be satisfied

by the levels of stock currently held. The actual stock database is queried by the

StockControlAgent; the OrderAgent does not interact with it. The OrderAgent

processes the results returned by the StockControlAgent. If the relevant stock is

available the OrderAgent asks the StockControlAgent to book out the stock to its

Order number before returning to the SalesAgent that created it to report on the

delivery date, whilst the StockControlAgent sends a message to the DispatchAgent

with details of where to send the products. If the stock levels at the first

StockControlAgent are unsatisfactory, the OrderAgent is able to migrate to the next

host in its list to begin the process again. However, if no StockControlAgents are able

to satisfy the Order then the OrderAgent will proceed to the ManufacturingAgent to

request production of the relevant components. Although this behaviour remains

unimplemented, it is intended that the ManufacturingAgent would then interact with

some scheduling software system to ascertain an estimate on the required time for

manufacture that the OrderAgent could use to report to the SalesAgent. Currently,

this communication consists of a simple message and acknowledgement from the

ManufacturingAgent.

On the Structuring of Distributed Systems Implementation

 91

The valid outcome for the goal of the OrderAgent is reporting a delivery date for the

order to the SalesAgent. If all else fails, it will return and report that it has failed,

allowing the SalesAgent to begin the process again. In the future, this may also

include reporting an allocation for raw materials, an internal works order number and

time to manufacture. While not complex, OrderAgents usually make up the majority

of the agent population in the system, although this is dependent on the number of

enquiries received by the SalesAgents. Potentially, there could be hundreds of mobile

OrderAgents migrating through the network, attempting to fulfil their own particular

Order. Since OrderAgents require no interaction with a user, they have no Graphical

User Interface (GUI).

6.3.2 Order Objects

OrderObjects are the mobile components of the Remote Computation system.

However, in contrast to the mobile agent system, it is more appropriate to view the

mobile objects as mobile messengers. Initially they appear to perform the same

function as the OrderAgents described above, and in many respects, this is true. On

creation, the OrderObjects are given an Itinerary and an Order and are dispatched

to the first host on their list. There, they again query the StockControlAgent to

establish whether the order may be fulfilled at that host. Although OrderObjects are

still able to migrate to a data source and take advantage of local interaction and all the

advantages that brings, they do not contain the business logic to autonomously

process any results. They merely add them to their records before migrating to the

next host in the Itinerary. Once all hosts in the list have been visited, and all stock

databases queried, the OrderObjects return to their origin to report the findings to their

parent SalesAgent, after which they are terminated. In this system, the processing of

the results is performed by the SalesAgent, which creates a new OrderAgent and

dispatches it to one of the hosts to commit the stock to the Order. Again, during

execution there may be many hundreds of mobile OrderObjects instantiated within the

system.

6.3.3 SalesAgents

SalesAgents are static agents that are responsible for generating Order components,

giving them an Order and Itinerary, and sending them out into the network so they

On the Structuring of Distributed Systems Implementation

 92

may interact with StockControlAgents. SalesAgents are the human users’ main

interaction with the SOP system and therefore they have a GUI with which the sales

person can create a new Order. SalesAgents are more complex than the Order

components, since they must keep track of current orders, but they still remain “slim”

and can be manifest as a client for sales persons working on terminals or NetPCs, or

be hosted on a laptop for travelling sales persons.

In the mobile agent version the only logic contained within these agents is that

required to create a new OrderAgent, with its accompanying Order and Itinerary.

They are capable of maintaining a list of spawned OrderAgents, and thus are aware of

which Orders have been fulfilled. In the mobile object version, they also contain the

business logic required to process the results returned by their slave OrderObjects.

6.3.4 StockControlAgents

The StockControlAgents are another example of static agents within the systems, but

as they do not interact with human users, they have no user interface. They are

responsible for handling all requests for products and materials made by the Order

components, and act as custodians for the information contained in the stock

databases. As such, they are a communications bridge between the data sources and

the other agents in the system. All requests for stock levels and allocation must be

made through the StockControlAgents.

Manufacturing enterprises are usually supported by a heterogeneous mix of hardware

and software, with many different types of database systems employed at any given

time. When designing StockControlAgents so they may connect to such a variety of

database systems it became apparent that some of the required features of these agents

were particular to each database, whilst others were generic and could be applied to

any StockControlAgent. In the initial stages of the implementation, the

StockControlAgents had been using text files as their storage medium, modelled on

MICROS records. Many new database systems no longer use text files however, so it

was later decided to improve their capability to allow them to communicate with any

ODBC enabled database. ODBC is an industry standard for database access. The

work on this problem has yielded a common design that can be used as a base pattern

On the Structuring of Distributed Systems Implementation

 93

and applied to all StockControlAgents [Papaioannou99]. The DataQueryAgent is dis-

cussed later in Section 6.4.1.

6.3.5 ManufacturingAgents, MaterialsAgents,
PurchasingAgents and DispatchAgents

These particular agent types have been classified as having secondary importance to

this initial study. Currently all three are represented in the SOP systems by “dumb”

static agents. By dumb we mean that they are merely communicative and possess no

internal logic to perform any particular tasks. They are able to simply acknowledge

communication from other agents, and represent a definite avenue for further

investigation and research. However, their presence in the systems allows us to begin

to explore the issues involved with multi-hop mobile agents vs the client/server

paradigm.

6.4 Considering Lifecycle and Maintenance Issues

The implementations described in this thesis are proof-of-concept systems. They are

used in our experimental work to demonstrate that real world software can be built

with mobile code systems. In addition, we wished to measure the degree of

flexibility, coupling and semantic alignment offered by the mobile code abstraction.

Further, to fully consider the support provided for building real world systems we

examine the full lifecycle phases of software systems. These include issues relating to

design, implementation, runtime and maintenance. The resulting knowledge and

supporting tools and are discussed in the next sections.

6.4.1 DataQueryAgent: A Proto-Pattern for Database Query

A major goal of the work described in this thesis has been to build agile software

systems. For the software architectures implemented in this study to achieve this

throughout their lifetimes, they must be capable of querying a variety of new or

legacy databases. Investigation into this problem has generated an effective and

reusable proto-pattern that can be used to build agent database query systems

[Papaioannou98]. The DataQueryAgent, shown in Figure 25, can be decomposed into

several constituent parts, which are described in the following sections.

On the Structuring of Distributed Systems Implementation

 94

Figure 25. DataQueryAgent Architecture

6.4.1.1 The Infrastructure
The infrastructure provides the system creator with the facilities to communicate with,

and manage the lifecycle of agents in the system. The environment in which the agent

will execute normally dictates the infrastructural requirements, although they are

usually accessible through the framework libraries or via class inheritance. For

example, in our implementations these facilities are attained by extending the abstract

Aglet class.

6.4.1.2 The Identifier
The Identifier plays an essential role in system security and traceability. Whilst it is

more usual for mobile agents to carry an Identifier, static agents must also be able to

prove their credentials. In future implementations, we imagine that

StockControlAgents would be able to generate PurchaseOrderAgents and

WorksOrderAgents in order to fulfil unsatisfied orders. Part of the parent’s Identifier

would be handed to these child agents, as proof of their origin on dispatch to another

host.

6.4.1.3 The Communication Package
The Communication Package handles the incoming communication from querying

agents and translates this into a format the Business Logic Unit or Database Handler

components are able to understand. Inter-agent communication methods vary

between different agent environments, as do the communication protocols and

requirements of differing agent solutions. In some examples, simple String

matching is sufficient for simple communication. However, interactions that are more

Database Handler

Business
Logic Unit Identifier

Comms Package

Infrastructure

On the Structuring of Distributed Systems Implementation

 95

complex may require an attempt at semantic level communication. The use of Agent

Communication Languages (ACL’s) such as KQML [Labrou96] is typical of the more

advanced approaches that are being proposed to solve these problems. To handle the

requirement for a variety of communication methods, the Comms Package can be

interchanged by the software designer with respect to their particular requirements.

6.4.1.4 Business Logic Unit
The Business Logic Unit is used to understand communication and queries from other

agents, and generate a course of action to fulfil those requests. In the SOP scenario,

when an OrderAgent is dispatched by the SalesAgent, it encapsulates an Order object.

Upon arrival at the StockControlAgent, it will attempt to fulfil that order, a task that in

itself can require some simple logic. For example, for simplicities sake an Order

object only contains descriptions of the full products that are expected. Although the

OrderAgent may only be aware that it requires one hundred widgets by Tuesday, the

StockControlAgent may include some logic that translates this request into one where

a widget must be supplied with a grommet and two nuggets. Thus, the Order actually

requires one hundred widgets and grommets, plus two hundred nuggets. More

probably, the StockControlAgent will query another database to retrieve the Bill of

Materials for the product. Since all the OrderAgents will require this same logic, it is

clear that including it as part of the DataQueryAgent is the best solution. By keeping

the size of the Order and the encapsulated logic low, the size of the OrderAgent is

kept small, reducing network traffic.

6.4.1.5 The Database Handler
The Database Handler deals with connecting to a database, retrieving information

from it, updating it, or even switching databases transparently to the requesting agent.

It works in tandem with the Business Logic Unit to fulfil the request of a querying

agent. The Database Handler ensures that the DataQueryAgent is capable of

interfacing with many different types of data source.

The examples shown in Figure 26 address a large percentage (but by no means all) of

the real world situations and the methods currently being employed to query databases

within a manufacturing enterprise. Connecting to a new type of database ostensibly

requires only the production of a new Database Handler. However, we make no

On the Structuring of Distributed Systems Implementation

 96

claims about the ease of this task. It is understood that access to a database is not all

that is required; there remains the difficult problems of understanding the schema

used in the new database before specific information can be retrieved. Work towards

this goal can be seen in the efforts of the EDI and STEP/PDES community.

Figure 26. The DataQueryAgent with examples of different DataHandler modules

6.4.2 The Data Connector Tool

When constructing the StockControlAgents for our implementations, using the

DataQueryAgent pattern, it became apparent that the most arduous task involved was

in making the connection to a database. Whilst on the surface a relatively simple task,

there are several variables that must be configured correctly, and a number of JDBC

interfaces that must be used accurately. To alleviate the problems this caused, the

DataConnector tool was produced to automate some of these tasks.

The DataConnector Tool is a Java program, with a user interface that allows the user

to insert the required parameters for connection to a JDBC compliant data source.

The validity of these parameters can be repeatedly tested, using the refresh, update

and test facilities, until the correct configuration is achieved. Once a satisfactory

connection has been made, this data is then exported by serialising it to disk. Each

StockControlAgent can then be given a reference to the file that contains the

particular information they require to connect to their specific database.

 Legacy Driver

Legacy System

JDBC-ODBC Bridge

Middle Tier

DataQueryAgent

Text Based Parser

Database Handler

On the Structuring of Distributed Systems Implementation

 97

6.4.2.1 Benefits of DataConnector

The biggest advantage in using this tool is the ability to test connections to a database

and server across the network, or even the Internet. If a virtual enterprise were to

decide to use mobile agent technology as a tool for

rapid integration, it is likely that one of the

collaborators (or their systems administrator) will

have some prior experience in using the

technology. The DataConnector tool allows a

single administrator to test all the required

database connections between the relevant

systems, and produce a set of connection

information files that can be forwarded to the

respective sites. Moreover, if the agent

environments and servers have already been set

up, a Messenger agent could deliver the files, and the DataHandlers could be

completed and initialised automatically. The lightweight nature of a connection

information file means that continued use of the agent system would allow an

administrator to build up a set of predefined files for various configurations that

would accelerate the speed with which new collaborators or data sources could be

added in the future, increasing the system agility and responsiveness of the enterprise.

6.5 Concluding Remarks

In this chapter, we have described the realisation of our Sales Order Process model.

We have produced two prototype implementations in order to evaluate the mobile

object and mobile agent abstractions. The major processes identified in the overall

business logic of the SOP have been embodied as agents in these systems, which

comprise a mixture of static and mobile agents. Each individual type of agent created

has been reviewed and discussed and their relationships examined.

The major difference between the two systems is the physical and conceptual location

of the business logic associated with processing stock query results. In the mobile

object version, this logic remains in the SalesAgent and is in an analogous position to

where it would be found in a traditional client/server system. In the mobile agent

Fig 27 Screenshot of DataConnector

On the Structuring of Distributed Systems Implementation

 98

version, this logic is encapsulated within the mobile OrderAgent. In the former, the

processing of the results must take place after all the data has been returned to the

client, whilst in the latter the decision can be made locally to the data source by the

mobile agent.

At the start of this chapter, we mentioned that part of the rational for this study was to

demonstrate the feasibility of building real distributed systems with this new

technology. We have accomplished that. We have built two prototype Sales Order

Process software systems, based on a real world model, with mobile code technology.

In addition, through consideration of the lifecycle and maintenance issues of these

systems we have developed a proto-pattern to assist in the modular creation of

DataQueryAgents. Supporting this pattern is a small tool, the DataConnector tool,

which allows system administrators to rapidly connect DataQueryAgents to their data

sources.

During the case study, described in Chapter 6 we also established several real world

requirements for such systems. These have been identified as “scenarios for change”

that can be used to evaluate how well each prototype responds to the types of

pressures experience by real world software systems. The evaluation process and

results are described in the next chapter.

On the Structuring of Distributed Systems Evaluation

 99

7 Evaluation

7.1 Introduction

The previous chapter described the implementation of two mobile code systems. The

rational for their construction was to evaluate the mobile object and mobile agent

abstractions, in an attempt to understand exactly what each has to offer, and how that

might affect how we build distributed systems. In this chapter, we evaluate how

successfully each prototype responds to the scenarios for change that were generated

from data collected in the case study of I.T.L, and report on the lessons learned and

insights gained during these experiments.

7.2 Generating Useable Metrics

Evaluating software architectures is a notoriously hard task [Whitmire97]. There are

very few established techniques or measurements for gathering data, and although

software engineering as a discipline strives to emulate the classical sciences, we are

still a long way off. Instead of formal equations, we have methodologies for

developing metrics. They include: the Quality Function Deployment approach

[Kogure83], the Software Quality Metrics approach [Boehm76] [McCall77] and the

Goal Question Metric (GQM) approach [Basili94] [Solingen99]. Basili’s GQM

methodology was selected to evaluate the systems as it enjoys widespread popularity

and support within the software engineering community.

In the next sections, we present an overview of the GQM methodology, and the

principle goals, questions and metrics identified for the systems.

7.2.1 The Goal

The GQM methodology is based upon the assumption that to gain a practical measure

one must first understand and specify the goals of the software being measured, and

the goals of the measuring process. More specifically, it is important to specify what

is being evaluated, what task it should fulfill and from what perspective to view the

measurements. Once this framework has been established, it is possible to direct

investigation and measurement towards the data that defines the goals operationally.

The generated framework is also useful when interpreting the data.

On the Structuring of Distributed Systems Evaluation

 100

The overall goal of our evaluation can be stated as:

“To evaluate each prototype system from the industrialist’s perspective, with

respect to satisfying the industrial motivations to support system agility”

(see section 5.5)

7.2.2 The Questions

Having stated the goal, the process is continued by generating a broad set of questions

that may provide some indication of the individual issues encapsulated by the main

goal. The objective is to generate as many questions as possible, including redundant

or invalid questions. As the process continues, it is usual to develop a hierarchical set

of questions that can subsequently be narrowed. This refined set can then be

answered through tangible measurements made on the system.

To this end two workshops were held, one at MSI, Loughborough University, and one

in the Computer Science Department of Reading University. In order to evaluate the

prototypes with respect to the issues identified in section 5.5, the initial questions

focused on system complexity (how easy is it to understand), and system agility (how

easy is it to change). The results of these workshops were a large and varied set of

questions, with many superfluous or duplicate entries. This is an expected part of the

Basili methodology. Table 5 lists the focused set of questions that remained after

refining.

7.2.3 The Metrics

After several iterations of refinement, and some healthy pruning, a set of usable

software metrics remained that could be used to evaluate the two mobile code

systems. These are shown in Table 6.

On their own, most of the generated metrics are extremely narrow in their focus.

However, through combination, it is possible to arrive at some useful measures of a

software system. In the following sections, we examine how these metrics can be

used to evaluate the implemented systems, and discuss how well each prototype

performs.

On the Structuring of Distributed Systems Evaluation

 101

Table 5. Questions generated using the Basili GQM Method

Generated Questions Metric Number

How well does the system support change?

 How easy is it to understand the system?

 How many business entities map onto data
abstractions

(1)

 How many business processes map to software
methods

(2)

 Which real world entities that are mobile are also
mobile in the system

(3)

 Which real world entities that are static are also
static in the system

(4)

 How many components are there in the system (5)

 How many lines of code are there (6)

 How many comments are there (7)

How easy it was to modify the system?

 How many conceptual entities must be changed - for
example requirement a)

(8)

 How many objects must be changed (9)

 How many src files must be changed (10)

 How many interactions must be changed (11)

 How many components are there in the system
relative to the size

(5) + (6)

 How many real world entities map to a software
component

(1)+(2)+(3)+(4)

 How many components must be changed (9)

 How many interactions must be changed (11)

 How many inter-entity connections are there (12)

 How many methods of the object are public (13)

On the Structuring of Distributed Systems Evaluation

 102

Table 6. Metrics Generated using the GQM Method

7.3 Evaluating Semantic Alignment

It has been demonstrated that semantic alignment between real world abstractions and

components of a software system is important when attempting to build agile software

systems [Coutts98b]. It is also a factor in how responsive a software system may be

to change. To understand what the implications are for semantic alignment, when

using mobile code, and to compare the two mobile code prototypes, we require some

way of measuring how well the abstractions of the real world are embodied in

software, and how well they resemble the real world model. For this, we have

developed a term called Conceptual Diffusion.

Metric Nature of metric

(1) Identify information-based abstractions in the real world. Compare
with info based abstractions in the software

(2) Identify process-based abstractions in the real world. Compare
with processes evident in the software.

(3)
Identify mobile elements of the real world, compare with mobile
elements in the software

(4)
Identify static elements of the real world, compare with static
elements in the software

(5) Count the components

(6) Count lines of code

(7) Count comments, and get ratio of comments/method

(8) Count num changes to entities for each requirement

(9) Count num changes to objects for each requirement

(10) Count num changes to interactions for each requirement

(11) Count how many files are changed for each requirement

(12) Count number of inter object method invocations

(13) Count number of public methods

On the Structuring of Distributed Systems Evaluation

 103

7.3.1 Conceptual Diffusion

Conceptual Diffusion is defined as a measure of:

“The degree to which a single concept or semantic abstraction in the

application domain maps to the components in a software system.”

Therefore, we may say that:

 CD = A/B

Where CD is conceptual diffusion, A is the number of concepts included in this

abstraction, and B is the number of components in which this abstraction is embodied.

Conceptual diffusion can be examined at different levels of granularity to gain

different perspectives on a situation. For example, in a software system that is

intended to support a Sales Order Process we expect the concept of an Order to be

present. On analysis, we find that in both the agent and the object systems the

concept of an Order is split over four separate components. Thus, in these two

systems, the concept of an Order can be said to have a conceptual diffusion rating of

four (see Table 7).

Table 7 also shows the results of metrics (1) and (2). These metrics are examples of

examining conceptual diffusion at a larger level of granularity. For example, metric

(1) requires the identification of all the information-based concepts within the real

world, and a comparison with their counterparts in the software systems. Since Order

is an information-based abstraction, it is therefore included in the results of metric (1).

We may use Conceptual Diffusion to gain an insight into how well concepts or

abstractions are embodied in software.

On the Structuring of Distributed Systems Evaluation

 104

Table 7. Analysis of Conceptual Diffusion Present in Mobile Code

Info
Abstractions Process Abstractions SOP Logic

Objects

Order Customer SA SCA PC M P D MobAg MobOb

BaseAglet P P P P P
DBAglet P
OrderAglet P P P
SlaveItin P P
SlaveDetails P
SalesAglet P P
Result P P
GenericTask P P
StockCommit

Task
 P P

DBStockRequest

Task
 P P

NewOrderDialog P
Order P
OrderListEntry P
OrderList P
Product P
ProductList P
FutureLevels P
OrderNumbers P
SlaveList P
Conceptual
Diffusion

4 N/A 7 4 N/A 1 1 1 6 7

On the Structuring of Distributed Systems Evaluation

 105

7.3.2 Semantic Alignment

Conceptual Diffusion in itself is a measure of how well a software system is

semantically aligned with those business processes it is trying to support. As it stands

however, the conceptual diffusion measure remains relatively fine grained in its

perspective. It does not offer an overall view of a system, rather an insight into a

particular abstraction.

To gain an overall perspective of a system, a compound metric has been devised. It is

a combination of metrics (1) to (4) and is termed the Semantic Alignment Metric:

where SA is semantic alignment, I is information based abstractions, P is process

based abstractions, M is mobile components, S is static components, s denotes in

software and r denotes in the real world. Thus,
Pr
Ps

is the ratio of process-based

abstractions in the software to the process based abstractions in the real world.

Mobile elements Mobile agent Mobile object

Order PP PP
Products OO OO
Materials OO OO

Static elements Mobile agent Mobile object

Sales PP PP
Stock Control PP PP

Production Ctrl OO OO
Manufacturing PP PP

Purchasing OO OO
Dispatch PP PP

Table 8. Results of Metrics (3) and (4)

=
Sr
Ss

,
Mr
Ms

,
Pr
Ps

,
Ir
Is

SA

On the Structuring of Distributed Systems Evaluation

 106

This metric can be used to analyse a system and to assess how well the software

system reflects the semantics of the application domain. A comparison with the ideal

alignment of {1,1,1,1} can be used as a measure to gauge how difficult it might be to

understand the software, given an understanding of the application domain. Table 8

shows the results of metrics (3) and (4).

By combining the results of the first four metrics, we are able to state that:

For the Mobile Object System Semantic Alignment = {4,22/6,1/3,2/3}

For the Mobile Agent System Semantic Alignment = {4,21/6,1/3,2/3}

7.3.3 Commentary

The results of the Conceptual Diffusion and Semantic Alignment analysis show that

both Mobile Agent and Mobile Object systems should be easy to understand, as the

abstractions in the real world align reasonably well with the components of the

software systems. The information abstractions from the real world are on average

spread over four components in the implementations. When considering mobile and

static component alignment, for both systems, a third of the components in the domain

are modelled as mobile in the implementation, and two thirds of the static components

in the domain are modelled as static elements in the implementations.

The difference in the two systems is shown when considering the semantic alignment

of the business process. Here the mobile agent system is shown to have better

semantic alignment than the mobile object system as the process logic for the SOP is

contained solely within the OrderAgent and not diffused across both the SalesAgent

and the OrderObject. Therefore, we can conclude that the mobile agent solution

provides better semantic alignment with the real world business processes it supports.

If we consider contemporary distributed systems, we find they have no facility to

support mobile components in a system. Therefore, they would be unable to

implement any of the mobile abstractions. Instead, these abstractions would have to

be diffused over several static components. If we consider the requirement for a stub,

skeleton and IDL file, in addition to the client and server implementations, then the

conceptual diffusion would be considerable. Since mobile code systems are equally

adept at building static components, we can also postulate that mobile code systems

On the Structuring of Distributed Systems Evaluation

 107

increase the semantic alignment between the real world and its supporting software

systems, for any system that is not constructed from completely static components.

In addition, these new metrics are not merely restricted to use after the fact, but can be

used proactively during the specification process, before any software has actually

been built. Ensuring good semantic alignment of a software system before production

will undoubtedly save both time and money in the long term. In particular, these

metrics can be useful for identifying those components that should be mobile, and

those that should be static. With increasing numbers of mobile code systems being

built, this will prove an increasingly important aspect of system analysis and design

7.4 Evaluating System Agility

In order to evaluate the agility of a system it is necessary to make changes to that

system. The case study of I.T.L. highlighted several real-world industrial

requirements for agility that a company may have for a distributed SOP system.

Using these requirements as scenarios for change, modifications to both the mobile

agent and mobile object implementations were undertaken, in order to evaluate the

agility of each system.

7.4.1 Change Capability

The GQM methodology enabled the derivation of several metrics that can be used to

measure certain changes in a software system after modification. These

measurements are specified by metrics (8), (9), (10) and (11). Individually, they

enable us to measure narrow slices of change to a system. However, by combining

these metrics it is possible to produce a more encompassing measure of agility. This

set has been termed Change Capability, and is described by:

where Change Capability CC, for a required change, is the set of the changes to the

number of objects (o), the number of src files (s), the number of interactions (é) and

the number of conceptual entities (å), between states á and â. A conceptual entity is

∑∑∑∑=
→

â

á
äå

â

á
äi,

â

á
äs,

â

á
äo,

âá
CC

On the Structuring of Distributed Systems Evaluation

 108

analogous to the abstraction or concept referred to in the previous sections. For

example, it could be an Order, or a StockControlAgent. Interactions are those

exchanges of information between objects, usually via method invocations, although

for agents this also applies to any messaging dialogue they might enter. Changes to

those interactions will usually imply changing a method signature.

Change Capability can be used to compare systems or to get a measure of the agility

of the system relative to the ideal {0,0,0,0}. For the mobile object and mobile agent

systems Change Capability for each requirement is summarised in Table 9.

Table 9. Change Capability metric sets after “scenarios for change”

7.4.2 Commentary

Again, these results show that both systems are relatively easy to change. Adding

new sales facilities requires only the instantiation of new SalesAgents that incurs zero

changes to the system code. New stock control centres can be added through a low

number of changes that are the same for both systems. The difference between the

systems becomes apparent when making changes to the Sales Order Process logic. In

the mobile agent system, this logic is contained solely in the single mobile

OrderAgent, whereas in the mobile object system it is contained in both the

SalesAgent and the OrderObject.

The Change Capability metric can be used by a system designer to evaluate how

responsive to change their system has been after a specific change. It is possible to

System

Industrial Requirement
Mobile
Agent

Mobile
Object

The addition of new sales agents {0,0,0,0} {0,0,0,0}

The addition of new stock control centres {3,3,1,2} {3,3,1,2}

The removal of new additions As A or B As A or B

Allowing changes to the business logic of
the SOP to be made easily

{1,1,0,1} {2,2,0,2}

On the Structuring of Distributed Systems Evaluation

 109

deduce areas that require refactoring, or are particularly troublesome when

undertaking change. For example, consider the CC set {5, 20, 20, 1}. We see that for

this change, although only one conceptual entity was changed, there were twenty

changes to source files, five changes to objects, and twenty changes to the interactions

of those objects. Changing the signature of twenty methods in five objects to enable a

change in a single entity can cause serious problems and should lead the designer to

review how diffuse this particular entity actually was. Of course, this is also revealed

by the Conceptual Diffusion metric.

While both implementations have demonstrated they are relatively agile, the question

of whether they are more agile than a contemporary distributed system remains open.

Certainly, it is unlikely that a traditional system will be any more agile than the

mobile object system, since Remote Computation and Client/Server are very close in

terms of the abstraction they offer. Nevertheless, we are able to assert that the mobile

agent system has shown that it is more agile than the mobile object system. This

increased agility was due to the reduced conceptual diffusion and improved semantic

alignment that the mobile agent abstraction allows. In the next section, we pursue this

matter by examining loose coupling, a central issue to building agile software

systems.

7.5 Evaluating Loose Coupling

To build loosely coupled systems, components of that system should not be linked

directly to form a complex network of interactions and inter-dependencies. Instead,

they should remain distinct abstractions, embodying the concept of their real world

equivalents. Components can then be assembled into a software system, with no prior

knowledge of each other.

7.5.1 Evaluating Coupling in Mobile Code Systems

We have already seen in the preceding sections that distributed systems built with

mobile code are able to minimise conceptual diffusion. This enables an extremely

good alignment between real world processes and their supporting software

counterparts. On examination of the static software entities in our systems, for

example SalesAgents, StockControlAgents, ManufacturingAgents, etc, we find that

On the Structuring of Distributed Systems Evaluation

 110

they are fully decoupled from each other. During execution of the system, there is no

communication or interaction between any of the static components. Any

communication that does take place within the systems is between static and mobile

entities. Until a mobile entity alights at a host and attempts to interact with a static

one, there is no coupling between any of the components. This is significant, since

the system only experiences tighter coupling during a dialogue between components,

i.e. when a mobile entity wishes to communicate with a static one. Of course, this

dialogue depends upon prior knowledge on the part of the mobile entity as to what

language the other agent understands, be it a syntactic dialect, or a more complex

semantic conversation. In a private, controlled system however, this knowledge will

always be available. In addition, since there are very few types of component that are

mobile it is simple to alter the interactions, by updating the mobile agent population.

Research is being undertaken so a dialogue may be established with no

foreknowledge [Martin99]. Although this is currently in the static, intelligent agents

domain, in time it will naturally be applied to that of mobile agents.

7.5.2 Commentary

Our prototype systems have demonstrated extremely low, if not non-existent,

component coupling until runtime. Contemporary distributed systems such as

CORBA do support loose coupling in the same inherent manner [Coutts98b].

Components in these systems that wish to communicate require implicit knowledge of

each other’s interfaces. These interfaces are the central aspect of building distributed

systems with traditional technology.

“You should be able to look only at the IDL and know precisely how to

implement against it.” [Vinoski99]

Therefore, even if the key conceptual abstractions remain embodied in large grained

components, for these components to interact they must be aware of each other a

priory, and inevitably end up intermeshed with each other. The work of Coutts and

Edwards has shown that it is possible to build loosely coupled systems with traditional

technology by employing additional design patterns and forethought. The author

believes that being required to follow this enforced route is simply increasing the

cognitive complexity of building distributed systems. Something that is already an

onerous task.

On the Structuring of Distributed Systems Evaluation

 111

This circumstance arises since location transparency, the abstraction employed in

contemporary distributed systems, does not support loose coupling inherently.

Distributed systems built with this abstraction rely on component interface signatures

for identification, and to facilitate communication. Coutts and Edwards [Coutts98b]

have demonstrated that with further software architectures a certain degree of loose

coupling can be achieved. Their use of the Mediator pattern has one drawback

however – all components that wish to interact must do so via the Mediator. The

strength of this approach is also its main weakness. By enforcing a policy of

mediation, the distributed system is also subjected to centralised control, and thus the

Mediator is a single point of failure. Building distributed software systems with a

single point of failure is known as a bad technique.

In a contemporary distributed system the concept of physical location is hidden.

However, for two components to interact there must be some form of identification

involved. This identification manifests itself through the interface types of the

interacting components. Therefore, in reality the purpose of identification by

interface is to enable the location of a component that can provide the required

services. The core information in the task of locating a component is no longer

physical location, rather it is the interface. Although the major tenet of this

abstraction is location transparency, it is clear that the task of locating components

remains. It has merely been replaced by an alternative method. Of course,

practitioners of contemporary distributed systems argue that location transparency as

provided by the abstraction is for the benefit of those who build and use the system.

This may be the case, but we must also consider the implications of using this

abstraction on the supporting technology, i.e. the distribution infrastructure.

Table 10. Requirement of Distributed Systems

Distributed System
Technology

Locator
Requirement

Dialogue
Requirement

Traditional Technology Interface Interface

Mobile code systems Location Interface

On the Structuring of Distributed Systems Evaluation

 112

On the other hand, components in distributed systems built with the local interaction

abstraction do not rely on interface signatures to be located. Instead, they employ

physical location as the information required for location. This is an important

difference. By retaining location as the locator, the mobile code abstraction divorces

the distribution mechanism from the dialogue constraints. This is shown in Table 10.

This separation has important implications for how tightly coupled a system might be.

By divorcing distribution from dialogue, distributed systems can be much more

loosely coupled until runtime. At the outset, all that two components who wish to

communicate must know about each other is their respective locations. It is only

when they actually wish to interact that they become more tightly coupled. The

difference to contemporary technologies is in the timing of when it is required.

The implications of this subtle change are fundamental. System agility is affected by

the coupling of components within a system, and in this respect, we argue that local

interaction does indeed support looser coupling than traditional distribution

technologies. By divorcing the mechanism for distribution from the dialogue,

components in a system can be loosely coupled right up until the moment of

interaction. Although once engaged in dialogue the components become tightly

coupled, the moment of coupling has been delayed. Therefore, we may conclude that

mobile code systems are more loosely coupled, and this looser coupling enables

improved system agility when compared with traditional distribution technology.

The important issue to understand is why there are such marked differences between

the abstraction offered by current distribution technologies and that offered by mobile

code. In chapter one we examined the history of computing and saw how the

computing landscape we inhabit today has been formed through the gradual layering

of ascending abstractions. This is not a problem, since abstractions are an extremely

useful tool for reducing the complexity of a situation, removing the minutiae so one

might contemplate the problem at hand with clarity. However, what is important

about abstraction is the importance of using an appropriate one. One that is able to

accurately describe the real situation, without losing any important information.

It has been the author’s belief that the major tenet of RM-ODP systems, that of

location transparency, is fundamentally flawed in this respect. The first notion of this

On the Structuring of Distributed Systems Evaluation

 113

abstraction arose when Birrel and Nelson attempted to take the extremely successful

abstraction of IPC, and apply it to many networked machines, in order to make local

and remote calls look identical. This philosophy has prevailed and been extended so

that we currently employ an abstraction that attempts to make every object or

component in a distributed system believe they are executing in the same computing

machine. However, by attempting to “shoehorn” an abstraction that was perfectly

suited for the underlying hardware, i.e. a single von Neumann machine, onto many

computing machines an important piece of information has been lost from the

abstraction – location. Waldo et al identify several problems of distributed systems

but do not offer a clear reason for these problems. We propose that it is due to the

loss of location from the distribution abstraction. Identification of components in the

network can no longer be achieved via their location, instead they must be identified

by their interface signatures.

The assertion of the author is that although this technology can indeed build

successful distributed systems, the drawbacks do not warrant the effort. The price for

using the interface as a locator is tightly coupled systems that are difficult to change.

Instead of enabling location transparency, mobile code systems enable local

interaction, an abstraction ideally suited to single von Neumann machines. By using

physical location as a locator, mobile code systems are able to separate the issues of

distribution from the issues of dialogue, and thus these systems are more loosely

coupled. Additionally, they provide improved semantic alignment, and thus reduce

the cognitive complexity of the system.

Employing the correct abstraction can have fundamental consequences to building

distributed systems. Instead of a flat plane of components that all believe they are in

the same host, the mobile code abstraction removes this opacity of RM-ODP and

exposes the rich network environment.

7.6 Concluding Remarks

Evaluating software systems is never an easy task. The evaluation in this thesis has

been undertaken following Basili’s GQM methodology. Using this technique a set of

tangible metrics was developed to assist in the evaluation of the two mobile code

systems. The motivation for the experimental work carried out in this thesis was to

On the Structuring of Distributed Systems Evaluation

 114

demonstrate the feasibility of actually building distributed systems with mobile code

technology, and to investigate the implications for system agility when using this new

paradigm.

We initially examined the issue of semantic alignment and compared our two

prototype systems. The experimental work has shown that by reducing the conceptual

diffusion in a system, the mobile agent abstraction is able to offer improved semantic

alignment with the business process it is intended to support when compared to the

mobile object system. The difference is barely significant in our systems, but could

easily be magnified in a full size system. In the process of this evaluation, two

software metrics have been developed to assist the system designer in identifying

which components, if any should be mobile.

On examination, system agility is a harder issue to resolve. The experimental work

has shown that mobile code systems are relatively agile, with the mobile agent

abstraction being slightly more so than the mobile object abstraction. The differences

in each implementation with respect to agility are identical to the differences in

semantic alignment. This is due to lower conceptual diffusion in the mobile agent

system, something that is enabled by the autonomy of the agent metaphor.

When looking at loose coupling we see no difference between the mobile object and

mobile agent prototypes. However, in general component coupling in these systems

is extremely low. This is in marked contrast to distributed systems built with the

location transparency abstraction. Although our work does not shed any further

quantitative light onto this matter, our observations do support the argument made in

Part I of this thesis: that location transparency is fundamentally flawed. Our

conclusion is that this is further exacerbated by combining the information used for

location of components with that required for a dialogue. Local transparency on the

other hand separates these two issues, and is thus able to build more loosely coupled

systems that are more responsive to change.

On the Structuring of Distributed Systems Conclusions

 115

8 Conclusions
Building distributed systems is not a new endeavour. We have been doing so for as

long as we have been networking computers. However, the types of system being

built, and the nature of the underlying network are evolving beyond the wildest

dreams of the early network pioneers. Networks are becoming pervasive in society,

and the dream of ubiquitous computing is finally being realised. These new networks

bring new requirements for how we build distributed systems. We can no longer

guarantee network reliability or even topology. Our existing technologies and

infrastructures are beginning to creak under the strain.

This thesis has been concerned with how we build distributed systems. Instead of

focusing merely on the technology used to implement them, we have also focused on

the abstractions employed in their construction. These immensely powerful concepts

allow us to manage the complexity of a situation, by removing those details we

consider inessential. After all, the central essence of any paradigm is the abstractions

it embodies. The major contributions of this thesis have been:

• An extensive philosophical argument and critique of abstractions for
distribution

• The demonstration of the feasibility of building real-world distributed systems
with mobile code infrastructures

• The creation of the new software metrics of Conceptual Diffusion, Semantic
Alignment and Change Capability

• Quantitative comparisons of the Mobile Agent and Remote Computation
abstractions

In Part I, Understanding, we traced the emergence of abstractions in computing, and

built a philosophical understanding and critique of the abstractions used to construct

distributed software systems. The central thesis of this work is that by employing the

location transparency abstraction, and attempting to create the illusion that all

components exist within the same computational machine, contemporary distributed

systems are fundamentally flawed as they break the Tower of Abstractions by

attempting to impose an unsuitable abstraction on the underlying computational

substrate. We have demonstrated that location transparency was a wrong fork in the

evolutionary road of distribution. Our proposal is that a new abstraction, local

interaction (embodied in mobile code infrastructures), that returns to the core

On the Structuring of Distributed Systems Conclusions

 116

successes of the von Neumann computational machine is a more suitable abstraction

with which to build distributed systems in today’s ubiquitous networks. Removing

location from the abstraction has proven detrimental to the agility of systems built

with this technology, since the issues of distribution have become tied with those of

dialogue. Whilst we advocate the use of abstraction, we believe that location

transparency loses essential information when employed. We believe that Part I of

this thesis contributes by raising the level of conceptual understanding surrounding

the mobile code paradigm.

The arguments presented in Part I are extensive, and a full experimental investigation

was deemed beyond the scope and timescale of a PhD. Instead, our horizons were

shortened to encompass the first steps along the long path of validating the argument.

Part II, Using and Evaluating, is therefore a report on our experiences of mobile code

in the real world. To date, the mobile code research arena has remained relatively

immature, and the dearth of real systems has hampered its development. With this in

mind, our experimental work was based upon a business process model generated

from an industrial case study. We reported on the creation of two prototype systems

that embodied the Mobile Agent and Remote Computation abstractions, part of the

mobile code family of abstractions. In this, we have achieved our first aim; to

demonstrate the feasibility of building real world distributed systems with mobile

code. We also wish to comment on the relative merits of each prototype.

In the course of the experimental work, we subjected our systems to real world

pressures in the form of Scenarios for Change, also generated from the case study.

During the subsequent evaluation, we developed several metrics using the Basili

GQM methodology. The metrics of Conceptual Diffusion, Semantic Alignment and

Change Capability have proved to be useful techniques for evaluation that can be used

during both the specification process, and post construction. In addition, we have

tried to consider the full lifecycle of our systems, an exercise that has produced

several supporting tools and proto-patterns.

Our evaluation of the two mobile code prototypes draws us to conclude that the

mobile agent abstraction is the more useful to employ. From our experiments, we

observe that mobile agents enjoy increased semantic alignment and system agility

when compared to the remote computation abstraction. The differences in each

On the Structuring of Distributed Systems Conclusions

 117

implementation arise due to the lower conceptual diffusion of the mobile agent

system, something that is enabled by the autonomy of the agent metaphor.

We believe that this thesis is a beginning, an initial monograph on abstractions for

distribution. It is clear that location transparency is unsuitable for some types of

system we wish to build, and that mobile code offers a viable alternative. This is not

to say that all distributed systems should be built with mobile code. Mobile agents

offer us a solution for networks where topology, quality of service and varying

bandwidth are the core issues. We should appreciate the nuances of each abstraction,

so that we may apply them in the correct situation.

8.1 Future work

As has been mentioned, the arguments made in Part I are extensive, and their scope

beyond that which can be considered in the timescale of a PhD. This is not to say we

have not contemplated what would be required. The experiments described in this

thesis have been a first step. We have demonstrated the viability of mobile code, and

our results indicate that the mobile agent abstraction supports good system agility.

The question of whether mobile code technology is superior to contemporary

technology remains open. It is very difficult to compare the two, since the maturity

levels of the technologies differs greatly. Distributed systems built around the RM-

ODP model have been around for over a decade with much industry development,

whilst mobile agent systems have been around merely a few years.

We believe the next stage of validation for our philosophical argument would be to

undertake a course of research to directly compare Mobile Agents with RM-ODP. To

avoid the differences in technology maturity, we envisage building each abstraction

from the ground up. A clean room implementation of both abstractions would allow a

more valid and comprehensive comparative analysis. Further, it is clear that software

patterns and software metrics evolve throughout their lifetime. Through use,

practitioners are able to refine them. We believe additional software metrics would

support this investigative work.

As has already been mentioned, an obvious avenue for future work would be to

continue the SOP implementation undertaken in this thesis. The current model

On the Structuring of Distributed Systems Conclusions

 118

embodied in our prototypes has many areas where it can be expanded. Increasing the

size and complexity of our systems would allow us to reapply the scenarios for

change. A comparative study with our current results would be a valuable exercise to

ascertain how much of an effect size and complexity has on system agility. We

should also be searching for collaborative partners on other continents to truly test

how successfully each system supports distribution.

Finally, the creation of a modelling language that includes the facility to specify

mobile components would be an invaluable addition to the system designer’s toolbox.

Current modelling languages, such as UML [Booch97], do not include the concept of

mobility. Extending de facto industry methodologies is a sure fire way to ensure

widespread adoption of new ideas and technologies.

8.2 Commentary

Using mobility is not just about what the technology can do for you. It is also about a

fundamental change of mindset. By removing the conceptual block that is the plane

of transparency, distributed systems designers can begin to appreciate the rich

environment that is the network. If we remain faithful to the Tower of Abstractions,

and employ the network as our communications infrastructure, we draw on the

strengths of the von Neumann machine and the network suite, whilst divorcing the

issues of distribution from those of dialogue.

In hindsight, it is easy to illustrate the reasons our computing evolution meandered

down the location transparency fork. Recently an expanding community has realised

there are problems with this approach. As a software engineering community in the

large, we must be brave enough to face up to those problems, and admit our mistakes.

It is better to attack the problem as early as possible, than build ever more elaborate

software constructs to support a dying abstraction. The ideas generated during the

work undertaken in this thesis have allowed the author to view distribution from a

different perspective. Local interaction is beginning to establish itself as a valid tool

for building earthbound distributed systems, but it has already been considered for

perhaps the ultimate distributed system - a space based network [Papaioannou99c].

There can be no question of location transparency being employed when the distances

involved in this type of network are considered!

On the Structuring of Distributed Systems Conclusions

 119

Mobile agents have shown considerable early promise. The future they depict is one

of a rich network environment, inhabited by an ecology of autonomous agents. Nodes

in the network become islands of resources, on which agents may alight to take

advantage of resources locally. The population consists of mobile and static agents,

all enjoying some level of autonomy, ranging from simple task specific instructions,

to complex autonomous agent architectures. The mobile agents live in the network,

able to migrate, clone, sleep, wake, but in reality insert a new layer of abstraction over

the underlying computation substrate. They act for other agents, or their human

owners. The static agents are brokers for immovable resources such as printers or

databases. In this virtual ecology, we see the glimpses of our future computing.

On the Structuring of Distributed Systems List of Publications

 120

List of Publications

Clements, P.E., Papaioannou, T. and Edwards, J.M., ''Aglets: Enabling the Virtual
Enterprise'', Proceedings of the 1st International Conference on Managing
Enterprises - Stakeholders, Engineering, Logistics and Achievement, ME-SELA '97,
Wright, Rudolph, Hanna, Gillingwater and Burns (eds), Mechanical Engineering
Publications, Loughborough University, July 1997,pp 425-432, ISBN 1-86058-066-1

Papaioannou, T., Edwards, J.M., “Mobile Agent Technology Enabling the Virtual
Enterprise: A Pattern for Database Query”, in notes of Agent Based Manufacturing
Workshop, part of the International Technical Conference Autonomous Agents '98.

Papaioannou, T., Edwards, J.M., “Using Mobile Agents To Improve the Alignment
Between Manufacturing and its IT Support Systems”, International Journal of
Robotics and Autonomous Systems, 27, pp 45-57, 1999.

Papaioannou, T., Edwards, J.M., “Mobile Agent Technology in Support of Sales
Order Processing in the Virtual Enterprise”, in [Camarinha-Matos et al]

Papaioannou, T., “Mobile Agents: Are They Useful for Establishing a Virtual
Presence in Space?”, in notes of Adjustable Autonomy Symposium, part of the
AAAI Spring Symposium Series, Stanford University, 1999.

Papaioannou, T., Minar, N., “Mobile Agents in the Context of Competition and
Cooperation”, Proc. of MAC3 workshop, part of Autonomous Agents ‘99
conference, Seattle, 1999.

Papaioannou, T., Edwards, J.M., “Manufacturing Systems Integration and Agility:
Can Mobile Agents Help?”, accepted for publication in Journal of Integrated
Computers-Aided Engineering, IOS Press. To appear in January 2001 Issue.

Papaioannou, T., Edwards, J.M., “Towards Understanding and Evaluating Mobile
Code Systems”, accepted for publication in Journal of Autonomous Agents and
Multi-Agent Systems, Kluwer Academic Publishers. To appear in 2000.

On the Structuring of Distributed Systems References

 121

References

Abadi96 Abadi, M., and Cardelli, L., “A Theory of Objects”,
Monographs in Computer Science, Springer-Verlag, Berlin,
1996.

Accetta86 Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A.,
Young, M., “MACH: A New Kernel Foundation for UNIX
Development”, Proc. Summer USENIX Conference, pp 93-
112, 1986.

Adobe85 Adobe Systems Inc., “The Postscript Language Reference
Manual”, Addison-Wesley, 1985.

Agha97 Agha, G., “Abstracting Interaction Patterns: A Programming
Paradigm for Open Distributed Systems”, in Najm, E. and
Stefani, J.B., Eds, “Formal Methods for Open Object-based
Distributed Systems”, Chapman & Hall, 1997

Andrews82 Andrews, G.R., “The distributed programming language SR –
mechanisms, design and implementation”, Software Practice
and Experience, Vol 12, pp 719-753, 1982

Andrews83 Andrews, G., Schneider, F., “Concepts and Notations for
Concurrent Programming”, ACM Computing Surveys, 15, pp
3-43.

Apple92 Apple Computers, “Dylan, an Object Oriented Dynamic
Language”, Apple, Cupertino, CA, 1992.

Arnold99 Arnold, K., Wollrath, A., O’Sullivan, B., Sheifler, R., Waldo,
J., “The Jini Specification”, Addison-Wesley, 1999.

Backus78 Backus, J., "Can Programming be Liberated from the Von
Neumann Style?”, Comm. ACM 21 (8), pp. 613-641.

Ball98 Ball, K., McClain, D., Minium, D., 1997, "Enterprise
Enablement for Java Applications", XDB SystemsReferences

Barber98 Barber, M., Weston, R., "BPR Scoping Paper", IJPR, 1998.

Barlow97 Interview with the Managing Director of I.T.L., Mr David
Barlow, 1997.

Basili94 Basili, V.R., Caldiera, G., Rombach, H.D., (1994), “The Goal
Question Metric Approach”, Encyclopedia of Software
Engineering, pp 528-532, Wiley and Sons.

Baumann97 Baumann, J., Hohl, F., Rothermel, K., “Mole – Concepts of a
Mobile Agent System”, Technical Report No 1997/15, Faculty
of Computer Science, Stuttgart, Germany, 1997.

Ben-Ari90 Ben-Ari, M., “Principles of Concurrent and Distributed
Programming”, Prentice-Hall, Englewood Cliffs, NJ, 1990.

On the Structuring of Distributed Systems References

 122

Bennet94 Bennett K.H., Ward M.P., 'Using Formal Transformations for
the Reverse Engineering of Real-time Safety Critical Software'
Proc. Second Safety-Critical Systems Symposium,
Birmingham, 1994, pub. Springer-Verlag, ISBN 0-387-19859-
8, pp. 204 –223

Berners-Lee92 Berners-Lee, T.J., Cailliau, R., Groff, J.-F., Pollerman, B.,
“World-Wide Web: The Information Universe.”, in Electronic
Networking: Research, Applications and Policy, Vol 2 (1), pp
52-58, Westport CT: Meckler Publishing.

Berners-Lee92b Berners-Lee, T., Fielding, R., Masinter, L., “Uniform Resource
Identifiers (URI): Generic Syntax”, available at
http://www.ietf.org/rfc/rfc2396.txt

Birrel84 Birrel, A.D., Nelson, B.J., “Implementing remote procedure
calls”, ACM Transactions on Computer Systems, Vol 2, pp 39-
59, 1984

Birtwistle73 Birtwistle, M. G., Dahl, O. J., Myhraug, B., Nygaard, K.,
"Simula Begin", Petrocelli/Charter, New York, 1973.

Blair91 Blair, G.S., et al. "Object-Oriented Languages, Systems and
Applications", Pitman, London UK, 1991, cited in [Coutts98]

Bobrow88 Bobrow, D.G., De Michiel, L.G., Gabriel, R.P., Keene, S.E.,
Kiczales, G, and Moon, D.A., “Common LISP object system
specification”, ACM SIGPLAN Notices, 23, September, 1988.

Boehm76 Boehm, W., Brown, J.R., Lipow, M., “Quantitative Evaluation
of Software Quality”, Proc. 2nd International Conference on
Software Engineering, 1976, pp 592-605.

Boggs73 Boggs, J.K., “IBM Remote Job Entry Facility: Generalised
Subsystem Remote Job Entry Facility”, IBM Technical
Disclosure Bulletin, 752, August 1973.

Booch94 Booch, G., “Object Oriented Analysis and Design with
Applications”, Redwood City, CA: Benjamin/Cummings, 1994

Booch97 Booch, G., Rumbaugh, J., Jacobsen, I., “Unified Modelling
Language Semantics and Notation Guide 1.0”, Rational Rose
Software Corporation, CA, 1997.

Brener87 Brenner, J.B., “Open distributed processing”, ICL Technical
Journal, Vol. 5 (4), pp 613-637, 1987

Brooks95 Brooks, F.P. Jr, "The Mythical Man-Month: Essays on
Software Engineering”, Addison-Wesley, Reading, MA, 1995.

On the Structuring of Distributed Systems References

 123

Burks46 Burks, A.W., Goldstine, H.H., von Neumann, J., “Preliminary
Discussion of the logical Design of an Electronic Computing
Instrument”, U.S. Army Ordinance Dept. Report, 1946.

Callear94 Callear, D., “Prolog Programming for Students”, Ashford
Colour Press, England, 1994.

Camarinha-

Matos98

Camarinha-Matos, L. M., Vieira, W., “Using Multiagent
Systems and the Internet in Care Services for the Ageing
Society”, appearing in [Camarinha-Matos et al], 1998.

Camarinha-

Matos et al

Camarinha-Matos, L. M., Afsarmanesh, H., Marik, V., eds.
"Intelligent Systems for Manufacturing: Multi-Agent Systems
and Virtual Organisations", Kluwer Academic Publishers,
1998, ISBN 0-412-84670-5

Cardelli85 Cardelli, L., and Wegner, P., “On understanding types, data
abstraction, and polymorphism.”, ACM Computing Surveys,
17 (4), pp 471-522, 1985.

Carrot97 Carrot, A.J., Wright, C.D., West, A.A., Harrison, R., "Creating
a distributed object-oriented integration framework for machine
design and control ”, First International Conference on
Managing Enterprises-Stakeholders, Engineering, Logistics &
Achievement (ME-SELA ‘97) at Loughborough University,
22-24 July 1997.

Carver91 Carver, G. P., Bloom, H.M., "Concurrent Engineering through
Product Data Standards", U.S. Department of Commerce, May
1991.

Carzaniga97 Carzaniga, A., Picco, G.P., Vigna, G., “Designing Distributed
applications with Mobile Code Paradigms”, Proc. 19th
International Conf. On Software Engineering (ICSE’97), 1997,
Taylor, R., Ed., ACM Press, pp 22-32.

Cashin80 Cashin, P.M., “Inter-Process communication”, Bell-Northern
Research Report, May 1980.

Cerf74 Cerf, V. and Kahn, R., “A protocol for Packet Network
Interconnection”, IEEE Trans. on Communication, Vol. COM-
22, pp 637-648, 1974.

Cerutti83 Cerutti, D., Pierson, D., “Distributed computing environments”,
McGraw-Hill, 1993

Cheong83 Cheong, V.E., “Local Area Networks”, Wiley and Sons, 1983.

Chess97 Chess, D., Harrison, C., Kershenbaum, A. "Mobile Agents: Are
They A Good Idea ?", in "Mobile Object Systems, Towards one
programmable Internet", Edited by Vitek, J., Tschudin, C.,
Springer-Verlag Lecture Notes in Computer Science 1222,
1997, ISBN-3-540-62852-5.

On the Structuring of Distributed Systems References

 124

Chomsky59 Chomsky, N., “On Certain Formal Properties of Grammers”,
Information and Control, 2 (2), pp 137-167, 1959, cited in
[Coutts98]

Church41 Church, A., "The calculi of lambda conversion.", Annals of
Mathematics Studies, 6, Princeton University Press, Princeton
NJ, 1941.

Clements97 Clements, P.E., Papaioannou, T. and Edwards, J.M., ''Aglets:
Enabling the Virtual Enterprise'', Proceedings of the 1st
International Conference on Managing Enterprises -
Stakeholders, Engineering, Logistics and Achievement, ME-
SELA '97 , Wright, Rudolph, Hanna, Gillingwater and Burns
(eds), Mechanical Engineering Publications, Loughborough
University, July 1997, pp 425-432, ISBN 1-86058-066-1.

Clocksin87 Clocksin, W.F., Mellish, C.S., “Programming in Prolog”, 3rd
edition, Springer-Verlag, 1987.

Comer91 Comer, D., “Internetworking with TCP/IP Volume I:
Principles, Protocols, and Architectures”, 2nd Edition, Prentice
Hall, 1991

Coulouris94 Coulouris, G., Dollimore, J., Kindberg, T., “Distributed
Systems: Concepts and Design (2nd Edition)”, Addison-Wesley,
1994

Coutts98 Coutts, I., A., "An Infrastructure to Support the Implementation
of Distributed Software Systems", doctoral thesis (to be
published), Loughborough University, 2001.

Coutts98b Coutts, I.A., Edwards, J.M., “Support for Component Based
Systems: Can Contemporary Technology Cope?”, in
[Camarinha-Matos et al], 1998.

Cox87 Cox, B. J., "Object Oriented Programming - An Evolutionary
Approach", Addison-Wesley, Wokingham, UK, 1987, cited in
[Coutts98]

Cox98 Cox, B. J., Opinion expressed in private correspondence via
email, 1998.

Crichlow88 Crichlow, J.M., “An Introduction to Distributed Parallel
Computing”, Prentice-Hall, 1988.

Cypser78 Cypser, R., “Communications Architectures for Distributed
Systems”, Addison-Wesley, 1978.

DeMarco78 T. DeMarco, Structured Analysis and System Specification,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978

On the Structuring of Distributed Systems References

 125

DeRemer76 DeRemer, F., Kron, H.K., “Programming in the Large Versus
Programming in the Small”, IEEE Transactions on Software
Engineering, SE-2 (2), pp 80-86, 1976.

Dijkstra68 Dijkstra, E.W., "Goto Statement Considered Harmful", Comm.
ACM, 24, pp. 147-148, 1968.

DoD61 Department of Defense, "COBOL, Revised Specification for a
Common Business Oriented Language", 196.

DoD80 Department of Defense, "Ada Programming Language", Report
MIS-STD-1815, Washington D.C., 1980.

DoD80b USA Department of Defence, “Reference Manual for the Ada
Programming Language”, Proposed Standard Document, 1980.

Einstein39 Einstein, A., Infeld, L., “The Evolution of Physics”, 2nd
Edition, Simon and Schuster, NY, 1960.

Franklin96 Franklin, S and Graesser, A., 1996, "Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents", Proceedings
of the 3rd Int. Workshop on Agent Theories, Architectures, and
Languages, Published as Intelligent Agents III Springer-Verlag
, Berlin, 1997, pp 21-35.

Fukuoka82 Fukuoka, H., “Interprocess communication facilities for
distributed systems: a taxonomy and a survey”, Research
Report, Georgia Institute of Technology, GIT-ICS-82/06, 1982.

Gascoigne94 Gascoigne, J.D., “CIM-BIOSYS Integrated System
Implementation Toolset”, MSI Research Institute,
Loughborough University, England, 1994.

Gershenfeld99 Gershenfeld, N., “When Things Start to Think”, Henry Holt &
Company, 1999, ISBN 0805058745. in [Minar99]

Geschke77 Geschke, C. M., Morris, J. H. Jr., Satterthwaite, E. H., "Early
experiences of Mesa", Comm. ACM, 20 (8), pp. 540-553,
1977.

Ghezzi98 Ghezzi, C., Jazayeri, M., “Programming Language Concepts”,
3rd ed., Wiley and Sons, 1998.

Glass99 Keynote speech given by Graham Glass, CTO of ObjectSpace
at Autonomous Agents 99, Seattle, May 1999.

GoF93 Gamma, E., R. Helm, R. Johnson, & J. Vlissides, ``Design
Patterns: Abstraction and Reuse of Object-Oriented Designs'',
Proceedings, ECOOP '93, Springer-Verlag, 1993.

Goldberg83 Goldberg, A., Robson, D., “Smalltalk-80: the Language and Its
Implementation”, Addison-Wesley, Reading, MA, 1983.

On the Structuring of Distributed Systems References

 126

Goldman95 Goldman, S.L., Nagel, R.N., Preiss, K., “Agile Competitors and
Virtual Organisations”, Van Nostrand Reihold Publishing,
1995.

Gong99 Gong, L., “Inside Java 2 Platform Security: Architecture, API
Design, and Implementation”, Addison-Wesley, 1999. ISBN:
0201310007

Goodenough75 Goodenough, J.B., “Exception handling: Issues and proposed
notitation”, Comm. ACM, 16 (12), pp 683-696, Dec. 1975.

Gosling96 Gosling, J., Joy, B., Steele, G., "The Java Language
Specification", Addison-Wesley, Reading, MA, 1996.

Gray83 Gray, J.P., Hansen, P.J., Homan, P., Lerner, M.A., Pozefsky,
M., “Advanced program-to-program communication in SNA”,
IBM Systems Journal, Vol. 22 (4), pp 298-318, 1983.

Gray97 Gray, R., “Agent Tcl: A flexible and secure mobile-agent
system”, PhD thesis, Dept. of Comp Sci, Dartmouth College,
June 1997.

Green80 Green, P.E. Jr, “An Introduction to Network Architectures and
Protocols”, in [IEEE80].

Hammer93 Hammer, M., Champy, J., “Re-engineering the corporation”,
Nicholas Braedly Publishing, London, 1993.

Harel87 Harel, D., “The science of computing: exploring the nature and
power of algorithms, Addison-Wesley, USA, 1987.

Harel93 Harel, D., “Algorithmics: The Sprit of Computing 2nd
Editions”, Addison-Wesley, 1993.

Hoare72 Hoare, C.A.R., “Notes on data structuring”, Structured
Programming, Academic Press, pp 83-174, 1972

Hoare74 Hoare, C.A.R., “Monitors: An operating system structuring
concept”, Comm. ACM, Vol. 17 (10), pp 549-557, 1974

Hoare78 Hoare, C.A.R., “Communicating sequential processes”, Comm.
ACM, Vol. 21 (8), pp 666-677, 1978

Hodgson97 An interview with the Head of IT at I.T.L., Mr Richard
Hodgson, 1997.

Hopper68 Hopper, G. M., Keynote Address at the inaugural History of
Programming Languages conference, June 1-3, 1978, cited in
[Wexelblat81].

Hopson96 Hopson, K.C., Ingram, S.E., Chan, P., “Developing
Professional Java Applets”, Sams Publishing, 1996, ISBN:
1575210835

On the Structuring of Distributed Systems References

 127

Horowitz83 Horowitz, E., “Fundamentals of Programming Languages”,
Springer-Verlag, 1983.

Hudak89 Hudak, P., “Conception, Evolution and Application of
Functional Programming Languages”, ACM Computing
Surveys, Vol 21, pp 359-411, 1989.

IBM56 IBM Corporation, "Programmer's Reference Manual, The
FORTRAN Automatic Coding System for the IBM 704
EDPM", 956.

ICSE99 Proceedings of 21st International Conference on Software
Engineering, “Preparing for the Software Century”, ACM
PRES 1999, ISBN: 1-58113-074-0

IEEE80 IEEE Transactions on Communications, Special Issue on
Computer Network Architectures and Protocols, Vol. 28 (4),
April 1980.

ISO83 International Standards Organisation, “Basic Reference Model
for Open Systems Interconnection”, ISO 7498, ISO, 1983

ISO90 International Organisation for Standardisation. Pascal.
Technical report ISO 7185. ISO Geneva, 1991.

ISO92 International Standards Organisation, “Basic Reference Model
of Open Distributed Processing, Part 1: Overview and guide to
use”, ISO/IEC JTC1/SC212/WG7 CD 10746-1, ISO, 1992

Iverson62 Iverson, K.E., “A Programming Language”, Wiley and Sons,
1962.

Jennings98 Jennings, N.R., Sycara, K.P. and Wooldridge, M., “A roadmap
of agent research and development.”, in Autonomous Agents
and Multi-Agent Systems, 1, pp 7-38, Kluwer Academic
Publishers, 1999.

Johansen99 Johansen, D., interview in [Milojicic99], IEEE Concurrency,
1999.

Johansen99b Johansen, D., “Mobile Agent Applicability.”, In, Proceedings
of the Mobile Agents 1998, Springer-Verlag LNCS series,
Stuttgart, 9-11 September, 1998. Also in, Journal of Personal
Technologies, Springer-Verlag, Vol 2, No. 2, 1999.

Jones83 Jones, M.B., Rashid, R.T., “Mach and Matchmaker: kernel and
language support for object-oriented distributed systems”,
ACM SIGPLAN Notices, Vol. 21 (11), pp 67-77

Jones97 Jones, M. Dr., Given in a presentation at the EPSRC
Methodology Workshop held at Cambridge University, UK,
1997.

On the Structuring of Distributed Systems References

 128

Jul88 Jul, E., Levy, H., Hutchinson, N., Black, A., “Fine-grained
Mobility in the Emerald System”, ACM Transactions on
Computer Systems, Vol 6 (2), 1988, pp 109-133.

Kernighan78 Kernighan, B.W., Ritchie, D.M., “The C Programming
Language”, Prentice Hall, 1978.

Kiczales97 Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C.V., Loingtier, J-M., Irwin, J., “Aspect-Oriented
Programming”, Proc. European Conf. on OOP (ECOOP),
Springer-Verlag LNCS 1241, 1997

Knabe96 Knabe, F.C., “Language and compiler support for mobile
agents”, PhD thesis, Carnegie Mellon University, 1996.

Knuth74 Knuth, D.E., “Structured programming with goto statements”,
ACM Computing Surveys, 6 (4), pp 261-301, Dec. 1974

Kogure83 Kogure, M., Akao, Y., “Quality Function Deployment and
CWQC in Japan”, Quality Progress, October 1983, pp 25-29.

Kotz99 Kotz, D., Gray, R.S., “Mobile code: The Future of the
Internet”, in [Papaioannou/Minar99], 1999.

Kowalski79 Kowalski, R.A., “Logic for Problem Solving”, North-Holland,
Amsterdam, 1979.

Kramer83 Kramer, J., Magee, J., Sloman, M., Lister, A., “CONIC: an
integrated approach to distributed computer control systems”,
IEE Proceedings, Part E, Vol 130 (1), pp 1-10, 1983.

Labrou94 Labrou, Y., Finin, T., “A Semantics Approach for KQML – a
General Purpose Communication Language for Software
Agents”, in proc. 3rd Int’l Conf. On Information and
Knowledge Management (CIKM’94), 1994.

Lampson77 Lampson, B., Mitchell, J., Satterthwaite, E., "Report on the
programming language Euclid", SIGPLAN Notices, 12 (2), Feb
1977

Lange98 Lange, D.B., Oshima, M., "Mobile Agents with Java: The
Aglet API", World Wide Web Journal, 1998.

Lea93 Lea, R., Jacquement, C., Pillevesse, E., “COOL: System
Support for Distributed Object-Oriented Programming”,
Comm. ACM, Vol 36 (9), 1993, pp 37-46.

Leffler89 Leffler, S., McKusick, M., Karels, M. and Quartermain, J.,
“The Design and Implementation of the 4.3 BSD Unix
Operating System”, Addison-Wesley, 1989

Lindholm99 Lindholm, T., Yellin, F., “The Java Virtual Machine
Specification 2nd Edition”, Addison-Wesley, 1999. ; ISBN:
0201432943

On the Structuring of Distributed Systems References

 129

Liskov81 Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, J.C.,
Sheifler, R. and Snyder, A., “CLU Reference Manual”,
Springer-Verlag, 1981.

Liskov83 Liskov, B., Sheifler, R., “Guardians and actions: linguistic
support for robust distributed programs”, ACM TOPLAS, Vol
5 (3), pp 381-404, 1983

Liskov88 Liskov, B., “Distributed Programming in Argus”, Comm.
ACM, Vol. 31 (3), pp 300-12, 1988

MacLennan87 MacLennan, B. J., "Principles of programming languages
(Second Edition)", Holt, Rinehart & Winston, 1987.

MAL99 The Mobile Agents List, a repository of mobile agent systems,
available at: http://www.informatik.uni-tuttgart.de/
ipvr/vs/projekte/mole/mal/mal.html

Malamud91 Malamud, C., “Analysing DECnet / OSI Phase V”, Van
Nostrand Rheinhold, NY, 1991

Martin99 Martin, D. L., Cheyer, A. J., and D. B. Moran, "The open agent
architecture: A framework for building distributed software
systems," Applied Artificial Intelligence, vol. 13, pp. 91--128,
January-March, 1999.

McCall77 McCall, J.A., Richards, P.K.z, Walters, G.F., “Factors in
Software Quality”, Rome Air Development Centre, RADC TR-
77-369, 1977.

McCarthy60 McCarthy, J., "Recursive functions of symbolic expressions
and their computation by machine.", Comm ACM, 3 (4), pp
184-195, 1960.

McFayden76 McFayden, J.H., “Systems network architecture: An overview”,
IBM Systems Journal, Vol 15 (1), pp 4-23, 1976.

McQuillan77 McQuillan, J., Walden, D., “The ARPA network design
decision”, Computer Networks, 1 (3), pp 243-289, 1977

Mendelson64 Mendelson, E., “Introduction to Mathematical Logic”, Van
Nostrand Reinhold, 1964.

Metcalfe76 Metcalfe, R.M., Boggs, D.R., “Ethernet: Distributed Packet
Switching for local computer networks.”, Comm. ACM, 19 (7),
pp 395-404, 1976

Milner90 Milner, R., Tofte, M., Harper, R.M., “The Definition of
Standard ML”, MIT Press, Cambridge, MA, 1990.

Milojicic99 Milojicic, D., “Trend Wars: Mobile Agent Applications”, IEEE
Concurrency, pp 80-90, July-September, 1999.

On the Structuring of Distributed Systems References

 130

Minar98 Minar, N., “Designing an Ecology of Distributed Agents”,
Masters Thesis, Media Lab, MIT, 1998.

Minar99 Minar, N., Gray, M., Roup, O., Krikorian, R., Maes, P., (1999),
“Hive: Distributed Agents for Networking Things”,
Proceedings of. ASA/MA ‘99.

Minar99b Private email correspondence with Nelson Minar, Hive team
lead and chief architect, Dec 1999.

Mitchel79 Mitchel, J.G., Maybury, W., Sweet, R., “Mesa Language
Reference Manual (V5.0)”, Tech. Report CSL-79-3, Xerox
PARC, Palo Alto, CA.

Mobility98 Frequently Asked Questions (FAQ) of The Mobility List,
1998.Available at http://mobility.lboro.ac.uk/faq.html

Mobility99 The Mobility Mailing List – de facto mailing for discussion of
mobility. Home page at: http://mobility.lboro.ac.uk

Molina98 Molina, A., Flores, M., Caballero, D., "Virtual Enterprises: A
Mexican Case Study", published in [Camarinha-Matos98],
1998, pp159-170.

MSI99 MSI Research Institute, Final Report of the EPSRC Grant
entitled “Manufacturing Software Interoperability: Steps
towards Interoperating Distributed Objects”, EPSRC Grant No
GR/M02446 (GR/K50504), Duration 01/05/95 – 30/04/99,
1999

Mullender93 Mullender, S.J. (ed), “Distributed Systems 2nd Edition”, ACM

Press, 1993.

Naur63 Naur, P. et al (Eds.), "Revised Report on the Algorithmic
Language ALGOL 60", Comm. ACM, 6, pp. 1-17, 1963.

Naur78 Naur, P., “The European Side of the Last Phase of the
Development of Algol 60”, SIGPLAN Notices 13 (8), pp 15-
44, 1978.

Nelson91 Nelson, G., “Systems Programming with Modula-3”, Prentice-
Hall, Englewood Cliffs, 1991.

OMG94 Object Management Group, “The Common Object Request
Broker: Architecture and Specification”, OMG Inc., 492 Old
Connecticut Path, Framingham, MA, USA, 1994

OMG99 Object Management Group, “IDL Syntax and Semantics”,
OMG Inc., 492 Old Connecticut Path, Framingham, MA, USA,
1999, available at:
http://www.omg.org/pub/orbrev/drafts/revised_99-08-01.idl

On the Structuring of Distributed Systems References

 131

OSF92 OSF, “Introduction to OSF DCE”, Prentice-Hall, 1992

OSI84 Reference Model of Open Systems Interconnection for CCITT
Applications, Malaga-Torremolinos, 1984

Osório98 Osório, A.L., Nuno, O., Camarinha-Matos, L., "Concurrent
Engineering in Virtual Enterprises: the Extended CIM-FACE
Architecture", published in [Camarinha-Matos98], pp171-184.

Ousterhout94 Ousterhout, J.K., “Tcl and the Tk toolkit”, Addison-Wesley,
1994.

Papaioannou/

Minar99

Papaioannou, T., Minar, N., “Mobile Agents in the Context of
Competition and Cooperation”, Proc. of MAC3 workshop, part
of Autonomous Agents ‘99 conference, Seattle, 1999.

Papaioannou98 Papaioannou, T., Edwards, J.M., “Mobile Agent Technology
Enabling the Virtual Enterprise: A Pattern for Database
Query”, in notes of Agent Based Manufacturing Workshop,
part of the International Technical Conference Autonomous
Agents '98.

Papaioannou99 Papaioannou, T., Edwards, J.M., “Using Mobile Agents To
Improve the Alignment Between Manufacturing and its IT
Support Systems”, International Journal of Robotics and
Autonomous Systems, 27, pp 45-57, 1999.

Papaioannou99b Papaioannou, T., Edwards, J.M., “Mobile Agent Technology in
Support of Sales Order Processing in the Virtual Enterprise”, in
[Camarinha-Matos et al]

Papaioannou99c Papaioannou, T., “Mobile Agents: Are They Useful for
Establishing a Virtual Presence in Space?”, in notes of
Adjustable Autonomy Symposium, part of the AAAI Spring
Symposium Series, Stanford University, 1999.

Papaioannou2000 Papaioannou, T., Edwards, J.M., “Manufacturing Systems
Integration and Agility: Can Mobile Agents Help?”, accepted
for publication in Journal of Integrated Computers-Aided
Engineering, IOS Press. To appear in 2000.

Papaioannou2000b Papaioannou, T., Edwards, J.M., “Towards Understanding and
Evaluating Mobile Code Systems”, accepted for publication in
Journal of Autonomous Agents and Multi-Agent Systems,
Kluwer Academic Publishers. To appear in 2000.

Papastavrou99 Papastavrou, S., Samaras, G., Pitoura, E., “Mobile Agents for
WWW Distributed Database Access”, in Proc. IEEE
International
Conference on Data Engineering (ICDE99), 1999.

On the Structuring of Distributed Systems References

 132

Parnas72a Parnas, D.L., “A technique for software module specification
with examples”, Comm. ACM, Vol 15 (5), pp 330-336, 1972.

Parnas72b Parnas, D.L., “On the criteria to be used in decomposing
systems into modules”, Comm. ACM, Vol 15 (12), pp 1053-
1058, 1972.

Peine98 Peine, H., Stolpmann, T., “The Architecture of the Ara
Platform for Mobile Agents”, in [Rothermel97], pp 50-61.

Perlis58 Perlis, A., Samelson, K., "Preliminary Report - International
Algebraic Language", Comm. ACM 1 (12) pp. 8-22, 1958.

Peters82 Peters, T., Waterman, R.H., Jr, “In search of Excellence”,
HarperCollins, 1982.

Peters85 Peters, T., Austin, N., “A Passion for Excellence – the
Leadership difference”, HarperCollins, 1985.

Picco98 Picco, G.P., “Understanding, Evaluating, Formalizing, and
Exploiting Code Mobility”, PhD thesis, Politecnico di Torino,
1998

Picco98b Picco, G.P., Baldi, M., “Evaluating the Tradeoffs of Mobile
Code Design Paradigms in Network Management
Applications”, In Proceedings of the 20th International
Conference on Software Engineering (ICSE'98), Kyoto (Japan),
R. Kemmerer and K. Futatsugi, eds., April 1998, IEEE CS
Press, ISBN 0-8186-8368-6, pp. 146-155, 1998.

Pinker95 Pinker, S., “The Language Instinct”, Harper Collins, 1995,
ISBN: 0060976519.

Pouzin73 Pouzin, L., “Presentation and major design aspects of the
CYCLADES computer network”, in Proc. 3rd ACM-IEEE
Communications Symposium, pp 80-87, 1973

Pratt84 Pratt, T.W., "Programming Languages, Design and
Implementation, 2nd edition", Prentice-Hall, 1984.

Raj91 Raj, R.K., Tempero, E., Levy, H.M., Black, A.P., Hutchinson,
N.C., and Jul, E., “Emerald: A general purpose programming
language”, Software-Practice and Experience, Vol 21 (1), 1991.

Rashid81 Rashid, R., Robertson, G., “Accent: a communications oriented
network operating system kernel”, ACM Operating Systems
Review, Vol 15 (5), pp 64-75, 1981

Rashid86 Rashid, R., “From RIG to Accent to Mach: the evolution of a
network operating system”, Proc. ACM/IEEE Computer
Society Fall Joint Conference, ACM, 1986.

Raymond98 Raymond, E.S., “The Cathedral and the Bazaar”, Version 1.40,
1998/08/11, http://www.tuxedo.org/~esr/

On the Structuring of Distributed Systems References

 133

Redmond97 Redmond, F., III, “Dcom: Microsoft Distributed Component
Object Model”, IDG Books Worldwide, ISBN: 0764580442

Reed79 Reed, D.P., Kanodia, R.K., “Sychronisation with Eventcounts
and Sequences”, Comm. ACM, Vol. 22 (2), pp 3-23, 1979.

Ritchie74 Ritchie, D.M., Thompson, K., “The UNIX time-sharing
system”, Comm. ACM, Vol 17 (7), pp 365-375, 1974

Roberts70 Roberts, L.G., Wessler, B.T., “Computer network development
to achieve resource sharing”, in Proc. SJCC, pp 543-549, 1970.

Rose90 Rose, M.T., “The Open Book: a practical perspective on OSI”,
Prentice-Hall, 1990

Rothermel97 Rothermel, K., Popescu-Zeletin, R., Eds, “Mobile Agents: 1st
International Workshop MA’97”, Lecture Notes in Computer
Science, Vol 1219, Springer-Verlag, 1997.

Rothermel98 Rothermel, K., Hohl, F., Eds, “Mobile Agents, 2nd Int’l
Workshop MA ’98”, Lecture Notes in Computer Science, Vol
1477, Springer-Verlag, 1998.

Rus97 Rus, D., Gray, R., Kotz, D., “Transportable information
agents”, Journal of Intelligent Information Systems, 9:215-238,
1997

Scanlon97 Scanlon, E., “Suggestions for Case Study Research Methods”,
http://www.gwbssw.wustl.edu/~csd/evaluation/casestudy/caseg
uide.html

Shock80 Shock, J.F., “An annotated Bibliography on Local Computer
Networks”, XEROX Palo Alto Research Center, 1980.

Shrivastava-et-al Shrivastava, S.K., Dixon, G., Parrington, G.D., Hedayati, F.,
Wheater, S., Little, M., “The Design and Implementation of
Arjuna”, Proc. 3rd Conference on Object Oriented
Programming, Nottingham.

Shroeder93 Shroeder, M, D., “A State-of-the-Art Distributed System:
Computing with BOB.”, In Distributed Systems, 2nd ed., S.
Mullender, ed., ACM Press, 1993

Simon96 Simon, E., “Distributed Information Systems – from
client/server to distributed multimedia”, McGraw-Hill, 1996.

Sloman85 Sloman, M., Kramer, J., Magee, J., “The Conic toolkit for
building distributed systems”, Proc. 6th IFAC Workshop on
Distributed Computer Control Systems, California, Pergamon
Press, 1985

Sloman87 Sloman, M., Kramer, J., “Distributed Systems and Computer
Networks”, Prentice-Hall, 1987

On the Structuring of Distributed Systems References

 134

Solingen99 Solingen, R.V., Berghout, E., (1999), “The
Goal/Question/Metric Method”,McGraw Hill, ISBN 0-07-
709553-7

SSA95 System Software Associates Inc., "BPCS Client/Server
Distributed Object Computing Architecture", Technical Report,
1995.

Stallings87 Stallings, W., “Handbook of Computer Communications
Standards”, Vol 1, Macmillan, NY, 1987

Stamos86 Stamos, J.W., “Remote Evaluation”, Technical Report TR-354,
MIT, 1986

Straßer96 Straßer, M, Baumann, J., Hohl, F., (1996), “Mole - A java
Based Mobile Agent System”, in Proc. ECOOP’96 workshop
on Mobile Object Systems.

Strauss90 Strauss, A. & Corbin, J. (1990) “Basics of Qualitative
Research”, Newbury Park, CA.: Sage Publications.

Stroustrup92 Stroustrup, B., “The C++ Programming Language”, 2nd
edition, Addison-Wesley, Reading, MA, 1992.

Sun89 Sun Microsystems Inc., “NFS: Network File System Protocol
Specification”, Tech. Report RFC 1094, file available for
anonymous ftp from ftp://nic.ddn.mil, directory /usr/pub/RFC,
1989

Sun97 Sun Microsystems Inc., “JavaBeans Component Framework
Specification”, Revision 1.01, JDK 1.1, July 1997.

Sun98 Sun Microsystems Inc., “Java Remote Method Invocation
Specification”, Revision 1.50, JDK 1.2, October 1998.

Sun98b Sun Microsystems Inc., “Object Serialisation Specification”,
JDK 1.1, October 1998, available at
http://java.sun.com/products
/jdk/1.1/docs/guide/serialization/spec/serialTOC.doc.html

Sun99 Sun Microsystems Inc., “Enterprise Javabeans Specification”,
Version 1.1, 1999, available at
http://java.sun.com/products/ejb/docs.html

Tanenbaum96 Tanenbaum, A.S., “Computer Networks – 3rd Edition”,
Prentice-Hall, 1996.

Teitelman84 Teitelman, W., “A tour through Cedar”, IEEE Software, Vol. 1
(2), pp 44-73, 1984

Thiel91 Thiel, G., “Locus Operating System, a transparent system”,
Computer Communications, Vol 14 (6), 1991, pp336-346.

On the Structuring of Distributed Systems References

 135

Thompson96 Thompson, S., “Haskell: The Craft of Functional
Programming”, Addison-Wesley, 1996.

Tsichritzis85 Tsichritzis, D., “Objectworld”, Office Automation, Springer-
Verlag, 1985

Turing36 Turing, A.M., “On Computable Numbers, with an application
to the Entscheidungsproblem”, Proc. London Mathematical
Society, Vol 2 (42), pp 230-265, 1936.

Turner85 Turner, D.A., “Miranda: A non-strict functional language with
polymorphic types”, in Functional Programming Languages
and Computer Architercture, Lecture Notes in Computer
Science 201, pp 1-16, Springer-Verlag, 1985.

UCI96 “MESSENGERS: A Distributed Computing Environment for
AutonomousObjects” UCI Technical Report: TR-96-20, 1996,
available from http://www.ics.uci.edu/~bic/messengers/

Vigna98 Vigna, G., ed, “Mobile Agents and Security”, LNCS Vol 1419,
Springer-Verlag, 1998.

Vinoski99 Vinoski, S., Chief Architect at Iona Technologies Inc, comment
made in dist-obj mailing list. Thu, 15 Jul, 1999.

Waldo94 Waldo, J., Wyant, G., Wollrath, A., Kendall, S., “A note on
distributed computing”, Sun Microsystems Technical Report
SML 94-29, 1994.

Walsh85 Walsh, D., Lyon, B., Sager, G., Change, J.M., Goldberg, D.,
Kleiman, S., Lyon, T., Sandberg, R. and Weiss, P., “Overview
of the Sun Network File System”, Proc. of the Winter Usenix
Conference, 1985.

Watt96 Watt, S., “Pride and prejudice: four decades of LISP”, in
[Woodman96], pp 235-254, 1996

Wecker80 Wecker, S., “DNA: the digital network architecture”, in
[IEEE80]

Weiser91 Weiser, M., “The Computer for the 21st Century”, Scientific
American, Vol 265 (3), pp 94-104, 1991.

Wexelblat81 Wexelblat, R.L., ed, "History of Programming Languages",
ACM Monograph Series, Academic Press, 1981.

White94 White, J.E, “Telescript technology: the foundation for the
electronic marketplace”, White Paper, General Magic, Inc.
USA, 1994.

White96 White, J., “Telescript Technology: Mobile Agents”, In
Software Agents, Bradshaw, J., Ed., AAAI Press/MIT Press,
1996.

On the Structuring of Distributed Systems References

 136

Whitmire97 Whitmire, S.A., “Object-oriented design measurement”, Wiley
and Sons, 1997, ISBN:0-471-13417-1

Wilson93 Wilson, L.B., Clark, R.G., “Comparative Programming
Languages”, Addison-Wesley, 1993.

Wirth77 Wirth, N., “Modula: A language for modular programming”,
software Practice Experience, 7 (1), Jan 1977.

Wirth82 Wirth, N., "Type Extensions", ACM Transactions on
Programming Languages and Systems, 10 (2), pp. 204-214,
February 1988.

Wong97 Wong, D., Paciorek, N., Walsh, T., DiCelie, J., Young, M.,
Peet, B., “Concordia: An infrastructure for collaborating
mobile agents”, in Proc. First Int’l Workshop on Mobile Agents
’97, Springer-Verlag, 1997

Woodman96 Woodman, M., “Programming Language Choice, Practice and
Experience”, Thomson Computer Press, 1996.

Wooldridge99 Wooldridge, M., Jennings, N.R., Kinny, D., “A Methodology
for Agent-Oriented Analysis sand Design”, in Proc. 3rd Annual
Conf. On Autonomous Agents, Eds, Etzioni, O., Müller, J.P.,
Bradshaw, J.M., ACM Press, 1999.

Wright96 Wright, D.T., Burns, N.D., "Impact of Globalisation on
organisational Structure and Performance", Proc. of the
Organisational Management Division, International
Association of Management 14th Annual Conference. Toronto,
Canada, August 2-6, 1996, pp. 58-63

Yin94 Yin, R.K., “Case Study Research”, Sage Publications, 1994

Yourdon79 Yourdon, E., Constantine, L.L., “Structured Design”, Prentice-
Hall 1979.

Zak98 Zak, D., “Programming With Microsoft Visual Basic 6.0”,
Microsoft Press, 1998.

Zimmerman80 Zimmerman, H., “OSI Reference Model – The ISO Model of
Architecture for Open Systems Interconnection, in [IEEE80].

On the Structuring of Distributed Systems Appendices

 137

Appendices

Appendix A

Program listing of an example OrderAgent:

package uk.ac.lboro.todd.aglets.mascenario;

import uk.ac.lboro.todd.aglets.mascenario.tasks.*;
import uk.ac.lboro.todd.aglets.*;
import uk.ac.lboro.todd.aglets.order.*;
import uk.ac.lboro.todd.aglets.utils.*;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.URL;
import java.util.Date;

/**
* A simple QueryAglet that can be created by a Master and tasked
* with tracking down the stock levels of a product from a list of
* hosts.

 *
 * @version 2.1 10/11/98 Changed from a properties lookup for
 * the DataSource to multicast messaging
 * version 2.0 21/10/98 Most of the required logic has now
 * been refactored and shifted to the
 * Task classes. Allows for far more
 * modularity.
 * version 1.2 18/10/98 Query can now handle missing data
 * sources and also the addition of
 * subsequent tasks, after the
 * completion of the first one.
 * version 1.1 08/10/98 Query aglet is now able to complete
 * Itinerary and request a retraction
 * Removed MakeRequest and added it to
 * StockRequestTask. Makes more sense.
 * version 1.01 25/09/98 Added capability to create with
 * details and receive an Itinerary.
 * version 1.00 23/09/98 First attempt.
 *
 * @author Todd Papaioannou
 */

public class QueryAglet extends BlindAglet {

 // Our data variables
 AgletProxy dataProxy = null;
 ResultSet resSet = null;
 AgletProxy mProxy = null;
 SlaveItin itin = null;
 Order order = null;

 // Do some tasks when the aglet is created
 public void onCreation(Object init) {

 // Pass up the hierarchy

On the Structuring of Distributed Systems Appendices

 138

 super.onCreation(init);

 SlaveDetails det = (SlaveDetails)init;

 // Must make a note of the master here
 mProxy = det.getMaster();

 // Initialise our important internals
 resSet = new ResultSet(getAgletID());
 order = det.getOrder();

 // Add our own listener and adapter
 addMobilityListener(
 new MobilityAdapter() {

 int counter = 0;

 // Using this as a safety check in case we get caught

 // in a loop in the same host
 public void onArrival(MobilityEvent event) {

 if (counter > 1)
 System.out.println("ACounter = " +

new Integer(counter).toString());
 counter++;

 if (counter > 3) {
 System.out.println("Self destructing!");
 try {
 event.getAgletProxy().dispose();
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 }
 }

 public void onDispatching(MobilityEvent event) {
 counter = 0;
 }

 public void onReverting(MobilityEvent event) {
 appendMessage("Being retracted by Master to

homebase.");
 }
 }

); /* End of Adapter */

 }

 // Test run
 public void run() {

 //System.out.println("\nInto run");

 // Just a safety check, in case of delay
 while (itin == null) {
 for (int i = 0; i < 3; i++) {

 waitMessage(1 * 1000);
 }

On the Structuring of Distributed Systems Appendices

 139

 }

 // Do we have an itinerary and is this the last stop?
 if ((itin != null) && itin.atLastDestination()) {

 // Let's get a reference to the final Task object.
 GenericTask task =

 (GenericTask)itin.getTaskAt(itin.size()-1);

 try {
 task.finishTasks(itin);
 } catch (Exception e) {
 System.out.println(e);
 }
 }
 }

 /**
 * Handle ourselves being killed gracefully
 *
 public void onDisposing() {

 // Clear up and get rid of our itinerary
 itin.clear();
 removeMobilityListener(itin);
 }*/

 /**
 * Returns true if the current host is our origin
 */
 public boolean atHome() {

 if (getAgletInfo().getOrigin().equals(getAgletContext(). \

getHostingURL().toString()))
 return true;
 else
 return false;
 }

 /**
 * Allows a slave to contact it's master and ask for a
 * retraction. Useful since the Master has no idea where the
 * Slave might have ended up.
 */
 public void returnHome() {

 try {
 Message msg = new Message("RetractMe");
 msg.setArg("url", getAgletContext().getHostingURL());
 msg.setArg("id", getAgletID());
 mProxy.sendOnewayMessage(msg);
 } catch (InvalidAgletException iae) {
 System.out.println("1 " + iae.toString());
 } catch (Exception e) {
 System.out.println("2 " + e.toString());
 }
 }

 /**
 * Find out who is the data source in this context
 */

On the Structuring of Distributed Systems Appendices

 140

 public boolean whoSource() {

 try {
 ReplySet set = getAgletContext().multicastMessage

 (new Message("DataSource?"));

 // Give any sluggards a chance
 while (!set.isAnyAvailable())
 waitMessage(1*10);

 FutureReply future = set.getNextFutureReply();
 Object reply = future.getReply();
 AgletID aid = (AgletID)reply;
 dataProxy = getAgletContext().getAgletProxy(aid);

 } catch (NotHandledException ex) {
 System.out.println(ex);
 dataProxy = null;
 } catch (MessageException ex) {
 System.out.println(ex);
 dataProxy = null;
 }

 if (dataProxy != null)
 return true;
 else
 return false;
 }

 /**
 * Attempt to handle any incoming messages
 */
 public boolean handleMessage(Message msg) {

 if (msg.sameKind("Itinerary")) {
 itin = (SlaveItin)msg.getArg();
 appendMessage("Itinerary received, starting trip.");
 itin.startTrip();
 } else {
 System.out.println(msg.toString());
 return false;
 }

 return true;
 }

 /**
 * Override super class method to allow for easy redirection
 * during testing.
 */
 public void appendMessage(String text) {
 System.out.println("[" + getName() + "] " + text);
 }

 /**
 * Return the current order we are dealing with
 */
 public Order getOrder() {
 return order;
 }

On the Structuring of Distributed Systems Appendices

 141

 /**
 * Return our current result set
 */
 public ResultSet getResults() {
 return resSet;
 }

 /**
 * Allow someone to try to clear our result set
 */
 public void clearResults() {
 resSet = null;
 }

 /**
 * Return a reference to our Master's proxy
 */
 public AgletProxy getMasterProxy() {
 return mProxy;
 }

 /**
 * Return a reference to the DataAglet's proxy
 */
 public AgletProxy getDataProxy() {
 return dataProxy;
 }

 /**
 * Return a reference to our Itinerary
 */
 public SlaveItin getItin() {
 return itin;
 }

} /* End of Class */

On the Structuring of Distributed Systems Appendices

 142

Appendix B

Program listing of an example Agent Task:

package uk.ac.lboro.todd.aglets.mascenario.tasks;

import uk.ac.lboro.todd.aglets.*;
import uk.ac.lboro.todd.aglets.utils.*;
import uk.ac.lboro.todd.aglets.mascenario.*;
import uk.ac.lboro.todd.aglets.order.*;

import com.ibm.aglet.*;
import com.ibm.agletx.util.*;
import java.net.URL;

/**
 * StockRequestTask - a task that allows an agent to make a request
 * to a DataSource aglet. The request is encapsulated within the
 * Order object the slave carries around with it.
 *
 * @version 2.1 04/11/98 First attempt with MA instead
 * of MO's. Added evalResult().
 * @version 2.0 21/10/98 Massive refactoring of the
 * code. Very little of the behaviour of
 * the Aglet relies on code in run()
 * The addition of finishTasks allows
 * for a much simpler and more modular
 * approach to design of Slave agents.
 * @version 1.11 08/10/98 MakeRequest has been added from
 * QueryAglet. Makes more sense.
 * @version 1.10 08/10/98 StockRequest now fully functional
 * @version 1.00 28/09/98 First attempt.
 *
 * @author Todd Papaioannou
 */

public class StockRequestTask extends GenericTask {

 /**
 * Use this to allow us a better view of what goes on at a host
 */
 static boolean pause = true;

 // Our owner aglet
 QueryAglet qag = null;
 Result result = null;

 /**
 * The actual work associated with this Task.
 */
 public void execute(SeqItinerary itin) throws Exception {

 // Find out who the data source is
 AgletProxy proxy = itin.getOwnerAglet();
 qag = (QueryAglet)proxy.getAglet();
 URL currentHost = qag.getAgletContext().getHostingURL();

 // Is this the last desination?
 if (itin.atLastDestination() == false) {

On the Structuring of Distributed Systems Appendices

 143

 // We must still have some tasks to do.
 // Is there a data source handy?
 if (qag.whoSource() != true) {
 qag.appendMessage("No damn data source!");

 // Are we actually at the last address?
 if (!currentHost.toString().
 equals(itin.getAddressAt(itin.size()-1))) {

 // Make it easier to see what's actually going on
 if (pause)
 qag.waitMessage(2*1000);
 qag.appendMessage("Proceeding to next stop on \
 Itinerary");
 }
 } else {
 qag.appendMessage("Found a data source.");

 // Get our info from the data source
 makeRequest();
 qag.appendMessage("Finished Request, evaluating \
 results.");
 evalResult();
 }
 }
 } // End of execute

 /**
 * Make a request for an Order to be checked.
 */
 public void makeRequest() {

 try {

 Object reply = qag.getDataProxy().sendMessage(
 new Message("Order", new NamedOrder(qag.getName(),
 qag.getOrder())));
 result = (Result)reply;

 } catch (InvalidAgletException ex) {
 System.out.println(ex);
 } catch (NotHandledException ex) {
 System.out.println(ex);
 } catch (MessageException ex) {
 System.out.println("[ERROR] Make Request Failed because \
 of:\n" + ex.getException());
 System.out.println(ex);
 }

 // Let's put some artificial pausing in. Looks good for the
 // humans!
 if (pause) {
 for (int i=0; i < 160; i++) {
 System.out.print(".");
 }
 System.out.println("\n");
 }

 } // End of makeRequest

On the Structuring of Distributed Systems Appendices

 144

 /**
 * Can this host satisfy our order?
 */
 private void evalResult() {

 boolean success = false;

 if (result.getIndicator() == Result.YES) {

 qag.appendMessage("We have a RESULT!");
 qag.appendMessage("Result " + result.getHost() + " will \
 satisfy this order.");
 success = true;
 }

 // Add this result to our set for future reference.
 qag.getResults().addResult((Result)result);

 if (success) {
 commitOrder();
 } else {
 qag.appendMessage("Current host cannot satisfy order. \
 Going to next host.");
 }
 }

 // This routine allows us to attempt to commit and order
 private void commitOrder() {

 try {

 String reply = (String)qag.getDataProxy().sendMessage(
 new Message("Commit", new NamedOrder(qag.getName(),
 qag.getOrder())));

 // We have successfully committed the Order
 if (reply.equals("Committed")) {

 qag.appendMessage("Order successfully committed.");
 qag.getMasterProxy().sendOnewayMessage(new Message
 ("Committed", qag.getOrder().getOrderNumber()));
 qag.appendMessage("Tasks have been completed. \
 Disposing of myself.");

 // Kill ourselves
 qag.dispose();

 } else if (reply.equals("OutOfStock")) {
 qag.appendMessage("Out of Stock!");
 qag.getMasterProxy().sendOnewayMessage(new Message
 ("OutOfStock", qag.getOrder().getOrderNumber()));
 qag.dispose();
 } else {
 qag.appendMessage("Something messed up! Getting rid \
 of myself.");
 qag.dispose();
 }

 } catch (InvalidAgletException ex) {
 System.out.println(ex);
 } catch (NotHandledException ex) {

On the Structuring of Distributed Systems Appendices

 145

 System.out.println(ex);
 } catch (MessageException ex) {
 System.out.println("[ERROR] Make Request Failed because \
 of:\n" + ex.getException());
 System.out.println(ex);
 }

 }

 // Must define this since it's abstract
 public void finishTasks(SeqItinerary itin) throws Exception {
 }

} /* End of Class */

On the Structuring of Distributed Systems Error! Reference source not found.

 Todd Papaioannou 146 6/19/00

Background Readings on Agents
Introduction to Agents [Adobe Acrobat pdf file]

Java, Agents, and Heteroeneous Information Sources

The Same in Postscript (.ps)

Agent Communication Languages [Adobe Acrobat pdf]

MAC3 Mobile Agent Workshop 1999 [Adobe Acrobat pdf]

KQML Architecture (and CORBA) [postscript ps]

http://www.ryerson.ca/~dgrimsha/courses/cps720/background.html [7/24/2002 9:58:27 PM]

http://www.mcc.com/projects/infosleuth/publications/intranet-java.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/intranet-java.ps
http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/mmns97p.ps

Software Agents

Chapter 1

An Introduction to Software Agents

Jeffrey M. Bradshaw

Since the beginning of recorded history, people have been fascinated with
the idea of non-human agencies.1 Popular notions about androids, hu-
manoids, robots, cyborgs, and science fiction creatures permeate our cul-

ture, forming the unconscious backdrop against which software agents are per-
ceived. The word “robot,” derived from the Czech word for drudgery, became
popular following Karel Capek’s 1921 play RUR: Rossum Universal Robots.
While Capek’s robots were factory workers, the public has also at times em-
braced the romantic dream of robots as “digital butlers” who, like the mechani-
cal maid in the animated feature “The Jetsons,” would someday putter about
the living room performing mundane household tasks. Despite such innocuous
beginnings, the dominant public image of artificially intelligent embodied crea-
tures often has been more a nightmare than a dream. Would the awesome
power of robots reverse the master-slave relationship with humans? Everyday
experiences of computer users with the mysteries of ordinary software, riddled
with annoying bugs, incomprehensible features, and dangerous viruses rein-
force the fear that the software powering autonomous creatures would pose
even more problems. The more intelligent the robot, the more capable of pursu-
ing its own self-interest rather than its master’s. The more humanlike the robot,
the more likely to exhibit human frailties and eccentricities. Such latent con-
cerns cannot be ignored in the design of software agents—indeed, there is more
than a grain of truth in each of them!

Though automata of various sorts have existed for centuries, it is only with
the development of computers and control theory since World War II that any-
thing resembling autonomous agents has begun to appear. Norman (1997) ob-
serves that perhaps “the most relevant predecessors to today’s intelligent agents
are servomechanisms and other control devices, including factory control and
the automated takeoff, landing, and flight control of aircraft.” However, the
agents now being contemplated differ in important ways from earlier concepts.

Significantly, for the moment, the momentum seems to have shifted from hard-
ware to software, from the atoms that comprise a mechanical robot to the bits
that make up a digital agent (Negroponte 1997).2

Alan Kay, a longtime proponent of agent technology, provides a thumbnail
sketch tracing the more recent roots of software agents:

“The idea of an agent originated with John McCarthy in the mid-1950’s, and the
term was coined by Oliver G. Selfridge a few years later, when they were both at
the Massachusetts Institute of Technology. They had in view a system that, when
given a goal, could carry out the details of the appropriate computer operations and
could ask for and receive advice, offered in human terms, when it was stuck. An
agent would be a ‘soft robot’ living and doing its business within the computer’s
world.” (Kay 1984).

Nwana (1996) splits agent research into two main strands: the first beginning
about 1977, and the second around 1990. Strand 1, whose roots are mainly in dis-
tributed artificial intelligence (DAI), “has concentrated mainly on deliberative-
type agents with symbolic internal models.” Such work has contributed to an un-
derstanding of “macro issues such as the interaction and communication between
agents, the decomposition and distribution of tasks, coordination and cooperation,
conflict resolution via negotiation, etc.” Strand 2, in contrast, is a recent, rapidly
growing movement to study a much broader range of agent types, from the mo-
ronic to the moderately smart. The emphasis has subtly shifted from deliberation
to doing; from reasoning to remote action. The very diversity of applications and ap-
proaches is a key sign that software agents are becoming mainstream.

The gauntlet thrown down by early researchers has been variously taken up
by new ones in distributed artificial intelligence, robotics, artificial life, dis-
tributed object computing, human-computer interaction, intelligent and adap-
tive interfaces, intelligent search and filtering, information retrieval, knowledge
acquisition, end-user programming, programming-by-demonstration, and a
growing list of other fields. As “agents” of many varieties have proliferated,
there has been an explosion in the use of the term without a corresponding con-
sensus on what it means. Some programs are called agents simply because they
can be scheduled in advance to perform tasks on a remote machine (not unlike
batch jobs on a mainframe); some because they accomplish low-level computing
tasks while being instructed in a higher-level of programming language or
script (Apple Computer 1993); some because they abstract out or encapsulate the
details of differences between information sources or computing services
(Knoblock and Ambite 1997); some because they implement a primitive or ag-
gregate “cognitive function” (Minsky 1986, Minsky and Riecken 1994); some be-
cause they manifest characteristics of distributed intelligence (Moulin and
Chaib-draa 1996); some because they serve a mediating role among people and
programs (Coutaz 1990; Wiederhold 1989; Wiederhold 1992); some because
they perform the role of an “intelligent assistant” (Boy 1991, Maes 1997) some
because they can migrate in a self-directed way from computer to computer

4 BRADSHAW

(White 1996); some because they present themselves to users as believable char-
acters (Ball et al. 1996, Bates 1994, Hayes-Roth, Brownston, and Gent 1995);
some because they speak an agent communication language (Genesereth 1997,
Finin et al. 1997) and some because they are viewed by users as manifesting in-
tentionality and other aspects of “mental state” (Shoham 1997).

Out of this confusion, two distinct but related approaches to the definition of
agent have been attempted: one based on the notion of agenthood as an ascription
made by some person, the other based on a description of the attributes that soft-
ware agents are designed to possess. These complementary perspectives are sum-
marized in the section “What Is a Software Agent.” The subsequent section dis-
cusses the “why” of software agents as they relate to two practical concerns: 1)
simplifying the complexities of distributed computing and 2) overcoming the lim-
itations of current user interface approaches. The final section provides a chapter
by chapter overview of the remainder of the book.

What Is a Software Agent?

This section summarizes the two definitions of an agent that have been at-
tempted: agent as an ascription, and agent as a description.

‘Agent’ as an Ascription

As previously noted, one of the most striking things about recent research and
development in software agents is how little commonality there is between dif-
ferent approaches. Yet there is something that we intuitively recognize as a
“family resemblance” among them. Since this resemblance cannot have to do
with similarity in the details of implementation, architecture, or theory, it must
be to a great degree a function of the eye of the beholder.3 “Agent is that agent
does”4 is a slogan that captures, albeit simplistically, the essence of the insight
that agency cannot ultimately be characterized by listing a collection of at-
tributes but rather consists fundamentally as an attribution on the part of some
person (Van de Velde 1995).5

This insight helps us understand why coming up with a once-and-for-all
definition of agenthood is so difficult: one person’s “intelligent agent” is another
person’s “smart object”; and today’s “smart object” is tomorrow’s “dumb pro-
gram.” The key distinction is in our expectations and our point of view. The
claim of many agent proponents is that just as some algorithms can be more eas-
ily expressed and understood in an object-oriented representation than in a pro-
cedural one (Kaehler and Patterson 1986), so it sometimes may be easier for de-
velopers and users to interpret the behavior of their programs in terms of agents
rather than as more run-of-the-mill sorts of objects (Dennett 1987).6

The American Heritage Dictionary defines an agent as “one that acts or has

AN INTRODUCTION TO SOFTWARE AGENTS 5

the power or authority to act… or represent another” or the “means by
which something is done or caused; instrument.” The term derives from the
present participle of the Latin verb agere: to drive, lead, act, or do.

As in the everyday sense, we expect a software agent to act on behalf of some-
one to carry out a particular task which has been delegated to it.7 But since it is
tedious to have to spell out every detail, we would like our agents to be able to
infer what we mean from what we tell it. Agents can only do this if they
“know” something about the context of the request. The best agents, then,
would not only need to exercise a particular form of expertise, but also take into
account the peculiarities of the user and situation.8 In this sense an agent fills the
role of what Negroponte calls a “digital sister-in-law:”

“When I want to go out to the movies, rather than read reviews, I ask my sister-in-
law. We all have an equivalent who is both an expert on movies and an expert on
us. What we need to build is a digital sister-in-law.

In fact, the concept of “agent” embodied in humans helping humans is often one
where expertise is indeed mixed with knowledge of you. A good travel agent
blends knowledge about hotels and restaurants with knowledge about you… A
real estate agent builds a model of you from a succession of houses that fit your
taste with varying degrees of success. Now imagine a telephone-answering agent, a
news agent, or an electronic-mail-managing agent. What they all have in common
is the ability to model you.” (Negroponte 1997).

While the above description would at least seem to rule out someone claim-
ing that a typical payroll system could be regarded as an agent, there is still
plenty of room for disagreement (Franklin and Graesser 1996). Recently, for ex-
ample, a surprising number of developers have re-christened existing compo-
nents of their software as agents, despite the fact that there is very little that
seems “agent-like” about them. As Foner (1993) observes:

“… I find little justification for most of the commercial offerings that call them-
selves agents. Most of them tend to excessively anthropomorphize the software, and
then conclude that it must be an agent because of that very anthropomorphization,
while simultaneously failing to provide any sort of discourse or “social contract” be-
tween the user and the agent. Most are barely autonomous, unless a regularly-sched-
uled batch job counts. Many do not degrade gracefully, and therefore do not inspire
enough trust to justify more than trivial delegation and its concomitant risks.”9

Shoham provides a practical example illustrating the point that although
anything could be described as an agent, it is not always advantageous to do so:

“It is perfectly coherent to treat a light switch as a (very cooperative) agent with the
capability of transmitting current at will, who invariably transmits current when it
believes that we want it transmitted and not otherwise; flicking the switch is sim-
ply our way of communicating our desires. However, while this is a coherent view,
it does not buy us anything, since we essentially understand the mechanism
sufficiently to have a simpler, mechanistic description of its behavior.” (Shoham
1993).10

6 BRADSHAW

Dennett (1987) describes three predictive stances that people can take toward
systems (table 1). People will choose whatever gives the most simple, yet reliable
explanation of behavior. For natural systems (e.g., collisions of billiard balls), it
is practical for people to predict behavior according to physical characteristics
and laws. If we understand enough about a designed system (e.g., an automo-
bile), we can conveniently predict its behavior based on its functions, i.e., what it
is designed to do. However as John McCarthy observed in his work on “advice-
takers” in the mid-1950’s, “at some point the complexity of the system becomes
such that the best you can do is give advice” (Ryan 1991). For example, to pre-
dict the behavior of people, animals, robots, or agents, it may be more appropri-
ate to take a stance based on the assumption of rational agency than one based
on our limited understanding of their underlying blueprints.11

Singh (1994) lists several pragmatic and technical reasons for the appeal of
viewing agents as intentional systems:

“They (i) are natural to us, as designers and analyzers; (ii) provide succinct descrip-
tions of, and help understand and explain, the behaviour of complex systems; (iii)
make available certain regularities and patterns of action that are independent of
the exact physical implementation of the agent in the system; and (iv) may be used
by the agents themselves in reasoning about each other.”

‘Agent’ As a Description

A more specific definition of “software agent” that many agent researchers
might find acceptable is: a software entity which functions continuously and au-
tonomously in a particular environment, often inhabited by other agents and
processes (Shoham 1997). The requirement for continuity and autonomy de-
rives from our desire that an agent be able to carry out activities in a flexible and
intelligent manner that is responsive to changes in the environment without re-
quiring constant human guidance or intervention. Ideally, an agent that func-
tions continuously in an environment over a long period of time would be able
to learn from its experience. In addition, we expect an agent that inhabits an en-
vironment with other agents and processes to be able to communicate and coop-
erate with them, and perhaps move from place to place in doing so.

AN INTRODUCTION TO SOFTWARE AGENTS 7

Physical Stance Predict based on physical characteristics and laws

Design Stance Predic t based on what it is designed to do

Intentional Stance Precit based on assumption of rational agency

Table 1. Dennett’s three predictive stances (from Sharp 1992, 1993).

All this being said, most software agents today are fairly fragile and special-
purpose beasts, no one of which can do very much of what is outlined above in a
generic fashion. Hence the term “software agent” might best be viewed as an um-
brella term that covers a range of other more specific and limited agent types
(Nwana 1996). Though as individuals the capabilities of the agents may be rather
restricted, in their aggregate they attempt to simulate the functions of a primitive
“digital sister-in-law,” as particular ones intimately familiar with the user and sit-
uation exchange knowledge with others who handle the details of how to obtain
needed information and services. Consistent with the requirements of a particular
problem, each agent might possess to a greater or lesser degree attributes like the
ones enumerated in Etzioni and Weld (1995) and Franklin and Graesser (1996):

• Reactivity: the ability to selectively sense and act

• Autonomy: goal-directedness, proactive and self-starting behavior

• Collaborative behavior: can work in concert with other agents to achieve a
common goal

• “Knowledge-level” (Newell 1982) communication ability: the ability to commu-
nicate with persons and other agents with language more resembling human-
like “speech acts” than typical symbol-level program-to-program protocols

• Inferential capability: can act on abstract task specification using prior
knowledge of general goals and preferred methods to achieve flexibility;
goes beyond the information given, and may have explicit models of self,
user, situation, and/or other agents.

• Temporal continuity: persistence of identity and state over long periods of
time12

• Personality: the capability of manifesting the attributes of a “believable”
character such as emotion

• Adaptivity: being able to learn and improve with experience

• Mobility: being able to migrate in a self-directed way from one host plat-
form to another.

To provide a simpler way of characterizing the space of agent types than
would result if one tried to describe every combination of possible attributes,
several in the agent research community have proposed various classification
schemes and taxonomies.

For instance, AI researchers often distinguish between weak and strong no-
tions of agency: agents of the latter variety are designed to possess explicit men-
talistic or emotional qualities (Shoham 1997; Wooldridge and Jennings 1995).
From the DAI community, Moulin and Chaib-draa have characterized agents
by degree of problem-solving capability:

“A reactive agent reacts to changes in its environment or to messages from other
agents.… An intentional agent is able to reason on its intentions and beliefs, to cre-
ate plans of actions, and to execute those plans.… In addition to intentional agent

8 BRADSHAW

capabilities, a social agent possesses explicit models of other agents.” (Moulin and
Chaib-draa 1996, pp. 8-9).

An influential white paper from IBM (Gilbert et al. 1995) described intelli-
gent agents in terms of a space defined by the three dimensions of agency, intel-
ligence, and mobility (figure 1):

“Agency is the degree of autonomy and authority vested in the agent, and can be mea-
sured at least qualitatively by the nature of the interaction between the agent and
other entities in the system. At a minimum, an agent must run asynchronously. The
degree of agency is enhanced if an agent represents a user in some way… A more ad-
vanced agent can interact with… data, applications,… services… [or] other agents.

Intelligence is the degree of reasoning and learned behavior: the agent’s ability
to accept the user’s statement of goals and carry out the task delegated to it. At a
minimum, there can be some statement of preferences… Higher levels of intel-
ligence include a user model… and reasoning.… Further out on the intelli-
gence scale are systems that learn and adapt to their environment, both in terms
of the user’s objectives, and in terms of the resources available to the agent…

Mobility is the degree to which agents themselves travel through the net-
work… Mobile scripts may be composed on one machine and shipped to another
for execution… [Mobile objects are] transported from machine to machine in
the middle of execution, and carrying accumulated state data with them.”

Nwana (1996) proposes a typology of agents that identifies other dimensions
of classification. Agents may thus be classified according to:

• Mobility, as static or mobile

• Presence of a symbolic reasoning model, as deliberative or reactive

AN INTRODUCTION TO SOFTWARE AGENTS 9

Agency

Mobility Intelligence

Intelligent
Agents

Static
Mobile scripts

Mobile objects

Service interactivity

Application interactivity

Data interactivity
Representation of user

Asynchrony

Preferences
Reasoning

Planning
Learning

Expert Systems

F
ix

ed
-F

un
ct

io
n

A
ge

nt
s

Figure 1. Scope of intelligent agents (Adapted from Gilbert et al. 1995).

• Exhibition of ideal and primary attributes, such as autonomy, cooperation,
learning. From these characteristics, Nwana derives four agent types: col-
laborative, collaborative learning, interface, and smart (see figure 2).

• Roles, as information or Internet

• Hybrid philosophies, which combine two or more approaches in a single
agent

• Secondary attributes, such as versatility, benevolence, veracity, trustworthi-
ness, temporal continuity, ability to fail gracefully, and mentalistic and
emotional qualities.

After developing this typology, Nwana goes on to describe ongoing research
in seven categories: collaborative agents, interface agents, mobile agents, informa-
tion/Internet agents, reactive agents, hybrid agents, and smart agents.

After listing several definitions given by others, Franklin and Graesser (1996)
give their own: “an autonomous agent is a system situated within and part of an
environment that senses that environment and acts on it, over time, in pursuit
of its own agenda and so as to effect what it senses in the future.” Observing
that by this definition even a thermostat could qualify as an agent, they discuss
various properties of agents and offer the taxonomy in figure 3 as one that cov-
ers most of the examples found in the literature. Below this initial classification,
they suggest that agents can be categorized by control structures, environments
(e.g., database, file system, network, Internet), language in which they are writ-
ten, and applications.

Finally, Petrie (1996) discusses the various attempts of researchers to distin-
guish agents from other types of software. He first notes the difficulties in satis-
factorily defining intelligence and autonomy. Then he shows how most of the

10 BRADSHAW

Cooperate Learn

Autonomous

Smart
Agents

Collaborative
Agents

Collaborative
Learning
Agents

Interface
Agents

Figure 2. Typology based on Nwana’s (Nwana 1996) primary attribute dimension.

current web-based searching and filtering “agents,” though useful, “are essen-
tially one-time query answering mechanisms” that are adequately described by
the less glamorous computer science term “server.” Similarly, “mobile process”
would be a less confusing term than “mobile agent” for those Java applets
whose only “agent-like” function is to allow processes to run securely on foreign
machines. In contrast to these previous attempts to describe a set of unambigu-
ous defining characteristics for agents in general, Petrie argues the case for one
specific class: typed-message agents. Typed-message agents are distinguished from
other types of software by virtue of their ability to communicate as a community
using a shared message protocol such as KQML. In the shared message protocol,
at least some of the message semantics “are typed and independent of the appli-
cations. And semantics of the message protocol necessitate that the transport
protocol not be only client/server but rather a peer-to-peer protocol. An individ-
ual software module is not an agent at all if it can communicate with the other
candidate agents only with a client/server protocol without degradation of the
collective task performance.”

Time and experience will ultimately determine both the meaning and the
longevity of the term “agent.” Like many other computing terms in common
usage such as “desktop,” “mouse,” and “broker,” it began with a metaphor but
will end up denoting concrete software artifacts. As public exposure to useful
and technically viable implementations of agent software increases, the term
will either come to mean something that everyone understands because they
have seen many examples of it, or it will fall into disuse because it describes a
concept that is no longer appropriate. What is unlikely to disappear are the mo-
tivations that have incited the development of agent-based software. These are
described in the following section.

AN INTRODUCTION TO SOFTWARE AGENTS 11

Autonomous Agents

Biological
Agents

Robotic
Agents

Software Agents Artificial Life
Agents

Task-specific
Agents

Entertainment
Agents

Viruses

Figure 3. Franklin and Graesser’s (1996) agent taxonomy.

Why Software Agents?

While the original work on agents was instigated by researchers intent on study-
ing computational models of distributed intelligence, a new wave of interest has
been fueled by two additional concerns of a practical nature: 1) simplifying the
complexities of distributed computing and 2) overcoming the limitations of cur-
rent user interface approaches.13 Both of these can essentially be seen as a contin-
uation of the trend toward greater abstraction of interfaces to computing ser-
vices. On the one hand, there is a desire to further abstract the details of
hardware, software, and communication patterns by replacing today’s program-
to-program interfaces with more powerful, general, and uniform agent-to-agent
interfaces; on the other hand there is a desire to further abstract the details of the
human-to-program interface by delegating to agents the details of specifying and
carrying out complex tasks. Grosof (Harrison, Chess, and Kershenbaum 1995)
argues that while it is true that point solutions not requiring agents could be de-
vised to address many if not all of the issues raised by such problems, the aggre-
gate advantage of agent technology is that it can address all of them at once.

In the following two subsections, I discuss how agents could be used to ad-
dress the two main concerns I have mentioned. Following this, I sketch a vision
of how “agent-enabled” system architectures of the future could provide an un-
precedented level of functionality to people.

Simplifying Distributed Computing

Barriers to Intelligent Interoperability. Over the past several years, Brodie
(1989) has frequently discussed the need for intelligent interoperability in
software systems. He defines the term to mean intelligent cooperation
among systems to optimally achieve specified goals. While there is little dis-
agreement that future computing environments will consist of distributed
software systems running on multiple heterogeneous platforms, many of
today’s most common configurations are, for all intents and purposes, dis-
joint: they do not really communicate or cooperate except in very basic ways
(e.g., file transfer, print servers, database queries) (figure 4). The current
ubiquity of the Web makes it easy to forget that until the last few years,
computer systems that could communicate typically relied on proprietary or
ad hoc interfaces for their particular connection. The current growth in pop-
ularity of object-oriented approaches and the development of a few impor-
tant agreed-upon standards (e.g., TCP/IP, HTTP, IIOP, ODBC) has brought a
basic level of encapsulated connectivity to many systems and services. In-
creasingly, these connections are made asynchronously through message
passing, in situations where the advantages of loose coupling in complex co-
operating systems can be realized (Mellor 1994; Perrow 1984; Shaw 1996).

We are now in the midst of a shift from the network operating system to In-

12 BRADSHAW

ternet and intranet-based network computing (Lewis 1996). As this transition
takes place, we are seeing the proliferation of operating system-independent in-
teroperable network services such as naming, directory, and security. These,
rather than the underlying operating systems, are defining the network, reduc-
ing the operating systems to commodities. Lewis (1996) asserts that Netscape is
the best example of a vendor focused exclusively on such a goal. Federations of
such vendors are defining standards-based operating system-independent ser-
vices (directory, security, transactions, Web, and so forth), truly universal server-
independent clients (Web browsers), and network-based application develop-
ment support (Java, JavaScript, ActiveX). In such approaches, both the client and
server operating systems become little more than a collection of device drivers.

Incorporating Agents as Resource Managers

A higher level of interoperability would require knowledge of the capabilities
of each system, so that secure task planning, resource allocation, execution,
monitoring, and, possibly, intervention between the systems could take place.
To accomplish this, an intelligent agent could function as a global resource
manager (figure 5).

Unfortunately, while a single agent might be workable for small networks of
systems, such a scheme quickly becomes impractical as the number of cooperat-
ing systems grows. The activity of the single agent becomes a bottleneck for the
(otherwise distributed) system. A further step toward intelligent interoperabili-
ty is to embed one or more peer agents within each cooperating system (figure
6). Applications request services through these agents at a higher level corre-
sponding more to user intentions than to specific implementations, thus providing

AN INTRODUCTION TO SOFTWARE AGENTS 13

Disjoint

Ad hoc

Encapsulated

Figure 4. Evolution of system connectivity (Adapted from Brodie 1989).

a level of encapsulation at the planning level, analogous to the encapsulation
provided at the lower level of basic communications protocols. As agents in-
creasingly evolve from stationary entities to mobile ones, we will see an even
more radical redefinition of distributed object computing within corporate net-
works and on the World Wide Web (Chang and Lange 1996). These scenarios
presume, of course, timely agreement on basic standards ensuring agent inter-
operability (Gardner 1996; Lange 1996; Virdhagriswaran, Osisek, and O’Con-
nor 1995; White 1997).

Overcoming User Interface Problems

Limitations of Direct Manipulation Interface. A distinct but complementary
motivation for software agents is in overcoming problems with the current gen-
eration of user interface approaches. In the past several years, direct manipula-
tion interfaces (Hutchins, Hollan, and Norman 1986; Shneiderman 1983; Shnei-
derman 1984; Smith, et al. 1982) have become the standard. For many of the
most common user tasks, they are a distinct improvement over command-line
interfaces. Since direct manipulation requires software objects to be visible,
users are constantly informed about the kinds of things they can act upon. If, in
addition, the objects have a natural correspondence to real-world or metaphori-
cal counterparts, users can apply previously acquired experience to more quick-
ly learn what the objects can do and how to do it. Many advantages of direct
manipulation begin to fade, however, as tasks grow in scale or complexity. For
example, anyone who has had much experience with iconic desktop interfaces
knows that there are times when sequences of actions would be better automat-
ed than directly performed by the user in simple, tedious steps.14 Several re-
searchers have analyzed the limitations of passive artifact metaphors for com-

14 BRADSHAW

A

Figure 5. Cooperating systems with single agent as a global planner. Connections
represent agent-to-application communication (Adapted from Brodie 1989).

plex tasks (diSessa 1986; Erickson 1996; Kay 1990; Whittaker 1990). Among
others, people are likely to encounter the following problems:

• Large search space: In large distributed systems it is difficult to find what
we need through browsing or the use of traditional indexing methods.
What is practical and possible for a few hundred items becomes unwieldy
and impossible for several thousand.

• Actions in response to immediate user interaction only: Sometimes instead of
executing an action immediately, we want to schedule it for a specific time
in the future. Or, we may want to have software automatically react to sys-
tem-generated events when we are away from the machine.

• No composition: With most direct manipulation interfaces, we cannot easily
compose basic actions and objects into higher-level ones.

• Rigidity: The consistency that makes passive artifact interfaces predictable
and easy-to-learn for simple tasks makes them brittle and untrustworthy
for complex ones.

• Function orientation: Software is typically organized according to generic
software functions rather than the context of the person’s task and situation.

• No improvement of behavior: Traditional software does not notice or learn
from repetitive actions in order to respond with better default behavior.

Indirect Management Using Agents

Researchers and developers are attempting to address these problems by com-
bining the expression of user intention through direct manipulation with the
notion of an indirect management style of interaction (Kay 1990). In such an ap-

AN INTRODUCTION TO SOFTWARE AGENTS 15

A

A

A A

A

Figure 6. Cooperating systems with distributed agents. Connecting lines represent on-
going agent-to-agent communication (Adapted from Brodie 1989).

proach, users would no longer be obliged to spell out each action for the com-
puter explicitly; instead, the flexibility and intelligence of software agents would
allow them to give general guidelines and forget about the details.

Many of the actions now performed by users could be delegated to various
software agents. Thus, in a glimpse of the future, Tesler (1991) imagines the fol-
lowing directives being given by a person to a software agent:

• On what date in February did I record a phone conversation with Sam?

• Make me an appointment at a tire shop that is on my way home and is
open after 6 PM.

• Distribute this draft to the rest of the group and let me know when they’ve
read it.

• Whenever a paper is published on fullerene molecules, order a copy for my
library.

Later on in the day, Tesler imagines the agent catching up to the person with
these follow-up messages:

• You asked me when you last recorded a phone conversation with Sam. It
was on February 27. Shall I play the recording?

• You scribbled a note last week that your tires were low. I could get you an
appointment for tonight.

• Laszlo has discarded the last four drafts you sent him without reading any
of them.

• You have requested papers on fullerene research. Shall I order papers on
other organic microclusters as well?

Direct manipulation and indirect management approaches are not mutually ex-
clusive. Interface agent researchers are not out to completely do away with com-
puting as we know it, but more modestly hope that complementing see-and-
point interfaces with ask-and-delegate extensions will help reduce required
knowledge and simplify necessary actions while maintaining a sufficient level of
predictability. Specifically, the use of software agents will eventually help over-
come the limitations of passive artifact interfaces in the following ways (table 2):

• Scalability: Agents can be equipped with search and filtering capabilities that
run in the background to help people explore vast sources of information.

• Scheduled or event-driven actions: Agents can be instructed to execute tasks
at specific times or automatically “wake up” and react in response to sys-
tem-generated events.

• Abstraction and delegation: Agents can be made extensible and composable
in ways that common iconic interface objects cannot. Because we can
“communicate” with them, they can share our goals, rather than simply
process our commands. They can show us how to do things and tell us
what went wrong (Miller and Neches 1987).

• Flexibility and opportunism: Because they can be instructed at the level of

16 BRADSHAW

goals and strategies, agents can find ways to “work around” unforeseen
problems and exploit new opportunities as they help solve problems.

• Task orientation: Agents can be designed to take the context of the person’s
tasks and situation into account as they present information and take action.

• Adaptivity: Agents can use learning algorithms to continually improve
their behavior by noticing recurrent patterns of actions and events.

Toward Agent-Enabled System Architectures

In the future, assistant agents at the user interface and resource-managing
agents behind the scenes will increasingly pair up to provide an unprecedented
level of functionality to people. A key enabler is the packaging of data and soft-
ware into components that can provide comprehensive information about
themselves at a fine-grain level to the agents that act upon them.

Over time, large undifferentiated data sets will be restructured into smaller el-
ements that are well-described by rich metadata, and complex monolithic appli-
cations will be transformed into a dynamic collection of simpler parts with self-
describing programming interfaces. Ultimately, all data will reside in a
“knowledge soup,” where agents assemble and present small bits of information
from a variety of data sources on the fly as appropriate to a given context (figure
7) (Neches et al. 1991; Sowa 1990). In such an environment, individuals and
groups would no longer be forced to manage a passive collection of disparate
documents to get something done. Instead, they would interact with active
knowledge media (Barrett 1992; Bradshaw et al. 1993b; Brown and Duguid 1996;
Glicksman, Weber, and Gruber 1992; Gruber, Tenenbaum, and Weber 1992)
that integrate needed resources and actively collaborate with them on their tasks.

Figure 7 illustrates the various roles agents could play in an agent-enabled sys-
tem architecture. Some could act in the role of intelligent user interface managers,

AN INTRODUCTION TO SOFTWARE AGENTS 17

Typical Limitations of Direct Manipulation
Interfaces

Advantages of Agent-Oriented Approach

Large search space Scalability

Actions in response to immediate user
interaction only

Scheduled or event-driven actions

No composition Abstraction and delegation

Rigidity Flexibility and opportunism

Function orientation Task orientation

No improvement of behavior Adaptivity

Table 2. Typical limitations of direct manipulation interfaces and
advantages of agent-oriented approach.

drawing on the resources of other agents working behind the scenes (Arens et al.
1991; Browne, Totterdell, and Norman 1990; Kay 1990; Neal and Shapiro 1994;
Sullivan and Tyler 1991). Such agents would work in concert to help coordinate
the selection of the appropriate display modes and representations for the relevant
data (Bradshaw and Boose 1992; Johnson et al. 1994), incorporating semantic rep-
resentations of the knowledge in the documents to enhance navigation and infor-
mation retrieval (Boy 1992; Bradshaw and Boy 1993; Gruber, Tenenbaum, and
Weber 1992; Lethbridge and Skuce 1992; Mathé and Chen 1994). Because the lay-
out and content of the views would be driven by context and configuration mod-
els rather than by hand-crafted user-interface code, significant economies could be
realized as the data and software components are reused and semi-automatically
reconfigured for different settings and purposes. Some agents might be represent-
ed explicitly to the user as various types of personal assistants (Maes 1997). Ideally,
each software component would be “agent-enabled,” however for practical rea-
sons components may at times still rely on traditional interapplication communi-
cation mechanisms rather than agent-to-agent protocols.

Overview of the Book

The first subsection summarizes the first set of chapters under the heading of
“Agents and the User Experience,” which contain introductory pieces authored
by proponents (and a critic) of agent technology. The next set, “Agents for

18 BRADSHAW

A

A A

A

Integrated interface
to knowledge
media

Agent as
personal
assistant

Agents as intelligent
interface managers

Agent-to-agent
communication

Interapplication communication

Agents
behind the
scenes

A

Figure 7 An agent-enabled system architecture.

Learning and Intelligent Assistance,” describes how agents have been used to
enhance learning and provide intelligent assistance to users in situations where
direct manipulation interfaces alone are insufficient. The final set, “Agent Com-
munication, Collaboration, and Mobility,” details various approaches to agent-
oriented programming, agent-to-agent communication, and agent mobility, as
well as the use of agents to provide intelligent interoperability between loosely-
coupled components of distributed systems.

Agents and the User Experience

How Might People Interact with Agents? Norman’s (1997) introductory chap-
ter sets the stage for the first section of the book. “Agents occupy a strange place
in the realm of technology,” he opens, “leading to much fear, fiction, and extrav-
agant claims.” Because the new crop of intelligent agents differ so significantly
in their computational power from their predecessors, we need to take into ac-
count the social issues no less than the technical ones if our designs are to be ac-
ceptable to people:

“The technical aspect is to devise a computational structure that guarantees that
from the technical standpoint, all is under control. This is not an easy task.

The social part of acceptability is to provide reassurance that all is working accord-
ing to plan… This is [also] a non-trivial task.”

The reassurance that all is working according to plan is provided by an un-
derstandable and controllable level of feedback about the agent’s intentions and
actions. We must also think about how to accurately convey the agent’s capabili-
ties and limitations so that people are not misled in their expectations. Part of
the problem is the natural overenthusiasm of agent researchers; part of the
problem is people’s tendency to falsely anthropomorphize.15 Although designers
can carefully describe agent capabilities and limitations within accompanying
instructional manuals, it is even more important to find clever ways to weave
this information naturally and effectively into the agent interface itself.

Safety and privacy are additional concerns. “How does one guard against
error, maliciousness (as in the spread of computer viruses), and deliberate intent
to pry and probe within one’s personal records?” Legal policies to address these
issues must be formulatedimmediately, at local, national, and global levels.

A final concern is how to design the appropriate form of interaction between
agents and people. For example, how do ordinary people program the agent to
do what they want? While programming-by-demonstration or simplified visual
or scripting languages have been suggested, none of them seem adequate to spec-
ify the kinds of complex tasks envisioned for future intelligent agents.16

Since “agents are here to stay,” we must learn how to cope with the dan-
gers along with the positive contributions. “None of these negative aspects of
agents are inevitable. All can be eliminated or minimized, but only if we

AN INTRODUCTION TO SOFTWARE AGENTS 19

consider these aspects in the design of our intelligent systems.”

Agents: From Direct Manipulation to Delegation. In his chapter, Nicholas Ne-
groponte (1997), a longtime champion of agent technology (Negroponte 1970,
1995), extols the virtues of delegation in intelligent interfaces:

“The best metaphor I can conceive of for a human-computer interface is that of a
well-trained English butler. The “agent” answers the phone, recognizes the callers,
disturbs you when appropriate, and may even tell a white lie on your behalf. The
same agent is well trained in timing… and respectful of idiosyncrasies. People who
know the butler enjoy considerable advantage over a total stranger. That is just
fine.” (Negroponte 1997.)

What will such digital butlers do? They will filter, extract, and present the
relevant information from bodies of information larger than we could ordinari-
ly digest on their own. They will act as “digital sisters-in-law,” combining their
knowledge of information and computing services with intimate knowledge
about the person on whose behalf they are acting.

To create agents that are intelligent enough to perform these tasks to our
level of satisfaction, we will need to re-open profound and basic questions of in-
telligence and learning that past AI research has left largely untouched. An un-
derstanding of decentralized approaches to intelligence is key: coherence can
emerge from the activity of independent agents who coordinate their actions in-
directly through shared external influences in their common environment.17

User interface design will also be decentralized. Instead of being an effort by
professionals to produce the best interface for the masses, it will become an indi-
vidual affair, driven more by the personalized intelligence of one’s local agents
than the blanket application of general human-factors knowledge. The agent’s
long-time familiarity with a person, gained by numerous shared experiences,
will be critical to the new beyond-the-desktop metaphor. Though direct manip-
ulation has its place, Negroponte believes that most people would prefer to run
their home and office life with a gaggle of well-trained butlers.

Interface Agents: Metaphors with Character. The thesis of Laurel’s (1997) chap-
ter is that unabashed anthropomorphism in the design of interface agents is
both natural and appropriate:

“First, this form of representation makes optimal use of our ability to make accu-
rate inferences about how a character is likely to think, decide, and act on the basis
of its external traits. This marvelous cognitive shorthand is what makes plays and
movies work… Second, the agent as character (whether humanoid, canine, car-
toonish, or cybernetic) invites conversational interaction… [without necessarily re-
quiring] elaborate natural language processing… Third, the metaphor of character
successfully draws our attention to just those qualities that form the essential na-
ture of an agent: responsiveness, competence, accessibility, and the capacity to per-
form actions on our behalf.”

Recognizing the considerable resistance many will have to this idea, she responds

20 BRADSHAW

to some of the most common criticisms. First, is the objection to having to face
“whining, chatting little irritants” each time you turn on the machine. Laurel
notes that the problem is not “agents per se, but rather the traits they are assumed
to possess.” To address this problem, we must allow the traits of agents to be fully
user-configurable. Another criticism is the indirection implied by the presence of
an agent, “Why should I have to negotiate with some little dip in a bowtie when
I know exactly what I want to do?” The answer is that if you know what you
want to do and if you want to do it yourself, the agent should quickly get out of
your way. Agent-based assistance should be reserved for tedious or complex tasks
that you don’t want to do yourself, and that you are comfortable entrusting to a
software entity. Will people’s acquired habit of bossing agents around lead them
to treating real people the same way? Laurel argues that this is a real issue, but
should not be handled by repression of the dramatic form—rather it should be
addressed as an ethical problem for agent designers and the culture at large. Fi-
nally, there is the oft-heard criticism that “AI doesn’t work.” Laurel counters
with examples of successful use of AI techniques in well-defined domains. More-
ove, she asserts that most agents do not need a full-blown “artificial personality,”
but can be implemented much more simply.

Laurel concludes with a discussion of key characteristics of interface agents
(agency, responsiveness, competence, and accessibility) and of an R&D agenda
that includes an appreciation of the contribution of studies of story generation
and dramatic character.18

Designing Agents as if People Mattered. Erickson (1997) explores the many
difficulties surrounding adaptive functionality and the agent metaphor. With
respect to adaptive functionality, he describes three design issues raised in a
study of users of the DowQuest information retrieval system. In brief, people
need to understand what happened and why when a system alters its response;
they need to be able to control the actions of a system, even when it does not al-
ways wait for the user’s input before it makes a move; and they need to predict
what will happen, even though the system will change its responses over time.
Several approaches to these problems have been suggested, including: providing
users with a more accurate model of what is going on, managing overblown ex-
pectations of users at the beginning so they are willing to persist long enough to
benefit from the system’s incremental learning, and constructing a plausible
‘fictional’ model of what is going on.

Given the potential of the agent metaphor as a possible fiction for portraying
system functionality, Erickson examines three strands of research that shed
some light on how well this approach might work. Designed to encourage stu-
dents to explore an interactive encyclopedia, the Guides project allowed re-
searchers to observe the kinds of attributions and the level of emotional engage-
ment people had with stereotypic characters that assisted in navigation.
Erickson also reviews the extensive research that Nass and his colleagues have

AN INTRODUCTION TO SOFTWARE AGENTS 21

performed on the tendency of people to use their knowledge of people and so-
cial rules to make judgments about computers. Finally, he discusses recent re-
search on the reaction of people to extremely realistic portrayals of agents.

In the final section of the chapter, Erickson contrasts the desktop object and
agent conceptual models, and argues that they can be used together in the same
interface so long as they are clearly distinguished from one another. Specific
computing functionality can be portrayed either as an object or an agent, de-
pending on what is most natural. The desktop metaphor takes advantage of
users’ previous knowledge that office artifacts are visible, are passive, have loca-
tions, and may contain things. “Objects stay where they are: nice, safe pre-
dictable things that just sit there and hold things.” Ontological knowledge of a
different sort comes into play when the agent metaphor is employed. Our com-
mon sense knowledge of what agents can do tells us that, unlike typical desktop
objects, they can notice things, carry out actions, know and learn things, and go
places.19 “Agents become the repositories for adaptive functionality.” The over-
all conclusion is that research “which focuses on the portrayal of adaptive func-
tionality, rather than on the functionality itself, is a crucial need if we wish to
design agents that interact gracefully with their users.”

Direct Manipulation Versus Agents: Paths to Predictable, Controllable, and
Comprehensible Interfaces. Breaking with the tone of cautious optimism ex-
pressed in the preceding chapters, Shneiderman, a longtime advocate of direct
manipulation, is troubled by the concept of intelligent interfaces in general:

“First, such a classification limits the imagination. We should have much greater
ambition than to make a computer behave like an intelligent butler or other
human agent…

Second, the quality of predictability and control are desirable. If machines are in-
telligent or adaptive, they may have less of these qualities…

[Third,] I am concerned that if designers are successful in convincing the users that
computers are intelligent, then the users will have a reduced sense of responsibility
for failures…

Finally,… [m]achines are not people… [and if] you confuse the way you treat machines
with the way you treat people… you may end up treating people like machines.”20

Shneiderman backs up his general concerns with lessons from past disappoint-
ments in natural language systems, speech I/O, intelligent computer-assisted in-
struction, and intelligent talking robots.

Shneiderman observes that agent proponents have not come up with good
definitions of what is and is not an agent. “Is a compiler an agent? How about
an optimizing compiler? Is a database query an agent? Is the print monitor an
agent? Is e-mail delivered by an agent? Is a VCR scheduler an agent?” His ex-
amination of the literature reveals six major elements of the agent approach: an-
thropomorphic presentation, adaptive behavior, acceptance of vague goal
specification, gives you what you need, works while you don’t, and works

22 BRADSHAW

where you aren’t. The first three, on closer examination, seem counterproduc-
tive, while the last three are good ideas that could be achieved by other means.

The alternative to a vision of computers as intelligent machines is that of pre-
dictable and controllable user interfaces, based on direct manipulation of repre-
sentations of familiar objects. Shneiderman concludes with a description of two
examples from his own lab (tree maps and dynamic queries) that show the
power of visual, animated interfaces “built on promising strategies like infor-
mative and continuous feedback, meaningful control panels, appropriate pref-
erence boxes, user-selectable toolbars, rapid menu selection, easy-to-create
macros, and comprehensible shortcuts.” These, he argues, rather than vague vi-
sions of intelligent machines, will allow users to specify computer actions rapid-
ly, accurately, and confidently.

Agents for Learning and Intelligent Assistance

Agents for Information Sharing and Coordination: A History and Some Reflec-
tions. The chapter by Malone, Grant, and Lai (1997) reviews more than ten
years of seminal work on a series of programs which were intended to allow un-
sophisticated computer users to create their own cooperative work applications
using a set of simple, but powerful, building blocks. The work is based on two
key design principles, which each imply a particular kind of humility that
should be required of agent designers:

“1. Don’t build computational agents that try to solve complex problems all by them-
selves. Instead, build systems where the boundary between what the agents do and
what the humans do is a flexible one. We call this the principle of semiformal systems…

2. Don’t build agents that try to figure out for themselves things that humans
could easily tell them. Instead, try to build systems that make it as easy as possible
for humans to see and modify the same information and reasoning processes their
agents are using. We call this the principle of radical tailorability…”

Information Lens, the first program in the series, was a system for intelligent
sorting and processing of electronic mail messages. Object Lens and Oval were
successor programs providing much more general and tailorable environments
that extended beyond the domain of electronic mail filtering.

The name “Oval” is an acronym for the four key components of the system:
objects, views, agents, and links. “By defining and modifying templates for
various semi-structured objects, users can represent information about people,
tasks, products, messages, and many other kinds of information in a form that
can be processed intelligently by both people and their computers. By collect-
ing these objects in customizable folders, users can create their own views
which summarize selected information from the objects. By creating semi-au-
tonomous agents, users can specify rules for automatically processing this in-
formation in different ways at different times. Finally, links, are used for con-
necting and relating different objects” (Lai and Malone 1992).

AN INTRODUCTION TO SOFTWARE AGENTS 23

The authors describe several different applications that were created to show the
power and generality of the Oval approach.21 All these demonstrate the surprising
power that semiformal information processing can provide to people, and lend cre-
dence to the claim that people without formal programming skills can be enabled
to create agent-based computing environments that suit their individual needs.

Agents that Reduce Work and Information Overload. While the developers of
Oval have explored ways to simplify agent authoring, Pattie Maes and her col-
leagues at MIT have pursued an approach that allows personal assistants to learn
appropriate behavior from user feedback (Maes 1997). The personal assistant
starts out with very little knowledge and over time becomes more experienced,
gradually building up a relationship of understanding and trust with the user:

“[We] believe that the learning approach has several advantages over [end-user
programming and knowledge-based approaches]… First, it requires less work
from the end-user and application developer. Second, the agent can more easily
adapt to the user over time and become customized to individual and organiza-
tional preferences and habits. Finally, the approach helps in transferring informa-
tion, habits and know-how among the different users of a community.”

A learning agent acquires its competence from four different sources. First, it
can “look over the shoulder” of users as they perform actions. Second, it can
learn through direct and indirect feedback from the user. Indirect feedback is
provided when the user ignores the agent’s suggested action. Third, the agent
can learn from user-supplied examples. Finally, the agent can ask advice from
other users’ agents that have may have more experience with the same task.
Two assumptions determine whether the learning approach is appropriate for a
given application:

1. The application should involve a significant amount of repetitive behavior.
Otherwise, there would be no consistent situation-action patterns for the
agent to learn.

2. Repetitive behavior should be different for different users. Otherwise, the be-
havior could be more efficiently hard-coded once and for all in a program,
rather than implemented using learning agents.

Maes describes four agent-based applications built using the learning ap-
proach: electronic mail handling (Maxims), meeting scheduling,22 Usenet Net-
news filtering (Newt), and recommending books, music or other forms of enter-
tainment (Ringo)23 Through clever user feedback mechanisms and tailoring
options, this approach provides a great deal of functionality from the combina-
tion of relatively simple mechanisms.

KidSim: Programming Agents without a Programming Language. Like Mal-
one and his colleagues, Smith, Cypher, and Spohrer (1997) have focused their at-
tention on the problem of agent authoring. What is unique to their application,
however, is that they are trying to create a general and powerful tool for use by

24 BRADSHAW

children. To make this possible, they have adopted a “languageless” approach:

“We decided that the question is not: what language can we invent that will be eas-
ier for people to use? The question is: should we be using a language at all?…
We’ve come to the conclusion that since all previous languages have been unsuc-
cessful…, language itself is the problem..

… [The] graphical user interface eliminated command lines by introducing visual
representations for concepts and allowing people to directly manipulate those rep-
resentations… Today all successful editors on personal computers follow this ap-
proach. But most programming environments do not. This is the reason most peo-
ple have an easier time editing than programming.”

KidSim24 (now called “Cocoa”) is a tool kit where children can build worlds
populated by agents that they program themselves by demonstration and direct
manipulation. Existing agents (simulation objects) can be modified, and new ones
can be defined from scratch. Although agents cannot inherit from one another,
they can share elements such as rules. In keeping with the design philosophy of
direct manipulation, all elements of the simulation are visible in the interface.

“Languageless” programming is accomplished by combining two ideas: graph-
ical rewrite rules, and programming-by-demonstration.25 Graphical rewrite rules
define transformations of a region of the game board from one state to another.
Programming-by-demonstration is accomplished by letting the child put the sys-
tem into “record mode” to capture all actions and replay them. A major strength
of KidSim is that the results of recording user actions can be shown graphically,
rather than as a difficult-to-understand script, as in most other such systems.

The authors describe a series of classroom studies in which children from
ages eight to fourteen have used development versions of KidSim. The studies
have led to a refinement of many of the concepts in KidSim, and have in turn
provided convincing evidence that reasonably complex simulations of this sort
can be constructed by very young children. No doubt there are many agent ap-
plications for adults that could take advantage of similar principles to make
programming accessible.

Lifelike Computer Characters: The Persona Project at Microsoft. While many
software agent researchers are content to make agents that are merely “useful,”
others seek the more ambitious goal of making “complete” agents that are highly
visible in the user interface, project the illusion of being aware and intentioned,
and are capable of emotions and significant social interaction. The Persona pro-
ject (Ball et al. 1997) was formed to prototype possible interfaces to future com-
puter-based assistants, in this case a “conversational, anthropomorphic computer
character that will interact with the user to accept task assignments and report
results.” To be successful, such assistants will need to support interactive give
and take including task negotiation and clarifying questions, understand how
and when it is appropriate to interrupt the user with a report or request for

AN INTRODUCTION TO SOFTWARE AGENTS 25

input, and acknowledge the social and emotional impacts of interaction.
The creation of lifelike computer characters requires a wide variety of tech-

nologies and skills, including speech recognition, natural language understand-
ing, animation, and speech synthesis. A sophisticated understanding of subtle
dialogue mechanisms and social psychology is also essential. To add to this chal-
lenge, all the necessary computational machinery to support these technologies
must ultimately be able to run with acceptable performance on garden variety
computing platforms.

The application chosen for the project described in this chapter involves an
animated character (Personal Digital Parrot One, PDP1, or Peedy for short)
that acts as a knowledgeable compact disc changer: “The assistant can be
queried as to what CDs are available by artist, title or genre, additional infor-
mation can be obtained about the CDs, and a playlist can be generated.” Peedy
responds verbally and by doing things to spoken commands in a restricted sub-
set of natural language.

The application relies on two major technology components: reactive animation
and natural language. ReActor represents a visual scene and accompanying entities
such as cameras and lights hierarchically. The most interesting aspect of the anima-
tion is its reactivity, i.e., the fact that complex behaviors, including “emotion,” can
be triggered by user input. The natural language capability relies on the Whisper
speech recognition module and on a broad-coverage natural language parser.

The creation of such prototypes has allowed Ball and his colleagues to discov-
er and explore many little-understood aspects of human-computer interaction
and to point the way toward the creation of increasingly sophisticated lifelike
conversational assistants in the future.

Software Agents for Cooperative Learning. Boy’s chapter (1997) examines the
role of agents in learning technology. He briefly reviews significant trends of the
past, including computer-based training, intelligent tutoring systems, interac-
tive learning systems, and cooperative learning systems. Computer-supported
cooperative learning (CSCL) builds on the lessons learned from these past ap-
proaches to provide an environment where knowledge is exchanged via active
electronic documents.

Four requirements guide the design of active documents: 1. providing the ap-
propriate illusion that is useful and natural for the user to understand its content;
2. providing appropriate indexing and linking mechanisms to connect the docu-
ment with other relevant documents; 3. providing adaptivity so that over time
the document becomes increasingly tailored to the information requirements of
particular users; and 4. including dynamic simulations to enable people to under-
stand aspects of complex situations that cannot be adequately represented using
a static medium such as paper.

Software agents for cooperative learning are designed to transform standard
electronic documents into active ones. Drawing on extensive past research expe-

26 BRADSHAW

rience with the Situation Recognition and Analytical Reasoning (SRAR) model
and the knowledge block representation (Boy 1992; Boy 1991; Boy and Mathé
1993; Mathé and Chen 1994), he defines an agent in the context of this chapter
to be “a software entity that can be represented by a knowledge block with an
interface metaphor (appearance).”

As an example of an agent-based CSCL system Boy describes ACTIDOC, a
prototype environment for active documents that has been applied in the do-
main of physics instruction. ACTIDOC documents consist of an ordered set of
pages containing content and software agents (to make the content active). Each
agent contains a name, a context, a set of triggering conditions, a set of internal
mechanisms, and a set of interface metaphors. From Schank and Jona’s (1991)
six learning architectures, Boy derives classes of agents useful in active docu-
ment design: case-based learning agent, incidental learning agent, problem-solving
agent, video database agent, simulation agent, and suggestive-questions agent. Addi-
tionally he defines the roles of evaluation, instructor aid, and networking agents.
These are illustrated using a physics example that demonstrates one way that
agents can be used to make document content come alive.

The M System. Based on Minsky’s Society of Mind (SOM) theory (Minsky 1986),
the M system (Riecken 1997) is designed to provide intelligent assistance in a
broad range of tasks through the integration of different reasoning processes
(societies of agents). The architecture has previously been applied in the domains
of music composition and intelligent user interface agents; this paper describes
how M assists users of a desktop multimedia conferencing environment to clas-
sify and manage metaphorical electronic objects such as documents, ink, im-
ages, markers, white boards, copy machines, and staplers.

In the Virtual Meeting Room (VMR) application, participants collaborate
using pen-based computers and a telephone:

“Each user is supported by a personalized assistant, which attempts to recognize
and define relationships between domain objects, based on the actions performed
by the users and the resulting new states of the world. For example, VMR partici-
pants may perform actions on a group of electronic documents such as joining
them as a set or annotating them collectively. M attempts to identify all domain ob-
jects and classify relationships between various subsets based on their physical
properties and relevant user actions.”

Within M there are five major reasoning processes, each of which are viewed as
individual agents: spatial, structural, functional, temporal, and causal. Other more
simple agents function as supporting agents. Functioning as a set of SOM memo-
ry machines, these supporting agents represent conceptual knowledge about
things like color, shape, and spatial relationships. As an architecture of integrat-
ed agents, M dynamically generates, ranks, and modifies simultaneous theories
about what is going on in the VMR world. As a faithful implementation of
SOM theory, M provides for an I/O system, a spreading activation semantic net-

AN INTRODUCTION TO SOFTWARE AGENTS 27

work (to implement Minsky’s K-lines/polynemes), a rule-based system, a script-
ing system, a blackboard system (to implement Minsky’s trans-frames and
pronomes), and a history log file system.

To Riecken, an agent is fundamentally a simple, specialized “reasoning” pro-
cess, whereas an assistant is composed of many “agencies of agents:” “To handle a
common sense problem, one would not typically call on an agent—instead, one
would want an assistant endowed with the talents of many integrated agents.”

Agent Communication, Collaboration, and Mobility

An Overview of Agent-Oriented Programming. Agent-oriented programming
(AOP) is a term that Shoham (1977) has proposed for the set of activities necessary
to create software agents. What he means by ‘agent’ is “an entity whose state is
viewed as consisting of mental components such as beliefs, capabilities, choices,
and commitments.” Agent-oriented programming can be thought of as a special-
ization of object-oriented programming approach, with constraints on what kinds
of state-defining parameters, message types, and methods are appropriate. From
this perspective, an agent is essentially “an object with an attitude.”

An agent’s “mental state” consists of components such as beliefs, decisions,
capabilities, and obligations. Shoham formally describes the state in an exten-
sion of standard epistemic logics, and defines operators for obligation, decision,
and capability. Agent programs control the behavior and mental state of agents.
These programs are executed by an agent interpreter. In the spirit of speech act
theory, interagent communication is implemented as speech act primitives of
various types, such as inform, request, or refrain.

An agent interpreter assures that each agent will iterate through two steps at
regular intervals: 1) read the current messages and update its mental state (in-
cluding beliefs and commitments), and 2) execute the commitments for the cur-
rent time, possibly resulting in further belief change. Shoham’s original agent in-
terpreter, AGENT-0, implements five language elements: fact statements (“Smith
is an employee of Acme”), communicative action statements (inform, request, re-
frain), conditional action statements (“If, at time t, you believe that Smith is an em-
ployee of Acme, then inform agent A of the fact”), variables, and commitment
rules (“If you receive message x while in the mental state y, perform action z”).

The basic concepts described by Shoham have influenced the direction of
many other agent researchers. He and his colleagues have continued their inves-
tigations on several fronts including mental states, algorithmic issues, the role of
agents in digital libraries, and social laws among agents.

KQML as an Agent Communication Language. While Shoham’s definition of an
agent is built around a formal description of its mental state, other groups of re-
searchers have taken agent communication as their point of departure.26 In this

28 BRADSHAW

chapter, Finin, Labrou and Mayfield (1997) justify such a rationale as follows:

“The building block for intelligent interaction is knowledge sharing that includes
both mutual understanding of knowledge and the communication of that knowledge.
The importance of such communication is emphasized by Genesereth, who goes so far
as to suggest that an entity is a software agent if and only if it communicates correctly
in an agent communication language (Genesereth and Ketchpel 1994). After all, it is
hard to picture cyberspace with entities that exist only in isolation; it would go against
our perception of a decentralized, interconnected electronic universe.”

After an overview of the work of the Knowledge Sharing Effort (KSE) con-
sortium (Neches et al. 1991) to tackle various issues relating to software agents
and interoperability, the authors focus on one particular result of the effort:
KQML (Knowledge Query Manipulation Language).

The authors suggest seven categories of requirements for an agent communi-
cation language:

• Form. It should be declarative, syntactically simple, and easily readable by
people and programs.

• Content. A distinction should be made between the language that expresses
communicative acts (“performatives”) and the language that conveys the
content of the message.

• Semantics. The semantics should exhibit those desirable properties expect-
ed of the semantics of any other language.

• Implementation. The implementation should be efficient, provide a good fit
with existing software, hide the details of lower layers, and allow simple
agents to implement subsets of the language.

• Networking. It should support all important aspects of modern networking
technology, and should be independent of transport mechanism.

• Environment. It must cope with heterogeneity and dynamism.

• Reliability. It must support reliable and secure agent communication.
After a review of the features of KQML, the authors describe how the fea-

tures of KQML support each of these requirements. The authors conclude by
describing various applications of KQML and by giving a comparison with two
related approaches: AOP and Telescript.

An Agent-Based Framework for Interoperability. Genesereth (1997) continues
the theme of agent communication with his chapter on the role of agents in en-
abling interoperability, meaning that software created by different developers
and at different times works together in seamless manner. He discusses two
limitations of current software interoperability technologies: 1. they lack the
ability to communicate definitions, theorems, and assumptions that may be
needed for one system to communicate effectively with another, and 2. there is
no general way of resolving inconsistencies in the use of syntax and vocabulary.

Like Finin and his colleagues, Genesereth has been a major contributor to

AN INTRODUCTION TO SOFTWARE AGENTS 29

the KSE. His ACL (agent communication language) draws on three corner-
stones of the KSE approach: vocabularies, (ontologies) KIF (Knowledge Inter-
change Format), and KQML. The vocabulary of ACL is represented as a sophis-
ticated open-ended dictionary of terms that can be referenced by the
cooperating agents and applications.27 KIF is a particular syntax for first order
predicate calculus that provides for a common internal knowledge representa-
tion, an “inner” language for agents (Genesereth and Fikes 1992). It was origi-
nally developed by Genesereth’s group and is currently being refined as part of
an ISO standardization effort. In the ACL approach, KQML is viewed as a lin-
guistic layer on top of KIF that allows information about the context (e.g.,
sender, receiver, time of message history) to be taken into account as part of
agent messages. In short, “an ACL message is a KQML expression in which the
‘arguments’ are terms or sentences in KIF formed from words in the ACL vo-
cabulary” (Genesereth and Ketchpel 1994).

The concept of a facilitator is central to ACL. Agents and facilitators are orga-
nized into a federated system, in which agents surrender their autonomy in exchange
for the facilitator’s services. Facilitators coordinate the activities of agents and pro-
vide other services such as locating other agents by name (white pages) or by capa-
bilities (yellow pages), direct communication, content-based routing, message
translation, problem decomposition, and monitoring. Upon startup, an agent initi-
ates an ACL connection to the local facilitator and provides a description of its ca-
pabilities. It then sends the facilitator requests when it cannot supply its own needs,
and is expected to act to the best of its ability to satisfy the facilitator’s requests.

Genesereth describes several examples of applications and summarizes issues
where further work is needed. ACL is an important step toward the ambitious
long-range vision where “any system (software or hardware) can interoperate with
any other system, without the intervention of human users or… programmers.”

Agents for Information Gathering. The chapter by Knoblock and Ambite
(1977) provides an in-depth example of the use of agents for an important
class of problems: information gathering. The SIMS architecture for intelli-
gent information agents is designed to provide:

1. modularity in terms of representing an information agent and information
sources,

2. extensibility in terms of adding new information agents and information
sources,

3. flexibility in terms of selecting the most appropriate information sources to
answer a query,

4. efficiency in terms of minimizing the overall execution time for a given
query, and

5. adaptability in terms of being able to track semantic discrepancies among
models of different agents.”

30 BRADSHAW

Each SIMS information agent provides expertise on a specific topic by draw-
ing upon other information agents and data repositories. “An existing database
or program can be turned into a simple information agent by building the ap-
propriate interface code, called a wrapper, that will allow it to conform to the
conventions of the [particular agent] organization… [Such an] approach greatly
simplifies the individual agents since they need to handle only one underlying
language. This arrangement makes it possible to scale the network into many
agents with access to many different types of information sources.” Agents that
answer queries but do not originate them are referred to as data repositories.

“Each SIMS agent contains a detailed model of its domain of expertise [(an
ontology)] and models of the information sources that are available to it. Given
an information request, an agent selects an appropriate set of information
sources, generates a plan to retrieve and process the data, uses knowledge about
information sources to reformulate the plan for efficiency, and executes the
plan.” KQML is used as the communication language in which messages are
transmitted among agents, while Loom (MacGregor 1990) is used as the content
language in which queries and responses are formulated.

A learning capability helps agents improve their overall efficiency and accu-
racy. Three modes of learning are used: caching data that is frequently retrieved
or which may be difficult to retrieve, learning about the contents of information
sources so as to minimize the cost of retrieval, and analyzing the contents of in-
formation sources so as to refine its domain model.

To date, the authors have built information agents that plan and learn in the
logistics planning domain. They are continuing to extend the planning and
learning capabilities of these agents.

KAoS: Toward an Industrial-Strength Open Agent Architecture. It is ironic
that as various sorts of agents are increasingly used to solve problems of soft-
ware interoperability, we are now faced with the problem of incompatible com-
peting agent frameworks:

“The current lack of standards and supporting infrastructure has prevented the
thing most users of agents in real-world applications most need: agent interoperabili-
ty (Gardner 1996; Virdhagriswaran, Osisek, and O’Connor 1995). A key characteris-
tic of agents is their ability to serve as universal mediators, tying together loosely-
coupled, heterogeneous components—the last thing anyone wants is an agent
architecture that can accommodate only a single native language and a limited set of
proprietary services to which it alone can provide access.”

The long-term objective of the KAoS (Knowledgeable Agent-oriented System)
agent architecture (Bradshaw et al. 1997) is to address two major limitations of
current agent technology: 1. failure to address infrastructure, scalability, and secu-
rity issues; and 2. problems with the semantics and lack of principled extensibility
of agent communication languages such as KQML. The first problem is ad-
dressed by taking advantage of the capabilities of commercial distributed object

AN INTRODUCTION TO SOFTWARE AGENTS 31

products (CORBA, DCOM, Java) as a foundation for agent functionality, and
supporting collaborative research and standards-based efforts to resolve agent in-
teroperability issues. The second problem is addressed by providing an open agent
communication meta-architecture in which any number of agent communication
languages with their accompanying semantics could be accommodated.

Each KAoS agent contains a generic agent instance, which implements as a min-
imum the basic infrastructure for agent communication. Specific extensions and
capabilities can be added to the basic structure and protocols through ordinary ob-
ject-oriented programming mechanisms. Unlike most agent communication ar-
chitectures, KAoS explicitly takes into account not only the individual message,
but also the various sequences of messages in which it may occur. Shared knowl-
edge about message sequencing conventions (conversation policies) enables agents
to coordinate frequently recurring interactions of a routine nature simply and pre-
dictably. Suites provide convenient groupings of conversation policies that support
a set of related services (e.g., the Matchmaker suite). A starter set of suites is provid-
ed in the architecture but can be extended or replaced as required.

The authors experience with KAoS leads them to be “optimistic about the
prospects for agent architectures built on open, extensible object frameworks
and [they] look forward to the wider availability of interoperable agent imple-
mentations that will surely result from continued collaboration.”

Communicative Actions for Artificial Agents. Cohen and Levesque’s (1997)
chapter identifies major issues in the design of languages for interagent commu-
nication, with specific application to KQML:

“[The] authors of KQML have yet to provide a precise semantics for this language,
as is customary with programming languages.28 Without one, agent designers can-
not be certain that the interpretation they are giving to a “performative” is in fact
the same as the one some other designer intended it to have. Moreover, the lack of
a semantics for communication acts leads to a number of confusions in the set of
reserved “performatives” supplied. Lastly, designers are left unconstrained and un-
guided in any attempt to extend the set of communication actions.”

In KQML, communicative actions are considered to belong to a specific class
of speech acts called “performatives” which, in natural language, are utterances
that succeed simply because speakers say or assert they are doing so (e.g., “I here-
by bequeath my inheritance to my daughter”). The authors identify three gener-
al difficulties with KQML. First, the definitions of the performatives suffer from
ambiguity and vagueness. Second, there are misidentified performatives, that should
instead be classes as directives (e.g., requests) or assertives (e.g., informs). Third,
there are missing performatives, such as the commissives (e.g., promises).

The authors respond to these difficulties with an outline an analysis of ratio-
nal action upon which their theory of speech acts rests. They then show how the
speech acts of requesting and informing can be defined in terms of the primi-
tives from this theory. The implications for future KQML design decisions are

32 BRADSHAW

twofold. First, if developers are allowed to extend the set of KQML performa-
tives, they must provide both correct implementations of the directive force of
new actions as well as assure that the new actions enter into old and new con-
versation patterns correctly. Second, if the communication primitives are to be
handled independently of the content of the message, developers must not allow
any attitude operators in the content (e.g., not permit an agent who says that it
requests an act to also say that it does not want the act done).

The authors provide a comparison with other agent communication lan-
guages including AOP, Telescript, and their own Open Agent Architecture
(OAA) approach (Cohen and Cheyer 1994). Additional work in joint intention
theory (Cohen 1994; Cohen and Levesque 1991; Smith and Cohen 1995) is re-
quired to clarify how communicative actions function in the initiation of team
behavior, and how they may be able to predict the structure of finite-state mod-
els of interagent conversations as used in agent architectures such as KAoS.29

Mobile Agents. Telescript is an object-oriented remote programming lan-
guage that is designed to address the problem of interoperability for network
services (White 1997). What PostScript did for cross-platform, device-
independent documents, Telescript aims to do for cross-platform, network-
independent messaging:

“In Telescript technology, mobile agents go to places, where they perform tasks on
behalf of a user. Agents and places are completely programmable, but they are
managed by security features such as permits, authorities, and access controls. Tele-
script technology is portable, allowing it to be deployed on any platform, over any
transport mechanism, and through assorted media—wireline and wireless. Tele-
script technology can also handle different content types, including text, graphics,
animations, live video, and sounds. Telescript technology turns a network into an
open platform.30 Simplified development, portability, and support for rich message
content make the technology applicable to a range of communicating applications,
from workflow automation to information services and from network manage-
ment to electronic markets” (General Magic 1994).

Telescript technology allows developers to bundle data and procedures into an
agent that will be sent over the network and executed remotely on the server.31

The Telescript agent carries its own agenda and may travel to several places in
succession in order to perform a task. Security for host systems is of paramount
concern. The Telescript runtime engine can be set to prevent agents from exam-
ining or modifying the memory, file system, or other resources of the computers
on which they execute. Moreover, each agent carries securely formatted and en-
crypted identification tickets that must be checked by the host before running
code. The ticket may also carry information about what kinds of tasks the agent
is permitted to perform, and the maximum resources it is allowed to expend.

White provides a motivation for mobile agent technology in terms of several
example applications. A comprehensive overview of Telescript technologies and
programming model and a brief discussion of related work round out the chapter.

AN INTRODUCTION TO SOFTWARE AGENTS 33

Parting Thoughts

Readers may legitimately complain about the idiosyncratic selection of chapters for
this book. Significant research topics and important bodies of work have certainly
been neglected32 although I hope that some of this may be rectified in a subsequent
volume. What I have tried to provide is convenient access to an initial collection of
exemplars illustrating the diversity of problems being addressed today by software
agent technology. Despite the fact that the solutions described here will ultimately
be replaced by better ones; regardless of whether the term “software agent” sur-
vives the next round of computing buzzword evolution, I believe that the kinds of
issues raised and lessons learned from our exploration of software agent technology
points the way toward the exciting developments of the next millennium.

Acknowledgments

Heartfelt thanks are due to Kathleen Bradshaw and to Ken Ford and Mike
Hamilton of AAAI Press, who nurtured this project from the beginning and pa-
tiently sustained it to a successful end. I am grateful to the authors of the individual
chapters for allowing their contributions to appear in this volume, and for many
stimulating discussions. Peter Clark, Jim Hoard, and Ian Angus provided helpful
feedback on an earlier draft of this chapter. Significant support for this effort was
provided by Boeing management including Cathy Kitto, Ken Neves, and Al Eris-
man; and by my colleagues in the agent research group: Bob Carpenter, Rob
Cranfill, Renia Jeffers, Luis Poblete, Tom Robinson, and Amy Sun. The writing of
this chapter was supported in part by grant R01 HS09407 from the Agency for
Health Care Policy and Research to the Fred Hutchison Cancer Research Center.

Notes

1. Works by authors such as Schelde (1993), who have chronicled the development of
popular notions about androids, humanoids, robots, and science fiction creatures, are a
useful starting point for software agent designers wanting to plumb the cultural context
of their creations. The chapter “Information beyond computers” in Lubar (1993) pro-
vides a useful grand tour of the subject. See Ford, Glymour, and Hayes (1995) for a de-
lightful collection of essays on android epistemology.

2. This is perhaps an overstatement, since researchers with strong roots in artificial life (a-
life) and robotics traditions have continued to make significant contributions to our un-
derstanding of autonomous agents (Maes 1993; Steels 1995). Although most researchers in
robotics have concerned themselves with agents embodied in hardware, some have also
made significant contributions in the area of software agents. See Etzioni (1993) for argu-
ments that software presents a no-less-attractive platform than hardware for the investi-
gation of complete agents in real-world environments. Williams and Nayak (1996) de-
scribe a software-hardware hybrid agent concept they call immobile robots (immobots).

3. For example, see the operational definition proposed by Shoham: “An agent is an enti-
ty whose state is viewed as consisting of mental components such as beliefs, capabilities,
choices, and commitments.”

34 BRADSHAW

4. With apologies to Oliver Goldsmith (Bartlett and Beck 1980, p. 369:9).

5. Alan Turing (Turing 1950) proposed what was perhaps the first attempt to operational-
ize a test for machine intelligence using the criterion of human ascription. Research on be-
lievable agents (Bates et al. 1994), lifelike computer characters (Ball 1996), and agent-based
computer games (Tackett and Benson 1985) carries on in the same tradition, aiming to
produce the most realistic multimedia experience of computer-based agents possible. As
discovered by organizers of the Loebner Prize Competitions (Epstein 1992) and the
AAAI Robot Competitions (Hinkle, Kortenkamp, and Miller 1996; Simmons 1995), one
significant challenge in objectively judging results of competitions based on pure ascrip-
tion and performance measures is that unless the evaluation criteria are well-thought out,
agents or robots relying on cheap programming tricks may consistently outperform those
who may be demonstrating some more legitimate kind of machine intelligence.

6. Russell and Norvig (1995, p. 821) discuss the fact that while ascribing beliefs, desires, and
intentions to agents (the concept of an intentional stance) might help us avoid the paradoxes
and clashes of intuition, the fact that it is rooted in a relativistic folk psychology can create
other sorts of problems. Resnick and Martin (Martin 1988; Resnick and Martin 1990) de-
scribe examples of how, in real life, people quite easily and naturally shift between the dif-
ferent kinds of descriptions of designed artifacts (see footnote 11). Erickson (1997), Laurel
(1997), and Shneiderman (1997) offer additional perspectives on the consequences of en-
couraging users to think in terms of agents.

7. Milewski and Lewis (1994) review the organizational psychology and management
science literature regarding delegation. They draw implications for agent design, includ-
ing delegation cost-benefit tradeoffs, kinds of communication required, determinants of
trust, performance controls, and differences in personality and culture.

8. “The difference between an automaton and an agent is a somewhat like the differ-
ence between a dog and a butler. If you send your dog to buy a copy of the New York
Times every morning, it will come back with its mouth empty if the news stand happens
to have run out one day. In contrast, the butler will probably take the initiative to buy
you a copy of the Washington Post, since he knows that sometimes you read it instead”
(Le Du 1994), my translation.

9. Newquist (1994) gives a similarly-flavored critique of the overhyping of “intelligence”
in various products.

10. Shoham goes on to cite the following statement by John McCarthy, who distinguishes
between the “legitimacy” of describing mental qualities to machines and its “usefulness”
“To ascribe certain beliefs, free will, intentions, consciousness, abilities or wants to a machine
or computer program is legitimate when such an ascription expresses the same informa-
tion about the machine that it expresses about a person. It is useful when the ascription
helps us understand the structure of the machine, its past or future behavior, or how to
repair or improve it. It is perhaps never logically required even for humans, but express-
ing reasonably briefly what is actually known about the state of the machine in a particu-
lar situation may require mental qualities or qualities isomorphic to them. Theories of
belief, knowledge and wanting can be constructed for machines in a simpler setting than
for humans, and later applied to humans. Ascription of mental qualities is most straight-
forward for machines of known structure such as thermostats and computer operating
systems, but is most useful when applied to entities whose structure is very incompletely
known” (McCarthy 1979).

11. Of course, in real life, people quite easily and naturally shift between the different
kinds of descriptions. For example, Resnick and Martin report the following about their
research with children building LEGO robots: “As students play with artificial creatures,

AN INTRODUCTION TO SOFTWARE AGENTS 35

we are particularly interested in how the students think about the creatures. Do they
think of the LEGO creatures as machines, or as animals? In fact, we have found that stu-
dents (and adults) regard the creatures in many different ways. Sometimes students view
their creatures on a mechanistic level, examining how one LEGO piece makes another
move. At other times, they might shift to the information level, exploring how informa-
tion flows from one electronic brick to another. At still other times, students view the
creatures on a psychological level, attributing intentionality or personality to the creatures.
One creature ‘wants’ to get to the light. Another creature ‘likes’ the dark. A third is
‘scared’ of loud noises.

Sometimes, students will shift rapidly between levels of description. Consider, for ex-
ample, the comments of Sara, a fifth-grader (Martin 1988). Sara was considering whether
her creature would sound a signal when its touch sensor was pushed:

‘It depends on whether the machine wants to tell… if we want the machine to tell
us… if we tell the machine to tell us.’

Within a span of ten seconds, Sara described the situation in three different ways.
First she viewed the machine on a psychological level, focusing on what the machine
‘wants.’ Then she shifted intentionality to the programmer, and viewed the programmer
on a psychological level. Finally, she shifted to a mechanistic explanation, in which the
programmer explicitly told the machine what to do.

Which is the correct level? That is a natural, but misleading question. Complex sys-
tems can be meaningfully described at many different levels. Which level is ‘best’ de-
pends on the context: on what you already understand and on what you hope to learn. In
certain situations, for certain questions, the mechanistic level is the best. In other situa-
tions, for other questions, the psychological level is best. By playing with artificial crea-
tures, students can learn to shift between levels, learning which levels are best for which
situations.” (Resnick and Martin 1990).

12. Ideally, this would include some notion of episodic memory. Unfortunately, only two
major examples of “agents” incorporating episodic memory in the literature easily come
to mind: Winograd’s (1973) SHRDLU and Vere and Bickmore’s (1990) “basic agent.”
For a thought-provoking look into the consequences of a future where a personal
“agent” might become the ultimate cradle-to-grave companion, experiencing and re-
membering every event of a lifetime, see “The Teddy” chapter in Norman (1992).

13. In his widely cited article “Eye on the Prize” (Nilsson 1995), Nilsson discusses the
shift of emphasis in AI from inventing general problem-solving techniques to what he
calls performance programs, and gives his reasons for believing that there will soon be a
reinvigoration of efforts to build programs of “general, humanlike competence.”

14. While macro and scripting languages are technically adequate to solve this problem, it
seems unlikely that the majority of “end users” will ever want to endure what it takes to
become proficient with them: “In the past two decades there have been numerous attempts
to develop a language for end users: Basic, Logo, Smalltalk, Pascal, Playground, Hyper-
Talk, Boxer, etc. All have made progress in expanding the number of people who can pro-
gram. Yet as a percentage of computer users, this number is still abysmally small. Consider
children trying to learn programming… We hypothesize that fewer than 10% of there
children who are taught programming continue to program after the class ends… Eliot
Soloway states, ‘My guess is that the number… is less than 1%! Who in their right mind
would use those languages—any of them—after a class?’” (Smith, Cypher, and Spohrer
1997). While the software agent perspective does not obviate the need for end-user pro-
gramming, I believe it has potential as one means of simplifying some of the conceptual
barriers that users and developers face in designing and understanding complex systems.

36 BRADSHAW

15. Fortunately, people have a lot of experience in judging the limitations of those with
whom they communicate: “Sometimes people overstate what the computer can do, but
what people are extremely good at is figuring out what they can get away with. Children
can size up a substitute teacher in about five minutes” (Kahle 1993). For evidence that
developers of intelligent software are no less prone than other people to overestimate the
capabilities of their programs, see McDermott (1976).

16. Automatic programming is an enterprise with a long history of insatiable requirements
and moving expectations. For example, Rich and Waters (1988) remind us that “compared
to programming in machine code, assemblers represented a spectacular level of automa-
tion. Moreover, FORTRAN was arguably a greater step forward than anything that has hap-
pened since. In particular, it dramatically increased the number of scientific end users who
could operate computers without having to hire a programmer.” Today, no one would call
FORTRAN a form of automatic programming, though in 1958 the term was quite appropri-
ate. The intractability of fully-automated, completely-general programming is analogous
to the problem of automated knowledge acquisition (Bradshaw et al. 1993a; Ford et al.
1993). As Sowa observes: “Fully automated knowledge acquisition is as difficult as unre-
stricted natural language understanding. The two problems, in fact, are different aspects of
exactly the same problem: the task of building a formal model for some real world system
on the basis of informal descriptions in ordinary language. Alan Perlis once made a remark
that characterizes that difficulty: You can’t translate informal specifications into formal
specifications by any formal algorithm.” (Sowa 1989).

17. Van de Velde (1995) provides a useful discussion of the three coupling mechanisms
which can enable coordination between multiple agents: knowledge-level, symbol-level,
and structural. Symbol-level coupling occurs when agents coordinate by exchange of
symbol structures (e.g., “messages”) and knowledge-level coupling occurs when an agent
“rationalizes the behavior of multiple agents by ascribing goals and knowledge to them
that, assuming their rational behavior, explains their behavior” (i.e., through taking an
intentional stance). Structural coupling, as discussed extensively by Maturana and Varela
(1992), occurs when two agents “coordinate without exchange of representation,… by
being mutually adapted to the influences that they experience through their common en-
vironment… For example, a sidewalk… plays a coordinating role in the behavior of
pedestrians and drivers… [and] the coordination of [soccer] players (within and across
teams) is mediated primarily by… the ball.” Similarly, as Clancey (1993) argues, the use-
fulness of the blackboard metaphor is that it provides an external representation that
regulates the coordination between multiple agents.

18. These latter issues are discussed in more detail in a Laurel’s (1991) book Computers as
Theatre.

19. It is also easy for people to assume less tangible qualities about agents like that they
are internally consistent, are rational, act in good faith, can introspect, can cooperate to
achieve common goals, and have a persistent mental state.

20. A more blunt criticism of agents is voiced by Jaron Lanier (1996), who writes, “The
idea of ‘intelligent agents’ is both wrong and evil. I also believe that this is an issues of
real consequence to the near-term future of culture and society. As the infobahn rears its
gargantuan head, the agent question looms as a deciding factor in whether this new beast
will be much better than TV, or much worse.” See also his extended online debate with
Pattie Maes in Lanier and Maes (1996).

21. Several commercial products have subsequently incorporated Ovallike capability,
though with less generality and sophistication. These include cooperative work tools and
databases for semi-structured information such as Lotus Notes (Greif 1994) and Caere

AN INTRODUCTION TO SOFTWARE AGENTS 37

Pagekeeper, as well as mail readers with rule-based message sorting. Workflow manage-
ment tools with some of these capabilities have also appeared.

22. For other approaches to defining agents for scheduling and calendar management
tasks, see Kautz et al. (1993); Mitchell et al. (1994).

23. Maes has formed Firefly Network, Inc. in order to extend the technology developed
in Ringo to the Web. Her firefly service uses knowledge about people with similar tastes
and interests in music and movies as a means of personalizing its recommendations.

24. A sort of Java for kids.

25. For a similar approach that relies on graphical rewrite rules, see Repenning’s (1995)
Agentsheets.

26. This is of course a caricature of both approaches: Shoham does not ignore the impor-
tance of agent communication in AOP; neither would most agent communication re-
searchers argue that some representation of “mental state” is unnecessary. Davies’ (1994)
Agent-K language is an attempt to build a hybrid that extends AGENT-0 to use KQML

for communication.

27. One well-known tool that has been used to construct such vocabularies is Ontolingua
(Gruber 1992a, 1992b).

28. Recent efforts to provide a semantic foundation for KQML are described in Labrou
(1996) and Labrou and Finin (1994). Another more general approach to agent language se-
mantics is currently under development by Smith and Cohen (1995).

29. Such a strategy parallels the approach of Rosenschein, who designed a compiler that
generates finite state machines whose internal states can be proved to correspond to cer-
tain logical propositions about the environment (Kaelbling and Rosenschein 1990;
Rosenschein 1995).

30. General Magic is working hard to assure that Telescript can take maximum advan-
tage of developments in Internet technology. Its Tabriz AgentWare and Agent Tools
products (General Magic 1996) integrate Telescript and Web technologies, and White
has proposed a common agent platform intended to enable interoperability between
Telescript and other mobile agent technology (White 1996).

31. With respect to the relationship between Telescript, Tabriz, and Java, General Magic
writes: “It is important to note that Telescript and Java are complementary, interoperable
languages. Telescript agents can set parameters for Java applets and Java applets can call
Telescript operations on the server. This interoperability allows developers to create solu-
tions that leverage the power of the two environments: Java can be used to create and
manage compelling user experiences, while Tabriz can manage transactions, instruc-
tions, events, and processes” (General Magic 1996).

32. Much more, for example, could have been included about the veritable explosion of
work on agents and the Internet (Bowman et al. 1994; Cheong 1996; Etzioni and Weld
1995; Weld, Marks, and Bobrow 1995). None of the many applications of agent technolo-
gy in complex application areas ranging from digital libraries (Paepcke et al. 1996;
Wiederhold 1995) to systems management (Benech, Desprats, and Moreau 1996; Rivière,
Pell, and Sibilla 1996) to manufacturing (Balasubramanian and Norrie 1995) could be in-
cluded. We have slighted the whole fields of artificial life (Langton 1995) situated au-
tomata (Brooks 1990; Kaelbling and Rosenschein 1991), learning and adaptation (Gaines
1996; Maes 1995; Sen et al. 1996), and large portions of the voluminous literature on DAI
and other fields where important related work is taking place.

38 BRADSHAW

References

Apple. 1993. AppleScript Language Guide. Reading, Mass.: Addison-Wesley.

Arens, Y.; Feiner, S.; Foley, J.; Hovy, E.; John, B.; Neches, R.; Pausch, R.; Schorr, H.; and
Swartout, W. 1991. Intelligent User Interfaces, Report ISI/RR-91-288, USC/Information
Sciences Institute, Marina del Rey, California.

Balasubramanian, S., and Norrie, D. H. 1995. A Multi-Agent Intelligent Design System
Integrating Manufacturing and Shop-Floor Control. In Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), ed. V. Lesser, 3–9. Menlo Park,
Calif.: AAAI Press.

Ball, G. 1996. Lifelike Computer Characters (LCC-96) Schedule and Workshop Infor-
mation. http://www.research.microsoft.com/lcc.htm.

Ball, G.; Ling, D.; Kurlander, D.; Miller, J.; Pugh, D.; Skelly, T.; Stankosky, A.; Thiel,
D.; Dantzich, M. V; and Wax, T. 1996. Lifelike Computer Characters: The Persona Pro-
ject at Microsoft Research. In Software Agents, ed J. M. Bradshaw. Menlo Park, Calif.:
AAAI Press.

Barrett, E. 1992. Sociomedia: An Introduction. In Sociomedia: Multimedia, Hypermedia, and
the Social Construction of Knowledge, ed. E. Barrett, 1–10. Cambridge, Mass.: MIT Press.

Bartlett, J., and Beck, E. M., eds. 1980. Familiar Quotations. Boston, Mass.: Little, Brown.

Bates, J. 1994. The Role of Emotion in Believable Agents. Communications of the ACM
37(7): 122–125.

Bates, J., Hayes-Roth, B., Laurel, B., & Nilsson, N. 1994. Papers presented at the AAAI
Spring Symposium on Believable Agents, Stanford University, Stanford, Calif.

Benech, D.; Desprats, T.; and Moreau, J.-J. 1996. A Conceptual Approach to the Integra-
tion of Agent Technology in System Management. In Distributed Systems: Operations and
Management (DSOM-96).

Bowman, C. M.; Danzig, P. B.; Manber, U.; and Schwartz, M. F. 1994. Scalable Internet
Resource Discovery: Research Problems and Approaches. Communications of the ACM
37(8): 98–107, 114.

Boy, G. 1992. Computer-Integrated Documentation. In Sociomedia: Multimedia, Hyper-
media, and the Social Construction of Knowledge, ed. E. Barrett, 507–531. Cambridge,
Mass.: MIT Press.

Boy, G. A. 1991. Intelligent Assistant Systems. San Diego, Calif.: Academic Press.

Boy, G. A. 1997. Software Agents for Cooperative Learning. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Boy, G. A., and Mathé, N. 1993. Operator Assistant Systems: An Experimental Ap-
proach Using a Telerobotics Application. In Knowledge Acquisition as Modeling, eds. K.
M. Ford and J. M. Bradshaw, 271–286. New York: Wiley.

Bradshaw, J. M., and Boose, J. H. 1992. Mediating Representations for Knowledge Ac-
quisition, Boeing Computer Services, Seattle, Washington.

Bradshaw, J. M., and Boy, G. A. 1993. Adaptive Documents, Internal Technical Report,
EURISCO.

Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. 1997. KAoS: Toward an indus-
trial-strength generic agent architecture. In Software Agents, ed J. M. Bradshaw. Menlo
Park, Calif.: AAAI Press.

Bradshaw, J. M.; Ford, K. M.; Adams-Webber, J. R.; and Boose, J. H. 1993. Beyond the

AN INTRODUCTION TO SOFTWARE AGENTS 39

Repertory Grid: New Approaches to Constructivist Knowledge-Acquisition Tool Devel-
opment. In Knowledge Acquisition as Modeling, eds. K. M. Ford and J. M. Bradshaw,
287–333. New York: Wiley.

Bradshaw, J. M.; Richards, T.; Fairweather, P.; Buchanan, C.; Guay, R.; Madigan, D.;
and Boy, G. A. 1993. New Directions for Computer-Based Training and Performance
Support in Aerospace. Paper presented at the Fourth International Conference on
Human-Machine Interaction and Artificial Intelligence in Aerospace, 28–30 September,
Toulouse, France.

Brodie, M. L. 1989. Future Intelligent Information Systems: AI and Database Technolo-
gies Working Together. In Readings in Artificial Intelligence and Databases, eds. J. My-
lopoulos and M. L. Brodie, 623–642. San Francisco, Calif.: Morgan Kaufmann.

Brooks, R. A. 1990. Elephants Don’t Play Chess. Robotics and Autonomous Systems 6.

Brown, J. S., and Duguid, P. 1996. The Social Life of Documents. First Monday
(http://www.firstmonday.dk).

Browne, D.; Totterdell, P.; and Norman, M., eds. 1990. Adaptive User Interfaces. San
Diego, Calif.: Academic.

Canto, C., and Faliu, O. (n.d.). The History of the Future: Images of the 21st Century. Paris:
Flammarion.

Chang, D. T., and Lange, D. B. 1996. Mobile Agents: A New Paradigm for Distributed
Object Computing on the WWW. In Proceedings of the OOPSLA 96 Workshop “To-
ward the Integration of WWW and Distributed Object Technology.”

Cheong, F.-C. 1996. Internet Agents: Spiders, Wanderers, Brokers, and Bots. Indianapolis,
Ind.: New Riders.

Clancey, W. J. 1993. The Knowledge Level Reinterpreted: Modeling Socio-Technical
Systems. In Knowledge Acquisition as Modeling, eds. K. M. Ford and J. M. Bradshaw,
33–50. New York: Wiley.

Cohen, P. R. 1994. Models of Dialogue. In Cognitive Processing for Vision and Voice:
Proceedings of the Fourth NEC Research Symposium, ed. T. Ishiguro, 181–203.
Philadelphia, Pa.: Society for Industrial and Applied Mathematics.

Cohen, P. R., and Cheyer, A. 1994. An Open Agent Architecture. Paper presented at the
AAAI Spring Symposium on Software Agents, 21–23 March, Stanford, California.

Cohen, P. R.; and Levesque, H. 1997. Communicative Actions for Artificial Agents. In Soft-
ware Agents, ed J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Cohen, P. R., and Levesque, H. J. 1991. Teamwork, Technote 504, SRI International,
Menlo Park, California.

Coutaz, J. 1990. Interfaces Homme Ordinateur: Conception et Réalisation. Paris: Editions
Bordas.

Davies, W. H. E. 1994. AGENT-K: An Integration of AOP and KQML. In Proceedings of
the CIKM-94 Workshop on Intelligent Agents, eds. T. Finin and Y. Labrou.
http://www.csd.abdn.ac.uk/~pedwards/publs/agentk.html.

Dennett, D. C. 1987. The Intentional Stance. Cambridge, Mass.: MIT Press.

diSessa, A. A. 1986. Notes on the Future of Programming: Breaking the Utility Barrier.
In User-Centered System Design, eds. D. A. Norman and S. W. Draper. Hillsdale, N.J.:
Lawrence Erlbaum.

Epstein, R. 1992. The Quest for the Thinking Computer. AI Magazine 13(2): 81–95.

40 BRADSHAW

Erickson, T. 1996. Designing Agents as If People Mattered. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Etzioni, O. 1993. Intelligence without robotics. AI Magazine(Winter), 7-14.

Etzioni, O., & Weld, D. S. 1995. Intelligent agents on the Internet: Fact, fiction, and fore-
cast. IEEE Expert, 10(4), 44-49.

Finin, T., Labrou, Y., & Mayfield, J. 1997. KQML as an agent communication language.
In Software Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Etzioni, O. 1993. Intelligence without Robots: A Reply to Brooks. AI Magazine 14(4):
7–13.

Etzioni, O., and Weld, D. S. 1995. Intelligent Agents on the Internet: Fact, Fiction, and
Forecast. IEEE Expert 10(4): 44–49.

Foner, L. 1993. What’s an Agent, Anyway? A Sociological Case Study, Agents Memo, 93-01,
Media Lab, Massachusetts Institute of Technology.

Ford, K. M.; Glymour, C.; and Hayes, P. J., eds. 1995. Android Epistemology. Menlo Park,
Calif.: AAAI Press.

Ford, K. M.; Bradshaw, J. M.; Adams-Webber, J. R.; and Agnew, N. M. 1993. Knowl-
edge Acquisition as a Constructive Modeling Activity. In Knowledge Acquisition as Mod-
eling, eds. K. M. Ford and J. M. Bradshaw, 9–32. New York: Wiley.

Franklin, S., and Graesser, A. 1996. Is It an Agent or Just a Program? A Taxonomy for
Autonomous Agents. In Proceedings of the Third International Workshop on Agent Theo-
ries, Architectures, and Languages. New York: Springer-Verlag.

Gaines, B. R. 1997. The Emergence of Knowledge through Modeling and Management Processes in
Societies of Adaptive Agents, Knowledge Science Institute, University of Calgary. Forthcoming.

Gardner, E. 1996. Standards Hold Key to Unleashing Agents. Web Week 5, 29 April.

General Magic. 1996. Tabriz White Paper: Transforming Passive Networks into an Ac-
tive, Persistent, and Secure Business Advantage, White Paper
(http://www.genmagic.com/Tabriz/Whitepapers/tabrizwp.html), General Magic, Moun-
tain View, California.

General Magic. 1994. Telescript Technologies at Heart of Next-Generation Electronic
Services, News Release, 6 January, General Magic, Mountain View, California.

Genesereth, M. R. 1997. An Agent-based Framework for Interoperability. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Genesereth, M. R., and Fikes, R. 1992. Knowledge Interchange Format Version 3.0 Ref-
erence Manual, Logic Group Report, Logic-92-1, Department of Computer Science,
Stanford University.

Genesereth, M. R., and Ketchpel, S. P. 1994. Software Agents. Communications of the
ACM 37(7): 48–53, 147.

Gilbert, D.; Aparicio, M.; Atkinson, B.; Brady, S.; Ciccarino, J.; Grosof, B.; O’Connor, P.;
Osisek, D.; Pritko, S.; Spagna, R.; and Wilson, L. 1995. IBM Intelligent Agent Strategy,
IBM Corporation.

Glicksman, J.; Weber, J. C.; and Gruber, T. R. 1992. The NOTE MAIL Project for Com-
puter-Supported Cooperative Mechanical Design. Paper presented at the AAAI-92
Workshop on Design Rationale Capture and Use, San Jose, California, July.

Greif, I. 1994. Desktop Agents in Group-Enabled Products. Communications of the ACM
37(7): 100–105.

AN INTRODUCTION TO SOFTWARE AGENTS 41

Gruber, T. R. 1992a. ONTOLINGUA: A Mechanism to Support Portable Ontologies, Version
3.0, Technical Report, KSL 91-66, Knowledge Systems Laboratory, Department of
Computer Science, Stanford University.

Gruber, T. R. 1992b. A Translation Approach to Portable Ontology Specifications. Paper
presented at the Seventh Knowledge Acquisition for Knowledge-Based Systems Work-
shop, Banff, Alberta, Canada.

Gruber, T. R.; Tenenbaum, J. M.; and Weber, J. C. 1992. Toward a Knowledge Medium
for Collaborative Product Development. In Proceedings of the Second International
Conference on Artificial Intelligence in Design, ed. J. S. Gero.

Harrison, C. G.; Chess, D. M.; and Kershenbaum, A. 1995. Mobile Agents: Are They a
Good Idea? IBM T. J. Watson Research Center.

Hayes-Roth, B.; Brownston, L.; and Gent, R. V. 1995. Multiagent Collaboration in Di-
rected Improvisation. In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), ed. V. Lesser, 148–154. Menlo Park, Calif.: AAAI Press.

Hinkle, D.; Kortenkamp, D.; and Miller, D. 1996. The 1995 Robot Competition and Ex-
hibition. AI Magazine 17(1): 31–45.

Hutchins, E. L.; Hollan, J. D.; and Norman, D. A. 1986. Direct Manipulation Interfaces.
In User-Centered System Design, eds. D. A. Norman and S. W. Draper, 87–124. Hillsdale,
N.J.: Lawrence Erlbaum.

Johnson, P.; Feiner, S.; Marks, J.; Maybury, M.; and Moore, J., eds. 1994. Paper presented
at the AAAI Spring Symposium on Intelligent Multi-Media Multi-Modal Systems, Stan-
ford, California.

Kaehler, T., and Patterson, D. 1986. A Small Taste of SMALLTALK. BYTE, August,
145–159.

Kaelbling, L. P., and Rosenschein, S. J. 1991. Action and Planning in Embedded Agents.
In Designing Autonomous Agents, eds. P. Maes , 35–48. Cambridge, Mass.: MIT Press.

Kaelbling, L. P., and Rosenschein, S. J. 1990. Action and Planning in Embedded Agents.
Robotics and Autonomous Systems 6(1–2): 35–48.

Kahle, B. 1993. Interview of Brewster Kahle. Intertek 4:15–17.

Kautz, H.; Selman, B.; Coen, M.; Ketchpel, S.; and Ramming, C. 1994. An Experiment
in the Design of Software Agents. In Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94), 438–443. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Kay, A. 1990. User Interface: A Personal View. In The Art of Human-Computer Interface
Design, ed. B. Laurel, 191–208. Reading, Mass.: Addison-Wesley.

Kay, A. 1984. Computer Software. Scientific American 251(3): 53–59.

Knoblock, C. A., & Ambite, J.-L. 1996. Agents for Information Gathering. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Labrou, Y. 1996. Semantics for an Agent Communication Language. Ph.D. diss., Dept.
of Computer Science, University of Maryland at Baltimore County.

Labrou, Y., and Finin, T. 1994. A Semantics Approach for KQML—A General-Purpose
Communication Language for Software Agents. In Proceedings of the Third Interna-
tional Conference on Information and Knowledge Management, eds. N. R. Adam, B. K.
Bhargava, and Y. Yesha, 447–455. New York: Association of Computing Machinery.

Lai, K.-Y., and Malone, T. W. 1992. Oval Version 1.1 User’s Guide, Center for Coordina-
tion Science, Massachusetts Institute of Technology.

42 BRADSHAW

Lange, D. B. 1996. Agent Transfer Protocol ATP/0.1 Draft 4, Tokyo Research Laborato-
ry, IBM Research.

Langton, C. G., ed. 1995. Artificial Life: An Overview. Cambridge, Mass.: MIT Press.

Lanier, J. 1996. Agents of Alienation. http://www.voyagerco.com/misc/jaron.html.

Lanier, J., and Maes, P. 1996. Intelligent Humans = Stupid Humans? Hot Wired, 15–24
July. http://www.hotwired.com/braintennis/96/29/index0a.html.

Laurel, B. 1991. Computers as Theatre. Reading, Mass.: Addison-Wesley.

Laurel, B. 1997. Interface agents: Metaphors with Character. In Software Agents, ed J. M.
Bradshaw. Menlo Park, Calif.: AAAI Press.

Le Du, B. 1994. Issue 1309, 13 mai. Les Agents, des Assistants dotés d’Intelligence. 01 In-
formatique, p. 13.

Lethbridge, T. C., and Skuce, D. 1992. Beyond Hypertext: Knowledge Management for
Technical Documentation. Submitted to SIGDOC ‘92. Ottawa, Ontario, Canada.

Lewis, J. 1996. NETSCAPE Gets Serious about Infrastructure. The Burton Group.

Lubar, S. 1993. InfoCulture: The Smithsonian Book of Information and Inventions. Boston,
Mass.: Houghton Mifflin.

McCarthy, J. M. 1979. Ascribing Mental Qualities to Machines, Technical Report, Memo
326, AI Lab, Stanford University.

McDermott, D. 1976. Artificial Intelligence Meets Natural Stupidity. SIGART Newslet-
ter 57:4–9.

MacGregor, R. 1990. The Evolving Technology of Classification-Based Knowledge Rep-
resentation Systems. In Principles of Semantic Networks: Explorations in the Representation
of Knowledge, ed. J. F. Sowa, 385–400. San Francisco, Calif.: Morgan Kaufmann.

Maes, P. 1997. Agents that Reduce Work and Information Overload. In Software Agents,
ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Maes, P. 1995. Modeling Adaptive Autonomous Agents. In Artificial Life: An Overview,
ed. C. G. Langton, 135–162. Cambridge, Mass.: MIT Press.

Maes, P., ed. 1993. Designing Autonomous Agents. Cambridge, Mass.: MIT Press.

Maes, P., and Kozierok, R. 1993. Learning Interface Agents. In Proceedings of the
Eleventh National Conference on Artificial Intelligence (AAAI-93), 459–465. Menlo
Park, Calif.: American Association for Artificial Intelligence.

Malone, T. W.; Grant, K. R.; and Lai, K.-Y. 1996. Agents for Information Sharing and
Coordination: A History and Some Reflections. In Software Agents, ed. J. M. Bradshaw.
Menlo Park, Calif.: AAAI Press.

Martin, F. 1988. Children, Cybernetics, and Programmable Turtles. Masters Thesis, Media
Laboratory, Massachusetts Institute of Technology.

Mathé, N., and Chen, J. 1994. A User-Centered Approach to Adaptive Hypertext Based
on an Information Relevance Model. Paper presented at the Fourth International Con-
ference on User Modeling (UM ‘94), Hyannis, Massachusetts.

Maturana, H. R., and Varela, F. J. 1992. The Tree of Knowledge: The Biological Roots of
Human Understanding (rev. ed.). Boston: Shambala.

Mellor, P. 1994. CAD: Computer-Aided Disaster. SOFSEM 94.

Milewski, A. E., and Lewis, S. M. 1994. Design of Intelligent Agent User Interfaces:
Delegation Issues. Technical Report, Oct. 20. AT&T Information Technologies Services.

AN INTRODUCTION TO SOFTWARE AGENTS 43

Miller, J. R., and Neches, R. 1987. Tutorial on Intelligent Interfaces Presented at the
Sixth National Conference on Artificial Intelligence, 14–16 July, Seattle, Washington.

Minsky, M. 1986. The Society of Mind. New York: Simon & Schuster.

Minsky, M., and Riecken, D. 1994. A Conversation with Marvin Minsky about Agents.
Communications of the ACM 37(7): 23–29.

Mitchell, T.; Caruana, R.; Freitag, D.; McDermott, J.; and Zabowski, D. 1994. Experi-
ence with a Learning Personal Assistant. Communications of the ACM 37(7): 81–91.

Moulin, B., and Chaib-draa, B. 1996. An Overview of Distributed Artificial Intelligence.
In Foundations of Distributed Artificial Intelligence, eds. G. M. P. O’Hare and N. R. Jen-
nings, 3–55. New York: Wiley.

Neal, J. G., and Shapiro, S. C. 1994. Knowledge-Based Multimedia Systems. In Multime-
dia System, ed. J. F. K. Buford, 403–438. Reading, Mass.: Addison-Wesley.

Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Senator, T.; and Swartout, W. R.
1991. Enabling Technology for Knowledge Sharing. AI Magazine 12(3): 36–55.

Negroponte, N. 1997. Agents: From Direct Manipulation to Delegation. In Software
Agents, ed. J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Negroponte, N. 1995. Being Digital. New York: Alfred Knopf.

Negroponte, N. 1970. The Architecture Machine: Towards a More Human Environment.
Cambridge, Mass.: MIT Press.

Newell, A. 1982. The Knowledge Level. Artificial Intelligence 18:87–127.

Newquist, H. P. 1994. Intelligence on Demand—Suckers. AI Expert, December, 42–43.

Nilsson, N. J. 1995. Eye on the Prize. AI Magazine 16(2): 9–17.

Norman, D. A. 1997. How Might People Interact with Agents? In Software Agents, ed J.
M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Norman, D. A. 1992. Turn Signals Are the Facial Expressions of Automobiles. Reading,
Mass.: Addison-Wesley.

Nwana, H. S. 1996. Software Agents: An Overview. Knowledge Engineering Review,
11(3): 205-244.

Paepcke, A.; Cousins, S. B.; Garcia-Molina, H.; Hassan, S. W.; Ketchpel, S. P.;
Röscheisen, M.; and Winograd, T. 1996. Using Distributed Objects for Digital Library
Interoperability. IEEE Computer, May, 61–68.

Perrow, C. 1984. Normal Accidents: Living with High-Risk Technologies. New York: Basic.

Petrie, C. J. 1996. Agent-Based Engineering, the Web, and Intelligence. IEEE Expert,
11(6): 24-29.

Repenning, A. 1995. Bending the Rules: Steps toward Semantically Enriched Graphical
Rewrite Rules. Paper presented at Visual Languages, Darmstadt, Germany.

Resnick, M., and Martin, F. 1990. Children and Artificial Life, E&L Memo, 10, Media
Laboratory, Massachusetts Institute of Technology.

Rich, C., and Waters, R. C. 1988. Automatic Programming: Myths and Prospects. IEEE
Computer 21(8): 40–51.

Riecken, D. 1997. The M System. In Software Agents, ed. J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Rivière, A.-I.; Pell, A.; and Sibilla, M. 1996. Network Management Information: Integration
Solution for Models Interoperability, Technical Report, Hewlett-Packard Laboratories.

44 BRADSHAW

Rosenschein, S. J. 1985. Formal Theories of Knowledge in AI and Robotics. New Gener-
ation Computing 3(4): 345–357.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. New York:
Prentice-Hall.

Ryan, B. 1991. DYNABOOK Revisited with Alan Kay. BYTE, February, 203–208.

Schank, R. C., and Jona, H. Y. 1991. Empowering the Student: New Perspectives on the
Design of Teaching Systems. The Journal of the Learning Sciences 1(1).

Schelde, P. 1993. Androids, Humanoids, and Other Science Fiction Monsters. New York:
New York University Press.

Sen, S.; Hogg, T.; Rosenschein, J.; Grefenstette, J.; Huhns, M.; and Subramanian, D., eds.
1996. Adaptation, Coevolution, and Learning in Multiagent Systems: Papers from the
1996 AAAI Symposium. Technical Report SS-96-01. Menlo Park, Calif.: AAAI Press.

Sharp, M. 1993. Reactive Agents, Technical Report, Apple Computer, Cupertino, Calif.

Sharp, M. 1992. Principles for Situated Actions in Designing Virtual Realities. Master’s
thesis, Department of Computer Science, University of Calgary.

Shaw, M. 1996. Some Patterns for Software Architectures. In Pattern Languages of Pro-
gram Design, eds. J. O. Coplien and D. C. Schmidt, 453–462. Reading, Mass.: Addison-
Wesley.

Shneiderman, B. 1997. Direct manipulation vs. agents: Paths to predictable, controllable,
and comprehensible interfaces. In Software Agents, ed J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Shneiderman, B. 1987. Designing the User Interface: Strategies for Effective Human-Com-
puter Interaction. Reading, Mass.: Addison-Wesley.

Shneiderman, B. 1983. Direct Manipulation: A Step beyond Programming Languages.
IEEE Computer 16(8): 57–69.

Shoham, Y. 1997. An Overview of Agent-oriented Programming. In Software Agents, ed
J. M. Bradshaw. Menlo Park, Calif.: AAAI Press.

Shoham, Y. 1993. Agent-Oriented Programming. Artificial Intelligence 60(1): 51–92.

Simmons, R. 1995. The 1994 AAAI Robot Competition and Exhibition. AI Magazine
16(2): 19–30.

Singh, M. P. 1994. Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communication. Berlin: Springer-Verlag.

Smith, D. C., Cypher, A., & Spohrer, J. 1997. KidSim: Programming Agents Without a
Programming Language. In Software Agents, ed. J. M. Bradshaw. Menlo Park, Calif.:
AAAI Press.

Smith, D. C.; Irby, C.; Kimball, R.; Verplank, W.; and Harslem, E. 1982. Designing the
STAR User Interface. BYTE 4:242–282.

Smith, I. A., and Cohen, P. R. 1995. Toward a Semantics for a Speech Act–Based Agent
Communications Language. In Proceedings of the CIKM Workshop on Intelligent In-
formation Agents, eds. T. Finin and J. Mayfield. New York: Association of Computing
Machinery.

Sowa, J. F. 1990. Crystallizing Theories out of Knowledge Soup. In Intelligent Systems:
State of the Art and Future Systems, eds. Z. W. Ras and M. Zemankova. London: Ellis
Horwood.

Sowa, J. F. 1989. Knowledge Acquisition by Teachable Systems. In EPIA 89, Lecture

AN INTRODUCTION TO SOFTWARE AGENTS 45

Notes in Artificial Intelligence, eds. J. P. Martins and E. M. Morgado, 381–396. Berlin:
Springer-Verlag.

Steels, L. 1995. The Artificial Life Roots of Artificial Intelligence. In Artificial Life: An
Overview, ed. C. G. Langton, 75–110. Cambridge, Mass.: MIT Press.

Sullivan, J. W., and Tyler, S. W., eds. 1991. Intelligent User Interfaces. New York: Associa-
tion of Computing Machinery.

Tackett, W. A., and Benson, S. 1985. Real AI for Real Games: In Technical Tutorial and
Design Practice, 467–486.

Tesler, L. G. 1991. Networked Computers in the 1990s. Scientific American, September,
86–93.

Turing, A. M. 1950. Computing Machinery and Intelligence. Mind 59(236): 433–460.

Van de Velde, W. 1995. Cognitive Architectures—From Knowledge Level to Structural
Coupling. In The Biology and Technology of Intelligent Autonomous Agents, ed. L. Steels,
197–221. Berlin: Springer Verlag.

Vere, S., and Bickmore, T. 1990. A Basic Agent. Computational Intelligence 6:41–60.

Virdhagriswaran, S.; Osisek, D.; and O’Connor, P. 1995. Standardizing Agent Technolo-
gy. ACM Standards View. In press.

Weld, D.; Marks, J.; and Bobrow, D. G. 1995. The Role of Intelligent Systems in the Na-
tional Information Infrastructure. AI Magazine 16(3): 45–64.

White, J. 1997. A Common Agent Platform, http://www.genmagic.com/Internet/Cap/
w3c-paper.htm, General Magic, Inc., Sunnyvale, California.

White, J. 1997. Mobile Agents. In Software Agents, ed. J. M. Bradshaw. Menlo Park,
Calif.: AAAI Press.

Whittaker, S. 1990. Next-Generation Interfaces. Paper presented at the AAAI Spring
Symposium on Knowledge-Based Human-Computer Interaction, Stanford, California,
March.

Wiederhold, G. 1995. Digital Libraries, Value, and Productivity, Stanford University.

Wiederhold, G. 1992. Mediators in the Architecture of Future Information Systems.
IEEE Computer, March, 38–49.

Wiederhold, G. 1989. The Architecture of Future Information Systems, Technical Re-
port, Computer Science Department, Stanford University.

Williams, B. C., and Nayak, P. P. 1996. Immobile Robots: AI in the New Millennium. AI
Magazine 17(3): 17–35.

Winograd, T. 1973. A Procedural Model of Language Understanding. In Computer
Models of Thought and Language, eds. R. Schank and K. Colby, 249–266. New York:
Freeman.

Wooldridge, M. J., and Jennings, N. R. 1995. Agent Theories, Architectures, and Lan-
guages: A Survey. In Intelligent Agents: ECAI-94 Workshop on Agent Theories, Architec-
tures, and Languages, eds. M. J. Wooldridge and N. R. Jennings, 1–39. Berlin: Springer-
Verlag.

46 BRADSHAW

Section One

Agents & the User Experience

MCC Technical Report MCC-INSL-096-98

Agent Communication Languages for
Information-Centric Agent Communities12

Marian Nodine and Damith Chandrasekara
InfoSleuth Group, Microelectronics and Computer Technology Corporation

{nodine, damith}@mcc.com

Abstract

As the complexity and application scope of agent-based systems increases, the requirements
placed on Agent Communication Languages have also increased with it. Currently-available
ACLs focus on agent-based systems in the domain of knowledge agents. Therefore, they lack
certain facilities required to implement large, complex, and robust information-centric agent
systems. These facilities are required for efficient information transfer, use of multimedia
information, and data security. Furthermore, information-gathering agents tend to execute long-
running and/or complex tasks, and require ACL support for managing tasks and conversations.
Lastly, information agents (and other types of agents) may require more flexible agent-level
management and control, specifically in the areas of mobile resources and/or intermittently-
connected users.

In this paper we attempt to discuss the shortcomings of existing ACLs and provide specific
solutions to address them. The proposed ACL architecture is based on issues that we have
encountered with the InfoSleuth system at MCC and other related work.

1. Introduction

Agent-based systems are groups of agents that work together as a single system to integrate their functionality.

They consist of a group or groups of agents that interoperate, cooperating to execute large tasks in a distributed

manner. The individual agents are encapsulated, semi-autonomous processes that execute on a computer network,

offering their services to other agents or other processes. Each agent is a specialist in a particular task or subtask.

To execute a larger, more complex task, an agent-based system composes a solution to the task from the different

services offered by the individual agents in its system. Naturally, a key piece in this picture is the necessity for the

agents to communicate among themselves to coordinate the execution of these complex tasks.

Agent communication languages (ACLs) allow agents to communicate with each other about how to partition

these tasks, and to specify the responsibilities of the individual agents that are invoked. Proposed agent

1 This material is based upon work supported by DARPA under Contract No. N66001-97-C-8500.
2 Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of DARPA.

MCC Technical Report MCC-INSL-096-98 2

communication language standards include FIPA [FIPA] and various flavors of KQML [KQML-Classic], [KQML-

93], [KQML-97], [Lab96] [KQML- Lite]. These proposals are oriented towards speech act theory. Speech acts

are utterances that perform some action or request some specification. An ACL message is a representation of a

speech act, and thus provides guidelines as to the interpretation of its contents. This facilitates openness by

providing a structure on which patterns of discourse can be defined.

As an ACL, the FIPA proposal is oriented towards agents sharing knowledge, and attempts to define each

speech act in the context of some belief system. In an information-oriented system, beliefs are very cumbersome,

not well understood by the community, and thus often ignored. For example, FIPA defines the information passing

performatives tell and inform, where the specifications require the agents to use modal logic to correctly

interpret the contents. However, many agents, including most information-centric agents, generally do not

implement modal logic. These agents need to be able to exchange messages without needing these extensive

capabilities.

The other group of “standard” agent communication languages, KQML (“Knowledge Query Manipulation

Language”), comes in several distinct versions. Some of these are more amenable to use in information-centric

agent systems. The original version, now referred to as “KQML Classic” [KQML-Classic], has a nested message

formulation that is particularly flexible and amenable to various uses among information agents. “KQML 93” and

its close relative “KQML 97” [Lab96],[KQML-97] have some problematic features. “KQML Lite” [KQML-Lite],

now being developed by DARPA, shows some promise of solving the problems of its precursors. However, again,

KQML in its various flavors is still somewhat knowledge-centric.

In this paper, we explore issues and requirements that information-centric agents place on an agent

communication language. Information-centric agents focus their efforts on collecting, processing, analyzing, and

monitoring large amounts of information, and presenting the information at appropriate levels and in appropriate

ways to users interested in that information. The issues we address here have grown out of our extensive

experiences with InfoSleuth [BBB+97], an information-centric agent system that has been under development for

four years and in use for the last two years. We are specifically interested not only in developing an ACL for the

information realm, but also one that is useful among the domain of knowledge agents as well. We then take these

requirements and show how they practically extend into a reasonable agent communication language. This

MCC Technical Report MCC-INSL-096-98 3

language includes not only a set of messages representing the various speech acts, but also a set of conversational

paradigms that support the passing of information and knowledge around efficiently and usefully. Of particular

importance is the desire not to encumber a message with interpretational constraints such as beliefs or information

formats when the receiving agent cannot understand the nuances among these constraints.

2. Motivational System and Issues

InfoSleuth – The Motivational System

Resource
Agent

Resource
Agent

Resource
AgentApplet

Broker
Agent

Agent

Structured
Databases

Images &
Video

Text
Ontology nOntology 1

….

Voice

Advertise

Request

Response

Publish

Request

Subscribe

Response

User
Agent

User
Agent

Mobile

Monitor
Agent

Services

Ontology

Figure 1. InfoSleuth: Dynamic & Broker-based Agent Architecture

The InfoSleuth model [BBB+97,NPU98] defines a proven framework for loosely collecting agents based on

semantic advertisements and dynamically composing agents based on application needs. Figure 1 shows the agent

architecture currently defined and deployed in the MCC InfoSleuth project. User agents, shown on the left, stand

as proxies for individual users or groups of users. Users or other task initiators specify what information they want,

over what sort of time span, at what level they want the information abstracted or consolidated to, and may specify

how they want to view the returned results. Resource agents, on the right, serve as interfaces to external

information sources. This information can be stored in files, databases, or text or document collections. Resources

can contain any kind of information – structured data, HTML data, image/video data, and semi-structured data.

The “cloud” in the middle represents the large and diverse set of agents that work together to connect users with

MCC Technical Report MCC-INSL-096-98 4

the information they need. These agents service requests over a set of common ontologies, accessed via the

Ontology agents. The Broker agent serves as a repository for information about agents, and matches requests for

services with agents that can service the request. Other agents exist to do task planning and execution, query

processing, data analysis and data mining. All of these agents communicate over a common agent communication

language, a variant of KQML, using a common set of query languages and domain ontologies.

A few notable aspects of this architecture, and especially of the agents in the “cloud”, are:

• InfoSleuth offers a set of information gathering and monitoring agents. These include: advertisement and

brokering, information source wrapping and monitoring, user persistence and representation, data correlation

detection across sources, complex query processing and event detection across sources, statistical data analysis

and mining, and tracking agent activity in subsets of the agent network.

• Agents advertise their “information gathering and monitoring” capabilities, described using semantic

constructs from the InfoSleuth agent capability ontology and a domain ontology. An agent's capabilities can

apply to portions of an ontology. In other words, an agent may constrain its capability advertisement to apply

to only a select set of concepts, relationships, or instances from a particular domain. These are represented as

constraints over this domain ontology.

• In query processing, users formulate information gathering tasks using terms from a domain-specific ontology;

the InfoSleuth system dynamically constructs information gathering agent communities, based on brokering

and planning principles, to satisfy the task as best as possible.

• In monitoring for information, the user specifies queries over the ontology. The queries which may include

relevant abstractions over the information, and may request InfoSleuth to monitor for changes in the queried

information over time. This allows the user to view large amounts of information at an appropriate level of

abstraction, and to recognize significant changes at the same level of abstraction.

The InfoSleuth architecture, as it currently stands, excels at performing information gathering and monitoring

in networks of dynamically appearing and continually changing information sources. Its current Java

implementation provides for agent portability across several platforms.

We note in passing that there exist many other information-centric agent systems. SIMS [AKS96],

Warren/Retsina [DSW96, DS97], Infomaster [GGKS95], TSIMMIS [GPQR+95], and DISCO [TRV95] all to some

MCC Technical Report MCC-INSL-096-98 5

degree are information-centric agent systems. The designers and implementers of these systems have also

addressed some of the issues that we discuss in this paper.

A Layered Infrastructure

The operation of an agent system can roughly be broken into four layers, which we will call the system layer,

the task layer, the conversation layer, and the message layer. These layers together define some of the required

functionality for agent interoperation.

 The system layer governs how the agent-based system works – how the agents are put together to accomplish

their tasks, how they monitor and control their internal operation. For example, one important aspect of the system

layer in InfoSleuth is that it has Broker Agents that serve as repositories for information about agents, and that can

reason over requests for services and match agents with requested services.

The task layer processes user- or external process- initiated requests into the agent system. The task layer

maps individual requests onto specific sub-tasks, and distributes the subtasks among the agents in the system.

Either inherent or explicit policies govern how the group of agents cooperate and communicate to complete the

task. The structure of these tasks3 tends to be somewhat abstract, and evolves as the task is being executed.

A conversation begins where an agent requests a specific service from another agent. Modulo issues of

forwarding the message, delegating the task, or carbon-copying the response, these conversations are essentially

pairwise exchanges between agents. With respect to these conversations, the flow of messages between the agents

usually follows some well-defined structure.

Messages are the individual packets of information passed between the agents during conversations. Of all

the layers that we have discussed, this has been the most thoroughly studied in the ACL literature.

3. A General Plea

Having worked with both information-centric agents and with interoperability issues with other agent systems,

e.g. SIMS [AKS96], we would like first to issue a plea for an ACL with the following properties:

3 Note that some systems refer to “conversations” as occurring at this layer. We will maintain the term
“conversation” as we use it in InfoSleuth, to mean agent conversations as defined in the next paragraph.

MCC Technical Report MCC-INSL-096-98 6

• A minimal, but standard set of speech acts that are applicable across multiple domain areas.

• An underlying message structure that is easy to parse, interpret, and process while being extensible.

• A definitive “basic” set of standardized conversation structures.

• Support for practical operational issues in systems such as robustness, monitoring, security, and self-

organization.

• No assumptions about the underlying transport mechanism should be made, though the specification may

give suggestions in order to encourage interoperability among agent-based systems.

For example, with respect to the speech acts, current standards utilize a set of speech acts that is more

semantically rich than they need to be for general operation. Thus, we advocate for pushing some of the nuances

that are currently distinguished at the speech act level down to properties within the message. This has two

advantages. One is that we can define a standard set of conversations over the speech acts more easily, and these

conversations can be used for both knowledge- and information-centric agent systems. This facilitates

interoperation with other agent systems, even with agent systems of different types. The second is that it is easier

to alter the message-specific properties to support more flexible types of service requests, without impacting the

basic underlying conversation structure. As we move towards having at least some standard core, these issues

would become more critical.

With respect to the second point, we have found with our KQML experience that representing a message as an

unordered property list makes it harder to parse and process. Furthermore the nesting of certain types of message

such as standby can make the message hard to interpret. Nested messages are hard to interpret because they can

have conflicts between the basic properties at the different levels of nesting in the message, and it is difficult (or at

least cumbersome) to resolve those conflicts. Thus, any straightforward message specification should minimize the

number of nested message types.

With respect to the problem of parsing and processing the unordered property lists, we would like to refer the

reader back to the layered infrastructure defined earlier. Different layers within the infrastructure only need to

examine specific parts of the incoming message. The remainder of the message is left to the “application” part of

the agent, i.e., the part that may be oriented towards information or knowledge or some other domain type. For

efficiency and intelligent operation, the part of an agent that implements a specific layer needs only to examine

MCC Technical Report MCC-INSL-096-98 7

certain properties of the message – for instance, in KQML, the conversation layer focuses on the �UHSO\�ZLWK

and �LQ�UHSO\�WR fields, and the message type, when matching an incoming or outgoing message with its

appropriate conversation. We propose the following properties, which are sorted by layer. Properties at any layer

should appear before properties in any lower layers. The specifics of these properties will become clear later in the

paper.

Layer Fields
Message layer
Conversation layer :sender, :receiver, :conversation-id, :sequence-number, :reply-to :cc-to :flow-policy
Task layer :task-id, :query-pedigree, :result-pedigree, :result-explanation, :result-annotation, : query-

effort, :query-context, :ask-policy, :reply-with-estimate, :reply-out-of-band, :locator
System layer :content, :language, :ontology, :code
Application :content, :language, :ontology, other optional properties4

We have already, in another paper [NU97], argued for a standardized “base” set of conversation policies,

again to extend the standard and to facilitate interoperation with other agent systems. In the current context, these

“base” conversations should, at least at the level of exchanges of speech acts, be independent of whether the agents

are knowledge-centric, information-centric, a mix of both, or operate in some other domain type.

Lastly we point out that both FIPA and KQML focus on information transmission between the “application”

parts of the agents, but there is also an infrastructure to all agents devoted to at least some of the functions of

managing transport and connectivity, message processing, conversation management, and task-level management.

Often, agents’ infrastructures need to exchange messages among themselves – classic examples of this in KQML

include the transport-address performative at the level of managing connectivity, and the next

performative at the level of flow control in conversation management. In InfoSleuth, we also have requirements

for additional facilities to use; including those for exchanging monitoring data and for pinging other agents to see

if they are up. Some of these facilities overlap with the semantics of the speech acts, but are addressed invisibly of

the agent application. An ACL needs to define how to implement these facilities within context.

4 In InfoSleuth, we include �DVN�SROLF\, �UHSO\�SROLF\, �UHSO\�VXPPDU\ here.

MCC Technical Report MCC-INSL-096-98 8

4. Message layer

The message layer is where individual speech acts are represented as messages. Messages represent the

smallest interaction that can occur between two agents.

4.1 Requirements

Multimedia information presents an additional challenge beyond that of structured data, in that individual

data items are rather bulky and irregular. Text documents often contain special characters that overlap with the set

of special characters used as delimiters in the ACLs message types. Video and image data are represented as byte

streams, and are not ASCII data at all. None of these characteristics can be efficiently handled in a string-oriented

ACL such as KQML.

If the ACL uses special characters such as parentheses or quotes within its message structure, the presence of

those special characters in the data should be isolated from the message. Also, the ACL should allow data that is

not formatted as ASCII strings within its messages.

Sometimes it is very inefficient to pass multimedia data within the message. In most cases the best solution is

to return the data out-of-band. This approach will be discussed in the Task Layer section. Still the ACL should not

put any restriction as to what can be contained within the content of a message.

In summary, we have the following requirements at the message layer:

A1 The ACL should not impose any requirements on the representation of the “content” part of its

messages.

A2 ACL replies must include the ability to be self-describing, i.e., to include a description of their own

format and contents.

4.2 Suggested ACL Support

The requirement that there be no restrictions on the representation of the content (Requirement A1) indicates

that there are certain parts of the message that should not even be looked at except by the application. Therefore,

we suggest that all messages be represented as property lists, where each value of a property is represented by a

length-encoded string. The string is preceded by its length (e.g., KQML represents strings in a format like

MCC Technical Report MCC-INSL-096-98 9

“6#’string” where “6” is the length and “string” is the value). Thus, the parser can ignore the content of a string

that is a property value. Alternatively, the ACL could allow the contents to be sent as a URL, and retrieved out-of-

band by some different transport mechanism such as ftp or http, which is better-suited towards handling files.

With respect to messages being self-describing (Requirement A2), this is important either when sending data

on the sender’s own initiative (tell), or at the request of the receiver (reply). The self-description also may apply to

contents that are included in the message (either tell or reply), or to contents that are available only out-of-band

(tell-summary or reply-summary). The self-description would also apply to message encryption and compression

schemes.

5. Conversation layer

The conversation layer is the layer of the system delivering message interactions between agents. The flow of

messages in a conversation follows well-defined structures.

5.1 Requirements

General Conversation Issues

Conversation Identification is an issue that is usually ignored in ACLs and often causes problems. For

example KQML supports the chaining of messages using the �UHSO\�ZLWK and �LQ�UHSO\�WR fields, which

are predicated on a request-response model. Therefore one would have trouble chaining together messages in

conversations that do not follow that model. Suppose an agent were to submit a query involving a large

computation. At some point, the agent wishes to cancel the query or possibly amend the query to provide

additional restrictions because it is taking too long. However, since no response has been received there is no

incoming message to chain the discard message to. Therefore it is evident that it is necessary to be able to

specify which conversation a message belongs to.

Conversations with multiple messages add complexity and versatility to communication between agents but it

creates the problem of message ordering. This problem is important when dealing with multimedia content since

the order of the messages is very important. The data in these streams may either be naturally ordered (e.g.

MCC Technical Report MCC-INSL-096-98 10

Multimedia) in the underlying system, or it may be ordered by its “rank” or match to the underlying query. The

ACL need to provide information for assembling the messages into the proper sequence if required. KQML

messages, for instance, do not support any message parameters that would inherently aid in the reordering of

messages on the other end. The ordering issues also hold true when exchanging knowledge, as the interpretation of

new knowledge is often dependent on the current knowledge. Thus, for example, two interdependent tells may

have a different effect on the knowledge base if they are received in different orders.

Therefore we have the following general requirements.

B1. The messages in the ACL should provide information as to which conversation it pertains to.

B2. The messages in the ACL should provide the information needed to ensure that the messages are

received in the sequence in which they are sent.

B3. The ACL should provide information about the origin and destination of the messages.

B4. The ACL should provide support to notify in the event of an error and acknowledge receipt of

messages.

Multi-Agent Conversations

One of the main problems faced by an information-centric agent system is that there is a lot of duplication of

data. The reason for this is that the conversations used by these systems are usually pair-wise. For information-

centric agents this is a serious problem since frequently large intermediate results are passed between agents, and

usually all these agents do is forward it to the next agent in the chain. If conversations were not restricted to two

agents, then it would be possible for agents to communicate more efficiently. Also conversations would not require

additional parameters to support multicasting, delegating, and forwarding. Even forum type discussions between

agents would be possible.

Service-oriented conversations are not necessarily pairwise. For instance, one agent may make a subscription

request over a set of information, then other agents may themselves subscribe to the same set. In this case, the

agent system (for efficiency) may multicast the responses to all of the subscribers. This is one example of a

situation where we have found the need for multicasting.

An agent may receive a request that it wishes to delegate in entirety to another agent. In this case although the

processing agent receives the request from the delegating agent it would send the reply to the agent specified to it

MCC Technical Report MCC-INSL-096-98 11

by the delegating agent. Also sometimes an agent might make a request, but want copies of the responses to be

forwarded to another agent.

This gives us the following multi-agent conversation requirements

B5. The ACL should support conversations involving more than one agent

B6. An Agent should have the ability to multicast a message to multiple agents.

B7. An Agent should be able to redirect replies to another agent.

B8. An Agent should be able to forward copies of messages to other agents.

Flow Control

In a data-intensive environment, query results frequently are large, involving many possibly ordered results.

This is very typical during query processing when exchanging intermediate results. The typical way that this is

addressed in the existing ACLs is to use a streaming facility. With this approach, results are returned one at a time

to the requesting agent. However, in an information-intensive agent system, we need a different type of streaming

facility. In particular, we need to be able to divide the large result into uniform blocks, sending one block per

message. We can then pipeline these messages back, using flow control techniques to ensure that the receiver does

not get flooded with results. Therefore we have the following flow control requirement.

B9. The ACL should provide underlying support for streaming back data, and for flow control

5.2 Suggested ACL Support

General Conversation Issues

By including a unique conversation identifier field in each message we can solve the issue of matching

messages to the conversations (Requirement B1).

Each message can contain a field with the sequence number of the message in the conversation. This would

solve the requirement of providing message-ordering information (Requirement B2).

An Error message would be needed to signal in the event of an error (Requirement B4).

Therefore the following fields are defined to support the above requirements.

Property Value semantics Requirement Message type
:conversation-id <unique conversation identifier> B1 All
:sequence-number <identifier to place message in proper

sequence>
B2 All

MCC Technical Report MCC-INSL-096-98 12

:sender <agent name> B3 All
:receiver <list of agents> B3 All

Multi-Agent Conversations

To support multi-agent conversations and multicasting (Requirements B5 and B6) one must be able to specify

a list of agents in the receiver field of the message.

So support delegation (Requirement B7) we would need an additional field to specify which agent to send the

replies to. The agent that is doing the delegation would send the request to the agent that is processing the task.

The request would contain a �UHSO\�WR field telling it where to send the replies. That way the results would be

sent directly to the requesting agent rather than being funneled through the delegating agent.

Forwarding (Requirement B8) could be accomplished by send a request with a �FF�WR field set to the agents

that should get copies of the replies.

Property Value semantics Requirement Message type
:receiver <list of agents> B5, B6 All
:reply-to <list of agents> B7 All
:cc-to <list of agents> B8 All

Flow Control

To support flow control (Requirement B9) in the Agent Communication Language we would need additional

messages that could be passed between agents to control the data flow between the agents. The requestor also needs

to be able to describe the number of tuples it is willing to receive in a single block, and the number of blocks of

messages that can be “in transit” at a given time for flow control. Streaming and flow control may be supported by

the addition of new message types next, stop and done.

A next message is an indicator from the receiver to the sender that it can send another reply.

A stop terminates the stream from the requestor’s side, and

A done indicates that there is no more data to send.

We propose the following properties be associated with such messages:

Property Value semantics Requirement Message type
:flow-
policy

<block size, number of outstanding
blocks>

B9 Ask

MCC Technical Report MCC-INSL-096-98 13

Each reply is of size <block-size>, and <num-out> indicates the number of replies that can be in transit at any

given time. The entire result is the concatenation of the contents of all of the replies, in the order they were sent.

When Agent Y starts responding, it primes the channel with <num-out> replies, then after that it sends the next

response every time it receives a next message from the receiver.

Agent X Agent Y

ask (:flow-policy…)

next

reply

reply
:

reply

:
stop

Agent X Agent Y

ask (:flow-policy…)

next

reply

reply

:

reply

:
done

Figure 2. Conversations to support streaming and flow control

6. Task layer

At the task layer, an ACL needs to facilitate the management of the task-related services within the agent. A

prime example of where this becomes useful in the data domain is during transaction management.

6.1 Requirements

General Task Issues

At the layer of tasks, an ACL needs to support the ability to relate incoming service request conversations

with their corresponding outgoing service conversations easily. To facilitate this, there should be some easy way of

matching the incoming conversations with the set of threads accessing outgoing conversations. Messages in the

ACL should contain an overall task identifier that is constant for all conversations pertaining to the task.

The task model implied by the ACL should allow the requesting agent to terminate gracefully the computation

of a task and the transmission of results at any time, including both before it receives any results and during the

middle of the computation and transmission.

The ACL should have support for an agent to refuse service requests from certain agents.

MCC Technical Report MCC-INSL-096-98 14

This gives us the following general requirements.

C1. Each task in the system should have its unique identifier that could be added to all messages

pertaining to that task.

C2. The ACL should support asserting and querying for information, and replying to queries.

C3. An Agent should be able to terminate a task at any time.

C4. An Agent should be able to refuse service

Explanation of Results

One issue that comes up immediately once changes are allowed in the underlying set of resources is the notion

of uncertainty in the returned answer. For instance, if you execute the same query at two separate times, you may

get different results because one of the resources accessed during the first query has gone offline, or a new resource

was accessed when processing the query the second time. A query that ran once may not return any information

the second time because some resource has gone offline. Results may need to contain a result pedigree (origin) so

that the requesting user can understand where the information came from, either because he wants to judge the

quality of the results or because he wants to understand why some information is missing.

Results may be incomplete, or only answer some part of the query. Ideas related to this have been explored,

for instance, in the DISCO [TRV95] system. The return messages need to allow for the responding agent to

explain the nature of incomplete results and why the query was not completely processed.

Messages containing information should be able to be annotated with support for using or viewing that

information. Similar issues hold when returning information or simply telling another agent something. For

example, we have already noted that the response may be a summary, locator or estimate. Depending on the type

of information, the result also may be annotated with preferred ways of viewing the result; for instance, it may

recommend that large amounts of numerical data be displayed as a graph or scatter plot. Also, the user may want

to understand where the results of a query came from.

Therefore we have the following explanation of results requirements.

C5. Results may need to contain a result pedigree so that the requesting agent can understand where the

information came from.

MCC Technical Report MCC-INSL-096-98 15

C6. The Results need to allow the responding agent to explain the nature of incomplete results, and why

the query was not completely processed.

C7. Results might need to contain information on how to use or view the information.

Querying

For all aspects of agent interaction relating to data - telling or updating, querying, and responding, there are

nuances about how the information is requested or presented that should not necessarily show up at the layer of the

message type / speech act. For instance, if you want to subscribe to a set of information and be notified of changes,

you may want the notification to happen as soon as the information changes or you may want to know periodically.

Furthermore, you may want to receive a fresh copy of all your data, or you may want to receive just the changes.

There are many issues related to the fact that resources may contain overlapping sets of data, also there may

be a lot of resources available, containing more information than is really needed by the requester. In this

situation, it is helpful to constrain the set of agents accessed, and sometimes to return a “best effort” result as

opposed to a complete result.

Certain types of information access do not lend themselves well to having the set of resources change without

restriction. For example, a user may wish to browse through a specific set of related information rather than ask

specific queries. Also, sometimes a user may wish to formulate a query based on some response to an earlier query.

In a data mining application, the user may wish to analyze a constant set of data in different ways. Given that a

result may be annotated with the resources where it came from, i.e. its pedigree, then further queries may need to

be constrained to access only those resources, or the state of the system at the time the earlier query was made.

Thus, the set of results and their pedigree may define a context over which the user can operate.

The querying model should support the return of an estimate before the query is processed. This estimate

could be the time the query would take to process or the approximate size of the result, etc. The message should

indicate that this is an estimate.

As an alternative to receiving results through conversations, the information can also be returned out-of-band.

Here, the direct response to a query may consist of a locator for the information results, and possibly a summary of

the results. In InfoSleuth we have explored using out-of-band transmission of bulky, non-ASCII data such as

images. With this approach, a locator such as a URL is returned in place of each multimedia item. During query

MCC Technical Report MCC-INSL-096-98 16

processing, for instance, this URL can often just be passed along as a part of the result. Any agent interested in

actually looking at the item can use the URL to retrieve it out-of-band by some more efficient means, such as ftp, or

http.

Thus we have the following query requirements.

C8. An Agent should be able to specify how queries are performed and the type of results that are

returned.

C9. An agent should be able to query for a “best effort” result or by amount of data to return as well as

querying for a complete result.

C10. An Agent should be able to specify a context over which it can operate.

C11. An Agent should be able to request an estimate before query processing.

C12. An Agent should be able to receive results out of band.

6.2 Suggested ACL support

General Task Issues

To be able to identify which task a particular message belongs (Requirement C1) we would need to define a

task identifier field for each message. This field could be named �WDVN�LG.

Property Value semantics Requirement Message type
Task-id <unique task identifier> C1 All

We suggest supporting the following messages to fulfill the above requirements (Requirements C2 - C4).

A tell can be used by an agent to assert information to another agent.

An ask can be used by an agent to query another agent.

A reply is used to reply to a query.

A subscribe can be used to subscribe to information from an agent.

A done is used to signal end of results.

An end is used to terminate a task.

A sorry is used to signal that the agent cannot or will not provide service.

MCC Technical Report MCC-INSL-096-98 17

Agent X Agent Y

ask

reply

sorry

end

Agent X Agent Y

subscribe

next

reply

reply

:

reply

:
done

ask

ask

Figure 3. Conversations to support asserting and querying for information, and replying to queries

Explanation of Results

The following fields where defined to support the above mentioned requirements (Requirements C6 and C7).

Propery Value semantics Requirement Message type
:return-pedigree C5 Ask. Subscribe
:result-pedigree <list of resources> C5 Reply
:result-explanation <explanation> C6 Reply
:result-annotation <annotation

information>
C7 Reply

Querying

The following fields where defined to support the above mentioned requirements (Requirement C8 – C12).

Property Value semantics Requirement Message type
:ask-policy <change in data, periodic, all the data, modifications

only, etc>
C10 Subscribe

:query-effort <best effort, complete result> C8 Ask, Subscribe
:query-context <context of query> C9 Ask. Subscribe
:reply-with-estimate N/A C11 Ask. Subscribe
:reply-out-of-band <ftp, http, etc> C12 Ask. Subscribe
:locator <URL locator> C12 Reply

7. System Layer

At the system layer, an agent-based system needs to be able to monitor and manage its own internal operation

and its interoperation with other agent-based systems. This monitoring and management should be shielded from

the “application” part of the agents, but is rather embedded in the agent infrastructure.

MCC Technical Report MCC-INSL-096-98 18

7.1 Requirements

Advertisements

An agent must be able to advertise its capabilities in more depth than just advertising its service interface. We

have discussed this issue in more detail in [NU96]. This requirement has been particularly strong in the InfoSleuth

system, which is designed to adapt to changing availability of agents and resources. When an agent advertises

itself, it offers up its services to the agent system. The clearer the specification of this advertisement, the better

matchmaking that the broker can do. In InfoSleuth, we use constraint-based specification of advertisements and of

queries, for instance. Therefore, our advertisements are specified as a service interface plus constraints over the

information content of the agent, its semantic capabilities, and other agent properties.

Secondly, with respect to a changing system, agents may wish to change its advertisement, or even

unadvertise itself if it is about to shut down or wishes to disappear for a while. This enables the broker (or

equivalent) to keep its agent repository up-to-date.

Thus, we have the following advertisement-specific ACL requirements:

D1. Advertisements should not be required to use a specific content language, but rather should use a

language appropriate to the needs of the system.

D2. The ACL should support the ability of an agent to modify or delete its advertisement.

Monitoring of Agent Operation

An agent-based system should allow the option for its agents to monitor themselves, and to provide

information about themselves to other agents as appropriate. During normal operation, monitoring information

may be collected at different levels of operation – transport, message, conversation, task, and agent. Additionally,

error information may be generated at different levels of operation; for instance, the message layer of an agent that

received a malformed message may wish to notify the message layer of the sending agent of the problem. Lastly,

the infrastructure may need to maintain a current version of the interconnectivity of the system, using mechanisms

such as pinging agents to see if they are alive or subscribing to changes in an agent’s state, in which case the agent

would notify it if it were to go down.

Therefore we have the following monitoring requirements.

MCC Technical Report MCC-INSL-096-98 19

D3. The ACL should define how system monitoring and error information should be passed, and how

messages containing this information can be distinguished at the appropriate layer of processing.

D4. The ACL should include at the system layer messages used to monitor connectivity and subscribe to

changes in connectivity.

7.2 Suggested ACL Support

Advertisement

We suggest supporting three message types at this layer to support the requirements (Requirements D1 and

D2).

Advertise asserts positive information about an agent, for either when the agent is starting up or

advertising for the first time, or when the agent has additional information to advertise.

Unadvertise indicates that specific information about the agent is now invalid.

Unregister indicates that the agent is shutting down, and should be removed entirely from the broker’s

repository.

Property Value semantics Requirement Message type
:content <service interface and agent semantics> D1, D2 advertise, unadvertise
:language <the language the content is specified in> D1, D2 advertise, unadvertise
:ontology <the service ontology the content is specified

over>
D1, D2 advertise, unadvertise

Therefore we then have the following conversations:

Agent X Broker

advertise /
unadvertise /

unregister

ack /
error

Figure 4. Advertisement-related conversations

MCC Technical Report MCC-INSL-096-98 20

Monitoring of Agent Operation

Much of the monitoring and error-communication at the system layer mimics the conversational paradigms

that happen at the application level. Therefore, we suggest that monitoring ontologies be defined in conjunction

with the ACL, where each monitoring ontology corresponds to some level of processing. Thus, the message layer

would have its own ontology that describes the information it can provide (including error types and error codes).

Similar ontologies would also be defined for the conversation, task, and system layers. Then, requests and

information propagation related to these layers would follow the same message and conversational semantics as the

applications use. These messages would actually be handled by the agent’s infrastructure at the appropriate layer.

Thus, we have the following properties to support monitoring functionality (Requirements D3 and D4).

Property Value semantics Requirement Message type
:content <message content> D3 subscribe, ask,

tell, reply, error
:ontology <from {message, conversation, task,

system}>
D3 subscribe, ask,

tell, reply, error
:language <language the content is specified in> D3 subscribe, ask, tell, reply
:code <error code from ontology> D3 error

With respect to pinging and connectivity monitoring, we suggest implementing agent ping as an ask message for

the remote agent’s name over the system ontology, where the name specified in the reply should correlate with the

name the requesting agent expects. If an agent is mobile other agents may wish to subscribe to its location.

8. Conclusions

In this paper, we have presented a set of general requirements and approaches towards defining a general

ACL that would support information-centric agent systems. Our proposal for a general ACL is not intended to

detract from the needs of knowledge-centric agents, but rather to move towards having a standard set of speech

acts. These speech acts would be the “common denominator” for both information- and knowledge-centric agents,

and could be further tailored to the special needs of both.

As an example, earlier we noted that FIPA supports different speech acts for an agent to tell another agent

something, based on what the telling agent believes about itself and what it believes the other agents should do.

MCC Technical Report MCC-INSL-096-98 21

An alternative way to represent this would be to carry the beliefs within the message. That is, a tell would be a

basic type of message, and when carrying knowledge the properties of the message would annotate the contents

with the beliefs of the sending agent. Other types of belief-oriented annotation might be useful in other

circumstances; therefore the extensibility of the ACL would be more focused on extending the properties associated

with the messages rather than extending the message types themselves.

With a standard set of basic speech acts defined, we can then extend the ACL to support the different

functions required by the conversation, task and system layers of agent-based systems. We have made some specific

proposals in this paper towards supporting that functionality. Some issues raised by this architecture have not

really been addressed properly in any currently existing ACL, though FIPA [FIPA] is addressing some of these

issues. Also, security-related issues specifically are discussed in some detail in [Thi95]. However, issues pertaining

to each layer of this architecture must be addressed before we can define a “standard” ACL and consequently move

towards an open architecture for agent-based systems as a whole.

Acknowledgements

The authors would like also to thank Brad Perry for his contributions to the ideas in this paper.

References

[AKS96] Y. Arens, C. A. Knoblock, and W. Shen, "Query Reformulation for Dynamic Information Integration,"
Journal of Intelligent Information Systems, 1996

[BBB+97] R. Bayardo et.al, “InfoSleuth: Agent-based semantic integration of Information in open and dynamic
environments”. In Proceedings of SIGMOD ’97, 1997.

[CORBA] The Object Management Group and X/Open, The Common Object Request Broker: Architecture and
Specification, Revision 1.1, John Wiley and Sons, 1992b.

[DS97] K. Decker and K. Sycara, “Intelligent adaptive information agents”. To appear in Journal of Intelligent
Information Systems.

[DSW96] K. Decker, K. Sycara and M. Williamson, “Modeling information agents: Advertisements,
organizational roles, and dynamic behavior.” In Working Notes of the AAAI-96 Workshop on “Agent
Modeling”, 1996.

[FIPA] FIPA 97 Specification, http://drogo.cseult.stet.it/fipa/spec/fipa98/fipa98.htm, November, 1997.

[FLM97] T. Finin, Y. Labrou and J. Mayfield, “KQML as an agent communication language”. In Software
Agents, J. M. Bradshaw, ed., AAAI Press, 1997.

[GGKS95] D. Geddis, M. Genessereth, A. Keller and N. Singh, “Infomaster: a virtual information system”. In
ACM CIKM Intelligent Information Agents Workshop, 1995.

MCC Technical Report MCC-INSL-096-98 22

 [GPQR+95] H. Garcia Molina, Y. Papakonstantinou, D. Quass, A. Rajarman, Y. Sagiv, J. Ullman, and J. Widom,
"The TSIMMIS Approach to Mediation: Data Models and Languages," Proceedings of the NGITS (Next
Generation Information Technologies and Systems), June 1995.

[Ker97] L. Kerschberg, “The role of intelligent software agents in advanced information systems”. In British
National Conference on Databases (BNCOD 97), 1997.

[KQML97] Y. Labrou and T. Finin, “A Proposal for a New KQML Specification”,
http://www.cs.umbc.edu/kqml/kqmlspec.ps.

[KQML-Classic] T. Finin and G. Wiederhold, “An Overview of KQML: A Knowledge Query and Manipulation
Language”, 1991. (available through the Stanford University Computer Science Department).

[KQML-Lite] KQML Lite Specification, Technical Report ALP-TR/03, March, 1998 (in progress).

[Lab96] Y. Labrou, Semantics for an Agent Communication Language, Doctoral Disseration, UMBC, September,
1996.

[NPU98] M. Nodine, B. Perry, A. Unruh, “Experience with the InfoSleuth Agent Architecture”. In Proceedings of
the AAAI-98 Workshop on Software Tools for Developing Agents, July, 1998 (to appear).

[NU97] M. Nodine and A. Unruh, “Facilitating Open Communication in Agent Systems: the InfoSleuth
Architecture”. In Proceedings of the 4th International Workshop on Agent Theories, Architectures and
Languages, July, 1997.

[Thi95] C. Thirunavukkarasu, T. Finin and J. Mayfield, “Secret Agents: A Security Architecture for the KQML
Agent Communication Language”, in Proceedings of the Intelligent Information Agents Workshop, held in
conjunction with CIKM ’95, Baltimore, December 1995.

[TRV95] A. Tomasic, L. Raschid, and P. Valduriez, “Scaling heterogeneous databases and the design of DISCO”,
Proceedings of the International Conference of Distributed Computing Systems, pp. 449-457, 1996.

Mobile AgentsMobile Agents
in the Context of Competition and Co-operation

(MAC3)

http://mobility.lboro.ac.uk/MAC3/

Todd Papaioannou and Nelson Minar

Co-chairs

Program Committee

Fritz Hohl, University of Stuttgart

Reuven Koblick, Mitsubishi

David Kotz, Dartmouth College

Danny Lange, General Magic

Daniela Rus, Dartmouth College

Christian Tschudin, University of Uppsala

MAC3 Workshop Notes Preface

Autonomous Agents ‘99 i May 1st 1999

PrefacePreface
Mobile Agent research is a rapidly growing field contributing to autonomous software agents and
distributed systems. Mobility is both a useful abstraction and tool for agent-based system design-
ers; it allows for increased resource efficiency, capability, and robustness. Also, mobile code is
becoming an accepted technology for building distributed systems; allowing distributed systems to
be more dynamic and flexible.

While the mobile agent field is a promising area of new research, it comes with many challenges.
Although mobility greatly expands the potential of agent systems, the issues of increased complex-
ity and managability must be addressed. Mobile agents also incur new security and consistency
problems. Finally, mobility is a relatively new tool for system design; we are still in the early stag-
es of exploring what it is best at. The solution to these problems can be attained through diligent
research and communication.

This workshop is one entry in the continuing dialog about mobile agent systems. We hope it will
be a valuable opportunity for active researchers in the field to meet, present current and forthcom-
ing research, share ideas, and discuss and critique each other's work.

These workshop notes contain seven papers grouped into four themes. The Argument for Mobile
Agents contains two papers that discuss in detail why mobile agents are useful; these ideas provide
context for mobile agents research. Tools for managing agent systems are an important facet of
making manageable systems; pattern languages are one such useful tool for organizing mobile
agent systems. Applications are ultimately what justifies any research; this section contains de-
scriptions of two areas for which mobile agents are particularly well suited. Finally, the workshop
notes end with two papers that describe conceptual frameworks for mobile agent systems; this re-
search is important so that we may understand the complex software systems we are building.

We wish to thank our program committee for all their help and guidance in organizing the work-
shop, and all contributors. We hope it will be a valuable experience for everyone involved.

Nelson Minar and Todd Papaioannou

Co-chairs of MAC3 at Agents '99, Seattle.

MAC3 Workshop Notes Table of Contents

Autonomous Agents ‘99 ii May 1st 1999

Table of ContentsTable of Contents

Preface . i

Table of Contents . ii

Workshop Schedule . iii

The Argument for Mobile Agents .5

Mobile Code: The Future of the Internet

David Kotz and Robert Gray, Dartmouth College . 6

Foreign Event Handlers to Maintain Information Consistency and System Adequacy

Pierre-Antonie Queloz, University of Geneva . 13

Tools for Managing Mobile Agent Systems .18

A Case for Mobile Agent Patterns

Dwight Deugo (Carelton University) and Michael Weiss (Mitel Corp.) . 19

Mobile Agent Applications .23

 Mobile agents in an electronic auction house

Qianbo Huai and Tuomos Sandholm (Washington University) . 24

 A Partitioning Model for Applications in Mobile Environments

Alexander Schill (Dresden University), Albert Held (DaimlerChrysler), Thomas Ziegert (DU),

and Thomas Springer (DU) . 34

Frameworks for Managing and Understanding Mobile Agent Complexity 42

Economic Markets as a Means of Open Mobile-Agent Systems

Jonathan Bredin, David Kotz, Daneila Rus (Dartmouth College) . 43

Emergent Behavior and Mobile Agents

Tony White, Bernard Pagurek (Carleton University) . 50

MAC3 Workshop Notes Schedule

Autonomous Agents ‘99 ii May 1st 1999

Workshop Schedule - 1st MayWorkshop Schedule - 1st May

9:00 - 9:15 Welcome, Introductions

9:15 - 10:00 Keynote

"A Research Agenda for Code Mobility"

Gian Petro Picco, Washington University in St. Louis

10:00 - 10:30 Coffee

10:30 - 11:30 The Argument for Mobile Agents

Mobile Code: The Future of the Internet

David Kotz and Robert Gray, Dartmouth College

Foreign Event Handlers to Maintain Information Consistency and System Adequacy

Pierre-Antonie Queloz, University of Geneva

11:30 - Noon Tools for Managing Mobile Agent Systems

A Case for Mobile Agent Patterns

Dwight Deugo (Carelton University) and Michael Weiss (Mitel Corp.)

Noon - 2:00 Lunch

2:00 - 3:00 Mobile Agent Applications

Mobile agents in an electronic auction house

Qianbo Huai and Tuomos Sandholm (Washington University)

A Partitioning Model for Applications in Mobile Environments

Alexander Schill (Dresden University), Albert Held (DaimlerChrysler), Thomas Ziegert

(DU), and Thomas Springer (DU)

MAC3 Workshop Notes Schedule

Autonomous Agents ‘99 iii May 1st 1999

3:00 - 3:30 Coffee

3:30 - 4:30 Frameworks for Managing & Understanding Mobile Agent Complexity

Economic Markets as a Means of Open Mobile-Agent Systems

Jonathan Bredin, David Kotz, Daneila Rus (Dartmouth College)

Emergent Behavior and Mobile Agents

Tony White, Bernard Pagurek (Carleton University)

 4:30 - 5:30 Discussion - How do we advance mobile agent research?

This program is only a rough guide for the day and is open to change.

MAC3 Workshop Notes The Argument for Mobile Agents

Autonomous Agents ‘99 5 May 1st 1999

The Argument for The Argument for
Mobile AgentsMobile Agents

Mobile code: The Future of the Internet

David Kotz and Robert S. Gray

Department of Computer Science / Thayer School of Engineering
Dartmouth College

Hanover, New Hampshire 03755

dfk@cs.dartmouth.edu, robert.s.gray@dartmouth.edu

Abstract

Use of the Internet has exploded in recent years with the appearance of the World-Wide Web. In
this paper, we show how current technological trends necessarily lead to a system based substantially on
mobile code, and in many cases, mobile agents. We discuss several technical and non-technical hurdles
along the path to that eventuality. Finally, we predict that, within five years, nearly all major Internet
sites will be capable of hosting and willing to host some form of mobile agents.

1 Introduction

Rapidly evolving network and computer technology, coupled with the exponential growth of the services and
information available on the Internet, will soon bring us to the point where hundreds of millions of people
will have fast, pervasive access to a phenomenal amount of information, through desktop machines at work,
school and home, through televisions, phones, pagers, and car dashboards, from anywhere and everywhere.
Mobile agents will be an essential tool for allowing such access. Mobile agents are an effective choice for
many reasons [LO99], and although not all applications will need mobile agents, many other applications
will find mobile agents the most effective implementation technique for all or part of their tasks.

Although current trends in Internet technology and usage lead inevitably to the use of mobile agents, several
technical and non-technical hurdles must be addressed along the way. Although these hurdles represent
significant challenges, they can be cleared within years, and nearly all major Internet sites will accept mobile
agents within five years. The goal of this position paper is to spark discussion about how best to realize this
optimistic, but reasonable, vision.

2 Trends

There are several trends affecting Internet technology and activity:

Bandwidth. The telecommunications industry is laying down astonishing amounts of fiber. Although
Internet traffic is growing exponentially, the bandwidth soon to be available on the Internet backbone, as
well as to many offices and neighborhoods, is immense.

Nonetheless, bandwidth to many end users will remain limited by several technical factors. Many users
will still connect via modem, or at best, ADSL over the old copper loop. Many other users will connect
via low-bandwidth wireless networks. Most users can expect to see no more than 128 Kbps to 1 Mbps
available at their desktop or palmtop, although some asymmetric cable modems may reach 10 Mbps (for
downloads) [Gri99, DR99].

Perhaps more importantly, the gap between the low-bandwidth “edge” of the network, and the high-
bandwidth “backbone” of the network, will increase dramatically as the backbone benefits from increased
quality and availability of fiber, while the edge remains limited by the fundamentals of wireless and copper
connections. We expect that this trend will continue even as local connections improve past 1 Mbps in the
next few years, since backbone bandwidths are improving much faster than local bandwidths.

Mobile devices. One of the hottest areas of growth in the computer industry is portable computing
devices. Everything from laptops to palmtops to electronic books, from cars to telephones to pagers, will
access Internet services to accomplish user tasks, even if users have no idea that such access is taking place.
Typically, these devices will have unreliable, low-bandwidth, high-latency telephone or wireless network
connections.

Mobile users. Web-based email services1 make it clear that users value the ability to access their email
from any computer. Web terminals will become commonplace in public spaces, such as cafes, airports, and
hotels. Eventually, particularly with the growth in bandwidth, users will have full access to all of their files
and applications from any terminal. Despite this, mobile devices will proliferate unchecked, since just as
with public phones, Web terminals will never be available everywhere that a user might find herself.

Intranets. Organizations are increasingly using Internet protocols, particularly HTTP, to build internal
“intranets” for their own distributed-information needs. Since all access to an intranet is managed by a
single organization, new technologies can be deployed quickly, since (1) little coordination is needed with
outside organizations, and (2) security (within the intranet) is of less concern.

Information overload. Internet users are already overwhelmed by the sheer volume of available informa-
tion, and the problem will get worse as the Internet grows. Search engines, shopbots, portals, collaborative
filtering, and email filtering are existing technologies that allow the user to reduce the torrent to a manageable
stream, but these technologies are still quite limited.

Customization. Unlike broadcast media, the Internet makes it possible to customize access for each user.
Current technologies allow customization at both the client (browser) and the server. Many Web sites include
their own site-specific customization features, but the customization is increasingly provided by third-party
“proxy” sites.

Proxies. Such proxy sites, which today are most often Web sites such as the various shopbots, interpose
between a user and one or more other Internet services. As a means to both reduce information overload
and customize service access, proxy sites will become more and more important. In particular, as portable
devices become more prevalent, highly specialized proxy sites will be provided to meet the special needs of
mobile users.

3 Mobile agents are inevitable

The trends outlined in the previous section inevitably lead to the conclusion that mobile code, and mobile
agents, will be a critical near-term part of the Internet. Why? Not because mobile code makes new appli-
cations possible, nor because it leads to dramatically better performance than (combinations of) traditional
techniques, but rather because it provides a single, general framework in which distributed, information-
oriented applications can be implemented efficiently and easily, with the programming burden spread evenly
across information, middleware, and client providers. In other words, mobile code gives providers the time
and flexibility to provide their users with more useful applications, each with more useful features. Our full
argument roughly follows Figure 1.

Both the amount of information available on the Internet (a), and the number and diversity of its users (b),
are growing rapidly. This diverse population of users will not settle for a uniform interface to the information,
but will demand personalized presentations and access methods (c). This personalization will range from
different presentation formats to complex techniques for searching, filtering and organizing the vast quantities
of information (d). Today, such personalization facilities are provided at the information source in a site-

1e.g., http://www.hotmail.com/.

Mobile code to server or proxy
(e.g., dynamically selected,
previously unknown proxy)

High latency

Multi-hop mobile code (mobile agents)
to multiple proxies or servers

"Customization"
(e.g., re-formatting,
filtering, metasearch)

Information
overload

Diversified
population

Increased
need for

personalization Bandwidth gap

Mobile code
to client

Disconnected
operation

Mobile users
and devices

Avoid large
transfers

Server-side
customization

Proxy-based
customization

Too many unique,
widely dispersed
clients to handle

Avoid star-shaped
itineraryMultiple sites

to visit

(a) (b)

(d)

(e) (f)

(g)

(h)

(i)

(j)

(k)

(m)

(n)

(o)

(p)

(c)

Figure 1: The trends leading to mobile agents

specific manner (e), at a proxy Web site (f),2 or (occasionally) as client software.3

Meanwhile, the network technology will lead to an increased gap in the bandwidth of the core Internet versus
the fringes of the Internet (g). Thus, most client hosts will shun large transfers of data (h). That trend
encourages the migration of application functionality from clients into proxy sites (f), which are presumably
better connected to the core Internet, and need send only the final results over the slower connection to the
client. Furthermore, the dramatic availability of core bandwidth will allow these proxy sites to be aggressive
in gathering, prefetching, and caching information on behalf of their clients.

Mobile users (i) will frequently disconnect from the network, and perhaps connect later at another location
with poor bandwidth (j). This tendency again leads to the use of proxies (f). It also encourages application
programmers to choose a mobile-code solution to dynamically install the necessary client code (k) onto the
Web terminal or portable device. Moving code (applets) to the client allows a high level of interaction with
the user despite a high-latency, low-bandwidth, or disconnected network.

Ultimately, Web sites and other Internet services will not be able to efficiently provide the full range of cus-
tomization desired by their clients, and clients will want to use the same information-filtering and -organizing
tools across many sites. Moreover, fixed-location, application-specific proxies will become bottlenecks, and
as user needs change, may no longer be at the best network location for accessing the proxied services. As
a result, customization tools will be specified as software, in the form of mobile code that runs either on
the server, or on a dynamically selected proxy site near the server (m). Mobile code is necessary, rather
than client-side code, since many customization features (such as information monitoring) do not work if the
client is disconnected, has a low-bandwidth connection, or requires frequent communication with the server.
Mobile code is beneficial, since servers and proxy sites need provide only a generic execution environment
(along with an API that provides programmatic access to their service); the actual customization tools can
be written by the services themselves, by third-party middleware developers, and even by the end users.

Finally, many clients will wish to send mobile code to multiple information sites as part of a single task.
Although there will be applications for which the mobile code can be sent in parallel, many tasks require a
sequence of subtasks, each at a different site. To avoid latency (n), the application programmer will often
want to avoid a “star-shaped graph” (o) where mobile code goes out to the first site and sends its results
back to the client or proxy, the same or different piece of mobile code goes out to the second site, and so on,
and the programmer will always want to be able to select the best migration strategy for the task and current
network conditions. In other words, the mobile code must be able to hop sequentially through multiple sites;
such multi-hop mobile code is a mobile agent.

4 Technical hurdles

There are several technical hurdles that must be cleared before mobile agents can be widely used.

Performance and scalability. Current mobile-agent systems save network latency and bandwidth at
the expense of higher loads on the service machines, since agents are often written in a (relatively) slow
interpreted language for portability and security reasons, and since the agents must be injected into an
appropriate execution environment upon arrival. Thus, in the absence of network disconnections, mobile
agents (especially those that need to perform only a few operations against each resource) often take longer to
accomplish a task than more traditional implementations, since the time savings from avoiding intermediate
network traffic is currently less than the time penalties from slower execution and the migration overhead.
Fortunately, significant progress has been made on just-in-time compilation (most notably for Java), software
fault isolation, and other techniques [MMBC97], which allow mobile code to execute nearly as fast as natively
compiled code. In addition, research groups are now actively exploring ways to reduce migration overhead.
Together, these efforts should lead to a system in which accepting and executing a mobile agent involves only
slightly more load than if the service machine had provided the agent’s functionality as a built-in, natively
compiled procedure.

2e.g., http://www.metacrawler.com/.
3e.g., Apple’s “Sherlock” meta-search tool.

Portability and standardization. Nearly all mobile-agent systems allow a program to move freely among
heterogeneous machines, e.g., the code is compiled into some platform-independent representation such as
Java bytecodes, and then either compiled into native code upon its arrival at the target machine or executed
inside an interpreter. For mobile agents to be widely used, however, the code must be portable across
mobile-code systems, since it is unreasonable to expect that the computing community will settle on a
single mobile-code system. Making code portable across systems will require a significant standardization
effort. The OMG MASIF standard is an initial step, but addresses only cross-system communication and
administration [MBB+98], leading to a situation in which an agent can not migrate to the desired machine,
but instead only to a nearby machine that is running the “right” agent system. The mobile-agent community
must take the next step of standardizing on some specific execution environment(s) (such as a particular
virtual machine), as well as on the format in which the code and state of a migrating agent are encoded.

Security. It is possible now to deploy a mobile-agent system that adequately protects a machine against
malicious agents [Vig98]. Numerous challenges remain, however: (1) protecting the machines without ar-
tificially limiting agent access rights;4 (2) protecting an agent from malicious machines; and (3) protecting
groups of machines that are not under single administrative control. An inadequate solution to any of these
three problems will severely limit the use of mobile agents in a truly open environment such as the Internet.
Fortunately, groups are now exploring many new techniques, each of which addresses (or partially addresses)
one of the three problems (e.g., agents paying for resource usage with electronic cash, which allows them to
live and propagate only as long as their cash supply holds out). Although many technical advances (and
user-education efforts) must be made before these three problems are solved adequately for all Internet
applications, current work is promising enough that, within five years, mobile-agent systems will be secure
enough for many applications.

5 Non-technical hurdles

Once the technical challenges have been met, there remain several non-technical issues that may deter the
widespread adoption of mobile-agent technology. Internet sites must have a strong motivation to overcome
inertia, justify the cost of upgrading their systems, and adopt the technology. While the technological argu-
ments above are convincing, they are not sufficient for most site administrators. In the end, the technology
will be installed only if it provides substantial improvements to the end-user’s experience: more useful ap-
plications, each with fast access to information, support for disconnected operation, and other important
features.

Lack of a killer application. The most important hurdle is that there is no “killer” application for mobile
agents. The “mobile agent” paradigm is in many respects a new and powerful programming paradigm,
and its use leads to faster performance in many cases. Nonetheless, most particular applications can be
implemented just as cleanly and efficiently with a traditional technique, although different techniques would
be used for different applications. Thus, the advantages of mobile agents are modest when any particular
application is considered in isolation. Instead, researchers must present a set of applications and argue that
the entire set can be implemented with much less effort (and with that effort spread across many different
programming groups). At a minimum, making such an argument demands that the mobile-agent community
actively support anyone who is writing a high-quality survey of mobile-agent applications, since no one group
will be able to implement a sufficient number of applications. Once a clear quantitative argument is made,
a few major Internet services can be convinced to open their sites to mobile agents, since they will recognize
that agents will lead to more applications based around their services and hence more users. From there,
more Internet services will follow.

Getting ahead of the evolutionary path. It is unlikely that any Internet service will be willing to jump
directly from existing client-server systems to full mobile-agent systems. Researchers must provide a clear
evolutionary path from current systems to mobile-agent systems. In particular, although full mobile-agent

4Many mobile-agent systems reduce an agent’s access rights when it arrives from a machine that is not trusted, even if it
was launched from a trusted user at a trusted site. The concern is that the agent may have been maliciously modified at the
untrusted site.

systems involve all the same research issues (and more) as more restricted mobile-code systems, researchers
must be careful to demonstrate that the switch to mobile agents can be made incrementally.

For example, “applets”, mobile code that migrates from server to client for better interaction with the user,
are in common use, and the associated commercial technology is improving rapidly (e.g., faster Java virtual
machines with just-in-time compilation). From applets, the next step is proxy sites that accept mobile code
sent from a mobile client. In all likelihood, such proxies will be first provided by existing Internet service
providers (ISPs). Since the sole function of the proxy sites will be to host mobile code, and since the ISPs
will receive direct payment for the proxy service (in the form of user subscriptions, although not likely at a
fixed rate), the ISPs will be willing to accept the perceived security risks of mobile code. Once mobile-code
security is further tested on proxy sites, the services themselves will start to accept “servlets”, mobile code
sent from the client directly to the server (or from the proxy to the server).5 Once servlets become widely
used, and as researchers address the issue of protecting mobile code from malicious servers, services will start
to accept mobile agents.

Another critical evolutionary path is the migration of agent technology from intranets to the Internet.
Mobile-code technologies will appear first in the relatively safe intranet environment, particularly intranets
that are built on high-latency networks such as a WAN or a wireless network for mobile computers. For
example, a large company, particularly one with a mobile workforce, might find mobile agents the most
convenient way to provide its employees with a wide range of access to its internal databases. Intranets tend
to be early adopters of new (useful) technology, because their administrators have more control over the
intranet than over the Internet; that control means that security is less of a concern, and wide deployment
of agent support services can be encouraged. As the technologies mature in intranets, site administrators
will become comfortable with them, and their practicality, safety and potential uses will become clear. Then
they will find their way into the Internet.

Revenue and image. A final important hurdle is the problem of revenue flow and commercial image.
For example, although it is not yet clear whether advertising is a viable economic foundation for Web sites,
many Web sites earn money solely from advertisements. If these sites allow mobile agents to easily access
the content of the site, the number of human visits to the Web pages will presumably decrease, and the
advertisements will not be seen. How, then, will the site earn revenue? Similarly, when users are accessing
a service with a front-end backed by mobile agents, the distinction between the service and the front-end
agents starts to blur. Since the agents will likely be provided by middleware developers, the Internet service
will no longer have complete control over its image. A poorly implemented agent may lead to a negative
view of the service, even though the service is blameless. We believe, however, that mobile agents can be
deployed in the near-term in many applications where the existing services do not rely on advertising; in the
long-term, both the Internet and mobile-agent communities will need to explore different revenue models.

6 Conclusion

There is a strong case for the use of mobile agents in many Internet applications. Moreover, there is a clear
evolutionary path that will take us from current technology to widespread use of mobile code and agents
within the next five years. Once several technical challenges have been met, and a few pioneering sites install
mobile-agent technology, use of mobile agents will expand rapidly.

7 Acknowledgments

Many thanks to the Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR),
the Department of Defense (DoD), and the Defense Advanced Research Projects Agency (DARPA) for their
financial support: ONR contract N00014-95-1-1204, AFOSR/DoD contract F49620-97-1-03821, and DARPA

5Like applets, and unlike agents, servlets are mobile code but not mobile processes. The code is moved from client to server,
starts execution, and later ends execution on the same machine. It cannot migrate further once it starts executing.

contract F30602-98-2-0107; to Jon Bredin, Brian Brewington, and Arne Grimstrup for invaluable feedback on
early drafts of this paper; and to the anonymous reviewers for their useful and thought-provoking comments.

References

[DR99] Amitava Dutta-Roy. Bringing home the Internet. IEEE Spectrum, 36(3):32–38, March 1999.

[Gri99] Corey Grice. When will data change the wireless world? CNET NEWS.COM, February 10,
1999.

[LO99] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents. Communications
of the ACM, 42(3):88–89, March 1999.

[MBB+98] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka, D. Lange,
K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF: The OMG Mobile
Agent System Interoperability Facility. In Proceedings of the Second International Workshop
on Mobile Agents, volume 1477 of Lecture Notes in Computer Science, pages 50–67, Stuttgart,
Germany, September 1998. Springer-Verlag.

[MMBC97] G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa: A flexible and efficient Java envi-
ronment mixing bytecode and compiled code. In Proceedings of Third USENIX Conference on
Object-Oriented Technologies and Systems (COOTS ’97), pages 1–20, 1997.

[Vig98] Giovanni Vigna, editor. Mobile Agents and Security, volume 1419 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

���������
	��������������������������� �!�#"���
���$���
�&%'�)(*����+,�-�.���/�
0 �/�1�2�
���!����3546�����8794����:��+ ;<�1�>=9?@�A3$48B

CED1F�G-HJILK/MONQPRPRNTS
U)V�WRXYMOV:N
Z\[^]`_a_b]Tc
d9egf�h.[iej]YkmlEnj]po hYq'r�sY[^t`uvh.hwf*kyx'h.z

K�F�G-G{F}|@~��������9�!P�MO��WRMb�wV
�]`omoyrAx`nY[�k�n�eY[tY]Ykyx`�

�9N'V�WRPRN�D)V!M��YN'P��RM�W��wM�PRNE�>���
V:�vXYP����`WRMO���!N
D)V!M��YN'P��RM�W
��Xw��|@NQV!NQ�`�

�2��M�W��QN'PR O�wV!�
U1¡!P�MO �¢w£>¢g¤Y¤Y¤

¥Q¦�§g¨j©\ª-«�¬w§g®©�¦
¯>°j±-²Q³Q´*µp³T¶�·¸°j¹»º�¼p´*¼`±�½�¹»º$·¸³�¾g±Rºa¿À½a¹iÁw±-Âj³�ÃQ±Àµ`´*¼j¼jµi¹i¿�´�·¸¹m³QÂpº$³*¶2ÄE³*Áj¹iµi±�Å�³g¾g±{·¸±�¿Æ°jÂp³*µi³*²*Ç�È\°j¹»¿Æ°�°p´�Ã*±
Âj³T·9´T¼j¼w±�´*½a±R¾ÉÇ*±�·�ÁjÊg·9ºa°j³QÊjµi¾ÉÁw±�¶�±R´*ºa¹mÁpµm±�È\¹m·a°Ë³*Êj½9¿�Êj½¸½a±�Â'·�Ì'Âp³�È\µm±R¾g²*±�³*¶\·a°j±�¾j³*Í�´T¹iÂ�Î@¯>°j±Rº®±
Âj±ÀÈÏ´T¼j¼jµi¹»¿À´�·¸¹m³QÂpº�¿À³*Â'·a½Æ´*¾j¹i¿�·�·a°p±�³*¶�·a±ÀÂjÐOÍ�´*¾j±J³*Á`º®±�½aÃ�´�·¸¹m³QÂ�·a°p´T·�Ä@³*Áj¹iµm±ÑÅ�³g¾g±J¹»º�ÒvÊpº®·�´*Âj³T·¸°j±À½
·a±R¿Æ°jÂj¹»ÓQÊp±�·¸°p´�·�¾g³Ô±�º9Âj³*·9½¸±�´*µmµiÇÕÁj½¸¹mÂp²JÍ}Ê`¿Æ°ËÍ�³*½¸±)¼w³Qº¸ºa¹mÁj¹iµi¹�·¸¹m±Rº}·¸°p´TÂ�±�Ög¹»ºv·¸¹mÂp²J·¸±�¿Æ°jÂj³Qµm³Q²*¹i±�º�¶�³*½
¾g¹»ºv·¸½a¹iÁjÊg·¸±�¾�´T¼j¼pµm¹»¿À´T·a¹i³*Âpº�Î×¯>°j±À½¸±E¹»º�´ØÈ\°j³*µi±@¿�µ»´*º¸º�³T¶�¼j½¸³*Ájµi±ÀÍ�º9·a°`´�·�°p´�ÃQ±1Âp³T·�½¸±�¿�±�¹mÃQ±�¾ÙÍ}Êp¿Æ°
´�·a·a±ÀÂ'·¸¹m³QÂ9ÇQ±�·�´*Âp¾�·a°p´T·�´T½¸±�Âp³T·$È�±ÀµiµjÍ�´TÂp´*²*±�¾�ÁÔÇ�¿ÀÊj½a½¸±ÀÂ'·5±ÀÂÔÃÔ¹i½a³QÂjÍ�±ÀÂ'·¸º�Î.¯>°j±Rº®±{´*½a±�·¸°j±{¼j½¸³*Ájµi±ÀÍ�º
³T¶�Í�´T¹iÂ'·¸´T¹iÂj¹iÂj²�¿�³QÂpºa¹iº®·a±�Âp¿�Ç�³T¶�¾gÇÔÂp´TÍ�¹»¿>¹mÂj¶�³*½¸Í�´T·a¹i³*Â�´TÂ`¾�Í�´*¹mÂ'·Æ´T¹iÂj¹mÂp²�º®Çgº®·a±ÀÍ�º�¹mÂ�´Q¾g±�Ó'Êp´Q¿�Ç�È\¹m·a°
·a°j±/±�Ã*±�½>¿Æ°`´TÂj²Q¹mÂj²�½¸±�Ó'Êj¹i½a±�Í�±ÀÂ'·¸º�³T¶5¿�Ê`ºv·¸³*Í�±À½ÆºÀÎ
Ú Êj½}Í�³T·¸¹mÃ�´T·a¹i³*ÂÕ¹»º/·a°`´�·�Û5Áw±�ºa¹»¾g±�º�·a°j±1ÓQÊ`´TÂ'·a¹m·¸´T·a¹iÃ*±�¹iÍ�¼j½a³�ÃQ±ÀÍ�±ÀÂ'·ÆºA·a°p´T·�Í�³Qº®·}¼w±À³*¼pµm±)±�Ög¼`±R¿
·

¶�½a³QÍÜÊpºa¹iÂj²ÑÄE³*Áp¹mµi±�Å�³g¾g±*Û�·a°p±À½¸±E¹iº�´*µiºa³Õ´ÕÓ'Êp´Tµi¹�·Æ´�·¸¹mÃQ±1Áw±ÀÂp±�Ýj·1È\°j¹i¿Æ°�¹»º�±ÀÃQ±ÀÂ�Í�³*½¸±�¹mÍ�¼w³*½a·¸´TÂ'·
ÁjÊg·�Âj³T·�ÊpÂj¹mÃQ±À½Æºa´*µmµiÇ}½¸±�¿À³*²QÂj¹mÞ�±�¾9Âj³�È/ß!ÄE³*Áp¹mµi±AÅ�³g¾g±-´*µmµi³�È{º$¿�³QÍ�Í}ÊjÂj¹»¿À´T·a¹i³*Â�È\¹m·a°@àiá
âÆâAãÆä�å`æ�áÀåpçOè�ä�åpâ
·a°p´*Â@Í�±�º¸ºa´*²*±�¼`´*º¸º®¹iÂj²�é êÔÛ�ë�ìbÎ/í$½¸³Ô¿À±�º¸º®±Rº\¹iÂQ·¸±À½Æ¿�³QÂjÂj±�¿�·a±R¾EÁÔÇ�Ä@³*Áj¹iµm±�Å�³g¾g±�º®·a¹iµiµ:°`´�Ã*±/·¸³)´T²Q½a±�±�³*Â
°j¹i²*°Jµi±ÀÃQ±Àµ!±ÀÂ`¿�³g¾g¹iÂj²1´*Âp¾JºaÇÔÂp¿Æ°j½¸³*Âj¹iÞ�´T·a¹i³*Â@¼p½a¹iÍ�¹�·¸¹mÃQ±�ºAÁjÊg·�·a°p±�ºa±9´*²*½¸±À±ÀÍ�±�ÂQ·Æº�´*½a±9³*ÂpµmÇ@´�¶�½¸´Q¿
·¸¹m³QÂ
³T¶$È\°p´T·�¹»º-Âp±�¿�±Rºaº¸´T½¸Ç)·a³)¿À³*Í�Í}ÊpÂj¹i¿�´�·¸±*Î�ÄJ´TÂÔÇE¿�³*Â'·¸±�ÖÔ·�¾g±�¼`±�Âp¾g±ÀÂ'·/´*ºa¼`±R¿
·Æº�¿�´TÂ@Áw±�±�Âp¿À´*¼pºaÊjµi´T·a±R¾
¹mÂ`º®¹»¾g±JÄE³QÁj¹iµm±ÕÅ�³Ô¾j±J´TÂp¾�¿Æ°`´TÂj²Q±�¾�È\°j±ÀÂ×·a°j±Ø¿�³*Â'·¸±�ÖÔ·)¿Æ°p´*Âj²*±RºÀÎïî$Â`¿À´T¼`º®Êjµ»´�·¸¹m³QÂ�°p´*º�·a°j±Jº¸´TÍ�±
Á`±�Âj±�Ýp·¸º�°j±À½¸±�´*º}¹mÂÕ³*·a°j±�½}º®³*¶�·vÈ�´*½a±�±�Âj²*¹iÂj±�±À½¸¹mÂj²@¾j³*Í�´T¹iÂpº�ß}¹m·�½¸±�¾gÊp¿À±�º�·¸°j±�¾g±�¼`±�Âp¾g±�Âp¿�ÇÉÁw±�·vÈ�±À±ÀÂ
¿�³QÍ9¼w³*Âp±ÀÂ'·¸º�ÛR·a°ÔÊpº�½¸±�¾jÊp¿�¹iÂj²\·¸°j±�ÂÔÊjÍ�Á`±�½2³*¶jÍ9³g¾g¹mÝ`¿�´�·a¹i³*Â`º�·a°`´�·.È�±$Í�Êpºv·:Í�´TÌ*±$·a³-ºa³T¶�·vÈ>´T½¸±5¹mÂ}³*½Æ¾g±À½
·a³9´*¾j´*¼g·�¹m·�·¸³}Âj±�È×½¸±�Ó'Êj¹i½a±�Í9±�Â'·¸º�Î:ðp³*½$·¸°j¹»º�½¸±�´Qº®³QÂ�È�±-·a°j¹iÂjÌ�·¸°p´�·�¹�·>¹iº�·a°p±�Áw±�º®·�È>´�Ç�·a³�¿À³*¼w±-È\¹m·a°
º®Çgº®·a±�Í�º.·¸°p´�·$´T½¸±/ñ�è»â
ç�ò
è�óÀôgçõá¸ñTÛ*°j±�Âp¿�±>Âj³*·5Í�´*Âp´T²Q±�´*Ájµm±�ÁÔÇ�´Aºa¹iÂj²*µi±�¼w±À½Æºa³*Â}³Q½!³*½¸²Q´TÂp¹mÞR´�·a¹i³*Â2ö�·a°p´T·5´*½a±
ñ�÷�åYø�ù9è�ã�Û!Áw±�¿À´*Êpºa±�·a°j±�¹mÂg¶�³Q½aÍ�´T·a¹i³*Â�·a°j±�ÇØ¿À³*Â'·¸´*¹mÂÉÍ}Ê`ºv·�¿Æ°`´TÂj²Q±9È\°p±ÀÂÉ·a°p±�È�³Q½aµ»¾�¹�·Æº®±�µ�¶{¿Æ°p´*Âj²*±RºÀö
´TÂp¾Ù·¸°p´�·�´*½a±ÑáÀæ�äTàyæ�è�åÔú@ºa¹mÂ`¿�±�·a°p±@Êpºa±À½Æº�¾g¹iº¸¿�³�ÃQ±À½�Âj±�ÈûÈ>´�Çgº}·¸³ÕÊpºa±�·a°j±�Íü´TÂ`¾Ë·¸°j±@¹iÂg¶�³*½¸Í�´�·¸¹m³QÂ
¼j½¸³�Ã'¹»¾g±R¾�Î
¯>°j±-Áp´Qº®¹»¿\¹»¾g±�´�¹iº�·a³�°p³'³QÌ}¶�³Q½a±�¹m²QÂ�ÄE³*Áj¹iµi±�Å�³g¾g±\·¸³�´/½¸ÊjÂjÂj¹iÂj²}´*¼j¼jµi¹i¿�´�·¸¹m³QÂ�È\¹�·¸°j³*Êg·�¹mÂ'·¸±À½a¶�±À½¸¹mÂj²

È\¹�·¸°É¹�·Æº�Áp´*ºa¹i¿�¶�ÊjÂ`¿
·a¹i³*Â`´Tµi¹�·vÇJ´*Âp¾J·a³�±�Ög±�¿ÀÊg·a±9·¸°j±�ºa±�ÄE³*Áj¹iµi±9±�Ã*±�ÂQ·/°p´*Âp¾gµi±À½ÆºA·a³�¼w±À½a¶�³*½¸Í�´TÂÔÇ@Âj±�È
·¸´Qº®ÌÉ¹iÂÙ¿�³QÂjÂj±R¿
·a¹i³*ÂËÈ\¹�·¸°Ñ·a°p±1´*¼j¼jµi¹i¿�´�·a¹i³*Â2ÎØ¯>°j±1¹iÂQ·¸±À½¸±�º®·�¹»º�·a°p´T·9È\¹m·a°Ù³*ÂjµiÇÕ´JºaÍ�´*µmµ>ÂÔÊjÍ�Á`±�½�³*¶
´*¾j¾j¹�·¸¹m³QÂp´TµY¿�³QÂpºv·¸½¸´*¹mÂ'·Æº5¹mÂ�·a°j±A³*½¸¹i²*¹iÂp´Tµp¾j±�ºa¹m²QÂ�³T¶�·¸°j±AºaÇgºv·¸±ÀÍý¹m·�Áw±�¿À³*Í�±�º�¿�³*Í�¼jµi±�·¸±ÀµiÇ�´*¾j´*¼g·¸´*Ájµi±\·a³
¶�Êg·aÊp½a±/Âj±�±�¾jº\´*Âp¾�´TµiµY·a°j±/¹iÂg¶�³Q½aÍ�´�·¸¹m³QÂ)¹m·{Í�´TÂp´*²*±Rº�Áw±�¿À³*Í�±�º\´�Ã�´*¹mµ»´TÁjµi±A¶�³*½\Âj±�Èþ¼jÊp½a¼w³Qºa±�º�Î
ÿ�������� �	�
����������������������������������	���������	 ��	�����!���"#��$��
%
�'&)(����*�����
�+���,�.-/���0�	�21�����3�-/��45�6�2��� �	�
��������!-7�0���6���8���	�
���

9 &;:,�	������45��:��<&)(����0�	�)-7����3=����������� 9?>�@�@�@

ACBEDGFEH�IKJML�D<NPO
Q2R�SUT�V�W�T<X�SZY�[�\^]_Va`Zbdc�b�X�W0eGXdf'`gXih5\^]=]jh!SUTdkMlmS�T+`Z]^SUR�nEo�W0T�\=SjV�S6l�X�\^epW�hqW!er[�b�XiY�W�`�Y�]=WX�Sps6t�u�vxw*v y�sgu2z
h5f�`gX#_bZnUS�\=R�n{X�S|f�`6o�o�W0R}`6T�S�[�R'V~\�X,�r��f�Wr��T�b�X#kj\^R'V�S�l!V�cjR�`6ep_b�e?hqWaf�`���W�XdS~V�W�`�]ih5\�X�f�_bMXdf�W
V�cjR�`6ep_�*\^X�c�S�l;X�f�W�h!SUTd]_V�\�X�b�W�]�l��!o'W�S�o�]=W�`6T�W#eaSg�j\=R�n���SUY���W��*X�b�`�TdW��0TdW,`gXdW,V7��W*����f�`�R�n�W,V7��V�W,b�X�TdSgcUW�V7�
R�W0h�Y�S�SUk�b+`6T�W!o�[�Y�]^_bdf�W�V7��W*X��6�i�<S#Y�W�[�bdW*lm[�]�eaS�b�XKbdc�b�X�W0e�bie�[�b�X+X�`�k�WqXdf�W�bdW���f�`6R�nUW�b)\=RUX�S�`����*S�[�RUX
`6R�V�TdW0��W��*XrX�f�W0e�\=R�X�f�W�\=R�lmSUTde�`gX�\^SUR�X�f�W0c��0S�R�X�`�\^R�`�R�V�S���W�T����}W���`6R�S�l�XdW�R�`6R�X�\=�0\^o�`6XdW�Xdf�W,b�W
��f�`6R�n�W�b�\�lKhqW�Y�[�\=]_V�`�n�SjS�V|epS�V�W0])S6l+X�f�W�hqS�T�]=V|SUR~h5f�\=��f�S�[�TEbdc�b�X�W0e�_b�Y�`Ub�W,V~`6R�V~\^lKhqW�kjR�Sgh
f�Sgh�X�S�V�W*X�W���X�W���W�RUX�b5`6R�V�f�`�R�V�]=WMXdf�W�e h5\^Xdf�\=R~S�[�T5V�cjR�`�ep\=��bdc�b�X�W0e|�

¡!T�SU`UV�]=c�bdo'W,`6kj\=R�n{epSUb�XMbdc�b�X�W0e�b�X�f�`gXMf�`6R'V�]^WrW0�UW0R�X�bM`6R�V�h!SUTd]_V~V�cjR�`6ep_�*\^X�c~�*S�o�W�Yjc~`6o�o�]^c�¢
\^R�n�X�f�W�o�T�\^R'�*\=o�]^W�S�ly/£�¤*¥�v_¦�§�sgt/¨|¦�£�¤�¦0w0©�vx¤�z*����f�\=b�o�Td\=R��*\=o�]=W�S6lqo�[�Y�]=\=bdf�`6R�V�bd[�Y�b��*T�\^Y�WalmS�T�W���W0R�X
R�S6X�\����0`gX�\^SURC_b�bdS�nUW0R�W�T�`�];X�f�`gX�\^X�hq`Ub#`6]=TdW,`�V�c~\=RC['b�Wp]=S�R�n�Y'W0lmS�T�W��*S�epo�[�XdW0T�b#W*��_b�X�W�V7�aQ8X�_bMXdf�W
R�`gX�[�T�`6]�h�`�crXdSao�`�b�bK\=R�lmS�T�e�`gX�\^SUR�XdSr\^R�XdW�TdW,b�X�W�V�o'`6TdXd\=W�b`�R�V�X�f�W0T�WE_b!R�S�hqS�R�V�W0TKX�f�`gX�\^X!_b!o�TdW,b�W�RUX
\^R�bdS{e�`6Rjc�V�\��/W0T�W0R�X#�*S�R�X�W*�jX�b5\=R~X�SjV�`�c�ª b5\=R�lmS�T�e�`gX�\^SUR�b�c�b�XdW0e�b���lmT�S�e«W0]=W��*XdT�S�R�_�#e�`6\=]^\=R�n{]=\=b�X�b�XdS
¬ o�['b�f���f'`6R�R�W�]=b��`�R�V�\=R�b�_V�W!S�Y���W,��X�¢8S�T�\=W0R�XdW,V�`6o�o�]=_�0`gX�\^SUR�b.[�R�V�W0T�]=c�\=R�nEXdf�W ¬�® Y�bdW0T��g`6Y�]=W*¢ ® Y�bdW0T���W�T�
¯EW,b�\=n�R|°+`gXdXdW�TdR.�

Q8XE\=b�e�[���f�epS�T�W#V�\�±{�*[�]�X�X�S{`6R�Xd_�*\=o�`6XdW�f�Sgh²[�b�W�T�b5`�TdW#nUS�\=R�naXdS�[�bdW�`�b�[����*W,bdb�lm[�].\=R�lmS�T�e�`gX�\^SUR
b�c�b�XdW�e��iQ8l;Xdf�W�bdcjb�XdW�e³f�`�bqW�R�S�[�nUf�[�bdW0T�b���\^X5\=b�`�]^epSUb�X5�*W0TdX�`�\^R�Xdf�`6X!X�f�W0c�h5\^]=]7\^Rj�UW0R�X!R�W�h´h�`�c�bS�l
[�bd\^R�n�\�X#`6R�V~V�_b��*Sg��W�T�R�W�hµT�W�¶�[�\=T�W0epW0R�X�b�Xdf�`6XEhqW0T�W��*SUeao�]^W0XdW0]=c�[�R�o�T�W�V�_��X�`6Y�]=W��Z�<S�b�`gX�\=b�lmc�Xdf�W,b�W
R�W0h·R�W�W�V�b��.S�[�T�b�c�b�XdW0e¸e�[�b�X�Y�W{`6Y�]=WaXdS|W0�US�]=��W���¹K�jo�W0T�\=W0R��0Wpbdf�Sgh�bZXdf'`gX�bdcjb�XdW�e�bMXdf�`6X��0`6R�R�S6X
W0�US�]=��WZXdW0R'V�X�SpY'W�SUY�b�SU]^W0XdW,V�`�R�V�TdW�o�]=`U�*W,V{Yjc{X�f�W0\=T5epS�T�WMo�SghqW0Tdlm[�].�*SUeao�W*X�\�X�S�T�b0�

Q8X�\=b�V�\=b�`6o�o�S�\=R�Xd\=R�naXdS�bdW0W#Xdf'`gXEbd[���f�`a�g`6]=[�`�Y�]^W#o�T�\=R��*\=o�]=W�`�b�o�[�Y�]^_b�f~`�R�V�bd[�Y�b��*T�\=Y'W�V�SjW,b�R�S6X
f�W0]=o~e�['��f|XdS�`U�0�*SUepeaS�V�`6XdW�X�f�W�o�S6X�W0R�Xd_`6];R�W0W,V�b�S�lK[�b�W�T�b��qQ8XZ_bE`plx`U��X�X�f�`gXM\�liXdf�WrV�W,b�\=n�R�W�T�S6lK`
b�c�b�XdW�e«f'`�b�R�S6XZo�TdSg�j_V�W�V�X�f�WrT�\=n�f�XE\=RUX�W0Tdlx`��0W���\�X#h5\^]=])R�S6XMY'Wao'S�bdbd\=Y�]^W�XdS�`U�0�0W�b�b5Xdf�Wr\=R�lmS�T�e�`gX�\^SUR
R�W0W,V�W�V.��W0�UW0R�\�li\�XZ\=b�Y�[�Td\=W�V|bdS�epW0h5f�W�TdW#\=R�Xdf�W�bdc�b�X�W0e|�+Q8X�h5\^]=]<`�]=bdSpR�S6X�Y�W�o'S�bdbd\=Y�]^WMX�S�n�W*X5W���W0R�X
R�S6X�\����0`gX�\^SUR�b���[�R�]^W,bdb;b�SUeaW+kj\=R�V#S6l�bd[�Y�b��*T�\^o�Xd\=S�R#\=b;`��g`6\=]=`�Y�]^W+\=R#Xdf�WK\^R�X�W0Tdlx`��*WU�;º�S�T7X�f�\=b<o�[�T�o'S�b�WU�,Xdf�W
V�W�bd\=n�R�W�T5h5\^]=]<f�`��UWMXdS���f�SjS�b�W#h5f�_��f|\^R�lmSUTde�`6Xd\=S�R|\=b�S�Y�bdW0T��g`6Y�]=W�`6R�V�h5f�W�R~`6R�V|f�SghµR�S�Xd\^�'�0`6Xd\=S�R�b
h5\^]=]jY'W�o�T�S�o'`6nU`6XdW,VMXdSM[�b�W�T�b��<�»\^XdfrXdf�\=b+b���f�W0epWqb�SUeaWqW*�jX�W0R�bd\^SUR�b)`6T�Wo�SUb�b�\=Y�]=W��6Y�[�XibdSjS�R�W�T;SUT)]_`gX�W0T
]^\=ep\�X�`gX�\^SUR�b5h5\=]^])`6o�o�W�`�T5lmS�T�\=R�b�X�`�R��*W�Y�W���`6[�bdW�\=RUX�W0T�W�b�Xd\=R�n�W0�UW0R�X�b5`�TdW�R�S6XEo�T�S�o'`6nU`6XdW,V�SUT5Y'W,�0`6['b�W
Xdf�W�o�TdSUo�`6n�`gXd\=S�R�bd��f�W�epWM_b�V�\^±{�*[�]^X5XdS�['b�WU��S�T5\=R�W*±{�*\=W0R�X,��W*X��6�

¼ S�epW�h5\=V�W�]^c�[�bdW�V�b�c�b�XdW0e�brf�`���W�W0��W�R�Y�W0W0R ¬ �j_��Xd\=e�b�S�l5Xdf�W�\^TpSgh5R�bd[��0�0W�b�bd��pY'W,�0`6['b�W�]^S�X�b
S6l+[�bdW0T�b5h5\^Xdf��0S�R���_��X�\^R�n�R�W0W,V�b�hqW0T�W�[�bd\^R�n{Xdf�W�e��'Xdf�W0c|�*S�[�]=V|R�S�XEY�W�lm[�TdXdf�W�TE[�o�nUT�`UV�W�V�h5\^Xdf�SU[�X
¬ lmSUTdkj\=R�nU�\^R�XdSa\=R��*SUeao'`gXd\=Y�]=W#o�TdS�V�['��X�b��+Q8X5\=bqX�f�W�bd`�epWZo�f�W0R�SUeaW�R�S�R�Xdf'`gX5S��0�*[�T�bqh5\^Xdf|b�[����*W,bdb�lm[�]
o�T�S6XdS��0S�]_b7]^\=k�WQ�°i��½E�5�5°�S�T<½Z�5¾�¿K��Xdf�W�c�`6T�W+\^R�b�X�`�]^]=W�V�S�R�ep\^]=]=\^SUR�b.S�ljf�SUb�X�b���X�f�W0c#¶�[�_��k�]=cMn�W0R�W0T�`gXdW
R�W0h·R�W�W�V�b#lmSUT�h5f�_��f�R�W0hPbdS�]=[�Xd\=S�R�b�W*��\=b�X�Y�[�Xa`6T�Wp`�]^epS�b�X�\=epo'S�bdbd\^Y�]^WpX�S�`�V�SUo�X�Y'W,�0`�[�b�W�S�l�Xdf�W
�*S�b�X�b�S6l;[�o�n�T�`�V�\=R�npW0�UW0T�c�\^R�X�W0T��*S�R�R�W��*XdW�V�f�S�b�X�`6R'V�X�f�W�T�\=bdkpXdS�\=R�XdT�SjV�[��*W#\=R��*SUeao'`gXd\=Y�\=]^\^Xd\=W�b��

À R�S�Xdf�W�Tq�0S�R��0W0T�R{\=bXdf�WZV�\^±{�*[�]^X�cplmS�T!o'W�S�o�]=W�X�S�w�Ág¥�¥^sU¤�Ág©ds6u8z�\=R{SUT�V�W�TKX�S�e�`6\=R�X�`6\=R{\=R�lmS�T�e�`gX�\^SUR
b�c�b�XdW�epb��;¿;`6T�n�WqV�\=b�XdT�\=Y�[�XdW,V�bdc�b�X�W0e�b)Y'W�]^SUR�nEX�SMV�\��/W0T�W0R�XiW0R�Xd\^Xd\=W�b�Âmo�W0SUo�]=W��6SUTdn�`6R�\=Ã�`6Xd\=S�R�b�Ä/Y�W*X�hqW0W0R
h5f�_��f��*S�]=]_`6Y�S�T�`gXd\=S�R�ep\^nUf�XER�S6XZY'Wro'S�bdbd\^Y�]^WU��lmS�TE\^R�b�X�`�R��*W�Y'W,�0`6['b�W�X�f�W0T�W�`�TdW#X�S�S�ep`�Rjc�[�bdW0T�b0�'S�T
[�bdW0T�b�`6T�WrX�SjS|lx`6T,�<S�T�bd[�o�o�S�TdXd\=R�n�Xdf�W�b�W�Td�j_�*Wp_b#XdSjS|W*��o�W0R�bd\^�UW�S�T�`�]^]V�W0��W�]^SUo'W�T�b#`�TdWpn�SUR�W����CW
R�W0W,V�XdSa��R�V|bdS�]=[�Xd\=S�R�bqX�Spk�W0W�o~b�c�b�XdW0e�b�[�bdW*lm[�].h5\�X�f�S�[�X5Xdf�W�R�W�W�V�lmS�T�X�S�S�er[���f|�*S�]=]_`6Y�S�T�`gXd\=S�R<�

Å ILdÆ5Ç�È�I!É JZÊiO�D<ËÌIÉ�Í�IKJZÈdL�DÏÎCI5Ë�D
�<S�bdS�]=��WqXdf�W5o�TdSUY�]=W0e�b+V�W�b��*T�\=Y'W,V�\=RaXdf�W5o�T�W0�j\=S�[�bibdW��*Xd\=S�R.��Xdf�W5o�SUb�b�\=Y�\=]^\^X�c�S���W�TdW,V�Yjcr¾�S�Y�\=]^WEÐ!S�V�W
XdS|W0R'�0`6o'b�[�]_`gX�Wa�0S�Rj��W�R�Xd\=S�R�b#`6R'VC`UV�`6o�X�o�T�S6X�S��*S�]_bEXdS|R�W0h·R�W�W�V�b#_b#W*�jXdT�W0epW�]^c��g`�]^[�`�Y�]=W�� ¼ S|S�[�T
n�S�`6]<_bZXdS�[�b�Wp¾~SUY�\^]=W{Ð!SjV�W�XdS�ep\^R�\^ep\=Ã0WrXdf�WaRj[�e�Y�W0T#S6l�0S�Rj��W�R�Xd\=S�R�b�Xdf�`6XMhqS�[�]_V~T�W�¶�[�\=TdWre�[���f
`6R�Xd_�*\=o�`6Xd\=S�R�SUT�e�['��f��*SU]^]_`6Y�S�T�`gX�\^SUR.����f�_bpb�SU]^[�Xd\=S�R�_b�R�S6XpTdW�]=`6XdW�V�XdSC`�o�`6TdXd_�*[�]=`�T�XdW,��f�R�SU]^SUn�c
Âx¾~W,bdbdW0R�n�W0T�b���¾~S�Y�\^]=W ® Y���W��*X�b��U¾~SUY�\=]^W À n�W0R�X�b0��b�X�TdSUR�n#S�T+hqW�`6k�eaSUY�\=]^\^X�c���W*X��6�
Ä�Y�[�XXdS�X�f�W5n�W�R�W0T�`6]

Ñ~Ò�Ó�Ô^Õ=Öp×!Ò�Ø�Ö�Ù'Ú6Û�Ú�Ø�Ô=Ü�Ý|Þ�ß�ÒgàqÖ0áUÖ0Û,â�Ô^ãZÔ_äEå�Ò6ãZå�Ö�æ*Ö,ädä�Ú6Û�Ô=Õ^ç�ä�ã�Û�Ú�Ô^ÜUèUãdémÒ�Û�àqÚ�Û�Ø�ãdÒ�Ô^ÝpÙ�Õ=Ö0ÝpÖ0å�ã#à5Ô�ã�è�Ú6Õ=Õ
æ*ê�Û�Û�Ö0å�ã�Ñ~Ò�Ó�Ô=Õ=Ö�×!Ò�Ø�Ö#Ö�å�ájÔ=ÛdÒUå�ÝpÖ0å�ã�ä�Þ

ë2åaÝ�Ú�å�çaæ0ÚUä�Ö,ä;àqÖ�ãdè�Ô^å�ì�ãdè�Ú6ãÔ^ãKÔ=ä+Ù�ÒUä�ädÔ^Ó�Õ=ÖqãdÒ�Ø�Ö,ä�Ô=Ü�åaÔ=å�émÒ�Û�Ý�ÚgãdÔ=Ò�åpädçjä�ãdÖ�Ý�ä+à5Ô�ã�è�Ò�ê�ãKÜ�Ô=á�Ô=å�ÜMãdÒjÒ
Ý�ê�æ�èpÚgãdãdÖ�åUã�Ô^ÒUåaãdÒ�æ*ÒUÝpÝ�ê�å�Ô_æ0Ú6ãdÔ=Ò�åaÔ=ä�ädê�Ö�äiÔ=å�ÚMí�Û�ä�ã+Ù�è�ÚUä�Ö5Ó�ê�ã+ãdÒ�è�Ú�áUÖqädÒ�ÝpÖ5ìjÔ^å'ØrÒ�é�Ñ~ÒUÓ�Ô=Õ^ÖZ×!Ò�Ø�Ö
Ö*î�Ö�æ0ê�ãdÔ=Ò�å�Ö�åjá�Ô=Û�Ò�å�ÝpÖ0å�ã<Ô=å�ãdÖ�Ü�Û�ÚgãdÖ,Ø#à5Ô�ã�è�Ô=å�ãdè�Öqä�ç�ä�ãdÖ�ÝµÔ^ã�ädÖ0Õ^é�Þ;ï�è�ÖÓ�ÚUä�Ô_æ+à�Ú�çEã�ÒEæ*ÒUÝaÝrê�å�Ô_æ0Ú6ãdÖKà5Ô^ãdè
ä�ê'æ�è�ädç�ä�ã�Ö0Ý�ä�Ô=ä5ãdÒ�ä�Ö�å�Ø|Ñ~Ò�Ó�Ô^Õ=Ö�×!ÒjØ�Ö#émÒ�Û5Õ=Òjæ�Ú6Õ7Ô=å�ãdÖ0Û�Ú�æ*ãdÔ=Ò�å�ä�Þ

ï�è�Ö�ädÖ�Ô=åUã�Ö0Û�Ú�æ*ãdÔ=Ò�å�ä�æ�Ú6åðÒ�å�Õ=ç�ã�Ú6ìUÖ~Ù�Õ=ÚUæ*Ö~Ó�Ö*ã�àqÖ0Ö�åðãdè�Û�Ö�ÚUØ�äpãdÛ�Ô=Ü�Ü�Ö�ÛdÖ,Ø�Ójç�Ñ~Ò�Ó�Ô=Õ=Ö}×!Ò�Ø�Ö�Ú6å�Ø
ájÔ=ädÔ^Ó�Õ^Ö�Ù�Ú�Û�ã�ä5Ò6éiã�è�Ö�ädÖ0Û�á�Ô_æ*Ö�ñxÔ�ã�ä�Ô=åUã�Ö0ÛdéxÚ�æ0Ö,ò�Þ�ï�è�Ö�Ô=å�ãdÖ�Û�éxÚUæ*Ö#ã�çjÙ�Ô_æ0Ú6Õ=Õ=ç�à5Ô=Õ^Õ<Ú�Õ^Õ=ÒgàµÖ*îjãdÖ�Ûdå�Ú�Õ<ädÒ6é�ã�à�Ú6Û�Ö
Ö0å�ãdÔ^ãdÔ=Ö�äZã�Ò�Û�Ö*ã�ÛdÔ=Ö0áUÖrÚ6å'Ø�ê�Ù/Ø�Ú6ãdÖaÔ^å�émÒUÛdÝ�Ú6ãdÔ=Ò�å�ÒUÛEã�Ò|àqÚ6ã�æ�è�Ö�á�Ö0å�ã�äZÒ�æ�æ*ê�Û�Ô^å�Ü�Ô=å�ã�è�Öaädç�ä�ã�Ö0Ý|Þ�ï�è�Ô_ä
Ñ~Ò�Ó�Ô^Õ=ÖZ×!Ò�Ø�Ö�æ0Ú�åaÓ�Ö5à5Û�Ô�ãdãdÖ0å�Ö�Ô�ã�è�Ö0ÛÓ�ç�ãdè�Ö�ädÖ0Û�ájÔ=æ0Ö�Ø�Ö�ädÔ=Ü�å�Ö�Û+Ò�Û+Ójçræ0Ò�å�ädê�ÝpÖ0Û�äiÔ�é/ã�è�Ö0çrè�Ú�á�Ö5ädÙ'Ö,æ*Ô_Ú6Õ
å�Ö0Ö,Ø�ä5Ú6å'Ø�æ�Ú6å�å�Ò�ã�æ*Ò�Õ=Õ_Ú6Ó�Ò�Û�ÚgãdÖZà5Ô�ã�è�ãdè�Ö�ädÖ0Û�ájÔ=æ0ÖMØ�Ö,ä�Ô=Ü�å�Ö0Û�Ó�ê�ã�è�Ú�áUÖMÚaÜUÒ�Ò�Ø�ê�å�Ø�Ö�Û�ä�ã�Ú�å�Ø�Ô=å�ÜaÒ6é)ãdè�Ö
Ô^å�ã�Ö0ÛdéxÚ�æ*ÖUÞ)óå�æ0Ú�Ù�ädê�Õ=Ú6ãdÔ=å�Ü�Õ=Ògà»Õ=Ö0á�Ö�Õ�æ0Ò�ÝpÝ�ê�å�Ô=æ�Úgã�Ô^ÒUå{Ô^å�Ñ~Ò�Ó�Ô^Õ=Ö�×!Ò�Ø�ÖZÜ�ê�Ú�Û�Ú�å�ãdÖ0Ö,ä+ã�è�Úgãqãdè�Ö#ädçjä�ãdÖ�Ý
æ0Ú�å�Û�Ö0Ý�Ú6Ô=å�ãdè�Ö�ä�Ú6ÝpÖ#Ö0áUÖ0å�Ô�é)ãdè�Ö�ê�å�Ø�Ö0Û�Õ=ç�Ô=å�Üpå�Ö0ã�à!ÒUÛdì�Ö�á�Ò�Õ=á�Ö,äqÔ^å|ê�å�Ù�ÛdÖ,Ø�Ô=æ*ã�Ú�Ó�Õ^Ö�à�Ú�ç�ä0Þ

ô ê�Û�Ú6ã�ãdÖ�ÝpÙ�ã�ã�Ò�Ø�Ö,ä�Ô=Ü�å�Ô=å�ãdÖ�Û�éxÚUæ*Ö�ä�émÒ�Û|Ø�Ô=ä�ãdÛ�Ô=Ó�ê�ãdÖ,Ø�ädÖ0Û�á�Ô_æ*Ö,ä{Ú6å'ØðãdÒ�Ø�Ö�ä�æ*Û�Ô^Ó�Ö�ã�è�Ö0Ýõà5Ô^ãdè´Ú
æ*ÒUÝaÙ�Õ^Ö0îCÔ=åUã�Ö0ÛdéxÚ�æ0Ö{Ø�Ö*í�å�Ô�ã�Ô^ÒUå�Õ=Ú�å�Ü�ê�Ú�Ü�Ö~ö ÷,ø!è�ÚUä�Û�Ö0á�Ö�Õ^Ö,Ú�Ø�ãdè�Ú6ã�Ô^ã�Ô=ä�Ú|Ù�ê�ù0ù�Õ^Ô=å�Ü�Ú�å�Ø�Ø�Ö�æ0Ò�ê�Û�Ú6ÜUÔ^å�Ü
ã�ÚUä�ì/ú7Ý�Ú6Ô=å�Õ=ç~Ó'Ö,æ0Ú6ê'ä�Öaà!Öaè�Ú�áUÖ�ãdÒ�Ü�ê�Ö�ä�äEà5è�Ô_æ�è�Ö�á�Ö�åUã�äMà5Ô^Õ=ÕiÓ'ÖpÔ=åUã�Ö0Û�Ö�ä�ãdÔ=å�Ü{émÒUÛ�ä�Ö�ÛdájÔ_æ*Ö�ê'ä�Ö�Û�äMÚ6å�Ø
à5è�Úgã�à5Ô=Õ^ÕÓ'Öpã�è�Ö�ÝpÒUä�ã�æ0Ò�åjá�Ö�å�Ô=Ö0å�ã�àqÚ�ç|ã�Ò|ÚUæ0æ0Ö�ä�ä#Ô^å�émÒUÛdÝ�Ú6ãdÔ=Ò�å.Þ�û�ÒUÛ#ãdè�Ô_ä�Û�Ö�ÚUä�ÒUå�à!Öpã�è�Ô=å�ì�ã�è�Úgã
Ô^å'ä�ã�Ö�Ú�Ø�Ò�éMÓ�Ö0Ô=å�Ü�è�Ô_Ø�Ø�Ö�å»Ó'Ö�è�Ô^å'ØðÔ^å�ãdÖ�Û�éxÚUæ*Ö,ä0â�ä�ç�ä�ãdÖ�Ýpä�ä�è�ÒUê�Õ_Ø�Û�Ö0Ý�Ú�Ô^åðÒ�Ù�Ö0å�émÒUÛ{Ô^å'ä�Ù�Ö�æ*ãdÔ=Ò�å»Ú6å�Ø
Ú6Õ=Õ^Ògà²Úgã�ã�Ú�æ�è�ÝpÖ�åUã5Ò�éiÑ~ÒUÓ�Ô=Õ^Ö�×!Ò�Ø�Ö�Þ+ë8éiàqÖMÛ�Ö0ÝpÒgáUÖEã�è�Ö#Ò�ê�ã�Ö0Û�ädè�Ö0Õ=Õ.Ó�Ö*ã�àqÖ0Ö0å|Úpä�ç�ä�ãdÖ�ÝüÚ6å'Ø{émÒUÛdÖ�Ô^ÜUå
ãdè�Û�Ö�ÚUØ�ä�â�ã�è�Ö0ç�à5Ô=Õ^Õ/Ó�ÖMÚ�Ó�Õ=ÖEã�ÒrÚ�æ�æ*Ö,ädä!Ô^å�émÒ�Û�ÝpÚ6ãdÔ=Ò�å{ÝpÒUÛdÖMØ�Ô^Û�Ö�æ*ãdÕ=ç�Þië2å�émÒUÛdÝ�Úgã�Ô^ÒUå{Ô^ã�ädÖ0Õ^é;ä�ã�Ô^Õ=Õ/å�Ö0Ö,Ø�ä!ãdÒ
Ó'Ö�Ö�å�æ0Ú�Ù�ädê�Õ=Ú6ãdÖ,Ø�Ú6ã5ãdè�Ö�ÒUÓ�ý�Ö�æ*ã�Õ^Ö�á�Ö0Õ7Ó�ê�ã�ãdè�Ö�Ü�Û�Ú6åjê�Õ_Ú6Û�Ô�ã�çpÔ_ä�ä�Ý�Ú�Õ^Õ=Ö0Û,ÞKï�è�Ö�æ*ÒUå�ädÖ�þ�ê�Ö0å'æ*Ö#Ô=äqã�è�Úgã�Ô^ã
Ó'Ö,æ*ÒUÝaÖ,ä�Ù'Ò�ädädÔ=Ó�Õ^ÖMã�Ò�à!ÒUÛdì�à5Ô^ãdè~ÚaÝ�ê�æ�è|Õ_Ú6Û�Ü�Ö�ÛqädÖ*ã�Ò�éiÚUæ�ãdÔ=Ò�å'äqÚ�å�Ø�Ö0áUÖ0å�ã�ä�Þ

Ñ~Ò�Ó�Ô=Õ=ÖC×!ÒjØ�Ö�Úgã�ã�Ú�æ�è�Ö,Ø�ã�Ò�ãdè�Ô_ä�ìjÔ=å�Ø�Ò6é�ä�ç�ä�ãdÖ0Ýÿä�è�ÒUê�Õ_Ø�å�Ò6ã{Ø�Ô_ä�ã�ê�ÛdÓðÔ^ã�äpémê�å�æ�ã�Ô^ÒUå�Ú6Õ=Ô�ã�çUâqãdèjê�ä
ÛdÖ,ä�ã�ÛdÔ_æ�ã�Ô^ÒUå�äiÚ6Û�Ö�å�Ö�æ0Ö�ä�ädÚ�ÛdçUÞ ô å�ÖqémÖ�ÚUä�Ô=Ó�Õ=ÖqÙ�Ò�Õ=Ô_æ*ç�Ô_ä)ãdÒ�Õ=Ö*ãiémÒUÛdÖ�Ô^ÜUårè�Ú�å�Ø�Õ=Ö0Û�äiÔ^å'ä�Ù�Ö�æ*ãKÒ�Ó�ý�Ö,æ�ã�ä)ã�è�Û�Ò�ê�ÜUè
ãdè�Ö�Ô^Û�Ô=å�ãdÖ0ÛdéxÚ�æ0Ö�âjÚ6å�Ø�Ô^å'ä�ã�Ú6Õ=Õ��dè�ÒjÒ�ì�ä���ãdè�Ú6ãqà5Ô=Õ^Õ/Ó�ÖEã�ÛdÔ=Ü�ÜUÖ0Û�Ö�Øpà5è�Ö�å�ÚrÜ�Ô=á�Ö�å{Ò�Ó�ý�Ö,æ�ãqÛdÖ,æ*Ö0Ô=á�Ö,äÚrÜ�Ô=á�Ö�å
ÝpÖ�ä�ädÚ�Ü�ÖZñxÒ�å�ÖqÒ6é'Ô�ã�äiÝaÖ0ãdè�Ò�Ø�ä)Ô_ä+æ0Ú�Õ^Õ=Ö�Ø�ò*Þ ô ã�è�Ö0ÛiÛ�Ö�ädÖ�Ú6Û�æ�è�Ö�Û�äKö �6ø�è�Ú�áUÖ!Û�Ö�ÚUæ�è�Ö�Ø�ãdè�Ö�ädÚ�ÝpÖqæ0Ò�å�æ0Õ^ê�ädÔ=Ò�å�ä
Ú6å�Ø|Ô_Ø�Ö�åUã�Ô�í'Ö�Ø�ãdè�Ö�å�Ö0Ö,Ø�ãdÒ{àqÒ�Û�ì�Ú6ã�ãdè�Ö�Ò�Ó�ý�Ö,æ�ãEÜUÛ�Ú�å�ê�Õ=Ú�ÛdÔ^ã�ç�Ú6å'Ø�ã�Ò�ãdÛ�Ô=Ü�Ü�Ö�Û5Ö0áUÖ0å�ãEè�Ú�å�Ø�Õ=Ö0Û�ä5à5è�Ö0å
Ò�Ó�ý�Ö,æ�ã�ä5Ú6Û�ÖMÛ�Ö�æ0Ö0Ô=ájÔ^å�ÜaÝpÖ�ä�ädÚ�Ü�Ö,ä0Þ

���	��
�������������������������������! ��
ô å�Ö�áUÖ0Û�ç�ã�ç�Ù�Ô=æ�Ú6Õ)Ö*î�Ú6ÝpÙ�Õ=ÖrÒ�éÕ_Ú�æ�ì|Ò6éKÔ=å�émÒ�Û�Ý�Úgã�Ô^ÒUå�Ý�Ú6å�Ú�Ü�Ö�ÝaÖ�å�ãZÚ6å�Ø�Ó�Ú�Ø�Ö0áUÖ0å�ãZè�Ú�å�Ø�Õ=Ô^å�Ü�Ô_äZãdè�Ö
Ù�Û�Ò�Ó�Õ=Ö0Ý�Ò�éEÓ�Û�Ò�ì�Ö�å�Õ=Ô^å�ìjäaÔ=å�ã�è�Ö#"CÒUÛdÕ_Ø$"»Ô_Ø�Ö#"}Ö0Ó.Þðï�è�Ô_ärÙ�è�Ö0å�ÒUÝpÖ0å�ÒUå�è�Ú�Ù�Ù�Ö0å�äpÚ6Õ=Õqãdè�Ö�ã�Ô^ÝpÖ
Ó'Ö,æ0Ú�ê�ä�ÖZÙ'Ö�Ò�Ù�Õ=Ö#Ú6Û�Ö�ÛdÖ0émÖ0Û�Ö0å�æ0Ô^å�Ü�Ò�ÛqÓ�Ò�ÒUìjÝpÚ�ÛdìjÔ=å�Ü�Ô=å�ãdÖ0Û�Ö�ä�ãdÔ=å�ÜrÙ�Ú6ÜUÖ�ä+ã�è�Úgã5Ø�Òrå�Ò6ã�è�Ú�á�ÖMÚ�Ø�Ö0í�å�Ô^ãdÔ=á�Ö
Õ^Ò�æ�ÚgãdÔ=Ò�årÓ�ê�ãKæ0Ú�årÝpÒgáUÖÒ�ÛiÓ�Ö5Ø�Ö�ä�ãdÛ�Ògç�Ö,Ø�à5è�Ö�årädÔ�ã�ÖqÝ�Ú�å�Ú6ÜUÖ0Û�ä<Û�Ö0ÒUÛdÜ�Ú6å�Ô=ù0Ö+ã�è�Ö0Ô=ÛKØ�Ò�æ*ê�ÝaÖ�å�ã�ä�Þ)Ñ~ÒUÓ�Ô=Õ^Ö
×!Ò�Ø�Ö�àqÒ�ê�Õ_Ø~Ó�ÖaÚ�å�Ö0Õ=Ö0Ü�Ú6å�ãEà�Ú�ç�ãdÒ�ädÒ�Õ=á�Ö�ãdè�Ô_ä#Ø�Ô&%{æ0ê�Õ�ã#Ù�Û�Ò�Ó�Õ=Ö0Ý#'5à5è�Ö�åCÚ�ê�ä�Ö�ÛEÔ_äMÔ^å�ãdÖ�ÛdÖ,ä�ã�Ö�Ø~Ô=å�Ú
Ù�Ú6ÜUÖ�â�è�Ö#à5Û�Ô�ã�Ö�ä�Ú�å�Ú�Ü�Ö�åUã�Ú�å�Ø�ädÖ0å'Ø�ä5Ô^ã5ãdÒaãdè�Ö�ädÖ0Û�á�Ö�Û�Þ("»è�Ö�å|Ù�ÛdÒUÙ'Ö�ÛdÕ=ç�è�ÒjÒ�ìUÖ�Ø�ãdÒpã�è�Ö�ä�Ö�ÛdáUÖ0Û,â�ãdè�Ö
Ú6ÜUÖ0å�ã5Ô=ä5Û�Ö�ÚUØ�ç�ã�Ò�Ó'Ö�Ö0îjÖ,æ*ê�ã�Ö�Ø�à5è�Ö�å�ã�è�Ö�Ù�Ú�Ü�Ö#Ô_ä5ÝpÒgá�Ö�Ø�Ò�Û�Ø�Ö0Õ=Ö*ãdÖ,Ø|Ú6å�Ø|æ0Ú�å~Ø�Ò�à5è�Úgã�Ö0áUÖ0Û5ä�Ö�Ö0Ý�ä
Ú6Ù�Ù�ÛdÒUÙ�ÛdÔ_Úgã�ÖEã�Òaãdè�Ö�ê�ädÖ0Û,âjémÒ�Û5Ô=å�ä�ã�Ú�å�æ*Ö�ädÖ0å�Ø�Ú6å�Ö*)8Ý�Ú6Ô=Õ.Ò�Ûqí�î�èjç�Ù�Ö0Û�Õ=Ô^å�ì�ä�ÒUå�ã�è�Ö�æ*Õ=Ô^Ö�å�ãEä�Ô_Ø�Ö�Þ

ï�è�Ö}ädç�ä�ã�Ö0Ý�ä�Ù'Ö�Û�émÒUÛdÝpÔ=å�Ü�Ø�Ô=ä�ãdÛ�Ô^Ó�ê�ãdÖ,Ø´ä�æ�è�Ö�Ø�ê�Õ^Ô=å�ÜðÚ6å�Ø²Ø�Ô=ä�ãdÛ�Ô=Ó�ê�ãdÖ,Ø�Û�Ö�ädÒ�ê�Û�æ*ÖCÚ6Õ=Õ^Ò�æ0Ú6ãdÔ=Ò�å´Ú�ÛdÖ
Ú6Õ_ä�Ò�Ô^å�ãdÖ�ÛdÖ,ä�ã�Ô^å�Ü�æ0Ú�å�Ø�Ô_Ø�Úgã�Ö�ä�Ó'Ö,æ0Ú6ê'ä�Ö~ã�è�Ö0Û�ÖCÚ�ÛdÖCÒ6é�ã�Ö0å�Ý�Ú6åjçðØ�Ö0Ù�Ö0å'Ø�Ö0å�æ0Ô^Ö,ä�Ó'Ö0ã�à!Ö�Ö0å�Û�Ö�ädÒ�ê�Û�æ*Ö,ä0Þ
ï�è�Ö�ädÖpØ�Ö0Ù�Ö0å�Ø�Ö0å�æ0Ô^Ö,ä#Ô^ÝpÙ�Õ=ç~émÛ�Ö�þ�ê�Ö0å�ã�æ*ÒUå�ä�ãdÛ�Ú6Ô=åUã#æ�è�Ö�æ�ìjÔ=å�Ü|Ú6å�ØCæ*Ò�ÝpÙ�Õ=Ö*î�Ö�á�Ö�åUã#è�Ú�å�Ø�Õ=Ô^å�Ü�ã�Ò�ìUÖ0Ö0Ù
Ô^å�émÒ�Û�ÝpÚ6ãdÔ=Ò�å»ê�Ù�ãdÒ�Ø�ÚgãdÖUÞ Ñ~ÒUÛdÖ�Ògá�Ö�Û�Ô�ã|Ô=ä�á�Ö�Ûdç�Ø�Ô+%�æ0ê�Õ^ã�ã�Ò�émÒ�Û�Ö�ädÖ0Ö�à5è�Ô=æ�è²æ*Ò�å'ä�ã�Û�Ú�Ô^å�ã�ä{à5Ô^Õ=Õ#Ó'Ö
Ô^ÝpÙ�ÒUädÖ�Ø~Ójç|ê�ädÖ0Û�äEÚ�å�Ø�Ó�ê'ä�Ô=å�Ö�ä�äZÙ�ÛdÒ�æ0Ö�ä�ä�Ö,ä5Ò�å�Ö,Ú�æ�è�Û�Ö�ädÒ�ê�Û�æ0Ö�Þ-,qê�ãMÔ�ã#Ô=äMæ*Ö�Û�ã�Ú6Ô=å~ãdè'ÚgãMæ0Ò�å�ä�ãdÛ�Ú6Ô=å�ã�ä
Ú6å�Ø}Ø�Ö�Ù'Ö�å�Ø�Ö0å'æ*Ô=Ö�ä�Ø�Ò|Ö0áUÒ�Õ=á�Örà5è�Ö0å}Ù'Ö�Ò�Ù�Õ=Ö�Ú6å�Ø�ãdè�Ô^å�Ü�ä#ÝpÒgá�ÖpÚ6å�Ø}æ�è�Ú6å�Ü�Ö�Þ."»Ô�ã�è�Ù'Ö�Ò�Ù�Õ=Öpè�Ú�ájÔ^å�Ü
Ù'Ö�Û�ädÒ�å'Ú6ÕjÖ0Õ=Ö�æ*ãdÛ�Ò�å�Ô_æÒUÛdÜ�Ú6å�Ô=ù0Ö�Û�ä)Ú6å'Ø�Û�Ö�ädÒ�ê�Û�æ*Ö,ä;ädê�æ�èpÚ�äiÙ�Õ_Ú�æ0Ö�ä)Ò�Û+áUÖ0è�Ô_æ*Õ=Ö�ä)è�Ú�ájÔ=å�ÜZãdè�Ö�Ô^ÛKÒgà5åaÚ6ÜUÖ0å�Ø�Ú
Ô�ã#Ô_äZÖ,Ú�ädç�ãdÒ�Ô^Ý�Ú6ÜUÔ^å�Ö�è�Ògà æ0Ò�ÝpÙ�Õ=Ö*î~ãdè�ÖrÔ=å�ãdÖ0Û�Û�Ö0Õ_ÚgãdÔ=Ò�å'äZæ�Ú6å�Ó�ÖaÚ�å�Ø�è�Ògà Ô^å�ãdÖ�ÛdÖ,ä�ã�Ô^å�Ü�Ô^ãMàqÒ�ê�Õ=Ø�Ó'Ö
ãdÒaÙ�Û�Ò�Ü�Û�Ú6ÝPÚ6ÜUÖ0å�ã�äãdÒpæ�è�Ö,æ�ì{æ*Ò�å'ä�ã�Û�Ú�Ô^å�ã�äqÚ6å'Ø�Ø�Ö0ãdÖ�æ*ã5Ô^å�æ0Ò�å�ädÔ_ä�ã�Ö0å�æ0Ô^Ö,ä0Þiû�ÒUÛqÔ=å�ä�ã�Ú�å�æ*Ö���Ýrçaà5Ô^émÖ�Ú6å�Ø
ëqæ�Ú6å�å�Ò6ãEÚ�æ�æ*Ö�Ù�ã5ã�à!Ò�Ô=åjájÔ�ã�ÚgãdÔ=Ò�å'ä�émÒ�Û5ã�è�Ö�ä�Ú6ÝpÖ�Ø�Ú�ç/�aÒ�Û0��ãdè�Ö�ÛdÖ�Ýrê�ä�ãEÚ�Õ^à�Ú�ç�ä�Ó'Ö�Ò�å�Ö#émÛ�Ö0Ö�ädÖ0ÝpÔ=å�Ú6Û

1�232546287#9:287<;�=?>/@�ACB
DFEHG =?I E0JKELE 7$I E 1�>M@�NC1�O�1QPR@ E ;MS�2T@ ELE0G 2VU E =8@�P+WX>Y=Z73>8257 E U G 2 G =5@[U\281Q] E ;TU^P+S G`_ 254aOCN/S E 1Q@

J N/S G =8@�7�2.7�2ZSQP+25702Zbc4d2 J P+WXP&S�>dU^PXW+WKeC7<;01 E =ZWXPR@�SQP _^ELf =Z4dO�W E @�2ZbgS G PX@\]3P+7<;gh3P+7�@�N _iG ;�P+I E 1i@ E ;/284j=ZPX7C@
=8@	4.N�W&SQP+4 E ;/PX=j;�PX@�S�1QP J N/S�PX287chK@�>/@�S E 4k=8;/4dPX7�PR@�SQ1Q=ZS�PX287chC@�28NC1 _LEl_ 23; E 4d=87C=Zm E 4 E 7nSoh E W Ep_ SQ1�257�P _q_ 284ar
4 E 1 _*E h(@ _ P E 7nS�P+e _0_ 28WXWX= J 251Q=ZS�PX287ch E S _ B�s tVuvB:w�281[S G PR@x1 E =5@�257YU E =81 E0y N�P+S E�_*E 1�SQ=8P+7MS G =VSxS G�E 1 E PR@[=
WX=81�m El_ WX=5@�@	28b�@�N _iG P+4dOK281�SQ=Z7nSzO�1Q2 J W E 4d@^=87C;H7�2ZS�{�NC@�S-=.b E U|PX@�28WR=VS E ; _ =5@ E @LB

}a~��C���-�������a���3�3�z~��
DFE @ G 28NCWX; J<E = J W E SQ2He<7C;Y@�=ZS�PR@�b�= _ S�251�>:@�28WXN/S�PX287<@lb�281lS G�E @ E OC1�2 J W E 4j=VS�P _ =ZO�O�WXP _ =VSQP+257C@lU^P&S G 28N�1
=ZO�OC1�2n= _iG 2Zbc9:2 J P+W E�� 2/; E =8@�b�251 E P+m57 E I E 7nS G =87C;/W E 1i@LB(� G PR@!7 E U�=ZO�OC1�2n= _iG PX@ _*E 1�Si=ZPX7�W+>a7�28S!b�1 ELE 28b
O�1i= _ SQP _ =ZW/O�P+S�b�=8W+WR@ J N�S!1 Eo_*E 75S�1 E @ E =81 _iG 287j9:2 J P+W E�� 2/; E^G =5@�=ZWX1 E =8;/>qOC1�25O<2n@ E ;xb�=8P+1QW+>.m8232/;d=Z7C@�U E 1Q@
b�281^4d25@�S^2Zb�S G�E 4#�

���o� 9 E 4d281Q>�N<@�=8m E �\��2jWXPX4aP+S-S G�E[_ 287C@�N�4dO/S�PX287:28b(@ E 1QI E 1z4 E 4d281Q> J > _ NC@�S�254 E 1Q@p� E I E 7nS G =87/r
;/W E 1i@xU E�_ =87$=ZO�O�WX>YO�1QP+7 _ P+OCW E @x2Zb-= _L_ 28N�7nS�PX7�m<h�7C=84 E WX>M@ E WXW\@ E 1QI E 1x4 E 4d281Q>FS�2:S G�EH_ NC@�SQ284 E 1[S�2
P+7 _ P+S E @�OC=Z1QP+7Cm.P+SpB

���8�d� E 1�b�251�4j=87 _*E ����2Y] ELE O�S G�E 4j=8P+7�@�>/@�S E 4�1�NC7�7�PX7�mCh�P&Sj4[N<@�S07�28S J<E 2VI E 1�WX25=5; E ; J >$S G�E
E IV=ZWXNC=ZS�PX287$28b E I E 7nS G =87C;/W E 1i@LB DME:_ =Z7�;/2FP+SdU^P&S G O�1QPX281QP&S�>M4 Ep_iG =87�PX@�4j@Lh!U^P&S G ;/PR@�SQ1�P J N/SQP+257�28b
S G�E WX25=5;:S�2�4d281 E S G =Z7M287 E @ E 1QI E 1l=87C; J >:] EpE O�PX7�mHS G�Ej_ 287C;/P+S�PX287<@l@�PX4aOCW E � E IV=ZWXNC=VSQP+7�m _ 254dO�W ELf
_ 257C;/P+S�PX287C@\b�251z=.WX2ZSz28b E I E 75S�r G =Z7C;/W E 1i@!S�20; Eo_ PR; E P&b�S GCE > G =?I E S�2 JKE @�Si=Z1�S E ; _ =87 y N�P _]3W+> J<Eo_ 284 E
E*f S�1 E 4 E W+> GCE =?I3> � B

� t ��� Ep_ N�1QP&S�>�� � 254 E!E 73I3P+1Q287�4 E 75Si@gWXP+] E!� =?IV=	O�1Q2VI3PX; E =ZN/S G�E 7nS�P _ =ZS�PX287x=87C;�I E 1�P+e _ =ZS�PX287�2Zb3b�251 E P+m57
_ 2/; E B-�zN/S G�E 7nSQP _ =VS�PX287FPX@-NC@�NC=ZWXW+> J =5@ E ;#287 E 7 _ 1Q>3O/S�PX287�=87C;�; E S E 1�4dPX7 E @�U G�E S G�E 1-S G�Ed_ 2/; E 281QP+m5P&r
7C=VS E @�b�1Q2846=[S�1QNC@�S E ;�@�25N�1 _*E =87C;0I E 1QP&e _ =VSQP+2570PR@^=[1QN�7nS�PX4 E 4 Ep_iG =Z7�PR@�4�SQ2 E 7C@�N�1 E S G =VS^N�7nS�1QNC@�S E ;
_ 2/; E ;/2 E @z7�2ZS^O E 1�b�281Q46P+WXW E m5=8Wg28O E 1i=VSQP+257C@LB

� G�E 1 E =81 E =ZWR@�2`@�254 E O�1Q2 J W E 4j@HS G =ZS#@ ELE 4�4a251 E b�N�7C;�=84 E 7nSQ=8W�=87C; _iG =ZWXW E 7�m8PX7�m$U^P+S G S G PR@
=ZO�OC1�2n= _iG �

�� n�j¡ 7C@�O Ep_ S�PX287�=87C;`P+7C@�SQ=8W+WR=VSQP+257¢2Zb E I E 7nS�r G =Z7<;/W E 1Q@j@�284 E U G =VS _ 287nS�1i=8;/P _ SjS G�E O�1QPX7 _ PXO�W E @j28b
E 7 _ =ZOC@�N�WR=VSQP+257TS G =VSxU E 7 ELE ;M@�2#4[N _iG PX7YWX=81�m E @�>/@�S E 4j@Lh�S G�E > _ 25N�WR;FPX7 _ 1 E =8@ E S G�E ; E O E 7C; E 7 _ P E @
J<E S�U EpE 7#@�N J rv@�>/@�S E 4j@^=Z7<;H4j=8] E S G�E 4£4d281 E ;/P&¤ _ N�W&S-S�2d4j=Z7C=8m E B

��¥8� DME 7 EpE ;�1 Eo_ PXO�1Q2 _ =ZW�4 Ep_iG =87�PR@�4j@�S�2 E 7C@�NC1 E S G =VS E I E 7nS G =Z7<;/W E 1Q@^;�2a7C2ZS J<Eo_ 254 E 2 J @�28W E S E
J >jS G�E = _ SQP+257C@	2Zb(NC@ E 1i@�PX7�S G�E P+1-2VU^7 E 7nI3PX1�257�4 E 7nSQ@pB

��¦5�q¡ 7Y= _ 284dO�W E*f @�>/@�S E 4§U^P&S G 4d=873>�P+7nS E 1Q1 E WX=ZS E ;MPX7/b�281Q4j=VSQP+257C@q=Z7C;MWX2ZSi@q2Zb E I E 7nS�r G =Z7<;/W E 1Q@
S G�E 1 E_ 25N�WX; J<E	_ PX1 _ N�WR=Z1�; E O E 7C; E 7 _ P E @�W E =5;/P+7CmzS�2l=z7 E UYS�>3O E 2Zb�PX7/eC7�P+S E WX2n25OC@pB(¨�7 E 2Zb�S G�E�_ WX=5@�@�P _ =ZW
@�25W+N�S�PX287C@	PR@\S�2jPX4dO<2n@ E =Z7�281i; E 1^281 G P E 1i=Z1 _iG >j257 E W E 4 E 7nSQ@	SQ2j=?I828PR;�@�N _iG WX2n25OC@pB

�ª©Z� �-7H25O E 7�@�>/@�S E 46U^P+S G PX7C@�O Eo_ S�PX287Hb�= _ P+WXP+S�P E @	U^PXW+WcOC1�2 J = J WX>j1 Epy N�PX1 E W+28SQ@	28b E*« 281�SQ@\P+b(@ Ep_ 1 E SQ@
G =?I E S�2 JKE�G PR;�; E 7�h J N/S-U Eq_ =87HPX4j=Zm8PX7 E S G =VS	S G�E @�>/@�S E 4¬; E @�P+m57 E 1 G PR; E @z@�254 El_ WX=5@�@ E @ph E 7 _ =ZOC@�N/r
WX=ZS E @	O�1 Eo_ PX28NC@	PX7/b�251�4j=VSQP+257HPX7�2 J { Eo_ SQ@	251^NC@ E @ _ 1Q>3O/S�25m81i=ZO G P _ S Eo_iG 7�P y N E @\S�2 G PX; E @ E 7<@�P+S�PXI E ;�=ZSQ=�B

��5� 9:2n@�S E*f PX@�S�PX7�m[@�>/@�S E 4j@ E*f O<2n@ E I E 1�>aW+P+S�SQW E 2ZbgS G�E PX1\P+7nS E 1�7<=ZWCPX7/b�251�4j=VSQP+257�=Z7<; E I E 7nSQ@�S�2.S G�E
28N/Si@�PR; E =Z7<;�=81 E ;/P+¤ _ N�W+SzS�2dPX7nS E m51Q=ZS E U^P+S G S G�E 7 E U®=8O�O�1Q25= _iG B

¯ ~�����°/~�±£²M³!´�µ
¡ 7#28N�1z1 Ep_LE 7nS E*« 281�SQ@	SQ2 J N�PXWX;:;�PX@�S�1QP J N/S E ; E I825W+IV= J W E ;/>37C=84dP _ PX7/b�281Q4j=VSQP+257#@�>/@�S E 4j@	U EqG =?I E b�28W+r
W+2VU E ;[S�U\2x;/P+1 Ep_ S�PX287C@	� ���?�(¶ @�P+7CmqS G�E^·C¸ O�1�25m81i=Z4d4dP+7Cm�WR=Z7�m5NC=Zm E =87C;j9:2 J P+W E�� 2/; E^E 73I3PX1�257�4 E 7nSph
U EdG =?I EdJ N�PXW&S[=#@�>3@�S E 4¹SQ2�4j=87C=Zm E =�WXP J 1Q=81�>:28b ·C¸ @�28NC1 _LEd_ 2/; E S G =ZS[=ZWXW+2VUz@lNC@�SQ2 E ;/P+Sph(@�SQ281 E h
;/PR@�@ E 4dPX7C=VS E =Z7C;j= _ SQP+IV=VS E eCI E ;/P «�E 1 E 7nS!]3PX7C;�@!2Zbc@�25N�1 _*Ez_ 2/; E eCW E @LB � 1 E InPX28N<@�WX>qS GCE >aU E 1 E ;/P+¤ _ N�W+S
S�2d4j=Z7C=8m E�JKEp_ =8NC@ E S G�E >HU E 1 E =ZWXWc@�S�281 E ;HPX7�PX7C;/PR@�S�PX7 _ S^S E*f S^eCW E @	S G =VS-;/PR;�7�2ZSz=8W+WX2VU�SQ2a1 E OC1 E @ E 75S
S G�E P+1�OC=Z1�S�P _ NCWX=81�P+S�P E @�=Z7C;#PX7nS E 1i; E O E 7C; E 7 _ P E @pB ���8� 9�=ZPX7nSQ=8P+7�PX7�mjS G�E[_ 287C@�PX@�S E 7 _ >�2Zb!;�2 _ N�4 E 7nSQ@�=VS

º8»�¼�½\¾L¿<À�Á+Â�¾zÃ8ÄCÅxÂQ¼�Æ3ÁXÄ�ÇlÂ�ºqÈjÃZÉ5¾	Á&Â�Ã5ÊLÊL¾pÀQÀ�ÁX¿�ËX¾!ÂQº�Ì�º8¼Q¾LÁXÇ8Äa¾LÍ8¾pÄnÂ(Î<ÃZÄCÅ/ËX¾L¼iÀpÏ�Ð	Î�ÁRÀ�½\º8¼QÉqÁXÀ!ÃVÂ�ÃZÄd¾pÃ8¼�ËXÆ
À�ÂiÃZÇ5¾xÃZÄCÅ#ÎCÃ5À^¿K¾L¾LÄFÀ�ËXºV½�¾oÅ#Å/ºV½^Ä#¿nÆHÂ�ÎC¾[Å/Á+ÑjÊL»�Ë+Â�ÆHÂQº0ÁXÄ5ÂQ¾LÇ5¼QÃZÂ�¾lÂ�Î�¾.¾*Ò/ÁRÀ�ÂQÁ+Ä�ÇHÀ�¾p¼�Í5¾L¼zÃZÄ<Å:Ó-Ð^Ô�Õ
¾pÅ/Á+Â�º5¼QÀ	»<À�¾oÅHÃZÂ^Â�Î�¾qÁXÄCÀ�Â�Á+Â�»/ÂQ¾8Ï

Ð	Î�¾L¼Q¾jÃZ¼Q¾aÀ�¾LÍ5¾L¼iÃZË�ºZÂ�ÎC¾L¼qÇ8¼Qº8»CÖCÀl½�º5¼�É3ÁXÄ�Ç�º5ÄTÂQ¾pÊiÎ�Ä�ÁR×n»�¾pÀlÌ�º5¼qËXÃ8¼�Ç5¾.ÀQÊLÃ8Ë+¾d¾LÍ5¾LÄnÂ�ÎCÃZÄCÅ�Ë+ÁXÄ�Ç:ÃZÄCÅ
ÈjÃZÁXÄ5ÂiÃZÁXÄ�ÁXÄ�ÇTÁXÄ/Ì�º8¼QÈjÃVÂQÁ+º5Ä�Ê*º5Î�¾L¼Q¾LÄ<Ê*¾TØ ÙZÚ^¿�»/ÂdÂQÎ�¾L¼Q¾HÁRÀ.º8Ä�ËXÆ�º8Ä�¾#À�Æ3À�Â�¾pÈÛºZÌ-½^Î�ÁRÊiÎ�½\¾#ÃZ¼Q¾HÃ?½	ÃZ¼Q¾
Â�ÎCÃZÂ.Ê*ËXº5À�¾LËXÆFÃ8Ö�Ö�¼Qº5Ã5ÊiÎ�¾pÀlº8»C¼xÇ8ºnÃZËRÀqºZÌ	»CÀ�Á+Ä�ÇFÔ:º8¿�ÁXËX¾HÜ�º3Å�¾0Á+Ä$Å�ÁXÀ�Â�¼QÁ+¿C»/Â�¾oÅYÁ+Ä/Ì�º5¼�ÈjÃZÂ�ÁXº8Ä�À�Æ/À�Â�¾pÈdÀpÝ
Â�Î�¾xÞnÂQº8¼QÈjÊLÃ8À�Â	½�¾oÃVÂ�ÎC¾L¼	Á+Ä�Ì�º8¼QÈdÃZÂ�ÁXº8Ä�ÃZÄCÅ�Ì�º8¼Q¾pÊpÃ8À�Â	À�Æ/À�ÂQ¾LÈ¹Ø+ß*ÚvÏ�Ð	Î�¾qÅ/¾pÀ�Á+Ç5Ä�¾L¼iÀ�ºZÌ�ÂQÎ�¾qÀ�¾p¼�Í3ÁRÊ*¾lÎCÃ?Í8¾
Ö�¼Qº8Ç8¼iÃZÈdÈd¾pÅqÃlÀ�¾*Â(ºZÌ<Ã8Ç8¾LÄnÂiÀcÌ�º5¼�ÂQÎ�¾LÁX¼�Ê*»CÀ�Â�º5Èa¾p¼QÀ�½^Î�º�ÊLÃ8Ä[ÊiÎ�º3º5À�¾!ÖCÃ8¼QÃ8Èd¾*Â�¾p¼QÀ�ÃZÄCÅ.Ã8Ê*Â�ÁXÍ?ÃZÂ�¾	ÃZÇ5¾LÄnÂQÀ
Â�ºaÈdº8Ä�Á+Â�º5¼�ÂQÎ�¾qÊ*»�¼Q¼Q¾LÄnÂ\½\¾pÃZÂ�Î�¾p¼\À�Á+Â�»CÃZÂ�ÁXº8Ä#ÃZÄCÅHÀ�¾pÄCÅ�Èd¾oÀ�ÀQÃZÇ5¾pÀ\Ã8ÊLÊLº8¼iÅ/ÁXÄ�ÇqÂ�ºaÂQÎ�¾LÁX¼^À�ÖK¾pÊLÁ&à<ÊlÄ�¾p¾pÅ�ÀpÏ
Ð	Î�ÁRÀ.À�Æ/À�ÂQ¾LÈÛÁXÀ.ÁXÄ5ÂQ¾L¼Q¾pÀ�Â�ÁXÄ�ÇT¿K¾pÊpÃZ»CÀ�¾�Á+ÂaÀ�Î�ºV½zÀ[Â�Î�¾�Ì�¾pÃ5À�ÁX¿�ÁXË+Á+Â�ÆYºZÌzÎCÃ?Í3ÁXÄ�ÇTËXºZÂiÀ[º8Ìz»CÀ�¾p¼QÀ[¾*Ò/¾pÊL»/Â�ÁXÄ�Ç
Â�Î�¾pÁ+¼zÃ8Ç8¾pÄ5ÂiÀ	º8ÄHÂ�Î�¾xÀ�¾L¼QÍ8¾p¼pÏ

áFâ!ã�ägå�æ-ç3è�â!ã
é ¾aÎ�º5Ö<¾[Â�ÎCÃZÂ�ÂQÎ�ÁXÀlÖCÃ8Ö<¾p¼�Î<Ã8ÀlÊ*º8Ä3Í3ÁXÄCÊ*¾oÅ#Â�Î�¾a¼Q¾pÃ8Å�¾L¼zÂQÎCÃVÂjê�ß?ë-Ô�º8¿�ÁXË+¾jÜ�º/Å/¾[¿�¼QÁXÄ�Ç5À-ìC¾*Ò/ÁX¿�ÁXË+Á+Â�Æ:Á+Ä
Å/ÁRÀ�ÂQ¼�ÁX¿�»/ÂQ¾pÅ�À�Æ3À�Â�¾pÈjÀq¿<¾oÊLÃ8»CÀ�¾�Á&Â[Î<Ã8À�ÂQÎ�¾�ÃZ¿CÁ+ËXÁ&Â�ÆFÂ�ºT¾LÄCÊpÃZÖCÀ�»�ËRÃVÂ�¾0ÊLº8Ä3Í8¾pÄnÂ�ÁXº8ÄCÀqÃ8ÄCÅFÌ�¼�¾p¾pÀx»<À�Ì�¼�º5È
Â�Î�¾:ÄC¾L¾pÅ�ÂQº�Ö�¼�¾LíªÁXÄCÀ�ÂQÃ8Ë+Ë	ÂQÎ�¾TÀ�ºZÌîÂ�½	ÃZ¼Q¾�ÂQÎCÃVÂ0¿K¾LÎCÃ?Í5¾pÀjÃ5ÊLÊ*º5¼QÅ�Á+Ä�ÇMÂQºYÂ�Î�¾oÀ�¾�ÊLº8Ä3Í8¾pÄ5ÂQÁ+º5ÄCÀ#ê�ï5ë.Â�Î�¾p¼�¾
ÁXÀ.ÃZÄY»�¼QÇ8¾pÄ5ÂxÄC¾L¾pÅYº8Ì	ìC¾*Ò/ÁX¿�Á+ËXÁ+Â�ÆFÁXÄYÂ�º/Å�Ã?Æ�ð ÀxÊ*º5ÈaÈ.»�Ä�ÁRÊLÃZÂ�ÁXº8ÄYÖ�¼QºZÂ�º/ÊLº8ËRÀqÃZÄCÅ�Å/ÁRÀ�Â�¼QÁ+¿�»�Â�¾pÅ�À�Æ/À�ÂQ¾LÈjÀ
¿<¾oÊLÃ8»CÀ�¾qÁ+Â�ÁRÀzÁXÈdÖ<ºnÀ�À�ÁX¿�Ë+¾xÂ�º0ÃZÄnÂQÁXÊLÁ+ÖCÃZÂ�¾xÎCºV½|Ã0À�»CÊpÊ*¾pÀQÀ�Ì�»�Ë�À�Æ3À�Â�¾pÈ£½^ÁXËXË�¾LÍ5º8ËXÍ8¾0ê�ñ5ë	¿3Æ�Ë+¾LÂ�Â�ÁXÄ�Ç0»<À�¾p¼QÀ
Ã8Å�ÅaÂQÎ�¾LÁX¼!ºV½^Äj¾pÍ8¾pÄ5Â�íªÎ<ÃZÄCÅ/ËX¾L¼iÀ�ÃZÄ<ÅdÁ+ÄnÂ�¾p¼QÃ5ÊòÂQÁ+º5ÄjÖ�¼�º8Â�º/Ê*º5ËXÀ�ÂQºx¼Q»�Ä�Ä�ÁXÄ�Ç[À�Æ/À�ÂQ¾LÈjÀ�»CÀ�ÁXÄ�Ç[Ô:º5¿�Á+ËX¾lÜ�º/Å/¾
Â�¾oÊiÎ�Ä�º8ËXº8Ç5Æ8óZÁ+Â�ÊLº8»�ËRÅd¿<¾-Ö<ºnÀ�À�Á+¿CË+¾zÃ8ÄCÅd»CÀ�¾*Ì�»�ËCÂ�ºxÈdÁXÄ�Á+ÈdÁXôL¾^ÂQÎ�¾zÄ�¾p¾pÅ�À�Ì�º8¼!ÊLº8ËXËXÃ8¿<º5¼QÃZÂ�ÁXº8Äa¿<¾LÂ�½�¾p¾LÄjÁXÄ/í
Ì�º8¼QÈjÃVÂ�ÁXº8ÄaÖ�¼QºVÍ3ÁXÅ/¾p¼QÀ�ÃZÄ<ÅaÊLº8ÄCÀ�»�Èd¾L¼iÀ	ê�Ù3ë�Â�Î�¾p¼�¾^ÃZ¼Q¾^À�¾pÍ8¾p¼QÃ8ËnÁXÄnÂ�¾p¼�¾oÀ�ÂQÁ+Ä�Ç�Ö�¼Qº8¿CË+¾pÈdÀ�Ì�º5¼�½^Î�ÁRÊiÎaÔ:º5¿�ÁXË+¾
Ü�º/Å/¾d½^Á+ËXË�Ö�¼Qº8¿CÃ8¿�ËXÆ�¿<¾dÂQÎ�¾j¿K¾pÀ�Â.À�º5Ë+»�Â�ÁXº8ÄM¿<¾oÊLÃZ»<À�¾aÂ�ÎC¾LÆTº/ÊpÊ*»�¼qÁXÄ�À�Æ/À�Â�¾LÈjÀ�ÂQÎCÃVÂ[Ã8¼�¾dÅ/ÁRÀ�ÂQ¼�ÁX¿�»/ÂQ¾pÅ
Â�Î3»CÀaÄ�º8ÂdÈjÃ8ÄCÃZÇ5¾pÃZ¿CË+¾H¿nÆ$ÃMÀ�Á+Ä�Ç5Ë+¾�ÖK¾L¼iÀ�º5Ä�º8¼aº8¼QÇ5Ã8Ä�ÁXôpÃVÂQÁ+º5Äcó�Å/Æ3ÄCÃZÈdÁRÊ�¿<¾oÊLÃZ»<À�¾HÂ�Î�¾#ÁXÄ/Ì�º8¼QÈjÃVÂQÁ+º5Ä
Â�Î�¾pÆaÊLº8ÄnÂQÃ8Á+ÄjÈ.»CÀ�Â�ÊiÎCÃZÄCÇ8¾^½^Î�¾pÄdÂ�Î�¾z½\º8¼QËRÅ.Á+ÂQÀ�¾LË+Ì�ÊiÎCÃ8Ä�Ç8¾oÀ�ÃZÄCÅd¾pÍ8º5Ë+Í3ÁXÄ�Ç�½^Î�¾LÄ0»<À�¾p¼QÀ�Å�ÁXÀQÊ*ºVÍ5¾L¼�Ä�¾p½
½\Ã?Æ/À�Â�ºd»CÀ�¾�Â�ÎC¾qÁ+Ä/Ì�º5¼�ÈjÃZÂ�ÁXº8Ä�Ö�¼�ºVÍ3ÁRÅ/¾pÅcÏ

õ÷özøZözù�ö�ú#û^özü

ýÿþ����������
	����	������������������! �"�#� �$&%'")(�(*� ��+-,.����� �/%�01�32�4�56�879�8:58;<�=��?>�@BADC9E�F?G'� H��.�8���8=:�JIBAK2LCKM�E�F�GN� H��
;O�8P)QR=SUT3V.F�4WCKX?YZ;<��[\.]WY_^�AK`�a?F?F�G�2!4BV.X?��P)F�AKb�2�4.ý F�CKa.� �cY��W^BAK2�4&V3F�A��Zþ�\.\3]��W='F?a�CK@�AKF)4&`1CKF?X_2�4�a?`.d�^B@BCKF�A
XDa?2�F?4Ba?F.egf.`.b��<þ�h�i3iW�*Qj�BP)	lk1mRn1h.o1mqp3h.\�n3\Jmsrt�ZEvþ?\.\.].H

ý u��v;xw��
w�y�w8�B���_;����)z��/{K%�|-�c��}W%q D~�{� �|����c+- �{��/$�,O�v �{K{� �$W#� �|< �$&���/|j�3$&�� �$&%q�<%��& x+K,3{� x�j��~3�/{K%�|-�c��}W%q D~
{j�B,3|D K~3�s�� ����3|-03�'�:��� ���&79�&F�XD2!X?�&w�4B2!f.F�AKXD2LCR��`3��y�F�4&F?f3T��Cþ�\3\�iW�

ý kJ�v��w8�=_���_�3�_� mq���!�'�_(B �$�z���|K D+�%��c�3$B{N�?�3|��U�������! 8����~� ���@B4&^&@B�&b�2�XD�&F�G�XDb�2!GBF?XZ��2LCK��^�AKF?XDF?4�C-T1CK2�`.4t4&`1CKF?X?�
þ�\3\.]W�NT�f.T12!b!T1�&b�F�T1C6��CDCK^�Y �.�Ja?@&2�� @&4B2!V3F.� a��g�W�?�W@BF?b�`.MJ�J^gT1^*F�AKX-�1`3^*F?4gG�2�A�� ^BX?� V3M.�

ý h1��56���B:	8P)=�w�;��1��� �*�!�1���8=SI)�3��� =����W"�zt �{K�!#3$��'|j,3�v ����3|D���?�3|��-$&%q �|-$N �%c�c *+K,.�! ¢¡9�3 �$&%9����{� �|-�1,3%��c�3$
,3$g~v£��1%�� ¤)+K,3%��c�1$&���:AK`�a�F?F�GB2�4BV.X8`1��CK�BFt��2L¥WCK�¦�@�AK`.^*F�T14§�W`3�¨CR�¢TJAKF�:4&V32�4&F?F�AK2�4BV<©)`34B�/F�AKF?4&a?F��3�6©¢;
��Qjy��&�8IZ7�I_2��¨CK�<����d�^*`.XD2�@&dª`.4�CK�BF6��`.@&4&G&TJCK2!`34&X9`1�:�W`3��Cq�¢TJAKF8:4&V.2�4BF?F�AK2�4&V��g�*@BAK2�a-���B����2�CKM�F�AKb!T34gGN�
þ�\3\�i��

ý n���7��&©)�
w��8Qq	t�B©
� I)�����)$<%��& 8{-%�|-}B+�%�}W|��/$�#«�j��+K�3�
(g}W%q �|�+K�3���t}�$B�c+K,3%��c�3$B{K�g�:��� ����79�BF?XD2�X?�&w
4&2�f�F�AKXD2LCR�
`3��y�F�4&F?f3T��Cþ�\3\.k��

MAC3 Workshop Notes Tools for Managing Mobile Agent Systems

Autonomous Agents ‘99 18 May 1st 1999

Tools for Managing Tools for Managing
Mobile Agent SystemsMobile Agent Systems

A Case for Mobile Agent Patterns
Dwight Deugo Michael Weiss
School of Computer Science, Business Communications Systems
Carleton University Mitel Corporation
1125 Colonel By Drive, 350 Legget Drive
Ottawa, Ontario, Canada, K1S 5B6 Ottawa, Ontario, Canada, K1K 1X3
deugo@scs.carleton.ca michael_weiss@Mitel.COM
http://www.scs.carleon.ca/~deugo

Abstract: In this position paper, we make a case for the development of mobile agent patterns. Patterns have
proven extremely useful to the object-oriented programming community. However, of the large amount of
pattern research, little effort has been devoted to developing mobile agent patterns. We wish to correct this
situation. We believe that the ongoing success of mobile agent systems depends on the development of
software engineering principles for them. Patterns are a recognized means to this end, and one that we wish
to promote.

Introduction
In most areas of research there comes a time when the researchers begin to understand the principles, facts,

fundamental concepts, techniques, architectures, and other research elements in their fields of study. Research into
agents, specifically mobile agents, is reaching that time. As evidence of this fact, one need not look any further than
the calls for papers to upcoming conferences and workshops on mobile agents. Take for example, the call for papers
for the workshop on Mobile Agents in the Context of Competition and Cooperation [MAC3 99]. We find comments
such as, “… gaining more widespread acceptance and recognition as a useful abstraction and technology” and, “we
are uninterested in papers that describe yet another mobile agent system.” The question to answer now is what is
important for us to do next as a research community.

To answer that question we must first consider why we do not want to hear about another mobile agent system.
We will not answer for the various workshop and program committees, but we can propose one that we hear often
from others. Since there are many mobile agent systems and frameworks in existence doing many of the same things,
there is no use discussing another one because it too will do the same things and in similar ways. In other words, a
new system does not often provide any new insights that are useful to the research community. However, we claim
that these ‘new’ systems do validate, refine and show the reuse of many of the previously proposed and discussed
research elements. Moreover, they bring with them additional thoughts, understanding and clarifications of the
research elements. The problem is that when reporting on these ‘new’ systems, these insights get lost in the discussion
of the system as a whole, or they are just not reported at all. For example, we have lost track of how many times we
have read a paper that indicated it used KQML for the communication between agents and not been able to understand
why it was used? There may have been an obvious advantage, or maybe it just did not matter. What we wanted to
understand was which forces and context lead to this decision, because if we need to make a similar decision in the
future we need this information.

We propose that, since as a research community we have reached a stage where some research elements in mobile
agents are well understood and that there are several examples of each, it is time to begin the effort of documenting
these elements as software patterns. This is not a matter of documenting the solution and problem surrounding each
research element; this material is already evident in most agent papers. We need to go further and deeper in order to
understand the forces and context of the problems that give rise to the proposed solutions. These are the
undocumented and often misunderstood features of the research elements, which need to be elaborated before agent
systems can enter the mainstream of software engineering and business applications.

Since many are not familiar with software patterns, and those that are think of them as only problem and solution
pairs, we introduce patterns and pattern languages in order to help with their understanding. Next, we enhance our
argument as to why agent patterns are important for agent research. We then compare and contrast agent patterns with
their object-oriented counterparts. Finally, we present the current layout of the agent pattern landscape, identifying
what some have started to do and what else we feel needs to be done.

What are Patterns and Pattern Languages?
Software patterns have their roots in Christopher Alexander’s work [Alexander 79] in the field of building

architecture. After reading his work, it was clear to software engineers that, like building designs, there are many

recurring problems and solutions used in the design of software systems. Unfortunately, they noted that many of these
combinations were hard to find except for in the minds of the most experienced developers, for if they were, projects
would have been built on time, within budget and without bugs! Moreover, knowing the problem and solution were
not enough. Software engineers needed to know when the solutions were appropriate for the given problems.

Alexander’s proposed the following definition for a pattern:

• A three-part rule which expresses a relation between a certain context, a problem, and a solution.
• As an element in the world, each pattern is a relationship between a certain context, a certain system

of forces which occurs repeatedly in that context, and a certain spatial configuration which allows
these forces to resolve themselves.

• As an element of language, a pattern is an instruction, which shows how the spatial configuration
can be used, repeatedly, to resolve the given system of forces, wherever the context makes it
relevant.

• The pattern is, in short, at the same time a thing, which happens in the world, and the rule which
tells us how to create that thing, and when we must created it. It is both a process and a thing; both a
description of a thing which is alive, and a description of the process which will generate the thing

Although there are different pattern formats, the minimal format contains the following headings or ones dealing
with similar subject matters.

• Name: As the saying goes in the object-oriented community, a good variable name is worth a thousand
words and a good pattern name, although just a short phrase, should contain more information than just
the number of words would initially suggest. Would the word agent be a good pattern name? The answer
is no. Although it means a lot more than the single word suggests, it has too many meanings! One should
strive for a short phrase that still says it all.

• Problem: A precise statement of the problem to be solved. Think of the perspective of a software
engineer asking himself, How do I … .? A good problem for a pattern is one that software engineers will
ask themselves often.

• Context: A description of a situation when the pattern might apply. However, in itself the context does
not provide the only determining factor as to situations in which the pattern should be applied. Every
pattern will have a number of forces that need to be balanced before applying the pattern. The context
helps one determine the impact of the forces.

• Forces: A description of an item that influences the decision as to when to apply the pattern in a context.
Forces can be thought of as items that push or pull the problem towards different solutions or that
indicate trade-offs that might be made [Coplien 96].

• Solution: A description of the solution in the context that balances the forces.

Other sections such as resulting context, rationale, known uses, related patterns and implementation with sample
code are usually included to help with the pattern’s description.

A good pattern provides more than just the details of these sections; it should also be generative. Patterns are not
solutions; rather patterns generate solutions. You take your 'design problem' and look for a pattern to apply in order to
create the solution. The greater the potential for application of a pattern, the more generative it is. Although very
specific patterns are of use, a truly great pattern has many applications. For this to happen, pattern writers spend
considerable time and effort attempting to understand all aspects of their patterns and the relationships between those
aspects. This generative quality is so difficult to describe that Alexander calls it "the quality without a name", but you
will know a pattern that has it once you read it. It is often a matter of simplicity in the face of complexity.

Although useful at solving specific design problems, we can enhance the generative quality of patterns by
assembling related ones, positioning them among one another, to form a pattern language, enabling us to use them to
build systems. For example, individual patterns might help you design a specific aspect of your mobile agent, such as
how it models beliefs, but a pattern language might be able to help you build all types of mobile reactive agents.

Agent pattern languages are very important for agent patterns to be successful. Forcing each pattern to identify its
position within the space of existing patterns is not only good practice, it is also good research. In other words, all
agent patterns should be part of an agent pattern language. It is not only helpful to you, but to all those other software
engineers who will use the patterns to develop their systems in the future.

Why is Research into Patterns Important for Agent Research?
For any software system to be successful and run safely, it must be constructed using sound software engineering

principles, and not constructed in an add-hoc fashion. Unfortunately, much of agent development to date has been
done ad hoc [Bradshaw, et al., 1997], creating many problems – the first three noted by [Kendall et, al, 1998]:

1. Lack of agreed definition of an agent
2. Duplicated effort
3. Inability to satisfy industrial strength requirements
4. Difficulty identifying and specifying common abstractions above the level of single agents
5. Lack of common vocabulary
6. Complexity
7. Only goals and solutions presented

These problems limit the extent to which “industrial applications” can be built using agent technology, as the
building blocks have yet to be exposed. Objects and their associated patterns have provided an important shift in the
way we develop applications today, since the level of abstraction that we develop at is greater than doing functional
and imperative programming. Since we believe that agents are the next major software abstraction, we find it essential
to begin an effort to document that abstraction so that others can share in the vision. Patterns provide a good means of
documenting these building blocks in a format already accepted by the software engineering community. Patterns also
have the added benefit that no unusual skills, language features, or other tricks are needed to benefit from them [Lange
and Oshima, 1998].

Are Agent Patterns different from their Object-Oriented Design
Patterns?

Since many mobile agent frameworks, such as Grasshopper, AgentSpaces, Voyager, and Aglets, are implemented
using Java, an object-oriented language, we argue that there must have been a few object-oriented design patterns used
by the developers constructing them. Some patterns such as Mediator, Adapter, Broker, Strategy, and Composite, have
been explicitly identified as being useful for the development of agent systems. [Kendall et al., 97]. However, since
agents and agent systems are more dynamic and able to adapt to their environments than object-oriented systems,
there must obviously be other patterns that are applicable only to them. We have already seen some of these patterns
documented [Lange and Oshima, 98, Silva and Delgado 99], but we are positive there are a great many more.

In general, we find the format and structure of Agent Patterns similar to Object-Oriented Design Patterns. We
also find that since many mobile agent frameworks are implemented using object-oriented technology, most object-
oriented design patterns are applicable to them. However, differences in the way agents communicate, their level of
autonomy and intelligence, and the fact that they are often highly mobile, has created a void not filled by existing
patterns: agent, object, or otherwise.

One criticism of the previous breed of pattern writers is that they have not done a good job of relating their
patterns to others – a pattern language. This is starting to change now as pattern languages become more frequent, but
historically patterns have typically only linked themselves to others without identifying exactly what the relationship
is. This is a problem that agent patterns writers must consider immediately. Describe how your patterns relate to
others and how they can be used together or separately. Create a pattern language that can be used to build things:
mobile agents and mobile agent systems. Do not create patterns that will only frustrate their readers, forcing them to
discover how to apply the patterns together.

The Agent Pattern Landscape
The application of design patterns has shown us that it is very important and useful to start formalizing the

experiences of developers and relating these formalizations with one another. There are a small number of agent
patterns compared to the number object-oriented design patterns. As a consequence little work has been devoted to
classifying them and, as mentioned in the last section, to defining pattern languages for them. The few classifications
already proposed include the following:

• Agent Patterns: deal with the architectures of agents and agent-based applications [Kendall et al. 98, 97;
Silva and Delgado 98; Aridor and Lange, 98].

• Communication Patterns: deal with the way agents communicate with one another [Deugo and Weiss, 99].

• Travelling Patterns: deal with various aspects of managing the movement of agents such as routing and
quality of service Lange and Oshima 98].

• Task Patterns: deal with the breakdown of tasks and how these tasks are delegated to one or more agents
Lange and Oshima 98].

• Interaction Patterns: deal with the way agents locate one another and facilitate their interactions [Lange and
Oshima 98].

• Coordination Patterns: deal with managing dependencies between agent activities. [Tolksdorf 98]

As a general comment, patterns cover many different levels of abstraction. For example, some of them are used
to describe the structure of an mobile agent system. Other patterns support the structure of agents and their
relationships with different agents. While other patterns can be used to specify the design aspects of individual agents.
The important feature here is not in developing the definitive classification. Rather it is more important for the mobile
agent community to identify, specify and agree on the abstractions so that we can provide a common vocabulary for
discussing and enhancing them, and, more importantly, building industrial strength mobile agent applications based on
well-grounded software engineering principles.

Conclusion
What is in the future of mobile agent pattern research? Our prioritized list is as follows:

• Identify an initial set of agent pattern classifications: These classifications are to help focus pattern writers
on targets that are of the greatest importance to those developing ‘real’ mobile agent systems.

• Identify pattern languages within each classification: These pattern languages are for pattern writers to
develop and extend and will permit writers to position their new patterns within a know space of existing
patterns.

• Write the patterns.

It is at MAC3 that we wish to debate and discuss these foundations with the participants in order to fill in the
details of how to proceed and why bother at all. We feel it necessary to remind those involved with mobile agent
research to not only write about solutions. Think, discuss, and write about the problems their solutions are intended to
address and what context and forces led them to that particular solution. In short, we believe that following this
approach, we will not have to read about “yet another mobile agent framework” anymore. Rather, we will be able to
read and understand what problems a mobile agent system solves, and when we should consider using the approach!

References
Aridor, Y., Lange, D., “Agent Design Patterns: Elements of Agent Application Design”, Proceedings of the Second

International Conference on Autonomous Agents (Agents 98), ACM Press, 1998, 10-115.
Bradshaw, J.M., S. Dutfield, P. Benoit, J.D. Woolley, “KaoS: Towards and Industrial-Strength Open Distributed

Agent Architecture”, J.M. Bradshaw (Ed.), Software Agents, AAAI/MIT Press, 1997.
Coplien, J.O., “Software Patterns”, SIGS Management Briefings Series, SIGS Books & Multimedia, 1996.
Deugo, D.L, “Communication as a Means to Differentiate Objects, Components and Agents”, submitted to TOOLS

USA 99, 1999.
Kendall E. A., P.V. Murali Krishna, Chirag V. Pathak, C.B. Suresh, “Patterns of Intelligent and Mobile Agents”,

Autonomous Agents '98 (Agents '98), 1998
Kendall E. A., M.T. Malkoun and C.H. Jiang , “Multiagent System Design Based on Object Oriented Patterns”, The

Report on Object Oriented Analysis and Design in conjunction with The Journal of Object Oriented
Programming, June 1997

Lange, D.B., M. Oshima, “Programming and Deploying Java Mobile Agents with Aglets”, Addison Wesley, 1998.
MAC3, “Mobile Agents in the Context of Competition and Cooperation”, Autonomous Agents ’99 ,

http://mobility.lboro.ac.uk/MAC3, 1999.
Silva A. and J Delgado, “The Agent Patterns: A Perspective from the Mobile Agent System Point of View”,

EuroPLoP ’98, 1998.
Tolksdorf, R., “Coordination Patterns of Mobile Information Agents”, Proceedings of Cooperative Information

Agents II, Second International Workshop, CIA’98, Springer, 1998, 246-261.

MAC3 Workshop Notes Mobile Agent Applications

Autonomous Agents ‘99 23 May 1st 1999

Mobile Agent Mobile Agent
ApplicationsApplications

Mobile agents in an electronic auction house�

Qianbo Huai and Tuomas Sandholm

fqh2, sandholmg@cs.wustl.edu
Department of Computer Science

Washington University
St. Louis, MO 63130-4899

Abstract

This paper presents Nomad, a mobile agent system for electronic
auctions. It has been integrated with eAuctionHouse, our next gener-
ation Internet auction server. To our knowledge, eAuctionHouse is the
�rst Internet auction site that supports combinatorial auctions, bidding
via graphically drawn price-quantity graphs, and participation of mobile
agents. It supports mobile agents so that a user can have her agent ac-
tively participating in the auction(s) while she is disconnected. Mobile
agents that execute on the agent dock which is on (or near) the host
machine of the auction server also reduce the network latency|a key
advantage in time-critical bidding. Our auction server uses the Concor-
dia agent dock to provide mobile agents a safe execution platform from
where they can monitor the auctions, bid, set up auctions, move to other
hosts, etc. The user has the full exibility of Java programming at her
disposal when designing her agent. We also provide an HTML inter-
face for non-programmers where the user can specify what she wants her
agent to do, and the system automatically generates the Java code for the
corresponding mobile agent, and launches it. Some of these predesigned
agents are alerting tools, others bid optimally on the user's behalf based
on game theoretic analyses. This helps put novice bidders on an equal
footing with experts. Finally, we discuss automated coalition formation
among bidder agents.

1 Introduction

As the Internet gradually moves into mainstream culture, electronic commerce
is becoming an important mechanism for conducting business. It helps mer-
chants and consumers reduce business costs and enables customized delivery
of goods and services. Electronic auctions are emerging as one of the most
successful ecommerce technologies.

Several successful commercial Internet auction sites exist - such as eBay1

and Onsale2 - and academic auction houses have recently appeared on the In-
ternet [4, 9]. Our motivation in developing an auction server, eAuctionHouse,

�This material is based upon work supported by the National Science Foundation under
CAREER Award IRI-9703122, Grant IRI-9610122, and Grant IIS-9800994.

1http://www.ebay.com
2http://www.onsale.com

is to prototype novel next generation features, and test their feasibility, both
computationally and in terms of consumer ease of use. To our knowledge,
eAuctionHouse is the �rst, and currently only, Internet auction site that sup-
ports combinatorial auctions [3, 6, 7, 5], bidding via graphically drawn price-
quantity graphs [8], and mobile agents. This paper focuses on the mobile agent
component.

2 eAuctionHouse, a next generation electronic auc-

tion house

eAuctionHouse is a free-to-use Internet auction prototype. It allows users
across the Internet to buy and sell goods as well as to set up markets. It
acts as a third party site, so both buyers and sellers can trust that it executes
the auction protocols as stated. It o�ers a wide range of auction types each
of which is determined by specifying a combination of auction parameters.
Both auctions and bids are speci�ed by a set of parameters. In a single-sided
auction, there is only one seller (buyer) selling (buying). In a double auction,
both buyers and sellers can submit bids (o�ers to buy) and asks for (o�ers to
sell) goods. An auction setting is determined by whether it is a single or double
auction, whether there is one or multiple items, and whether there is one or
multiple units of each item. Auction settings in our server further di�er based
on whether or not bids in multi-unit auctions can be partially �lled or whether
complete matches are required. For di�erent types of auctions, di�erent types
of bids can be accepted, bidders may use di�erent bidding strategies, and
di�erent types of pricing schemes may be applied to determine the winning
price(s). Due to space limitation, combinatorial auctions and quantity-price
graph bidding are not discussed here. The reader can �nd in [8] a more detailed
discussion regarding all the auction settings supported by eAuctionHouse and
the relationships among auction settings, bid types, and pricing schemes.

To create auctions or to submit bids, a user can visit the world-wide-
web page of eAuctionHouse, send a formatted text string directly through a
TCP/IP network connection, or use mobile agents.

3 Why mobile agents?

There are two classes of advantages of mobile agents in electronic auctions:
those stemming from the use of agents, and those from mobility.

The bene�ts of using agents include the following.

� An agent can monitor the auction events that the user has deemed rele-
vant. When such events occur, the agent can alert the user. This avoids

the need for the user to keep polling the auction repeatedly.

� Compared with parameter speci�ed bidding, bidding agents provide the
user with more exibility when customizing her own bidding strategy.

� An agent can make decisions based on all available information that the
bidder considers relevant.

� Prototypical bidding agents can be analyzed game theoretically o�-line
so that they will bid optimally on the user's behalf in given auction
settings. This puts expert bidders and laymen on a more equal footing
for ecommerce.

� Agents can be built to track bids in multiple auction houses, looking
for the best deal and/or coordinating the user's multiple bids, e.g. sub-
mitting bids to multiple sites for buying the same good but at anytime
allowing at most one bid in the winning position.

The bene�ts from mobility include the following.

� Mobile agents are not very sensitive to the quality of network communi-
cation.

� A user's computer only needs to be connected to the network occasion-
ally. A user can connect, launch an agent, and disconnect. This avoids
the need of being connected all the time.

� If the information transferred between the agent and the auction exceeds
the code size of the agent, mobility reduces bandwidth usage because
the agent communicates locally at its destination rather than having to
send data back and forth. This reduces network tra�c and latency by
reducing the amount of data transferred around the network.

� Mobile agents can potentially take advantage of the available services
distributed across the network, e.g. travel to and execute on powerful
servers with excess CPU time and disk space. This can be pertinent
for bidder agents for example if their bidding strategies include complex
computations such as statistical analysis, projection, etc.

� Mobile agents potentially allow users to extend the functionalities o�ered
by servers, i.e. they execute as an integral part of the server.

In the context of an electronic auction, the use of mobile agents frees the
user from having to monitor the auction constantly. It also can reduce network
latency, a feature which is of key importance in time-critical bidding, such as
making decisions just before an auction will close. A mobile agent traveling

to a server not only has the advantages of executing the user's own bidding
algorithm but also does not have to transfer over the network the auction
information that the agent uses for determining its bidding actions.

Here we give an example of a mobile bidding agent. Let us imagine that a
user with access to the eAuctionHouse is at some remote location. She �nds
an auction of a new notebook computer with an ascending open-cry �rst-price
auction protocol. Say that in this particular auction setting, the highest bid is
shown when placed. Bids are accepted by the auction until no user is willing
to increase the price anymore. At that time the notebook is sold to the bidder
who o�ered the highest price and the winner is charged the price of her bid.
Say that the auction is at a remote location, so the communication links are
problematic. The auction may be open for hours but the user is not able to
monitor and adjust the bidding price constantly. A mobile agent can help in
this situation. The user can give it a reservation price and launch it. The
agent moves to the server site and stays there monitoring the current highest
price. It bids a small increment more than the current highest price, and stops
if its reservation price is reached. When the auction closes, the agent reports
the result to the user.

Both Onsale and the Michigan Internet AuctionBot [9] have solutions other
than mobile agents to help the user in the above scenario. Onsale has Bid
Maker which allows the user to enter the maximum price she is willing to pay.
eBay has a similar proxy bidder \agent". As long as the auction is open and
the maximum price has not been reached, Bid Maker bids at the minimum
price necessary to make the user a winner. Bid Maker limits the user's choices
of her bidding strategies. For example, when a user's valuation of the good
depends on others' bids, such a simple agent is no longer optimal, but the
agent should update its valuation dynamically based on the others' bids so far
(taking into account the e�ect of the winner's curse [1]). Bid Maker is also
unable to support bid coordinating across multiple auction houses.

The Michigan Internet AuctionBot might be viewed as supporting agents
in the sense that it provides a TCP/IP level message protocol by which agents
can participate in the auction. Mobile agents are not supported. Without
mobility, this solution is sensitive to the quality of network communication and
increases the network tra�c by frequently transferring auction information.

4 Nomad, a mobile agent system

Nomad is the mobile agent system integrated with eAuctionHouse. It allows
mobile agents to travel to the site where the eAuctionHouse resides. Mobile
agents actively participate in the auctions on the user's behalf even when
the user is disconnected from the network. Network tra�c and latency are

reduced, and the agents have shorter response time to changes in the auction
than users might. The amount of time for computing bidding strategies may
also be lowered when agents execute on a powerful server. Mobile agents need
not necessarily be bidding agents. They may be information collection or price
distribution learning agents as well as agents for setting up auctions. When
multiple distributed eAuctionHouses are installed across the network, multiple
Nomads help to form a virtual electronic auction site network, which allows
mobile agents to travel through the network to �nd deals. Also implemented
in Nomad is a mobile agent control scheme. After registering itself to the
server, a mobile agent can be seen and managed in its creator's user portfolio.
For example, the user can kill the agent when she no longer wants the agent
to execute.

The high-level architecture of a Nomad system consists of three main com-
ponents: an agent dock, an agent manager, and a database for keeping infor-
mation of the mobile agents. The agent dock is the place where mobile agents
reside and execute. As the basis of our agent dock we use the Concordia3 sys-
tem from Mitsubishi Electric Information Technology Center America. Con-
cordia is a full-featured framework for the development and management of
network-e�cient mobile agent applications. Concordia itself is a Java appli-
cation and supports mobile agents written in Java. Application interfaces
are provided in Concordia for sending agents around the network. Concordia
agents process data at the data source. Network transport is hidden from ap-
plications, developers and users. Typically, a Concordia agent has an itinerary
which can be seen as a list of network addresses where the agent desires to go.
Associated with each address is an action, a Java class method, which is to be
executed when the agent travels to the associated site. The itinerary may be
altered dynamically during the agent's trip. Agents can also collaborate with
the help of an event distribution mechanism and other services.

The agent manager helps users control their own mobile agents through
eAuctionHouse. Agents can be deleted from eAuctionHouse by their owners.
An event distribution framework is used by the agent manager to notify agents
when the auction information they are interested in is altered.

After traveling to the site of Nomad and being docked on the Concordia
system, an agent connects to the agent manager and reports its information
which is logged into a database. Later on, the agent's information can be
retrieved using the application interface. Actions requested by the user, such
as deleting a particular agent, are forwarded from the eAuctionHouse to the
agent manager which then distributes an agent kill event to all the docking
agents. After receiving an event addressed to itself, the agent performs the
appropriate actions.

3http://www.meitca.com/HSL/Projects/Concordia/

5 Automatic generation of mobile agents

Users are provided with the option of programming their own mobile agents
in Java. This allows maximum exibility in what agents can do. However, in
order to speed up agent generation and to enable non-programmers to create
agents, there is also a system for automatic generation of agents based on
�lling out HTML forms. The di�erence between Nomad and Onsale's Bid
Maker is that our agents are mobile and HTML forms are not the only means
to create them. The following types of parameterizable mobile agents are
currently available for automatic generation.

1. The information agent monitors an auction and sends email to the user
when speci�ed events occur. Using this agent, the user does not have to
poll the auction, but gets noti�cation of important events immediately.

2. The incrementor agent implements the dominant strategy on the user's
behalf in single-item single-unit ascending open-cry �rst-price private
value auctions. It bids a small increment more than the current highest
price, and stops if the user's reservation price is reached. With this agent,
the user does not have to follow the auction, and her dominant strategy
in these settings is to report her valuation truthfully to the agent.

3. The N-agent underbids optimally on the user's behalf in single-item
single-unit sealed-bid �rst-price auctions where the number of bidders,
N, is known, and the bidders' private valuations are independently drawn
from a uniform distribution. Speci�cally, the symmetric Nash equilib-
rium strategy is to bid the user's valuation times N�1

N
[2]. The user is

then motivated to reveal her true valuation to the agent.

4. The control agent goes to an auction and submits very low noncompeti-
tive bids. It is a speculator's tool to arti�cially increase the number, N,
of bidders in an auction to mislead others, e.g. the N-agent. For exam-
ple, it is in the seller's interest to submit control agents so that N-agents

would bid higher.

5. The discover agent computes the expected gain from bidding a small
amount more than the current highest price according to the agent's
current distribution of the user's valuation. This is intended for settings
where the user does not know her exact valuation for the item, instead
has a probability distribution over it. In the future, the probability
distribution could be updated by new events, or by what others have
bid in non-private value auctions.

Figure 1 shows the �rst step of creating a mobile agent without program-
ming. In this example, a user, Alice, is going to create an agent to bid in an

auction. For the given auction type, the system recommends three of the �ve
agent types. Therefore, the radio buttons of the other two agent choices are
not clickable for this particular auction type. Alice is interested in creating an
N-agent.

Figure 1: Step 1 of agent creation: choosing an agent type from a set of

prototype agents.

Figure 2 shows the second step for creating an N-agent. Alice speci�es
the parameters: user identi�cation number, password, email address used by
the mobile agent for reporting, agent name for agent management, and Alice's
valuation (reservation price) of the good being auctioned. When Alice clicks
the create button, the automatically generated mobile Java agent takes these
parameters, travels to the agent dock, ecommerce.cs.wustl.edu, docks there,
and bids at the eAuctionHouse.

Figure 2: Step 2 of agent creation: setting the parameters for the agent.

6 Support for automated coalition formation among

bidder agents

In this section we present some thoughts on potentially using mobile agents
for automated coalition formation. This is part of our future research.

Economic e�ciency can sometimes be improved if bidders form coalitions.
Consider an auction in which a seller is selling one good. One buyer wants
part of the good and another one requires the remaining part. The sum of the
price that they are willing to pay exceeds the highest price o�ered for the whole
good from other bidders. By forming a coalition, both the two buyers and the
seller are better o�. However it is di�cult for users across the Internet to form
coalitions while bidding online. There are two main barriers. First, �nding
partners can be time consuming. Second, bidders do not necessarily trust each
other without a binding contract. Issues arising in coalition formation include

who is in charge of bidding, what happens if some bidders refuse to pay after
the coalition's bid wins, how much each participant has to pay if the coalition
wins, etc.

To support automated coalition formation, we propose the possible use of
mobile agents. Finding potential coalition partners may not be that di�cult.
With an appropriate communication mechanism, it is easier for an agent to
locate potential partners than a person sitting at a computer. The agent may
search in a public place where bidders or agents put partial bids for the hope
of being combined by others, for example. Agents usually search orders of
magnitude faster than humans. Furthermore, agents' time is not as costly.

To solve the trust problem, a third party site might be necessary to help
mobile agents form coalitions. At the third party site agents could sign binding
contracts, and check the agents' owners' credit history and reputation.

Collusion can improve the economic e�ciency as discussed above. How-
ever, it involves speculation costs and sometimes causes revenue loss for the
auctioneer. For example, bidders in an auction can coordinate to keep their
bids arti�cially low so as to get the item at a lower price than they otherwise
would. Considering the user numbers and diversity in most Internet auctions,
it is highly unlikely that bidders across the Internet can establish a single
coalition for an auction so that bids stay arti�cially low. Therefore it may be
the case that automated coalition formation contributes to the positive side
more than to the negative side in the Internet auction setting.

7 Conclusions

This paper presented Nomad, a mobile agent system for electronic auctions.
It has been integrated with eAuctionHouse, our next generation Internet
auction server. The reader is invited to visit the site and test the agents
(http://ecommerce.cs.wustl.edu).

Our auction house supports mobile agents so that a user can have her
agent actively participating in the auction(s) while she is disconnected. Mobile
agents that execute on the agent dock which is on (or near) the host machine
of the auction server also reduce the network latency|a key advantage in
time-critical bidding. Our auction server uses the Concordia agent dock to
provide mobile agents a safe execution platform from where they can monitor
the auctions, bid, set up auctions, move to other hosts, etc. The user has
the full exibility of Java programming at her disposal when designing her
agent. We also provide an HTML interface for non-programmers where the
user can specify what she wants her agent to do, and the system automatically
generates the Java code for the corresponding mobile agent, and launches it.
Some of these predesigned agents are alerting tools, others bid optimally on

the user's behalf based on game theoretic analyses. This helps put novice
bidders on an equal footing with experts.

Future research includes developing additional prototype agents based on
new game theoretic analyses. Also, automated coalition formation by bidder
agents brings new challenging problems which will be further studied in the
continuing development of eAuctionHouse and Nomad.

References

[1] P. Milgrom. Auctions and bidding: A primer. Journal of Economic Perspectives,
3(3):3{22, 1989.

[2] E. Rasmusen. Games and Information. Basil Blackwell, 1989.

[3] S. J. Rassenti, V. L. Smith, and R. L. Bul�n. A combinatorial auction mechanism
for airport time slot allocation. Bell J. of Economics, 13:402{417, 1982.

[4] J. A. Rodriguez-Aguilar, P. Noriega, C. Sierra, and J. Padget. FM96.5: A Java-
based electronic auction house. In In Proceedings of the Second International
Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM'97), 1997.

[5] M. H. Rothkopf, A. Peke�c, and R. M. Harstad. Computationally manageable
combinatorial auctions. Management Science, 44(8):1131{1147, 1998.

[6] T. W. Sandholm. An implementation of the contract net protocol based on
marginal cost calculations. In Proceedings of the National Conference on Arti-
�cial Intelligence (AAAI), pages 256{262, Washington, D.C., July 1993.

[7] T. W. Sandholm. An algorithm for optimal winner determination in combina-
torial auctions. In Proceedings of the Sixteenth International Joint Conference
on Arti�cial Intelligence (IJCAI), Stockholm, Sweden, 1999. Extended version:
Washington University, Department of Computer Science technical report WUCS-
99-01.

[8] T. W. Sandholm. eMediator: A next generation electronic commerce server. Tech-
nical Report WUCS-99-02, Washington University, Department of Computer Sci-
ence, 1999.

[9] P. R.Wurman, M. P. Wellman, and W. E. Walsh. The Michigan Internet Auction-
Bot: A con�gurable auction server for human and software agents. In Proceedings
of the Second International Conference on Autonomous Agents (AGENTS), pages
301{308, Minneapolis/St. Paul, MN, May 1998.

A Partitioning Model for Applications in Mobile Environments

Alexander Schill1, Albert Held2, Thomas Ziegert1 and Thomas Springer1

1 Dresden University of Technology, Department of Computer Science, Institute of Operation
Systems, Data Bases and Computer Networks, Mommsenstr. 13, D-01062 Dresden, Germany

{schill, ziegert, springet}@ibdr.inf.tu-dresden.de
2 DaimlerChrysler, Research and Technology 3, Wilhelm-Runge-Str. 11, D89081 Ulm,

Germany albert.a.held@daimlerchrysler.com

Abstract: Today mobile devices are an integral part of the execution environment of many distributed
applications. The new application domain of mobile computing brought up by this fact introduces
problems special to this area. Most of the currently available applications can’t handle mobility and
frequently changing network media. In this paper a partitioning model is introduced which combines
various techniques used to solve the special problems of mobile computing and to facilitate the
adaptation of application behavior according to the execution environment. Main points are the proxy
approach and the use of mobile agents as application components. The model focuses on a pair of
generic proxy agents which are placed at both sides of a wireless connection to control the data transfer
between a mobile host and the wired network.

1 Introduction and Motivation
Today mobile devices are an integrated part of the execution environment of many distributed
applications. This fact has brought up a new application domain called mobile computing which
offers the information access anywhere and anytime but also introduces new problems special to
this application area (e.g. frequent disconnections and low bandwidth). Most of the currently
available applications can’t handle mobility and frequently changing network media. They
assume a static environment and often high bandwidth connections typical in LANs. Because of
the increasing use of mobile devices and the variety of their hardware resources, it is desirable
that applications react and adapt to the frequently changing execution environment. For instance
the transfer and the visualization of web pages should be adapted to the available bandwidth to
the receiving host and the hardware resources on the mobile device.

Several Solutions have been published introducing environment aware, adaptable applications.
Disconnected operations [1,2] are used to handle frequent disconnections. In combination with
prefetching and caching strategies, work can be continued without a network connection. Other
approaches use data reduction techniques to reduce the data volume, which has to be transferred
over wireless links. Examples are the filtration and compression of data according to its type [3].
To implement such techniques an intermediate component called proxy is used. This approach
offers the possibility to improve even legacy software, especially client/server applications,
without or with very little changes of the existing components.

The paradigm of mobile agents offers new solutions for the problems named above. An agent
can be sent to the wired network and during the execution of the agent no connection to mobile
host is required. The mobile agent acts autonomously and sends results back when a new
connection to its originating host is established.

In this paper a partitioning model is introduced which combines various techniques used to
solve the special problems of mobile computing and to facilitate the adaptation of application
behavior according to the execution environment. Main points are the proxy approach and the use
of mobile agents as application components. The model focuses on a pair of generic proxy agents
which are placed at both sides of a wireless connection to control the data transfer. Some major
ideas of the model can be found in [10].

Section 2 contains some fundamental considerations and work related to our approach. In section
3 the generic partitioning model is described. In section 4 we present some performance results
measured using a sample application. A conclusion is drawn in section 5.

2 Foundations and Related Work
Frequent disconnections are one problem of wireless communication media. There are two ways
to handle this issue. First there are disconnected operations enabling the user of a mobile device
to continue his work even when the connection to the network is lost. The file system CODA [2]
realizes this technique by caching files locally in the connected state and accessing only local
data if no connection to the network is available. The second possibility is offered by mobile
agents. They can be sent to hosts placed on the wired network side and are able to continue their
work even if the connection to the mobile host is closed. Results of such an autonomous
operation1 can be delivered after a new connection to the mobile device is established.

Caching can reduce the network load by keeping frequently used data locally. By applying a
prefetching strategy high delay times can be kept hidden to the user. To work efficiently this
strategy needs to observe user actions to decide what data has to be prefetched. In the case of
wrong decisions bandwidth is wasted but this technique can be used to exploit unused bandwidth.
Further improvement can be reached using lazy write-back. Data is only written back to a server
in the wired network after a modification in the cache and after the access is ended (e.g. the close
operation for a file has been called). These techniques need additional resources on the mobile
device. Restoring the consistency between cache and source data in the network when switching
from disconnected to connected state needs also additional effort (see [1]).

The frequently changing bandwidth and the low available bandwidth in general can be
addressed by data reduction prior to the transfer. The deployment of compression algorithms (e.g.
lzh) reduces the volume of all kinds of data. Lossy compression (e.g. JPEG and MPEG) or
conversion according to the type of data can be used to reduce the volume of multimedia data.
For example, the size or the color depth of a picture could be changed.

Some techniques can decrease the network load by dropping data less important for the overall
information of structured data. Therefore additional information at the application level is needed
to assess the importance of the parts within a data structure. Hierarchical data (like HTML pages)
is well suited to apply filtering methods. The importance of data is included in the hierarchy. The
higher the position in the hierarchy the more important is the data for the overall information of
the structured data. Dropping of data depends on the available bandwidth. The lower the
bandwidth the fewer levels of the hierarchy are transferred. Data outlines can be created from
structured data which decreases the amount of data to transfer. For instance a HTML page could
be reduced to headlines and links with placeholders for the other data. The full information only
has to be transferred when a section or a placeholder is selected for viewing by the user. Lazy
evaluation can also reduce the network load. Only actually used data is transferred (the part of a
HTML page which is currently visible) (see also [11]).

Disconnections can be handled generally by applying queuing. When a connection breaks
enqueued data can be transferred via a new established connection. In the same manner the data
transfer can be delayed if the bandwidth of the currently available connection is not sufficient.
Queuing will not reduce the network load but it enhances the behavior of applications during
disconnections.

1
 In the literature the phrase disconnected operation is sometimes used for both of the described operations. We use the expressions

“disconnected” and “autonomous” to distinguish between both types.

A general approach to support mobile environments is the partitioning of applications and
distribution of the components between the mobile device and hosts in the wired network. The
aim is the dynamic adaptation of applications in reaction to changes within their execution
environment (e.g. quality of connection to the mobile device and availability of resources).

An often used method is the introduction of an intermediate component placed between client
and server components. This so called proxy senses its execution environment and adapts the
communication over the link to the mobile device according to the available communication
media.

An adaptation of the data stream can be done in the network infrastructure [6]. In this
approach the amount of data is reduced using data type specific lossy compression and
conversion. This functionality is separated from the client and server components and is part of
an intermediate proxy within the network infrastructure.

In [5] the main task of the intermediary is filtering the data stream to the mobile device.
Therefore the following methods are applicable: optimized protocols, selective dropping of
structured data, compression or a deferred data transfer. By using a proxy component, client and
server components can remain unchanged or can be used with very little changes.

The approach of partitioning an application is also used in [3]. Data and functionality of an
application is partitioned into hyperobjects which are linked hierarchical objects managed by the
system. These hyperobjects contain base types such as text, graphics, untyped data and functions.
Based on this structure caching, prefetching and data reduction are used to exploit the wireless
links efficiently. Data reduction is done by selecting a subset of structured data for the transfer
according to the available network resources, application specified data priority and filters.

All the techniques described above can be used to adapt application behavior to the parameters of
the available network connection and execution environment. Filtering, compression and
conversion of data, outlines and lazy evaluation reduce the amount of data which has to be
transferred. These techniques can be implemented as an application component placed at a
stationary host. Code for caching, prefetching and lazy write-back has to be placed on the mobile
device. Beside these restrictions not all techniques can be combined. While lazy evaluation only
transfers data really needed, prefetching transfers data that will possibly never be needed. A
partitioning model which combines some of the described techniques is introduced in the next
section.

3 The Partitioning Model

3.1 A First Approach
In [4] a traffic telematics application was presented which was based on mobile agents as
application components. The application has been partitioned into several parts which were
distributed between a mobile device and hosts in the wired network. An agent acts as proxy for
the mobile device within the wired network. Information is processed and filtered before it is
transferred to the mobile device. The proxy agent is assigned only to this application. A generic
partitioning model was also introduced, where a single proxy agent acts for several applications
at the mobile host.

The application partitioning model we introduce in this paper is a refinement of this general
approach. It is based on the experiences obtained from the traffic telematics application. In
general each application needs a component at the mobile device. This component contains the
user interface, functions to interact with the user and the components in the network (e.g.
configuration, communication and control) and functions independent from the network.

Additional components can be placed at the wired part of the network. These components contain
functions related to resources on the wired network side and adapt the data stream according to
the communication link to the mobile device. The component in the wired network can be
divided to additional subcomponents to facilitate parallel execution of tasks and local
communication by migrating these subcomponents to the host of the communication partner.

By implementing this first model in a straightforward way (like the telematics application), it
provides disconnected operations by using caching and prefetching and autonomous operations
due to the use of mobile components, reduces the network load by filtering and handles
disconnections by queuing. But the intermediate component per application which facilitates
functions that are generic, could be used by more than one application. Therefore we have further
refined our model to separate generic and application related functions of the proxy.

3.2 A Generic Model
The application partitioning model is based on two pairs of components which contain generic
and application related functions of the proxy. The generic component placed within the wired
network acts as a permanent representation of the mobile device. All communication attempts of
the application involving the wireless link are mediated by the generic components.

There are some restrictions with respect to the placement of code which implements the
techniques described in section 2. Caching, prefetching and lazy write-back are realized by the
application related component on the mobile device because these techniques need information
only available at application level to work effectively. Caching and lazy write-back can also be
applied in a more generic fashion and therefore be realized by the generic component.
Compression and conversion depend on the data type which is generic. Queuing improves the
disconnection handling of all applications in common. Data can be filtered using application
related information. Therefore filtering is done by the application related component within the
wired network. Packets can also be filtered using their routing information (e.g. source and target
and priority) which is common for all applications. Lazy evaluation and outlines depend on
information available at application level.

In consideration of the above described restrictions the partitioning model was designed as
shown in figure 1. It focuses on a pair of generic components which are placed at both sides of
the link to the mobile device. Furthermore there are components placed on the mobile device and
within the wired part of the network.

Our partitioning model was designed according to the following principles: Information
should be used where it is available. Low bandwidth, high latency communication media require
an adaptation (volume reduction, adaptation of the send and receive behavior), which can be done
in an generic and application specific way, so the system should incorporate both possibilities.
Application components should be, as much as possible, dispersed within the wired network
infrastructure. For instance, the application can be partitioned according to the structure of the
used servers.

Furthermore our model decouples application components from the movement of the mobile
device.

3.2.1 The Local Application

This component may be for instance a client of an existing client/server application. In newly
developed applications, only one component on the mobile device will exist (see next section).

3.2.2 The Application Related Component on the Mobile Device

This component contains the user interface, functions to process local data (e.g. test of the
consistency of user data, configuration, and control of the other components) and application
related functions of the proxy as described above. In this component user actions can be observed
and application related information can be used to effectively implement caching and prefetching
strategies.

3.2.3 The Application Related Component within the Wired Network

This component accesses data located on hosts within the wired network and contains functions
to reduce the volume of data transferred to the mobile device. In this component application
specific information can be used.

In many cases a further decomposition of this component will be useful. For instance a
supervising component may create various subcomponents which perform subtasks. These
subcomponents migrate independently to servers to communicate locally. The supervising
component collects the results of all subcomponents, processes these results and sends only a
summary to the mobile device after filtering. In general the decomposition of this component
depends on the task of the application and the distribution of accessed servers and information
resources.

client
application

application
related

component

generic
component

generic
component

application
related

component

subcomponent

application
related

component

server 1

server 2

server n

subcomponent

subcomponent

application
related

component

mobile device wired network

direct communication indirect communication

Figure 1: A generic partitioning model

3.2.4 The Generic Components (Generic Proxy)

The pair of generic components mediates the communication between the other components.
While the other components exist per application, these two only exist per mobile device, Thus
they are used by all applications of a mobile device.

In our concept the application related components are intended to be independent from the
generic proxy. That means that all application components are also able to communicate without
the generic proxy. This is useful if a high bandwidth connection to the mobile device is available.

It should be possible to dynamically bind and unbind application components to the generic
proxy according to changes in the execution environment.

In a generic component incoming messages are inserted into a queue for further processing.
All messages are encapsulated in an uniform data container which contains a description of the
included data. The description contains routing information, data type, two id’s to identify data
streams and packets within a stream and information how the packet should be handled by the
generic proxy. This allows each application to configure the handling of its data in the generic
proxy. For instance an application can determine if a packet should be compressed and which
minimal quality is tolerable for the compression. Packets are exchanged as single messages.
Therefore each agent contains one method to receive messages (which is similar for all agents)
with a data object as argument.

The queuing mechanism is not determined in the model. Currently we use a priority queue in
our prototype application. Therefore the user can specify a priority for each application according
to time constraints concerning the delivery of there messages. Each message is assigned with an
priority belonging to its application before it is enqueued. Other queuing mechanisms are
applicable. The priority could also be determined by the application itself according to the
position of data in a data structure. Also multiple queues (one for each priority) could be used
(see [9],[12]).

The messages remain in the queue until the transfer is possible. Selected messages are adapted
to the available bandwidth by compressing and converting these according to the data type. A
protocol adapted to the communication media can be used to optimize the transfer [5]. For
instance multiple parallel send threads can be used for communication media with high delay
times to better exploit the available bandwidth [9]. If a generic component receives a message
from its twin component the message is mediated according to the included target information.

4 A Sample Application
An email application has been implemented to validate our model. It is partitioned using the
described model. The Netscape Navigator Mail represents the client of the existing client/server
application (the client component in figure 1). The application related component on the mobile
device provides a user interface to configure and control all application components (agents) and
to input filter data and the information required to access the email account. New messages are
delivered to the mail server. The application specific component in the wired network is called
email agent. It migrates to the mail server host or a host close to the server. Once there it will ask
for new messages using the information for the email account. New messages are filtered in two
ways using the header information (e.g. sender, receiver or subject) and information in the body
(e.g. body text or attachment data type and size). The filtered messages are sent to the component
at the mobile device. Therefore the generic proxy is used.

The implementation is based on the ObjectSpace Voyager core technology API [7] and the
JDK 1.2 [8]. The communication between agents is based on the RMI mechanism of Java. For
further details see [4].

Table 1 shows the transfer times of messages with and without the indirection over the proxy
agent. We conducted our measurements for 100VGAnyLAN on two 200MHz Pentium Pro,
64MB RAM workstations running WindowsNT and for Ethernet and the wireless LAN on a
ThinkPad 760D (Pentium 166MHz, 64MB RAM) running Windows95 and one of the
workstations mentioned. The values are average times over 500 runs. We transferred an email
containing a JPEG picture with a size of 12204 bytes in high and 4439 bytes low quality. The
decoding and encoding needs an average of 135,6 ms altogether.

The values for 100VGAnyLAN and Ethernet are highly influenced by the
serialization/deserialization times. The use of the proxy components only is advantageous for
disconnection handling. Using the wireless LAN, the transfer time of the compressed data is
significantly lower than the times for transferring uncompressed data. The indirection over the
generic proxy takes also some time but the benefit for disconnection handling and adaptation
justifies this effort.

100VGAnyLA
N

3Com Ethernet Xircom Netwave wireless
LAN

low quality 180 179,2 444,7with generic
proxy high quality 190,8 189,1 809,6

low quality 55,5 57,3 378,3without
generic proxy high quality 58,8 72,1 774,4

Table 1: Message transfer times in ms

5 Conclusion
The partitioning model described in this paper enables the dynamic adaptation of applications to
dynamic changes of their execution environment. It introduces two component pairs. These
components contain application related and generic functions to handle disconnections and
variations in connection quality. Generic and application specific techniques are placed in
components where they can access required information to work effectively. While other
approaches focus one special problems like filtering of information [5] or data reduction [6] our
model integrates most of the these techniques. Another advantage is the possibility to share the
generic functionality between applications. The generic proxy provides a robust software
component to adapt data transfer which can be used by all applications of a mobile device and
independently of underlying network protocols. The handling of the data remains independently
configurable for each application. Because of the defined and limited functionality of the generic
proxy, this component is small compared to the application related components. This reduces the
effort necessary after the movement of the mobile device. Only the generic proxy has to be
moved. This decouples the application related parts from the movement of the mobile device so
own migration strategies can be applied, which includes the migration to a server near the most
probable next location of a mobile user.

An important fact is the use of mobile agents as application components which facilitates a
dynamic placement of application parts and the dynamic placement of the proxy during runtime.
The capability of migration is performed by the agent system. The agent system also provides
other services (e.g. naming and locating, security) which can be used by all applications. Mobile
agents also facilitate the execution of autonomous operations as described before. To enable the
adaptation to the execution environment, the environment has to be sensed by the components.
Therefore the agent system must provide additional services for instance to observe the quality of
network connections. By using an agent system based on Java the proxy can be used on any
platform which provides a Java virtual machine. Only the availability of the agent system and the
class files are special requirements in our approach.

References
1. Marc E. Fiuczynski and David Grove: A Programming Methodology for Disconnected

Operation; Technical Report, University of Washington, March 1994

2. James J. Kistler and M. Satyanarayanan: Disconnected Operation in the Coda File System;
ACM Transactions on Computer Systems, 10(1), pp. 3-25, February 1992

3. Terri Watson: Effective Wireless Communication through Application Partitioning; In Proc.
of the Fifth Workshop on Hot Topics in Operation Systems (HotOS-V), May 1995

4. Alexander Schill, Albert Held, Wito Böhmak, Thomas Springer, Thomas Ziegert: An Agent
Based Application for Personalized Vehicular Traffic Management; Lecture Notes in
Computer Science 1477 Mobile Agents, Springer, ISBN 3-540-64959-X, pp. 99-111, 1998

5. Bruce Zenel, Dan Duchamp: A General Purpose Proxy Filtering Mechanism Applied to the
Mobile Environment; The Third Annual ACM/IEEE International Conference on Mobile
Computing and Networking, 1997 pp. 248-259

6. Armando Fox and Steven D. Gribble and Eric A. Brewer and Elan Amir: Adapting to
Network and Client Variability via On-Demand Dynamic Distillation; Proceedings of the
Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 160-170, October 1-5, 1996

7. ObjectSpace: Voyager Core Technology User Guide, Version 2.0, 1998
8. Sun Microsystems: The Java Developers Kit, Version 1.2;

http://java.sun.com/products/jdk1.2/index.html, 1998
9. Alexander Schill, Sascha Kümmel, Thomas Springer and Thomas Ziegert: Experiences with

an Adaptive Multimedia Transfer Service for Mobile Environments; Workshop Interactive
Applications of Mobile Computing, Rostock, Germany, November 24-25, 1998

10. Thomas Springer: Masters Thesis (Diplomarbeit): Verteilung von Applikationen in Systemen
mit mobilen Endgeräten; Dresden University of Technology, Department of Computer
Science, Institute of Operating Systems, Data Bases and Computer Networks, 1998

11. Terri Watson: Application Design for Wireless Computing; In Proc. of the 1994 Mobile
Computing Systems and Applications Workshop, December 1994

12. Dirk Gollnick, Sascha Kümmel, Alexander Schill and Thomas Ziegert: Off-Line Verteilung
multimedialer Daten in mobilen Systemen; in GI/ITG-Fachtagung Kommunikation in
Verteilte Systemen, Springer Verlag, pp. 357-371, February 1997

MAC3 Workshop Notes Frameworks for Managing & Understanding

Autonomous Agents ‘99 42 May 1st 1999

Frameworks for Frameworks for
Managing and Managing and

Understanding Mobile Understanding Mobile
Agent ComplexityAgent Complexity

Economic Markets as a Means of Open Mobile-Agent

Systems

Jonathan Bredin, David Kotz, and Daniela Rus

Department of Computer Science

Dartmouth College

Hanover, NH 03755

fjonathan, dfk, rusg@cs.dartmouth.edu

May 1, 1999

Abstract

Mobile-agent systems have gained popularity in use because they ease the applica-

tion design process by giving software engineers greater exibility. Although the value

of any network is dependent on both the number of users and the number of sites

participating in the network, there is little motivation for systems to donate resources

to arbitrary agents. We propose to remedy the problem by imposing an economic

market on mobile-agent systems where agents purchase resources from host sites and

sell services to users and other agents. Host sites accumulate revenues, which are dis-

tributed to users to be used to launch more agents. We argue for the use of markets to

regulate mobile-agent systems and discuss open issues in implementing market-based

mobile-agent systems.

1 Introduction

One of the more recent items in a network programmer's tool box is code mobility. The tech-
nique is becoming more common in applications programming, network management [BPW98],
video conferencing [BPR98], software distribution and installation, unreliable networked
weather forecasting [Joh98], and client-server networking alternatives [Mul98].

Mobility allows the programmer to easily distribute resource usage throughout the net-
work over time. Resource contention can be mitigated by relocating execution to less utilized
machines on the network. Additionally, since mobile agents are autonomous, they may sched-
ule their own computation at a later time at a remote host, avoiding times of congestion.

We examine some restrictions typically present in mobile-agent systems. Speci�cally, few
mobile-agent applications implement communication with agents from other applications or
submitted by competing users. This shortfall might be surprising considering that agent
technology is often advertised as a unifying design paradigm nurturing both cooperation
and competition.

Many of the restrictions faced by usable mobile-agent systems stem from the distributed
nature of mobility: because decisions are made throughout the network, coordination be-
comes more diÆcult. Human societies have implemented economic markets as a solution for
distributed control. We believe that the same solution can be applied to create societies of
mobile agents.

We propose that mobile agents buy computational resources from their hosts using a
scarce veri�able currency. The agents' priority would be governed by limited endowments.
The danger of denial-of-service attacks is bounded by agents' expenditure. Systems can buy
outside computational resources to exibly expand their computing base. Conversely, idle
resources may be sold to users from other sites. Finally, a fair price system provides valuable
information that allows agents to autonomously and eÆciently balance network load.

We conclude by establishing goals necessary to implement computational markets in
the context of mobile-agent systems: a low-overhead veri�able currency system, eÆcient
incentive-compatible pricing mechanisms, a set of standards conveying the rules and bases
of such pricing mechanisms to allow rational planning by agents, and both demand-based
and reservation-based consumption.

2 Motivation

As mobility becomes more commonly used in network programming, we observe that, so
far, applications operate in a closed environment. The range of sites to which an agent can
jump is severely restricted and it is common for all agents in the system to only represent
the interest of a single user or cooperating group of users. Additionally, typically agents only
communicate with other agents of the same application.

The number of sites to which an agent can jump is limited. Why should a host allow any
agents to visit at all? If we ask the analog question in web browsing, in a large number of
situations there is a clear advantage for web servers to supply their resource (information) to
arbitrary clients. This information dissemination is generally done to boost the reputation
of the host site's owners, clients, or products.

Computational resources exported by mobile-agent hosts are much more diÆcult to con-
trol. The host site generally has no assurance that an arbitrary agent's actions will have
any bene�cial e�ects. There is little incentive for a host system to provide resources to an
arbitrary agent. Not only is there the additional congestion incurred through normal mobile
agent use, but there are additional risks from denial-of-service attacks and other irresponsible
uses of resources.

A mobile-agent system's value is not only dependent on the number of participating
host sites, but also on the the number of participating users and agents. Most non-research
mobile-agent applications assume that agents are all issued by cooperating owners. Typically,
only one entity issues mobile agents for a task. This entity may be represented by many
users working for a university or company, but the interests of the agents are generally
complementary and it is in agents' best interest to cooperate. Essentially, agents in such
situations can be viewed as having a common owner.

Even if all agents share a common goal, their use distributes decision-making processes
throughout the network. To perform eÆciently, agents must be able to coordinate and assess

the impact of their actions. Ideally, the medium for this information exchange should be fast
and incur minimal overhead.

We see few real-world examples of agents coordinating with agents involved in other
applications. In stark contrast, consider the World Wide Web. A user's browser sends
requests to thousands of host sites to retrieve information. Much of the information retrieval
is more than simply examining an HTML �le. Often browsers exchange cookies with servers,
negotiate security protocols, retrieve dynamically produced web pages, download applets,
and forward retrieved information to other applications to be processed. A typical web
browsing-session can involve the use of several dozen application programs. We have the
same goal for mobile-agent systems.

3 Markets

To overcome the limitations currently experienced by mobile agents, we propose to establish
an economic market for computational resources and services. Mobile agents arriving at
a host site will purchase the resources necessary to complete their task. These resources
could include access to the CPU, network and disk interface, data storage, and databases.
Presumably, agents are providing valuable services to their users. It is possible that other
agents would also bene�t from the service, so agents could sell their services to users and
agents. Eventually, currency will accumulate at host sites. Revenues are then distributed to
local users who in turn disperse their income to their agents completing the cycle.

The currency used in computational markets does not necessarily have to be tied to
legal tender currency. If the currency is exchangeable for real dollars, however, system
administrators can essentially export and import their computational resources. Access
to underutilized resources may be sold to mobile agents (resource export). If local resource
contention is high, then users may launch agents to carry on computation elsewhere (resource
import).

Because currency is scarce, budgets are �nite, and all resource consumption is tied to
expenditure, agents' lifetimes are limited. The extent of a denial-of-service attack, wanton
consumption done with the intention of excluding other users from the resource, is limited.
Given that resource pricing is fair, hosts will be happy to entertain a denial-of-service at-
tack to maximize revenues. An eÆcient pricing policy will ensure that demand and price
are positively correlated and make denial-of-service attacks extremely expensive operations,
deterring o�enders.

Price, the same mechanism that discourages wasteful consumption, serves as a simple
metric of resource contention and site congestion. Price advertisement provides a simple
means of agent coordination as follows. Revenue maximizing hosts will charge what the
market will bear. High prices due to congestion give agents incentive to distribute themselves
evenly throughout the network or defer execution to a less congested time. Thus a pricing
system e�ectively implements both temporal and spatial load balancing.

The idea of selling computational resources to mobile programs is not new. We discuss
a few recent implementations next. POPCORN [RN98] is a system that uses markets to
distribute \computelets" through the network to take advantage of idle CPUs. The approach
is intended for parallel programs where interaction among threads is limited.

The Geneva Messengers project [Tsc97] applies market ideas to allocate CPU usage and
memory to visitingmessengers, lightweight mobile programs implemented in a Postscript-like
language. Host sites heuristically set prices by examining the amount of resources requested
by the present messengers.

In Telescript [Whi96] agents carry permits to access speci�c host-site resources. As a
permit is used, hosts trust each other to diminish the permit's power. The result is that
agents' lifetimes are limited. This use of permits can be viewed as a limited form of a
market. Host sites distribute permits for each resource to be controlled, though a permit for
one resource is not easily convertible to another. A more general form of this mechanism
would be to have a universal permit, currency, that could be exchanged for other permits.

An extreme point of view is taken in MarketNet [YDFH98] where currency-resource
exchange is the exclusive form of security. Di�erent levels of security access are sold to
users. Sites may discount access to certain populations by setting a lower price in a separate
currency. Presumably this new currency is unusable by users outside the group.

4 The Challenge

There are many hurdles to cross on the way to implementing an e�ective market system.
Most obviously, there must be some means of exchange such as a secure currency system.
The market should be structured in such a way to reward honest behavior, to facilitate
planning. Finally, this structure should be well known to all entities participating in the
market.

4.1 Accounting

All markets rely on a secure means of exchange. Without this, there is no incentive for
participants to cooperate. Currency should be scarce to reinforce its value. A prerequisite
to this is that currency may only be spent once, i.e. a buyer may not use the same note for
more than one purchase. Ensuring this is the crux of any monetary system and can carry
with it signi�cant overhead. Electronic currency in the context of mobile-agent systems has
one particular caveat: an agent's money is essentially just data, data to which the host
potentially has access.

There are several micro-currencies designed to minimize the cost of transaction [GMA+96,
PHS98]. If the cost of currency exchange is still too large, there are other options to take.
Hosts can establish a local account for each agent or its owner. Deposits into the account
are periodically made with some secure payment method. Agents then withdraw from the
local accounts as they compute, trusting the host site to correctly decrement the account
balance. If the deposits are small or the account is known to be used over a long period of
time, then there is less incentive for hosts to overdraw the local account since the payo� for
cheating once is lower than conducting further honest business.

The other option is to scale the level of resource accounting. Ideally, agents would
be charged for every action they take including a precise count of the instructions exe-
cuted or even the number of processor cycles used; bits sent through the network interfaces;
words/milliseconds of storage; etc. Such monitoring is most likely impractical, however, due

to the cost of precise measurement. At the other extreme, agents may pay a �xed fee to
execute any set of instructions. Obviously, this is also ineÆcient in that agents will rarely
use the exact level of service for which they pay.

A happy medium between the two extremes must be found. Possibly, pro�ling existing
applications using mobile-agent technology will give some intuition on the appropriate level of
control. It is quite possible that the sorts of applications that can take advantage of mobility
have similar resource requirements and one can tailor an allocation policy accommodating
the majority of applications.

Extending this strategy could allow hosts to o�er one of several resource packages and
an appropriate billing plan to agents. Each package-accounting pair would have advantages
to di�erent groups of applications depending on preferences and resource demands.

4.2 Policy Design

There are two dynamics that drive the construction of economic policy. One is the partici-
pants' goal to maximize utility, while the other is the system's engineers need to enforce an
equitable allocation. These two ideals often conict under poorly designed policies. A simple
example is when the market is allowed to create monopoly. Here a monopolist will act to
maximize revenue at the expense of customers. The lesson learned is that either monopolies
should be regulated or that conditions allowing the existence of monopolies should not exist.

It is the responsibility of the designer of the economic system to provide an environment
in which both buyers and sellers are willing to participate. Frequently, this is facilitated
by constructing mechanisms where the parties choose those actions that express their true
intentions, i.e, incentive compatible mechanisms. This open honesty mitigates the cost of
planning and decision making.

A well used example of an incentive-compatible policy is the sealed-bid second-price
auction [Vic61] where potential buyers simultaneously submit a single bid for a good. The
auctioneer chooses the winner to be the participant who submitted the highest bid, but the
winner pays the highest losing bid. Generally, the optimal strategy is for a buyer to submit
a bid equal to the buyer's valuation of the good.

A second issue in policy design: to enforce load balancing, a resource management policy
should provide a strong correlation between the contention for a resource and its price.
Possibly, this might be accomplished through setting a price that increases as the quantity
consumed rises. Alternatively, an auction could be held for the resource and the resource
owner could let the buyers compete to set the price.

Negotiation of price is not suÆcient for market-based resource allocation. The resource
management policy must also take into account resource consumption scheduling. The sys-
tem designer must decide whether to entertain reservations, consumption on demand, or
some combination of the two. Users and agents would likely be willing to pay more for
service guaranteed by reservations, but hosts might be able to sell larger quantities of re-
sources on a demand based scheduler. This is an interesting and valuable issue to study as it
e�ects planning on both the host and client sides and will likely deal with computationally
complex issues. There is the additional dimension that users will be willing to pay amounts
proportional to the quality of service.

4.3 Standardization

Finally, any e�ective policy will require that all participants are aware of the guidelines
regulating the system. Sites will have to �nd some way of publishing their resource pricing
and allocation policies for their potential users. For agents to be aware of rules either requires
a single standard or some protocol for expressing market parameters.

Again, with this issue, there should be moderation. The point of an \agent" is to shield
the user from all the intricacies of computation by providing an abstraction. The user should
be aware of the service quality they receive as well as a general level of congestion of the
requests to their agents, but it is the agents' responsibility to eÆciently perform the task.

5 Conclusion

We believe that markets are the proper tools to provide an open mobile-agent system. They
enforce an additional level of security and give incentive for agents to autonomously balance
the computational load across the network. Allowing the currency used to buy computational
resources to be exchanged for legal tender allows system administrators to temporarily ex-
pand their domain by importing resources as well as capitalize on idle resources by exporting
them.

Implementation of a mobile-agent computational market will require further research in
electronic currency exchange to minimize the overhead of currency validation. Furthermore,
careful decisions must be made on the part of market designers and host-site owners to
equitably distribute resources among mobile agents and local users while attempting to
maximize revenue. Finally, regardless of the resource-allocation policy, for agents (or their
programmers) to plan appropriately, they must be able to detect which policy is being used.
Policy discovery will likely require either a single standard or a language to describe market
protocols.

Establishing markets will achieve distributed decision making in mobile-agent systems.
We feel that markets are natural solutions to mobile-agent coordination and resource control
and will eventually allow mobile agents to be used in an open multi-application environment,
though much work remains to be done to implement a working system.

Acknowledgments

This work is supported in part by the Navy and Air Force under contracts ONR N00014-
95-1-1204 and MURI F49620-97-1-0382, Rome Labs under contract F30602-98-C-0006, and
DARPA under contract F30602-98-2-0107.

References

[BPR98] Mario Baldi, Gian Peitro Picco, and Fulvio Risso. Designing a videoconference
system for active networks. In In Proceedings of the Second International Work-

shop, Mobile Agents '98, pages 273{284, Stuttgart, Germany, September 1998.

[BPW98] Andrzej Bieszczad, Bernard Pagurek, and Tony White. Mobile agents for network
management. IEEE Communications Surveys, September 1998.

[GMA+96] Steve Glassman, Mark Manasse, Mart�in Abadi, Paul Gauthier, and Patrick
Sobalvarro. The Millicent protocol for inexpensive electronic commerce. World

Wide Web Journal, 1(1), Winter 1996. Also in Fourth International World Wide
Web Conference, December 1995.

[Joh98] Dag Johansen. Mobile agent applicability. In In Proceedings of the Second Inter-

national Workshop, Mobile Agents '98, pages 80{98, Stuttgart, Germany, 1998.

[Mul98] Tomasz Muldner. Mobile computing at acadia university. Dart-
mouth College Computer Science Colloquia, 1998. slides at
http://evilqueen.acadiau.ca/presentations/mobileagents.ppt.

[PHS98] Tomi Poutanene, Heather Hinton, and Michael Stumm. NetCents: A lightweight
protocol for secure micropayments. In USENIX Workshop on Electronic Com-

merce, pages 25{36. USENIX Association, September 1998.

[RN98] Ori Regev and Noam Nisan. The POPCORN market| an online market for
computational resources. In Proceedings of the First International Conference

on Information and Computation Economies, pages 148{157, Charleston, SC,
October 1998. ACM Press.

[Tsc97] Christian F. Tschudin. Open resource allocation for mobile code. In In Proceed-

ings of The First Workshop on Mobile Agents, Berlin, April 1997.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
Journal of Finance, 16:8{37, 1961.

[Whi96] James E. White. Telescript technology: Mobile agents. General Magic White
Paper, 1996.

[YDFH98] Y. Yemini, A. Dailianas, D. Florissi, and G. Huberman. MarketNet: Market-
based protection of information systems. In Proceedings of the First Interna-

tional Conference on Information and Computation Economies, pages 181{190,
Charleston, SC, October 1998. ACM Press.

Emergent Behavior and Mobile Agents

Tony White
Bernard Pagurek

({tony,bernie}@sce.carleton.ca)
http://www.sce.carleton.ca/researchers/tony/index.html

Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6

Abstract

Naturally occurring multi-agent systems exhibit remarkable problem solving capabilities
even in the absence of centralized planning. These systems exhibit complex, emergent
behavior that is robust with respect to the failure of individual agents. Such systems are
usually characterized by the interaction of a large number of simple agents that sense and
change their environment locally. In this paper, we discuss mobile agents and how they
represent a novel problem solving paradigm that can exploit naturally occurring multi agent
system (biological) metaphors. We introduce the principle of synthetic ecologies of
chemically inspired agents in order to model problem solving behavior in networks. We
demonstrate the utility of the architectural principles by describing example applications for
problem solving in the communications domain.

Keywords: mobile agents, agent coordination, agent collaboration, swarm intelligence

1. Introduction
The advantages of mobile agents have largely been discussed in terms of technology [Chess et al.,

97] and the value of individual agent autonomy (see, for example, [Bieszczad et al, 98]). It is possible
to view them as an approach to problem solving where mobility and interactions with the network
locally are stressed. Similarly, coordination mechanisms for mobile agents have been discussed in
terms of blackboard-style algorithms, with the agents tending to be rational, having a knowledge of
self and a goal to be achieved (see, for example, [O’Hare and Jennings, 96]). In fact, several
implementations of such systems are being investigated by the mobile agent community [Picco et al.,
99]. Symbolic systems of this type are often brittle, unable to cope with the failure of a single agent
and may depend upon planning by a central agency in order to achieve coordination. Such systems
often have to cope with the latency problems inherent in centralized systems. We believe that these
limitations undermine the value and power of mobile agent systems.

It is difficult to argue against the effectiveness of naturally occurring multi agent systems and, in
particular, systems exhibiting mobility. Societies of simple agents are capable of complex problem
solving while possessing limited individual abilities [Franks, 89; Hölldobler and Wilson, 94]. They
often possess no central coordination of activity; problem solving is distributed. Societies of such
mobile agents are found at all levels of evolutionary complexity, from bacteria to ants and beyond. It
is common in such societies to observe social coherence although when behavior of the individual is
observed, a large stochastic component is present. Stated another way, such societies exhibit emergent
behavior.

Problem solving by societies of simple agents has a number of common characteristics. Inter-
agent communication is local; no single agent has a global view of the world. Communication is also
achieved using simple signals and these signals are time dependent; e.g. they usually decay with time.
Signal levels provide the driving force for migration patterns. Individual agents sense and contribute
signal energy to the environment. In this description of the problem solving process, there are two
distinct and important agent characteristics. First, there is the role of the agent within the problem
solving process; i.e. how the work of problem solving is distributed to a diverse set of agents. Second
the degree to which the actions of one agent reinforce the actions of other agents in the society of
problem solvers.

The appeal of swarms of biologically inspired agents for industrial problem solving has recently
been appreciated [Parunak, 98]. Research into the problems and potential of multiple, interacting
swarms of mobile agents is just beginning [White and Pagurek, 98].

In the remainder of this paper, we briefly describe the principles of Swarm Intelligence and
Stigmergy. We then use these principles as motivation for the Synthetic Ecology of Chemical Agents
(SynthECA) and provide arguments as to the value of the abstraction. SynthECA is then used to
indicate how several interacting swarms of agents would be capable of problem solving in networks.
The paper then concludes with a review of its important messages.

2. Swarm Intelligence and Stigmergy
Swarm Intelligence [Beni and Wang, 89] is a property of systems of unintelligent agents of limited

individual capabilities collectively exhibiting intelligent behavior. An agent in this definition represents an
entity capable of sensing its environment and undertaking simple processing of environmental observations
in order to perform an action chosen from those available to it. These actions include modification of the
environment in which the agent operates. Intelligent behavior frequently arises through indirect
communication between the agents, this being the principle of stigmergy [Grassè, 59]. It should be stressed,
however, that the individual agents have no explicit problem solving knowledge and intelligent behavior
arises (or emerges) because of the actions of societies of such agents.

Individual ants are behaviorally simple insects with limited memory and exhibiting activity that has a
stochastic component. However, collectively ants manage to perform several complicated tasks with a high
degree of consistency (see, [Franks, 89; Hölldobler and Wilson, 94] for examples).

Two forms of stigmergy have been observed. Sematectonic stigmergy involves a change in the physical
characteristics of the environment. Ant nest building is an example of this form of communication in that
an ant observes a structure developing and adds its ball of mud to the top of it. The second form of
stigmergy is sign-based. Here something is deposited in the environment that makes no direct contribution
to the task being undertaken but is used to influence the subsequent behavior that is task related.

Sign-based stigmergy is highly developed in ants. Ants use highly volatile chemicals called pheromones
(a hormone) to provide a sophisticated signaling system. Ants foraging for food lay down quantities of
pheromone marking the path that it follows with a trail of the substance. An isolated ant moves essentially
at random but an ant encountering a previously laid trail will detect it and decide to follow it with a high
probability and thereby reinforce it with a further quantity of pheromone. Equally importantly, pheromones
evaporate. The collective behavior which emerges is a form of autocatalytic behavior where the more the
ants follow the trail the more likely they are to do so. The process is characterized by a positive feedback
loop, where the probability that an ant chooses any given path increases with the number of ants choosing
the path at previous times.

3. SynthECA
The Synthetic Ecology of Chemical Agents (SynthECA) exploits ant-inspired agents to solve problems

by moving over the nodes and links in a network and interacting with "chemical messages" deposited in
that network. Chemical messages have two attributes, a label and a concentration. These messages are
persistent and are the principal medium of communication used between both swarms and individual
swarm agents. Chemical messages are used for communication rather than raw operational measurements
from the network in order to provide a clean separation of measurement from reasoning. In addition,
chemical messages drive the migration patterns of agents, the messages intended to lead agents to areas of
the network which may require attention. Chemical labels are digitally encoded, having an associated
pattern that uses the alphabet {1, 0, #}. This encoding has been inspired by those used in Genetic
Algorithms and Classifier Systems [Goldberg, 89] (for example). The hash symbol in the alphabet allows
for matching of both one and zero and is, therefore, the "don't care" symbol.

Agents in the SynthECA system can be described by the tuple, #=
'�4�%�/&(�O�. This definition is
described at length in [White and Pagurek, 98] and will only be briefly described here. SynthECA agents
can be thought of as an implementation of the engineering principles for multi agent systems described in
[Parunak, 98]. Agents in the SynthECA system can be described using five components:

• emitters ('),

• receptors (4),
• chemistry (%),
• a migration decision function (/&(),
• memory (O)

An agent’s emitters and receptors are the means by which the local chemical message environment is
changed and sensed respectively. Both emitters and receptors have rules associated with them in order that
the agent may reason with information sensed from the environment and the local state stored in memory.
The chemistry associated with an agent defines a set of chemical reactions. These reactions represent the
way in which sensed messages can be converted to other messages that can, in turn, be sensed by other
agents within the network. The migration decision function is intended to drive mobile agent migration and
it is in this function that the foraging ant metaphor, as introduced in [Dorigo et al, 91], is exploited.
Migration decision functions have the following forms:

pij
k (t) = F(i,j,k,t) / 1k(i,j,t), R < R*

= S(i,j,t) otherwise

(1)

�1k(i,j,t) = Σj in A(i) F(i,j,k,t) (2)

F(i,j,k,t) = Πp[Tijkp(t)]
-αkp[C(i,j)]-β (3)

F(i,j,k,t) = maxj Πp [Tijkp(t)]
-αkp[C(i,j)]-β, when j = jmax

= 0 otherwise

(4)

where:
pij

k (t) is the probability that the kth agent at node i will choose to migrate to node j at time t,
αkp,

 β are control parameters for the kth agent and pth chemicals,
1k(i,j,t) is a normalization term,
A(i) is the set of available outgoing links for node i,
C(i,j) is the cost of the link between nodes i and j,
Tijkp(t) is the concentration of the pth chemical on the link between nodes i and j for which the kth agent
has receptors at time t,
R is a random number drawn from a uniform distribution (0,1],
R* is a number in the range (0,1],
S(i,j,t) is a function that returns 1 for a single value of j, j*, and 0 for all others at some time t, where j*
is sampled randomly from a uniform distribution drawn from A(i),
F(i,j,k,t) is the migration function for the kth agent at time t at node i for migration to node j,
jmax is the link with the highest value of: Πp [Tijkp(t)]

-αkp[C(i,j)]-β.

The intention of the migration decision function is to allow an agent to hill climb in the direction of
increasing concentrations of the chemicals that a particular agent can sense, either probabilistically
(equation (3) for F(i,j,k,t)) or deterministically (equation (4) for F(i,j,k,t)1). However, from time to time, a
random migration is allowed, this being the purpose of the function S(i,j,t). This is necessary, as the
network is likely to consist of regions of high concentrations of particular chemical messages connected by
regions of low or even zero, concentrations of the same chemicals. The addition of this random element
assists an agent in escaping from local minima.

1. Note that pij
k
 (t) = 1 for j=jmax, and 0 otherwise.

2
A

F

C

D

E

1

1

1

1

1

1

1

1 1

B

Finally, memory is associated with each agent in order that state can be used in the decision-making
processes employed by the agent.

Why is the chemical abstraction important?
First, the SynthECA chemical abstraction forces us to design agent systems assuming nothing about

concurrency and, as such, draws for its inspiration on the Chemical Abstract Machine (CHAM) [Berry and
Boudol, 92]. CHAM provides a framework for developing specifications that does not bias the described
systems towards any particular computational model. This abstraction is particularly important for mobile
agents as it not possible to make assumptions with regard to action-event sequences in networks. Second,
SynthECA provides for a single messaging abstraction that allows a broadcast capability through
generalized receptors and facilitates signal reinforcement through concentration of a chemical. Third, agent
chemistry allows energy and entropy flow through the processes of individual chemical reactions; e.g.
evaporation. Reinforcement and energy flows are characteristics considered fundamental to systems that
are to exhibit emergent behavior. Finally, analytical techniques based upon reaction kinetics and statistical
thermodynamics [Millonas, 95] provide powerful tools for analysis.

4. Modeling with SynthECA
One of the goals in proposing SynthECA was that it should be capable of supporting subsumption

architectures [Brooks, 91]. It was our intent to allow the addition of new layers to operational agent systems
without modification of the encoded behavior of agent classes in existing layers. SynthECA achieves this
goal by providing chemical signals that are passed between layers. Signals may excite or inhibit migratory
behavior within layers depending upon the sensitivity to the particular chemical. For example, the
reliability chemical deposited by a fault location agent provides an inhibitory signal that affects the
migration of routing agents.

We have applied SynthECA to the problems of routing, fault location and planning in networks. These
are briefly described in the following three subsections. A mechanism for implementing agent fault
tolerance is described in a fourth subsection.

4.1 Routing

The foraging behavior of ants and their use of pheromones for route reinforcement map easily and
naturally to the problem of route finding in networks. SynthECA routing agents use distinct chemicals for
particular point-to-point, point-to-multipoint and shortest Hamiltonian cycle routing tasks. Each routing
agent senses a routing chemical (r-chemical), a reliability chemical (R-chemical) and a quality of service
chemical (qos-chemical). Routing agents are sent out from source to destination(s), dropping a quantity of
r-chemical on the return path to the source node having discovered the destination. Path emergence is
considered to have occurred when the majority of the returning routing agents follow the same path (see
[White, Pagurek and Oppacher, 98] for more details and results). Once a route has emerged, an allocator
agent traverses the path and assigns resources to the connection. A quality of service sensing agent (qos-
agent) then monitors the end-to-end quality of the allocated connection. Several examples of the
exploitation of the foraging behavior of ants for routing have also been reported [Schoonderwoerd et al.,
97], [Bonabeau et al., 98], [Di Caro and Dorigo, 97].

4.2 Fault Location

Whenever the connection quality sensed by the
qos-agent changes significantly, another agent traverses
the nodes and links involved in the connection dropping
a quantity of qos-chemical proportional to the change in
sensed quality of service. Given that many connections
share network resources, more qos-chemical will be
dropped on common elements than others, in many
cases making possible the identification of the
component responsible for the quality of service
change. This is shown in Figure 1 opposite where two
connections, AB and CD, are present. The numericFigure 1: Fault Location Example

labels on the nodes and edges represent the quantity of qos-chemical deposited for a hypothetical quality of
service change. A qos-location-agent senses qos-chemical concentrations, constantly migrating towards
higher concentrations of qos-chemical. When it reaches the peak of qos-chemical concentration, it initiates
diagnostic activity on the component in order to determine the problem. In the figure on the previous page,
diagnostic activity would be initiated on node E. Once the problem has been corrected, a quantity of R-
chemical is dropped in proportion to the time taken to diagnose/repair the problem. The R-chemical is used
by the planning and routing agents. A reliability agent (R-agent) circulates constantly within the network,
hill-climbing in the space of the R-chemical. When the R-agent reaches a device for which the reliability
threshold has been compromised, the device is scheduled for replacement or maintenance activity. Further
details on the fault location scenario may be found in [White, Bieszczad and Pagurek, 98].

4.3 Planning

The R-chemical in the previous section may be used to drive the planning process along with a
chemical resulting from network congestion (c-chemical). Arguably, the R-agent is an example of a
planning agent as it reacts to the synthesis of events (quality of service changes) over an extended period.
Congestion sensing agents (c-agents) circulate in the network, choosing to visit the least recently visited
adjacent neighbor as a migration strategy. They interact with (non-SynthECA) agents that measure the
utilization of resources on that device2 and drop a quantity of c-chemical in proportion to the utilization of
the device. Given that routing agents sense the r-chemical, and choose to avoid resources that are
unreliable, they are likely to cause increasing congestion because of unbalanced network usage. A planning
agent (p-agent) needs to identify regions of the network that are either high congestion or high unreliability
areas. They do so by sensing R-chemical and c-chemical concentrations and initiating the re-planning of a
region of the network for which a function of the two concentrations exceeds some threshold value.

4.4 Fault tolerance

Devices in networks are unreliable and agent loss must be tolerated if multi agent systems are to be
made to function reliably. As this paper has demonstrated, SynthECA agents can be made to sense a
number of chemicals. The fault location and planning agents of the previous two sections require that small
numbers of such agents circulate constantly in the network. Hence, given unreliable transport and devices,
we can expect agents to be lost.

We propose that two classes of agent #�=
'��4��%��/&(��O��, #�=
'��4��%��/&(��O��, share chemicals
in their emitters and receptors; i.e. '�� �4���Ø and '�� �4���Ø. One of the emitters of #��is used to generate
a chemical that indicates when the agent was last at a given location. This same chemical is a member of
the receptor set of #�. #� uses the concentration of this chemical to decide whether a member of the #�

class has visited a device "sufficiently frequently." Reactions on each device cause these chemicals to
evaporate at a given rate. If #� reasons that the visit rate is too low, it spawns a new instance of class #��that
then migrates autonomously. Similarly, when an instance of class #�� visits a device, it senses its "visit
frequency" chemical. If after performing whatever activity it is designed for it reasons that the visit
frequency is too high, it dies. Obviously, the above algorithm can be repeated with indices reversed thereby
leading to symbiotic fault tolerance for the two agent classes.

Simple extensions to multiple classes are possible.

5. Conclusions
We have proposed the exploitation of a number of ideas and principles from naturally occurring multi-

agent systems in this paper in order to provide support for mobile agents as a problem solving technique.
The essential characteristics of SynthECA agents are that they possess simple behaviors, reinforce and
modify each others’ actions through interaction with their environment by chemical messaging. Essentially,
chemical messages are symbols with state. Problem solving is emergent in that routing agents are not
explicitly told how to find a route and fault location agents are not instructed on network fault finding.

2 Presumably, they use a measurement agent such as a Simple Network Management Protocol (SNMP) agent.

The scenarios presented are simple, but compelling, and we believe that considerable insight can be
gained by experimental and analytical study of systems constructed using SynthECA agents.

Acknowledgements
We would like to acknowledge the support of the Communications Information Technology Ontario

(CITO) and the National Science and Engineering Research Council (NSERC) for their financial support of
this work.

Bibliography
[1] G. Beni and J. Wang, Swarm Intelligence in Cellular Robotic Systems, Proceedings of the NATO

Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany, Italy, 1989.
[2] G. Berry and G. Boudol, The Chemical Abstract Machine, Theoretical Computer Science, 96(1), pp.

217-248, 1992.
[3] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz and G. Théraulaz, Routing in

Telecommunication Networks with Smart Ant-Like Agents. In Proceedings of the Second
International Workshop on Agents in Telecommunications Applications (IATA ’98), Lectures Notes in
AI vol 1437, Springer Verlag, 1998.

[4] A. Bieszczad, T. White, and B. Pagurek, Mobile Agents for Network Management. In IEEE
Communications Surveys, September, 1998.

[5] R. A. Brooks, Intelligence Without Representation, Artificial Intelligence, Vol. 47, pp. 139-159, 1991.
[6] Chess. D, Harrison C., and Kershenbaum A., Mobile agents: Are they a good idea? In Mobile Object

Systems: Towards the Programmable Internet, pages 46-48. Springer-Verlag, April 1997. Lecture
Notes in Computer Science No. 1222.

[7] G. Di Caro and M. Dorigo, AntNet: A Mobile Agents Approach to Adaptive Routing. Tech. Rep.
IRIDIA/97-12, Université Libre de Bruxelles, Belgium, 1997.

[8] M. Dorigo, V. Maniezzo and A. Colorni, The Ant System: An Autocatalytic Optimizing Process.
Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.

[9] N.R. Franks, Army Ants: A Collective Intelligence, Scientific American, Vol. 77, 1989.
[10] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:

Addison-Wesley, 1989.
[11] P. P. Grassè, La reconstruction du nid et les coordinations inter-individuelles chez Bellicoitermes

natalenis et Cubitermes sp. La theorie de la stigmergie: Essai d'interpretation des termites
constructeurs. In Insect Societies, Vol. 6, pp. 41-83, 1959.

[12] B. Hölldobler and E. O. Wilson, Journey to the Ants. Bellknap Press/Harvard University Press, 1994.
[13] M. M. Millonas, Swarms, Phase Transitions and Collective Intelligence, In Artificial Life III (ed. C. G.

Langton). Santa Fe Institute Studies in the Sciences of Complexity, Proc. Vol XVII. Reading,
Massachussetts: Addison-Wesley, 1994.

[14] G. M. P. O'Hare and N. R. Jennings (eds.), Foundations of Distributed Artificial Intelligence, ISBN 0-
471-00675-0, John Wiley & Sons, 1996.

[15] H. Van Dyke Parunak, Go to the Ant: Engineering Principles from Naturally Multi-Agent Systems, to
appear in Annals of Operations Research. Available as Center for Electronic Commerce report CEC-
03, 1998.

[16] G. P. Picco, A. L. Murphy and G-R. Roman, Lime: Linda Meets Mobility, Accepted for publication in
Proceedings of the 21th International Conference on Software Engineering (ICSE'99), Los Angeles
(USA), May 1999. Also available as Technical Report WUCS-98-21, July 1998, Washington
University in St. Louis, MO, USA.

[17] R. Schoonderwoerd, O. Holland and J. Bruten. Ant-like Agents for Load Balancing in
Telecommunications Networks. In Proceedings of Autonomous Agents ’97, Marina del Rey, CA, ACM
Press pp. 209-216, 1997.

[18] T. White and B. Pagurek, Towards Multi-Swarm Problem Solving in Networks. In Proceedings of the
Third International Conference on Multi-Agent Systems (ICMAS ’98), pp. 333-340, July, 1998.

[19] T. White, A. Bieszczad and B. Pagurek, Distributed Fault Location in Networks Using Mobile Agents.
In Proceedings of the Second International Workshop on Agents in Telecommunications Applications
(IATA ’98), pp. 130-141, July 4th-7th, 1998.

[20] T. White, B. Pagurek and F. Oppacher, Connection Management using Adaptive Agents. In
Proceedings International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’98), pp. 802-809, 12th-16th July, 1998.

package cps720.assignment2;

import java.util.Random;
import java.io.*;

public class CreateSurvey {

 /*
 * The question is of the form "How do your respond to this statement?
 * <the statement>
 * 1 = strongly disagree, 10 strongly agree. 5 no opinion.
 *
 * USAGE: java CreateSurvey <question> <dataFileName>
 * (the question string is not stored.)
 */
 private String theQuestion;

 private int rating;

 private final int STANDARDDEV = 3;
 private final int SAMPLESIZE = 1000;

 private Random gauss;
 private File f;

 public CreateSurvey(String aQuestion, String filename) {
 theQuestion = aQuestion;
 f = new File(filename);
 gauss = new Random();
 }

 public void questionAndAnswer() {
 BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
 System.out.println("Enter your response to the question.");
 System.out.println("The program will create a database of responses influenced by
your answer.");
 System.out.println("======================================");
 System.out.println(theQuestion);
 System.out.println("=======================================");
 System.out.println();
 int evaluation = 5;
 try {
 evaluation = Integer.parseInt(br.readLine());
 } catch(IOException ioe) {
 System.err.println(ioe);
 } catch(NumberFormatException mne) {
 System.err.println("Using the default value, 5.");
 }
 if(evaluation > 10) evaluation = 10;
 if(evaluation < 1) evaluation = 1;
 rating = evaluation;
 System.out.println();
 }

 public void genData() {
 int temp = 0;
 try {
 DataOutputStream dos = new DataOutputStream(new FileOutputStream (f));
 dos.writeInt(rating);

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/CreateSurvey.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/CreateSurvey.java (1 of 2) [7/24/2002 10:01:03 PM]

 for(int i = 0; i < SAMPLESIZE; i++) {
 temp = getRandEquiv(rating);
 dos.writeInt(temp);

 System.out.print(temp);
 }
 dos.close();
 } catch(IOException ioe) {}
 }
 private int getRandEquiv(int aRating) {
 float g, bigSD, newRating;
 do {
 g = (float) gauss.nextGaussian();
 bigSD = g * STANDARDDEV;
 newRating = bigSD + aRating;
 } while (newRating < 1.0 || newRating > 10.0);
 return Math.round(newRating);
 }

 public static void main(String[] args) {
 String question = args[0];
 String fileName = args[1];
 CreateSurvey survey = new CreateSurvey(question, fileName);
 survey.questionAndAnswer();
 survey.genData();
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/CreateSurvey.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/CreateSurvey.java (2 of 2) [7/24/2002 10:01:03 PM]

package cps720.assignment2;

import ptolemy.plot.*;
import cps720.assignment2.util.Convert;

/**
 * Uses PtPlot facilities to create a histogram from comma separated value
 * (csv) strings.
 * An example string is "3,9,15,20,15,8,2".
 * To use this class, ptplot.jar must be in the CLASSPATH.
 * Note also that the class cps720.assignment2.util.Convert must be
 * available.
 */
public class SurveyHistogram extends Histogram {

 private Histogram histogram;
 private PlotFrame frame;

 private String csvHistogram;
 /*
 * Creates a histogram (bar chart) from a cvs string.
 */
 public SurveyHistogram(String csvHistogram) {

 this.csvHistogram = csvHistogram;

 histogram = new Histogram();
 // The following line the bars up nicely
 histogram.setBinWidth(1.0);
 histogram.setBinOffset(0.0);
 histogram.setBars(0.5, 0.0);
 histogram.setTitle("Survey Results");
 histogram.setXLabel("Agree/Disagree Scale");
 histogram.setYLabel("Count");
 }

 /*
 * Displays the histogram.
 */
 public void displayHistogram() {

 int [] histogramValues = Convert.csvToArray(csvHistogram);

 for(int i = 0;i < histogramValues.length; i++) {
 int categoryCount = histogramValues[i];
 for(int j=0; j < categoryCount; j++) {
 histogram.addPoint(0, i);
 }
 }
 frame = new PlotFrame("Survey Results", histogram);
 frame.setBounds(100,100,500, 400);
 frame.setVisible(true);
 histogram.fillPlot();
 }

 // test
 public static void main(String [] args) {
 SurveyHistogram sh = new SurveyHistogram("3,4,5,6,5,4,3");
 sh.displayHistogram();
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/SurveyHistogram.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/SurveyHistogram.java (1 of 2) [7/24/2002 10:01:03 PM]

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/SurveyHistogram.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/a2f2001/SurveyHistogram.java (2 of 2) [7/24/2002 10:01:03 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/c720a3Ontology.jar

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/c720a3Ontology.jar (10 of 21) [7/24/2002 10:01:05 PM]

CPS 720 Exam Readme, Fall 2001

The exam starts at 9:00 AM NOT 8:00 AM.
Last updated: Dec. 10 2001.

Note: This site is mirrored on the SCS server at http://www.scs.ryerson.ca/~dgrimsha/cps720/index.html

and at http://proton.scs.ryerson.ca.

You might want to note these links in case this ryerson site goes down at an invonvenient moment.

The Exam Response (bubble) sheets will be handed out before the exam this year. It would be a good to
come 5-10 minutes before 9:00 so you can your sheet and the exam can be started on time.

Bring an HB pencil to the exam. This type works best on bubble sheets. A good eraser is nice (but dont't
second guess yourself). If you are paranoid about bubble sheets you can also circle answers on the exam
book. (But you must also fill out the bubble sheet.)

When writing your code, please use either an HB pencil or a pen. What I can't see, I can't mark :-).

The CPS720 exam consists of two parts. Part 1 consists of 15 multiple choice
questions, worth 2 marks each. Part 2 consists of 2 programming questions, one
for Aglets, one for JADE. They are worth 10 marks each.

The programming questions will be marked like essays, that is, without a detailed
marking scheme. Some syntax errors are to be expected and will not count against
you provided that they do not become too numerous.

The programs are both basic for each system. For the Aglet program there is
some code in the multiple choice section which should remind you of the
essentials. For the JADE program you might look at the following JADE
constructs:

BasicBehaviour, CyclicBehaviour, action(), setup(), done(), receive(), blockingReceive(), block(),
setPerformative(), getPefromative(), setContent(), getContent(), setName(), setType(), setSender(),
addReceiver(), addtServices(), ACLMessage.INFORM, ACLMessage.QUERY_REF,
ACLMessage.NOT_UNDERSTOOD, send(), doDelete(), addBehaviour(), getAID(),
DFService.register().

CPS 720 Exam Readme, Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/c720exrme2001.htm (1 of 2) [7/24/2002 10:01:06 PM]

See the assignments and the examples. (Of course, assignments 2 and 3 are
considerably more complex.)

The multiple choice questions mostly cover general points discussed in the
course. They are based on the course notes. As you know the course notes have
plenty of links to more detailed and in depth materials such as PhD theses. These
links are for reference. Of course, the more you follow the more you know. The
lecture notes themselves represent the basic minimum.

This year's exam is somewhat similar to last year's exam. However last year's
course did not include JADE. On the other hand it covered XML in more detail
and also include Game Theory which is not on this year’s course.

Fall 2000 CPS720 exam (pfd)

A solution to Assignment 2 (jar)

CPS 720 Exam Readme, Fall 2001

http://www.ryerson.ca/~dgrimsha/courses/cps720/c720exrme2001.htm (2 of 2) [7/24/2002 10:01:06 PM]

c720ex2000.doc 1 11/23/01

Ryerson Polytechnic University
School of Computer Science

Final Examinations, Fall 2000
CPS 720 Artificial Intelligence Topics

Examiner: D. Grimshaw Time: 2 hours Closed Book

YOUR NAME: _________________________________

YOUR ID: ____________________________________

c720ex2000.doc 2 11/23/01

PART 1. MULTIPLE CHOICE. 24 Marks.
(12 questions, 2 marks each. Answer all questions in this part on your test response
(bubble) sheet.

1. Current distributed systems, in contrast to mobile agent based systems, attempt to

achieve “referential transparency”, Briefly, what does this mean?

A. A user on a client machine on a network does not know the location of a service she

is accessing.
B. References in Java are not visible to the programmer.
C. Programs written in C in such a distributed system are not allowed to use pointers.
D. Only Java may be used to write programs for systems exhibiting referential

transparency.

2. Ferber divides multi-agent systems into two broad categories, situated agents, and

communicative agents. Which of the following statements best describes the
difference between these two categories.

A. Situated agents are immobile; communicative agents are mobile.
B. Communicative agents are immobile; situated agents are mobile;
C. Situated agents are capable of planning ahead but communicative agents are not.
D. Situated agents live in a physical environment and have sensors. Communicative

agents are virtual and do not have physical sensors.

3. According to Oshima and Lange, which of the following properties is NOT essential

to an agent: reactive, autonomous, ability to learn, goal driven, temporally
continuous.

A. autonomous
B. temporally continuous
C. ability to learn
D. reactive
E. goal driven

4. One reason that agents that plan (look) ahead might be more useful that agents that

simply react to stimulants and remember certain states is:

A. They can test future states or situations without committing to them, avoiding costly

physical backtracking.
B. An agent which plans uses less memory than one that does not.
C. Agents which plan ahead can choose the right thing to do more quickly than those

that do not.
D. Planning agents can maximize the utility of their human masters using the methods

of Game Theory.

c720ex2000.doc 3 11/23/01

5. Which of the following best describe a mobile agent on the Net?

A. It moves the computation (algorithm) to the data.
B. It moves the data to the computation.
C. It really behaves just like an Applet.
D. It is another way of sending data across the Net.

6. Todd Papaioannou claims there is an “architectural mismatch” between standard

distributed systems emphasizing “referential transparency” and the computers these
systems normally run on. What does he see as the basis of this mismatch?

A. Present distributed systems (e.g. RMI, CORBA, DCOM), are just Remote Procedure

Calls (RPC). RPC’s are limited to UNIX systems and therefore are not suitable for
the Internet which has many different kinds of servers.

B. Present distributed systems attempt to extend the Inter Process Communication
(IPC) paradigm which is well matched to single von Neumann machines where
processes share memory. But in distributed systems, memory is not shared.

C. Referential transparency is impossible to achieve because only copies of objects
can be sent across networks. Therefore, in this respect, local programs and
distributed programs can never appear to be the same to the user.

D. The basis of the mismatch is the failure to use mobile agents. With mobile agents,
referential transparency can be achieved.

7. In addition to the Aglet itself, the Aglet system provides an Aglet proxy. What is the

main reason for adding a proxy class to the system, rather then just having only the
Aglet class itself?

A. There is no real reason other than as a convenience for the programmer.
B. A proxy class is necessary for sending and receiving messages in any agent system
C. The proxy wraps the Aglet in a security ‘blanket” which protects the Aglet’s public

methods from direct access.
D. The proxy enables Aglets to become mobile.

8. Consider the following Aglet.

package exam;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.io.*;

public class ExamQ1 extends Aglet {
 private PrintWriter pw = null;
 private MyData md;
 private String file = "/home/dgrimsha/greeting.txt";
 public void onCreation(Object init) {
 md = new MyData("Hello, world");
 addMobilityListener(new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {

c720ex2000.doc 4 11/23/01

 try {
 pw = new PrintWriter(new FileWriter(file));
 pw.println(md.getMsg());
 pw.close();
 } catch(IOException e) {}
 }
 });
 }
}
class MyData {
 private String msg;
 public MyData(String m) {
 setMsg(m);
 }
 public void setMsg(String msg) {
 this.msg = msg;
 }
 public String getMsg() {
 return msg;
 }
}
This Aglet code is compiled and the resulting class file loaded into a Tahiti Server.
Using the server’s Dispatch command, an attempt is made to move it to a second Tahiti
server. Which of the following statements best describes what happens?

A. The Aglet goes to the second Tahiti server and writes the “Hello world” string to the

file system of the machine hosting the second Tahiti server.
B. The Aglet goes to the second Tahiti server where it throws a security exception

because it does not have the appropriate write permissions.
C. The Aglet refuses to move from its home server because the PrintWriter object is not

serializable.
D. The Aglet refuses to move from its home server because the data it is carrying is not

serializable.

9. In the Sequential Itinerary pattern the Aglet’s mobility (its movement among servers)

is handled by a separate class, rather than being handled by the Aglet class itself.
What advantage does this separation confer?

A. Flexibility. For example, different itineraries could be “plugged into” the same Aglet.
B. Portability. The Aglet can run on more types of servers.
C. Speed. Because the Aglet does not have to handle its travel plans, it can move more

quickly from one server to another.
D. Security. The separation of the itinerary from the task for an Aglet increases security

of the Aglet system.

10. Supplying a DTD with an XML document allows the parser to,

A. Be smaller in size and faster in operation.
B. Catch more syntax errors.

c720ex2000.doc 5 11/23/01

C. Check the validity of an XML document.
D. Create a DOM from the document.

11. There are two standard parsers for XML, DOM and SAX. Which of the following

statements best describes the main difference between these parsers?

A. A DOM parser converts the XML text document into a tree structure stored in

memory. The SAX parser generates events from the XML document and by default
stores nothing at all.

B. A DOM parser generates events and stores in memory whatever parts of the XML
document the programmer chooses. The SAX parser creates a data structure in
memory and then generates events from each node in that structure.

C. There is no significant difference from the programmer’s point of view. The SAX
parser uses events to generate a tree data structure corresponding to the original
XML document. The DOM parser generates the same kind of tree structure but is
not event driven.

D. The DOM parser always uses a DTD whereas with the SAX parser you do not have
to use a DTD except under special circumstances.

12. The Prisoner’s Dilemma is a very famous example from Game Theory. Which of the

following statements best describes its significance.

A. It shows that cooperation can never be achieved because people are too selfish.
B. It shows that cooperation can be achieved if the parties are prepared to take the

chance of being “suckered”.
C. It demonstrates that restaurants in tourist areas are of lower quality than

neighbourhood restaurants because tourists never come back.
D. It explains why Communism lost the Cold War.

PART 2. SHORT ANSWER. 12 Marks.
Answer any two (2) of the questions in this part. (6 marks each)

1. Discuss why use of mobile agents might, in some situations, reduce network traffic

compared to other methods used to construct distributed systems.
2. There are at least three ways of arranging data and knowledge in distributed

systems, client-server, code on demand (e.g. Applets), and mobile agents. Compare
these three systems, briefly.

3. Speech Act theory divides the generation of speech into three steps (intention,
generation, synthesis), and divides the decoding of speech into four steps
(perception, analysis, disambiguation, incorporation). Briefly explain (or define) any
six of these steps.

4. Interpreting this table as the payoff matrix for a zero sum game with three strategies
for each player, answer the following questions. (The Row player wants the highest
possible score, the Column player wants the lowest possible score.)

c720ex2000.doc 6 11/23/01

8 4 5
3 7 6
5 6 10

A. If the players played pure strategies (using minimax and maximin) what would they

be for each player?
B. Should they stick with the pure strategies found in part A, or should they follow a

mixed strategy? Explain your answer.

5. Consider this DTD, toolbox.dtd

<!ELEMENT toolbox (screwdrivers*, pliers*,saws*) >
<!ELEMENT screwdrivers (#PCDATA) >
<!ATTLIST screwdrivers type (regular|philips|robinson) "regular">
<!ATTLIST screwdriver price CDATA #REQUIRED>
<!ELEMENT pliers (#PCDATA)>
<!ATTLIST pliers price CDATA #REQUIRED>
<!ELEMENT saws (#PCDATA)>

Write an XML document which is valid according to this DTD. Include at least one
screwdriver of type, philips. Use any names (or descriptions) you like for the objects in
the toolbox. You can start your XML file with,

<?xml version="1.0"?>
<!DOCTYPE toolbox SYSTEM "toolbox.dtd">

PART 3. AGLET PROGRAM. 10 Marks.
(1 Question for 10 marks.)

1. Write an Aglet which is to be dispatched from your Tahiti server to a remote Tahiti

server. On the remote server a stationary Aglet is running. This Aglet has put a
property named “prof” in its context. The value of this property is the proxy for this
Aglet. Your Aglet, on arriving at the remote site sends a message “hello” to the
stationary Aglet. The “hello” message contains a String object saying, “All is well”.
The stationary Aglet replies with a message named “response” containing a String
object saying “Message received”. When your Aglet receives this message, it should
dispose of itself. Otherwise it should do nothing.

You do not need to create a “master” Aglet for your server. Just assume you
dispatched your Aglet using the dispatch button on your Tahiti.

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/DGa2.jar

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/DGa2.jar (11 of 50) [7/24/2002 10:01:19 PM]

Agents: Natural and Artificial

Agents and Agency
The word 'agent' is widely used. Everyone knows what it means. We have travel agents, real estate
agents, FBI agents, secret agents, double agents. Tom Cruise has an agent. So does Margaret Atwood.
Sometimes the word 'broker' refers to a kind of agent, for example, a stock broker.

But to actually define what the word, agent, means is not so easy. (Similar problems occur with other
concepts such as intelligence, or life.) There seem to be almost as many definitions of agent, or agency as
there are people trying to define these concepts!

So we will look at a few of these attempts at definition. Take your pick or make up your own.

Well, there's always the dictionary.

What does a dictionary say?

Human Agents
Another way to get at what the word, agent, means, we can try to see what characteristics human agents
have in common.

Try making a list of characteristics.

Other animals
Is a dog an agent? An ant? If these are agents too, then what does that acknowledgement add to our
understanding of agency

Some suggestions

Machines
Computer scientists have also taken to the word, agent. The AI community took it up first, but agents are
now appearing in the context of networks and simulations.

Of course, the most obvious AI agent artifact is the robot. Robotics is one of the oldest branches of AI.
Take CPS607!

Living agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/livingAgents.html (1 of 3) [7/24/2002 10:01:20 PM]

http://www.m-w.com/dictionary.htm
javascript:onClick=popup("humanAgent.html")
javascript:onClick=popup("animalAgents.html")
http://www.scs.ryerson.ca/~aferworn/courses/CPS607/INDEX.HTML

Classic AI

Recent textbooks in artificial intelligence [Nilsson], [Russell & Norvig], use the idea of agency as a
unifying theme. AI agents are usually individual 'creatures' living in an environment with which they
interact in some way. Such agents are autonomous to a more or less extent. Most AI agents do not
interact with other agents in the same environment. And, they are supposed to have some kind of
intelligence.

Although many AI agents exist only in software, the AI agent paradigm is best illustrated by the robot
interacting with a real world environment.

Distributed AI (DAI)

DAI has existed for many years. Practitioners of DAI consider that Intelligence cannot exist in isolation.
These people hold that intelligence is, in some way, fundamentally social.

In 19th century Germany a child
was left to die in the forest But he
grew up by himself (helped by
wolves?) and later was found and
brought back to civilization. He was
given the name Kaspar Hauser. A
large number of books have been
written about this case. And also
there are at least two films .

The systems of DAI usually consist of a small group of specialist
agents which cooperate to solve problems. This model imitates the
way teams of human specialists work together.

The classic example of DAI architecture is the so-called blackboard
system, first developed in the 1970's in a system called Hearsay
which was used for speech recognition.

In the blackboard model the agents are called knowledge sources.
The "blackboard " is a global memory accessible to all the agents. It
contains the current state of the problem. Actions by the agents
gradually modify the data structures on the blackboard so that
(hopefully) they come to represent the solution state of the problem.

The
"blackboard"
is a metaphor.
Agents
communicate
with one
another by
"writing on the blackboard" as humans might do in
a brainstorming session.

Agents and the Internet
The other community some of whose members are
interested in agents is the Internet community. In
this case the agents exist in software environments

maintained by servers on various Internet hosts. Mobility is of considerable interest. These software
agents ('softbots') can move from host to host.

Living agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/livingAgents.html (2 of 3) [7/24/2002 10:01:20 PM]

http://www-cs-students.stanford.edu/~pdoyle/quail/notes/pdoyle/architectures.html#Basic Principles of Blackboard Design
http://www-cs-students.stanford.edu/~pdoyle/quail/notes/pdoyle/architectures.html#Basic Principles of Blackboard Design

Also of considerable importance is inter-agent communication. Most Internet agents have more or less
elaborate message passing mechanisms. Intelligence for Internet agents is not a particularly high priority,
Network agents must be small if they are going to be mobile. The cannot afford to travel with the
baggage of a large AI program.

Agents and Artificial Life (alife)
Another kind of multi-agent system derives from the worlds of Artificial Life. These agent systems
contain large numbers of very simple identical (or almost identical) agents interacting locally in a
common environment. The environment is often a finite state automaton. Such agent systems are often
used to simulate aspects of human societies. For example, see the Ascape API.

Multi Agent Systems (MAS)
Distributed AI is now often referred to as Multi-Agent Systems. Most software systems are software
based but there area also robotic multi agent systems involving small numbers of robots. See RoboCup.

So What is an Agent?
Next we consider three different points of view on what constitutes an agent. Click next to continue.

[top] [previous] [next] Questions?

Living agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/livingAgents.html (3 of 3) [7/24/2002 10:01:20 PM]

http://www.robocup.org/
mailto:dgrimsha@scs.ryerson.ca

Definition of Agent

Ferber's General Definition of Agency

An agent is a physical or virtual entity

which is capable of acting in an environment.1.

which can communicate directly with other agents.2.

which is driven by a set of tendencies (in the form of individual objectives or of a
satisfaction/survival function which it tries to optimize).

3.

which possesses resources of its own.4.

which is capable of perceiving its environment (but to a limited extent).5.

which has only a partial representation of its environment (and perhaps none at all).6.

which possesses skills and can offer services.7.

which may be able to reproduce itself.8.

whose behaviour tends towards satisfying its objectives, taking account of the
resources and skills available to it and depending on its perception, its representation
and the communications it receives.

9.

Note that agents are capable of acting, not just reasoning. Actions affect the environment which, in turn,
affects future decisions of agents.

Autonomy
A key property of agents is autonomy. They are, at least to some extent, independent. They are not
entirely pre-programmed but can make decisions based on information from their environment or other
agents.

One cans say that agents have "tendencies". Tendencies is a deliberately vague term. Tendencies could be

Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentDef.html (1 of 4) [7/24/2002 10:01:22 PM]

individual goals to be achieved, or the optimization of some function.

Mobility
It is interesting that Ferber does not include mobility as a possible property of agents. Lange and Oshima
do discuss this property, which although optional, certainly characterizes some agent systems.

It is interesting to note that in the natural world, agent intelligence is always associated with agent
mobility (animals). Other living things (plants) have no intelligence.

Multi-Agent Systems
The term multi-agent system (MAS) is applied to systems comprising the following elements.

An environment E, that is, a space which generally has volume.1.

A set of objects, O. These objects are situated, that is to say, it is possible at a given
moment to associate any object with a position in E.

2.

An assembly of agents, A, which are specific objects (a subset of O), represent the
active entities in the system.

3.

An assembly of relations, R, which link objects (and therefore, agents) to one another.4.

An assembly of operations, Op, making it possible for the agents of A to perceive,
produce, transform, and manipulate objects in O.

5.

Operators with the task of representing the application of these operations and the
reaction of the world to this attempt at modification, which we shall call the laws of the
universe.

6.

There are two important special cases of this general definition.

Purely situated agents

An example would be a robot. In this case E, the environment, is Euclidean 3-space. A are the robots, and
O, not only other robots but physical objects such as obstacles. These are situated agents.

Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentDef.html (2 of 4) [7/24/2002 10:01:22 PM]

Pure Communication Agents

If A = O and E is empty, then the agents are all interlinked in a communication networks and
communicate by sending messages. We have a purely communicating MAS.

We have the following definitions for these special cases.

Purely Communicating Agent

By comparison with the general definition of an agent, a purely communicating agent (or software agent)
is defined as a computing entity which

is in an open computing system (assembly of applications, networks, and
heterogeneous systems),

1.

can communicate with other agents,2.

is driven by a set of its own objectives,3.

possesses resources of its own,4.

has only a partial representation of other agents,5.

possesses skills (services) which it can offer to other agents,6.

has behaviour tending towards attaining its objectives, taking into account the
resources and skills available to it and depending on its representations and the
communications it receives.

7.

These types of agents are the primary focus of cps720.

Purely Situated Agent

A purely situated agent is defined as a physical entity (or perhaps a computing entity if it is simulated)
which

Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentDef.html (3 of 4) [7/24/2002 10:01:22 PM]

is situated in an environment,1.

is driven by a survival/satisfaction function,2.

possesses resources of its own in terms of power and tools,3.

is capable of perceiving its environment (but to a limited extent),4.

has practically no representation of its environment,5.

possesses skills,6.

can perhaps reproduce,7.

has behaviour tending to fulfill its survivor/satisfaction function, taking into account
the resources, perceptions and skills available to it.

8.

A purely communicating agent is distinguished from the concept of agent in general because,

It has no perception of other agents●

Its tendencies take on the appearance of objectives.●

It does not act in a normal, spatial environment, but rather in a computer network.●

A purely situated agent do not usually communicate directly, via messages. They react to one another via
preceptors (sensors) and through changes to the environment.

Aglets, which are discussed later in the course are communicating agents (for the most part). JADE agents
are also primarily communicative. Ascape agents, which live on a cellular automaton, are more like
situated agents, although they exist only in a software world.

[top] [previous] [next] Questions?

Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentDef.html (4 of 4) [7/24/2002 10:01:22 PM]

mailto:dgrimsha@scs.ryerson.ca

Agent Perspectives
Today there appear to be two groups using the concept of agent as important tool for designing and
implementing software. The first is the Artificial Intelligence community. The second is the Internet
community.

Agents and AI

Classic AI

Recent textbooks in artificial intelligence [Nilsson], [Russell & Norvig], use the idea of agency as a
unifying theme. AI agents are usually individual 'creatures' living in an environment with which they
interact in some way. Such agents are autonomous to a more or less extent. Most AI agents do not
interact with other agents in the same environment. And, they are supposed to have some kind of
intelligence.

Although many AI agents exist only in software, the AI agent paradigm is best illustrated by the robot
interacting with a real world environment.

Distributed AI (DAI)

DAI has existed for many years. Practitioners of DAI consider that Intelligence cannot exist in isolation.
These people hold that intelligence is, in some way, fundamentally social.

In 19th century Germany a child
was left to die in the forrest. But he
grew up by himself (helped by
wolves?) and later was found and
brought back to civilization. He was
given the name Kaspar Hauser. A
large number of books have been
written about this case. And also
there are at least two films .(1 and 2
and 3).

The systems of DAI usually consist of a small group of specialist
agents which cooperate to solve problems. This model imitates the
way teams of human specialists work together.

The classic example of DAI architecture is the so-called blackboard
system, first developed in the 1970's in a system called Hearsay
which was used for speech recognition.

In the blackboard model the agents are called knowledge sources.
The "blackboard " is a global memory accessible to all the agents. It
contains the current state of the problem. Actions by the agents
gradually modify the data structures on the blackboard so that
(hopefully) they come to represent the solution state of the problem.

The
"blackboard"
is a metaphor.
Agents
communicate
with one
another by
"writing on the blackboard" as humans might do in

Agent Perspectives

http://www.ryerson.ca/~dgrimsha/courses/cps720/netAIAgents.html (1 of 2) [7/24/2002 10:01:22 PM]

http://eonline.com/Facts/Movies/0,60,31061,00.html(Empty Reference!)
http://eonline.com/Facts/Movies/0,60,5594,00.html(Empty Reference!)
http://aol.eonline.com/Facts/Movies/0,60,53374,00.html(Empty Reference!)
http://www-cs-students.stanford.edu/~pdoyle/quail/notes/pdoyle/architectures.html#Basic Principles of Blackboard Design
http://www-cs-students.stanford.edu/~pdoyle/quail/notes/pdoyle/architectures.html#Basic Principles of Blackboard Design

a brainstorming session.

Agents and the Internet
The other community some of whose members are
interested in agents is the Internet community. In
this case the agents exist in software environments
maintained by servers on various Internet hosts.
Mobility is of considerable interest. These
software agents ('softbots') can move from host to
host.

Also of considerable importance is inter-agent
communication. Most Internet agents have more or
less elaborate message passing mechanisms.

Intelligence for Internet agents is not a particularly high priority, Network agents must be small if they
are going to be mobile. The cannot afford to travel with the baggage of a large AI program.

Agents and Artificial Life (alife)
Another kind of multi-agent system derives from the worlds of Artificial Life. These agent systems
contain large numbers of very simple identical (or almost identical) agents interacting locally in a
common environment. The environment is often a finite state automaton. Such agent systems are often
used to simulate aspects of human societies.

[top] [previous] [next] Questions?

Agent Perspectives

http://www.ryerson.ca/~dgrimsha/courses/cps720/netAIAgents.html (2 of 2) [7/24/2002 10:01:22 PM]

mailto:dgrimsha@scs.ryerson.ca

Lange and Oshima on agency

End user perspective
An agent is a program whichs assists people and acts on their behalf. Agents function by allowing people
to delegate work to them.

System perspective
An agent is a software object that

is situated within an execution environment●

possesses the following mandatory properties

Reactive: senses changes in its environment and acts according to those changes❍

Autonomous:has control over its own actions❍

Goal driven: is proactive❍

Temporally continuous is contnuously executing❍

●

and may possess any of the following orthogonal properties

Communicative: able to communicate with other agents❍

Mobile: can travel from one host to another❍

Learning: adapts according to previous experience❍

Believable: appears believable to the end user.❍

●

[top] [previous] [next] Questions?

Lange and Oshima on agency

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentdef2.html [7/24/2002 10:01:23 PM]

mailto:dgrimsha@scs.ryerson.ca

Igor Nikolic's view
(quoted from his web site)

What is an Agent:
An agent is an encapsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet its design objectives

For clear understanding of the definitions, several points must be further elaborated.

Agents are:

clearly identifiable problem-solving entities with well defined boundaries and interfaces.●

situated (embedded) in a particular environment; they receive inputs related to the state of their
environment and they act on the environment through effectors.

●

designed to fulfill a specific purpose; they have particular objectives (goals) to achieve.●

autonomous; they have control both over their internal state and over their behaviour.●

capable of exhibiting flexible problem solving behaviour in pursuit of their design objectives; they
need to be both reactive (able to respond in timely fashion to changes that occur in their
environment) and active (able to act in anticipation of future goals).

●

Autonomy vs. Agency (Agents and Objects)
The point about agent autonomy need further clarification. Having control over their own behaviour is
one characteristic that distinguishes Agents from Objects. While Objects have both states and
behaviours, they do not contain behaviour activation or action choice. In object oriented terminology, an
object may invoke any publicly accessible method on any other object at any time. Once the method is
invoked, the corresponding actions are performed. In this sense, objects are totally obedient to one
another, and do not have autonomy over their choice of action.

However, Parker argues that the relation between agency and autonomy is not necessary a direct one. It
is arguable that the term Agent denotes an aggregation of objects that are defined more by their useful
boundaries than by the definition presented above. Therefore in the following discussion the term Agent
will contain both the autonomous and the odject-aggregate type. For the practical matter of modelling
this distinction is not a crucial one.

According to Parker the most compelling argument for Agent Based Modeling (ABM) can be summed
up as follows: Why don't we model it as it is in the real world?

It basically means that ABM is useful because it offers us a possibility to create models that do away
with generalisations and allow us to explore the world through discrete objects and their interactions.
This by itself allows for a far richer modelling context.

Another Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/AgentDef3.html (1 of 2) [7/24/2002 10:01:23 PM]

http://www.dct.tudelft.nl/~nikolic/

Comment by D.G.

Nikolic's view of agents seems derived from the idea of agents as representatives (or servants) of people,
for example, travel agents. Although autonomous with regard to how to carry out a task, the task itself is
generated outside the agent (by another agent).

On the other hand, Ferber's definitions are more general, with more emphasis on autonomy. In some
ways, Ferber derives his concept of agent from the animal world. His agents are more independent
minded.

Nikolic's perspective is that of a modeller of natural systems. His thesis uses the Ascape agent system to
model the spread of genetically modifed seeds.

[previous] [next]

Another Agent Definition

http://www.ryerson.ca/~dgrimsha/courses/cps720/AgentDef3.html (2 of 2) [7/24/2002 10:01:23 PM]

Rational Agents
[From AI a Modern Approach by Russell & Norvig.]

A siituated agent and its environment is shown schematically in this diagram:

This is a robot, a situated agent. Of course there also softbots in virtual worlds.
Situated agents are the type most often considered in AI. But communicating
(internet) agents have a lot in common with situated agents as we saw before.

Rational Agency
The agent 'examines' its environment and the takes 'appropriate' action.

A rational agent does the right thing. It carries out its task successfully.
Or, at least, takes actions which, given its knowledge of its environment,
maximizes its chances of success.

●

To judge an agent's effectiveness you need some kind of performance measure.

What is needed to judge the rationality of an agent
Rationality is bounded. It would be unfair to judge an agent on criteria it has no
hope of achieving. For example, you can't blame a dog for not behaving like a
person.

Agent rationality

http://www.ryerson.ca/~dgrimsha/courses/cps720/rational.html (1 of 3) [7/24/2002 10:01:24 PM]

To judge the rationality of an agent fairly we need to know a number of things.

The performance measure that defines degrees of success●

Everything that the agent has perceived so far, its percept history.●

What the agent knows about its current environment.●

Actions available to the agent.●

An ideal rational agent
For each possible percept sequence, an ideal rational agent should do whatever
action is expected to maximize its performance measure, on the basis of evidence
provided by the percept sequence and whatever built-in knowledge the agent has.

Mapping from percept (sequences) to
actions
An agent's program (or brain) maps percept sequences to actions. Ideally, there
should be a mapping from every possible precept sequence to every possible
appropriate action. In most cases such a complete mapping is impossible. Only a
superhuman programmer could anticipate every situation in advance.

In simple cases you might consider a lookup table containing an action for each
perception. Such tables are usually unmanageably large. Various other methods
have been used for these mappings in order to avoid this computational
explosion.

analytical functions●

production rules●

trained neural nets●

fuzzy sets●

In this course we will look briefly at production rules. (More on these in cps820.)

[top] [previous] [next] Questions?

Agent rationality

http://www.ryerson.ca/~dgrimsha/courses/cps720/rational.html (2 of 3) [7/24/2002 10:01:24 PM]

mailto:dgrimsha@scs.ryerson.ca

Agent rationality

http://www.ryerson.ca/~dgrimsha/courses/cps720/rational.html (3 of 3) [7/24/2002 10:01:24 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/images/agents_21.gif

http://www.ryerson.ca/~dgrimsha/courses/cps720/images/agents_21.gif [7/24/2002 10:01:25 PM]

Agent autonomy
Artificial Intelligence is concerned with so-called autonomous agents.

Deterministic agent. The robots used in automobile manufacture on assembly lines would be an
example of a totally non-autonomous, deterministic robot. These are of little interest in AI.

●

An autonomous agent (?). Chess playing programs could be considered to be autonomous agents.
The good ones can easily outplay the programmers who made them. The best are as good as the
best human players.

●

Autonomy and Intelligence
Clearly the deterministic robots are completely dumb. Every action has been pre programmed by their
programmers and designers. On the other hand, in their limited field of action, chess playing programs
can appear extremely intelligent. Clearly, autonomy and intelligence are closely related.

Autonomy, a fuzzy concept.
Philosophers and theologians have, from time to time, questioned whether any agent is truly autonomous.
Do even humans have truly free will? Is the future predetermined? In other words, is autonomy an
illusion of the human consciousness.

These are all deep questions, too deep for cps720!

A Dictionary definition
[Merriam-Webster]

Main Entry: au·ton·o·my

Function: noun
Inflected Form(s): plural -mies
Date: circa 1623
1 : the quality or state of being self-governing; especially : the right of self-government
2 : self-directing freedom and especially moral independence
3 : a self-governing state

[top] [previous] [next] Questions?

Autonomous agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/autonomy.html [7/24/2002 10:01:25 PM]

mailto:dgrimsha@scs.ryerson.ca

An Agent Classification
Russell & Norvig classify agents into 4 categories, from least to most complex.

Simple Reflex (Stimulus-response)
Agents

These agents react to immediate stimuli. They have no memory at all. The
percept sequence is just the immediate environment sensed by the agent's sensors.

Nevertheless, they are capable of behaviour of considerable complexity,
especially if they are part of a Multi-Agent system.

These agents are also referred to as stimulus-response agents [Nilsson]. We look
at this type of agent in more detail later.

Note the "condition-action rules" in the diagram. These are production rules.

Agent classification

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentclass.html (1 of 4) [7/24/2002 10:01:55 PM]

Other representations are also possible.

Reflex agent with state

These agents have a memory of state. They can remember earlier experiences.
These can be combined with current information from sensors to produce a more
sophisticated response to the environment.

Goal based agents

Agent classification

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentclass.html (2 of 4) [7/24/2002 10:01:55 PM]

Goal based agents can plan ahead before making their actual 'move' in their
environment. They use various more or less sophisticated search methods to
search a state space of potential future environments, as a chess player might do
in his head before actually moving a piece. Future potential 'positions' are
evaluated as to how close they are to the goals of the agent.

Utility Based Agents

Agent classification

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentclass.html (3 of 4) [7/24/2002 10:01:55 PM]

At this level agents have acquired human aspects. Utility is an economic term
(from micro economics) related to the concepts of happiness and personal
preferences. This level of ability is beyond the present capabilities of present AI.

[top] [previous] [next] Questions?

Agent classification

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentclass.html (4 of 4) [7/24/2002 10:01:55 PM]

mailto:dgrimsha@scs.ryerson.ca

Stimulus-Response Agents

[This is Nilsson's term. They are equivalent to Russell & Norvig's basic reactive agents.]

These agents, although very simple, are capable of surprisingly complex behaviour. One is reminded of the
behaviour of certain simple living forms such as insects.

We discuss these agents in some detail in order to make our discussion of agents more concrete, less abstract.

These notes use Nilsson's example from chapter 2 of Artificial Intelligence, a New Synthesis.

A wall following robot
Nilsson uses the example of a simple wall following robot.

To keep things simple there are no "tight spaces". For example, the alcove in the wall in the middle of the
diagram is two squares wide, not one.

Stimulus-Response Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/SRAgents.html (1 of 5) [7/24/2002 10:01:59 PM]

Robot sensors

The robot can sense if any of its neighbouring 8 cells are free. The sensor inputs are represented by 8 binary
values, s1 .. s8. These have values 0 if the corresponding cell can be occupied by the robot on its next move (free
cell), and 1, otherwise. For example, if the robot is on the square marked X, then its sensors input (0, 0, 0, 0, 0, 0,
1, 0).

Robot effectors

The robot can move North(up), East(right), South(down), or West(left), (but not diagonally) into an empty square.
If the target square is occupied (part of a wall), nothing happens.

The designer's job

The given

In the example, the task of the robot is to follow a boundary (wall). Also given are the robots sensor abilities and
its effector capabilities.

The goal

Specify a function which maps from the robots sensor inputs to effector actions appropriate for its tasks or goals.

The design

It is common to divide the design into two parts.

Perceptual processing phase. The sensory inputs are mapped to a feature vector●

Action processing. The effector actions are a function of the feature vector.●

All this is illustrated in this figure.

Stimulus-Response Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/SRAgents.html (2 of 5) [7/24/2002 10:01:59 PM]

This division into two phases is arbitrary. One criterion for the division is to put the mapping from common
features to common actions into a reusable library.

Wall following robot

Percepts to features

It turns out that the feature vector needs only 4 components, x1 .. x4 which take boolean values. The values are
illustrated in this diagram.

Stimulus-Response Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/SRAgents.html (3 of 5) [7/24/2002 10:01:59 PM]

Recognizing these features in its environment allows the robot to achieve wall following behaviour.

Consider x1. x1 has value 1 if s2 = 1 and s3 = 0 or s2 = 0 and s3 = 1 or s2 = 1 and s3 = 1.

Features to Actions

Given the features, we need to map them to appropriate actions.The mapping is,

If x1 = 1 and x2 = 0 then move east●

If x2 = 1 and x3 = 0 move south●

If x3 = 1 and x4 = 0 move west●

If x4 = 1 and x1 = 0 more north●

Representing Action Functions

There are many ways of representing these action functions. Two very popular ways are:

Production rules●

Neural networks●

Here we just briefly consider production rules.

Representing actions with production rules.
Productions are ordered sets of rules of the form,

c1 --> a1
c2 --> a2
...
cn --> an

Stimulus-Response Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/SRAgents.html (4 of 5) [7/24/2002 10:01:59 PM]

where the c's are conditions and the a's are actions. The c's are conjunctions which evaluate to true or false. The
interpreter goes down the list in order to find the first rule who's condition is true, and then "fires" that rule's
action part, in other words, executes that rule's action part.

Wall following robot example

The production rules from features to actions for the wall following robot example are

x4 & ~x1 -->north
x3 & ~x4 --> west
x2 & ~x3 --> south
x1 & ~x2 --> east
1 --> north

These rules cause the robot to go to one of the walls and then follow the walls for ever, either clockwise or
counter-clockwise depending on its initial condition.

A variation might be a robot that goes to a corner and stays there. To implement this we would need a corner
detecting feature, call it c. Then we could have production rules

c --> no-action
1 --> b-f

Where b-f refers to the boundary (i.e. wall) following procedure described by the five rules given earlier.

[top] [previous] [next] Questions?

Stimulus-Response Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/SRAgents.html (5 of 5) [7/24/2002 10:01:59 PM]

mailto:dgrimsha@scs.ryerson.ca

A Reactive Agent with
State
Imperfect perception
No agent ever perceives its environment perfectly. Random errors, or
unavailability of information handicap the agent. To some extent, an agent can
compensate for lack of perceptual information with memory. It is easier to find
your way around a pitch black room if you have been there before. The wall
following robot can illustrate the trade off between perceptual information and
memory.

Impaired wall following robot.
Suppose the robot lost half its sensors. The corner ones are not there. Only north
(s2), west (s4), south (s6), and east (s8) remain.

With these sensors alone the simple reactive agent cannot immediately recognize
enough of its environment to find its way to wall following behaviour.

If, however, it can remember its previous feature vector, and remember its
heading, then it can still achieve wall following behaviour even with its impaired
"vision".

The wall following robot with state

Reactive Agent with State

http://www.ryerson.ca/~dgrimsha/courses/cps720/stateAgent.html (1 of 4) [7/24/2002 10:02:01 PM]

Here the environment is still represented by feature vectors but now the robot
remembers its previous state, its previous feature vector and action, as well as
using the features currently presented by its environment.

Calculating the features for the state
based wall following robot

For i = 2, 4, 6 , 8, wi = si
These features are just the sensor inputs from north, east, south, west.

●

For the absent sensory inputs s1,s3, s5, s7, we substitute four features, w1.
w3. w5. w7., according to the following (clever!) rules:

●

w1 has value 1 (true), if and only if, at the previous time step, w2 had value
1, and the robot had moved east.

●

w3 has value 1, if and only if, at the previous time step, w4 had value , and
the robot had moved south.

●

Reactive Agent with State

http://www.ryerson.ca/~dgrimsha/courses/cps720/stateAgent.html (2 of 4) [7/24/2002 10:02:01 PM]

similarly for w5 and w7.●

Otherwise the wi have value 0●

The production system for the state
based wall following robot

w2 & ~w4 --> east

w4 & ~w6 --> south

w6 & ~w8 --> west

w8 & ~w2 --> north

w1 --> north

w3 --> east

w5 --> south

w7 --> west

1 -> north

Role of memory
Note that the wall-following robot without the sensory impairment managed to
achieve its behaviour without memory of previous inputs, features or actions.

If all of the important aspects of the environment can be sensed at the time the
agent needs to know them, there is no reason to retain a model of the environment
in memory. But sensory abilities are always limited in some way, and thus agents
equipped with stored models of the environment will usually be able to perform
tasks that memoryless agents cannot.

[top] [previous] [next] Questions?

Reactive Agent with State

http://www.ryerson.ca/~dgrimsha/courses/cps720/stateAgent.html (3 of 4) [7/24/2002 10:02:01 PM]

mailto:dgrimsha@scs.ryerson.ca

Reactive Agent with State

http://www.ryerson.ca/~dgrimsha/courses/cps720/stateAgent.html (4 of 4) [7/24/2002 10:02:01 PM]

Agent Environments
Two approaches to representing environments for situated agents

feature based representations●

iconic representations●

Feature representation
The wall (boundary) following agents discussed previously use a feature based
representation of their environments. Sensory inputs are converted directly to
features which in turn are used to choose actions.

Iconic representation
The other popular approach is called by Nilsson, iconic representation. The name
iconic implies some sort of picture, or model of the environment. The
environment is simulated in the agent which then extracts features from the
simulation. The simulation is updated as sensory information comes in.

A wall following robot using an iconic
representation of its grid world:

Agent Environment Types

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentEnvironment.html (1 of 4) [7/24/2002 10:02:03 PM]

It might have a map like iconic representation like this:

In the diagram, a 1 means unavailable (a wall), 0 means empty, ? means
unknown. R is the robot, which should move west in this situation.

Agent Environment Types

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentEnvironment.html (2 of 4) [7/24/2002 10:02:03 PM]

Or it could have a model based on potentials, like this:

The robot "slides" down the potential "hill" from where it is to the goal, G.

Toy Environments and Real
Environments
The grid space environment is a "toy" environment in that it is very simple. Such

Agent Environment Types

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentEnvironment.html (3 of 4) [7/24/2002 10:02:03 PM]

environments are useful to illustrate basic principles, and to do experiment in a
controlled environment.

Questions have been raised as to the usefulness of toy environments. Do they
"scale" well? That is, do the ideas and methods that work in toy environments
retain their validity in real world environments? The jury is out on this question.

Ironically, it is the simpler reactive agents which have proved most useful in the
real world.

Virtual Agents
Internet agents have attracted some attention recently. Their environments are
servers. Compared to the real world where robots must exist, these virtual
environments are simpler. But they are not toy environments. Such environments
look promising as hosts for useful agents.

The rest of the course concerns mobile agents on the Internet.

[top] [previous] [next] Questions?

Agent Environment Types

http://www.ryerson.ca/~dgrimsha/courses/cps720/agentEnvironment.html (4 of 4) [7/24/2002 10:02:03 PM]

mailto:dgrimsha@scs.ryerson.ca

CERN CSC99 Notes from Lecture 1
[by Mark Donszelmann]

The Agent Game

Example Agent Application -- Web Search

Centralized Model

In the centralized model, web pages (text) are brought down and searched to create a database indexing URLs with keywords. Yahoo, AltaVista
keep these huge databases and are continually updating them. You can get your own such programs, such as WebFerrat (a free one) and build
your own personalized web keyword/URL database.

Even thought these programs are called WebCrawler, WebSpider, WebFerrat, name which makes them sound like mobile agents, they are
actually static. The pages (or at least their HEAD part) do the moving. The search engines are immobile.

The result is lots of network traffic.

Distributed Model

This is also a static model. This time however, local databases of keyword/URL indices are created on each server which p rovides the
corresponding web pages. Then the central database is made by merging the databases from all the servers.

The result is less network traffic.

The problem is coordinating all the local search engines. This is the "legacy problem".

CERN CSC99 Notes from lecture 1

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect1.html (1 of 3) [7/24/2002 10:02:10 PM]

The Mobile Agent Model

The search engines (called Procedures in the diagram) move as mobile agents to the servers where the build local databases as in the previous
case.

Moving the search engine actually adds a little extra network traffic as compared to the static distributed system described above. But the
mobility solves the legacy problem. New, hopefully improved, search engines are easily installed.

Of course, the servers must be willing to accept agents!

Remote programming vs Remote Methods (RMI and RPC)

In the CORBA/RMI case the client knows methods or procedures on the server which can be invoked remotely. These procedures are
pre-installed and are not changed dynamically at run time.

Lots of network traffic generated by the calls●

The legacy problem again.●

The remote program model helps solve both these problems.

In addition, the agent essentially extends the power of the server dynamically because it can bring in additional functionality from the outside
(subject to security controls). The agent arrives carrying an algorithm.

CERN CSC99 Notes from lecture 1

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect1.html (2 of 3) [7/24/2002 10:02:10 PM]

CERN CSC99 Notes from lecture 1

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect1.html (3 of 3) [7/24/2002 10:02:10 PM]

CERN CSC99 Agent Lecture 2 Notes

On Mobile Agent Concepts

These are very similar to those discussed in Lange & Oshima's book.

Agent and Place

You can compare these points with Oshima & Lange's chapter 2. There are notes on this site based on the book.

Some notes on agents●

Some notes on places●

Travel and Communication

CERN CSC99 Agent Lecture 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect2Concepts.html (1 of 3) [7/24/2002 10:02:15 PM]

In his lecture, Donszelmann contrasts agents which travel from place to place with a batch program which goes to one place and runs only there.

Authorities and Permits

CERN CSC99 Agent Lecture 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect2Concepts.html (2 of 3) [7/24/2002 10:02:15 PM]

Summary

CERN CSC99 Agent Lecture 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/CERNLect2Concepts.html (3 of 3) [7/24/2002 10:02:15 PM]

The Mobile Agent
A mobile agent has five properties

State: needed for the agent to resume computation after traveling.1.

Implementation: needed for location-independent agent execution.2.

Interface: needed for agent communication.3.

Identifier: needed to recognize and locate traveling agents.4.

Principals: needed to determine legal and moral responsibility.5.

State
The agent must carry sufficient state information with it to resume execution when it moves from one
host to another.

An agent's state is a snapshot of its execution.

Two parts to state

Execution state. Includes the program counter and the execution stack.●

Object state. values of instance variables of the agent object.●

Java does not allow access to the execution stack so when an Java agent such as an Aglet moves from
one host to another, it loses its execution state. (Even if it could keep this information, it would prove
useless if the next host was a different type of platform from the host just vacated.)

However, usually the information needed to resume the computation can be kept in the object's instance
variables (for example, partial or intermediate results of a calculation). The saved information can be
used as initial values in the resumed calculation.

Implementation
Of course an agent, being a computer program, needs code.

A mobile agent can get its code in 3 ways,●

Take the code with it●

Hope the code it needs is already at its destination●

Get the code from some other location●

Interface
The agent's interface allows other agents and systems to interact with it.

Such an interface could provide

The Mobile Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/agent.html (1 of 2) [7/24/2002 10:02:16 PM]

A set of public methods that other agents can invoke●

A full fledged messaging interface which allows agents to communicate with some sort of
"agentspeak" such as KQML (Knowledge Query and Manipulation Language). KQML derives
from AI research on speech act theory and provides a rich communication language based on
"performatives".

●

Identifier
A unique name which is unchangeable throughout its lifetime.

Principals
These are the humans responsible for the agent's actions. Oshima & Lange suggest a division of
responsibilities.

Manufacturer. The author of the agent.●

Owner. This person has the moral and legal responsibility for the behaviour of the agent.●

See also the CERN course notes on agents.

The Mobile Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/agent.html (2 of 2) [7/24/2002 10:02:16 PM]

Places
Lange and Oshima call the environment provided by the network hosts for the agent to operate in, a
place. In the Aglet world, a place is called a context. Places should be safe places both for the agents and
their hosts!

The place is a kind of operating system for the agent.

There are at least 4 aspects to a place

Engine. the "workhorse" and virtual machine for one or more places. For aglets, this is the JVM.●

Resources. databases, processors, and other services provided (or not!) by the host.●

Location. The network address of a the place. The IP of the host, and a port on which the place
awaits agents.

●

Principals. those legally responsible for the operation of the place. As for the agent, there are two
principals.

●

See also the CERN course notes on places.

Place

http://www.ryerson.ca/~dgrimsha/courses/cps720/place.html [7/24/2002 10:02:16 PM]

The Internet Agent and
its Environment
Situated agents such as robots inhabit environments which are spatial (Euclidean 3-space) and in which
the laws of physics apply. Purely communicative (Internet) agents also inhabit an environment of sorts.
So alien is this environment to us that Jacques Ferber in his boot Multi-Agent systems goes so far as to
say that purely communicative agents have no environment in the normal sense of the word.

Nonetheless the word 'environment' is commonly used to refer to the places 'inhabited' by Internet agents.
These places are servers of one kind or another.

Here is a summary of Lange and Oshima's point of view.

The agent
This is a piece of software which has its own thread of execution. Having a
separate thread gives it a certain autonomy from its operating environment. A
mobile agent is able to "close up shop" on one host, and pack itself off to another.

The environment
On the Net an agent's environment consists of a server program running in a
process,

This server provides a "sandbox" which secures the host computer from possibly
malicious visiting agents.

On the positive side, the environment can allow the visiting agent to access the
host in a controlled way. Therefore the agent's environment usually consists of
the server plus certain parts of the host system.

"Sensors"
The Internet agent's "sensors" are just methods which it can call to read
information from the server or the host.

Internet agent and environment

http://www.ryerson.ca/~dgrimsha/courses/cps720/netEnv.html (1 of 2) [7/24/2002 10:02:17 PM]

"Effectors"
Similarly the "effectors" of the internet agent are also methods which write to the
environment, or cause methods of the environment to be executed. The agent
normally interacts with its server, but with permission can also interact with the
host file system, or database, for example.

Note that the concepts of effectors and sensors are rather artificial when applied to Internet agents. They
really belong in the world of situated agents.

Inter-agent communication
In addition to sensing/effecting their environments, most Internet agents also have
some means of communication among one another. Often, a group of agents
collect at one server and interact by sending each other messages, either directly,
of via the environment provided by the server.

Of course, it is also possible for the agents to stay at their home location and send
messages to one another over the Net.

[top] [previous] [next] Questions?

Internet agent and environment

http://www.ryerson.ca/~dgrimsha/courses/cps720/netEnv.html (2 of 2) [7/24/2002 10:02:17 PM]

mailto:dgrimsha@scs.ryerson.ca

Agent Mobility
When one talks of Agents on the Net, one quite often means mobile agents.
Mobility confers a number of possible advantages, according to Lange & Oshima
(p. 3).

Seven Advantages of agent mobility.
(Or are some of these also the advantages of Object mobility? For a brief
discussion of the distinction between mobile agents and mobile agents, click
here.)

1. They reduce network load

The moral is, sometimes it is better to bring the computation to the data, than to
bring the data to the computation.

An example: Weather forecasting calculations

Agent mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityadvantage.html (1 of 5) [7/24/2002 10:02:19 PM]

A server has a database with gigabytes of real time data. Other people at other
locations might want to do analysis of the data. To copy the data to their sites
would take a lot of time and bandwidth. It would be better to encapsulate the
required calculations in an agent, send it to the original site, do the calculations
there, and return the results.

Another example: Searching for a particular document on the Web

Assume there is some criterion for success, not just the title, possibly a string, or
several strings. Suppose you know it is on one of 1000 web sites, some of which
have gigabytes of documents.

You could do the following,

For each web site

For each document

Download the document

Search document using the criterion

If found, stop and inform the user.

This method could take "forever", and clog the Net with hordes of up-needed
documents.

With a mobile agent system you could do the following instead:

Clone 1000 identical search agents

For each agent

Move each agent to a target site

For each document on each target site

Search document using the criterion

If found, send document to user and self destruct

Agent mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityadvantage.html (2 of 5) [7/24/2002 10:02:19 PM]

Send messages to other clones ordering them to self-destruct

Note that this method exploits the potential parallelism in mobile agent system

2. They overcome network latency
Consider some sort of large control system, controlling manufacturing robots in a
large factory. If these need to respond in real time to changes in their
environment. If the controlling programs are centralized, network traffic may
slow responses in an unacceptable way. Dispatching agents to control the robot
processes locally can solve this problem.

3. They encapsulate protocols
In the usual system, each host owns the code which interprets the incoming and
outgoing data. Updating these on large systems can be a problem. If the protocols
are encapsulated in agents, new versions can be sent to all the hosts at the same
time.

4. They execute asynchronously and autonomously

Agent mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityadvantage.html (3 of 5) [7/24/2002 10:02:19 PM]

With the rise of mobile computing, the problem of disconnects, either by choice,
or accident, becomes increasingly important. An agent sent from a mobile
computer is autonomous. The sender can disconnect. The agent does its work at a
remote host, and then waits. Whenever the mobile user is ready, she reconnects
and retracts the agent with its result. There need be no synchronization between
the connection and the computation.

5. They adapt dynamically
Agents, with a little intelligence built-in, can adapt to changes in their execution
environment. For example, if the host signals shutdown, the agent can pick up
and go to another host to continue its work. Groups of agents can distribute
themselves among hosts to achieve maximum efficiency.

Agent mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityadvantage.html (4 of 5) [7/24/2002 10:02:19 PM]

6. They are naturally heterogeneous
They are usually transport layer and host type independent. For example, many
are written in Java. Agents are dependent only on the execution environment
provided by their hosting server (e.g.Tahiti for Aglets). There independence of
hardware and communication mechanism makes them suitable as a "glue" for
system integration of heterogeneous systems.

7. They are robust and fault-tolerant.
This is because of their mobility. If something is going wrong at one location,
they have a chance to escape and continue at another.

[top] [previous] [next] Questions?

Agent mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityadvantage.html (5 of 5) [7/24/2002 10:02:19 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/(Empty Reference!)
mailto:dgrimsha@scs.ryerson.ca

Mobile Objects vs Mobile
Agents
In his book, Programming Mobile Objects in Java, Jeff Nelson contrasts mobile
objects with mobile agents (p. 70-77). For him, the main distinction concerns
autonomy. Nelson's mobile objects have no autonomy. They are slaves of the
programmer. Mobile agents, on the other hand, have some degree of autonomy.

Earlier we related autonomy to intelligence. So the difference might relate to how
much AI is in the agent/object system.

The difference between mobile agents and mobile objects is fuzzy. In cps720, the
aglets discussed are neither very autonomous nor very bright! They could just as
well be classed as mobile objects.

A practical difference
As Jeff Nelson points out, the autonomy of agents comes at a price. The agents
must be provided with a "playpen", the "sandbox", at each host. That is, each host
must have a server to provide an environemnt for the agents.

Furthermore, an API must provided to go with the agent and its environment. The
agent is only as powerful as the API provides sufficient methods. In other words,
the agent's "effectors" and "sensors" are predefined in the API. This reduces
flexibility.

Mobile objects are just objects. Their use requires no special servers or API. They
have no autonomous behaviour at all. They are just building blocks, along with
ordinary objects of object oriented distributed systems.

Nelson asks what use agents would be in building a complex point of sale internet
site.

Mobile Ojects and Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobileObjAgent.html (1 of 2) [7/24/2002 10:02:19 PM]

Comment
While not a point of sale internet site, the case study discussed in Todd Papiaoannou' s PHD
Thesis shows a complex set of business rules implemented in an agent system using Aglets.

●

Jeff Nelson's mobile objects are sometimes refrerred to as "code on demand". Code on demand is
certainly a useful paradigm. Applets are an example.

●

A deeper discussion is in chapter 2 and 3 of Papiaoannou where he compares mobile agents with
other forms of distributed computing, basing his discussion on the perceived importance or
unimportance of location. A summary discussion of this point is in the next section of these notes.

●

[top] [previous] [next] Questions?

Mobile Ojects and Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobileObjAgent.html (2 of 2) [7/24/2002 10:02:19 PM]

mailto:dgrimsha@scs.ryerson.ca

Network Computing
Paradigms
Where do mobile agents fit into network computing? Lange and Oshima suggest
the following. paradigms, from the perspective of the software developer.

Client-Server●

Code on demand●

Mobile Agents●

These diagrams refer to "know-how" and "resources:. Know-how is the code that
enables the services provided by the system, i.e., access to the resources. This is
the knowledge in the system. The resource in question is often a database of some
sort which supports the services.

Client-Server Paradigm

This of course is the best known and most common paradigm.

In this case, the server holds both the resources and the know-how, that is, the
processes that enable the services. The server has it all. An example would be the
Common Gateway Interface (CGI) on a Web server. All the power is on the

Network computing paradigms

http://www.ryerson.ca/~dgrimsha/courses/cps720/netParadigms.html (1 of 3) [7/24/2002 10:02:22 PM]

server side. The client usually just has a web browser which displays HTML
forms to be filled out by the user.

Code on Demand Paradigm

This model gives more power to the client side. Java Applets are the classic
example of this paradigm. Active code is downloaded to the client. Consequently,
the client shares some of the know-how. Knowledge is more distributed than in
the original client-server model.

Code on demand has developed far beyond Applets. One hears of ASP's, Application Service Providers,
as well as ISP's. An interesting implementaion of this technology with Java is Sun's Java Web Start.

Mobile Agent Paradigm

Network computing paradigms

http://www.ryerson.ca/~dgrimsha/courses/cps720/netParadigms.html (2 of 3) [7/24/2002 10:02:22 PM]

http://java.sun.com/products/javawebstart/index.html

Here the watchword is flexibility. Any host on the network can have any
combination of know-how, resources and processing ability. An Agent based
network is a kind of peer to peer network.

[top] [previous] [next] Questions?

Network computing paradigms

http://www.ryerson.ca/~dgrimsha/courses/cps720/netParadigms.html (3 of 3) [7/24/2002 10:02:22 PM]

mailto:dgrimsha@scs.ryerson.ca

The Question of Location Transparency
in Distributed Systems

This page discusses the desirability, or not, of location transparency in distributed systems. A much more
detailed discussion can be found in Chapters 2 and 3 of Todd Papaioannou's Ph.D. Thesis.

Location Transparency
What is location transparency. In a distributed system it is the idea that the resources accessed by a user
can be anywhere on the network without the user having any idea where the resource is located. A file
could be on the user's own PC, or thousands of miles away on another server, for example. The user
would access it in the same way. Sun Microsystems slogan, "The network is the computer" sums this
idea up. Many modern distributed systems illustrate location transparency. Consider, for examples,
Java RMI, CORBA, or Microsoft's DCOM.

Remote Procedure Calls (RPC)
In a UNIX system, on a single machine with Von Neumann architecture, programs run in separate
processes and inter process communication (IPC) is implemented via pipes, files, and shared memory.
Remote Procedure Calls were developed in the early 80s to extend inter process communication to
remote computers accessed across a network.

Java, being object oriented, implements RPC in its own way, called RMI. The basic idea is the same.

The goal of RMI and RPC is to make the calls transparent to the programmer and the user.

IPC: see
Structuring
Distributed Systems
(39)

With RMI, for example, once so called stubs and skeletons are set up,
and a name server invoked, the RMI programs are implemented in
much the same way as a program confined to a local machine would
be. The situation is quite similar with CORBA.

In systems such as RMI and CORBA, location, while not totally out of
the picture, is not a central concept to these versions of the distributed
computing paradigm.

RPC: see
Structuring
Distributed
Systems (42)

Most present day distributed systems are
based on RPC, RMI, CORBA or something similar (such as proprietary
systems for Microsoft or Novell). Are such systems the only answer to the
problem of implementing distributed systems. In Papaioannou's words ,

"By following the location transparency abstraction, contemporary
distribution infrastructures in effect attempt to provide a virtual von Neumann
machine. That is, by trying to fool every component in the system that they
exist within the same address space, the overall effect is the creation of a

Location and distributed systems

http://www.ryerson.ca/~dgrimsha/courses/cps720/location.html (1 of 3) [7/24/2002 10:02:23 PM]

virtual machine." [33/44] See diagram on p. 34 (46).

Or do they have problems, not just implementation problems, but fundamental architectural problems.
Todd Papaioannou thinks they do.

Problem with Location Transparent Systems based
on RPC
In a phrase, they don't scale well. Such systems eat bandwidth because of the number of messages (for
example RMI objects for return values, method parameters etc) which must be exchanged. As the
number of servers increases, the number of messages increases exponentially. The system slows down.

Another problem is that these systems assume a very high reliability on the part of the network system.

See table from Structuring Distributed Systems. [37 or 49]

So the lovely idea of location transparency has its dark side.

In the mid 90's some began to believe that distributed systems are intrinsically different from local
systems and should be treated differently.

Mobile Agents - a solution?
Mobile agents represent an approach to distributed computing which is opposite to RPC with respect to
location transparency. Agents always know where they are, and must know the location of some of the
other agents in this system, location, or place, is a central concept in the mobile agent paradigm.

An Architectural Mismatch
The question arises, why might making location important in the design of distributed systems be better
than hiding location, making it appear invisible, transparent? Todd Papaioannou offers the following
explanation.

The mobile agent paradigm brings us closer to the successful IPC abstraction. IPC is well matched to the
Von Neumann machine architecture using, as it does, shared memory and files for (local)
communication. Mobile agents emphasize, as much as possible in a distributed system, local interactions.
Once settled in on a server, the mobile agent can take advantage of IPC.

[See diagram on p. 51 (63) Structuring Distributed Systems]

Of course the mobile code still must move, at least once in a while, and must also send messages across
the net. With these activities mobile agents run into some of the same problems as RPC based distributed
systems. But the problems are reduced since network traffic is usually reduced. And the agent (or its
programmer) has more choice, choice on whether to stay put, or move. In principle this decision can be
based on dynamic local and network conditions, and on the resources available at servers.

Location and distributed systems

http://www.ryerson.ca/~dgrimsha/courses/cps720/location.html (2 of 3) [7/24/2002 10:02:23 PM]

But to do all this, the agent has to know where it is and where it can go to. In short, it needs to know
about location explicitly. This is just the opposite of current distributed systems.

Whether Todd Papaioannou is right to say that mobile agents have significant architectural as advantages
over current "immobile agents" remains to be seen.

[top] [previous] [next] Questions?

Location and distributed systems

http://www.ryerson.ca/~dgrimsha/courses/cps720/location.html (3 of 3) [7/24/2002 10:02:23 PM]

mailto:dgrimsha@scs.ryerson.ca

What are aglets?
Aglets are mobile internet agents. They are implemented in Java. They were developed by IBM Japan.
Environments are provided on hosts by specialized servers which understand the aglet transfer protocol
(ATP) and provide security and other services. The Aglet distribution is provided with such a server,
called Tahiti.

The design of aglets is modeled on that of Java applets. The word 'aglet' is a contraction of 'agent' and
'applet'.

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletWhatis.html [7/24/2002 10:02:23 PM]

Getting Started with Aglets
This is a short tutorial to help you to get your aglets up and running. We use two Aglet demo programs,
HelloAglet and CirculateAglet which come with the Aglet distribution. In August 2000 IBM released the
Aglets system as open source. You can find Aglets at SourceForge. The Open Source folks have ported Aglets
to the Java 2 system (e.g. JDK 1.3) which involved working with the Java 2 security system. They have
packaged the system veryconveniently if you want to install it on your own system. (See notes below). This
version is Aglets 2.0.

On Solaris at Ryerson SCS
These notes are specific to the host, jupiter.scs.ryerson.ca, run under the auspices of the School of Computer
Science at Ryerson University. The Aglet files have already been unziped and you need only do a few things to
get Aglets working.

File Arrangement on jupiter

You will find the necessary Aglet files in the directory /software/aglets and its subdirectores on jupiter. Most of
the Aglet system istself is in a collection of jar files in the lib subdirectory.

The directory, aglets, contains fthe files you need to put on your own account. These files are

tahiti (called agletsd in the original distribution) A script for running the Aglet server●

aglets.props A configuration file for the Aglet server.●

.java.policy Configures Java 2 security●

.keystore Contains encryption keys●

(use ls -la to see the last two.)

Files on your account

Create a directory named aglets, with a subdirectory, public. Copy the files, tahiti and aglets.props to your
aglets directory.

Copy .keystore and .java.prolicy to your home directory.

Go to your public directory and makes some links

ln -s /software/aglets/public/examples●

ln -s /software/aglets/public/com●

(The second link allows the use of IBM extensions in the com.ibm.agletx directory - see below.)

Two changes in aglets.props

You need to make two changes in the file aglets.props.

Find the line aglet.class.path=/software/aglets/public, and add : followed by the path to your public directory.

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (1 of 6) [7/24/2002 10:02:26 PM]

Find the line aglet.public.root, and change it to point to your public directory.

Fixed and mobile code and the CLASSPATH
Aglets are mobile agents. In other words, they are programs whose code is mobile. It can move from one
execution environment to another.

Much Java code is not allowed to be mobile. Any Java code on the CLASSPATH cannot be mobile. The
AGLET_EXPORT_PATH environment variable can be used to point to classes which can be mobile, i.e., can
be Aglet code.

A problem can occur if you are developing an Aglet in a directory which is on the classpath, for example, the
current direcotry if '.' is on your classpath. After compilation your Aglet class file is on the classpatha and
therefore cannot move to another system. One way to avoid this problem is to write a one line script beginning
with javac -cp <set appropriate class path here> instead of setting the CLASSPATH environment variable
permanently.

You also need the aglets jar file on your classpath to compile Aglets.

Examples

On MS Windows: javac -cp .;c:\aglets\lib\aglets-2.0b0.jar mya1*.java●

On jupiter: javac -cp .:/software/aglets/lib/aglets-2.0b0.jar mya1/*.java●

These examples assume you are in the public subdirectory of the aglets directory and that your code is in the
directory mya1, a subdirectory of public. It is further assumed, in this example, that your Aglet code is in a
package named mya1.

The com.ibm.agletx Package
If you examine the directory structure of the Aglet installation you will see a series of directories
/software/aglets/public/com/ibm/agletx/patterns and /software/aglets/public/com/ibm/agletx/util.. These are
useful classes which you may want to use in your Aglets. Some are used in the itinerary example below.

The agletx package ('x' for exportable) are kept separately, and NOT put on the class path, because these
classes could travel with mobile aglets. For security reasons, classes on the Java class path cannot move. Be
careful in you own programs not to put mobile code on the class path. (You may have to do this for compiling,
but not for execution).

Invoking Tahiti on jupiter
All Aglets need an environment, or context, to support their execution (and prevent malicious visiting aglets
from damaging a host). The Aglet distribution provides a program called Tahiti which provides this context,
and a convenient user interface. Tahiti is configured using a property file such as the one supplied in
/software/aglets.

If you have set up as described above,then do the following to run Tahiti.

Go to the aglets directory and type,

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (2 of 6) [7/24/2002 10:02:26 PM]

tahiti -f aglets.props -port 12000

(12000 is just an example. You will probably be assigned some port numbers.)

This command should bring up the Tahiti server viewer.

You can also run without a GUI (useful with telnet):

tahiti -f aglets.props -port 12000 -nogui

As a preliminary test of your setup try this.

In the Tahiti viewer, click the Create button. In a popup window, a list of available Aglets (supplied with the
distribution) should appear. Choose, examples.simple.DisplayAglet, and click Create. A message should
appear in the Tahiti window.

Aglets On NT or Win95/98,ME,2000
The Aglets 2.0 release has some features which make setting up the Aglet Server (Tahiti) much easier than
before. You download the version 2.0 zip file from SourceForge and unzip it.

Bundled with Aglets is Apache's ant program. This is a Java replacement of a makefile. To configure the
installation, just go to the bin directory and type, ant. Among other things, ant creates the security files
.java.policy and .keystore. You can also use ant to put these in the right place. Just type ant install-home.

To bring up the Tahiti server with the configuration prodcued by ant, type (in the bin directory),

agletsd -f ..\cnf\aglets.props

The server will run on default port 4434.

Running some examples
NOTE: In these examples, various port numbers are used. If you try these examples, please use your assigned
port numbers to avoid clashes with other students' servers.

Also note that you may need to modify the aglets.props path settings for some of these examples.

Example 1.

The simplest example is examples.simple.DisplayAglet. It is useful to check if the Aglet system is set up
correctly. You load ithe Aglet into Tahiti using the Create button. Notice the fully qualified names for Aglets.

Set up another Tahiti (or have a friend do so) and use the Dispatch button to send the Aglet to the other Tahiti
server. In the list displayed by the Dispatch button, enter the URL of the other server. (Don't forget that the
protocol is atp, not http!)

The Aglet should disappear from your Tahiti and turn up at the other one.

Then use the Retract button to bring your Aglet back home.

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (3 of 6) [7/24/2002 10:02:26 PM]

Example 2. HelloAglet

The HelloAglet is dispatched from one Tahiti server to another where it says "Hello, world", and then returns
to its origin to be disposed of.

Assuming you have set up your directory structure as above, make a hello subdirectory in the examples
directory and copy the file /software/Aglets1.1b3/examples/hello/HelloAglet.java into it.

1.

cd into your aglets directory (the parent directory of the examples directory) and compile the HelloAglet,
javac examples/hello/HelloAglet.java.

2.

Create two Tahiti servers listening on different ports. You need to first open xterm or command windows
for each server. For example, on jupiter (Solaris) type xterm &. With my setup I could then type,
agletsd -f myaglets.props and agletsd -f myaglets.props -port 8888. The first command sets up Tahiti
to listen on the port specified in the property file. (You must be running X Windows on solaris (or
Linux), or Win 95/98/NT. The HelloApplet will not work with the command line version of Tahiti.)

3.

In one of theTahitis, click the Create button. From the list that appears, select examples.hello.HelloAglet
and click the Create button. A line in the Tahiti window notifies you that the Aglet is present.

4.

A pop up window also appears. In its Address field type in the address of the other Tahiti server. For
example, atp://jupiter.scs.ryerson.ca:9000, or atp://localhost:9000. You can add this address to the
address list if you wish.

5.

Finally, click the go button. The aglet should dispatch to the other Tahiti window where it prints out
"Hello, world". It stays there for a few seconds and returns to its origin Tahiti where it prints out "I'm

6.

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (4 of 6) [7/24/2002 10:02:26 PM]

back", and then disposes of itself.

You can, of course, also send your HelloAglet to a Tahiti server on another computer on the SCS
network. For example, proton.scs.ryerson.ca which listens on the default port 4434. This is a NT
machine.

7.

Example 3. CirculateAglet.

This aglet travels from Tahiti server to Tahiti server collecting information at each stop. It finally returns to its
origin server and prints out what it has learned to stdout (an xterm or command window). You will have to
modify the supplied code to have the addresses of available servers.

In your examples directory, create a subdirectory called itinerary. Then copy all the files from
/software/Aglets1.1b3/examples/itinerary into it. These files belong to the package examples.itinerary.

1.

Using your favourite editor edit the file CirculateAglet.java. Locate the three "addPlan" methods.
Change only the first two of these. If you have the same Tahiti servers running as in example 1, change
the address in one of these addPlans, to say, atp://localhost:9000, and the other to
atp://proton.scs.ryerson.ca. You might also replace the getProxy() with a second getLocalInfo() which
produces more interesting information.

2.

Because the code is in a package, examples.itinerary, cd back to the parent directory of examples
(directory aglets in my case) and compile with the command javac examples/itinerary/*.java. (This
also compiles another example in the package.)

3.

In the origin Tahiti window (the one that is not listening on port 9000 in our examples), create the
itinerary aglet using the Create button and selecting examples.itinerary.CirculateAglet.

4.

The Tahiti window shows that the CirculateAglet is loaded. Select it and then click the Dialog button. A
window pops up showing the places the Aglet will visit.

5.

Click the Start! button. The Aglet appears briefly in the other Tahiti window on your machine and then
takes off for proton.scs.ryerson.ca. It returns to its original window. Iif you look in the corresponding
xterm window you should see some properties of the machines it visited. You can dispose of the
returned aglet by selecting it in the Tahiti window and clicking the dispose button.

6.

Note on Win 95/98/NT etc.
You run these examples in the same way as on UNIX. One thing to watch out for. You need to double the
backslashes in path name strings in Java on these systems to get the path backslash because a single backslash
is an escape character in Java.

 SCS NT labs
Aglets are not set up in these labs. Use Xwin32 and run on jupiter.

Linux
Setting up should be the same as on NT. Just unzip the distribution and run ant. I did find one problem. The ant
file I had was a DOS type file with CR as well as LF as line terminators. I had to remove the CR's before ant
would work.

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (5 of 6) [7/24/2002 10:02:26 PM]

Getting started with aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletsStart.html (6 of 6) [7/24/2002 10:02:26 PM]

The Aglet Model

Basic Elements

Aglet. a mobile Java object running in its own thread. Reactive to its environment. Has a degree of autonomy.
com.ibm.aglet.Aglet

●

Proxy. Represents the aglet. Protects the aglets's public method. Provides location transparency for the aglet. The
aglet's proxy does not move.

com.ibm.aglet.AgletProxy

●

Context. The aglet's place or environment. Provides services for the aglet and protects the host from malicious
aglets. Contexts are named, and thus can be located by their host, port and name.
com.ibm.aglet.AgletContext

●

Identity. A unique, network wide ID for an aglet.●

Fundamental Operations

Creation. The aglet is loaded into a context. It is initialized and immediately begins execution.●

Cloning. A second way of creating an aglet in a context. An aglet already there is copied. The clone has its own
identifier and starts running at once. Threads are not cloned so the cloned aglet stops executing.

●

Dispatching. Moves the aglet to a new context. Its thread does not go with it. Upon arrival it starts running in a
new thread from its starting point. (The Java instruction pointer position cannot be remembered.)

●

Retraction. Recalls an aglet from its present context to the context and inserts it into the context from which the
retraction call was executed.

●

Activation/Deactivation. An aglet can be stopped and temporarily transferred (serialized) to disk. After a
certain time the aglet can be activated again into the same context.

●

Disposal. Gets rid of the aglet and allows the Java garbage collector to remove its remains.●

The Aglet Model

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletModel.html (1 of 3) [7/24/2002 10:02:28 PM]

The Aglet Event Model
Aglets use the delegation event model introduced in the JDK1.1. The Aglet model adds three event listeners.

Clone Listener. Listens for cloning events.●

Mobility Listener. Listens for events generated by aglet movements. This is the most important listener. You
use it to take action when an aglet is about to be dispatched, when it arrives, and when it is retracted.
com.ibm.aglet.event.MobilityEvent

●

Persistence Listener. Listens for activation/deactivation events.●

The Aglet Communication Model

Note that messages go via the aglet's proxy.

Aglets have three types of message.

The Aglet Model

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletModel.html (2 of 3) [7/24/2002 10:02:28 PM]

Message. A message is an object exchanged between aglets. The basic message mechanism is synchronous. The
sender waits for a reply. There is also a simple asynchronous mechanism, the one way message, when no reply is
needed.

●

Future Reply. It is also possible to have asynchronous messages when a reply is needed. The sender carries on
while waiting for a reply in the future.

●

Reply Set. A reply set can contain multiple future replies.●

See also.

CERN CSC99 Agents/2

The Aglet Model

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletModel.html (3 of 3) [7/24/2002 10:02:28 PM]

http://webcast.cern.ch/Projects/CSC99/lectures/2-agentsystems/

Aglet Mobility
The Aglet system emphasizes mobility. Although it supports inter-aglet messaging, as it must, the
message support is much less elaborate than some other systems such as JADE.

Moving Aglets Around
The Aglet API provides two main methods

retractAglet()●

dispatch()●

The Tahiti server also implements dispatching and retracting so the easiest way to move an Aglet is to
create it in Tahiti and then click the approriate buttons!

However, as mentioned in the section on remote messaging, the more usual arrangement is to have a
parent, stationary, Aglet which creates and dispatches child Aglets to remote locations. The parent can
also retract the children from these locations.

Dispatching

There are a number of versions of the dispatch() method

In the AgletProxy Interface

There are two methods. The most commonly used one is,

AgletProxy dispatch(java.net.URL url)

This method is usually called in one Aglet to dispatch another. The first aglet keeps track of the proxy of
the dispatched aglet.

In the Aglet class

Again there are two versions. The most commonly used is,

void dispatch(java.net.URL url)

This method allows aglets to dispatch themselves to a new location.

Retracting

There is only one method to do this.

In the AgletContext interface

AgletProxy retractAglet(java.net.URL url, AgletID id)

Aglet Mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletMobility.html (1 of 2) [7/24/2002 10:02:29 PM]

Arrival and Departure
Two interesting events in the life of an Aglet are arriving and departing. Naturally, the Aglet API takes
advantage of the Java Event model to handle these situations.

To handle these events a new Java event, MobilityEvent has been added. There is a corresponding
MobilityListener and a MobilityAdapter.

Three methods must be implemented by a MobilityListener, onArrival(), onReverting(), and
onDispatching(). For notes on these methods, of which onArrival() is especially important, click on the
following link.

Notes on the Aglet Event Model

A basic mobility example.

[top] [previous] [next] Questions?

Aglet Mobility

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletMobility.html (2 of 2) [7/24/2002 10:02:29 PM]

mailto:dgrimsha@scs.ryerson.ca

Aglet Event Model

The JDK Event Model
The aglet API uses the Java delegation event model introduced in the JDK 1.1. In this model, certain
objects generate events when certain actions are taken on them. The simplest example is the AWT
Button object which generates an ActionEvent object when a button object is clicked with a mouse. Java
has many objects which generate events. You can also have your own objects generate events if you so
desire.

Only objects registered with the event generating object respond to events. Other objects pay no
attention. They are not interested. Registered objects which are interested are said to listen for events.

Registration implies an obligation on the part of the listener object. The registered object must be
prepared to handle the events generated by the object with which it registered. Just what an object has to
handle when it registers with an event generating object depends on the type of object generating the
events.

In the case of an ActionEvent, you need only do one thing. You must perform actions by implementing
the method public void actionPerformed(ActionEvent) in the listening object's class
definition.

On the other hand, to respond to a WindowEvent generated by an object of the Window class (or its
subclasses such as Frame), you must implement 7 different response methods in the listener.

Aglet Generated Events
Since aglets are written in Java, they may be involved with any of the Java events. They add three events
of their own:

MobilityEvent●

CloneEvent●

PersistencyEvent●

Of these, the MobilityEvent is the most used. It is the only one covered in cps720.

Dealing with Mobility Events
Mobility events are generated by aglet motion. There are three situations covered.

dispatch. The aglet is dispatched to another location●

arrival. The aglet arrives at another location●

retraction. The aglet is called back to another location.●

To each of these there corresponds a method which must be implemented by any object listening for

Aglet Events

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletEvents.html (1 of 2) [7/24/2002 10:02:29 PM]

mobility events. These methods are:

void onDispatching(MobilityEvent). Called when the aglet is being dispatched●

void onArrival(MobilityEvent). Called just after the aglet arrives at its destination, and
before its run() method is executed

●

void onReverting(MobilityEvent). Called on the remote host just before the aglet
moves back to where is being retracted to.

●

Of these, the onArrival() method is used most often.

These methods belong to the MobilityListener interface. Because the MobilityListener interface is an
interface not a class, all three methods must be implemented by any class which implements the
interface. (You can get around this stipulation by using the MobilityAdapter class. This is discussed
later.)

MobilityEvent Methods.

The MobilityEvent class has two useful methods.

AgletProxy getAgletProxy(). Returns the proxy of the aglet which generated the
mobility event.

●

URL getLocation(). Gets the location (the server) where the aglet generated the event.●

Aglet Events

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletEvents.html (2 of 2) [7/24/2002 10:02:29 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/AgletsDoc/api/com/ibm/aglet/event/MobilityListener.html

A Simple Aglet Mobility Example
This example has two Aglets. One is the "master" aglet. It is loaded into the server with the Create
button. This master Aglet creates a child Aglet and sents it to another server. On arrival at the second
server the mobile Aglet prints a simple message on the server console, and then dispatches itself back to
the original sever where it prints the same message on its home console.

In these examples, red = method called by the Aglet system, blue = important Aglet methods, and green -
important Aglet classes.

The Master Aglet
BasicMasterAglet.java source

package cps720.mobile;

import com.ibm.aglet.*;

import java.net.*;

public class BasicMasterAglet extends Aglet {

public void onCreation(Object init) {

try {

AgletContext ac = getAgletContext();

URL homeBase = ac.getHostingURL();

AgletProxy mobileAgletProxy = ac.createAglet(null,

"cps720.mobile.BasicMobileAglet",

homeBase);

mobileAgletProxy.dispatch(new
URL("atp://jupiter.scs.ryerson.ca"));

} catch (Exception ex) {

ex.printStackTrace();

Basic Aglet Mobility Example

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityBasicExample.html (1 of 4) [7/24/2002 10:02:30 PM]

}

}

}

Notes

This example introduces three very important classes: Aglet, AgletProxy, and AgletContext.●

The onCreation() method is called by either the Aglet server (Tahiti) as here, or in response to a
createAglet() call, as in the case of the mobile agent.

●

The Object argument of onCreation() allows the newly created Aglet to receive initial state
information. The Object referenced by 'homeBase', the third argument to the createAglet() method,
appears as the Object argument in the onCreation() method of the created Aglet. (See the
BasicMobileAglet below.)

●

The getHostingURL() method belongs to the AgletContext class. There is also a method called
getAddress() which returns a String.

●

If you look in the documentation you will see that many Aglet methods throw multiple exceptions.
You can cover all thses with the plain Exception class. On the other hand you may loose precision
doing this if you are debugging.

●

The Mobile Agent
BasicMobileAglet.java source

package cps720.mobile;

import com.ibm.aglet.*;

import com.ibm.aglet.event.*;

import java.net.*;

public class BasicMobileAglet extends Aglet {

private URL homeBase = null;

public void onCreation(Object initInfo) {

homeBase = (URL) initInfo;

addMobilityListener(new MobilityAdapter() {

Basic Aglet Mobility Example

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityBasicExample.html (2 of 4) [7/24/2002 10:02:30 PM]

public void onArrival(MobilityEvent me) {

setText("Phew, arrived safely");

}

});

}

public void run() {

try {

Thread.sleep(20000);

} catch (InterruptedException ie) {

}

URL whereAmI = getAgletContext().getHostingURL();

if(!whereAmI.equals(homeBase)) {

try {

dispatch(homeBase);

} catch (Exception ex) {

ex.printStackTrace();

}

}

}

}

Basic Aglet Mobility Example

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityBasicExample.html (3 of 4) [7/24/2002 10:02:30 PM]

Notes

Notice how the home base address is passed to the mobile child agent from the master agent when
it is created.

●

Using an anonymous inner adapter class is an important idiom when programming Aglets.●

Exercise
This program writes the same message both when the mobile Aglet reaches the remote server and when
it retruns home. Suppose you wanted to write a different message when arriving home? How would you
do it? Also, how would you have the mobile Aglet dispose of itself after writing this return message?

Usage
This program works fine on simple lan (one subnet) or if the Aglet server can resolve the fully qualified
name of the servers (for example, jupiter.scs.ryerson.ca, not just jupiter). If this resolution fails, the
mobile Aglet cannot dispatch itself home. However, it can be retracted in such situation. If you have a
home PC you might try experimenting with this.

Basic Aglet Mobility Example

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityBasicExample.html (4 of 4) [7/24/2002 10:02:30 PM]

package cps720.mobile;

import com.ibm.aglet.*;
import java.net.*;

/**
 * A parent stationary Aglet which launches a child mobile agent to
 * another server.
 * To run, change the target URL to something suitable for your
 * system and recompile.
 * See also BasicMobileAglet.java
 * DG. Sept. 2001
 */
public class BasicMasterAglet extends Aglet {

 String targetServer = "atp://IBM:9000";

 public void onCreation(Object init) {
 try {
 AgletContext ac = getAgletContext();
 URL homeBase = ac.getHostingURL();

 AgletProxy mobileAgletProxy = ac.createAglet(null,

"cps720.mobile.BasicMobileAglet",
 homeBase);
 mobileAgletProxy.dispatch(new URL(targetServer));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/aglets/mobile/BasicMasterAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/aglets/mobile/BasicMasterAglet.java [7/24/2002 10:02:31 PM]

package cps720.mobile;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

/**
 * A simple movile agent launched by BasicMasterAglet.
 * This agent, once launched goes to the target server, writes a message
 * and then dispatches itself back to the sender if possible (that is, if
 * it has the fully qualified address of the sender host, including the
 * domain.
 * see also BasicMasterAglet.java
 * DG. Sept. 2001
 */
public class BasicMobileAglet extends Aglet {

 private URL homeBase = null;

 public void onCreation(Object initInfo) {

 homeBase = (URL) initInfo;

 addMobilityListener(new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 setText("Phew, arrived safely");
 }
 });
 }

 public void run() {
 try {
 Thread.sleep(20000);
 } catch (InterruptedException ie) {
 }
 URL whereAmI = getAgletContext().getHostingURL();
 if(!whereAmI.equals(homeBase)) {
 try {
 dispatch(homeBase);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/aglets/mobile/BasicMobileAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/aglets/mobile/BasicMobileAglet.java [7/24/2002 10:02:31 PM]

Remote Messaging

Aglets can exchange messages across the network. You can have fixed Aglets which interact this way.
Of course, then you no longer have a mobile agent system. Only data moves (the messages) not the code
(the agent).

Nevertheless, remote messaging is an integral part of the Aglet mobile agent system. A frequently used
pattern is to have an agent move to a remote host, do some intensive calculations, send the result back as
a message, and dispose of itself.

Some difficulties with remote messaging
There are two main difficulties

Getting appropriate proxies and ID's●

Network latency●

Network Latency

In other words, the Net can be slow. This may or may not matter too much but it could leave an Aglet
hanging, waiting for a reply to a message. The Aglet API provides the Future Message to do messaging
asynchronously and avoid hanging.

Getting Proxies and ID's

As with local messages, communicating aglets must know one another's proxies and to get these, the
Aglets may also have to kwow their ID's. Obtaining this information when all the Aglets are in one
context (the local situation) is straigthforward. Obtaining the information across a network is not so easy.

If you have the requisite proxy and ID information, then sending messages to remote Aglets across the
network is done the same way as locally.

Contacting Remote Aglets
Actually, remote agent communication is not so easy. Suppose,for example, that two people set up tahitis
on two separate machines (both on the default port, 4434) and created an Aglet on each server. How
could these two Aglets communicate? Each Aglet does not know the proxy or ID or the other.

One side would have to create some kind of "messanger" Aglet to go to the other server, ask the Aglet
there for its proxy and ID and send these back to the original Aglet at its home base (or go back itself
with this information). The messanger presumably be carrying the proxy and ID of the Aglet which
dispatched it. With both sides having the requisite information, assuming they had some kind of common
language, they could communicate with messages.

Remote Aglet Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemoteNew.html (1 of 2) [7/24/2002 10:02:32 PM]

The pattern of one stationary Aglet sending another to a remote server is a common one. The stationary
Aglet is sometimes called the master, the mobile Aglet the slave, or parent and child.

The parent keeps track of the proxies and ID's of its children. Similarly, the children keep a record of the
parent's proxy and ID. Two way remote messaging becomes possible.

If the mobile, child Aglet can decide on its own to change its location, the problem of tracking comes up.
The parent may lose contact with the child. This can be a difficult problem.

The examples illustrating remote messaging also illustrate the various mobility mechanisms provided by
the Aglet API. Tor understand the examples, you need to know something about these mobillity
mechanisms. These are reviewed next.

[top] [previous] [next] Questions?

Remote Aglet Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemoteNew.html (2 of 2) [7/24/2002 10:02:32 PM]

mailto:dgrimsha@scs.ryerson.ca

Aglet Local Messaging

A common pattern in Aglet programming is the meeting pattern. An Aglet arrives in a context where other Aglets exist and exchanges local messages with
them. Since messages are local, the network is not cluttered up with them. This advantage can be important if there is a lot of interaction between Aglets.

Basic local messaging example
We continue with the SayIt and HearIt Aglets. This time they use messages to communicate. (SayItAglet must be loaded into Tahiti first.)

Here is the new version of SayItAglet. SayItAglet3.java

package aglets.mystuff.testtalk;
import com.ibm.aglet.*;

public class SayItAglet3 extends Aglet {
private String [] msg = new String[2];

public void onCreation(Object init) {
msg[0] = new String("David Grimshaw");
msg[1] = new String("Hello");

}

public String [] getmsg() {
return msg;

}

public boolean handleMessage (Message msg) {
if(msg.sameKind("Who are you?")){

msg.sendReply(getmsg());
System.out.println("Message: Who are you? received.");
return true;

}
return false;

}

Aglet Local Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageLocal.html (1 of 5) [7/24/2002 10:02:33 PM]

}

What's new here?

This example features an object (reference) of the Message class, and two of that classes's important methods, sameKind() and sendReply(). It also shows the
very important method of the aglet class, handleMessage().

Aglet class

boolean handleMessage(Message)
This is a key method for receiving messages. Note that it returns a boolean. A return of true indicates that the message has been dealt with. A return of
false indicates that this aglet is ignoring the message.In other words, the aglet does not understand the message.

●

Message class

boolean sameKind(String)
This method allows the receiving aglet to distinguish among messages the aglet wants to understand and respond to. Its argument is a message key to
be compared with keys of incoming messages.

●

void sendReply (Object)
The easiest way to reply to a message is to use the Message object itself to carry a reply to the sender of the message.

●

A new version of the HearItAglet. HearItAglet3.java

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import java.util.*;

public class HearItAglet3 extends Aglet {

public void run() {
Aglet anAglet = null;
AgletProxy ap = null;
AgletContext ac = getAgletContext();
for(Enumeration aps = ac.getAgletProxies(); aps.hasMoreElements();) {

ap = (AgletProxy) aps.nextElement();
try {

anAglet = ap.getAglet();

Aglet Local Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageLocal.html (2 of 5) [7/24/2002 10:02:33 PM]

System.out.println(anAglet.getAgletID());
} catch (InvalidAgletException iae) {

System.out.println("Invalid aglet");
}
if(anAglet != null) {

String agClassName = anAglet.getClass().getName();
if(agClassName.equals("aglets.mystuff.testtalk.SayItAglet3")) {

Message msg = new Message("Who are you?");
String [] itSaid = new String[2];
try {

itSaid = (String []) ap.sendMessage(msg);
}
catch (Exception e) {

itSaid[0] = "unknown"; itSaid[1] = "unknown";
System.err.println(e.toString());
return;

}
setText(itSaid[0] + " " + itSaid[1]);

} else {
System.out.println("Another aglet present");

}
} else {

setText("No one understand me.");
}

}
}

}

What's new here?

In the Message class

Message(String)
The simplest of the many overloaded Message constructors. There is no message value defined. The String argument is used to identify the message for
the sameKind() method in the receiver aglet. Can be used just as a notifier (as above), or with setArg(String, Object) to send a Hashtable message (see
below).

●

Aglet Local Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageLocal.html (3 of 5) [7/24/2002 10:02:33 PM]

In the AgletProxy class

Object sendMessage(Message)
Another important method. The object returned is a possible reply message from the receiver. There is also void sendOnewayMessage(Message) if you
are not interested in a reply, and the more complex, FutureReply sendFutureMessage(Message).

●

The Message Class
Aglet messages are Java objects belonging to the message class. Objects of this class carry a lot of information. A message object is either a key-value pair, or
it can be a hash table.

Key-value pair type of message

The message key is always a string, such as, "Who are you?" in the example. The value can be any primitive type (int, float, etc), or an object of type Object,
or any subclass of Object. In other words, any Java object will do. The value (argument) can be retrieved using the Message class's getArg() method.

In the case of messages among objects at the same place, any Java object will indeed do. If the messages are sent by aglets in different places, however, there
is a limitation upon what objects can be sent in messages. A message object sent to a remote host must be serializable. Not only that, any objects referenced in
the non-transient fields of the object must also be serializable. And any objects referenced by these objects must also be serializable. And so on.

Verifying that these chains of references refer only to serializable things can be tricky. The simplest way to handle this situation is to use Strings, or Vectors
or Arrays of Strings as the values of messages, if at all possible.

Creating simple messages

 Message msg = new Message("Dave's Message", "Hello"); Message msg = new Meassge("answer", 42)

Hash table messages

You can create more elaborate messages using this feature of the aglet API. First you create a Message object with a message key, then you put data in the
message hash table using setArg(key, value). The receiver can use the keys to retrieve values with getArg(key).

A simple example.

Message msg = new Message("constants");

msg.setArg("pi", 3.1416)

msg.setArg("myname", "Dave");

The receiver would decode the message something like this:

boolean handleMessage(Message msg) {

Aglet Local Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageLocal.html (4 of 5) [7/24/2002 10:02:33 PM]

if(msg.sameKind("constants") {

float shortPi = ((Float) msg.getArg("pi")).floatValue();

String name = (String) msg.getArg("myname");

// do something

return true;

}

return false;

}

The Message class has many other features, some of which will be discussed later.

Message Class

[top] [previous] [next] Questions?

Aglet Local Messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageLocal.html (5 of 5) [7/24/2002 10:02:33 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/api/com/ibm/aglet/Message.html
mailto:dgrimsha@scs.ryerson.ca

Inter-Aglet Communication

In multi-agent systems, inter-agent communication is an important topic. Aglets are no exception. The
Aglet API provides a number of communication mechanisms. However, Aglets provide only limited
support for message content. Content is just objects, usually strings or vectors of strings.

There are several ways for Aglets to communicate with other Aglets.

Direct Communication Among Aglets in the Same
Place
If Agelts are in the same place (server) they can communicate without messages. There are two ways to
do this. One Aglet can call the public methods of another via its proxy. The other way is for one aglet to
leave a message in the environment to be picked up by another Aglet when it arrives. The first of these
methods is not recommended at all as it violates the integrity of Aglets. It's rather like being able to read
some else's mind instead of listening to her/him talk!

Examples of direct communication

Communication via Messages

This is the preferred method of inter-aglet communication. The message mechanism preserves the
integrity of Aglets and does not clutter up the environment.

Messages can be sent among Aglets in the same place, that is, locally, or to Aglets at remote contexts.
The Aglet API is designed to minimize the differences between programming local and remote
messaging.

There are several different kinds of Aglet messages,

two way messages●

one way messages●

future (asynchronous) messages●

Messages fall into two categories, synchronous, and asynchronous. With the former, the sender waits for
a reply. With the latter, the sender goes on to something else while waiting for the reply, and then deals
with the reply when it comes in.

Local Messages

Example and Discussion

Messaging: syntax and semantics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletcommunication.html (1 of 2) [7/24/2002 10:02:33 PM]

Remote Messages

Example and Discussion

Asynchronous Messages

Example and Discussion

Mobility and Messaging Examples
An Example from the textbook and another SayIt/HearIt example

A Basic Remote Messaging Example

An exampe of an Aglet and its itinerary

The need for semantics

The simple string comparing methods used by the aglet API are bound to limit the intelligence of agents.
For intelligent agents, communication mechanisms that allow semantic content will ultimately be needed.
In other words, higher level communication languages are needed.

Two languages that allow for semantic content in messages are,

SL (and KQML). SL, semantic language, is FIPA's simplified and standardized version of KQML,
Knowledge Query and Manipulation Language, originally developed in the USA under the
auspices of the Department of Defence. These languages are based on Speech Act theory.

●

XML. Extensible Meta Language.●

●

In addition, for meaningful communication, ontologies must be developed.●

These ideas are discussed later in the course.

[top] [previous] [next] Questions?

Messaging: syntax and semantics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletcommunication.html (2 of 2) [7/24/2002 10:02:33 PM]

mailto:dgrimsha@scs.ryerson.ca

Direct Communication Among Aglets in
the Same Place

Communication by public method invocation
If Aglets are in the same location, they can 'communicate' by calling one anothers public methods.
Although this approach is sometimes convenient, it is not recommended because it violates the
encapsulation principle. The agents (Aglets) are no longer independent and autonomous.

Calling public methods examples. (both examples use this method)

Communication via the Environment
Aglets can also commuicate by modification of their environment. This method also occurs in nature.
Ants leave scent trails. Dogs mark fire hydrants. In the case of Aglets, one Aglet can leave information in
an environment to be picked up later by another Aglet arriving in the same environment.

Communication using the environment example. (Example 1 only)

Direct Local Communication anong aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletCommDirect.html [7/24/2002 10:02:34 PM]

Inter-Aglet Communication without Messaging

These examples illustrate two ways of inter-aglet communication for Aglets in the same place (location, server).

Calling one another's public methods
In this case the Aglets must be in the same location at the same time. This method is not recommended for many
reasons,

●

Picking up information left in the environment by other Aglets..
In this case, the Aglets do not have to be in the same location at the same time. Usually they are not. This method
can be useful is used with restraint. The danger is that the environment will be filled up with leftover garbage.

●

This series of examples involves two stationary Aglets, SayitAglet and HearItAglet. The former wants to "say something"
to the latter.

In these examples one aglet arranges to invoke a public method of another aglet.

You cannot call aglet public methods directly. You must access them via the aglet's AgletProxy class. Also, to access its
public methods, you must also know the aglet's ID.

1. Using the AgletContext's property facility to communicate
an aglet's ID.
In this example, one Aglet leaves its ID in the environment and waits. Another Aglet which arrives in the same context can
retrieve this ID from the context (i.e., from the environment) and use it to get the waiting Aglet's proxy. It then calls the
waiting Aglet's getMsg() public method via the proxy in order to find out what was said.

(Of course, you could, more simply, arrange to put the message itself into the context as a property for the second Aglet to
get. That would avoid the need to know the name of the Aglet's public method, getMsg().)

SayItAglet.java

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;

public class SayItAglet extends Aglet {

private String [] msg = new String[2];

public void onCreation(Object init) {

msg[0] = new String("David Grimshaw");

msg[1] = new String("says Hello");

AgletContext ac = getAgletContext();

ac.setProperty("SayItID", getAgletID());

}

public String [] getmsg() {

return msg;

}

}

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (1 of 6) [7/24/2002 10:02:36 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/SayItAglet.java

Aglet notes:

The message is an array of Strings, for no particular reason, other than it is often useful to carry information with
your aglet in an String array or vector.

●

The onCreation() method is analogous to the init() method of an applet. It is called once when the aglet is
constructed. You do not normally call the actual aglet constructor. Use create() to initialize your aglet if necessary.
Your version overrides the base version of create() in the Aglet class.

●

Java notes:

It is a good idea to put your aglets in a package since they often contain multiple files. Packages are a bit tricky. See
the cps840 notes on packages, or the Java Tutorial.

●

Important aglet methods

In the Aglet class

AgletContext getAgletContext()

The aglet gets a reference to its current environment.

AgletID getAgletID()

The aglet knows its own "name" (a bignm).

In the AgletContext class

void setProperty(String key, Object property)

Sets a property in the environment. Since the property is an object of the Object class it can be anything except a primitive.
(You can wrap the primitives.)

Object getProperty(String key)

You use the String index to retrieve the property. Since the result is an Object object, you have to cast the return value into
the actual property class type.

Aglets often leave property values in a context as a kind of "fingerprint", to be picked up by another aglet later. Our
SayItAglet leaves its ID as a fingerprint for HearItAglet to pick up.

Now consider this aglet, which arrives later in the context

HearItAglet.java

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;

public class HearItAglet extends Aglet {

public void run() {

AgletContext ac = getAgletContext();

AgletID aid = (AgletID) ac.getProperty("SayItID");

AgletProxy ap = ac.getAgletProxy(aid);

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (2 of 6) [7/24/2002 10:02:36 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet.java

Aglet sayItAglet;

try {

sayItAglet = ap.getAglet();

} catch (InvalidAgletException iae) {

sayItAglet = null;

}

if(sayItAglet != null) {

String [] itSaid = ((SayItAglet)sayItAglet).getmsg();

setText(itSaid[0] + " " + itSaid[1]);

} else {

setText("Oops .. no Say It aglet here.");

}

}

}

Aglet Notes

run(). Aglets run in their own threads. Therefore, like any other thread they are supplied with their own run()
method which you can override if you wish to. The run() method is only executed after the onCreation() method
returns. We just used the Aglet class version of run() in SayItAglet and overrode onCreation() for our own purposes.
In HearItAglet we do the reverse. It is important to note that when the aglet is dispatched to a remote context, the
run() method restarts from the beginning (after the onArrival() method is executed).

●

You can use the Aglet class's setText() method to put simple one line messages on the Tahiti console. For
debugging simply use System.out.println() to direct output to the console.

●

Note the sequence of actions. First the HearItaglet gets a reference to its context. Then it uses the getProperty()
method to get the ID left by the SayITAglet in the context. Now that it has the SayItAglet's ID, the HearITAglet can
get a reference SayItAglet's proxy. Using this reference we can get (a reference to) the aglet itself and use it to call
the public getmsg() method of the SayItAglet. The message appears in the Tahiti window.

●

Java Notes

Exceptions. Java can throw many exceptions, especially the network code. Some of these, called "checked"
exceptions, must be caught (i.e.., dealt with), usually using the try/catch mechanism.

●

try/catch scope. The scope of things declared in a try block is the try block alone. So, for example, if you were to
declare sayItAglet inside the try, you would get an undeclared variable error at the reference to sayItAglet after the
catch.

●

try/catch and initialization. If you left the line sayItAglet = null out of the catch block, the code does not compile
because there is a possibility that sayItAglet would not be initialized when it is referenced in the line
if(sayItAglet != null) {. (The execution could go through the catch if getAglet() failed.) Of course,
you could just have Aglet sayItAglet = null; instead of Aglet sayItAglet; in the line above the
try.

●

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (3 of 6) [7/24/2002 10:02:36 PM]

Important Aglet Methods

In the AgletContext class

AgletProxy getAgletProxy(AgletID id)

Very useful. But you need to know the AgletID to use it.

In the AgletProxy class

Aglet getAglet(AgletProxy ap)

Once you have the proxy, you can get a reference to the aglet itself and access its public members.

2. Using the getAgletProxies() method to get an aglet's ID
In this approach, the context is left alone. An enumeration of all the proxies in the context is made. Then you have to find
the proxy you want from among them. This example, like the previous one, uses the proxy to call the SayItAglet's public
getMsg() method.

SayItAglet2.java

This is even simpler than SayItAglet.java. It is created and then just sits there. Even though its thread finishes after
creation, it is not garbage collected.

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;

public class SayItAglet2 extends Aglet {

private String [] msg = new String[2];

public void onCreation(Object init) {

msg[0] = new String("David Grimshaw");

msg[1] = new String("Hello");

}

public String [] getmsg() {

return msg;

}

}

HearItAglet2.java

This is more complicated than HearItAglet.java because of the need to determine which of the proxies one wants to deal
with.

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import java.util.*;

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (4 of 6) [7/24/2002 10:02:36 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet2.java

public class HearItAglet2 extends Aglet {

public void run() {

Aglet anAglet = null;

AgletContext ac = getAgletContext();

for(Enumeration aps = ac.getAgletProxies(); aps.hasMoreElements();)
{

try {

anAglet =

((AgletProxy)aps.nextElement()).getAglet();

System.out.println(anAglet.getAgletID());

} catch (InvalidAgletException iae) {

System.out.println("Invalid aglet");

}

if(anAglet != null) {

String agClassName = anAglet.getClass().getName();

if(agClassName.equals("aglets.mystuff.testtalk.SayItAglet2"))
{

String [] itSaid = ((SayItAglet2)anAglet).getmsg();

setText(itSaid[0] + " " + itSaid[1]);

} else {

System.out.println("Another aglet");

}

} else {

setText("Oops .. no Say It aglet here.");

}

}

}

}

Java Notes

Enumeration interface. This interface is in the package java.util. An enumeration is a list which can be traversed
once, usually using a for loop as shown above. The two most important methods are

boolean hasMoreElements()❍

Object nextElement()❍

Note that nextElement() returns a generic object which must be cast to the appropriate type before use.❍

●

The Class class. Every Java class has a Class object associated with it which you can use to obtain information about
the class. The HearItAglet2 aglet shows a simple use of this Class. You can do all kinds of fun things with the class
Class when combined with the java.lang.reflect package. The method getClass() returns a Class object associated
with the Aglet object. The method getName() of the Class class gets the name of the HearAglet2 class as a string.
getName() returns the "fully qualified" name.

●

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (5 of 6) [7/24/2002 10:02:36 PM]

Important aglet methods

In the AgletContext class

Enumeration getAgletProxies()

If you have the context, you can get references to all the proxies of the aglets "living" there. Of course, you need to know
how to use the Java Enumeration interface.

Moving the aglets around.
The four aglets discussed above cannot move by themselves but you can move them using Tahitt's dispatch and retract
commands. You will find after playing with this for a while that the second pair is more robust than the first.

Using context properties to leave "fingerprints" also pollutes the environment. The property remains until it is deliberately
set to null, or the server is rebooted.

For example, if you send SayItAglet to another server and then load HearItAglet, HearItAglet will pick up the ID of the
departed aglet but the aglet is no longer there. You get a null pointer exception,

On the other hand, if you send SayItAglet2 off to another server, then crate HearItAglet2 on the first server, there is no
error. You can then dispatch HearItAglet2 to the second server, catching up to SayItAglet2, and it correctly calls
SayItAglet2's getmsg() method.

Note that HearItAglet2 did not "see" the departed SayItAglet2 when it is created and run. To communicate with thse
methods, the two aglets must be in the same context.

[top] [previous] [next] Questions?

Communication without messaging

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletPrograms1.html (6 of 6) [7/24/2002 10:02:36 PM]

mailto:dgrimsha@scs.ryerson.ca

/**
 * sayItAglet3.java
 * Inter aglet communication.
 * This aglet is perpared to receive a "Who are you?" message and reply to
 * it.
 */

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;

public class SayItAglet3 extends Aglet {
 private String [] msg = new String[2];

 public void onCreation(Object init) {
 msg[0] = new String("David Grimshaw");
 msg[1] = new String("Hello");
 }

 public String [] getmsg() {
 return msg;
 }

 public boolean handleMessage (Message msg) {
 if(msg.sameKind("Who are you?")){
 msg.sendReply(getmsg());
 System.out.println("Message: Who are you? received.");
 return true;
 }
 return false;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/SayItAglet3.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/SayItAglet3.java [7/24/2002 10:02:36 PM]

/**
 * HearItAglet3.java
 * This sends a message to SayItAGlet3
 * You don't need to check which aglets receive the message, since those
 * which do not understand the message do not reply.
 * On the other hand, this is a waste of energy so it is probably a good idea
 * to be selective anyway. (Below the selection method used in HearItAglet2 has been
 * commented out.
 * DG Sept. 99
 */

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import java.util.*;

public class HearItAglet3 extends Aglet {

 public void run() {
 Aglet anAglet = null;
 AgletProxy ap = null;
 AgletContext ac = getAgletContext();
 for(Enumeration aps = ac.getAgletProxies(); aps.hasMoreElements();) {
 ap = (AgletProxy) aps.nextElement();
 try {
 anAglet = ap.getAglet();
 System.out.println(anAglet.getAgletID());
 } catch (InvalidAgletException iae) {
 System.out.println("Invalid aglet"); // otherwise
compiler complains of undefined variable
 }
 if(anAglet != null) {
 String agClassName = anAglet.getClass().getName();
 Message msg = new Message("Who are you?");
 String [] itSaid = new String[2];
 try {
 itSaid = (String []) ap.sendMessage(msg);
 }
 catch (Exception e) {
 itSaid[0] = "unknown"; itSaid[1] =
"unknown";
 System.err.println("Message or answer
failed.");
 }
 setText(itSaid[0] + " " + itSaid[1]);
 } else {
 setText("Oops .. no Say It aglet here.");
 }
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet3.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet3.java [7/24/2002 10:02:36 PM]

Remote Aglets

When Aglets are dispatched to remote sites they must be tracked. The mobile Aglets must also keep track of where their home
is. Furthermore, they may need to know enough location information to send messages anong one another.

Different mobile agent API's do this in different ways. The Aglet API has evolved over several years during which changes
have occurred in how Aglets are kept track of. It is not such a good idea to make Aglets too easy to track since a hostile aglet
might take control of your Aglet. Convenience vs. security is an old story on the Internet!

Several changes have been introduced in the Aglet API between versions 1.0 and 1.1. Both changes have been made for
reasons of security.

Two changes introduced in the API 1.1
The AgletContext method, AgletProxy getAgletProxy(URL, AgletID), is deprecated. This term means
that you can still use it but the method may be removed in the next release, thereby breaking any code you have written
using it. However, as of October 2000 this method was still available. Note that there is a second version of
getAgletProxy, AgletProxy getAgletProxy(AgletID id) which is not deprecated and can be used in a local context.

●

The important AgletProxy method, AgletProxy dispatch(URL) still returns the proxy of the aglet when it
reaches the remote place, but the proxy is invalid in API 1.1 and cannot be used. (It could be used to interact with the
remote aglet in version API 1.0. because it was valid.)

●

Significance

Both these methods were used to obtain a reference to the remote aglet's proxy. As you know, to do much with an aglet, you
need to have a reference to its proxy. The changes listed above eliminate two easy ways of getting a reference to a remote
aglet's proxy.

Version 1.1 of the aglet API has substituted other ways of contacting remote aglets. Section 7.3 of Oshima's and Lange's book
describes a basic aglet finder (p.126-130). A more sophisticated finder is included in the 1.1 package. See the documentation.

It is still possible to do useful messaging with remote aglets without using the finder. See the second example below.

The new version 1.1 response of the dispatch() method is illustrated by the following example from the book.

Aglet Book Example

This example, taken from Chapter 7 of Lange and Oshima (p. 121) illustrates the second difference mentioned above. There
are two classes:

ProxyDispatchExample.java

/*
 * @(#)ProxyDispatchExample.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (1 of 6) [7/24/2002 10:02:38 PM]

 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */
package aglets.agletbook.chapter7;
import com.ibm.aglet.*;
import java.net.URL;

public class ProxyDispatchExample extends Aglet {
 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(,
,"aglets.agletbook.chapter7.ProxyDispatchChild",
,
 null);
 print("Finished creating the child.");
 pause();
 print("Proxy Valid: \'" + proxy.isValid() + "\'");
 print("Proxy Remote: \'" + proxy.isRemote() + "\'");
 print("Dispatching the child...");
 String host = getAgletContext().getHostingURL().toString();
 URL destination = new URL("atp://localhost:9000");
 print("Destination is \'" + destination.toString() + "\'");
 AgletProxy remoteProxy = proxy.dispatch(destination);
 print("Finished dispatching the child.");
 pause();
 print("Proxy Valid: \'" + proxy.isValid() + "\'");
 print("Proxy Remote: \'" + proxy.isRemote() + "\'");
 print("Remote Proxy Valid: \'" + remoteProxy.isValid() + "\'");
 print("Remote Proxy Remote: \'" + remoteProxy.isRemote() + "\'");
 } catch (Exception e) {
 print("Failed to create and dispose of the child.");
 print(e.getMessage());
 }
 }
 static public String NAME = "ProxyDispatchExample";
 private void print(String s) { System.out.println(NAME + " (parent): " + s); }
 private static long SLEEP = 3000;
 private void pause() {
 try {
 Thread.sleep(SLEEP);
 } catch (InterruptedException ie) { }
 }
}

ProxyDispatchChild.java

package aglets.agletbook.chapter7;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class ProxyDispatchChild extends Aglet {

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (2 of 6) [7/24/2002 10:02:38 PM]

 public void onDisposing() {
 print("Being disposed of...");
 }
 public void run() {
 print("Running...");
 }
 private void print(String s) { System.out.println(ProxyDispatchExample.NAME + "
(child): " + s); }
}

The interesting point here concerns the outputs of the calls to isValid() and isRemote().

Before dispatching. The child proxy is valid but not remote.●

After dispatching. The child proxy (called remoteProxy) is remote all right, but not valid. The aglet book on p. 171
claims that the remote proxy is valid. This would be true in version 1.0 but not version 1.1 of the aglet API.

●

New aglet methods

In the AgletContext class

AgletProxy CreateAglet(URL, String, Object)
This is one of the most important methods. In most aglet systems, a stationary aglet, often called the "master" is used to
create mobile aglets which are then dispatched to do their jobs. (Rather than using the Create button on Tahiti.)

●

The URL argument is the location of the created aglet's class file. This can be null in which case the created aglet's code
is with the same host as the aglet which calls create().

●

The String argument is the name of the created aglet's class. The name is relative to the codebase of the aglet context,
and must include package names as shown above (if there are any).

●

The Object argument is an object passed to the on Creation(Object) method of the created aglet.●

URL getHostingURL()
Gets the URL of the server serving this aglet context.●

In the AgletProxy class

AgletProxy dispatch(URL)
Sends the aglet represented by this proxy to a remote host. Returns the remote proxy of the sent aglet. However it seems
that the this remote proxy is invalid in version 1.1b1 of the aglet API. Note also that there is also a method void
dispatch(URL) belonging to the Aglet class which allows an aglet to dispatch itself to another location.

●

boolean isRemote()
Checks if a proxy is remote.

boolean isValid()
Checks if the proxy is usable.

Remote Messaging Example
Often an remote aglet wants to send information back to its point of origin without returning there. The following example
shows one way to do this using remote messaging. (You could also have the remote aglet itself return to its origin with the
information.) The example uses yet another version of our friends, SayItAglet and HearItAglet, with the addition of a new
"master" aglet.

There are 3 aglets in this example.

HearItAglet4. Sends the message "Who are you?" to the remote SayItAglet4 aglet after it has received a "I have arrived
safely." message from the SayItAglet4.

●

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (3 of 6) [7/24/2002 10:02:38 PM]

SayItAglet4. The remote aglet. Sends a message "I have arrived safely." when it arrives at a remote host. Replies to the
"Who are you?" message from the HearItAglet4.

●

Master4. Creates HearItAglet4 and SayItAglet4 and dispatches the latter to the remote Tahiti server.●

Master4.java

package aglets.mystuff.testtalk;
import com.ibm.aglet.*;
import java.net.*;

public class Master4 extends Aglet {
private AgletContext thisContext = null;
private AgletProxy sayItAgletRemoteProxy = null;
private AgletProxy sayItAgletLocalProxy = null;
private AgletProxy hearItAgletLocalProxy = null;

public void onCreation(Object init) {
try {

thisContext = getAgletContext();
hearItAgletLocalProxy = thisContext.createAglet(

null,
"aglets.mystuff.testtalk.HearItAglet4",
null);

sayItAgletLocalProxy = thisContext.createAglet(
null,
"aglets.mystuff.testtalk.SayItAglet4",
hearItAgletLocalProxy);

sayItAgletRemoteProxy = sayItAgletLocalProxy.dispatch(new URL("atp://localhost:9000"));
}
catch (Exception e) {

System.err.println("various possible exceptions");
}

}
}

SayItAglet4.java

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class SayItAglet4 extends Aglet implements MobilityListener {

 private String [] msg = new String[2];
 private AgletContext remoteContext;
 private AgletProxy aHomeProxy;

 public void onCreation(Object init) {

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (4 of 6) [7/24/2002 10:02:38 PM]

 msg[0] = new String("David Grimshaw");
 msg[1] = new String(".. from SayItAglet4");
 aHomeProxy = (AgletProxy) init;
 addMobilityListener(this);
 }

 public String [] getmsg() {
 return msg;
 }
 public boolean handleMessage (Message msg) {
 if(msg.sameKind("Who are you?")){
 msg.sendReply(getmsg());
 print("Message: Who are you? received.");
 return true;
 }
 return false;
 }
 public void onArrival (MobilityEvent mev) {
 remoteContext = getAgletContext();
 AgletID id = getAgletID();
 try {
 aHomeProxy.sendOnewayMessage(new Message("I have arrived safely",
remoteContext.getAgletProxy(id));
 }
 catch (Exception e) {
 System.err.println("send one way fails");
 }
 }
 public void onDispatching(MobilityEvent mev) {
 }
 public void onReverting(MobilityEvent mev) {
 }
 public static final String NAME = "SayItAglet4";
 public void print(String s) {
 System.out.println(NAME + ": " + s);
 }
}

Note.

This program implements a MobilityListener in the simplest way. Note that all three mobility listener methods must be
implemented even though only one onArrival() does anything.

What's new

In the MobilityListener interface

void onArrival(MobilityEvent)
Executes on arriving at a destination. Completes before the run() method is restarted.

●

void onDispatching(MobilityEvent)
Executes just before the aglet leaves for a remote destination.

●

void onReverting(MobilityEvent)
Executes just after a remote aglet is told to revert to its place of origin.

●

In the AgletContext class

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (5 of 6) [7/24/2002 10:02:38 PM]

void SendOnewayMessage(String, Object|primitve)
Sends a message to which no reply is expected.

HearItAglet4.java

package aglets.mystuff.testtalk;
import com.ibm.aglet.*;
import java.util.*;

public class HearItAglet4 extends Aglet {

 AgletProxy ap = null;

 public boolean handleMessage(Message msg) {
 String [] ans = new String[2];
 ans[0] = "no answer";
 ans[1] = "no answer";
 if(msg.sameKind("I have arrived safely")) {
 try {
 ap = (AgletProxy) msg.getArg();
 ans = (String []) ap.sendMessage(new Message("Who are you?"));
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 setText(ans[0] + " " + ans[1]);
 return true;
 }
 return false;
 }
}

Message Passing in the example.

The problem of knowing remote proxies is solved as follows.

When created by Master4, SayItAglet4 is given an argument, hearItAgletLocalProxy, which reappears as the argument
in its onCreation() method. It saves this reference as one of its members, aHomeProxy.

●

Using its knowledge of the home (origin) proxy of HearItAglet4, SayItAglet4 can send HearItAglet4 the message, I
have arrived safely, with a mesaage argument containing a reference to its proxy on its remote host.

●

HearItAglet4 receives the message and gets SayItAglet4's remote proxy as the message argument. It uses this proxy to
send SayItAglet4 the Who are you the message.

●

Finally, SayItAglet4 uses the Who are you message object to send its final reply back to HearItAglet4.●

More remote aglet examples for Oshima and Lange.

Remote Aglets

http://www.ryerson.ca/~dgrimsha/courses/cps720/messageRemote.html (6 of 6) [7/24/2002 10:02:38 PM]

/*
 * @(#)ProxyDispatchExample.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter7;

import com.ibm.aglet.*;
import java.net.URL;

public class ProxyDispatchExample extends Aglet {

 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(),

"aglets.agletbook.chapter7.ProxyDispatchChild",
 null);
 print("Finished creating the child.");
 pause();
 print("Proxy Valid: \'" + proxy.isValid() + "\'");
 print("Proxy Remote: \'" + proxy.isRemote() + "\'");
 print("Dispatching the child...");
 String host = getAgletContext().getHostingURL().toString();
 URL destination = new URL("atp://localhost:9000");
 print("Destination is \'" + destination.toString() + "\'");
 AgletProxy remoteProxy = proxy.dispatch(destination);
 print("Finished dispatching the child.");
 pause();
 print("Proxy Valid: \'" + proxy.isValid() + "\'");
 print("Proxy Remote: \'" + proxy.isRemote() + "\'");
 print("Remote Proxy Valid: \'" + remoteProxy.isValid() + "\'");
 print("Remote Proxy Remote: \'" + remoteProxy.isRemote() + "\'");
 } catch (Exception e) {
 print("Failed to create and dispose of the child.");
 print(e.getMessage());
 }
 }

 static public String NAME = "ProxyDispatchExample";
 private void print(String s) { System.out.println(NAME + " (parent): " + s); }
 private static long SLEEP = 3000;
 private void pause() {
 try {
 Thread.sleep(SLEEP);

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter7/ProxyDispatchExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/s...ode/agletbook/chapter7/ProxyDispatchExample.java (1 of 2) [7/24/2002 10:02:39 PM]

 } catch (InterruptedException ie) { }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter7/ProxyDispatchExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/s...ode/agletbook/chapter7/ProxyDispatchExample.java (2 of 2) [7/24/2002 10:02:39 PM]

/*
 * @(#)ProxyDispatchChild.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter7;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class ProxyDispatchChild extends Aglet {

 public void onDisposing() {
 print("Being disposed of...");
 }

 public void run() {
 print("Running...");
 }

 private void print(String s) { System.out.println(ProxyDispatchExample.NAME + "
(child): " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter7/ProxyDispatchChild.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter7/ProxyDispatchChild.java [7/24/2002 10:02:39 PM]

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;

import java.net.*;

public class Master4 extends Aglet {

 private AgletContext thisContext = null;
 private AgletProxy sayItAgletRemoteProxy = null;
 private AgletProxy sayItAgletLocalProxy = null;
 private AgletProxy hearItAgletLocalProxy = null;

 public void onCreation(Object init) {
 try {
 thisContext = getAgletContext();
 hearItAgletLocalProxy = thisContext.createAglet(null,
"aglets.mystuff.testtalk.HearItAglet4", sayItAgletRemoteProxy);
 sayItAgletLocalProxy = thisContext.createAglet(null,
"aglets.mystuff.testtalk.SayItAglet4", hearItAgletLocalProxy);
 sayItAgletRemoteProxy = sayItAgletLocalProxy.dispatch(new
URL("atp://localhost:9000"));
 // unfortunately this remote proxy is invalid in version 1.1b1.
The aglet book is based
 // on version 1.02. See ch 7. p. 121. Running this
(aglets.agletbook.chapter7.
 // ProxyDispatchExample verifies this. THe remote proxy returned
by dispatch() is
 // invalid, contradicting what the book says.

 }
 catch (Exception e) {
 System.err.println("various possible exceptions");
 }
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/Master4.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/Master4.java [7/24/2002 10:02:40 PM]

/**
 * sayItAglet3.java
 * Inter aglet communication.
 * This aglet is perpared to receive a "Who are you?" message and reply to
 * it.
 */

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class SayItAglet4 extends Aglet implements MobilityListener {
 private String [] msg = new String[2];
 private AgletContext remoteContext;
 private AgletProxy aHomeProxy;

 public void onCreation(Object init) {
 msg[0] = new String("David Grimshaw");
 msg[1] = new String(".. from SayItAglet4");
 aHomeProxy = (AgletProxy) init;
 addMobilityListener(this);
 }

 public String [] getmsg() {
 return msg;
 }

 public boolean handleMessage (Message msg) {
 if(msg.sameKind("Who are you?")){
 msg.sendReply(getmsg());
 print("Message: Who are you? received.");
 return true;
 }
 return false;
 }

 public void onArrival (MobilityEvent mev) {
 remoteContext = getAgletContext();
 AgletID id = getAgletID();
 try {
 aHomeProxy.sendOnewayMessage(new Message("I have arrived safely",
remoteContext.getAgletProxy(id)));
 }
 catch (Exception e) {
 System.err.println("send one way fails");
 }
 }
 public void onDispatching(MobilityEvent mev) {
 }
 public void onReverting(MobilityEvent mev) {
 }

 public static final String NAME = "SayItAglet4";
 public void print(String s) {
 System.out.println(NAME + ": " + s);
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/SayItAglet4.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/SayItAglet4.java [7/24/2002 10:02:41 PM]

/**
 * HearItAglet4.java
 * This sends a message to SayItAGlet3
 * You don't need to check which aglets receive the message, since those
 * which do not understand the message do not reply.
 * On the other hand, this is a waste of energy so it is probably a good idea
 * to be selective anyway. (Below the selection method used in HearItAglet2 has been
 * commented out.
 * DG Sept. 99
 */

package aglets.mystuff.testtalk;

import com.ibm.aglet.*;
import java.util.*;

public class HearItAglet4 extends Aglet {
 AgletProxy ap = null;

 public boolean handleMessage(Message msg) {
 String [] ans = new String[2];
 ans[0] = "no answer";
 ans[1] = "no answer";
 if(msg.sameKind("I have arrived safely")) {
 try {
 ap = (AgletProxy) msg.getArg();
 ans = (String []) ap.sendMessage(new Message("Who are
you?"));
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 setText(ans[0] + " " + ans[1]);
 return true;
 }
 return false;
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet4.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/testtalk/HearItAglet4.java [7/24/2002 10:02:41 PM]

Remote Communication Examples from Aglet
Book
A Remote Messaging example from Chpater 6 of Lange & Oshima

ListingAglet1.java

This is the mobile aglet which obtains a directory listing from a remote host and returns it to its master using messaging.

package aglets.agletbook.chapter6;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.io.*;

public class ListingAglet1 extends Aglet {

 AgletProxy _proxy = null;
 File _dir = null;

 public void onCreation(Object args) {

 _dir = (File)((Object[])args)[0];
 _proxy = (AgletProxy)((Object[])args)[1];

 addMobilityListener(
 new MobilityAdapter() {

 public void onArrival(MobilityEvent me) {
 try {
 _proxy.sendMessage(new Message("Arrived", "I've arrived."));
 _proxy.sendMessage(new Message("Listing", _dir.list()));
 } catch (Exception e) {
 dispose();
 }
 }
 }
);
 }
}

Note how the arguement to onCreation() is handled. This is how the master's proxy (and other information) is passed to
the slave.

ListingAgletMaster1.java

Here is the master aglet which creates the slave and passes information to it. Particularly important is to let the slave know
the master's proxy.

package aglets.agletbook.chapter6;
import com.ibm.aglet.*;
import java.net.URL;
import java.util.*;
import java.io.*;

Aglet Remote Examples

http://www.ryerson.ca/~dgrimsha/courses/cps720/ch6example.html (1 of 3) [7/24/2002 10:02:42 PM]

public class ListingAgletMaster1 extends Aglet {
 public void run() {
 print("STARTING --------------------");
 try {
 URL destination = new URL("atp://proton.scs.ryerson.ca:4434");
 Object[] args = new Object[] { new
File("I:\\coursesf99\\cps720\\assignment1"),
getAgletContext().getAgletProxy(getAgletID()) };
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(),
"aglets.agletbook.chapter6.ListingAglet1", args);
 proxy = proxy.dispatch(destination);
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }
 public boolean handleMessage(Message msg) {
 print("is handling a message...");
 if (msg.sameKind("Listing")) {
 String[] list = (String[])msg.getArg();
 for (int i = 0; i < list.length;)
 System.out.println(i + ": " + list[i++]);
 return true; // Yes, I handled this message.
 } else if(msg.sameKind("Arrived")) {
 System.out.println("Slave reports arrival at destination");
 return true;
 } else
 return false; // No, I did not handle this message.
 }
 static public String NAME = "ListingAgletMaster1";
 private void print(String s) { System.out.println(NAME + ": " + s); }
 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch (InterruptedException
ie) { } }
}

The directory listing is returned to the master which outputs it to stdout.

Using an aglet to carry data

Instead of messaging, the slave can itself return from the remote site with the collected data. Although this method is a bit
"heavier" than messaging, it has its advantages . For example, if the remote aglet fails to dispatch itself back home for
some reason, the home base can still try to retrieve it, and its cargo, using Tahiti's retract method. Or you might leave the
aglet 'parked' remotely while you disconnect, retrieving the aglet later when you reconnect.

ListingAglet2.java

This is a simple aglet which dispatches itself to a remote site and then (attempts) to dispatch itself back to its origin. Note
the use of a flag to distinguish arrivals at the remote site and at home base.

package aglets.agletbook.chapter6;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.io.*;
import java.net.*;

Aglet Remote Examples

http://www.ryerson.ca/~dgrimsha/courses/cps720/ch6example.html (2 of 3) [7/24/2002 10:02:42 PM]

public class ListingAglet2 extends Aglet {
 boolean back = false;
 String[] list = null;
 URL origin = null;
 File dir = new File("/home/dgrimsha/aglets");
 public void onCreation(Object o) {
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 if (back) {
 for (int i = 0; i < list.length;)
 System.out.println(i + ": " + list[i++]);
 dispose();
 } else {
 try {
 list = dir.list();
 back = true;
 dispatch(origin);
 } catch (Exception e) {
 dispose();
 }
 }
 }
 }
);
 origin = getAgletContext().getHostingURL();
 try {
 dispatch(new URL("atp://jupiter.scs.ryerson.ca:12001"));
 } catch (Exception e) {
 }
 }
}

Aglet Remote Examples

http://www.ryerson.ca/~dgrimsha/courses/cps720/ch6example.html (3 of 3) [7/24/2002 10:02:42 PM]

Future Replies
Asynchronous messages are supported by aglets. This allows, for example, a master aglet to continue with its work without
waiting for its slave to finish its task. In other words, the master aglet does not block while waiting for a message from the
slave.

An example from Chapter 6 of Oshima and Lange.

Theparent.

FutureExample.java

package aglets.agletbook.chapter6;

import com.ibm.aglet.*;

public class FutureExample extends Aglet {
 static private int Future = 4;
 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(),

"aglets.agletbook.chapter6.FutureChild",
 null);
 print("Finished creating the child.");
 pause();
 try {
 print("Sends a message...");
 // you could also use FutureReply sendFutureMessage(Message)
 FutureReply future = proxy.sendAsyncMessage(new Message("Please reply"));
 print("The message was sent.");
 while (!future.isAvailable()) // Checks whether a reply is
available.
 doIncrement(); // If not: do incremental
work...
 String reply = (String)future.getReply(); // Gets the reply.
 print("Got the reply: \'" + reply + "\'");
 } catch (NotHandledException e) {
 print("Failed to send the message.");
 print(e.getMessage());
 }
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }
 void doIncrement() {
 print("Working...");
 shortPause();
 }
 public static String NAME = "Future";
 private void print(String s) {

Aglet Future Replies

http://www.ryerson.ca/~dgrimsha/courses/cps720/futureReply.html (1 of 2) [7/24/2002 10:02:43 PM]

 System.out.println(NAME + " (parent): " + s);
 }
 private static long SLEEP = 3000;
 private void pause() {
 try {
 Thread.sleep(SLEEP);
 }
 catch (InterruptedException ie) { } }
 private void shortPause() {
 try {
 Thread.sleep(SLEEP/4);
 } catch (InterruptedException ie) { } }
}

The child.
FutureChild.java

package aglets.agletbook.chapter6;

import com.ibm.aglet.*;

public class FutureChild extends Aglet {
 public void run() {
 print("Running...");
 }
 public boolean handleMessage(Message msg) {
 print("Received a message: \'" + msg.getKind() + "\'");
 if (msg.sameKind("Please reply")) {
 print("Handling \'Please reply\'.");
 pause(); pause();
 print("Replying...");
 msg.sendReply("Hello World!");
 return true;
 }
 return false;
 }
 private static long SLEEP = 3000;
 private void pause() {
 try {
 Thread.sleep(SLEEP);
 } catch (InterruptedException ie) { } }
 private void print(String s) {
 System.out.println(FutureExample.NAME + " (child): " + s);
 }
}

On the home console, the message "Working ..." is printed a number of times before the message "Hello World" is received
from the child and also printed.

Aglet Future Replies

http://www.ryerson.ca/~dgrimsha/courses/cps720/futureReply.html (2 of 2) [7/24/2002 10:02:43 PM]

/*
 * @(#)FutureExample.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter6;

import com.ibm.aglet.*;

public class FutureExample extends Aglet {

 static private int Future = 4;

 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 AgletProxy proxy = getAgletContext().createAglet(getCodeBase(),

"aglets.agletbook.chapter6.FutureChild",
 null);
 print("Finished creating the child.");
 pause();
 try {
 print("Sends a message...");
 FutureReply future = proxy.sendAsyncMessage(new Message("Please reply"));
 print("The message was sent.");
 while (!future.isAvailable()) // Checks whether a reply is
available.
 doIncrement(); // If not: do incremental work...
 String reply = (String)future.getReply(); // Gets the reply.
 print("Got the reply: \'" + reply + "\'");
 } catch (NotHandledException e) {
 print("Failed to send the message.");
 print(e.getMessage());
 }
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }

 void doIncrement() {
 print("Working...");
 shortPause();
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureExample.java (1 of 2) [7/24/2002 10:02:43 PM]

 public static String NAME = "Future";
 private void print(String s) {
 System.out.println(NAME + " (parent): " + s);
 }
 private static long SLEEP = 3000;
 private void pause() {
 try {
 Thread.sleep(SLEEP);
 }
 catch (InterruptedException ie) { } }
 private void shortPause() {
 try {
 Thread.sleep(SLEEP/4);
 } catch (InterruptedException ie) { } }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureExample.java (2 of 2) [7/24/2002 10:02:43 PM]

/*
 * @(#)FutureChild.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter6;

import com.ibm.aglet.*;

public class FutureChild extends Aglet {

 public void run() {
 print("Running...");
 }

 public boolean handleMessage(Message msg) {
 print("Received a message: \'" + msg.getKind() + "\'");
 if (msg.sameKind("Please reply")) {
 print("Handling \'Please reply\'.");
 pause(); pause();
 print("Replying...");
 msg.sendReply("Hello World!");
 return true;
 }
 return false;
 }

 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch (InterruptedException ie) {
} }
 private void print(String s) { System.out.println(FutureExample.NAME + " (child): " +
s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureChild.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/agletbook/chapter6/FutureChild.java [7/24/2002 10:02:44 PM]

Aglet Programming Basics

Aglet programming revolves around two classes and two interfaces.

Aglet■

AgletContext■

AgletProxy■

Message■

The AgletProxy is intended to shield aglets proper from outside scrutiny. For example, communication
via messages is handled by the aglet proxies.

The AgletContext provides an environment for the aglets. For example, the Tahiti server provides such
an environment. This environment is closed off from the host operating system (a "sandbox" as for
applets). Thus the host is protected from malicious aglets.

Basic Example
To introduce the most important concepts, consider this example. There are two aglets, BasicMaster and
BasicChild. The user sets up two Tahiti servers. (In the example, one at default port 4434 and the other at
9000. On the 4434 Tahiti, the user creates BaseMaster. In turn, BaseMaster creates BaseChild and
dispatches it to the 9000 Tahiti. On arriving, the child sends a messsage to the master saying it has
arrived. The master responds to this message by retracting the child back to the 4434 Tahiti. The master
does not move.

Here is BasicMaster. Important Aglet items are shown in bold red.

/** BasicMaster.java

*

*/

package aglets.mystuff.basic;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.URL;

public class BasicMaster extends Aglet {
URL target;

AgletID childID;

public void run() {

try {

Aglet Programming Basics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletBasic.html (1 of 4) [7/24/2002 10:02:45 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/api/com/ibm/aglet/Aglet.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/api/com/ibm/aglet/AgletContext.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/api/com/ibm/aglet/AgletProxy.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/api/com/ibm/aglet/Message.html

target= new URL("atp://notebook:9000");

AgletProxy masterProxy = getProxy();

AgletProxy childProxy = getAgletContext().createAglet(null,

"aglets.mystuff.basic.BasicChild",

masterProxy);

childID = childProxy.getAgletID();

childProxy.dispatch(target);

} catch (Exception e) {}

}

public boolean handleMessage(Message msg) {

if(msg.sameKind("arrived")) {

System.out.println("Received message");

try {

getAgletContext().retractAglet(target, childID);

} catch (Exception e) {

System.err.println(e.toString());

}

return true;

}

return false;

}

}

Notes on BasicMaster

Aglets can find out where they are using the method getContext() of the Aglet class.●

The method createAglet() belongs to the AgletContext class. It takes three arguments:

The codebase of the aglet beiing created. Use null for aglets created from local code, that is,
classes in a subldirectory of AGLET_PATH. (or, see aglets.class.path entry in the .props
file).

❍

The fully qualified name of the aglet class (without the .class extension) as a string.❍

A reference to an Object which the aglet system will pass as argument ot the created aglet's
onCreation() method. Null if you do not wish to pass anything to the child.

❍

●

The child is given the master's proxy so it can send the master messages from a remote location.●

Note that the master aglet remembers the child's ID for use in the retractAglet() method.●

The handleMessage() ands sameKind() methods are the standard way of receiving messages.●

Here is the mobile agent BasicChild.

/** BasicChild.java

Aglet Programming Basics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletBasic.html (2 of 4) [7/24/2002 10:02:45 PM]

*

*/

package aglets.mystuff.basic;

import com.ibm.aglet.*;

import com.ibm.aglet.event.*;

public class BasicChild extends Aglet {

private boolean atHome;

private AgletProxy masterProxy;

public void onCreation (Object init) {

atHome = true;

masterProxy = (AgletProxy) init;
setText("Alive!");

addMobilityListener(new MobilityAdapter () {

public void onArrival(MobilityEvent me) {

setText("Arrived safely");

if(atHome) atHome = false;
else atHome = true;

}

public void onReverting(MobilityEvent mev) {

System.out.println("Goodbye");

}

});

}

public void run() {

if(!atHome) {

try {

Thread.sleep(2000);
// NB! one way message. If you use sendMessage() child aglet

// is crashed by the the reply which comes while it is trying to revert.

masterProxy.sendOnewayMessage(new Message("arrived"));

} catch (Exception e) {

System.err.println(e.toString());

}

Aglet Programming Basics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletBasic.html (3 of 4) [7/24/2002 10:02:45 PM]

} else {

setText("Home, sweet home.");

}

}

}

Notes on BasicChild

To send a message back to the aglet that created it, BasicChild needs to know the proxy of its
master. This is passed to it via the argument to the important message onCreation(). (onCreation()
belongs to the Aglet class.)

●

run() is available to all aglets because they run on separate threads. run() is executed after
onArrival() if onArrival() exists. It is always executed "from the top" at each stop the aglet makes
because Java cannot save the complete state of the computation (i.e., the instruction pointer cannot
be saved).

●

You need some kind of switch to distinguish arrivals at a remote host from arrivals "back home".
The if(athome) ... statement, above, takes care of this in this example.

●

Messages are most often sent with the sendMessage() method because a reply is usually expected.
In this case, sendOnewayMessage() is used because a reply is not expected, and, in fact, causes a
crash.

●

[top] [previous] [next] Questions?

Aglet Programming Basics

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletBasic.html (4 of 4) [7/24/2002 10:02:45 PM]

mailto:dgrimsha@scs.ryerson.ca

/** BasicMaster.java
 *
 */
 package aglets.mystuff.basic;

 import com.ibm.aglet.*;
 import com.ibm.aglet.event.*;
 import java.net.URL;

 public class BasicMaster extends Aglet {
 URL target;
 AgletID childID;
 public void run() {
 try {
 target= new URL("atp://notebook:9000");
 AgletProxy masterProxy = getProxy();
 AgletProxy childProxy = getAgletContext().createAglet(null,

"aglets.mystuff.basic.BasicChild",

masterProxy);
 childID = childProxy.getAgletID();
 childProxy.dispatch(target);
 } catch (Exception e) {}
 }
 public boolean handleMessage(Message msg) {
 if(msg.sameKind("arrived")) {
 System.out.println("Received message");
 try {
 getAgletContext().retractAglet(target, childID);
 } catch (Exception e) {
 System.err.println(e.toString());
 }
 return true;
 }
 return false;
 }
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/basic/BasicMaster.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/basic/BasicMaster.java [7/24/2002 10:02:45 PM]

/** BasicChilld.java
*
 */

 package aglets.mystuff.basic;

 import com.ibm.aglet.*;
 import com.ibm.aglet.event.*;
 import java.net.URL;

 public class BasicChild extends Aglet {

 private boolean atHome;
 private AgletProxy masterProxy;

 public void onCreation (Object init) {
 atHome = true;
 masterProxy = (AgletProxy) init;
 setText("Alive!");
 addMobilityListener(new MobilityAdapter () {
 public void onArrival(MobilityEvent me) {
 setText("Arrived safely");
 if(atHome) atHome = false;
 else atHome = true;
 }
 public void onReverting(MobilityEvent mev) {
 System.out.println("Goodbye");
 }
 });
 }
 public void run() {
 if(!atHome) {
 try {
 Thread.sleep(2000);
 // NB! one way message. If you use sendMessage() child aglet
 // is crashed by the the reply which comes while it is trying to revert
 masterProxy.sendOnewayMessage(new Message("arrived"));
 } catch (Exception e) {
 System.err.println(e.toString());
 }
 } else {
 setText("Home, sweet home.");
 }
 }
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/basic/BasicChild.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/basic/BasicChild.java [7/24/2002 10:02:45 PM]

An Aglet with a separate itinerary class

Most of the examples so far do not separate controlling the Aglet's itinerary from the tasks it carries out.
This lack of modularity could be a problem for more complex problems. Correct coding and code
maintenance could be a problem. The example shown below illustrates using a separate class to to
control the Aglet's itinerary.

Boomerang Example from Lange & Oshima (p.
40-42)
(with some corrections and additions.)

The boomerang aglet is simple. It uses an itinerary class to indirectly implement a listener for mobility
events. This itinerary class is "plugged into" the aglet. This design pattern will come up on several later
occasions as well.

BoomerangAglet.java

package aglets.mystuff.boomerang;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class BoomerangAglet extends Aglet {
private String remote = "atp://localhost:9000";

public void onCreation(Object init) {
addMobilityListener(new BoomerangItinerary(this));

}
}

BoomerangItinerary.java

package aglets.mystuff.boomerang;

import com.ibm.aglet.*;

An Aglet with a separate itinerary class

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityExample.html (1 of 3) [7/24/2002 10:02:46 PM]

import com.ibm.aglet.event.*;

import java.net.URL;

public class BoomerangItinerary implements MobilityListener {
private Aglet target = null;
private String origin = null;

public BoomerangItinerary (Aglet target) {
this.target = target;
target.addMobilityListener(this);
origin = target.getAgletInfo().getOrigin();
System.out.println(origin);

}

public void onDispatching(MobilityEvent mev) {
target.setText("I'm leaving for " + mev.getLocation());

}

public void onArrival(MobilityEvent mev) {

if(atOrigin(mev.getLocation()) == false) {
// this test always returns false if the

// sender is the default port 4434 !?

// Bug in beta 1.1 ?

System.out.println(mev.getLocation().toString());
try {

target.dispatch(new URL(origin));
}
catch (Exception e) {}

}
}

public void onReverting(MobilityEvent mev) {
}

public boolean atOrigin(URL current) {
return origin.equals(current.toString());

An Aglet with a separate itinerary class

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityExample.html (2 of 3) [7/24/2002 10:02:46 PM]

}
}

[top] [previous] [next] Questions?

An Aglet with a separate itinerary class

http://www.ryerson.ca/~dgrimsha/courses/cps720/mobilityExample.html (3 of 3) [7/24/2002 10:02:46 PM]

mailto:dgrimsha@scs.ryerson.ca

package aglets.mystuff.boomerang;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class BoomerangAglet extends Aglet {
 private String remote = "atp://localhost:9000";

 public void onCreation(Object init) {
 addMobilityListener(new BoomerangItinerary(this));
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/boomerang/BoomerangAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/boomerang/BoomerangAglet.java [7/24/2002 10:02:46 PM]

package aglets.mystuff.boomerang;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

import java.net.URL;

public class BoomerangItinerary implements MobilityListener {
 private Aglet target = null;
 private String origin = null;

 public BoomerangItinerary (Aglet target) {
 this.target = target;
 target.addMobilityListener(this);
 origin = target.getAgletInfo().getOrigin();
 System.out.println(origin);
 }

 public void onDispatching(MobilityEvent mev) {
 target.setText("I'm leaving for " + mev.getLocation());
 }

 public void onArrival(MobilityEvent mev) {

 if(atOrigin(mev.getLocation()) == false) {
 // this test always returns false if the
 // sender is the default port 4434 !?
 // Bug in beta 1.1 ?
 System.out.println(mev.getLocation().toString());
 try {
 target.dispatch(new URL(origin));
 }
 catch (Exception e) {}
 }
 }

 public void onReverting(MobilityEvent mev) {
 }

 public boolean atOrigin(URL current) {
 return origin.equals(current.toString());
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/boomerang/BoomerangItinerary.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/boomerang/BoomerangItinerary.java [7/24/2002 10:02:47 PM]

Aglet Cloning

The Aglet API provides a cloning facility for Aglets. This is actually a second way to create new Aglets -
by making copies of already existing Aglets. Cloning can be useful if parallel processing is needed.

The only diffrence between an Aglet and its clone is that they have different AgletID's (which means that
their proxies are not quite the same).

Creating clones
There are various clone() methods to do this.

An Aglet clones itself

public final Object clone() throws CloneNotSupportedException

A clone of an Aglet can be created using its proxy.

public Object clone() throws CloneNotSupportedException

The Object returned is the clone's proxy.

The Clone Event and Listener
Cloning generates an event. To make use of this you have to implement a CloneListener. This is usually
done via a CloneAdapter class, mostly as an inner class.

There are three callback methods assoicated with the CloneListener.

public void onCloning(CloneEvent e)

This is used for clone initialization. It is called in the original Aglet's thread.

public void onClone(CloneEvent e)

This is also used to initialize the clone. It is called after onCloning(). In particular, it is used to set a flag
to distinguish clone code from the original Aglet's code (see example below).

public void onCloned(CloneEvent e)

This method is called in the clone's thread after it has been created. After it returns, the clone's run()
method is invoked. (onArrival() plays an analagous role for MobilityEvents.)

Aglet Cloning

http://www.ryerson.ca/~dgrimsha/courses/cps720/cloning.html (1 of 4) [7/24/2002 10:02:48 PM]

A Cloning Example
This example prints out the names of 7 clones created from one original. Notice how the clone code is
separated from that of the original. All 8 Aglets have their own threads.

CloneExampleAglet.java

The code:

package aglets.cloneexample;

import com.ibm.aglet.*;

import com.ibm.aglet.event.*;

import java.util.*;

/**

* Illustrates cloning. 7 clones are created and survive 2 seconds.

*/

public class CloneExampleAglet extends Aglet {

boolean isClone = false;

private Vector dwarfs;

private String dwarfName = null;

public void onCreation(Object init) {

dwarfs = new Vector();

dwarfs.addElement("sleepy");

dwarfs.addElement("dopy");

Aglet Cloning

http://www.ryerson.ca/~dgrimsha/courses/cps720/cloning.html (2 of 4) [7/24/2002 10:02:48 PM]

dwarfs.addElement("grumpy");

dwarfs.addElement("sneezy");

dwarfs.addElement("happy");

dwarfs.addElement("bashful");

dwarfs.addElement("doc");

addCloneListener(new CloneAdapter() {

public void onClone(CloneEvent ce) {

isClone = true;

}

});

}

public void run() {

if(!isClone) {

for(Enumeration e = dwarfs.elements();
e.hasMoreElements();) {

dwarfName = (String) e.nextElement();

try {

clone();

} catch(Exception ex) {

System.err.println(ex);

}

Aglet Cloning

http://www.ryerson.ca/~dgrimsha/courses/cps720/cloning.html (3 of 4) [7/24/2002 10:02:48 PM]

}

} else {

System.out.println("HiHo, HiHo .. I'm " + dwarfName);

setText("HiHo, HiHo .. I'm " + dwarfName);

pause(2000);

dispose();

}

}

private void pause(int time) {

try {

Thread.sleep(time);

} catch (InterruptedException e) {}

}

}

[top] [previous] [next] Questions?

Aglet Cloning

http://www.ryerson.ca/~dgrimsha/courses/cps720/cloning.html (4 of 4) [7/24/2002 10:02:48 PM]

mailto:dgrimsha@scs.ryerson.ca

package aglets.cloneexample;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

import java.util.*;

/**
* Illustrates cloning. 7 clones are created and survive 2 seconds.
*/
public class CloneExampleAglet extends Aglet {
 boolean isClone = false;
 private Vector dwarfs;
 private String dwarfName = null;

 public void onCreation(Object init) {
 dwarfs = new Vector();
 dwarfs.addElement("sleepy");
 dwarfs.addElement("dopy");
 dwarfs.addElement("grumpy");
 dwarfs.addElement("sneezy");
 dwarfs.addElement("happy");
 dwarfs.addElement("bashful");
 dwarfs.addElement("doc");

 addCloneListener(new CloneAdapter() {
 public void onClone(CloneEvent ce) {
 isClone = true;
 }
 });
 }
 public void run() {
 if(!isClone) {
 for(Enumeration e = dwarfs.elements(); e.hasMoreElements();) {
 dwarfName = (String) e.nextElement();
 try {
 clone();
 } catch(Exception ex) {
 System.err.println(ex);
 }
 }
 } else {
 System.out.println("HiHo, HiHo .. I'm " + dwarfName);
 setText("HiHo, HiHo .. I'm " + dwarfName);
 pause(2000);
 dispose();
 }
 }

 private void pause(int time) {
 try {
 Thread.sleep(time);
 } catch (InterruptedException e) {}
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/CloneExampleAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/CloneExampleAglet.java [7/24/2002 10:02:48 PM]

Survey of Aglet Design Patterns
[See Chapter 8 of Oshima and Lange's Aglet Book.]

Design patterns have become important in object oriented programming. (Design Patterns vs Universal
Modeling Language ?!) Chapter 8 of the aglet book discusses several mobile agent design patterns in
general, and two in particular.

Aglet Patterns

The master-slave and itinerary patterns are discussed in detail.

Aglet Design Patterns - surveys

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsSurvey.html (1 of 2) [7/24/2002 10:02:49 PM]

Aglet API patterns

The Aglet API has a number of patterns built in. (Some of them have bugs.) These can be fouund in the
com.ibm.agletx.utils and com.ibm.agletx.patterns. There is some documentaion as well..

Aglet Design Patterns - surveys

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsSurvey.html (2 of 2) [7/24/2002 10:02:49 PM]

Master-Slave Pattern
This is the simplest design pattern. Design patterns are discussed under the following headings.

Definition●

Purpose●

Applicability●

Participants●

Collaboration●

Consequences●

Implementation●

Definition
A pattern where a master can delegate a task to a slave.

Purpose
A task is split between two computers. A parallel process is possible. While the slave is away doing its task, the master can
continue with its task. The slave usually sends the result of its taks back to the master.

Applicability
parallleism is needed

the master needs to get something done on another machine

Participants
Abstract slave●

Concrete slave●

Master●

Collaboration
The master-slave participants cooperate as follows:

A master aglet creates a slave aglet1.

The slave initializes its task2.

The slave moves to a remote host and executes its task.3.

The slave sends the result of its task to the master4.

The slave disposes itself5.

Consequences
The constant parts of the design are separated from the variable parts. The constant parts need only be implemented once, and
developers can concentrate on the variable point.

Aglet Patterns - Mater-Slave

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMasterSlave.html (1 of 4) [7/24/2002 10:02:51 PM]

Implementation
(Aglet book, chapter 8)

The implementation is built aound a foundation abstract class: (called Slave.java in the textbook).

Slave1.java

package aglets.agletbook.chapter8;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public abstract class Slave1 extends Aglet {
 URL destination = null;
 AgletProxy master = null;
 public void onCreation(Object args) {
 try {
 destination = (URL)((Object[])args)[0];
 master = (AgletProxy)((Object[])args)[1];
 initializeTask();
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 print("Arrived...");
 try {
 master.sendMessage(new Message("Result",
doTask()));
 dispose();
 } catch (Exception e) {
 print("Failed to send result to master.");
 print(e.getMessage());
 }
 }
 }
);
 dispatch(destination);
 } catch (Exception e) {
 print("Failed to create slave.");
 print(e.getMessage());
 }
 }
 abstract void initializeTask();
 abstract Object doTask();

Aglet Patterns - Mater-Slave

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMasterSlave.html (2 of 4) [7/24/2002 10:02:51 PM]

 static public String NAME = "Slave1";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

The slave's mobility action on arrival is always the same, so we abstract it out in this abstract class. The same is true of the
slave's messaging action.

What is different for each slave is (1) how it is initialzed, and (2) what its task is. The corresponding methods initializeTask()
and doTask() are implemented in a subclass of this one.

Lange and Oshima provide this simple example. The abstraction is made concrete.

In this example, the task is just to print a message to stdout on the receiver, and send a string back to the master aglet at home.

MySlave.java

package aglets.agletbook.chapter8.MySlave;
import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public class MySlave extends Slave1 {
 public void initializeTask() {
 print("Initializing.");
 }
 public Object doTask() {
 print("Performs task");
 return "Some result...";
 }
 static public String NAME = "MySlave";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

A master aglet at home creates the concrete slave and sends it off to do its thing.

MyMaster.java

package aglets.agletbook.chapter8;
import com.ibm.aglet.*;
import java.net.URL;
import java.util.*;

public class MyMaster extends Aglet {
 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 String host =
getAgletContext().getHostingURL().toString();

Aglet Patterns - Mater-Slave

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMasterSlave.html (3 of 4) [7/24/2002 10:02:51 PM]

 URL destination = new
URL("atp://proton.scs.ryerson.ca:9000");
 AgletProxy thisProxy =
getAgletContext().getAgletProxy(getAgletID());
 Object[] args = new Object[] { destination, thisProxy };
 getAgletContext().createAglet(getCodeBase(),

"aglets.agletbook.chapter8.MySlave",
 args);
 print("Finished creating the child.");
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }
 public boolean handleMessage(Message msg) {
 if (msg.sameKind("Result"))
 print("Received a result: \'" + msg.getArg() + "\'");
 return true;
 }
 static public String NAME = "MyMaster";
 private void print(String s) { System.out.println(NAME + ": " +
s); }
 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch
(InterruptedException ie) { } }
}

A typical ouput on the home server would be:

MYMASTER: STARTING ----------------------

MYMASTER: Creating the child ...

MYMASTER: Finished createing the child.

MySlave: Intitializing ...

MyMaster: Received a result: 'Some result ...'

Aglet Patterns - Mater-Slave

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMasterSlave.html (4 of 4) [7/24/2002 10:02:51 PM]

/*
 * @(#)Slave1.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public abstract class Slave1 extends Aglet {

// SlaveSetup _setup = null;
 URL destination = null;
 AgletProxy master = null;

 public void onCreation(Object args) {
 try {
// _setup = (SlaveSetup)init;
 destination = (URL)((Object[])args)[0];
 master = (AgletProxy)((Object[])args)[1];
 initializeTask();
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 print("Arrived...");
 try {
 master.sendMessage(new Message("Result", doTask()));
 dispose();
 } catch (Exception e) {
 print("Failed to send result to master.");
 print(e.getMessage());
 }
 }
 }
);
 dispatch(destination);
 } catch (Exception e) {
 print("Failed to create slave.");
 print(e.getMessage());
 }
 }

 abstract void initializeTask();

 abstract Object doTask();

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/Slave1.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/Slave1.java (1 of 2) [7/24/2002 10:02:51 PM]

 static public String NAME = "Slave1";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/Slave1.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/Slave1.java (2 of 2) [7/24/2002 10:02:51 PM]

/*
 * @(#)MySlave.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public class MySlave extends Slave1 {

 public void initializeTask() {
 print("Initializing.");
 }

 public Object doTask() {
 print("Performs task");
 return "Some result...";
 }

 static public String NAME = "MySlave";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/MySlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/MySlave.java [7/24/2002 10:02:51 PM]

/*
 * @(#)MyMaster.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8;

import com.ibm.aglet.*;
import java.net.URL;
import java.util.*;

public class MyMaster extends Aglet {

 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 String host = getAgletContext().getHostingURL().toString();
 URL destination = new URL("atp://proton.scs.ryerson.ca:9000");
 AgletProxy thisProxy = getAgletContext().getAgletProxy(getAgletID());
// SlaveSetup setup = new SlaveSetup(destination, thisProxy);
 Object[] args = new Object[] { destination, thisProxy };
 getAgletContext().createAglet(getCodeBase(),
 "aglets.agletbook.chapter8.MySlave",
 args);
 print("Finished creating the child.");
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }

 public boolean handleMessage(Message msg) {
 if (msg.sameKind("Result"))
 print("Received a result: \'" + msg.getArg() + "\'");
 return true;
 }

 static public String NAME = "MyMaster";
 private void print(String s) { System.out.println(NAME + ": " + s); }
 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch (InterruptedException ie) {
} }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/MyMaster.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/masterSlave/MyMaster.java [7/24/2002 10:02:52 PM]

Itinerary Pattern
(chapter 8)

Definition
This pattern objectifies trips of aglets to multiple destinations

Purpose
Responsibility for navigation is off loaded from the aglet itself to an associated itinerary object. This separation of the
navigation control from the aglet proper increases flexibility. The same itinerary can be plugged into different aglets. Or aglets
can be given different types of itinerary without having to modify the aglet's own code.

Applicability
Use this pattern when

You want to hide the aglet travel plan from its behaviour in order to promote modularity.●

Provide a uniform travel interface for aglets●

Define travel plans which can be shared or reused●

Participants
Abstract Itinerary. Defines a model for an itinerary with two abstract methods, go() and hasMoreDestinations().●

ConcreteItinerary. Implements the abstract methods of the Itinerary class and keeps track of the current destination of
the aglet.

●

Aglet. The aglet following the itinerary.●

The aglet and itinerary must be connected. The aglet creates the itinerary and initializes it with,

A list of destinations to be visited sequentially1.

A reference to the aglet.2.

The aglet uses the itinerary's go() method to dispatch itself, and its companion itinerary object.

Collaboration
The ConcreteItinerary object is initialized by the aglet.●

The ConcreteItinerary object dispatches the aglet to the first destination.●

When the aglet invokes the itinerary's go() method, it is dispatched to the next destination.●

Consequences
The pattern supports variations in navigation. For example, by changing the failure to dispatch exception handling, various
behaviours can be generated when the destination is not available. Such changes will not require the aglet itself to be modified.
Different aglets can also be made to share travel plans as embodied in itinerary objects.

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (1 of 6) [7/24/2002 10:02:53 PM]

Implementation
The three participants in this pattern are implemented in 3 files:

Itinerary.java●

SeqIntinerary.java●

ItinerantAglet.java●

To get things started, a stationary aglet is implemented in Parent.java

I have put these in a package aglets.agletbook.chapter8a.

Parent.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;
import java.util.*;

public class Parent extends Aglet {
 Itinerary _itinerary = null;
 public void onCreation(Object init) {
 try {
 Vector destinations = new Vector();
 destinations.addElement(new URL("atp://localhost:9000"));
 destinations.addElement(new URL("atp://localhost:9001"));
 destinations.addElement(new URL("atp://localhost:9002"));
 destinations.addElement(new URL("atp://localhost:9003"));
 destinations.addElement(new URL("atp://localhost:9004"));
 destinations.addElement(new URL("atp://localhost:9005"));
 URL origin = getAgletContext().getHostingURL();
 getAgletContext().createAglet(getCodeBase(),

"aglets.agletbook.chapter8a.ItinerantAglet",
 new SeqItinerary(origin,
destinations));
 } catch (Exception e) {
 print("Failed to initalize the itinerary.");
 print(e.getMessage());
 }
 }
 static public String NAME = "ParentItinerantAglet";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

Note how the travelling aglet, ItineraryAglet, is created knowing the home proxy of its parent, and carrying a list (Vector) of

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (2 of 6) [7/24/2002 10:02:53 PM]

its planned destinations.

The navigation requirements are encapsulated in the abstract Itinerary class.

Itinerary.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import java.net.*;
import java.io.*;

public abstract class Itinerary implements Serializable {

 protected URL _origin = null;
 protected AgletProxy _aglet = null;

 public Itinerary(URL origin) {
 _origin = origin;
 }
 public void init(Aglet aglet) {
 _aglet =
aglet.getAgletContext().getAgletProxy(aglet.getAgletID());
 go();
 }
 public URL getOrigin() {
 return _origin;
 }
 public AgletProxy getAglet() {
 return _aglet;
 }

 protected void go(URL destination) throws Exception {
 _aglet.dispatch(destination);
 }

 public abstract void go();
 public abstract boolean hasMoreDestinations();
 public abstract URL getNextDestination();
}

Notes.

The name _aglet is unfortunate. This is an AgletProxy, not an Aglet.●

The class is abstract so it cannot be instantiated. To use it you must subclass it.●

The Itinerary goes along with its Aglet partner, so it must be serializable. Its subclasses inherit this property.●

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (3 of 6) [7/24/2002 10:02:53 PM]

Go is overloaded. The go(URL) just invokes dispatch to move the aglet to its next destination. The go() with no
arguments is more general, and can be used recursively. It is implemented to control the whole journey.

●

SeqItinerary.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class SeqItinerary extends Itinerary {

 private Vector _destinations = null;

 SeqItinerary(URL origin, Vector destinations) {
 super(origin);
 _destinations = (Vector)destinations.clone();
 }

 public void go() {
 URL dest = getNextDestination();
 if (dest != null) {
 _destinations.removeElementAt(0);
 try {
 go(dest);
 } catch (Exception e) {
 print("Failed to dispatch (" + dest + ")");
 print("Skip this destination and go for the next.");
 print(e.getMessage());
 go(); // recursion!
 }
 }
 }

 public boolean hasMoreDestinations() {
 return _destinations.size() > 0;
 }

 public URL getNextDestination() {
 if (hasMoreDestinations())
 return (URL)_destinations.firstElement();
 else
 return null;

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (4 of 6) [7/24/2002 10:02:53 PM]

 }

 static public String NAME = "SeqItinerary";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

Notes.

A very clever use of recursion to skip unavailable destinations. The unavailable host causes the dispatch method called
in go(URL) throw an exception. So ignore it and call go() again!

●

clone() is used to copy the destination vector. Needed in connection with the recursion (to unwind the stack correctly).●

Here is the travelling aglet itself. It doesn't actually do anything. If you run this example, look at the view->log of the Tahiti
servers, and the messages in the corresponding command windows to see what is happening. Make sure to leave out at least
one destination.

ItinerantAglet.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;
import java.util.*;

public class ItinerantAglet extends Aglet {

 Itinerary _itinerary = null;

 public void onCreation(Object init) {
 try {
 _itinerary = (Itinerary)init;
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 try {
 if (_itinerary.hasMoreDestinations()) {
 print("Going...");
 _itinerary.go();
 } else {
 print("Done...");
 dispose();
 }
 } catch (Exception e) {
 print("Failed to dispatch.");
 print(e.getMessage());
 }

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (5 of 6) [7/24/2002 10:02:53 PM]

 }
 }
);
 print("Going...");
 _itinerary.init(this);
 } catch (Exception e) {
 print("Failed to initalize the itinerary.");
 print(e.getMessage());
 }
 }
 static public String NAME = "ItinerantAglet";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

Notes.

Remember that parts of this code is executed on the home server, and parts at various servers on the trip. The parts in
onArrival() are executed on remote sites in this case. (If the travelling aglet returned home, onArrival() would execute
there too.) The line _Itinerary.init(this) is executed on the home server.

●

The aglet code is very simple. To put itself in motion it just has to execute the lines highlighted by the different colour.●

To make the aglet do something, we need to combine the itinerary pattern with the master slave pattern. This is quite
easy to do.

●

Aglet Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternSeqIninerary.html (6 of 6) [7/24/2002 10:02:53 PM]

/*
 * @(#)Parent.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;
import java.util.*;

public class Parent extends Aglet {

 Itinerary _itinerary = null;

 public void onCreation(Object init) {
 try {
 Vector destinations = new Vector();
 destinations.addElement(new URL("atp://localhost:9000"));
 destinations.addElement(new URL("atp://localhost:9001"));
 destinations.addElement(new URL("atp://localhost:9002"));
 destinations.addElement(new URL("atp://localhost:9003"));
 destinations.addElement(new URL("atp://localhost:9004"));
 destinations.addElement(new URL("atp://localhost:9005"));
 URL origin = getAgletContext().getHostingURL();
 getAgletContext().createAglet(getCodeBase(),
 "aglets.agletbook.chapter8a.ItinerantAglet",
 new SeqItinerary(origin, destinations));
 } catch (Exception e) {
 print("Failed to initalize the itinerary.");
 print(e.getMessage());
 }
 }

 static public String NAME = "ParentItinerantAglet";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Parent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Parent.java [7/24/2002 10:02:53 PM]

/*
 * @(#)Itinerary.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import java.net.*;
import java.io.*;

public abstract class Itinerary implements Serializable {

 protected URL _origin = null;
 protected AgletProxy _aglet = null;

 public Itinerary(URL origin) {
 _origin = origin;
 }

 public void init(Aglet aglet) {
 _aglet = aglet.getAgletContext().getAgletProxy(aglet.getAgletID());
 go();
 }

 public URL getOrigin() {
 return _origin;
 }

 public AgletProxy getAglet() {
 return _aglet;
 }

 protected void go(URL destination) throws Exception {
 _aglet.dispatch(destination);
 }

 public abstract void go();

 public abstract boolean hasMoreDestinations();

 public abstract URL getNextDestination();
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Itinerary.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Itinerary.java [7/24/2002 10:02:54 PM]

/*
 * @(#)SeqItinerary.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class SeqItinerary extends Itinerary {

 private Vector _destinations = null;

 SeqItinerary(URL origin, Vector destinations) {
 super(origin);
 _destinations = (Vector)destinations.clone();
 }

 public void go() {
 URL dest = getNextDestination();
 if (dest != null) {
 _destinations.removeElementAt(0);
 try {
 go(dest);
 } catch (Exception e) {
 print("Failed to dispatch (" + dest + ")");
 print("Skip this destination and go for the next.");
 print(e.getMessage());
 go();
 }
 }
 }

 public boolean hasMoreDestinations() {
 return _destinations.size() > 0;
 }

 public URL getNextDestination() {
 if (hasMoreDestinations())
 return (URL)_destinations.firstElement();
 else
 return null;
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/SeqItinerary.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/SeqItinerary.java (1 of 2) [7/24/2002 10:02:54 PM]

 static public String NAME = "SeqItinerary";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/SeqItinerary.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/SeqItinerary.java (2 of 2) [7/24/2002 10:02:54 PM]

/*
 * @(#)ItinearntAglet.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;
import java.util.*;

public class ItinerantAglet extends Aglet {

 Itinerary _itinerary = null;

 public void onCreation(Object init) {
 try {
 _itinerary = (Itinerary)init;
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 try {
 if (_itinerary.hasMoreDestinations()) {
 print("Going...");
 _itinerary.go();
 } else {
 print("Done...");
 dispose();
 }
 } catch (Exception e) {
 print("Failed to dispatch.");
 print(e.getMessage());
 }
 }
 }
);
 print("Going...");
 _itinerary.init(this);
 } catch (Exception e) {
 print("Failed to initalize the itinerary.");
 print(e.getMessage());
 }
 }

 static public String NAME = "ItinerantAglet";
 void print(String s) { System.out.println(NAME + ": " + s); }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/ItinerantAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/ItinerantAglet.java (1 of 2) [7/24/2002 10:02:55 PM]

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/ItinerantAglet.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/ItinerantAglet.java (2 of 2) [7/24/2002 10:02:55 PM]

Master-Slave Itinerary Pattern
(Chapter 8)

This pattern creates a slave aglet which follows an itinerary, executing its task with doTask() on each server it comes to. The
Slave2 class below, replaces the Slave1 class discussed previously.

Note that each time the slave does its task at a server, it immediately sends the result back a s a message to its master.

Slave2.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public abstract class Slave2 extends Aglet {

 Itinerary itinerary = null;
 AgletProxy parent = null;

 public void onCreation(Object args) {
 try {
 itinerary = (Itinerary)((Object[])args)[0];
 parent = (AgletProxy)((Object[])args)[1];

 initializeTask();

 addMobilityListener(
 new MobilityAdapter() {

 public void onArrival(MobilityEvent me) {
 print("Arrived...");
 try {
 parent.sendMessage(new Message("Result",
doTask()));
 if (itinerary.hasMoreDestinations()) {
 print("Going...");
 itinerary.go();
 } else {
 print("Done...");
 dispose();
 }
 } catch (Exception e) {
 print("Failed to send result to master.");

Aglet Master-Slave Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMSICombo.html (1 of 3) [7/24/2002 10:02:55 PM]

 print(e.getMessage());
 }
 }
 }
);
 itinerary.init(this);
 } catch (Exception e) {
 print("Failed to create slave.");
 print(e.getMessage());
 }
 }
 abstract void initializeTask();
 abstract Object doTask();

 static public String NAME = "Slave2";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

The Itinerary class and SeqItinerary class are unchanged..

A MyMaster class sets up the itinerary.

MyMaster1.java

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import java.net.URL;
import java.util.*;

public class MyMaster1 extends Aglet {
 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 Vector destinations = new Vector();
 destinations.addElement(new URL("atp://localhost:9000"));
 destinations.addElement(new URL("atp://localhost:9001"));
 destinations.addElement(new URL("atp://localhost:9002"));
 destinations.addElement(new URL("atp://localhost:9003"));
 destinations.addElement(new URL("atp://localhost:9004"));
 destinations.addElement(new URL("atp://localhost:9005"));
 URL origin = getAgletContext().getHostingURL();
 SeqItinerary itinerary = new SeqItinerary(origin,
destinations);
 AgletProxy thisProxy =

Aglet Master-Slave Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMSICombo.html (2 of 3) [7/24/2002 10:02:55 PM]

getAgletContext().getAgletProxy(getAgletID());
 Object[] args = new Object[] { itinerary, thisProxy };
 getAgletContext().createAglet(getCodeBase(),
 "aglets.agletbook.Slave2",
 args);
 print("Finished creating the child.");
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }
 public boolean handleMessage(Message msg) {
 if (msg.sameKind("Result")) {
 print("Received a result: \'" + msg.getArg() + "\'");
 return true;
 }
 return false;
 }
 static public String NAME = "MyMaster1";
 private void print(String s) { System.out.println(NAME + ": " +
s); }
 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch
(InterruptedException ie) { } }
}

Aglet Master-Slave Itinerary Pattern

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsMSICombo.html (3 of 3) [7/24/2002 10:02:55 PM]

<HTML>
<HEAD>
 <META NAME="GENERATOR" CONTENT="Adobe PageMill 3.0 Win">
 <TITLE>Aglet Patterns - Mater-Slave</TITLE>
 <link rel="stylesheet" href="cps.css">
 </HEAD>
<BODY BGCOLOR="#ffffff">

<H1>Master-Slave Pattern</H1>

<P>This is the simplest design pattern. Design patterns are discussed
under the following headings.</P>

 Definition
 Purpose
 Applicability
 Participants
 Collaboration
 Consequences
 Implementation

<H2>Definition</H2>

<P>A pattern where a master can delegate a task to a slave.</P>

<H2>Purpose</H2>

<P>A task is split between two computers. A parallel process is
possible. While the slave is away doing its task, the master can
continue with its task. The slave usually sends the result of
its taks back to the master.</P>

<H2>Applicability</H2>

<P>parallleism is needed</P>

<P>the master needs to get something done on another machine</P>

<H2>Participants</H2>

 Abstract slave
 Concrete slave
 Master

<H2>Collaboration</H2>

<P>The master-slave participants cooperate as follows:</P>

 A master aglet creates a slave aglet
 The slave initializes its task
 The slave moves to a remote host and executes its task.
 The slave sends the result of its task to the master
 The slave disposes itself

<H2>Consequences</H2>

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java (1 of 5) [7/24/2002 10:02:56 PM]

<P>The constant parts of the design are separated from the variable
parts. The constant parts need only be implemented once, and developers
can concentrate on the variable point.</P>

<H2>Implementation</H2>

<P>(Aglet book, chapter 8)</P>

<P>The implementation is built aound a foundation abstract class:
(called Slave.java in the textbook).</P>

<P>Slave1.java</P>

<PRE><CODE>package aglets.agletbook.chapter8;</CODE>
<CODE>import com.ibm.aglet.*;</CODE>
<CODE>import com.ibm.aglet.event.*;</CODE>
<CODE>import java.net.*;</CODE>

<CODE>public abstract class Slave1 extends Aglet {</CODE>
<CODE> URL destination = null;</CODE>
<CODE> AgletProxy master = null;</CODE>
<CODE> public void onCreation(Object args) {</CODE>
<CODE> try {</CODE>
<CODE> destination =
(URL)((Object[])args)[0];</CODE>
<CODE> master =
(AgletProxy)((Object[])args)[1];</CODE>
<CODE> initializeTask();</CODE>
<CODE> addMobilityListener(</CODE>
<CODE> new MobilityAdapter() {</CODE>
<CODE> public void onArrival(MobilityEvent me)
{</CODE>
<CODE>
print("Arrived...");</CODE>
<CODE> try {</CODE>
<CODE> master.sendMessage(new
Message("Result", doTask()));</CODE>
<CODE> dispose();</CODE>
<CODE> } catch (Exception e) {</CODE>
<CODE> print("Failed to send result to
master.");</CODE>
<CODE>
print(e.getMessage());</CODE>
<CODE> }</CODE>
<CODE> }</CODE>
<CODE> }</CODE>
<CODE>);</CODE>
<CODE> dispatch(destination);</CODE>
<CODE> } catch (Exception e) {</CODE>
<CODE> print("Failed to create
slave.");</CODE>
<CODE> print(e.getMessage());</CODE>
<CODE> }</CODE>
<CODE> }</CODE>
<CODE> abstract void initializeTask();</CODE>
<CODE> abstract Object doTask();</CODE>

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java (2 of 5) [7/24/2002 10:02:56 PM]

<CODE> static public String NAME =
"Slave1";</CODE>
<CODE> void print(String s) { System.out.println(NAME +
": " + s); }</CODE>
<CODE>}</CODE></PRE>

<P>The slave's mobility action on arrival is always the same,
so we abstract it out in this abstract class. The same is true
of the slave's messaging action.</P>

<P>What is different for each slave is (1) how it is initialzed,
and (2) what its task is. The corresponding methods initializeTask()
and doTask() are implemented in a subclass of this one.</P>

<P>Lange and Oshima provide this simple example. The abstraction
is made concrete.</P>

<P>In this example, the task is just to print a message to stdout
on the receiver, and send a string back to the master aglet at
home.</P>

<P>MySlave.java</P>

<PRE><CODE>package
aglets.agletbook.chapter8.MySlave;</CODE>
<CODE>import com.ibm.aglet.*;</CODE>
<CODE>import com.ibm.aglet.event.*;</CODE>
<CODE>import java.net.*;</CODE>

<CODE>public class MySlave extends
Slave1 {</CODE>
<CODE> public void initializeTask() {</CODE>
<CODE> print("Initializing.");</CODE>
<CODE> }</CODE>
<CODE> public Object doTask() {</CODE>
<CODE> print("Performs task");</CODE>
<CODE> return "Some result...";</CODE>
<CODE> }</CODE>
<CODE> static public String NAME =
"MySlave";</CODE>
<CODE> void print(String s) { System.out.println(NAME +
": " + s); }</CODE>
<CODE>}</CODE></PRE>

<P>A master aglet at home creates the concrete slave and sends
it off to do its thing.</P>

<P>MyMaster.java</P>

<PRE><CODE>package aglets.agletbook.chapter8;</CODE>
<CODE>import com.ibm.aglet.*;</CODE>
<CODE>import java.net.URL;</CODE>
<CODE>import java.util.*;</CODE>

<CODE>public class MyMaster extends Aglet {</CODE>
<CODE> public void run() {</CODE>
<CODE> print("STARTING
--------------------");</CODE>
<CODE> try {</CODE>

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java (3 of 5) [7/24/2002 10:02:56 PM]

<CODE> print("Creating the
child...");</CODE>
<CODE> String host =
getAgletContext().getHostingURL().toString();</CODE>
<CODE> URL destination = new
URL("atp://proton.scs.ryerson.ca:9000");</CODE>
<CODE> AgletProxy thisProxy =
getAgletContext().getAgletProxy(getAgletID());</CODE>
<CODE>// SlaveSetup setup = new SlaveSetup(destination,
thisProxy);</CODE>
<CODE> Object[] args = new Object[] { destination,
thisProxy };</CODE>
<CODE>
getAgletContext().createAglet(getCodeBase(),</CODE>
<CODE>
"aglets.agletbook.chapter8.MySlave",</CODE>
<CODE>
args);</CODE>
<CODE> print("Finished creating the
child.");</CODE>
<CODE> } catch (Exception e) {</CODE>
<CODE> print("Failed to create the
child.");</CODE>
<CODE> print(e.getMessage());</CODE>
<CODE> }</CODE>
<CODE> }</CODE>
<CODE> public boolean handleMessage(Message msg)
{</CODE>
<CODE> if
(msg.sameKind("Result"))</CODE>
<CODE> print("Received a result: \'" +
msg.getArg() + "\'");</CODE>
<CODE> return true;</CODE>
<CODE> }</CODE>
<CODE> static public String NAME =
"MyMaster";</CODE>
<CODE> private void print(String s) { System.out.println(NAME
+ ": " + s); }</CODE>
<CODE> private static long SLEEP = 3000;</CODE>
<CODE> private void pause() { try { Thread.sleep(SLEEP); }
catch (InterruptedException ie) { } }</CODE>
<CODE>}</CODE></PRE>

<P>A typical ouput on the home server would be:</P>

<DL>
 <DD>MYMASTER: STARTING ----------------------
 <DD>MYMASTER: Creating the child ...
 <DD>MYMASTER: Finished createing the child.
 <DD>MySlave: Intitializing ...
 <DD>MyMaster: Received a result: 'Some result ...'
</DL>

<P> </P>

<P> </P>

<P> </P>

<P>

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java (4 of 5) [7/24/2002 10:02:56 PM]

</BODY>
</HTML>

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternMasterSlave.java (5 of 5) [7/24/2002 10:02:56 PM]

/*
 * @(#)Slave2.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package aglets.agletbook.chapter8a;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;

public abstract class Slave2 extends Aglet {

 Itinerary itinerary = null;
 AgletProxy parent = null;

 public void onCreation(Object args) {
 try {
 itinerary = (Itinerary)((Object[])args)[0];
 parent = (AgletProxy)((Object[])args)[1];
 initializeTask();
 addMobilityListener(
 new MobilityAdapter() {
 public void onArrival(MobilityEvent me) {
 print("Arrived...");
 try {
 parent.sendMessage(new Message("Result", doTask()));
 if (itinerary.hasMoreDestinations()) {
 print("Going...");
 itinerary.go();
 } else {
 print("Done...");
 dispose();
 }
 } catch (Exception e) {
 print("Failed to send result to master.");
 print(e.getMessage());
 }
 }
 }
);
 itinerary.init(this);
 } catch (Exception e) {
 print("Failed to create slave.");
 print(e.getMessage());
 }
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Slave2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Slave2.java (1 of 2) [7/24/2002 10:02:57 PM]

 abstract void initializeTask();

 abstract Object doTask();

 static public String NAME = "Slave2";
 void print(String s) { System.out.println(NAME + ": " + s); }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Slave2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/Slave2.java (2 of 2) [7/24/2002 10:02:57 PM]

/*
 * @(#)MyMaster1.java
 *
 * (c) Copyright Danny B. Lange & Mitsuru Oshima, 1998
 *
 * THIS ROGRAM IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
 * EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 * THE WARRANTY OF NON-INFRINGEMENT AND THE WARRANTIES
 * OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 * THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED
 * BY YOU AS A RESULT OF USING THIS SAMPLE PROGRAM. IN NO
 * EVENT WILL THE AUTHORS BE LIABLE FOR ANY SPECIAL,
 * INDIRECT CONSEQUENTIAL DAMAGES OR LOST PROFITS EVEN IF
 * THE AUTHORS HAS BEEN ADVISED OF THE POSSIBILITY OF
 * THEIR OCCURRENCE OR LOSS OF OR DAMAGE TO YOUR RECORDS
 * OR DATA. THE AUTHORS WILL NOT BE LIABLE FOR ANY THIRD
 * PARTY CLAIMS AGAINST YOU.
 */

package agletbook;

import com.ibm.aglet.*;
import java.net.URL;
import java.util.*;

public class MyMaster1 extends Aglet {

 public void run() {
 print("STARTING --------------------");
 try {
 print("Creating the child...");
 Vector destinations = new Vector();
 destinations.addElement(new URL("atp://localhost:9000"));
 destinations.addElement(new URL("atp://localhost:9001"));
 destinations.addElement(new URL("atp://localhost:9002"));
 destinations.addElement(new URL("atp://localhost:9003"));
 destinations.addElement(new URL("atp://localhost:9004"));
 destinations.addElement(new URL("atp://localhost:9005"));
 URL origin = getAgletContext().getHostingURL();
 SeqItinerary itinerary = new SeqItinerary(origin, destinations);
 AgletProxy thisProxy = getAgletContext().getAgletProxy(getAgletID());
 Object[] args = new Object[] { itinerary, thisProxy };
 getAgletContext().createAglet(getCodeBase(),
 "aglets.agletbook.Slave2",
 args);
 print("Finished creating the child.");
 } catch (Exception e) {
 print("Failed to create the child.");
 print(e.getMessage());
 }
 }

 public boolean handleMessage(Message msg) {
 if (msg.sameKind("Result")) {
 print("Received a result: \'" + msg.getArg() + "\'");
 return true;
 }
 return false;
 }

 static public String NAME = "MyMaster1";

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/MyMaster1.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/MyMaster1.java (1 of 2) [7/24/2002 10:02:57 PM]

 private void print(String s) { System.out.println(NAME + ": " + s); }
 private static long SLEEP = 3000;
 private void pause() { try { Thread.sleep(SLEEP); } catch (InterruptedException ie) {
} }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/MyMaster1.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/MyMaster1.java (2 of 2) [7/24/2002 10:02:57 PM]

Aglet API Sequential Itinerary
The Aglet API provides implimentations of a number of aglet patterns. These are in the packages
com.ibm.agletx.util and com.ibm.agletx.pattern.

Here is an example using the SeqItinerary class and its child class, SlaveItinerary. An aglet is sent around an
itinerary. It sends a message back to its master when it reaches its final destination.

ItinerantAglet3.java

package aglets.mystuff.chapter8c;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import com.ibm.agletx.util.*;

public class ItinerantAglet3 extends Aglet {

 SlaveItinerary slaveTrip = null;
 AgletProxy parent = null;

 public void onCreation(Object ini) {

 parent = (AgletProxy) ini;
 slaveTrip = new SlaveItinerary(this, "", new MyTask());

 slaveTrip.addPlan("atp://localhost:9000");
 slaveTrip.addPlan("atp://localhost:9001");
 slaveTrip.addPlan("atp://localhost:9002");
 slaveTrip.addPlan("atp://localhost:9003");
 slaveTrip.addPlan("atp://localhost:9004");

 slaveTrip.startTrip();
 }
 public void run() {
 .
 if(slaveTrip.atLastDestination()) {
 try {
 parent.sendOnewayMessage(new Message("finished", "At last stop"));
 } catch(Exception e) {
 System.out.println("Message failed");
 }
 finally {
 dispose();
 }
 }
 }

 class MyTask extends Task {
 public void execute(SeqItinerary i) {
 System.out.println("George was here");

Aglets. Using agletx.util methods

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsAPISeqItin.html (1 of 3) [7/24/2002 10:02:58 PM]

 }
 }
}

The SeqItinerary and SlaveItinerary classes provide a number of useful methods. Note also the Task class
which has only one method, void execute(SeqItinerary). As you can see, you don't actually call this yourself.

●

The SlaveItineray class is smart enough to skip unavailable destinations automatically.●

Another useful class in the agletx.util package is the SeqPlanItinerary class. See the documentation.●

Here is a parent class to send the above aglet on its way.

Parent3.java

package aglets.mystuff.chapter8c;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import com.ibm.agletx.util.*;

public class Parent3 extends Aglet {

 private AgletProxy slaveAgletProxy = null;

 public void onCreation(Object init) {
 try {
 slaveAgletProxy = getAgletContext().createAglet(

getCodeBase(),

"aglets.mystuff.chapter8c.ItinerantAglet3",

this.getProxy());
 } catch (Exception e) {}

 addMobilityListener(new StopDispatch());
 }

 public boolean handleMessage(Message msg) {
 if(msg.sameKind("finished")) {
 System.out.println("George says: " + msg.getArg());
 return true;
 }
 return false;
 }

 class StopDispatch extends MobilityAdapter {
 public void onDispatching(MobilityEvent me) {
 setText("Sorry, I'm immobile. You killed me!");
 try {
 Thread.sleep(2000);
 } catch(InterruptedException e) {}
 dispose();

Aglets. Using agletx.util methods

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsAPISeqItin.html (2 of 3) [7/24/2002 10:02:58 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/AgletsDoc/api/index.html
http://www.ryerson.ca/~dgrimsha/courses/cps720/AgletsDoc/api/index.html

 }
 }
}

This class also shows a simple way to keep an aglet immobile.

Aglets. Using agletx.util methods

http://www.ryerson.ca/~dgrimsha/courses/cps720/patternsAPISeqItin.html (3 of 3) [7/24/2002 10:02:58 PM]

/**
 * ItinerantAglet.java
 * Uses the agletx.util package classes, SeqItinerary, SlaveItinerary, and Task.
 * Compare this to the methods in Chapter 8 of Lange and Oshima.
 * This aglet is created by Parent3 aglet in Parent3.java.
 * ItinerantAglet goes to the hosts listed below, prints a message on each. At the
 * last host in the trip it also sends a string message back home.
 * DG. Oct. 99
 */

package aglets.mystuff.chapter8c;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import com.ibm.agletx.util.*;

public class ItinerantAglet3 extends Aglet {

 SlaveItinerary slaveTrip = null;
 AgletProxy parent = null;

 public void onCreation(Object ini) {

 parent = (AgletProxy) ini;

 slaveTrip = new SlaveItinerary(this, "", new MyTask());
 slaveTrip.addPlan("atp://localhost:9000");
 slaveTrip.addPlan("atp://localhost:9001");
 slaveTrip.addPlan("atp://localhost:9002");
 slaveTrip.addPlan("atp://localhost:9003");
 slaveTrip.addPlan("atp://localhost:9004");

 slaveTrip.startTrip();

 }

 public void run() {
 // Do not put the following in the MyTask class.
 if(slaveTrip.atLastDestination()) {
 try {
 parent.sendOnewayMessage(new Message("finished", "At last stop"));
 } catch(Exception e) {
 System.out.println("Message failed");
 }
 finally {
 dispose();
 }
 }
 }

 class MyTask extends Task {
 public void execute(SeqItinerary i) {
 System.out.println("George was here");
 }
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/ItinerantAglet3.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/ItinerantAglet3.java [7/24/2002 10:02:58 PM]

package aglets.mystuff.chapter8c;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import com.ibm.agletx.util.*;

public class Parent3 extends Aglet {

 private AgletProxy slaveAgletProxy = null;

 public void onCreation(Object init) {

 try {
 slaveAgletProxy = getAgletContext().createAglet(
 getCodeBase(),
 "aglets.mystuff.chapter8c.ItinerantAglet3",
 this.getProxy());
 } catch (Exception e) {}

 addMobilityListener(new StopDispatch());
 }

 public boolean handleMessage(Message msg) {
 if(msg.sameKind("finished")) {
 System.out.println("George says: " + msg.getArg());
 return true;
 }
 return false;
 }

 class StopDispatch extends MobilityAdapter {
 public void onDispatching(MobilityEvent me) {
 setText("Sorry, I'm immobile. You killed me!");
 try {
 Thread.sleep(2000);
 } catch(InterruptedException e) {}
 dispose();
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/Parent3.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/Parent3.java [7/24/2002 10:02:59 PM]

Aglets as Agents
Earlier in these notes we discussed Russell and Norvig's agent classification scheme and looked at
Nilsson's reactive wall following robot agent. How do aglets fit into these AI pictures?

Aglets live in an environment provided by the Tahiti servers. Aglets have sensors and effectors, which
are various methods provided by the aglet API. Among these are:

Sensors

Object getProperty(String). A method of the AgletContext class which the aglet can access by
calling getContext()

●

Various methods of the Reader and InputStream classes and their subclasses, with the permission
of the Tahiti server security manager.

●

boolean handleMessage(Message). A method of the Aglet class which allows an aglet to detect
messages sent by other aglets.

●

Effectors

void setProperty(String, Object). This method allows the aglet to change its immediate
environment.

●

Various methods of the Writer and OutputStream classes and their subclasses, with the permission
of the Tahiti server security manager.

●

Object sendMessage(Message). Allows the aglet to effect the behavioiur of other aglets. There aer
several variations on this method supplied by the API.

●

The basic aglet is a reactive agent with state. It has the added feature of mobility, and thanks to the
Internet, the ability to influence remote environments as well as local ones.

Aglets as Agents

http://www.ryerson.ca/~dgrimsha/courses/cps720/agletAgents.html [7/24/2002 10:02:59 PM]

KQML in InfoSleuth
Here is an excerpt from the paper, Nigel Jacobs and Ray Shea, The Role of Java in InfoSleuth:
Agent-based Exploitation of Heterogeneous Information Resources. Click here for the whole original paper.
InfoSleuth is an experimental multi-agent system. The system is shown in Figure 3 below.

5 Query Views

Query views are database applications implemented as Java applets which can be used to retrieve and
manipulate data from the network. Query views take advantage of the core capabilities that Java has to offer.

Query view applets are written on top of a query API layer which provides an abstract, high-level method for
modifying ontologies, constructing queries against the ontologies, executing the queries, and retrieving the
results. The underlying functionality of the API is actually carried out by the agent network; in essence, the API
is a wrapper to the query implementation provided by the network of query agents.

Query views can implement either general purpose or domain-specific metaphors for query construction and
data visualization. The viewer server, which maintains the repository of query views, can fulfill requests for
query view applets based on the desired functionality and the ontology or domain model which the query view
supports. When the user selects a domain (or ontology) and a task or set of tasks he wishes to accomplish, the
user agent retrieves the necessary set of applets for accomplishing this from one or more viewer servers on the
network, and allow the user to load and use these applets, then discard them.

This is a very powerful paradigm. With Java, we have extended the notion of using a network of agents to find
and retrieve data, and now use that same network of agents to dynamically find, retrieve, and load the proper
GUI applets for interacting with that data, based on the task domain and qualities of the data itself. In a sense,
we are automating the software distribution process using the same techniques with which we are automating
the data retrieval process.

6 Physical Agent Architecture

One can think of the InfoSleuth network as a cloud of agents (Figure 3), through which data passes back and
forth between users and data resources. All communication within this cloud is conducted by means of KQML
and high-level ontologies. The user interacts with data resources (the existence of which may be unknown at the
time requests are made) by passing requests into the cloud via his personal user agent, with which he
communicates via Java applets. At the other end, a data resource (for example, an Oracle database) accepts
requests from the cloud via its own resource agent, which translates the KQML/ontology-based query into the
query language understood by the local resource (for example, SQL).

KQML and InfoSleuth

http://www.ryerson.ca/~dgrimsha/courses/cps720/infosleuth.html (1 of 5) [7/24/2002 10:03:04 PM]

mailto:shea@mcc.com
http://www.mcc.com/projects/infosleuth/publications/intranet-java.htm
http://www.mcc.com/projects/infosleuth/publications/intranet-java.html#fig3

Figure 3. Cloud of Agents

Figure 4 shows a simple implementation of this network of agents, with the cloud of agents actually providing
only a single thin layer between the user agents and resource agents. Since the communication mechanism
between all agents is based on KQML, and since an agent can participate simply by advertising its services to a
broker, it is a simple matter to integrate other KQML-aware agents into the system, thus providing a high degree
of extensibility.

KQML and InfoSleuth

http://www.ryerson.ca/~dgrimsha/courses/cps720/infosleuth.html (2 of 5) [7/24/2002 10:03:04 PM]

Figure 4. A Simple Agent Network

Each of the agents depicted in Figure 4 is capable of handling multiple user sessions, except for the user agent,
which is intended to serve as a personal agent to a single user (although it can manage multiple sessions with
other agents).

Following is an overview of the function of each agent.

6.1 User Agent

The user agent is the user's intelligent gateway to the network of InfoSleuth agents. As such, it is primarily
responsible for handling requests from the user via Java applets, routing those requests to appropriate server
agents, and passing responses back to the user. The user agent is persistent and autonomous, thus it is able to
maintain the user's context beyond a single browser session, allowing long-term autonomous data retrieval and
other tasks to continue in the user's absence. It is capable of storing information (data and queries) for the user,
maintaining a user model, and can act as a resource for other agents, for instance as a means of sharing
information with other user agents. The user agent is implemented as a stand-alone Java application.

6.2 Monitor

The monitor is an HTTP proxy which serves two roles:

· monitor user web access and report to the user agent for later inferencing and pattern detection.●

· accept Java applets via the user agent and place them in the proper directories so that they can be
accessed by the user. (See Section 9, "Security Concerns").

●

This agent is closely tied to the user agent, and like it, is implemented in Java.

KQML and InfoSleuth

http://www.ryerson.ca/~dgrimsha/courses/cps720/infosleuth.html (3 of 5) [7/24/2002 10:03:04 PM]

6.3 Broker Agent

The broker agent acts as a matchmaker which pairs requests from agents to other agent services that can fulfill
that request. As agents come on line, they can advertise their services to the broker via KQML. Any agent can
ask the broker for a recommendation on how to fulfill a particular request, and the broker will respond with the
addresses of the agents that have advertised that service. Possible future capabilities for the broker include
delegation (i.e., "passing the buck"), and subscription, allowing requesting agents to subscribe to various kinds
of information, enabling asynchronous notification when the desired resources become available. The broker is
a Java application.

6.4 Ontology Server

The ontology server is responsible for managing the creation, update and querying of multiple ontologies. KIF
is used both to query the ontologies and to express the query results. Ontologies may be imported and exported
in KIF and several other representation languages. Different ontology formats (e.g., relational or object database
schema, entity-relationship models) are described via ontology meta-models. Ontologies may be nested, and
references may be made between ontologies. The ontology server maintains internal consistency. Many
ontology servers may be deployed, with each server advertising the ontologies it maintains via the broker
agents. The server is currently implemented as a Java application.

6.5 Execution Agent

The execution agent is responsible for high-level execution of ontology-based queries. It accepts KQML
messages containing KIF-based queries, decomposes the queries into sub-queries based on its knowledge of
appropriate resource agents that can satisfy the query, and sends the high-level sub-queries off to the resource
agents. It then can merge the results received and transmit them to the agent which originated the query. The
execution agent is implemented in Java with embedded CLIPS functions.

6.6 Resource Agents

The resource agent is to the local database what the user agent is to the user. It acts as an intelligent front-end
interface for the relatively dumb DBMS or other data store, accepting high-level ontology-based queries from
the network and translating them into whatever local query language (e.g., SQL) is necessary to execute the
queries against the local database. Results are then translated back into the terms of the ontology and returned to
the requesting agent. Just as the user agent maintains the user context, the resource agent is able to maintain
resource context, allowing for incremental retrieval of query results by requesting agents. Additionally, resource
agents are able to obtain, store, and advertise meta-information about the contents of their local resource.
Current resource agents are implemented in Java and LDL++, with ODBC and SQL versions under
development, and JDBC versions [13] planned.

6.7 Data Analysis Agents

Data analysis agents perform various analysis, knowledge mining, and pattern recognition tasks on data returned
by a query. These agents are implemented in Java, CLIPS, LDL++, and LISP.

6.8 Viewer Server

The viewer server is a specialized resource agent, in that it maintains a storehouse of Java applets which are
designed to manipulate KIF ontologies and queries based on those ontologies, via a standard InfoSleuth

KQML and InfoSleuth

http://www.ryerson.ca/~dgrimsha/courses/cps720/infosleuth.html (4 of 5) [7/24/2002 10:03:04 PM]

http://www.cs.umbc.edu/kse/kif/
http://www.mcc.com/projects/infosleuth/publications/intranet-java.html#ref13

meta-model query API. In a sense, the viewer server is an applet broker which serves database applications,
query editors, and visualization tools for manipulating and displaying query results. It is implemented as a
stand-alone Java process.

7 Sample Scenario

Suppose the user is interested in locating real estate data stored in a variety of distributed databases, based on
various factors such as price, location, zoning, etc. Using InfoSleuth, she logs in to her user agent via a login
applet in Netscape, and requests recommendations for ontologies and applications that are appropriate to the
problem domain. The user agent queries a broker agent for servers that could fulfill the request for ontologies,
and is directed to an ontology server. The ontology server recommends a list of ontologies it knows about that
relate to the problem domain, and the user agent allows the user to select one.

Now that the particular ontology is selected, the user agent again asks the broker to recommend a server that can
supply query and visualization applets that work with the selected ontology. Again the broker recommends a
viewer server, the user agent sends the request to the viewer server, and the server responds by sending one or
more Java applets that fulfill the requirements. Assuming verification of the trustworthiness of the applets is
done (see Section 9, "Security Concerns"), the user agent passes the applets to the security monitor, which
places the applets in the appropriate codebase hierarchy for access by the user. At this point the user agent send
the names of the applets to the login applet, which permits the user to load them.

The user iteratively constructs an appropriate query via the domain-specific applet, using concepts from the
selected ontology. She can then submit the queries for execution. The user agent consults the broker for
recommendations on how to execute the query, and is directed toward an execution agent. The execution agent
decomposes the query into sub-queries, submits the sub-queries to one or more resource agents, which resolve
the sub-queries against their respective local databases and return the results to the execution agent, which
collates the results and passes them back, via the user agent, to the user.

KQML and InfoSleuth

http://www.ryerson.ca/~dgrimsha/courses/cps720/infosleuth.html (5 of 5) [7/24/2002 10:03:04 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/images/intranet-fig3.gif

http://www.ryerson.ca/~dgrimsha/courses/cps720/images/intranet-fig3.gif [7/24/2002 10:03:04 PM]

Explore:

| Front Page | E-Business | Technology | Opinion | Culture | Worldwide
Tech

| Special
Reports | Monster Deals | Trends | Cybercrime | Cartoon | Innovation

The Web's Next Incarnation: Intelligent Talk

Send this Article
Print this Article

Talkback
Related Stories

By Tim McDonald
NewsFactor Network
November 13, 2001

Teaching logic to machines and systems while maintaining flexibility is a tall order, and
critics of the Semantic Web say it cannot be done.

The latest effort to organize the Web's vast store of information is called the
"Semantic Web," and while it remains to be seen whether it can live up to its
billing, it is promising enough to have attracted scientists from a variety of
disciplines, including Tim Berners-Lee, director of the World Wide Web Consortium
(W3C) at the Massachusetts Institute of Technology.

The Semantic Web hopes to make our Web experience better by enabling our
machines to talk intelligently with other machines. It would be an extension of the
current Web, a place where "information is given well-defined meaning, better
enabling computers and people to work in cooperation," according to Berners-Lee.

"The Semantic Web is really data that is processable by machine," Berners-Lee
says. "That's what the fuss is about."

A D V E R T I S E M E N T

Alt Text

'Talk' Instead of
'Link'

Today's Web is
basically a
"publishing
medium," a huge
warehouse where
text and images
are stored. The
Semantic Web
wants to turn it
into a more
interactive place,
where
information can
he interpreted
and exchanged
and where
software agents
roam from page
to page,
performing
sophisticated

 November 17, 2001

NAS 1898.58 -1.99
S&P 1138.65 -3.59
DOW 9866.99 -5.40

 'Harry Potter' Movie Ticket
Sales Break Internet Records

Full Story

 U.S. Defends Microsoft
Settlement, Rejects Penalties

Full Story

 Senate Approves Internet
Tax Ban Extension

Full Story

 Renewed Investor
Optimism About Tech Stocks

Full Story

 European Union Eyes
Cookie Limits

Full Story

 Exclusive NewsFactor
Interview with Intel President &
CEO Craig Barrett (Part 2)

Full Story

 High-Speed Mini-Stereo Big
on Web Entertainment

Full Story

 CRM: Efficiency Is Not

The Web's Next Incarnation: Intelligent Talk

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/ontology/semanticWeb.html (1 of 3) [7/24/2002 10:03:10 PM]

http://www.newsfactor.com/
http://www.freenewsfeed.com/
http://www.newsfactor.com/perl/board/mboard.pl
http://www.ryerson.ca/perl/newsletter_registration.pl
http://click.atdmt.com/go/nwsfcdat00100046fny/direct;ai.203264/01
http://www.ryerson.ca/
http://www.ryerson.ca/
http://www.ryerson.ca/perl/section/commerce/
http://www.ryerson.ca/perl/section/commerce/
http://www.ryerson.ca/perl/section/tech/
http://www.ryerson.ca/perl/section/tech/
http://www.ryerson.ca/perl/section/opinion/
http://www.ryerson.ca/perl/section/opinion/
http://www.ryerson.ca/perl/section/cltre/
http://www.ryerson.ca/perl/section/cltre/
http://www.ryerson.ca/perl/section/wrldwd/
http://www.ryerson.ca/perl/section/wrldwd/
http://www.ryerson.ca/perl/section/wrldwd/
http://www.ryerson.ca/perl/section/spclrep/
http://www.ryerson.ca/perl/section/spclrep/
http://www.ryerson.ca/perl/section/spclrep/
http://www.ryerson.ca/perl/section/mgadl/
http://www.ryerson.ca/perl/section/mgadl/
http://www.ryerson.ca/perl/section/trends/
http://www.ryerson.ca/perl/section/trends/
http://www.ryerson.ca/perl/section/cybercrime/
http://www.ryerson.ca/perl/section/cybercrime/
http://www.ryerson.ca/perl/section/cartoon/
http://www.ryerson.ca/perl/section/cartoon/
http://www.ryerson.ca/perl/section/innv/
http://www.ryerson.ca/perl/section/innv/
http://www.ryerson.ca/perl/mailit/?title=The+Web's+Next+Incarnation:+Intelligent+Talk
http://www.ryerson.ca/perl/printer/14754
http://www.w3.org/
http://ad.doubleclick.net/jump/N815.newsfactor/B45397;abr=!ie4;abr=!ie5;sz=336x280;P_Site=S571;r=News_Factor_ROS;ord=10060343449797?
http://ad.doubleclick.net/jump/N815.newsfactor/B45397;abr=!ie4;abr=!ie5;sz=336x280;P_Site=S571;r=News_Factor_ROS;ord=10060343449797?
http://www.ryerson.ca/perl/mostpop/
http://www.ryerson.ca/oneweek/network.shtml
http://www.ryerson.ca/oneweek/
http://www.ryerson.ca/perl/section/innv/
http://www.ryerson.ca/perl/story/14856.html
http://www.ryerson.ca/perl/story/14840.html
http://www.ryerson.ca/perl/story/14842.html
http://www.ryerson.ca/perl/story/14834.html
http://www.ryerson.ca/perl/story/14845.html
http://www.ryerson.ca/perl/story/14689.html
http://www.ryerson.ca/perl/story/14850.html

tasks for users.

Instead of merely displaying information on their screens, computers will
"understand" what they are displaying.

"Ultimately, we'll be able to utilize a series of helpers to help us manage our
day-to-day activities and automate a lot of the things we do -- calendaring,
coordination, resource discovery -- things like that," Eric Miller, head of the W3C
Semantic Web's effort at MIT, told NewsFactor Network.

"Right now, the Web works by allowing people all over the world to link to each
other," Miller said. "Current technology allows us to say "links to," and what we
really want to say is "talks to."

"It's a way of providing some additional contextual relationships with the things
we're interacting with daily. It helps make it clear to machines and humans how
these things relate."

Commercials to Keats

In order for the Semantic Web to work, computers will need a common
vocabulary as well as rules. The Web now contains mostly documents written for
people, rather than data and information that can be processed automatically by
the Semantic Web.

Computers simply cannot comprehend rich, varied and often confusing human
language, which ranges from the mundane -- tire commercial text -- to the lofty
-- the poetry of John Keats.

Computer language that will help the Semantic Web evolve already exists,
experts say, in the form of Extensible Markup Language, which gives more
structure to Web pages.

Resource Description Framework (RDF) is the language of the Semantic Web in
much the same way that HTML is the language of the current Web. RDF
integrates information from multiple sources, and is itself a framework for
"metadata" -- data about data.

Logical and Flexible

According to the W3C, computers must have access to "structured collections of
information and sets of inference rules that they can use to conduct automated
reasoning."

Artificial intelligence experts have studied this field for decades. Such systems are
often called "knowledge representation," and have traditionally been very
centralized -- where everyone shares exactly the same definition of specific
words, like "head" or "director."

These systems limit what questions can be asked so that the computer can
answer correctly, if it answers at all.

Teaching logic to machines and systems while maintaining flexibility is a tall
order, and critics of the Semantic Web say it cannot be done. But Miller says that
by taking it slowly, it can.

"We have very much in the Semantic Web an eye toward the future goals through
well-established incremental steps," Miller said. "We have the notion of making
the simple steps simple, and the complex stuff possible."

 Talkback: Click here to add your comment about this story...

See Related Stories

Working
Full Story

 Music Retailer Embarks on
Customer Loyalty Offensive

Full Story

 Satellite Service Delivers
Broadband Wireless to the Fast
Lane

Full Story

 Gateway Makes House
Calls for Wireless Networking

Full Story

 Dell Defies Poor Economy
To Chart Profits, Market Gains

Full Story

 Whatever Happened to
Dot-Com Stunts?

Full Story

 Tech Innovators Learn How
To Avoid Washing Out

Full Story

 Motorola To Offer New
Mobile Messaging System

Full Story

 Starwood Cultivates
Loyalty with New Web Site

Full Story

 Can We Stop the Terrorist
Tech Trade?

Full Story

 Gates Sells First Xbox
Game Console

Full Story

 Hewlett-Packard Earnings
May Doom Union with Compaq

Full Story

 Yahoo! To Cut Workforce
10 Percent

Full Story

 Amazon Reorganizes,
Emphasizing Third-Party
Services

Full Story

 FBI: Old-Tech Fingerprints
Still Best Clues

Full Story

 After the Fall: The Future
of CRM, Part 4

Full Story

 Headset Highlighted By
What You Don't Hear

Full Story

 Shipping Just Gets Harder
for E-tailers

Full Story

 Tech Cartoon
Just for Fun

 Friday's Cybercrime
Report

Full Story

The Web's Next Incarnation: Intelligent Talk

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/ontology/semanticWeb.html (2 of 3) [7/24/2002 10:03:10 PM]

http://www.w3.org/XML
javascript: go_to_talkback();
http://www.ryerson.ca/perl/story/14851.html
http://www.ryerson.ca/perl/story/14847.html
http://www.ryerson.ca/perl/story/14844.html
http://www.ryerson.ca/perl/story/14841.html
http://www.ryerson.ca/perl/story/14828.html
http://www.ryerson.ca/perl/story/14795.html
http://www.ryerson.ca/perl/story/14798.html
http://www.ryerson.ca/perl/story/14838.html
http://www.ryerson.ca/perl/story/14831.html
http://www.ryerson.ca/perl/story/14789.html
http://www.ryerson.ca/perl/story/14806.html
http://www.ryerson.ca/perl/story/14817.html
http://www.ryerson.ca/perl/story/14823.html
http://www.ryerson.ca/perl/story/14818.html
http://www.ryerson.ca/perl/story/14812.html
http://www.ryerson.ca/perl/story/14827.html
http://www.ryerson.ca/perl/story/14819.html
http://www.ryerson.ca/perl/story/14792.html
http://www.ryerson.ca/perl/story/14821.html
http://www.ryerson.ca/perl/story/14843.html

Personalized Web Site Features - Customer Picks and Pans
(12-Nov-01)
Web Trackers: The Spies in Your Computer
(08-Nov-01)
Internet Heavyweights Seek Profit in Security
(05-Nov-01)
The Internet Is an Open Book - Protect Yourself with Secure Protocols
(02-Nov-01)

Sponsored Links

 Join a webinar series on Electronic Software Delivery & Management.

 Improve customer loyalty and boost your sales conversion rate.

 Monitor your application performance. FREE trial! Click here.

 Click to learn about the BREW wireless applications platform.

 Need the right tools for your e-business? Click here.

 Reach thousands of Internet Pros Everyday with NewsFactor Newsletters!

See more news

Get news by e-mail

Visit open forums

NewsFactor.com
Front Page | Special Reports | Worldwide Tech | E-Business | Monster Deals | Tech Stocks | Technology
Trends | Opinion | CyberCrime | Culture | Cartoon | Editorial Corrections

Other NewsFactor Network Sites
NewsFactor Portal | E-Commerce Times | TechNewsWorld | Linux Insider | Wireless NewsFactor
osOpinion | TechExtreme | allEC | CRM Daily

FreeNewsFeed | Free Newsletters

Business Development | How To Contact Us | About NewsFactor Network
How To Advertise | Article Reprint Information

© 1998-2001 Triad Commerce Group, LLC. All rights reserved. See Terms of Use and Privacy notice.

The Web's Next Incarnation: Intelligent Talk

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/ontology/semanticWeb.html (3 of 3) [7/24/2002 10:03:10 PM]

http://www.ryerson.ca/perl/story/14691.html
http://www.ryerson.ca/perl/story/14662.html
http://www.ryerson.ca/perl/story/14582.html
http://www.ryerson.ca/perl/story/14529.html
http://www.ryerson.ca/perl/mod_gotoad.cgi?intraware-1
http://www.ryerson.ca/perl/mod_gotoad.cgi?banter-1
http://www.ryerson.ca/perl/mod_gotoad.cgi?bmc-2
http://www.ryerson.ca/perl/mod_gotoad.cgi?qualcomm_wls_nov-1
http://www.ecommercetimes.com/product_guide/
http://www.ryerson.ca/about/advertising.shtml#rates-newsletter
http://www.ryerson.ca/oneweek/
http://newsletters.newsfactor.com/
http://www.ryerson.ca/perl/board/mboard.pl
http://click.atdmt.com/go/nwsfcdat00100046fny/direct;ai.203264/01
http://www.ryerson.ca/
http://www.ryerson.ca/perl/section/spclrep/
http://www.ryerson.ca/perl/section/wrldwd/
http://www.ryerson.ca/perl/section/commerce/
http://www.ryerson.ca/perl/section/mgadl/
http://www.ryerson.ca/perl/section/stockw/
http://www.ryerson.ca/perl/section/tech/
http://www.ryerson.ca/perl/section/trends/
http://www.ryerson.ca/perl/section/opinion/
http://www.ryerson.ca/perl/section/cybercrime/
http://www.ryerson.ca/perl/section/cltre/
http://www.ryerson.ca/perl/section/cartoon/
http://www.ryerson.ca/corrections/
http://www.newsfactor.com/
http://www.ecommercetimes.com/
http://www.technewsworld.com/
http://www.linuxinsider.com/
http://www.wirelessnewsfactor.com/
http://www.osopinion.com/
http://www.techextreme.com/
http://www.allec.com/
http://www.crmdaily.com/
http://www.freenewsfeed.com/
http://newsletters.newsfactor.com/
http://www.ryerson.ca/bizdev/
http://www.ryerson.ca/about/#7
http://www.ryerson.ca/about/
http://www.ryerson.ca/about/advertising.shtml
http://www.ryerson.ca/reprints.shtml
http://www.newsfactor.com/
http://www.ryerson.ca/terms-of-use.shtml
http://www.ryerson.ca/privacy.shtml

Communicative Acts
In the Aglet examples, communcation among agents is purely syntactic. It consists of matching strings.
These strings carry no meaing as far as the Aglets are concerned. If artificial agents are to have more
sophisticated communication among themselves, communication which carries meaning, more complex
communication methods are needed.

A Communicative Act (a "language game")/

As usual in AI, researchres look to human examples. In the case of communication they found a suitable
theory in so-called speech acts, a development of linguistic philosophy.

In these notes we first look at this philosophical background. Then we see how FIPA, the Foundation for
Intelligent Physicall Agents has adapted speech acts to the computer world to create an international
standard agent commuication language (ACL). We also look at a related standard, the Semantic
Language (SL) used to describe the content of communications. Finally, we look at an actual system,
JADE, the Java Agent Development Envirionment, which implements these ideas.

Some Philosophical Background

John Searle's Contribution

More on Speech (Communication) Acts.

Summary

Communicative Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/commActs.html [7/24/2002 10:03:11 PM]

javascript:onClick=popup("langGame.html")

Speech Acts, background
John Searle developed his speech act theory in the late 1960's. He derived it from ideas of his teacher,
John L, Austin, who in turn was influenced by the anglo-austrian philosopher, Ludwig Wittgenstein.
These philosophers developed their theories in part in opposition to another philosophical school, the
Logical Positivists. Logical Positivism was developed by a group of philosophers called the Vienna
Circle in the 1920's and 1930's.

The Question of Meaning

Logical Positivism
This is a very uncompromising philosophy. It is based on the principle of verification. There are only
two sources of real knowledge: (1) logic (2) empirical observation. Anything else is meaningless
conjecture.

Logic follows strict rules of proof and tests of internal consistency. For example, the statement "I will
meet you yesterday." is nonsensical and meaningless. We know this without reference to anything other
than the meanings of the words. It is illogical, internally inconsistent. The Logical Positivists would say
we are using analytical knowledge when we analyze the possible meanings of this sentence.

An example of empirically observed knowledge is: At the surface of the earth, the acceleration due to
gravity is 9.8 ms-2. This claim can be verified by experiment. (Perhaps you did just this in high school.)
This category of knowledge, the logical positivists referred to as synthetic knowledge.

As you can see, the logical positivists accepted only scientific and mathematical knowledge as valid. In
their view, any statement which could not be tested either via logic, or via experiment, was meaningless.
They called such statements metaphysical. An example of a metaphysical (and therefore meaningless in
their view) is "God exists". Another example: "God does not exist".

Scientific and Everyday Language

What the logical positivists were doing was privileging scientific language (logic, mathematics) above
ordinary natural languages (english, mandarin). Scientific statements were either true, or false, and could
be verified to be one or the other. Natural language was ambiguous and often just a babble of unfounded
opinions as far as the logical positivists were concerned. Ordinary language was useful for ordinary life
but not for serious thought.

If this philosophy sounds extreme, it is. But many people with science and engineering backgrounds
often hold this philosophy although they probably won't admit it. It comes out when the so-called "hard"
sciences sneer at the "soft" sciences such as sociology, or at the humanities such as history or literature.
These softer subjects cannot meet the austere standards of the logical positivists. But are they therefore
without serious meaning?

Logical positivism is just too narrow. There is more meaning in everyday speech than meets the logical

Speech Acts, background

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActsBackground.html (1 of 2) [7/24/2002 10:03:13 PM]

http://www.utm.edu/research/iep/l/logpos.htm
http://www.utm.edu/research/iep/v/viennaci.htm
http://www.utm.edu/research/iep/v/viennaci.htm

positivist eye. There are more types of meaning than just verifiable (true/false) empirical or logical
statements. Under the lead of Ludwig Wittgenstein philosophers began to study and analyze ordinary
language and its meanings. (If you have the courage, you might like to look at Wittgenstein on meaning,
here.)

Everyday Language not so bad
What is the status of a sentence like

I will meet you at the show.●

This is a promise, and, strictly speaking it has no truth value. It is not verifiable at the time it is made.
Logical positivists would say it has no meaning.

John Austin would say that it does have a meaning provided you have the means to carry out your
promise, and provided there is a reasonable possibility that the person to whom the message is addressed
can also get to the show. You could contrast this sentence with a similar one,

I will meet you on Mars.●

This one is a truly meaningless gesture.

Austin sees such sentences as invoking a "performance" of some kind, in other words, invoking actions.
He called sentences like this, involving promises, commands, requests and the like, performatives. They
later came to be called speech acts. Both terms have been taken over by computer scientists to describe
agent communications.

John Searle, a student of Austin fully developed a theory of speech acts.

Speech Acts, background

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActsBackground.html (2 of 2) [7/24/2002 10:03:13 PM]

http://www.utm.edu/research/iep/w/wittgens.htm
http://www.utm.edu/research/iep/w/wittgens.htm#Meaning
http://www.philosophypages.com/ph/aust.htm

Some Notes on Searle's Speech Act
Theory
Searle describes speech acts (also now know as communicative acts) in terms of structure and process.
Although a speech act is intuitively simple, Searle's analysis is quite detailed. (Analysis always is.
Consider analyzing the motion of a baseball pitche when he throws a fast ball.) Here we just highlight a
few points. (Whole books have been written on this topic!)

A speech act can be structured as a tree.

illocutionary act

illocutionary force❍

propositional act

referring act■

predicating act■

❍

●

An illocutionary act is just another name for speech act (using Latin :-)).

For a communication to properly take place, all the component of the speech ("illocutionarty") act must
be present.

Here are Searle's own examples used to illustrate the above tree structure.

Sam smokes habitually.1.

Does Sam smoke habitually?2.

Sam, smoke habitually! [An unlikely order.]3.

Would that Sam smoked habitually. [an unlikely wish.]4.

In all four of these sentences the referring act is the same: Sam.

The predicating act is also the same in each: smoking habitually.

Taken together, the referring content and the predicating content compose the propositional act. The
propositional act tells us what is being talked about, namely, Sam's smoking habits.

But what is being said about the subject being talked about? This is where the illocutionary force
comes in. In the above sentences the illocutionary force is implemented using word order, a common
means in English. Punctuation is also used.

So in #1 we have an assertion. This will become an INFORM perforaative in the Agent Communication
Language (ACL).

In #2 we have a question, which is either a QUERY-IF or QUERY-REF in ACL.

In #3 we have a command, which becomes REQUEST in ACL (because computer people are so polite).

#4 is a wish. At present, artificial agents are not capable of wishing.

Notess on Searle's Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActsSearle.html (1 of 2) [7/24/2002 10:03:13 PM]

In CS the illocutionary force is usually called a performative.

Notess on Searle's Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActsSearle.html (2 of 2) [7/24/2002 10:03:13 PM]

Speech Acts
(This page summarizes ideas from chapter 22 of Artificial Intelligence, a Modern Approach by Stuart
Russell and Peter Norvig.)

"In general, communication is the intentional exchange of information brought about by the
production and perception of signs drawn from a shared system of conventional signs."

Speech Acts in Nature

Conventional Signs or Signals

Vervet monkeys

Foraging. A special loud bark from one. All head for trees. They have been warned of a stalking leopard.

These monkeys have other signals as well.Different calls for different predators (short cough for eagles,
chatter for snakes), and for other activities such as different grunts depending on whether the other
monkey is dominant or inferior

Humans

Also use signs. For example, smiles, frowns, hand shakes. But mainly humans use a complex system of
signs and signifiers called language.

Language allows humans to communicate "an unbounded number of qualitatively different messages."

Communication as action
One action an agent can perform is to produce language. Because the original study of these acts came
from linguistics, they are called speech acts. (Here "speech" is used as in the phrase "free speech". That
is, typing, sky-writing and sign language, for example, are acts of speech.)

Terms used. speaker, hearer, utterance, words.

Advantages of speech acts

They allow group coordination, to the advantage of the group as a whole. They

inform●

query●

answer●

request or command●

acknowledge●

promise and offer●

Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActs.html (1 of 4) [7/24/2002 10:03:21 PM]

share●

The hard part of acts of speech is deciding what to say. This is a complex planning problem. rather like
game playing: I move (i.e., say something) anticipating your reply, and perhaps my reply to your reply,
etc. The philosopher Ludwig Witgenstein spoke of "language games".

The Component Steps of communication
A typical communication episode might be: Speaker S wants to tell hearer H about proposition P using
words W. There are seven steps.

Three steps take place in the speaker.

Intention: S wants H to believe P (where S typically also believes P)●

Generation: S chooses the words W because they express the meaning P.●

Synthesis: S utters the words W(usually addressing them to H).●

Four steps take place in the hearer:

Perception: H hears W* (ideally W* = W but there can be misperception).●

Analysis: H hears the W* has possible meanings, P1 ... Pn (words and phrases can have several
meanings).

●

Disambiguation: H infers the S intended the meaning Pi (where ideally Pi = P, but
misinterpretation is possible).

●

Incorporation: H decides to believe Pi (or rejects it as out of line with already held beliefs).●

Note that analysis has two parts, parsing and semantic analysis.

Two Models of Communication
encoded messages.●

situated language●

Encoded messages are like Morse Code or some other simple transport mechanism. There is no context to
the messages. The message "I am here now." by itself does not mean much if it comes over the Internet.

Situated language recognizes that context matters. For example, "I am here now." has different meanings
for Bob in Toronto, and Peter in Vancouver.

Two types of communicating agents
Agents with the same internal knowledge representation (KR) scheme●

Agents which make no assumptions about one another's internal knowledge representation●

Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActs.html (2 of 4) [7/24/2002 10:03:21 PM]

schemes. They share a common communication language.

Agents which share a common internal representation.

In human terms this kind of communication, if it were possible, would be called mental telepathy! In the
case of Aglets, we would have a situation in which aglets could invoke one another's public methods.

Communication could be carried out with two generic methods Tell(KB, P) and Ask(KB, Q). The
diagram illustrates.

The fact that the two KB's are assumed the same means that they not only have the same structure, but
that they have the same names for the objects therein. What happens, if the agents, independently moving
around their respective environments, learn new things, and name them differently? This is a major
weakness of this communication mechanism. Language is necessary.

In other words, with this system, assuming independent learning, the ontologies of the communicating
agents might be very hard to synchronize.

Communication using a common external language

This is the way humans do it, and considerable progress has been made in creating artificial agents which
understand so-called natural (human) language. Still, artificial agents usually use some formalized subset
of a natural language, or an artificial formal language.

This external communication language can be different from the internal representation languages of the
communicating agents. Each agent can have a different internal representation language. This situation is
illustrated in the following diagram.

Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActs.html (3 of 4) [7/24/2002 10:03:21 PM]

Using an external communication language is clearly more flexible, but more complicated, than shared
internal representation method. Especially for autonomous agents that learn, an external communication
language is necessary.

Research in the last few years has developed a language to implement a set of standard, common and
useful, speech acts. The earlies such language to gain fame was is KQML, the Knowledge Query and
Manipulation Language together with KIF, the knowledge interchange format.

The Foundation for Intelligent Physical Agents (FIPA) is a consortium or corporations and universities
from all over the world whose aim is to standardize agent communication. It was founded in 1996.
Currently the two main communication standars are the Agent Communication Language (ACL) and the
Semantic Language (SL), but there are other contenders as well. FIPA also constructs standards for many
other aspects of agent systems.

Speech Acts

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActs.html (4 of 4) [7/24/2002 10:03:21 PM]

http://www.fipa.org/
http://www.fipa.org/about/membership.html

A Summary of the Communication Act Notes
We can pull together some of the basic ideas of the previous pages this way.

Human and other Languages
Human languages differ from those of other species such as vervlet monkeys in that human languages are unbounded, whereas other
species have only a finite set of calls or guestures.

Aglets have a very limited language factility. Aglet messages are just strings. You can make up a large number of message types but
each just represents one idea, much like the calls of vevlet monkeys. For sophisticated communication, a more flexible mechanism is
necessary.

Why hava an External Communcation Language?
Many people believe in mental telepathy or mind reading. This diagram illustrates:

The trouble with this method, quite apart formt he lack of a transport medium (bran waves?) is that it requires too much knowledge of
the internal behaviour of the other agent's brain. The two KB's would have to be the same, or very similary, an unlikely happening
with autonous agents.

In the computer world (e.g., aglets) this situation correponds to each agent calling the methods of the others. (As in Sayit and HearIt
aglets 1 and 2). For most cases doing this destroys agent autonomy and requires too much knowledge of the insides of the agents.

So, for hunan,animal and computer agents it is better to have an external communication language as illustrated in the following
diagram:

With an external communication language, no knowledge of the inner workings of the agents is required.

Commnication Act Summary

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActSummary.html (1 of 4) [7/24/2002 10:03:22 PM]

The Question of Meaning
Communication is meant to convey meaning among agents. But when is a statement meaningful? Logical Positivists had a very strict
measure of meaning. Any meainigful statement had to satisfy the "principle of verification". This meant testing it logically to test its
internal consistency, and/or verifying it experimentally. Meaning was associated with verifyable truth.

The only human endeavour that fully meets this standard is science. The lanugage of science, mathematics, is indeed very powerful
and it is nice if a subject lends itself to precise mathematical descriptions. Computer languages such as C or Java also have a well
defined structure and no doubt would be approved of by the Logical Positivists. But, the world is complex. In many situations we are
not always so lucky as to have these powerful formalisms availble.

Meaning in Everyday Language
Lewis Carrol (Alice in Wonderland etc) on meaning.

What does this mean? Jabberwocky

From the above site we have the orginal Jabberwocky poem and a "corrected" version created with the help of a computer spell
checker.

�Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

�Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun

The frumious Bandersnatch!�

He took his vorpal sword in hand:

Long time the manxome foe he sought—

So rested he by the Tumtum tree,

And stood awhile in thought.

And as in uffish thought he stood,

The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,

And burbled as it came!

One, two! One, two! And through and through

The vorpal blade went snicker-snack!

He left it dead, and with its head

He went galumphing back.

�And hast thou slain the Jabberwock?

Come to my arms, my beamish boy!

TABLESPOONS

Teas Willis, and the sticky tours

Did gym and Gibbs in the wake.

All mimes were the borrowers,

And the moderate Belgrade.

"Beware the tablespoon my son,

The teeth that bite, the Claus that catch.

Beware the Subjects bird, and shred

The serious Bandwidth!"

He took his Verbal sword in hand:

Long time the monitors fog he sought,

So rested he by the Tumbled tree,

And stood a while in thought.

And as in selfish thought he stood,

The tablespoon, with eyes of Flame,

Came stifling through the trigger wood,

And troubled as it came!

One, two! One, two! And through and though,

The Verbal blade went thicker shade.

Commnication Act Summary

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActSummary.html (2 of 4) [7/24/2002 10:03:22 PM]

http://www.waxdog.com/jabberwocky/

O frabjous day! Callooh! Callay!�

He chortled in his joy.

�Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

He left it dead, and with its head,

He went gambling back.

"And host Thai slash the tablespoon?

Come to my arms my bearish boy.

Oh various day! Cartoon! Cathay!"

He charted in his joy.

Teas Willis, and the sticky tours

Did gym and Gibbs in the wake.

All mimes were the borrowers,

And the moderate Belgrade.

Lewis Carrol's JABBERWOCKY as "recognized" by the Apple
Newton, © 1993 Robert McNally. Permission is granted to reproduce
this if the copyright remains intact

Commnication Act Summary

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActSummary.html (3 of 4) [7/24/2002 10:03:22 PM]

Note that the original text, although full of apparently meaningless words still tells a story which human readers can decode with a
little imagination. On the other hand, the spell checker text, although it contains nothing but meaningful words, is complete nonsense.

The human brain has amazing abilities to dig meaning out of language. It will be a long time before computers will compare with this
intelligence.

More nonsense

What do words mean?

Ludwig Wittgenstein, John Austin and John Searle investigated the nature of meaning in everyday language. The wished to analyse
the what makes a sentence such as "I'll meet you tomorrow at the show." and "I'll meet you tomorrow on Mars.". Their study lead to
the idea of communication as a performace, as an action. For them speech is action.

Communicative Acts
Communicative (speech) acts have a tree structure of components:

Communicative Act

performative (illocutionary force)

proposition

referent(s)

predicate

The predicate is the content of the speech act. But the meaning, what you are doing with the content, must also be considered in
determining the meaing of a speech act.

You will see the structure of speech acts reflected in the agent communication languages designed by FIPA.

Commnication Act Summary

http://www.ryerson.ca/~dgrimsha/courses/cps720/speechActSummary.html (4 of 4) [7/24/2002 10:03:22 PM]

http://www.jabberwocky.com/carroll/walrus.html
http://tealdragon.net/humor/quotes/carrol_l.htm

Agent Communication Languages

KQML
KQML, Knowledge Communication Meta Language was one of the earliest attempts ot construct an agent communicaion language based on speech act
theory. It has had a major influence on later develpments.

Notes on KQML

ACL
ACL, the Agent Communication Language, is an based on KQML and represents the world standard for agent communication as proposed by FIPA. Quite a
few agent systems "speak" ACL. FIPA defines a library of allowed communicative acts.

FIPA Communicative Act Library Specification for ACL

pdf (local) version●

html version●

You can see that ACL is closely related to KQML. In fact, ACL represents a smaller version of KQML which is more precidely defined.

XML
XML has become quite popular. There is a standard version of ACL written in XML and sponsored by FIPA.

FIPA xmlacl specification (DTD)

A Closer Look at Some Communicative Acts

INFORM

Agent Communication Languages

http://www.ryerson.ca/~dgrimsha/courses/cps720/acl.html (1 of 5) [7/24/2002 10:03:42 PM]

http://www.fipa.org/specs/fipa00037/XC00037H.html

Agent Communication Languages

http://www.ryerson.ca/~dgrimsha/courses/cps720/acl.html (2 of 5) [7/24/2002 10:03:42 PM]

In the example you can see the influence of speech act theory. The "illocutionary force", or performative is INFORM. The referents are given in the :sender
and :receiver slots.

Most interesting is the :content slot. Since the purpose fo the INFORM performative is to convey presumably true information, the content of an INFORM
performative is normally a predicate, which can be true or false.

In the example, content just uses strings which represent some language. This is the content language. It can be anything. The :language slot specifies which.
In this example, it is Prolog. In JADE it is normally SL.

REQUEST

Agent Communication Languages

http://www.ryerson.ca/~dgrimsha/courses/cps720/acl.html (3 of 5) [7/24/2002 10:03:42 PM]

REQUEST asks the receiver to take some action. The action can, of course, be a speech act, often INFORM. The :content language can be a string
containing anything, vene Visual Basic! Of course the receiving agent has to understand the content language.

QUERY-REF

Agent Communication Languages

http://www.ryerson.ca/~dgrimsha/courses/cps720/acl.html (4 of 5) [7/24/2002 10:03:42 PM]

This one is a bit more complicated. The content language in the example is SL.

QUERY-REF is used to refer to objects that the receiver knows about but which the names are not known to the sender. So the sender sends a description of
the required object or objects. In other words, the sender sends an expression, the value of which references the desired objects.

In the above example, the sender used the variable ?x as a reference to the objects which match the description "available services offered by agent j". Agent
j responds with an INFORM message.

You can see from this example that SL is quite a tricky language. Fortunately, as of version 2.4, JADE has some helpful packages to help out.

Agent Communication Languages

http://www.ryerson.ca/~dgrimsha/courses/cps720/acl.html (5 of 5) [7/24/2002 10:03:42 PM]

4 KQML AS A COMMUNICATION LANGUAGE
[from D. Benaech & T. Desprats, A KQML-CORBA based Architecture for Intelligent Agents Communication in Cooperative Service and Network
Management. Postscript version]

4.1 Overview of KQML specification [KQML93] [LABR96]

4.1.1 The KQML key features

KQML was conceived as both a message format and a message-handling protocol to support run-time knowledge sharing among agents. KQML's key
features are:

KQML messages are opaque to the content they carry. KQML messages do not merely communicate sentences in some language, but rather
communicate an attitude about the content (assertion, request, query, basic response, etc.).

●

The language's primitives are called performatives (this term comes directly from the speech act theory). Performatives define the permissible
actions (operations) that agents may attempt in communicating with one another.

●

KQML assumes that at the agent level, the communication appears as a point- to-point message passing.●

.An environment of KQML speaking agents may be enriched with special agents, called facilitators, that provide to the agents additional functions
to deal with networking (association of physical addresses with symbolic names, registration of agents and/or services offered and sought by
agents, enhanced communication services as forwarding, brokering, broadcasting...).

●

KQML may be considered as a communication language for the exchange of information and knowledge between agents, through the use of a set of
standard message types. Next is an example of KQML message.

(ask-if

:sender A

:receiver B

:language Prolog

:ontology foo

:reply-with id1

:content ``bar(a,b)'')

In KQML terminology, ask-if is a performative. A performative sets parameters that are introduced by keywords. In this example, the agent named A
(:sender) is querying the agent B (:receiver), in Prolog (:language) about the truth status of ``bar(a,b)'' (:content). Any response to this KQML message
will be identified by id1 (:reply-with). The ontology name foo may provide additional information regarding the interpretation of the :content. Let's

KQML as a communication language

http://www.ryerson.ca/~dgrimsha/courses/cps720/kqmlIntro.html (1 of 4) [7/24/2002 10:03:43 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/mmns97p.ps

suppose that B is not able to perform the action suggested by A in the previous message. B will answer to A by using the next performative.

(sorry

:sender B

:receiver A

:in-reply-to id1

:reply-with id2)

B (:sender) uses the performative sorry to inform A(:receiver) that it cannot perform the evaluation of bar(a, b). The agent A will perfectly know that this
message refers to this evaluation because B used the :in- reply-to parameter with a value of id1.

What is an ontology?

KQML Performatives

4.1.2 The KQML string syntax

A performative (i.e. a KQML message) is expressed as an ASCII string using a syntax which has been defined in a BNF. This syntax is a restriction on
the ASCII representation of Common Lisp Polish-prefix notation. This notation has the advantages of being readable by humans, simple for programs to
parse and transportable by many inter process messaging platforms. Parameters in performative are indexed by keywords, must begin by a colon (:) and
must precede the corresponding parameter value. They are order independent. Table 1 Summary of reserved parameter keywords and their meanings

 Keyword Meaning

 :sender actual sender of the performative

 :receiver actual receiver of the performative

 :reply-with expected label in a response to the current message

 :in-reply-with expected label in a response to a previous message (same as the :reply-with value of the previous message)

 :language name of the representation language of the :content

:ontology name of the ontology assumed in the :content

 :content information about which the performative expresses an attitude

 :from origin of the performative in :content when forward is used

 :to final destination when forward is used

KQML as a communication language

http://www.ryerson.ca/~dgrimsha/courses/cps720/kqmlIntro.html (2 of 4) [7/24/2002 10:03:43 PM]

4.1.3 The KQML reserved performatives

No less than 35 reserved performatives are defined in the KQML specification. We do not detail each of these performatives in this paper, but a deeper
description can be found in [LABR96]. In order to give the reader an overview of the communication semantics these performatives express, a
classification can be proposed to summarise these semantics:

(A) Discourse performatives: these are the performatives to be used in the context of an information and knowledge exchange between two agents. They
may be considered as close as possible to speech acts theory.

(B) Intervention and mechanics of conversation performatives: their role is to intervene in the normal course of a conversation. The normal course of
a conversation is as follows: agent A sends a KQML message (thus starting a conversation) and agent B responds whenever it has a response or a
follow-up. The performative of this category either prematurely terminate a conversation (error, sorry) or override this default protocol (standby, ready,
next, rest and discard).

(C) Networking and Facilitation performatives are not speech acts in the pure sense. They allow agents to find other agents that can process their
queries.

4.1.4 Domain of KQML speaking agents

We now summarise the features of a domain of KQML-speaking agents. In each domain there is at least one agent with a special status called facilitator
that can always handle the networking and facilitation performatives. Agents advertise to their facilitator thus announcing the messages that they are
committed to accept and properly process. Advertising to a facilitator is like advertising to the community. So, agents can use their facilitator either:

to have their queries properly dispatched to other agents, using recruit-one, recruit-all, broker-one or broker-all, or●

to send a recommend-one or a recommend-all to get the relevant advertise message and directly contact agent(s) that may process their queries.●

Agents can access agents in other domain through their facilitator, or directly. The term facilitator is used to refer to all kinds of special services that may
be provided by specialised agents, such as Agent Name Servers, proxy agents, traders or brokers.

4.2 Suitability of KQML
Section 3 showed the need to provide a communication language that can support two basic styles of interaction between intelligent agents. Both
``Query/Response'' and ``knowledge exchange'' interaction styles should be supported to allow the agents to exchange tasks, information and
functionality. Broadcast, multicast, group and location facilities also need to be provided in order to support multi-agents interaction. The capacity of
KQML to cover these requirements appears in the following properties:

KQML offers a range of reserved performatives to allow an agent to send queries (ask-if, ask-one, ask-all, achieve...) to another one.●

It also proposes performatives to permit an agent to reply to another one (tell, eos, sorry...).●

Other performatives are able to support generic information exchange (tell, untell, deny...), functionality transfer (insert, tell...) and capability
definition (advertise, subscribe...).

●

An important number of reserved performatives are concerned by networking and group facilities: register, forward, broadcast, recommend,
broker...

●

the :content parameter of a performative is an opaque message. This constitutes an important benefit that KQML may bring to improve●

KQML as a communication language

http://www.ryerson.ca/~dgrimsha/courses/cps720/kqmlIntro.html (3 of 4) [7/24/2002 10:03:43 PM]

interoperability. The nature of the :content parameter can vary for example from a SNMP get request, to a KQML performative or a CMIP
notification.

These characteristics of KQML made us believe that this language should be a suitable support for the communication between intelligent agents in the
specific context of cooperative service and NM. Finest analysis and practical studies are now necessary to answer to some issues:

Are all the KQML reserved performatives indispensable in the cooperative NM context?●

Since KQML is still an open and evolving specification language (you may add yours own performatives with respect to the specifications), it
might be attractive to define a specific set of performatives dedicated to the particular interactions between NM agents.

●

Is an implementation of KQML easily realisable? What is the most suitable/efficient transport protocol to support all the networking facilities
proposed by KQML?

●

We started to study the last issue by developing a KQML implementation based on CORBA. The next section gives an overview of a KQML-CORBA
based architecture able to support cooperative services and NM applications.

KQML as a communication language

http://www.ryerson.ca/~dgrimsha/courses/cps720/kqmlIntro.html (4 of 4) [7/24/2002 10:03:43 PM]

What is an Ontology?
Tom Gruber <gruber@ksl.stanford.edu>

Short answer:

An ontology is a specification of a conceptualization.

The word "ontology" seems to generate a lot of controversy in discussions about AI. It has a long history
in philosophy, in which it refers to the subject of existence. It is also often confused with epistemology,
which is about knowledge and knowing.

In the context of knowledge sharing, I use the term ontology to mean a specification of a
conceptualization. That is, an ontology is a description (like a formal specification of a program) of the
concepts and relationships that can exist for an agent or a community of agents. This definition is
consistent with the usage of ontology as set-of-concept-definitions, but more general. And it is certainly a
different sense of the word than its use in philosophy.

What is important is what an ontology is for. My colleagues and I have been designing ontologies for the
purpose of enabling knowledge sharing and reuse. In that context, an ontology is a specification used for
making ontological commitments. The formal definition of ontological commitment is given below. For
pragmetic reasons, we choose to write an ontology as a set of definitions of formal vocabulary. Although
this isn't the only way to specify a conceptualization, it has some nice properties for knowledge sharing
among AI software (e.g., semantics independent of reader and context). Practically, an ontological
commitment is an agreement to use a vocabulary (i.e., ask queries and make assertions) in a way that is
consistent (but not complete) with respect to the theory specified by an ontology. We build agents that
commit to ontologies. We design ontologies so we can share knowledge with and among these agents.

This definition is given in the article:

T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199-220, 1993.
Available on line.

A more detailed description is given in

T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing. Presented at
the Padua workshop on Formal Ontology, March 1993, to appear in an edited collection by Nicola
Guarino. Available online.

With an excerpt attached.

Ontologies as a specification mechanism
A body of formally represented knowledge is based on a conceptualization: the objects, concepts, and
other entities that are assumed to exist in some area of interest and the relationships that hold among
them (Genesereth & Nilsson, 1987) . A conceptualization is an abstract, simplified view of the world that
we wish to represent for some purpose. Every knowledge base, knowledge-based system, or

What is an Ontology?

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/What%20is%20an%20Ontology.htm (1 of 2) [7/24/2002 10:03:44 PM]

http://ksl-web.stanford.edu/people/gruber/
http://ksl-web.stanford.edu/knowledge-sharing/papers/README.html#ontolingua-intro
http://ksl-web.stanford.edu/knowledge-sharing/papers/README.html#onto-design

knowledge-level agent is committed to some conceptualization, explicitly or implicitly.

An ontology is an explicit specification of a conceptualization. The term is borrowed from philosophy,
where an Ontology is a systematic account of Existence. For AI systems, what "exists" is that which can
be represented. When the knowledge of a domain is represented in a declarative formalism, the set of
objects that can be represented is called the universe of discourse. This set of objects, and the describable
relationships among them, are reflected in the representational vocabulary with which a
knowledge-based program represents knowledge. Thus, in the context of AI, we can describe the
ontology of a program by defining a set of representational terms. In such an ontology, definitions
associate the names of entities in the universe of discourse (e.g., classes, relations, functions, or other
objects) with human-readable text describing what the names mean, and formal axioms that constrain the
interpretation and well-formed use of these terms. Formally, an ontology is the statement of a logical
theory.[1]

We use common ontologies to describe ontological commitments for a set of agents so that they can
communicate about a domain of discourse without necessarily operating on a globally shared theory. We
say that an agent commits to an ontology if its observable actions are consistent with the definitions in
the ontology. The idea of ontological commitments is based on the Knowledge-Level perspective
(Newell, 1982) . The Knowledge Level is a level of description of the knowledge of an agent that is
independent of the symbol-level representation used internally by the agent. Knowledge is attributed to
agents by observing their actions; an agent "knows" something if it acts as if it had the information and is
acting rationally to achieve its goals. The "actions" of agents---including knowledge base servers and
knowledge-based systems--- can be seen through a tell and ask functional interface (Levesque, 1984) ,
where a client interacts with an agent by making logical assertions (tell), and posing queries (ask).

Pragmatically, a common ontology defines the vocabulary with which queries and assertions are
exchanged among agents. Ontological commitments are agreements to use the shared vocabulary in a
coherent and consistent manner. The agents sharing a vocabulary need not share a knowledge base; each
knows things the other does not, and an agent that commits to an ontology is not required to answer all
queries that can be formulated in the shared vocabulary.

In short, a commitment to a common ontology is a guarantee of consistency, but not completeness, with
respect to queries and assertions using the vocabulary defined in the ontology.

Notes

[1] Ontologies are often equated with taxonomic hierarchies of classes, but class definitions, and the
subsumption relation, but ontologies need not be limited to these forms. Ontologies are also not limited
to conservative definitions, that is, definitions in the traditional logic sense that only introduce
terminology and do not add any knowledge about the world (Enderton, 1972) . To specify a
conceptualization one needs to state axioms that do constrain the possible interpretations for the defined
terms.

What is an Ontology?

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/What%20is%20an%20Ontology.htm (2 of 2) [7/24/2002 10:03:44 PM]

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html#1

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/performatives.GIF

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/performatives.GIF [7/24/2002 10:03:46 PM]

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA Communicative Act Library Specification

Document title FIPA Communicative Act Library Specification
Document number XC00037G Document source FIPA TC C
Document status Experimental Date of this status 2001/01/29
Supersedes FIPA00003, FIPA00038, FIPA00039, FIPA00040, FIPA00041, FIPA00042,

FIPA00043, FIPA00044, FIPA00045, FIPA00046, FIPA00047, FIPA00048,
FIPA00049, FIPA00050, FIPA00051, FIPA00052, FIPA00053, FIPA00054,
FIPA00055, FIPA00056, FIPA00057, FIPA00058, FIPA00059, FIPA00060

Contact fab@fipa.org
Change history
2001/01/29 Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Introduction ... 1
2 Overview ... 2

2.1 Status of a FIPA-Compliant Communicative Act... 2
2.2 FIPA Communicative Act Library Maintenance... 2
2.3 Inclusion Criteria ... 3

3 FIPA Communicative Acts.. 4
3.1 Accept Proposal ... 4
3.2 Agree... 5
3.3 Cancel ... 6
3.4 Call for Proposal.. 7
3.5 Confirm .. 8
3.6 Disconfirm .. 9
3.7 Failure...10
3.8 Inform..11
3.9 Inform If ...12
3.10 Inform Ref ..13
3.11 Not Understood ..15
3.12 Propagate..17
3.13 Propose...19
3.14 Proxy ..20
3.15 Query If..22
3.16 Query Ref ..23
3.17 Refuse...24
3.18 Reject Proposal..25
3.19 Request...26
3.20 Request When ...27
3.21 Request Whenever..28
3.22 Subscribe ..29

4 References...30
5 Informative Annex A — Formal Basis of ACL Semantics ..31

5.1 Introduction to the Formal Model..31
5.2 The Semantic Language ...32

5.2.1 Basis of the Semantic Language Formalism ..32
5.2.2 Abbreviations ..33

5.3 Underlying Semantic Model...34
5.3.1 Property 1...34
5.3.2 Property 2...34
5.3.3 Property 3...35
5.3.4 Property 4...35
5.3.5 Property 5...35
5.3.6 Notation..35
5.3.7 Note on the Use of Symbols in Formulae...36
5.3.8 Supporting Definitions ..36

5.4 Primitive Communicative Acts ...36
5.4.1 The Assertive Inform ..36
5.4.2 The Directive Request ..37
5.4.3 Confirming an Uncertain Proposition: Confirm...37
5.4.4 Contradicting Knowledge: Disconfirm...37

5.5 Composite Communicative Acts ..38
5.5.1 The Closed Question Case...38
5.5.2 The Query If Act ..39
5.5.3 The Confirm/Disconfirm Question Act ..39

 iv

5.5.4 The Open Question Case...40
5.6 Inter-Agent Communication Plans ..41

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 1

1 Introduction
This document contains specifications for structuring the FIPA Communicative Act Library (FIPA CAL) including: status of
a FIPA-compliant communicative act, maintenance of the library and inclusion criteria.

This document is primarily concerned with defining the structure of the FIPA CAL and the requirements for a proposed
communicative act to be included in the library. The elements of the library are listed in this document.

This document also contains the formal basis of FIPA ACL semantics in the annex for the semantic characterization of
each FIPA communicative act.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 2

2 Overview
This document focuses on the organization, structure and status of the FIPA Communicative Act Library, FIPA CAL and
discusses the main requirements that a communicative act must satisfy in order to be FIPA-compliant.

The objectives of standardizing and defining a library of FIPA compliant communicative acts are:

• To help ensure interoperability by providing a standard set of composite and macro communicative acts, derived from

the FIPA primitive communicative acts,

• To facilitate the reuse of composite and macro communicative acts, and,

• To provide a well-defined process for maintaining a set of communicative acts and act labels for use in the FIPA ACL.

In the following, we present the basic principles of the FIPA CAL. These principles help to guarantee that the CAL is
stable, that there are public rules for the inclusion and maintenance of the CAL and that developers seeking
communicative acts for their applications can use the CAL.

2.1 Status of a FIPA-Compliant Communicative Act
The definition of a communicative act belonging to the FIPA CAL is normative. That is, if a given agent implements one of
the acts in the FIPA CAL, then it must implement that act in accordance with the semantic definition in the FIPA CAL.
However, FIPA-compliant agents are not required to implement any of the FIPA CAL languages, except the not-
understood composite act.

By collecting communicative act definitions in a single, publicly accessible registry, the FIPA CAL facilitates the use of
standardized Communicative Acts by agents developed in different contexts. It also provides a greater incentive to
developers to make any privately developed communicative acts generally available.

The name assigned to a proposed communicative act must uniquely identify which communicative act is used within a
FIPA ACL message. It must not conflict with any names currently in the library, and must be an English word or
abbreviation that is suggestive of the semantics. The FIPA Agent Communication Technical Committee is the initial judge
of the suitability of a name.

FIPA is responsible for maintaining a consistent list of approved and proposed communicative act names and for making
this list publicly available to FIPA members and non-members. This list is derived from the FIPA Communicative Act
Library.

In addition to the semantic characterization and descriptive information that is required, each Communicative Act in the
FIPA CAL may specify additional information, such as stability information, versioning, contact information, different
support levels, etc.

2.2 FIPA Communicative Act Library Maintenance
The most effective way of maintaining the FIPA Communicative Act Library is through the use of the communicative acts
themselves by different agent developers. This is the most direct way of discovering possible bugs, errors,
inconsistencies, weaknesses, possible improvements, as well as capabilities, strengths, efficiency etc. In order to collect
feedback on the communicative acts in the library and to promote further research, FIPA encourages coordination
between agent language designers, agent developers, and FIPA members.

FIPA will designate a Technical Committee to maintain the FIPA CAL. The FIPA CAL will be managed by this technical
committee, which will be responsible for the following items:

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 3

• Collecting feedback and the comments about communicative acts in the FIPA CAL. Depending on interest, the
technical committee may organize more specific Working Groups. These groups would be responsible for maintaining
public lists referring to projects and people who are currently working on different communicative acts.

• Inviting contributions in various forms: e-mail comments, written reports, papers, technical documents, and so forth.

The current email address of the technical committee is specified on the first page of this document.

• All technical committee members will be notified about contributions, comments or proposed changes and should be

able to access them.

• The proposed updates to the FIPA CAL must be discussed and approved during an official FIPA meeting, in order that

the FIPA community may be involved with and informed of all of the FIPA approved communicative acts in the library

• In the future, FIPA intends to supply templates (publicly accessible from the FIPA web site) in order to facilitate

submission of candidate communicative acts to the FIPA CAL, and to ensure that agent language developers
understand and can easily satisfy the requirements for the submission of a new communicative act to the FIPA CAL.

2.3 Inclusion Criteria
In order to populate the FIPA CAL, it is necessary to set some fundamental guidelines for the selection of specific
communicative acts.

The minimal criteria that must be satisfied for a communicative act to be included in the FIPA CAL are:

• A summary of the candidate act's semantic force and content type are required.

• A detailed natural language description of the act and its consequences are required.

• A formal model, written in SL, of the act's semantics, its formal preconditions, and its rational effects is required.

• Examples of the usage of the new communicative act are required.

• Substantial and clear documentation must be provided. This means that the proposal must be already well structured.

FIPA members are in no way responsible for translating submitted communicative acts into an acceptable form. See
the form of the acts in the library for a sample.

• The utility of such a new communicative act should be made clear. In particular, it should be clear that the need it

solves is reasonably general, and that this need would be cumbersome to meet by combining existing communicative
acts.

FIPA does not enforce the use of any particular communicative act, except for the case of not-understood, and those acts
which are required to meet the agent management needs of the agent.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 4

3 FIPA Communicative Acts

3.1 Accept Proposal
Summary The action of accepting a previously submitted proposal to perform an action.
Message
Content

A tuple consisting of an action expression denoting the action to be done, and a proposition giving
the conditions of the agreement.

Description Accept-proposal is a general-purpose acceptance of a proposal that was previously submitted
(typically through a propose act). The agent sending the acceptance informs the receiver that it
intends that (at some point in the future) the receiving agent will perform the action, once the given
precondition is, or becomes, true.

The proposition given as part of the acceptance indicates the preconditions that the agent is
attaching to the acceptance. A typical use of this is to finalize the details of a deal in some
protocol. For example, a previous offer to "hold a meeting anytime on Tuesday" might be accepted
with an additional condition that the time of the meeting is 11.00.

Note for future extension: an agent may intend that an action become done without necessarily
intending the precondition. For example, during negotiation about a given task, the negotiating
parties may not unequivocally intend their opening bids: agent a may bid a price p as a
precondition, but be prepared to accept price p'.

Formal Model <i, accept-proposal (j, <j, act>, φ))> ≡
 <i, inform (j, Ii Done (<j, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done (<j, act>, φ)

Example Agent i informs j that it accepts an offer from j to stream a given multimedia title to channel 19
when the customer is ready. Agent i will inform j of this fact when appropriate.

(accept-proposal
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :in-reply-to bid089
 :content
 ((action (agent-identifier :name j)
 (stream-content movie1234 19))
 (B (agent-identifier :name j)
 (ready customer78)))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 5

3.2 Agree
Summary The action of agreeing to perform some action, possibly in the future.
Message
Content

A tuple, consisting of an action expression denoting the action to be done, and a proposition giving
the conditions of the agreement.

Description Agree is a general-purpose agreement to a previously submitted request to perform some action.
The agent sending the agreement informs the receiver that it does intend to perform the action, but
not until the given precondition is true.

The proposition given as part of the agree act indicates the qualifiers, if any, that the agent is
attaching to the agreement. This might be used, for example, to inform the receiver when the agent
will execute the action which it is agreeing to perform.

Pragmatic note: The precondition on the action being agreed to can include the perlocutionary
effect of some other CA, such as an inform act. When the recipient of the agreement (for example,
a contract manager) wants the agreed action to be performed, it should then bring about the
precondition by performing the necessary CA. This mechanism can be used to ensure that the
contractor defers performing the action until the manager is ready for the action to be done.

Formal Model <i, agree (j, <i, act>, φ))> ≡
 <i, inform (j, Ii Done (<i, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done(<i, act>, φ)

Note that the formal difference between the semantics of agree and the semantics of accept-
proposal rests on which agent is performing the action.

Example Agent i (a job-shop scheduler) requests j (a robot) to deliver a box to a certain location. J answers
that it agrees to the request but it has low priority.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19))))
 :protocol fipa-request
 :language FIPA-SL
 :reply-with order567)

(agree
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (deliver box017 (loc 12 19)))
 (priority order567 low))
 :in-reply-to order567
 :protocol fipa-request
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 6

3.3 Cancel
Summary The action of one agent informing another agent that the first agent no longer has the intention that

the second agent perform some action.
Message
Content

An action expression denoting the action that is no longer intended.

Description Cancel allows an agent i to inform another agent j that i no longer intends that j perform a
previously requested action. This is not the same as i informing j that i intends that j not perform
the action or stop performing an action. Cancel is simply used to let an agent know that another
agent no longer has a particular intention. (In order for i to stop j from performing an action, i
should request that j stop that action. Of course, nothing in the ACL semantics guarantees that j
will actually stop performing the action; j is free to ignore i’s request.) Finally, note that the action
that is the object of the act of cancellation should be believed by the sender to be ongoing or to be
planned but not yet executed.

Formal Model <i, cancel (j, a)> ≡
 <i, disconfirm (j, Ii Done (a))>
 FP: ¬Ii Done (a) ∧ Bi (Bj Ii Done (a) ∨ Uj Ii Done (a))
 RE: Bj ¬Ii Done (a)

Cancel applies to any form of requested action. Suppose an agent i has requested an agent j to
perform some action a, possibly if some condition holds. This request has the effect of i informing j
that i has an intention that j perform the action a. When i comes to drop its intention, it can inform
j that it no longer has this intention with a disconfirm.

Example Agent j asks i to cancel a previous request-whenever by quoting the action.

(cancel
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (request-whenever
 :sender (agent-identifier :name j)
 :receiver (set(agent-identifier :name i))
 :content1
 "((action (agent-identifier :name i)
 (inform-ref
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content2
 \"((iota ?x
 (=(price widget) ?x))\")
 (> (price widget) 50))"
 …)))
 :langage FIPA-SL
 …)

1 The request-whenever message’s :content parameter in the context of the cancel message is an embedded action expression. So, since this
example uses SL as a content language, the content tuple of the request-whenever message must be converted into a Term of SL.
2 The content of this inform-ref is further embedded in an embedded request-whenever message’s content. So, because this example uses SL as
a content language, the quote mark is itself escaped by '\'.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 7

3.4 Call for Proposal
Summary The action of calling for proposals to perform a given action.
Message
Content

A tuple containing an action expression denoting the action to be done, and a referential
expression defining a single-parameter proposition which gives the preconditions on the action.

Description CFP is a general-purpose action to initiate a negotiation process by making a call for proposals to
perform the given action. The actual protocol under which the negotiation process is established is
known either by prior agreement, or is explicitly stated in the :protocol parameter of the message.

In normal usage, the agent responding to a cfp should answer with a proposition giving the value of
the parameter in the original precondition expression (see the statement of cfp's rational effect).
For example, the cfp might seek proposals for a journey from Frankfurt to Munich, with a condition
that the mode of travel is by train. A compatible proposal in reply would be for the 10.45 express
train. An incompatible proposal would be to travel by airplane.

Note that cfp can also be used to simply check the availability of an agent to perform some action.
Also note that this formalization of cfp is restricted to the common case of proposals
characterized by a single parameter (x) in the proposal expression. Other scenarios might involve
multiple proposal parameters, demand curves, free-form responses, and so forth.

Formal Model <i, cfp (j, <j, act>, Ref x φ(x))> ≡
 <i, query-ref (j, Ref x (Ii Done (<j, act>, φ(x)) ⇒
 (Ij Done (<j, act>, φ(x))))>
 FP: ¬Brefi(Ref x α(x)) ∧ ¬Urefi(Ref x α(x)) ∧
 ¬Bi Ij Done (<j, inform-ref (i, Ref x α(x))>)
 RE: Done (<j, inform (i, Ref x α(x) = r1)> | … |
 <j, inform (i, Ref x α(x) = rk)>)

Where:

α(x) = Ii Done (<j, act>, φ(x)) ⇒ Ij Done (<j, act>, φ(x))

Agent i asks agent j: "What is the 'x' such that you will perform action 'act' when 'φ (x)' holds?"

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x
δ(x).

Note: The RE of this is not a proposal by the recipient. Rather, it is the value of the proposal
parameter. See the example in the definition of the propose act.

Example Agent j asks i to submit its proposal to sell 50 boxes of plums.

(cfp
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name i)
 (sell plum 50))
 (any ?x (and (= (price plum) ?x) (< ?x 10))))
 :ontology fruit-market)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 8

3.5 Confirm
Summary The sender informs the receiver that a given proposition is true, where the receiver is known to be

uncertain about the proposition.
Message
Content

A proposition.

Description The sending agent:

• believes that some proposition is true,

• intends that the receiving agent also comes to believe that the proposition is true, and,

• believes that the receiver is uncertain of the truth of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere3, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last pre-condition determines when the agent should use confirm vs. inform vs.
disconfirm: confirm is used precisely when the other agent is already known to be uncertain about
the proposition (rather than uncertain about the negation of the proposition).

From the receiver's viewpoint, receiving a confirm message entitles it to believe that:

• the sender believes the proposition that is the content of the message, and,

• the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of belief in the
proposition will be a function of the receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, confirm (j, φ)>
 FP: Biφ ∧ BiUjφ
 RE: Bjφ

Examples Agent i confirms to agent j that it is, in fact, true that it is snowing today.

(confirm
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "weather (today, snowing)"
 :language Prolog)

3 Arguably there are situations where an agent might not want to be sincere, for example to protect confidential information. We consider these
cases to be beyond the current scope of this specification.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 9

3.6 Disconfirm
Summary The sender informs the receiver that a given proposition is false, where the receiver is known to

believe, or believe it likely that, the proposition is true.
Message
Content

A proposition.

Description The disconfirm act is used when the agent wishes to alter the known mental attitude of another
agent.

The sending agent:

• believes that some proposition is false,

• intends that the receiving agent also comes to believe that the proposition is false, and,

• believes that the receiver either believes the proposition, or is uncertain of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere3, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last pre-condition determines when the agent should use confirm vs. inform vs.
disconfirm: disconfirm is used precisely when the other agent is already known to believe the
proposition or to be uncertain about it.

From the receiver's viewpoint, receiving a disconfirm message entitles it to believe that:

• the sender believes that the proposition that is the content of the message is false, and,

• the sender wishes the receiver to believe the negated proposition also.

Whether or not the receiver does, indeed, change its mental attitude to one of disbelief in the
proposition will be a function of the receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, disconfirm (j, φ)>
 FP: Bi¬φ ∧ Bi(Ujφ ∨ Bjφ)
 RE: Bj¬φ

Example Agent i, believing that agent j thinks that a shark is a mammal, attempts to change j's belief.

(disconfirm
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((mammal shark))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 10

3.7 Failure
Summary The action of telling another agent that an action was attempted but the attempt failed.
Message
Content

A tuple, consisting of an action expression and a proposition giving the reason for the failure.

Description The failure act is an abbreviation for informing that an act was considered feasible by the sender,
but was not completed for some given reason.

The agent receiving a failure act is entitled to believe that:

• the action has not been done, and,

• the action is (or, at the time the agent attempted to perform the action, was) feasible

The (causal) reason for the failure is represented by the proposition, which is the second element
of the message content tuple. It may be the constant true. Often it is the case that there is little
either agent can do to further the attempt to perform the action.

Formal Model <i, failure (j, a, φ)> ≡
 <i, inform (j, (∃e) Single (e) ∧ Done (e, Feasible (a) ∧
 Ii Done (a)) ∧ φ ∧ ¬Done (a) ∧ ¬Ii Done (a))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = (∃e) Single (e) ∧ Done (e, Feasible (a) ∧ Ii Done (a)) ∧ φ ∧
 ¬Done (a) ∧ ¬Ii Done (a)

Agent i informs agent j that, in the past, i had the intention to do action a and a was feasible. i
performed the action of attempting to do a (that is, the action/event e is the attempt to do a), but
now a has not been done and i no longer has the intention to do a, and φ is true.

The informal implication is that φ is the reason that the action failed, though this causality is not
expressed formally in the semantic model.

Example Agent j informs i that it has failed to open a file.

(failure
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (open "foo.txt"))
 (error-message "No such file: foo.txt"))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 11

3.8 Inform
Summary The sender informs the receiver that a given proposition is true.
Message
Content

A proposition.

Description The sending agent:

• holds that some proposition is true,

• intends that the receiving agent also comes to believe that the proposition is true, and,

• does not already believe that the receiver has any knowledge of the truth of the proposition.

The first two properties defined above are straightforward: the sending agent is sincere, and has
(somehow) generated the intention that the receiver should know the proposition (perhaps it has
been asked). The last property is concerned with the semantic soundness of the act. If an agent
knows already that some state of the world holds (that the receiver knows proposition p), it cannot
rationally adopt an intention to bring about that state of the world (i.e. that the receiver comes to
know p as a result of the inform act). Note that the property is not as strong as it perhaps appears.
The sender is not required to establish whether the receiver knows p. It is only the case that, in
the case that the sender already happens to know about the state of the receiver's beliefs, it
should not adopt an intention to tell the receiver something it already knows.

From the receiver's viewpoint, receiving an inform message entitles it to believe that:

• the sender believes the proposition that is the content of the message, and,

• the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, adopt belief in the proposition will be a function of the
receiver's trust in the sincerity and reliability of the sender.

Formal Model <i, inform (j, φ)>
 FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
 RE: Bjφ

Examples Agent i informs agent j that (it is true that) it is raining today.

(inform
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "weather (today, raining)"
 :language Prolog)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 12

3.9 Inform If
Summary A macro action for the agent of the action to inform the recipient whether or not a proposition is

true.
Message
Content

A proposition.

Description The inform-if macro act is an abbreviation for informing whether or not a given proposition is
believed. The agent which enacts an inform-if macro-act will actually perform a standard inform
act. The content of the inform act will depend on the informing agent's beliefs. To inform-if on some
closed proposition φ:

• if the agent believes the proposition, it will inform the other agent that φ, and,

• if it believes the negation of the proposition, it informs that φ is false, that is, ¬φ.

Under other circumstances, it may not be possible for the agent to perform this plan. For example,
if it has no knowledge of φ, or will not permit the other party to know (that it believes) φ, it will send
a refuse message.

Formal Model <i, inform-if (j, φ)> ≡
 <i, inform (j, φ)>|<i, inform (j, ¬φ)>
 FP: Bifi φ ∧ ¬Bi (Bifj φ ∨ Uifj φ)
 RE: Bifj φ

Inform-if represents two possible courses of action: i informs j that φ, or i informs j that not φ.

Examples Agent i requests j to inform it whether Lannion is in Normandy.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-if
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "in(lannion, normandy)"
 :language Prolog)))
 :language FIPA-SL)

Agent j replies that it is not:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "\+ in (lannion, normandy)"
 :language Prolog)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 13

3.10 Inform Ref
Summary A macro action for sender to inform the receiver the object which corresponds to a descriptor, for

example, a name.
Message
Content

An object description (a referential expression).

Description The inform-ref macro action allows the sender to inform the receiver some object that the sender
believes corresponds to a descriptor, such as a name or other identifying description.

inform-ref is a macro action, since it corresponds to a (possibly infinite) disjunction of inform acts,
each of which informs the receiver that "the object corresponding to name is x" for some given x.
For example, an agent can plan an inform-ref of the current time to agent j, and then perform the
act "inform j that the time is 10.45".

The agent performing the act should believe that the object or set of objects corresponding to the
reference expression is the one supplied, and should not believe that the receiver of the act
already knows which object or set of objects corresponds to the reference expression. The agent
may elect to send a refuse message if it is unable to establish the preconditions of the act.

Formal Model <i, inform-ref (j, Ref x δ(x))> ≡
 <i, inform (j, Ref x δ(x) = r1)> | ... |
 (<i, inform (j, Ref x δ(x) = rk)>
 FP: Brefi Ref x δ(x) ∧ ¬Bi(Brefj Ref x δ(x) ∨ Urefj Ref x δ(x))
 RE: Brefj Ref x δ(x)

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Inform-ref represents an unbounded, possibly infinite set of possible courses of action, in which i
informs j of the referent of x.

Example Agent i requests j to tell it the current Prime Minister of the United Kingdom:

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-ref
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((iota ?x (UKPrimeMinister ?x)))"
 :ontology world-politics
 :language FIPA-SL)))
 :reply-with query0
 :language FIPA-SL)

Agent j replies:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((= (iota ?x (UKPrimeMinister ?x)) "Tony Blair"))
 :ontology world-politics
 :in-reply-to query0)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 14

Note that a standard abbreviation for the request of inform-ref used in this example is the act
query-ref.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 15

3.11 Not Understood
Summary The sender of the act (for example, i) informs the receiver (for example, j) that it perceived that j

performed some action, but that i did not understand what j just did. A particular common case is
that i tells j that i did not understand the message that j has just sent to i.

Message
Content

A tuple consisting of an action or event, for example, a communicative act, and an explanatory
reason.

Description The sender received a communicative act that it did not understand. There may be several reasons
for this: the agent may not have been designed to process a certain act or class of acts, or it may
have been expecting a different message. For example, it may have been strictly following a pre-
defined protocol, in which the possible message sequences are predetermined. The not-
understood message indicates to that the sender of the original, that is, misunderstood, action
that nothing has been done as a result of the message. This act may also be used in the general
case for i to inform j that it has not understood j's action.

The second element of the message content tuple is a proposition representing the reason for the
failure to understand. There is no guarantee that the reason is represented in a way that the
receiving agent will understand. However, a co-operative agent will attempt to explain the
misunderstanding constructively.

Note: It is not possible to fully capture the intended semantics of an action not being understood
by another agent. The characterization below captures that an event happened and that the
recipient of the not-understood message was the agent of that event.

φ must be a well formed formula of the content language of the sender agent. If the sender uses
the bare textual message, that is, 'String' in the syntax definition, as the reason φ, it must be a
propositional assertive statement and (at least) the sender can understand that (natural language)
message and calculate its truth value, that is, decide its assertion is true or false. So, for
example, in the SL language, to use textual message for the convenience of humans, it must be
encapsulated as the constant argument of a predicate defined in the ontology that the sender
uses, for example:

(error "message")

Formal Model <i, not-understood(j, a, φ)> ≡
 <i, inform(j, α) >
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = φ ∧ (∃x) Bi ((ιe Done (e) ∧ Agent (e, j) ∧ Bj(Done (e) ∧
 Agent (e, j) ∧ (a = e))) = x)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 16

Examples Agent i did not understand a query-if message because it did not recognize the ontology.

(not-understood
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (query-if
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "<fipa-ccl content expression>"
 :ontology www
 :language FIPA-CCL))
 (unknown (ontology "www")))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 17

3.12 Propagate
Summary The sender intends that the receiver treat the embedded message as sent directly to the receiver,

and wants the receiver to identify the agents denoted by the given descriptor and send the received
propagate message to them.

Message
Content

A tuple of a descriptor, that is, a referential expression, denoting an agent or agents to be
forwarded the propagate message, an embedded ACL communicative act, that is, an ACL
message, performed by the sender to the receiver of the propagate message and a constraint
condition for propagation, for example, timeout.

Description This is a compound action of the following two actions. First, the sending agent requests the
recipient to treat the embedded message in the received propagate message as if it is directly
sent from the sender, that is, as if the sender performed the embedded communicative act directly
to the receiver. Second, the sender wants the receiver to identify agents denoted by the given
descriptor and to send a modified version of the received propagate message to them, as
described below.

On forwarding, the :receiver parameter of the forwarded propagate message is set to the
denoted agent(s) and the :sender parameter is set to the receiver of the received propagate
message. The sender and receiver of the embedded communicative act of the forwarded propagate
message is also set to the same agent as the forwarded propagate message's sender and
receiver, respectively.

This communicative act is designed for delivering messages through federated agents by creating
a chain (or tree) of propagate messages. An example of this is instantaneous brokerage requests
using a proxy message, or persistent requests by a request-when/request-whenever message
embedding a proxy message.

Formal Model <i, propagate (j, Ref x δ(x), <i, cact>, φ)> ≡
 <i, cact(j)>;
 <i, inform (j, Ii((∃y) (Bj (Ref x δ(x) = y) ∧
 Done (<j, propagate (y, Ref x δ(x), <j, cact>, φ)>, Bj φ))))>
 FP: FP (cact) ∧ Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Done (cact) ∧ Bj α

Where :

α= Ii((∃y) (Bj (Ref x δ(x) = y) ∧
 Done (<j, propagate (y, Ref x δ(x), <j, cact>, φ)>, Bj φ)))

Agent i performs the embedded communicative act to j: <i, cact(j)> and i wants j to send the
propagate message to the denoted agent(s) by Ref x δ(x).

Note that <i,cact> in the propagate message is the ACL communicative act without the
:receiver parameter.

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 18

Example Agent i requests agent j and its federating other brokerage agents to do brokering video-on-
demand server agent to get "SF" programs.

(propagate
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :neme j))
 :content
 ((any ?x (registered
 (agent-description
 :name ?x
 :services (set
 (service-description
 :name agent-brokerage))))
 (action (agent-identifier :name i)
 (proxy
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "((all ?y (registered
 (agent-description
 :name ?y
 :services (set
 (service-description
 :name video-on-demand)))))
 (action (agent-identifier :name j)
 (request
 :sender (agent-identifier :name j)
 :content
 \"((action ?z4
 (send-program (category "SF"))))\"
 :ontology vod-server-ontology
 :protocol fipa-reqest …))
 true)"
 :ontology brokerage-agent-ontology
 :conversation-id vod-brokering-2
 :protocol fipa-brokering …))
 (< (hop-count) 5))
 :ontology brokerage-agent-ontology
 …)

4 We cannot specify the concrete actor name when agent i sends the propagate message because it is identified by the referential expression
(all ?y …). In the above example, a free variable ?z is used as the mandatory actor agent part of the action expression send-program in
the content of embedded request message.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 19

3.13 Propose
Summary The action of submitting a proposal to perform a certain action, given certain preconditions.
Message
Content

A tuple containing an action description, representing the action that the sender is proposing to
perform, and a proposition representing the preconditions on the performance of the action.

Description Propose is a general-purpose action to make a proposal or respond to an existing proposal during
a negotiation process by proposing to perform a given action subject to certain conditions being
true. The actual protocol under which the negotiation process is being conducted is known either
by prior agreement, or is explicitly stated in the :protocol parameter of the message.

The proposer (the sender of the propose) informs the receiver that the proposer will adopt the
intention to perform the action once the given precondition is met, and the receiver notifies the
proposer of the receiver's intention that the proposer performs the action.

A typical use of the condition attached to the proposal is to specify the price of a bid in an
auctioning or negotiation protocol.

Formal Model <i, propose (j, <i, act>, φ)> ≡
 <i, inform (j, Ij Done (<i, act>, φ) ⇒ Ii Done (<i, act>, φ))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ij Done (<i, act>, φ) ⇒ Ii Done (<i, act>, φ)

Agent i informs j that, once j informs i that j has adopted the intention for i to perform action act,
and the preconditions for i performing act have been established, i will adopt the intention to
perform act.

Example Agent j proposes to i to sell 50 boxes of plums for $5. This example continues the example of cfp.

(propose
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action j (sell plum 50))
 (= (any ?x (and (= (price plum) ?x) (< ?x 10))) 5)
 :ontology fruit-market
 :in-reply-to proposal2
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 20

3.14 Proxy
Summary The sender wants the receiver to select target agents denoted by a given description and to send

an embedded message to them.
Message
Content

A tuple of a descriptor, that is, a referential expression, that denotes the target agents, an ACL
communicative act, that is, an ACL message, to be performed to the agents, and a constraint
condition for performing the embedded communicative act, for example, the maximum number of
agents to be forwarded, etc.

Description The sending agent informs the recipient that the sender wants the receiver to identify agents that
satisfy the given descriptor, and to perform the embedded communicative act to them, that is, the
receiver sends the embedded message to them.

On performing the embedded communicative act, the :receiver parameter is set to the denoted
agent and the :sender is set to the receiver of the proxy message. If the embedded
communicative act contains a :reply-to parameter (for example, in the recruiting case where
the :protocol parameter is set to fipa-recruiting), it should be preserved in the performed
message.

In the case of a brokering request (that is, the :protocol parameter is set to fipa-brokering), the
brokerage agent (the receiver of the proxy message) must record some parameters, for example,
:conversation-id, :reply-with, :sender, etc.) of the received proxy message to forward
back the reply message(s) from the target agents to the corresponding requester agent (the
sender of the proxy message).

Formal Model <i, proxy (j, Ref x δ(x), <j, cact>, φ)> ≡
 <i, inform (j, Ii((∃y)(Bj (Ref x δ(x) = y) ∧
 Done (<j, cact(y)>, Bj φ))))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α= Ii((∃y) (Bj (Ref x δ(x) = y) ∧ Done (<j, cact(y)>, Bj φ)))

Agent i wants j to perform the embedded communicative act to the denoted agent(s) (y) by Ref
x δ(x).

Note that <j,cact> in the proxy message is the ACL communicative act without the
:receiver parameter. Its receiver is denoted by the given Ref x δ(x) by the agent j.

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Two types of proxy can be distinguished. We will call the type of proxy defined above strong,
because it is a feasibility precondition of j's communicative act to y that j satisfies the feasibility
preconditions of the proxied communicative act. So, if i proxies an inform of the proposition ψ to y
via j, j must believe ψ before it sends the proxied inform message to y.

In addition, we could define weak-proxy, where we do not suppose that j is required to believe ψ. In
this case, j cannot directly inform y of ψ, because j does not satisfy the feasibility preconditions of
inform. In this case, j can only inform y that the original sender i has the intention that the inform
of ψ should happen. More generally, weak-proxy can be expressed as an instance of proxy where
the action <j,cact(y)> is replaced by <j, inform(y, Ii Done (<i, cact(y)>))>.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 21

Example Agent i requests agent j to do recruiting and request a video-on-demand server to send "SF"
programs.

(proxy
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((all ?x (registered(agent-description
 :name ?x
 :services (set
 (service-description
 :name video-on-demand)))))
 (action (agent-identifier :name j)
 (request
 :sender (agent-identifier :name j)
 :content
 "((action ?y5
 (send-program (category "SF"))))"
 :ontology vod-server-ontology
 :language FIPA-SL
 :protocol fipa-request
 :reply-to (set (agent-identifier :name i))
 :conversation-id request-vod-1)
 true)
 :language FIPA-SL
 :ontology brokerage-agent
 :protocol fipa-recruiting
 :conversation-id vod-brokering-1 …)

5 We cannot specify the concrete actor name when agent i sends the proxy message because it is identified by the referential expression (all
?x …). In the above example, a free variable ?x is used as the mandatory actor agent part of the action expression send-program in the
content of embedded request message.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 22

3.15 Query If
Summary The action of asking another agent whether or not a given proposition is true.
Message
Content

A proposition.

Description Query-if is the act of asking another agent whether (it believes that) a given proposition is true. The
sending agent is requesting the receiver to inform it of the truth of the proposition.

The agent performing the query-if act:

• has no knowledge of the truth value of the proposition, and,

• believes that the other agent can inform the querying agent if it knows the truth of the
proposition.

Formal Model <i, query-if (j, φ)> ≡
 <i, request (j, <j, inform-if (i, φ)>)>
 FP: ¬Bifiφ ∧ ¬Uifiφ ∧ ¬Bi Ij Done(<j, inform-if (i, φ)>)
 RE: Done (<j, inform(i, φ)>|<j, inform (i, ¬φ)>)

Example Agent i asks agent j if j is registered with domain server d1:

(query-if
 :sender (agent-identifier :name i)
 :receiver (set (agent-identitfier :name j))
 :content
 ((registered (server d1) (agent j)))
 :reply-with r09
 …)

Agent j replies that it is not:

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content ((not (registered (server d1) (agent j))))
 :in-reply-to r09)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 23

3.16 Query Ref
Summary The action of asking another agent for the object referred to by an referential expression.
Message
Content

A descriptor (a referential expression).

Description Query-ref is the act of asking another agent to inform the requester of the object identified by a
descriptor. The sending agent is requesting the receiver to perform an inform act, containing the
object that corresponds to the descriptor.

The agent performing the query-ref act:

• does not know which object or set of objects corresponds to the descriptor, and,

• believes that the other agent can inform the querying agent the object or set of objects that

correspond to the descriptor.
Formal Model <i, query-ref (j, Ref x δ(x))> ≡

 <i, request (j, <j, inform-ref (i, Ref x δ(x))>)>
 FP: ¬Brefi(Ref x δ(x)) ∧ ¬Urefi(Ref x δ(x)) ∧
 ¬Bi Ij Done(<j, inform-ref (i, Ref x δ(x))>)
 RE: Done(<i, inform (j, Ref x δ(x) = r1)> |...|
 <i, inform (j, Ref x δ(x) = rk)>)

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x
δ(x).

Example Agent i asks agent j for its available services.

(query-ref
 :sender (agent-identinfier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((all ?x (available-service j ?x)))
 …)

Agent j replies that it can reserve trains, planes and automobiles.

(inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((= (all ?x (available-service j ?x))
 (set (reserve-ticket train)
 (reserve-ticket plane)
 (reserve automobile))))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 24

3.17 Refuse
Summary The action of refusing to perform a given action, and explaining the reason for the refusal.
Message
Content

A tuple, consisting of an action expression and a proposition giving the reason for the refusal.

Description The refuse act is an abbreviation for denying (strictly speaking, disconfirming) that an act is
possible for the agent to perform, and stating the reason why that is so.

The refuse act is performed when the agent cannot meet all of the preconditions for the action to
be carried out, both implicit and explicit. For example, the agent may not know something it is
being asked for, or another agent requested an action for which it has insufficient privilege.

The agent receiving a refuse act is entitled to believe that:

• the action has not been done,

• the action is not feasible (from the point of view of the sender of the refusal), and,

• the (causal) reason for the refusal is represented by the a proposition which is the second

element of the message content tuple, (which may be the constant true). There is no
guarantee that the reason is represented in a way that the receiving agent will understand.
However, a cooperative agent will attempt to explain the refusal constructively. See the
description at not-understood.

Formal Model <i, refuse (j, <i, act>, φ)> ≡
 <i, disconfirm (j, Feasible(<i, act>))>;
 <i, inform (j, φ ∧ ¬Done (<i, act>) ∧ ¬Ii Done (<i, act>))>
 FP: Bi ¬Feasible (<i, act>) ∧ Bi (Bj Feasible (<i, act>) ∨
 Uj Feasible (<i, act>)) ∧ Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj ¬Feasible (<i, act>) ∧ Bj α

Where:

α = φ ∧ ¬Done (<i, act>) ∧ ¬Ii Done (<i, act>)

Agent i informs j that action act is not feasible, and further that, because of proposition φ, act has
not been done and i has no intention to do act.

Example Agent j refuses to i reserve a ticket for i, since there are insufficient funds in i's account.

(refuse
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 ((action (agent-identifier :name j)
 (reserve-ticket LHR MUC 27-sept-97))
 (insufficient-funds ac12345))
 :language FIPA-SL)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 25

3.18 Reject Proposal
Summary The action of rejecting a proposal to perform some action during a negotiation.
Message
Content

A tuple consisting of an action description and a proposition which formed the original
proposal being rejected, and a further proposition which denotes the reason for the
rejection.

Description Reject-proposal is a general-purpose rejection to a previously submitted proposal. The
agent sending the rejection informs the receiver that it has no intention that the
recipient performs the given action under the given preconditions.

The additional proposition represents a reason that the proposal was rejected. Since it
is in general hard to relate cause to effect, the formal model below only notes that the
reason proposition was believed true by the sender at the time of the rejection.
Syntactically the reason should be treated as a causal explanation for the rejection,
even though this is not established by the formal semantics.

Formal Model <i, reject-proposal (j, <j, act>, φ, ψ)> ≡
<i, inform (j, ¬Ii Done (<j, act>, φ) ∧ ψ)>
FP : Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
RE : Bj α

Where:

α = ¬Ii Done(<j, act>, φ) ∧ ψ

Agent i informs j that, because of proposition ψ, i does not have the intention for j to
perform action act with precondition φ.

Example Agent i informs j that it rejects an offer from j to sell.

(reject-proposal
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (sell plum 50))
 (cost 200)
 (price-too-high 50))
 :in-reply-to proposal13)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 26

3.19 Request
Summary The sender requests the receiver to perform some action.

One important class of uses of the request act is to request the receiver to perform another
communicative act.

Message
Content

An action expression.

Description The sender is requesting the receiver to perform some action. The content of the message is a
description of the action to be performed, in some language the receiver understands. The action
can be any action the receiver is capable of performing: pick up a box, book a plane flight,
change a password, etc.

An important use of the request act is to build composite conversations between agents, where
the actions that are the object of the request act are themselves communicative acts such as
inform.

Formal Model <i, request (j, a)>
 FP: FP (a) [i\j] ∧ Bi Agent (j, a) ∧ ¬Bi Ij Done (a)
 RE: Done (a)

FP(a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

Examples Agent i requests j to open a file.

(request
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 "open \"db.txt\" for input"
 :language vb)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 27

3.20 Request When
Summary The sender wants the receiver to perform some action when some given proposition becomes

true.
Message
Content

A tuple of an action description and a proposition.

Description Request-when allows an agent to inform another agent that a certain action should be performed
as soon as a given precondition, expressed as a proposition, becomes true.

The agent receiving a request-when should either refuse to take on the commitment, or should
arrange to ensure that the action will be performed when the condition becomes true. This
commitment will persist until such time as it is discharged by the condition becoming true, the
requesting agent cancels the request-when, or the agent decides that it can no longer honour the
commitment, in which case it should send a refuse message to the originator.

No specific commitment is implied by the specification as to how frequently the proposition is re-
evaluated, nor what the lag will be between the proposition becoming true and the action being
enacted. Agents that require such specific commitments should negotiate their own agreements
prior to submitting the request-when act.

Formal Model <i, request-when (j, <j, act>, φ)> ≡
 <i, inform (j, (∃e') Done (e') ∧ Unique (e') ∧
 Ii Done (<j, act>, (∃e) Enables (e, Bj φ) ∧
 Has-never-held-since (e', Bj φ)))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α
 RE: Bj α

Where:

α = (∃e') Done (e') (Unique (e') ∧
 Ii Done (<j, act>, (∃e) Enables (e, Bj φ) ∧
 Has-never-held-since (e', Bj φ))

Agent i informs j that i intends for j to perform some act when j comes to believe φ.

Examples Agent i tells agent j to notify it as soon as an alarm occurs.

(request-when
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((alarm \"something alarming!\"))"))
 (Done(alarm)))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 28

3.21 Request Whenever
Summary The sender wants the receiver to perform some action as soon as some proposition becomes true

and thereafter each time the proposition becomes true again.
Message
Content

A tuple of an action description and a proposition.

Description Request-whenever allows an agent to inform another agent that a certain action should be
performed as soon as a given precondition, expressed as a proposition, becomes true, and that,
furthermore, if the proposition should subsequently become false, the action will be repeated as
soon as it once more becomes true.

Request-whenever represents a persistent commitment to re-evaluate the given proposition and
take action when its value changes. The originating agent may subsequently remove this
commitment by performing the cancel action.

No specific commitment is implied by the specification as to how frequently the proposition is re-
evaluated, nor what the lag will be between the proposition becoming true and the action being
enacted. Agents who require such specific commitments should negotiate their own agreements
prior to submitting the request-when act.

Formal Model <i, request-whenever (j, <j, act>, φ)> ≡
 <i, inform (j, Ii Done (<j, act>, (∃e) Enables (e, Bj φ)))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α = Ii Done (<j, act>, (∃e) Enables (e, Bj φ))

Agent i informs j that i intends that j will perform some act whenever some event causes j to
believe φ.

Examples Agent i tells agent j to notify it whenever the price of widgets rises from less than 50 to more than
50.

(request-whenever
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((action (agent-identifier :name j)
 (inform-ref
 :sender (agent-identifier :name j)
 :receiver (set (agent-identifier :name i))
 :content
 "((iota ?x (= (price widget) ?x)))"))
 (> (price widget) 50))
 …)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 29

3.22 Subscribe
Summary The act of requesting a persistent intention to notify the sender of the value of a reference, and to

notify again whenever the object identified by the reference changes.
Message
Content

A descriptor (a referential expression).

Description The subscribe act is a persistent version of query-ref, such that the agent receiving the subscribe
will inform the sender of the value of the reference, and will continue to send further informs if the
object denoted by the description changes.

A subscription set up by a subscribe act is terminated by a cancel act.

Formal Model <i, subscribe (j, Ref x δ(x))> ≡
 <i, request-whenever (j, <j, inform-ref (i, Ref x δ(x))>,
 (∃y) Bj ((Ref x δ(x) = y))>
 FP: Bi α ∧ ¬Bi (Bifj α ∨ Uifj α)
 RE: Bj α

Where:

α= Ii Done (<j, inform-ref (i, Ref x δ(x))>,
 (∃e) Enables (e, (∃y) Bj ((Ref x δ(x) = y)))

Note: Ref x δ(x) is one of the referential expressions: ιx δ(x), any x δ(x) or all x δ(x).

Examples Agent i wishes to be updated on the exchange rate of Francs to Dollars, and makes a subscription
agreement with j (an exchange rate server).

(subscribe
 :sender (agent-identifier :name i)
 :receiver (set (agent-identifier :name j))
 :content
 ((iota ?x (= ?x (xch-rate FFR USD)))))

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 30

4 References
[Cohen90] Cohen, P. R. and Levesque, H. J., Intention is Choice with Commitment. In: Artificial Intelligence, 42(2-3),

pages 213-262, 1990.
[FIPA00008] FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00008/
[FIPA00025] FIPA Interaction Protocol Library Specification. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00025/
[FIPA00070] FIPA ACL Message Representation in String. Foundation for Intelligent Physical Agents, 2000.

http://www.fipa.org/specs/fipa00070/
[Garson84] Garson, G. W., Quantification in Modal Logic. In: Handbook of Philosophical Logic, Volume II:

Extensions of Classical Logic, Gabbay, D., & Guentner, F., editors. D. Reidel Publishing Company,
pages 249-307, 1984.

[Halpern85] Halpern, J. Y. and Moses, Y., A Guide to the Modal Logics of Knowledge and Belief: A Preliminary Draft.
In: Proceedings of the IJCAI-85, 1985.

[Sadek90] Sadek, M. D., Logical Task Modelling for Man-Machine Dialogue. In: Proceedings of AAAI90, pages 970-
975, Boston, USA, 1990.

[Sadek91a] Sadek, M. D., Attitudes Mentales et Interaction Rationnelle: Vers une Théorie Formelle de la
Communication. Thèse de Doctorat Informatique, Université de Rennes I, France, 1991.

[Sadek91b] Sadek, M. D., Dialogue Acts are Rational Plans. In: Proceedings of the ESCA/ETRW Workshop on the
Structure of Multimodal Dialogue, pages 1-29, Maratea, Italy, 1991.

[Sadek92] Sadek, M. D., A Study in the Logic of Intention. In: Proceedings of the 3rd Conference on Principles of
Knowledge Representation and Reasoning (KR92), pages 462-473, Cambridge, USA, 1992.

[Searle69] Searle, J.R., Speech Acts. Cambridge University Press, 1969.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 31

5 Informative Annex A — Formal Basis of ACL Semantics
This section provides a formal definition of the communication language and its semantics. The intention here is to provide
a clear, unambiguous reference point for the standardised meaning of the inter-agent communicative acts expressed
through messages and protocols. This section of the specification is normative, in that agents which claim to conform to
the FIPA specification ACL must behave in accordance with the definitions herein. However, this section may be treated
as informative in the sense that no new information is introduced here that is not already expressed elsewhere in this
document. The non mathematically-inclined reader may safely omit this section without sacrificing a full understanding of
the specification.

Note also that conformance testing, that is, demonstrating in an unambiguous way that a given agent implementation is
correct with respect to this formal model, is not a problem which has been solved in this FIPA specification. Conformance
testing will be the subject of further work by FIPA.

5.1 Introduction to the Formal Model
This section presents, in an informal way, the model of communicative acts that underlies the semantics of the message
language. This model is presented only in order to ground the stated meanings of communicative acts and protocols. It is
not a proposed architecture or a structural model of the agent design.

Other than the special case of agents that operate singly and interact only with human users or other software interfaces,
agents must communicate with each other to perform the tasks for which they are responsible. Consider the basic case
shown in Figure 1.

Agent i Agent j

Message delivery / transportation service

Convert to transport form Convert from transport form

Goal G

Intent I

Msg M

Message M
Speech act

Figure 1: Message Passing Between Tw o Agents

Suppose that, in abstract terms, Agent i has amongst its mental attitudes the following: some goal or objective G and
some intention I. Deciding to satisfy G, the agent adopts a specific intention, I. Note that neither of these statements
entail a commitment on the design of Agent i: G and I could equivalently be encoded as explicit terms in the mental
structures of a BDI agent, or implicitly in the call stack and programming assumptions of a simple Java or database
agent.

Assuming that Agent i cannot carry out the intention by itself, the question then becomes which message or set of
messages should be sent to another agent (j in Figure 1) to assist or cause intention I to be satisfied? If Agent i is
behaving in some reasonable sense rationally, it will not send out a message whose effect will not satisfy the intention
and hence achieve the goal. For example, if Harry wishes to have a barbecue (G = "have a barbecue"), and thus derives a
goal to find out if the weather will be suitable (G' = "know if it is raining today"), and thus intends to find out the weather (I
= "find out if it is raining"), he will be ill-advised to ask Sally "have you bought Acme stock today?" From Harry's
perspective, whatever Sally says, it will not help him to determine whether it is raining today.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 32

Continuing the example, if Harry, acting more rationally, asks Sally "can you tell me if it is raining today?", he has acted
in a way he hopes will satisfy his intention and meet his goal (assuming that Harry thinks that Sally will know the
answer). Harry can reason that the effect of asking Sally is that Sally would tell him, hence making the request fulfils his
intention. Now, having asked the question, can Harry actually assume that, sooner or later, he will know whether it is
raining? Harry can assume that Sally knows that he does not know, and that she knows that he is asking her to tell him.
But, simply on the basis of having asked, Harry cannot assume that Sally will act to tell him the weather: she is
independent, and may, for example, be busy elsewhere.

In summary: an agent plans, explicitly or implicitly (through the construction of its software) to meet its goals ultimately
by communicating with other agents, that is, sending messages to them and receiving messages from them. The agent
will select acts based on the relevance of the act's expected outcome or rational effect to its goals. However, it cannot
assume that the rational effect will necessarily result from sending the messages.

5.2 The Semantic Language
The Semantic Language (SL6) is the formal language used to define the semantics of the FIPA ACL. As such, SL itself
has to be precisely defined. In this section, we present the SL language definition and the semantics of the primitive
communicative acts.

5.2.1 Basis of the Semantic Language Formalism
In SL, logical propositions are expressed in a logic of mental attitudes and actions, formalised in a first order modal
language with identity7 (see [Sadek 91a] for details of this logic). The components of the formalism used in the following
are as follows:

• p, p1, ... are taken to be closed formulas denoting propositions,

• φ and ψ are formula schemas, which stand for any closed proposition,

• i and j are schematic variables which denote agents, and,

• | = φ means that φ is valid.

The mental model of an agent is based on the representation of three primitive attitudes: belief, uncertainty and choice (or,
to some extent, goal). They are respectively formalised by the modal operators B, U, and C. Formulas using these
operators can be read as:

• Bip "i (implicitly) believes (that) p",

• Uip "i is uncertain about p but thinks that p is more likely than ¬p", and,

• Cip "i desires that p currently holds".

The logical model for the operator B is a KD45 possible-worlds-semantics Kripke structure (see, for example, [Halpern85])
with the fixed domain principle (see, for example, [Garson84]).

To enable reasoning about action, the universe of discourse involves, in addition to individual objects and agents,
sequences of events. A sequence may be formed with a single event. This event may be also the void event. The
language involves terms (in particular a variable e) ranging over the set of event sequences.

To talk about complex plans, events (or actions) can be combined to form action expressions:

6 SL is also used for the content language of the FIPA ACL messages (see [FIPA00008]).
7 This logical framework is similar in many aspects to that of [Cohen90].

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 33

• a1 ; a2 is a sequence in which a2 follows a1

• a1 | a2 is a nondeterministic choice, in which either a1happens or a2, but not both.

Action expressions will be noted as a.

The operators Feasible, Done and Agent are introduced to enable reasoning about actions, as follows:

• Feasible (a, p) means that a can take place and if it does p will be true just after that,

• Done (a, p) means that a has just taken place and p was true just before that,

• Agent (i, a) means that i denotes the only agent that ever performs (in the past, present or future) the actions which

appear in action expression a,

• Single (a) means that a denotes an action expression that is not a sequence. Any individual action is Single. The

composite act a ; b is not Single. The composite act a | b is Single iff both a and b are Single.

From belief, choice and events, the concept of persistent goal is defined. An agent i has p as a persistent goal, if i has p
as a goal and is self-committed toward this goal until i comes to believe that the goal is achieved or to believe that it is
unachievable. Intention is defined as a persistent goal imposing the agent to act. Formulas as PGip and IiP are intended
to mean that "i has p as a persistent goal" and "i has the intention to bring about p", respectively. The definition of I
entails that intention generates a planning process. See [Sadek92] for the details of a formal definition of intention.

Note that there is no restriction on the possibility of embedding mental attitude or action operators. For example, formula
Ui Bj Ij Done (a, Bip) informally means that agent i believes that, probably, agent j thinks that i has the intention that action
a be done before which i has to believe p.

A fundamental property of the proposed logic is that the modelled agents are perfectly in agreement with their own mental
attitudes. Formally, the following schema is valid:

φ ⇔ Biφ

where φ is governed by a modal operator formalising a mental attitude of agent i.

5.2.2 Abbreviations
In the text below, the following abbreviations are used:

1. Feasible (a) ≡ Feasible (a, True)

2. Done (a) ≡ Done (a, True)

3. Possible (φ) ≡ (∃a) Feasible (a, φ)

4. Bifiφ ≡ Biφ ∨ Bi¬φ

Bifiφ means that either agent i believes φ or that it believes ¬φ.

5. Brefi ιxδ(x) ≡ (∃y)Bi (ιxδ(x) = y)

where ι is the operator for definite description and ιxδ(x) is read "the (x which is) δ". Bref i ιxδ(x) means that agent i
believes that it knows the (x which is) δ.

6. Uifiφ ≡ Uiφ ∨ Ui¬φ
Uifiφ means that either agent i is uncertain (in the sense defined above) about φ or that it is uncertain about ¬φ.

7. Urefi ιxδ(x) ≡ (∃y)Ui (ιxδ(x) = y)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 34

Uref i ιxδ(x) has the same meaning as Bref i ιxδ(x), except that agent i has an uncertainty attitude with respect to δ(x)
instead of a belief attitude.

8. ABn,i,jφ ≡ BiBjBi … φ
introduces the concept of alternate beliefs, n is a positive integer representing the number of B operators alternating
between i and j.

In the text, the term "knowledge" is used as an abbreviation for "believes or is uncertain of".

5.3 Underlying Semantic Model
The components of a communicative act (CA) model that are involved in a planning process characterise both the reasons
for which the act is selected and the conditions that have to be satisfied for the act to be planned. For a given act, the
former is referred to as the rational effect or RE8, and the latter as the feasibility preconditions or FPs, which are the
qualifications of the act.

5.3.1 Property 1
To give an agent the capability of planning an act whenever the agent intends to achieve its RE, the agent should adhere
to the following property:

Let ak be an act such that:

1. (∃x) Biak = x

2. p is the RE of ak and

3. ¬Ci ¬Possible (Done(ak));

then the following formula is valid:

Iip ⇒ Ii Done (a1 | ... | an)

Where:

a1, ..., an are all the acts of type ak.

This property says that an agent's intention to achieve a given goal generates an intention that one of the acts known to
the agent be done. Further, the act is such that its rational effect corresponds to the agent's goal, and that the agent has
no reason for not doing it.

The set of feasibility preconditions for a CA can be split into two subsets: the ability preconditions and the context-
relevance preconditions. The ability preconditions characterise the intrinsic ability of an agent to perform a given CA. For
instance, to sincerely assert some proposition p, an agent has to believe that p. The context-relevance preconditions
characterise the relevance of the act to the context in which it is performed. For instance, an agent can be intrinsically
able to make a promise while believing that the promised action is not needed by the addressee. The context-relevance
preconditions correspond to the Gricean quantity and relation maxims.

5.3.2 Property 2
This property imposes on an agent an intention to seek the satisfiability of its FPs, whenever the agent elects to perform
an act by virtue of property 19:

8 Rational effect is also referred to as the perlocutionary effect in some of the work prior to this specification (see [Sadek90]).
9 See [Sadek91b] for a generalised version of this property.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 35

| = Ii Done(a) ⇒ Bi Feasible(a) ∨ IiBi Feasible(a)

5.3.3 Property 3
If an agent has the intention that (the illocutionary component of) a communicative act be performed, it necessarily has
the intention to bring about the rational effect of the act. The following property formalises this idea:

| = Ii Done (a) ⇒ Ii RE (a)

Where:

RE (a) denotes the rational effect of act a.

5.3.4 Property 4
Consider now the complementary aspect of CA planning: the consuming of CAs. When an agent observes a CA, it should
believe that the agent performing the act has the intention (to make public its intention) to achieve the rational effect of the
act. This is called the intentional effect. The following property captures this intuition:

| = Bi(Done (a) ∧ Agent (j, a) ⇒ Ij RE (a))

Note, for completeness only, that a strictly precise version of this property is as follows:

| = Bi(Done (a) ∧ Agent (j, a) ⇒ Ij Bi Ij RE (a))

5.3.5 Property 5
Some FPs persist after the corresponding act has been performed. For the particular case of CAs, the next property is
valid for all the FPs which do not refer to time. In such cases, when an agent observes a given CA, it is entitled to believe
that the persistent feasibility preconditions hold:

| = Bi(Done (a) ⇒ FP (a))

5.3.6 Notation
A communicative act model will be presented as follows:

<i, act (j, C)>
 FP: φ1

 RE: φ2

where i is the agent of the act, j the recipient, act the name of the act, C stands for the semantic content or propositional
content10, and φ1 and φ2 are propositions. This notational form is used for brevity, only within this section on the formal
basis of ACL. The correspondence to the standard transport syntax (see [FIPA00070]) adopted above is illustrated by a
simple translation of the above example:

(act
 :sender i
 :receiver j
 :content
 C)

10 See [Searle69] for the notions of propositional content (and illocutionary force) of an illocutionary act.

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 36

Note that this also illustrates that some aspects of the operational use of the FIPA ACL fall outside the scope of this
formal semantics but are still part of the specification. For example, the above example is actually incomplete without
:language and :ontology parameters to given meaning to C, or some means of arranging for these to be known.

5.3.7 Note on the Use of Symbols in Formulae
Note that variable symbols are used in the semantics description formulae of each communicative act as shown in Table
1.

Symbol Usage
a Used to denote an action. Example: a = <i, inform (j, p)>
act

Used to denote an action type. Example: act = inform (j, p)

Thus, if a = <i, inform (j, p)> and act = inform (j, p) then a = <i, act>.

cact Used to denace only an ACL communicative act type.
φ Used to denote any closed proposition (without any restriction).
p Used to denote a given proposition. Thus 'φ' is a formula schema, that is, a variable that denotes a

formula, and 'p' is a formula (not a variable).

Table 1: Meaning of Symbols in Formulae

Consider the following axiom examples:

Ii φ ⇒ ¬Bi φ,

Here, φ stands for any formula. It is a variable.

Bi (Feasible (a) ⇔ p)

Here, p stands for a given formula: the FP of act 'a'.

5.3.8 Supporting Definitions
Enables (e, φ) = Done (e, ¬φ) ∧ φ

Has-never-held-since (e', φ) = (∀e1) (∀e2) Done (e'; e1 ; e2) ⇒ Done (e2, ¬φ)

5.4 Primitive Communicative Acts

5.4.1 The Assertive Inform
One of the most interesting assertives regarding the core of mental attitudes it encapsulates is the act of informing. An
agent i is able to inform an agent j that some proposition p is true only if i believes p (that is, only if Bip). This act is
considered to be context-relevant only if i does not think that j already believes p or its negation, or that j is uncertain
about p (recall that belief and uncertainty are mutually exclusive). If i is already aware that j does already believe p, there
is no need for further action by i. If i believes that j believes not p, i should disconfirm p. If j is uncertain about p, i should
confirm p.

<i, INFORM (j, φ)>
 FP: Biφ ∧ ¬ Bi(Bifjφ ∨ Uifjφ)
 RE: Bjφ

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 37

The FPs for inform have been constructed to ensure mutual exclusiveness between CAs, when more that one CA might
deliver the same rational effect.

Note, for completeness only, that the above version of the inform model is the operationalised version. The complete
theoretical version (regarding the FPs) is the following:

<i, INFORM (j, φ)>
 FP: Biφ ∧ ∧

>n 1
 ¬ ABn,i,j ¬Biφ ∧ ¬ BiBjφ ∧ ∧

>n 2
 ¬ ABn,i,j Bjφ

 RE: Bjφ

5.4.2 The Directive Request
The following model defines the directive request:

<i, REQUEST (j, a)>
 FP: FP (a) [i\j] ∧ Bi Agent (j, a) ∧ Bi ¬PGj Done (a)
 RE: Done (a)

Where:

• a is a schematic variable for which any action expression can be substituted,

• FP (a) denotes the feasibility preconditions of a, and,

• FP (a) [i\j] denotes the part of the FPs of a which are mental attitudes of i.

5.4.3 Confirming an Uncertain Proposition: Confirm
The rational effect of the act confirm is identical to that of most of the assertives, i.e., the addressee comes to believe the
semantic content of the act. An agent i is able to confirm a property p to an agent j only if i believes p (that is, Bip). This is
the sincerity condition an assertive act imposes on the agent performing the act. The act confirm is context-relevant only if
i believes that j is uncertain about p (that is, Bi Uj p). In addition, the analysis to determine the qualifications required for an
agent to be entitled to perform an Inform act remains valid for the case of the act confirm. These qualifications are
identical to those of an inform act for the part concerning the ability preconditions, but they are different for the part
concerning the context relevance preconditions. Indeed, an act confirm is irrelevant if the agent performing it believes that
the addressee is not uncertain of the proposition intended to be confirmed.

In view of this analysis, the following is the model for the act confirm:

<i, CONFIRM (j, φ)>
 FP: Biφ ∧ BiUjφ
 RE: Bjφ

5.4.4 Contradicting Knowledge: Disconfirm
The confirm act has a negative counterpart: the disconfirm act. The characterisation of this act is similar to that of the
confirm act and leads to the following model:

<i, DISCONFIRM (j, φ)>
 FP: Bi¬φ ∧ Bi(Ujφ ∨ Bjφ)
 RE: Bj¬φ

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 38

5.5 Composite Communicative Acts
An important distinction is made between acts that can be carried out directly, and those macro acts which can be
planned (which includes requesting another agent to perform the act), but cannot be directly carried out. The distinction
centres on whether it is possible to say that an act has been done, formally Done (Action, p). An act which is composed
of primitive communicative actions (inform, request, confirm), or which is composed from primitive messages by
substitution or sequencing (via the ";" operator), can be performed directly and can be said afterwards to be done. For
example, agent i can inform j that p; Done (<i, inform(j, p)>) is then true, and the meaning (that is, the rational
effect) of this action can be precisely stated.

However, a large class of other useful acts is defined by composition using the disjunction operator (written "|"). By the
meaning of the operator, only one of the disjunctive components of the act will be performed when the act is carried out. A
good example of these macro-acts is the inform-ref act. Inform-ref is a macro act defined formally by:

<i, INFORM-REF (j, ιx δ(x))> ≡
 <i, INFORM (j, ιx δ(x) = r1)> | … | <i, INFORM (j, ιx δ(x) = rn)>

where n may be infinite. This act may be requested (for example, j may request i to perform it), or i may plan to perform
the act in order to achieve the (rational) effect of j knowing the referent of δ(x). However, when the act is actually
performed, what is sent, and what can be said to be Done, is an inform act.

Finally an inter-agent plan is a sequence of such communicative acts, using either composition operator, involving two or
more agents. FIPA interaction protocols (see [FIPA00025]) are primary examples of pre-enumerated inter-agent plans.

5.5.1 The Closed Question Case
In terms of illocutionary acts, exactly what an agent i is requesting when uttering a sentence such as "Is p?" toward a
recipient j, is that j performs the act of "informing i that p" or that j performs the act "informing i that ¬p". We know the
model for both of these acts: <j, INFORM (i, φ)>. In addition, we know the relation "or" that holds between these two
acts: it is the relation that allows for the building of action expressions which represent a non-deterministic choice
between several (sequences of) events or actions.

In fact, as mentioned above, the semantic content of a directive refers to an action expression; so, this can be a
disjunction between two or more acts. Hence, by using the utterance "Is p?", what an agent i requests an agent j to do is
the following action expression:

<j, INFORM (i, p)> | <j, INFORM (i, ¬p)>

It seems clear that the semantic content of a directive realised by a yes/no-question can be viewed as an action
expression characterising an indefinite choice between two CAs inform. In fact, it can also be shown that the binary
character of this relation is only a special case: in general, any number of CAs inform can be handled. In this case, the
addressee of a directive is allowed to choose one among several acts. This is not only a theoretical generalisation: it
accounts for classical linguistic behaviour traditionally called alternatives question. An example of an utterance realising
an alternative question is "Would you like to travel in first class, in business class, or in economy class?" In this case,
the semantic content of the request realised by this utterance is the following action expression:

<j, INFORM (i, p1)> | <j, INFORM (i, p2)> | <j, INFORM (i, p3)>

Where p1, p2 and p3 are intended to mean respectively that j wants to travel in first class, in business class, or in economy
class.

As it stands, the agent designer has to provide the plan-oriented model for this type of action expression. In fact, it would
be interesting to have a model which is not specific to the action expressions characterising the non-deterministic choice
between CAs of type inform, but a more general model where the actions referred to in the disjunctive relation remain
unspecified. In other words, to describe the preconditions and effects of the expression a1 | a2 | … | an where a1, a2, …, an
are any action expressions. It is worth mentioning that the goal is to characterise this action expression as a disjunctive

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 39

macro-act which is planned as such; we are not attempting to characterise the non-deterministic choice between acts
which are planned separately. In both cases, the result is a branching plan but in the first case, the plan is branching in
an a priori way while in the second case it is branching in an a posteriori way.

An agent will plan a macro-act of non-deterministic choice when it intends to achieve the rational effect of one of the acts
composing the choice, no matter which one it is. To do that, one of the feasibility preconditions of the acts must be
satisfied, no matter which one it is. This produces the following model for a disjunctive macro-act:

a1 | a2 | … | an

 FP: FP (a1) ∨ FP (a2) ∨ ... ∨ FP (an)
 RE: RE (a1) ∨ RE (a2) ∨ ... ∨ RE (an)

Where FP (ak) and RE (ak) represent the FPs and the RE of the action expression ak, respectively.

Because the yes/no-question, as shown, is a particular case of alternatives question, the above model can be specialised
to the case of two acts inform having opposite semantic contents. Thus, we get the following model:

<i, INFORM (j, φ)> | <i, INFORM (j, ¬φ)>
 FP: Bifiφ ∧ ¬Bi(Bifjφ ∨ Uifjφ)
 RE: Bifjφ

In the same way, we can derive the disjunctive macro-act model which gathers the acts confirm and disconfirm. We will
use the abbreviation <i, CONFDISCONF (j, φ)> to refer to the following model:

<i, CONFIRM (j, φ)> φ <i, DISCONFIRM (j, φ)>)
 FP: Bifiφ ∧ BiUjφ
 RE: Bifjφ

5.5.2 The Query If Act
Starting from the act models <j, INFORM-IF (i, φ)> and <i, REQUEST (j, a)>, it is possible to derive the
query-if act model (and not plan, as shown below). Unlike a confirm/disconfirm-question, which will be addressed below, a
query-if act requires the agent performing it not to have any knowledge about the proposition whose truth value is asked
for. To get this model, a transformation11 has to be applied to the FPs of the act <j, INFORM-IF (i, φ)> and leads to
the following model for a query-if act:

<i, QUERY-IF (j, φ)> ≡
 <i, REQUEST (j, <j, INFORM-IF (i, φ)>)>
 FP: ¬Bifiφ ∧ ¬Uifiφ ∧ Bi ¬PGj Done (<j, INFORM-IF (i, φ)>)
 RE: Done(<j, INFORM (i, φ)> | <j, INFORM (i, ¬φ)>)

5.5.3 The Confirm/Disconfirm Question Act
In the same way, it is possible to derive the following confirm/disconfirm question act model:

<i, REQUEST (j, <j, CONFDISCONF (i, φ)>)>
 FP: Uiφ ∧ Bi¬PGjDone (<j, CONFDISCONF (i, φ)>)
 RE: Done (<j, CONFIRM (i, φ)> | <j, DISCONFIRM (i, φ) φ)

11 For more details about this transformation, called the double-mirror transformation, see [Sadek91a] and [Sadek91b].

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 40

5.5.4 The Open Question Case
Open question is a question which does not suggest a choice and, in particular, which does not require a yes/no answer.
A particular case of open questions are the questions which require referring expressions as an answer. They are
generally called wh-questions. The "wh" refers to interrogative pronouns such as "what", "who", "where", or "when".
Nevertheless, this must not be taken literally since the utterance "How did you travel?" can be considered as a wh-
question.

A formal plan-oriented model for the wh-questions is required. In the model below, from the addressee's viewpoint, this
type of question can be viewed as a closed question where the suggested choice is not made explicit because it is too
wide. Indeed, a question such as "What is your destination?" can be restated as "What is your destination: Paris,
Rome,... ?".

The problem is that, in general, the set of definite descriptions among which the addressee can (and must) choose is
potentially an infinite set, not because, referring to the example above, there may be an infinite number of destinations,
but because, theoretically, each destination can be referred to in potentially an infinite number of ways. For instance,
Paris can be referred to as "the capital of France", "the city where the Eiffel Tower is located", "the capital of the country
where the Man-Rights Chart was founded", etc. However, it must be noted that in the context of man-machine
communication, the language used is finite and hence the number of descriptions acceptable as an answer to a wh-
question is also finite.

When asking a wh-question, an agent j intends to acquire from the addressee i an identifying referring expression (IRE)
[Sadek90] for a definite description, in the general case. Therefore, agent j intends to make his interlocutor i perform a CA
which is of the following form:

<i, INFORM (j, ιxδ(x) = r)>

Where r is an IRE, for example, a standard name or a definite description, and ιxδ(x) is a definite description. Thus, the
semantic content of the directive performed by a wh-question is a disjunctive macro-act composed with acts of the form of
the act above. Here is the model of such a macro-act:

<i, INFORM(j, ιxδ(x) = r1)> | ... | <i, INFORM(j, ιxδ(x) = rk)>

Where rk are IREs. To deal with the case of closed questions, the generic plan-oriented model proposed for a disjunctive
macro-act can be instantiated for the account of the macro-act above. Note that the following equivalence is valid:

(Bi ιxδ(x) = r1 ∨ Bi ιxδ(x) = r2 ∨ ...) ⇔ (∃y) Bi ιxδ(x) = y

This produces the following model, which is referred to as <i, INFORM-REF(j, ιx δ(x))>:

<i, INFORM-REF(j, ιx δ(x))>
 FP: Brefi ιx δ(x) ∧ ¬ Bi (Brefj ιx δ(x) ∨ Urefj ιx δ(x))
 RE: Brefj ιx δ(x)

Where Brefj ιxδ(x) and Urefj ιxδ(x) are abbreviations introduced above, and αrefj ιxδ(x) is an abbreviation
defined as:

αrefj ιx δ(x) ≡ Brefj ιx?δ(x) ∨ Urefj ιx?δ(x)

Provided the act models <j, INFORM-REF (i, ιx δ(x))> and <i, REQUEST (j, a)>, the wh-question act model
can be built up in the same way as for the yn-question act model. Applying the same transformation to the FPs of the act
schema <j, INFORM-REF (i, ιxδ(x))>, and by virtue of property 3, the following model is derived:

<i, QUERY-REF (j, φ)>?≡ <i, REQUEST (j, <j, INFORM-REF (i, ιx δ(x)>)>
 FP: ¬αrefi ιxδ(x) ∧ Bi ¬PGj Done (<j, INFORM-REF (i, ιxδ(x))>)
 RE: Done (<j, INFORM (i, ιxδ(x) = r1)> | … | <j, INFORM (i, ιxδ(x) = rk)>)

© 2000 Foundation for Intelligent Physical Agents FIPA Communicative Act Library

 41

5.6 Inter-Agent Communication Plans
The properties of rational behaviour stated above in the definitions of the concepts of rational effect and of feasibility
preconditions for CAs suggest an algorithm for CA planning. A plan is built up by this algorithm builds up through the
inference of causal chain of intentions, resulting from the application of properties 1 and 2.

With this method, it can be shown that what are usually called "dialogue acts" and for which models are postulated, are,
in fact, complex plans of interaction. These plans can be derived from primitive acts, by using the principles of rational
behaviour. The following is an example of how such plans are derived.

The interaction plan "hidden" behind a question act can be more or less complex depending on the agent mental state
when the plan is generated.

Let a direct question be a question underlain by a plan which is limited to the reaction strictly legitimised by the question.
Suppose that the main content of i's mental state is:

Bi Bifj φ, Ii Bifi φ

By virtue of property 1, the intention is generated that the act <j, INFORM-IF (i, φ)> be performed. Then, according
to property 2, there follows the intention to bring about the feasibility of this act. Then, the problem is to know whether the
following belief can be derived at that time from i's mental state:

Bi(Bifj φ ∧ (¬Bj Bifi φ ∨ Uifi φ))

This is the case with i's mental state. By virtue of properties 1 and 2, the intention that the act <i, REQUEST (j, <j,
INFORM-IF (i, φ)>)> be done and then the intention to achieve its feasibility, are inferred. The following belief is
derivable:

Bi(¬Bifi φ ∧ ¬Uifi φ)

Now, no intention can be inferred. This terminates the planning process. The performance of a direct strict-yn-question
plan can be started by uttering a sentence such as "Has the flight from Paris arrived?", for example.

Given the FPs and the RE of the plan above, the following model for a direct strict-yn-question plan can be established:

<i, YNQUESTION (j, φ)>
 FP: Bi Bifj φ ∧ ¬Bifi φ ∧ ¬Uifi φ ∧ Bi ¬Bj(Bifi φ ∨ Uifi φ)
 RE: Bifi φ

XML and Agent Communication

XML provides a way of structuring data in hunam readable form. Part fo the meaning of data comes
from its structure but XML alone cannot capture all the meaning by itself. You still need semantics
provided by, for example, speech act theory, and SL.

XML lends itself well to expressing ontologies. The DTD allows people to define the structural
relationships anong agreed upon terms. The resulting XML documents are then readable by humans and
usable, without modification, by machines. Becaue of this convenience, a XML is increasing used to
write standards, such as agent communiction standards.

Both FIPA and JADE have integrated some XML into their work. Here are some examples.

Exampels of XML in Agent Communication

ACL in XML

There is now an experimental DTD for ACL. You can look at the current proposed standard. At FIPA.
Or Locally.

Here is the DTD from that document. You can see the influence of speech act theory, just as in the case
of KQML.

<!-- Document Type: XML DTD

Document Purpose: Encoding of FIPA ACL messages in XML

(see [FIPA00067]) and http://www.fipa.org/)

Last Revised: 2000/03/07

-->

<!-- Possible FIPA Communicative Acts. See [FIPA00037] for a

full list of valid performatives.

-->

<!ENTITY % communicative-acts
"accept-proposal|agree|cancel|cfp|confirm
|disconfirm|failure|inform|not-understood
|propose|query-if|query-ref|refuse
|reject-proposal|request|request-when
|request-whenever|subscribe|inform-if
|inform-ref|proxy|propagate">

XML and Agent Communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/aclxml.html (1 of 5) [7/24/2002 10:03:58 PM]

http://www.fipa.org/specs/fipa00071/XC00071B.doc
http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/Dtd/XC00071B.doc

<!-- The FIPA message root element, the communicative act is

an attribute - see below and the message itself is a list

of parameters. The list is unordered. None of the elements

should occur more than once except receiver.

-->

<!ENTITY %msg-param
"receiver|sender|content|language|content-language-encoding|ontology|
protocol|reply-with|in-reply-to|reply-by|reply-to|conversation-id">

<!ELEMENT fipa-message (%msg-param;)*>

<!-- Attribute for the fipa-message - the communicative act itself and

the conversation id (which is here so an ID value can be used).

-->
<!ATTLIST fipa-message act (%communicative-acts;) #REQUIRED
conversation-id ID #IMPLIED>

<!-- The agent identifier of the sender.

-->

<!ELEMENT sender (agent-identifier)>

<!-- The agent identifier(s) of the receiver.

-->

<!ELEMENT receiver (agent-identifier)>

<!-- The message content.

One can choose to embed the actual content in the message,

or alternatively refer to a URI which represents this content

-->

<!ELEMENT content (#PCDATA)>
<!ATTLIST content href CDATA #IMPLIED>

<!-- The content language used for the content.

The linking attribute href associated with language can be used

to refer in an unambiguous way to the (formal) definition of the

standard/fipa content language.

-->

<!ELEMENT language (#PCDATA)>

XML and Agent Communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/aclxml.html (2 of 5) [7/24/2002 10:03:58 PM]

<!ATTLIST language href CDATA #IMPLIED>

<!-- The encoding used for the content language.

The linking attribute href associated with encoding can be used

to refer in an unambiguous way to the (formal) definition of the

language encoding.

-->

<!ELEMENT content-language-encoding (#PCDATA)>
<!ATTLIST content-language-encoding href CDATA #IMPLIED>

<!-- The ontology used in the content.

The linking attribute href associated with ontology can be used

to refer in an unambiguous way to the (formal) definition of the

ontology.

-->

<!ELEMENT ontology (#PCDATA)>
<!ATTLIST ontology href CDATA #IMPLIED>

<!-- The protocol element.

The linking attribute href associated with protocol can be used

to refer in an unambiguous way to the (formal) definition of the

protocol.

-->

<!ELEMENT protocol (#PCDATA)>
<!ATTLIST protocol href CDATA #IMPLIED>

<!-- The reply-with parameter.

-->

<!ELEMENT reply-with (#PCDATA)>
<!ATTLIST reply-with href CDATA #IMPLIED>

<!-- The in-reply-to parameter.

-->

<!ELEMENT in-reply-to (#PCDATA)>
<!ATTLIST in-reply-to href CDATA #IMPLIED>

<!-- The reply-by parameter.

-->

XML and Agent Communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/aclxml.html (3 of 5) [7/24/2002 10:03:58 PM]

<!ELEMENT reply-by EMPTY>

<!-- See [FIPA00071] for the definition of time.

-->

<!ATTLIST reply-by time CDATA #REQUIRED
href CDATA #IMPLIED>

<!-- The reply-to parameter.

-->

<!ELEMENT reply-to (agent-identifier)>

<!-- The conversation-id parameter.

-->

<!ELEMENT conversation-id (#PCDATA)>
<!ATTLIST conversation-id href CDATA #IMPLIED>

<!ELEMENT agent-identifier (name, addresses?, resolvers?, user-defined*)>

<!ELEMENT name EMPTY>

<!-- An id can be used to uniquely identify the name of the agent.

The refid attribute can be used to refer to an already defined

agent name, avoiding unnecessary repetition. Either the id

OR refid should be specified, (both should not be present at the

same time)

-->

<!ATTLIST name id ID #IMPLIED
refid IDREF #IMPLIED>

<!ELEMENT addresses (url+)>
<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA #IMPLIED>

<!ELEMENT resolvers (agent-identifier+)>

<!ELEMENT user-defined (#PCDATA)>
<!ATTLIST user-defined href CDATA #IMPLIED>

JADE has an add-on which provides a codec for the above DTD.

XML and Agent Communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/aclxml.html (4 of 5) [7/24/2002 10:03:58 PM]

http://www.scs.ryerson.ca/~dgrimsha/jade/doc/tutorials/XMLACL.html

RDF in XML

One of the newest semantic languages used for agent communcation is the Resource Description
Framework (RDF). FIPA sets the standard for this and the JADE team is promising to have an
implementation by the end of 2001. RDF is a content language, a competitor for SL. RDF is supported
by yet another important standards setting body, W3C, the World Wide Web Consortium.

RDF Specification HTML pdf (local)

[top] [previous] [next] Questions?

XML and Agent Communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/aclxml.html (5 of 5) [7/24/2002 10:03:58 PM]

http://www.fipa.org/specs/fipa00011/XC00011B.html
mailto:dgrimsha@scs.ryerson.ca

Agent Content Languages

SL
SL stands for Semantic Language. It is the standard language for use in the :content slot of ACL.
Actually, as far as ACL communictive acts are concerned, any language can be used for content, e.g.,
prolog or english. However, most people doing agent research use some version of SL, SLO, SL1, or
SL2.

To use SL you must adhere to the standards set by FIPA.

FIPA SL Specification

pdf format (local)●

HTML format●

SL is a subtle language and not easy to use. Not surprising since it is concerned with semantics, always a
difficult topic. The JADE system uses it by default.

Other Content Languages

KIF

KIP stands for Knowledge Interchange Format. It was originally designed as a content language to work
with KQML.

FIPA KIF specification

RDF

RDF stands for Resource Description Framework. It is quite new and has the advantage of being written
in XML.

FIPA RDF specification

Agent Content Lanuguages

http://www.ryerson.ca/~dgrimsha/courses/cps720/sl.html [7/24/2002 10:03:58 PM]

http://www.fipa.org/specs/fipa00008/XC00008G.html
http://www.fipa.org/specs/fipa00010/XC00010B.html
http://www.fipa.org/specs/fipa00011/XC00011B.html

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS

FIPA RDF Content Language Specification

Document title FIPA RDF Content Language Specification
Document number XC00011A Document source FIPA TC C
Document status Experimental Date of this status 2000/08/18
Supersedes FIPA00003
Contact fab@fipa.org
Change history
2000/08/18 Approved for Experimental

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/

Geneva, Switzerland

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property rights
of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to use any
of the technologies described. Anyone planning to make use of technology covered by the intellectual property rights of
others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone implementing any
part of this specification to determine first whether part(s) sought to be implemented are covered by the intellectual
property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of such intellectual
property prior to implementation. This specification is subject to change without notice. Neither FIPA nor any of its
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may result from the
use of this specification.

 ii

Foreword

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-
based applications. This occurs through open collaboration among its member organizations, which are companies and
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties
and intends to contribute its results to the appropriate formal standards bodies.

The members of FIPA are individually and collectively committed to open competition in the development of agent-based
applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, partnership,
governmental body or international organization without restriction. In particular, members are not bound to implement or
use specific agent-based standards, recommendations and FIPA specifications by virtue of their participation in FIPA.

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a specification
can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process of specification
may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA specifications and their
current status may be found in the FIPA List of Specifications. A list of terms and abbreviations used in the FIPA
specifications may be found in the FIPA Glossary.

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA
specifications and upcoming meetings may be found at http://www.fipa.org/.

 iii

Contents

1 Introduction ... 1
1.1 A Summary of RDF ... 1

2 RDF as a FIPA Content Language... 2
2.1 Objects .. 2
2.2 Propositions ... 2
2.3 Actions .. 4
2.4 Action Implementations ... 6

3 Exchange of Rules Extensions ..11
3.1 Introduction..11
3.2 Rules in XML/RDF..11
3.3 Exchanging Rules as Programming Code...12
3.4 Using Rules with FIPA Communicative Acts ...13
3.5 Further Remarks ..13

4 Examples of Use..15
4.1 RDF Schemas for FIPA RDF 0..15
4.2 RDF Schemas for FIPA RDF 1..17

5 References...18

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 1

1 Introduction
This specification describes how the Resource Description Framework (RDF - see [W3crdf]) can be used as content
language in a FIPA message. Although FIPA does not require that a content language is able to represent actions1, a lot
of communicative acts require actions in their content. Therefore, we will show how RDF schemas can be defined
extending its model to express:

• Objects which are constructs that represent an identifiable entity (be it abstract or concrete) in the domain of

discourse,

• Propositions which are statements expressing that some sentence in a language is true or false, and,

• Actions which try to express an activity that can be carried out by an object.

By means of existing mechanisms in RDF (schema definitions), modular RDF extensions will be proposed, based on the
fipa-rdf0 content language. Those extensions will be able to tackle for example rules, logic algebra constructs, and
others. These extensions can then be labelled as fipa-rdf1, fipa-rdf2, etc.

The general motivation behind this approach is to enable and ease the use of RDF Schemas emerging on the Web such
as CC/PP, and to define one common standard approach here to increase the level of interoperability. The main strengths
of the RDF language are in its extensibility, reusability and simplicity. Another advantage of RDF is that data and
schemas are exchanged in a similar way.

The RDF model proposes the eXtensible Markup Language (XML - see [W3Cxml]) as an encoding syntax, but does not
prevent anyone from using alternative encoding schemes. All fipa-rdf examples will therefore use an XML encoding,
although, in principle, other encoding schemes could be used.

1.1 A Summary of RDF
The RDF framework is based on an entity-relationship model. The RDF Data Model is described by means of resources,
properties and their values. A specific resource together with one or more named properties plus the values of these
properties is an RDF description (a collection of RDF statements).

In addition to the RDF Data Model, the RDF Schemas (see [W3Crdfsch]) specification provides a typing system for the
resources and properties used in the RDF data. It defines concepts such as classes, subclasses, properties or sub-
properties. It also allows expressing constraints. Both the RDF Data Model and RDF Schema propose XML as a
serialization syntax.

RDF is a "foundation for processing meta-data in the way that it provides interoperability between applications that
exchange machine-understandable information." This suggests that RDF could be most useful to facilitate knowledge
sharing and exchange between agents.

1 A content language must be able to express at least any of propositions, objects or actions.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 2

2 RDF as a FIPA Content Language
To be able to use RDF as a content language for FIPA ACL messages, we have to explore how objects, propositions and
functions can be expressed in RDF, without endangering key extensibility inherent to the language. On the other hand, we
will try to preserve RDF's simplicity, which is crucial for the success of languages on the Internet.

We suggest to use the name fipa-rdf0, for the combined use of RDF and the basic schemas which define the
extensions needed for FIPA.

2.1 Objects
Taking the above into account, it is obvious to see an analogy between an ACL object and an RDF resource, since both
are defined as descriptions of a certain identifiable entity. This enables us to use RDF resource identifiers and references
as ACL object identifiers and references. This means that to resolve an RDF reference, we can use a the FIPA
communicative act query-ref (see [FIPA00054]), which will then be followed by an 'inform' message, describing this
object.

2.2 Propositions
In the same context it seems logical to model ACL propositions using RDF statements. An RDF statement is composed
out of three parts: subject (resource), predicate (property) and object (literal/value). As an example, consider the sentence
"W. Richard Stevens is the author of TCP/IP Illustrated". The RDF components of this proposition are the subject (TCP/IP
Illustrated), the predicate (Author) and the object (W. Richard Stevens). This sentence/statement can then be described in
RDF in the following manner:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">

 <rdf:Description ID="TCP/IP Illustrated">
 <s:author>W. Richard Stevens</s:author>
 </rdf:Description>
</rdf:RDF>

Figure 1 represents this in RDF graph form. This way we have a starting point to state logical expressions in our content.
Taking this one step further, we can say that by expressing this statement, we indicate our belief in this statement. In this
way we can say that we always assume that an RDF statement expresses a belief. This approach would be sufficient in
any context where the level of logic involved is limited.

 TCP/IP Illustrated W. Richard Stevens a:author

Figure 1: A Proposition as an RDF Statement

To overcome this shortcoming however, we will explain how logical belief or disbelief of a certain statement could be
expressed explicitly using RDF. To express that we believe a statement to be true or false, we have to model the original
statement as a reified statement, that is, a resource with four predefined properties:

• The subject property identifies the resource being described by the modelled statement; that is, the value of this

property is the resource about which the original statement was made.

• The predicate property identifies the property of the original statement; that is, the value is the specific property in

the original statement.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 3

• The object property identifies the property value in the original statement; that is, the value is the object in the original
statement.

• The value of the type property describes the type of the new resource. All reified statements are instances of

rdf:Statement.

A new resource with the above four properties represents the original statement and can both be used as the object of
another statement and have additional statements made about it. The resource with these four properties is not a
replacement for the original statement, but it is a model of the statement.

By extending the RDF syntax model with the following elements, a means to express belief or disbelief of a statement is
allowed (the complete schema of the RDF extensions can be found in Section 4.1, RDF Schemas for FIPA RDF 1):

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdfs:Class rdf:ID="http://www.fipa.org/schemas#Proposition">
 <rdfs:label xml:lang="en">proposition</rdfs:label>
 <rdfs:label xml:lang="fr">proposition</rdfs:label>
 <rdfs:comment>This describes the set of propositions</rdfs:comment>
 <rdfs:subClassOf rdf:resource=
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>
 </rdfs:Class>

 <rdfs:ConstraintProperty rdf:ID="http://www.fipa.org/schemas#belief">
 <rdfs:label xml:lang="en">belief</rdfs:label>
 <rdfs:label xml:lang="fr">acte</rdfs:label>
 <rdfs:domain rdf:resource="#Proposition"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>
</rdf:RDF>

Using this method we can easily describe ACL propositions in RDF. As an example, the following proposition will be
modelled: "The statement 'W. Richard Stevens is the author of TCP/IP Illustrated' is true". One way to do this is as
follows:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa=http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Proposition>
 <rdf:subject>TCP/IP Illustrated</rdf:subject>
 <rdf:predicate rdf:resource="http://description.org/ schema#author"/>
 <rdf:object>W. Richard Stevens</rdf:object/>
 <fipa:belief>true</fipa:belief>
 </fipa:Proposition>
</rdf:RDF>

Expressing that the same statement is false, is equally easy by replacing the value 'true' with 'false'. The RDF graph
representation of the 'false' statement is presented in Figure 2.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 4

 TCP/IP Illustrated

W. Richard Stevens

rdf:subject

rdf:obj
ect

s:author rdf:Statement

false

rdf:predicate rdf:type

fipa:belief

Figure 2: Explicit Logical Proposition in RDF

2.3 Actions
An action expresses an activity, carried out by an object. There are three different properties related to an 'action':

• An act identifies the operative part of the action; it can serve to identify the type of act or merely to describe the act.

In the latter case specific types of action classes can be derived from the Action class.

• An actor identifies the entity responsible for the execution of the action, that is, the value is the specific entity which

will/can/should perform the act (often the receiver, but possibly another agent/entity under "control" of the receiver).

• An argument identifies an (optional) entity which can be used for the execution of the action; that is, the value is

entity which is used by the actor to perform the act. An action can have multiple arguments.

When looking at an action this way, there is a structural analogy with a RDF statement.

To model an action, the RDF syntax model can be extended with a new RDF type fipa:Action which has these
properties. As an example, the following action will be modelled: "John opens door1 and door2". In this small example,
the properties are the act (Open), the actor (John) and the arguments (door1 and door2). In RDF, this action can then be
described as:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Action rdf:ID="JohnAction1">
 <fipa:actor>John</fipa:actor>
 <fipa:act>open</fipa:act>
 <fipa:argument>
 <rdf:bag>
 <rdf:li>door1</rdf:li>
 <rdf:li>door2</rdf:li>
 </rdf:bag>
 </fipa:argument>
 </fipa:Action>
</rdf:RDF>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 5

According to the RDF specification, the resource type defined in the schema corresponding to the type property can be
used directly as an element name when the Description element contains a type property. So, a shorter version of the
above example could be written as follows:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas#">

 <fipa:Action rdf:ID="JohnAction1">
 <fipa:actor>John</fipa:actor>
 <fipa:act>open</fipa:act>
 <fipa:argument>
 <rdf:bag>
 <rdf:li>door1</rdf:li>
 <rdf:li>door2</rdf:li>
 </rdf:bag>
 </fipa:argument>
 </fipa:Action>
</rdf:RDF>

The model above still lacks the ability to state whether some action has finished or what the result is of the action. this
can be solved by simply adding extra properties to the description of the action.

As an example, suppose Mary requests John to open door 1 and door 2 and then wants John to inform her if he performed
the action and what the result is. This little scenario exists of two messages:

• Request from Mary to John containing the description of the action, and,

• Inform from John to Mary, referring to the action and stating the completion of the action.

Using FIPA ACL combined with RDF content, the first messages could be expressed as:

(request
 :sender Mary
 :receiver John
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas#">

 <fipa:Action rdf:ID="JohnAction1">
 <fipa:actor>John</rdf:actor>
 <fipa:act>open</rdf:act>
 <fipa:argument>
 <rdf:bag>
 <rdf:li>door1</rdf:li>
 <rdf:li>door2</rdf:li>
 </rdf:bag>
 </fipa:argument>
 </fipa:Action>
 </rdf:RDF>)
 :language fipa-rdf0)

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 6

John

fipa:argument

JohnAction

fipa:actor

fipa:Action fipa:act rdf:type

rdf:Bag
rdf:type

door1

rdf:_2 rdf:_1

door2

open

Figure 3: Example of an Open Action

And the subsequent reply message could be:

(inform
 :sender John
 :receiver Mary
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas#">

 <rdf:Description about="#JohnAction1">
 <fipa:done>true</fipa:done>
 <fipa:result>doors closed</fipa:result>
 </rdf:Description>
 </rdf:RDF>)
 :language fipa-rdf0)

Note the ability offered by RDF to include previous actions by means of a reference instead of repeating the whole action.
The RDF graph representation of the complete action description is presented in Figure 3.

 JohnAction

false

fipa:done

doors closed

fipa:result

Figure 4: Result of an Open Action

2.4 Action Implementations
Different possible scenarios can be distinguished between when using the RDF actions. One possible usage is when a
software designer describes in documentation (that is, in the RDF schemas in rdfs:comment) what is meant by a
particular action; it is left to the implementer to decide which functions will be called. In another scenario, a more explicit
description of the semantics might be needed by linking the action with some programming language. This section deals
with the latter case.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 7

When an agent does not know how to perform an action and needs a more explicit representation of this action, the
sender agent can specify the code which implements the action. For this purpose a new property for actions is
introduced, called implementedBy, which has a resource of the type Code as property its value.

A first possibility is that the property implementedBy contains a reference (a URI) to an external software module
written in a specific programming language. For this purposes the Code resource therefore has a property language and
a property code-uri. For reasons of simplicity, it is assumed that the language used is either Java or a scripting
language such as JScript or ECMAscript. So, the property code-uri is a reference to the location of code where the
method or function can be found (for Java a code base followed by a class name).

When a Java class is referenced, code-uri can contain the Java code-base. The receiving agent can then download this
class, instantiate it (if needed), and perform the required action (or not). When a non-static class is being referred, we
assume that there is always a zero-argument constructor (cfr. the requirement for JavaBeans).

In addition, we assume that there always exists a one-to-one correspondence between the FIPA arguments and fipa
result property, into the method's arguments resp. return value. When multiple arguments are used, and the sequence of
those is important, one should use the rdf:Seq container to separate them.

As an example, suppose agent 'Student' requests agent 'Mathematician' to find the next prime following after '7'. The
request message is as follows (see Figure 5):

(request
 :sender Student
 :receiver Mathematician
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Action rdf:ID="studreq01">
 <fipa:actor>Mathematician</fipa:actor>
 <fipa:act>findNextPrime</fipa:act>
 <fipa:argument>7</fipa:argument>
 <fipa:implementedBy>
 <fipa:Code>
 <fipa:language>Java</fipa:language>
 <fipa:code-uri>
 http://www.mathagent.com/math.utility.prime
 </fipa:code-uri>
 </fipa:Code>
 </fipa:implementedBy>
 </fipa:argument>
 </fipa:Action>
 </rdf:RDF>)
 :language fipa-rdf0)

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 8

MathAgent
fipa:argument

fipa:actor

fipa:Action studreq01 fipa:act rdf:type

7

findNextPrime

http://www.mathagent.com/math.utility.prime

fipa:implementedBy

Figure 5: Actions and Implementation References

In the previous example, it is assumed that there exists a function or method in the static class
math.utility.prime.class with the same name of the FIPA act (findNextPrime). If the name of the method is
different from the FIPA act's name, then the method name should be included after the hash sign (#) of the property value
code-uri. For example:

<fipa:implementedBy>
 <fipa:Code>
 <fipa:language>Java</fipa:language>
 <fipa:code-uri >
 http://www.mathagent.com/math.utility.prime#nextPrime
 </fipa:code-uri>
 </fipa:Code>
</fipa:implementedBy>

The Mathematician agent could reply with:

(inform
 :sender Mathematician
 :receiver Student
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Action rdf:about="#studreq01">
 <fipa:done>true</fipa:done>
 <fipa:result>11</fipa:result>
 </fipa:Action>
 </rdf:RDF>)
 :language fipa-rdf0)

 studreq01

11

fipa:result

true

fipa:done

Figure 6: Result of the findNextPrime Action

Sometimes, multiple implementations can be associated with one specific action so the implementedBy property can
contain an rdf:Alt container of Code classes. In some cases, the method implementation of the code may need to
refer to values of the RDF data model and conventions are needed to establish a mapping between the RDF data and

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 9

(Java) object model. Although no real standards already exist, several initiatives are taking off to define such a binding.
Examples include:

• DATAX: the Java interface (see [DATAX]),

• GINF: the interfaces specified in the Generic Interoperability Framework (see [Melnik99]),

• 3AP: the RDF-Java mapping as used in Alcatel's 3AP platform, and,

• Other Java API's have been suggested on the RDF-DEV mailing lists.

The following example shows the use of the binding property:

(request
 :sender agent-dealer
 :receiver agent-carshop
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Action rdf:ID="price-update1">
 <fipa:actor>agent-carshop</rdf:actor>
 <fipa:act>addNewPrices</rdf:act>
 <fipa:implementedBy>
 <fipa:Code>
 <fipa:language>Java</fipa:language>
 <fipa:binding>DATAX</fipa:binding>
 <fipa:codeURI>
 http://www.carshop.com/bin/CarStock
 </fipa:codeURI>
 </fipa:Code>
 </fipa:implementedBy>
 </fipa:Action>
 </rdf:RDF>)
 :language fipa-rdf0)

The file CarStock.java could look as follows:

import com.muze.datax.*;
import com.muze.datax.rdf.*;

public class CarStock {

public CarStock() { }

void addNewPrices() {
 EntitySet entities = new RDFReader().read("carstock.rdf");
 DATAXFactory f = new DefaultDATAXFactory();
 Iterator it = entities.iterator();

 while (it.hasNext()) {
 Entity e = (Entity)it.next();
 Property p = e.getProperty("http://www.carshop.com/schemas#price");
 Float price = Float.valueOf(p.getValue());
 p-new = f.createProperty(Property.ATTRIBUTE,

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 10

 "newprice", 1.05*price.floatValue());
 e.add(p-new);
 }
}

In this example, the car dealer requests the car shop to attach new prices to their car stock: the new prices should
become 5% higher than the old ones. In the Java file, the DATAX model is used to map the RDF data model into Java
objects.

A second possibility is that the fipa:implementedBy property includes code which is directly embedded as a (Java)
script. The property fipa:script of the resource fipa:Code can be used these for purposes. Once again,
conventions are needed to map the RDF data and the Java (script) model. For an example, see Section 3.3, .

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 11

3 Exchange of Rules Extensions
This module allows the expression and exchange of rules, based on the FIPA-RDF0 model.

3.1 Introduction
Using the fipa-rdf1 language, agents can exchange knowledge about rules. An agent can inform another agent about
one of its own "house" rules, but may also request to fire a particular rule on (a subset of) their knowledge base. In
general, we leave it up to the implementer of the agent how to use the exchanged rules. The fipa-rdf1 builds on top of
the fipa-rdf0 schemas, and provides extra schema information for expressing rules.

We will distinguish between two different approaches for dealing with rules:

1. Rules exchanged as XML/RDF encoded expressions.

2. Rules exchanged as pieces of programming code (scripts or Java classes).

3.2 Rules in XML/RDF
An RDF rule consists of two basic components: a selection part and a manipulation part, which applies to all RDF
resources contained in the selection. To express the selection, an RDF notation for this purpose is chosen. To express
the manipulation part, which allows to change property values of the selected resources, we will simply use the RDF data
model itself.

In order to select parts of the RDF data resources, one can use an RDF query language. No real standards do exist at the
moment, but various specifications are available which define how to query/select particular RDF resources including:

• RDF Query Specification (see [W3Crdfquery]), and,

• A Query and Inference Service for RDF (see [Decker98]).

The selection results will be put in an RDF container, identified by the property fipa:selection-result of the rule.
The manipulation part will then give an RDF description for all resources contained in the container of the selection
results. The following is an example of an RDF encoded rule:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf1#"
 xmlns:car="http://www.cars.org/schemas#"
 xmlns:rdfq="http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html">

 <fipa:Rule rdf:ID="categorizeCars1">
 <fipa:selection-result rdf:ID="speedycars"/>
 <fipa:selection>
 <rdfq:rdfquery>
 <rdfq:From eachResource="http://www.carshop.com/res/">
 <rdfq:Select>
 <rdfq:Condition>
 <rdfq:equals>
 <rdfq:Property name="rdf:type"/>
 <rdfq:String>
 http://www.cars.org/schemas#Car
 </rdfq:String>
 </rdfq:equals>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 12

 <rdfq:greaterThan>
 <rdfq:Property name="http://www.cars.org/schemas#speed"/>
 <rdfq:Integer>200</rdfq:Integer>
 </rdfq:greaterThan>
 </rdfq:Condition>
 </rdfq:Select>
 </rdfq:From>
 </rdfq:rdfquery>
 </fipa:selection>
 <fipa:manipulation>
 <rdf:Description rdf:aboutEach="speedycars">
 <car:category>speed-car</car:category>
 </rdf:Description>
 </fipa:manipulation>
 </fipa:selection-result>
 </fipa:Rule>
</rdf:RDF>

In the above example, first all cars are selected from all resources contained in http://www.carshop.com/res/ for
which the maximum speed exceeds 200 (km/h). In the manipulation part, for all resources contained in the resulting
collection, the value of the property car:category is set to speed-car.

3.3 Exchanging Rules as Programming Code
A rule is directly expressed as some piece of code (which presumably also selects nodes, and subsequently manipulates
the RDF data). For this purpose, the property fipa:implementedAs is attached to the fipa:Rule class, as the
property implementedBy was attached to a fipa:Action class.

The following example states that "for all cars for which the property speed exceeds 200 (km/h), the property category
should be set to race-car:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#"
 xmlns:car="http://www.cars.org/schemas#"
 xmlns="http://www.fipa.org/schemas/fipa-rdf1#">

 <fipa:Rule rdf:ID="categorizeCars2">
 <fipa:implementedAs>
 <fipa:Code>
 <fipa:language>ECMAScript</fipa:language>
 <fipa:binding>3AP</fipa:binding>
 <fipa:script>
 NodeSelection selection = new NodeSelection("");
 Iterator it = selection.iterator();

 while (it.hasNext()) {
 Node n = (Node)it.next();

 if ((n.getProperty("speed").getValue() > 200) &
 (n.getProperty("type").getValue().
 equals("http://www.cars.org/schemas#Car")) {
 n.getProperty("category").setValue("race-car");
 }
 }
 </fipa:script>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 13

 </fipa:Code>
 </fipa:implementedAs>
 </fipa:Rule>
</rdf:RDF>

This script uses the 3AP APIs to map the RDF data with the Java object model.

3.4 Using Rules with FIPA Communicative Acts
An agent may request another agent to fire a specific rule to his knowledge base.

(request
 :sender i
 :receiver j
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#"
 xmlns="http://www.fipa.org/schemas/fipa-rdf1#">

 <FireRule>
 <rdf:type rdf:resource="http://www.fipa.org/schemas#Action"/>
 <argument rdf:resource="#categorizeCars2">
 </FireRule>
 </rdf:RDF>)
 :language fipa-rdf1)

The rules engine will then have an impact on the properties of all car instances.

Another use is that an agent informs another agent about its (implicit) belief in the correctness of a rule:

(inform
 :sender i
 :receiver j
 :content (
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/TR/REC-rdf-syntax#"
 xmlns="http://www.fipa.org/schemas/fipa-rdf1#">

 <fipa:Rule about="#categorizeCars2"/>
 </rdf:RDF>)
 :language fipa-rdf0)

The receiving agent may then decide to apply the rule (or not).

3.5 Further Remarks
In practice, the RDF content in a FIPA message may look quite verbose. However, this problem can be tackled in different
ways:

• The RDF specification itself has been foreseen in a number of alternative 'abbreviated forms'.

• Binary encodings can be used instead, as defined by the XML Token specification (see [W3Cxml]).

• Some parts of the content can be defined in advance by unique XML identifiers (URIs) and then used in subsequent

messages. This may be especially useful when the negotiation focuses only on one specific service parameter.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 14

To support the latter mechanism of cross-referencing parts of the RDF content, we suggest the usage of the query-ref
and inform (see [FIPA00046]) FIPA communicative acts.

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 15

4 Examples of Use
A number of companies and organisations in the FACTS project (see [FACTS]) have used FIPA RDF as content language
for agent-based provisioning of virtual private networks.

4.1 RDF Schemas for FIPA RDF 0
The RDF schema needed for using fipa-rdf0 (for expressing actions and propositions) is as follows:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#">

 <rdfs:Class rdf:ID="Proposition">
 <rdfs:label xml:lang="en">proposition</rdfs:label>
 <rdfs:label xml:lang="fr">proposition</rdfs:label>
 <rdfs:subClassOf rdf:resource=
 "http://www.w3c.org/1999/02/22-rdf-syntax-ns#Statement"/>
 <rdfs:comment>This describes the set of propositions</rdfs:comment>
 </rdfs:Class>

 <rdfs:ConstraintProperty rdf:ID="belief">
 <rdfs:label xml:lang="en">belief</rdfs:label>
 <rdfs:label xml:lang="fr">acte</rdfs:label>
 <rdfs:domain rdf:resource="#Proposition"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>

 <rdfs:Class rdf:ID="Action">
 <rdfs:label xml:lang="en">action</rdfs:label>
 <rdfs:label xml:lang="fr">action</rdfs:label>
 <rdfs:subClassOf rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Resource"/>
 <rdfs:comment>This describes the set of actions</rdfs:comment>
 </rdfs:Class>

 <rdfs:ConstraintProperty rdf:ID="act">
 <rdfs:label xml:lang="en">act</rdfs:label>
 <rdfs:label xml:lang="fr">acte</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="actor">
 <rdfs:label xml:lang="en">actor</rdfs:label>
 <rdfs:label xml:lang="fr">acteur</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="argument">
 <rdfs:label xml:lang="en">argument</rdfs:label>
 <rdfs:label xml:lang="fr">argument</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 16

 <rdfs:ConstraintProperty rdf:ID="done">
 <rdfs:label xml:lang="en">done</rdfs:label>
 <rdfs:label xml:lang="fr">fini</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="result">
 <rdfs:label xml:lang="en">result</rdfs:label>
 <rdfs:label xml:lang="fr">resultat</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="implementedBy">
 <rdfs:label xml:lang="en">implementedBy</rdfs:label>
 <rdfs:label xml:lang="fr">implemente par</rdfs:label>
 <rdfs:domain rdf:resource="#Action"/>
 </rdfs:ConstraintProperty>

 <rdfs:Class rdf:ID="Code">
 <rdfs:label xml:lang="en">code</rdfs:label>
 <rdfs:label xml:lang="fr">code</rdfs:label>
 <rdfs:comment>This describes the code implementation</rdfs:comment>
 </rdfs:Class>

 <rdfs:ConstraintProperty rdf:ID="language">
 <rdfs:label xml:lang="en">language</rdfs:label>
 <rdfs:label xml:lang="fr">langue</rdfs:label>
 <rdfs:domain rdf:resource="#Code"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="binding">
 <rdfs:label xml:lang="en">binding</rdfs:label>
 <rdfs:label xml:lang="fr">binding</rdfs:label>
 <rdfs:domain rdf:resource="#Code"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="code-uri">
 <rdfs:label xml:lang="en">code-uri</rdfs:label>
 <rdfs:label xml:lang="fr">code-uri</rdfs:label>
 <rdfs:domain rdf:resource="#Code"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="script">
 <rdfs:label xml:lang="en">script</rdfs:label>
 <rdfs:label xml:lang="fr">script</rdfs:label>
 <rdfs:domain rdf:resource="#Code"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Literal"/>
 </rdfs:ConstraintProperty>
</rdf:RDF>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 17

4.2 RDF Schemas for FIPA RDF 1
The RDF schemas corresponding to fipa-rdf1 are specified as follows (extending the above schemas):

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <rdfs:Class rdf:ID="Rule">
 <rdfs:label xml:lang="en">rule</rdfs:label>
 <rdfs:label xml:lang="fr">regle</rdfs:label>
 </rdfs:Class>

 <rdfs:ConstraintProperty rdf:ID="selection">
 <rdfs:comment>The selection part </rdfs:comment>
 <rdfs:domain rdf:resource="Rule"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="manipulation">
 <rdfs:comment>The manipulation part</rdfs:comment>
 <rdfs:domain rdf:resource="Rule"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="selection-result">
 <rdfs:comment>
 Identifies the container filled with selection results
 </rdfs:comment>
 <rdfs:domain rdf:resource="Rule"/>
 <rdfs:range rdf:resource=
 "http://www.w3c.org/TR/1999/PR-rdf-schema-19990303#Bag"/>
 </rdfs:ConstraintProperty>

 <rdfs:ConstraintProperty rdf:ID="implementedAs">
 <rdfs:label xml:lang="en">implemented as</rdfs:label>
 <rdfs:label xml:lang="fr">implemente comme</rdfs:label>
 <rdfs:domain rdf:resource="Rule"/>
 </rdfs:ConstraintProperty>
</rdf:RDF>

© 2000 Foundation for Intelligent Physical Agents FIPA RDF Content Language

 18

5 References
[DATAX] DATAX: Data Exchange in XML. 1999.

http://www.megginson.com/DATAX/
[Decker98] A Query and Inference Service for RDF, Decker, S, Brickley, D, Saarela, J and Angele, J. 1998.

http://www.ilrt.bris.ac.uk/discovery/rdf-dev/purls/papers/QL98-
queryservice/

[FACTS] FIPA Agent Communication Technologies and Services (FACTS).
http://www.labs.bt.com/profsoc/facts/

[FIPA00046] FIPA Inform Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00046/

[FIPA00054] FIPA Query Ref Communicative Act Specification. Foundation for Intelligent Physical Agents, 2000.
http://www.fipa.org/specs/fipa00054/

[Melnik99] Generic Interoperability Framework (GINF) Working Paper, Melnik, S. Stanford University, 1999.
[W3Crdf] Status for Resource Description Framework (RDF) Model and Syntax Specification (Proposed

Recommendation). World Wide Web Consortium, 1999.
http://www.w3.org/TR/REC-rdf-syntax/

[W3Crdfquery] RDF Query Specification (Technical Contribution). World Wide Web Consortium, 1998.
http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html

[W3Crdfsch] Resource Description Framework (RDF) Schema Specification 1.0 (Candidate Recommendation). World
Wide Web Consortium, 2000.
http://www.w3.org/TR/rdf-schema/

[W3Cxml] Extensible Markup Language (XML) 1.0 Specification (Recommendation). World Wide Web Consortium,
1998.
http://www.w3c.org/TR/REC-xml/

 1

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 2
 3

 4

FIPA SL Content Language Specification 5

 6

Document title FIPA SL Content Language Specification
Document number XC00008G Document source FIPA TC C
Document status Experimental Date of this status 2001/08/10
Supersedes FIPA00003
Contact fab@fipa.org
Change history
2000/09/28 Approved for Experimental
2001/08/10 Line numbering added

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

© 2000 Foundation for Intelligent Physical Agents - http://www.fipa.org/ 17

Geneva, Switzerland 18

Notice

Use of the technologies described in this specification may infringe patents, copyrights or other intellectual property
rights of FIPA Members and non-members. Nothing in this specification should be construed as granting permission to
use any of the technologies described. Anyone planning to make use of technology covered by the intellectual property
rights of others should first obtain permission from the holder(s) of the rights. FIPA strongly encourages anyone
implementing any part of this specification to determine first whether part(s) sought to be implemented are covered by
the intellectual property of others, and, if so, to obtain appropriate licenses or other permission from the holder(s) of
such intellectual property prior to implementation. This specification is subject to change without notice. Neither FIPA
nor any of its Members accept any responsibility whatsoever for damages or liability, direct or consequential, which
may result from the use of this specification.

 ii

Foreword 19

The Foundation for Intelligent Physical Agents (FIPA) is an international organization that is dedicated to promoting the 20
industry of intelligent agents by openly developing specifications supporting interoperability among agents and agent-21
based applications. This occurs through open collaboration among its member organizations, which are companies and 22
universities that are active in the field of agents. FIPA makes the results of its activities available to all interested parties 23
and intends to contribute its results to the appropriate formal standards bodies. 24

The members of FIPA are individually and collectively committed to open competition in the development of agent-25
based applications, services and equipment. Membership in FIPA is open to any corporation and individual firm, 26
partnership, governmental body or international organization without restriction. In particular, members are not bound to 27
implement or use specific agent-based standards, recommendations and FIPA specifications by virtue of their 28
participation in FIPA. 29

The FIPA specifications are developed through direct involvement of the FIPA membership. The status of a 30
specification can be either Preliminary, Experimental, Standard, Deprecated or Obsolete. More detail about the process 31
of specification may be found in the FIPA Procedures for Technical Work. A complete overview of the FIPA 32
specifications and their current status may be found in the FIPA List of Specifications. A list of terms and abbreviations 33
used in the FIPA specifications may be found in the FIPA Glossary. 34

FIPA is a non-profit association registered in Geneva, Switzerland. As of January 2000, the 56 members of FIPA 35
represented 17 countries worldwide. Further information about FIPA as an organization, membership information, FIPA 36
specifications and upcoming meetings may be found at http://www.fipa.org/. 37

 iii

Contents 38

1 Scope.. 1 39
2 Grammar FIPA SL Concrete Syntax... 2 40

2.1 Lexical Definitions.. 3 41
3 Notes on FIPA SL Semantics ... 5 42

3.1 Grammar Entry Point: FIPA SL Content Expression ... 5 43
3.2 Well-Formed Formulas .. 5 44
3.3 Atomic Formula.. 6 45
3.4 Terms... 7 46
3.5 Referential Operators .. 7 47

3.5.1 Iota.. 7 48
3.5.2 Any ... 9 49
3.5.3 All.. 10 50

3.6 Functional Terms ... 11 51
3.7 Result Predicate .. 12 52
3.8 Actions and Action Expressions .. 12 53
3.9 Agent Identifiers ... 13 54
3.10 Numerical Constants ... 13 55
3.11 Date and Time Constants.. 13 56

4 Reduced Expressivity Subsets of FIPA SL... 14 57
4.1 FIPA SL0: Minimal Subset ... 14 58
4.2 FIPA SL1: Propositional Form ... 15 59
4.3 FIPA SL2: Decidability Restrictions ... 16 60

5 References.. 19 61
6 Annex A — Syntax and Lexical Notation .. 20 62

63

1 Scope 63

This specification defines a concrete syntax for the FIPA Semantic Language (SL) content language. This syntax and 64
its associated semantics are suggested as a candidate content language for use in conjunction with the FIPA Agent 65
Communication Language (see [FIPA00037]). In particular, the syntax is defined to be a sub-grammar of the very 66
general s-expression syntax specified for message content given in [FIPA00037]. 67
 68
This content language is included in the specification on an informative basis. It is not mandatory for any FIPA 69
implementation to implement the computational mechanisms necessary to process all of the constructs in this 70
language. However, FIPA SL is a general purpose representation formalism that may be suitable for use in a number of 71
different agent domains. 72

73

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 2

2 Grammar FIPA SL Concrete Syntax 73

See Section 6, Annex A — Syntax and Lexical Notation for an explanation of the used syntactic notation. 74
 75
Content = "(" ContentExpression+ ")". 76
 77
ContentExpression = IdentifyingExpression 78
 | ActionExpression 79
 | Proposition. 80
 81
Proposition = Wff. 82
 83
Wff = AtomicFormula 84
 | "(" UnaryLogicalOp Wff ")" 85
 | "(" BinaryLogicalOp Wff Wff ")" 86
 | "(" Quantifier Variable Wff ")" 87
 | "(" ModalOp Agent Wff ")" 88
 | "(" ActionOp ActionExpression ")" 89
 | "(" ActionOp ActionExpression Wff ")". 90
 91
UnaryLogicalOp = "not". 92
 93
BinaryLogicalOp = "and" 94
 | "or" 95
 | "implies" 96
 | "equiv". 97
 98
AtomicFormula = PropositionSymbol 99
 | "(" BinaryTermOp Term Term ")" 100
 | "(" PredicateSymbol Term+ ")" 101
 | "true" 102
 | "false". 103
 104
BinaryTermOp = "=" 105
 | "\=" 106
 | ">" 107
 | ">=" 108
 | "<" 109
 | "=<" 110
 | "member" 111
 | "contains" 112
 | "result". 113
 114
Quantifier = "forall" 115
 | "exists". 116
 117
ModalOp = "B" 118
 | "U" 119
 | "PG" 120
 | "I". 121
 122
ActionOp = "feasible" 123
 | "done". 124
 125
Term = Variable 126
 | FunctionalTerm 127
 | ActionExpression 128
 | IdentifyingExpression 129
 | Constant 130
 | Sequence 131
 | Set. 132
 133

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 3

IdentifyingExpression = "(" ReferentialOperator Term Wff ")". 134
 135
ReferentialOperator = "iota" 136
 | "any" 137
 | "all". 138
 139
FunctionalTerm = "(" "cons" Term Term ")" 140
 | "(" "first" Term ")" 141
 | "(" "rest" Term ")" 142
 | "(" "nth" Term Term ")" 143
 | "(" "append" Term Term ")" 144
 | "(" "union" Term Term ")" 145
 | "(" "intersection" Term Term ")" 146
 | "(" "difference" Term Term ")" 147
 | "(" ArithmeticOp Term Term ")" 148
 | "(" FunctionSymbol Term* ")" 149
 | "(" FunctionSymbol Parameter* ")". 150
 151
Constant = NumericalConstant 152
 | String 153
 | DateTime. 154
 155
NumericalConstant = Integer 156
 | Float. 157
 158
Variable = VariableIdentifier. 159
 160
ActionExpression = "(" "action" Agent Term ")" 161
 | "(" "|" ActionExpression ActionExpression ")" 162
 | "(" ";" ActionExpression ActionExpression ")". 163
 164
PropositionSymbol = String. 165
 166
PredicateSymbol = String. 167
 168
FunctionSymbol = String. 169
 170
Agent = Term. 171
 172
Sequence = "(" "sequence" Term* ")". 173
 174
Set = "(" "set" Term* ")". 175
 176
Parameter = ParameterName ParameterValue. 177
 178
ParameterValue = Term. 179
 180
ArithmeticOp = "+" 181
 | "-" 182
 | "*" 183
 | "/" 184
 | "%". 185
 186

2.1 Lexical Definitions 187

All white space, tabs, carriage returns and line feeds between tokens should be skipped by the lexical analyser. See 188
Section 6, Annex A — Syntax and Lexical Notation for an explanation of the used notation. 189
 190
String = Word 191
 | StringLiteral. 192
 193
Word = [~ "\0x00" - "\0x20", "(", ")", "#", "0" - "9", ":", "-", "?"] 194
 [~ "\0x00" - "\0x20", "(", ")"]*. 195

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 4

 196
ParameterName = ":" String. 197
 198
VariableIdentifier = "?" String. 199
 200
Sign = ["+" , "-"]. 201
 202
Integer = Sign? DecimalLiteral+ 203
 | Sign? "0" ["x", "X"] HexLiteral+. 204
 205
Dot = "." 206
 207
Float = Sign? FloatMantissa FloatExponent? 208
 | Sign? DecimalLiteral+ FloatExponent. 209
 210
FloatMantissa = DecimalLiteral+ Dot DecimalLiteral* 211
 | DecimalLiteral* Dot DecimalLiteral+. 212
 213
FloatExponent = Exponent Sign? DecimalLiteral+. 214
 215
Exponent = ["e","E"]. 216
 217
DecimalLiteral = ["0" - "9"]. 218
 219
HexLiteral = ["0" - "9", "A" - "F", "a" - "f"]. 220
 221
StringLiteral = "\""([~ "\""] 222
 | "\\\"")*"\"". 223
 224
DateTime = Year Month Day "T" Hour Minute 225
 Second MilliSecond TypeDesignator?. 226
 227
Year = DecimalLiteral DecimalLiteral DecimalLiteral DecimalLiteral. 228
 229
Month = DecimalLiteral DecimalLiteral. 230
 231
Day = DecimalLiteral DecimalLiteral. 232
 233
Hour = DecimalLiteral DecimalLiteral. 234
 235
Minute = DecimalLiteral DecimalLiteral. 236
 237
Second = DecimalLiteral DecimalLiteral. 238
 239
MilliSecond = DecimalLiteral DecimalLiteral DecimalLiteral. 240
 241
TypeDesignator = ["a" - "z" , "A" – "Z"]. 242
 243

244

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 5

3 Notes on FIPA SL Semantics 244

This section contains explanatory notes on the intended semantics of the constructs introduced in above. 245
 246

3.1 Grammar Entry Point: FIPA SL Content Expression 247

An FIPA SL content expression may be used as the content of an ACL message. There are three cases: 248
 249
 A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed formula (Wff) 250

using the rules described in the Wff production. A proposition is used in the inform communicative act (CA) and 251
other CAs derived from it. 252

 253
 An action, which can be performed. An action may be a single action or a composite action built using the 254

sequencing and alternative operators. An action is used as a content expression when the act is request and 255
other CAs derived from it. 256

 257
 An identifying reference expression (IRE), which identifies an object in the domain. This is the Referential operator 258

and is used in the inform-ref macro act and other CAs derived from it. 259
 260
Other valid content expressions may result from the composition of the above basic cases. For instance, an action-261
condition pair (represented by an ActionExpression followed by a Wff) is used in the propose act; an action-262
condition-reason triplet (represented by an ActionExpression followed by two Wffs) is used in the reject-263
proposal act. These are used as arguments to some ACL CAs in [FIPA00037]. 264
 265

3.2 Well-Formed Formulas 266

A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the semantics of 267
the underlying domain representation or recursively by applying one of the construction operators or logical connectives 268
described in the Wff grammar rule. These are: 269
 270
 (not <Wff>) 271

Negation. The truth value of this expression is false if Wff is true. Otherwise it is true. 272
 273
 (and <Wff0> <Wff1>) 274

Conjunction. This expression is true iff1 well-formed formulae Wff0 and Wff1 are both true, otherwise it is false. 275
 276

 (or <Wff0> <Wff1>) 277
Disjunction. This expression is false iff well-formed formulae Wff0 and Wff1 are both false, otherwise it is true. 278
 279

 (implies <Wff0> <Wff1>) 280
Implication. This expression is true if either Wff0 is false or alternatively if Wff0 is true and Wff1 is true. Otherwise 281
it is false. The expression corresponds to the standard material implication connective Wff0 Wff1. 282

 283
 (equiv <Wff0> <Wff1>) 284

Equivalence. This expression is true if either Wff0 is true and Wff1 is true, or alternatively if Wff0 is false and 285
Wff1 is false. Otherwise it is false. 286

 287
 (forall <variable> <Wff>) 288

Universal quantification. The quantified expression is true if Wff is true for every value of value of the quantified 289
variable. 290
 291

 (exists <variable> <Wff>) 292

1 If and only if.

Dave
An FIPA SL content expression may be used as the content of an ACL message. There are three cases:249A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed formula (Wff) 250using the rules described in the Wff production. A proposition is used in the inform communicative act (CA) and 251other CAs derived from it. 252253An action, which can be performed. An action may be a single action or a composite action built using the 254sequencing and alternative operators. An action is used as a content expression when the act is request and 255other CAs derived from it. 256257An identifying reference expression (IRE), which identifies an object in the 258

Dave
and is used in the inform-ref macro act and other CAs derived from it.260

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 6

Existential quantification. The quantified expression is true if there is at least one value for the variable for which 293
Wff is true. 294
 295

 (B <agent> <expression>) 296
Belief. It is true that agent believes that expression is true. 297
 298

 (U <agent> <expression>) 299
Uncertainty. It is true that agent is uncertain of the truth of expression. Agent neither believes expression 300
nor its negation, but believes that expression is more likely to be true than its negation. 301

 302
 (I <agent> <expression>) 303

Intention. It is true that agent intends that expression becomes true and will plan to bring it about. 304
 305

 (PG <agent> <expression>) 306
Persistent goal. It is true that agent holds a persistent goal that expression becomes true, but will not 307
necessarily plan to bring it about. 308
 309

 (feasible <ActionExpression> <Wff>) 310
It is true that ActionExpression (or, equivalently, some event) can take place and just afterwards Wff will be 311
true. 312
 313

 (feasible <ActionExpression>) 314
Same as (feasible <ActionExpression> true). 315
 316

 (done <ActionExpression> <Wff>) 317
It is true that ActionExpression (or, equivalently, some event) has just taken place and just before that Wff was 318
true. 319
 320

 (done <ActionExpression>) 321
Same as (done <ActionExpression> true). 322

 323

3.3 Atomic Formula 324

The atomic formula represents an expression which has a truth value in the language of the domain of discourse. 325
Three forms are defined: 326
 327
 a given propositional symbol may be defined in the domain language, which is either true or false, 328
 329
 two terms may or may not be equal under the semantics of the domain language, or, 330
 331
 some predicate is defined over a set of zero or more arguments, each of which is a term. 332
 333
The FIPA SL representation does not define a meaning for the symbols in atomic formulae: this is the responsibility of 334
the domain language representation and ontology. Several forms are defined: 335
 336
 true false 337

These symbols represent the true proposition and the false proposition. 338
 339
 (= Term1 Term2) 340

Term1 and Term2 denote the same object under the semantics of the domain. 341
 342
 (\= Term1 Term2) 343

Term1 and Term2 do not denote the same object under the semantics of the domain. 344
 345
 (> Constant1 Constant2) 346

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 7

The > operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the 347
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 348
comes after the object denoted by Constant2, under the semantics of the domain. 349

 350
 (>= Constant1 Constant2) 351

The >= operator relies on an order relation defined to be the usual numeric ordering for numerical constants and 352
the usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 353
comes after or is the same object as the object denoted by Constant2, under the semantics of the domain. 354

 355
 (< Constant1 Constant2) 356

The < operator relies on an order relation defined to be the usual numeric ordering for numerical constants and the 357
usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 358
comes before the object denoted by Constant2, under the semantics of the domain. 359

 360
 (=< Constant1 Constant2) 361

The =< operator relies on an order relation defined to be the usual numeric ordering for numerical constants and 362
the usual alphabetical ordering for literal constants. Under this order relation, Constant1 denotes an object that 363
comes before or is the same object as the object denoted by Constant2, under the semantics of the domain. 364

 365
 (member Term Collection) 366

The object denoted by Term, under the semantics of the domain, is a member of the collection (either a set or a 367
sequence) denoted by Collection under the semantics of the domain. 368

 369
 (contains Collection1 Collection2) 370

If Collection1 and Collection2 denote sets, this proposition means the set denoted by Collection1 371
contains the set denoted by Collection2. If the arguments are sequences, then the proposition means that all of 372
the elements of the sequence denoted by Collection2 appear in the same order in the sequence denoted by 373
Collection1. 374

 375
Other predicates may be defined over a set of arguments, each of which is a term, by using the (PredicateSymbol 376
Term+) production. 377
 378
The FIPA SL representation does not define a meaning for other symbols in atomic formulae: this is the responsibility of 379
the domain language representation and the relative ontology. 380
 381

3.4 Terms 382

Terms are either themselves atomic (constants and variables) or recursively constructed as a functional term in which a 383
functor is applied to zero or more arguments. Again, FIPA SL only mandates a syntactic form for these terms. With 384
small number of exceptions (see below), the meanings of the symbols used to define the terms are determined by the 385
underlying domain representation. 386
 387
Note that, as mentioned above, no legal well-formed expression contains a free variable, that is, a variable not declared 388
in any scope within the expression. Scope introducing formulae are the quantifiers (forall, exists) and the 389
reference operators iota, any and all. Variables may only denote terms, not well-formed formulae. 390
 391

3.5 Referential Operators 392

3.5.1 Iota 393

 (iota <term> <formula>) 394
The iota operator introduces a scope for the given expression (which denotes a term), in which the given 395
identifier, which would otherwise be free, is defined. An expression containing a free variable is not a well-formed 396

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 8

FIPA SL expression. The expression (iota x (P x)) may be read as "the x such that P [is true] of x". The iota 397
operator is a constructor for terms which denote objects in the domain of discourse. 398

 399
 Formal Definition 400

A iota expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 401
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, (,) iff is a term that 402
belongs to the set { : T(KB)} and is a singleton; or (,) is undefined if is not a singleton. In this 403
definition is a most general variable substitution, is the result of applying to , and is the result of applying 404
 to . This implies that a failure occurs if no object or more than one object satisfies the condition specified in the 405
iota operator. 406

 407
 Example 1 408

This example depicts an interaction between agent A and B that makes use of the iota operator, where agent A is 409
supposed to have the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. 410

 411
(query-ref 412
 :sender (agent-idenfier :name B) 413

 :receiver (set (agent-identifier :name A)) 414
 :content 415
 ((iota ?x (p ?x))) 416
 :language FIPA-SL 417
 :reply-with query1) 418
 419
(inform 420
 :sender (agent-identifier :name A) 421
 :receiver (set (agent-identifier :name B) 422
 :content 423
 ((= (iota ?x (p ?x)) a)) 424
 :language FIPA-SL 425
 :in-reply-to query1) 426
 427
The only object that satisfies proposition P(x) is a, therefore, the query-ref message is replied by the inform 428
message as shown. 429
 430

 Example 2 431
This example shows another successful interaction but more complex than the previous one. 432
 433
(query-ref 434
 :sender (agent-identifier :name B) 435
 :receiver (set (agent-identifier :name A)) 436
 :content 437
 ((iota ?x (q ?x ?y))) 438
 :language FIPA-SL 439
 :reply-with query2) 440
 441
(inform 442
 :sender (agent-identifier :name A) 443
 :receiver (set (agent-identifier :name B)) 444
 :content 445
 ((= (iota ?x (q ?x ?y)) 1)) 446
 :language FIPA-SL 447
 :in-reply-to query2) 448
 449
The most general substitutions such that Q(x, y) can be derived from KB are 1 {x/1, y/A} and 2 {x/1, y/B}. 450
Therefore, the set { : T(KB)} {{x/1, y/A}x, {x/1, y/B}x } {1} is a singleton and hence (iota ?x (q ?x ?y)) 451
represents the object 1. 452
 453

 Example 3 454

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 9

Finally, this example shows an unsuccessful interaction using the iota operator. In this case, agent A cannot 455
evaluate the iota expression and therefore a failure message is returned to agent B 456
 457
(query-ref 458
 :sender (agent-identifier :name B) 459
 :receiver (set (agent-identifier :name A)) 460
 :content 461
 ((iota ?y (q ?x ?y))) 462
 :language FIPA-SL 463
 :reply-with query3) 464
 465
(failure 466

 :sender (agent-identifier :name A) 467
 :receiver (set (agent-identifier :name B)) 468
 :content 469
 ((action (agent-identifier :name A) 470
 (inform-ref 471
 :sender (agent-identifier :name A) 472
 :receiver (set (agent-identifier :name B)) 473
 :content 474
 "((iota ?y (q ?x ?y)))" 475
 :language FIPA-SL 476
 :in-reply-to query3)) 477
 more-than-one-answer) 478
 :language FIPA-SL 479
 :in-reply-to query3) 480

 481
The most general substitutions that satisfy Q(x, y) are 1 {x/1, y/a} and 2 {x/1, y/b}, therefore, the set { : 482
 T(KB)} {{x/1, y/A}y, {x/1, y/B}y} {A, B}, which is not a singleton. This means that the iota expression used in 483
this interaction is not defined. 484

 485

3.5.2 Any 486

 (any <term> <formula>) 487
The any operator is used to denote any object that satisfies the proposition represented by formula. 488

 489
 Formal Definition 490

An any expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 491
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, any(,) iff is a term 492
that belongs to the set { : T(KB)}; or any(,) is undefined if is the empty set. In this definition is a most 493
general variable substitution, is the result of applying to , and is the result of applying to . 494
 495
This definition implies that failures only occur if there are no objects satisfying the condition specified as the second 496
argument of the any operator. 497

 498
 Example 4 499

Assuming that agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}, this example shows a 500
successful interaction with agent A using the any operator. 501

 502
(query-ref 503
 :sender (agent-identifier :name B) 504
 :receiver (set (agent-identifier :name A)) 505
 :content 506
 ((any (sequence ?x ?y) (q ?x ?y))) 507
 :language FIPA-SL 508
 :reply-with query1) 509
 510
(inform 511
 :sender (agent-identifier :name A) 512

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 10

 :receiver (set (agent-identifier :name B)) 513
 :content 514
 ((= (any (sequence ?x ?y) (q ?x ?y)) (sequence 1 a))) 515
 :language FIPA-SL 516
 :in-reply-to query1) 517
 518
The most general substitutions such that Q(x, y) can be derived from KB are {x/1, y/A} and {x/1, y/B}, therefore 519
 { Sequence(x, y): Q(x, y) T(KB)}={Sequence(1, A), Sequence(1, B)}. Using this set, agent A chooses the first 520
element of as the appropriate answer to agent B. 521

 522
 Example 5 523

This example shows an unsuccessful interaction with agent A, using the any operator. 524
 525
(query-ref 526
 :sender (agent-identifier :name B) 527
 :receiver (set (agent-identifier :name A)) 528
 :content 529
 ((any ?x (r ?x))) 530
 :language FIPA-SL 531
 :reply-with query2) 532
 533
(failure 534
 :sender (agent-identifier :name A) 535
 :receiver (set (agent-identifier :name B)) 536
 :content 537
 ((action (agent-identifier :name A) 538
 (inform-ref 539
 :sender (agent-identifier :name A) 540
 :receiver (set (agent-identifier :name B)) 541
 :content 542
 "((any ?x (r ?x)))" 543
 :language FIPA-SL 544
 :in-reply-to query2)) 545
 (unknown-predicate r)) 546
 :language FIPA-SL 547
 :in-reply-to query2) 548
 549
Since agent A does not know the r predicate, the answer to the query that had been sent by agent B cannot be 550
determined, therefore a failure message is sent to agent B from agent A. The failure message specifies the failure’s 551
reason (i.e., unknown-predicate r) 552

 553

3.5.3 All 554

 (all <term> <formula>) 555
The all operator is used to denote the set of all objects that satisfy the proposition represented by formula. 556

 557
 Formal Definition 558

An all expression can only be evaluated with respect to a given theory. Suppose KB is a knowledge base such 559
that T(KB) is the theory generated from KB by a given reasoning mechanism. Formally, all(,) { : T(KB)}. 560
Notice that all(,) may be a singleton or even an empty set. In this definition is a most general variable 561
substitution, is the result of applying to , and is the result of applying to . 562
 563
If no objects satisfy the condition specified as the second argument of the all operator, then the identifying 564
expression denotes an empty set. 565

 566
 Example 6 567

Suppose agent A has the following knowledge base KB={P(A), Q(1, A), Q(1, B)}. This example shows a successful 568
interaction between agent A and B that make use of the all operator. 569

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 11

 570
(query-ref 571
 :sender (agent-identifier :name B) 572
 :receiver (set (agent-identifier :name A)) 573
 :content 574
 ((all (sequence ?x ?y) (q ?x ?y))) 575
 :language FIPA-SL 576
 :reply-with query1) 577
 578
(inform 579
 :sender (agent-identifier :name A) 580
 :receiver (set (agent-identifier :name B)) 581
 :content 582
 ((= (all (sequence ?x ?y) (q ?x ?y)) (set(sequence 1 a)(sequence 1 b)))) 583
 :language FIPA-SL 584
 :in-reply-to query1) 585
 586
The set of the most general substitutions such that Q(x, y) can be derived from KB is {{x/1, y/A}, {x/1, y/B}}, 587
therefore all(Sequence(x, y), Q(x, y)) {Sequence(1, A), Sequence(1, B)}. 588
 589

 Example 7 590
Following Example 6, if there is no possible answer to a query making use of the all operator, then the agent 591
should return the empty set. 592
 593
(query-ref 594
 :sender (agent-identifier :name B) 595
 :receiver (set (agent-identifier :name A)) 596
 :content 597
 ((all ?x (q ?x c))) 598
 :language FIPA-SL 599
 :reply-with query2) 600
 601
(inform 602
 :sender (agent-identifier :name A) 603
 :receiver (set (agent-identifier :name B)) 604
 :content 605
 ((= (all ?x (q ?x c))(set))) 606
 :language FIPA-SL 607
 :in-reply-to query2) 608
 609
Since there is no possible substitution for x such that Q(x, C) can be derived from KB, then all(x, Q(x, c))={}. In this 610
interaction the term (set) represents the empty set. 611

 612

3.6 Functional Terms 613

A functional term refers to an object via a functional relation (referred by the FunctionSymbol) with other objects (that 614
is, the terms or parameters), rather than using the direct name of that object, for example, (fatherOf Jesus) rather 615
than God. 616
 617
Two syntactical forms can be used to express a functional term. In the first form the functional symbol is followed by a 618
list of terms that are the arguments of the function symbol. The semantics of the arguments is position-dependent, for 619
example, (divide 10 2) where 10 is the dividend and 2 is the divisor. In the second form each argument is preceded 620
by its name, for example, (divide :dividend 10 :divisor 2). This second form is particularly appropriate to 621
represent descriptions where the function symbol should be interpreted as the constructor of an object, while the 622
parameters represent the attributes of the object. 623
 624
The following is an example of an object, instance of a vehicle class: 625
 626
(vehicle 627

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 12

 :colour red 628
 :max-speed 100 629
 :owner (Person 630
 :name Luis 631
 :nationality Portuguese)) 632
 633
Some ontologies may decide to give a description of some concepts only in one or both of these two forms, that is by 634
specifying, or not, a default order to the arguments of each function in the domain of discourse. How this order is 635
specified is outside the scope of this specification. 636
 637
Functional terms can be constructed by a domain functor applied to zero or more terms. Besides domain functions, 638
FIPA SL includes functional terms constructed from widely used functional operators and their arguments described in 639
Table 1. 640
 641
Operator Example Description
+
-
/
%
*

5 % 2 Usual arithmetic operations.

Union (union ?s1 ?s2) Represents the union of two sets.
Intersection (intersection ?s1 ?s2) Represents the intersection of two sets.
Difference (difference ?s1 ?s2) Represents the set difference between ?s1 and ?s2.
First (first ?seq) Represents the first element of a sequence.
Rest (rest ?seq) Represents sequence ?seq except its first element.
Nth (nth 3 ?seq) Represents the nth element of a sequence.
Cons (cons a (sequence b c)) If its second argument is a sequence, it represents the

sequence that results of inserting its first argument in
front of its second argument. If its second argument is a
set, it represents the set that has all elements
contained in its second argument plus its first
argument.

Append (append ?seq (sequence c d)) Represents the sequence that results of concatenating
its first argument with its second argument.

 642
Table 1: Functional Operators 643

 644

3.7 Result Predicate 645

A common need is to determine the result of performing an action or evaluating a term. To facilitate this operation, a 646
standard predicate result, of arity two, is introduced to the language. Result/2 has the declarative meaning that the 647
result of evaluating a term, or equivalently of performing an action, encoded by the first argument term, is the second 648
argument term. However, it is expected that this declarative semantics will be implemented in a more efficient, 649
operational way in any given FIPA SL interpreter. 650
 651
A typical use of the result predicate is with a variable scoped by iota, giving an expression whose meaning is, for 652
example, "the x which is the result of agent i performing act": 653
 654
(iota x (result (action i act) x))) 655
 656

3.8 Actions and Action Expressions 657

Action expressions are a special subset of terms. An action itself is introduced by the keyword action and comprises 658
the agent of the action (that is, an identifier representing the agent performing the action) and a term denoting the action 659
which is [to be] performed. 660
 661

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 13

Notice that a specific type of action is an ACL communicative act (CA). When expressed in FIPA SL, syntactically an 662
ACL communicative act is an action where the term denotes the CA including all its parameters, as referred by the used 663
ontology. Example 5 includes an example of an ACL CA, encoded as a String, whose content embeds another CA. 664
 665
Two operators are used to build terms denoting composite CAs: 666
 667
 the sequencing operator (;) denotes a composite act in which the first action (represented by the first operand) is 668

followed by the second action, and, 669
 670
 the alternative operator (|) denotes a composite act in which either the first action occurs, or the second, but not 671

both. 672
 673

3.9 Agent Identifiers 674

An agent is represented by referring to its name. The name is defined using the standard format from [FIPA00023]. 675
 676

3.10 Numerical Constants 677

The standard definitions for integers and floating point numbers are assumed. However, due to the necessarily 678
unpredictable nature of cross-platform dependencies, agents should not make strong assumptions about the precision 679
with which another agent is able to represent a given numerical value. FIPA SL assumes only 32-bit representations of 680
both integers and floating point numbers. Agents should not exchange message contents containing numerical values 681
requiring more than 32 bits to encode precisely, unless some prior arrangement is made to ensure that this is valid. 682
 683

3.11 Date and Time Constants 684

Time tokens are based on [ISO8601], with extension for millisecond durations. If no type designator is given, the local 685
time zone is then used. The type designator for UTC is the character Z; UTC is preferred to prevent time zone 686
ambiguities. Note that years must be encoded in four digits. As an example, 8:30 am on 15th April, 1996 local time 687
would be encoded as: 688
 689
19960415T083000000 690
 691
The same time in UTC would be: 692
 693
19960415T083000000Z 694
 695

696

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 14

4 Reduced Expressivity Subsets of FIPA SL 696

The FIPA SL definition given above is a very expressive language, but for some agent communication tasks it is 697
unnecessarily powerful. This expressive power has an implementation cost to the agent and introduces problems of the 698
decidability of modal logic. To allow simpler agents, or agents performing simple tasks, to do so with minimal 699
computational burden, this section introduces semantic and syntactic subsets of the full FIPA SL content language for 700
use by the agent when it is appropriate or desirable to do so. These subsets are defined by the use of profiles, that is, 701
statements of restriction over the full expressive power of FIPA SL. These profiles are defined in increasing order of 702
expressivity as FIPA-SL0, FIPA-SL1 and FIPA-SL2. 703
 704
Note that these subsets of FIPA SL, with additional ontological commitments (that is, the definition of domain predicates 705
and constants) are used in other FIPA specifications. 706
 707

4.1 FIPA SL0: Minimal Subset 708

Profile 0 is denoted by the normative constant FIPA-SL0 in the :language parameter of an ACL message. Profile 0 709
of FIPA SL is the minimal subset of the FIPA SL content language. It allows the representation of actions, the 710
determination of the result a term representing a computation, the completion of an action and simple binary 711
propositions. The following defines the FIPA SL0 grammar: 712
 713
Content = "(" ContentExpression+ ")". 714
 715
ContentExpression = ActionExpression 716
 | Proposition. 717
 718
Proposition = Wff. 719
 720
Wff = AtomicFormula 721
 | "(" ActionOp ActionExpression ")". 722
 723
AtomicFormula = PropositionSymbol 724
 | "(" "result" Term Term ")" 725
 | "(" PredicateSymbol Term+ ")" 726
 | "true" 727
 | "false". 728
 729
ActionOp = "done". 730
 731
Term = Constant 732
 | Set 733
 | Sequence 734
 | FunctionalTerm 735
 | ActionExpression. 736
 737
ActionExpression = "(" "action" Agent Term ")". 738
 739
FunctionalTerm = "(" FunctionSymbol Term* ")" 740
 | "(" FunctionSymbol Parameter* ")". 741
 742
Parameter = ParameterName ParameterValue. 743
 744
ParameterValue = Term. 745
 746
Agent = Term. 747
 748
FunctionSymbol = String. 749
 750
PropositionSymbol = String. 751
 752
PredicateSymbol = String. 753

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 15

 754
Constant = NumericalConstant 755
 | String 756
 | DateTime. 757
 758
Set = "(" "set" Term* ")". 759
 760
Sequence = "(" "sequence" Term* ")". 761
 762
NumericalConstant = Integer 763
 | Float. 764
 765
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL0. 766
 767

4.2 FIPA SL1: Propositional Form 768

Profile 1 is denoted by the normative constant FIPA-SL1 in the :language parameter of an ACL message. Profile 1 769
of FIPA SL extends the minimal representational form of FIPA SL0 by adding Boolean connectives to represent 770
propositional expressions. The following defines the FIPA SL1 grammar: 771
 772
Content = "(" ContentExpression+ ")". 773
 774
ContentExpression = ActionExpression 775
 | Proposition. 776
 777
Proposition = Wff. 778
 779
Wff = AtomicFormula 780
 | "(" UnaryLogicalOp Wff ")" 781
 | "(" BinaryLogicalOp Wff Wff ")" 782
 | "(" ActionOp ActionExpression ")". 783
 784
UnaryLogicalOp = "not". 785
 786
BinaryLogicalOp = "and" 787
 | "or". 788
 789
AtomicFormula = PropositionSymbol 790
 | "(" "result" Term Term ")" 791
 | "(" PredicateSymbol Term+ ")" 792
 | "true" 793
 | "false". 794
 795
ActionOp = "done". 796
 797
Term = Constant 798
 | Set 799
 | Sequence 800
 | FunctionalTerm 801
 | ActionExpression. 802
 803
ActionExpression = "(" "action" Agent Term ")". 804
 805
FunctionalTerm = "(" FunctionSymbol Term* ")" 806
 | "(" FunctionSymbol Parameter* ")". 807
 808
Parameter = ParameterName ParameterValue. 809
 810
ParameterValue = Term. 811
 812
Agent = Term. 813
 814

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 16

FunctionSymbol = String. 815
 816
PropositionSymbol = String. 817
 818
PredicateSymbol = String. 819
 820
Constant = NumericalConstant 821
 | String 822
 | DateTime. 823
 824
Set = "(" "set" Term* ")". 825
 826
Sequence = "(" "sequence" Term* ")". 827
 828
NumericalConstant = Integer 829
 | Float. 830
 831
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL1. 832
 833

4.3 FIPA SL2: Decidability Restrictions 834

Profile 2 is denoted by the normative constant FIPA-SL2 in the :language parameter of an ACL message. Profile 2 835
of FIPA SL allows first order predicate and modal logic, but is restricted to ensure that it must be decidable. Well-known 836
effective algorithms exist that can derive whether or not an FIPA SL2 Wff is a logical consequence of a set of Wffs (for 837
instance KSAT and Monadic). The following defines the FIPA SL2 grammar: 838
 839
Content = "(" ContentExpression+ ")". 840
 841
ContentExpression = IdentifyingExpression 842
 | ActionExpression 843
 | Proposition. 844
 845
Proposition = PrenexExpression. 846
 847
Wff = AtomicFormula 848
 | "(" UnaryLogicalOp Wff ")" 849
 | "(" BinaryLogicalOp Wff Wff ")" 850
 | "(" ModalOp Agent PrenexExpression ")" 851
 | "(" ActionOp ActionExpression ")" 852
 | "(" ActionOp ActionExpression PrenexExpression ")". 853
 854
UnaryLogicalOp = "not". 855
 856
BinaryLogicalOp = "and" 857
 | "or" 858
 | "implies" 859
 | "equiv". 860
 861
AtomicFormula = PropositionSymbol 862
 | "(" "=" Term Term ")" 863
 | "(" "result" Term Term ")" 864
 | "(" PredicateSymbol Term+ ")" 865
 | "true" 866
 | "false". 867
 868
PrenexExpression = UnivQuantExpression 869
 | ExistQuantExpression 870
 | Wff. 871
 872
UnivQuantExpression = "(" "forall" Variable Wff ")" 873
 | "(" "forall" Variable UnivQuantExpression ")" 874
 | "(" "forall" Variable ExistQuantExpression ")". 875

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 17

 876
ExistQuantExpression = "(" "exists" Variable Wff ")" 877
 | "(" "exists" Variable ExistQuantExpression ")". 878
 879
Term = Variable 880
 | FunctionalTerm 881
 | ActionExpression 882
 | IdentifyingExpression 883
 | Constant 884
 | Sequence 885
 | Set. 886
 887
IdentifyingExpression = "(" ReferentialOp Term Wff ")". 888
 889
ReferentialOp = "iota" 890
 | "any" 891
 | "all". 892
 893
FunctionalTerm = "(" FunctionSymbol Term* ")" 894
 | "(" FunctionSymbol Parameter* ")". 895
 896
Parameter = ParameterName ParameterValue. 897
 898
ParameterValue = Term. 899
 900
ActionExpression = "(" "action" Agent Term ")" 901
 | "(" "|" ActionExpression ActionExpression ")" 902
 | "(" ";" ActionExpression ActionExpression ")". 903
 904
Variable = VariableIdentifier. 905
 906
Agent = Term. 907
 908
FunctionSymbol = String. 909
 910
Constant = NumericalConstant 911
 | String 912
 | DateTime. 913
 914
ModalOp = "B" 915
 | "U" 916
 | "PG" 917
 | "I". 918
 919
ActionOp = "feasible" 920
 | "done". 921
 922
PropositionSymbol = String. 923
 924
PredicateSymbol = String. 925
 926
Set = "(" "set" Term* ")". 927
 928
Sequence = "(" "sequence" Term* ")". 929
 930
NumericalConstant = Integer 931
 | Float. 932
 933
 934
The same lexical definitions described in Section 2.1, Lexical Definitions apply for FIPA SL2. 935
 936
The Wff production of FIPA SL2 no longer directly contains the logical quantifiers, but these are treated separately to 937
ensure only prefixed quantified formulas, such as: 938

Dave
ReferentialOp = "iota"| "any" 891| "all". 892

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 18

 939
(forall ?x1 940
 (forall ?x2 941
 (exists ?y1 942
 (exists ?y2 943
 (Phi ?x1 ?x2 ?y1 ?y2))))) 944
 945
Where (Phi ?x1 ?x2 ?y1 ?y2) does not contain any quantifier. 946
 947
The grammar of FIPA SL2 still allows for quantifying-in inside modal operators. For example, the following formula is 948
still admissible under the grammar: 949
 950
(forall ?x1 951
 (or 952
 (B i (p ?x1)) 953
 (B j (q ?x1)))) 954
 955
It is not clear that formulae of this kind are decidable. However, changing the grammar to express this context 956
sensitivity would make the EBNF form above essentially unreadable. Thus, the following additional mandatory 957
constraint is placed on well-formed content expressions using FIPA SL2: 958
 959
Within the scope of an SLModalOperator only closed formulas are allowed, that is, formulas without free variables. 960
 961

962

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 19

5 References 962

[FIPA00023] FIPA Agent Management Specification. Foundation for Intelligent Physical Agents, 2000. 963
http://www.fipa.org/specs/fipa00023/ 964

[FIPA00037] FIPA Agent Communication Language Overview. Foundation for Intelligent Physical Agents, 2000. 965
http://www.fipa.org/specs/fipa00037/ 966

[ISO8601] Date Elements and Interchange Formats, Information Interchange-Representation of Dates and Times. 967
International Standards Organisation, 1998. 968
http://www.iso.ch/cate/d15903.html 969

 970

971

© 2000 Foundation for Intelligent Physical Agents FIPA SL Content Language

 20

6 Annex A — Syntax and Lexical Notation 971

The syntax is expressed in standard EBNF format. For completeness, the notation is given in Table 2. 972
 973

Grammar rule component Example
Terminal tokens are enclosed in double quotes "("

Non terminals are written as capitalised identifiers Expression

Square brackets denote an optional construct ["," OptionalArg]

Vertical bar denotes an alternative Integer | Real

Asterisk denotes zero or more repetitions of the preceding expression Digit *

Plus denotes one or more repetitions of the preceding expression Alpha +

Parentheses are used to group expansions (A | B) *

Productions are written with the non-terminal name on the left-hand
side, expansion on the right-hand side and terminated by a full stop

AnonTerminal = "an expansion".

 974
Table 2: EBNF Rules 975

 976
Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation as above, 977
with the exceptions noted in Table 3. 978
 979

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]

Dash in a character set denotes a range ["a" - "z"]

Tilde denotes the complement of a character set if it is the first
character

[~ "(", ")"]

Post-fix question-mark operator denotes that the preceding lexical
expression is optional (may appear zero or one times)

["0" - "9"]? ["0" - "9"]

 980
Table 3: Lexical Rules 981

Ontology
In the discussion of speech acts, the sentence,

I will meet you on Mars.●

was presented as a speech act that in some sense (but not a logical sense) was false.

On the other hand, the sentence,

I will meet you at the show.●

makes sense.

How do we know whyone is nonsense and the other, sensible. Because we share an ontology which we
have learned by "being in the world". We know what the words "Mars", and "show" refer to.
Furthermore, we know certain relationships between the referents of these words. For example, we know
quite well that we live on Earth which is a long way from Mars.

This shared ontolgy allows us to communicate with one another. The same idea is carried over to the
worlds of artificial agents. For artificial agents to communicate they also must share ontologies.

What is an ontology?

Ontology 101 (pdf)

Protege-2000

Wine Ontology

Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/ontology.html [7/24/2002 10:04:09 PM]

http://protege.stanford.edu/
http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/ontology/Wines.zip

1

Ontology Development 101: A Guide to Creating Your
First Ontology

Natalya F. Noy and Deborah L. McGuinness
Stanford University, Stanford, CA, 94305

noy@smi.stanford.edu and dlm@ksl.stanford.edu

1 Why develop an ontology?
In recent years the development of ontologies—explicit formal specifications of the terms in the
domain and relations among them (Gruber 1993)—has been moving from the realm of Artificial-
Intelligence laboratories to the desktops of domain experts. Ontologies have become common on
the World-Wide Web. The ontologies on the Web range from large taxonomies categorizing Web
sites (such as on Yahoo!) to categorizations of products for sale and their features (such as on
Amazon.com). The WWW Consortium (W3C) is developing the Resource Description
Framework (Brickley and Guha 1999), a language for encoding knowledge on Web pages to
make it understandable to electronic agents searching for information. The Defense Advanced
Research Projects Agency (DARPA), in conjunction with the W3C, is developing DARPA Agent
Markup Language (DAML) by extending RDF with more expressive constructs aimed at
facilitating agent interaction on the Web (Hendler and McGuinness 2000). Many disciplines now
develop standardized ontologies that domain experts can use to share and annotate information in
their fields. Medicine, for example, has produced large, standardized, structured vocabularies
such as SNOMED (Price and Spackman 2000) and the semantic network of the Unified Medical
Language System (Humphreys and Lindberg 1993). Broad general-purpose ontologies are
emerging as well. For example, the United Nations Development Program and Dun & Bradstreet
combined their efforts to develop the UNSPSC ontology which provides terminology for
products and services (www.unspsc.org).

An ontology defines a common vocabulary for researchers who need to share information in a
domain. It includes machine-interpretable definitions of basic concepts in the domain and
relations among them.

Why would someone want to develop an ontology? Some of the reasons are:

• To share common understanding of the structure of information among people or
software agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

Sharing common understanding of the structure of information among people or software agents
is one of the more common goals in developing ontologies (Musen 1992; Gruber 1993). For
example, suppose several different Web sites contain medical information or provide medical e-
commerce services. If these Web sites share and publish the same underlying ontology of the
terms they all use, then computer agents can extract and aggregate information from these
different sites. The agents can use this aggregated information to answer user queries or as input
data to other applications.

Enabling reuse of domain knowledge was one of the driving forces behind recent surge in
ontology research. For example, models for many different domains need to represent the notion

2

of time. This representation includes the notions of time intervals, points in time, relative
measures of time, and so on. If one group of researchers develops such an ontology in detail,
others can simply reuse it for their domains. Additionally, if we need to build a large ontology,
we can integrate several existing ontologies describing portions of the large domain. We can also
reuse a general ontology, such as the UNSPSC ontology, and extend it to describe our domain of
interest.

Making explicit domain assumptions underlying an implementation makes it possible to change
these assumptions easily if our knowledge about the domain changes. Hard-coding assumptions
about the world in programming-language code makes these assumptions not only hard to find
and understand but also hard to change, in particular for someone without programming
expertise. In addition, explicit specifications of domain knowledge are useful for new users who
must learn what terms in the domain mean.

Separating the domain knowledge from the operational knowledge is another common use of
ontologies. We can describe a task of configuring a product from its components according to a
required specification and implement a program that does this configuration independent of the
products and components themselves (McGuinness and Wright 1998). We can then develop an
ontology of PC-components and characteristics and apply the algorithm to configure made-to-
order PCs. We can also use the same algorithm to configure elevators if we “feed” an elevator
component ontology to it (Rothenfluh et al. 1996).

Analyzing domain knowledge is possible once a declarative specification of the terms is
available. Formal analysis of terms is extremely valuable when both attempting to reuse existing
ontologies and extending them (McGuinness et al. 2000).

Often an ontology of the domain is not a goal in itself. Developing an ontology is akin to
defining a set of data and their structure for other programs to use. Problem-solving methods,
domain-independent applications, and software agents use ontologies and knowledge bases built
from ontologies as data. For example, in this paper we develop an ontology of wine and food and
appropriate combinations of wine with meals. This ontology can then be used as a basis for some
applications in a suite of restaurant-managing tools: One application could create wine
suggestions for the menu of the day or answer queries of waiters and customers. Another
application could analyze an inventory list of a wine cellar and suggest which wine categories to
expand and which particular wines to purchase for upcoming menus or cookbooks.

About this guide
We build on our experience using Protégé-2000 (Protege 2000), Ontolingua (Ontolingua
1997), and Chimaera (Chimaera 2000) as ontology-editing environments. In this guide, we use
Protégé-2000 for our examples.

The wine and food example that we use throughout this guide is loosely based on an example
knowledge base presented in a paper describing CLASSIC—a knowledge-representation system
based on a description-logics approach (Brachman et al. 1991). The CLASSIC tutorial
(McGuinness et al. 1994) has developed this example further. Protégé-2000 and other frame-
based systems describe ontologies declaratively, stating explicitly what the class hierarchy is and
to which classes individuals belong.

Some ontology-design ideas in this guide originated from the literature on object-oriented design
(Rumbaugh et al. 1991; Booch et al. 1997). However, ontology development is different from
designing classes and relations in object-oriented programming. Object-oriented programming
centers primarily around methods on classes—a programmer makes design decisions based on
the operational properties of a class, whereas an ontology designer makes these decisions based
on the structural properties of a class. As a result, a class structure and relations among classes in

3

an ontology are different from the structure for a similar domain in an object-oriented program.

It is impossible to cover all the issues that an ontology developer may need to grapple with and
we are not trying to address all of them in this guide. Instead, we try to provide a starting point;
an initial guide that would help a new ontology designer to develop ontologies. At the end, we
suggest places to look for explanations of more complicated structures and design mechanisms if
the domain requires them.

Finally, there is no single correct ontology-design methodology and we did not attempt to define
one. The ideas that we present here are the ones that we found useful in our own ontology-
development experience. At the end of this guide we suggest a list of references for alternative
methodologies.

2 What is in an ontology?
The Artificial-Intelligence literature contains many definitions of an ontology; many of these
contradict one another. For the purposes of this guide an ontology is a formal explicit description
of concepts in a domain of discourse (classes (sometimes called concepts)), properties of each
concept describing various features and attributes of the concept (slots (sometimes called roles
or properties)), and restrictions on slots (facets (sometimes called role restrictions)). An
ontology together with a set of individual instances of classes constitutes a knowledge base. In
reality, there is a fine line where the ontology ends and the knowledge base begins.

Classes are the focus of most ontologies. Classes describe concepts in the domain. For example,
a class of wines represents all wines. Specific wines are instances of this class. The Bordeaux
wine in the glass in front of you while you read this document is an instance of the class of
Bordeaux wines. A class can have subclasses that represent concepts that are more specific than
the superclass. For example, we can divide the class of all wines into red, white, and rosé wines.
Alternatively, we can divide a class of all wines into sparkling and non-sparkling wines.

Slots describe properties of classes and instances: Château Lafite Rothschild
Pauillac wine has a full body; it is produced by the Château Lafite Rothschild
winery. We have two slots describing the wine in this example: the slot body with the value full
and the slot maker with the value Château Lafite Rothschild winery. At the class level,
we can say that instances of the class Wine will have slots describing their flavor, body,
sugar level, the maker of the wine and so on.1

All instances of the class Wine, and its subclass Pauillac, have a slot maker the value of which
is an instance of the class Winery (Figure 1). All instances of the class Winery have a slot
produces that refers to all the wines (instances of the class Wine and its subclasses) that the
winery produces.

In practical terms, developing an ontology includes:

• defining classes in the ontology,

• arranging the classes in a taxonomic (subclass–superclass) hierarchy,

• defining slots and describing allowed values for these slots,

• filling in the values for slots for instances.

We can then create a knowledge base by defining individual instances of these classes filling in
specific slot value information and additional slot restrictions.

1 We capitalize class names and start slot names with low-case letters. We also use typewriter font for
all terms from the example ontology.

4

Figure 1. Some classes, instances, and relations among them in the wine domain. We used black for
classes and red for instances. Direct links represent slots and internal links such as instance-of and
subclass-of.

3 A Simple Knowledge-Engineering Methodology
As we said earlier, there is no one “correct” way or methodology for developing ontologies. Here
we discuss general issues to consider and offer one possible process for developing an ontology.
We describe an iterative approach to ontology development: we start with a rough first pass at
the ontology. We then revise and refine the evolving ontology and fill in the details. Along the
way, we discuss the modeling decisions that a designer needs to make, as well as the pros, cons,
and implications of different solutions.

First, we would like to emphasize some fundamental rules in ontology design to which we will
refer many times. These rules may seem rather dogmatic. They can help, however, to make
design decisions in many cases.

1) There is no one correct way to model a domain— there are always
viable alternatives. The best solution almost always depends on the
application that you have in mind and the extensions that you
anticipate.

2) Ontology development is necessarily an iterative process.
3) Concepts in the ontology should be close to objects (physical or

logical) and relationships in your domain of interest. These are most
likely to be nouns (objects) or verbs (relationships) in sentences that
describe your domain.

That is, deciding what we are going to use the ontology for, and how detailed or general the
ontology is going to be will guide many of the modeling decisions down the road. Among several
viable alternatives, we will need to determine which one would work better for the projected
task, be more intuitive, more extensible, and more maintainable. We also need to remember that
an ontology is a model of reality of the world and the concepts in the ontology must reflect this
reality. After we define an initial version of the ontology, we can evaluate and debug it by using
it in applications or problem-solving methods or by discussing it with experts in the field, or
both. As a result, we will almost certainly need to revise the initial ontology. This process of
iterative design will likely continue through the entire lifecycle of the ontology.

5

Step 1. Determine the domain and scope of the ontology
We suggest starting the development of an ontology by defining its domain and scope. That is,
answer several basic questions:

• What is the domain that the ontology will cover?

• For what we are going to use the ontology?

• For what types of questions the information in the ontology should provide answers?

• Who will use and maintain the ontology?

The answers to these questions may change during the ontology-design process, but at any given
time they help limit the scope of the model.

Consider the ontology of wine and food that we introduced earlier. Representation of food and
wines is the domain of the ontology. We plan to use this ontology for the applications that
suggest good combinations of wines and food.

Naturally, the concepts describing different types of wines, main food types, the notion of a good
combination of wine and food and a bad combination will figure into our ontology. At the same
time, it is unlikely that the ontology will include concepts for managing inventory in a winery or
employees in a restaurant even though these concepts are somewhat related to the notions of
wine and food.

If the ontology we are designing will be used to assist in natural language processing of articles
in wine magazines, it may be important to include synonyms and part-of-speech information for
concepts in the ontology. If the ontology will be used to help restaurant customers decide which
wine to order, we need to include retail-pricing information. If it is used for wine buyers in
stocking a wine cellar, wholesale pricing and availability may be necessary. If the people who
will maintain the ontology describe the domain in a language that is different from the language
of the ontology users, we may need to provide the mapping between the languages.

Competency questions.
One of the ways to determine the scope of the ontology is to sketch a list of questions that a
knowledge base based on the ontology should be able to answer, competency questions
(Gruninger and Fox 1995). These questions will serve as the litmus test later: Does the
ontology contain enough information to answer these types of questions? Do the answers require
a particular level of detail or representation of a particular area? These competency questions are
just a sketch and do not need to be exhaustive.

In the wine and food domain, the following are the possible competency questions:

• Which wine characteristics should I consider when choosing a wine?

• Is Bordeaux a red or white wine?

• Does Cabernet Sauvignon go well with seafood?

• What is the best choice of wine for grilled meat?

• Which characteristics of a wine affect its appropriateness for a dish?

• Does a bouquet or body of a specific wine change with vintage year?

• What were good vintages for Napa Zinfandel?

Judging from this list of questions, the ontology will include the information on various wine
characteristics and wine types, vintage years—good and bad ones—classifications of foods that
matter for choosing an appropriate wine, recommended combinations of wine and food.

6

Step 2. Consider reusing existing ontologies
It is almost always worth considering what someone else has done and checking if we can refine
and extend existing sources for our particular domain and task. Reusing existing ontologies may
be a requirement if our system needs to interact with other applications that have already
committed to particular ontologies or controlled vocabularies. Many ontologies are already
available in electronic form and can be imported into an ontology-development environment that
you are using. The formalism in which an ontology is expressed often does not matter, since
many knowledge-representation systems can import and export ontologies. Even if a knowledge-
representation system cannot work directly with a particular formalism, the task of translating an
ontology from one formalism to another is usually not a difficult one.

There are libraries of reusable ontologies on the Web and in the literature. For example, we can
use the Ontolingua ontology library (http://www.ksl.stanford.edu/software/ontolingua/) or the
DAML ontology library (http://www.daml.org/ontologies/). There are also a number of publicly
available commercial ontologies (e.g., UNSPSC (www.unspsc.org), RosettaNet
(www.rosettanet.org), DMOZ (www.dmoz.org)).

For example, a knowledge base of French wines may already exist. If we can import this
knowledge base and the ontology on which it is based, we will have not only the classification of
French wines but also the first pass at the classification of wine characteristics used to
distinguish and describe the wines. Lists of wine properties may already be available from
commercial Web sites such as www.wines.com that customers consider use to buy wines.

For this guide however we will assume that no relevant ontologies already exist and start
developing the ontology from scratch.

Step 3. Enumerate important terms in the ontology
It is useful to write down a list of all terms we would like either to make statements about or to
explain to a user. What are the terms we would like to talk about? What properties do those terms
have? What would we like to say about those terms? For example, important wine-related terms
will include wine, grape, winery, location, a wine’s color, body, flavor and
sugar content; different types of food, such as fish and red meat; subtypes of wine
such as white wine, and so on. Initially, it is important to get a comprehensive list of terms
without worrying about overlap between concepts they represent, relations among the terms, or
any properties that the concepts may have, or whether the concepts are classes or slots.

The next two steps—developing the class hierarchy and defining properties of concepts (slots)—
are closely intertwined. It is hard to do one of them first and then do the other. Typically, we
create a few definitions of the concepts in the hierarchy and then continue by describing
properties of these concepts and so on. These two steps are also the most important steps in the
ontology-design process. We will describe them here briefly and then spend the next two sections
discussing the more complicated issues that need to be considered, common pitfalls, decisions to
make, and so on.

Step 4. Define the classes and the class hierarchy
There are several possible approaches in developing a class hierarchy (Uschold and Gruninger
1996):

• A top-down development process starts with the definition of the most general concepts
in the domain and subsequent specialization of the concepts. For example, we can start
with creating classes for the general concepts of Wine and Food. Then we specialize

7

the Wine class by creating some of its subclasses: White wine, Red wine, Rosé
wine. We can further categorize the Red wine class, for example, into Syrah, Red
Burgundy, Cabernet Sauvignon, and so on.

• A bottom-up development process starts with the definition of the most specific classes,
the leaves of the hierarchy, with subsequent grouping of these classes into more general
concepts. For example, we start by defining classes for Pauillac and Margaux
wines. We then create a common superclass for these two classes—Medoc—which in
turn is a subclass of Bordeaux.

• A combination development process is a combination of the top-down and bottom-up
approaches: We define the more salient concepts first and then generalize and specialize
them appropriately. We might start with a few top-level concepts such as Wine, and a
few specific concepts, such as Margaux . We can then relate them to a middle-level
concept, such as Medoc. Then we may want to generate all of the regional wine classes
from France, thereby generating a number of middle-level concepts.

Figure 2 shows a possible breakdown among the different levels of generality.

Figure 2. The different levels of the Wine taxonomy: Wine is the most general concept. Red wine,
White wine, and Rosé wine are general top level concepts. Pauillac and Margaux are the
most specific classes in the hierarchy (or the bottom level concepts).

None of these three methods is inherently better than any of the others. The approach to take
depends strongly on the personal view of the domain. If a developer has a systematic top-down
view of the domain, then it may be easier to use the top-down approach. The combination
approach is often the easiest for many ontology developers, since the concepts “in the middle”
tend to be the more descriptive concepts in the domain (Rosch 1978).
If you tend to think of wines by distinguishing the most general classification first, then the top-
down approach may work better for you. If you’d rather start by getting grounded with specific
examples, the bottom-up approach may be more appropriate.

Whichever approach we choose, we usually start by defining classes. From the list created in

Bottom
level

Middle
level

Top
level

8

Step 3, we select the terms that describe objects having independent existence rather than terms
that describe these objects. These terms will be classes in the ontology and will become anchors
in the class hierarchy.2 We organize the classes into a hierarchical taxonomy by asking if by
being an instance of one class, the object will necessarily (i.e., by definition) be an instance of
some other class.

If a class A is a superclass of class B, then every instance of B is also an
instance of A

In other words, the class B represents a concept that is a “kind of” A.

For example, every Pinot Noir wine is necessarily a red wine. Therefore the Pinot Noir class
is a subclass of the Red Wine class.

Figure 2 shows a part of the class hierarchy for the Wine ontology. Section 4 contains a detailed
discussion of things to look for when defining a class hierarchy.

Figure 3. The slots for the class Wine and the facets for these slots. The “I” icon next to the maker
slot indicates that the slot has an inverse (Section 5.1)

Step 5. Define the properties of classes—slots
The classes alone will not provide enough information to answer the competency questions from
Step 1. Once we have defined some of the classes, we must describe the internal structure of
concepts.

We have already selected classes from the list of terms we created in Step 3. Most of the
remaining terms are likely to be properties of these classes. These terms include, for example, a
wine’s color, body, flavor and sugar content and location of a winery.

For each property in the list, we must determine which class it describes. These properties
become slots attached to classes. Thus, the Wine class will have the following slots: color,
body, flavor, and sugar. And the class Winery will have a location slot.

In general, there are several types of object properties that can become slots in an ontology:

• “intrinsic” properties such as the flavor of a wine;

• “extrinsic” properties such as a wine’s name, and area it comes from;

• parts, if the object is structured; these can be both physical and abstract “parts” (e.g., the
courses of a meal)

2 We can also view classes as unary predicates—questions that have one argument. For example, “Is this
object a wine?” Unary predicates (or classes) contrast with binary predicates (or slots)—questions that
have two arguments. For example, “Is the flavor of this object strong?” “What is the flavor of this object?”

9

• relationships to other individuals; these are the relationships between individual
members of the class and other items (e.g., the maker of a wine, representing a
relationship between a wine and a winery, and the grape the wine is made from.)

Thus, in addition to the properties we have identified earlier, we need to add the following slots
to the Wine class: name, area, maker, grape. Figure 3 shows the slots for the class Wine.

All subclasses of a class inherit the slot of that class. For example, all the slots of the class Wine
will be inherited to all subclasses of Wine, including Red Wine and White Wine. We will
add an additional slot, tannin level (low, moderate, or high), to the Red Wine class. The
tannin level slot will be inherited by all the classes representing red wines (such as
Bordeaux and Beaujolais).

A slot should be attached at the most general class that can have that property. For instance,
body and color of a wine should be attached at the class Wine, since it is the most general
class whose instances will have body and color.

Step 6. Define the facets of the slots
Slots can have different facets describing the value type, allowed values, the number of the
values (cardinality), and other features of the values the slot can take. For example, the value of a
name slot (as in “the name of a wine”) is one string. That is, name is a slot with value type
String. A slot produces (as in “a winery produces these wines”) can have multiple values
and the values are instances of the class Wine. That is, produces is a slot with value type
Instance with Wine as allowed class.

We will now describe several common facets.

Slot cardinality
Slot cardinality defines how many values a slot can have. Some systems distinguish only between
single cardinality (allowing at most one value) and multiple cardinality (allowing any number of
values). A body of a wine will be a single cardinality slot (a wine can have only one body).
Wines produced by a particular winery fill in a multiple-cardinality slot produces for a
Winery class.

Some systems allow specification of a minimum and maximum cardinality to describe the
number of slot values more precisely. Minimum cardinality of N means that a slot must have at
least N values. For example, the grape slot of a Wine has a minimum cardinality of 1: each
wine is made of at least one variety of grape. Maximum cardinality of M means that a slot can
have at most M values. The maximum cardinality for the grape slot for single varietal wines is
1: these wines are made from only one variety of grape. Sometimes it may be useful to set the
maximum cardinality to 0. This setting would indicate that the slot cannot have any values for a
particular subclass.

Slot-value type
A value-type facet describes what types of values can fill in the slot. Here is a list of the more
common value types:

• String is the simplest value type which is used for slots such as name: the value is a
simple string

• Number (sometimes more specific value types of Float and Integer are used) describes
slots with numeric values. For example, a price of a wine can have a value type Float

10

• Boolean slots are simple yes–no flags. For example, if we choose not to represent
sparkling wines as a separate class, whether or not a wine is sparkling can be represented
as a value of a Boolean slot: if the value is “true” (“yes”) the wine is sparkling and if the
value is “false” (“no”) the wine is not a sparkling one.

• Enumerated slots specify a list of specific allowed values for the slot. For example, we
can specify that the flavor slot can take on one of the three possible values: strong,
moderate, and delicate. In Protégé-2000 the enumerated slots are of type Symbol.

• Instance-type slots allow definition of relationships between individuals. Slots with
value type Instance must also define a list of allowed classes from which the instances
can come. For example, a slot produces for the class Winery may have instances of
the class Wine as its values.3

Figure 4 shows a definition of the slot produces at the class Winery.

Figure 4. The definition of a slot produces that describes the wines produced by a winery. The slot
has cardinality multiple, value type Instance, and the class Wine as the allowed class for its values.

Domain and range of a slot
Allowed classes for slots of type Instance are often called a range of a slot. In the example in
Figure 4 the class Wine is the range of the produces slot. Some systems allow restricting the
range of a slot when the slot is attached for a particular class.

The classes to which a slot is attached or a classes which property a slot describes, are called the
domain of the slot. The Winery class is the domain of the produces slot. In the systems
where we attach slots to classes, the classes to which the slot is attached usually constitute the
domain of that slot. There is no need to specify the domain separately.

The basic rules for determining a domain and a range of a slot are similar:

When defining a domain or a range for a slot, find the most general
classes or class that can be respectively the domain or the range for the
slots .
On the other hand, do not define a domain and range that is overly

3 Some systems just specify value type with a class instead of requiring a special statement of instance type
slots.

11

general: all the classes in the domain of a slot should be described by the
slot and instances of all the classes in the range of a slot should be
potential fillers for the slot. Do not choose an overly general class for
range (i.e., one would not want to make the range THING) but one would
want to choose a class that will cover all fillers

Instead of listing all possible subclasses of the Wine class for the range of the produces slot,
just list Wine. At the same time, we do not want to specify the range of the slot as THING—the
most general class in an ontology.

In more specific terms:

If a list of classes defining a range or a domain of a slot includes a class
and its subclass, remove the subclass.

If the range of the slot contains both the Wine class and the Red Wine class, we can remove
the Red Wine from the range because it does not add any new information: The Red Wine is
a subclass of Wine and therefore the slot range already implicitly includes it as well as all other
subclasses of the Wine class.

If a list of classes defining a range or a domain of a slot contains all
subclasses of a class A, but not the class A itself, the range should contain
only the class A and not the subclasses.

Instead of defining the range of the slot to include Red Wine, White Wine, and Rose Wine
(enumerating all the direct subclasses of Wine), we can limit the range to the class Wine itself.

If a list of classes defining a range or a domain of a slot contains all but a
few subclasses of a class A, consider if the class A would make a more
appropriate range definition.

In systems where attaching a slot to a class is the same as adding the class to the domain of the
slot, the same rules apply to slot attachment: On the one hand, we should try to make it as general
as possible. On the other hand, we must ensure that each class to which we attach the slot can
indeed have the property that the slot represents. We can attach the tannin level slot to each
of the classes representing red wines (e.g., Bordeaux, Merlot, Beaujolais, etc.).
However, since all red wines have the tannin-level property, we should instead attach the slot to
this more general class of Red Wines. Generalizing the domain of the tannin level slot
further (by attaching it to the Wine class instead) would not be correct since we do not use
tannin level to describe white wines for example.

Step 7. Create instances
The last step is creating individual instances of classes in the hierarchy. Defining an individual
instance of a class requires (1) choosing a class, (2) creating an individual instance of that class,
and (3) filling in the slot values. For example, we can create an individual instance Chateau-
Morgon-Beaujolais to represent a specific type of Beaujolais wine. Chateau-Morgon-
Beaujolais is an instance of the class Beaujolais representing all Beaujolais wines. This
instance has the following slot values defined (Figure 5):

• Body: Light

• Color: Red

• Flavor: Delicate

• Tannin level: Low

• Grape: Gamay (instance of the Wine grape class)

12

• Maker: Chateau-Morgon (instance of the Winery class)

• Region: Beaujolais (instance of the Wine-Region class)

• Sugar: Dry

Figure 5. The definition of an instance of the Beaujolais class. The instance is Chateaux
Morgon Beaujolais from the Beaujolais region, produced from the Gamay grape by the Chateau
Morgon winery. It has a light body, delicate flavor, red color, and low tannin level. It is a dry wine.

4 Defining classes and a class hierarchy
This section discusses things to look out for and errors that are easy to make when defining
classes and a class hierarchy (Step 4 from Section 3). As we have mentioned before, there is no
single correct class hierarchy for any given domain. The hierarchy depends on the possible uses
of the ontology, the level of the detail that is necessary for the application, personal preferences,
and sometimes requirements for compatibility with other models. However, we discuss several
guidelines to keep in mind when developing a class hierarchy. After defining a considerable
number of new classes, it is helpful to stand back and check if the emerging hierarchy conforms
to these guidelines.

4.1 Ensuring that the class hierarchy is correct

An “is-a” relation
The class hierarchy represents an “is-a” relation: a class A is a subclass of B if every instance of
A is also an instance of B. For example, Chardonnay is a subclass of White wine. Another
way to think of the taxonomic relation is as a “kind-of” relation: Chardonnay is a kind of
White wine. A jetliner is a kind of an aircraft. Meat is a kind of food.

A subclass of a class represents a concept that is a “kind of” the concept
that the superclass represents.

A single wine is not a subclass of all wines
A common modeling mistake is to include both a singular and a plural version of the same
concept in the hierarchy making the former a subclass of the latter. For example, it is wrong to
define a class Wines and a class Wine as a subclass of Wines. Once you think of the hierarchy

13

as representing the “kind-of” relationship, the modeling error becomes clear: a single Wine is
not a kind of Wines. The best way to avoid such an error is always to use either singular or
plural in naming classes (see Section 6 for the discussion on naming concepts).

Transitivity of the hierarchical relations
A subclass relationship is transitive:

If B is a subclass of A and C is a subclass of B, then C is a subclass of A
For example, we can define a class Wine, and then define a class White wine as a subclass of
Wine. Then we define a class Chardonnay as a subclass of White wine. Transitivity of the
subclass relationship means that the class Chardonnay is also a subclass of Wine. Sometimes
we distinguish between direct subclasses and indirect subclasses. A direct subclass is the
“closest” subclass of the class: there are no classes between a class and its direct subclass in a
hierarchy. That is, there are no other classes in the hierarchy between a class and its direct
superclass. In our example, Chardonnay is a direct subclass of White wine and is not a
direct subclass of Wine.

Evolution of a class hierarchy
Maintaining a consistent class hierarchy may become challenging as domains evolve. For
example, for many years, all Zinfandel wines were red. Therefore, we define a class of
Zinfandel wines as a subclass of the Red wine class. Sometimes, however, wine makers
began to press the grapes and to take away the color-producing aspects of the grapes
immediately, thereby modifying the color of the resulting wine. Thus, we get “white zinfandel”
whose color is rose. Now we need to break the Zinfandel class into two classes of
zinfandel—White zinfandel and Red zinfandel—and classify them as subclasses of
Rose wine and Red wine respectively.

Classes and their names
It is important to distinguish between a class and its name:

Classes represent concepts in the domain and not the words that denote
these concepts.

The name of a class may change if we choose a different terminology, but the term itself
represents the objective reality in the world. For example, we may create a class Shrimps, and
then rename it to Prawns—the class still represents the same concept. Appropriate wine
combinations that referred to shrimp dishes should refer to prawn dishes. In more practical terms,
the following rule should always be followed:

Synonyms for the same concept do not represent different classes
Synonyms are just different names for a concept or a term. Therefore, we should not have a class
called Shrimp and a class called Prawn, and, possibly a class called Crevette. Rather, there
is one class, named either Shrimp or Prawn. Many systems allow associating a list of
synonyms, translations, or presentation names with a class. If a system does not allow these
associations, synonyms could always be listed in the class documentation.

Avoiding class cycles
We should avoid cycles in the class hierarchy. We say that there is a cycle in a hierarchy when
some class A has a subclass B and at the same time B is a superclass of A. Creating such a cycle
in a hierarchy amounts to declaring that the classes A and B are equivalent: all instances of A are
instances of B and all instances of B are also instances of A. Indeed, since B is a subclass of A,
all B’s instances must be instances of the class A. Since A is a subclass of B, all A’s instances

14

must also be instances of the class B.

4.2 Analyzing siblings in a class hierarchy

Siblings in a class hierarchy
Siblings in the hierarchy are classes that are direct subclasses of the same class (see Section 4.1).

All the siblings in the hierarchy (except for the ones at the root) must be at
the same level of generality.

For example, White wine and Chardonnay should not be subclasses of the same class (say,
Wine). White wine is a more general concept than Chardonnay. Siblings should represent
concepts that fall “along the same line” in the same way that same-level sections in a book are at
the same level of generality. In that sense, requirements for a class hierarchy are similar to the
requirements for a book outline.

The concepts at the root of the hierarchy however (which are often represented as direct
subclasses of some very general class, such as Thing) represent major divisions of the domain
and do not have to be similar concepts.

How many is too many and how few are too few?
There are no hard rules for the number of direct subclasses that a class should have. However,
many well-structured ontologies have between two and a dozen direct subclasses. Therefore, we
have the following two guidelines:

If a class has only one direct subclass there may be a modeling problem or
the ontology is not complete.
If there are more than a dozen subclasses for a given class then additional
intermediate categories may be necessary.

The first of the two rules is similar to a typesetting rule that bulleted lists should never have only
one bullet point. For example, most of the red Burgundy wines are Côtes d’Or wines. Suppose
we wanted to represent only this majority type of Burgundy wines. We could create a class Red
Burgundy and then a single subclass Cotes d’Or (Figure 6a). However, if in our
representation red Burgundy and Côtes d’Or wines are essentially equivalent (all red Burgundy
wines are Côtes d’Or wines and all Côtes d’Or wines are red Burgundy wines), creating the
Cotes d’Or class is not necessary and does not add any new information to the representation.
If we were to include Côtes Chalonnaise wines, which are cheaper Burgundy wines from the
region just South of Côtes d’Or, then we will create two subclasses of the Burgundy class:
Cotes d’Or and Cotes Chalonnaise (Figure 6b).

Figure 6. Subclasses of the Red Burgundy class. Having a single subclass of a class usually points to
a problem in modeling.

Suppose now that we list all types of wines as direct subclasses of the Wine class. This list
would then include such more general types of wine as Beaujolais and Bordeaux, as well as more
specific types such as Paulliac and Margaux (Figure 6a). The class Wine has too many direct

15

subclasses and, indeed, for the ontology to reflect the different types of wine in a more organized
manner, Medoc should be a subclass of Bordeaux and Cotes d’Or should be a subclass of
Burgundy. Also having such intermediate categories as Red wine and White wine would
also reflect the conceptual model of the domain of wines that many people have (Figure 6b).

However, if no natural classes exist to group concepts in the long list of siblings, there is no need
to create artificial classes—just leave the classes the way they are. After all, the ontology is a
reflection of the real world, and if no categorization exists in the real world, then the ontology
should reflect that.

Figure 7. Categorizing wines. Having all the wines and types of wine versus having several levels of
categorization.

4.3 Multiple inheritance
Most knowledge-representation systems allow multiple inheritance in the class hierarchy: a
class can be a subclass of several classes. Suppose we would like to create a separate class of

16

dessert wines, the Dessert wine class. The Port wine is both a red wine and a dessert wine.4

Therefore, we define a class Port to have two superclasses: Red wine and Dessert wine.
All instances of the Port class will be instances of both the Red wine class and the
Dessert wine class. The Port class will inherit its slots and their facets from both its
parents. Thus, it will inherit the value SWEET for the slot Sugar from the Dessert wine
class and the tannin level slot and the value for its color slot from the Red wine class.

4.4 When to introduce a new class (or not)
One of the hardest decisions to make during modeling is when to introduce a new class or when
to represent a distinction through different property values. It is hard to navigate both an
extremely nested hierarchy with many extraneous classes and a very flat hierarchy that has too
few classes with too much information encoded in slots. Finding the appropriate balance though
is not easy.

There are several rules of thumb that help decide when to introduce new classes in a hierarchy.

Subclasses of a class usually (1) have additional properties that the
superclass does not have, or (2) restrictions different from those of the
superclass, or (3) participate in different relationships than the
superclasses

Red wines can have different levels of tannin, whereas this property is not used to describe wines
in general. The value for the sugar slot of the Dessert wine is SWEET, whereas it is not true of
the superclass of the Dessert Wine class. Pinot Noir wines may go well with seafood whereas
other red wines do not. In other words, we introduce a new class in the hierarchy usually only
when there is something that we can say about this class that we cannot say about the superclass.

In practical terms, each subclass should either have new slots added to it, or have new slot values
defined, or override some facets for the inherited slots.

However, sometimes it may be useful to create new classes even if they do not introduce any new
properties.

Classes in terminological hierarchies do not have to introduce new
properties

For example, some ontologies include large reference hierarchies of common terms used in the
domain. For example, an ontology underlying an electronic medical-record system may include a
classification of various diseases. This classification may be just that—a hierarchy of terms,
without properties (or with the same set of properties). In that case, it is still useful to organize
the terms in a hierarchy rather than a flat list because it will (1) allow easier exploration and
navigation and (2) enable a doctor to choose easily a level of generality of the term that is
appropriate for the situation.

Another reason to introduce new classes without any new properties is to model concepts among
which domain experts commonly make a distinction even though we may have decided not to
model the distinction itself. Since we use ontologies to facilitate communication among domain
experts and between domain experts and knowledge-based systems we would like to reflect the
expert’s view of the domain in the ontology.

Finally, we should not create subclasses of a class for each additional restriction. For example,
we introduced the classes Red wine, White wine, and Rose wine because this
distinction is a natural one in the wine world. We did not introduce classes for delicate wine,

4 We chose to represent only red Ports in our ontology: white Ports do exist but they are extremely
uncommon.

17

moderate wine, and so on. When defining a class hierarchy, our goal is to strike a balance
between creating new classes useful for class organization and creating too many classes.

4.5 A new class or a property value?
When modeling a domain, we often need to decide whether to model a specific distinction (such
as white, red, or rosé wine) as a property value or as a set of classes again depends on the scope
of the domain and the task at hand.

Do we create a class White wine or do we simply create a class Wine and fill in different
values for the slot color? The answer usually lies in the scope that we defined for the ontology.
How important the concept of White wine is in our domain? If wines have only marginal
importance in the domain and whether or not the wine is white does not have any particular
implications for its relations to other objects, then we shouldn’t introduce a separate class for
white wines. For a domain model used in a factory producing wine labels, rules for wine labels
of any color are the same and the distinction is not very important. Alternatively, for the
representation of wine, food, and their appropriate combinations a red wine is very different from
a white wine: it is paired with different foods, has different properties, and so on. Similarly, color
of wine is important for the wines knowledge base that we may use to determine wine-tasting
order. Thus, we create a separate class for White wine.

If the concepts with different slot values become restrictions for different
slots in other classes, then we should create a new class for the
distinction. Otherwise, we represent the distinction in a slot value.

Similarly, our wine ontology has such classes as Red Merlot and White Merlot, rather
than a single class for all Merlot wines: red Merlots and white Merlots are really different wines
(made from the same grape) and if we are developing a detailed ontology of wine, this distinction
is important.

If a distinction is important in the domain and we think of the objects with
different values for the distinction as different kinds of objects, then we
should create a new class for the distinction.

Considering potential individual instances of a class may also be helpful in deciding whether or
not to introduce a new class.

A class to which an individual instance belongs should not change often.
Usually when we use extrinsic rather than intrinsic properties of concepts to differentiate among
classes, instances of those classes will have to migrate often from one class to another. For
example, Chilled wine should not be a class in an ontology describing wine bottles in a
restaurant. The property chilled should simply be an attribute of wine in a bottle since an
instance of Chilled wine can easily cease being an instance of this class and then become an
instance of this class again.

Usually numbers, colors, locations are slot values and do not cause the creation of new classes.
Wine, however, is a notable exception since the color of the wine is so paramount to the
description of wine.

For another example, consider the human-anatomy ontology. When we represent ribs, do we
create a class for each of the “1st left rib”, “2nd left rib”, and so on? Or do we have a class Rib
with slots for the order and the lateral position (left-right)?5 If the information about each of the
ribs that we represent in the ontology is significantly different, then we should indeed create a

5 Here we assume that each anatomical organ is a class since we would also like to talk about “John’s 1st left
rib.” Individual organs of existing people would be represented as individuals in our ontology.

18

class for each of the ribs. That is, if we want to represent details adjacency and location
information (which is different for each rib) as well as specific functions that each rib playa and
organs it protects, we want the classes. If we are modeling anatomy at a slightly lesser level of
generality, and all ribs are very similar as far as our potential applications are concerned (we just
talk about which rib is broken on the X-Ray without implications for other parts of the body), we
may want to simplify our hierarchy and have just the class Rib, with two slots: lateral
position, order.

4.6 An instance or a class?
Deciding whether a particular concept is a class in an ontology or an individual instance depends
on what the potential applications of the ontology are. Deciding where classes end and individual
instances begin starts with deciding what is the lowest level of granularity in the representation.
The level of granularity is in turn determined by a potential application of the ontology. In other
words, what are the most specific items that are going to be represented in the knowledge base?
Going back to the competency questions we identified in Step 1 in Section 3, the most specific
concepts that will constitute answers to those questions are very good candidates for individuals
in the knowledge base.

Individual instances are the most specific concepts represented in a
knowledge base.

For example, if we are only going to talk about pairing wine with food we will not be interested
in the specific physical bottles of wine. Therefore, such terms as Sterling Vineyards
Merlot are probably going to be the most specific terms we use. In other words, the Wine class
is a collection not of individual bottles of wines but rather of the specific wines produced by
specific wineries. Therefore, Sterling Vineyards Merlot would be an instance in the
knowledge base.

On the other hand, if we would like to maintain an inventory of wines in the restaurant in
addition to the knowledge base of good wine-food pairings, individual bottles of each wine may
become individual instances in our knowledge base.

Similarly, if we would like to record different properties for each specific vintage of the
Sterling Vineyards Merlot, then the specific vintage of the wine is an instance in a
knowledge base and Sterling Vineyards Merlot is a class containing instances for all
its vintages.

Another rule can “move” some individual instances into the set of classes:

If concepts form a natural hierarchy, then we should represent them as
classes

Consider the wine regions. Initially, we may define main wine regions, such as France, United
States, Germany, and so on, as classes and specific wine regions within these large regions as
instances. For example, Bourgogne region is an instance of the French region class.
However, we would also like to say that the Cotes d’Or region is a Bourgogne
region. Therefore, Bourgogne region must be a class (in order to have subclasses or
instances). However, making Bourgogne region a class and Cotes d’Or region an
instance of Bourgogne region seems arbitrary: it is very hard to clearly distinguish which
regions are classes and which are instances. Therefore, we define all wine regions as classes.
Protégé-2000 allows users to specify some classes as Abstract, signifying that the class cannot
have any direct instances. In our case, all region classes are abstract (Figure 8).

19

Figure 8. Hierarchy of wine regions. The "A" icons next to class names indicate that the classes are
abstract and cannot have any direct instances.

The same class hierarchy would be incorrect if we omitted the word “region” from the class
names. We cannot say that the class Alsace is a subclass of the class France: Alsace is not a
kind of France. However, Alsace region is a kind of a French region.

Only classes can be arranged in a hierarchy—knowledge-representation systems do not have a
notion of sub-instance. Therefore, if there is a natural hierarchy among terms, such as in
terminological hierarchies from Section 4.2, we should define these terms as classes even though
they may not have any instances of their own.

4.7 Limiting the scope
As a final note on defining a class hierarchy, the following set of rules is always helpful in
deciding when an ontology definition is complete:

The ontology should not contain all the possible information about the
domain: you do not need to specialize (or generalize) more than you need
for your application (at most one extra level each way).

For our wine and food example, we do not need to know what paper is used for the labels or how
to cook shrimp dishes.

Similarly,

The ontology should not contain all the possible properties of and
distinctions among classes in the hierarchy.

In our ontology, we certainly do not include all the properties that a wine or food could have.
We represented the most salient properties of the classes of items in our ontology. Even though
wine books would tell us the size of grapes, we have not included this knowledge. Similarly, we
have not added all relationships that one could imagine among all the terms in our system. For
example, we do not include relationships such as favorite wine and favorite food in
the ontology just to allow a more complete representation of all of the interconnections between
the terms we have defined.

The last rule also applies to establishing relations among concepts that we have already included
in the ontology. Consider an ontology describing biology experiments. The ontology will likely
contain a concept of Biological organisms. It will also contain a concept of an

20

Experimenter performing an experiment (with his name, affiliation, etc.). It is true that an
experimenter, as a person, also happens to be a biological organism. However, we probably
should not incorporate this distinction in the ontology: for the purposes of this representation an
experimenter is not a biological organism and we will probably never conduct experiments on
the experimenters themselves. If we were representing everything we can say about the classes in
the ontology, an Experimenter would become a subclass of Biological Organism.
However, we do not need to include this knowledge for the foreseeable applications. In fact,
including this type of additional classification for existing classes actually hurts: now an instance
of an Experimenter will have slots for weight, age, species, and other data pertaining to a
biological organism, but absolutely irrelevant in the context of describing an experiment.
However, we should record such design decision in the documentation for the benefit of the users
who will be looking at this ontology and who may not be aware of the application we had in
mind. Otherwise, people intending to reuse the ontology for other applications may try to use
experimenter as a subclass of person without knowing that the original modeling did not include
that fact.

4.8 Disjoint subclasses
Many systems allow us to specify explicitly that several classes are disjoint. Classes are disjoint
if they cannot have any instances in common. For example, the Dessert wine and the White
wine classes in our ontology are not disjoint: there are many wines that are instances of both.
The Rothermel Trochenbierenauslese Riesling instance of the Sweet
Riesling class is one such example. At the same time, the Red wine and the White wine
classes are disjoint: no wine can be simultaneously red and white. Specifying that classes are
disjoint enables the system to validate the ontology better. If we declare the Red wine and the
White wine classes to be disjoint and later create a class that is a subclass of both Riesling
(a subclass of White wine) and Port (a subclass of Red wine), a system can indicate that
there is a modeling error.

5 Defining properties—more details
In this section we discuss several more details to keep in mind when defining slots in the
ontology (Step 5 and Step 6 in Section 3). Mainly, we discuss inverse slots and default values for
a slot.

5.1 Inverse slots
A value of a slot may depend on a value of another slot. For example, if a wine was produced
by a winery, then the winery produces that wine. These two relations, maker and
produces, are called inverse relations. Storing the information “in both directions” is
redundant. When we know that a wine is produced by a winery, an application using the
knowledge base can always infer the value for the inverse relation that the winery produces the
wine. However, from the knowledge-acquisition perspective it is convenient to have both pieces
of information explicitly available. This approach allows users to fill in the wine in one case and
the winery in another. The knowledge-acquisition system could then automatically fill in the
value for the inverse relation insuring consistency of the knowledge base.

Our example has a pair of inverse slots: the maker slot of the Wine class and the produces
slot of the Winery class. When a user creates an instance of the Wine class and fills in the
value for the maker slot, the system automatically adds the newly created instance to the

21

produces slot of the corresponding Winery instance. For instance, when we say that Sterling
Merlot is produced by the Sterling Vineyard winery, the system would automatically add Sterling
Merlot to the list of wines that the Sterling Vineyard winery produces. (Figure 9).

Figure 9. Instances with inverse slots. The slot produces for the class Winery is an inverse of the
slot maker for the class Wine. Filling in one of the slots triggers an automatic update of the other.

5.2 Default values
Many frame-based systems allow specification of default values for slots. If a particular slot
value is the same for most instances of a class, we can define this value to be a default value for
the slot. Then, when each new instance of a class containing this slot is created, the system fills
in the default value automatically. We can then change the value to any other value that the
facets will allow. That is, default values are there for convenience: they do not enforce any new
restrictions on the model or change the model in any way.

For example, if the majority of wines we are going to discuss are full-bodied wines, we can have
“full” as a default value for the body of the wine. Then, unless we say otherwise, all wines we
define would be full-bodied.

Note that this is different from slot values. Slot values cannot be changed. For example, we can
say that the slot sugar has value SWEET for the Dessert wine class. Then all the
subclasses and instances of the Dessert wine class will have the SWEET value for the slot
sugar. This value cannot be changed in any of the subclasses or instances of the class.

6 What’s in a name?
Defining naming conventions for concepts in an ontology and then strictly adhering to these
conventions not only makes the ontology easier to understand but also helps avoid some common
modeling mistakes. There are many alternatives in naming concepts. Often there is no particular
reason to choose one or another alternative. However, we need to

22

Define a naming convention for classes and slots and adhere to it.
The following features of a knowledge representation system affect the choice of naming
conventions:

• Does the system have the same name space for classes, slots, and instances? That is, does
the system allow having a class and a slot with the same name (such as a class winery
and a slot winery)?

• Is the system case-sensitive? That is, does the system treat the names that differ only in
case as different names (such as Winery and winery)?

• What delimiters does the system allow in the names? That is, can names contain spaces,
commas, asterisks, and so on?

Protégé-2000, for example, maintains a single name space for all its frames. It is case-sensitive.
Thus, we cannot have a class winery and a slot winery. We can, however, have a class
Winery (note the upper-case) and a slot winery. CLASSIC, on the other hand, is not case
sensitive and maintains different name spaces for classes, slots, and individuals. Thus, from a
system perspective, there is no problem in naming both a class and a slot Winery.

6.1 Capitalization and delimiters
First, we can greatly improve the readability of an ontology if we use consistent capitalization for
concept names. For example, it is common to capitalize class names and use lower case for slot
names (assuming the system is case-sensitive).

When a concept name contains more than one word (such as Meal course) we need to delimit
the words. Here are some possible choices.

• Use Space: Meal course (many systems, including Protégé, allow spaces in concept
names).

• Run the words together and capitalize each new word: MealCourse

• Use an underscore or dash or other delimiter in the name: Meal_Course,
Meal_course, Meal-Course, Meal-course. (If you use delimiters, you will also
need to decide whether or not each new word is capitalized)

If the knowledge-representation system allows spaces in names, using them may be the most
intuitive solution for many ontology developers. It is however, important to consider other
systems with which your system may interact. If those systems do not use spaces or if your
presentation medium does not handle spaces well, it can be useful to use another method.

6.2 Singular or plural
A class name represents a collection of objects. For example, a class Wine actually represents
all wines. Therefore, it could be more natural for some designers to call the class Wines rather
than Wine. No alternative is better or worse than the other (although singular for class names is
used more often in practice). However, whatever the choice, it should be consistent throughout
the whole ontology. Some systems even require their users to declare in advance whether or not
they are going to use singular or plural for concept names and do not allow them to stray from
that choice.

Using the same form all the time also prevents a designer from making such modeling mistakes
as creating a class Wines and then creating a class Wine as its subclass (see Section 4.1).

23

6.3 Prefix and suffix conventions
Some knowledge-base methodologies suggest using prefix and suffix conventions in the names to
distinguish between classes and slots. Two common practices are to add a has- or a suffix –of
to slot names. Thus, our slots become has-maker and has-winery if we chose the has-
convention. The slots become maker-of and winery-of if we chose the of- convention.
This approach allows anyone looking at a term to determine immediately if the term is a class or
a slot. However, the term names become slightly longer.

6.4 Other naming considerations
Here are a few more things to consider when defining naming conventions:

• Do not add strings such as “class”, “property”, “slot”, and so on to concept names.

It is always clear form the context whether the concept is a class or a slot, for example. In
addition is you use different naming conventions for classes and slots (say, capitalization and no
capitalization respectively), the name itself would be indicative of what the concept is.

• It is usually a good idea to avoid abbreviations in concept names (that is, use Cabernet
Sauvignon rather than Cab)

• Names of direct subclasses of a class should either all include or not include the name of
the superclass. For example, if we are creating two subclasses of the Wine class to
represent red and white wines, the two subclass names should be either Red Wine and
White Wine or Red and White, but not Red Wine and White.

7 Other Resources
We have used Protégé-2000 as an ontology-developing environment for our examples. Duineveld
and colleagues (Duineveld et al. 2000) describe and compare a number of other ontology-
development environments.

We have tried to address the very basics of ontology development and have not discussed many
of the advanced topics or alternative methodologies for ontology development. Gómez-Pérez
(Gómez-Pérez 1998) and Uschold (Uschold and Gruninger 1996) present alternative
ontology-development methodologies. The Ontolingua tutorial (Farquhar 1997) discusses some
formal aspects of knowledge modeling.

Currently, researchers emphasize not only ontology development, but also ontology analysis. As
more ontologies are generated and reused, more tools will be available to analyze ontologies. For
example, Chimaera (McGuinness et al. 2000) provides diagnostic tools for analyzing
ontologies. The analysis that Chimaera performs includes both a check for logical correctness of
an ontology and diagnostics of common ontology-design errors. An ontology designer may want
to run Chimaera diagnostics over the evolving ontology to determine the conformance to
common ontology-modeling practices.

8 Conclusions
In this guide, we have described an ontology-development methodology for declarative frame-
based systems. We listed the steps in the ontology-development process and addressed the
complex issues of defining class hierarchies and properties of classes and instances. However,
after following all the rules and suggestions, one of the most important things to remember is the
following: there is no single correct ontology for any domain. Ontology design is a creative
process and no two ontologies designed by different people would be the same. The potential

24

applications of the ontology and the designer’s understanding and view of the domain will
undoubtedly affect ontology design choices. “The proof is in the pudding”—we can assess the
quality of our ontology only by using it in applications for which we designed it.

Acknowledgments
Protégé-2000 (http://protege.stanford.edu) was developed by Mark Musen’s group at Stanford
Medical Informatics. We generated some of the figures with the OntoViz plugin to Protégé-2000.
We imported the initial version of the wine ontology from the Ontolingua ontology library
(http://www.ksl.stanford.edu/software/ontolingua/) which in turn used a version published by
Brachman and colleagues (Brachman et al. 1991) and distributed with the CLASSIC
knowledge representation system. We then modified the ontology to present conceptual-
modeling principles for declarative frame-based ontologies. Ray Fergerson’s and Mor Peleg’s
extensive comments on earlier drafts greatly improved this paper.

References
Booch, G., Rumbaugh, J. and Jacobson, I. (1997). The Unified Modeling Language user guide:
Addison-Wesley.

Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A. and Borgida, A. (1991).
Living with CLASSIC: When and how to use KL-ONE-like language. Principles of Semantic
Networks. J. F. Sowa, editor, Morgan Kaufmann: 401-456.

Brickley, D. and Guha, R.V. (1999). Resource Description Framework (RDF) Schema
Specification. Proposed Recommendation, World Wide Web Consortium:
http://www.w3.org/TR/PR-rdf-schema.

Chimaera (2000). Chimaera Ontology Environment. www.ksl.stanford.edu/software/chimaera

Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B. and Benjamins, V.R. (2000).
WonderTools? A comparative study of ontological engineering tools. International Journal of
Human-Computer Studies 52(6): 1111-1133.

Farquhar, A. (1997). Ontolingua tutorial. http://ksl-web.stanford.edu/people/axf/tutorial.pdf

Gómez-Pérez, A. (1998). Knowledge sharing and reuse. Handbook of Applied Expert Systems.
Liebowitz, editor, CRC Press.

Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specification. Knowledge
Acquisition 5: 199-220.

Gruninger, M. and Fox, M.S. (1995). Methodology for the Design and Evaluation of Ontologies.
In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing, IJCAI-95,
Montreal.

Hendler, J. and McGuinness, D.L. (2000). The DARPA Agent Markup Language. IEEE
Intelligent Systems 16(6): 67-73.

Humphreys, B.L. and Lindberg, D.A.B. (1993). The UMLS project: making the conceptual
connection between users and the information they need. Bulletin of the Medical Library
Association 81(2): 170.

McGuinness, D.L., Abrahams, M.K., Resnick, L.A., Patel-Schneider, P.F., Thomason, R.H.,
Cavalli-Sforza, V. and Conati, C. (1994). Classic Knowledge Representation System Tutorial.
http://www.bell-labs.com/project/classic/papers/ClassTut/ClassTut.html

25

McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S. (2000). An Environment for Merging and
Testing Large Ontologies. Principles of Knowledge Representation and Reasoning: Proceedings
of the Seventh International Conference (KR2000). A. G. Cohn, F. Giunchiglia and B. Selman,
editors. San Francisco, CA, Morgan Kaufmann Publishers.

McGuinness, D.L. and Wright, J. (1998). Conceptual Modeling for Configuration: A Description
Logic-based Approach. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing - special issue on Configuration.

Musen, M.A. (1992). Dimensions of knowledge sharing and reuse. Computers and Biomedical
Research 25: 435-467.

Ontolingua (1997). Ontolingua System Reference Manual. http://www-ksl-
svc.stanford.edu:5915/doc/frame-editor/index.html

Price, C. and Spackman, K. (2000). SNOMED clinical terms. BJHC&IM-British Journal of
Healthcare Computing & Information Management 17(3): 27-31.

Protege (2000). The Protege Project. http://protege.stanford.edu

Rosch, E. (1978). Principles of Categorization. Cognition and Categorization. R. E. and B. B.
Lloyd, editors. Hillside, NJ, Lawrence Erlbaum Publishers: 27-48.

Rothenfluh, T.R., Gennari, J.H., Eriksson, H., Puerta, A.R., Tu, S.W. and Musen, M.A. (1996).
Reusable ontologies, knowledge-acquisition tools, and performance systems: PROTÉGÉ-II
solutions to Sisyphus-2. International Journal of Human-Computer Studies 44: 303-332.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991). Object-oriented
modeling and design. Englewood Cliffs, New Jersey: Prentice Hall.

Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, Methods and Applications.
Knowledge Engineering Review 11(2).

JADE Administrative Tutorials
JADE comes in a zip file. Just unzip it, preserving the directory structure. On Windows systems you
usually put it in c:\jade.

The Administrative Guide. (version 2.5)

This is the main reference for running JADE. It is quite detailed and somewhat terse. To supplement this
guide, here aresome step by step tutorials.

Running JADE with one (MAIN) container.

Using more than one container

Running multiple JADE platforms.

Using the HTTP Message Transport Protocol.

Getting Started with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/jadeStart.html [7/24/2002 10:04:27 PM]

JADE Programmer’s GUIDE

1

J A D E A D M I N I S T R A T O R ’ S G U I D E

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

Last update: 29-January-2002. JADE 2.5

Authors: Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (TILAB S.p.A., formerly CSELT)
 Giovanni Rimassa (University of Parma)

Copyright (C) 2000 CSELT S.p.A.
Copyright (C) 2001 TILAB S.p.A.
Copyright (C) 2002 TILAB S.p.A.

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with
the FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA
interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A., 2001 TILab S.p.A., 2002 TILab S.p.A.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General

Public License as published by the Free Software Foundation, version 2.1 of the License.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

JADE Programmer’s GUIDE

2

TABLE OF CONTENTS

1 INTRODUCTION 4

2 RUNNING THE AGENT PLATFORM 4

2.1 Software requirements 4

2.2 Getting the software 4

2.3 Running JADE from the binary distribution 4
2.3.1 Command line syntax 5
2.3.2 Options available from the command line 5
2.3.3 Launching agents from the command line 7
2.3.4 Example 7

2.4 Building JADE from the source distribution 8
2.4.1 Building the JADE framework 8
2.4.2 Building JADE libraries 8
2.4.3 Building JADE HTML documentation 8
2.4.4 Building JADE examples and demo application 9
2.4.5 Cleaning up the source tree 9

2.5 Support for inter-platform messaging with plug-in Message Transport Protocols 9
2.5.1 Command line options for MTP management 10
2.5.2 Configuring MTPs from the graphical management console. 10
2.5.3 Agent address management 11
2.5.4 Writing new MTPs for JADE 11

2.5.4.1 The Basic IIOP MTP 11
2.5.4.2 The ORBacus MTP 12
2.5.4.3 The HTTP MTP 12

2.6 Support for ACL Codec 13
2.6.1 XML Codec 13
2.6.2 Bit Efficient ACL Codec 13

3 AGENT IDENTIFIERS AND SENDING MESSAGES TO REMOTE
AGENTS 13

4 GRAPHICAL USER INTERFACE TO MANAGE AND MONITOR THE
AP ACTIVITY 14

4.1 Remote Monitoring Agent 14

4.2 DummyAgent 18

4.3 DF GUI 19

4.4 Sniffer Agent 20

4.5 Introspector Agent 21

JADE Programmer’s GUIDE

3

5 LIST OF ACRONYMS AND ABBREVIATED TERMS 22

JADE Programmer’s GUIDE

4

1 INTRODUCTION

This administrator's guide describes how to install and launch JADE. It is complemented by
the HTML documentation available in the directory jade/doc and the JADE Programmer's Guide.
If and where conflict arises between what is reported in the HTML documentation and this guide,
preference should be given to the HTML documentation that is updated more frequently.

2 RUNNING THE AGENT PLATFORM

2.1 Software requirements

The only software requirement to execute the system is the Java Run Time Environment
version 1.2.

In order to build the system the JDK1.2 is sufficient because pre-built IDL stubs and Java
parser classes are included with the JADE source distribution. Those users, who wish to
regenerate IDL stubs and Java parser classes, should also have the JavaCC parser generator
(version 0.8pre or version 1.1; available from http://www.metamata.com), and the IDL to Java
compiler (available from the Sun Developer Connection). Notice that the old idltojava compiler
available with JDK1.2 generates wrong code and it should never be used, instead the new idlj
compiler, that is distributed with JDK1.3, should be used.

2.2 Getting the software

All the software is distributed under the LGPL license limitations and it can be downloaded
from the JADE web site http://jade.cselt.it/. Five compressed files are available:

1. The source code of JADE
2. The source code of the examples
3. The documentation, including the javadoc of the JADE API and this programmer's guide
4. The binary of JADE, i.e. the jar files with all the Java classes
5. A full distribution with all the previous files

2.3 Running JADE from the binary distribution

Having uncompressed the archive file, a directory tree is generated whose root is jade and
with a lib subdirectory. This subdirectory contains some JAR files that have to be added to the
CLASSPATH environment variable.

Having set the classpath, the following command can be used to launch the main container
of the platform. The main container is composed of the DF agent, the AMS agent, and the RMI
registry (that is used by JADE for intra-platform communication).

 java jade.Boot [options] [AgentSpecifier list]
Additional agent containers can be then launched on the same host, or on remote hosts, that

connect themselves with the main container of the Agent Platform, resulting in a distributed
system that seems a single Agent Platform from the outside.

An Agent Container can be started using the command:
 java jade.Boot –container [options] [AgentSpecifier list]

JADE Programmer’s GUIDE

5

An alternative way of launching JADE is to use the following command, that does not need
to set the CLASSPATH:

 java –jar lib\jade.jar –nomtp [options] [AgentSpecifier list]
Remind to use the “–nomtp” option, otherwise an exception will be thrown because the

library iiop.jar is not found.

2.3.1 Command line syntax

The full EBNF syntax of the command line is the following, where common rules apply for
the token definitions:

java jade.Boot Option* AgentSpecifier*

Option = "-container"
 | "-host" HostName
 | "-port" PortNumber
 | "-name" PlatformName
 | "-gui"
 | "-mtp" ClassName "(" Argument* ")"
 (";" ClassName "(" Argument* ")")*
 | "-nomtp"
 | "-aclcodec" ClassName (";" ClassName)*
 | "-nomobility"
 | "-version"
 | "-help"
 | "-conf" FileName?

ClassName = PackageName? Word

PackageName = (Word ".")+

Argument = Word | Number | String

HostName = Word ("." Word)*

PortNumber = Number

AgentSpecifier = AgentName ":" ClassName ("(" Argument* ")")?

AgentName = Word

PlatformName = Word

2.3.2 Options available from the command line

 -container specifies that this instance of JADE is a container and, as such, that it must join
with a main-container (by default this option is unselected)

-host specifies the host name where the RMI registry should be created (for the main -

JADE Programmer’s GUIDE

6

container) / located (for the ordinary containers); its value is defaulted to
localhost. This option can also be used when launching the main-container in
order to override the value of localhost; a typical example of this kind of usage
is to include the full domain of the host (e.g. –host kim.cselt.it when the
localhost would have returned just ‘kim’) such that the main-container can
be contacted even from outside the local domain.

-port this option allows to specify the port number where the RMI registry should be
created (for the main-container) / located (for the ordinary containers). By default
the port number 1099 is used.

-name this option specifies the symbolic name to be used as the platform name; this
option will be considered only in the case of a main container; the default is to
generate a unique name from the values of the main container's host name and
port number. Please note that this option is strongly discouraged since uniqueness
of the HAP is not enforced. This might result in non-unique agent names.

-gui specifies that the RMA (Remote Monitoring Agent) GUI of JADE should be
launched (by default this option is unselected)

-mtp specifies a list of external Message Transport Protocols to be activated on this
container (by default the JDK1.2 IIOP is activated on the main-container and no
MTP is activated on the other containers)

 -nomtp has precedence over -mtp and overrides it. It should be used to override the default
behaviour of the main-container (by default the -nomtp option unselected)

-aclcodec By default all messages are encoded by the String-based ACLCodec. This option
allows to specify a list of additional ACLCodec that will become available to the
agents of the launched container in order to encode/decode messages. JADE will
provide automatically to use these codec when agents set the right value in the
field aclRepresentation of the Envelope of the sent/received ACLMessages. Look
at the FIPA specifications for the standard names of these codecs

-nomobility disable the mobility and cloning support in the launched container. In this way the
container will not accept requests for agent migration or agent cloning, option that
might be useful to enhance the level of security for the host where this container is
running. Notice that the platform can include both containers where mobility is
enabled and containers where it is disabled. In this case an agent that tries to move
from/to the containers where mobility is disabled will die because of a Runtime
Exception.
Notice that, even if this option was selected, the container would still be able to
launch new agents (e.g. via the RMA GUI) if their class can be reached via the
local CLASSPATH.
By default this option is unselected.

 -version print on standard output the versioning information of JADE (by default this
option is unselected)

JADE Programmer’s GUIDE

7

-help print on standard output this help information (by default this option is unselected)

-conf if no filename is specified after this option, then a graphical interface is displayed
that allows to load/save all the JADE configuration parameters from a file. If a
filename is specified, instead, then all the options specified in that file are used to
launch JADE. By default this option is not selected

2.3.3 Launching agents from the command line

A list of agents can be launched directly from the command line. As described above, the
[AgentSpecifier list] part of the command is a sequence of strings separated by a
space.

Each string is broken into three parts. The first substring (delimited by the colon ‘:’
character) is taken as the agent name; the remaining substring after the colon (ended with a space
or with an open parenthesis) is the name of the Java class implementing the agent. The Agent
Container will dynamically load this class. Finally, a list of string arguments can be passed
delimited between parentheses.

For example, a string Peter:myAgent means "create a new agent named Peter whose
implementation is an object of class myAgent". The name of the class must be fully qualified,
(e.g. Peter:myPackage.myAgent) and will be searched for according to CLASSPATH
definition.

Another example is the string Peter:myAgent(“today is raining” 123) that
means "create a new agent named Peter whose implementation is an object of class myAgent
and pass an array of two arguments to its constructor: the first is the string today is
raining and the second is the string 123". Notice that, according to the Java convention, the
quote symbols have been removed and the number is still a string.

2.3.4 Example

First of all set the CLASSPATH to include the JAR files in the lib subdirectory and the
current directory. For instance, for Windows 9x/NT use the following command:

set CLASSPATH=%CLASSPATH%;.;c:\jade\lib\jade.jar;
c:\jade\lib\jadeTools.jar;c:\jade\lib\Base64.jar;c:\jade\lib
\iiop.jar

Execute the following command to start the main-container of the platform. Let's suppose
that the hostname of this machine is "kim.cselt.it"

prompt> java jade.Boot –gui
Execute the following command to start an agent container on another machine, by telling it

to join the Agent Platform running on the host "kim.cselt.it", and start one agent (you must
download and compile the examples agents to do that):

prompt> java jade.Boot -host kim.cselt.it -container
 sender1:examples.receivers.AgentSender

where "sender1" is the name of the agent, while
examples.receivers.AgentSender is the code that implements the agent.

JADE Programmer’s GUIDE

8

Execute the following command on a third machine to start another agent container telling it
to join the Agent Platform, called "facts" running on the host "kim.cselt.it", and then start two
agents.

prompt> java jade.Boot –host kim.cselt.it –container
 receiver2:examples.receivers.AgentReceiver
 sender2:examples.receivers.AgentSender

where the agent named sender2 is implemented by the class
examples.receivers.AgentSender, while the agent named receiver2 is implemented
by the class examples.receivers.AgentReceiver.

2.4 Building JADE from the source distribution

If you downloaded JADE in source form and want to compile it, you basically have two
methods: either you use the provided makefiles (for GNU make), or you run the Win32 .BAT
files that you find in the root directory of the package. Of course, using makefiles yields more
flexibility because they just build what is needed; JADE makefiles have been tested under Sun
Solaris 7 with JDK 1.2.0 and under Linux under JDK 1.2.2 RC4 and JDK 1.3. The batch files
have been tested under Windows NT 4.0 and under Windows 95, both with JDK 1.2.2 or JDK1.3

2.4.1 Building the JADE framework

If you use the makefiles, just type:
make all
in the root directory; if you use the batch files, type
makejade
in the root directory. Beware that the batch file will not be able to check whether IDL stubs

and parser classes already exist, so either you have idltojava and JavaCC installed, or you
comment out them in the batch file.

You will end up with all JADE classes in a classes subdirectory. You can add that
directory to your CLASSPATH and make sure that everything is OK by running JADE, as
described in the previous section.

2.4.2 Building JADE libraries

With makefiles, type
make lib
With batch files, type
makelib
This will remove the content of the classes directory and will create some JAR files in

the lib directory. These JAR files are just the same you get from the binary distribution. See
section 2.3 for a description on how to run JADE when you have built the JAR files. Beware that,
with both makefiles and batches, you must first build the classes and then the libraries, or you will
end up with empty JAR files.

2.4.3 Building JADE HTML documentation

With makefiles, type

JADE Programmer’s GUIDE

9

make doc
With batch files, type
makedoc
You will end up with Javadoc generated HTML pages, integrated within the overall

documentation. Beware that the Programmer’s Guide is a PDF file that cannot be generated at
your site, but you must download it (it is, of course, in the JADE documentation distribution).

2.4.4 Building JADE examples and demo application

If you downloaded the examples/demo archive and have unpacked it within the same source
tree, you will have to set your CLASSPATH to contain either the classes directory or the JAR
files in the lib directory, depending on your JADE distribution, and then type:

make examples
with makefiles, or
makeexamples
with batch files.
In order to compile the Jess-based example, it is necessary to have the JESS system and to

set the CLASSPATH to include it. The example can be compiled by typing:
make jessexample
with makefiles, or
makejessexample
with batch files.

2.4.5 Cleaning up the source tree

If you type
make clean
with makefiles, or if you type
clean
with batch files, you will remove all generated files (classes, HTML pages, JAR files, etc.)

from the source tree. If you use makefiles, you will find some other make targets you can use.
Feel free to try them, especially if you are modifying JADE source code, but be aware that these
other make targets are for internal use only, so they have not been documented.

2.5 Support for inter -platform messaging with plug -in Message Transport Protocols

The FIPA 2000 specification proposes a number of different Message Transport Protocols
(MTPs for short) over which ACL messages can be delivered in a compliant way.

JADE comprises a framework to write and deploy multiple MTPs in a flexible way. An
implementation of a FIPA compliant MTP can be compiled separately and put in a JAR file of its
own; the code will be dynamically loaded when an endpoint of that MTP is activated. Moreover,
every JADE container can have any number of active MTPs, so that the platform administrator
can choose whatever topology he or she wishes.

JADE performs message routing for both incoming and outgoing messages, using a single -
hop routing table that requires direct visibility among containers.

JADE Programmer’s GUIDE

10

When a new MTP is activated on a container, the JADE platform gains a new address that is
added to the list in the platform profile (that can be obtained from the AMS using the action
get-description). Moreover, the new address is added to all the ams-agent-
description objects contained within the AMS knowledge base.

2.5.1 Command line options for MTP management

When a JADE container is started, it is possible to activate one ore more communication
endpoints on it, using suitable command line options. The –mtp option activates a new
communication endpoint on a container, and must be given the name of the class that provides the
MTP functionality. If the MTP supports activation on specific addresses, then the address URL
can be given right after the class name, enclosed in brackets. If multiple MTPs are to be activated,
they can be listed together using commas as separators.

For example, the following option activates an IIOP endpoint on a default address.
-mtp jade.mtp.iiop.MessageTransportProtocol
The following option activates an IIOP endpoint that uses an ORBacus-based1 IIOP MTP on

a fixed, given address.
-mtp

orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cselt.it:12
34/jade)

The following option activates two endpoints that correspond to two ORBacus -based IIOP
MTP on two different addresses:

-mtp
orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cselt.it:12
34/jade);orbacus.MessageTransportProtocol(corbaloc:iiop:sharon.cs
elt.it:5678/jade)

When a container starts, it prints on the standard output all the active MTP addresses,
separated by a carriage return. Moreover, it writes the same addresses in a file, named:

MTPs-<Container Name>.txt.
If no MTP related option is given, by default a basic IIOP MTP is activated on the Main

Container and no MTP are activated on an ordinary container. To inhibit the creation of the
default IIOP endpoint, use the –nomtp option.

2.5.2 Configuring MTPs from the graphical management console.

Using the –mtp command line option, a transport endpoint lives as long as its container is
up; when a container is shut down, all its MTPs are deactivated and the AMS information is
updated accordingly. The JADE RMA console enables a more flexible management of the MTPs,
allowing activating and deactivating transport protocols during normal platform operations. In the
leftmost panel of the RMA GUI, right-clicking on an agent container tree node brings up the
popup menu with an Install a new MTP and Uninstall an MTP.

1 ORBacus is a CORBA 2.3 ORB for C++ and Java. It is available from Object Oriented Concepts, Inc. at
http://www.ooc.com. An alternate IIOP MTP for JADE, exploiting ORBacus features, is available in the download area
of the JADE web site: http://jade.cselt.it/.

JADE Programmer’s GUIDE

11

Choosing Install a new MTP a dialog is shown where the user can select the container to
install the new MTP on, the fully qualified name of the class implementing the protocol, and (if it
is supported by the chosen protocol) the transport address that will be used to contact the new
MTP. For example, to install a new IIOP endpoint, using the default JDK 1.3 ORB, one would
write jade.mtp.iiop.MessageTransportProtocol as the class name and nothing as
the address. In order to install a new IIOP endpoint, using the ORBacus based implementation,
one would write orbacus.MessageTransportProtocol as the class name and (if the
endpoint is to be deployed at host sharon.cselt.it, on the TCP port 1234, with an object
ID jade) corbaloc:iiop:sharon.cselt.it:1234/jade as the transport address.

Choosing Uninstall an MTP, a dialog is shown where the user can select from a list one of
the currently installed MTPs and remove it from the platform.

2.5.3 Agent address management

As a consequence of the MTP management described above, during its lifetime a platform,
and its agents, can have more than one address and they can be activated and deactivated during
the execution of the system. JADE takes care of maintaining consistence within the platform and
the addresses in the platform profile, the AMS knowledge base, and in the AID value returned by
the method getAID() of the class Agent.

For application-specific purposes, an agent can still decide to choose explicitly a subset of
the available addresses to be contacted by the rest of the world. In some cases, the agent could
even decide to activate some application specific MTP, that would not belong to the whole
platform but only to itself. So, the preferred addresses of an agent are not necessarily the same as
the available addresses for its platform. In order to do that, the agent must take care of managing
its own copy of agent ID and set the sender of its ACLMessages to its own copy of agent ID
rather than the value returned by the method getAID().

2.5.4 Writing new MTPs for JADE

To write a new MTP that can be used by JADE, all that is necessary is to implement a couple
of Java interfaces, defined in the jade.mtp package. The MTP interface models a bi-directional
channel that can both send and receive ACL messages (this interface extends the OutChannel
and InChannel interfaces that represent one-way channels). The TransportAddress
interface is just a simple representation for an URL, allowing separately reading the protocol,
host, port and file part.

2.5.4.1 The Basic IIOP MTP

An implementation of the FIPA 2000 IIOP-based transport protocol is included with JADE.
This implementation relies on the JDK 1.2 ORB (but can also use the JDK 1.3 ORB, requiring
recompilation of the jade.mtp.iiop package). This implementation fully supports IOR
representations such as IOR:000000000000001649444c644f4…, and does not allow to
choose the port number or the object key. These limitations are due to the underlying ORB, and
can be solved with other JADE MTPs exploiting more advanced CORBA ORBs. The MTP
implementation is contained within the jade.mtp.iiop.MessageTransportProtocol
class, so this is the name to be used when starting the protocol. Due to the limitation stated above,
choosing the address explicitly is not supported.

JADE Programmer’s GUIDE

12

The default IIOP MTP also supports a limited form of corbaloc: addressing: A
corbaloc: address, generated by some other more advanced ORB and pointing to a different
platform, can be used to send ACL messages. Interoperability between a JADE platform using
ORBacus and a JADE platform using the JDK 1.3 ORB has been successfully tested. In a first
test, the first platform exported a corbaloc: address generated by ORBacus, and then the
second platform used that address with the JDK 1.3 ORB to contact the first one. In a second test,
the IOR generated by the second platform was converted into a corbaloc: URL via the
getURL() method call in the IIOPAddress inner class (a non-public inner class of the
jade.mtp.iiop.MessageTransportProtocol class); then the first platform used that
address to contact the second one.

So, the corbaloc: support is almost complete. The only limitation is that it’s not possible
to export corbaloc: addresses with the JDK 1.3 ORB. JADE is able to convert IORs to
corbaloc: URLs, but the CORBA object key is an arbitrary octet sequence, so that the
resulting URL contains forbidden characters that are escaped using ‘%’ and their hexadecimal
value. While this conversion complies with CORBA 2.4 and RFC 2396, the resulting URL is just
as unreadable as the plain old IOR. The upcoming JDK 1.4 is stated to feature an ORB that
complies with the POA and INS specifications, so that it has persistent object references, and
natively supports corbaloc: and corbaname: addresses. It is likely that a more complete
IIOP MTP will be provided for the JDK 1.4, when it will be widely available.

2.5.4.2 The ORBacus MTP

A Message Transport Protocol implementation that complies with FIPA and exploits the
ORBacus ORB implementation can be download as an add-on from the JADE web site. A tutorial
is available in the JADE documentation that describes how to download, install, compile and use
this MTP. This MTP fully supports IOR:, corbaloc: and corbaname: addresses.

According to the OMG specifications, three syntaxes are allowed for an IIOP address (all
case-insensitive):

IIOPAddress ::= "ior:" (HexDigit HexDigit+)
 | "corbaname://" NSHost ":" NSPort "/" NSObjectID
 "#" objectName
 | "corbaloc:" HostName ":" portNumber "/" objectID

Notice that, in the third case, BIG_ENDIAN is assumed by default, while in the first and
second case, the endianess information is contained within the IOR definition. In the second form,
HostName and PortNumber refer to the host where the CORBA Naming Service is running.

2.5.4.3 The HTTP MTP

A Message Transport Protocol implementation that complies to FIPA and uses the HTTP
protocol can be download as an add-on from the JADE web site. A tutorial is available in the
JADE documentation that describes how to download, install, compile and use this MTP.

JADE Programmer’s GUIDE

13

2.6 Support for ACL Codec

By default, all ACLMessages are encoded via the String format defined by FIPA. However,
at configuration time it is possible to add additional ACLCodecs that can be used by agents on
that container. The command line option –aclcodec should be used for this purpose. Agents
wishing to send messages with non-default encodings should set the right value in the
aclRepresentation field of the Envelope.

2.6.1 XML Codec

An XML-based implementation of the ACLCodec can be download from the JADE site as
an add-on. A tutorial is available in the JADE documentation that describes how to download,
install, compile and use this codec.

2.6.2 Bit Efficient ACL Codec

A bit-efficient implementation of the ACLCodec can be download from the JADE site as an
add-on. A tutorial is available in the JADE documentation that describes how to download,
install, compile and use this codec. Take care that this codec is available under a different license,
not LGPL.

3 AGENT IDENTIFIERS AN D SENDING MESSAGES TO REMOTE AGENTS

According to the FIPA specifications, each agent is identified by an Agent Identifier (AID).
An Agent Identifier (AID) labels an agent so that it may be distinguished unambiguously within
the Agent Universe.

The AID is a structure composed of a number of slots, the most important of which are name
and addresses.

The name parameter of an AID is a globally unique identifier that can be used as a unique
referring expression of the agent. JADE uses a very simple mechanism to construct this globally
unique name by concatenating a user-defined nickname to its home agent platform name (HAP),
separated by the '@' character. Therefore, a full va lid name in the agent universe, a so-called
GUID (Globally Unique Identifier), is peter@kim:1099/JADE where ‘peter’ is the agent
nickname that was specified at the agent creation time, while ‘kim:1099/JADE’ is the platform
name. Only full valid names should be used within ACLMessages.

The addresses slot, instead, should contain a number of transport addresses at which the can
be contacted. The syntax of these addresses is just a sequence of URI. When using the default
IIOP MTP, the URI for all the local addresses is the IOR printed on stdout. The address slot is
defaulted to the addresses of the local agent platform.

JADE Programmer’s GUIDE

14

4 GRAPHICAL USER INTERFACE TO MANAGE AND MONITOR THE AP ACTIVIT Y

To support the difficult task of debugging multi-agent applications, some tools have been
developed. Each tool is packaged as an agent itself, obeying the same rules, the same
communication capabilities, and the same life cycle of a generic application agent.

4.1 Remote Monitoring Agent

The Remote Monitoring Agent (RMA) allows controlling the life cycle of the agent platform
and of all the registered agents. The distributed architecture of JADE allows also remote
controlling, where the GUI is used to control the execution of agents and their life cycle from a
remote host.

An RMA is a Java object, instance of the class jade.tools.rma.rma and can be
launched from the command line as an ordinary agent (i.e. with the command java
jade.Boot myConsole:jade.tools.rma.rma), or by supplying the ‘-gui’ option the
command line parameters (i.e. with the command java jade.Boot –gui).

More than one RMA can be started on the same platform as long as every instance has a
different local name, but only one RMA can be executed on the same agent container.

 Figure 1 Snapshot of the RMA GUI

JADE Programmer’s GUIDE

15

The followings are the commands that can be executed from the menu bar (or the tool bar) of
the RMA GUI.

♦ File menu:
This menu contains the general commands to the RMA.

♦ Close RMA Agent
Terminates the RMA agent by invoking its doDelete() method. The closure of
the RMA window has the same effect as invoking this command.

♦ Exit this Container
Terminates the agent container where the RMA is living in, by killing the RMA and
all the other agents living on that container. If the container is the Agent Platform
Main-Container, then the whole platform is shut down.

♦ Shut down Agent Platform
Shut down the whole agent platform, terminating all connected containers and all the
living agents.

♦ Actions menu:
This menu contains items to invoke all the various administrative actions needed on the
platform as a whole or on a set of agents or agent containers. The requested action is
performed by using the current selection of the agent tree as the target; most of these
actions are also associated to and can be executed from toolbar buttons.

♦ Start New Agent
This action creates a new agent. The user is prompted for the name of the new

agent and the name of the Java class the new agent is an instance of. Moreover, if an
agent container is currently selected, the agent is created and started on that container;
otherwise, the user can write the name of the container he wants the agent to start on.
If no container is specified, the agent is launched on the Agent Platform Main-
Container.

♦ Kill Selected Items
This action kills all the agents and agent containers currently selected. Killing an

agent is equivalent to calling its doDelete() method, whereas killing an agent
container kills all the agents living on the container and then de-registers that
container from the platform. Of course, if the Agent Platform Main-Container is
currently selected, then the whole platform is shut down.

♦ Suspend Selected Agents
This action suspends the selected agents and is equivalent to calling the

doSuspend() method. Beware that suspending a system agent, particularly the
AMS, deadlocks the entire platform.

♦ Resume Selected Agents
This action puts the selected agents back into the AP_ACTIVE state, provided

they were suspended, and works just the same as calling their doActivate()
method.

♦ Send Custom Message to Selected Agents
This action allows to send an ACL message to an agent. When the user selects

this menu item, a special dialog is displayed in which an ACL message can be

JADE Programmer’s GUIDE

16

composed and sent, as shown in the figure.

♦ Migrate Agent

Figure 10 – The dialog box to send custom messages to other agents

JADE Programmer’s GUIDE

17

This action allows to migrate an agent. When the user selects this menu item, a
special dialog is displayed in which the user must specify the container of the platform
where the selected agent must migrate. Not all the agents can migrate because of lack
of serialization support in their implementation. In this case the user can press the
cancel button of this dialog.

♦ Clone Agent
This action allows to clone a selected agent. When the user selects this menu

item a dialog is displayed in which the user must write the new name of the agent and
the container where the new agent will start.

♦ Tools menu:
This menu contains the commands to start all the tools provided by JADE to

application programmers. These tools will help developing and testing JADE based agent
systems.

♦ RemotePlatforms menu:
This menu allows controlling some remote platforms that comply with the FIPA
specifications. Notice that these remote platforms can even be non-JADE platforms.

♦ Add Remote Platform via AMS AID
This action allows getting the description (called APDescription in FIPA
terminology) of a remote Agent Platform via the remote AMS. The user is
requested to insert the AID of the remote AMS and the remote platform is then
added to the tree showed in the RMA GUI.

♦ Add Remote Platform via URL
This action allows getting the description (called APDescription in FIPA
terminology) of a remote Agent Platform via a URL. The content of the URL
must be the stringified APDescription, as specified by FIPA. The user is
requested to insert the URL that contains the remote APDescription and the
remote platform is then added to the tree showed in the RMA GUI.

♦ View APDescription
To view the AP Description of a selected platform.

♦ Refresh APDescription
This action asks the remote AMS for the APDescription and refresh the old one.

♦ Remove Remote Platform
This action permits to remove from the GUI the selected remote platform.

♦ Refresh Agent List
This action performs a search with the AMS of the Remote Platform and
the full list of agents belonging to the remote platform are then displayed
in the tree.

JADE Programmer’s GUIDE

18

4.2 DummyAgent

The DummyAgent tool allows users to interact with JADE agents in a custom way. The GUI
allows composing and sending ACL messages and maintains a list of all ACL messages sent and
received. This list can be examined by the user and each message can be viewed in detail or even
edited. Furthermore, the message list can be saved to disk and retrieved la ter. Many instances of
the DummyAgent can be started as and where required.

The DummyAgent can both be launched from the Tool menu of the RMA and from the
command line, as follows:

Java jade.Boot theDummy:jade.tools.DummyAgent.DummyAgent

Figure 2 Snapshot of the DummyAgent GUI

JADE Programmer’s GUIDE

19

4.3 DF GUI

A GUI of the DF can be launched from the Tools menu of the RMA. This action is actually
implemented by sending an ACL message to the DF asking it to show its GUI. Therefore, the
GUI can just be shown on the host where the platform (main-container) was executed.

By using this GUI, the user can interact with the DF: view the descriptions of the registered
agents, register and deregister agents, modify the description of registered agent, and also search
for agent descriptions.

The GUI allows also to federate the DF with other DF's and create a complex network of
domains and sub-domains of yellow pages. Any federated DF, even if resident on a remote non-
JADE agent platform, can also be controlled by the same GUI and the same basic operations
(view/register/deregister/modify/search) can be executed on the remote DF.

Figure 3 – Snapshot of the GUI of the DF

JADE Programmer’s GUIDE

20

4.4 Sniffer Agent

As the name itself points out, the Sniffer Agent is basically a Fipa-compliant Agent with
sniffing features.

When the user decides to sniff an agent or a group of agents, every message directed to/from
that agent / agentgroup is tracked and displayed in the sniffer Gui. The user can view every
message and save it to disk. The user can also save all the tracked messages and reload it from a
single file for later analysis.

This agent can be started both from the Tools menu of the RMA and also from the command
line as follows:

java jade.Boot sniffer:jade.tools.sniffer.Sniffer
The figure shows a snapshot of the GUI.

 Figure 4 - Snapshot of the sniffer agent GUI

JADE Programmer’s GUIDE

21

4.5 Introspector Agent

This tool allows to monitor and control the life-cycle of a running agent and its exchanged
messages, both the queue of sent and received messages.

Figure 3 - Snapshot of the Introspector Agent GUI

JADE Programmer’s GUIDE

22

5 LIST OF ACRONYMS AND ABBREVIATED TERMS

ACL Agent Communication Language
AID Agent Identifier
AMS Agent Management Service. According to the FIPA architecture, this is the agent that is

responsible for managing the platform and providing the white-page service.
AP Agent Platform
API Application Programming Interface
DF Directory Facilitator. According to the FIPA architecture, this is the agent that provides

the yellow-page service.
EBNF Extended Backus-Naur Form
FIPA Foundation for Intelligent Physical Agents
GUI Graphical User Interface
GUID Globally Unique Identifier
HAP Home Agent Platform
HTML Hyper Text Markup Language
HTTP Hypertext Transmission Protocol
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
INS
IOR Interoperable Object Reference
JADE Java Agent DEvelopment Framework
JDK Java Development Kit
LGPL Lesser GNU Public License
MTP Message Transport Protocol. According to the FIPA architecture, this component is

responsible for handling communication with external platforms and agents.
ORB Object Request Broker
POA Portable Object Adapter
RMA Remote Monitoring Agent. In the JADE platform, this type of agent provides a

graphical console to monitor and control the platform and, in particular, the life-cycle of
its agents.

RMI Remote Method Invocation
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language

Tutorial 1: Getting Started with JADE
[revised for JADE 2.5 March 2002]

(Note: The procedures in these notes have been tested on Windows 98 and Windows 2000.)

JADE can be run in several different ways, on one or on many computers. The easiest way is to run a single Jade
platform on one computer and use the main container.

Once you have unzipped JADE, you need to make Jade's jar files visible on the classpath. To save typing out could
make a one line batch file with the following (on a single line), tailored to your setup,

● java -classpath .;.\lib\jade.jar;.\lib\jadeTools.jar;.\lib\iiop.jar;.\lib\base64.jar jade.Boot %1 %2 %3 %4 %5 %6 %7
%8 %9

● We will call this batch file runjade.bat.

● Booting Jade
Then boot Jade (from the jade directory),

runjad -gui

You see this window (after you display the tree),

Notes on this image

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (1 of 7) [7/24/2002 10:05:29 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/runjade.bat

Jade agent platforms have containers to hold agents. A platform can have many containers, not necessarily on
the same computer. One container on a platform is "privileged". This main container resides on the host which
also runs the platform's RMI server. Agents on various containers on a platform use the RMI protocol to
communicate.

●

The image above shows the GUI of the Remote Monitoring Agent (RMA) which appears when you use the
-gui switch. In addition to itself, the RMA shows the presence of two other agents in the Main Container. The
ams is the Agent Management System. An agent itself, it provides an environment with many services for
agents on the platform. The df is the Directory Facilitator. It is an agent which provides a "yellow pages" for
agents known to the platform.

●

Agents must have globally unique names. A name is a "nickname" and an address separated by the at (@) sign.
For example, RMA@IBM:1099/JADE is an agent with nickname RMA at the address IBM:1099/JADE.
("IBM" is the name of my Win2000 machine on a LAN.

●

The addresses are in RMI format in this case. RMI is used for intra platform communication. (CORBA or
HTTP are used for inter platform communication.) The address consists of a host name, in this case IBM, and a
port on which the RMI naming service is active, in this case, 1099, the default port for RMI. The name JADE
distinguishes Jade RMI invocations from other possible RMI services. Note that in this case, the host name
does not have a domain attached. If you wanted a full name you can use the -host switch: java jade.Boot -gui
-host jupiter.scs.ryerson.ca, for example. There is also a -port switch if you don't like 1099.

●

Running Some Agents
We will use the DummyAgent which can be launched by clicking a button on the RMA, and the PingAgent which is
an example provided with the Jade distribution. First you need to compile the PingAgent.

Compiling the PingAgent

The source for the PingAgent is in the src\PingAgent directory. I moved it to examples\PingAgent\ under the jade
directory. This directory structure matches the package structure declared in the PingAgent.java source file.

You need to compile the PingAgent. I find it convenient to use another one line batch file for compilation (from the
Jade directory). The one line might be:

javac -classpath .\lib\jade.jar;.\lib\jadeTools.jar;.\lib\iiop.jar;.\lib\base64.jar;. %1 %2 %3 %4 %5 %6 %7 %8 %9

(all on one line)

I call this file compilejade.bat.

Then compile the Ping Agent with,

compilejade examples\pingagent\PingAgent.java

Loading the PingAgent into a Jade main container

There are two ways to load agents, using RMA, and from the command line when booting JADE.

Loading agents with the RMA

In the RMA window, select Main-Container, then click the New Agent button (or use the Actions menu). Or you can
right click on the Main-Container, and choose Start New Agent. This window pops up:

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (2 of 7) [7/24/2002 10:05:29 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/compileJade.bat

Enter a name for the agent, say ping0. (In this window just use the nickname of the agent, that is, leave out the
address. The address will be filled in by the system.)

Then enter the fully qualified agent class name. In this case, examples.PingAgent.PingAgent. If your class paths are
set correctly, after you click OK, the name ping0@IBM:1099/JADE will appear in the Main Container listing. (Of
course, the host name will be yours, not mine :-).) If the class cannot be found, JADE will ignore your and may print
an error on the Java Console (maybe).

Loading Agents when booting JADE

To carry out the same task as above you could have typed,

runjade -gui ping0:examples.PingAgent.PingAgent

and loaded the Ping Agent right away. Note the syntax with the agent nickname separated from its fully qualified
class name by a colon.

The Dummy Agent

The Dummy agent has its own button on the RMA. Click it to bring up the DummyAgent window. The Window
looks like this:

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (3 of 7) [7/24/2002 10:05:29 PM]

A formidable form indeed. The form is set up to allow you to describe a Communicative (speech) Act.

Fortunately, at this stage you don't need to know anything about SL. Nor do you have to fill in many fields. The fields
you do need to deal with are, receivers, communicative act, and content.

receivers. The receiver is the ping0 agent. With its pointer on the receivers box, right click the mouse and select
"add". The AID (Agent ID) window appears.

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (4 of 7) [7/24/2002 10:05:29 PM]

Fill in the form in the manner shown (using your own host name). In the case of the address right click the mouse on
the text field.

Note the check box. Checking it means the name is local (ping0) in this case. If you don't check it you need to enter
the full agent name: ping0@IBM:1099/JADE.

Back in the DummyAgent window, select QUERY-REF for the communicative act. In the request field, type in the
word "ping". (See comment on the PingAgent.java source file.)

Send a message

Finally click the send the message by clicking the send button (second from left).

In the right pane of the DummyAgent window two lines appear, one red, the other blue. The most recent is the
topmost. Blue refers to sent messages, red to received messages. You have something like this:

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (5 of 7) [7/24/2002 10:05:29 PM]

You can examine the received INFORM message (sent by the ping0@IBM:1099/JADE agent by selecting it and then
clicking the button with the "glasses" icon.

The ping agent has replied "alive". [In versions of JADE previous to version 2.5, the Ping Agent replies "(pong)".]

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (6 of 7) [7/24/2002 10:05:29 PM]

Shutting Down the Platform
In the RMA window, choose Shut down platform. Sometimes this does not work. In this case just type ctrl-c in the
Java console window to shut down the JVM.

Tutorial 1: Starting with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/startJade.html (7 of 7) [7/24/2002 10:05:29 PM]

Tutorial 2. JADE Containers, Local and
Remote
This tutorial shows how to add local and remote containers to a JADE platform. As before,
DummyAgent and PingAgent are used to demonstrate agent communication.

Multiple Containers on One Computer
As in Tutorial 1, open a DOS/Command window,and use runjade.bat as done in Tutorial 1.

runjade -gui -host Frodo

(The local name for the computer is Frodo. You don't really need the -host flag here. But ...)

If you are using computers in different domains you would want to include the full host name to prevent
JADE from just using localhost. For example,

runjade -gui -host frodo.scs.ryerson.ca

Display the container tree in the RMA agent window. You see the main container with the df, ams and
RMA agents.

Now open another DOS/Command window. In that window we create a satellite container and put the
PingAgent in it.

runjade -host Frodo -container ping0:examples.PingAgent.PingAgent

Notes on the syntax

The -host switch here is used somewhat differently than when used when creating the platform
itself (that is, when used with the -gui switch). In the -gui case, -host just names the host where the
platform and its RMI naming service are located. But when you are adding a container to a
platform, the -host switch tells which host is hosting the platform you want to hook up your
container to.

●

The -container switch tells the system that this is just a container. After this switch you can list
agents which you want to put in the container (separated by spaces). If your agent needs command
line arguments you can list them inside parentheses immediately following the agent's name.

●

You specify an agent by its nickname, followed by a colon, followed by its fully qualified class
name.

●

Try out the agents

Display the RMA window you will see an entry "container-1" added. Expanding the tree shows the ping0
agent.

Invoke the DummyAgent and use it to send a message to ping0 in the same way as was done in Tutorial

Tutorial 2. Jade containers

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/JadeContainerTutorial.html (1 of 3) [7/24/2002 10:05:30 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/runjade.bat

1. (Fill in the receivers=ping0@Frodo:1099/JADE, communicative act=QUERY-REF, Content=ping) If
you examine the return message it is the same as in Tutorial 1, namely "(pong)" or "alive", depending on
your JADE version..

Try changing the commutative act to INFORM and send the message to ping0. You will get a
NOT-UNDERSTOOD reply. Look at the content of this message for an example of the SL language
constructed by JADE.

Remote Containers
So far, this tutorial is just a repeat of Tutorial 1. It is not surprising to find that you can send messages
from agent to agent on the same platform whether they are in different containers or not. More interesting
is that JADE is a distributed system. A platform can have containers on remote systems as well as
locally. So if you have a second computer networked to the first, try this.

On the second computer set up and run a JADE container with a PingAgent in it. In other words, simply,
type,

runjade -host Frodo -container ping1:examples.PingAgent.PingAgent.

This is exactly the same command as used above to create a container on machine Frodo itself! Thanks to
RMI, the system is transparent with respect to hosts. Notice that, since an agent nicknamed ping0 already
exists on this platform, I must use a different nickname for this second PingAgent, even though the new
agent is running on a different machine.

Looking on the original machine (Frodo in my case) I see that a new container, Container-2 has appeared
on the RMA agent window in which ping1 is listed. I can, once again, send the usual message from the
DummyAgent on Frodo to ping1 which lives on another machine (named IBM in my case). The location
of ping1 is transparent to the user of RMA on Frodo. It could be anywhere.

The container on the other computer is a client of the RMI server running on Frodo. So is ping0 a client
which happens to exist on the same machine as the RMI server itself.

Running an RMA (Remote Monitoring Agent) with a container

If you have followed the tutorial to this point you have a main JADE platform on one machine (Frodo in
my case). This machine is the home of the Main Container and the RMI server. A second container,
Container-1 is installed on this machine and contains one agent, ping0@Frodo:1099/JADE, to give it its
full name. On a second machine, IBM in my case, there is a second container, Container-2 containing
one agent, ping1@Frodo:1099/JADE. This agent lives on machine IBM but "belongs" to the platform
running on machine Frodo.

A user on machine IBM can't see anything or do anything. The user of machine Frodo is in complete
control. It would be nice to run an RMA agent and a DummyAgent on a machine remote from the
platform machine.

To do this we need to know the fully qualified names of Dummy agent and RMA agent. These are,

java.tools.DummyAgent.DummyAgent●

Tutorial 2. Jade containers

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/JadeContainerTutorial.html (2 of 3) [7/24/2002 10:05:30 PM]

java.tools.rma.rma●

So start another container with these two agents and yet another ping agent, ping2, on some machine
connected to the JADE platform machine. For example,

runjade -host Frodo -container dummy0:jade.tools.DummyAgent.DummyAgent
RMA1:jade.tools.rma.rma

(Don't forget to include a nickname for your agents! AND make sure the names don't clash with names
on other containers on the platform. Note RMA1 not RMA.)

You will get the windows for the two agents on the remote machine. RMA1 will show all the containers
and agents on the platform, just like RMA on the main platform server. Try sending one of the ping
agents the usual message from dummy0.

Note

If you just launch the RMA agent on the remote machine and try using its button to launch the
Dummy Agent, the Dummy Agent fails to appear if one is running elsewhere. Instead, select the
container, right click and choose Start New Agent. Choose a none-clashing nickname for the new
Dummy Agent, and enter its full class name jade.tools.DummyAgent.DummyAgent.

●

A JADE platform is a cooperative system. If you hook up to the main platform server from a
remote machine and run an RMA agent on the remote machine you can use that agent to destroy
the whole platform! Be nice. Security will eventually be added to JADE.

●

Tutorial 2. Jade containers

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/JadeContainerTutorial.html (3 of 3) [7/24/2002 10:05:30 PM]

Tutorial 3. JADE Inter Platform Communication
In Tutorial 2 we saw a simple JADE platform consisting of containers which could be scattered among many different hosts with one Main container on a host running the RMI service. All the agents on one platform communicate using the RMI protocol. RMI is the intra communication mechanism internal to a platform.

JADE agents can also communicate among separate platforms, in other words, JADE provides mechanisms for inter platform communication. These mechanisms are CORBA based and use the IIOP protocol rather than RMI. Such an arrangement allows JADE agents to talk to FIPA compliant agents on any platform
supporting CORBA and FIPA standards. This is the whole idea of FIPA: to make diverse agent systems interoperable.

Also, there exist other protocols for inter platform communication. One popular method uses the HTTP protocol.

This tutorial shows how to use the basic Sun IIOP for inter platform communication.

In this tutorial you just get the DummyAgent talking to the PingAgent, one on one platform, the other on another platform. You could run two platforms on one machine, provided you use different ports for the RMI servers. But things are clearer and more typical if the platforms run on different hosts.

What is that big number that appears when booting a platform?

When you invoke java jade.Boot -gui, you get something like this on the Java console (DOS window):

IOR:000000000000001149444C3A464950412F4D54533A312E3000000000000000010000000000000054000101000000000C3139322E3136382E302E350007CE000000000018AFABCAFF00000002234298670000000800000000000000000000000100000001000000140000000000010020000000000001010000000000

You will also find it stored in a file called MTP-Main-Container.txt in the jade directory.

What is it? Well, it acts as a CORBA address, or end point. This strange value occurs because by default JADE uses Sun's JDK 1.3 CORBA/iiop implementation which is rather primitive. (The JADE team has provided a more sophisticated ORB which allows explicit addressing.)

To send messages between default versions of JADE platforms you need to use this end point as an agent address, which is rather awkward.

Setting Up
Boot a JADE platform on each of two computers in the usual way. For example, on host Frodo

runjade -host Frodo -gui

and

runjade -host IBM -gui

on host IBM.

Now, as usual, we want to send a message from a DummyAgent to a PingAgent, this time with the agents residing on separate platforms, not just in separate containers on the same platform. To do this we use the IOR's as the addresses for the agents.

End Points
The IIOP IOR (endpoint) of a platform is automatically stored in a file called MTP-Main-Contairner.txt. A sender of a message must know the receivers IOR so somehow, the sender must get a hold of the MTP-Main-Container.txt file of the receiver. One could use ftp. On a LAN with MS Windows you can just copy the
file or even just cut and paste its contents.

The platform with the DummyAgent needs to know the IOR of the platform with the PingAgent in order to send it a message. (Of course it knows its own IOR.)

In this tutorial we just use "Network Neighborhood" with the editor NotePad to open the receiver's file and copy the IOR to the Receiver field of the DummyAgent.

Recall that to add a receiver to the DummyAgent
right click on the receivers field and choose add. This
brings up the AID window. Enter the full name of the
PingAgent, e.g., ping0@Frodo:1099/JADE. Then
right click the address field in the AID window and
use ctrl-v to paste the IOR into this field.

On MS Windows you type ctrl-v to do the pasting.

Remember to remove the cr/lf from the end of the IOR. You can see from the pictures below that you get a visual clue if you have entered the IOR correctly.

The IOR with a cr/lf (bad)

(This may not happen in version 2.5.
)

The IOR correctly entered without a
CR/LF

The AID window should look something like this:

Tutorial 3. Multiple Platforms

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/JadePlatformTutorial.html (1 of 2) [7/24/2002 10:05:32 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/runjade.bat

Do not check the box indicating a local name. Fill in the full,global name (with the @ sign.)

Click OK and then send the message to the ping0 agent.

Send the Message
Finally, you are ready to send the same message as before, from the DummyAgent to the PingAgent. Everything should run just like in all the previous tutorial examples. The QUERY-REF informative is sent by the DummyAgent, and the PingAgent sends an INFORM message in reply. Click the "eyeglasses" button to
see the content of the reply.

Note that the message sent by the DummyAgent includes the return address (IOR of the platform on which the DummyAgent is running so you only need to copy one IOR, that of the receiver.

Comment
Using the JDK 1.3 CORBA/IIOP ORB is clearly very awkward. It would be well to install the Orbacus ORB add on (see the distribution documentation on doing this) which allows the standard host:port addressing for the endpoints.

Many people use the HTTP MTP add-on for inter platform communication. Tutorial 4 of these notes shows how to do this.

Contacting the Remote Platform
You will notice a menu entry of the RMA agent (the GUI for the platform) called "Remote Platforms". If you click it you see two ways. The easiest is "add platform via AMS AID.

If you click this you get a window which allows you to enter the agent name and location. For the name you need the global name of the target AMS, for example, ams@frodo:1099/JADE. For the location you need to copy in the IOR of that platform.

You should see a new entry in the RMA agent for the remote platform. To view its contents select and right click. The choose "Refresh agent list" and you should see all the agents on the remote platform.

Tutorial 3. Multiple Platforms

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/JadePlatformTutorial.html (2 of 2) [7/24/2002 10:05:32 PM]

Tutorial 4: Using the HTTP MTP for Inter
Platform Communication
An alternative for inter platform communication using the HTTP protocol instead of IIOP (see Tutorial 3)
has been provided with the JADE distribution. It is easy to use and provides a well known and universally
used message transport protocol (MTP).

Compiling (if necessary)
The HTTP MTP add-on comes with source and a jar file (htttp.jar) containing the compiled classes. The
compiled code assumes you ar using the Crimson SAX parser (crimson.jar from Apache - a free
download). If you want to use a different parser, e.g. Xerces, you need to follow the provided instructions.
What you want to create is the file http.jar.

Using the HTTP MTP
Once you have http.jar and crimson.jar the rest is easy. I just put these in the lib directory along with the
other JADE jar files in the lib directory. Then I just needed to tell JADE where the main class is using the
-mtp command line switch. All this can be put in a one line batch file which looks like this:

java -classpath
.;.\lib\jade.jar;.\lib\jadeTools.jar;.\lib\iiop.jar;.\lib\base64.jar;.\lib\crimson.jar;.\lib\http.jar
jade.Boot -mtp jamr.jademtp.http.MessageTransportProtocol %1 %2 %3 %4 %5 %6 %7 %8 %9

You could call this runjadehttp.bat.

The Ping Agent Example (again)

The easiest way to run is to load both the HTTP MTP and the Ping Agent from the command line like so:

runjadehttp -gui ping0:examples.PingAgent.PingAgent

Now you will not see the huge IOR number for the end point of this platform but rather something more
human:

This is JADE 2.5 - 2002/02/05 14:01:24
downloaded in Open Source, under LGPL restrictions,
at http://jade.cselt.it/

http://IBM:7778/acc
Agent container Main-Container@JADE-IMTP://IBM is ready.

http://IBM:7778/acc is the address of the platform on the host "IBM" on the default port 7778. You can
override the defaults with -port and -host as usual.

JADE Tutorial 4 Using HTTP MTP for inter platform communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HttpMtpTutorial.html (1 of 5) [7/24/2002 10:05:37 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/runjadehttp.bat

Similarly run another platform on another host. In my case this is a computer called Frodo, so the platform
has the address http://Frodo:7778/acc.

(Reminder: If you need the full name of the host, including the domain, specify it with -host, e.g.
Frodo.scss.ryerson.ca, on the command line.)

Sending a Message to the Remote Platform

Suppose we are on host IBM and want to send the "ping" message to a Ping Agent on host Frodo. But is
there a Ping Agent there? And, if so, what is its name? We need some info from the remote platform. This
is where the Remote Manager Agent (RMA) comes in.

Contacting a Remote Host

On the RMA menu select "remote platforms". You see this.

Select "Add Platform via AMS AID". This window appears. (Shown filled out>)

JADE Tutorial 4 Using HTTP MTP for inter platform communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HttpMtpTutorial.html (2 of 5) [7/24/2002 10:05:37 PM]

Notice the name of the ams agent on the remote platform. The host part of the name is in RMI format.
Note also that the checkbox is unselected. We need the Global Agent Identifier for the remote AMS.

On the other hand the address of the platform is HTTP since we added the HTTP MTP for inter platform
communication.

After you click OK, and expand the platform you get this:

JADE Tutorial 4 Using HTTP MTP for inter platform communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HttpMtpTutorial.html (3 of 5) [7/24/2002 10:05:37 PM]

Nice, but where are the agents? To see them, select "frodo:1099/JADE" (actually, your equivalent to this),
and right click the mouse. Then choose "refresh agent list", and there they are, like so:

JADE Tutorial 4 Using HTTP MTP for inter platform communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HttpMtpTutorial.html (4 of 5) [7/24/2002 10:05:37 PM]

Finally, Actually send a message!

Start up the Dummy Agent. Make sure the Communicative Act is QUERY-REF, and the Content is ping.

For the receiver name enter the global name of the Ping Agent on the remote platform,
ping0@frodo:1099/JADE in the example. For the address (Right click on the Address field, remember?)
enter the HTTP address: http://Frodo:7778/acc. Then send the message.

You should get an INFORM message back which you can inspect by clicking the "glasses" button. You
should see "alive". (If you are running an older version of Ping Agent, you may see "(pong)". The change
was made in order to conform to an Agent Cities test suite.)

Adding an MTP with the RMA

If you do not use the -mtp command line switch, the Sun IIOP is added by default. You can add other
MTPs (or remove them) once the RMA is running. Select the main container and right click, choosing,
Add MTP.

To add the HTTP MTP, fill in the field for class name with jamr.jademtp.http.MessageTransportProtocol.
Make sure http.jar and crimson.jar are on your class path before booting JADE.

JADE Tutorial 4 Using HTTP MTP for inter platform communication

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HttpMtpTutorial.html (5 of 5) [7/24/2002 10:05:37 PM]

http://www.agentcities.org/

How to use the HTTP MTP with JADE
Author: Ion Constantinescu (EPFL)

Date: May 31, 2001

Java platform: Sun JDK 1.2 Windows

JADE version 2.1

Since JADE 2.1, FIPA-compliant Message Transport Protocols can be plugged and activated at run-time on
any JADE container. By default, the platform uses an IIOP based MTP which relies on the ORB provided
with jdk1.2. However, HTTP can be used as an alternative transport. This tutorial describes how to install
and use the HTTP MTP with JADE.

Installation.
In order to install HTTP the following steps must be performed:

The HTTP MTP must be downloaded from the JADE download page.●

after downloading you MUST unzip the HTTP MTP package under the root of the jade distribution
tree. You should end having a hierarchy like jade/add-ons/http.

●

A SAX parser must be downloaded and installed into the system. See below a list of known parsers
and configuration options.

●

The xml parser jar file must be added to the CLASSPATH or specified in the -classpath argument
when starting the virtual machine

●

Compiling
The default Makefile rules don't take the HTTP MTP into account. For handling the compilation process of
the HTTP MTP you have to use the Makefile located in the http directory. The following rules are
available:

make - compiles the http classes●

make lib - creates the http.jar archive in the lib directory●

make clean - removes the compiled classes and the http.jar archive●

make batch - creates batch files equivalent to make rules:

make.bat - on windows same as make❍

makelib.bat - on windows same as make lib❍

makeclean.bat - on windows same as make clean❍

●

How to use the HTTP MTP with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HTTP.html (1 of 3) [7/24/2002 10:05:38 PM]

http://jade.cselt.it/
http://jade.cselt.it/
http://www.megginson.com/SAX/

Configuration and Usage
The current implementation has been tested with the following parsers:

Parser Name Parser Class

Crimson org.apache.crimson.parser.XMLReaderImpl

Xerces org.apache.xerces.parsers.SAXParser

The current configuration uses Crimson as the default parser. So if you don't want to make any changes you
just have to download Crimson from the link provided above and make sure it is added to the classpath
when starting (either by including it into the $CLASSPATH environment variable - %CLASSPATH%
under windows or by specifing it on the command line) .

Here is an example of how you would start the platform assuming that you copied crimson.jar from the
initial distribution to the jade/lib directory:

java -classpath
./lib/jade.jar:./lib/jadeTools.jar:./lib/crimson.jar:./http/lib/http.jar
jade.Boot (for Unix)
or
java -classpath
.\lib\jade.jar;.\lib\jadeTools.jar;.\lib\crimson.jar;.\http\lib\http.jar
jade.Boot (for Windows)

If you want to use another parser suplementary you have to specify in the command line the system
property org.xml.sax.parser as in the following example (also assuming that you have copied xerces.jar
from the initial distribution to the jade/lib directory) :

java -Dorg.xml.sax.parser=org.apache.xerces.parsers.SAXParser -classpath
./lib/jade.jar:./lib/jadeTools.jar:./lib/xerces.jar:./http/lib/http.jar
jade.Boot (for Unix)
or
java -Dorg.xml.sax.parser=org.apache.xerces.parsers.SAXParser -classpath
.\lib\jade.jar;.\lib\jadeTools.jar;.\lib\xerces.jar;.\http\lib\http.jar
jade.Boot (for Windows)

It is possible to activate one ore more communication endpoints. There are two main ways for doing such
an activation:

from the command line when you start a JADE container.●

from the GUI of the RMA●

Configuring MTPs from the command line.
In this case the following parameter must be specified:

-mtp jamr.jademtp.http.MessageTransportProtocol -which will start the MTP on the default address
port

●

How to use the HTTP MTP with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HTTP.html (2 of 3) [7/24/2002 10:05:38 PM]

http://xml.apache.org/crimson/index.html
http://xml.apache.org/xerces-j/index.html

-mtp 'jamr.jademtp.http.MessageTransportProtocol(http://myaddress.com:9999/acc)' - which will
start the MTP on the port / host given as address. Note that in case of some platforms /configurations
the ' might be required.

●

Configuring MTPs from the graphical management
console.
Select a container from the GUI, click the right button of the mouse and a popup menu appears. Choose the
Install a new MTP option and a dialog will be shown. Here the following information can be set:

the container to install the new MTP on (if different from the selected one)●

the fully qualified name of the class implementing the jade.mtp.MTP interface, and (if it is supported
by the chosen protocol)

●

optionally the transport address that will be used to contact the new MTP.●

For example, in order to install a new HTTP endpoint on the default local port by using the HTTP MTP,
one should write jamr.jademtp.http.MessageTransportProtocol as the class name and nothing as the
address. In order to use the transport on a different port or a particular interface of the current machine you
could provide as the transport address a standard http url: http://mymachinename.org:8978 (where 8978
would be the port number on which the transport will bind).

Choosing Uninstall an MTP shows a dialog where the user can select from a list one of the currently
installed MTPs and remove it from the platform.

Notes:
When activated the HTTP MTP uses by default the local port 7778. Please take into consideration that
using other dedicated ports (such as 80, 8080, etc. on a machine running a web server or a proxy server)
might result in configuration conflicts and unpredictable results.

When activating the HTTP MTP from the command line it is preferable to specify also the full transport
address - preventing the binding of the server socket to addresses not accessible from outside the domain.

JADE is a trademark of CSELT. JADE has been developed jointly by CSELT and the Computer Engineering
Group of the University of Parma.

The HTTP MTP implementation was developed in the Artificial Inteligence Laboratory (LIA) at the Swiss Federal
Institute of Technology Lausanne (EPFL) by Ion Constantinescu.

How to use the HTTP MTP with JADE

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEAdmin/HTTP.html (3 of 3) [7/24/2002 10:05:38 PM]

http://jade.cselt.it/
http://www.cselt.it/
http://jade.cselt.it/
http://www.cselt.it/
http://www.ce.unipr.it/
http://www.ce.unipr.it/
http://www.unipr.it/
http://liawww.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
mailto:ion.constantinescu@epfl.ch

FIPA and JADE
JADE is designed to conform with the FIPA Agent model in order to be able to inter-operate with other
FIPA compliant systems such as Zeus (British Telcom) and FIPA-OS.

The FIPA agent specifications
FIPA Agent Management Specifications

There are several specifications most useful to understanding the JADE platform. These are,

The Agent Management Services (AMS) specification XC00023

This includes the Directory Facilitator (DF), naming conventions, the Agent Management System, etc.

The ACL Message Structure Specification XC00061

The Communicative Act Library XC00037

The Conent Language Specification XC0007, 0008,000 9, 0010, 0011.

Of these, SL (XC0008).

In addition there are many other specifications,for example, for message transport protocols.

The JADE Agent Platform
The JADE platform is described in the JADE Programming Guide.

JADE Programming Guide

Platform Overview (excerpt from the guide)

When you boot the main JADE container with java jade.Boot -gui you get something like this.

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (1 of 7) [7/24/2002 10:05:40 PM]

http://www.fipa.org/repository/managementspecs.html
http://www.fipa.org/specs/fipa00023/
http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/repository/cls.html

This is the GUI of the RMA (Remote Management Agent). The RMA is the main tool for managing
JADE.

Agents live in containers. Containers can be connected via RMI. They can be both local or remote. The
Main container is associated with the RMI registry. The RMA can see all the containers. You can also
have multiple RMA agents in different containers (but only one per container).

The JADE system itself is made up of agents. The two key ones are the AMS (Agent Management System
agent) and the DF (directory facilitator). The characteristics of these agents are specified by FIPA. (see
XC00023).

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (2 of 7) [7/24/2002 10:05:40 PM]

http://www.fipa.org/specs/fipa00023/

4 Agent Management Services

4.1 Directory Facilitator

4.1.1 Overview

A DF is a mandatory component of an AP that provides a yellow pages directory service to agents. It
is the trusted, benign custodian of the agent directory. It is trusted in the sense that it must strive to
maintain an accurate, complete and timely list of agents. It is benign in the sense that it must provide
the most current information about agents in its directory on a non-discriminatory basis to all
authorised agents. At least one DF must be resident on each AP (the default DF). However, an AP
may support any number of DFs and DFs may register with each other to form federations.

Every agent that wishes to publicise its services to other agents, should find an appropriate DF
and request the registration of its agent description. There is no intended future commitment or
obligation on the part of the registering agent implied in the act of registering. For example, an agent
can refuse a request for a service which is advertised through a DF. Additionally, the DF cannot
guarantee the validity or accuracy of the information that has been registered with it, neither can it
control the life cycle of any agent. An object description must be supplied containing values for all
of the mandatory parameters of the description. It may also supply optional and private parameters,
containing non-FIPA standardised information that an agent developer might want included in the
directory. The deregistration function has the consequence that there is no longer a commitment on
behalf of the DF to broker information relating to that agent. At any time, and for any reason, the
agent may request the DF to modify its agent description.

An agent may search in order to request information from a DF. The DF does not guarantee the
validity of the information provided in response to a search request, since the DF does not place any
restrictions on the information that can be registered with it. However, the DF may restrict access to
information in its directory and will verify all access permissions for agents which attempt to inform
it of agent state changes.

The default DF on an AP has a reserved AID of:

(agent-identifier

:name df@hap

:addresses (sequence hap_transport_address))

4.1.2 Management Functions Supported by the Directory Facilitator

In order to access the directory of agent descriptions managed by the DF, each DF must be able to
perform the following functions, when defined on the domain of objects of type df-agent-description
in compliance with the semantics described in section6.1.2, Directory Facilitator Agent Description:

register●

deregister●

modify●

search●

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (3 of 7) [7/24/2002 10:05:40 PM]

4.1.3 Federated Directory Facilitators

The DF encompasses a search mechanism that searches first locally and then extends the search to
other DFs, if allowed. The default search mechanism is assumed to be a depth-first search across
DFs. For specific purposes, optional constraints can be used as described in section6.1.4, Search
Constraints such as the number of answers (:df-search-results). The federation of DFs for extending
searches can be achieved by DFs registering with each other with fipa-df as the value of the :type
parameter in the service-description.

4.2 Agent Management System

4.2.1 Overview

An AMS is a mandatory component of the AP and only one AMS will exist in a single AP. The
AMS is responsible for managing the operation of an AP, such as the creation of agents, the
deletion of agents, deciding whether an agent can dynamically register with the AP and
overseeing the migration of agents to and from the AP (if agent mobility is supported by the AP).
Since different APs have different capabilities, the AMS can be queried to obtain a description of its
AP. A life cycle is associated with each agent on the AP (see section5.1, Agent Life Cycle) which is
maintained by the AMS.

The AMS represents the managing authority of an AP and if the AP spans multiple machines, then
the AMS represents the authority across all machines. An AMS can request that an agent performs a
specific management function, such as quit (that is, terminate all execution on its AP) and has the
authority to forcibly enforce the function if such a request is ignored.

The AMS maintains an index of all the agents that are currently resident on an AP, which
includes the AID of agents. Residency of an agent on the AP implies that the agent has been
registered with the AMS. Each agent, in order to comply with the FIPA reference model, must
register with the AMS of its HAP. Registration with the AMS, implies authorisation to access the
MTS of the AP in order to send or receive messages. The AMS will check the validity of the passed
agent description and, in particular, the local uniqueness of the agent name in the AID.

Agent descriptions can be later modified at any time and for any reason. Modification is restricted
by authorisation of the AMS. The life of an agent with an AP terminates with its deregistration from
the AMS. After deregistration, the AID of that agent can be removed by the directory and can be
made available to other agents who should request it.

Agent description can be searched with the AMS and access to the directory of
ams-agent-descriptions is further controlled by the AMS; no default policy is specified by this
specification.

The AMS is also the custodian of the AP description that can be retrieved by requesting the action
get-description.

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (4 of 7) [7/24/2002 10:05:40 PM]

The AMS on an AP has a reserved AID of:

(agent-identifier

:name ams@hap

:addresses (sequence hap_transport_address))

4.2.2 Management Functions Supported bSy the Agent Management System

An AMS must be able to perform the following functions, in compliance with the semantics
described in section6.1.5, Agent Management System Agent Description (the first four functions are
defined within the scope of the AMS, only on the domain of objects of type ams-agent-description
and the last on the domain of objects of type ap-description):

register●

deregister●

modify●

search●

get-description●

In addition to the management functions exchanged between the AMS and agents on the AP, the
AMS can instruct the underlying AP to perform the following operations:

Suspend agent,●

Terminate agent,●

Create agent,●

Resume agent execution,●

Invoke agent,●

Execute agent, and,●

Resource management.●

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (5 of 7) [7/24/2002 10:05:40 PM]

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (6 of 7) [7/24/2002 10:05:40 PM]

The FIPA Agent model

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEFIPA.html (7 of 7) [7/24/2002 10:05:40 PM]

JADE Programmer’s GUIDE

1

J A D E P R O G R A M M E R ’ S G U I D E

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

last update: 4-September-2001. JADE 2.4

Authors: Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (ex CSELT now TILab)
 Giovanni Rimassa (University of Parma)

Copyright (C) 2000 CSELT S.p.A.
Copyright (C) 2001 TILab S.p.A.

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with
the FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA
interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A.
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General

Public License as published by the Free Software Foundation, version 2.1 of the License.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

JADE Programmer’s GUIDE

2

TABLE OF CONTENTS

1 INTRODUCTION 4

2 JADE FEATURES 6

3 CREATING MULTI-AGENT SYSTEMS WITH JADE 6

3.1 The Agent Platform 7
3.1.1 FIPA-Agent-Management ontology 8

3.1.1.1 Basic concepts of the ontology 9
3.1.2 Simplified API to access DF and AMS services 9

3.1.2.1 DFServiceCommunicator 9
3.1.2.2 AMSServiceCommunicator 10

3.2 The Agent class 10
3.2.1 Agent life cycle 11

3.2.1.1 Starting the agent execution 12
3.2.1.2 Stopping agent execution 12

3.2.2 Inter-agent communication. 13
3.2.2.1 Accessing the private queue of messages. 13

3.2.3 Agents with a graphical user interface (GUI). 13
3.2.3.1 Java GUI concurrency model 14
3.2.3.2 Performing an ACL message exchange in response to a GUI event. 14
3.2.3.3 Modifying the GUI when an ACL message is received. 16
3.2.3.4 Support for building GUI enabled agents in JADE. 17

3.2.4 Agent with parameters and launching agents 21

3.3 Agent Communication Language (ACL) Messages 22
3.3.1 Support to reply to a message 22
3.3.2 Support for Java serialisation and transmission of a sequence of bytes 22
3.3.3 The ACL Codec 23
3.3.4 The MessageTemplate class 23

3.4 The agent tasks. Implementing Agent behaviours 24
3.4.1 class Behaviour 27
3.4.2 class SimpleBehaviour 28
3.4.3 class OneShotBehaviour 28
3.4.4 class CyclicBehaviour 28
3.4.5 class CompositeBehaviour 28
3.4.6 class SequentialBehaviour 29
3.4.7 class ParallelBehaviour 29
3.4.8 class FSMBehaviour 29
3.4.9 class SenderBehaviour 30
3.4.10 class ReceiverBehaviour 30
3.4.11 class WakerBehaviour 30
3.4.12 Examples 30

3.5 Interaction Protocols 34
3.5.1 AchieveRE (Achieve Rational Effect) 34

JADE Programmer’s GUIDE

3

3.5.1.1 AchieveREInitiator 35
3.5.1.2 AchieveREResponder 36
3.5.1.3 Example of using these two generic classes for implementing a specific FIPA protocol

 37
3.5.2 FIPA-Contract-Net 38

3.5.2.1 FipaContractNetInitiatorBehaviour 38
3.5.3 FipaContractNetResponderBehaviour 39
3.5.4 Generic states of interaction protocols 39

3.5.4.1 HandlerSelector class 39
3.5.4.2 MsgReceiver class 39

3.6 Application-defined content languages and ontologies 40
3.6.1 Rationale 40
3.6.2 The conversion pipeline 41
3.6.3 Codec of a Content Language 42
3.6.4 Creating an Ontology 42
3.6.5 Application specific classes representing ontological roles 46
3.6.6 Discovering the ontological role of a Java object repre senting an entity in the domain of

discourse 46
3.6.7 Setting and getting the content of an ACL message. 47

3.7 Support for Agent Mobility 47
3.7.1 JADE API for agent mobility. 48
3.7.2 JADE Mobility Ontology. 48
3.7.3 Accessing the AMS for agent mobility. 50

3.8 Using JADE from external Java applications 53

4 A SAMPLE AGENT SYSTEM54

5 APPENDIX A: CONTENT-LANGUAGE INDEPENDENT API
FEDERICO BERGENTI (UNIVERSITY OF PARMA) 55

5.1 Creating an Application-Specific Ontology 55

5.2 Sending and Receiving Messages 59

JADE Programmer’s GUIDE

4

1 INTRODUCTION

This programmer's guide is complemented by the administrator's guide and the HTML
documentation available in the directory jade/doc. If and where conflict arises between what is
reported in the HTML documentation and this guide, preference should be given to the HTML
documentation that is updated more frequently.

JADE (Java Agent Development Framework) is a software development framework aimed
at developing multi-agent systems and applications conforming to FIPA standards for intelligent
agents. It includes two main products: a FIPA-compliant agent platform and a package to develop
Java agents. JADE has been fully coded in Java and an agent programmer, in order to exploit the
framework, should code his/her agents in Java, following the implementation guidelines
described in this programmer's guide.

This guide supposes the reader to be familiar with the FIPA standards1, at least with the
Agent Management specifications (FIPA no. 23), the Agent Communication Language, and the
ACL Message Structure (FIPA no. 61).

JADE is written in Java language and is made of various Java packages, giving application
programmers both ready-made pieces of functionality and abstract interfaces for custom,
application dependent tasks. Java was the programming language of choice because of its many
attractive features, particularly geared towards object-oriented programming in distributed
heterogeneous environments; some of these features are Object Serialization, Reflection API and
Remote Method Invocation (RMI).

JADE is composed of the following main packages.
jade.core implements the kernel of the system. It owns the Agent class that must be

extended by application programmers; besides, a Behaviour class hierarchy is contained in
jade.core.behaviours sub-package. Behaviours implement the tasks, or intentions, of an
agent. They are logical activity units that can be composed in various ways to achieve complex
execution patterns and that can be concurrently executed. Application programmers define agent
operations writing behaviours and agent execution paths interconnecting them.

The jade.lang package has a sub-package for every language used in JADE. In particular,
a jade.lang.acl sub-package is provided to process Agent Communication Language
according to FIPA standard specifications. jade.lang.sl contains the SL-0 codec2, both the
parser and the encoder.

The jade.onto package contains a set of classes to support user-defined ontologies. It has
a subpackage jade.onto.basic containing a set of basic concepts (i.e. Action, TruePredicate,
FalsePredicate, …) that are usually part of every ontology, and a BasicOntology that can be
joined with user-defined ontologies.

The jade.domain package contains all those Java classes that represent the Agent
Management entities defined by the FIPA standard, in particular the AMS and DF agents, that
provide life-cycle, white and yellow page services. The subpackage
jade.domain.FIPAAgentManagement contains the FIPA-Agent-Management Ontology and
all the classes representing its concepts. The subpackage

1 See http://www.fipa.org/

2 refer to FIPA document no. 8 for the specifications of the SL content language.

JADE Programmer’s GUIDE

5

jade.domain.JADEAgentManagement contains, instead, the JADE extensions for Agent-
Management (e.g. for sniffing messages, controlling the life-cycle of agents, …), including the
Ontology and all the classes representing its concepts. The subpackage jade.domain.introspection
contains the concepts used for the domain of discourse between the JADE tools (e.g. the Sniffer
and the Introspector) and the JADE kernel.

The jade.gui package contains a set of generic classes useful to create GUIs to display and
edit Agent-Identifiers, Agent Descriptions, ACLMessages, …

The jade.mtp package contains a Java interface that every Message Transport Protocol
should implement in order to be readily integrated with the JADE framework, and the
implementation of a set of these protocols.

jade.proto is the package that contains classes to model standard interaction protocols
(i.e. fipa-request, fipa-query, fipa-contract-net and soon others defined by FIPA), as well as
classes to help application programmers to create protocols of their own.

The fipa package contains the IDL module defined by FIPA for IIOP-based message
transport.

Finally, the jade.wrapper package provides wrappers of the JADE higher-level
functionalities that allows the usage of JADE as a library, where external Java applications launch
JADE agents and agent containers (see also section 3.8).

JADE comes bundled with some tools that simplify platform administration and application
development. Each tool is contained in a separate sub-package of jade.tools. Currently, the
following tools are available:

Ø Remote Management Agent, RMA for short, acting as a graphical console for platform
management and control. A first instance of an RMA can be started with a command
line option ("-gui") , but then more than one GUI can be activated. JADE maintains
coherence among multiple RMAs by simply multicasting events to all of them.
Moreover, the RMA console is able to start other JADE tools.

Ø The Dummy Agent is a monitoring and debugging tool, made of a graphical user
interface and an underlying JADE agent. Using the GUI it is possible to compose
ACL messages and send them to other agents; it is also possible to display the list of
all the ACL messages sent or received, completed with timestamp information in
order to allow agent conversation recording and rehearsal.

Ø The Sniffer is an agent that can intercept ACL messages while they are in flight, and
displays them graphically using a notation similar to UML sequence diagrams. It is
useful for debugging your agent societies by observing how they exchange ACL
messages.

Ø The IntrospectorAgent is a very useful tool that allows to monitor the life cycle of an
agent and its exchanged ACL messages.

Ø The SocketProxyAgent is a simple agent, acting as a bidirectional gateway between a
JADE platform and an ordinary TCP/IP connection. ACL messages, travelling over
JADE proprietary transport service, are converted to simple ASCII strings and sent
over a socket connection. Viceversa, ACL messages can be tunnelled via this TCP/IP
connection into the JADE platform. This agent is useful, e.g. to handle network
firewalls or to provide platform interactions with Java applets within a web browser.

Ø The DF GUI is a complete graphical user interface that is used by the default
Directory Facilitator (DF) of JADE and that can also be used by every other DF that
the user might need. In such a way, the user might create a complex network of
domains and sub-domains of yellow pages. This GUI allows in a simple and intuitive

JADE Programmer’s GUIDE

6

way to control the knowledge base of a DF, to federate a DF with other DF's, and to
remotely control (register/deregister/modify/search) the knowledge base of the parent
DF's and also the children DF's (implementing the network of domains and sub-
domains).

JADE is a trade mark registered by CSELT3.

2 JADE FEATURES

The following is the list of features that JADE offers to the agent programmer:
- Distributed agent platform. The agent platform can be split among several hosts (provided

they can be connected via RMI). Only one Java application, and therefore only one Java
Virtual Machine, is executed on each host. Agents are implemented as Java threads and live
within Agent Containers that provide the runtime support to the agent execution.

- Graphical user interface to manage several agents and agent containers from a remote host.
- Debugging tools to help in developing multi agents applications based on JADE.
- Intra-platform agent mobility, including state and code of the agent.
- Support to the execution of multiple, parallel and concurrent agent activities via the behaviour

model. JADE schedules the agent behaviours in a non-preemptive fashion.
- FIPA-compliant Agent Platform, which includes the AMS (Agent Management System), the

DF (Directory Facilitator), and the ACC (Agent Communication Channel). All these three
components are automatically activated at the agent platform start-up.

- Many FIPA-compliant DFs can be started at run time in order to implement multi-domain
applications, where a domain is a logical set of agents, whose services are advertised through
a common facilitator. Each DF inherits a GUI and all the standard capabilities defined by
FIPA (i.e. capability of registering, deregistering, modifying and searching for agent
descriptions; and capability of federating within a network of DF's).

- Efficient transport of ACL messages inside the same agent platform. Infact, messages are
transferred encoded as Java objects, rather than strings, in order to avoid marshalling and
unmarshalling procedures. When crossing platform boundaries, the message is automatically
converted to/from the FIPA compliant syntax, encoding, and transport protocol. This
conversion is transparent to the agent implementers that only need to deal with Java objects.

- Library of FIPA interaction protocols ready to be used.
- Automatic registration and deregistration of agents with the AMS.
- FIPA-compliant naming service: at start-up agents obtain their GUID (Globally Unique

Identifier) from the platform.
- Support for application-defined content languages and ontologies.
- InProcess Interface to allow external applications to launch autonomous agents.

3 CREATING MULTI- AGENT S Y S T E M S W I T H J A D E

This chapter describes the JADE classes that support the development of multi-agent
systems. JADE warrants syntactical compliance and, where possible, semantic comp liance with
FIPA specifications.

3 Since March 2001, the name of the company is changed into TILab.

JADE Programmer’s GUIDE

7

3.1 The Agent Platform

The standard model of an agent platform, as defined by FIPA, is represented in the following
figure.

Agent Platform

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent

Figure 1 - Reference architecture of a FIPA Agent Platform

The Agent Management System (AMS) is the agent who exerts supervisory control over
access to and use of the Agent Platform. Only one AMS will exist in a single platform. The AMS
provides white-page and life-cycle service, maintaining a directory of agent identifiers (AID) and
agent state. Each agent must register with an AMS in order to get a valid AID.

The Directory Facilitator (DF) is the agent who provides the default yellow page service in
the platform.

The Message Transport System, also called Agent Communication Channel (ACC), is the
software component controlling all the exchange of messages within the platform, including
messages to/from remote platforms.

JADE fully complies with this reference architecture and when a JADE platform is launched,
the AMS and DF are immediately created and the ACC module is set to allow message
communication. The agent platform can be split on several hosts. Only one Java application, and
therefore only one Java Virtual Machine (JVM), is executed on each hos t. Each JVM is a basic
container of agents that provides a complete run time environment for agent execution and allows
several agents to concurrently execute on the same host. The main-container, or front-end, is the
agent container where the AMS and DF lives and where the RMI registry, that is used internally
by JADE, is created. The other agent containers, instead, connect to the main container and
provide a complete run-time environment for the execution of any set of JADE agents.

JADE Programmer’s GUIDE

8

Network protocol stack

JRE 1.2 JRE 1.2 JRE 1.2

Jade Main Container Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

Host 1 Host 2 Host 3

RMI
Registry

Figure 2 - JADE Agent Platform distributed over several containers

According to the FIPA specifications, DF and AMS agents communicate by using the
FIPA-SL0 content language, the fipa-agent-management ontology, and the fipa-
request interaction protocol. JADE provides compliant implementations for all these
components:
- the SL-0 content language is implemented by the class jade.lang.sl.SL0Codec.

Automatic capability of using this language can be added to any agent by using the method
Agent.registerLanguage(SL0Codec.NAME, new SL0Codec());

- concepts of the ontology (apart from Agent Identifier, implemented by jade.core.AID)
are implemented by classes in the jade.domain.FIPAAgentManagement package.
The FIPAAgentManagementOntology class defines the vocabulary with all the
constant symbols of the ontology. Automatic capability of using this ontology can be added
to any agent by using the fillowing code:
Agent.registerOntology(FIPAAgentManagementOntology.NAME,
FIPAAgentManagementOntology.instance());

- finally, the fipa-request interaction protocol is implemented as ready-to-use behaviours
in the package jade.proto.

3.1.1 FIPA-Agent-Management ontology

Every class implementing a concept of the fipa-agent-management ontology is a simple
collection of attributes, with public methods to read and write them, according to the frame based
model that represents FIPA fipa-agent-management ontology concepts. The following
convention has been used. For each attribute of the class, named attrName and of type
attrType, two cases are possible:

JADE Programmer’s GUIDE

9

1) The attribute type is a single value; then it can be read with attrType
getAttrName() and written with void setAttrName(attrType a), where
every call to setAttrName() overwrites any previous value of the attribute.

2) The attribute type is a set or a sequence of values; then there is an void
addAttrName(attrType a) method to insert a new value and a void
clearAllAttrName() method to remove all the values (the list becomes empty).
Reading is performed by a Iterator getAllAttrName() method that returns an
Iterator object that allows the programmer to walk through the List and cast its
elements to the appropriate type.

Refer to the HTML documentation for a complete list of these classes and their interface.

3.1.1.1 Basic concepts of the ontology

The package jade.onto.basic includes a set of classes that are commonly part of
every ontology, such as Action, TruePredicate, FalsePredicate,
ResultPredicate, … The BasicOntology can be joined to any user-defined ontology as
described in section 3.6.

Notice that the Action class should be used to represent actions. It has a couple of methods
to set/get the AID of the actor (i.e. the agent who should perform the action) and the action itself
(e.g. Register/Deregister/Modify).

3.1.2 Simplified API to access DF and AMS services

JADE features described so far allow complete interactions between FIPA system agents and
user defined agents, simply by sending and receiving messages as defined by the standard.

However, because those interactions have been fully standardized and because they are very
common, the following classes allow to successfully accomplish this task with a simplified
interface.

Two methods are implemented by the class Agent to get the AID of the default DF and
AMS of the platform: getDefaultDF() and getAMS() .

3.1.2.1 DFServiceCommunicator

jade.domain.DFServiceCommunicator implements a set of static methods to
communicate with a standard FIPA DF service (i.e. a yellow pages agent).

It includes methods to request register, deregister, modify and search
actions from a DF. Each of this method has a version with all the needed parameters, and one
with a subset of them where the omitted parameters are given default values.

Notice that these methods block every agent activity until the action is successfully executed
or a jade.domain.FIPAException exception is thrown (e.g. because a failure message
has been received by the DF), that is, until the end of the conversation.

In some cases, instead, it is more convenient to execute this task in a non-blocking way. The
method getNonBlockingBehaviour() returns a non-blocking behaviour (of type
RequestFIPAServiceBehaviour) that can be added to the agent behaviours, as usual, by
using Agent.addBehaviour(). Several ways are available to get the result of this behaviour
and the programmer can select one according to his preferred programming style:

JADE Programmer’s GUIDE

10

- call getLastMsg() and getSearchResults() (both methods throw a
NotYetReadyException if the task has not yet finished);

- create a SequentialBehaviour composed of two sub-behaviours: the first one is the
returned RequestFIPAServiceBehaviour, while the second one is application-
dependent and is executed only when the first is terminated;

- use the class RequestFIPAServiceBehaviour by extending it and overriding all the
handleXXX() methods that handle the states of the fipa-request interaction protocol.

3.1.2.2 AMSServiceCommunicator

This class is dual of DFServiceCommunicator class, accessing services provided by a
standard FIPA AMS agent and its interface completely corresponds the the
DFServiceCommunicator one.

Notice that JADE calls automatically the register and deregister methods with the
default AMS respectively before calling setup() method and just after takeDown() method
returns; so there is no need for a normal programmer to call them.

However, under certain circumstances, a programmer might need to call its methods. To give
some examples: when an agent wishes to register with the AMS of a remote agent platform, or
when an agent wishes to modify its description by adding a private address to the set of its
addresses, …

3.2 The Agent class

The Agent class represents a common base class for user defined agents. Therefore, from
the programmer’s point of view, a JADE agent is simply an instance of a user defined Java class
that extends the base Agent class. This implies the inheritance of features to accomplish basic
interactions with the agent platform (registration, configuration, remote management, …) and a
basic set of methods that can be called to implement the custom behaviour of the agent (e.g.
send/receive messages, use standard interaction protocols, register with several domains, …).

The computational model of an agent is multitask, where tasks (or behaviours) are executed
concurrently. Each functionality/service provided by an agent should be implemented as one or
more behaviours (refer to section 3.4 for implementation of behaviours). A scheduler, internal to
the base Agent class and hidden to the programmer, automatically manages the scheduling of
behaviours.

JADE Programmer’s GUIDE

11

3.2.1 Agent life cycle

Initiated

Waiting

Suspend

Resume

Invoke

Transit

Suspended

Active
Destroy

Wait

Wake Up

Execute

Move

Unknown

Create

Quit

Figure 3 - Agent life -cycle as defined by FIPA.

A JADE agent can be in one of several states, according to Agent Platform Life Cycle in
FIPA specification; these are represented by some constants in Agent class. The states are:
- AP_INITIATED : the Agent object is built, but hasn't registered itself yet with the AMS,

has neither a name nor an address and cannot communicate with other agents.
- AP_ACTIVE : the Agent object is registered with the AMS, has a regular name and address

and can access all the various JADE features.
- AP_SUSPENDED : the Agent object is currently stopped. Its internal thread is suspended

and no agent behaviour is being executed.
- AP_WAITING : the Agent object is blocked, waiting for something. Its internal thread is

sleeping on a Java monitor and will wake up when some condition is met (typically when a
message arrives).

- AP_DELETED : the Agent is definitely dead. The internal thread has terminated its
execution and the Agent is no more registered with the AMS.

- AP_TRANSIT: a mobile agent enters this state while it is migrating to the new location. The
system continues to buffer messages that will then be sent to its new location.

- AP_COPY: this state is internally used by JADE for agent being cloned.
- AP_GONE: this state is internally used by JADE when a mobile agent has migrated to a new

location and has a stable state.
The Agent class provides public methods to perform transitions between the various states;

these methods take their names from a suitable transition in the Finite State Machine shown in
FIPA specification Agent Management. For example, doWait() method puts the agent into
AP_WAITING state from AP_ACTIVE state, doSuspend()method puts the agent into

JADE Programmer’s GUIDE

12

AP_SUSPENDED state from AP_ACTIVE or AP_WAITING state, … Refer to the HTML
documentation of the Agent class for a complete list of these doXXX() methods.

Notice that an agent is allowed to execute its behaviours (i.e. its tasks) only when it is in the
AP_ACTIVE state. Take care that if any behaviours call the doWait() method, then the
whole agent and all its activities are blocked and not just the calling behaviour. Instead, the
block() method is part of the Behaviour class in order to allow suspending a single agent
behaviour (see section 3.4 for details on the usage of behaviours).

3.2.1.1 Starting the agent execution

The JADE framework controls the birth of a new agent according to the following steps: the
agent constructor is executed, the agent is given an identifier (see the HTML documentation for
the jade.core.AID class), it is registered with the AMS, it is put in the AP_ACTIVE state,
and finally the setup() method is executed. According to the FIPA specifications, an agent
identifier has the following attributes:
- a globally unique name. By default JADE composes this name as the concatenation of the

local name – i.e. the agent name provided on the command line – plus the '@' symbol, plus
the home agent platform identifier – i.e. <hostname> ':' <port number of the JADE RMI
registry> '/' 'JADE'); Tough in the case that the name of the platform is specified on the
command line the agent name is constructed as a concatenation of the local name plus the
‘@’ symbol plus the specified platform name.

- a set of agent addresses. Each agent inherits the transport addresses of its home agent
platform;

- a set of resolvers, i.e. white page services with which the agent is registered.
The setup() method is therefore the point where any application-defined agent activity

starts. The programmer has to implement the setup()method in order to initialise the agent.
When the setup() method is executed, the agent has been already registered with the AMS and
its Agent Platform state is AP_ACTIVE. The programmer should use this initialisation procedure
to:
- (optional) if necessary, modify the data registered with the AMS (see section 3.1.2);
- (optional) set the description of the agent and its provided services and, if necessary, register

the agent with one or more domains, i.e. DFs (see section 3.1.2);
- (necessary) add tasks to the queue of ready tasks using the method addBehaviour().

These behaviours are scheduled as soon as the setup() method ends;
The setup() method should add at least one behaviour to the agent. At the end of the

setup() method, JADE automatically executes the first behaviour in the queue of ready tasks
and then switch to the other behaviours in the queue by using a round-robin non-preemptive
scheduler. The addBehaviour(Behaviour) and removeBehaviour(Behaviour)
methods of the Agent class can be used to manage the task queue.

3.2.1.2 Stopping agent execution

Any behaviour can call the Agent.doDelete() method in order to stop agent execution.

The Agent.takeDown() method is executed when the agent is about to go to
AP_DELETED state, i.e. it is going to be destroyed. The takeDown() method can be
overridden by the programmers in order to implement any necessary cleanup. When this method
is executed the agent is still registered with the AMS and can therefore send messages to other

JADE Programmer’s GUIDE

13

agents, but just after the takeDown()method is completed, the agent will be de-registered and
its thread destroyed. The intended purpose of this method is to perform application specific
cleanup operations, such as de-registering with DF agents.

3.2.2 Inter-agent communication.

The Agent class also provides a set of methods for inter-agent communication. According
to the FIPA specification, agents communicate via asynchronous message passing, where objects
of the ACLMessage class are the exchanged payloads. See also section 3.3 for a description of
the ACLMessage class. Some of the interaction protocols defined by FIPA are also available as
ready-to-use behaviours that can be scheduled for agent activities; they are part of the
jade.proto package.

The Agent.send() method allows to send an ACLMessage. The value of the receiver slot
holds the list of the receiving agent IDs. The method call is completely transparent to where the
agent resides, i.e. be it local or remote, it is the platform that takes care of selecting the most
appropriate address and transport mechanism.

3.2.2.1 Accessing the private queue of messages.

All the messages received by an agent are put in its private queue by the agent platform.
Several access modes have been implemented in order to get messages from this private queue:
- The message queue can be accessed in a blocking (using blockingReceive() method) or

non-blocking way (using receive() method). The blocking version must be used very
carefully because it causes the suspension of all the agent activities and in particular of all
its Behaviours. The non-blocking version returns immediately null when the requested
message is not present in the queue;

- both methods can be augmented with a pattern-matching capability where a parameter is
passed that describes the pattern of the requested ACLMessage. Section 3.3.4 describes the
MessageTemplate class;

- the blocking access can have a timeout parameter. It is a long that describes the maximum
number of milliseconds that the agent activity should remain blocked waiting for the
requested message. If the timeout elapses before the message arrives, the method returns
null;

- the two behaviours ReceiverBehaviour and SenderBehaviour can be used to schedule
agent tasks that requires receiving or sending messages.

3.2.3 Agents with a graphical user interface (GUI).

An application, that is structured as a Multi Agent System, still needs to interact with its users.
So, it is often necessary to provide a GUI for at least some agents in the application. This need
raises some problems, though, stemming from the mismatch between the autonomous nature of
agents and the reactive nature of ordinary graphical user interfaces. When JADE is used, the
thread-per-agent concurrency model of JADE agents must work together with the Swing
concurrency model.

JADE Programmer’s GUIDE

14

3.2.3.1 Java GUI concurrency model

In a Java Virtual Machine there is a single thread, called Event Dispatcher Thread, whose
task is to continuously pick event objects (i.e. instances of java.awt.AWTEvent class) from the
System Event Queue (which is an instance of java.awt.EventQueue class). Then the event
dispatcher thread, among other things, calls the various listeners registered with the event source.
The important observation is that all event listeners are executed within a single thread of control
(the event dispatcher); from this follows the well known rule that the execution time of an event
listener should be short (less than 0.1 s) to ensure interface responsiveness.
A very important Swing feature is the Model/View system to manage GUI updates. When a
Swing control has some state (a JCheckBox has a checked flag, a JList holds elements, etc.),
this state is kept in a Model object (of class DefaultButtonModel, ListModel , etc.). The
model object provides commands to modify the state (e.g. to check or uncheck the checkbox, to
add and remove elements from the list, etc.) and the Swing built-in notif ication mechanism
updates the visual appearance of the GUI to reflect the state change. So, a JCheckBox object can
change its look in two cases:
• An event from the user is received (e.g. a MouseClick event).

• Some other part of the program modifies the model object associated with the JCheckBox.
As stated in the Java Tutorial (JFC/Swing trail, Threads and Swing section), the Swing

framework is not thread-safe, so any code that updates the GUI elements must be executed within
the event dispatcher thread; since modifying a model object triggers an update of the GUI, it
follows from the above that model objects also have to be manipulated just by the event
dispatcher thread. The Swing framework provides a simple but general way to pass some user
defined code to the Event Dispatcher thread: the SwingUtilities class exposes two static
methods that accept a Runnable object, wrap it with a RunnableEvent and push it into the
System Event Queue. The invokeLater() method puts the Runnable into the System Event
Queue and returns immediately (behaving like an asynchronous inter-thread call), whereas the
invokeAndWait() method puts the Runnable into the System Event Queue and blocks until
the Event Dispatcher thread has processed the RunnableEvent (behaving like a synchronous
inter-thread call). Moreover, the invokeAndWait() method can catch exceptions thrown within
the Runnable object.

3.2.3.2 Performing an ACL message exchange in response to a GUI event.

When an agent is given a GUI, it often happens that the agent is requested to send a message
because of a user action (e.g., the user clicks a pushbutton). The ActionListener of the button
will be run within the Event Dispatcher thread, but the Agent.send() method should be called
within the agent thread.

 So:
In the event listener, add a new behaviour to the agent, which performs the necessary
communication.
If the communication to perform is simply a message send operation, the SenderBehaviour
class can be used, and the event handler will contain a line such as:

myAgent.addBehaviour(new SenderBehaviour(msgToSend));
If the communication operation is a message receive, the ReceiverBehaviour class can

be used in the same way:
myAgent.addBehaviour(new ReceiverBehaviour(msgToRecv));

JADE Programmer’s GUIDE

15

More generally, some complex conversation (e.g. a whole interaction conforming to an
Interaction Protocol) could be started when the user acts on the GUI. The solution, again, is to
add a new behaviour to the agent; this behaviour will extend the predefined JADE behaviours for
Interaction Protocols or will be a custom complex behaviour.
The following code is extracted from the JADE RMA management agent. When the user wants to
create a new agent, he or she operates on the RMA GUI (through the menu bar, the tool bar or a
popup menu) to cause the execution of a StartNewAgentAction object, which calls the
newAgent() method of the rma class. This method is implemented as follows:

 public void newAgent(String agentName, String className, Object
arg[], String containerName) {

 // Create a suitable content object for the ACL message ...
 // Set the :ontology slot of the message

 requestMsg.setOntology(JADEAgentManagementOntology.NAME);
 // Fill the message content with a List l, containing the

content object
 fillContent(requestMsg, l);

 addBehaviour(new AMSClientBehaviour("CreateAgent", requestMsg));
 }
The AMSClientBehaviour class is a private inner class of the rma class, that extends the

FipaRequestInitiatorBehaviour and plays the fipa-request Interaction Protocol with the
AMS agent. In this case, the addBehaviour() call and the specific class of the behaviour to add
are completely encapsulated into the rma class. Various classes of the RMA GUI (mainly the
action classes) hold a reference to the RMA agent and use it to call methods such as
newAgent(). Notice that methods such as newAgent()don't really belong to the agent, because
they don't access the agent state in any way. So, they are designed for being called from the
outside (a different execution thread): in the following, these methods will be called external
methods.
In general, it is not a good thing that an external software component maintain a direct object
reference to an agent, because this component could directly call any public method of the agent
(not just the external ones), skipping the asynchronous message passing layer and turning an
autonomous agent into a server object, slave to its caller.
A better approach would be to gather all the external methods into an interface, implemented by
the agent class. Then, an object reference of that interface will be passed to the GUI so that only
the external methods will be callable from event handlers. The following pseudo code illustrates
this approach:
interface RMAExternal {
 void newAgent(String agentName, String className, Object arg[], String
containerName);
 void suspendAgent(AID name);
 void resumeAgent(AID name);
 void killAgent(AID name);
 void killContainer(String name);
 void shutDownPlatform();
}
class MainWindow extends JFrame {
 private RMAExternal myRMA;

 public MainWindow(RMAExternal anRMA) {
 myRMA = anRMA;
 }

JADE Programmer’s GUIDE

16

 // ...
}
class rma extends Agent implements RMAExternal {
 private MainWindow myGUI;
 protected void setup() {
 myGUI = new MainWindow(this);//Parameter 'this' typed as RMAExternal
 // ...
 }
}

With the schema above, the GUI will be able to call only the external methods of the RMA
agent.

3.2.3.3 Modifying the GUI when an ACL message is received.

An agent can receive information from other agents through ACL messages: the inform
FIPA communicative act serves just this purpose. If the agent has a GUI, it may often be the case
that it wants to communicate the new information to its user by modifying the visual appearance
of the GUI. According to the Model/View pattern, the new information should be used to modify
some model objects, and Swing will take automatically care of updating the GUI. The
Agent.receive() operation that read the message was executed within the agent thread, but
any modification to Swing model objects must be performed from the Event Dispatcher thread.
So:
In the agent behaviour, encapsulate all access to GUI model objects into a Runnable object
and use SwingUtilities.invokeXXX() to submit the Runnable to the Event Dispatcher
thread.
For example, when a new agent is born on a JADE platform, the AMS sends inform messages to
all the active RMA agents; each one of them has to update its AgentTree , adding a node
representing the new agent. The rma class holds a behaviour of the (inner and private)
AMSListener class that continously receives inform messages from the AMS and dispatches
them to suitable internal event handlers (it is basically a simple distributed event system over
ACL messages). The handler corresponding to the agent-born event has the following code:
 public void handle(AMSEvent ev) {
 AgentBorn ab = (AgentBorn)ev;
 String container = ab.getContainer();
 AID agent = ab.getAgent();
 myGUI.addAgent(container, agent);
 }

The addAgent() method of the class MainWindow is the following:
 public void addAgent(final String containerName, final AID agentID) {

// Add an agent to the specified container
 Runnable addIt = new Runnable() {
 public void run() {
 String agentName = agentID.getName();
 AgentTree.Node node = tree.treeAgent.createNewNode(agentName, 1);
 Iterator add = agentID.getAllAddresses();
 String agentAddresses = "";
 while(add.hasNext())
 agentAddresses = agentAddresses + add.next() + " ";
 tree.treeAgent.addAgentNode((AgentTree.AgentNode)node,
containerName, agentName, agentAddresses, "FIPAAGENT");

JADE Programmer’s GUIDE

17

 }
 };
 SwingUtilities.invokeLater(addIt);
}

As can be seen from the above code, all the accesses to the agent tree are encapsulated inside a
Runnable that is submitted for execution to the Event Dispatcher thread using the
SwingUtilities.invokeLater() method. The whole process of Runnable creation and
submission is contained within the addAgent() method of the MainWindow class, so that the
rma agent does not directly deal with Swing calls (it does not even have to import Swing related
classes).
If we consider the whole MainWindow as an active object whose thread is the Event Dispatcher
thread, then the addAgent() method is clearly an external method and this approach mirrors
exactly the technique used in the section above. However, since the GUI is not to be seen as an
autonomous software component, the choice of using external methods or not is just a matter of
software structure, without particular conceptual meaning.

3.2.3.4 Support for building GUI enabled agents in JADE.

Because it is quite common having agents with a GUI, JADE includes the class
jade.gui.GuiAgent for this specific purpose. This class is a simple extension of the
jade.core.Agent class: at the start-up (i.e. when the method setup() is executed) it
instantiates an ad-hoc behaviour that manages a queue of jade.gui.GuiEvent event objects
that can be received by other threads. This behaviour is of course hidden to the programmer who
needs only to implement the application-specific code relative to each event. In detail, the
following operations must be performed.

A thread (in particular the GUI) wishing to notify an event to an agent should create a new
object of type jade.gui.GuiEvent and pass it as a parameter to the call of the method
postGuiEvent() of the jade.gui.GuiAgent object. After the method postGuiEvent() is
called, the agent reacts by waking up all its active behaviours, and in particular the behaviour
above mentioned that causes the agent thread to execute the method onGuiEvent(). Notice that
an object GuiEvent has two mandatory attributes (i.e. the source of the event and an integer
identifying the type of event) and an optional list of parameters4 that can be added to the event
object.

As a consequence, an agent wishing to receive events from another thread (in particular its
GUI) should define the types of events it intends to receive and then implement the method
onGuiEvent() . In general, this method is a big switch, one case for each type of event. The
example mobile, distributed with JADE, is a good example of this feature.

In order to explain further the previous concepts, in the following are reported some
interesting points of the code of the example concerning the MobileAgent.

File MobileAgent.java

4 The type of each parameter must extend java.lang.Object; therefore primitive objects (e.g. int) should before be
wrapped into appropriate objects (e.g. java.lang.Integer).

JADE Programmer’s GUIDE

18

public class MobileAgent extends GuiAgent {

 ……

// These constants are used by the Gui to post Events to the
Agent

 public static final int EXIT = 1000;
 public static final int MOVE_EVENT = 1001;
 public static final int STOP_EVENT = 1002;
 public static final int CONTINUE_EVENT = 1003;
 public static final int REFRESH_EVENT = 1004;
 public static final int CLONE_EVENT = 1005;

 ……
public void setup() {
 ……
 // creates and shows the GUI
 gui = new MobileAgentGui(this);
 gui.setVisible(true);
 ……
 }
 ……

 // AGENT OPERATIONS FOLLOWING GUI EVENTS
 protected void onGuiEvent(GuiEvent ev)
 {
 switch(ev.getType())
 {
 case EXIT:
 gui.dispose();
 gui = null;
 doDelete();
 break;
 case MOVE_EVENT:
 Iterator moveParameters = ev.getAllParameter();
 nextSite =(Location)moveParameters.next();
 doMove(nextSite);
 break;
 case CLONE_EVENT:
 Iterator cloneParameters = ev.getAllParameter();
 nextSite =(Location)cloneParameters.next();

JADE Programmer’s GUIDE

19

 doClone(nextSite,"clone"+cnt+"of"+getName());
 break;
 case STOP_EVENT:
 stopCounter();
 break;
 case CONTINUE_EVENT:
 continueCounter();
 break;
 case REFRESH_EVENT:

addBehaviour(new
GetAvailableLocationsBehaviour(this));

 break;
 }

 }
}

File MobileAgentGui.java

package examples.mobile;

public class MobileAgentGui extends JFrame implements
ActionListener
{
 private MobileAgent myAgent;
 ……

 // Constructor
 MobileAgentGui(MobileAgent a)
 {
 super();
 myAgent = a;

 ……

 JButton pauseButton = new JButton("STOP COUNTER");
 pauseButton.addActionListener(this);

Jbutton continueButton = new JButton("CONTINUE
COUNTER");

 continueButton.addActionListener(this);
 …
 JButton b = new JButton(REFRESHLABEL);

JADE Programmer’s GUIDE

20

 b.addActionListener(this);
 …
 b = new JButton(MOVELABEL);
 b.addActionListener(this);
 …
 b = new JButton(CLONELABEL);
 b.addActionListener(this);
 …
 b = new JButton(EXITLABEL);
 b.addActionListener(this);
 ……
 }
 ……

 public void actionPerformed(ActionEvent e)
 {
 String command = e.getActionCommand();
 // MOVE
 if (command.equalsIgnoreCase(MOVELABEL)) {
 Location dest;
 int sel = availableSiteList.getSelectedRow();
 if (sel >= 0)
 dest = availableSiteListModel.getElementAt(sel);
 else
 dest = availableSiteListModel.getElementAt(0);

GuiEvent ev = new
GuiEvent((Object)this,myAgent.MOVE_EVENT);

 ev.addParameter(dest);
 myAgent.postGuiEvent(ev);
 }
 // CLONE
 else if (command.equalsIgnoreCase(CLONELABEL)) {
 Location dest;
 int sel = availableSiteList.getSelectedRow();
 if (sel >= 0)
 dest = availableSiteListModel.getElementAt(sel);
 else
 dest = availableSiteListModel.getElementAt(0);
 GuiEvent ev = new
 GuiEvent((Object)this,myAgent.CLONE_EVENT);

JADE Programmer’s GUIDE

21

 ev.addParameter(dest);
 myAgent.postGuiEvent(ev);
 }
 // EXIT
 else if (command.equalsIgnoreCase(EXITLABEL)) {
 GuiEvent ev = new GuiEvent(null,myAgent.EXIT);
 myAgent.postGuiEvent(ev);
 }
 else if (command.equalsIgnoreCase(PAUSELABEL)) {
 GuiEvent ev = new GuiEvent(null,myAgent.STOP_EVENT);
 myAgent.postGuiEvent(ev);
 }

 else if (command.equalsIgnoreCase(CONTINUELABEL)){
GuiEvent ev = new GuiEvent(null,myAgent.CONTINUE_EVENT);

 myAgent.postGuiEvent(ev);
 }
 else if (command.equalsIgnoreCase(REFRESHLABEL)) {
 GuiEvent ev = new GuiEvent(null,myAgent.REFRESH_EVENT);
 myAgent.postGuiEvent(ev);
 }
 }
 ……

}

3.2.4 Agent with parameters and launching agents

A list of arguments can be passed to an Agent and they can be retrieved by calling the
method Object[] getArguments(). Notice that the arguments are transient and they do not
migrate with the agent neither they are cloned with the agent.

There are three ways of launching an agent:

- a list of agents can be specified on the command line, by using the syntax described in the
Administrator’s Guide. Arguments, embedded within parenthesis, can be passed to each
agent. This is the most common option and the option that best matches the theoretical
requirement of agent autonomy.

- an agent can be launched by an administrator by using the RMA (Remote Monitoring Agent)
GUI, as described in the Administrator’s Guide. Arguments, embedded within parenthesis ,
can be passed to each agent.

- finally, an agent can also be launched by any external Java program by using the InProcess
Interface as described in section 3.8

JADE Programmer’s GUIDE

22

3.3 Agent Communication Language (ACL) Messages

The class ACLMessage represents ACL messages that can be exchanged between agents. It
contains a set of attributes as defined by the FIPA specifications.

An agent willing to send a message should create a new ACLMessage object, fill its
attributes with appropriate values, and finally call the method Agent.send(). Likewise, an
agent willing to receive a message should call receive() or blockingReceive()
methods, both implemented by the Agent class and described in section 3.2.2.

Sending or receiving messages can also be scheduled as independent agent activities by
adding the behaviours ReceiverBehaviour and SenderBehaviour to the agent queue of
tasks.

All the attributes of the ACLMessage object can be accessed via the
set/get<Attribute>() access methods. All attributes are named after the names of the
parameters, as defined by the FIPA specifications. Those parameters whose type is a set of values
(like receiver, for instance) can be accessed via the methods add/getAll<Attribute>()
where the first method adds a value to the set, while the second method returns an Iterator
over all the values in the set. Notice that all the get() methods return null when the attribute
has not been yet set.

Furthermore, this class also defines a set of constants that should be used to refer to the FIPA
performatives, i.e. REQUEST, INFORM, etc. When creating a new ACLMessage object, one of
these constants must be passed to ACLMessage class constructor, in order to select the message
performative. The reset() method resets the values of all message fields.

The toString() method returns a string representing the message. This method should be
just used for debugging purposes.

3.3.1 Support to reply to a message

According to FIPA specifications, a reply message must be formed taking into account a set
of well-formed rules, such as setting the appropriate value for the attribute in-reply-to, using the
same conversation-id, etc. JADE helps the programmer in this task via the method
createReply() of the ACLMessage class. This method returns a new ACLMessage object
that is a valid reply to the current one. Then, the programmer only needs to set the application-
specific communicative act and message content.

3.3.2 Support for Java serialisation and transmission of a sequence of bytes

Some applications may benefit from transmitting a sequence of bytes over the content of an
ACLMessage. A typical usage is passing Java objects between two agents by exploiting the Java
serialization. The ACLMessage class supports the programmer in this task by allowing the usage
of Base64 encoding through the two methods setContentObject() and
getContentObject(). Refer to the HTML documentation of the JADE API and to the
examples in examples/Base64 directory for an example of usage of this feature.

It must be noticed that this feature does not comply to FIPA and that any agent platform can
recognize automatically the usage of Base64 encoding5, so the methods must appropriately used

5 The implementation of this feature uses the source code contained within the src/starlight directory. This code is
covered by the GNU General Public License, as decided by the copyright owner Kevin Kelley. The GPL license itself
has been included as a text file named COPYING in the same directory. If the programmer does not need any support
for Base64 encoding, then this code is not necessary and can be removed.

JADE Programmer’s GUIDE

23

by the programmers and should suppose that communicating agents know a-priori the usage of
these methods.

3.3.3 The ACL Codec

Under normal conditions, agents never need to call explicitly the codec of the ACL messages
because it is done automatically by the platform. However, when needed for some special
circumstances, the programmer should use the methods provided by the class
StringACLCodec to parse and encode ACL messages in String format.

3.3.4 The MessageTemplate class

The JADE behaviour model allows an agent to execute several parallel tasks. However any
agent should be provided with the capability of carrying on also many simultaneous
conversations. Because the queue of incoming messages is shared by all the agent behaviours, an
access mode to that queue based on pattern matching has been implemented (see 3.2.2.1).

The MessageTemplate class allows to build patterns to match ACL messages against.
Using the methods of this class the programmer can create one pattern for each attribute of the
ACLMessage. Elementary patterns can be combined with AND, OR and NOT operators, in
order to build more complex matching rules. In such a way, the queue of incoming ACL
messages can be accessed via pattern-matching rather than FIFO.

The user can also define application specific patterns extending the MatchExpression
interface in order to provide a new match() method to use in the pattern matching phase.

The example WaitAgent in the MessageTemplate directory of the package examples, shows
a way to create an application-specific MessageTemplate:

public class WaitAgent extends Agent {

Class myMatchExpression implements
MessageTemplate.MatchExpression {

 List senders;
 myMatchExpression(List l){
 senders = l;
 }

 public boolean match(ACLMessage msg){
 AID sender = msg.getSender();
 String name = sender.getName();
 Iterator it_temp = senders.iterator();
 boolean out = false;

 while(it_temp.hasNext() && !out){
 String tmp = ((AID)it_temp.next()).getName();
 if(tmp.equalsIgnoreCase(name))
 out = true;
 }
 return out;

JADE Programmer’s GUIDE

24

 }

 }
 class WaitBehaviour extends SimpleBehaviour {
 public WaitBehaviour(Agent a, MessageTemplate mt) {
 ……}
 public void action() {
 ……
 ACLMessage msg = blockingReceive(template);
 ……
 }
 ……
 } //End class WaitBehaviour

 protected void setup() {

 ……
 ArrayList sender = ……
 myMatchExpression me = new myMatchExpression(sender);
 MessageTemplate myTemplate = new MessageTemplate(me);

 MessageTemplate mt =

MessageTemplate.and(myTemplate,MessageTemplate.MatchPerformative(
ACLMessage.REQUEST));

 WaitBehaviour behaviour = new WaitBehaviour(this,mt);
 addBehaviour(behaviour);
 }catch(java.io.IOException e){
 e.printStackTrace();
 }
 }
}//end class WaitAgent

3.4 The agent tasks. Implementing Agent behaviours

An agent must be able to carry out several concurrent tasks in response to different external
events. In order to make agent management efficient, every JADE agent is composed of a single
execution thread and all its tasks are modelled and can be implemented as Behaviour objects.
Multi-threaded agents can also be implemented but no specific support (except synchronizing the
ACL message queue) is provided by JADE.

The developer who wants to implement an agent-specific task should define one or more
Behaviour subclasses, instantiate them and add the behaviour objects to the agent task list. The
Agent class, which must be extended by agent programmers, exposes two methods:
addBehaviour(Behaviour) and removeBehaviour(Behaviour), which allow to

JADE Programmer’s GUIDE

25

manage the ready tasks queue of a specific agent. Notice that behaviours and sub-behaviours can
be added whenever is needed, and not only within Agent.setup() method. Adding a
behaviour should be seen as a way to spawn a new (cooperative) execution thread within the
agent.

A scheduler, implemented by the base Agent class and hidden to the programmer, carries
out a round-robin non-preemptive scheduling policy among all behaviours available in the ready
queue, executing a Behaviour-derived class until it will release control (this happens when
action() method returns). If the task relinquishing the control has not yet completed, it will be
rescheduled the next round. A behaviour can also block, waiting for a message to arrive. In detail,
the agent scheduler executes action() method of each behaviour present in the ready
behaviours queue; when action() returns, the method done() is called to check if the
behaviour has completed its task. If so, the behaviour object is removed from the queue.

Behaviours work just like co-operative threads, but there is no stack to be saved. Therefore,
the whole computation state must be maintained in instance variables of the Behaviour and its
associated Agent.

In order to avoid an active wait for messages (and, as a consequence, a waste of CPU time),
every single Behaviour is allowed to block its computation. The method block() puts the
behaviour in a queue of blocked behaviours as soon as the action() method returns. Notice,
therefore, that the blocking effect is not achieved immediately after calling the block()
method, but just after returning from the action() method. All blocked behaviours are
rescheduled as soon as a new message arrives, therefore the programmer must take care of
blocking again a behaviour if it was not interested in the arrived message. Moreover, a behaviour
object can block itself for a limited amount of time passing a timeout value to block() method.
In future releases of JADE, more wake up events will be probably considered.

Because of the non preemptive multitasking model chosen for agent behaviours, agent
programmers must avoid to use endless loops and even to perform long operations within
action() methods. Remember that when some behaviour’s action() is running, no
other behaviour can go on until the end of the method (of course this is true only with respect
to behaviours of the same agent: behaviours of other agents run in different Java threads and can
still proceed independently).

Besides, since no stack contest is saved, every time action() method is run from the
beginning: there is no way to interrupt a behaviour in the middle of its action(), yield the CPU
to other behaviours and then start the original behaviour back from where it left.

For example, suppose a particular operation op() is too long to be run in a single step and is
therefore broken in three sub-operations, named op1(),op2() and op3(). To achieve desired
functionality one must call op1() the first time the behaviour is run, op2() the second time and
op3() the third time, after which the behaviour must be marked as terminated. The code will
look like the following:

public class my3StepBehaviour {
 private int state = 1;
 private boolean finished = false;

 public void action() {
 switch (state) {
 case 1: { op1(); state++; break; }

JADE Programmer’s GUIDE

26

 case 2: { op2(); state++; break; }
 case 3: { op3(); state=1; finished = true; break; }
 }
 }

 public boolean done() {
 return finished;
 }
}

Following this idiom, agent behaviours can be described as finite state machines, keeping

their whole state in their instance variables.
When dealing with complex agent behaviours (as agent interaction protocols) using explicit

state variables can be cumbersome; so JADE also supports a compositional technique to build
more complex behaviours out of simpler ones.

The framework provides ready to use Behaviour subclasses that can contain sub-
behaviours and execute them according to some policy. For example, a
SequentialBehaviour class is provided, that executes its sub-behaviours one after the other
for each action() invocation.

The following figure is an annotated UML class diagram for JADE behaviours.

JADE Programmer’s GUIDE

27

Figure 4 - UML Model of the Behaviour class hierarchy

Starting from the basic class Behaviour, a class hierarchy is defined in the
jade.core.behaviour package of the JADE framework.
A complete description of all these classes follows.

3.4.1 class Behaviour

This abstract class provides an abstract base class for modelling agent tasks, and it sets the
basis for behaviour scheduling as it allows for state transitions (i.e. starting, blocking and
restarting a Java behaviour object).

The block() method allows to block a behaviour object until some event happens
(typically, until a message arrives). This method leaves unaffected the other behaviours of an
agent, thereby allowing finer grained control on agent multitasking. This method puts the
behaviour in a queue of blocked behaviours and takes effect as soon as action() returns. All
blocked behaviours are rescheduled as soon as a new message arrives. Moreover, a behaviour

SimpleBehaviour

FSMBehaviour

registerState()
registerTransition()

SequentialBehaviour

addSubBehaviour()
ParallelBehaviour

addSubBehaviour()

Models a complex
task i.e. a task that is
made up by
composing a number
of other tasks.

Behaviour

<<abstract>> action()
<<abstract>> done()
onStart()
onEnd()
block()
restart()

CompositeBehaviour

OneShotBehaviour CyclicBehaviour

0..* 0..* Models a generic
task

Models a simple task
i.e. a task that is not
composed of sub-tasks

Models an atomic
task (its done()
method returns true)

Models a cyclic
task (its done()
method returns
false)

Models a complex task
whose sub-tasks are
executed concurrently

Models a complex task
whose sub-tasks are
executed sequentially

Models a complex task
whose sub-tasks
corresponds to the activities
performed in the states of a
Finite State Machine

JADE Programmer’s GUIDE

28

object can block itself for a limited amount of time passing a timeout value to block() method,
expressed in milliseconds. In future releases of JADE, more wake up events will be probably
considered. A behaviour can be explicitly restarted by calling its restart() method.

Summarizing, a blocked behaviour can resume execution when one of the following three
conditions occurs:
1. An ACL message is received by the agent this behaviour belongs to.
2. A timeout associated with this behaviour by a previous block() call expires.
3. The restart() method is explicitly called on this behaviour.
The Behaviour class also provides two placeholders methods, named onStart() and
onEnd(). These methods can be overridden by user defined subclasses when some actions are
to be executed before and after running behaviour execution.
onEnd() returns an int that represents a termination value for the behaviour.
It should be noted that onEnd() is called after the behaviour has completed and has been removed
from the pool of agent behaviours. Therefore calling reset() inside onEnd() is not sufficient to
cyclically repeat the task represented by that behaviour; besides that the behaviour should be
added again to the agent as in the following example

 public int onEnd() {
 reset();
 myAgent.addBehaviour(this);
 return 0;
 }
This class provides also a couple of methods to get and set a DataStore for the behaviour.

The DataStore can be a useful repository for exchanging data between behaviours, as done, for
instance, by the classes jade.proto.AchieveREInitiator/Responder. Notice that the DataStore is
cleaned and all the contained data are lost when the behaviour is reset.

3.4.2 class SimpleBehaviour

This abstract class models simple atomic behaviours. Its reset() method does nothing by
default, but it can be overridden by user defined subclasses.

3.4.3 class OneShotBehaviour

This abstract class models atomic behaviours that must be executed only once and cannot be
blocked. So, its done() method always returns true.

3.4.4 class CyclicBehaviour

This abstract class models atomic behaviours that must be executed forever. So its done()
method always returns false.

3.4.5 class CompositeBehaviour

This abstract class models behaviours that are made up by composing a number of other
behaviours (children). So the actual operations performed by executing this behaviour are not
defined in the behaviour itself, but inside its children while the composite behaviour takes only

JADE Programmer’s GUIDE

29

care of children scheduling according to a given policy6.
In particular the CompositeBehaviour class only provides a common interface for children

scheduling, but does not define any scheduling policy. This scheduling policy must be defined by
subclasses (SequentialBehaviour, ParallelBehavio ur and FSMBehaviour). A good programming
practice is therefore to use only CompositeBehaviour sub-classes, unless some special children
scheduling policy is needed (e.g. a PriorityBasedCompositeBehaviour should extend
CompositeBehaviour directly).

Notice that this class was renamed since JADE 2.2 and it was previously called
ComplexBehaviour.

3.4.6 class SequentialBehaviour

This class is a CompositeBehaviour that executes its sub-behaviours sequentially and
terminates when all sub-behaviours are done. Use this class when a complex task can be
expressed as a sequence of atomic steps (e.g. do some computation, then receive a message, then
do some other computation).

3.4.7 class ParallelBehaviour

This class is a CompositeBehaviour that executes its sub-behaviours concurrently and
terminates when a particular condition on its sub-behaviours is met. Proper constants to be
indicated in the constructor of this class are provided to create a ParallelBehaviour that
ends when all its sub-behaviours are done, when any one among its sub-behaviour terminates or
when a user defined number N of its sub-behaviours have finished. Use this class when a complex
task can be expressed as a collection of parallel alternative operations, with some kind of
termination condition on the spawned subtasks.

Notice that this class was renamed since JADE 2.2 and it was previously called
NonDeterministicBehaviour.

3.4.8 class FSMBehaviour

This class is a CompositeBehaviour that executes its children according to a Finite
State Machine defined by the user. More in details each child represents the activity to be
performed within a state of the FSM and the user can define the transitions between the states of
the FSM. When the child corresponding to state Si completes, its termination value (as returned
by the onEnd() method) is used to select the transition to fire and a new state Sj is reached. At
next round the child corresponding to Sj will be executed. Some of the children of an
FSMBehaviour can be registered as final states. The FSMBehaviour terminates after the
completion of one of these children.

Refer to the javadoc documentation of the JADE APIs for a detailed description on how to
describe a Finite State Machine both at execution-time or static compilation time.

6 Each time the action() method of a complex behaviour is called this results in calling the action() method of one
of its children. The scheduling policy determines which children to select at each round.

JADE Programmer’s GUIDE

30

3.4.9 class SenderBehaviour

Encapsulates an atomic unit which realises the “send” action. It extends
OneShotBehaviour class and so it is executed only once. An object with this class must be
given the ACL message to send at construction time.

3.4.10 class ReceiverBehaviour

Encapsulates an atomic operation which realises the “receive” action. Its action terminates
when a message is received. If the message queue is empty or there is no message matching the
MessageTemplate parameter, action() method calls block() and returns. The received
message is copied into a user specified ACLMessage, passed in the constructor. Two more
constructors take a timeout value as argument, expressed in milliseconds; a
ReceiverBehaviour created using one of these two constructors will terminate after the
timeout has expired, whether a suitable message has been received or not. An Handle object is
used to access the received ACL message; when trying to retrieve the message suitable
exceptions can be thrown if no message is available or the timeout expired without any useful
reception.

3.4.11 class WakerBehaviour

This abstract class implements a OneShot task that must be executed only once just after a
given timeout is elapsed.

3.4.12 Examples

In order to explain further the previous concepts, an example is reported in the following. It
illustrates the implementation of two agents that, respectively, send and receive messages. The
behaviour of the AgentSender extend the SimpleBehaviour class so it simply sends some
messages to the receiver and than kills itself. The AgentReceiver has instead a behaviour
that extends CyclicBehaviour class and shows different kinds to receive messages.

File AgentSender.java
package examples.receivers;

import java.io.*;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.*;

public class AgentSender extends Agent {

 protected void setup() {
 addBehaviour(new SimpleBehaviour(this) {
 private boolean finished = false;
 public void action() {
 try{

JADE Programmer’s GUIDE

31

 System.out.println("\nEnter responder agent name: ");
 BufferedReader buff = new BufferedReader(new
 InputStreamReader(System.in));

 String responder = buff.readLine();
 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
 msg.addReceiver(new AID(responder));
 msg.setContent("FirstInform");
 send(msg);
 System.out.println("\nFirst INFORM sent");
 doWait(5000);
 msg.setLanguage("PlainText");
 msg.setContent("SecondInform");
 send(msg);
 System.out.println("\nSecond INFORM sent");
 doWait(5000);
 // same that second
 msg.setContent("\nThirdInform");
 send(msg);
 System.out.println("\nThird INFORM sent");
 doWait(1000);
 msg.setOntology("ReceiveTest");
 msg.setContent("FourthInform");
 send(msg);
 System.out.println("\nFourth INFORM sent");
 finished = true;
 myAgent.doDelete();
 }catch (IOException ioe){
 ioe.printStackTrace();
 }
 }
 public boolean done(){
 return finished;
 }
 });
 }
}

File AgentReceiver.java
package examples.receivers;

import java.io.*;
import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

JADE Programmer’s GUIDE

32

public class AgentReceiver extends Agent {
 class my3StepBehaviour extends SimpleBehaviour {
 final int FIRST = 1;
 final int SECOND = 2;
 final int THIRD = 3;
 private int state = FIRST;
 private boolean finished = false;
 public my3StepBehaviour(Agent a) {
 super(a);
 }
 public void action() {
 switch (state){
 case FIRST: {if (op1())
 state = SECOND;
 else
 state= FIRST;

 break;}
 case SECOND:{op2(); state = THIRD; break;}
 case THIRD:{op3(); state = FIRST; finished = true; break;}
 }
 }

 public boolean done() {
 return finished;
 }

 private boolean op1(){
 System.out.println("\nAgent "+getLocalName()+" in state 1.1 is

waiting for a message");
 MessageTemplate m1 =
 MessageTemplate.MatchPerformative(ACLMessage.INFORM);
 MessageTemplate m2 =
 MessageTemplate.MatchLanguage("PlainText");
 MessageTemplate m3 =
 MessageTemplate.MatchOntology("ReceiveTest");

 MessageTemplate m1andm2 = MessageTemplate.and(m1,m2);
 MessageTemplate notm3 = MessageTemplate.not(m3);

 MessageTemplate m1andm2_and_notm3 =
 MessageTemplate.and(m1andm2, notm3);

 //The agent waits for a specific message. If it doesn't arrive

 // the behaviour is suspended until a new message arrives.
 ACLMessage msg = receive(m1andm2_and_notm3);

JADE Programmer’s GUIDE

33

 if (msg!= null){
 System.out.println("\nAgent "+ getLocalName() +

 " received the following message in state 1.1: " +
 msg.toString());

 return true;
 }
 else {
 System.out.println("\nNo message received in state 1.1");
 block();
 return false;
 }

 }

 private void op2(){
 System.out.println("\nAgent "+ getLocalName() + " in state 1.2

is waiting for a message");
 //Using a blocking receive causes the block

 // of all the behaviours
 ACLMessage msg = blockingReceive(5000);
 if(msg != null)
 System.out.println("\nAgent "+ getLocalName() +

 " received the following message in state 1.2: "
 +msg.toString());

 else
 System.out.println("\nNo message received in state 1.2");

 }

 private void op3() {
 System.out.println("\nAgent: "+getLocalName()+

 " in state 1.3 is waiting for a message");
 MessageTemplate m1 =
 MessageTemplate.MatchPerformative(ACLMessage.INFORM);
 MessageTemplate m2 = MessageTemplate.MatchLanguage("PlainText");
 MessageTemplate m3 =
 MessageTemplate.MatchOntology("ReceiveTest");

 MessageTemplate m1andm2 = MessageTemplate.and(m1,m2);
 MessageTemplate m1andm2_and_m3 =
 MessageTemplate.and(m1andm2, m3);

 //blockingReceive and template
 ACLMessage msg = blockingReceive(m1andm2_and_m3);
 if (msg!= null)
 System.out.println("\nAgent "+ getLocalName() +

 " received the following message in state 1.3: "
 + msg.toString());

JADE Programmer’s GUIDE

34

 else
 System.out.println("\nNo message received in state 1.3");
 }
 } // End of my3StepBehaviour class

 protected void setup() {
 my3StepBehaviour mybehaviour = new my3StepBehaviour(this);
 addBehaviour(mybehaviour);
 }
}

3.5 Interaction Protocols

FIPA specifies a set of standard interaction protocols, that can be used as standard templates
to build agent conversations. For every conversation among agents, JADE distinguishes the
Initiator role (the agent starting the conversation) and the Responder role (the agent engaging in a
conversation after being contacted by some other agent). JADE provides ready made behaviour
classes for both roles in conversations following most FIPA interaction protocols. These classes
can be found in jade.proto package, as described in this section.

All Initiator behaviours terminate and are removed from the queue of the agent tasks, as soon
as they reach any final state of the interaction protocol. In order to allow the re-use of the Java
objects representing these behaviours without having to recreate new objects, all initiators include
a number of reset methods with the appropriate arguments. Furthermore, all Initiator
behaviours, but FipaRequestInitiatorBehaviour, are 1:N, i.e. can handle several responders at the
same time.

All Responder behaviours, instead, are cyclic and they are rescheduled as soon as they reach
any final state of the interaction protocol. Notice that this feature allows the programmer to limit
the maximum number of responder behaviours that the agent should execute in parallel. For
instance, the following code ensures that a maximum of two contract-net tasks will be executed
simultaneously.

Protected void setup() {
 addBehaviour(new FipaContractNetResponderBehaviour(<arguments>));
 addBehaviour(new FipaContractNetResponderBehaviour(<arguments>));
 }

A complete reference for these classes can be found in JADE HTML documentation and
class reference.

Since JADE 2.4 a new couple of classes has been added,
AchieveREInitiator/Responder, that provides an effective implementation for all the
FIPA-Request-like interaction protocols, included FIPA-Request itself, FIPA-query, FIPA-
propose, FIPA-Request-When, FIPA-recruiting, FIPA-brokering, FIPA-subscribe, ... It is
intention of the authors to keep only this couple of classes and soon deprecate the other
jade.proto classes.

3.5.1 AchieveRE (Achieve Rational Effect)

The fundamental view of messages in FIPA ACL is that a message represents a
communicative act, just one of the actions that an agent can perform. The FIPA standard specifies
for each communicative act the Feasibility Preconditions (the conditions which need to be true

JADE Programmer’s GUIDE

35

before an agent can execute the action, i.e. before the message can be sent) and the Rational
Effect, i.e. the expected effect of the action or, in other terms, the reason why the message is sent.
The standard specifies also that, having performed the act (i.e. having sent the message), the
sender agent is not entitled to believe that the rational effect necessarily holds; for instance, given
its autonomy, the receiver agent might simply decide to ignore the received message. That is not
desirable in most applications because it generates an undesirable level of uncertainty. For this
reason, instead of sending a single message, an interaction protocol should be initiated by the
sender agent that allows to verify if the expected rational effect has been achieved or not.

FIPA has already specified a number of these interaction protocols, like FIPA-Request,
FIPA-query, FIPA-propose, FIPA-Request-When, FIPA-recruiting, FIPA-brokering, FIPA-
subscribe, that allows the initiator to verify if the expected rational effect of a single
communicative act has been achieved. Because they share the same structure, JADE provides the
AchieveREInitiator/Responder couple of classes which are a single homogeneous
implementation of all these kind of interaction protocols.

Figure 5 shows the structure of these interaction protocols. The initiator sends a message (in
general it performs a communicative act, as shown in the white box). The responder can then
reply by sending a not-understood, or a refuse to achieve the rational effect of the
communicative act, or also an agree message to communicate the agreement to perform (possibly
in the future) the communicative act, as shown in the first row of shaded boxes. The responder
performs the action and, finally, must respond with an inform of the result of the action
(eventually just that the action has been done) or with a failure if anything went wrong. Notice
that we have extended the protocol to make optional the transmission of the agree message.
Infact, in most cases performing the action takes so short time that sending the agree message is
just an useless and uneffective overhead; in such cases, the agree to perform the communicative
act is subsumed by the reception of the following message in the protocol.

not-understood refuse
reason

failure
reason

inform
Done(action)

inform
(iota x (result action) x)

agree

communicative act

Figure 5 - Homogeneous structure of the interaction protocols.

3.5.1.1 AchieveREInitiator

An instance of this class can be easily constructed by passing, as argument of its constructor,
the message used to initiate the protocol. It is important that this message has the right value for
the protocol slot of the ACLMessage as defined by the constants in the interface
FIPAProtocolNames.

Notice that this ACLMessage object might also be incomplete when the constructor of this
class is created; the method prepareRequests can be overridden in order to return the complete
ACLMessage or, more exactly (because this initiator allows to manage a 1:N conversation) a
Vector of ACLMessage objects to be sent.

JADE Programmer’s GUIDE

36

The class can be easily extended by overriding one (or all) of its handle... methods which
provide hooks to handle all the states of the protocol. For instance the method handleRefuse is
called when a refuse message is received.

Skilled programmers might find useful, instead of extending this class and overriding some
of its methods, registering application-specific Behaviours as handler of the states of the protocol,
including, for instance, another AchieveREInitiator behaviour to request a password before
agreeing to perform the communicative act. The methods registerHandle... allow to do that. A
mix of overridden methods and registered behaviours might often be the best solution.

It is worth clarifying the distinction between the following three handlers:
- handleOutOfSequence handles all the unexpected received messages which have the proper

conversation-id or in-reply-to value
- handleAllResponses handles all the received first responses (i.e. not-understood, refuse,

agree) and it is called after having called handleNotUnderstood/Refuse/Agree for each single
response received. In case of 1:N conversations the override of this method might be more
useful than the override of the other methods because this one allows to handle all the
messages in a single call.

- handleAllResultNotifications handles all the received second responses (i.e. failure, inform)
and it is called after having called handleFailure/Inform for each single response received. In
case of 1:N conversations the override of this method might be more useful than the override
of the other methods because this one allows to handle all the messages in a single call.
A set of variables (they are not constants!) is available (..._KEY) that provide the keys to

retrieve the following information from the dataStore of this Behaviour:
- getDataStore().get(ALL_RESPONSES_KEY) returns a Vector of ACLMessage object with all

the first responses (i.e. not-understood, refuse, agree)
- getDataStore().get(ALL_RESULT_NOTIFICATIONS_KEY) returns a Vector of ACLMessage

object with all the second responses (i.e. failure, inform)
- getDataStore().get(REQUEST_KEY) returns the ACLMessage object passed in the

constructor of the class
- getDataStore().get(ALL_REQUESTS_KEY) returns the Vector of ACLMessage objects

returned by the prepareRequests method. Remind that if a Behaviour is registered as handler
of the PrepareRequests state, it is responsibility of this behaviour to put into the datastore the
proper Vector of ACLMessage objects (bound at the right key) to be sent by this initiator.
This implementation manages the expiration of the timeout, as expressed by the value of the

reply -by slot of the sent ACLMessage objects. In case of 1:N conversation, the minimum is
evaluated and used between the values of all the reply-by slot of the sent ACLMessage objects.
Notice that, as defined by FIPA, this timeout refers to the time when the first response (e.g. the
agree message) has to be received. If applications need to limit the timeout for receiving the last
inform message, they must embed this limit into the content of the message by using application-
specific ontologies.

3.5.1.2 AchieveREResponder

This class is the implementation of the responder role. It is very important to pass the right
message template as argument of its constructor, in fact it is used to select which received
ACLMessage should be served. The method createMessageTemplate can be used to create a
message template for a given interaction protocol, but also more selective templates might be
useful in some cases, for example to have an instance of this class for each possible sender agent.

JADE Programmer’s GUIDE

37

The class can be easily extended by overriding one (or all) of its prepare... methods which
provide hooks to handle the states of the protocol and, in particular, to prepare the response
messages. The method prepareResponse is called when an initiator’s message is received and the
first response (e.g. the agree) must be sent back; the method prepareResultNotification is called,
instead, when the rational effect must be achieved (for instance the action must be performed in
case of a FIPa-Request protocol) and the final response message must be sent back (e.g. the
inform(done)). Take care in returning the proper message and setting all the needed slots of the
ACLMessage; in general it is highly recommended to create the reply message by using the
method createReply() of the class ACLMessage.

Skilled programmers might find useful, instead of extending this class and overriding some
of its methods, registering application-specific Behaviours as handler of the states of the protocol.
The methods registerPrepare... allow to do that. A mix of overridden methods and registered
behaviours might often be the best solution.

A set of variables (they are not constants!) is available (..._KEY) that provide the keys to
retrieve the following information from the dataStore of this Behaviour:
- getDataStore().get(REQUEST_KEY) returns the ACLMessage object received by the initiator
- getDataStore().get(RESPONSE_KEY) returns the first ACLMessage object sent to the

initiator
- getDataStore().get(RESULT_NOTIFICATION_KEY) returns the second ACLMessage object

sent to the initiator
Remind that if a Behaviour is registered as handler of the Prepare... states, it is

responsibility of this behaviour to put into the datastore (bound at the right key) the proper
ACLMessage object to be sent by this responder.

3.5.1.3 Example of using these two generic classes for implementing a specific FIPA
protocol

The two classes described above can easily be used for implementing the interaction
protocols defined by FIPA.

The following example shows how to add a FIPA-Request initiator behaviour:
ACLMessage request = new ACLMessage(ACLMessage.REQUEST);
request.setProtocol(FIPAProtocolNames.FIPA_REQUEST);
request.addReceiver(new AID(“receiver”, AID.ISLOCALNAME));
myAgent.addBehaviour(new AchieveREInitiator(myAgent, request) {
 protected void handleInform(ACLMessage inform) {
 System.out.println(“Protocol finished. Rational Effect achieved.
Received the following message: ”+inform);
 }
});

The following example shows instead how to add a FIPA-Request responder behaviour:
MessageTemplate mt =
 AchieveREResponder.createMessageTemplate(FIPAProtocolNames.FIPAREQUEST);
myAgent.addBehaviour(new AchieveREResponder(myAgent, mt) {
 protected ACLMessage prepareResultNotification(ACLMessage request, ACLMessage
response) {
 System.out.println(“Responder has received the following message: ” +
request);
 ACLMessage informDone = request.createReply();
 informDone.setPerformative(ACLMessage.INFORM);

JADE Programmer’s GUIDE

38

 informDone.setContent(“inform done”);
 return informDone;
 }
});

3.5.2 FIPA-Contract-Net

This interaction protocol allows the Initiator to send a Call for Proposal to a set of
responders, evaluate their proposals and then accept the preferred one (or even reject all of them).
The interaction protocol is deeply described in the FIPA specifications while the following figure
is just a simplification for the programmer.

not-understood refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action)

the manager cancels the
contract due to a change
of situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp
action
preconditions1

Figure 6 - FIPA-Contract -Net Interaction Protocol

3.5.2.1 FipaContractNetInitiatorBehaviour

This abstract behaviour implements the fipa-contract-net interaction protocol from the point
of view of the agent initiating the protocol, that is the agent that sends the cfp (call for proposal)
message.

The constructor of this behaviour takes 3 parameters
public FipaContractNetInitiatorBehaviour(Agent a, ACLMessage msg, List
responders)
the calling agent, the CFP message to be sent and the group of agents to which the message
should be sent. In fact, the protocol is implemented 1:N with one initiator and several responders.

The programmer should implement the two methods handleProposeMessages and
handleFinalMessages to handle the two states of the protocol from the point of view of the
initiator.

JADE Programmer’s GUIDE

39

Under some circumstances, for instance when using the SL-0 content language, the content
of the CFP message needs to be adapted to each receiver. For this reason, the method
createcfpcontent is called before sending each message. The default implementation
returns exactly the same content independently of the receiver; the programmer might also wish
to override this default implementation.

The behaviour takes also care of handling timeouts in waiting for the answers. The timeout is
got from the reply-by field of the ACLMessage passed in the constructor; if it was not set,
then an infinite timeout is used. If the timeout expires without having received any answer, the
method handleXXXMessages is executed by passing an empty vector of messages. Of course,
late answers that arrive after the timeout expires are not consumed and remain in the private
queue of incoming ACLmessages. Because this queue has a maximum size, these messages will
be removed after the queue becomes full.

3.5.3 FipaContractNetResponderBehaviour

This abstract behaviour class implements the fipa-contract-net interaction protocol from the
point of view of a responder to a call for proposal (cfp) message.

The programmer should extend this class by implementing the handleXXX methods that
are called to handle the types of messages that can be received in this protocol.

3.5.4 Generic states of interaction protocols

The package jade.proto.states contains implementations for some generic states of
interaction protocols which might be useful to register as handlers.

3.5.4.1 HandlerSelector class

This abstract class of the package jade.proto.states provides an implementation for a generic
selector of handler, where an handler is a jade.core.behaviours.Behaviour.

The constructor of the class requires passing three arguments: a reference to the Agent, a
reference to the DataStore where the selection variable can be retrieved, and, finally, the access
key to retrieve the selection variable from this DataStore.

This selection variable will be later passed as argument to the method getSelectionKey that
must return the key for selecting between the registered handlers. In fact, each handler must be
registered with a key via the method registerHandler.

Useful examples of usage of this class are, for instance, the selection of a different handler
for each action name (es. the action “register” is handled by the behaviour “registerBehaviour”,
the action modify by another one, and so on for each action). This class is generic enough to
allow a large variety of selection systems, such as based on the message sender, the content
language, the ontology, ... the programmer just needs to extend the class and override its method
getSelectionKey

3.5.4.2 MsgReceiver class

This is a generic implementation for waiting for the arrival of a given message of the
expiration of a given timeout. Refer to the javadoc for the documentation of its usage.

JADE Programmer’s GUIDE

40

3.6 Application-defined content languages and ontologies

3.6.1 Rationale

When an agent A communicates with another agent B, a certain amount of information I is
transferred from A to B by means of an ACL message.

Inside the ACL message I is represented as a content expression consistent with a proper
content language (e.g. SL) and encoded in a proper format (e.g. string).

Both A and B have their own (possibly different) way of internally representing I.
Taking into account that the way an agent internally represents a piece information must

allow an easy handling of that piece of information, it is quite clear that the representation used in
an ACL content expression is not suitable for the inside of an agent.

For example the information that the person Giovanni is 33 years old in an ACL content
expression could be represented as the string

(person (name Giovanni) (age 33))
Storing this information inside an agent simply as a string variable is not suitable to handle

the information as e.g. getting the age of Giovanni would require each time to parse the string.
Considering software agents written in Java (as JADE agents are), information can

conveniently be represented inside an agent as Java objects.
For example representing the above information about Giovanni as an instance (an object) of

an application-specific class
class Person {
 String name;
 int age;

 public String getName() {return name; }
 public void setName(String n) {name = n; }
 public int getAge() {return age; }
 public void setAge(int a) {age = a; }
 ….
}
initialized with
name = “Giovanni”;
age = 33;
would allow to handle it very easily.

It is clear however that if on the one hand information handling inside an agent is eased, on

the other hand each time agent A sends a piece of information I to agent B,
1) A needs to convert his internal representation of I into the corresponding ACL content

expression representation and B needs to perform the opposite conversion.
2) Moreover B should also check that I complies with the rules (i.e. for instance that the age of

Giovanni is actually an integer value) of the ontology by means of which both A and B
ascribe a proper meaning to I.

JADE Programmer’s GUIDE

41

The support for application-defined ontology and content languages provided by JADE is
designed to support agent internal representation of information as Java objects, as described
above, by minimizing the developer effort in performing the above conversion and check
operations.

3.6.2 The conversion pipeline

Each time an information has to be inserted into or extracted from an ACL content
expression the JADE framework automatically performs the pipeline depicted in figure.

Parser

Encoder

Parser

Encoder

Content
Language

Codec
Ontology

String s
Frame f Java object o

content of the ACL
Message

Agent internal
representation

JADE Framework
operations

Figure 7 - Pipeline of the message content encoding/decoding

First an appropriate content language codec object is able to parse a content expression and
to convert it into a t-uple 7 of Frame8 objects.

An appropriate ontology object is then able to check whether a Frame object is consistent
with one of the schemas defining the roles9 included in the ontology and, in this case, to convert

7 A content expression can include more than one entity in the domain of discourse. E.g. the content of a REFUSE ACL
message is a t-uple with 2 elements: an action expression and the reason why the agent sending the message refuses to
accomplish that action.

8 The JADE Framework uses an internal representation of information based on the class Frame. A Frame object has
a name and a set of slots each one being characterized by a name, a position (within the frame) and an untyped value.
Whatever entity in the domain of discourse (i.e. whatever information) can be represented as a Frame object.

9 An ontology basically includes all the concepts, predicates and actions, collectively called roles , that are meaningful
for the agents sharing this ontology . For instance the concepts Company and Person, the predicate WorfsFor and the
action Engage can be roles in an ontology dealing with employees. All elements in the domain of discourse (e.g. the
person Giovanni) are instances of one of the roles composing the ontology.

JADE Programmer’s GUIDE

42

the Frame object into a properly initialized instance of the application-specific class (e.g. the
Person class mentioned above) representing the matched role.

The opposite pipeline allows to convert a sentence belonging to the domain of discourse, and
represented as a Java object, into the appropriate content language and encoding.

The JADE framework hides the stages of this pipeline to the programmer who just needs to

call the following methods of the Agent class.

List extractContent(ACLMessage msg);
void fillContent(ACLMessage msg, List content);

As already mentioned the content of an ACL message is in general a t-uple of entity inn the

domain of discourse. In Java this is represented as a List.
The programmer however has to create and add to the resources of the agent the codec and

ontology objects mentioned above as described in the followings.

3.6.3 Codec of a Content Language

Each content language codec in JADE must implement the interface jade.lang.Codec
and, in particular, the two methods decode() and encode() to respectively
• parse the content in an ACL message and convert it into a List of Frame objects.

• encode the content from a List of Frame objects into the content language syntax and
encoding.
The Frame class is a neutral type (i.e. it does not distinguish between concepts, actions and

predicates), that has been designed in order to allow accessing its slots both by name (e.g. (divide
:dividend 10 :divisor 2)) and by position (e.g. (divide 10 2)).

This Codec object must then be added to the resources of each agent, which wishes to use
that language, by using the method registerLanguage() available in the Agent class.

By means of this operation a Codec object is associated to a content language name. When
the fillContent() and extractContent() methods are called the Codec object associated
to the content language indicated in the :language slot of the ACL message will be used to
perform the conversion pipeline described in previous chapter.

Notice that JADE already includes the Codec for SL-0 (one of the standard content

languages defined by FIPA) that is the class jade.lang.sl.SL0Codec. For an agent using
SL0 it will be therefore sufficient to insert the instruction

registerLanguage(“SL0”, new SL0Codec());

3.6.4 Creating an Ontology

Each ontology in JADE must implement the jade.onto.Ontology interface.

JADE Programmer’s GUIDE

43

It is important to note however that in the adopted approach an ontology is represented by an
instance of a class implementing the jade.onto.Ontology interface and not just by that
class.

More in detail a class implementing the jade.onto.Ontology interface only embeds
the definition of the semantic checks that will be performed when some information is received.
For example an implementation can check that the age of a person is an integer value, while
another implementation can also check that that integer value is > 0. All the ontological roles
included in the ontology (such as the concept of person) must on the other hand be added at run-
time to an instance of the above class.

Two instances o1 and o2 of the same class O implementing the jade.onto.Ontology
interface can represent two different ontologies provided that at run-time different ontological
roles are added to o1 and o2.

A class, jade.onto.DefaultOntology, providing a default implementation of the
Ontology interface is already provided by JADE. This is simple but still expected to be useful
in most practical applications.

Creating an ontology requires the following steps:
• Defining an application-specific class for each role in the ontology
• Creating an object of class DefaultOntology
• Adding to that object all the ontological roles as described below.

Each ontological role is described by a name and a number of slots . The
SlotDescriptor class is provided to describe the characteristics of a slot of an ontological
role.

The method addRole() by means of which a role is added to an ontology object takes
therefore the following parameters:

• A String indicating the name of the added role. This parameter is missing for an unnamed
slot.

• An array of SlotDescriptor each one describing a slot of the added role.
• The Java class, if any, that represents the role.

For example, adding the person role described by the Person class mentioned above, to a
previously created ontology object myOnto will look like

Ontology myOnto = new DefaultOntology();
……
myOnto.addRole(
 “Person”,
 new SlotDescriptor[]{
 new SlotDescriptor(“name”, Ontology.PRIMITIVE_SLOT,

Ontology.STRING_TYPE, Ontology.M),
new SlotDescriptor(“age”, Ontology.PRIMITIVE_SLOT,
Ontology.INTEGER_TYPE,Ontology.O)

 },
 Person.class
);

JADE Programmer’s GUIDE

44

Each slot has
• A name and/or a position (implicitly defined by the position in the array of

SlotDescriptors) identifying the slot.
• A category stating that the value of the slot can be a primitive entity such as a string or an

integer (Ontology.PRIMITIVE_SLOT), an instance of another ontological role
(Ontology.FRAME_SLOT) or a set (Ontology.SET_SLOT) or sequence
(Ontology.SEQUENCE_SLOT) of entities.

• A type defining the primitive type (for primitive slots) or role (for frame slots) of the value of
the slot or of the elements in the set/sequence in case of set slots or sequence slots.

• A presence flag defining whether the slot is mandatory (Ontology.M) or optional
(Ontology.O).
In the above case the person role has two named slots called name and age. The first is

mandatory (an exception will be thrown if this slot has a null value) and permitted values are of
type String. The second is optional and permitted values are of type Integer.

As a further example three other roles are added to the ontology represented by the myOnto
object.

• Address, with three named slots, street, number and city , of type String, Integer and
String respectively and all mandatory.

• Company with two named slots, name and address, of type String and Address (i.e. the
values of this slot are instances of the Address role) respectively, one mandatory and the other
optional.

• Engage (the action of engaging a person in a company) with two unnamed slots of type
Person and Company respectively and both mandatory.
Application specific class representing the Address role

public class Address {
 private String street;
 private Integer number;
 private String city;
 public String getStreet() { return string; }
 public void setStreet(String s) { string = s; }
 public Integer getNumber() { return number; }
 public void setNumber(Integer n) { number = n; }
 public String getCity() { return city; }
 public void setCity(String c) { city = c; }
}

Application specific class representing the Company role

public class Company {
 private String name;
 private Address address;

 public void setName(String n) { name = n; }
 public String getName() { return name; }
 public void setAddress(Address a) { address = a; }
 public Address getAddress() { return address; }
}

Application specific class representing the Engage role

JADE Programmer’s GUIDE

45

public class Engage {
 private Person personToEngage;
 private Company engager;

 public void set_0(Person p) { personToEngage = p; }
 public Person get_0() { return personToEngage; }
 public void set_1(Company c) { engager = c; }
 public Company get_1() { return engager; }
}

Code for adding the Address, Company and Engage roles to the ontology.
myOnto.addRole(
 “Address”,
 new SlotDescriptor[]{
 new SlotDescriptor(“street”, Ontology.PRIMITIVE_SLOT,

Ontology.STRING_TYPE, Ontology.M),
new SlotDescriptor(“number”, Ontology.PRIMITIVE_SLOT,
Ontology.INTEGER_TYPE,Ontology.M)
new SlotDescriptor(“city”, Ontology.PRIMITIVE_SLOT,
Ontology.SRING_TYPE,Ontology.M)

 },
Address.class

);

myOnto.addRole(
 “Company”,
 new SlotDescriptor[]{
 new SlotDescriptor(“name”, Ontology.PRIMITIVE_SLOT,

Ontology.STRING_TYPE, Ontology.M),
new SlotDescriptor(“address”, Ontology.FRAME_SLOT,
“Address” ,Ontology.O)

 },
 Company.class
);

myOnto.addRole(
 “engage”,
 new SlotDescriptor[]{
 new SlotDescriptor(Ontology.FRAME_SLOT, “Person”

Ontology.M),
new SlotDescriptor(Ontology.FRAME_SLOT, “Company”,
Ontology.M)

 },
 Engage.class;

JADE Programmer’s GUIDE

46

);

The ontology object must finally be added to the resources of each agent wishing to use it,
by using the method registerOntology() available in the Agent class.

By means of this operation an Ontology object is associated to a name. When the
fillContent() and extractContent() methods are called the Ontology object
associated to the content language indicated in the :ontology slot of the ACL message will be
used to perform the conversion pipeline described in section 3.6.2.

3.6.5 Application specific classes representing ontological roles

In order to represent an ontological role (i.e. in order to be accepted by the Ontology
object), a Java class must obey to some rules:

1) For each slot in the represented role named XXX, of category
Ontology.PRIMITIVE_SLOT or Ontology.FRAME_SLOT and of type T the class must
have two accessible methods with the following signature:

public T getXXX();
public void setXXX(T t);

2) For each slot in the represented role named XXX, of category Ontology.SET_SLOT or

Ontology.SEQUENCE_SLOT and with elements of type T, the class must have two accessible
methods with the following signature:

public Iterator getAllXXX();
public void addXXX(T t);

3) For each unnamed slot use “_p” (being p the position of the slot) instead of the slot name

for the get and set methods (see the Engage class mentioned above for an example).

4) In all previous cases the type T cannot be a primitive type such as int, float or

boolean. Use Integer, Float, Boolean …. instead.

3.6.6 Discovering the ontological role of a Java object representing an entity in the domain of
discourse

As already mentioned, when an ACL message is received, provided that the proper ontology
and content language codec objects has been previously registered, the content of the ACL
message can be easily converted into a list of proper Java objects by means of the
extractContent() method .

List l = extractContent(msg);

In general however the receiving agent does not know a-priori the role of each Java object in

the list. In order to discover it the ontology object must be used as described in the example below
refering to the first object in the list.

JADE Programmer’s GUIDE

47

Object obj = l.get(0);
Ontology onto = lookupOntology(msg.getOntology());
String roleName = onto.getRoleName(obj.getClass());

The lookupOntology() is a method of the Agent class that returns the ontology object
previously associated to a given name by calling the registerOntology() method.

Once discovered the role of the entity represented by an object it will be possible to cast it to

the application specific cla ss representing that role.

3.6.7 Setting and getting the content of an ACL message.

Having registered a content language codec and an ontology with the agent, it is possible to
exploit the automatic support of the JADE framework to set and get the content of an ACL
message. The Agent class provides two methods for this purpose: extractContent() and
fillContent() to implement parsing and encoding operations on the message content,
respectively.

The first method extracts the content from an ACL message and returns a List of Java
objects (one object for each element of the t-uple in the content) by calling the appropriate
content language Codec (according to the value of the :language parameter of the ACL
message) and the appropriate Ontology (according to the value of the :ontology parameter of the
ACL message).

The second method, instead, makes the opposite operation, that is it fills in the content of an
ACL message by interpreting a List of Java objects with the appropriate Ontology and
content language Codec, as specified by the values of the :ontology and the :language parameter
of the ACL message.

Refer to the javadoc documentation for a detailed description of the usage of these two
methods.

3.7 Support for Agent Mobility

Using JADE, application developers can build mobile agents, which are able to migrate or
copy themselves across multiple network hosts. In this version of JADE, only intra-platform
mobility is supported, that is a JADE mobile agent can navigate across different agent containers
but it is confined to a single JADE platform.

Moving or cloning is considered a state transition in the life cycle of the agent. Just like all
the other life cycle operation, agent motion or cloning can be initiated either by the agent itself or
by the AMS. The Agent class provides a suitable API, whereas the AMS agent can be accessed
via FIPA ACL as usual.

Mobile agents need to be location aware in order to decide when and where to move.
Therefore, JADE provides a proprietary ontology, named jade-mobility-ontology, holding the
necessary concepts and actions.

 This ontology is contained within the jade.domain.MobilityOntology class, and it
is an example of the new application-defined ontology support.

JADE Programmer’s GUIDE

48

3.7.1 JADE API for agent mobility.

The two public methods doMove() and doClone() of the Agent class allow a JADE
agent to migrate elsewhere or to spawn a remote copy of itself under a different name. Method
doMove() takes a jade.core.Location as its single parameter, which represents the
intended destination for the migrating agent. Method doClone() also takes a
jade.core.Location as parameter, but adds a String containing the name of the new
agent that will be created as a copy of the current one.

Looking at the documentation, one finds that jade.core.Location is an abstract
interface, so application agents are not allowed to create their own locations. Instead, they must
ask the AMS for the list of the available locations and choose one. Alternatively, a JADE agent
can also request the AMS to tell where (at which location) another agent lives.

Moving an agent involves sending its code and state through a network channel, so user
defined mobile agents must manage the serialization and unserialization process. Some among the
various resources used by the mobile agent will be moved along, while some others will be
disconnected before moving and reconnected at the destination (this is the same distinction
between transient and non-transient fields used in the Java Serialization API). JADE
makes available a couple of matching methods in the Agent class for resource management.

For agent migration, the beforeMove() method is called at the starting location just
before sending the agent through the network (with the scheduler of behaviours already stopped),
whereas the afterMove() method is called at the destination location as soon as the agent has
arrived and its identity is in place (but the scheduler has not restarted yet).

For agent cloning, JADE supports a corresponding method pair, the beforeClone() and
afterClone() methods, called in the same fashion as the beforeMove() and
afterMove() above. The four methods above are all protected methods of the Agent
class, defined as empty placeholders. User defined mobile agents will override the four methods
as needed.

3.7.2 JADE Mobility Ontology.

The jade-mobility-ontology ontology contains all the concepts and actions needed to support
agent mobility. JADE provides the class jade.domain.MobilityOntology, working as a
Singleton and giving access to a single, shared instance of the JADE mobility ontology through
the instance() method.

The ontology contains ten frames (six concepts and four actions), and a suitable inner class is
associated with each frame using a RoleEntityFactory object (see Section 3.6.4 for details).
The following list shows all the frames and their structure.
q Mobile-agent-description; describes a mobile agent going somewhere. It is

represented by the MobilityOntology.MobileAgentDescription inner class.

Slot Name Slot Type Mandatory/Optional
name AID Mandatory

destination Location Mandatory

agent-profile mobile-agent-
profile Optional

agent-version String Optional
signature String Optional

JADE Programmer’s GUIDE

49

q mobile-agent-profile; describes the computing environment needed by the mobile

agent. It is represented by the MobilityOntology.MobileAgentProfile inner
class.

Slot Name Slot Type Mandatory/Optional
system mobile-agent-system Optional

language mobile-agent-
language Optional

os Mobile-agent-os Mandatory

q mobile-agent-system ; describes the runtime system used by the mobile agent. It is
represented by the MobilityOntology.MobileAgentSystem inner class.

Slot Name Slot Type Mandatory/Optional
name String Mandatory

major-version Long Mandatory
minor-version Long Optional
dependencies String Optional

q mobile-agent-language; describes the programming language used by the mobile

agent. It is represented by the MobilityOntology.MobileAgentLanguage inner
class.

Slot Name Slot Type Mandatory/Optional
name String Mandatory

major-version Long Mandatory
minor-version Long Optional
dependencies String Optional

q mobile-agent-os; describes the operating system needed by the mobile agent. It is

represented by the MobilityOntology.MobileAgentOS inner class.

Slot Name Slot Type Mandatory/Optional
name String Mandatory

major-version Long Mandatory
minor-version Long Optional
dependencies String Optional

q Location ; describes a location where an agent can go. It is represented by the

MobilityOntology.Location inner class.
Slot Name Slot Type Mandatory/Optional
name String Mandatory

protocol String Mandatory

JADE Programmer’s GUIDE

50

address String Mandatory

q move-agent; the action of moving an agent from a location to another. It is represented by
the MobilityOntology.MoveAction inner class.
This action has a single, unnamed slot of type mobile-agent-description. The

argument is mandatory.

q clone-agent; the action performing a copy of an agent, possibly running on another
location. It is represented by the MobilityOntology.CloneAction inner class.
This action has two unnamed slots: the first one is of mobile-agent-description

type and the second one is of String type. Both arguments are mandatory.

q where-is-agent; the action of requesting the location where a given agent is running. It
is represented by the MobilityOntology.WhereIsAgent inner class.
This action has a single, unnamed slot of type AID. The argument is mandatory.

q query-platform-locations; the action of requesting the list of all the platform
locations. It is represented by the MobilityOntology.QueryPlatformLocations
inner class.

This actio n has no slots.
Notice that this ontology has no counter-part in any FIPA specifications. It is intention of
the JADE team to update the ontology as soon as a suitable FIPA specification will be
available.

3.7.3 Accessing the AMS for agent mobility.

The JADE AMS has some extensions that support the agent mobility, and it is capable of
performing all the four actions present in the jade-mobility-ontology. Every mobility related
action can be requested to the AMS through a FIPA-request protocol, with jade-mobility -ontology
as ontology value and FIPA-SL0 as language value.

The move-agent action takes a mobile-agent-description as its parameter. This
action moves the agent identified by the name and address slots of the mobile-agent-
description to the location present in the destination slot.
For example, if an agent wants to move the agent Peter to the location called Front-End, it must
send to the AMS the following ACL request message:

(REQUEST
 :sender (agent-identifier :name RMA@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
 :content (
 (action (agent-identifier :name ams@Zadig:1099/JADE)
 (move-agent (mobile-agent-description

JADE Programmer’s GUIDE

51

 :name (agent-identifier :name Johnny@Zadig:1099/JADE)
 :destination (location
 :name Main-Container
 :protocol JADE-IPMT
 :address Zadig:1099/JADE.Main-Container)

)
)
)
)
 :reply-with Req976983289310
 :language FIPA-SL0
 :ontology jade-mobility-ontology
 :protocol fipa-request
 :conversation-id Req976983289310
)

The above message was captured using the JADE sniffer, using the MobileAgent example and the
RMA support for moving and cloning agents.
Using JADE ontology support, an agent can easily add mobility to its capabilities, without having
to compose ACL messages by hand.

First of all, the agent has to create a new MobilityOntology.MoveAction object, fill its
argument with a suitable MobilityOntology.MobileAgentDescription object, filled
in turn with the name and address of the agent to move (either itself or another mobile agent) and
with the MobilityOntology.Location object for the destination. Then, a single call to the
Agent.fillContent() method can turn the MoveAction Java object into a String and
write it into the content slot of a suitable request ACL message.
The clone-agent action works in the same way, but has an additional String argument to
hold the name of the new agent resulting from the cloning process.
The where-is-agent action has a single AID argument, holding the identifier of the agent to
locate. This action has a result, namely the location for the agent, that is put into the content
slot of the inform ACL message that successfully closes the protocol.
For example, the request message to ask for the location where the agent Peter resides would
be:

(REQUEST
 :sender (agent-identifier :name da1@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
 :content ((action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
 :language FIPA-SL0
 :ontology jade-mobility-ontology
 :protocol fipa-request
)

JADE Programmer’s GUIDE

52

The resulting Location would be contained within an inform message like the following:

(INFORM
 :sender (agent-identifier :name ams@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name da1@Zadig:1099/JADE))

 :content ((result
 (action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
)
 (set (location
 :name Container-1
 :protocol JADE-IPMT
 :address Zadig:1099/JADE.Container-1
))
))
 :reply-with da1@Zadig:1099/JADE976984777740
 :language FIPA-SL0
 :ontology jade-mobility-ontology
 :protocol fipa-request
)

The query-platform-locations action takes no arguments, but its result is a set of all the
Location objects available in the current JADE platform. The message for this action is very
simple:

(REQUEST
 :sender (agent-identifier :name Johnny)
 :receiver (set (Agent-Identifier :name AMS))
 :content ((action (agent-identifier :name AMS)

 (query-platform-locations)))
 :language FIPA-SL0
 :ontology jade-mobility-ontology

 :protocol fipa-request
)

If the current platform had three containers, the AMS would send back the following inform
message:

(INFORM
 :sender (Agent-Identifier :name AMS)
 :receiver (set (Agent-Identifier :name Johnny))
 :content ((Result (action (agent-identifier :name AMS)

 (query-platform-locations))
 (set (Location

 :name Container-1
 :transport-protocol JADE-IPMT

JADE Programmer’s GUIDE

53

 :transport-address IOR:000….Container-1)
 (Location

 :name Container-2
 :protocol JADE-IPMT
 :address IOR:000….Container-2)
 (Location
 :name Container-3
 :protocol JADE-IPMT
 :address IOR:000….Container-3)
)))
 :language FIPA-SL0
 :ontology jade-mobility-ontology
 :protocol fipa-request
)

The MobilityOntology.Location class implements jade.core.Location interface,
so that it can be passed to Agent.doMove() and Agent.doClone() methods. A typical
behaviour pattern for a JADE mobile agent will be to ask the AMS for locations (either the
complete list or through one or more where-is-agent actions); then the agent will be able to
decide if, where and when to migrate.

3.8 Using JADE from external Java applications

Since JADE 2.3, an in-process interface has been implemented that allows external Java
applications to use JADE as a kind of library and to launch the JADE Runtime from within the
application itself.

A singleton instance of the JADE Runtime can be obtained via the static method
jade.core.Runtime.instance() Then, it provides two methods to create a JADE main-container or a
JADE remote container (i.e. a container that joins to an existing main-container forming in this
way a distributed agent platform); both methods requires passing as a parameter an object that
implements the jade.core.Profile interface that can be queried, via the getParameter(name)
method, to get the hostname and port number of the main container.

Both these two methods of the Runtime return a wrapper object, belonging to the package
jade.wrapper, that wraps the higher-level functionality of the agent containers, such as installing
and uninstalling MTPs (Message Transport Protocol) 10, killing the container (where just the
container is killed while the external application remains alive) and, of course, creating new
agents. The createAgent method of this container wrapper returns as well a wrapper object, which
wraps some functionalities of the agent, but still tends to preserve the autonomy of age nts. In
particular, the application can control the life-cycle of the Agent but it cannot obtain a direct
reference to the Agent object and, as a direct consequence, it cannot perform method calls on that
object. Notice that, having created the agent, it still needs to be started via the method start()

The following code lists a very simple way to launch an agent from within an external
applications (refer also to the inprocess directory in the JADE examples that contains an example
of usage of this wrapping and in-process interface).

10 see also the Administrator’s Guide for this functionality

JADE Programmer’s GUIDE

54

import jade.core.Runtime;
import jade.core.Profile;
import jade.core.ProfileImpl;
import jade.wrapper.*;

...
// Get a hold on JADE runtime
Runtime rt = Runtime.instance();
// Create a default profile
Profile p = new ProfileImpl();
// Create a new non-main container, connecting to the default
// main container (i.e. on this host, port 1099)
AgentContainer ac = rt.createAgentContainer(p);
// Create a new agent, a DummyAgent
// and pass it a reference to an Object
Object reference = new Object();
Object args[] = new Object[1];
args[0]=reference;
Agent dummy = ac.createAgent("inProcess",
 "jade.tools.DummyAgent.DummyAgent", reference);
// Fire up the agent
dummy.start();
...

Notice that this mechanism allows several different configurations for a JADE platform,

such as a complete in-process platform composed of several containers on the same JVM, a
platform partly in-process (i.e. containers launched by an external Java application) and partly
out-of-process (i.e. containers launched from the command line).

4 A SAMPLE AGENT SYSTEM

We are presenting an example of an agent system explaining how to use the features
available in JADE framework. In particular we will show the possibility of organising the
behaviour of a single agent in different sub-behaviours and how the message exchange among
agents takes place.

The agent system, in the example, is made of two agents communicating through FIPA
request protocol.

This section is still to do. Please refer to JADE examples present in src/examples directory.
Refer also to the README file in src/examples directory to get some explanations of each
example program.

JADE Programmer’s GUIDE

55

5 APPENDIX A: CONTENT-LANGUAGE INDEPENDENT API
FEDERICO BERGENTI (UNIVERSITY OF PARMA)

Application-specific ontologies describe the elements that agents use to create the content of
messages, e.g., application-specific predicates and actions. The package jade.content (and
its sub-packages) allows to create application-specific ontologies and to use them independently
of the adopted content language: the code that implements the ontology and the code that sends
and receives messages do not depend on the content language. The following is a description of
such a package that uses src/example/content as a running example.

5.1 Creating an Application-Specific Ontology

An ontology defines a vocabulary and a set of relationships between the elements of the
vocabulary. The relationships can be:

1) structural, e.g., the predicate fatherOf is defined over two parameters, a father and a
set of children because we want to use it to say fatherOf(John, (Mary,
Lisa));

2) semantic, e.g., a concept belonging to the class Man also belongs to the class Person.
An application-specific ontology is implemented through one object of class

FullOntology and it is characterized by:
1) one name;
2) one base ontology at most, i.e., an ontology that it extends;
3) a vocabulary;
4) a set of element schemata.
The following code implements the People ontology: it defines a constant for each element

(concept, action, predicate , etc.) that we want to include in the vocabulary.

public class PeopleOntology extends FullOntology {
 // The name of this ontology.
 public static final String ONTOLOGY_NAME = "PEOPLE_ONTOLOGY";

 // Concepts, i.e., objects of the world.
 public static final String PERSON = "PERSON";
 public static final String MAN = "MAN";
 public static final String WOMAN = "WOMAN";
 public static final String ADDRESS = "ADDRESS";

 // Slots of concepts, i.e., attributes of objects.
 public static final String NAME = "NAME";
 public static final String STREET = "STREET";
 public static final String NUMBER = "NUMBER";
 public static final String CITY = "CITY";

 // Predicates
 public static final String FATHER_OF = "FATHER_OF";
 public static final String MOTHER_OF = "MOTHER_OF";

JADE Programmer’s GUIDE

56

 // Roles in predicates, i.e., names of arguments for predicates
 public static final String FATHER = "FATHER";
 public static final String MOTHER = "MOTHER";
 public static final String CHILDREN = "CHILDREN";

 // Actions
 public static final String MARRY = "MARRY";

 // Arguments in actions
 public static final String HUSBAND = "HUSBAND";

 public static final String WIFE = "WIFE";

 private static PeopleOntology theInstance = new PeopleOntology();

 public static PeopleOntology getInstance() {
 return theInstance;
 }

 public PeopleOntology(Ontology base) {
 super(ONTOLOGY_NAME, ACLOntology.getInstance());

 // Add definitions of schemata here.
 …
 }
}

The constructor calls super() to assign a name to the ontology and to declare that it

extends the ACLOntology. People ontology, and reasonably all ontologies, extends
jade.content.onto.ACLOntology because we want to use in our messages the elements
of such an ontology, e.g., variables and the Done predicate. If you do not need ACL concepts,
you can extend jade.content.onto.BasicOntology in order to have only basic types,
i.e., lists, strings and numbers. ACLOntology extends the BasicOntology.

The definition of the ontology in the example is not complete, we have to substitute dots
with the definition of the element schemata. Element schemata are objects describing the
structure of concepts, actions, predicate, etc. that we allow in our messages. In the People
ontology they describe what a person is, what an address is, what a father is, etc. The following is
the element schema for the concept of Person. This schema states that a Person is
characterized by a name and an address:

// Get the element schema for strings from BasicOntology
PrimitiveSchema stringSchema =
 (PrimitiveSchema)getSchema(BasicOntology.STRING);

// Define the concept of Person
ConceptSchema personSchema = new ConceptSchema(PERSON);
personSchema.add(NAME, stringSchema);

JADE Programmer’s GUIDE

57

personSchema.add(ADDRESS, addressSchema, ObjectSchema.OPTIONAL);

// Add the schema to the ontology
add(personSchema);

PERSON, NAME and ADDRESS are string defined in the vocabulary and addressSchema

has been defined before (not shown). Schemata that describe concepts support inheritance11. You
can define the concept of Man as a refinement of the concept of Person:

ConceptSchema manSchema = new ConceptSchema(MAN);
manSchema.addSuperSchema(personSchema);

Element schema describe, in some way, the structure of a class of objects and therefore they

can be associated with Java classes. This maps elements of the ontology that comply with a
schema with Java objects of that class. The following is a class that might be associated with the
Person concept:

public class Person extends Concept {
 private String name = null;
 private Address address = null;

 public void setName(String name) {
 this.name = name;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public String getName() {
 return name;
 }

 public Address getAddress() {
 return address;
 }
}

The association between the class and the schema is performed when registering the concept

in the ontology using the following statement:

11 Only concept schemata support inheritance, all other schemata, e.g., predicate schemata, action schemata, etc do not .

JADE Programmer’s GUIDE

58

// Add the schema to the ontology
addElement(personSchema, Person.class);

Associating classes with schemata is not mandatory, but helps because it support easier APIs,

as shown later. In order to associate a class with a schema, the class must:
1) extend a class in jade.content, e.g., Person extends Concept because we want to

associate it with a concept schema;

2) provide public get/set methods for each attribute (you can use basic types like int or
boolean);

3) provide a constructor with no parameters, i.e., the default contructor.
Defining actions, predicates, etc. is just like defining concepts. Figure 8 shows the classes

that corresponds to the elements we can use in our ontologies.

ContentElement

TermPropositionGenericAction

ConceptPredicate ActionPredicate HigherOrder
Predicate

AgentActionCommunicativeAct

E.g.,
Inform, Request

E.g.,
Buy, Sell

E.g.,
FatherOf, SonOf

E.g.,
Done

E.g.,
Believe, Intend

E.g.,
Person, Address

Figure 8 - Classes that correspond to elements of ontologies.

The following is the definition of the predicate fatherOf:

// Define a schema for the set of children
AggregateSchema childrenSchema = new AggregateSchema(BasicOntology.SET);

// Define the schema for fatherOf predicate
PredicateSchema fatherOfSchema = new PredicateSchema(FATHER_OF);

fatherOfSchema.add(FATHER, manSchema);
fatherOfSchema.add(CHILDREN, childrenSchema);

JADE Programmer’s GUIDE

59

// Add the predicate to the ontology
add(fatherOfSchema, FatherOf.class);

First we define a new schema to describe the set of children. Then we define the predicate

schema for fatherOf by introducing two roles: the father and the children. Finally we
register fatherOfSchema with the ontology associating it with the following class:

public class FatherOf extends Predicate {
 private List children = null;
 private Man father = null;

 public void setChildren(List children) {
 this.children = children;
 }

 public void setFather(Man father) {
 this.father = father;
 }

 public Man getFather() {
 return father;
 }

 public List getChildren() {
 return children;
 }
}

Note that we use jade.util.leap.List where the schema declares an aggregate, i.e.,

the BasicOntology associates any aggregate with List.

5.2 Sending and Receiving Messages

We restrict the description of ontologies to the features that support inter-agent communication.
Other models, e.g., DAML+OIL, use description logics to provide richer description that support
reasoning about concepts, predicates, actions, etc. In order to send and receive messages, we need
(i) an ontology to provides the vocabulary and (ii) a codec (coder/encoder) to handle the syntax of
the content language. These are registered with JADE through the content manager. The content
manager provides methods for encoding and decoding the content of messages exploiting the
registered ontologies and codecs. The following code registers the People ontology with the
content manager and it also registers a codec called jade.content.lang.j.JCodec.

getContentManager().registerOntology(PeopleOntology.getInstance());
getContentManager().registerLanguage(new JCodec());

The JCodec uses Java serialization to encode and decode the content of messages; the
jade.content.lang.leap.LEAPCodec provides CLDC-compliant encoding and
decoding. The choice of the codec is not so relevant because the rest of the API is content-

JADE Programmer’s GUIDE

60

language independent. The registration of ontologies and codecs is typically provided in the
setup() method of the agent.
In order to send a message, we have two possibilities: through concrete objects or through
abstract descriptors. The first approach is the easiest to use, but it is limited:

1) we create our content in terms of objects that belongs to the classes that we associated
with schemas in the ontology, e.g., Person and FatherOf classes;

2) we use fillContent() in ContentManager to fill the content of the message.
The following code inform an agent that “John lives in London and his only child Bill lives in
Paris”:

ACLMessage message = new ACLMessage(ACLMessage.INFORM);

// Set the fields of the ACL message
…

// Create the concrete object representing the content
Man john = new Man();
Man bill = new Man();
john.setName("John");
bill.setName("Bill");

Address johnAddress = new Address();
johnAddress.setCity("London");
john.setAddress(johnAddress);

Address billAddress = new Address();
billAddress.setCity("Paris");
bill.setAddress(billAddress);

FatherOf fatherOf = new FatherOf();
fatherOf.setFather(john);

List children = new ArrayList();
children.add(bill);

fatherOf.setChildren(children);

getContentManager().fillContent(message, fatherOf);

Using concrete objects like john and fatherOf is the easiest approach to filling the content of
a message but it is not fully expressive. For examples, consider the following problem: we want
to query an agent for the names of John’s children. We need to send a query-ref message with the
following content: (iota ?X fatherOf(john, ?X)), where ?X is a variable that the
receiver agent uses to come to know what we want to know. Such a content is an IRE, i.e., an

JADE Programmer’s GUIDE

61

expression that identifies an object. The problem is that we cannot set the children attribute of
a FatherOf object to a variable because such an attribute is a List. A number of techniques
are available to solve this problem exploiting inheritance, but they all require that you implement
many classes for describing the ontology. In order to solve this problem using only the classes we
already implemented for the ontology, we introduced abstract descriptors. An abstract descriptor
is an object that describes an instantiation of a schema, e.g., the following is the abstract
descriptor that describes the concept “John”:

AbsConcept absJohn = new AbsConcept(PeopleOntology.MAN);
absJohn.set(PeopleOntology.NAME, “John”);

An abstract descriptor is created with the name of a class (MAN in this example). Then, we

can set and get values on the descriptor using the names of the attributes. The structure of the
descriptor, i.e., what the available attributes are and what are their values, must be coherent with
the schema that the ontology associates with the name of the class (MAN in this example). The
following is the code for performing the query about the names of John’s children:

ACLMessage message = new ACLMessage(ACLMessage.QUERY_REF);

// Set the fields of the message
…

// Create the abstract descriptor representing the content
AbsConcept absJohn = new AbsConcept(PeopleOntology.MAN);
absJohn.set(PeopleOntology.NAME, “John”);

AbsVariable absX = new AbsVariable(“X”)
AbsPredicate absFatherOf = new AbsPredicate(PeopleOntology.FATHER_OF);
absFatherOf.set(PeopleOntology.FATHER, absJohn);
absFatherOf.set(PeopleOntology.CHILDREN, absX);

AbsIRE absIRE = new AbsIRE(absX, absFatherOf);

getContentManager().fillContent(message, absIRE);

The procedure for receiving a message is dual to that of sending a message. We can use both

concrete objects and abstract descriptors, and if we try to create a concrete object from a message
containing a variable, the content manager throws an UngroundedException. The following
code handles inform messages:

ACLMessage msg = blockingReceive(ACLMessage.INFORM);

// The content of informs do not contain variables
Proposition p = (Proposition)getContentManager().extractContent(msg);

JADE Programmer’s GUIDE

62

// Handle the content
if(p instanceof FatherOf) {
 …
}

If we want to handle incoming queries, we need to use extractAbsContent() to create

an abstract descriptor from the message:

ACLMessage msg = blockingReceive(ACLMessage.QUERY_REF);

// The content of query-refs do contain variables
AbsIRE absIRE = (AbsIRE)getContentManager().extractAbsContent(msg);

// Handle the content
AbsVariable absX = absIRE.getVariable();
AbsProposition absP = absIRE.getProposition();

JADE Programmer’s GUIDE

7

3.1 The Agent Platform

The standard model of an agent platform, as defined by FIPA, is represented in the following
figure.

Agent Platform

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent

Figure 1 - Reference architecture of a FIPA Agent Platform

The Agent Management System (AMS) is the agent who exerts supervisory control over
access to and use of the Agent Platform. Only one AMS will exist in a single platform. The AMS
provides white-page and life-cycle service, maintaining a directory of agent identifiers (AID) and
agent state. Each agent must register with an AMS in order to get a valid AID.

The Directory Facilitator (DF) is the agent who provides the default yellow page service in
the platform.

The Message Transport System, also called Agent Communication Channel (ACC), is the
software component controlling all the exchange of messages within the platform, including
messages to/from remote platforms.

JADE fully complies with this reference architecture and when a JADE platform is launched,
the AMS and DF are immediately created and the ACC module is set to allow message
communication. The agent platform can be split on several hosts. Only one Java application, and
therefore only one Java Virtual Machine (JVM), is executed on each hos t. Each JVM is a basic
container of agents that provides a complete run time environment for agent execution and allows
several agents to concurrently execute on the same host. The main-container, or front-end, is the
agent container where the AMS and DF lives and where the RMI registry, that is used internally
by JADE, is created. The other agent containers, instead, connect to the main container and
provide a complete run-time environment for the execution of any set of JADE agents.

JADE Programmer’s GUIDE

8

Network protocol stack

JRE 1.2 JRE 1.2 JRE 1.2

Jade Main Container Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

A
pp

lic
at

io
n

A
ge

nt

Host 1 Host 2 Host 3

RMI
Registry

Figure 2 - JADE Agent Platform distributed over several containers

According to the FIPA specifications, DF and AMS agents communicate by using the
FIPA-SL0 content language, the fipa-agent-management ontology, and the fipa-
request interaction protocol. JADE provides compliant implementations for all these
components:
- the SL-0 content language is implemented by the class jade.lang.sl.SL0Codec.

Automatic capability of using this language can be added to any agent by using the method
Agent.registerLanguage(SL0Codec.NAME, new SL0Codec());

- concepts of the ontology (apart from Agent Identifier, implemented by jade.core.AID)
are implemented by classes in the jade.domain.FIPAAgentManagement package.
The FIPAAgentManagementOntology class defines the vocabulary with all the
constant symbols of the ontology. Automatic capability of using this ontology can be added
to any agent by using the fillowing code:
Agent.registerOntology(FIPAAgentManagementOntology.NAME,
FIPAAgentManagementOntology.instance());

- finally, the fipa-request interaction protocol is implemented as ready-to-use behaviours
in the package jade.proto.

3.1.1 FIPA-Agent-Management ontology

Every class implementing a concept of the fipa-agent-management ontology is a simple
collection of attributes, with public methods to read and write them, according to the frame based
model that represents FIPA fipa-agent-management ontology concepts. The following
convention has been used. For each attribute of the class, named attrName and of type
attrType, two cases are possible:

JADE and Ontology
Ontology 101

Excerpt from Ontology 101

JADE provides extensive support for ontologies. The agents df and ams communicate using standard
FIPA ontolgies. JADE provides support for user defined ontolgies as well.

Up to JADE 2.3, JADE support for user ontolgies is in the package jade.onto and its subpackages.
Starting with version 2.4 a new set of packages, java.content and its subpackages, have made
implementing user ontolgies easier. In cps720 we will look at parts of the jade.content packages. The
development of ontolgies is a major topic which could easily provide material for a whole course on its
own. In cps720 we just look at the tip of this iceberg.

The jade.content Packages
If you look at the API docs for these packages you will find them rather skimpy. The only real
documentation is in an appendix to the JADE Programmer's Guide.

Programmer's Guide, Appendix A

This appendix describes a simple ontology example to illustrate the jade.ontology packages. There are
three files for this example,

PeopleOntology.java●

Sender.java●

Receiver.java●

All the files for this example are in jadeontology.jar.

Another Ontology Example
A very simple ontology is provided with assignment 3 (Fall 2001). It is packaged in c720a3Ontology.jar.
Here is the main file, EconOntology.java.

JADE and Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEOntology.html [7/24/2002 10:05:58 PM]

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/jadeontology.jar

Excerpts from Ontology 101

From Section 1

Some ontology-design ideas in this guide originated from the literature on object-oriented
design(Rumbaugh et al. 1991; Booch et al. 1997). However, ontology development is different
fromdesigning classes and relations in object-oriented programming. Object-oriented
programming centers primarily around methods on classes—a programmer makes design decisions
based on the operational properties of a class, whereas an ontology designer makes these decisions
based on the structural properties of a class. As a result, a class structure and relations among classes in
an ontology are different from the structure for a similar domain in an object-oriented program.

==>

2 What is in an ontology?

The Artificial-Intelligence literature contains many definitions of an ontology; many of these contradict
one another. For the purposes of this guide an ontology is a formal explicit description of concepts in a
domain of discourse (classes (sometimes called concepts)), properties of each concept describing
various features and attributes of the concept (slots (sometimes called roles or properties)), and
restrictions on slots (facets (sometimes called role restrictions)). An ontology together with a set of
individual instances of classes constitutes a knowledge base. In reality, there is a fine line where the
ontology ends and the knowledge base begins. Classes are the focus of most ontologies. Classes
describe concepts in the domain. For example, a class of wines represents all wines. Specific wines are
instances of this class. The Bordeaux wine in the glass in front of you while you read this document is an
instance of the class of Bordeaux wines. A class can have subclasses that represent concepts that are
more specific than the superclass. For example, we can divide the class of all wines into red, white, and
rosé wines.

Notes/

Beware of confusion with the word class as used in ontology and OO.

In JADE ontologies are, of course, implemented in classes since Java is an OOPS. In the java.content
packages the idea of a schema is intorduced which corresponds more closely to the ontology concept of
class.

From Ontology 101

http://www.ryerson.ca/~dgrimsha/courses/cps720/ontologynotes.html [7/24/2002 10:05:59 PM]

JADE Programmer’s GUIDE

55

5 APPENDIX A: CONTENT- LANGUAGE INDEPENDENT API
FEDERICO BERGENTI (UNIVERSITY OF PARMA)

Application-specific ontologies describe the elements that agents use to create the content of
messages, e.g., application -specific predicates and actions. The package jade.content (and
its sub-packages) allows to create application-specific ontologies and to use them independently
of the adopted content language: the code that implements the ontology and the code that sends
and receives messages do not depend on the content language. The following is a description of
such a package that uses src/example/content as a running example.

5.1 C reating an Application-Specific Ontology

An ontology defines a vocabulary and a set of relationships between the elements of the
vocabulary. The relationships can be:

1) structural, e.g., the predicate fatherOf is defined over two parameters, a father and a
set of children because we want to use it to say fatherOf(John, (Mary,
Lisa));

2) semantic, e.g., a concept belonging to the class Man also belongs to the class Person.
An application-specific ontology is implemented through one object of class

FullOntology and it is characterized by:
1) one name;
2) one base ontology at most, i.e., an ontology that it extends;
3) a vocabulary;
4) a set of element schemata.
The following code implements the People ontology: it defines a constant for each element

(concept, action, predicate , etc.) that we want to include in the vocabulary.

public class PeopleOntology extends FullOntology {

 // The name of this ontology.
 public static final String ONTOLOGY_NAME = "PEOPLE_ONTOLOGY";

 // Concepts, i.e., objects of the world.
 public static final String PERSON = "PERSON";
 public static final String MAN = "MAN";
 public static final String WOMAN = "WOMAN";
 public static final String ADDRESS = "ADDRESS";

 // Slots of concepts, i.e., attributes of objects.
 public static final String NAME = "NAME";
 public static final String STREET = "STREET";
 public static final String NUMBER = "NUMBER";
 public static final String CITY = "CITY";

 // Predicates
 public static final String FATHER_OF = "FATHER_OF";
 public static final String MOTHER_OF = "MOTHER_OF";

JADE Programmer’s GUIDE

56

 // Roles in predicates, i.e., names of arguments for predicates
 public static final String FATHER = "FATHER";
 public static final String MOTHER = "MOTHER";
 public static final String CHILDREN = "CHILDREN";

 // Actions
 public static final String MARRY = "MARRY";

 // Arguments in actions
 public static final String HUSBAND = "HUSBAND";

 public static final String WIFE = "WIFE";

 private static PeopleOntology theInstance = new PeopleOntology();

 public static PeopleOntology getInstance() {
 return theInstance;
 }

 public PeopleOntology(Ontology base) {
 super(ONTOLOGY_NAME, ACLOntology.getInstance());

 // Add definitions of schemata here.
 …
 }
}

The constructor calls super() to assign a name to the ontology and to declare that it

extends the ACLOntology. People ontology, and reasonably all ontologies, extends
jade.content.onto.ACLOntology because we want to use in our messages the elements
of such an ontology, e.g., variables and the Done predicate. If you do not need ACL concepts,
you can extend jade.content.onto.BasicOntology in order to have only basic types,
i.e., lists, strings and numbers. ACLOntology extends the BasicOntology.

The definition of the ontology in the example is not complete, we have to substitute dots
with the definition of the element schemata. Element schemata are objects describing the
structure of concepts, actions, predicate, etc. that we allow in our messages. In the People
ontology they describe what a person is, what an address is, what a father is, etc. The following is
the element schema for the concept of Person. This schema states that a Person is
characterized by a name and an address:

// Get the element schema for strings from BasicOntology
PrimitiveSchema stringSchema =
 (PrimitiveSchema)getSchema(BasicOntology.STRING);

// Define the concept of Person
ConceptSchema personSchema = new ConceptSchema(PERSON);
personSchema.add(NAME, stringSchema);

JADE Programmer’s GUIDE

57

personSchema.add(ADDRESS, addressSchema, ObjectSchema.OPTIONAL);

// Add the schema to the ontology
add(personSchema);

PERSON, NAME and ADDRESS are string defined in the vocabulary and addressSchema

has been defined before (not shown). Schemata that describe concepts support inheritance11. You
can define the concept of Man as a refinement of the concept of Person:

ConceptSchema manSchema = new ConceptSchema(MAN);
manSchema.addSuperSchema(personSchema);

Element schema describe, in some way, the structure of a class of objects and therefore they

can be associated with Java classes. This maps elements of the ontology that comply with a
schema with Java objects of that class. The following is a class that might be associated with the
Person concept:

public class Person extends Concept {
 private String name = null;
 private Address address = null;

 public void setName(String name) {
 this.name = name;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public String getName() {
 return name;
 }

 public Address getAddress() {
 return address;
 }
}

The association between the class and the schema is performed when registering the concept

in the ontology using the following statement:

11 Only concept schemata support inheritance, all other schemata, e.g., predicate schemata, action schemata, etc do not .

JADE Programmer’s GUIDE

58

// Add the schema to the ontology
addElement(personSchema, Person.class);

Associating classes with schemata is not mandatory, but helps because it support easier APIs,

as shown later. In order to associate a class with a schema, the class must:
1) extend a class in jade.content, e.g., Person extends Concept because we want to

associate it with a concept schema;

2) provide public get/set methods for each attribute (you can use basic types like int or
boolean);

3) provide a constructor with no parameters, i.e., the default contructor.
Defining actions, predicates, etc. is just like defining concepts. Figure 8 shows the classes

that corresponds to the elements we can use in our ontologies.

ContentElement

TermPropositionGenericAction

ConceptPredicate ActionPredicate HigherOrder
Predicate

AgentActionCommunicativeAct

E.g.,
Inform, Request

E.g.,
Buy, Sell

E.g.,
FatherOf, SonOf

E.g.,
Done

E.g.,
Believe, Intend

E.g.,
Person, Address

Figure 8 - Classes that correspond to elements of ontologies.

The following is the definition of the predicate fatherOf:

// Define a schema for the set of children
AggregateSchema childrenSchema = new AggregateSchema(BasicOntology.SET);

// Define the schema for fatherOf predicate
PredicateSchema fatherOfSchema = new PredicateSchema(FATHER_OF);

fatherOfSchema.add(FATHER, manSchema);
fatherOfSchema.add(CHILDREN, childrenSchema);

Dave
Associating classes with schemata is not mandatory, but helps because it support easier APIs,as shown later. In order to associate a class with a schema, the class must:1) extend a class in jade.content, e.g., Person extends Concept because we want toassociate it with a concept schema;2) provide public get/set methods for each attribute (you can use basic types like int orboolean);3) provide a constructor with no parameters, i.e., the default contructor.

JADE Programmer’s GUIDE

59

// Add the predicate to the ontology
add(fatherOfSchema, FatherOf.class);

First we define a new schema to describe the set of children. Then we define the predicate

schema for fatherOf by introducing two roles: the father and the children. Finally we
register fatherOfSchema with the ontology associating it with the following class:

public class FatherOf extends Predicate {
 private List children = null;
 private Man father = null;

 public void setChildren(List children) {
 this.children = children;
 }

 public void setFather(Man father) {
 this.father = father;
 }

 public Man getFather() {
 return father;
 }

 public List getChildren() {
 return children;
 }
}

Note that we use jade.util.leap.List where the schema declares an aggregate, i.e.,

the BasicOntology associates any aggregate with List.

5.2 Sending and Receiving Messages

We restrict the description of ontologies to the features that support inter-agent communication.
Other models, e.g., DAML+OIL, use description logics to provide richer description that support
reasoning about concepts, predicates, actions, etc. In order to send and receive messages, we need
(i) an ontology to provides the vocabulary and (ii) a codec (coder/encoder) to handle the syntax of
the content language. These are registered with JADE through the content manager. The content
manager provides methods for encoding and decoding the content of messages exploiting the
registered ontologies and codecs. The following code registers the People ontology with the
content manager and it also registers a codec called jade.content.lang.j.JCodec.

getContentManager().registerOntology(PeopleOntology.getInstance());
getContentManager().registerLanguage(new JCodec());

The JCodec uses Java serialization to encode and decode the content of messages; the
jade.content.lang.leap.LEAPCodec provides CLDC-compliant encoding and
decoding. The choice of the codec is not so relevant because the rest of the API is content-

JADE Programmer’s GUIDE

60

language independent. The registration of ontologies and codecs is typically provided in the
setup() method of the agent.
In order to send a message, we have two possibilities: through concrete objects or through
abstract descriptors. The first approach is the easiest to use, but it is limited:

1) we create our content in terms of objects that belongs to the classes that we associated
with schemas in the ontology, e.g., Person and FatherOf classes;

2) we use fillContent() in ContentManager to fill the content of the message.
The following code inform an agent that “John lives in London and his only child Bill lives in
Paris”:

ACLMessage message = new ACLMessage(ACLMessage.INFORM);

// Set the fields of the ACL message
…

// Create the concrete object representing the content
Man john = new Man();
Man bill = new Man();
john.setName("John");
bill.setName("Bill");

Address johnAddress = new Address();
johnAddress.setCity("London");
john.setAddress(johnAddress);

Address billAddress = new Address();
billAddress.setCity("Paris");
bill.setAddress(billAddress);

FatherOf fatherOf = new FatherOf();
fatherOf.setFather(john);

List children = new ArrayList();
children.add(bill);

fatherOf.setChildren(children);

getContentManager().fillContent(message, fatherOf);

Using concrete objects like john and fatherOf is the easiest approach to filling the content of
a message but it is not fully expressive. For examples, consider the following problem: we want
to query an agent for the names of John’s children. We need to send a query-ref message with the
following content: (iota ?X fatherOf(john, ?X)), where ?X is a variable that the
receiver agent uses to come to know what we want to know. Such a content is an IRE, i.e., an

Dave
objects

Dave
In order to send a message, we have two possibilities: through concrete objects or throughabstract descriptors. The first approach is the easiest to use, but it is limited:1) we create our content in terms of objects that belongs to the classes that we associatedwith schemas in the ontology, e.g., Person and FatherOf classes;2) we use fillContent() in ContentManager to fill the content of the message.

JADE Programmer’s GUIDE

61

expression that identifies an object. The problem is that we cannot set the children attribute of
a FatherOf object to a variable because such an attribute is a List. A number of techniques
are available to solve this problem exploiting inheritance, but they all require that you implement
many classes for describing the ontology. In order to solve this problem using only the classes we
already implemented for the ontology, we introduced abstract descriptors. An abstract descriptor
is an object that describes an instantiation of a schema, e.g., the following is the abstract
descriptor that describes the concept “John”:

AbsConcept absJohn = new AbsConcept(PeopleOntology.MAN);
absJohn.set(PeopleOntology.NAME, “John”);

An abstract descriptor is created with the name of a class (MAN in this example). Then, we

can set and get values on the descriptor using the names of the attributes. The structure of the
descriptor, i.e., what the available attributes are and what are their values, must be coherent with
the schema that the ontology associates with the name of the class (MAN in this example). The
following is the code for performing the query about the names of John’s children:

ACLMessage message = new ACLMessage(ACLMessage.QUERY_REF);

// Set the fields of the message
…

// Create the abstract descriptor representing the content
AbsConcept absJohn = new AbsConcept(PeopleOntology.MAN);
absJohn.set(PeopleOntology.NAME, “John”);

AbsVariable absX = new AbsVariable(“X”)
AbsPredicate absFatherOf = new AbsPredicate(PeopleOntology.FATHER_OF);
absFatherOf.set(PeopleOntology.FATHER, absJohn);
absFatherOf.set(PeopleOntology.CHILDREN, absX);

AbsIRE absIRE = new AbsIRE(absX, absFatherOf);

getContentManager().fillContent(message, absIRE);

The procedure for receiving a message is dual to that of sending a message. We can use both

concrete objects and abstract descriptors, and if we try to create a concrete object from a message
containing a variable, the content manager throws an UngroundedException. The following
code handles inform messages:

ACLMessage msg = blockingReceive(ACLMessage.INFORM);

// The content of informs do not contain variables
Proposition p = (Proposition)getContentManager().extractContent(msg);

JADE Programmer’s GUIDE

62

// Handle the content
if(p instanceof FatherOf) {
 …
}

If we want to handle incoming queries, we need to use extractAbsContent() to create

an abstract descriptor from the message:

ACLMessage msg = blockingReceive(ACLMessage.QUERY_REF);

// The content of query-refs do contain variables
AbsIRE absIRE = (AbsIRE)getContentManager().extractAbsContent(msg);

// Handle the content
AbsVariable absX = absIRE.getVariable();
AbsProposition absP = absIRE.getProposition();

A JADE Ontology
This ontology is part of the JADE exampe using the jade.content packages. It goes with Sender.java and Receiver.java. It is
described in appendix A of the JADE Programmer's guide.

PeopleOntology.java (plain text)

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;
import jade.content.onto.*;
import jade.content.abs.*;
import jade.content.schema.*;
import jade.content.acl.*;
import jade.content.lang.*;

import jade.util.leap.List;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class PeopleOntology extends FullOntology {
 //A symbolic constant, containing the name of this ontology.
 public static final String ONTOLOGY_NAME = "PEOPLE_ONTOLOGY";

 // Concepts

JADE People Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/PeopleOntology.html (1 of 4) [7/24/2002 10:06:07 PM]

 public static final String PERSON = "PERSON";
 public static final String MAN = "MAN";
 public static final String WOMAN = "WOMAN";
 public static final String ADDRESS = "ADDRESS";

 // Slots
 public static final String NAME = "NAME";
 public static final String STREET = "STREET";
 public static final String NUMBER = "NUMBER";
 public static final String CITY = "CITY";

 // Predicates
 public static final String FATHER_OF = "FATHER_OF";
 public static final String MOTHER_OF = "MOTHER_OF";

 // Roles in predicates
 public static final String FATHER = "FATHER";
 public static final String MOTHER = "MOTHER";
 public static final String CHILDREN = "CHILDREN";

 // Actions
 public static final String MARRY = "MARRY";

 // Arguments in actions
 public static final String HUSBAND = "HUSBAND";
 public static final String WIFE = "WIFE";

 private static PeopleOntology theInstance = new
PeopleOntology(ACLOntology.getInstance());

 public static PeopleOntology getInstance() {
 return theInstance;
 }

 public PeopleOntology(FullOntology base) {
 super(ONTOLOGY_NAME, base);

 try {
 PrimitiveSchema stringSchema =
(PrimitiveSchema)getSchema(BasicOntology.STRING);
 PrimitiveSchema integerSchema =
(PrimitiveSchema)getSchema(BasicOntology.INTEGER);

JADE People Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/PeopleOntology.html (2 of 4) [7/24/2002 10:06:07 PM]

 ConceptSchema addressSchema = new
ConceptSchema(ADDRESS);
 addressSchema.add(STREET, stringSchema,
ObjectSchema.OPTIONAL);
 addressSchema.add(NUMBER, integerSchema,
ObjectSchema.OPTIONAL);
 addressSchema.add(CITY, stringSchema);

 ConceptSchema personSchema = new
ConceptSchema(PERSON);
 personSchema.add(NAME, stringSchema);
 personSchema.add(ADDRESS, addressSchema,
ObjectSchema.OPTIONAL);

 ConceptSchema manSchema = new ConceptSchema(MAN);
 manSchema.addSuperSchema(personSchema);

 ConceptSchema womanSchema = new ConceptSchema(WOMAN);
 womanSchema.addSuperSchema(personSchema);

 add(personSchema, Person.class);
 add(manSchema, Man.class);
 add(womanSchema, Woman.class);
 add(addressSchema, Address.class);

 AggregateSchema childrenSchema = new
AggregateSchema(BasicOntology.SET);

 PredicateSchema fatherOfSchema = new
PredicateSchema(FATHER_OF);
 fatherOfSchema.add(FATHER, manSchema);
 fatherOfSchema.add(CHILDREN, personSchema);

 PredicateSchema motherOfSchema = new
PredicateSchema(MOTHER_OF);
 motherOfSchema.add(CHILDREN, personSchema);

 add(fatherOfSchema, FatherOf.class);
 add(motherOfSchema, MotherOf.class);

 AgentActionSchema marrySchema = new
AgentActionSchema(MARRY);
 marrySchema.add(HUSBAND, manSchema);

JADE People Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/PeopleOntology.html (3 of 4) [7/24/2002 10:06:07 PM]

 marrySchema.add(WIFE, womanSchema);

 add(marrySchema);
 } catch(OntologyException oe) { oe.printStackTrace(); }
 }
}

This ontology is supported by a number of Java classes.

Address.java●

Person.java●

FatherOf.java●

MotherOf.java●

Man.java●

Womna.java●

Marry.java●

JADE People Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/PeopleOntology.html (4 of 4) [7/24/2002 10:06:07 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;
import jade.content.onto.*;
import jade.content.abs.*;
import jade.content.schema.*;
import jade.content.acl.*;
import jade.content.lang.*;

import jade.util.leap.List;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class PeopleOntology extends FullOntology {
 //A symbolic constant, containing the name of this ontology.
 public static final String ONTOLOGY_NAME = "PEOPLE_ONTOLOGY";

 // Concepts
 public static final String PERSON = "PERSON";
 public static final String MAN = "MAN";
 public static final String WOMAN = "WOMAN";
 public static final String ADDRESS = "ADDRESS";

 // Slots
 public static final String NAME = "NAME";
 public static final String STREET = "STREET";
 public static final String NUMBER = "NUMBER";
 public static final String CITY = "CITY";

 // Predicates
 public static final String FATHER_OF = "FATHER_OF";
 public static final String MOTHER_OF = "MOTHER_OF";

 // Roles in predicates
 public static final String FATHER = "FATHER";
 public static final String MOTHER = "MOTHER";

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/PeopleOntology.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Re...JADE/source/ontology/ontology/PeopleOntology.java (1 of 3) [7/24/2002 10:06:07 PM]

 public static final String CHILDREN = "CHILDREN";

 // Actions
 public static final String MARRY = "MARRY";

 // Arguments in actions
 public static final String HUSBAND = "HUSBAND";
 public static final String WIFE = "WIFE";

 private static PeopleOntology theInstance = new
PeopleOntology(ACLOntology.getInstance());

 public static PeopleOntology getInstance() {
 return theInstance;
 }

 public PeopleOntology(FullOntology base) {
 super(ONTOLOGY_NAME, base);

 try {
 PrimitiveSchema stringSchema =
(PrimitiveSchema)getSchema(BasicOntology.STRING);
 PrimitiveSchema integerSchema =
(PrimitiveSchema)getSchema(BasicOntology.INTEGER);

 ConceptSchema addressSchema = new ConceptSchema(ADDRESS);
 addressSchema.add(STREET, stringSchema, ObjectSchema.OPTIONAL);
 addressSchema.add(NUMBER, integerSchema, ObjectSchema.OPTIONAL);
 addressSchema.add(CITY, stringSchema);

 ConceptSchema personSchema = new ConceptSchema(PERSON);
 personSchema.add(NAME, stringSchema);
 personSchema.add(ADDRESS, addressSchema, ObjectSchema.OPTIONAL);

 ConceptSchema manSchema = new ConceptSchema(MAN);
 manSchema.addSuperSchema(personSchema);

 ConceptSchema womanSchema = new ConceptSchema(WOMAN);
 womanSchema.addSuperSchema(personSchema);

 add(personSchema, Person.class);
 add(manSchema, Man.class);
 add(womanSchema, Woman.class);
 add(addressSchema, Address.class);

 AggregateSchema childrenSchema = new AggregateSchema(BasicOntology.SET);

 PredicateSchema fatherOfSchema = new PredicateSchema(FATHER_OF);
 fatherOfSchema.add(FATHER, manSchema);
 fatherOfSchema.add(CHILDREN, personSchema);

 PredicateSchema motherOfSchema = new PredicateSchema(MOTHER_OF);
 motherOfSchema.add(CHILDREN, personSchema);

 add(fatherOfSchema, FatherOf.class);
 add(motherOfSchema, MotherOf.class);

 AgentActionSchema marrySchema = new AgentActionSchema(MARRY);
 marrySchema.add(HUSBAND, manSchema);
 marrySchema.add(WIFE, womanSchema);

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/PeopleOntology.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Re...JADE/source/ontology/ontology/PeopleOntology.java (2 of 3) [7/24/2002 10:06:07 PM]

 add(marrySchema);
 } catch(OntologyException oe) { oe.printStackTrace(); }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/PeopleOntology.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Re...JADE/source/ontology/ontology/PeopleOntology.java (3 of 3) [7/24/2002 10:06:07 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class Address implements Concept {
 private String city = null;
 private String street = null;
 private int number = 0;

 public void setCity(String city) {
 this.city = city;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public void setNumber(int number) {
 this.number = number;
 }

 public String getCity() {
 return city;
 }

 public String getStreet() {
 return street;
 }

 public int getNumber() {
 return number;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Address.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Address.java [7/24/2002 10:06:08 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class Person implements Concept {
 private String name = null;
 private Address address = null;

 public void setName(String name) {
 this.name = name;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public String getName() {
 return name;
 }

 public Address getAddress() {
 return address;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Person.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Person.java [7/24/2002 10:06:08 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;

import jade.util.leap.List;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class FatherOf implements Predicate {
 private List children = null;
 private Man father = null;

 public void setChildren(List children) {
 this.children = children;
 }

 public void setFather(Man father) {
 this.father = father;
 }

 public Man getFather() {
 return father;
 }

 public List getChildren() {
 return children;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/FatherOf.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/FatherOf.java [7/24/2002 10:06:08 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

import jade.content.*;

import jade.util.leap.List;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class MotherOf implements Predicate {
 private List children = null;
 private Woman mother = null;

 public void setChildren(List children) {
 this.children = children;
 }

 public void setMother(Woman mother) {
 this.mother = mother;
 }

 public Woman getMother() {
 return mother;
 }

 public List getChildren() {
 return children;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/MotherOf.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/MotherOf.java [7/24/2002 10:06:09 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class Man extends Person {}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Man.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Man.java [7/24/2002 10:06:09 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content.ontology;

/**
@author Federico Bergenti - Universita` di Parma
*/

public class Woman extends Person {}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Woman.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Woman.java [7/24/2002 10:06:09 PM]

JADE Sender Agent

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

import jade.util.leap.List;
import jade.util.leap.ArrayList;

import jade.content.*;
import jade.content.abs.*;
import jade.content.onto.*;
import jade.content.lang.*;
import jade.content.lang.leap.*;

import examples.content.ontology.*;

public class Sender extends Agent {
 // We handle contents
 private ContentManager manager =
(ContentManager)getContentManager();
 // This agent speaks a language called "LEAP"

JADE Sender Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADESender.html (1 of 4) [7/24/2002 10:06:10 PM]

 private Codec codec = new LEAPCodec();
 // This agent complies with the People ontology
 private FullOntology ontology =
PeopleOntology.getInstance();

 class SenderBehaviour extends SimpleBehaviour {
 private boolean finished = false;

 public SenderBehaviour(Agent a) { super(a); }

 public boolean done() { return finished; }

 public void action() {
 try {
 // Preparing the first message
 System.out.println("[" + getLocalName() + "] Creating
inform message with content fatherOf(man :name John :address
London, [man :name Bill :address Paris])");

 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
 AID receiver = new AID("receiver", false);

 msg.setSender(getAID());
 msg.addReceiver(receiver);
 msg.setLanguage(codec.getName());
 msg.setOntology(ontology.getName());

 // The message informs that:
 // fatherOf(man :name "John" :address "London", [man :name
"Bill" :address "Paris"])

 Man john = new Man();
 Man bill = new Man();
 john.setName("John");
 bill.setName("Bill");

 Address johnAddress = new Address();
 johnAddress.setCity("London");
 john.setAddress(johnAddress);

 Address billAddress = new Address();
 billAddress.setCity("Paris");
 bill.setAddress(billAddress);

JADE Sender Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADESender.html (2 of 4) [7/24/2002 10:06:10 PM]

 FatherOf fatherOf = new FatherOf();
 fatherOf.setFather(john);

 List children = new ArrayList();
 children.add(bill);

 fatherOf.setChildren(children);

 // Fill the content of the message
 manager.fillContent(msg, fatherOf);

 // Send the message
 System.out.println("[" + getLocalName() + "] Sending the
message...");
 send(msg);

 // Now ask the proposition back.
 // Use a query-ref with the following content:
 // iota ?x fatherOf(?x, [man :name "Bill" :address
"Paris"])
 System.out.println("[" + getLocalName() + "] Creating
query-ref message with content iota ?x fatherOf(?x, [man :name
Bill :address Paris])");
 msg.setPerformative(ACLMessage.QUERY_REF);

 // Create an abstract descriptor from scratch
 AbsConcept absBill = new AbsConcept(PeopleOntology.MAN);
 absBill.set(PeopleOntology.NAME, "Bill");

 // Create an abstract descriptor from a concrete object
 AbsConcept absBillAddress =
(AbsConcept)ontology.fromObject(billAddress);
 absBill.set(PeopleOntology.ADDRESS, absBillAddress);

 AbsAggregate absChildren = new
AbsAggregate(BasicOntology.SET);
 absChildren.add(absBill);

 AbsVariable absX = new AbsVariable("x",
PeopleOntology.MAN);

 AbsPredicate absFatherOf = new
AbsPredicate(PeopleOntology.FATHER_OF);
 absFatherOf.set(PeopleOntology.FATHER, absX);

JADE Sender Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADESender.html (3 of 4) [7/24/2002 10:06:10 PM]

 absFatherOf.set(PeopleOntology.CHILDREN, absChildren);

 AbsIRE absIRE = new AbsIRE();
 absIRE.setVariable(absX);
 absIRE.setKind(ACLOntology.IOTA);
 absIRE.setProposition(absFatherOf);

 // Fill the content of the message
 manager.fillContent(msg, absIRE);

 // Send the message
 System.out.println("[" + getLocalName() + "] Sending the
message...");
 send(msg);
 } catch(Exception e) { e.printStackTrace(); }

 finished = true;
 }
 }

 protected void setup() {
 manager.registerLanguage(codec);
 manager.registerOntology(ontology);

 addBehaviour(new SenderBehaviour(this));
 }
}

JADE Sender Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADESender.html (4 of 4) [7/24/2002 10:06:10 PM]

JADE Receiver Agent

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.content;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

import jade.content.*;
import jade.content.abs.*;
import jade.content.onto.*;
import jade.content.lang.*;
import jade.content.lang.leap.*;

import examples.content.ontology.*;

public class Receiver extends Agent {
 private ContentManager manager =
(ContentManager)getContentManager();
 private Codec codec = new LEAPCodec();
 private FullOntology ontology =

Receiver.java>

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEReceiver.html (1 of 3) [7/24/2002 10:06:11 PM]

PeopleOntology.getInstance();
 private FatherOf proposition = null;

 class ReceiverBehaviour extends SimpleBehaviour {
 private boolean finished = false;

 public ReceiverBehaviour(Agent a) { super(a); }

 public boolean done() { return finished; }

 public void action() {
 for(int c = 0; c < 2; c++) {
 try {
 System.out.println("[" + getLocalName() + "] Waiting
for a message...");

 ACLMessage msg = blockingReceive();

 if (msg!= null) {
 switch(msg.getPerformative()) {
 case ACLMessage.INFORM:
 ContentElement p = manager.extractContent(msg);
 if(p instanceof FatherOf) {
 proposition = (FatherOf)p;
 System.out.println("[" + getLocalName() + "]
Receiver inform message: information stored.");
 System.out.println("Father name " +
proposition.getFather().getName());
 break;
 }
 case ACLMessage.QUERY_REF:
 AbsContentElement abs =
manager.extractAbsContent(msg);
 if(abs instanceof AbsIRE) {
 AbsIRE ire = (AbsIRE)abs;

 ACLMessage reply = new
ACLMessage(ACLMessage.INFORM);
 AID sender = new AID("sender", false);

 msg.setSender(getAID());
 msg.addReceiver(sender);
 msg.setLanguage(codec.getName());

Receiver.java>

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEReceiver.html (2 of 3) [7/24/2002 10:06:11 PM]

 msg.setOntology(ontology.getName());

 AbsConcept absFather =
(AbsConcept)ontology.fromObject(proposition.getFather());

 AbsEquals absEquals = new AbsEquals();
 absEquals.setIRE(ire);
 absEquals.setConcept(absFather);

 manager.fillContent(msg, absEquals);

 send(msg);

 System.out.println("[" + getLocalName() + "]
Received query-ref message: reply sent:");
 absEquals.dump();
 break;
 }
 default:
 System.out.println("[" + getLocalName() + "]
Malformed message.");
 }
 }
 } catch(Exception e) { e.printStackTrace(); }
 }
 finished = true;
 }
 }

 protected void setup() {
 manager.registerLanguage(codec);
 manager.registerOntology(ontology);

 addBehaviour(new ReceiverBehaviour(this));
 }
}

Receiver.java>

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEReceiver.html (3 of 3) [7/24/2002 10:06:11 PM]

A Simple JADE Ontology for Economics

package cps720.assignment3.ontology;

import jade.content.*;
import jade.content.onto.*;
import jade.content.abs.*;
import jade.content.schema.*;
import jade.content.acl.*;
import jade.content.lang.*;

/**
 * An ontology for the supply-demand simulation. (See
Producer.java and Consumer.java.)
 *
 * These ontologies are quite confusing. You have to link the
"schemas" to the classes using
 * the static string constants. The different types of schemas are
related to the categories of
 * speech acts such as predicateas and actions.
 * (see more comments below>)
 *
 * DG. October, 2001
 */
public class EconOntology extends FullOntology {

 // A name for the ontology -- passed to the super class
constructor
 public static final String ONTOLOGY_NAME = "ECON_ONTOLOGY";

 // concepts (classes)

 public static final String PRODUCT = "PRODUCT";

 // roles (slots)

 public static final String NAME = "NAME";
 public static final String PRICE = "PRICE";
 public static final String QUANTITY = "QUANTITY";
 public static final String UNIT_COST = "UNIT_COST";
 public static final String VALUE = "VALUE";

 // predicates

 public static final String PRICE_OF = "PRICE_OF";
 public static final String QUANTITY_OF = "QUANTITY_OF";

A Simple Economics Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/EconOntology.html (1 of 3) [7/24/2002 10:06:17 PM]

 // actions

 public static final String BUY = "BUY";

 // argumements for actions

 public static final String PURCHASE = "PURCHASE";

 //
===

 // Some JADE setup methods

 private static EconOntology thisInstance = new
EconOntology(ACLOntology.getInstance());

 public static EconOntology getInstance() {
 return thisInstance;
 }

 public EconOntology(FullOntology base) {

 super(ONTOLOGY_NAME, base);

 try {
 // include two data types
 PrimitiveSchema stringSchema =
(PrimitiveSchema)getSchema(BasicOntology.STRING);
 PrimitiveSchema floatSchema =
(PrimitiveSchema)getSchema(BasicOntology.FLOAT);

 /*
 * Concepts are objects of the ontology (abstract or
concrete). They are the nouns.
 *
 * The add() method adds slots, sometimes called
facets.
 */
 ConceptSchema productSchema = new
ConceptSchema(PRODUCT);
 productSchema.add(NAME, stringSchema);
 productSchema.add(PRICE, floatSchema);
 productSchema.add(UNIT_COST, floatSchema,
ObjectSchema.OPTIONAL);
 productSchema.add(QUANTITY, floatSchema,
ObjectSchema.OPTIONAL); //eg tons of wheat

 /**
 * Each concept in the ontology is associated with a

A Simple Economics Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/EconOntology.html (2 of 3) [7/24/2002 10:06:17 PM]

Java class.
 */
 add(productSchema, Product.class);

 /*
 * Predicates have truth values and express relations
among the concepts.
 * The string constants (e.g., PRICE_OF) names the
predicate for the JADE sysetm.
 */
 PredicateSchema priceOfSchema = new
PredicateSchema(PRICE_OF);
 PredicateSchema quantityOfSchema = new
PredicateSchema(QUANTITY_OF);

 /**
 * Now add the concepts involved in the predicate. You
need the string name constant for
 * each concept, and, a corresponding schema.
 */
 priceOfSchema.add(PRODUCT, productSchema);
 priceOfSchema.add(PRICE, floatSchema);

 quantityOfSchema.add(PRODUCT, productSchema);
 quantityOfSchema.add(QUANTITY,floatSchema);

 /*
 * And associate a Java class.
 */
 add(priceOfSchema, PriceOf.class);
 add(quantityOfSchema, QuantityOf.class);

 /*
 * You may also have actions. These are handled in the
same way.
 */
 AgentActionSchema buySchema = new
AgentActionSchema(BUY);
 buySchema.add(PRODUCT, productSchema);

 add(buySchema, Buy.class);

 } catch (OntologyException oe) {
 oe.printStackTrace();
 }

 }

}

A Simple Economics Ontology

http://www.ryerson.ca/~dgrimsha/courses/cps720/EconOntology.html (3 of 3) [7/24/2002 10:06:17 PM]

Product.java
A support file for the EconOntology.

package cps720.assignment3.ontology;

import jade.content.*;

/**
 * Part of the EconOntolgy
 * setters and getters.
 * DG. October, 2001
 */
public class Product implements Concept {

 private String name = null;
 private float price = 0.0f;
 private float unitCost = 0.0f;
 private float quantity = 0.0f;

 public String getName() {
 return name;
 }
 public float getPrice() {
 return price;
 }
 public float getQuantity() {
 return quantity;
 }
 public float getUnitCost() {
 return unitCost;
 }

 public void setName(String n) {
 name = n;
 }
 public void setPrice(float p) {
 price = p;
 }
 public void setQuantity(float q) {
 quantity = q;
 }

Product.java for EconOntology

http://www.ryerson.ca/~dgrimsha/courses/cps720/EconOntology_Product.html (1 of 2) [7/24/2002 10:06:17 PM]

 public void setUnitCost(float c) {
 unitCost = c;
 }
}

Product.java for EconOntology

http://www.ryerson.ca/~dgrimsha/courses/cps720/EconOntology_Product.html (2 of 2) [7/24/2002 10:06:17 PM]

Some JADE Examples

The following pages discuss some JADE examples. The first is a very simple example. The second is
much more elaborate. The third uses a custom ontolgy

Ping Agent

Party Agents

Ontology Example

Jade Examples

http://www.ryerson.ca/~dgrimsha/courses/cps720/jadeExamples.html [7/24/2002 10:06:17 PM]

JADE Ping Agent
This is a very simple agent. After loading it into a container, run the Dummy Agent and use it to send the message "ping" (do
not enter the quotes) with performative QUERY-REF or QUERY-IF. Also try it with some other performative to see what
happens.

PingAgent.java

(Important classes in green (teal). Methods called by JADE in red.)
/***

JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.
GNU Lesser General Public License
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

***/

package examples.PingAgent;

import java.util.Date;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.OutputStreamWriter;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

/**

This agent implements a simple Ping Agent.
First of all the agent registers itself with the DF of the platform and
then waits for ACLMessages.
If a QUERY_REF or QUER_IF message arrives that contains the string "ping" within the
content
then it replies with an INFORM message whose content will be the string "(pong)".

If it receives a NOT_UNDERSTOOD message no reply is sent.
For any other message received it replies with a NOT_UNDERSTOOD message.

JADE Ping AGENT

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPingAgent.html (1 of 4) [7/24/2002 10:06:19 PM]

The exchanged message are written in a log file whose name is the local name of the
agent.

@author Tiziana Trucco - CSELT S.p.A.
@version $Date: 2001/02/09 16:17:09 $ $Revision: 1.2 $

*/

public class PingAgent extends Agent {

 PrintWriter logFile;

 class WaitPingAndReplyBehaviour extends CyclicBehaviour {

 public WaitPingAndReplyBehaviour(Agent a) {
 super(a);
 }

 public void action() {

 ACLMessage msg = blockingReceive();

 if(msg != null){
 if(msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD)
 {

 log("Received the following message: "+
msg.toString());
 log("No reply message sent.");
 }
 else{
 log("Received the following message: "+
msg.toString());
 ACLMessage reply = msg.createReply();

 if((msg.getPerformative()==
ACLMessage.QUERY_REF)||(msg.getPerformative()==
ACLMessage.QUERY_IF))
 {
 String content = msg.getContent();
 if ((content != null) && (content.indexOf("ping") !=
-1))
 {{
 reply.setPerformative(ACLMessage.INFORM);
 reply.setContent("(pong)");
 }
 eelse

JADE Ping AGENT

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPingAgent.html (2 of 4) [7/24/2002 10:06:19 PM]

javascript:onClick=popup("noteBehaviour.html")
javascript:onclick=popup("JADENoteReceive.html")

 {
 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);
 reply.setContent("(UnexpectedContent (expected
ping))");
 }
 }
 else
 {
 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);
 reply.setContent("((Unexpected-act
"+ACLMessage.getPerformative(msg.getPerformative())+") (expected
(query-ref :content ping)))");
 }
 log("Replied with the following message: "+ reply.toString());

 send(reply);
 }

 }else{
 //System.out.println("No message received");
 }
 }
 } //Endinner class WaitPingAndReplyBehaviour

 protected void setup() {

 /** Registration with the DF */

 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();

 sd.setType("PingAgent");
 sd.setName(getName());
 sd.setOwnership("ExampleReceiversOfJADE");
 sd.addOntologies("PingAgent");
 dfd.setName(getAID());
 dfd.addServices(sd);
 try {
 DFService.register(this,dfd);
 } catch (FIPAException e) {
 System.err.println(getLocalName()+" registration with DF
unsucceeded. Reason: "+e.getMessage());
 doDelete();
 }
 try{

JADE Ping AGENT

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPingAgent.html (3 of 4) [7/24/2002 10:06:19 PM]

 logFile = new PrintWriter(new
FileWriter(getLocalName()+".log",true));
 log("Agent: " + getName() + " born");

 WaitPingAndReplyBehaviour PingBehaviour = new
WaitPingAndReplyBehaviour(this);

 addBehaviour(PingBehaviour);

 }catch(IOException e){
 System.out.println("WARNING: The agent needs the "+
getLocalName()+".log file.");
 e.printStackTrace();
 }
 }

 public synchronized void log(String str) {
 logFile.println((new Date()).toString()+ " - " + str);
 logFile.flush();
 }

}//end class PingAgent

Running PingAgent
You can start the PingAgent with java jade.Boot -gui ping:examples.PingAgent.PingAgent. (Assuming you have your
classpaths correct.) You can then use the DummyAgent to send it the "ping" message with performative QUERY_REF or
QUERY_IF.

Or you could have another agent send it the "ping" message. For an example, see the file SendPing2.java.

JADE Ping AGENT

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPingAgent.html (4 of 4) [7/24/2002 10:06:19 PM]

/***
JADE - Java Agent DEvelopment Framework is a framework to develop
multi-agent systems in compliance with the FIPA specifications.
Copyright (C) 2000 CSELT S.p.A.

GNU Lesser General Public License

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation,
version 2.1 of the License.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
***/

package examples.PingAgent;

import java.util.Date;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.OutputStreamWriter;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

/**
This agent implements a simple Ping Agent.
First of all the agent registers itself with the DF of the platform and
then waits for ACLMessages.
If a QUERY_REF or QUER_IF message arrives that contains the string "ping" within the
content
then it replies with an INFORM message whose content will be the string "(pong)".
If it receives a NOT_UNDERSTOOD message no reply is sent.
For any other message received it replies with a NOT_UNDERSTOOD message.
The exchanged message are written in a log file whose name is the local name of the
agent.

@author Tiziana Trucco - CSELT S.p.A.
@version $Date: 2001/02/09 16:17:09 $ $Revision: 1.2 $
*/

public class PingAgent extends Agent {

 PrintWriter logFile;

 class WaitPingAndReplyBehaviour extends CyclicBehaviour {

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java (1 of 3) [7/24/2002 10:06:19 PM]

 public WaitPingAndReplyBehaviour(Agent a) {
 super(a);
 }

 public void action() {

 ACLMessage msg = blockingReceive();

 if(msg != null){
 if(msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD)
 {
 log("Received the following message: "+ msg.toString());
 log("No reply message sent.");
 }
 else{
 log("Received the following message: "+ msg.toString());
 ACLMessage reply = msg.createReply();

 if((msg.getPerformative()== ACLMessage.QUERY_REF)||(msg.getPerformative()==
ACLMessage.QUERY_IF))
 {
 String content = msg.getContent();
 if ((content != null) && (content.indexOf("ping") != -1))
 {
 reply.setPerformative(ACLMessage.INFORM);
 reply.setContent("(pong)");
 }
 else
 {
 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);
 reply.setContent("(UnexpectedContent (expected ping))");
 }

 }
 else
 {
 reply.setPerformative(ACLMessage.NOT_UNDERSTOOD);
 reply.setContent("((Unexpected-act
"+ACLMessage.getPerformative(msg.getPerformative())+") (expected (query-ref :content
ping)))");

 }

 log("Replied with the following message: "+ reply.toString());
 send(reply);
 }
 }else{
 //System.out.println("No message received");
 }
 }

 } //End class WaitPingAndReplyBehaviour

 protected void setup() {

 /** Registration with the DF */
 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();
 sd.setType("PingAgent");

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java (2 of 3) [7/24/2002 10:06:19 PM]

 sd.setName(getName());
 sd.setOwnership("ExampleReceiversOfJADE");
 sd.addOntologies("PingAgent");
 dfd.setName(getAID());
 dfd.addServices(sd);
 try {
 DFService.register(this,dfd);
 } catch (FIPAException e) {
 System.err.println(getLocalName()+" registration with DF unsucceeded. Reason:
"+e.getMessage());
 doDelete();
 }

 try{
 logFile = new PrintWriter(new FileWriter(getLocalName()+".log",true));
 log("Agent: " + getName() + " born");
 WaitPingAndReplyBehaviour PingBehaviour = new
WaitPingAndReplyBehaviour(this);
 addBehaviour(PingBehaviour);
 }catch(IOException e){
 System.out.println("WARNING: The agent needs the "+ getLocalName()+".log
file.");
 e.printStackTrace();
 }
 }

 public synchronized void log(String str) {

 logFile.println((new Date()).toString()+ " - " + str);
 logFile.flush();
 }

}//end class PingAgent

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java (3 of 3) [7/24/2002 10:06:19 PM]

package examples.PingAgent;

import jade.core.*;
import jade.core.behaviours.SimpleBehaviour;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class SendPing2 extends Agent {

 protected void setup() {

 DFAgentDescription dfd = new DFAgentDescription();
 ServiceDescription sd = new ServiceDescription();
 sd.setType("SendPing"); // something must be here; otherwise won't register
 sd.setName(getName());
 //sd.addOntologies("PingAgent"); // simple strings ok
 dfd.setName(getAID());
 dfd.addServices(sd);

 try {
 DFService.register(this, dfd);
 } catch (FIPAException e) {
 System.err.println(getLocalName() + " registration with DF failed. Reason: "
+ e.getMessage());
 doDelete();
 }
 addBehaviour(new SimpleBehaviour() {

 private boolean finished = false;

 public void action() {
 System.out.println("Enter the message 'ping'.");
 String line = null;
 try {
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 line = br.readLine();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 ACLMessage msg = new ACLMessage(ACLMessage.QUERY_REF);
 msg.setContent(line);
 msg.setSender(getAID());
 AID pingAgent = new AID("ping", false);
 msg.addReceiver(pingAgent);
 send(msg);

 msg = blockingReceive();
 if(msg != null) {
 if(msg.getPerformative() == ACLMessage.INFORM) {
 System.out.println("[" + msg.getSender().getName()+ "] says "
+ msg.getContent());
 } else if(msg.getPerformative() == ACLMessage.NOT_UNDERSTOOD) {

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/SendPing2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/SendPing2.java (1 of 2) [7/24/2002 10:06:20 PM]

 System.out.println("[" + msg.getSender().getName()+ "] says "
+ msg.getContent());
 System.out.println("Not understood ?? This is the end!!");
 finished = true;
 } else {
 System.out.println("A mysterious message");
 }
 }
 } // end action()

 public boolean done() {
 return finished;
 }
 });
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/SendPing2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/SendPing2.java (2 of 2) [7/24/2002 10:06:20 PM]

The JADE Party
(This agent is not part of the JADE 2.4 distribution.)

The HostAgent creates n party guests who pass a rumour among themselves (see below). The program was originally designed
as "stress test" of how well JADE runs on various systems. Do not make n too large!

The program illustrates, among other things, how to attach a user GUI to a JADE agent with the help of OneShotBehavioiurs.

Plain source code

(If you run this make sure you put them in a directory com\hp\hpl\jade_test.)

HostAgent.java●

HostUIFrame.java●

GuestAgent.java●

See Also

HostUIFrame.●

GuestAgent●

HostAgent
/***
 * Source code information
 * -----------------------
 * Original author Ian Dickinson, HP Labs Bristol
 * Author email Ian_Dickinson@hp.com
 * Package
 * Created 1 Oct 2001
 * Filename $RCSfile: $
 * Revision $Revision: $
 * Release status Experimental. $State: $
 *
** Last modified on $Date: $
 * by $Author: $
 *
 * Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
 ***/

package com.hp.hpl.jade_test;

import jade.core.AID;
import jade.core.Agent;
import jade.core.ProfileImpl;
import jade.core.Profile;
import jade.wrapper.AgentContainer;
import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;
import jade.core.behaviours.CyclicBehaviour;

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (1 of 11) [7/24/2002 10:06:22 PM]

import jade.core.behaviours.OneShotBehaviour;

import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

import javax.swing.*;
import java.util.*;
import java.text.NumberFormat;
/**
** <p>
 * Agent representing the host for a party, to which a user-controlled number of
guests is invited. The sequence is
 * as follows: the user selects a number guests to attend the party from 0 to 1000,
using the
 * slider on the UI. When the party starts, the host creates N guest agents, each of
which registers
 * with the DF, and sends the host a message to say that they have arrived. When all
the guests
 * have arrived, the party starts. The host selects one guest at random, and tells
them a rumour.
 * The host then selects two other guests at random, and introduces them to each
other. The party
 * then proceeds as follows: each guest that is introduced to someone asks the host
to introduce them
 * to another guest (at random). If a guest has someone introduce themselves, and
the guest knows
 * the rumour, they tell the other guest. When a guest hears the rumour for the
first time, they
 * notify the host. When all the guests have heard the rumour, the party ends and
the guests leave.
 * </p>
 * <p>
 * Note: to start the host agent, it must be named 'host'. Thus:
 * <code><pre>
 * java jade.Boot -gui host:com.hp.hpl.jade_test.HostAgent()
 * </pre></code>
 * </p>
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */

public class HostAgent
 extends Agent
{

 public final static String HELLO = "HELLO";
 public final static String ANSWER = "ANSWER";
 public final static String THANKS = "THANKS";

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (2 of 11) [7/24/2002 10:06:22 PM]

 public final static String GOODBYE = "GOODBYE";
 public final static String INTRODUCE = "INTRODUCE";
 public final static String RUMOUR = "RUMOUR";

 // Instance variables
 //////////////////////////////////

 protected JFrame m_frame = null;
 protected Vector m_guestList = new Vector(); // invitees
 protected int m_guestCount = 0; // arrivals
 protected int m_rumourCount = 0;

 protected int m_introductionCount = 0;
 protected boolean m_partyOver = false;
 protected NumberFormat m_avgFormat =
NumberFormat.getInstance();
 protected long m_startTime = 0L;

 // Constructors
 //////////////////////////////////
 /**
 * Construct the host agent. Some tweaking of the UI
parameters.
 */
 public HostAgent() {
 m_avgFormat.setMaximumFractionDigits(2);
 m_avgFormat.setMinimumFractionDigits(2);
 }

 // External signature methods
 //////////////////////////////////
 /**
 * Setup the agent. Registers with the DF, and adds a
behaviour to
 * process ncoming messages.
 */
 protected void setup() {
 try {
 System.out.println(getLocalName() + " setting up");
 // create the agent descrption of itself

 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 DFService.register(this, dfd);

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (3 of 11) [7/24/2002 10:06:22 PM]

 // add the GUI
 setupUI();

 // add a Behaviour to handle messages from guests

 addBehaviour(new CyclicBehaviour(this) {
 public void action() {

 ACLMessage msg = receive();
 if (msg != null) {
 if (HELLO.equals(
msg.getContent())) {
 // a guest has arrived
 m_guestCount++;
 setPartyState("Inviting
guests (" + m_guestCount + " have arrived)");
 if (m_guestCount ==
m_guestList.size()) {
 System.out.println(
"All guests have arrived, starting conversation");
 // all guests have
arrived

 beginConversation();
 }
 }
 else if (RUMOUR.equals(
msg.getContent())) {

 // count the agents who
have heard the rumour
 incrementRumourCount();
 }
 else if (msg.getPerformative()
== ACLMessage.REQUEST && INTRODUCE.equals(msg.getContent())) {
 // an agent has requested
an introduction
 doIntroduction(
msg.getSender());
 }
 }
 else {
 // if no message is arrived,
block the behaviour

 block();

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (4 of 11) [7/24/2002 10:06:22 PM]

 }
 }
 });
 }
 catch (Exception e) {
 System.out.println("Saw exception in HostAgent: " + e
);
 e.printStackTrace();
 }
 }

 s /**
 * Setup the UI, which means creating and showing the main
frame.
 */
 private void setupUI() {

 m_frame = new HostUIFrame(this);
 m_frame.setSize(400, 200);
 m_frame.setLocation(400, 400);
 m_frame.setVisible(true);
 m_frame.validate();
 }

 /**
 * Invite a number of guests, as determined by the given
parameter. Clears old
 * state variables, then creates N guest agents. A list of
the agents is maintained,
 * so that the host can tell them all to leave at the end of
the party.
 *
 * DG: This and several other methods are invokded by a
OneShotBehaviour of this
 *agents defined in HostUIFrame.java.
 *
 * @param nGuests The number of guest agents to invite.
 */
 protected void inviteGuests(int nGuests) {

 // remove any old state
 m_guestList.clear();
 m_guestCount = 0;
 m_rumourCount = 0;
 m_introductionCount = 0;

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (5 of 11) [7/24/2002 10:06:22 PM]

 m_partyOver = false;
 ((HostUIFrame) m_frame).lbl_numIntroductions.setText("0"
);
 ((HostUIFrame) m_frame).prog_rumourCount.setValue(0);
 ((HostUIFrame) m_frame).lbl_rumourAvg.setText("0.0");

 // notice the start time
 m_startTime = System.currentTimeMillis();

 // try first to ensurat the DF has finished deregistering
the old guests
 if (checkDF()) {
 setPartyState("Inviting guests");
 try {
 for (int i = 0; i < nGuests; i++) {
 // create a new agent
 Agent guest = new GuestAgent();
 // DG: each new agent gets a unique local name.
 guest.doStart("guest_" + i);

 // keep the guest's ID on a local list
 m_guestList.add(guest.getAID());

 checkDF(); // FIXME: Tiziana Trucco
 }
 }
 catch (Exception e) {
 System.err.println("Exception while adding
guests: " + e);
 e.printStackTrace();
 }
 }
 }

 /**
 * End the party: set the state variables, and tell all the
guests to leave.
 */

 protected void endParty() {

 setPartyState("Party over");
 m_partyOver = true;

 // log the duration of the run
 System.out.println("Simulation run complete. NGuests = "

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (6 of 11) [7/24/2002 10:06:22 PM]

+ m_guestCount + ", time taken = " +
 m_avgFormat.format(((double)
System.currentTimeMillis() - m_startTime) / 1000.0) + "s");

 // send a message to all guests to tell them to leave
 for (Iterator i = m_guestList.iterator(); i.hasNext();)
{

 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
 msg.setContent(GOODBYE);
 msg.addReceiver((AID) i.next());

 send(msg);
 }

 m_guestList.clear();
 }

 /**
 * Shut down the host agent, including removing the UI and
deregistering
 * from the DF.
 */
 protected void terminateHost() {
 try {
 if (!m_guestList.isEmpty()) {
 endParty();
 }
 DFService.deregister(this);
 m_frame.dispose();
 doDelete();
 }
 catch (Exception e) {
 System.err.println("Saw FIPAException while
terminating: " + e);
 e.printStackTrace();
 }
 }
 /**
 * Start the conversation in the party. Tell a random guest a
rumour, and
 * select two random guests and introduce them to each other.
 */
 protected void beginConversation() {

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (7 of 11) [7/24/2002 10:06:22 PM]

 // start a rumour
 ACLMessage rumour = new ACLMessage(ACLMessage.INFORM);
 rumour.setContent(RUMOUR);
 rumour.addReceiver(randomGuest(null))

 send(rumour);

 // introduce two agents to each other
 doIntroduction(randomGuest(null));

 setPartyState("Swinging");
 }

 /**
 * Introduce guest0 to a random other guest. Also updates the
introduction
 * count on the UI, and the avg no of introductions per
rumour.
 */
 protected void doIntroduction(AID guest0) {
 if (!m_partyOver) {
 AID guest1 = randomGuest(guest0);

 // introduce two guests to each other
 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(INTRODUCE + " " + guest0);
 m.addReceiver(guest1);

 send(m);

 // update the count of introductions on the UI
 m_introductionCount++;
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_numIntroductions.setText(Integer.toString(
m_introductionCount));
 }
 });
 updateRumourAvg();
 }
 }

 /**
 * Increment the number of guests that have heard the rumour,
and update the UI.

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (8 of 11) [7/24/2002 10:06:22 PM]

 * If all guests have heard the rumour, end the party.
 */
 protected void incrementRumourCount() {
 m_rumourCount++;
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).prog_rumourCount.setValue(Math.round(100 *
m_rumourCount / m_guestCount));
 }
 });
 updateRumourAvg();

 // when all the guests have heard the rumour, the party
ends
 if (m_rumourCount == m_guestCount) {
 // simulate the user clicking stop when the guests
have all heard the rumour
 try {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run()
{
 ((HostUIFrame)
m_frame).btn_stop_actionPerformed(null);
 }
 });
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 /**
 * Update the state of the party in the UI
 */
 protected void setPartyState(final String state) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_partyState.setText(state);
 }
 });
 }

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (9 of 11) [7/24/2002 10:06:22 PM]

 /**
 * Update the average number of introductions per rumour
spread
 * in the UI.
 */
 protected void updateRumourAvg() {

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_rumourAvg.setText(m_avgFormat.format(((double)
m_introductionCount) / m_rumourCount));
 }
 });
 }

 /**
 * Pick a guest at random who is not the given guest.
 *
 * @param aGuest A guest at the party or null
 * @return A random guest who is not aGuest.
 */
 protected AID randomGuest(AID aGuest) {

 AID g = null;

 do {
 int i = (int) Math.round(Math.random() *
(m_guestList.size() - 1));
 g = (AID) m_guestList.get(i);
 } while (g == aGuest);

 return g;
 }
 /**
 * Answer true if the DF has cleared all guests. Note: this
approach does
 * not work at the moment.
 */
 protected boolean checkDF() {
 try {
 ServiceDescription sd = new ServiceDescription();
 sd.setType("PartyGuest");
 sd.setName("GuestServiceDescription");
 DFAgentDescription dfd = new DFAgentDescription();

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (10 of 11) [7/24/2002 10:06:22 PM]

 dfd.addServices(sd);
 DFAgentDescription[] agents = DFService.search(this,
dfd);

 // if not clear, warn user
 if (agents.length > 0) {
 JOptionPane.showMessageDialog(m_frame, "DF has
not finished removing "+ agents.length +" old guest agents, please
be patient", "Warning", JOptionPane.WARNING_MESSAGE);
 }
 else {
 return true;
 }
 }
 catch (Exception e) {
 System.err.println("Exception: " + e);
 e.printStackTrace();
 }
 return false;
 }

}
HostUIFrame.●

GuestAgent●

JADE Party Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyAgent.html (11 of 11) [7/24/2002 10:06:22 PM]

/***
 * Source code information
 * -----------------------
 * Original author Ian Dickinson, HP Labs Bristol
 * Author email Ian_Dickinson@hp.com
 * Package
 * Created 1 Oct 2001
 * Filename $RCSfile: $
 * Revision $Revision: $
 * Release status Experimental. $State: $
 *
 * Last modified on $Date: $
 * by $Author: $
 *
 * Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
 ***/

// Package
///////////////
package com.hp.hpl.jade_test;

// Imports
///////////////
import jade.core.AID;
import jade.core.Agent;
import jade.core.ProfileImpl;
import jade.core.Profile;

import jade.wrapper.AgentContainer;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

import jade.core.behaviours.CyclicBehaviour;
import jade.core.behaviours.OneShotBehaviour;

import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

import javax.swing.*;
import java.util.*;
import java.text.NumberFormat;

/**
 * <p>
 * Agent representing the host for a party, to which a user-controlled number of guests
is invited. The sequence is
 * as follows: the user selects a number guests to attend the party from 0 to 1000, using
the
 * slider on the UI. When the party starts, the host creates N guest agents, each of
which registers
 * with the DF, and sends the host a message to say that they have arrived. When all the
guests
 * have arrived, the party starts. The host selects one guest at random, and tells them
a rumour.
 * The host then selects two other guests at random, and introduces them to each other.

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (1 of 8) [7/24/2002 10:06:24 PM]

The party
 * then proceeds as follows: each guest that is introduced to someone asks the host to
introduce them
 * to another guest (at random). If a guest has someone introduce themselves, and the
guest knows
 * the rumour, they tell the other guest. When a guest hears the rumour for the first
time, they
 * notify the host. When all the guests have heard the rumour, the party ends and the
guests leave.
 * </p>
 * <p>
 * Note: to start the host agent, it must be named 'host'. Thus:
 * <code><pre>
 * java jade.Boot -gui host:com.hp.hpl.jade_test.HostAgent()
 * </pre></code>
 * </p>
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */
public class HostAgent
 extends Agent
{
 // Constants
 //////////////////////////////////

 public final static String HELLO = "HELLO";
 public final static String ANSWER = "ANSWER";
 public final static String THANKS = "THANKS";
 public final static String GOODBYE = "GOODBYE";
 public final static String INTRODUCE = "INTRODUCE";
 public final static String RUMOUR = "RUMOUR";

 // Static variables
 //////////////////////////////////

 // Instance variables
 //////////////////////////////////
 protected JFrame m_frame = null;
 protected Vector m_guestList = new Vector(); // invitees
 protected int m_guestCount = 0; // arrivals
 protected int m_rumourCount = 0;
 protected int m_introductionCount = 0;
 protected boolean m_partyOver = false;
 protected NumberFormat m_avgFormat = NumberFormat.getInstance();
 protected long m_startTime = 0L;

 // Constructors
 //////////////////////////////////

 /**
 * Construct the host agent. Some tweaking of the UI parameters.
 */
 public HostAgent() {
 m_avgFormat.setMaximumFractionDigits(2);
 m_avgFormat.setMinimumFractionDigits(2);
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (2 of 8) [7/24/2002 10:06:24 PM]

 // External signature methods
 //////////////////////////////////

 /**
 * Setup the agent. Registers with the DF, and adds a behaviour to
 * process incoming messages.
 */
 protected void setup() {
 try {
 System.out.println(getLocalName() + " setting up");

 // create the agent descrption of itself
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 DFService.register(this, dfd);

 // add the GUI
 setupUI();

 // add a Behaviour to handle messages from guests
 addBehaviour(new CyclicBehaviour(this) {
 public void action() {
 ACLMessage msg = receive();

 if (msg != null) {
 if (HELLO.equals(msg.getContent())) {
 // a guest has arrived
 m_guestCount++;
 setPartyState("Inviting guests (" + m_guestCount
+ " have arrived)");

 if (m_guestCount == m_guestList.size()) {
 System.out.println("All guests have arrived,
starting conversation");
 // all guests have arrived
 beginConversation();
 }
 }
 else if (RUMOUR.equals(msg.getContent())) {
 // count the agents who have heard the rumour
 incrementRumourCount();
 }
 else if (msg.getPerformative() == ACLMessage.REQUEST
&& INTRODUCE.equals(msg.getContent())) {
 // an agent has requested an introduction
 doIntroduction(msg.getSender());
 }
 }
 else {
 // if no message is arrived, block the behaviour
 block();
 }
 }
 });
 }
 catch (Exception e) {
 System.out.println("Saw exception in HostAgent: " + e);
 e.printStackTrace();
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (3 of 8) [7/24/2002 10:06:24 PM]

 }

 // Internal implementation methods
 //////////////////////////////////

 /**
 * Setup the UI, which means creating and showing the main frame.
 */
 private void setupUI() {
 m_frame = new HostUIFrame(this);

 m_frame.setSize(400, 200);
 m_frame.setLocation(400, 400);
 m_frame.setVisible(true);
 m_frame.validate();
 }

 /**
 * Invite a number of guests, as determined by the given parameter. Clears old
 * state variables, then creates N guest agents. A list of the agents is maintained,
 * so that the host can tell them all to leave at the end of the party.
 *
 * @param nGuests The number of guest agents to invite.
 */
 protected void inviteGuests(int nGuests) {
 // remove any old state
 m_guestList.clear();
 m_guestCount = 0;
 m_rumourCount = 0;
 m_introductionCount = 0;
 m_partyOver = false;
 ((HostUIFrame) m_frame).lbl_numIntroductions.setText("0");
 ((HostUIFrame) m_frame).prog_rumourCount.setValue(0);
 ((HostUIFrame) m_frame).lbl_rumourAvg.setText("0.0");

 // notice the start time
 m_startTime = System.currentTimeMillis();

 // try first to ensure that the DF has finished deregistering the old guests
 if (checkDF()) {

 setPartyState("Inviting guests");

 try {
 for (int i = 0; i < nGuests; i++) {
 // create a new agent
 Agent guest = new GuestAgent();
 guest.doStart("guest_" + i);

 // keep the guest's ID on a local list
 m_guestList.add(guest.getAID());
 }
 }
 catch (Exception e) {
 System.err.println("Exception while adding guests: " + e);
 e.printStackTrace();
 }
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (4 of 8) [7/24/2002 10:06:24 PM]

 }

 /**
 * End the party: set the state variables, and tell all the guests to leave.
 */
 protected void endParty() {
 setPartyState("Party over");
 m_partyOver = true;

 // log the duration of the run
 System.out.println("Simulation run complete. NGuests = " + m_guestCount + ",
time taken = " +
 m_avgFormat.format(((double) System.currentTimeMillis() -
m_startTime) / 1000.0) + "s");

 // send a message to all guests to tell them to leave
 for (Iterator i = m_guestList.iterator(); i.hasNext();) {
 ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
 msg.setContent(GOODBYE);

 msg.addReceiver((AID) i.next());

 send(msg);
 }

 m_guestList.clear();
 }

 /**
 * Shut down the host agent, including removing the UI and deregistering
 * from the DF.
 */
 protected void terminateHost() {
 try {
 if (!m_guestList.isEmpty()) {
 endParty();
 }

 DFService.deregister(this);
 m_frame.dispose();
 doDelete();
 }
 catch (Exception e) {
 System.err.println("Saw FIPAException while terminating: " + e);
 e.printStackTrace();
 }
 }

 /**
 * Start the conversation in the party. Tell a random guest a rumour, and
 * select two random guests and introduce them to each other.
 */
 protected void beginConversation() {
 // start a rumour
 ACLMessage rumour = new ACLMessage(ACLMessage.INFORM);
 rumour.setContent(RUMOUR);
 rumour.addReceiver(randomGuest(null));
 send(rumour);

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (5 of 8) [7/24/2002 10:06:24 PM]

 // introduce two agents to each other
 doIntroduction(randomGuest(null));
 setPartyState("Swinging");
 }

 /**
 * Introduce guest0 to a random other guest. Also updates the introduction
 * count on the UI, and the avg no of introductions per rumour.
 */
 protected void doIntroduction(AID guest0) {
 if (!m_partyOver) {
 AID guest1 = randomGuest(guest0);

 // introduce two guests to each other
 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(INTRODUCE + " " + guest0);
 m.addReceiver(guest1);
 send(m);

 // update the count of introductions on the UI
 m_introductionCount++;
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_numIntroductions.setText(Integer.toString(m_introductionCount));
 }
 });
 updateRumourAvg();
 }
 }

 /**
 * Increment the number of guests that have heard the rumour, and update the UI.
 * If all guests have heard the rumour, end the party.
 */
 protected void incrementRumourCount() {
 m_rumourCount++;
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).prog_rumourCount.setValue(Math.round(100 * m_rumourCount / m_guestCount));
 }
 });
 updateRumourAvg();

 // when all the guests have heard the rumour, the party ends
 if (m_rumourCount == m_guestCount) {
 // simulate the user clicking stop when the guests have all heard the rumour
 try {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).btn_stop_actionPerformed(null);
 }
 });
 }
 catch (Exception e) {
 e.printStackTrace();

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (6 of 8) [7/24/2002 10:06:24 PM]

 }
 }
 }

 /**
 * Update the state of the party in the UI
 */
 protected void setPartyState(final String state) {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_partyState.setText(state);
 }
 });
 }

 /**
 * Update the average number of introductions per rumour spread
 * in the UI.
 */
 protected void updateRumourAvg() {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 ((HostUIFrame)
m_frame).lbl_rumourAvg.setText(m_avgFormat.format(((double) m_introductionCount) /
m_rumourCount));
 }
 });
 }

 /**
 * Pick a guest at random who is not the given guest.
 *
 * @param aGuest A guest at the party or null
 * @return A random guest who is not aGuest.
 */
 protected AID randomGuest(AID aGuest) {
 AID g = null;

 do {
 int i = (int) Math.round(Math.random() * (m_guestList.size() - 1));
 g = (AID) m_guestList.get(i);
 } while (g == aGuest);

 return g;
 }

 /**
 * Answer true if the DF has cleared all guests. Note: this approach does
 * not work at the moment.
 */
 protected boolean checkDF() {
 try {
 ServiceDescription sd = new ServiceDescription();
 sd.setType("PartyGuest");
 sd.setName("GuestServiceDescription");
 DFAgentDescription dfd = new DFAgentDescription();

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (7 of 8) [7/24/2002 10:06:24 PM]

 dfd.addServices(sd);

 DFAgentDescription[] agents = DFService.search(this, dfd);

 // if not clear, warn user
 if (agents.length > 0) {
 JOptionPane.showMessageDialog(m_frame, "DF has not finished removing old
guest agents, please be patient", "Warning", JOptionPane.WARNING_MESSAGE);
 }
 else {
 return true;
 }
 }
 catch (Exception e) {
 System.err.println("Exception: " + e);
 e.printStackTrace();
 }

 return false;
 }

 //==
 // Inner class definitions
 //==

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java (8 of 8) [7/24/2002 10:06:24 PM]

/***
 * Source code information
 * -----------------------
 * Original author Ian Dickinson, HP Labs Bristol
 * Author email Ian_Dickinson@hp.com
 * Package
 * Created 1 Oct 2001
 * Filename $RCSfile: $
 * Revision $Revision: $
 * Release status Experimental. $State: $
 *
 * Last modified on $Date: $
 * by $Author: $
 *
 * Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
 ***/

// Package
///////////////
package com.hp.hpl.jade_test;

// Imports
///////////////
import java.awt.*;
import javax.swing.*;
import java.beans.*;
import javax.swing.event.*;
import java.awt.event.*;

import jade.core.behaviours.OneShotBehaviour;

/**
 * TODO: Class comment.
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */
public class HostUIFrame
 extends JFrame
{
 // Constants
 //////////////////////////////////

 // Static variables
 //////////////////////////////////

 // Instance variables
 //////////////////////////////////

 BorderLayout borderLayout1 = new BorderLayout();
 JPanel pnl_main = new JPanel();
 JButton btn_Exit = new JButton();
 Component component3;
 JButton btn_stop = new JButton();
 Component component2;
 JButton btn_start = new JButton();
 Box box_buttons;

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java (1 of 5) [7/24/2002 10:06:25 PM]

 JPanel pnl_numGuests = new JPanel();
 BorderLayout borderLayout3 = new BorderLayout();
 JLabel lbl_numGuests = new JLabel();
 Box box_numGuests;
 JLabel lbl_guestCount = new JLabel();
 JSlider slide_numGuests = new JSlider();
 Component component1;
 Component component4;
 GridLayout gridLayout1 = new GridLayout();
 JLabel jLabel1 = new JLabel();
 JLabel jLabel2 = new JLabel();
 JLabel lbl_numIntroductions = new JLabel();
 JLabel jLabel4 = new JLabel();
 JLabel lbl_partyState = new JLabel();
 Box box1;
 JProgressBar prog_rumourCount = new JProgressBar();
 Component component6;
 Component component5;
 JLabel jLabel3 = new JLabel();
 JLabel lbl_rumourAvg = new JLabel();

 protected HostAgent m_owner;

 // Constructors
 //////////////////////////////////

 public HostUIFrame(HostAgent owner) {
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }

 m_owner = owner;
 }

 // External signature methods
 //////////////////////////////////

 // Internal implementation methods
 //////////////////////////////////

 /**
 * Setup the UI. This code generated by JBuilder designer.
 */
 private void jbInit() throws Exception {
 component3 = Box.createHorizontalStrut(10);
 component2 = Box.createHorizontalStrut(5);
 box_buttons = Box.createHorizontalBox();

 box_numGuests = Box.createHorizontalBox();
 component1 = Box.createGlue();
 component4 = Box.createHorizontalStrut(5);
 box1 = Box.createVerticalBox();
 component6 = Box.createGlue();
 component5 = Box.createGlue();

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java (2 of 5) [7/24/2002 10:06:25 PM]

 this.getContentPane().setLayout(borderLayout1);
 pnl_main.setLayout(gridLayout1);
 btn_Exit.setText("Exit");
 btn_Exit.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_Exit_actionPerformed(e);
 }
 });
 btn_stop.setEnabled(false);
 btn_stop.setText("Stop");
 btn_stop.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_stop_actionPerformed(e);
 }
 });
 btn_start.setText("Start");
 btn_start.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_start_actionPerformed(e);
 }
 });
 this.setTitle("Party Host Agent");
 this.addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 this_windowClosing(e);
 }
 });
 pnl_numGuests.setLayout(borderLayout3);
 lbl_numGuests.setText("No. of guests:");
 lbl_guestCount.setMaximumSize(new Dimension(30, 17));
 lbl_guestCount.setMinimumSize(new Dimension(30, 17));
 lbl_guestCount.setPreferredSize(new Dimension(30, 17));
 lbl_guestCount.setText("10");
 slide_numGuests.setValue(10);
 slide_numGuests.setMaximum(1000);
 slide_numGuests.addChangeListener(new javax.swing.event.ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 slide_numGuests_stateChanged(e);
 }
 });
 gridLayout1.setRows(4);
 gridLayout1.setColumns(2);
 jLabel1.setToolTipText("");
 jLabel1.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel1.setText("Party state: ");
 jLabel2.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel2.setText("No. of introductions: ");
 lbl_numIntroductions.setBackground(Color.white);
 lbl_numIntroductions.setText("0");
 jLabel4.setToolTipText("");
 jLabel4.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel4.setText("Guests who have heard rumour: ");
 lbl_partyState.setBackground(Color.white);
 lbl_partyState.setText("Not started");
 prog_rumourCount.setForeground(new Color(0, 255, 128));
 prog_rumourCount.setStringPainted(true);
 jLabel3.setToolTipText("");
 jLabel3.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel3.setText("Avg. intros per rumour: ");
 lbl_rumourAvg.setToolTipText("");
 lbl_rumourAvg.setText("0.0");

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java (3 of 5) [7/24/2002 10:06:25 PM]

 this.getContentPane().add(pnl_main, BorderLayout.CENTER);
 pnl_main.add(jLabel1, null);
 pnl_main.add(lbl_partyState, null);
 pnl_main.add(jLabel2, null);
 pnl_main.add(lbl_numIntroductions, null);
 pnl_main.add(jLabel4, null);
 pnl_main.add(box1, null);
 box1.add(component5, null);
 box1.add(prog_rumourCount, null);
 box1.add(component6, null);
 pnl_main.add(jLabel3, null);
 pnl_main.add(lbl_rumourAvg, null);
 this.getContentPane().add(pnl_numGuests, BorderLayout.NORTH);
 pnl_numGuests.add(box_numGuests, BorderLayout.CENTER);
 pnl_numGuests.setBorder(BorderFactory.createCompoundBorder(
BorderFactory.createEtchedBorder(), BorderFactory.createEmptyBorder(2, 2, 2, 2)));

 box_numGuests.add(lbl_numGuests, null);
 box_numGuests.add(slide_numGuests, null);
 box_numGuests.add(lbl_guestCount, null);
 this.getContentPane().add(box_buttons, BorderLayout.SOUTH);
 box_buttons.add(component2, null);
 box_buttons.add(btn_start, null);
 box_buttons.add(component3, null);
 box_buttons.add(btn_stop, null);
 box_buttons.add(component1, null);
 box_buttons.add(btn_Exit, null);
 box_buttons.add(component4, null);
 lbl_partyState.setForeground(Color.black);
 lbl_numIntroductions.setForeground(Color.black);
 lbl_rumourAvg.setForeground(Color.black);
 }

 /**
 * When the slider for the num guests changes, we update the label.
 */
 void slide_numGuests_stateChanged(ChangeEvent e) {
 lbl_guestCount.setText(Integer.toString(slide_numGuests.getValue()));
 }

 /**
 * When the user clicks on start, notify the host to begin the party.
 */
 void btn_start_actionPerformed(ActionEvent e) {
 enableControls(true);

 // add a behaviour to the host to start the conversation going
 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {
 ((HostAgent) myAgent).inviteGuests(
slide_numGuests.getValue());
 }
 });
 }

 /**
 * When the user clicks on stop, tell the host to stop the party.
 */

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java (4 of 5) [7/24/2002 10:06:25 PM]

 void btn_stop_actionPerformed(ActionEvent e) {
 enableControls(false);

 // add a behaviour to the host to end the party
 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {
 ((HostAgent) myAgent).endParty();
 }
 });
 }

 /**
 * Maintains the enbabled/disabled state of key controls, depending
 * on whether the sim is running or stopped.
 */
 void enableControls(boolean starting) {
 btn_start.setEnabled(!starting);
 btn_stop.setEnabled(starting);
 slide_numGuests.setEnabled(!starting);
 btn_Exit.setEnabled(!starting);
 }

 /**
 * When the user clicks the exit button, tell the host to shut down.
 */
 void btn_Exit_actionPerformed(ActionEvent e) {
 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {
 ((HostAgent) myAgent).terminateHost();
 }
 });
 }

 /**
 * The window closing event is the same as clicking exit.
 */
 void this_windowClosing(WindowEvent e) {
 // simulate the user having clicked exit
 btn_Exit_actionPerformed(null);
 }

 //==
 // Inner class definitions
 //==

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java (5 of 5) [7/24/2002 10:06:25 PM]

/***
 * Source code information
 * -----------------------
 * Original author Ian Dickinson, HP Labs Bristol
 * Author email Ian_Dickinson@hp.com
 * Package
 * Created 1 Oct 2001
 * Filename $RCSfile: $
 * Revision $Revision: $
 * Release status Experimental. $State: $
 *
 * Last modified on $Date: $
 * by $Author: $
 *
 * Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
 ***/

// Package
///////////////
package com.hp.hpl.jade_test;

// Imports
///////////////

import jade.core.Agent;
import jade.core.AID;

import jade.domain.FIPAException;

import jade.lang.acl.ACLMessage;
import jade.lang.acl.MessageTemplate;

import jade.core.behaviours.CyclicBehaviour;

import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.DFService;

/**
 * TODO: Class comment.
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */
public class GuestAgent
 extends Agent
{
 // Constants
 //////////////////////////////////

 // Static variables
 //////////////////////////////////

 // Instance variables
 //////////////////////////////////

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java (1 of 4) [7/24/2002 10:06:26 PM]

 protected boolean m_knowRumour = false;

 // Constructors
 //////////////////////////////////

 // External signature methods
 //////////////////////////////////

 /**
 * Set up the agent. Register with the DF, and add a behaviour to process
 * incoming messages. Also sends a message to the host to say that this
 * guest has arrived.
 */
 protected void setup() {
 try {
 // create the agent descrption of itself
 ServiceDescription sd = new ServiceDescription();
 sd.setType("PartyGuest");
 sd.setName("GuestServiceDescription");
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 dfd.addServices(sd);

 // register the description with the DF
 DFService.register(this, dfd);

 // notify the host that we have arrived
 ACLMessage hello = new ACLMessage(ACLMessage.INFORM);
 hello.setContent(HostAgent.HELLO);
 hello.addReceiver(new AID("host", false));
 send(hello);

 // add a Behaviour to process incoming messages
 addBehaviour(new CyclicBehaviour(this) {
 public void action() {
 // listen if a greetings message arrives
 ACLMessage msg = receive(
MessageTemplate.MatchPerformative(ACLMessage.INFORM));

 if (msg != null) {
 if (HostAgent.GOODBYE.equals(msg.getContent())) {
 // time to go
 leaveParty();
 }
 else if (msg.getContent().startsWith(
HostAgent.INTRODUCE)) {
 // I am being introduced to another guest
 introducing(msg.getContent().substring(
msg.getContent().indexOf(" ")));
 }
 else if (msg.getContent().startsWith(HostAgent.HELLO
)) {
 // someone saying hello
 passRumour(msg.getSender());
 }
 else if (msg.getContent().startsWith(
HostAgent.RUMOUR)) {
 // someone passing a rumour to me
 hearRumour();

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java (2 of 4) [7/24/2002 10:06:26 PM]

 }
 else {
 System.out.println("Guest received unexpected
message: " + msg);
 }
 }
 else {
 // if no message is arrived, block the behaviour
 block();
 }
 }
 });
 }
 catch (Exception e) {
 System.out.println("Saw exception in GuestAgent: " + e);
 e.printStackTrace();
 }

 }

 // Internal implementation methods
 //////////////////////////////////

 /**
 * To leave the party, we deregister with the DF and delete the agent from
 * the platform.
 */
 protected void leaveParty() {
 try {
 DFService.deregister(this);
 doDelete();
 }
 catch (FIPAException e) {
 System.err.println("Saw FIPAException while leaving party: " + e);
 e.printStackTrace();
 }
 }

 /**
 * Host is introducing this guest to the named guest. Say hello to the guest,
 * and ask the host for another introduction.
 *
 * @param agentName The string form of the AID of the other guest.
 */
 protected void introducing(String agentName) {
 // get the AID of the guest and send them a hello message
 AID aID = new AID(agentName.substring(agentName.lastIndexOf(' ') + 1,
agentName.indexOf(')')), true);

 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.HELLO);
 m.addReceiver(aID);

 send(m);

 // request another introduction from the host
 ACLMessage m1 = new ACLMessage(ACLMessage.REQUEST);
 m1.setContent(HostAgent.INTRODUCE);
 m1.addReceiver(new AID("host", false));

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java (3 of 4) [7/24/2002 10:06:26 PM]

 send(m1);
 }

 /**
 * Pass the rumour to the named guest, if we know it.
 *
 * @param agent Another guest we will send the rumour message to, but only if we
 * know the rumour already.
 */
 protected void passRumour(AID agent) {
 if (m_knowRumour) {
 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.RUMOUR);
 m.addReceiver(agent);
 send(m);
 }
 }

 /**
 * Someone has told this agent the rumour, we tell the host that we now know it.
 */
 protected void hearRumour() {
 // if I hear the rumour for the first time, tell the host
 if (!m_knowRumour) {
 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.RUMOUR);
 m.addReceiver(new AID("host", false));
 send(m);

 m_knowRumour = true;
 }
 }

 //==
 // Inner class definitions
 //==

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java (4 of 4) [7/24/2002 10:06:26 PM]

The GUI for the Party Host Agent

This example shows how (one way) to connect a GUI to a JADE agent.

/***
 * Source code information
 * -----------------------
 * Original author Ian Dickinson, HP Labs Bristol
 * Author email Ian_Dickinson@hp.com
 * Package
 * Created 1 Oct 2001
 * Filename $RCSfile: $
 * Revision $Revision: $
 * Release status Experimental. $State: $
 *
 * Last modified on $Date: $
 * by $Author: $
 *
 * Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
 ***/
// Package
///////////////

package com.hp.hpl.jade_test;

// Imports
///////////////

import java.awt.*;
import javax.swing.*;
import java.beans.*;
import javax.swing.event.*;
import java.awt.event.*;
import jade.core.behaviours.OneShotBehaviour;

/**
 * TODO: Class comment.
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */

public class HostUIFrame
 extends JFrame
{
 // Instance variables

 BorderLayout borderLayout1 = new BorderLayout();
 JPanel pnl_main = new JPanel();
 JButton btn_Exit = new JButton();
 Component component3;
 JButton btn_stop = new JButton();
 Component component2;
 JButton btn_start = new JButton();

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (1 of 6) [7/24/2002 10:06:27 PM]

 Box box_buttons;
 JPanel pnl_numGuests = new JPanel();
 BorderLayout borderLayout3 = new BorderLayout();
 JLabel lbl_numGuests = new JLabel();
 Box box_numGuests;
 JLabel lbl_guestCount = new JLabel();
 JSlider slide_numGuests = new JSlider();
 Component component1;
 Component component4;
 GridLayout gridLayout1 = new GridLayout();
 JLabel jLabel1 = new JLabel();
 JLabel jLabel2 = new JLabel();
 JLabel lbl_numIntroductions = new JLabel();
 JLabel jLabel4 = new JLabel();
 JLabel lbl_partyState = new JLabel();
 Box box1;
 JProgressBar prog_rumourCount = new JProgressBar();
 Component component6;
 Component component5;
 JLabel jLabel3 = new JLabel();
 JLabel lbl_rumourAvg = new JLabel();

 protected HostAgent m_owner;

 // Constructors
 //////////////////////////////////

 public HostUIFrame(HostAgent owner) {
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 m_owner = owner;
 }

 // Internal implementation methods

 //////////////////////////////////
 /**
 * Setup the UI. This code generated by JBuilder designer.
 *
 */
 private void jbInit() throws Exception {
 component3 = Box.createHorizontalStrut(10);
 component2 = Box.createHorizontalStrut(5);
 box_buttons = Box.createHorizontalBox();
 box_numGuests = Box.createHorizontalBox()
 component1 = Box.createGlue();

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (2 of 6) [7/24/2002 10:06:27 PM]

 component4 = Box.createHorizontalStrut(5);
 box1 = Box.createVerticalBox();
 component6 = Box.createGlue();
 component5 = Box.createGlue();
 this.getContentPane().setLayout(borderLayout1);
 pnl_main.setLayout(gridLayout1);
 btn_Exit.setText("Exit");

 btn_Exit.addActionListener(new
java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_Exit_actionPerformed(e);
 }
 });

 btn_stop.setEnabled(false);
 btn_stop.setText("Stop");

 btn_stop.addActionListener(new
java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_stop_actionPerformed(e);
 }
 });

 btn_start.setText("Start");

 btn_start.addActionListener(new
java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 btn_start_actionPerformed(e);
 }
 });

 this.setTitle("Party Host Agent");

 this.addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 this_windowClosing(e);
 }
 });

 pnl_numGuests.setLayout(borderLayout3);
 lbl_numGuests.setText("No. of guests:");
 lbl_guestCount.setMaximumSize(new Dimension(30, 17));
 lbl_guestCount.setMinimumSize(new Dimension(30, 17));
 lbl_guestCount.setPreferredSize(new Dimension(30, 17));
 lbl_guestCount.setText("10");
 slide_numGuests.setValue(10);
 slide_numGuests.setMaximum(1000);

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (3 of 6) [7/24/2002 10:06:27 PM]

 slide_numGuests.addChangeListener(new javax.swing.event.ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 slide_numuests_stateChanged(e);
 }
 });

 gridLayout1.setRows(4);
 gridLayout1.setColumns(2);
 jLabel1.setToolTipText("");
 jLabel1.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel1.setText("Party state: ");
 jLabel2.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel2.setText("No. of introductions: ");
 lbl_numIntroductions.setBackground(Color.white);
 lbl_numIntroductions.setText("0");
 jLabel4.setToolTipText("");
 jLabel4.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel4.setText("Guests who have heard rumour: ");
 lbl_partyState.setBackground(Color.white);
 lbl_partyState.setText("Not started");
 prog_rumourCount.setForeground(new Color(0, 255, 128));
 prog_rumourCount.setStringPainted(true);
 jLabel3.setToolTipText("");
 jLabel3.setHorizontalAlignment(SwingConstants.RIGHT);
 jLabel3.setText("Avg. intros per rumour: ");
 lbl_rumourAvg.setToolTipText("");
 lbl_rumourAvg.setText("0.0");
 this.getContentPane().add(pnlin, BorderLayout.CENTER);
 pnl_main.add(jLabel1, null);
 pnl_main.add(lbl_partyState, null);
 pnl_main.add(jLabel2, null);
 pnl_main.add(lbl_numIntroductions, null);
 pnl_main.add(jLabel4, null);
 pnl_main.add(box1, null);

 box1.add(component5, null);
 box1.add(prog_rumourCount, null);
 box1.add(component6, null);
 pnl_main.add(jLabel3, null);
 pnl_main.add(lbl_rumourAvg, null);
 this.getContentPane().add(pnl_numGuests, BorderLayout.NORTH);
 pnl_numGuests.add(box_numGuests, BorderLayout.CENTER);
 pnl_numGuests.setBorder(BorderFactory.createCompoundBorder(
BorderFactory.createEtchedBorder(), BorderFactory.createEmptyBorder(2, 2, 2, 2))
);

 box_numGuests.add(lbl_numGuests, null);
 box_numGuests.add(slide_numGuests, null);
 box_numGuests.add(lbl_guestCount, null);
 this.getContentPane().add(box_buttons, BorderLayout.SOUTH);
 box_buttons.add(component2, null);
 box_buttons.add(btn_start, null);
 box_buttons.add(component3, null);
 box_buttons.add(btn_stop, null);
 box_buttons.add(component1, null);

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (4 of 6) [7/24/2002 10:06:27 PM]

 box_buttons.add(btn_Exit, null);
 box_buttons.add(component4, null);
 lbl_partyState.setForeground(Color.black);
 lbl_numIntroductions.setForeground(Color.black);
 lbl_rumourAvg.setForeground(Color.black);

 }

 /**
 * When the slider for the num guests changes, we update the
label.

 */
 void slide_numGuests_stateChanged(ChangeEvent e) {
 lbl_guestCount.setText(Integer.toString(
slide_numGuests.getValue()));
 }
 /**
 * When the user clicks on start, notify the host to begin the
party.
 */
 void btn_start_actionPerformed(ActionEvent e) {
 enableControls(true);

 // add a behaviour to the host to start the conversation
going

 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {
 ((HostAgent)
myAgent).inviteGuests(slide_numGuests.getValue());

 }
 });

 }

 /**
 * When the user clicks on stop, tell the host to stop the
party.
 */
 void btn_stop_actionPerformed(ActionEvent e) {
 enableControls(false);

 // add a behaviour to the host to end the party
 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (5 of 6) [7/24/2002 10:06:27 PM]

javascript:onClick=popup("JadeMyAgent.html")

 ((HostAgent)
myAgent).endParty();
 }
 });
 }
 /**
 * Maintains the enbabled/disabled state of key controls,
depending
 * on whether the sim is running or stopped.
 */
 void enableControls(boolean starting) {
 btn_start.setEnabled(!starting);
 btn_stop.setEnabled(starting);
 slide_numGuests.setEnabled(!starting);
 btn_Exit.setEnabled(!starting);
 }

 /**
 * When the user clicks the exit button, tell the host to shut
down.
 */
 void btn_Exit_actionPerformed(ActionEvent e)
 m_owner.addBehaviour(new OneShotBehaviour() {
 public void action() {
 ((HostAgent)
myAgent).terminateHost();
 }
 });
 }

 /**
 * The window closing event is the same as clicking exit.
 */
 void this_windowClosing(WindowEvent e) {
 // simulate the user having clicked exit
 btn_Exit_actionPerformed(null);
 }

}

JADE Party GUI

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEPartyGUI.html (6 of 6) [7/24/2002 10:06:27 PM]

Party Guest Agent
This agent is the party goer. The Host agent makes n copies of this and sets them to telling the rumour to one another.

/***
* Source code information
* -----------------------
* Original author Ian Dickinson, HP Labs Bristol
* Author email Ian_Dickinson@h.com
* Package
* Created 1 Oct 2001
* Filename $RCSfile: $
* Revision $Revision: $
* Release status Experimental. $State: $
*
* Last modified on $Date: $
* by $Author: $
*
* Copyright (c) 2001 Hewlett-Packard Company, all rights reserved.
***/
// Package
///////////////

package com.hp.hpl.jade_test;

// Imports
///////////////
import jade.core.Agent;
import jade.core.AID;
import jade.domain.FIPAException;
import jade.lang.acl.ACLMessage;
mport jade.lang.acl.MessageTemplate;
import jade.core.behaviours.CyclicBehaviour;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.DFService;

/**
 * TODO: Class comment.
 *
 * @author Ian Dickinson, HP Labs (email)
 * @version CVS info: $Id: $
 */
public class GuestAgent
 extends Agent
{

JADE Party Guest Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEGuestAgent.html (1 of 5) [7/24/2002 10:06:29 PM]

 // Instance variables
 //////////////////////////////////

 protected boolean m_knowRumour = false;

 // External signature methods
 ////////////////////////////////
 /**
 * Set up the agent. Register with the DF, and add a behaviour
to process
 * incoming messages. Also sends a message to the host to say
that this
 * guest has arrived.
 */

 protected void setup() {
 try {
 // create the agent descrption of itself
 ServiceDescription sd = new ServiceDescription();
 sd.setType("PartyGuest");
 sd.setName("GuestServiceDescription");
 DFAgentDescription dfd = new DFAgentDescription();
 dfd.setName(getAID());
 dfd.addServices(sd);

 // register the description with the DF
 DFService.register(this, dfd);

 // notify the host that we have arrived
 ACLMessage hello = new ACLMessage(ACLMessage.INFORM
);
 hello.setContent(HostAgent.HELLO);
 hello.addReceiver(new AID("host", false);

 send(hello);

 // add a Behaviour to process incoming messages
 addBehaviour(new CyclicBehaviour(this) {
 public void action() {

 // listen if a greetings message
arrives
 ACLMessage msg = receive(
MessageTemplate.MatchPerformative(ACLMessage.INFORM));

JADE Party Guest Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEGuestAgent.html (2 of 5) [7/24/2002 10:06:29 PM]

 if (msg != null) {
 if (HostAgent.GOODBYE.equals(
msg.getContent())) {
 // time to go
 leaveParty();
 }
 else if
(msg.getContent().startsWith(HostAgent.INTRODUCE)) {
 // I am being introduced
to another guest
 introducing(
msg.getContent().substring(msg.getContent().indexOf(" ")));
 }
 else if
(msg.getContent().startsWith(HostAgent.HELLO)) {
 // someone saying hello
 passRumour(
msg.getSender());
 }
 else if
(msg.getContent().startsWith(HostAgent.RUMOUR)) {
 // someone passing a
rumour to me
 hearRumour();
 }
 else {
 System.out.println("Guest
received unexpected message: " + msg);
 }
 }
 else {
 // if no message is arrived,
block the behaviour
 block();
 }
 }
 });
 }

 catch (Exception e) {
 System.out.println("Saw exception in GuestAgent: " +
e);
 e.printStackTrace();
 }

JADE Party Guest Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEGuestAgent.html (3 of 5) [7/24/2002 10:06:29 PM]

 }

 // Internal implementation methods
 //////////////////////////////////
 /**
 * To leave the party, we deregister with the DF and delete
the agent from
 * the platform.
 */
 protected void leaveParty() {
 try {
 DFService.deregister(this);
 doDelete();
 }
 catch (FIPAException e) {
 System.err.println("Saw FIPAException while leaving
party: " + e);
 e.printStackTrace();
 }
 }

 /**
 * Host is introducing this guest to the named guest. Say
hello to the guest,
 * and ask the host for another introduction.
 *
 * @param agentName The string form of the AID of the other
guest.
 */
 protected void introducing(String agentName) {
 // get the AID of the guest and send them a hello message
 AID aID = new AID(agentName.substring(
agentName.lastIndexOf(' ') + 1, agentName.indexOf(')')), true
);

 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.HELLO);
 m.addReceiver(aID);

 send(m);

 // request another introduction from the host
 ACLMessage m1 = new ACLMessage(ACLMessage.REQUEST);
 m1.setContent(HostAgent.INTRODUCE);
 m1.addReceiver(new AID("host", false));

JADE Party Guest Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEGuestAgent.html (4 of 5) [7/24/2002 10:06:29 PM]

 send(m1);
 }

 /**
 * Pass the rumour to the named guest, if we know it.
 *
 * @param agent Another guest we will send the rumour message
to, but only if we
 * know the rumour already.
 */
 protected void passRumour(AID agent) {
 if (m_knowRumour) {
 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.RUMOUR);
 m.addReceiver(agent);

 send(m);
 }
 }
 /**
 * Someone has told this agent the rumour, we tell the host
that we now know it.
 */
 protected void hearRumour() {

 // if I hear the rumour for the first time, tell the host
 if (!m_knowRumour) {

 ACLMessage m = new ACLMessage(ACLMessage.INFORM);
 m.setContent(HostAgent.RUMOUR);
 m.addReceiver(new AID("host", false));

 send(m);

 m_knowRumour = true;
 }
 }

}

JADE Party Guest Agent

http://www.ryerson.ca/~dgrimsha/courses/cps720/JADEGuestAgent.html (5 of 5) [7/24/2002 10:06:29 PM]

Introduction to XML
XML stands for Extensible Markup Language. Like HTML it is derived from a more genral markup
language called SGML, Standard General Markup Language. Both HTML and XML are defined in terms
of SGML constructs.

Overview from Sun's Tutorial

What does XML look like? A configuration file for a web server (parsed by IE).

Glossary of XML terms

XML Alphabetic Index

XML is quite new and people see many possibilities for its use. The Sun Tutorial discusses some. Here is
another view of the applicablility of XML.

to describe metacontent of documents or on-line resources●

to publish and exchange database content●

to be a format for exchanging information between application programs (e.g., agents).●

Here are a few points about each of these categories.

Metacontent of document and on-line resources
It is said that 92% of the information belonging to American corporations is stored in text documents. To
computers, these are just strings of characters, or worse, pictures made up of pixels (after scanning, and
without character recognition). To humans, these documents (all documents in fact) have structure which
humans can (usually) see, and this structure helps humans to understand the documents.

In other words, humans interpret documents, aided by their structures. Machines cannot interpret these
documents. In a sense, with regard to documents, computers are just glorified typewriters. Some people
claim that the surprising failure of computers to increase the productivity of white collar workers is due
to this failure of machine understanding of document structure. If computers hand some knowledge of
this structure, more intelligent programs could be written to make use of documents by machines, as well
as by people.

A markiup language puts tags in a text document to clarify its structure. The most well known markup
language is HTML. HTML has a large set of tags which control the visual structure of a document, that
is, the layout of the document. Clever layout allows humans to better understand the document. But
layout understanding is not content understanding. HTML does not help structure the understanding of a
document by machines.

Furthermore, HTML is standardized. Users cannot bend it to their own purposes. What is needed is a
more flexible language, capable of structuring documents according to different critera, according to
different semantics or ontologies. SGML has this capability but it is so large and complex that only a few
gurus can use it. XML is a simplified version of SGML which can be used by mere mortals.

Introduction to XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlIntro.html (1 of 3) [7/24/2002 10:06:30 PM]

http://java.sun.com/xml/docs/tutorial/overview/1_xml.html
http://java.sun.com/xml/docs/tutorial/glossary.html
http://java.sun.com/xml/docs/tutorial/alphaIndex.html

Because XML is extensible, it allows different documents to be structured in different ways, depending
on the needs of readers, machine or human, as forseen by the person creating the markup.

Example.

Consider you want to search on the Web for articles or speeches by Bill Clinton. On the Web these
documents are probably using HTML markups. That makes them look nice but for search purposes,
HTML markups are not too useful. (Actually, you can put keywords in the header to help the search.)
You will probably get thousands of hits, most of them "noise".

This search would be much more productive if there were an AUTHOR tag in HTML, but there isn't.
What one needs is some kind of markup language which structures knowledge from a "library ontology".
XML allows such a language to be created. XML is a language for creating custom markup languages.

Databases
Using HTML, data extracted from backend databases is ususally displayed in tables. This is rather rigid,
and furthermore, the data is hard to manipulate because the table it is in just looks like a table, it is
passive, not active. You can't do anything with it, other than look at it.

You could write a program using HTML's various TABLE tags to extract values from certain rows and
colums and, say, add them. But a subsequent changes in layout could invalidate the calculation.

The trouble is that the content and the layout are mixed together. In the case of XML, XML concerns
content structure, and the layout structure is given to another languages called XSL, Extensible Style
Language. Meaning is separated from appearance.

Messaging
Here is the situation most related to Software Agents. XML has the potential to be a kind of "lingua
franca", a universal language for communication among all kinds of agents, human, organizational (B2B
- business to business), or artificial.

Many large businesses, such as banks, today use EDI (Electronic Data Interchange) for B2B
commuications. This uses an arcane language called EDIFACT. These systems are expensive and hard to
maintain. They are out of the reach for small and medium businesses. They are looking to the Internet.

Two problem and their solutions

Security. Being solved by modern encryption techniques.●

Agreement on a standard. Here XML comes into the picture.●

Introduction to XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlIntro.html (2 of 3) [7/24/2002 10:06:30 PM]

The DTD and the Parser
You might think that XML is too flexible. Everyone will create private languages. This is not the case
because you can tell users how to use your private language. You send along with your XML text, a
DTD, Document Type Definition. This instructs the user's XML parser how to interprert your language's
structure. The user program can then have a program (often in Java) which uses the output of the parser.

Using XML with Java
The Sun tutorial shows two main ways of using XML with Java. Of course it uses the Sun XML parser.

The Java/XML Tutorial from Sun

Introduction to XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlIntro.html (3 of 3) [7/24/2002 10:06:30 PM]

http://java.sun.com/xml/docs/tutorial/

<?xml version="1.0" encoding="ISO-8859-1"?>

<!--

This file is the default configuration file for the
JSWDK server. Following is a brief overview of the
JSWDK server configuration options.

==

webserver dtd and xml:

Element
 Attribute(s)
 Element(s)
==

WebServer - A collection of web services managed by a
 single HTTP Web Server instance.

 id - A Unique Web Server id.
 adminPort - The Web Server administration port
 number which is used as an external
 Web Server hook to invoke administrative
 tasks such as gracefully shutting down
 the web server (note: these services
 are presently not specified and as such
 are subject to change).

 Service - A managed web service.

Service - A distinct web resource which is associated
 with a fully qualified URI.

 id - A unique Service id.
 port - The port number with which the Service is
 registered.
 hostName - The system host name in which the Service
 is hosted.
 inet - The system ip address in which the Service is
 hosted.
 docBase - The Service document base.
 workDir - The Service work directory.
 workDirIsPersistent - Indicator as to whether or not
 the Web Server should return
 the associated work directory
 to the host system upon shut
 down.

 WebApplication - A managed association of web resources.

WebApplication - A collection of associated web resources
 which correspond to a distinct fully
 qualified URI.

 id - A unique Web Application id.
 mapping - The URI prefix with which this Web Application
 is associated with relative to the hosted
 Service.
 docBase - The Web Application document base.
 maxInactiveInterval - The maximum session timeout

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml (1 of 4) [7/24/2002 10:06:31 PM]

 period.

==

command line options:

 -help This Message
 -config [file|url] Read config from URL
 -noconfig Do not read config
 -adminport [int] Administration Port
 -serviceid [str] Service Id
 -port[:id|:*] [int] Listen on int [for Service id]
 -inet[:id|:*] [inetaddr] Bind server to inet [for Service id]
 -hostname[:id|:*] [name] Use name as hostname [for Service id]
 -docbase[:id|:*] [name] Use URL as the content base [for Service id]
 -workdir[:id|:*] [name] Use scratch file [for Service id]

==

configuration attribute details:

 All "id" values must be unique with a collection
 of like elements.

 Most configuration values can be declared in one
 of following three means respectively:

 command line
 xml declaration
 default as specified by the dtd and/or
 application

 Many fields have default falues which are either
 specified in the associated dtd or within JSWDK.
 These default values can be changed by modifying
 the included webserver.xml and fully qualifying
 the appropriate element attributes.

 A JSWDK server can be started on any platform
 with no changes to the provided default
 webserver.xml configuration.

 The JSWDK server will create a default
 configuration file upon initialization if it does
 not find one either by looking in the JSWDK
 install directory for the file "webserver.xml or
 the "-config [file | url]" command line option.

 If an explicit WebServer.adminPort value is not
 specified then a series of 5 attempts will be
 made to bind to an available port number randomly
 chosen between the range of 2048 and 8192. Upon
 success, the chosen administration port is logged
 in the "webserverlog.txt" file. If an administration
 port cannot be determined, the web server will
 not be started.

 The WebServer.id field is likely to be removed
 in a future release.

 The Service.id field is required as the key for

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml (2 of 4) [7/24/2002 10:06:31 PM]

 the command line arguments. Duplicate Server.port
 entries will cause the subsequent duplicate Services
 to be disregarded.

 The Server.hostName is opional and a value of
 "localhost" will be used if it remains
 unspecified.

 A Server.port field must be unique within a
 collection WebServer configuration. Subsequent
 Service instances specified with duplicate port
 numbers will fail initialization.

 The Server.docBase is the file system location
 which is accessed by the Web Server to route
 inbound http requests to a specific Service instance
 and not picked up by an associated Web Application.
 A document base can be specified as relative or
 absolute and need not reside within the JSWDK install
 directory. It should be possible to specify URI
 addresses as well effectively turning this WebServer
 Service instance into a proxy server although this is
 experimental with this release.

 The Server.workDir specfies the local file system
 directory available to the Web Server as needed to
 use as a cache, archive object persistence among
 other tasks. The work directory can be specified
 as relative or absolute and need not reside within
 the JSWDK install directory.

 The Server.workDirIsPersistent is an indicator to
 the WebServer to either save or return to the host
 system the associated work directory. This field is
 likely to be renamed to "isWorkDirPersistent" in a
 future release.

 The WebApplication.id field is likely to be
 removed in a future release.

 The WebApplication.mapping is used to specify the
 URI prefix with which this Web Application
 instance is to be associated with. The specified
 value of this field must be unique amongst a
 collection managed by a single Service instance.
 This field is likely to be renamed to "path" in a
 future release.

 The WebApplication.docBase is the file system
 location which is accessed by the Web Server to
 service inbound http requests routed to this
 specific Web Application instance. This field
 shares many of the attributes specified in the
 Server.docBase description above.

 The WebApplication.maxInactiveInterval is not
 utilized at this time and will likely specify
 the "session time out in minutes" threshold in
 a future release.

==

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml (3 of 4) [7/24/2002 10:06:31 PM]

Miscellany:

 Any number of Service and/or Web Application
 instances can be readily added to an existing Web
 Server configuration by adding the appropriate and
 valid (as specified by the dtd and associated rules)
 xml details.

==

-->

<!DOCTYPE WebServer [

<!ELEMENT WebServer (Service+)>
<!ATTLIST WebServer
 id ID #REQUIRED
 adminPort NMTOKEN "">

<!ELEMENT Service (WebApplication*)>
<!ATTLIST Service
 id ID #REQUIRED
 port NMTOKEN "8999"
 hostName NMTOKEN ""
 inet NMTOKEN ""
 docBase CDATA "webpages"
 workDir CDATA "work"
 workDirIsPersistent (false | true) "false">

<!ELEMENT WebApplication EMPTY>
<!ATTLIST WebApplication
 id ID #REQUIRED
 mapping CDATA #REQUIRED
 docBase CDATA #REQUIRED
 maxInactiveInterval NMTOKEN "30">
]>

<WebServer id="webServer">
 <Service id="service0">
 <WebApplication id="examples" mapping="/examples" docBase="examples"/>
 </Service>
 <Service id="service1">
 <WebApplication id="cps840a4" mapping="/cps840a4"
docBase="cps840a4/WEB-INF/servlets"/>
 </Service>
</WebServer>

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml (4 of 4) [7/24/2002 10:06:31 PM]

Using XML
The following example illustrates how XML is created and used.

First the designer decides how to structure a document bases on its semantics and ontology. In this example, we have an employee
database ontology.

An XML Source File
File department.xml:

<?xml version="1.0"?>
<!DOCTYPE department SYSTEM "department.dtd">
<department>
 <employee id="J.D">
 <name>John Doe</name>
 <email>John.Doe@foo.ibm.com</email>
 </employee>
 <employee id="B.S">
 <name>Bob Smith</name>
 <email>Bob.Smith@foo.com</email>
 </employee>
 <employee id="A.M">
 <name>Alice Miller</name>
 <url href="http://www.trl.jp.ibm.com/~amiller/"/>
 </employee>
</department>

After roughing this out, perhaps with examples, it must be made precise using a DTD, here callled department.dtd. Here it is.

A DTD
File: department.dtd:

<!ELEMENT department (employee)*>
<!ELEMENT employee (name, (email | url))>
<!ATTLIST employee id CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA #REQUIRED>

The meaning of some of these terms will be discussed later. If the parser is 'non-validating', you do not actually need a DTD.

The Parser
To use this code, an XML parser is necessary. There are many free XML parsers. IBM and Microsoft both supply them. In fact Internet
Explorer 5 has an XML parser built in. You can see this by looking at department.xml with IE5.

department.xml

This just makes the original code look pretty. But clearly IE5 "understands" something about XML. Try clicking department.xml with
Netscape 4.6 to see the difference.

Using XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlUsing.html (1 of 5) [7/24/2002 10:06:32 PM]

The DOM
The standard XML parser outputs a data structure called a Document Object Model (DOM). This is a tree structure. For the above
example, the tree looks like this:

The boxes are inner nodes called elements. The leafs of the treee are strings (called CDATA in XML).

SAX Parsers
There is a second kind of parser called tthe "Simple API for XML" or SAX for short. It does not build a tree. Instead, each element
generates an event which the intepreting program can react to. The interpreting program can execute various callback methods in
response to these events. The process is similar to responding to, say, ActionEvents using an ActionListener and the callback method
actionPerformed.

In the case of SAX, you register interest in certain events with the parser and it calls back appropriate methods in your code when the
events of interest occur.

Using XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlUsing.html (2 of 5) [7/24/2002 10:06:32 PM]

SAX parsers are lightweight and do not need to store the wholle XML document in memory. The drawback is that the elements "whiz
by" as the parse goes on. They generate their events and then are gone. You have to do your thing with the document in one pass. The
DOM on the other had sits there once it is generated and the interperator program can interact with it at leisure.

The DOM method is more useful for programs interacting with a user. On the other hand, SAX is more useful for data exchange
between systems, for example, for agent communication.

Validating Parsers
All XML parsers check the syntax of your XML file. They are much more strict than HTML parsers.

All parsers check for well-formed code. That is, for example, every opening tag has a closing tag. Validating parsers, in addition, try to
check the logical structure as well. For example, a person cannot have two names. This is explicit in the DTD and a validating parser
will catch an error such as this. Or, a tag not defined in the DTD could be present in a syntactically correct way. The validating parser
will catch that too.

Interpretation
The final step in using XML is to write an interpreter of the ontology being represented in the DOM. Interpretation is meaning. The
interpreter provides the semantics just as the parser represents the structure in its DOM output.

Java is a poplular language for writing such interpreters. Its "write once, run anywhere" philosophy is sybiotic to XML ambition to be a
universal language of machine communication.

The "meaning" of the information represented in the XML-DTD-DOM resides in how the interpreter uses the DOM. The example
above is not particularly exciting. The structure itself contains most of the meaning. Once could use the structure, to sort, or pick out
individuals with certain properties, using efficient tree processing algorithms.

A More Complex XML Example
THe following example is developed in chapters 3 and 4 of Brett McLaughlen's book, Java and XML, (O'Reilly, 2000). The example
describes the table of contents for the book.

contents.xml

<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>

<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"

media="wap"?>

<?cocoon-process type="xslt"?>

<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">

<JavaXML:Title>Java and XML</JavaXML:Title>
<JavaXML:Contents>
<JavaXML:Chapter focus="XML">

<JavaXML:Heading>Introduction</JavaXML:Heading>
<JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
<JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
<JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

</JavaXML:Chapter>
<JavaXML:Chapter focus="XML">

<JavaXML:Heading>Creating XML</JavaXML:Heading>

Using XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlUsing.html (3 of 5) [7/24/2002 10:06:32 PM]

<JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
<JavaXML:Topic subSections="2">The Header</JavaXML:Topic>
<JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
<JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>

</JavaXML:Chapter>
<JavaXML:Chapter focus="Java">

<JavaXML:Heading>Parsing XML</JavaXML:Heading>
<JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>
<JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>
<JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>
<JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
<JavaXML:Topic subSections="0">A Better Way to Load a Parser</JavaXML:Topic>
<JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

</JavaXML:Chapter>
<JavaXML:SectionBreak/>

<JavaXML:Chapter focus="Java">
<JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
<JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>
<JavaXML:Topic subSections="4">Installation</JavaXML:Topic>
<JavaXML:Topic subSections="3">Using a Publishing Framework</JavaXML:Topic>
<JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
<JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
<JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>

</JavaXML:Chapter>
</JavaXML:Contents>
<JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>
</JavaXML:Book>

 Attributes
In the above code there are a number of element attributes, "subSections", "focus", etc. xmlns:JavaXML is also an attribute.

There are several of these reserved attributes

xml:lang●

xml:space●

xml:link●

These are described in the XML Pocket Reference but are not on the course.

Attribute syntax

Attribute names cannot contain @, & or spaces. If they contain a ':' the part before it must be a namespace name. User defined
attributes cannot start with xml.

Attributes are name/value pairs. The value is normally some kind of string.

Using XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlUsing.html (4 of 5) [7/24/2002 10:06:32 PM]

Entity References
Entity reference are used for string substitutions. An entity reference begins with a '&' and ends with a ';'.

Avoiding the parser.

If you wish to use, say '<' , in data (PCDATA) then you can't do so directly because the parser will interpret it as the beginning of a tag.
So you use < instead.

<●

>●

&●

"●

'●

You can also put in hex values this way. For example, the copyright symbol could be put in this way:

This document is © 1999, D Grimshaw.

Processing Instructions
<? target attribute="value", attribute="value" ... ?>

This is a processing instruction (PI). This information is passed from the XML file to the processing application. The programmer can
develop her own. (not on cps720).

Note that there are some standard PI's built in. For example <?xml version="1.0" ?>

Using XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlUsing.html (5 of 5) [7/24/2002 10:06:32 PM]

<?xml version="1.0"?>
<!DOCTYPE department SYSTEM "department.dtd">
<department>
 <employee id="J.D">
 <name>John Doe</name>
 <email>John.Doe@foo.ibm.com</email>
 </employee>

 <employee id="B.S">
 <name>Bob Smith</name>
 <email>Bob.Smith@foo.com</email>
 </employee>

 <employee id="A.M">
 <name>Alice Miller</name>
 <url href="http://www.trl.jp.ibm.com/~amiller/"/>
 </employee>
</department>

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/department.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/department.xml [7/24/2002 10:06:33 PM]

<?xml version="1.0"?>
<?xml-stylesheet href="XSL\JavaXML.html.xsl" type="text/xsl"?>
<?xml-stylesheet href="XSL\JavaXML.wml.xsl" type="text/xsl"
 media="wap"?>
<?cocoon-process type="xslt"?>
<!DOCTYPE JavaXML:Book SYSTEM "DTD\JavaXML.dtd">

<!-- Java and XML -->
<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
 <JavaXML:Title>Java and XML</JavaXML:Title>
 <JavaXML:Contents>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Introduction</JavaXML:Heading>
 <JavaXML:Topic subSections="7">What Is It?</JavaXML:Topic>
 <JavaXML:Topic subSections="3">How Do I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Why Should I Use It?</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="XML">
 <JavaXML:Heading>Creating XML</JavaXML:Heading>
 <JavaXML:Topic subSections="0">An XML Document</JavaXML:Topic>
 <JavaXML:Topic subSections="2">The Header</JavaXML:Topic>
 <JavaXML:Topic subSections="6">The Content</JavaXML:Topic>
 <JavaXML:Topic subSections="1">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Parsing XML</JavaXML:Heading>
 <JavaXML:Topic subSections="3">Getting Prepared</JavaXML:Topic>
 <JavaXML:Topic subSections="3">SAX Readers</JavaXML:Topic>
 <JavaXML:Topic subSections="9">Content Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Error Handlers</JavaXML:Topic>
 <JavaXML:Topic subSections="0">
 A Better Way to Load a Parser
 </JavaXML:Topic>
 <JavaXML:Topic subSections="4">"Gotcha!"</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 <JavaXML:SectionBreak/>

 <JavaXML:Chapter focus="Java">
 <JavaXML:Heading>Web Publishing Frameworks</JavaXML:Heading>
 <JavaXML:Topic subSections="4">Selecting a Framework</JavaXML:Topic>
 <JavaXML:Topic subSections="4">Installation</JavaXML:Topic>
 <JavaXML:Topic subSections="3">
 Using a Publishing Framework
 </JavaXML:Topic>
 <JavaXML:Topic subSections="2">XSP</JavaXML:Topic>
 <JavaXML:Topic subSections="3">Cocoon 2.0 and Beyond</JavaXML:Topic>
 <JavaXML:Topic subSections="0">What's Next?</JavaXML:Topic>
 </JavaXML:Chapter>

 </JavaXML:Contents>

 <JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

</JavaXML:Book>

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/contents.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/contents.xml [7/24/2002 10:06:33 PM]

XML NameSpaces
JavaXML in JavaXML:Book etc is a namespace. Small, local xml documents do not need separate name
spaces. But if a DTD and corresponding xml document is to be widely used on the Internet, steps must be
taken to prevent name clashes. Such clashes might occur when two xml documents from different
sources were combined into one document.

<JavaXML:Book xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/">
is a pointer to the owner of the name space.

xmlns: stands for xml name space. It is a reserved name, as are all names beginning with xml. To
the right of the ':' is a unique identifier. A url does just fine.

You can have more than one name space in the same xml document. See page 8 of the XML
Pocket Reference.

XML Name spaces

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlNameSpaces.html [7/24/2002 10:06:33 PM]

The Document Type Definition (DTD)
The syntax of the DTD is taken from SGML. The DTD is used to control the XML parser. This page details some
DTD basic constructs.

DTD Placement
DTDs can be placed in a separate file, or at the beginning of an xml file.

In a separate file.

In this case the xml file begins like this,

<?xml version="1.0" encoding="UTF-16"?>
<!DOCTYPE department SYSTEM "department.dtd">

At the beginning of the xml file.

In this case the the DTD is enclosed withing [and], like this:

<!DOCTYPE department [

<!-- definitions in here -->

]>

<!-- the xml document itself goes here -->

An example from Sun's WebServer config file.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- the DTD -->
<!DOCTYPE WebServer [
<!ELEMENT WebServer (Service+)>
<!ATTLIST WebServer
 id ID #REQUIRED
 adminPort NMTOKEN "">
<!ELEMENT Service (WebApplication*)>
<!ATTLIST Service
 id ID #REQUIRED
 port NMTOKEN "8080"
 hostName NMTOKEN ""
 inet NMTOKEN ""
 docBase CDATA "webpages"
 workDir CDATA "work"
 workDirIsPersistent (false | true) "false">
<!ELEMENT WebApplication EMPTY>
<!ATTLIST WebApplication
 id ID #REQUIRED
 mapping CDATA #REQUIRED
 docBase CDATA #REQUIRED
 maxInactiveInterval NMTOKEN "30">

XML DTD

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlDTD.html (1 of 5) [7/24/2002 10:06:35 PM]

]>
<!-- the xml -->
<WebServer id="webServer">
 <Service id="service0">
 <WebApplication id="examples" mapping="/examples" docBase="examples"/>
 </Service>
 <Service id="service1">
 <WebApplication id="cps840a4" mapping="/cps840a4"
docBase="cps840a4/WEB-INF/servlets"/>
 </Service>
</WebServer>

Some key words
(Note that xml is case sensitive.)

DOCTYPE. The root node, naming the type of xml●

ELEMENT A non-leaf node in the tree. The basic element of the DOM●

ATTLIST Nodes can have attributes.●

CDATA Unparsed character data (i.e., strings. text uniterpreted by the parser).●

EMPTY The node does not contain data. (But has attributes ot be of any use.)●

ANY The node can contain anything.●

ID An identifier which must be unique for that element.●

IDREF A reference to an ID●

NMTOKENA valid XML name composed of letters, numbers, hyphens, underscores, and colons.●

#REQUIRED Must be present. An alternative is #IMPLIED●

Some borrowings from BNF

* zero or more●

+ one or more●

? zero or one●

| or●

Some other syntactic details

Lists of are enclosed in parentheses.●

Note the equal sign for attribute values.●

In the line, workDirIsPersistent (false | true) "false", "false" is the default. Several
other lines in the example also have defaults.

●

All character data must be enclosed in quotes.●

All element tags must be terminated. Empty elements are terminated with />.●

Each element lists its child nodes after its name.●

Of course, there is much more to the complete xml/DTD syntax.●

XML DTD

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlDTD.html (2 of 5) [7/24/2002 10:06:35 PM]

Notes

DTD language describes element trees, with the DOCTYPE as root. (Be able to draw such trees :-)).●

The elements in the above example contain no text data, just attributes.●

Another Example
This example will be used later wrhen we look at interpreting DOMs.

averagegpa.xml

<?xml version="1.0"?>
<!-- test xml page -->
<!DOCTYPE averagegpa SYSTEM "averagegpa.dtd">
<averagegpa>
 <student>
 <firstname> Mary </firstname>
 <lastname> Wong </lastname>
 <sn> 97123456 </sn>
 <gpa> 4.01 </gpa>
 <grade Grade="A+" />
 </student>
 <student>
 <firstname> Brian </firstname>
 <lastname> Mulroney </lastname>
 <sn> 579874562 </sn>
 <gpa> 2.02</gpa>
 <grade Grade="C-" />
 </student>
 <student>
 <lastname> Kennedy </lastname>
 <sn> 763245610 </sn>
 <gpa> 2.78 </gpa>
 <grade Grade="B-" />
 </student>
</averagegpa>

A possible DTD to make this xml text "legal" to a parser is,

averagegpa.dtd

<!ELEMENT averagegpa (student)*>
<!ELEMENT student (firstname?, lastname, sn,gpa,grade)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT sn (#PCDATA) >
<!ELEMENT gpa (#PCDATA)>
<!ELEMENT grade EMPTY>
<!ATTLIST grade Grade CDATA #IMPLIED>

This very simple example illustrates elements (nodes) which contain text data. This contrasts with the nodes in the
webserver example, which contain nothing but attributes.

XML DTD

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlDTD.html (3 of 5) [7/24/2002 10:06:35 PM]

Nodes which contain text are leaf nodes. The text is represented in the DTD by the symbol #PCDATA which stands
for parsable character data.

Part of the tree represented by this DTD looks like this:

averagegpa

student

firstname

"Mary"

lastname

"Wong"

sn

"97123456"

gpa

"4.01"

grade Grade="A+"

Note that the values "Mary", "Wong". "97123456", and "4.01" are contained in nodes of type PCDATA. They are
leaf nodes of the tree. The node, grade Grade="A+", is also a leaf node, but not of a PCDATA type, and it is one
level higher in the tree than the other leafs.

 A DTD for the the Table of Contents Example
Recall the XML file for the example from McLaughlin's Java and XML. Here is the corresponding DTD.

JavaXML.dtd

<!ELEMENT JavaXML:Book (JavaXML:Title, JavaXML:Contents, JavaXML:Copyright)>
<!ATTLIST JavaXML:Book xmlns:JavaXML CDATA #REQUIRED>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+) (JavaXML:Chapter+,
JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter focus (XML|Java) "Java">
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic subSections CDATA #IMPLIED>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
"http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

Things to note

The use of the namespace JavaXML is made compulsory.●

The modifiers * (0 or more), + (one or more) and ? (0 or 1).●

XML DTD

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlDTD.html (4 of 5) [7/24/2002 10:06:35 PM]

The '|' which means exclusive or (xor).●

#REQUIRED AND #IMPLIED. The latter means optional. There is also #FIXED.●

ENTITY

Entities are rather like macros. It allows you to substitute characters for other characters.

General Entities

<!ENTITY name "replacement characters">

These are defined in DTD's and used in xml documents.

For example,

<!ENTITY dg "David Grimsahaw">

which would allow you to have something like this in an xml file,

<NAME> &dg; </NAME>

You have already seen predefined entities such as < for '<<.

External Entities

This type allows you to copy other xml documents into yours. The above book index example has an example in its
last line. In the corresponding xml file we have,

<JavaXML:Copyright>&OReillyCopyright;</JavaXML:Copyright>

Parameter Entities

This type is only for use withing DTD's. THe syntax is a bit different:

<!ENTITY % name "replacement characters">

Example

This is legal:

<!ENTITY % pcdata "(#PCDATA)">

<!ELEMENT author %pcdata>

For more details on DTD's, check the XML Pocket Reference.

XML DTD

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlDTD.html (5 of 5) [7/24/2002 10:06:35 PM]

<?xml version="1.0"?>
<!-- test xml page -->
<!DOCTYPE averagegpa SYSTEM "averagegpa.dtd">
<averagegpa>
 <student>
 <firstname> Mary </firstname>
 <lastname> Wong </lastname>
 <sn> 97123456 </sn>
 <gpa> 4.01 </gpa>
 <grade Grade="A+" />
 </student>
 <student>
 <firstname> Brian William</firstname>
 <lastname> Mulroney </lastname>
 <sn> 579874562 </sn>
 <gpa> 2.02</gpa>
 <grade Grade="C-" />
 </student>
 <student>
 <lastname> Kennedy </lastname>
 <sn> 763245610 </sn>
 <gpa> 2.78 </gpa>
 <grade Grade="B-" />
 </student>
</averagegpa>

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xml [7/24/2002 10:06:35 PM]

<!ELEMENT averagegpa (student)*>
<!ELEMENT student (firstname?, lastname, sn,gpa,grade)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT sn (#PCDATA) >
<!ELEMENT gpa (#PCDATA)>
<!ELEMENT grade EMPTY>
<!ATTLIST grade Grade CDATA #IMPLIED>

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.dtd

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.dtd [7/24/2002 10:06:35 PM]

<!ELEMENT JavaXML:Book (JavaXML:Title,
 JavaXML:Contents,
 JavaXML:Copyright)>
<!ATTLIST JavaXML:Book
 xmlns:JavaXML CDATA #REQUIRED
>
<!ELEMENT JavaXML:Title (#PCDATA)>
<!ELEMENT JavaXML:Contents ((JavaXML:Chapter+)|
 (JavaXML:Chapter+, JavaXML:SectionBreak?)+)>
<!ELEMENT JavaXML:Chapter (JavaXML:Heading?,JavaXML:Topic+)>
<!ATTLIST JavaXML:Chapter
 focus (XML|Java) "Java"
>
<!ELEMENT JavaXML:Heading (#PCDATA)>
<!ELEMENT JavaXML:Topic (#PCDATA)>
<!ATTLIST JavaXML:Topic
 subSections CDATA #IMPLIED
>
<!ELEMENT JavaXML:SectionBreak EMPTY>
<!ELEMENT JavaXML:Copyright (#PCDATA)>
<!ENTITY OReillyCopyright SYSTEM
 "http://www.oreilly.com/catalog/javaxml/docs/copyright.xml">

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/Dtd/JavaXML.dtd

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/Dtd/JavaXML.dtd [7/24/2002 10:06:36 PM]

Interpreting XML using a DOM Parser
Without an intepreter an XML document is meaningless. After all, you are defining your own "language"
terms with your own tag names. The names remain meaningless without an interpreter.

Defining what meaning means is a difficult philisophical question! Or an AI question. To keep things
simple, let's just say that the meaning of a text is revealed by the actions taken by its reader. In the case of
the example, averagegpa.xml, humans can interpret the text, and therefore "know what it means". This
text represents an ontology which we are used to and understand. We can take appropriate actions,
perhaps just speech actions, upon reading it.

How can a machine "understand" this text? Like a human agent, it needs to know what actions can be
taken given the ontology of the text. An interpretation program provides such an "understanding".

There are two types of XML parsers, SAX parsers and DOM parsers. The example on this page is a
DOM parser. This parser first creates a Document Object Model (DOM). The DOM is a tree structure
repersenting the whole XML document.

A very simple example.

[The xml and dtd files]

BestGPA2.java

This program interprets only one part of the xml file, the gpa element. It interprets it the way a human
agent would, and uses its interpretation to decide which student (just strings to the computer!) is the best
student. Or rather, the <student> element with the highers gpa value. This simple interpreter by no means
has the richness of understanding of a human agent.

This program was written using IBM's XML Parser.

import com.ibm.xml.parser.Parser;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Hashtable;
import org.w3c.dom.CDATASection;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.EntityReference;
import org.w3c.dom.Node;
import org.w3c.dom.Text;

Intepreting XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlInterp.html (1 of 5) [7/24/2002 10:06:37 PM]

http://www.alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain/F62DB5F8684DCF6A8825671B00682F34

public class BestGPA2 {

static public void main(String[] argv) {
if (argv.length != 1) {

System.err.println("Missing XML filename.");
System.exit(1);

}
try {

// Open specified file

InputStream is = new FileInputStream(argv[0]);

// Start parsing

Parser parser = new Parser(argv[0]); // @XML4J
Document doc = parser.readStream(is); // @XML4J

// Check if there is errors

if (parser.getNumberOfErrors() > 0) { // @XML4J
System.exit(1);

}
// Document is well-formed

float currentGPA = 0.0f, bestGPA = 0.0f;
Student currentStudent = new Student();
Student bestStudent = new Student();

// The Document Element is <averagegpa> ... </averagegpa>

// cycle through the <student> ... </student> elements

for(Node student = doc.getDocumentElement().getFirstChild();
student != null;
student = student.getNextSibling()) {
currentStudent.reset();
if(student instanceof Element) {

for(Node data = student.getFirstChild();
data != null;
data = data.getNextSibling()) {
if(data.getNodeName().equals("firstname")) {

currentStudent.firstName =
data.getFirstChild().getNodeValue();

Intepreting XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlInterp.html (2 of 5) [7/24/2002 10:06:37 PM]

}
if(data.getNodeName().equals("lastname")) {

currentStudent.lastName =
data.getFirstChild().getNodeValue();

}
if(data.getNodeName().equals("sn")) {

currentStudent.studentNumber =
data.getFirstChild().getNodeValue();

}
if(data.getNodeName().equals("gpa")) {

currentStudent.gpa = (new
Float(getTheText(data))).floatValue();

}
if(data.getNodeName().equals("grade")) {
}

} // end for_data

currentStudent.displayStudent("Student");

if(currentStudent.gpa > bestStudent.gpa) {
// (1) do NOT write bestStudent = currentSTudent; !!

// This makes currentStudent point to bestStudent.

// The result would be the best student would be filled

// by each student in turn. (best = last student!)

// (2) Field assignment is the most efficient

//bestStudent.firstName = currentStudent.firstName;

//bestStudent.gpa = currentStudent.gpa;

// (3) Cloning is neat, but it does involve the

// inefficiency of copying whole objects

bestStudent = (Student) currentStudent.clone();
}

} // end of if_student

} // end of for_student

bestStudent.displayStudent("Best Student");
}
catch (Exception e) {

e.printStackTrace();

Intepreting XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlInterp.html (3 of 5) [7/24/2002 10:06:37 PM]

}
} // end main()

/* An alternative using recursion. */
/* ---*/

private static String getTheText (Node node){
// Create a StringBuffer to store the result.

// StringBuffer is more efficient than String

StringBuffer buffer = new StringBuffer();
return getTheText1 (node, buffer);

}

private static String getTheText1 (Node node, StringBuffer buffer){

// Visit all the child nodes

for (Node ch = node.getFirstChild();
ch != null;
ch = ch.getNextSibling()) {

// Recursively call if the child may have children
if (ch instanceof Element || ch instanceof EntityReference) {

buffer.append(getTheText(ch));
// If the child is a text, append it to the result buffer
} else if (ch instanceof Text) {

buffer.append(ch.getNodeValue());
}
}
return buffer.toString();

}
/* --- */

}

class Student extends Object implements Cloneable {

// ugh! These should be private with getters and setters!

public String firstName = null;
public String lastName = null;
public String studentNumber = null;
public float gpa = 0.0f;

Intepreting XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlInterp.html (4 of 5) [7/24/2002 10:06:37 PM]

public String grade = null;

public Student() {
gpa = 0.0f;

}

public void reset() {
firstName = "";
lastName = "";
gpa = 0.0f;
studentNumber = "";
grade = "";

}

public Object clone() throws CloneNotSupportedException {
return super.clone();

}

public void displayStudent(String title) {
System.out.println("\n" + title + "\n");
System.out.println(firstName + " " + lastName);
System.out.println("Student number: " + studentNumber);
System.out.println("Student GPA: " + gpa);
System.out.println("Student letter grade: " + grade);

}
}

The interesting features of this program are colour coded.

Some Actual XML Languages
Mathematical Markup Language

Intepreting XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xmlInterp.html (5 of 5) [7/24/2002 10:06:37 PM]

http://www.w3.org/TR/REC-MathML/toc.html

import com.ibm.xml.parser.Parser;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Hashtable;
import org.w3c.dom.CDATASection;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.EntityReference;
import org.w3c.dom.Node;
import org.w3c.dom.Text;

public class BestGPA2 {

static public void main(String[] argv) {
 if (argv.length != 1) {
 System.err.println("Missing XML filename.");
 System.exit(1);
 }
 try {
 // Open specified file
 InputStream is = new FileInputStream(argv[0]);

 // Start parsing
 Parser parser = new Parser(argv[0]); // @XML4J
 Document doc = parser.readStream(is); // @XML4J

 // Check if there is errors
 if (parser.getNumberOfErrors() > 0) { // @XML4J
 System.exit(1);
 }
 // Document is well-formed

 float currentGPA = 0.0f, bestGPA = 0.0f;
 Student currentStudent = new Student();
 Student bestStudent = new Student();

 // The Document Element is <averagegpa> ... </averagegpa>
 // cycle through the <student> ... </student> elements
 for(Node student = doc.getDocumentElement().getFirstChild();
 student != null;
 student = student.getNextSibling()) {
 currentStudent.reset();
 if(student instanceof Element) { // without this you get 2 of
everything!!
 for(Node data = student.getFirstChild();
 data != null;
 data = data.getNextSibling()) {
 if(data.getNodeName().equals("firstname")) {
 currentStudent.firstName =
data.getFirstChild().getNodeValue();
 }
 if(data.getNodeName().equals("lastname")) {
 currentStudent.lastName =
data.getFirstChild().getNodeValue();
 }
 if(data.getNodeName().equals("sn")) {
 currentStudent.studentNumber =
data.getFirstChild().getNodeValue();
 }
 if(data.getNodeName().equals("gpa")) {
 currentStudent.gpa = (new

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java (1 of 3) [7/24/2002 10:06:37 PM]

Float(getTheText(data))).floatValue();
 }
 if(data.getNodeName().equals("grade")) {
 }

 } // end for_data
 currentStudent.displayStudent("Student");

 if(currentStudent.gpa > bestStudent.gpa) {
 // (1) do NOT write bestStudent = currentSTudent;
!!
 // This makes currentStudent point to
bestStudent.
 // The result would be the best student would be
filled
 // by each student in turn. (best = last
student!)
 // (2) Field assignment is the most efficient
 //bestStudent.firstName =
currentStudent.firstName;
 //bestStudent.gpa = currentStudent.gpa;
 // (3) Cloning is neat, but it does involve the
 // inefficiency of copying whole objects
 bestStudent = (Student) currentStudent.clone();
 }
 } // end of if_student

 } // end of for_student
 bestStudent.displayStudent("Best Student");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
} // end main()

/* ---*/
private static String getTheText (Node node){
 // Create a StringBuffer to store the result.
 // StringBuffer is more efficient than String
 StringBuffer buffer = new StringBuffer();
 return getTheText1 (node, buffer);
}

private static String getTheText1 (Node node, StringBuffer buffer){

 // Visit all the child nodes
 for (Node ch = node.getFirstChild();
 ch != null;
 ch = ch.getNextSibling()) {
 // Recursively call if the child may have children
 if (ch instanceof Element || ch instanceof EntityReference) {
 buffer.append(getTheText(ch));
 // If the child is a text, append it to the result buffer
 } else if (ch instanceof Text) {
 buffer.append(ch.getNodeValue());
 }
 }
 return buffer.toString();
}
/* --- */
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java (2 of 3) [7/24/2002 10:06:37 PM]

class Student extends Object implements Cloneable {

public String firstName = null;
public String lastName = null;
public String studentNumber = null;
public float gpa = 0.0f;
public String grade = null;

public Student() {
 gpa = 0.0f;
}

public void reset() {
 firstName = "";
 lastName = "";
 gpa = 0.0f;
 studentNumber = "";
 grade = "";
}

public Object clone() throws CloneNotSupportedException {
 return super.clone();
}

public void displayStudent(String title) {
 System.out.println("\n" + title + "\n");
 System.out.println(firstName + " " + lastName);
 System.out.println("Student number: " + studentNumber);
 System.out.println("Student GPA: " + gpa);
 System.out.println("Student letter grade: " + grade);
}
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java (3 of 3) [7/24/2002 10:06:37 PM]

Using the SAX API

Overview
Using the SAX parser is a completely different experience from using a DOM parser. Programming SAX
is event driven programming. Programming DOM is tree traversal.

Since SAX is event driven, programming SAX is not unlike programming the AWT or Swing. The SAX
parser reads in an xml file (also a dtd if present) and each time it "sees" something interesting, such as an
ELEMENT it generates a certain kind of event.

If your program is interested in this event, it can register with the parser as a listener by implementing
certain interfaces. The SAX parser will then call back certain methods which you have overridden to do
what you need to do in response to the event. Although the SAX parser organizes its events a bit
differently, the situation is similar to an AWT Button generating ActionEvents when clicked. Then, an
interested class implements an ActionListener and overrides the callback method actionPerformed.

SAX events, unlike AWT events, come in an ordered sequence as the xml file is read in. Given the tree
structure of the xml file, the parser is generating events in a depth first order.

Furthermore, the events are fired "on the fly" as the xml file is read in. You only get one chance to "grab
it" as it "flies" by. Unless you, the programmer, do something to capture relevant information at the point
at which it arrives, the information is lost unless you parse the whole file again. This is in contrast to the
DOM parser, which reads the who document in, storing it in its tree structure, and then waits for your
program to analyze it at its leisure.

Example 1. A do nothing program.
Although this program does nothing it is actually quite useful! Remember that an xml file must be both
well formed and valid. You can use this program to test an xml file for these properties. If the file is OK,
then nothing apprears on stdout. On the other hand, if there is something wrong the program will throw
an exception and print out an informative message.

CheckXML.java

import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;

/**

* Checks xml files for syntax errors. If a DTD is available, checks the validity of the xml

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (1 of 20) [7/24/2002 10:06:41 PM]

* file against the dtd.

*/

public class CheckXML {
public static void main(String [] args) {

if(args.length != 1) {
System.err.println("USAGE: java CheckXML <xml file name>");
System.exit(0);

}
try {

XMLReader parser = XMLReaderFactory.createXMLReader(
"org.apache.xerces.parsers.SAXParser");
parser.parse(args[0]);

} catch (IOException e) {
System.out.println("Error reading URI: " + e.getMessage());

} catch (SAXException e) {
System.out.println("Error in parsing: " + e.getMessage());

}
}

}

The code coloured in red shows how to set up the Xerces SAX parser.

Using SAX Callbacks

The four interfaces

The SAX API provides a number of interfaces which users can use to respond to events.

ContentHandler (Legacy. Replaced by DocumentHandler in SAX 2.0.)❍

DocumentHandler❍

DTDHandler (Not on course.)❍

ErrorHandler❍

Of these, the most important is the ContentHandler.

The next example illustrates using the callbacks provided by these interfaces.

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (2 of 20) [7/24/2002 10:06:41 PM]

http://xml.apache.org/apiDocs/org/xml/sax/DocumentHandler.html
http://xml.apache.org/apiDocs/org/xml/sax/DTDHandler.html
http://xml.apache.org/apiDocs/org/xml/sax/ErrorHandler.html

Example 2. A program showing lots of events.
This example is taken from the O'Reilly book, Java and XML by Brett Mclaughlin.

JavaDoc documentation for SAXParserDemo.java

SAXParserDemo.java
/*--

Copyright (C) 2000 Brett McLaughlin. All rights reserved.

Redistribution and use in source and binary forms, with or without modifica-

tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions, the disclaimer that follows these conditions,

and/or other materials provided with the distribution.

3. Products derived from this software may not be called "Java and XML", nor may

"Java and XML" appear in their name, without prior written permission from

Brett McLaughlin (brett@newInstance.com).

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software was originally created by Brett McLaughlin <brett@newInstance.com>.

For more information on "Java and XML", please see <http://www.oreilly.com/catalog/javaxml/>

or <http://www.newInstance.com>.

*/

import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (3 of 20) [7/24/2002 10:06:41 PM]

import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

/**

* <code>SAXParserDemo</code> will take an XML file and parse it using SAX,

* displaying the callbacks in the parsing lifecycle.

*

* @author Brett McLaughlin

* @version 1.0

*/

public class SAXParserDemo {

/**
* <p>

* This parses the file, using registered SAX handlers, and output

* the events in the parsing process cycle.

* </p>

*

* @param uri <code>String</code> URI of file to parse.

*/

public void performDemo(String uri) {
System.out.println("Parsing XML File: " + uri + "\n\n");

// Get instances of our handlers

ContentHandler contentHandler = new MyContentHandler();
ErrorHandler errorHandler = new MyErrorHandler();

try {
// Instantiate a parser

XMLReader parser =
XMLReaderFactory.createXMLReader(
"org.apache.xerces.parsers.SAXParser");

// Register the content handler

parser.setContentHandler(contentHandler);

// Register the error handler

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (4 of 20) [7/24/2002 10:06:41 PM]

parser.setErrorHandler(errorHandler);

// Parse the document
parser.parse(uri);

} catch (IOException e) {
System.out.println("Error reading URI: " + e.getMessage());

} catch (SAXException e) {
System.out.println("Error in parsing: " + e.getMessage());

}

}

/**

* <p>

* This provides a command line entry point for this demo.

* </p>

*/

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("Usage: java SAXParserDemo [XML URI]");
System.exit(0);

}

String uri = args[0];

SAXParserDemo parserDemo = new SAXParserDemo();
parserDemo.performDemo(uri);
}

}

/**

* <code>MyContentHandler</code> implements the SAX

* <code>ContentHandler</code> interface and defines callback

* behavior for the SAX callbacks associated with an XML

* document's content.

*/

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (5 of 20) [7/24/2002 10:06:41 PM]

class MyContentHandler implements ContentHandler {

/** Hold onto the locator for location information */
private Locator locator;

/**

* <p>

* Provide reference to <code>Locator</code> which provides

* information about where in a document callbacks occur.

* </p>

*

* @param locator <code>Locator</code> object tied to callback

* process

*/

public void setDocumentLocator(Locator locator) {
System.out.println(" * setDocumentLocator() called");
// We save this for later use if desired.

this.locator = locator;
}

/**

* <p>

* This indicates the start of a Document parse - this precedes

* all callbacks in all SAX Handlers with the sole exception

* of <code>{@link #setDocumentLocator}</code>.

* </p>

*

* @throws <code>SAXException</code> when things go wrong

*/

public void startDocument() throws SAXException {
System.out.println("Parsing begins...");

}

/**

* <p>

* This indicates the end of a Document parse - this occurs after

* all callbacks in all SAX Handlers.</code>.

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (6 of 20) [7/24/2002 10:06:41 PM]

* </p>

*

* @throws <code>SAXException</code> when things go wrong

*/

public void endDocument() throws SAXException {
System.out.println("...Parsing ends.");

}

/**

* <p>

* This will indicate that a processing instruction (other than

* the XML declaration) has been encountered.

* </p>

*

* @param target <code>String</code> target of PI

* @param data <code>String</code containing all data sent to the PI.

* This typically looks like one or more attribute value

* pairs.

* @throws <code>SAXException</code> when things go wrong

*/

public void processingInstruction(String target, String data)
throws SAXException {

System.out.println("PI: Target:" + target + " and Data:" + data);
}

/**

* <p>

* This will indicate the beginning of an XML Namespace prefix

* mapping. Although this typically occur within the root element

* of an XML document, it can occur at any point within the

* document. Note that a prefix mapping on an element triggers

* this callback <i>before</i> the callback for the actual element

* itself (<code>{@link #startElement}</code>) occurs.

* </p>

*

* @param prefix <code>String</code> prefix used for the namespace

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (7 of 20) [7/24/2002 10:06:41 PM]

* being reported

* @param uri <code>String</code> URI for the namespace

* being reported

* @throws <code>SAXException</code> when things go wrong

*/

public void startPrefixMapping(String prefix, String uri) {
System.out.println("Mapping starts for prefix " + prefix +
" mapped to URI " + uri);

}

/**

* <p>

* This indicates the end of a prefix mapping, when the namespace

* reported in a <code>{@link #startPrefixMapping}</code> callback

* is no longer available.

* </p>

*

* @param prefix <code>String</code> of namespace being reported

* @throws <code>SAXException</code> when things go wrong

*/

public void endPrefixMapping(String prefix) {
System.out.println("Mapping ends for prefix " + prefix);

}

/**

* <p>

* This reports the occurrence of an actual element. It will include

* the element's attributes, with the exception of XML vocabulary

* specific attributes, such as

* <code>xmlns:[namespace prefix]</code> and

* <code>xsi:schemaLocation</code>.

* </p>

*

* @param namespaceURI <code>String</code> namespace URI this element

* is associated with, or an empty

* <code>String</code>

* @param localName <code>String</code> name of element (with no

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (8 of 20) [7/24/2002 10:06:41 PM]

* namespace prefix, if one is present)

* @param rawName <code>String</code> XML 1.0 version of element name:

* [namespace prefix]:[localName]

* @param atts <code>Attributes</code> list for this element

* @throws <code>SAXException</code> when things go wrong

*/

public void startElement(String namespaceURI, String localName,
String rawName, Attributes atts)

throws SAXException {

System.out.print("startElement: " + localName);
if (!namespaceURI.equals("")) {

System.out.println(" in namespace " + namespaceURI +
" (" + rawName + ")");

} else {
System.out.println(" has no associated namespace");

}

for (int i=0; i<atts.getLength(); i++)
System.out.println(" Attribute: " + atts.getLocalName(i) +
"=" + atts.getValue(i));

}

/**

* <p>

* Indicates the end of an element

* (<code></[element name]></code>) is reached. Note that

* the parser does not distinguish between empty

* elements and non-empty elements, so this will occur uniformly.

* </p>

*

* @param namespaceURI <code>String</code> URI of namespace this

* element is associated with

* @param localName <code>String</code> name of element without prefix

* @param rawName <code>String</code> name of element in XML 1.0 form

* @throws <code>SAXException</code> when things go wrong

*/

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (9 of 20) [7/24/2002 10:06:41 PM]

public void endElement(String namespaceURI, String localName,
String rawName)
throws SAXException {

System.out.println("endElement: " + localName + "\n");
}

/**

* <p>

* This will report character data (within an element).

* </p>

*

* @param ch <code>char[]</code> character array with character data

* @param start <code>int</code> index in array where data starts.

* @param end <code>int</code> index in array where data ends.

* @throws <code>SAXException</code> when things go wrong

*/

public void characters(char[] ch, int start, int end)
throws SAXException {

String s = new String(ch, start, end);
System.out.println("characters: " + s);

}

/**

* <p>

* This will report whitespace that can be ignored in the

* originating document. This is typically only invoked when

* validation is ocurring in the parsing process.

* </p>

*

* @param ch <code>char[]</code> character array with character data

* @param start <code>int</code> index in array where data starts.

* @param end <code>int</code> index in array where data ends.

* @throws <code>SAXException</code> when things go wrong

*/

public void ignorableWhitespace(char[] ch, int start, int end)

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (10 of 20) [7/24/2002 10:06:42 PM]

throws SAXException {

String s = new String(ch, start, end);
System.out.println("ignorableWhitespace: [" + s + "]");

}

/**

* <p>

* This will report an entity that is skipped by the parser. This

* should only occur for non-validating parsers, and then is still

* implementation-dependent behavior.

* </p>

*

* @param name <code>String</code> name of entity being skipped

* @throws <code>SAXException</code> when things go wrong

*/

public void skippedEntity(String name) throws SAXException {
System.out.println("Skipping entity " + name);

}

}

/**

* <code>MyErrorHandler</code> implements the SAX

* <code>ErrorHandler</code> interface and defines callback

* behavior for the SAX callbacks associated with an XML

* document's errors.

*/

class MyErrorHandler implements ErrorHandler {

/**

* <p>

* This will report a warning that has occurred; this indicates

* that while no XML rules were "broken", something appears

* to be incorrect or missing.

* </p>

*

* @param exception <code>SAXParseException</code> that occurred.

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (11 of 20) [7/24/2002 10:06:42 PM]

* @throws <code>SAXException</code> when things go wrong

*/

public void warning(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Warning**\n" +
" Line: " +
exception.getLineNumber() + "\n" +
" URI: " +
exception.getSystemId() + "\n" +
" Message: " +
exception.getMessage());
throw new SAXException("Warning encountered");

}

/**

* <p>

* This will report an error that has occurred; this indicates

* that a rule was broken, typically in validation, but that

* parsing can reasonably continue.

* </p>

*

* @param exception <code>SAXParseException</code> that occurred.

* @throws <code>SAXException</code> when things go wrong

*/

public void error(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Error**\n" +
" Line: " +
exception.getLineNumber() + "\n" +
" URI: " +
exception.getSystemId() + "\n" +
" Message: " +
exception.getMessage());
throw new SAXException("Error encountered");

}

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (12 of 20) [7/24/2002 10:06:42 PM]

/**

* <p>

* This will report a fatal error that has occurred; this indicates

* that a rule has been broken that makes continued parsing either

* impossible or an almost certain waste of time.

* </p>

*

* @param exception <code>SAXParseException</code> that occurred.

* @throws <code>SAXException</code> when things go wrong

*/

public void fatalError(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Fatal Error**\n" +
" Line: " +
exception.getLineNumber() + "\n" +
" URI: " +
exception.getSystemId() + "\n" +
" Message: " +
exception.getMessage());
throw new SAXException("Fatal Error encountered");

}

}

Most of the useful work is done in the methods startDocument(), startElement(), endElement(), and
characters() shown in red.

Because the two programmer defined classes implement interfaces directly, all the methods in the
interfaces must be given some kind of body. This is inconvenient so the SAX provides some convenience
classes to provide empty implementations of all these methods. This is just like the adapter classes such
as WindowAdapter provided by the AWT.

HTML Doc for the SAXDemo program.

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (13 of 20) [7/24/2002 10:06:42 PM]

Example 3. Doing something with SAX
This example illustrates the use of an adapter class and also shows SAX extracting some data from a
document and doing something with the data.

The adapter class is called DefaultHandler. Note that it is in the org.xml.sax.helper package not the
org.xml.sax package. (DefaultHandler is a version 2.0 replacement for HandleBase in version 1.0.
HandleBase performs a similar function. It is in org.xml.sax but has been deprecated.)

averagegpa.dtd●

averagegpa.xml●

GPAExample.java

package xml.sax.gpaExample2;

import java.io.IOException;
import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

/**

* A SAX parser example with a simple calculation.<p>

* The file to be parsed conforms to the DTD averagegpa.dtd. An example is

* averagegpa.xml. <p>

* The program finds the student with the highest gpa. Output is to stdout.<p>

*

* SAX parsers analyse the xml document dynamically, producing events for each type

* of XML data. The analysis proceeds in depth first order. The program must arrange

* to capture relevant data as it "flies by". <p>

*

* Various interfaces provide callback methods to respond to these events. SAX 2.0 provides

* the convenience class DefaultHandler which provides empty implementations off all

* the methods in these interfaces. You subclass this class and override the methods of

* your choosing to provide the desired functionality. <p>

*

* This program uses several of the most useful of these callbacks, characters(), startElement(),

* and endElement().<p>

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (14 of 20) [7/24/2002 10:06:42 PM]

*/

public class GPAExample {

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("Usage: java GPAExample [XML URI]");
System.exit(0);

}

String uri = args[0];

GPAExample gpaAnalysis = new GPAExample();
gpaAnalysis.analyse(uri);

}

/**

* Sets up the parser. These calls are very standardized.

* @param uri <code> String</code>The locator for the XML file to be parsed.

*/

public void analyse(String uri) {

// Get instances of our handlers. DefaultHandler is a convenience
// class which implements default empty methods for4 interfaces,
// EntityResolver, DTDHandler, ContentHandler and ErrorHandler.
// Subclass and override the methods you need.

DefaultHandler theHandler = new MyHandler(); // creae the subclass

try {
// Instantiate a parser

XMLReader parser =
XMLReaderFactory.createXMLReader(
"org.apache.xerces.parsers.SAXParser");

// Register the content handler (part of DefaultHandler)

parser.setContentHandler(theHandler);

// Register the error handler (Should be done sometime.)

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (15 of 20) [7/24/2002 10:06:42 PM]

//parser.setErrorHandler(errorHandler);

// Parse the document

parser.parse(uri);

} catch (IOException e) {
System.out.println("Error reading URI: " + e.getMessage());

} catch (SAXException e) {
System.out.println("Error in parsing: " + e.getMessage());

}
}

}
/**

* Tailors the DefaultHandler for this application.

*/

class MyHandler extends DefaultHandler {

/*
* The startElement() and endElement() methods are called every time the parser
* sees an Element. These variables, global to the class, allow the different types
* of elements to be distinguished across calls. In particular the control the action of
* the characters() method which reads PCDATA from the XML file.
*/
private boolean isGPA = false;
private boolean isFirstName = false;
private boolean isLastName = false;

// retain some of the parsed data when the SAX parser moves on

private Student bestStudent, aStudent;

public MyHandler() {
bestStudent = new Student("","", 0.00f, "");

}

public void startDocument() throws SAXException {
System.out.println("Parsing begins...");

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (16 of 20) [7/24/2002 10:06:42 PM]

}

public void endDocument() throws SAXException {
// Called at the end, so print out the result.
System.out.println("The Best Student");
System.out.println("================");
bestStudent.printStudent();
System.out.println("...Parsing ends.");

}

// This captures the PCDATA etc in an element.

public void characters(char[] ch, int start, int end)
throws SAXException {

String s = new String(ch, start, end);

// keep the parsed data. The aStudent variable should not be null because
// it got the reference when startElement() was called on <student> tag.
// Similarly the boolean flags are set in starElement().

if(isFirstName) {
if(aStudent != null) {

aStudent.setFirstName(s);
}

} else if(isLastName) {
if(aStudent != null) {

aStudent.setLastName(s);
}

} else if(isGPA) {
if(aStudent != null) {

float gp = (new Float(s)).floatValue();
aStudent.setGpa(gp);

}
}

}

public void startElement(String namespaceURI, String localName,

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (17 of 20) [7/24/2002 10:06:42 PM]

String rawName, Attributes atts)
throws SAXException {

if(localName.equals("student")) {
aStudent = new Student("", "", 0.0f, "");

}

// Flags to control the characters() method.
// Distinguish among types of elements.

if(localName.equals("gpa")) {
isGPA = true;

} else if(localName.equals("firstname")) {
isFirstName = true;

} else if(localName.equals("lastname")) {
isLastName = true;

}
}

public void endElement(String namespaceURI, String localName,
String rawName)
throws SAXException {

// Check that the event signals the end of a <student> element. If so, the
// current student's (aStudent) data fields are populated. So now you can
// compare the current student to the best so far student and perhaps replace
// the best so far student.

if(localName.equals("student") && aStudent != null) {
if(aStudent.getGpa() > bestStudent.getGpa()) {

bestStudent = aStudent;
}
aStudent.printStudent();

// allow garbage collection of old student data
aStudent = null;

}
// At any time, two of these are already false, but it's a waste of time to test.

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (18 of 20) [7/24/2002 10:06:42 PM]

isGPA = false;
isFirstName = false;
isLastName = false;

}
/**
* A class to represent student data. The fields correspond to those in the XML
document.
*/
class Student {

private String firstName;
private String lastName;
private float gpa;
private String grade;

public Student(String fn, String ln, float gpa, String g) {
firstName = fn;
lastName = ln;
this.gpa = gpa;
grade = g;

}
public void setFirstName(String fn) {

firstName = fn;
}
public void setLastName(String ln) {

lastName = ln;
}
public void setGpa(float g) {

gpa = g;
}
public float getGpa() {

return gpa;
}
public void setGrade(String g) {

grade = g;
}
public void printStudent() {

System.out.println(firstName);

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (19 of 20) [7/24/2002 10:06:42 PM]

System.out.println(lastName);
System.out.println(gpa);
System.out.println(grade);

}
}

}

[top] [previous] [next] Questions?

Using the SAX API

http://www.ryerson.ca/~dgrimsha/courses/cps720/SAXAPI.html (20 of 20) [7/24/2002 10:06:42 PM]

mailto:dgrimsha@scs.ryerson.ca

import org.xml.sax.SAXException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

import java.io.IOException;

/**
 * Checks xml files for syntax errors. If a DTD is available, checks the validity of the
xml
 * file against the dtd.
 */
public class CheckXML {
 public static void main(String [] args) {
 if(args.length != 1) {
 System.err.println("USAGE: java CheckXML <xml file name>");
 System.exit(0);
 }
 try {
 XMLReader parser = XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");
 parser.parse(args[0]);
 } catch (IOException e) {
 System.out.println("Error reading URI: " +
e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " +
e.getMessage());
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/CheckXML.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/CheckXML.java [7/24/2002 10:06:43 PM]

All Classes
MyContentHandler
MyErrorHandler
SAXParserDemo

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class MyContentHandler

java.lang.Object
 |
 +--MyContentHandler

All Implemented Interfaces:
org.xml.sax.ContentHandler

class MyContentHandler
extends java.lang.Object

implements org.xml.sax.ContentHandler

MyContentHandler implements the SAX ContentHandler interface and
defines callback behavior for the SAX callbacks associated with an XML document's
content.

Constructor Summary
(package private) MyContentHandler()

Method Summary
 void characters(char[] ch, int start, int end)

 This will report character data (within an element).

 void endDocument()
 This indicates the end of a Document parse - this occurs after all
callbacks in all SAX Handlers..

 void endElement(java.lang.String namespaceURI,
java.lang.String localName,
java.lang.String rawName)
 Indicates the end of an element (</[element name]>) is
reached.

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (1 of 7) [7/24/2002 10:06:45 PM]

 void endPrefixMapping(java.lang.String prefix)
 This indicates the end of a prefix mapping, when the namespace
reported in a startPrefixMapping(java.lang.String,
java.lang.String) callback is no longer available.

 void ignorableWhitespace(char[] ch, int start,
int end)
 This will report whitespace that can be ignored in the originating
document.

 void processingInstruction(java.lang.String target,
java.lang.String data)
 This will indicate that a processing instruction (other than the
XML declaration) has been encountered.

 void setDocumentLocator(org.xml.sax.Locator locator)
 Provide reference to Locator which provides information about
where in a document callbacks occur.

 void skippedEntity(java.lang.String name)
 This will report an entity that is skipped by the parser.

 void startDocument()
 This indicates the start of a Document parse - this precedes all
callbacks in all SAX Handlers with the sole exception of
setDocumentLocator(org.xml.sax.Locator).

 void startElement(java.lang.String namespaceURI,
java.lang.String localName,
java.lang.String rawName,
org.xml.sax.Attributes atts)
 This reports the occurrence of an actual element.

 void startPrefixMapping(java.lang.String prefix,
java.lang.String uri)
 This will indicate the beginning of an XML Namespace prefix
mapping.

Methods inherited from class java.lang.Object

, clone, equals, finalize, getClass, hashCode, notify,
notifyAll, toString, wait, wait, wait

Constructor Detail

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (2 of 7) [7/24/2002 10:06:45 PM]

MyContentHandler

MyContentHandler()

Method Detail

setDocumentLocator

public void setDocumentLocator(org.xml.sax.Locator locator)

Provide reference to Locator which provides information about where in a
document callbacks occur.

Specified by:
setDocumentLocator in interface
org.xml.sax.ContentHandler

Parameters:
locator - Locator object tied to callback process

startDocument

public void startDocument()
 throws org.xml.sax.SAXException

This indicates the start of a Document parse - this precedes all callbacks in all
SAX Handlers with the sole exception of
setDocumentLocator(org.xml.sax.Locator).

Specified by:
startDocument in interface org.xml.sax.ContentHandler

Throws:
SAXException - when things go wrong

endDocument

public void endDocument()
 throws org.xml.sax.SAXException

This indicates the end of a Document parse - this occurs after all callbacks in all
SAX Handlers..

Specified by:
endDocument in interface org.xml.sax.ContentHandler

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (3 of 7) [7/24/2002 10:06:45 PM]

Throws:
SAXException - when things go wrong

processingInstruction

public void processingInstruction(java.lang.String target,
 java.lang.String data)
 throws org.xml.sax.SAXException

This will indicate that a processing instruction (other than the XML declaration)
has been encountered.

Specified by:
processingInstruction in interface
org.xml.sax.ContentHandler

Parameters:
target - String target of PI

data - StringThrows:
SAXException - when things go wrong

startPrefixMapping

public void startPrefixMapping(java.lang.String prefix,
 java.lang.String uri)

This will indicate the beginning of an XML Namespace prefix mapping.
Although this typically occur within the root element of an XML document, it
can occur at any point within the document. Note that a prefix mapping on an
element triggers this callback before the callback for the actual element itself
(startElement(java.lang.String, java.lang.String,
java.lang.String, org.xml.sax.Attributes)) occurs.

Specified by:
startPrefixMapping in interface
org.xml.sax.ContentHandler

Parameters:
prefix - String prefix used for the namespace being reported

uri - String URI for the namespace being reported

Throws:
SAXException - when things go wrong

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (4 of 7) [7/24/2002 10:06:45 PM]

endPrefixMapping

public void endPrefixMapping(java.lang.String prefix)

This indicates the end of a prefix mapping, when the namespace reported in a
startPrefixMapping(java.lang.String, java.lang.String)
callback is no longer available.

Specified by:
endPrefixMapping in interface org.xml.sax.ContentHandler

Parameters:
prefix - String of namespace being reported

Throws:
SAXException - when things go wrong

startElement

public void startElement(java.lang.String namespaceURI,
 java.lang.String localName,
 java.lang.String rawName,
 org.xml.sax.Attributes atts)
 throws org.xml.sax.SAXException

This reports the occurrence of an actual element. It will include the element's
attributes, with the exception of XML vocabulary specific attributes, such as
xmlns:[namespace prefix] and xsi:schemaLocation.

Specified by:
startElement in interface org.xml.sax.ContentHandler

Parameters:
namespaceURI - String namespace URI this element is associated
with, or an empty String

localName - String name of element (with no namespace prefix, if
one is present)

rawName - String XML 1.0 version of element name: [namespace
prefix]:[localName]

atts - Attributes list for this element

Throws:
SAXException - when things go wrong

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (5 of 7) [7/24/2002 10:06:45 PM]

endElement

public void endElement(java.lang.String namespaceURI,
 java.lang.String localName,
 java.lang.String rawName)
 throws org.xml.sax.SAXException

Indicates the end of an element (</[element name]>) is reached. Note that
the parser does not distinguish between empty elements and non-empty elements,
so this will occur uniformly.

Specified by:
endElement in interface org.xml.sax.ContentHandler

Parameters:
namespaceURI - String URI of namespace this element is associated
with

localName - String name of element without prefix

rawName - String name of element in XML 1.0 form

Throws:
SAXException - when things go wrong

characters

public void characters(char[] ch,
 int start,
 int end)
 throws org.xml.sax.SAXException

This will report character data (within an element).

Specified by:
characters in interface org.xml.sax.ContentHandler

Parameters:
ch - char[] character array with character data

start - int index in array where data starts.

end - int index in array where data ends.

Throws:
SAXException - when things go wrong

ignorableWhitespace

public void ignorableWhitespace(char[] ch,
 int start,

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (6 of 7) [7/24/2002 10:06:45 PM]

 int end)
 throws org.xml.sax.SAXException

This will report whitespace that can be ignored in the originating document. This
is typically only invoked when validation is ocurring in the parsing process.

Specified by:
ignorableWhitespace in interface
org.xml.sax.ContentHandler

Parameters:
ch - char[] character array with character data

start - int index in array where data starts.

end - int index in array where data ends.

Throws:
SAXException - when things go wrong

skippedEntity

public void skippedEntity(java.lang.String name)
 throws org.xml.sax.SAXException

This will report an entity that is skipped by the parser. This should only occur for
non-validating parsers, and then is still implementation-dependent behavior.

Specified by:
skippedEntity in interface org.xml.sax.ContentHandler

Parameters:
name - String name of entity being skipped

Throws:
SAXException - when things go wrong

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Generated Documentation (Untitled)

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index.html (7 of 7) [7/24/2002 10:06:45 PM]

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class MyContentHandler

java.lang.Object
 |
 +--MyContentHandler

All Implemented Interfaces:
org.xml.sax.ContentHandler

class MyContentHandler
extends java.lang.Object

implements org.xml.sax.ContentHandler

MyContentHandler implements the SAX ContentHandler interface and defines callback
behavior for the SAX callbacks associated with an XML document's content.

Constructor Summary
(package private) MyContentHandler()

Method Summary
 void characters(char[] ch, int start, int end)

 This will report character data (within an element).

 void endDocument()
 This indicates the end of a Document parse - this occurs after all callbacks in all SAX
Handlers..

 void endElement(java.lang.String namespaceURI,
java.lang.String localName, java.lang.String rawName)
 Indicates the end of an element (</[element name]>) is reached.

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (1 of 7) [7/24/2002 10:06:47 PM]

 void endPrefixMapping(java.lang.String prefix)
 This indicates the end of a prefix mapping, when the namespace reported in a
startPrefixMapping(java.lang.String, java.lang.String) callback is no
longer available.

 void ignorableWhitespace(char[] ch, int start, int end)
 This will report whitespace that can be ignored in the originating document.

 void processingInstruction(java.lang.String target,
java.lang.String data)
 This will indicate that a processing instruction (other than the XML declaration) has
been encountered.

 void setDocumentLocator(org.xml.sax.Locator locator)
 Provide reference to Locator which provides information about where in a document
callbacks occur.

 void skippedEntity(java.lang.String name)
 This will report an entity that is skipped by the parser.

 void startDocument()
 This indicates the start of a Document parse - this precedes all callbacks in all SAX
Handlers with the sole exception of setDocumentLocator(org.xml.sax.Locator).

 void startElement(java.lang.String namespaceURI,
java.lang.String localName, java.lang.String rawName,
org.xml.sax.Attributes atts)
 This reports the occurrence of an actual element.

 void startPrefixMapping(java.lang.String prefix,
java.lang.String uri)
 This will indicate the beginning of an XML Namespace prefix mapping.

Methods inherited from class java.lang.Object

, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (2 of 7) [7/24/2002 10:06:47 PM]

MyContentHandler

MyContentHandler()

Method Detail

setDocumentLocator

public void setDocumentLocator(org.xml.sax.Locator locator)

Provide reference to Locator which provides information about where in a document callbacks
occur.

Specified by:
setDocumentLocator in interface org.xml.sax.ContentHandler

Parameters:
locator - Locator object tied to callback process

startDocument

public void startDocument()
 throws org.xml.sax.SAXException

This indicates the start of a Document parse - this precedes all callbacks in all SAX Handlers with
the sole exception of setDocumentLocator(org.xml.sax.Locator).

Specified by:
startDocument in interface org.xml.sax.ContentHandler

Throws:
SAXException - when things go wrong

endDocument

public void endDocument()
 throws org.xml.sax.SAXException

This indicates the end of a Document parse - this occurs after all callbacks in all SAX Handlers..

Specified by:
endDocument in interface org.xml.sax.ContentHandler

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (3 of 7) [7/24/2002 10:06:47 PM]

Throws:
SAXException - when things go wrong

processingInstruction

public void processingInstruction(java.lang.String target,
 java.lang.String data)
 throws org.xml.sax.SAXException

This will indicate that a processing instruction (other than the XML declaration) has been
encountered.

Specified by:
processingInstruction in interface org.xml.sax.ContentHandler

Parameters:
target - String target of PI

data - StringThrows:
SAXException - when things go wrong

startPrefixMapping

public void startPrefixMapping(java.lang.String prefix,
 java.lang.String uri)

This will indicate the beginning of an XML Namespace prefix mapping. Although this typically
occur within the root element of an XML document, it can occur at any point within the document.
Note that a prefix mapping on an element triggers this callback before the callback for the actual
element itself (startElement(java.lang.String, java.lang.String,
java.lang.String, org.xml.sax.Attributes)) occurs.

Specified by:
startPrefixMapping in interface org.xml.sax.ContentHandler

Parameters:
prefix - String prefix used for the namespace being reported

uri - String URI for the namespace being reported

Throws:
SAXException - when things go wrong

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (4 of 7) [7/24/2002 10:06:47 PM]

endPrefixMapping

public void endPrefixMapping(java.lang.String prefix)

This indicates the end of a prefix mapping, when the namespace reported in a
startPrefixMapping(java.lang.String, java.lang.String) callback is no
longer available.

Specified by:
endPrefixMapping in interface org.xml.sax.ContentHandler

Parameters:
prefix - String of namespace being reported

Throws:
SAXException - when things go wrong

startElement

public void startElement(java.lang.String namespaceURI,
 java.lang.String localName,
 java.lang.String rawName,
 org.xml.sax.Attributes atts)
 throws org.xml.sax.SAXException

This reports the occurrence of an actual element. It will include the element's attributes, with the
exception of XML vocabulary specific attributes, such as xmlns:[namespace prefix] and
xsi:schemaLocation.

Specified by:
startElement in interface org.xml.sax.ContentHandler

Parameters:
namespaceURI - String namespace URI this element is associated with, or an empty
String

localName - String name of element (with no namespace prefix, if one is present)

rawName - String XML 1.0 version of element name: [namespace prefix]:[localName]

atts - Attributes list for this element

Throws:
SAXException - when things go wrong

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (5 of 7) [7/24/2002 10:06:47 PM]

endElement

public void endElement(java.lang.String namespaceURI,
 java.lang.String localName,
 java.lang.String rawName)
 throws org.xml.sax.SAXException

Indicates the end of an element (</[element name]>) is reached. Note that the parser does
not distinguish between empty elements and non-empty elements, so this will occur uniformly.

Specified by:
endElement in interface org.xml.sax.ContentHandler

Parameters:
namespaceURI - String URI of namespace this element is associated with

localName - String name of element without prefix

rawName - String name of element in XML 1.0 form

Throws:
SAXException - when things go wrong

characters

public void characters(char[] ch,
 int start,
 int end)
 throws org.xml.sax.SAXException

This will report character data (within an element).

Specified by:
characters in interface org.xml.sax.ContentHandler

Parameters:
ch - char[] character array with character data

start - int index in array where data starts.

end - int index in array where data ends.

Throws:
SAXException - when things go wrong

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (6 of 7) [7/24/2002 10:06:47 PM]

ignorableWhitespace

public void ignorableWhitespace(char[] ch,
 int start,
 int end)
 throws org.xml.sax.SAXException

This will report whitespace that can be ignored in the originating document. This is typically only
invoked when validation is ocurring in the parsing process.

Specified by:
ignorableWhitespace in interface org.xml.sax.ContentHandler

Parameters:
ch - char[] character array with character data

start - int index in array where data starts.

end - int index in array where data ends.

Throws:
SAXException - when things go wrong

skippedEntity

public void skippedEntity(java.lang.String name)
 throws org.xml.sax.SAXException

This will report an entity that is skipped by the parser. This should only occur for non-validating
parsers, and then is still implementation-dependent behavior.

Specified by:
skippedEntity in interface org.xml.sax.ContentHandler

Parameters:
name - String name of entity being skipped

Throws:
SAXException - when things go wrong

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

: Class MyContentHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyContentHandler.html (7 of 7) [7/24/2002 10:06:47 PM]

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class MyErrorHandler

java.lang.Object
 |
 +--MyErrorHandler

All Implemented Interfaces:
org.xml.sax.ErrorHandler

class MyErrorHandler
extends java.lang.Object

implements org.xml.sax.ErrorHandler

MyErrorHandler implements the SAX ErrorHandler interface and defines callback behavior for
the SAX callbacks associated with an XML document's errors.

Constructor Summary
(package private) MyErrorHandler()

Method Summary
 void error(org.xml.sax.SAXParseException exception)

 This will report an error that has occurred; this indicates that a rule was broken, typically
in validation, but that parsing can reasonably continue.

 void fatalError(org.xml.sax.SAXParseException exception)
 This will report a fatal error that has occurred; this indicates that a rule has been broken
that makes continued parsing either impossible or an almost certain waste of time.

 void warning(org.xml.sax.SAXParseException exception)
 This will report a warning that has occurred; this indicates that while no XML rules were
"broken", something appears to be incorrect or missing.

Methods inherited from class java.lang.Object

: Class MyErrorHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyErrorHandler.html (1 of 3) [7/24/2002 10:06:49 PM]

, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

MyErrorHandler

MyErrorHandler()

Method Detail

warning

public void warning(org.xml.sax.SAXParseException exception)
 throws org.xml.sax.SAXException

This will report a warning that has occurred; this indicates that while no XML rules were
"broken", something appears to be incorrect or missing.

Specified by:
warning in interface org.xml.sax.ErrorHandler

Parameters:
exception - SAXParseException that occurred.

Throws:
SAXException - when things go wrong

error

public void error(org.xml.sax.SAXParseException exception)
 throws org.xml.sax.SAXException

This will report an error that has occurred; this indicates that a rule was broken, typically in
validation, but that parsing can reasonably continue.

Specified by:
error in interface org.xml.sax.ErrorHandler

Parameters:
exception - SAXParseException that occurred.

: Class MyErrorHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyErrorHandler.html (2 of 3) [7/24/2002 10:06:49 PM]

Throws:
SAXException - when things go wrong

fatalError

public void fatalError(org.xml.sax.SAXParseException exception)
 throws org.xml.sax.SAXException

This will report a fatal error that has occurred; this indicates that a rule has been broken that makes
continued parsing either impossible or an almost certain waste of time.

Specified by:
fatalError in interface org.xml.sax.ErrorHandler

Parameters:
exception - SAXParseException that occurred.

Throws:
SAXException - when things go wrong

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

: Class MyErrorHandler

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/MyErrorHandler.html (3 of 3) [7/24/2002 10:06:49 PM]

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class SAXParserDemo

java.lang.Object
 |
 +--SAXParserDemo

public class SAXParserDemo
extends java.lang.Object

SAXParserDemo will take an XML file and parse it using SAX, displaying the callbacks in the parsing
lifecycle.

Constructor Summary
SAXParserDemo()

Method Summary
static void main(java.lang.String[] args)

 This provides a command line entry point for this demo.

 void performDemo(java.lang.String uri)
 This parses the file, using registered SAX handlers, and output the events in the
parsing process cycle.

Methods inherited from class java.lang.Object

, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

: Class SAXParserDemo

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/SAXParserDemo.html (1 of 2) [7/24/2002 10:06:49 PM]

SAXParserDemo

public SAXParserDemo()

Method Detail

performDemo

public void performDemo(java.lang.String uri)

This parses the file, using registered SAX handlers, and output the events in the parsing process
cycle.

Parameters:
uri - String URI of file to parse.

main

public static void main(java.lang.String[] args)

This provides a command line entry point for this demo.

 Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

: Class SAXParserDemo

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/SAXParserDemo.html (2 of 2) [7/24/2002 10:06:49 PM]

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

Hierarchy For All Packages

Class Hierarchy
class java.lang.Object

class MyContentHandler (implements org.xml.sax.ContentHandler)❍

class MyErrorHandler (implements org.xml.sax.ErrorHandler)❍

class SAXParserDemo❍

❍

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

: Class Hierarchy

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/overview-tree.html [7/24/2002 10:06:50 PM]

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

Deprecated API

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

: Deprecated List

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/deprecated-list.html [7/24/2002 10:06:50 PM]

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

C E F I M P S W

C
characters(char[], int, int) - Method in class MyContentHandler

This will report character data (within an element).

E
endDocument() - Method in class MyContentHandler

This indicates the end of a Document parse - this occurs after all callbacks in all SAX Handlers..

endElement(String, String, String) - Method in class MyContentHandler

Indicates the end of an element (</[element name]>) is reached.

endPrefixMapping(String) - Method in class MyContentHandler

This indicates the end of a prefix mapping, when the namespace reported in a
MyContentHandler.startPrefixMapping(java.lang.String,
java.lang.String) callback is no longer available.

error(SAXParseException) - Method in class MyErrorHandler

This will report an error that has occurred; this indicates that a rule was broken, typically in
validation, but that parsing can reasonably continue.

F
fatalError(SAXParseException) - Method in class MyErrorHandler

This will report a fatal error that has occurred; this indicates that a rule has been broken that makes
continued parsing either impossible or an almost certain waste of time.

I
ignorableWhitespace(char[], int, int) - Method in class MyContentHandler

This will report whitespace that can be ignored in the originating document.

: Index

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index-all.html (1 of 3) [7/24/2002 10:06:52 PM]

M
main(String[]) - Static method in class SAXParserDemo

This provides a command line entry point for this demo.

MyContentHandler - class MyContentHandler.

MyContentHandler implements the SAX ContentHandler interface and defines callback
behavior for the SAX callbacks associated with an XML document's content.

MyContentHandler() - Constructor for class MyContentHandler

MyErrorHandler - class MyErrorHandler.

MyErrorHandler implements the SAX ErrorHandler interface and defines callback
behavior for the SAX callbacks associated with an XML document's errors.

MyErrorHandler() - Constructor for class MyErrorHandler

P
performDemo(String) - Method in class SAXParserDemo

This parses the file, using registered SAX handlers, and output the events in the parsing process
cycle.

processingInstruction(String, String) - Method in class MyContentHandler

This will indicate that a processing instruction (other than the XML declaration) has been
encountered.

S
SAXParserDemo - class SAXParserDemo.

SAXParserDemo will take an XML file and parse it using SAX, displaying the callbacks in the
parsing lifecycle.

SAXParserDemo() - Constructor for class SAXParserDemo

setDocumentLocator(Locator) - Method in class MyContentHandler

Provide reference to Locator which provides information about where in a document callbacks
occur.

skippedEntity(String) - Method in class MyContentHandler

This will report an entity that is skipped by the parser.

: Index

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index-all.html (2 of 3) [7/24/2002 10:06:52 PM]

startDocument() - Method in class MyContentHandler

This indicates the start of a Document parse - this precedes all callbacks in all SAX Handlers with
the sole exception of
MyContentHandler.setDocumentLocator(org.xml.sax.Locator).

startElement(String, String, String, Attributes) - Method in class MyContentHandler

This reports the occurrence of an actual element.

startPrefixMapping(String, String) - Method in class MyContentHandler

This will indicate the beginning of an XML Namespace prefix mapping.

W
warning(SAXParseException) - Method in class MyErrorHandler

This will report a warning that has occurred; this indicates that while no XML rules were
"broken", something appears to be incorrect or missing.

C E F I M P S W

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

: Index

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/index-all.html (3 of 3) [7/24/2002 10:06:52 PM]

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

How This API Document Is Organized
This API (Application Programming Interface) document has pages corresponding to the items in the
navigation bar, described as follows.

Package

Each package has a page that contains a list of its classes and interfaces, with a summary for
each. This page can contain four categories:

Interfaces (italic)●

Classes●

Exceptions●

Errors●

Class/Interface

Each class, interface, inner class and inner interface has its own separate page. Each of these
pages has three sections consisting of a class/interface description, summary tables, and
detailed member descriptions:

Class inheritance diagram●

Direct Subclasses●

All Known Subinterfaces●

All Known Implementing Classes●

Class/interface declaration●

Class/interface description●

Inner Class Summary●

Field Summary●

Constructor Summary●

Method Summary●

Field Detail●

Constructor Detail●

Method Detail●

Each summary entry contains the first sentence from the detailed description for that item.
The summary entries are alphabetical, while the detailed descriptions are in the order they
appear in the source code. This preserves the logical groupings established by the

: API Help

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/help-doc.html (1 of 2) [7/24/2002 10:06:53 PM]

programmer.

Tree (Class Hierarchy)

There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each
hierarchy page contains a list of classes and a list of interfaces. The classes are organized by
inheritance structure starting with java.lang.Object. The interfaces do not inherit
from java.lang.Object.

When viewing the Overview page, clicking on "Tree" displays the hierarchy for all
packages.

●

When viewing a particular package, class or interface page, clicking "Tree" displays
the hierarchy for only that package.

●

Deprecated API

The Deprecated API page lists all of the API that have been deprecated. A deprecated API is
not recommended for use, generally due to improvements, and a replacement API is usually
given. Deprecated APIs may be removed in future implementations.

Index

The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and
fields.

Prev/Next

These links take you to the next or previous class, interface, package, or related page.

Frames/No Frames

These links show and hide the HTML frames. All pages are available with or without frames.

Serialized Form

Each serializable or externalizable class has a description of its serialization fields and methods. This
information is of interest to re-implementors, not to developers using the API. While there is no link in
the navigation bar, you can get to this information by going to any serialized class and clicking
"Serialized Form" in the "See also" section of the class description.

This help file applies to API documentation generated using the standard doclet.

Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

: API Help

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/doc/help-doc.html (2 of 2) [7/24/2002 10:06:53 PM]

/*--

 Copyright (C) 2000 Brett McLaughlin. All rights reserved.

 Redistribution and use in source and binary forms, with or without modifica-
 tion, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions, and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions, the disclaimer that follows these conditions,
 and/or other materials provided with the distribution.

 3. Products derived from this software may not be called "Java and XML", nor may
 "Java and XML" appear in their name, without prior written permission from
 Brett McLaughlin (brett@newInstance.com).

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 This software was originally created by Brett McLaughlin <brett@newInstance.com>.
 For more information on "Java and XML", please see
<http://www.oreilly.com/catalog/javaxml/>
 or <http://www.newInstance.com>.

 */
import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

/**
 * <code>SAXParserDemo</code> will take an XML file and parse it using SAX,
 * displaying the callbacks in the parsing lifecycle.
 *
 * @author Brett McLaughlin
 * @version 1.0
 */
public class SAXParserDemo {

 /**
 * <p>
 * This parses the file, using registered SAX handlers, and output
 * the events in the parsing process cycle.
 * </p>
 *

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (1 of 7) [7/24/2002 10:06:54 PM]

 * @param uri <code>String</code> URI of file to parse.
 */
 public void performDemo(String uri) {
 System.out.println("Parsing XML File: " + uri + "\n\n");

 // Get instances of our handlers
 ContentHandler contentHandler = new MyContentHandler();
 ErrorHandler errorHandler = new MyErrorHandler();

 try {
 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler
 parser.setContentHandler(contentHandler);

 // Register the error handler
 parser.setErrorHandler(errorHandler);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reading URI: " + e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " + e.getMessage());
 }

 }

 /**
 * <p>
 * This provides a command line entry point for this demo.
 * </p>
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java SAXParserDemo [XML URI]");
 System.exit(0);
 }

 String uri = args[0];

 SAXParserDemo parserDemo = new SAXParserDemo();
 parserDemo.performDemo(uri);
 }

}

/**
 * <code>MyContentHandler</code> implements the SAX
 * <code>ContentHandler</code> interface and defines callback
 * behavior for the SAX callbacks associated with an XML
 * document's content.
 */
class MyContentHandler implements ContentHandler {

 /** Hold onto the locator for location information */

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (2 of 7) [7/24/2002 10:06:54 PM]

 private Locator locator;

 /**
 * <p>
 * Provide reference to <code>Locator</code> which provides
 * information about where in a document callbacks occur.
 * </p>
 *
 * @param locator <code>Locator</code> object tied to callback
 * process
 */
 public void setDocumentLocator(Locator locator) {
 System.out.println(" * setDocumentLocator() called");
 // We save this for later use if desired.
 this.locator = locator;
 }

 /**
 * <p>
 * This indicates the start of a Document parse - this precedes
 * all callbacks in all SAX Handlers with the sole exception
 * of <code>{@link #setDocumentLocator}</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startDocument() throws SAXException {
 System.out.println("Parsing begins...");
 }

 /**
 * <p>
 * This indicates the end of a Document parse - this occurs after
 * all callbacks in all SAX Handlers.</code>.
 * </p>
 *
 * @throws <code>SAXException</code> when things go wrong
 */
 public void endDocument() throws SAXException {
 System.out.println("...Parsing ends.");
 }

 /**
 * <p>
 * This will indicate that a processing instruction (other than
 * the XML declaration) has been encountered.
 * </p>
 *
 * @param target <code>String</code> target of PI
 * @param data <code>String</code containing all data sent to the PI.
 * This typically looks like one or more attribute value
 * pairs.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void processingInstruction(String target, String data)
 throws SAXException {

 System.out.println("PI: Target:" + target + " and Data:" + data);
 }

 /**

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (3 of 7) [7/24/2002 10:06:54 PM]

 * <p>
 * This will indicate the beginning of an XML Namespace prefix
 * mapping. Although this typically occur within the root element
 * of an XML document, it can occur at any point within the
 * document. Note that a prefix mapping on an element triggers
 * this callback <i>before</i> the callback for the actual element
 * itself (<code>{@link #startElement}</code>) occurs.
 * </p>
 *
 * @param prefix <code>String</code> prefix used for the namespace
 * being reported
 * @param uri <code>String</code> URI for the namespace
 * being reported
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startPrefixMapping(String prefix, String uri) {
 System.out.println("Mapping starts for prefix " + prefix +
 " mapped to URI " + uri);
 }

 /**
 * <p>
 * This indicates the end of a prefix mapping, when the namespace
 * reported in a <code>{@link #startPrefixMapping}</code> callback
 * is no longer available.
 * </p>
 *
 * @param prefix <code>String</code> of namespace being reported
 * @throws <code>SAXException</code> when things go wrong
 */
 public void endPrefixMapping(String prefix) {
 System.out.println("Mapping ends for prefix " + prefix);
 }

 /**
 * <p>
 * This reports the occurrence of an actual element. It will include
 * the element's attributes, with the exception of XML vocabulary
 * specific attributes, such as
 * <code>xmlns:[namespace prefix]</code> and
 * <code>xsi:schemaLocation</code>.
 * </p>
 *
 * @param namespaceURI <code>String</code> namespace URI this element
 * is associated with, or an empty
 * <code>String</code>
 * @param localName <code>String</code> name of element (with no
 * namespace prefix, if one is present)
 * @param rawName <code>String</code> XML 1.0 version of element name:
 * [namespace prefix]:[localName]
 * @param atts <code>Attributes</code> list for this element
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {

 System.out.print("startElement: " + localName);
 if (!namespaceURI.equals("")) {
 System.out.println(" in namespace " + namespaceURI +
 " (" + rawName + ")");

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (4 of 7) [7/24/2002 10:06:54 PM]

 } else {
 System.out.println(" has no associated namespace");
 }

 for (int i=0; i<atts.getLength(); i++)
 System.out.println(" Attribute: " + atts.getLocalName(i) +
 "=" + atts.getValue(i));
 }

 /**
 * <p>
 * Indicates the end of an element
 * (<code></[element name]></code>) is reached. Note that
 * the parser does not distinguish between empty
 * elements and non-empty elements, so this will occur uniformly.
 * </p>
 *
 * @param namespaceURI <code>String</code> URI of namespace this
 * element is associated with
 * @param localName <code>String</code> name of element without prefix
 * @param rawName <code>String</code> name of element in XML 1.0 form
 * @throws <code>SAXException</code> when things go wrong
 */
 public void endElement(String namespaceURI, String localName,
 String rawName)
 throws SAXException {

 System.out.println("endElement: " + localName + "\n");
 }

 /**
 * <p>
 * This will report character data (within an element).
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void characters(char[] ch, int start, int end)
 throws SAXException {

 String s = new String(ch, start, end);
 System.out.println("characters: " + s);
 }

 /**
 * <p>
 * This will report whitespace that can be ignored in the
 * originating document. This is typically only invoked when
 * validation is ocurring in the parsing process.
 * </p>
 *
 * @param ch <code>char[]</code> character array with character data
 * @param start <code>int</code> index in array where data starts.
 * @param end <code>int</code> index in array where data ends.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void ignorableWhitespace(char[] ch, int start, int end)
 throws SAXException {

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (5 of 7) [7/24/2002 10:06:54 PM]

 String s = new String(ch, start, end);
 System.out.println("ignorableWhitespace: [" + s + "]");
 }

 /**
 * <p>
 * This will report an entity that is skipped by the parser. This
 * should only occur for non-validating parsers, and then is still
 * implementation-dependent behavior.
 * </p>
 *
 * @param name <code>String</code> name of entity being skipped
 * @throws <code>SAXException</code> when things go wrong
 */
 public void skippedEntity(String name) throws SAXException {
 System.out.println("Skipping entity " + name);
 }

}

/**
 * <code>MyErrorHandler</code> implements the SAX
 * <code>ErrorHandler</code> interface and defines callback
 * behavior for the SAX callbacks associated with an XML
 * document's errors.
 */
class MyErrorHandler implements ErrorHandler {

 /**
 * <p>
 * This will report a warning that has occurred; this indicates
 * that while no XML rules were "broken", something appears
 * to be incorrect or missing.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void warning(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Warning**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Warning encountered");
 }

 /**
 * <p>
 * This will report an error that has occurred; this indicates
 * that a rule was broken, typically in validation, but that
 * parsing can reasonably continue.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (6 of 7) [7/24/2002 10:06:54 PM]

 */
 public void error(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Error encountered");
 }

 /**
 * <p>
 * This will report a fatal error that has occurred; this indicates
 * that a rule has been broken that makes continued parsing either
 * impossible or an almost certain waste of time.
 * </p>
 *
 * @param exception <code>SAXParseException</code> that occurred.
 * @throws <code>SAXException</code> when things go wrong
 */
 public void fatalError(SAXParseException exception)
 throws SAXException {

 System.out.println("**Parsing Fatal Error**\n" +
 " Line: " +
 exception.getLineNumber() + "\n" +
 " URI: " +
 exception.getSystemId() + "\n" +
 " Message: " +
 exception.getMessage());
 throw new SAXException("Fatal Error encountered");
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java (7 of 7) [7/24/2002 10:06:54 PM]

<?xml version="1.0"?>
<!-- test xml page -->
<!DOCTYPE averagegpa SYSTEM "averagegpa.dtd">
<averagegpa>
 <student>
 <firstname> Mary </firstname>
 <lastname> Wong </lastname>
 <sn> 97123456 </sn>
 <gpa> 3.78 </gpa>
 <grade Grade="A" />
 </student>
 <student>
 <firstname> Brian William</firstname>
 <lastname> Mulroney </lastname>
 <sn> 579874562 </sn>
 <gpa> 2.02</gpa>
 <grade Grade="C-" />
 </student>
 <student>
 <lastname> Bjork </lastname>
 <sn> 763245610 </sn>
 <gpa> 2.78 </gpa>
 <grade Grade="B-" />
 </student>
 <student>
 <firstname>John </firstname>
 <lastname>von Neumann </lastname>
 <sn> 26387782 </sn>
 <gpa>4.2</gpa>
 <grade Grade="A+" />
 </student>
</averagegpa>

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/averagegpa.xml

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/averagegpa.xml [7/24/2002 10:06:55 PM]

package xml.sax.gpaExample2;

import java.io.IOException;
import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;

/**
 * A SAX parser example with a simple calculation.<p>
 * The file to be parsed conforms to the DTD averagegpa.dtd. An example is
 * averagegpa.xml. <p>
 * The program finds the student with the highest gpa. Output is to stdout.<p>
 *
 * SAX parsers analyse the xml document dynamically, producing events for each type
 * of XML data. The analysis proceeds in depth first order. The program must arrange
 * to capture relevant data as it "flies by". <p>
 *
 * Various interfaces provide callback methods to respond to these events. SAX 2.0
provides
 * the convenience class DefaultHandler which provides empty implementations off all
 * the methods in these interfaces. You subclass this class and override the methods of
 * your choosing to provide the desired functionality. <p>
 *
 * This program uses several of the most useful of these callbacks, characters(),
startElement(),
 * and endElement().<p>
 */
public class GPAExample {

 private final String xmlURL =
"file:/c:/coursesf2000/cps720/xml/sax/gpaExample/averagegpa.xml";

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java GPAExample [XML URI]");
 System.exit(0);
 }

 String uri = args[0];

 GPAExample gpaAnalysis = new GPAExample();
 gpaAnalysis.analyse(uri);
 }

 /**
 * Sets up the parser. These calls are very standardized.
 * @param uri <code> String</code>The locator for the XML file to be parsed.
 */
 public void analyse(String uri) {

 // Get instances of our handlers. DefaultHandler is a convenience
 // class which implements default empty methods for4 interfaces,
 // EntityResolver, DTDHandler, ContentHandler and ErrorHandler.
 // Subclass and override the methods you need.

 DefaultHandler theHandler = new MyHandler(); // creae the subclass

 try {

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java (1 of 5) [7/24/2002 10:06:56 PM]

 // Instantiate a parser
 XMLReader parser =
 XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");

 // Register the content handler (part of DefaultHandler)
 parser.setContentHandler(theHandler);

 // Register the error handler (Should be done sometime.)
 //parser.setErrorHandler(errorHandler);

 // Parse the document
 parser.parse(uri);

 } catch (IOException e) {
 System.out.println("Error reading URI: " +
e.getMessage());
 } catch (SAXException e) {
 System.out.println("Error in parsing: " +
e.getMessage());
 }
 }

}
/**
 * Tailors the DefaultHandler for this application.
 */
class MyHandler extends DefaultHandler {

 /*
 * The startElement() and endElement() methods are called every time the
parser
 * sees an Element. These variables, global to the class, allow the
different types
 * of elements to be distinguished across calls. In particular the
control the action of
 * the characters() method which reads PCDATA from the XML file.
 */
 private boolean isGPA = false;
 private boolean isFirstName = false;
 private boolean isLastName = false;

 // retain some of the parsed data when the SAX parser moves on

 private Student bestStudent, aStudent;

 public MyHandler() {
 bestStudent = new Student("","", 0.00f, "");
 }

 public void startDocument() throws SAXException {
 System.out.println("Parsing begins...");
 }

 public void endDocument() throws SAXException {
 // Called at the end, so print out the result.
 System.out.println("The Best Student");
 System.out.println("================");
 bestStudent.printStudent();
 System.out.println("...Parsing ends.");
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java (2 of 5) [7/24/2002 10:06:56 PM]

 // This captures the PCDATA etc in an element.

 public void characters(char[] ch, int start, int end)
 throws SAXException {

 String s = new String(ch, start, end);

 // keep the parsed data. The aStudent variable should not
be null because
 // it got the reference when startElement() was called on
<student> tag.
 // Similarly the boolean flags are set in starElement().

 if(isFirstName) {
 if(aStudent != null) {
 aStudent.setFirstName(s);
 }
 } else if(isLastName) {
 if(aStudent != null) {
 aStudent.setLastName(s);
 }
 } else if(isGPA) {
 if(aStudent != null) {
 float gp = (new Float(s)).floatValue();
 aStudent.setGpa(gp);
 }
 }
 }

 /**
 * <p>
 * This reports the occurrence of an actual element. It will
include
 * the element's attributes, with the exception of XML vocabulary
 * specific attributes, such as
 * <code>xmlns:[namespace prefix]</code> and
 * <code>xsi:schemaLocation</code>.
 * </p>
 *
 * @param namespaceURI <code>String</code> namespace URI this
element
 * is associated with, or an empty
 * <code>String</code>
 * @param localName <code>String</code> name of element (with no
 * namespace prefix, if one is present)
 * @param rawName <code>String</code> XML 1.0 version of element
name:
 * [namespace prefix]:[localName]
 * @param atts <code>Attributes</code> list for this element
 * @throws <code>SAXException</code> when things go wrong
 */
 public void startElement(String namespaceURI, String localName,
 String rawName, Attributes atts)
 throws SAXException {

 if(localName.equals("student")) {
 aStudent = new Student("", "", 0.0f,
"");
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java (3 of 5) [7/24/2002 10:06:56 PM]

 // Flags to control the characters() method.
 // Distinguish among types of elements.

 if(localName.equals("gpa")) {
 isGPA = true;
 } else if(localName.equals("firstname")) {
 isFirstName = true;
 } else if(localName.equals("lastname")) {
 isLastName = true;
 }
 }

 public void endElement(String namespaceURI, String localName,
 String rawName)
 throws SAXException {

 // Check that the event signals the end of a <student>
element. If so, the
 // current student's (aStudent) data fields are
populated. So now you can
 // compare the current student to the best so far
student and perhaps replace
 // the best so far student.

 if(localName.equals("student") && aStudent != null) {
 if(aStudent.getGpa() > bestStudent.getGpa()) {
 bestStudent = aStudent;
 }
 aStudent.printStudent();

 // allow garbage collection of old student data
 aStudent = null;
 }
 // At any time, two of these are already false, but
it's a waste of time to test.
 isGPA = false;
 isFirstName = false;
 isLastName = false;
 }
 /**
 * A class to represent student data. The fields correspond to those in the XML
document.
 */
 class Student {
 private String firstName;
 private String lastName;
 private float gpa;
 private String grade;

 public Student(String fn, String ln, float gpa, String g) {
 firstName = fn;
 lastName = ln;
 this.gpa = gpa;
 grade = g;
 }
 public void setFirstName(String fn) {
 firstName = fn;
 }
 public void setLastName(String ln) {
 lastName = ln;
 }

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java (4 of 5) [7/24/2002 10:06:56 PM]

 public void setGpa(float g) {
 gpa = g;
 }
 public float getGpa() {
 return gpa;
 }
 public void setGrade(String g) {
 grade = g;
 }
 public void printStudent() {
 System.out.println(firstName);
 System.out.println(lastName);
 System.out.println(gpa);
 System.out.println(grade);
 }
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java (5 of 5) [7/24/2002 10:06:56 PM]

A Few Notes on XSL and XSLT
XSL (Extensible Styesheet Language) is an important part of XML. XSLT (Extensible Stylesheet
Language Transformer) is a processing program which uses the XLS to transform an XML document
into different forms, for example HTML or PDF (Adobe Acrobat) format.

Actually, in principle XSL is more powerful that this. It could be used to transform an XML document
into almost any format.

XSL is quite a bit more extensive and complicated that XML itself. These notes only provide a very
limited introduction. The notes discuss two very simple examples, and show how to use the XSLT
processor, Xalan, process an XML document and a corresponding XSL document.

The Xalan distribution is available from the Apache XML Project. You also need the Xerces parser
(comes with the Xalan distribution, or separately).

Local versions: xerces.jar xalan.jar

The Basic Mechanism of XSL
First of all, note that an XSL document is an XML document. The XSL document has a tree structure of
the original XML document that it is being used to process (by the XSLT). The XSLT must find each
node in the XML document (usually an Element) and its attributes, if any, and then apply rules defining
how to present each node. The XSLT finds these rules in the XSL document. Often these rules transform
the XML document into an HTML document for presentation to a human user. The XSLT processor
processes both trees (in the XML and XSL documents) in a depth first order.

The XSLT is a pattern matcher. It uses a template method to match and find the nodes it wishes to
process. XSL is really the programming language for the XSLT processor. It is a kind of scripting
language. Its commands start with xsl: followed by the command name and various arguments. Some of
these are illustrated in the examples.

A Simple Example
We return to our old friend, averagegpa.xml (with its DTD averagegpa.dtd). Although averagegpa.xml is
reasonably readable by a human, it would be nicer if we could turn it into a regular HTML document,
averagegpa,html, for viewing with a browser. The XSL program, averagegpa.xsl.

averagegpa.xsl

<?xml version="1.0"?>

<!--

A style sheet for averagegpa.xml and averagegpa.dtd.

Used with Apache Xalan XSLT.

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (1 of 6) [7/24/2002 10:06:58 PM]

http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/

The output file is averagegpa.html.

DG. Nov. 2000

-->

<!--
xls is an international namespace.

-->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="averagegpa">
<html>

<head>
<title> Student Average GPAs </title>

</head>
<body>

<h1> Student Average Marks</h1>
<xsl:apply-templates select="student" />

</body>
</html>

</xsl:template>
<xsl:template match="student">

<h3>
<xsl:value-of select="firstname"/>
<xsl:value-of select= "lastname"/>

</h3>
<hr />

Student Number: <xsl:value-of select="sn"/>
Average GPA: <xsl:value-of select="gpa"/>
<!--

The next line illustrates XPath.

-->

 Grade: <xsl:value-of select="./grade/@Grade"/>

<xsl:apply-templates select="grade"/>

</xsl:template>

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (2 of 6) [7/24/2002 10:06:58 PM]

<!--

Another way to deal with the grade Element and its attribute.

Disadvantage is that it makes a separate ul.

-->

<xsl:template match="grade">

 Average Grade: <xsl:value-of select="@Grade"/>

</xsl:template>
</xsl:stylesheet>

Notes on the program

This example shows a number of basic points about XSL programming.

xsl is a namespace which must be unique. Namespaces must refer to their "home base" URL. The
line <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
accomplishes this for the xsl namespace.

●

Part of programming in XSL consists of making up templates to match against nodes in the XML
document. <xsl:template match="averagegpa"> is a simple example. The matching can be much
more complicated involving wildcards and logical functions such as not.

●

After they are created, templates must be applied to target nodes. A simple example is
<xsl:apply-templates select="student" />. This template is only applied to student nodes among
the children of <averagegpa>. Since all the children of <averagegpa> are <student>nodes you
really do not need to sepecify. Note that the xsl:apply-template only applies to children, not
grandchildren or more remote sub-nodes. In this example, for instance, the nodes <firstname>
<lastname> etc which are childern of <student> are not affected.

●

XSL comes with a large number of commands (functions). One of the most used is xsl:value-of,
for example, <xsl:value-of select="firstname"/>. There are many others. They allow for normal
programming logic: sequences, branches, and loops. Examples are xsl:for-each, xsl:counter, xsl:if,
xsl:choose, xsl:when, xsl:otherwise, See XML Pocket Reference, p.56-70. Using them has the
flavour of shell programming with XML syntax.

●

XSL makes use of a separate feature, called XPath. XPath helps you locate nodes at different
levels in the XML tree. It is modelled on the path structure of UNIX . <xsl:value-of
select="./grade/@Grade"/> is an example. This isnvokded at the <student> level so we go down
one level to the node <grade> from the current <student> level denoted by the '.' as in the
UNIX file system. Interstingly, to get at the Grade attribute of the <grade> node we go down one
more level and then use the '@' prefix which is used to distinguish attribute names from element
names.

●

The example program shows another way of accessing the <grade> element's Grade attribute: use
a template. <xsl:apply-templates select="grade"/>. The select is important. You have to watch
out for multiple passes throught the same nodes.

●

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (3 of 6) [7/24/2002 10:06:58 PM]

Running the example

You can use Xalan from the command line to create the HTML file. (Xalan has many more features for
integrating it with Java code but these are not covered here.)

You need to download the Xalan package and unzip it. I put it in C:\xalan-j_2_0_D01\. The two
necessary files are xalan.jar and xerces.jar in the bin subdirectory. These must be on the classpath, for
example, set classpath=C:\xalan-j_2_0_D01\bin\xerces.jar;C:\xalan-j_2_0_D01\bin\xalan.jar.

Then, in the directory where all the xml, dtd and xsl files are, type,

java org.apache.xalan.xslt.Process -IN averagegpa.xml -XSL averagegpa.xsl >averagegpa.html

Note the fully qualified name for the Process class.

A Second Example
This example shows some more complicated things. It is taken from Brett McLaughlin's Java and XML.
It provides an XSL script for table of contents example discussed previously.

contents.xml JavaXML.dtd

JavaXML.html.xsl

This example illustrates using some logical constructs in XSL. The result of using this XSL script is
shown in contents.html.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:JavaXML="http://www.oreilly.com/catalog/javaxml/"
version="1.0"
>

<xsl:template match="JavaXML:Book">
<html>

<head>
<title><xsl:value-of select="JavaXML:Title" /></title>

</head>
<body>

<xsl:apply-templates select="*[not(self::JavaXML:Title)]" />
</body>

</html>
</xsl:template>

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (4 of 6) [7/24/2002 10:06:58 PM]

<xsl:template match="JavaXML:Contents">
<center>

<h2>Table of Contents</h2>
</center>
<hr />

<xsl:for-each select="JavaXML:Chapter">
<xsl:choose>

<xsl:when test="@focus='Java'">
<xsl:value-of select="JavaXML:Heading" /> (Java
Focus)

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="JavaXML:Heading" /> (XML
Focus)

</xsl:otherwise>
</xsl:choose>

</xsl:for-each>

</xsl:template>

<xsl:template match="JavaXML:References">
<p>
<center><h3>Useful References</h3></center>

<xsl:for-each select="JavaXML:Reference">

<xsl:element name="a">
<xsl:attribute name="href">

<xsl:value-of select="JavaXML:Url" />
</xsl:attribute>
<xsl:value-of select="JavaXML:Name" />

</xsl:element>

</xsl:for-each>

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (5 of 6) [7/24/2002 10:06:58 PM]

</p>
</xsl:template>

<xsl:template match="JavaXML:Copyright">
<xsl:copy-of select="*" />

</xsl:template>

</xsl:stylesheet>

Note: [CPS720 FALL 2000]. Students are only responsible for constructs in the first example. The
second example is shown only for interest.

xsl and xslt

http://www.ryerson.ca/~dgrimsha/courses/cps720/xsl.html (6 of 6) [7/24/2002 10:06:58 PM]

Student Average Marks
Mary Wong

Student Number: 97123456●

Average GPA: 4.01●

Grade: A+●

Average Grade: A+●

Brian William Mulroney

Student Number: 579874562●

Average GPA: 2.02●

Grade: C-●

Average Grade: C-●

Kennedy

Student Number: 763245610●

Average GPA: 2.78●

Grade: B-●

Average Grade: B-●

Student Average GPAs

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.html [7/24/2002 10:11:26 PM]

<?xml version="1.0"?>

<!--
 A style sheet for averagegpa.xml and averagegpa.dtd.
 Used with Apache Xalan XSLT.
 The output file is averagegpa.html.
 DG. Nov. 2000
-->

<!--
 xls is an international namespace.
-->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="averagegpa">
 <html>
 <head>
 <title> Student Average GPAs </title>
 </head>
 <body>
 <h1> Student Average Marks</h1>
 <xsl:apply-templates select="student" />
 </body>
 </html>
 </xsl:template>
 <xsl:template match="student">
 <h3>
 <xsl:value-of select="firstname"/>
 <xsl:value-of select= "lastname"/>
 </h3>
 <hr />

 Student Number: <xsl:value-of select="sn"/>
 Average GPA: <xsl:value-of select="gpa"/>
 <!--
 The next line illustrates XPath.
 -->
 Grade: <xsl:value-of select="./grade/@Grade"/>

 <xsl:apply-templates select="grade"/>
 </xsl:template>

 <!--
 Another way to deal with the grade Element and its attribute.
 Disadvantage is that it makes a separate ul.
 -->
 <xsl:template match="grade">

 Average Grade: <xsl:value-of select="@Grade"/>

 </xsl:template>
</xsl:stylesheet>

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xsl

http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xsl [7/24/2002 10:11:27 PM]

Table of Contents

(Java Focus)●

(XML Focus)●

Useful References
1.

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/JavaXML.html.xsl [7/24/2002 10:11:27 PM]

http://www.oreilly.com/catalog/javaxml/ grammar not found

Table of Contents

Introduction (XML Focus)●

Creating XML (XML Focus)●

Parsing XML (Java Focus)●

Web Publishing Frameworks (Java Focus)●

Useful References

The W3C1.

XSL List2.

Java and XML

http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/contents.html [7/24/2002 10:11:27 PM]

http://www.w3.org/Style/XSL
http://www.mulberrytech.com/xsl/xsl-list

Agent Negotiations
Bargaining and negotiation play key roles in natural agent interactions. People negotiate with other
people all the time. Negotiation is a method by which autonomous agents seek to cooperate by
coordinating their activities and goals.

Virtual software agents will no doubt have to learn to negotiate with one another. In the InfoSleuth
architecture, for example, there are 'clouds' of agents, consumer agents, producer agents, and broker
agents. Negotiations must occur throughout such systems.

Honesty and Deception
Honesty is the best policy -- not necessarily.

In the case of a multi-agent system set up by one company, a situation in which all agents are designed
by the same people, or where the agents have little autonomy, the honesty problem does not really occur.
Presumably, the system is designed to be cooperative and no one has any incentive to deceive.

But, in the future, one can imagine large numbers of software agents with considerable autonomy,
designed by people who do not know one another, and, presumably, designed to serve the selfish ends of
the agent's owner. There is no reason not to expect that agents which practice deception will appear.

Optimal Agreements
It also turns out, that protecting against deception can lead to inefficient, and even downright bad in some
situations. The threat of deception poisons the atmosphere of negotiations. A famous example of this is
the Prisoner's Dilemma game.

One way to solve the deception problem is policing. People who get caught are jailed or fined. This is a
very expensive approach, and may not be very effective.

In some situations it is possible to design institutional mechanisms, or protocols, which make honesty the
best policy. There are many examples of this, especially in connection with taxation policies, and
research continues on such mechanisms.

Negotiation protocols which encourage honesty would be very useful in a world of autonomous virtual
agents.

Agent negotiations

http://www.ryerson.ca/~dgrimsha/courses/cps720/negotiationIntro.html [7/24/2002 10:11:28 PM]

Making Honesty the Best Policy
The mechanisms which can make human bargaining more honest could also be useful as protocols in
negotiations among virtual agents. Here are two examples of protocols from the human world designed
to make honesty the best policy

Example 1. Jumping landing queue at airports.
Consider the following scenario.

One factor in deciding which aircraft lands first is the amount of fuel remaining in the approaching
aircraft. Assume that aircraft with lower amounts of fuel are moved up in the queue and therefore land
sooner.

There are benefits to landing earlier. First of all, money is saved because the aircraft does not waste fuel
while circling the airport waiting to land. Secondly, on time performance is enhanced, making customers
happy. These are obvious incentives to cheat.

Now suppose, the fuel situation is "discussed" between two software agents, one in the plane, the other in
the tower. Further suppose that the airline has programmed its plane's software agent to underestimate its
fuel remaining. Choosing how much to underestimate would be tricky. If the underestimation were too
small, it would do no good; too large, and the agent would get caught. Perhaps a clever agent program
would take into account factors such as the weather: bad weather, underestimate by a greater among.

Preventing cheating

The simplest way is the law. Airlines caught doing this get fined. Note that a software implementation of
this cheating algorithm is less likely to get caught than a purely human one. That is because far fewer
people would have to know about it, perhaps only the programmers and some executives. Without the
software agent, all the pilots would have to be part of the plot.

A better way to prevent this scam would be some kind of automatic mechanism to encourage honesty.
One way would be a surcharged based upon how many places the plane was moved up in the queue. The
surcharge would provide a disincentive to underreporting the remaining fuel supply to gain a queue
advantage.

Example 2. Vickrey's Auction
Many bids for large contracts are organized using a sealed bid mechanism (protocol). Bids kept secret
(sealed) and submitted at some deadline. The bids are opened and the lowest bidder gets the contract.

A bidder would like to bid as high as possible without being underbid by a rival. So would the rival
bidders. The temptation is to spend resources investigating (spying on?) rivals to try to guess how low
they can bid, and then bit slightly lower still. These investigations waste resources with the result that in
the long run, the average lowest bids will be higher than they could be. There is also an upward pressure

Honesty in negotiations

http://www.ryerson.ca/~dgrimsha/courses/cps720/negotiationProtocols.html (1 of 2) [7/24/2002 10:11:28 PM]

on the bids, as all the bidders have a tendency to keep their bids high to make a good profit if they do
with the bid. This is a case of inefficiency more than dishonesty.

William Vickrey (a Nobel Prize winner in economics) came up with the following mechanism which is
claimed to be more efficient in the long run. Bids are sealed as before, and opened simultaneously. The
lowest bid is chosen, but, the lowest bidder is paid the value of the second lowest bid !! The winning
bidder does not get the amount of money determined by itself. Rather the reward is determined by
another bidder's lowest bid.

The claim is that incentives to investigate opponents and push bids up is removed by this protocol.

These two examples illustrate possible mechanisms or protocols which align self interest with honesty
and optimality. Thee mechanisms encourage effective cooperation rather than costly conflict. Achieving
optimal cooperative solutions to possibly conflictual situations is the subject of Game Theory.

Honesty in negotiations

http://www.ryerson.ca/~dgrimsha/courses/cps720/negotiationProtocols.html (2 of 2) [7/24/2002 10:11:28 PM]

http://csf.colorado.edu/pkt/pktauthors/Berglund.Per/Vickrey/WSV.htm

A Brief Introduction to Game Theory

Game Theory is the study of confilct and cooperation among agents. The theory was invented and first
developed by none other that John von Neumann. Johnny (as he was known when he lived in the USA)
was a party animal in addition to being the world's smartest man. His parties were legendary. At these
parlour games were often played. Poker was also popular. In additon to partying and developing theories
of computer science, quantum mechanics and economics, Johnny enjoyed playing games with children
(e.g., scissors, paper, stone - see below).

So it was not surprising that at some point he became interested in a theory of games. However, what
started as an analysis of party and childrens' games became deadly serious during the Cold War. The
USA and the Soviet union were playing a deadly nuclear "game". Game Theorist were called upon to
provide advise on how to conduct this game rationally. Perhaps they contributed to the survival of the
human race during this dangerous period.

Conflict, Cooperation and Negotiation among
Agents
With the rise of the Internet the idea of software agents representing their human masters has become a
real possibility. Your agents some stage will have to engage my agents in automated negotiations at some
stage. Confilcts of interest will arise. So will the need to cooperate. These questions are just what Game
Theory deals with. It is not surprising that Game Theory has become of interest in Computer Science. (In
fact, the Draft Curriculum 2001 of the ACM/IEEE lists it as a topic.)

These notes provide an informal introduction to Game Theory using a few examples.

Two Person Zero Sum Games
The phrase "zero sum game" has become part of the English language. It refers to a situation of conflict
in which two or more agents compete for the same prize. One person's win is another's loss. Two person
zero sum games are the easiest to formalize mathematically so most introductions to Game Theory start
with these kinds of games.

A (partial) game theory ontology

Consider the following.

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (1 of 7) [7/24/2002 10:11:42 PM]

7 2 5 1

2 2 3 4

5 3 4 4

3 2 1 6

what is it?

Most people would interpret this as a table of numbers. Some might call it a matrix of integers.

Let's add some labels.

Column Player Strategy

A B C D

I 7 2 5 1

II 2 2 3 4

III 5 3 4 4

IV 3 2 1 6

Row Player
Strategy

Now this table takes on a certain meaning. The matrix is called a payoff matrix. There are two players,
that is, agents, which are assumed to be rational. Players have strategies. This is a special use of the
word strategy. Normally, a strategy is a plan. In Game Theory, strategy must be complete. In other words
a player's strategy must del with every possible stategy of the opponent.

The outcome of the interaction of the players' strategies are the payoffs shown as number in the matrix.
For eacple, if the Row player plays strategy I and the column player plays his strategy, 'B', the payoff is
2.

Zero Sum

By convention, the payoffs shown in the matrix are from the point of view of the Row player. When the
Row player gets a payoff of 2, for example, the implication is that the Column player got a payoff of -2.
The sum of the two payoffs is 0, hence the name Zero Sum Game.

The game shown would be very unfair to the Column player if the payoffs were in dollars. A game with
dollar payoffs would presumably have some negative entries in the payoff matrix. Negative entries
would mean that the Row player would pay the Column player.

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (2 of 7) [7/24/2002 10:11:42 PM]

How the games are played

Simultaneous moves. In the basic version of game theory, both players move at the same time.
They do not take turns. (Game theory can be extended to include taking move turns.

●

Iterative and single games. Games can be played only once but they are much more interesting if
they are played over and over. Games played many times are called iterative games. It is also often
useful to have both players ignorant of just how many times the game will be repeated.

●

Perfect information. Both players can see the whole payoff matrix. This means that they each
know the strategies of their opponents, as well as their own.

●

Connection to the Real World

Game Theory itself is an ontology which is part of mathematics. The mention of dollars for the payoff is
an attempt to link this mathematics to real objects in the human world. Traditionally, Game Theorists
have linked their subject to economics and political science. i.e. business and politics.

Interpreting Game Theory results in the real world is very difficult and often controversial. Game Theory
abstracts from much of the detail of the real world but still can offer insights if carefully done. Hopefully,
it can also be the basis of conflict resolution among software agetns.

To use Game Theory you have to figure out all the possible strategies. Then you have to estimate
payoffs. These need not be absolute. (In the above example, if all the numbers were 10 times larger the
solutions would be the same.) Once the game is setup, the question arises: what is the best strategy for
each player?

A Harmless Interprestaion of the example

(Taken from the book, The Compleat Strategyst, by J.D. Williams.)

The strategies represent roads through a mountain range. Four roads go east-west (Rows), and four go
north-south (Columns). The two groups of roads intersect in the 16 places of the matrix and the payoffs
are altitudes of the intersections.

The two players want to meet and camp at one of the intersections. The catch is that the Row player (the
east-west driver) wants to camp at the highest possible altitude, whereas the Column player (the
north-south driver) wishes to camp at the lowest possible altitude!

They cannot communicate with each other. So what will happen? One possiblity is that each could
choose a route at random. The result would be meeing at some random altitude. (This is a rather fanciful
example since it assumes that the two always can arrive at any intersection at the same time :-)) The
random approach will probably result in unhappiness for one of the two players, too high for one, or too
low for the other. Game Theory analysis provides a better answer.

Minimax and maximin

They plaryers are rational and respectful. They each assume that the other will not make a mistake. So
each assumes the other will always make the 'best' move.

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (3 of 7) [7/24/2002 10:11:42 PM]

The players are also assumed to be conservative in the sense that they will not give up a possibly modest
sure thing to gamble for a much larger gain at the risk of "loosing their shirt".

The Row player (the maximizer) chooses a strategy which has the biggest worst case, the largerst
loweset value among the strategies. The Row player chooses the strategy with the maximum minimum!
(i.e., the maximin.)

The Column player (the minimizer) chooses the strategy which has the smallest worst case, the smallest
highest value among the strategies. The Column player chooses the strategy with the minimum
maximum (i.e., the minimax).

What happesn in William's example?

Row Player's Viewpoint

Strategy I II III IV

Min Payoff 1 2 3 1
Maximin = 3 strategy III

Colum Player's Viewpoint

Strategy A B C D

Max Payoff 7 3 5 6
Minimax = 3 strategy B

So the Row player choosees strategy III. The Column player chooses strategy B,

In this example, the minimax of the Column player equals the maximin of the Row player. The game has
a unique solution. The two players wind up at the 3 (thousand foot) junction and no player can improve
on this outcome.

When the maximin and the minimax are equal the game is said to have a "saddle point", a term used in
calculus and horseback riding.

Non Deterministic games.

Unfortunately, a game with a saddle point is a lucky break for a Game Theoretic analysis. Most games
are like the following obtained by changing one payoff in the original game matrix.

Column Player Strategy

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (4 of 7) [7/24/2002 10:11:42 PM]

A B C D

I 7 2 5 1

II 2 2 3 4

III 5 3 4 4

IV 3 6 1 6

Row Player
Strategy

Row Player Viewpoint

Strategy I II III IV

Min Payoff 1 2 3 1
Maximin = 3 strategy III

Column Player Viewpoint

Strategy A B C D

Max Payoff 7 6 5 6
Minimax = 5 strategy

Nothing changes for the Row player, but the Column player now chooses strategy C instead of B and the
minimax is 5. If the Column player plays strategy C, she winds up at payoff 4 (thousand feet). Could she
do better?

There is a "gray area" in this new version of the game separating the minmax from the maxmin (the
payoffs between 3 and 5). How should players deal with this. The answer is mixed stategies.

Mixed Strategies

If a game has a saddle point, then each player has an optimal pure strategy.That is, one strategy is
certainly the best according to the rules of rationality (minimaxing). With no pure strategy available a
player must create a mix of two or more of the available strategies.

Mixing introduces probablilty. You imagine that the game is to be played over and over again. You can,
of course, only play one stategy at a time. But you can changed the chosen strategy at each play of the
game. The question is, how often should you play each strategy? And in what order?

What you do is to assign a probablilty to each strategy and then, each time the game is played, you
choose a strategy accoring to the probablility. The advantage of this randomization is that you keep the
opponent guessing. Now the question becomes, how do you rationally choose the appropriate
probabilities?

Finding the optimal mixed strategy, which means finding these probablilities is called solving the game.

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (5 of 7) [7/24/2002 10:11:42 PM]

One way of doing this uses the Simplex method of Linear Programming. (You may have taken this in an
Operations Research course, e.g., MTH 503). Solving these games is beyond the scope of CPS720.
However, there is a program on the net, courtesy Stephan Waner and Steven Constenoble of Hofstra
University in New York State.

Game Theory Simulation from Hofstra University

Uising the simulator with our example, we get the following mixed strategy.

The Optimal Row Strategy

[0, 0, 0.8333, 0.1667]

The Optimal Column Strategy

[0, 0.5, 0.5, 0]

This means that the Row player should play her strategy III 5 games out of every 6, strategy IV once
every 6 games, and never play the other two.

The Column player could toss a coin and play each of strategies B and C 50% of the time each. She
never plays strategies A and D.

The value of the game is 3.5 (thousand feet) which is the average payoff if the game is played over and
over again. Notice that this is better for the Column player thant the value 4 (thousand) feet she obtained
by using the minimax pure strategy mentioned earlier. The Row player can do nothing to prevent this
improvement int Column's score.

Dominance

The payoff matrix shows an interesting feature. Row's strategy II is dominated by strategy III. Every
score for III is greater than or equal to that of II. So you could simply cross out row II without changing
the outcome.

Some nice notes from Hoftra University.

Scissors, paper and stone
This classic childrens' game was analysed by von Neumann in his original discussion of Game theory.

Rules of the game

Scissor cuts paper.1.

Paper covers stone.2.

Stone sharpens scissors.3.

Two people simultaneously call out one of these three names. The winnder is the first name listed
in the 3 rules.

●

If the same name is called by both players, the game is a draw.●

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (6 of 7) [7/24/2002 10:11:42 PM]

http://147.4.150.5/~matscw/RealWorld/gametheory/games.html
http://147.4.150.5/~matscw/RealWorld/Summary9.html

Scissors, Paper and stone is playes as an iterative game. It is also a fair game. The value of this game is
therefore, 0.

A possible game matrix is:

Column Player Strategy

scissors paper stone

scissors 0 1 -1

paper -1 0 1

stone 1 -1 0

Row Player
Strategy

There is no pure strategy for either player in this game. The maximin for the row player is -1 for all three
strategies. Similarly the minmax for the column player is 1 for all three strategies.

Because of the game's simplicity and symmetry it is easy to see that each player's mixed strategy should
be to play each of his or her strategies with a probablility of 1/3. For example, each could toss a die. If 1
or 2 turned up, say scissors. If 3 or 4 turned up, say paper, if 5 or 6 turned up, say stone.

Notice that you must completely randomize your choices and the order of choices. Otherwise the
opponent could spot a pattern and exploit it over a long period of plays.

Other Kinds of Games

n-person zero sum games

These can be quite complex because of the possiblity of coallitions and alliances. Those of you who
watched Survivor will remember Rich and his friends. These games are hard to analyse.

Cooperative Games
Another interesting class of games. The most famous example of this type is the "Prisoners' Dilemma"
discussed on another page of these notes. In these games the size of the payoffs can depend on the level
of cooperation among players, in contrast to the zero sum nature of the games discussed here.

[top] [previous] [next] Questions?

Intro to Game Theory

http://www.ryerson.ca/~dgrimsha/courses/cps720/gameTheory.html (7 of 7) [7/24/2002 10:11:42 PM]

mailto:dgrimsha@scs.ryerson.ca

Cooperative Games

Zero sum games involve conflict. Your gain is my loss. Note that the payoff matrix in two player zero
sum games needs only hold the payoff for one side (the Row Player, by convention). The payoff for the
Column Player is just the negaive of that of the Row Player. But you can have games where this is not
true. In such situations it is possible for the players to cooperate for the benefit of all.

How to achieve this cooperative benefit can turn out to be quite difficult if you assume that rational
players pursue only their self interest. In other words, can you have cooperation without altruism. The
dilemma of achieving cooperation based on selfishness is famously illustrated by the Prisoners' Dilemma
Game.

Two Person Cooperative Games

In these games there are four kinds of payoffs.

temptation●

reward (for cooperating)●

sucker●

punishment●

(These names make most sense with the Prisoners' Dilemma version of cooperative games.)

The Payoff Matrix

Player 2

cooperate defect

cooperate (3,3) (0,5)

defect (5,0) (1,1)Player 1

Note in contrast to the zero sum payoff matrix, each element of this matrix has two values, one for each
player. The row player (Player 1) payoff is listed first.

In the example shown, we have, for each player, the following payoffs,

tempataion = 5●

reward = 3●

sucker = 0●

punishment = 1●

Cooperative Games

http://www.ryerson.ca/~dgrimsha/courses/cps720/cooperativeGames.html (1 of 2) [7/24/2002 10:11:43 PM]

The ordering temptation > reward > punishment > sucker makes this a Prisoners' Dilemma.

Strategies

Players have two possible strategies,

cooperate●

defect●

Single and Iterated Games

There are two ways the game can be played. You can have a one encounter game, or you can have an
iterated game, that is, the game is played over and over and a score is kept. The outcome of these two
ways of running the game can be quite different.

The Prisoners' Dilemma Game

The interest in this game is the problem of how to get the cooperative solution which benefits both
players (and notice that the total score world be 6 in the above example, so the "collective" of the two
players winds up with more "wealth" than any other solution gives (only 5 for the tempation payoff).

But no one wants to be suckered. Notice that if both defect, they get the "punishment" payoff, a rather
impoverished result. But it's better than nothing, the sucker's payoff. When both players defect, the "cut
their noses off to spite their faces". Everyone loses.

The trouble is, double defections seem to be the norm. Here are a few examples, from both art and
reality.

Examples of the Prisoners' Dilemma Game

[top] [previous] [next] Questions?

Cooperative Games

http://www.ryerson.ca/~dgrimsha/courses/cps720/cooperativeGames.html (2 of 2) [7/24/2002 10:11:43 PM]

mailto:dgrimsha@scs.ryerson.ca

The Prisoner's Dilemma
The Prisoner's Dilemma Story

Two friends are arrested, charged with a crime, and held in separate cells so they cannot communicate
with each other. They are interrogated separately. They face this situation. The police do not have
enough real evidence, so they are looking for a confession. So they offer, to each prisoner separately, a
"plea bargain". If one prisoner confesses and "fingers" the other, he will get off with a 1 year sentence,
and his (former) friend will serve 5 years.

On the other hand, if neither prisoner "talks", the police will not have enough evidence, and both
prisoners will get off "scott free", and serve 0 time. (If both confess, the judge reduces the 5 year
sentence for good behaviour. -- not really necessary for the game.)

These options can be represented in a tabular form. (In this matrix smaller valuesare more desireable.)

 Player 2

 Cooperates Defects

 Player 1 Cooperates (0, 0) (5, 1)

 Defects (1, 5) (4, 4)

The numbers are called payoffs. In this case the players want to minimize the payoff. When one player
defects, the other is said get the sucker payoff.

The Prisoner's Dilemma game illustrates both the benefits and the difficulties in achieving cooperation.
To achieve the optimum solution, both for yourself, and for both players together (a kind of "societal"
payoff) both players must trust the other. But trust involves the risk of being suckered.

In practice, what usually happens is that both players defect, and get a very bad result for each of them,
in the example, 4 years in jail each.

The Iterated Prisoner's Dilemma
In Prisoner's Dilemma games played only once, defection is almost inevitable, unless some outside,
institutional mechanism has been invented to encourage cooperation. However, there is some hope if the
game can be repeated over and over. To see this, consider restaurants.

Suppose there are two kinds of restaurants. The first group is in the tourist area. Customers are likely
only to come once and never return. In this case the restaurant is tempted to "defect" by serving over
priced meals which are not so good. This is a one shot Prisoner's Dilemma between the customer and the
restauranteur in which the customer is suckered.

The second group of restaurants services an area with a large number of houses, apartments and condos.

Prisoner's Dilemma

http://www.ryerson.ca/~dgrimsha/courses/cps720/prisoner.html (1 of 2) [7/24/2002 10:11:44 PM]

The clientele live around the restaurants. If they like a restaurant, they will return again and again. If they
feel they are suckered, they won't return. So these restaurants are likely to give better value to their
customers.

A real Prisoner's Dilemma

The Cold War and the Nuclear Arms Race (1949-1989) can be viewed as a Prisoner's Dilemma. Fear of
being suckered torpedoed any serious nuclear disarmament agreements. The optimal solution would have
been for both sides to disarm saving billions of dollars and getting rid of nuclear risks. What was
achieved was instead a vast waste of human resources, the arms race.

Prisoner's Dilemma in Art - Tosca's Kiss

One of the world's most famous operas is Tosca, by Giacomo Puccini. Its plot nicely illustrates the
Prisoner's Dilemma. The opera takes place during the time of Napoleon. There are 3 main characters,
Tosca, Cavaradossi, an artist and revolutionary in love with Tosca, and Scarpia, chief of police, and also
in love with Tosca. Tosca is in love with Cavaradossi, and hates Scarpia whom she sees as an ugly
lecher.

Scarpia catches Cavaradossi and plans to execute him by firing squad. He also opens "negotiations" with
Tosca. If she will make love to him, he will free Cavaradossi. She accepts his offer. There is a catch. For
appearance sake, the execution must go ahead, but Scarpia will order that the bullets of the firing squad
will be blanks. Cavaradossi will have to pretend to be dead, but afterwards, he and Tosca can escape.

Tosca comes to Scarpia's chambers. He embraces her, and she stabs him to death a stiletto. This episode
has become famous as "Tosca's kiss". At this moment the firing squad is heard firing.

Tosca runs to fetch her lover. He is lying on the ground. Of course, he really is dead. Scarpia had
defected too. The firing squad used live bullets. In despair, Tosca leaps to her death off the battlements of
the prison.

The Prisoner's Dilemma game can occur whenever negotiations take place, whether among human or
artificial agents. Game Theory also discusses many other situations where negotiations and bargaining
occur. It is a theory of rational behaviour among autonomous agents. It assumes that cooperative
agreements are "out there". The question is how can rational agents get "there" and avoid the likes of
Tosca's kiss.

Autonomous artificial agents will encounter the same dilemmas. Protocols to enable cooperation will
have to be developed. Undoubtedly, Game Theory will be extensively used in the development of such
protocols.

You too can play the Prisoners' Dilemma

Prisoner's Dilemma

http://www.ryerson.ca/~dgrimsha/courses/cps720/prisoner.html (2 of 2) [7/24/2002 10:11:44 PM]

http://www.informatik.uni-oldenburg.de/~xray/PD/Prisoners_Dilemma.html

Some Notes on Ascape

Introduction
Ascape is a Java API for simulating multi-agent systems on a single computer. It is particularly suitable
for simulations in the social sciences. The origins of Ascape lie in the Artificial Life world, in particular,
the Swarm research project.

Ascape was developed by Miles Parker of the Brookings Institute in Washington, DC.

The Ascape web site

Ascape comes with API documentation and a number of examples with source code. These are valuable
but rather too complex for people starting out with Ascape. At least I found them so. One fo the mostt
approachable of these examples is the Demographic Prisoner's Dilemma. Recently Miles Parker
published a paper based on this example which provides a tutorial-like description.

Demographic Prisoner's Dilemma

This example is still pretty complex for beginners. So in the hope of filling the gap caused by the absence
of more elementary examples, here are three tutorials.

Tutorial 1. part 1. The Voter Game●

Tutorial 1 part 2. The Voter Game with data gathering●

Tutorial 2. Population Explosion●

It is hoped that these three tutorials will help newcomers get up to speed with Ascape. They are based on
my own experiences trying to learn Ascape.

Any suggestions or corrections would be greatly appreciated.

The Notes
Part 1 of Tutorial 1 implements the Voter Game simply with an overhead view of the agents. In Part 2
the vote count of each party is recorded and displayed in a histogram.

Basic Ascape Architecture

Ascape Rules

The Voter Game

Tutorial 1. Part 1.

Ascape views

Tutorial 1. Part 2

Ascape

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/Ascape.html (1 of 2) [7/24/2002 10:11:45 PM]

http://www.brook.edu/es/dynamics/models/ascape/
http://jasss.soc.surrey.ac.uk/JASSS/4/1/5.html

Tutorial 2

Ascape

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/Ascape.html (2 of 2) [7/24/2002 10:11:45 PM]

Some notes on the Ascape Architecture
The Ascape program is a very sophiticated construction with an elegeant object oriented architecture. Its
author, Miles Parker, has explained Ascape's architecture on a number of occasions. See, for example,

The Chicago Presentation

The JASSS paper

These comments reflect my own learnig experience based on reading the above and trying to program the
Voter Game. The aim is to highlight what you need to know to get started.

Scapes and Agents
Scapes are collections of agents. But they are also agents themselves which is rather confusing (but very
powerful). It is interesing the look at the inheritance sturcture of agents and scapes (in the package
edu.brook.ascape.model). Here is a principal route:

Object

AscapeObject

Agent

Cell

CellOccupant

Scape

ScapeGraph

ScapeVector

Most movels start with a root Scape which is usually a subclass of the class ScapeVector. This root scape
ties together the various parts of the model and holds assorted global variables needed by the model.

Typically this root ScapeVector holds at least two objects, a ScapeGraph, and another ScapeVector. This
will be the case in our simple Voter Game model. This second ScapeVector holds the agents, 2500 of
them in the Voter Game.

The ScapeGraph holds the "playing field" or environment for the agents. In many cases (such as the
famous SugarScape example, and the Voter example) this consists of a toroidal lattice. Ascape provides
quite a few environment geometries all derived from ScapeGraph. For example,

ScapeGraph

ScapeArray2D

ScapeArray2DMoore

Note that, given this inheritance structure, a ScapeArray2DMoore object could be a CellOccupant -- one
could have a scape of many toroidal worlds!)

Notes on Ascape Architecture

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeArch.html (1 of 2) [7/24/2002 10:11:45 PM]

http://www.brook.edu/es/dynamics/models/ascape/UChicago/index.htm
http://jasss.soc.surrey.ac.uk/JASSS/4/1/5.html

Agents and Cells
Individual agents like in environment such as ScapeArray2D objects. But you can't just plunk them into a
lattice location without preparation.

To enable cells in a Scape to hold agents you must fill them with HostCell objects. One way to do this is
to call the Scape method setPrototypeAgent(Agent a) on a ScapeGraph lattice with the argument a
HostCell object, like this:

ScapeGraph lattice = new ScapeArray2DMoore();

lattice.setPrototypeAgent(new HostCell());

The ScapeVector which holds the agents also needs some preparation. For example suppose we have,

Voter avoter = new Voter();

where Voter is a subclass of CellOccupant (which is a subclass of Agent). Then you could have

ScapeVector voters = new ScapeVector();

voters.setPrototypeAgent(avoter);

clones the Voter agent and puts them in the voters ScapeVector for future use.

Summary
An Ascape model has root ScapeVector holding at least 2 things, a ScapeGraph representing the agents'
environment and a ScapeVector containing the actual agents (which will be used for things like
collecting data). The ScapeGraph is often some kind of lattice structure. Cells of this lattice must be
made "comfortable" in this lattice using the HostCell class.

Your actual agent is a subclass of CellOccupant.

Notes on Ascape Architecture

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeArch.html (2 of 2) [7/24/2002 10:11:45 PM]

Ascape Rules
Ascape agent behaviour is defined by rules. Ascape itself defines a number of useful rules. These rules
are implemented in the Agent class, in the CellOccupant class, and in the Scape class. The rules have
names which are static fields.

Rules in the Agent class
DEATH_RULE●

FISSIONING_RULE●

FORCE_DIE_RULE●

FORCE_FISSION_RULE●

FORCE_MOVE_RULE●

INITIALIZE_RULE●

ITERATE_AND_UPDATE_RULE●

ITERATE_RULE●

METABOLIZE_RULE●

MOVEMENT_RULE●

UPDATE_RULE●

See the discussion of these fields in the documentation.

Rules in the CellOccupant class
MOVE_RANDOM_LOCATION_RULE●

PLAY_HOST_RULE●

PLAY_NEIGHBORS_RULE●

RANDOM_WALK_AVAILABLE_RULE●

RANDOM_WALK_RULE●

Rules in the Scape class
COLLECT_STATS_RULE●

CREATE_RULE●

CREATE_SCAPE_RULE●

INTERNAL_START_RULE●

INTERNAL_SCAPE_RULE●

PAUSE_RULE●

Ascape Rules

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeRules.html (1 of 3) [7/24/2002 10:11:46 PM]

RESUME_RULE●

START_RULE●

STOP_RULE●

Since Scapes are Agents, they inherit all the Agent rules.

By the way, the Scape and Agent classes carry extensive introductoriy documentation which you will
likely find quite useful.

It is also possible to create your own rules and this is often done. In the Voter Game example only two
predefined Ascape rules are needed.

Using Rules

Registration

Rules belong to Scapes . You tell a Scape about a rule (register the rule) using the metthods addRule() or
addInitialRule(). These methods have various forms and belong to the Scape class.

You can add rules when defining scapes but it is often more convenient ot add the rules from inside the
code for the individual agents. To this end, there is the Agent class method, scapeCreated() in which you
can call the addRule() methods via getScape(). The latter returns the scape which the agent in question
inhabits. For example, (inside the agent's class definition, Voter.java)

public void scapeCreated() {

// ...

getScape().addRule(ITERATE_AND_UPDATE_RULE);

// ...

}

Rule Actions

Once the scape knows the rules, it applies them iteratively to every agent on the scape (in an
unsystematic order). It does this by invoking certain methods of the Scape or Agent classes which
correspond to the appropriate rule.

As programmer, you override these methods to add your own code to carry out the rule's action. Or, you
can accept the default behaviour provided by Ascape.

Some rules automatically call a boolean method which tests some condition for the rule's action. These
rules behave like recognize (some condition or situation)-action rules as found, for example, in the JESS
expert system shell.

Bug alert! Make sure you type the signatures of these special methods exactly. Otherwise, your rule may
do nothing or execute the default behaviour only.

Example

Ascape Rules

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeRules.html (2 of 3) [7/24/2002 10:11:46 PM]

In the case of the ITERATE_AND_UPDATE_RULE above, Ascape calls two methods, iterate() and
update().

Rule Order

There are two orders in calling rules, RULE_ORDER and AGENT_ORDER. The default is
AGENT_ORDER. In RULE_ORDER all the rules are executed on one agent and then all the rules are
executed on the next agent and so on. In AGENT_ORDER, the fisrt rule is executed on all the agents,
then the second rule is executed on all the agents, and so on.

The ITERATE_AND_UPDATE_RULE should be used with RULE_ORDER. In this case, the iterate()
method is called on all the agents, and the results temporarily stored. Then the update() method is called
on all the agents to update the agents' states. This ordering simulates parallelism. For example, in the
Voter Game this ordering ensures that each agent uses its neighbours old values in its voting decision,
avoiding a chain reaction where some of its neighbours have already changed their opinions before they
are used.

Ascape Rules

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeRules.html (3 of 3) [7/24/2002 10:11:46 PM]

The Voter Game

The Game
I first came across this game in A. K. Dewdney's fun book, The Armchair Universe (Freeman, 1988). It
is the fourth "easy piece" starting on p.221. Dewdney credits the idea to Peter Donnelly and Dominic
Welsh.

The idea is simple. A wraped around grid world (toroid) is completely occupied with stationary agents,
one in each cell of the grid. Each agent has 8 neighbours (the so-called Moore neighbourhood).

In the example given by Dewdney there are two parties. Initially all the agents are assigned a voiting
preference randomly. Then the system is run through many cycles. At each cycle, each agent-voter,
consults one of its (his,her?) neighbours, chosen randomly, and, being of weak mind, immediately agrees
to vote the same way as that neighbour.

That is all there is too it! The question is, what voting patterns, if any, emerge from this simple
behaviour? You might be surprised. Or, maybe not. Or maybe you will have to decide whether the result
is a figment of the program's imagination, or has some broader significance.

In this first tutorial we implement this simulation with one modification. The user can set the number of
parties between 2 and 5.

The Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/VoterGAme.html [7/24/2002 10:11:46 PM]

Ascape Tutorial: The Voter Game' part
1.
Rules of the Voter Game

Notes on the class structure of Ascape

The program consists of two files, VoterScape.java and Voter.java (in package dave.ascape.voters2).

The code below is colour coded. Important methods and classes are bolded when they first appear.

red. a method which will be called by Ascape●

dark blue. often used methods from the Ascape API.●

green. often used Ascape classes●

The Agents' Environment
VoterScape.java (source)

package dave.ascape.voters2;

import edu.brook.ascape.model.*;

import edu.brook.ascape.view.*;

import edu.brook.ascape.rule.*;

import edu.brook.ascape.util.*;

/**

* A simple version of Dewdney's voting game.

* Voters ask a random neighbour his choice of party and switch to

* that party on the next round of voting.

* see also Voter.java for the agent code.

*/

public class VoterScape extends ScapeVector {

// VoterScape is the root scape

private int numberOfParties = 3;

private int latticeWidth = 50;

private int latticeHeight = 50;

ScapeGraph lattice; // the agents' environment

ScapeVector voters; // the agents

Overhead2DView overheadView;

public void createScape() {

Ascape Tutorial 1. Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1.html (1 of 5) [7/24/2002 10:11:48 PM]

javascript:onClick=popup("VoterGame.html")

super.createScape(); // needed for basic setup

lattice = new ScapeArray2DMoore();
lattice.setPrototypeAgent(new HostCell());
lattice.setExtent(new Coordinate2DDiscrete(latticeWidth, latticeHeight));

Voter voter = new Voter(); // see Voter.java

voter.setHostScape(lattice); // where agents live

voters = new ScapeVector();

voters.setPrototypeAgent(voter);

voters.setExecutionOrder(Scape.RULE_ORDER);

addAgent(lattice); // add the lattice to the root scape

addAgent(voters); // add the voters list to the root scape

}

public void onSetup() {
((ScapeVector) voters).setExtent(new
Coordinate1DDiscrete(latticeWidth*latticeHeight));

}

public void createViews() {
super.createViews();

//Now, add a simple overhead view so that we can view the lattice:

overheadView = new Overhead2DView();

//Set its cell size to 12

overheadView.setCellSize(12);

//add it to the lattice so that it can view and be controlled by it

lattice.addView(overheadView);

}

public void setNumberOfParties(int n) {

numberOfParties = n;

}

public int getNumberOfParties() {

return numberOfParties;

}

}

The Agent Itself
The agent itself is in the file Voter.java (in package dave.ascape.voters2).

Notes on Ascape rules

Ascape Tutorial 1. Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1.html (2 of 5) [7/24/2002 10:11:48 PM]

Voter.java (source)

package dave.ascape.voters2;

import edu.brook.ascape.model.*;

import edu.brook.ascape.view.*;

import edu.brook.ascape.rule.*;

import edu.brook.ascape.util.*;

import java.awt.Color;

/**

* An agent for the VoterScape world. Votes according to the opinion of

* a randomly chosen 'moore' neighbour.

*

* See also dave.ascape.voters2.VoterScape.java

*/

public class Voter extends CellOccupant {
private int supportedParty = 0;

private int temp = 0;

private int numParties = 0;

public Voter() {}

public void initialize() {

super.initialize();

numParties = ((VoterScape)scape.getModel()).getNumberOfParties();

supportedParty = randomInRange(0, numParties-1);

}

public void scapeCreated() {

getScape().addInitialRule(MOVE_RANDOM_LOCATION_RULE);

getScape().addRule(ITERATE_AND_UPDATE_RULE);

}

public void iterate() {
CellOccupant [] neighbors = getHostCell().getNeighboringOccupants();
int chosenNeighbor = randomInRange(0, neighbors.length-1);

CellOccupant chosenAgent = neighbors[chosenNeighbor];

temp = ((Voter) chosenAgent).getSupportedParty();

}

public void update() {
supportedParty = temp;

}

Ascape Tutorial 1. Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1.html (3 of 5) [7/24/2002 10:11:48 PM]

public Color getColor() {
switch(supportedParty) {

case 0: return Color.blue;

case 1: return Color.red;

case 2: return Color.black;

case 3: return Color.orange;

case 4: return Color.white;

default: return Color.green;

}

}

public void setSupportedParty(int p) {

supportedParty = p;

}

public int getSupportedParty() {

return supportedParty;

}

public int getNumParties() {

return numParties;

}

public void setNumParties(int n) {

numParties = n;

}

}

Notes on Voter.java

1. scape.getModel().getNumberOfParties().

This line has some interesting features. The number of parties is held by the numberOfParties variable in
the root Scape (VoterScape). So the idea is to tell the agent how many parties there are. This way of
doing this (rather than, for example, passing the information as a constructor argument) allows the user to
change the number of parties at run time.

For the Voter agent to get at the getNumberOfParties() method of the VoterScape class requires the two
steps shown: 'scape' and 'getModel()'. What is going on?

scape is protected field of th class, AscapeObject. Since the AscapeObject class is the root of the Ascape
system, this fields is inherited by all Ascape objects. It represents the scape (agent) to which the agent in
whose code the 'scape' variable appears, belongs.

In the VoterScape example, consider these two lines in the CreateScape() method,

Ascape Tutorial 1. Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1.html (4 of 5) [7/24/2002 10:11:48 PM]

voters = new ScapeVector();

voters.setPrototypeAgent(voter);

The ScapeVector, voters, "ownes" the voter agent. So, 'scape' refers to this Scape.

Another line of the code is,

addAgent(voters);

The votes Scape is added to the root Scape, VoterScape by this instruction.

This is where getModel() comes in. getModel() is a method of the Agent class. It gets the root scape, in
this case the Scape owning the voters Scape. This is just the VoterScape class which contains the
variables and methods which describe the global properties of the model being designed,

Ascape Tutorial 1. Voter Game

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1.html (5 of 5) [7/24/2002 10:11:48 PM]

package dave.ascape.voters2;

import edu.brook.ascape.model.*;
import edu.brook.ascape.view.*;
import edu.brook.ascape.rule.*;
import edu.brook.ascape.util.*;

/**
 * A simple version of Dewdney's voting game.
 * Voters ask a random neighbour his choice of party and switch to
 * that party on the next round of voting.
 * One run: 4 parties reduced to 1 in 12000 cycles
 *
 * This is mean to be an elementary introduction to Ascape programming.
 * No statistics are collected. Only an overhead view is shown.
 * Users can, however, adjust the number of parties from 2 to 5 at run time
 * in the usuaal Ascape way.
 *
 * see also Voter.java for the agent code.
 * Statistics are added in the program dave.ascape.voters3 package.
 */
public class VoterScape extends ScapeVector {

 private int numberOfParties = 3;
 private int latticeWidth = 50;
 private int latticeHeight = 50;

 ScapeGraph lattice;
 ScapeVector voters;

 Overhead2DView overheadView;
 ChartView chart;

 public void createScape() {
 super.createScape();

 lattice = new ScapeArray2DMoore();
 lattice.setPrototypeAgent(new HostCell());
 lattice.setExtent(new Coordinate2DDiscrete(latticeWidth, latticeHeight));
 Voter voter = new Voter();
 voter.setHostScape(lattice);

 voters = new ScapeVector();
 voters.setPrototypeAgent(voter);

 // how does it know number of voters?
 // default rule order is AGENT_ORDER (SEE paragraph 5.7)
 // RULE_ORDER is needed to simulate parallism with ITERATE_AND_UPDATE_RULE
 voters.setExecutionOrder(Scape.RULE_ORDER);
 addAgent(lattice);
 addAgent(voters);
 }

 public void onSetup() {
 //Set the extent of the scape, which is simply the number of agents we want.
 ((ScapeVector) voters).setExtent(new
Coordinate1DDiscrete(latticeWidth*latticeHeight));
 }

 public void createViews() {

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/VoterScape.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/VoterScape.java (1 of 2) [7/24/2002 10:11:48 PM]

 super.createViews();
 //Now, add a simple overhead view so that we can view the lattice:
 overheadView = new Overhead2DView();
 //Set its cell size to 12
 overheadView.setCellSize(12);
 //add it to the lattice so that it can view and be controlled by it
 lattice.addView(overheadView);
 }

 public void setNumberOfParties(int n) {
 numberOfParties = n;
 }
 public int getNumberOfParties() {
 return numberOfParties;
 }

}

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/VoterScape.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/VoterScape.java (2 of 2) [7/24/2002 10:11:48 PM]

package dave.ascape.voters2;

import edu.brook.ascape.model.*;
import edu.brook.ascape.view.*;
import edu.brook.ascape.rule.*;
import edu.brook.ascape.util.*;

import java.awt.Color;

/**
 * An agent for the VoterScape world. Votes according to the opinion of
 * a randomly chosen 'moore' neighbour.
 *
 * See also dave.ascape.voters2.VoterScape.java
 */
public class Voter extends CellOccupant {

 private int supportedParty = 0;
 private int temp = 0;
 private int numParties = 0;

 public Voter() {}

 // This is not a good way -- implies hardcoding of number of parties
 // in the root VoterScape scape. When the number of parties was passed
 // this way, the value could not be changed at runtime. See the first
 // line of initialize for the correct way to get variable values
 // from the root Scape to individual agents.
 public Voter(int numParties) {
 this.numParties = numParties;
 }

 public void initialize() {
 super.initialize();
 // scape is a built in field in ScapeObject class.
 // getModel() is equivalent to getRootScape. The root scape is
 // where global variables are stored, such as the number of parties.
 // in this example. Belongs to the Agent class. Returns a Scape
 // so casting is necessary to the specific model root.
 numParties = ((VoterScape)scape.getModel()).getNumberOfParties();
 supportedParty = randomInRange(0, numParties-1);
 }

 public void scapeCreated() {
 getScape().addInitialRule(MOVE_RANDOM_LOCATION_RULE);

 getScape().addRule(ITERATE_AND_UPDATE_RULE);
 }

 // called by the ITERATE_AND_UPDATE_RULE

 // iterate is called on every agent. Then update() is called if the
ITERATE_AND_UPDAE
 // rule is used and RULE_ORDER is set. Simulates p;arallelism.

 public void iterate() {
 CellOccupant [] neighbors = getHostCell().getNeighboringOccupants();
 // choose one at random. chekc itsopinion then change
 // could also have 3 choices with diffrent probabilities (adjustable)
 // no chnage, change, random change
 int chosenNeighbor = randomInRange(0, neighbors.length-1);

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/Voter.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/Voter.java (1 of 2) [7/24/2002 10:11:49 PM]

 CellOccupant chosenAgent = neighbors[chosenNeighbor];
 temp = ((Voter) chosenAgent).getSupportedParty();
 }

 public void update() {
 supportedParty = temp;
 }

 public Color getColor() {
 switch(supportedParty) {
 case 0: return Color.blue;
 case 1: return Color.red;
 case 2: return Color.black;
 case 3: return Color.orange;
 case 4: return Color.white;
 default: return Color.green;
 }
 }

 public void setSupportedParty(int p) {
 supportedParty = p;
 }
 public int getSupportedParty() {
 return supportedParty;
 }
 public int getNumParties() {
 return numParties;
 }
 public void setNumParties(int n) {
 numParties = n;
 }
}

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/Voter.java

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/Voter.java (2 of 2) [7/24/2002 10:11:49 PM]

Ascape Views and Stats
Ascape provides many ways of viewing the results of agent behaviour. There is the basic overhead view
of the agent's world (often a toroid). As well, various statistics on the agents can be collected and viewed
as time series, bar charts and pie charts. The tutorials associated with these notes show some simple uses
of views.

The Overhead View
Most Ascape models implement this view which provides a dynamic picture of the agents. The first
tutorial on the Voter Game only implements this view. To do so is quite simple. You simply override the
Scape classes createViews() method like so:

public void createViews() {

super.createViews();

overheadView = new Overhead2DView();

overheadView.setCellSize(12);

lattice.addView(overheadView);

}

The lattice mentioned here is an instance of a ScapeArray2DMoore class. This createViews() method is
part of the definition of the VoterScape model root ScapeVector class. Ascape calls createViews()
automatically.

Collecting and Displaying Statistics
To display time series, bar charts, and pie charts you must first have Ascape collect approprate statistics.
A simple illustration is provided in Tutorial 2.

Ascape Views

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeViews.html [7/24/2002 10:11:49 PM]

Ascape Tutorial: The Voter Game part 2.
Voter Game with histogram view.

of the Voter Game

Notes on the class structure of Ascape

The program consists of two files, VoterScape.java and Voter.java (in package dave.ascape.voters3).

The code below is colour coded. Important methods and classes are bolded when they first appear.

red. a method which will be called by Ascape●

dark blue. often used methods or fields from the Ascape API.●

green. often used Ascape classes●

This version of the Voter Game adds a histogram view of the vote counts for the parties. The program
also pauses on startup.

The code in smaller font is identical to the code in part 1 of this tutorial. Note that the file names are the
same as those of part 1 but theyare in diffent packages.

The Agents' Environment
VoterScape.java (source)

package dave.ascape.voters2;

import edu.brook.ascape.model.*;

import edu.brook.ascape.view.*;

import edu.brook.ascape.rule.*;

import edu.brook.ascape.util.*;

/**

* A simple version of Dewdney's voting game.

* Voters ask a random neighbour his choice of party and switch to

* that party on the next round of voting.

* One run: 4 parties reduced to 1 in 12000 cycles

*

* In this version, vote counts for the parties are collected and

* displayed (by default) in a histogram.

*
*/

public class VoterScape extends ScapeVector {

// VoterScape is the root scape

private int numberOfParties = 3;

private int latticeWidth = 50;

private int latticeHeight = 50;

ScapeGraph lattice; // the agents' environment

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (1 of 6) [7/24/2002 10:11:51 PM]

javascript:onClick=popup("VoterGame.html")

ScapeVector voters; // the agents

Overhead2DView overheadView;

public void createScape() {

super.createScape(); // needed for basic setup

lattice = new ScapeArray2DMoore();

lattice.setPrototypeAgent(new HostCell());

lattice.setExtent(new Coordinate2DDiscrete(latticeWidth, latticeHeight));

Voter voter = new Voter(); // see Voter.java

voter.setHostScape(lattice); // where agents live

voters = new ScapeVector();

voters.setPrototypeAgent(voter);

voters.setExecutionOrder(Scape.RULE_ORDER);

addAgent(lattice); // add the lattice to the root scape

addAgent(voters); // add the voters list to the root scape

}

public void onSetup() {

((ScapeVector) voters).setExtent(new Coordinate1DDiscrete(latticeWidth*latticeHeight));

}

/*

* Putting Ascape into pause right away allows the user to see the

* initial situation. The alternative is to cale setStartOnOpen(false) , for example in
onSetup().

*/

public void onStart() {
pause();

}

public void createViews() {
super.createViews();

//Now, add a simple overhead view so that we can view the lattice:

overheadView = new Overhead2DView();

//Set its cell size to 12

overheadView.setCellSize(12);

//add it to the lattice so that it can view and be controlled by it

lattice.addView(overheadView);

/*

The following code shows how to add some statistic collection to the Voter Agent and
have Ascape display it for your. The stats are collected using inner classes. Serveral
ways of doing this are shown.

The code is straightforward except for one trick which was ot obvious to me.

The trick.

*/

final StatCollector [] stats = {

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (2 of 6) [7/24/2002 10:11:51 PM]

javascript:onClick=popup("AscapeAddSeries.html")

new StatCollectorCondCSA ("Party A") {

public boolean meetsCondition(Object obj) {

return (((Voter)obj).getSupportedParty() == 0);

}

},

new StatCollectorCondCSA ("Party B") {

public boolean meetsCondition(Object obj) {

return (((Voter)obj).getSupportedParty() == 1);

}

},

new StatCollectorCondCSA ("Party C") {

public boolean meetsCondition(Object obj) {

return (((Voter)obj).getSupportedParty() == 2);

}

},

new PartyD_Standing("Party D"),
new PartyE_Standing("Party E")

}; // end StatCollector array

voters.addStatCollectors(stats);

chart = new ChartView(ChartView.HISTOGRAM);

voters.addView(chart);

chart.addSeries("Count Party A", Color.blue);

chart.addSeries("Count Party B", Color.red);

chart.addSeries("Count Party C", Color.black);

chart.addSeries("Count Party D", Color.orange);

chart.addSeries("Count Party E", Color.yellow);

} // end createViews()
public void setNumberOfParties(int n) {

numberOfParties = n;

}

public int getNumberOfParties() {

return numberOfParties;

}

class PartyD_Standing extends StatCollectorCondCSA {

public PartyD_Standing (String name) {

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (3 of 6) [7/24/2002 10:11:51 PM]

javascript:onClick=popup("AscapeAddSeries.html")

super(name);

}

public boolean meetsCondition(Object obj) {

return (((Voter)obj).getSupportedParty() == 3);

}

}

class PartyE_Standing extends StatCollectorCondCSA {

public PartyE_Standing(String name) {

this.name = name;

}

public String getName() {

return name;

}

public boolean meetsCondition(Object obj) {

return (((Voter)obj).getSupportedParty() == 4);

}

}

} // end VoterScape

The Agent Itself
The agent itself is in the file Voter.java (in package dave.ascape.voters2). The code for the Voter agent is
the same as that in part 1 of this tutorial.

Notes on Ascape rules

Voter.java (source)
package dave.ascape.voters2;

import edu.brook.ascape.model.*;

import edu.brook.ascape.view.*;

import edu.brook.ascape.rule.*;

import edu.brook.ascape.util.*;

import java.awt.Color;

/**

* An agent for the VoterScape world. Votes according to the opinion of

* a randomly chosen 'moore' neighbour.

*

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (4 of 6) [7/24/2002 10:11:51 PM]

* See also dave.ascape.voters2.VoterScape.java

*/

public class Voter extends CellOccupant {

private int supportedParty = 0;

private int temp = 0;

private int numParties = 0;

public Voter() {}

public void initialize() {

super.initialize();

numParties = ((VoterScape)scape.getModel()).getNumberOfParties();

supportedParty = randomInRange(0, numParties-1);

}

public void scapeCreated() {

getScape().addInitialRule(MOVE_RANDOM_LOCATION_RULE);

getScape().addRule(ITERATE_AND_UPDATE_RULE);

}

public void iterate() {

CellOccupant [] neighbors = getHostCell().getNeighboringOccupants();

int chosenNeighbor = randomInRange(0, neighbors.length-1);

CellOccupant chosenAgent = neighbors[chosenNeighbor];

temp = ((Voter) chosenAgent).getSupportedParty();

}

public void update() {

supportedParty = temp;

}

public Color getColor() {

switch(supportedParty) {

case 0: return Color.blue;

case 1: return Color.red;

case 2: return Color.black;

case 3: return Color.orange;

case 4: return Color.white;

default: return Color.green;

}

}

public void setSupportedParty(int p) {

supportedParty = p;

}

public int getSupportedParty() {

return supportedParty;

}

public int getNumParties() {

return numParties;

}

public void setNumParties(int n) {

numParties = n;

}

}

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (5 of 6) [7/24/2002 10:11:51 PM]

Notes on Voter.java

1. scape.getModel().getNumberOfParties().

This line has some interesting features. The number of parties is held by the numberOfParties variable in
the root Scape (VoterScape). So the idea is to tell the agent how many parties there are. This way of
doing this (rather than, for example, passing the information as a constructor argument) allows the user to
change the number of parties at run time.

For the Voter agent to get at the getNumberOfParties() method of the VoterScape class requires the two
steps shown: 'scape' and 'getModel()'. What is going on?

scape is protected field of th class, AscapeObject. Since the AscapeObject class is the root of the Ascape
system, this fields is inherited by all Ascape objects. It represents the scape (agent) to which the agent in
whose code the 'scape' variable appears, belongs.

In the VoterScape example, consider these two lines in the CreateScape() method,

voters = new ScapeVector();

voters.setPrototypeAgent(voter);

The ScapeVector, voters, "ownes" the voter agent. So, 'scaper' referes to this Scape.

Another line of the code is,

addAgent(voters);

The votes Scape is added to the root Scape, VoterScape by this instruction.

This is where getModel() comes in. getModel() is a method of the Agent class. It gets the root scape, in
this case the Scape owning the voters Scape. This is just the VoterScape class which contains the
variables and methods which describe the global properties of the model being designed,

Ascape Tutorial 1, part 2

http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/AscapeTutorial1B.html (6 of 6) [7/24/2002 10:11:51 PM]

	www.ryerson.ca
	CPS 720 Artificial Intelligence Programming
	disclaomer
	cps720 Info from Last Year (Fall 2000)
	Dave Grimshaw's CPS 720 Course Management Form
	http://www.ryerson.ca/~dgrimsha/courses/cps720/assignments.html
	CPS720 Assignment 1 Fall 2001
	cps720 Assignment 2 Fall 2001
	cps720 Assignment 3, Fall 2001
	cps720 Exam Readme Fall 2000
	Ryerson Polytechnic University
	cps720 resources and refrences
	Thesis-Book.PDF
	http://www.ryerson.ca/~dgrimsha/courses/cps720/background.html
	Intro to Agents.pdf
	Agent Communication Languages.pdf
	Mobile Agents.dvi
	CreateSurvey.java
	SurveyHistogram.java
	CPS 720 Exam Readme, Fall 2001
	Microsoft Word - c720ex2000.doc
	Living agents
	Agent Definition
	Agent Perspectives
	Lange and Oshima on agency
	Another Agent Definition
	Agent rationality
	http://www.ryerson.ca/~dgrimsha/courses/cps720/images/agents_21.gif
	Autonomous agents
	Agent classification
	Stimulus-Response Agents
	Reactive Agent with State
	Agent Environment Types
	CERN CSC99 Notes from lecture 1
	CERN CSC99 Agent Lecture 2
	The Mobile Agent
	Place
	Internet agent and environment
	Agent mobility
	Mobile Ojects and Agents
	Network computing paradigms
	Location and distributed systems
	http://www.ryerson.ca/~dgrimsha/courses/cps720/agletWhatis.html
	Getting started with aglets
	The Aglet Model
	Aglet Mobility
	Aglet Events
	Basic Aglet Mobility Example
	BasicMasterAglet.java
	BasicMobileAglet.java
	Remote Aglet Messaging
	Aglet Local Messaging
	Messaging: syntax and semantics
	Direct Local Communication anong aglets
	Communication without messaging
	SayItAglet3.java
	HearItAglet3.java
	Remote Aglets
	ProxyDispatchExample.java
	ProxyDispatchChild.java
	Master4.java
	SayItAglet4.java
	HearItAglet4.java
	Aglet Remote Examples
	Aglet Future Replies
	FutureExample.java
	FutureChild.java
	Aglet Programming Basics
	BasicMaster.java
	BasicChild.java
	An Aglet with a separate itinerary class
	BoomerangAglet.java
	BoomerangItinerary.java
	Aglet Cloning
	CloneExampleAglet.java
	Aglet Design Patterns - surveys
	Aglet Patterns - Mater-Slave
	Slave1.java
	MySlave.java
	MyMaster.java
	Aglet Itinerary Pattern
	Parent.java
	Itinerary.java
	SeqItinerary.java
	ItinerantAglet.java
	Aglet Master-Slave Itinerary Pattern
	patternMasterSlave.java
	Slave2.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8a/MyMaster1.java
	Aglets. Using agletx.util methods
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/ItinerantAglet3.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/patterns/chapter8c/Parent3.java
	Aglets as Agents
	KQML and InfoSleuth
	http://www.ryerson.ca/~dgrimsha/courses/cps720/images/intranet-fig3.gif
	The Web's Next Incarnation: Intelligent Talk
	Communicative Acts
	Speech Acts, background
	Notess on Searle's Speech Acts
	Speech Acts
	Commnication Act Summary
	Agent Communication Languages
	KQML as a communication language
	What is an Ontology?
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/performatives.GIF
	FIPA Communicative Act Library Specification.PDF
	XML and Agent Communication
	Agent Content Lanuguages
	FIPA RDF Content Language Specification.PDF
	FIPA SL Content Language Specification
	Scope
	Grammar FIPA SL Concrete Syntax
	Lexical Definitions

	Notes on FIPA SL Semantics
	Grammar Entry Point: FIPA SL Content Expression
	Well-Formed Formulas
	Atomic Formula
	Terms
	Referential Operators
	Iota
	Any
	All

	Functional Terms
	Result Predicate
	Actions and Action Expressions
	Agent Identifiers
	Numerical Constants
	Date and Time Constants

	Reduced Expressivity Subsets of FIPA SL
	FIPA SL0: Minimal Subset
	FIPA SL1: Propositional Form
	FIPA SL2: Decidability Restrictions

	References
	Annex A — Syntax and Lexical Notation

	Ontology
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/ontology/ontology101.pdf
	Getting Started with JADE
	administratorsguide.PDF
	Tutorial 1: Starting with JADE
	Tutorial 2. Jade containers
	Tutorial 3. Multiple Platforms
	JADE Tutorial 4 Using HTTP MTP for inter platform communication
	How to use the HTTP MTP with JADE
	The FIPA Agent model
	programmersguide.PDF
	programmersguide.PDF
	JADE and Ontology
	From Ontology 101
	programmersguide.PDF
	Application-Specific Ontology
	Schemas & Classes
	Sending and Receiving Messages
	Objects & Descriptors

	JADE People Ontology
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/PeopleOntology.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Address.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Person.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/FatherOf.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/MotherOf.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Man.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/ontology/ontology/Woman.java
	JADE Sender Agent
	Receiver.java>
	A Simple Economics Ontology
	Product.java for EconOntology
	Jade Examples
	JADE Ping AGENT
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/PingAgent.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/pingagent/SendPing2.java
	JADE Party Agent
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostAgent.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/HostUIFrame.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/JADE/source/partyAgent/GuestAgent.java
	JADE Party GUI
	JADE Party Guest Agent
	Introduction to XML
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/webserver.xml
	Using XML
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/department.xml
	http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/contents.xml
	XML Name spaces
	XML DTD
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xml
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.dtd
	http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/Dtd/JavaXML.dtd
	Intepreting XML
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/BestGPA2.java
	Using the SAX API
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/CheckXML.java
	Generated Documentation (Untitled)
	: Class MyContentHandler
	: Class MyErrorHandler
	: Class SAXParserDemo
	: Class Hierarchy
	: Deprecated List
	: Index
	: API Help
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/SAXParserDemo.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/averagegpa.xml
	http://www.ryerson.ca/~dgrimsha/courses/cps720/sourceCode/SAX/GPAExample.java
	xsl and xslt
	Student Average GPAs
	http://www.ryerson.ca/~dgrimsha/courses/cps720/Resources/XML/mystuff/averagegpa.xsl
	http://www.ryerson.ca/~dgrimsha/courses/cps720/xml/JavaXML.html.xsl
	Java and XML
	Agent negotiations
	Honesty in negotiations
	Intro to Game Theory
	Cooperative Games
	Prisoner's Dilemma
	Ascape
	Notes on Ascape Architecture
	Ascape Rules
	The Voter Game
	Ascape Tutorial 1. Voter Game
	http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/VoterScape.java
	http://www.ryerson.ca/~dgrimsha/courses/cps720/ascape/programs/dave/ascape/voters2/Voter.java
	Ascape Views
	Ascape Tutorial 1, part 2

	KPEFOKGFNAMFNMEFBMNFBBOALKDNGKOA:
	form1:
	x:
	f1: [http://www.newsfactor.com]

	form2:
	x:
	f1: all
	f2:

	f3:

